

Standard Practice for Computing the Colors of Objects by Using the CIE System¹

This standard is issued under the fixed designation E308; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

INTRODUCTION

Standard tables (Tables 1–4) of color matching functions and illuminant spectral power distributions have since 1931 been defined by the CIE, but the CIE has eschewed the role of preparing tables of tristimulus weighting factors for the convenient calculation of tristimulus values. There have subsequently appeared numerous compilations of tristimulus weighting factors in the literature with disparity of data resulting from, for example, different selections of wavelength intervals and methods of truncating abbreviated wavelength ranges. In 1970, Foster et al. (1)² proposed conventions to standardize these two features, and Stearns (2) published a more complete set of tables. Stearns' work and later publications such as the 1985 revision of E308 have greatly reduced the substantial variations in methods for tristimulus computation that existed several decades ago.

The disparities among earlier tables were largely caused by the introduction of computations based on 20-nm wavelength intervals. With the increasing precision of modern instruments, there is a likelihood of a need for tables for narrower wavelength intervals. Stearns' tables, based on a 10-nm interval, did not allow the derivation of consistent tables with wavelength intervals less than 10 nm. The 1-nm table must be designated the basic table if others with greater wavelength intervals are to have the same white point, and this was the reason for the 1985 revision of E308, resulting in tables that are included in the present revision as Tables 5.

The 1994 revision was made in order to introduce to the user a method of reducing the dependence of the computed tristimulus values on the bandpass of the measuring instrument, using methods that are detailed in this practice.

1. Scope

- 1.1 This practice provides the values and practical computation procedures needed to obtain CIE tristimulus values from spectral reflectance, transmittance, or radiance data for object-color specimens.
- 1.2 Procedures and tables of standard values are given for computing from spectral measurements the CIE tristimulus values *X*, *Y*, *Z*, and chromaticity coordinates *x*, *y* for the CIE

- 1.3 Standard values are included for the spectral power of six CIE standard illuminants and three CIE recommended fluorescent illuminants.
- 1.4 Procedures are included for cases in which data are available only in more limited wavelength ranges than those recommended, or for a measurement interval wider than that recommended by the CIE. This practice is applicable to spectral data obtained in accordance with Practice E1164 with 1-, 5-, 10-, or 20-nm measurement interval.
- 1.5 Procedures are included for cases in which the spectral data are, and those in which they are not, corrected for bandpass dependence. For the uncorrected cases, it is assumed that the spectral bandpass of the instrument used to obtain the data was approximately equal to the measurement interval and

¹⁹³¹ standard observer and X_{10} , Y_{10} , Z_{10} and x_{10} . y_{10} for the CIE 1964 supplementary standard observer.

¹ This practice is under the jurisdiction of ASTM Committee E12 on Color and Appearance and is the direct responsibility of Subcommittee E12.04 on Color and Appearance Analysis.

Current edition approved April 1, 2015. Published May 2015. Originally approved in 1966. Last previous edition approved in 2013 as E308 – 13. DOI: 10.1520/E0308-15.

² The boldface numbers in parentheses refer to the list of references at the end of this practice.

was triangular in shape. These choices are believed to correspond to the most widely used industrial practice.

- 1.6 This practice includes procedures for conversion of results to color spaces that are part of the CIE system, such as CIELAB and CIELUV (3). Equations for calculating color differences in these and other systems are given in Practice D2244.
- 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:³
- D2244 Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates
- E284 Terminology of Appearance
- E313 Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates
- E1164 Practice for Obtaining Spectrometric Data for Object-Color Evaluation
- E2022 Practice for Calculation of Weighting Factors for Tristimulus Integration
- E2729 Practice for Rectification of Spectrophotometric Bandpass Differences
- 2.2 ANSI Standard:
- PH2.23 Lighting Conditions for Viewing Photographic Color Prints and Transparencies⁴
- 2.3 CIE/ISO Standards:
- ISO Standard 11664-1:2007(E)/CIE S 013-1/E:2006 Standard Colorimetric Observers^{4,5}
- ISO Standard 11664-2:2007(E)/CIE S 014-2/E:2006 Colorimetric Illuminants^{4,5}
- CIE Standard D 001 Colorimetric Illuminants and Observers (Disk)⁵
- 2.4 ASTM Adjuncts:
- Computer disk containing Tables 5 and 6⁶

3. Terminology

- 3.1 Definitions of terms in Terminology E284 are applicable to this practice (see also Ref (4)).
 - 3.2 Definitions:
 - 3.2.1 bandpass, adj—having to do with a passband.
- ³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.
- ⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.
- ⁵ Available from CIE (International Commission on Illumination), http://www.cie.co.at
- ⁶ Computer disk of 72 tables is available from ASTM Headquarters. Request Adjunct No. ADJE0308A. Originally approved in 1994.

- 3.2.2 *bandwidth*, *n*—the width of a passband at its half-peak transmittance
- 3.2.3 *chromaticity, n*—the color quality of a color stimulus definable by its chromaticity coordinates.
- 3.2.4 *chromaticity coordinates*, *n*—the ratio of each of the tristimulus values of a psychophysical color (see section 3.2.7.11) to the sum of the tristimulus values.
- 3.2.4.1 *Discussion*—In the CIE 1931 standard colorimetric system, the chromaticity coordinates are: x = X/(X + Y + Z), y = Y/(X + Y + Z), z = Z/(X + Y + Z); in the CIE 1964 supplementary colorimetric system, the same equations apply with all symbols having the subscript 10 (see 3.2.7).
- 3.2.5 *CIE*, *n*—the abbreviation for the French title of the International Commission on Illumination, Commission Internationale de l'Éclairage.
- 3.2.6 CIE 1931 (x, y) chromaticity diagram, n—chromaticity diagram for the CIE 1931 standard observer, in which the CIE 1931 chromaticity coordinates are plotted, with x as abscissa and y as ordinate.
- 3.2.7 CIE 1964 (x_{10} , y_{10}) chromaticity diagram, n—chromaticity diagram for the CIE 1964 supplementary standard observer, in which the CIE 1964 chromaticity coordinates are plotted, with x_{10} as abscissa and y_{10} as ordinate.
- 3.2.7.1 *Discussion*—Fig. 1 shows the CIE 1931 and 1964 chromaticity diagrams, including the locations of the spectrum locus and the connecting purple boundary.
- 3.2.8 CIE 1976 (u', v') or (u'_{10} , v'_{10}) chromaticity diagram, n—chromaticity diagram in which the CIE 1976 L^* u^* v^* (CIELUV) chromaticity coordinates are plotted, with u' (or u'_{10}) as abscissa and v' (or v'_{10}) as ordinate.
- 3.2.9 CIE 1931 standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli, X, Y, Z and the three CIE color—matching functions $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ adopted by the CIE in 1931.
- 3.2.10 CIE 1964 supplementary standard colorimetric system, n—a system for determining the tristimulus values of any spectral power distribution using the set of reference color stimuli X_{10} , Y_{10} , Z_{10} and the three CIE color-matching functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ adopted by the CIE in 1964 (see Note 1).
- Note 1—Users should be aware that the CIE 1964 (10°) supplementary system and standard observer assume no contribution or constant contribution of rods to vision. Under some circumstances, such as in viewing highly metameric pairs in very low light levels (where the rods are unsaturated), the amount of rod participation can vary between the members of the pair. This is not accounted for by any trichromatic system of colorimetry. The 10° system and observer should be used with caution in such circumstances.
- 3.2.11 *color, n—of an object*, aspect of object appearance distinct from form, shape, size, position or gloss that depends upon the spectral composition of the incident light, the spectral reflectance, transmittance, or radiance of the object, and the spectral response of the observer, as well as the illuminating and viewing geometry.

FIG. 1 The CIE 1931 x,yand 1964 x_{10},y_{10} Chromaticity Diagrams Ref (5) (see Note 2)

- 3.2.12 *color, n—psychophysical*, characteristics of a color stimulus (that is, light producing a visual sensation of color) denoted by a colorimetric specification with three values, such as tristimulus values.
- 3.2.13 *color–matching functions*, *n*—the amounts, in any trichromatic system, of three reference color stimuli needed to match, by additive mixing, monochromatic components of an equal–energy spectrum.
- 3.2.14 *fluorescent illuminant, n*—illuminant representing the spectral distribution of the radiation from a specified type of fluorescent lamp.
- 3.2.15 CIE recommended fluorescent illuminants, n—a set of spectral power distributions of 12 types of fluorescent lamps, the most important of which are FL2, representing a cool white fluorescent lamp with correlated color temperature 4200 K, FL7, a broad-band (continuous-spectrum) daylight lamp (6500 K), and FL11, a narrow-band (line-spectrum) white fluorescent lamp (4000 K).
- 3.2.16 *luminous*, *adj*—weighted according to the spectral luminous efficiency function $V(\lambda)$ of the CIE.
- 3.2.17 *opponent-color scales*, *n*—scales that denote one color by positive scale values, the neutral axis by zero value, and an approximately complementary color by negative scale values, common examples being scales that are positive in the red direction and negative in the green direction, and those that are positive in the yellow direction and negative in the blue direction.

- 3.2.18 CIELAB color scales, n—CIE 1976 L^* , a^* , b^* opponent-color scales, in which a^* is positive in the red direction and negative in the green direction, and b^* is positive in the yellow direction and negative in the blue direction.
- 3.2.19 CIELUV color scales, n—CIE 1976 L^* , u^* , v^* opponent-color scales, in which u^* is positive in the red direction and negative in the green direction, and v^* is positive in the yellow direction and negative in the blue direction.
- 3.2.20 *passband*, *n*—a contiguous band of wavelengths in which at least a fraction of the incident light is selectively transmitted by a light-modulating device or medium.
- 3.2.21 *spectral, adj—for radiometric quantities*, pertaining to monochromatic radiation at a specified wavelength or, by extension, to radiation within a narrow wavelength band about a specified wavelength.
- 3.2.22 *standard illuminant, n*—a luminous flux, specified by its spectral distribution, meeting specifications adopted by a standardizing organization.
- 3.2.23 CIE standard illuminant A, n—colorimetric illuminant, representing the full radiator at 2855.6 K, defined by the CIE in terms of a relative spectral power distribution.
- 3.2.24 CIE standard illuminant C, n—colorimetric illuminant, representing daylight with a correlated color temperature of 6774 K, defined by the CIE in terms of a relative spectral power distribution.

- 3.2.25 CIE standard illuminant D_{65} , n—colorimetric illuminant, representing daylight with a correlated color temperature of 6504 K, defined by the CIE in terms of a relative spectral power distribution.
- 3.2.25.1 *Discussion*—Other illuminants of importance defined by the CIE include the daylight illuminants D_{50} , D_{55} , and D_{75} . Illuminant D_{50} is used by the graphic arts industry for viewing colored transparencies and prints (see ANSI PH2.23).
- 3.2.26 *standard observer*, *n*—an ideal observer having visual response described by the CIE color-matching functions (see CIE S 013 and Ref (3)).
- 3.2.27 CIE 1931 standard observer, n—ideal colorimetric observer with color-matching functions $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ corresponding to a field of view subtending a 2° angle on the retina; commonly called the "2° standard observer."
- 3.2.28 CIE 1964 supplementary standard observer, n—ideal colorimetric observer with color-matching functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ corresponding to a field of view subtending a 10° angle on the retina; commonly called the "10° standard observer" (see Note 1).
 - 3.2.29 tristimulus values, n—see 3.2.9 and 3.2.10.
- 3.2.30 tristimulus weighting factors, $S\bar{x}$, $S\bar{y}$, $S\bar{z}$, n—factors obtained from products of the spectral power S of an illuminant and the spectral color-matching functions \bar{x} , \bar{y} , \bar{z} (or \bar{x}_{10} , \bar{y}_{10} , \bar{z}_{10}) of an observer, usually tabulated at wavelength intervals of 10 or 20 nm, used to compute tristimulus values by multiplication by the spectral reflectance, transmittance, or radiance (or the corresponding factors) and summation.
- 3.2.30.1 *Discussion*—Proper account should be taken of the spectral bandpass of the measuring instrument.

4. Summary of Practice

- 4.1 *Selection of Parameters*—The user of this practice must select values of the following parameters:
- 4.1.1 *Observer*—Select either the CIE 1931 standard colorimetric observer (2° observer) or the CIE 1964 supplementary standard observer (10° observer), tabulated in this practice, CIE Standard S 013 or D 001, or Ref (3) (see 3.2.26 and Note 1).
- 4.1.2 *Illuminant*—Select one of the CIE standard or recommended illuminants tabulated in this practice, CIE Standard S 014 or D 001, or Ref (3) (see 3.2.22).
- 4.1.3 *Measurement Interval*—Select the measurement interval of the available spectral data. This practice provides for 1-, 5-, 10-, or 20-nm measurement intervals. For best practice the measurement interval should be selected to be as nearly as possible equal to the instrument bandpass.
- 4.2 *Procedures*—The user should ascertain whether or not the spectral data have been corrected for bandpass dependence. The accuracy of tristimulus values is significantly improved by incorporating a correction for bandpass dependence into either the spectral data or the tables of tristimulus weighting factors (see 7.2). The procedures used depend on this and on the measurement interval.
- 4.2.1 For data obtained at 1- or 5-nm measurement interval, the procedures of 7.2 should be followed.

- 4.2.2 For data obtained at 10- or 20-nm measurement interval, the tables of tristimulus weighting factors contained in Tables 5 should be used with spectral data that have been corrected for bandpass dependence. For standard methods of making such a correction see Practice E2729.
- 4.2.3 A flow chart to ensure the use of proper combinations of data and tables is given in Fig. 2. The procedures of the practice are given in detail in 7.1.
- 4.3 Calculations—CIE tristimulus values X, Y, Z or X_{10} , Y_{10} , Z_{10} are calculated by numerical summation of the products of tristimulus weighting factors for selected illuminants and observers with the reflectance factors (or transmittance or radiance factors) making up the spectral data.
- 4.4 The tristimulus values so calculated may be further converted to coordinates in a more nearly uniform color space such as CIELAB or CIELUV.

5. Significance and Use

- 5.1 The CIE colorimetric systems provide numerical specifications that are meant to indicate whether or not pairs of color stimuli match when viewed by a CIE standard observer. The CIE color systems are not intended to provide visually uniform scales of color difference or to describe visually perceived color appearances.
- 5.2 This practice provides for the calculation of tristimulus values *X*, *Y*, *Z* and chromaticity coordinates *x*, *y* that can be used directly for psychophysical color stimulus specification or that can be transformed to nearly visually uniform color scales, such as CIELAB and CIELUV. Uniform color scales are preferred for research, production control, color-difference calculation, color specification, and setting color tolerances. The appearance of a material or an object is not completely specified by the numerical evaluation of its psychophysical color, because appearance can be influenced by other properties such as gloss or texture.

6. Procedure

- 6.1 Selecting Standard Observer—When colorimetric results are required that will be compared with previous results obtained for the CIE 1931 standard observer, use the values in Table 1 for that observer. When new results are being computed, consider using the values in Table 2 for the CIE 1964 supplementary standard observer, but see Note 1.
- 6.1.1 Whenever correlation with visual observations using fields of angular subtense between about 1° and about 4° at the eye of the observer is desired, select the CIE 1931 standard colorimetric observer.
- 6.1.2 Whenever correlation with visual observations using fields of angular subtense greater than 4° at the eye of the observer is desired, select the CIE 1964 supplementary standard colorimetric observer (but see Note 1).
- 6.2 Selecting Standard or Recommended Illuminants —Select illuminants according to the type of light(s) under which objects will be viewed or for which their colors will be specified or evaluated.
- 6.2.1 When incandescent (tungsten) lamplight is involved, use values for CIE illuminant *A*.

Note 1—References to Section 7. Calculations are included.

FIG. 2 Flow Chart for Selecting Methods and Tables for Tristimulus Integration

- 6.2.2 When daylight is involved, use values for CIE illuminant C or D_{65} .
- 6.2.3 When fluorescent-lamp illumination is involved, use 4200 K standard cool white (*FL2*) unless results are desired for 6500 K broad-band daylight (*FL7*) or 4000 K narrow-band white (*FL11*) fluorescent illumination.
- 6.3 Selecting the Measurement Interval—For greater accuracy select the 5-nm measurement interval over the 10-nm interval where spectral data are available at 5-nm intervals.
- Likewise, select the 10-nm measurement interval over the 20-nm interval where spectral data are available at 10-nm intervals. If the 20-nm interval is selected, users should ensure themselves that the resulting accuracy is sufficient for the purpose for which the results are intended. For many industrial applications use of the 20-nm interval may be satisfactory.
- 6.3.1 If the instrument used has a selectable measurement interval, select the interval that most nearly equals the bandwidth of the instrument throughout the spectrum. If the

TABLE 1 Spectral Tristimulus Values (Color-Matching Functions) \bar{x} , \bar{y} , \bar{z} of the CIE 1931 Standard (2°) Observer, at 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref (3))

780 nm (See Note 2 and Ref (3))							
λ(nm)	$\bar{X}(\lambda)$	$\bar{y}(\lambda)$	$ar{\mathcal{Z}}(\lambda)$				
380	0.0014	0.0000	0.0065				
385	0.0022	0.0001	0.0105				
390	0.0042	0.0001	0.0201				
395	0.0076	0.0002	0.0362				
400	0.0140	0.0004	0.0070				
400	0.0143	0.0004	0.0679				
405	0.0232	0.0006	0.1102				
410	0.0435	0.0012	0.2074				
415	0.0776	0.0022	0.3713				
420	0.1344	0.0040	0.6456				
425	0.2148	0.0073	1.0391				
430	0.2839	0.0116	1.3856				
435	0.3285	0.0168	1.6230				
440	0.3483	0.0230	1.7471				
445	0.3481	0.0298	1.7826				
443	0.3401	0.0298	1.7020				
450	0.3362	0.0380	1.7721				
455	0.3187	0.0480	1.7441				
460	0.2908	0.0600	1.6692				
465	0.2511	0.0739	1.5281				
470	0.1954	0.0910	1.2876				
475	0.1421	0.1126	1.0419				
480	0.0956	0.1390	0.8130				
485	0.0580	0.1693	0.6162				
490	0.0320	0.2080	0.4652				
495	0.0147	0.2586	0.3533				
100	0.0117	0.2000	0.0000				
500	0.0049	0.3230	0.2720				
505	0.0024	0.4073	0.2123				
510	0.0093	0.5030	0.1582				
515	0.0291	0.6082	0.1117				
520	0.0633	0.7100	0.0782				
505	0.4000	0.7000	0.0570				
525	0.1096	0.7932	0.0573				
530	0.1655	0.8620	0.0422				
535	0.2257	0.9149	0.0298				
540	0.2904	0.9540	0.0203				
545	0.3597	0.9803	0.0134				
550	0.4334	0.9950	0.0087				
555	0.5121	1.0000	0.0057				
560	0.5945	0.9950	0.0039				
565	0.6784	0.9786	0.0027				
570	0.7621	0.9520	0.0021				
0.0	0.7621	0.0020	0.0021				
575	0.8425	0.9154	0.0018				
580	0.9163	0.8700	0.0017				
585	0.9786	0.8163	0.0017				
590 505	1.0263	0.7570	0.0011				
595	1.0567	0.6949	0.0010				
600	1.0622	0.6310	0.0008				
605	1.0456	0.5668	0.0006				
610	1.0026	0.5030	0.0003				
615	0.9384	0.4412	0.0002				
620	0.8544	0.3810	0.0002				
625	0.7514	0.3210	0.0001				
630	0.6424	0.2650	0.0000				
635	0.5419	0.2170	0.0000				
640	0.4479	0.1750	0.0000				
645	0.3608	0.1382	0.0000				
0.0	0.0000	0002	0.000				
650	0.2835	0.1070	0.0000				
655	0.2187	0.0816	0.0000				
660	0.2167	0.0610	0.0000				
665	0.1212	0.0446	0.0000				
670	0.0874	0.0320	0.0000				
0	0.0000	0.0000	0.0000				
675	0.0636 0.0468	0.0232 0.0170	0.0000 0.0000				
		0.0370					
680 685	0.0468	0.0170	0.0000				

TABLE 1 Continued

λ(nm)	$ar{\mathit{X}}(\lambda)$	$ar{y}(\lambda)$	$ar{\mathcal{Z}}(\lambda)$
690	0.0227	0.0082	0.0000
695	0.0158	0.0057	0.0000
700	0.0114	0.0041	0.0000
705	0.0081	0.0029	0.0000
710	0.0058	0.0021	0.0000
715	0.0041	0.0015	0.0000
720	0.0029	0.0010	0.0000
725	0.0020	0.0007	0.0000
730	0.0014	0.0005	0.0000
735	0.0010	0.0004	0.0000
740	0.0007	0.0002	0.0000
745	0.0005	0.0002	0.0000
750	0.0003	0.0001	0.0000
755	0.0002	0.0001	0.0000
760	0.0002	0.0001	0.0000
765	0.0001	0.0000	0.0000
770	0.0001	0.0000	0.0000
775	0.0001	0.0000	0.0000
780	0.0000	0.0000	0.0000
	Summation at	5 nm intervals:	·

 $\sum \bar{x}(\lambda) = 21.3714$

 $\sum \bar{\mathbf{y}}(\lambda) = 21.3711$

 $\sum \bar{z}(\lambda) = 21.3715$

instrument has an adjustable bandwidth, adjust the bandwidth to be approximately equal to the measurement interval.

6.3.2 The measurement interval should be commensurate with the bandwidth. A much greater interval would undersample the spectrum, and a much smaller interval would not improve the accuracy of the computation.

6.4 Other Miscellaneous Conditions—While the above selections cover the majority of industrial practices, the possibility exists that other conditions could be encountered. Therefore, other procedures than those included in this practice may be used provided that the results are consistent with those obtained by use of the procedures in the practice.

7. Calculations

7.1 General Procedures—The general procedures for computing CIE tristimulus values are summarized as follows:

7.1.1 Procedures as Specified by the CIE—The CIE procedures are specified in Ref (3) and summarized in Refs (5-9). The fundamental definition is in terms of integrals,

$$X = k \int_{\lambda} R(\lambda) S(\lambda) \bar{x}(\lambda) d\lambda$$

$$Y = k \int_{\lambda} R(\lambda) S(\lambda) \bar{y}(\lambda) d\lambda$$

$$Z = k \int_{\lambda} R(\lambda) S(\lambda) \bar{z}(\lambda) d\lambda$$
(1)

where:

 $R(\lambda)$ = the reflectance, transmittance, or radiance factor (on a scale of zero to one for the perfect reflecting diffuser),

 $S(\lambda)$ the relative spectral power of a CIE standard illuminant, and

 $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ = the color-matching functions of one of the CIE standard observers.

The integration is carried out over the entire wavelength region in which the color-matching functions are defined, 360 to 830 nm. The normalizing factor k is defined as

$$k = 100 / \int_{\lambda} S(\lambda) \, \bar{y}(\lambda) \, d\lambda \tag{2}$$

The CIE notes that in all practical calculations of tristimulus values the integration is approximated by a summation, giving the equations as follows:

$$X = k \sum_{\lambda} R(\lambda) S(\lambda) \bar{x}(\lambda) \Delta \lambda$$

$$Y = k \sum_{\lambda} R(\lambda) S(\lambda) \bar{y}(\lambda) \Delta \lambda$$

$$Z = k \sum_{\lambda} R(\lambda) S(\lambda) \bar{z}(\lambda) \Delta \lambda$$
(3)

with:

TABLE 2 Spectral Tristimulus Values (Color-Matching Functions) \bar{x}_{10} , \bar{y}_{10} , \bar{z}_{10} of the CIE 1964 Supplementary Standard (10°) Observer, At 5 nm Intervals from 380 to 780 nm (See Note 2 and Ref (3))

	nm intervals from 380 to 78	o nm (See Note 2 and Her (3))	
λ(nm)	$\bar{x}_{10}(\lambda)$	$\bar{y}_{10}(\lambda)$	$ar{\mathcal{Z}}_{10}(\lambda)$
-			
380	0.0002	0.0000	0.0007
385	0.0007	0.0001	0.0029
390	0.0024	0.0003	0.0105
395	0.0072	0.0008	0.0323
400	0.0191	0.0020	0.0860
405	0.0434	0.0045	0.1971
410	0.0847	0.0088	0.3894
415	0.1406	0.0145	0.6568
420	0.2045	0.0214	0.9725
405			4 000=
425	0.2647	0.0295	1.2825
430	0.3147	0.0387	1.5535
435	0.3577	0.0496	1.7985
440	0.3837	0.0621	1.9673
445	0.3867	0.0747	2.0273
	0.0007	0.07 .7	2.02.70
450	0.3707	0.0895	1.9948
455	0.3430	0.1063	1.9007
460	0.3023	0.1282	1.7454
465	0.2541	0.1528	1.5549
470	0.1956	0.1852	1.3176
475	0.1323	0.2199	1.0302
480	0.0805	0.2536	0.7721
485	0.0411	0.2977	0.5701
490	0.0162	0.3391	0.4153
495	0.0051	0.3954	0.3024
100	0.0001	0.0001	0.002 1
500	0.0038	0.4608	0.2185
505	0.0154	0.5314	0.1592
510			0.1120
	0.0375	0.6067	
515	0.0714	0.6857	0.0822
520	0.1177	0.7618	0.0607
525	0.1730	0.8233	0.0431
530	0.2365	0.8752	0.0305
535	0.3042	0.9238	0.0206
540	0.3768	0.9620	0.0137
545	0.4516	0.9822	0.0079
550	0.5298	0.9918	0.0040
555	0.6161	0.9991	0.0011
560	0.7052	0.9973	0.0000
565	0.7938	0.9824	0.0000
570	0.8787		0.0000
570	0.8787	0.9556	0.0000
575	0.9512	0.9152	0.0000
580	1.0142	0.8689	0.0000
585	1.0743	0.8256	0.0000
590	1.1185	0.7774	0.0000
595	1.1343	0.7204	0.0000
600	1.1240	0.6583	0.0000
605	1.0891	0.5939	0.0000
610	1.0305	0.5280	0.0000
615	0.9507	0.4618	0.0000
620	0.8563	0.3981	0.0000
320	3.0000	3.3001	3.3000
625	0.7549	0.3396	0.0000
630	0.6475	0.2835	0.0000
		0.2283	
635	0.5351		0.0000
640	0.4316	0.1798	0.0000
645	0.3437	0.1402	0.0000
650	0.2683	0.1076	0.0000
655	0.2043	0.0812	0.0000
660	0.1526	0.0603	0.0000
665	0.1122	0.0441	0.0000
670	0.0813	0.0318	0.0000
	0.0010	0.0010	0.0000
070			
	0.0579	0.0226	0.0000
675 680	0.0579 0.0409	0.0226 0.0159	0.0000 0.0000

TABLE 2 Continued

λ(nm)	$\bar{X}_{10}(\lambda)$	$ar{y}_{10}(\lambda)$	$ar{z}_{10}(\lambda)$
690	0.0199	0.0077	0.0000
695	0.0138	0.0054	0.0000
700	0.0096	0.0037	0.0000
705	0.0066	0.0026	0.0000
710	0.0046	0.0018	0.0000
715	0.0031	0.0012	0.0000
720	0.0022	0.0008	0.0000
725	0.0015	0.0006	0.0000
730	0.0010	0.0004	0.0000
735	0.0007	0.0003	0.0000
740	0.0005	0.0002	0.0000
745	0.0004	0.0001	0.0000
750	0.0003	0.0001	0.0000
755	0.0002	0.0001	0.0000
760	0.0001	0.0000	0.0000
765	0.0001	0.0000	0.0000
770	0.0001	0.0000	0.0000
775	0.0000	0.000	0.0000
780	0.0000	0.0000	0.0000

Summation at 5 nm intervals

 $\sum \bar{x}_{10}(\lambda) = 23.3294$

 $\sum \bar{y}_{10}(\lambda) = 23.3324$ $\sum \bar{z}_{10}(\lambda) = 23.3343$

$$k = 100/\sum_{\lambda} S(\lambda)\bar{y}(\lambda) \Delta\lambda \tag{4}$$

7.1.2 Procedure Using Tristimulus Weighting Factors—It is common industrial practice to carry out the summation to tristimulus values in two steps. In the first of these, a set of normalized tristimulus weighting factors W_{xy} , W_{yy} , W_{z} is calculated as follows:

$$W_{r}(\lambda) = k S(\lambda) \bar{x}(\lambda) \Delta \lambda \tag{5}$$

$$W_{v}(\lambda) = kS(\lambda) \bar{y}(\lambda) \Delta \lambda$$

$$W_z(\lambda) = kS(\lambda) \bar{z}(\lambda) \Delta \lambda$$

for $\lambda = 360$, ... 780 nm, (see Note 2), and where:

$$k = 100/\sum_{\lambda=0}^{780} S(\lambda) \,\bar{y}(\lambda) \,\Delta\lambda \tag{6}$$

For a given selection of illuminant, observer, measurement interval $\Delta\lambda$, and measurement bandpass, this calculation needs to be done only once, since the spectral reflectance (or transmittance or radiance) factor $R(\lambda)$ is not included in the weighting factors W. In the second step, tristimulus values X, Y, Z (or X_{10} , Y_{10} , Z_{10}) are calculated using the values of W and $R(\lambda)$ in the following equations:

$$X = \sum_{360}^{780} W_x(\lambda) R(\lambda) \Delta \lambda \tag{7}$$

$$Y = \sum_{360}^{780} W_{y}(\lambda) R(\lambda) \Delta \lambda$$

$$Z = \sum_{360}^{780} W_z(\lambda) R(\lambda) \Delta \lambda$$

Note 2—While 360 nm is recommended as the starting wavelength for summation and elsewhere in this practice, CIE data reproduced in Tables

- 1-4, and the spectrum locus scale of Fig. 1, begin only at 380 nm; since the missing data cannot be supplied in all cases, these references to 380 nm should remain. In the region between 360 and 379 nm, values of color matching functions are so small that their inclusion or omission in the calculations would not lead to significant differences in the resulting tristimulus values.
- 7.1.3 For methods of calculating weighting factors from custom sources, see Practice E2022.
- 7.2 Summary of Calculations (see Note 2)—A general outline of the procedure is given in Fig. 2 in the form of a flow chart.

Note 3—For reflecting materials, calculate tristimulus values from spectral data obtained relative to the perfect reflecting diffuser. For transmitting materials, calculate by use of the incident light as the reference.

- 7.2.1 Procedure for 1-nm Measurement Interval—Use the 1-nm spectral data in CIE S 014 and S 013 (or on CIE D 001 Disk) and (Eq 3) and (Eq 4).
- 7.2.2 Procedures for Spectral Data With Bandpass Correction:
- 7.2.2.1 Procedure for Data Obtained at 5-nm Measurement Intervals—Prepare tables of tristimulus weighting factors for desired illuminant-observer combinations, using the spectral data in Tables 1-4 (see Note 2), and (Eq 5) and (Eq 6). Use the tables so prepared as described in 7.3 (see Note 4).

Note 4—Using the previous procedure at 10 nm or 20 nm intervals by omitting intermediate tabulated values is not allowed. Use the procedures of 7.3 instead.

- 7.2.2.2 Procedures for Data Obtained at 10- or 20-nm Measurement Intervals—Select the appropriate tables of tristimulus weighting factors from those in Tables 5 and use them as described in 7.3.
 - 7.3 Use of Tristimulus Weighting Factors:

TABLE 3 Relative Spectral Power Distributions S(λ) of CIE Standard Illuminants A, C, D_{50} , D_{55} , D_{65} , and D_{75} at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref (3))

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_{65} $S(\lambda)$ 49.98 52.31 54.65 68.70 82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05 102.02	D_{75} $S(\lambda)$ 66.70 68.33 69.96 85.95 101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60 104.90
380 9.80 33.00 24.49 32.58 385 10.90 39.92 27.18 35.34 390 12.09 47.40 29.87 38.09 395 13.35 55.17 39.59 49.52 400 14.71 63.30 49.31 60.95 405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 455 35.41 123.60 88.93 99.23 455 36.41	49.98 52.31 54.65 68.70 82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	66.70 68.33 69.96 85.95 101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
385 10.90 39.92 27.18 35.34 390 12.09 47.40 29.87 38.09 395 13.35 55.17 39.59 49.52 400 14.71 63.30 49.31 60.95 405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81	52.31 54.65 68.70 82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.92 112.37 108.81 109.08 1	68.33 69.96 85.95 101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
390 12.09 47.40 29.87 38.09 395 13.35 55.17 39.59 49.52 400 14.71 63.30 49.31 60.95 405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 4440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 99.61 102.10 535 92.91 105.20 100.75 102.10 545 89.41 103.95 101.54 102.57 555 96.44 105.67 101.16 101.48 560 100.00 15.50 100.00 565 103.58 104.11 98.87 98.61	54.65 68.70 82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	69.96 85.95 101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
395 13.35 55.17 39.59 49.52 400 14.71 63.30 49.31 60.95 405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 455 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 515 69.25 98.81 96.87 100.34 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.91 101.40 100.75 102.10 535 89.41 103.95 101.54 100.75 555 96.44 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	68.70 82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	85.95 101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
400 14,71 63.30 49.31 60.95 405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52	82.75 87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	101.93 106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
405 16.15 71.81 52.91 64.75 410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 <td>87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05</td> <td>106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60</td>	87.12 91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	106.91 111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
410 17.68 80.60 56.51 68.55 415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.7	91.49 92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	111.89 112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
415 19.29 89.53 58.27 70.07 420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.	92.46 93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	112.35 112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
420 20.99 98.10 60.03 71.58 425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 505 62.93 106	93.43 90.06 86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	112.80 107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
425 22.79 105.80 58.93 69.75 430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 1	90.06 86.68 95.77 104.86 110.94 117.01 117.41 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	107.94 103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
430 24.67 112.40 57.82 67.91 435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.60 90.99 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 515 69.25	86.68 95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	103.09 112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
435 26.64 117.75 66.32 76.76 440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 515 69.25 98.81 96.87 100.34 520 72.50	95.77 104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	112.14 121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
440 28.70 121.50 74.82 85.61 445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 <td< td=""><td>104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05</td><td>121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60</td></td<>	104.86 110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	121.20 127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
445 30.85 123.45 81.04 91.80 450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79	110.94 117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	127.10 133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
450 33.09 124.00 87.25 97.99 455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13	117.01 117.41 117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	133.01 132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
455 35.41 123.60 88.93 99.23 460 37.81 123.10 90.61 100.46 465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 535 82.52 99.94 101.43 103.16 540 85.95 <td< td=""><td>117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05</td><td>132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60</td></td<>	117.81 116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	132.68 132.36 129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
465 40.30 123.30 90.99 100.19 470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 <	116.34 114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	129.84 127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
470 42.87 123.80 91.37 99.91 475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91	114.86 115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	127.32 127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
475 45.52 124.09 93.24 101.33 480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44	115.39 115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	127.06 126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
480 48.24 123.90 95.11 102.74 485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00	115.92 112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	126.80 122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
485 51.04 122.92 93.54 100.41 490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560	112.37 108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	122.29 117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
490 53.91 120.70 91.96 98.08 495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	108.81 109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	117.78 117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
495 56.85 116.90 93.84 99.38 500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	109.08 109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	117.19 116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
500 59.86 112.10 95.72 100.68 505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	109.35 108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	116.59 115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
505 62.93 106.98 96.17 100.69 510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	108.58 107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	115.15 113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
510 66.06 102.30 96.61 100.70 515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	107.80 106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	113.70 111.18 108.56 109.55 110.44 108.37 106.29 105.60
515 69.25 98.81 96.87 100.34 520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	106.30 104.79 106.24 107.69 106.05 104.41 104.23 104.05	111.18 108.56 109.55 110.44 108.37 106.29 105.60
520 72.50 96.90 97.13 99.99 525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	104.79 106.24 107.69 106.05 104.41 104.23 104.05	108.56 109.55 110.44 108.37 106.29 105.60
525 75.79 96.78 99.61 102.10 530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	106.24 107.69 106.05 104.41 104.23 104.05	109.55 110.44 108.37 106.29 105.60
530 79.13 98.00 102.10 104.21 535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	107.69 106.05 104.41 104.23 104.05	110.44 108.37 106.29 105.60
535 82.52 99.94 101.43 103.16 540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	106.05 104.41 104.23 104.05	108.37 106.29 105.60
540 85.95 102.10 100.75 102.10 545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	104.41 104.23 104.05	106.29 105.60
545 89.41 103.95 101.54 102.53 550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	104.23 104.05	105.60
550 92.91 105.20 102.32 102.97 555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	104.05	
555 96.44 105.67 101.16 101.48 560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61		104.90
560 100.00 105.30 100.00 100.00 565 103.58 104.11 98.87 98.61	102.02	102.45
565 103.58 104.11 98.87 98.61	100.00	100.00
570 107 18 102 30 07 74 07 22	98.17	97.81
57.5 107.10 102.30 \$7.74 \$7.22	96.33	95.62
575 110.80 100.15 98.33 97.48	96.06	94.91
580 114.44 97.80 98.92 97.75	95.79	94.21
585 118.08 95.43 96.21 94.59	92.24	90.60
590 121.73 93.20 93.50 91.43	88.69	87.00
595 125.39 91.22 95.59 92.93	89.35	87.11
600 129.04 89.70 97.69 94.42	90.01	87.23
605 132.70 88.83 98.48 94.78	89.80	86.68
610 136.35 88.40 99.27 95.14	89.60	86.14
615 139.99 88.19 99.16 94.68	88.65	84.86
620 143.62 88.10 99.04 94.22 625 147.24 88.06 97.38 92.33	87.70 85.40	83.58
625 147.24 88.06 97.38 92.33 630 150.84 88.00 95.72 90.45	85.49 83.29	81.16 78.75
635 154.42 87.86 97.29 91.39	83.49	78.59
640 157.98 87.80 98.86 92.33	83.70	78.43
645 161.52 87.99 97.26 90.59	81.86	76.61
650 165.03 88.20 95.67 88.85	80.03	74.80
655 168.51 88.20 96.93 89.59	80.12	74.56
660 171.96 87.90 98.19 90.32	80.21	74.32
665 175.38 87.22 100.60 92.13	81.25	74.87
670 178.77 86.30 103.00 93.95	82.28	75.42
675 182.12 85.30 101.07 91.95	80.28	73.50
680 185.43 84.00 99.13 89.96	78.28	71.58
685 188.70 82.21 93.26 84.82	74.00	67.71
690 191.93 80.20 87.38 79.68	69.72	63.85
695 195.12 78.24 89.49 81.26	70.67	64.46
700 198.26 76.30 91.60 82.84	71.61	65.08
705 201.36 74.36 92.25 83.84	72.98	66.57
710 204.41 72.40 92.89 84.84	74.35	68.07
715 207.41 70.40 84.87 77.54	67.98	62.26
720 210.36 68.30 76.85 70.24	61.60	56.44
725 213.27 66.30 81.68 74.77 730 216.12 64.40 86.51 79.30	65.74	60.34 64.24
730 216.12 64.40 86.51 79.30 735 218.92 62.80 89.55 82.15	69.89 72.49	66.70
700 210.82 02.00 08.00 02.10	12.73	69.15

TABLE 3 Continued

λ (nm)	<i>Α</i> <i>S</i> (λ)	<i>C</i> <i>S</i> (λ)	D ₅₀ S(λ)	D ₅₅ S(λ)	D ₆₅ S(λ)	D ₇₅ S(λ)
745	224.36	60.20	85.40	78.44	69.34	63.89
750	227.00	59.20	78.23	71.88	63.59	58.63
755	229.59	58.50	67.96	62.34	55.01	50.62
760	232.12	58.10	57.69	52.79	46.42	42.62
765	234.59	58.00	70.31	64.36	56.61	51.98
770	237.01	58.20	82.92	75.93	66.81	61.35
775	239.37	58.50	80.60	73.87	65.09	59.84
780	241.68	59.10	78.27	71.82	63.38	58.32

7.3.1 Use of Data Obtained at 5-nm Measurement Intervals—Use the color-matching functions $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$, from Table 1, for the 1931 CIE standard colorimetric observer, or when desired the functions $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$, from Table 2, for the 1964 CIE supplementary standard colorimetric observer. Select the desired CIE standard or recommended illuminant, for example A, C, or one of the D or F illuminants from Table 3 or Table 4. At each wavelength multiply the tabulated value of the observer color-matching functions by the tabulated value of the relative spectral power of the illuminant $S(\lambda)$, and by the spectral reflectance (or transmittance) factor $R(\lambda)$ (or $T(\lambda)$) of the specimen. Obtain the sum of these products at 5 nm intervals over the wavelength range 360 to 780 nm and use (Eq 3) and (Eq 4).

7.3.2 Use of Data Obtained at 10 nm Measurement Intervals:

7.3.2.1 Data Available over the Wavelength Range 360 to 780 nm—Select the appropriate table of tristimulus weighting factors, computed for triangular bandpass and 10 nm measurement intervals, for the desired illuminant and observer, from the nine sets included in Tables 5 (10).

7.3.2.2 Data Available only for Wavelength Ranges Shorter than 360 to 780 nm—When data for $R(\lambda)$, $T(\lambda)$, or $\beta(\lambda)$ are not available for the full wavelength range, add the weights at the wavelengths for which data are not available to the weights at the shortest and longest wavelength for which spectral data are available. That is: add the weights for wavelengths 360, ..., up to the last wavelength for which measured data are not available, to the next higher weight, for which such data are available; add the weights for wavelengths of 780, ..., down to the last wavelength for which measured data are not available, to the next lower weight, for which such data are available.

7.3.3 Use of Data Obtained at 20 nm Measurement Intervals:

7.3.3.1 Data Available Over the Wavelength Range 360 to 780 nm—Copy the 20 nm spectrum into a 10 nm framework whose indices, at 10 nm intervals, will run from 0 to 46 by copying the 22 values available to the even indices between 360 nm (index 2) and 780 nm (index 44). Extrapolate the 20 nm data to a range of 340 to 800 nm by use of the following equations:

$$R_0 = 3R_2 - 3R_4 + R_6 (8)$$

$$R_n = R_{n-6} - 3R_{n-4} + 3R_{n-2} (9)$$

where R refers to the measured reflectance or transmittance and the index *zero* refers to an extrapolated value at 340 nm and the index n refers to the extrapolated value at 800 nm of the 10 nm interval spectrum. Use these values to calculate the

missing 10 nm intervals between 360 and 780 nm, but discard these values immediately after the interpolation and use these values for no other purpose.

With the extrapolated spectrum extended to indices 0 to 46, interpolate the missing 10 nm values by use of the following equation:

$$R_{j} = -0.0625R_{j-3} + 0.5625R_{j-1} + 0.5625R_{j+1} - 0.0625R_{j+3}$$
(10)

where the range of interpolation is for every odd numbered value of *j* between 3 and 43 inclusive.

Should any interpolated value be less than zero, such value should be set to zero.

Select the appropriate table of tristimulus weighting factors, computed for triangular bandpass and 10 nm measurement intervals, for the desired illuminant and observer, from the nine sets included in Tables 5. Integrate the interpolated spectrum from index 2 to 44 (360 to 780 nm) with the chosen 10 nm table of tristimulus weighting factors, being sure to match the indices of the two multiplicative factors, spectral value and weighting factor, appropriately. The accuracy of doing so has been found to be approximately as accurate as 20 nm interpolation itself because each of the 19 missing 1-nm intervals is interpolated in each case, but in a different order.

7.3.3.2 Data Available Only for Wavelength Ranges Shorter than 360 to 780 nm—Interpolate the spectrum using equations Eq 8 through Eq 10 with the number of intervals and indices appropriate to the range of the present spectrum. Follow the teachings of 7.3.2.2 for the purpose of shortening the weighting factors to the appropriate range.

7.3.4 Tristimulus Values—Obtain the products of $R(\lambda)$, $T(\lambda)$ or β (λ) and the weights selected in 7.3.1 or 7.3.2, including any modifications, and sum to obtain the CIE tristimulus values X, Y, Z, or X_{10} , Y_{10} , Z_{10} .

7.4 Chromaticity Coordinates—Obtain chromaticity coordinates x, y, z (for the CIE 1931 standard observer) by dividing each tristimulus value X, Y, Z by the sum of all three: x = X/(X + Y + Z); y = Y/(X + Y + Z); and z = Z/(X + Y + Z), or use the same procedure with all quantities having the subscript 10 for the CIE 1964 supplementary standard observer

7.5 CIE 1976 Uniform Color Spaces—When a color space more nearly uniform than X, Y, Z is desired, use CIELAB or CIELUV.

7.5.1 CIELAB or L*a*b*—This approximately uniform color space is produced by plotting in rectangular coordinates the quantities L*, a*, b* defined as follows (3):

TABLE 4 Relative Spectral Power Distributions $S(\lambda)$ of CIE Fluorescent Illuminants F2, F7, and F11 at 5-nm Intervals from 380 to 780 nm (See Note 2 and Ref (3))

nm (See Note 2 and Ref (3))							
λ(nm)	F2	F7	F11				
380	1.18	2.56	0.91				
385	1.48	3.18	0.63				
300							
390	1.84	3.84	0.46				
395	2.15	4.53	0.37				
400	3.44	6.15	1.29				
405	15.69	19.37	12.68				
410	3.85	7.37	1.59				
415	3.74	7.05	1.79				
420	4.19	7.71	2.46				
425	4.62	8.41	3.38				
430	5.06	9.15	4.49				
435	34.98	44.14	33.94				
440	11.81	17.52	12.13				
445	6.27	11.35	6.95				
450	6.63	12.00	7.19				
455	6.93	12.58	7.12				
460	7.19	13.08	6.72				
465	7.40	13.45	6.13				
470	7.54	13.71	5.46				
475	7.62	13.88	4.79				
480	7.65	13.95	5.66				
485	7.62	13.93	14.29				
490	7.62	13.82	14.96				
495	7.45	13.64	8.97				
500	7.28	13.43	4.72				
FOF	7.15	10.05	0.00				
505	7.15	13.25	2.33				
510	7.05	13.08	1.47				
515	7.04	12.93	1.10				
520	7.16	12.78	0.89				
525	7.47	12.60	0.83				
500	0.04	10.11	4.40				
530	8.04	12.44	1.18				
535	8.88	12.33	4.90				
540	10.01	12.26	39.59				
545	24.88	29.52	72.84				
550	16.64	17.05	32.61				
	44.50						
555	14.59	12.44	7.52				
560	16.16	12.58	2.83				
565	17.56	12.72	1.96				
570	18.62	12.83	1.67				
575	21.47	15.46	4.43				
			44.00				
580	22.79	16.75	11.28				
585	19.29	12.83	14.76				
590	18.66	12.67	12.73				
595	17.73	12.45	9.74				
600	16.54	12.19	7.33				
005	45.04	44.00	0.70				
605	15.21	11.89	9.72				
610	13.80	11.60	55.27				
615	12.36	11.35	42.58				
620	10.95	11.12	13.18				
625	9.65	10.95	13.16				
000	0.40	10.70	40.00				
630	8.40	10.76	12.26				
635	7.32	10.42	5.11				
640	6.31	10.11	2.07				
645	5.43	10.04	2.34				
650	4.68	10.02	3.58				
CEE.	4.00	10.11	0.04				
655 660	4.02	10.11 9.87	3.01				
660	3.45		2.48				
665	2.96	8.65	2.14				
670	2.55	7.27	1.54				
675	2.19	6.44	1.33				
000	4.00	F 00	4.40				
680 685	1.89 1.64	5.83 5.41	1.46 1.94				

TABLE 4 Continued

λ(nm)	F2	F7	F11
690	1.53	5.04	2.00
695	1.27	4.57	1.20
700	1.10	4.12	1.35
705	0.99	3.77	4.10
710	0.88	3.46	5.58
715	0.76	3.08	2.51
720	0.68	2.73	0.57
725	0.61	2.47	0.27
730	0.56	2.25	0.23
735	0.54	2.06	0.21
740	0.51	1.90	0.24
745	0.47	1.75	0.24
750	0.47	1.62	0.20
755	0.43	1.54	0.24
760	0.46	1.45	0.32
765	0.47	1.32	0.26
770	0.40	1.17	0.16
775	0.33	0.99	0.12
780	0.27	0.81	0.09

$$L^* = 116 f(Q_Y) - 16 \tag{11}$$

$$a^* = 500 [f(Q_y) - f(Q_y)]$$
 (12)

$$b^* = 200 [f(Q_Y) - f(Q_Z)]$$
 (13)

where:

$$Q_X = (X/X_n); Q_Y = (Y/Y_n); Q_Z = (Z/Z_n)$$
 (14)

and

$$f(Q_i) = Q_i^{1/3} \text{ if } Q_i > (6/29)^3$$
 (15)

else

$$f(Q_i) = (841/108)Q_i + 4/29 \text{ if } Q_i \le (6/29)^3$$
 (16)

where

$$i$$
 varies as X , Y , and Z .

The tristimulus values X_n , Y_n , Z_n define the color of the normally white object-color stimulus. Usually, the white object-color stimulus is given by the spectral radiant power of one of the CIE standard illuminants, for example, C, D_{65} or another of daylight quality, reflected into the observer's eye by the perfect reflecting diffuser. Under these conditions, X_n , Y_n , Z_n are the tristimulus values of the standard illuminant with Y_n equal to 100 obtained by use of the same method used to obtain X, Y, Z (see 7.6).

7.5.2 CIELUV or $L^*u^*v^*$ —This approximately uniform color space is produced by plotting in rectangular coordinates the quantities L^* , u^* , v^* defined as follows (see also Note 5):

$$L^* = 116 (Y/Y_n)^{1/3} - 16 \qquad Y/Y_n > (6/29)^3$$
 (17)

$$u^* = 13L^*(u' - u'_n)$$

$$v^* = 13L^*(v' - v'_n)$$

with:

$$u' = \frac{4X}{X + 15Y + 3Z} \tag{18}$$

$$v' = \frac{9Y}{X+15Y+3Z}$$

$$u'_{n} = \frac{4X_{n}}{X_{n} + 15Y_{n} + 3Z_{n}}$$

$$v'_{n} = \frac{9Y_{n}}{X_{n} + 15Y_{n} + 3Z_{n}}$$

7.5.2.1 In calculating L^* values for Y/Y_n less than $(6/29)^3$, use the equation given in 7.5.1.

Note 5—The CIE 1976 $L^*u^*v^*$ space incorporates, for constant L^* , a (u', v') chromaticity diagram which is a projective transformation of the CIE 1931 (x, y) chromaticity diagram. Straight lines in the (x, y) chromaticity diagram remain straight in the (u', v') diagram.

7.5.3 LCH Versions of CIELAB and CIELUV:

7.5.3.1 It may be useful to calculate CIE 1976 hue and chroma coordinates as follows, combining them with L^* to provide alternative sets of LCH coordinates within the CIELAB and CIELUV spaces:

CIE 1976 hue angles:

$$h_{ab} = \tan^{-1}(b*/a*)$$
 or $h_{uv} = \tan^{-1}(v*/u*)$ (19)

Note 6—As stated here, the arctangent formula for h as a function of a* and b*, $\tan^{-1}(b*/a*)$, is a shorthand for a four-quadrant arctangent that has the range [0, 360] degrees. Computation of h or of ΔH^* is recommended only outside the 0.1-radius domain about a*, b* = 0. The following pseudo-code applies.

if
$$b^* = 0$$
 then
$$h = 90 - 90 \text{ sign}(a^*)$$
 else
$$h = 180 - (180/\pi) \tan^{-1}(a^*/b^*) - 90 \text{ sign}(b^*)$$
 end if.

CIE 1976 chromas:

$$C^*_{ab} = [(a^*)^2 + (b^*)^2]^{1/2}$$
 or $C^*_{uv} = [(u^*)^2 + (v^*)^2]^{1/2}$ (20)

7.5.3.2 Differences in hue angle between two specimens can be correlated with differences in their visually perceived hue, and differences in their chroma can similarly be correlated with differences in their visually perceived chroma (see also Practice D2244).

7.6 Tristimulus Values X_n , Y_n , Z_n :

7.6.1 It is emphasized that the tristimulus values of the nominally white object-color stimulus must always be calculated by the same method used to calculate tristimulus values for other colors with which they are to be used. This implies not only use of the same illuminant and observer, but also of the same measurement interval, bandpass, band shape, and method of summation. When using Tables 5, the values tabulated as "White Point" at the bottoms of the tables must always be the ones used for X_n , Y_n , and Z_n .

7.6.2 Use values of X_n , Y_n , and Z_n meeting the above requirements in the calculation of CIELAB coordinates and in some single-number color scales such as those for indexes of yellowness and whiteness, among others (see Practice E313).

7.7 Inverse Transformations from CIE Notations to Tristimulus Values:

7.7.1 Transformation from L^* , $a^*b^*to X$, Y, Z. There are times when it is desirable to transform from CIE notation L^* , a^* , b^* to CIE X, Y, and Z. To do so, use the following pseudocode.

$$\begin{split} P_{Y} &= \left(\frac{L^{*} + 16}{116}\right) \\ P_{X} &= \frac{a^{*}}{500} + P_{Y} \\ P_{Z} &= P_{Y} - \frac{b^{*}}{200} \\ If \ P_{X} &> \left(\frac{6}{29}\right) \ then \\ X &= X_{n} P_{X}^{\ 3} \end{split}$$

$$Else \\ X &= X_{n} \left(\frac{108}{841}\right) \left(P_{X} - \frac{4}{29}\right) \\ End \ if. \\ If \ P_{Y} &> \left(\frac{6}{29}\right) \ then \\ Y &= Y_{n} P_{Y}^{\ 3} \end{split}$$

$$Else \\ Y &= Y_{n} \left(\frac{108}{841}\right) \left(P_{Y} - \frac{4}{29}\right) \\ End \ if. \\ If \ P_{Z} &> \left(\frac{6}{29}\right) \ then \\ Z &= Z_{n} P_{Z}^{\ 3} \\ Else \\ Z &= Z_{n} \left(\frac{108}{841}\right) \left(P_{Z} - \frac{4}{29}\right) \end{split}$$

End if.

Here the symbols P_X , P_Y , P_Z are intermediate values that act as placeholders for values being carried to further calculations. The unknowns are X, Y, and Z and the values L^* , a^* , b^* and X_n , Y_n , and Z_n are known. The actual values of X_n , Y_n , and Z_n may be found in Tables 5 in rows labeled "White Point" while paying particular attention to the fact that the illuminant-observer combination chosen here must be identical to those from which the CIELAB notation was originally calculated.

7.7.2 Transformation from L^* , u^*v^* to X, Y, Z. There are times when it is desirable to transform from CIE notation L^* , u^* , v^* to CIE X, Y, and Z. To do so, use the following pseudocode.

$$P_{Y} = \left(\frac{L^{*} + 16}{116}\right)$$

$$If P_{Y} > \left(\frac{6}{29}\right) \quad Then$$

$$Y = Y_{n}P_{Y}^{3}$$

$$Else$$

$$Y = Y_{n}\left(\frac{108}{841}\right)\left(P_{Y} - \frac{4}{29}\right)$$

$$End if.$$

$$u' = \frac{u^{*}}{13L^{*}} + u'_{n}$$

$$v' = \frac{v^{*}}{13L^{*}} + v'_{n}$$

$$x = \frac{9u'}{(6u' - 16v' + 12)}$$

$$y = \frac{4v'}{6u' - 16v' + 12}$$

$$X = \frac{xY}{y}$$

$$Z = \frac{(1 - x - y)Y}{y}$$

The symbols used are similar to those of 7.7.1 except that the known values are L^* , u^* , and v^* . The values u' and v' are here used as placeholders and the values u'_n and v'_n may be calculated from Eq 18 in 7.5.2 replacing the values X, Y, and Y with the white point values X_n , Y_n , and Y_n from Tables 5 with the previously mentioned precautions as to compatibility of illuminant-observer.

7.7.3 It may be noted that the condition $P_Y > \left(\frac{6}{29}\right)$ used in both of the above sections in the derivation of Y is equivalent to $L^* > 8$.

8. Report

8.1 The report of color calculations shall include the following:

8.1.1 Specimen Identification:

8.1.2 *Source of Data*—Give instrument identification, illuminating and viewing geometry, spectral bandpass, and date of measurement.

8.1.3 Standard Observers—Indicate whether the reported data were computed for the CIE 1931 standard observer (2°) or the CIE 1964 supplementary standard observer (10°), or specify any other observers that were used.

8.1.4 Standard or Recommended Illuminants—Indicate which of the following illuminants were used, or specify any other illuminants that were used: A, C, D_{50} , D_{55} , D_{65} , D_{75} , FL2, FL7, FL11.

8.1.5 Bandpass Correction—Because rectification of bandpass dependence is now specified by Practice E2729, it is no longer necessary to report the selection of bandpass correction as only one option remains.

8.1.6 Method of Calculation—Indicate whether the procedures for 1-nm bandpass and measurement interval, or for

5-nm triangular bandpass and measurement interval, or a specific abridged procedure (for 10- or 20-nm triangular bandpass and measurement interval) were used, and give the wavelength range of the spectral data used.

8.1.7 Tristimulus Values—Report as X, Y, Z or X_{10} , Y_{10} , Z_{10} .

8.1.8 Chromaticity Coordinates—Report as x, y or x_{10} , y_{10} .

8.1.9 As an alternative to 8.1.7 or 8.1.8, report CIELAB results as L*a*b* or $L*C*_{ab}h_{ab}$, or CIELUV results as L*u*v* or $L*C*_{uv}h_{uv}$.

9. Precision and Bias

- 9.1 *Precision*—The precision of results calculated by use of Tables 5 is limited by the precision of the measured spectral data and round-off of the data used in the calculations.
- 9.2 *Bias*—In the calculation procedures of 7.2, the bias is the same as the precision when the same spectral data are used. Bias of the abridged calculation procedures of 7.3 depends on

the measurement interval and wavelength range, the complexity of the spectral character of the specimen, and the degree to which the passband of the measuring instrument conforms to the width and ideal triangular shape assumed in computing the tables. Least bias is obtained with the smallest measurement interval, the largest wavelength range, and the best correspondence of passband width and shape.

- 9.2.1 The uncertainty of the tristimulus values depends on the uncertainty of the spectral measurements.
- 9.2.2 The bias introduced by conversion of text to numeric formats, and that introduced by floating-point processor noise, are mostly insignificant.

10. Keywords

10.1 CIELAB; CIELUV; CIE system; color coordinates; tristimulus integration; tristimulus values; tristimulus weighting factors

INTRODUCTION TO TABLES 5

Tables 5 consist of sets of 36 tables each, containing tristimulus weighting factors for a variety of CIE standard and recommended illuminants and the CIE 1931 and 1964 standard observers. Both 10-nm and 20-nm measurement intervals are represented for all illuminant-observer combinations. The tables are presented with three decimal digits of precision. These digits should be carried in the calculations until the final values sought are calculated, and only then should the results be rounded to the appropriate number of significant digits available in the measured data.

Note that in the case of the values in Tables 5 the approximating procedure, lead to some small values with a negative sign. This sign is correct, and the corresponding entry must be carried in the calculations as a negative number.

The data labeled "Check Sum" at the bottom of each column in each table of Tables 5 is the algebraic sum of the entries above. It provides as a convenience the assurance that the tables have been copied correctly should copying be required. These check sums may not be identical to the "White Point" data located below them because of roundoff. Each value in a column has been rounded to three decimal digits. The "White Point" is the analytic total of the double-precision values at each wavelength, rounded to three decimal digits. It is these "White Point" data, and no others, that must be used as X_n , Y_n , Z_n when converting tristimulus values calculated by use of these tables to CIELAB or CIELUV coordinates or for any other purpose requiring the ratio of the tristimulus value of the specimen to that of the white point.

The tables of Tables 5 have been prepared for use with spectral measurement data that have previously been corrected for spectral bandpass dependence.

The tables presented here were calculated from the data on CIE Standard D 001 (see 2.3) and have been reproduced here photographically to avoid any possible transcription errors.

Tables 5.1 through Tables 5.36 are indexed by illuminant, observer, and measurement interval in the accompanying Index Table 5. Tables 6.1 through 6.36 appear in the Appendix to this practice.

TABLE 5 Index for Tables 5.1 Through 5.36 and Tables 6.1 Through 6.36

Tables	Illum- inant	Ob- server	Measure- ment Interval	Tables	Illum- inant	Ob- server	Measure- ment Interval
5.1, 6.1	Α	1931	10 nm	5.19, 6.19	D ₆₅	1964	10 nm
5.2, 6.2	Α	1931	20	5.20, 6.20	D ₆₅	1964	20
5.3, 6.3	Α	1964	10	5.21, 6.21	D ₇₅	1931	10
5.4, 6.4	Α	1964	20	5.22, 6.22	D ₇₅	1931	20
5.5, 6.5	С	1931	10	5.23, 6.23	D ₇₅	1964	10
5.6, 6.6	С	1931	20	5.24, 6.24	D ₇₅	1964	20
5.7, 6.7	С	1964	10	5.25, 6.25	F2	1931	10
5.8, 6.8	С	1964	20	5.26, 6.26	F2	1931	20
5.9, 6.9	D ₅₀	1931	10	5.27, 6.27	F2	1964	10
5.10, 6.10	D ₅₀	1931	20	5.28, 6.28	F2	1964	20
5.11, 6.11	D ₅₀	1964	10	5.29, 6.29	F7	1931	10
5.12, 6.12	D ₅₀	1964	20	5.30, 6.30	F7	1931	20
5.13, 6.13	D ₅₅	1931	10	5.31, 6.31	F7	1964	10
5.14, 6.14	D ₅₅	1931	20	5.32, 6.32	F7	1964	20
5.15, 6.15	D ₅₅	1964	10	5.33, 6.33	F11	1931	10
5.16, 6.16	D ₅₅	1964	20	5.34, 6.34	F11	1931	20
5.17, 6.17	D ₆₅	1931	10	5.35, 6.35	F11	1964	10
5.18, 6.18	D ₆₅	1931	20	5.36, 6.36	F11	1964	20

Table 5.1		t A, 1931 O .0 nm Inter	val	Table 5.3	Illuminan	t A, 1964 O 0 nm Inter	bserver val
nm	W_{x}	W_{v}	W_z	nm	$W_{10,x}$	$\mathbf{W}_{\mathbf{10,y}}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.000
390	0.005	0.000	0.021	390	0.002	0.000	0.008
400	0.017	0.000	0.083	400	0.025	0.003	0.110
410	0.070	0.002	0.333	410	0.134	0.014	0.615
420	0.272	0.008	1.309	420	0.377	0.039	1.792
430	0.644	0.027	3.144	430	0.686	0.084	3.386
440	0.924	0.061	4.635	440	0.964	0.156	4.944
450	1.036	0.117	5.461	450	1.080	0.259	5.806
460	1.017	0.209	5.838	460	1.006	0.424	5.812
470	0.779	0.362	5.128	470	0.731	0.696	4.919
480	0.428	0.618	3.639	480	0.343	1.082	3.300
490	0.160	1.039	2.332	490	0.078	1.616	1.973
500	0.024	1.802	1.513	500	0.022	2.422	1.152
510	0.059	3.091	0.962	510	0.218	3.529	0.658
520	0.428	4.756	0.533	520	0.750	4.840	0.382
530	1.210	6.320	0.305	530	1.642	6.100	0.211
540	2.313	7.599	0.162	540	2.842	7.250	0.102
550	3.735	8.571	0.075	550	4.336	8.114	0.032
560	5.511	9.219	0.075	560	6.200	8.758	0.001
570	7.573	9.456	0.021	570	8.262	8.988	0.000
580	9.718	9.224	0.021	580	10.227	8.760	0.000
590	11.583	8.543	0.017	590	11.945	8.304	0.000
600	12.706	7.547	0.013	600	12.746	7.468	0.000
610	12.671	6.360	0.015	610	12.337	6.323	0.000
620	11.347	5.061	0.003	620	10.817	5.033	0.000
630	9.010	3.716	0.002	630	8.560	3.744	0.000
640	6.551	2.559	0.001	640	6.014	2.506	0.000
650	4.345	1.639	0.000	650	3.887	1.560	0.000
660	2.626	0.971	0.000	660	2.309	0.911	0.000
670	1.457	0.533	0.000	670	1.276	0.499	0.000
680	0.794	0.333	0.000	680	0.666	0.259	0.000
690	0.406	0.269	0.000	690	0.336	0.239	0.000
700	0.207	0.147	0.000	700	0.336	0.130	0.000
710	0.109	0.075	0.000	710	0.188	0.032	0.000
720	0.109	0.039	0.000	710	0.040	0.032	0.000
730	0.036	0.020	0.000	720	0.040	0.018	0.000
730 740	0.029	0.010	0.000	730 740	0.020	0.008	0.000
750 750	0.014	0.003	0.000	740 750	0.010	0.004	0.000
760	0.007	0.003	0.000	750 760	0.003	0.002	
760 770	0.004	0.001	0.000	760 770	0.003	0.001	0.000
770 780	0.002	0.001	0.000	770 780	0.001	0.001	0.000
Check Sum	109.849	100.000	35.584	Check Sum	111.146	100.000	35.203
White Point	109.849	100.000	35.584 35.585	White Point	111.146	100.000	35.203 35.200

Table 5.5	Illuminan 1	t C, 1931 (.0 nm Inte		Table 5.7		.0 nm Inte	bserver val
nm	W _×	W _v	Wz	nm	$W_{10,x}$	$\mathbf{W}_{\mathbf{10,y}}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.004	370	0.000	0.000	0.000
380	0.004	0.000	0.017	380	0.000	0.000	-0.002
390	0.018	0.001	0.084	390	0.006	0.001	0.025
400	0.076	0.002	0.358	400	0.102	0.011	0.457
410	0.325	0.002	1.547	410	0.594	0.060	2.728
420	1.292	0.038	6.207	420	1.705	0.179	8.117
430	2.968	0.123	14.496	430	3.025	0.179	14.933
440	3.959	0.123		440	3.944		20.229
			19.860			0.638	
450	3.931	0.443	20.728	450	3.919	0.941	21.068
460	3.360	0.692	19.286	460	3.178	1.340	18.361
470	2.283	1.061	15.022	470	2.047	1.948	13.768
480	1.116	1.612	9.479	480	0.856	2.695	8.218
490	0.363	2.358	5.286	490	0.171	3.502	4.273
500	0.048	3.414	2.868	500	0.040	4.387	2.088
510	0.092	4.842	1.512	510	0.325	5.291	0.986
520	0.578	6.449	0.720	520	0.970	6.274	0.493
530	1.519	7.936	0.381	530	1.971	7.319	0.252
540	2.786	9.145	0.195	540	3.271	8.339	0.117
550	4.285	9.831	0.086	550	4.755	8.896	0.035
560	5.877	9.834	0.038	560	6.319	8.928	0.001
570	7.323	9.148	0.020	570	7.637	8.311	0.000
580	8.414	7.990	0.015	580	8.464	7.253	0.000
590	8.985	6.629	0.010	590	8.855	6.158	0.000
600	8.958	5.321	0.007	600	8.589	5.032	0.000
610	8.324	4.177	0.003	610	7.747	3.969	0.000
620	7.055	3.146	0.001	620	6.427	2.990	0.000
630	5.327	2.196	0.000	630	4.837	2.116	0.000
640	3.692	1.442	0.000	640	3.240	1.350	0.000
650	2.352	0.887	0.000	650	2.011	0.807	0.000
660	1.360	0.503	0.000	660	1.143	0.451	0.000
670	0.713	0.261	0.000	670	0.597	0.431	0.000
680	0.364	0.132	0.000	680	0.292	0.114	0.000
690	0.172	0.062	0.000	690	0.136	0.053	0.000
700	0.080	0.029	0.000	700	0.130	0.033	0.000
710	0.039	0.029	0.000	710	0.002	0.024	0.000
		0.014					
720	0.019		0.000	720	0.013	0.005	0.000
730	0.009	0.003	0.000	730	0.006	0.002	0.000
740	0.004	0.001	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	98.074	100.000	118.230	Check Sum	97.287	100.002	116.147
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145

Table 5.9	1	t D50, 1931 0 nm Interv	/al	Table 5.11	1	l 0 nm Ínter	
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.001	360	0.000	0.000	0.000
370	0.001	0.000	0.005	370	0.000	0.000	0.000
380	0.003	0.000	0.013	380	0.000	0.000	-0.002
390	0.012	0.000	0.057	390	0.004	0.000	0.017
400	0.060	0.002	0.285	400	0.083	0.009	0.371
410	0.234	0.006	1.113	410	0.427	0.044	1.966
420	0.775	0.023	3.723	420	1.049	0.110	4.989
430	1.610	0.066	7.862	430	1.668	0.204	8.231
440	2.453	0.162	12.309	440	2.487	0.403	12.758
450	2.777	0.313	14.647	450	2.814	0.677	15.129
460	2.500	0.514	14.346	460	2.404	1.012	13.886
470	1.717	0.798	11.299	470	1.565	1.490	10.528
480	0.861	1.239	7.309	480	0.671	2.108	6.442
490	0.283	1.839	4.128	490	0.135	2.779	3.392
500	0.040	2.948	2.466	500	0.035	3.850	1.824
510	0.088	4.632	1.447	510	0.317	5.143	0.960
520	0.593	6.587	0.736	520	1.010	6.513	0.513
530	1.590	8.308	0.401	530	2.098	7.791	0.269
540	2.799	9.197	0.196	540	3.341	8.525	0.120
550	4.207	9.650	0.085	550	4.745	8.877	0.035
560	5.657	9.471	0.037	560	6.183	8.742	0.001
570	7.132	8.902	0.020	570	7.560	8.222	0.000
580	8.540	8.112	0.015	580	8.733	7.485	0.000
590	9.255	6.829	0.010	590	9.273	6.449	0.000
600	9.835	5.838	0.007	600	9.586	5.613	0.000
610	9.469	4.753	0.004	610	8.959	4.592	0.000
620	8.009	3.573	0.002	620	7.419	3.452	0.000
630	5.926	2.443	0.001	630	5.471	2.392	0.000
640	4.171	1.629	0.000	640	3.721	1.550	0.000
650	2.609	0.984	0.000	650	2.268	0.910	0.000
660	1.541	0.570	0.000	660	1.316	0.519	0.000
670	0.855	0.313	0.000	670	0.728	0.285	0.000
680	0.434	0.158	0.000	680	0.354	0.138	0.000
690	0.194	0.070	0.000	690	0.155	0.060	0.000
700	0.097	0.035	0.000	700	0.076	0.029	0.000
710	0.050	0.018	0.000	710	0.036	0.014	0.000
720	0.022	0.008	0.000	720	0.015	0.006	0.000
730	0.012	0.004	0.000	730	0.008	0.003	0.000
740	0.012	0.004	0.000	740 740	0.004	0.003	0.000
750	0.002	0.002	0.000	750 750	0.004	0.002	0.000
760	0.002	0.001	0.000	760 760	0.002	0.001	0.000
770	0.001	0.000	0.000	770	0.001	0.000	0.000
780	0.001	0.000	0.000	770 780	0.000	0.000	0.000
Check Sum	96.421	99.997	82.524	Check Sum	96.721	99.999	81.429
White Point	96.422	100.000	82.521	White Point	96.720	100.000	81.427

Table 5.13	5.13 Illuminant D55, 1931 Observer 10 nm Interval			Table 5.15	1	LO nm Ínter	
nm	W_x	$\mathbf{w}_{\mathbf{y}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.001	360	0.000	0.000	0.000
370	0.001	0.000	0.006	370	0.000	0.000	0.000
380	0.004	0.000	0.017	380	0.000	0.000	-0.002
390	0.015	0.000	0.073	390	0.005	0.001	0.022
400	0.074	0.002	0.353	400	0.102	0.011	0.457
410	0.284	0.008	1.350	410	0.515	0.053	2.370
420	0.924	0.027	4.440	420	1.245	0.130	5.922
430	1.886	0.077	9.208	430	1.944	0.238	9.596
440	2.805	0.186	14.076	440	2.829	0.459	14.517
450	3.119	0.352	16.447	450	3.144	0.757	16.906
460	2.769	0.570	15.893	460	2.651	1.116	15.309
470	1.877	0.872	12.353	470	1.703	1.621	11.453
480		1.338	7.891	480	0.721	2.265	6.921
	0.929						
490	0.301	1.960	4.399	490	0.143	2.947	3.597
500	0.042	3.101	2.593	500	0.037	4.029	1.908
510	0.092	4.822	1.506	510	0.329	5.329	0.995
520	0.610	6.779	0.758	520	1.034	6.671	0.525
530	1.662	8.476	0.409	530	2.130	7.910	0.273
540	2.835	9.314	0.199	540	3.367	8.592	0.121
550	4.231	9.706	0.085	550	4.749	8.885	0.035
560	5.654	9.467	0.037	560	6.151	8.696	0.001
570	7.089	8.848	0.020	570	7.479	8.133	0.000
580	8.431	8.009	0.015	580	8.580	7.355	0.000
590	9.044	6.674	0.010	590	9.019	6.272	0.000
600	9.503	5.641	0.007	600	9.218	5.398	0.000
610	9.070	4.553	0.003	610	8.540	4.377	0.000
620	7.616	3.398	0.002	620	7.020	3.267	0.000
630	5.593	2.306	0.000	630	5.139	2.247	0.000
640	3.897	1.522	0.000	640	3.459	1.441	0.000
650	2.420	0.913	0.000	650	2.094	0.840	0.000
660	1.416	0.524	0.000	660	1.204	0.475	0.000
670	0.779	0.285	0.000	670	0.660	0.258	0.000
680	0.394	0.143	0.000	680	0.319	0.124	0.000
690	0.176	0.064	0.000	690	0.141	0.055	0.000
700	0.088	0.032	0.000	700	0.068	0.027	0.000
710	0.046	0.016	0.000	710	0.033	0.013	0.000
720	0.020	0.007	0.000	720	0.014	0.005	0.000
730	0.011	0.004	0.000	730	0.007	0.003	0.000
740	0.005	0.002	0.000	740	0.004	0.001	0.000
750	0.002	0.001	0.000	750	0.002	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.001	0.000	0.000	770	0.001	0.000	0.000
780	0.001	0.000	0.000	770 780	0.000	0.000	0.000
Check Sum	95.676	99.999	92.151	Check Sum	95.800	100.002	90.926
White Point	95.682	100.000	92.149	White Point	95.799	100.000	90.926

Table 5.17	1	.0 nm Inter		Table 5.19		10 nm Inte	64 Observer rval
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	Wz	nm	$W_{10,x}$	$W_{10,v}$	$W_{10,z}$
360	0.000	0.00Ó	0.001	360	0.000	0.000	0.000
370	0.002	0.000	0.010	370	0.000	0.000	0.000
380	0.006	0.000	0.026	380	0.000	0.000	-0.002
390	0.022	0.001	0.104	390	0.008	0.001	0.033
400	0.101	0.003	0.477	400	0.137	0.014	0.612
410	0.376	0.010	1.788	410	0.676	0.069	3.110
420	1.200	0.035	5.765	420	1.603	0.168	7.627
430	2.396	0.098	11.698	430	2.451	0.300	12.095
440	3.418	0.226	17.150	440	3.418	0.554	17.537
450	3.699	0.417	19.506	450	3.699	0.890	19.888
460	3.227	0.664	18.520	460	3.064	1.290	17.695
470	2.149	0.998	14.137	470	1.933	1.838	13.000
480	1.042	1.501	8.850	480	0.802	2.520	7.699
490	0.333	2.164	4.856	490	0.156	3.226	3.938
500	0.045	3.352	2.802	500	0.039	4.320	2.046
510	0.043	5.129	1.602	510	0.347	5.621	1.049
520	0.637	7.076	0.791	520	1.070	6.907	0.544
530	1.667	8.708	0.420	530	2.170	8.059	0.278
540	2.884	9.474	0.420	540	3.397	8.668	0.122
	4.250	9.752	0.202	550	4.732	8.855	0.122
550 560	5.626		0.037	560	6.070		0.033
		9.419				8.581	
570	6.988	8.722	0.019	570	7.311	7.951 7.106	0.000
580	8.214	7.802	0.014	580	8.291	6.004	0.000
590 600	8.730	6.442	0.010	590 600	8.634		0.000
	9.015	5.351	0.007		8.672	5.079	0.000
610	8.492	4.263	0.003	610	7.930	4.065	0.000
620	7.050	3.145	0.001	620	6.446	2.999	0.000
630	5.124	2.113	0.000	630	4.669	2.042	0.000
640	3.516	1.373	0.000	640	3.095	1.290	0.000
650	2.167	0.818	0.000	650	1.859	0.746	0.000
660	1.252	0.463	0.000	660	1.056	0.417	0.000
670	0.678	0.248	0.000	670	0.570	0.223	0.000
680	0.341	0.124	0.000	680	0.274	0.107	0.000
690	0.153	0.055	0.000	690	0.121	0.047	0.000
700	0.076	0.027	0.000	700	0.058	0.023	0.000
710	0.040	0.014	0.000	710	0.028	0.011	0.000
720	0.018	0.006	0.000	720	0.012	0.005	0.000
730	0.009	0.003	0.000	730	0.006	0.002	0.000
740	0.005	0.002	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.049	99.999	108.882	Check Sum	94.809	100.000	107.307
White Point	95.047	100.000	108.883	White Point	94.811	100.000	107.304

Table 5.21		nt D75, 19 l0 nm Inte	31 Observer	Table 5.23		nt D75, 19 l0 nm Inter	64 Observer
nm	W_x	Wy	Wz	nm	W _{10,x}	W _{10,y}	W _{10,z}
360	0.000	0.000	0.002	360	0.000	0.000	0.000
370	0.003	0.000	0.013	370	0.000	0.000	0.000
380	0.007	0.000	0.035	380	0.000	0.000	-0.002
390	0.028	0.001	0.132	390	0.010	0.001	0.042
400	0.124	0.003	0.587	400	0.167	0.018	0.749
410	0.457	0.012	2.176	410	0.816	0.083	3.755
420	1.439	0.043	6.916	420	1.911	0.200	9.091
430	2.809	0.115	13.714	430	2.855	0.350	14.089
440	3.926	0.260	19.702	440	3.900	0.632	20.011
450	4.182	0.472	22.055	450	4.155	1.000	22.341
460	3.600	0.741	20.660	460	3.396	1.430	19.612
470	2.364	1.098	15.551	470	2.112	2.008	14.205
480	1.133	1.632	9.621	480	0.866	2.721	8.316
490	0.357	2.321	5.209	490	0.167	3.438	4.197
		3.551	2.967				
500	0.048	3.331		500	0.041	4.546	2.151
510	0.103	5.365	1.676	510	0.360 1.094	5.842 7.061	1.090
520 530	0.655	7.281	0.814	520 530	1.094	7.061	0.556
	1.698	8.873	0.427		2.197	8.158	0.281
540	2.912	9.567	0.204	540	3.408	8.696	0.122
550	4.256	9.766	0.086	550	4.708	8.809	0.034
560	5.584	9.350	0.036	560	5.985	8.462	0.001
570	6.879	8.586	0.019	570	7.150	7.776	0.000
580	8.032	7.629	0.014	580	8.055	6.903	0.000
590	8.478	6.256	0.010	590	8.329	5.793	0.000
600	8.677	5.151	0.006	600	8.293	4.857	0.000
610	8.105	4.068	0.003	610	7.519	3.854	0.000
620	6.673	2.977	0.001	620	6.060	2.820	0.000
630	4.804	1.981	0.000	630	4.349	1.902	0.000
640	3.274	1.279	0.000	640	2.864	1.193	0.000
650	2.008	0.757	0.000	650	1.711	0.687	0.000
660	1.151	0.426	0.000	660	0.964	0.380	0.000
670	0.618	0.226	0.000	670	0.516	0.202	0.000
680	0.309	0.112	0.000	680	0.247	0.096	0.000
690	0.139	0.050	0.000	690	0.109	0.042	0.000
700	0.068	0.025	0.000	700	0.052	0.020	0.000
710	0.036	0.013	0.000	710	0.026	0.010	0.000
720	0.016	0.006	0.000	720	0.011	0.004	0.000
730	0.008	0.003	0.000	730	0.006	0.002	0.000
740	0.004	0.002	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	94.967	99.999	122.636	Check Sum	94.413	99.997	120.641
White Point	94.972	100.000	122.638	White Point	94.416	100.000	120.641

Table 5.25	Illumina	nt F2, 1931 l0 nm Inter	. Observer val	Table 5.27	Illumina 1	nt F2, 1964 l0 nm Inter	Observer val
nm	W _x	Wy	Wz	nm	W _{10,x}	W _{10,v}	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.003	380	0.000	0.000	-0.001
390	-0.001	0.000	-0.006	390	-0.009	-0.001	-0.041
400	0.082	0.002	0.391	400	0.133	0.014	0.603
410	0.169	0.005	0.802	410	0.311	0.032	1.425
420	0.173	0.003	0.806	420	0.310	0.025	1.418
430	2.860	0.136	14.065	430	2.977	0.395	14.861
440	3.931	0.234	19.588	440	4.074	0.617	20.711
450	1.338	0.162	7.114	450	1.393	0.354	7.553
460	1.421	0.294	8.161	460	1.402	0.593	8.103
470	1.011	0.470	6.652	470	0.946	0.900	6.363
480	0.502	0.723	4.257	480	0.401	1.261	3.852
490	0.166	1.078	2.418	490	0.081	1.671	2.039
500	0.022	1.614	1.356	500	0.019	2.165	1.030
510	0.022	2.425	0.757	510	0.169	2.764	0.515
520	0.043	3.466	0.737	520	0.109	3.517	0.313
530	0.793	4.424	0.387	530	1.093	4.262	0.277
540	2.935	9.137	0.223	540	3.562	8.685	0.134
550	5.305	12.533	0.173	550	6.166		0.107
560	6.428	10.676	0.122	560	7.209	11.838	-0.001
					10.067	10.117	
570	10.089	12.520	0.028	570	10.967	11.867	0.000
580	13.508	12.872	0.024	580	14.182	12.191	0.000
590	13.082	9.655	0.015	590	13.453	9.357	0.000
600	11.989	7.125	0.009	600	11.997	7.032	0.000
610	9.453	4.746	0.004	610	9.183	4.707	0.000
620	6.393	2.850	0.001	620	6.075	2.825	0.000
630	3.711	1.529	0.000	630	3.517	1.537	0.000
640	1.929	0.753	0.000	640	1.767	0.736	0.000
650	0.906	0.341	0.000	650	0.808	0.324	0.000
660	0.387	0.143	0.000	660	0.339	0.134	0.000
670	0.152	0.055	0.000	670	0.133	0.052	0.000
680	0.059	0.021	0.000	680	0.049	0.019	0.000
690	0.023	0.008	0.000	690	0.019	0.007	0.000
700	0.008	0.003	0.000	700	0.007	0.003	0.000
710	0.003	0.001	0.000	710	0.003	0.001	0.000
720	0.001	0.000	0.000	720	0.001	0.000	0.000
730	0.001	0.000	0.000	730	0.000	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	99.185	100.002	67.391	Check Sum	103.280	100.001	69.023
White Point	99.186	100.000	67.393	White Point	103.279	100.000	69.027

Table 5.29	Illumina 1	nt F7, 193 L0 nm Inte	1 Observer rval	Table 5.31	Illumina 1	nt F7, 1964 .0 nm Inte	1 Observer
nm	W_x	Wy	Wz	nm	W _{10,x}	W _{10,y}	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	-0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.007	380	0.000	0.000	-0.001
390	0.001	0.000	0.019	390	-0.007	-0.001	-0.034
400	0.110	0.003	0.521	400	0.168	0.017	0.757
410	0.269	0.007	1.282	410	0.486	0.050	2.229
420	0.475	0.009	2.249	420	0.715	0.067	3.341
430	3.951	0.183	19.408	430	4.000	0.524	19.933
440	5.466	0.331	27.269	440	5.496	0.842	27.981
450	2.547	0.331	13.501	450	2.569	0.639	13.889
460	2.585	0.534	14.846	460	2.473	1.046	14.292
470	1.840	0.354	12.103	470	1.669	1.587	11.224
480	0.915	1.318	7.764	480	0.709	2.230	6.810
490	0.302	1.964	4.405	490	0.709	2.250	3.603
500	0.302	2.979	2.499	500	0.144	3.873	1.003
510	0.041	4.507	1.404	510	0.308	4.979	1.840 0.927
520	0.556	6.177	0.691	520	0.943	6.080	0.479
530	1.258	6.924			1.674	6.466	0.479
530	1.258	11.327	0.347 0.217	530	1.0/4	10.400	0.232
540	3.644	11.32/		540	4.286	10.438	0.129
550	5.522	13.146	0.130	550	6.229	12.041	0.059
560	4.932	8.167	0.029	560	5.360	7.501	-0.002
570	7.145	8.839	0.019	570	7.528	8.122	0.000
580	9.610	9.176	0.017	580	9.783	8.424	0.000
590	8.888	6.553	0.010	590	8.861	6.158	0.000
600	8.828	5.241	0.007	600	8.563	5.015	0.000
610	7.951	3.991	0.003	610	7.486	3.837	0.000
620	6.485	2.892	0.001	620	5.977	2.780	0.000
630	4.721	1.947	0.000	630	4.337	1.897	0.000
640	3.106	1.213	0.000	640	2.757	1.149	0.000
650	1.949	0.735	0.000	650	1.685	0.676	0.000
660	1.093	0.404	0.000	660	0.929	0.367	0.000
670	0.449	0.164	0.000	670	0.380	0.149	0.000
680	0.181	0.066	0.000	680	0.147	0.057	0.000
690	0.078	0.028	0.000	690	0.062	0.024	0.000
700	0.032	0.011	0.000	700	0.025	0.010	0.000
710	0.013	0.005	0.000	710	0.010	0.004	0.000
720	0.005	0.002	0.000	720	0.004	0.001	0.000
730	0.002	0.001	0.000	730	0.001	0.001	0.000
740	0.001	0.000	0.000	740	0.001	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.042	99.998	108.747	Check Sum	95.793	100.001	107.688
White Point	95.041	100.000	108.747	White Point	95.792	100.000	107.686

Table 5.33 Illuminant F11, 1931 Observer Table 5.35 Illuminant F11, 1964 Observer 10 nm Interval 10 nm Interval **W_{10,y}** 0.000 Wx W_{10,x} W_{10,z} nm nm \mathbf{w}_{v} W_z 0.000 0.000 0.000 360 0.000 0.000 360 0.000 370 0.000 0.000 370 0.000 0.000 0.000 0.000 380 0.000 0.000 380 0.001 0.002 0.000 390 -0.010 -0.001-0.044390 -0.0050.000 -0.0220.010 400 0.099 0.451 400 0.059 0.002 0.281 410 0.019 0.829 0.182 410 0.097 0.003 0.463 420 0.098 0.003 0.415 -0.0040.087 420 0.024 0.372 430 2.796 13.964 430 2.687 0.128 13.207 440 4.103 0.625 20.873 440 3.952 19.705 0.237 450 1.534 0.388 8.310 450 1.471 0.1777.819 0.554 460 1.314 7.586 460 1.328 0.274 7.621 0.578 470 0.681 4.498 470 0.723 0.295 4.685 0.343 1.380 480 3.625 480 0.448 0.803 4.044 2.955 490 0.1763.789 490 0.326 1.905 4.458 1.506 500 0.009 0.773 500 0.020 1.104 1.005 0.564 510 0.006 0.499 510 0.034 0.074 0.121 520 0.005 0.257 0.028 520 -0.0120.244 0.038 530 -0.1450.170 0.027 530 -0.1550.163 0.037 540 25.656 10.852 0.293 540 8.983 26.955 0.483 24.661 550 12.320 0.148 550 10.520 26.054 0.291 1.274 560 560 0.993 1.348 -0.0071.096 -0.010570 570 1.157 1.214 0.000 1.064 1.283 0.002 7.036 5.881 0.000 580 580 6.717 6.191 0.011 6.382 590 8.982 0.000 590 8.697 6.590 0.010 3.629 600 6.204 0.000 600 6.188 3.669 0.005 13.321 26.264 0.000 27.072 13.415 0.009 610 610 13.228 6.279 620 0.000 620 13.847 6.329 0.003 630 4.003 0.000 630 3.797 1.631 0.000 1.614 640 0.794 0.329 0.000 640 0.864 0.335 0.000 0.481 0.192 0.000 650 650 0.541 0.203 0.000 0.104 660 0.264 0.000 660 0.301 0.111 0.000 0.084 0.033 0.000 670 670 0.096 0.035 0.000 680 0.038 0.015 0.000 680 0.046 0.017 0.000 0.009 690 0.028 0.010 0.000 690 0.023 0.000 0.004 700 0.011 0.000 0.000 700 0.014 0.005 710 0.014 0.005 0.000 710 0.018 0.007 0.000 0.001 720 0.002 0.000 720 0.002 0.001 0.000 0.000 730 0.000 0.000 730 0.000 0.000 0.000 740 0.000 0.000 0.000 740 0.000 0.000 0.000 0.000 750 0.000 0.000 750 0.000 0.000 0.000 0.000 760 0.000 0.000 760 0.000 0.000 0.000 770 0.000 0.000 0.000 770 0.000 0.000 0.000 780 0.000 0.000 0.000 0.000 0.000 0.000 780 **Check Sum** 103.866 100.000 65.629 Check Sum 100.964 100.002 64.358 White Point 103.863 100.000 65.607 **White Point** 100.962 100.000 64.350

APPENDIX

(Nonmandatory Information)

X1. TABLES OF TRISTIMULUS WEIGHTING FACTORS

X1.1 The tables of 20 nm interval tristimulus weighting factors (Tables 5 and 6) which were previously provided as mandatory information are moved to this appendix and made non-mandatory effective with a previous revision. Tables of 10 nm interval (Tables 6 only) which were previously mandatory are moved to the Appendix and made non-mandatory effective with this revision. These tables will remain here for the foreseeable future in the interest of continuity of practice.

X1.2 The tables of 10 nm interval tristimulus weighting factors (Tables 6) contain factors that accomplish a spectral

bandpass rectification that corrects the error introduced by bandpass dependence when employing a triangular passband equal in half-width to the measurement interval. This correction is similar, but no equal to, the bandpass correction of Practice E2729. Accordingly, Tables 6 should never be used with spectral reflectance, or transmittance, data that has been previously bandpass corrected by any means. The precision of Tables 6 is believed to be about 4.5 log units (digits). Thus, the precision of the results is expected to be limited by the precision of the spectral data, not of the tables.

Table 5.2 Illuminant A, 1931 Observer 20 nm Interval				Table 5.4	Table 5.4 Illuminant A, 1964 Observer 20 nm Interval			
nm	$\mathbf{w}_{\mathbf{x}}$	\mathbf{w}_{y}	W_z	nm	$W_{10,x}$	$\mathbf{W}_{\mathbf{10,y}}$	$W_{10,z}$	
360	0.000	0.000	-0.001	360	0.000	0.000	-0.001	
380	-0.002	0.000	-0.008	380	-0.009	-0.001	-0.041	
400	0.020	0.000	0.088	400	0.060	0.005	0.257	
420	0.614	0.017	2.944	420	0.773	0.078	3.697	
440	1.812	0.118	9.121	440	1.900	0.304	9.755	
460	1.982	0.410	11.430	460	1.971	0.855	11.487	
480	0.889	1.204	7.444	480	0.718	2.146	6.785	
500	0.023	3.720	3.035	500	0.043	4.899	2.321	
520	0.902	9.446	1.095	520	1.522	9.647	0.743	
540	4.619	15.187	0.314	540	5.677	14.461	0.196	
560	11.082	18.429	0.070	560	12.445	17.474	0.005	
580	19.472	18.411	0.031	580	20.554	17.584	-0.003	
600	25.292	15.107	0.018	600	25.332	14.896	0.000	
620	22.531	10.092	0.005	620	21.571	10.080	0.000	
640	13.195	5.145	0.000	640	12.179	5.068	0.000	
660	5.312	1.954	0.000	660	4.668	1.830	0.000	
680	1.564	0.566	0.000	680	1.324	0.513	0.000	
700	0.402	0.145	0.000	700	0.318	0.123	0.000	
720	0.107	0.039	0.000	720	0.075	0.029	0.000	
740	0.027	0.010	0.000	740	0.018	0.007	0.000	
760	0.007	0.002	0.000	760	0.005	0.002	0.000	
780	0.002	0.001	0.000	780	0.001	0.001	0.000	
Check Sum	109.852	100.003	35.586	Check Sum	111.145	100.001	35.201	
White Point	109.850	100.000	35.585	White Point	111.144	100.000	35.200	

Table 5.6	Illuminan	t C, 1931 C 0 nm Inter		Table 5.8	Illuminant	t C, 1964 C 0 nm Inter	
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	-0.001	0.000	-0.006	360	-0.001	0.000	-0.005
380	-0.011	0.000	-0.054	380	-0.040	-0.004	-0.187
400	0.089	-0.001	0.393	400	0.262	0.022	1.120
420	2.919	0.085	14.033	420	3.508	0.364	16.803
440	7.649	0.511	38.518	440	7.662	1.249	39.339
460	6.641	1.382	38.120	460	6.326	2.727	36.719
480	2.364	3.206	19.564	480	1.851	5.369	17.043
500	0.069	6.910	5.752	500	0.072	8.754	4.191
520	1.198	12.876	1.442	520	1.955	12.599	0.909
540	5.591	18.258	0.357	540	6.561	16.605	0.212
560	11.750	19.588	0.073	560	12.610	17.753	0.004
580	16.794	15.991	0.026	580	16.954	14.592	-0.003
600	17.896	10.696	0.013	600	17.141	10.080	0.000
620	14.018	6.261	0.003	620	12.823	5.977	0.000
640	7.457	2.902	0.000	640	6.579	2.733	0.000
660	2.746	1.008	0.000	660	2.304	0.902	0.000
680	0.712	0.257	0.000	680	0.576	0.223	0.000
700	0.153	0.055	0.000	700	0.115	0.044	0.000
720	0.034	0.012	0.000	720	0.022	0.009	0.000
740	0.007	0.003	0.000	740	0.005	0.002	0.000
760	0.002	0.001	0.000	760	0.001	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	98.077	100.001	118.234	Check Sum	97.286	100.000	116.145
White Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145

Table 5.10		nt D50, 193 0 nm Inter	31 Observer val	Table 5.12		nt D50, 196 0 nm Interv	
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	Wz	nm	$W_{10,x}$	W _{10,y}	W _{10,z}
360	-0.001	0.000	-0.003	360	-0.001	0.000	-0.004
380	-0.007	0.000	-0.034	380	-0.028	-0.003	-0.130
400	0.100	0.001	0.459	400	0.227	0.021	0.994
420	1.651	0.044	7.914	420	2.059	0.207	9.821
440	4.787	0.325	24.153	440	4.874	0.803	25.080
460	4.897	1.018	28.125	460	4.741	2.045	27.526
480	1.815	2.413	15.027	480	1.441	4.145	13.316
500	0.044	6.037	4.887	500	0.065	7.734	3.613
520	1.263	13.141	1.507	520	2.066	13.058	0.982
540	5.608	18.442	0.375	540	6.698	17.059	0.228
560	11.361	18.960	0.069	560	12.397	17.467	0.003
580	16.904	16.060	0.026	580	17.346	14.898	-0.003
600	19.537	11.646	0.014	600	19.013	11.159	0.000
620	15.917	7.132	0.003	620	14.807	6.921	0.000
640	8.342	3.245	0.000	640	7.481	3.107	0.000
660	3.112	1.143	0.000	660	2.654	1.039	0.000
680	0.857	0.310	0.000	680	0.705	0.273	0.000
700	0.178	0.064	0.000	700	0.136	0.053	0.000
720	0.044	0.016	0.000	720	0.029	0.011	0.000
740	0.011	0.004	0.000	740	0.007	0.003	0.000
760	0.002	0.001	0.000	760	0.001	0.001	0.000
780	0.001	0.000	0.000	780	0.000	0.000	0.000
Check Sum	96.423	100.002	82.522	Check Sum	96.718	100.001	81.426
White Point	96.422	100.000	82.521	White Point	96.720	100.000	81.427

Table 5.14		nt D55, 193 0 nm Interv	1 Observer /al	Table 5.16		nt D55, 196 0 nm Interv	4 Observer al
nm	$\mathbf{w}_{\mathbf{x}}$	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	-0.001	0.000	-0.004	360	-0.001	0.000	-0.005
380	-0.008	0.000	-0.037	380	-0.033	-0.003	-0.155
400	0.128	0.001	0.589	400	0.280	0.026	1.232
420	1.963	0.053	9.414	420	2.440	0.246	11.639
440	5.471	0.372	27.599	440	5.542	0.913	28.514
460	5.430	1.129	31.172	460	5.232	2.254	30.369
480	1.964	2.608	16.244	480	1.554	4.453	14.325
500	0.047	6.350	5.134	500	0.067	8.098	3.775
520	1.297	13.522	1.548	520	2.114	13.376	1.002
540	5.677	18.677	0.379	540	6.749	17.191	0.229
560	11.359	18.956	0.069	560	12.335	17.380	0.002
580	16.674	15.848	0.025	580	17.028	14.630	-0.003
600	18.887	11.262	0.013	600	18.293	10.739	0.000
620	15.139	6.781	0.003	620	14.014	6.548	0.000
640	7.803	3.034	0.000	640	6.965	2.892	0.000
660	2.860	1.050	0.000	660	2.427	0.950	0.000
680	0.776	0.281	0.000	680	0.636	0.246	0.000
700	0.162	0.058	0.000	700	0.123	0.048	0.000
720	0.040	0.014	0.000	720	0.027	0.010	0.000
740	0.010	0.003	0.000	740	0.006	0.002	0.000
760	0.002	0.001	0.000	760	0.001	0.000	0.000
780	0.001	0.000	0.000	780	0.000	0.000	0.000
Check Sum White Point	95.681 95.682	100.000 100.000	92.148 92.149	Check Sum White Point	95.799 95.799	99.999 100.000	90.924 90.926

Table 5.18		nt D65, 19: 0 nm Inter	31 Observe val	r Table 5.20		nt D65, 196 0 nm Inter	64 Observer val
nm	W_x	$\mathbf{w}_{\mathbf{y}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	-0.001	Ó	-0.005	360	-0.001	Ő	-0.007
380	-0.008	0	-0.039	380	-0.043	-0.004	-0.2
400	0.179	0.002	0.829	400	0.378	0.035	1.667
420	2.542	0.071	12.203	420	3.138	0.320	14.979
440	6.670	0.453	33.637	440	6.701	1.104	34.461
460	6.333	1.316	36.334	460	6.054	2.605	35.120
480	2.213	2.933	18.278	480	1.739	4.961	15.986
500	0.052	6.866	5.543	500	0.071	8.687	4.038
520	1.348	14.106	1.611	520	2.183	13.844	1.031
540	5.767	18.981	0.382	540	6.801	17.327	0.229
560	11.301	18.863	0.068	560	12.171	17.153	0.002
580	16.256	15.455	0.025	580	16.465	14.150	-0.003
600	17.933	10.699	0.013	600	17.230	10.118	0.000
620	14.020	6.277	0.003	620	12.872	6.012	0.000
640	7.057	2.743	0.000	640	6.248	2.593	0.000
660	2.527	0.927	0.000	660	2.126	0.832	0.000
680	0.670	0.242	0.000	680	0.544	0.210	0.000
700	0.140	0.050	0.000	700	0.105	0.041	0.000
720	0.035	0.013	0.000	720	0.023	0.009	0.000
740	0.008	0.003	0.000	740	0.005	0.002	0.000
760	0.002	0.001	0.000	760	0.001	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.044	100.001	108.882	Check Sum	94.811	99.999	107.303
White Point	95.047	100.000	108.883	White Point	94.811	100.000	107.304

Table 5.22		nt D75, 19 0 nm Inter	31 Observer val	Table 5.24		nt D75, 196 0 nm Inter	64 Observer val
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	Wz	nm	$W_{10,x}$	W _{10,y}	W _{10,z}
360	-0.001	0.000	-0.005	360	-0.002	0.000	-0.008
380	-0.008	0.000	-0.040	380	-0.051	-0.005	-0.238
400	0.227	0.003	1.054	400	0.466	0.043	2.058
420	3.031	0.085	14.551	420	3.723	0.381	17.775
440	7.661	0.520	38.631	440	7.645	1.261	39.311
460	7.071	1.469	40.551	460	6.717	2.886	38.950
480	2.410	3.191	19.889	480	1.882	5.358	17.279
500	0.056	7.269	5.860	500	0.073	9.139	4.237
520	1.385	14.525	1.657	520	2.229	14.168	1.050
540	5.823	19.169	0.383	540	6.822	17.382	0.228
560	11.215	18.727	0.067	560	12.000	16.917	0.002
580	15.895	15.113	0.024	580	15.994	13.746	-0.003
600	17.264	10.302	0.012	600	16.479	9.678	0.000
620	13.272	5.940	0.003	620	12.105	5.653	0.000
640	6.573	2.554	0.000	640	5.782	2.399	0.000
660	2.323	0.852	0.000	660	1.941	0.759	0.000
680	0.607	0.219	0.000	680	0.489	0.189	0.000
700	0.126	0.045	0.000	700	0.094	0.037	0.000
720	0.032	0.011	0.000	720	0.021	0.008	0.000
740	0.008	0.003	0.000	740	0.005	0.002	0.000
760	0.001	0.001	0.000	760	0.001	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	94.971	99.998	122.637	Check Sum	94.415	100.001	120.641
White Point	94.972	100.000	122.638	White Point	94.416	100.000	120.641

Table 5.26	Illumina 2	nt F2, 1931 0 nm Inter	. Observer val	Table 5.28		nt F2, 1964 0 nm Inter	
nm	W _x	\mathbf{w}_{v}	Wz	nm	$W_{10,x}$	W _{10.v}	$W_{10,z}$
360	0.000	0.000	-0.002	360	0.000	0.000	-0.002
380	-0.011	0.000	-0.050	380	-0.024	-0.002	-0.109
400	-0.017	-0.005	-0.115	400	0.102	0.004	0.375
420	1.856	0.072	9.030	420	2.135	0.251	10.426
440	6.133	0.367	30.621	440	6.365	0.969	32.397
460	2.598	0.575	15.095	460	2.572	1.178	15.110
480	1.069	1.430	8.827	480	0.874	2.509	8.033
500	0.021	3.263	2.724	500	0.025	4.319	2.072
520	0.460	6.535	0.778	520	0.886	6.692	0.518
540	5.710	17.665	0.778	540	6.923	16.756	0.190
560	14.283	23.949	0.109	560	16.002	22.655	0.190
580	25.551	24.192	0.109	580	26.885	23.029	-0.004
600	23.791	14.379	0.017	600	23.817	14.131	0.000
620	12.941	5.764	0.003	620	12.349	5.743	0.000
640	3.944	1.507	0.000	640	3.633	1.487	0.000
660	0.745	0.267	0.000	660	0.643	0.245	0.000
680	0.097	0.034	0.000	680	0.080	0.031	0.000
700	0.013	0.004	0.000	700	0.009	0.004	0.000
720	0.002	0.001	0.000	720	0.001	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	99.186	99.999	67.393	Check Sum	103.277	100.001	69.027
White Point	99.186	100.000	67.393	White Point	103.279	100.000	69.027
Table 5.30	2	0 nm Inter	val		2	nt F7, 1964 0 nm Inter	val
nm	W _x	0 nm Inter W _y	val W _z	nm	2 W _{10,x}	0 nm Inter W _{10,y}	val W _{10,z}
nm 360	W _x −0.001	0 nm Inter W _y 0.000	val W z -0.005	nm 360	W_{10,x} -0.001	0 nm Inter W _{10,y} 0.000	W_{10,z} -0.003
nm 360 380	W _x -0.001 -0.014	0 nm Inter W _y 0.000 0.000	Wz -0.005 -0.069	nm 360 380	W_{10,x} -0.001 -0.035	0 nm Inter W _{10,y} 0.000 -0.004	W_{10,z} -0.003 -0.163
nm 360 380 400	W _x -0.001 -0.014 0.000	0 nm Inter W _y 0.000 0.000 -0.006	wal Wz -0.005 -0.069 -0.043	nm 360 380 400	W_{10,x} -0.001 -0.035 0.172	0 nm Inter W_{10,y} 0.000 -0.004 0.010	W_{10,z} -0.003 -0.163 0.668
nm 360 380 400 420	W _x -0.001 -0.014 0.000 2.766	0 nm Inter W _y 0.000 0.000 -0.006 0.101	W _z -0.005 -0.069 -0.043 13.418	nm 360 380 400 420	W_{10,x} -0.001 -0.035 0.172 3.151	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358	W_{10,z} -0.003 -0.163 0.668 15.311
nm 360 380 400 420 440	W _x -0.001 -0.014 0.000 2.766 8.886	0 nm Inter	W _z -0.005 -0.069 -0.043 13.418 44.448	nm 360 380 400 420 440	W_{10,x} -0.001 -0.035 0.172 3.151 8.954	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358 1.381	W_{10,z} -0.003 -0.163 0.668 15.311 45.662
nm 360 380 400 420 440 460	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834	0 nm Inter	Wz -0.005 -0.069 -0.043 13.418 44.448 27.991	nm 360 380 400 420 440 460	W_{10,x} -0.001 -0.035 0.172 3.151 8.954 4.644	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358 1.381 2.090	W_{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187
nm 360 380 400 420 440 460 480	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948	0 nm Inter	Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086	nm 360 380 400 420 440 460 480	W _{10,x} -0.001 -0.035 0.172 3.151 8.954 4.644 1.545	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358 1.381 2.090 4.429	W_{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195
nm 360 380 400 420 440 460 480 500	W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063	0 nm Inter	Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010	nm 360 380 400 420 440 460 480 500	W 10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693
nm 360 380 400 420 440 460 480 500 520	W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520	W _{10,x} -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694	0 nm Inter W _{10,y} 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894
9 nm 360 380 400 420 440 460 480 500 520 540	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520	W10, x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520 540	W10, x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017
nm 360 380 400 420 440 460 480 500 520 540 560 580	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520 540 560 580	W 10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005
nm 360 380 400 420 440 460 480 500 520 540 560 580 600	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520 540 560 580 600	W 10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929	0 nm Inter	wal	nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 620 640	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345	0 nm Inter	Val Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000	nm 360 380 400 420 440 460 480 500 520 540 560 680 620 640	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350	W _{10,z} -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 600 6620 640 660	W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143	0 nm Inter	wal Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000	nm 360 380 400 420 440 440 460 480 500 520 540 560 580 600 620 640 660	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000
500 540 500 520 540 560 580 600 620 640 660 680	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356	0 nm Inter	wal Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000	nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 600 620 640 660 680 700	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052	0 nm Inter	wal Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000 0.000	nm 360 380 400 420 440 460 480 500 520 540 560 680 680 700	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 10.030 5.576 2.350 0.710 0.112 0.015	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 600 620 640 660 680 700 720	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052 0.009	0 nm Inter	wal Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000	nm 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039 0.006	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112 0.015 0.002	W10,z -0.003 -0.163 -0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 620 640 660 680 700 720 740	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052 0.009 0.001	0 nm Inter	wal	nm 360 380 400 420 440 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039 0.006 0.001	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112 0.015 0.002 0.000	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740 760	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052 0.009 0.001 0.000	0 nm Inter	Val Vz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nm 360 380 400 420 440 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740 760	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039 0.006 0.001 0.000	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112 0.015 0.002 0.000 0.000	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740 760 780	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052 0.009 0.001 0.000 0.000	0 nm Inter	Val Wz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nm 360 380 400 420 440 440 460 480 500 520 540 560 680 600 620 640 660 680 700 720 740 760 780	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039 0.006 0.001 0.000 0.000	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112 0.015 0.002 0.000 0.000 0.000	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
nm 360 380 400 420 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740 760	2 W _x -0.001 -0.014 0.000 2.766 8.886 4.834 1.948 0.063 0.982 6.956 11.482 17.742 17.563 12.929 6.345 2.143 0.356 0.052 0.009 0.001 0.000	0 nm Inter	Val Vz -0.005 -0.069 -0.043 13.418 44.448 27.991 16.086 5.010 1.388 0.392 0.091 0.024 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	nm 360 380 400 420 440 440 460 480 500 520 540 560 680 620 640 660 680 700 720 740 760	W10,x -0.001 -0.035 0.172 3.151 8.954 4.644 1.545 0.077 1.694 8.187 12.502 18.097 17.023 11.964 5.664 1.817 0.290 0.039 0.006 0.001 0.000	0 nm Inter W10,y 0.000 -0.004 0.010 0.358 1.381 2.090 4.429 7.818 11.650 19.913 18.144 15.414 10.030 5.576 2.350 0.710 0.112 0.015 0.002 0.000 0.000	W10,z -0.003 -0.163 0.668 15.311 45.662 27.187 14.195 3.693 0.894 0.231 0.017 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.34		nt F11, 193 0 nm Inter		Table 5.36		nt F11, 196 0 nm Interv	
nm	$\mathbf{W}_{\mathbf{x}}$	$\mathbf{W}_{\mathbf{y}}$	Wz	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	-0.008	0.000	-0.038	380	-0.016	-0.002	-0.072
400	-0.073	-0.006	-0.381	400	0.004	-0.006	-0.070
420	1.561	0.062	7.606	420	1.742	0.207	8.545
440	6.149	0.384	30.772	440	6.391	1.000	32.600
460	2.422	0.422	13.794	460	2.422	0.909	13.937
480	0.938	1.995	8.635	480	0.722	3.297	7.710
500	0.129	2.294	3.297	500	0.043	3.310	2.674
520	-0.611	-0.646	-0.159	520	-0.644	-0.590	-0.157
540	14.491	40.892	0.642	540	17.324	38.846	0.376
560	7.174	16.775	0.162	560	8.355	15.868	0.075
580	9.760	7.999	-0.002	580	10.221	7.635	-0.011
600	26.160	14.828	0.015	600	25.881	14.619	0.000
620	30.433	14.217	0.008	620	29.246	14.139	0.000
640	1.969	0.627	0.000	640	1.789	0.630	0.000
660	0.344	0.113	0.000	660	0.282	0.098	0.000
680	0.080	0.028	0.000	680	0.066	0.025	0.000
700	0.034	0.012	0.000	700	0.026	0.010	0.000
720	0.011	0.004	0.000	720	0.008	0.003	0.000
740	-0.001	0.000	0.000	740	-0.001	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum White Point	100.962 100.962	100.000 100.000	64.351 64.350	Check Sum White Point	103.861 103.863	99.998 100.000	65.607 65.607

			स्तार	 			
Table 6.2	2	t A, 1931 O 0 nm Inter	val	Table 6.4	2	: A, 1964 Ol 0 nm Interv	al 💮
nm	\mathbf{w}_{x}	\mathbf{w}_{y}	Wz	nm	$W_{10,x}$	$\mathbf{W}_{\mathbf{10,y}}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.013	0.000	0.060	380	0.007	0.000	0.037
400	-0.026	0.000	-0.123	400	-0.016	0.000	-0.088
420	0.483	0.009	2.306	420	0.691	0.066	3.226
440	1.955	0.106	9.637	440	2.025	0.285	10.278
460	2.145	0.385	12.257	460	2.158	0.796	12.345
480	0.848	1.119	7.301	480	0.642	2.043	6.555
500	-0.112	3.247	2.727	500	-0.160	4.630	1.966
520	0.611	9.517	1.035	520	1.284	9.668	0.721
540	4.407	15.434	0.274	540	5.445	14.621	0.171
560	10.804	18.703	0.055	560	12.238	17.766	-0.013
580	19.601	18.746	0.034	580	20.755	17.800	0.004
600	26.256	15.233	0.018	600	26.325	15.129	-0.001
620	23.295	10.105	0.003	620	22.187	10.097	0.000
640	12.853	4.939	0.000	640	11.816	4.858	0.000
660	4.863	1.784	0.000	660	4.221	1.643	0.000
680	1.363	0.495	0.000	680	1.154	0.452	0.000
700	0.359	0.129	0.000	700	0.282	0.109	0.000
720	0.100	0.036	0.000	720	0.068	0.026	0.000
740	0.023	0.008	0.000	740	0.017	0.007	0.000
760	0.006	0.002	0.000	760	0.004	0.002	0.000
780	0.002	0.001	0.000	780	0.001	0.000	0.000
Check Sum	109.849	99.998	35.584	Check Sum	111.144	99.998	35.201
White Point	109.850	100.000	35.585	White Point	111.144	100.000	35.200
Table 6.6	Illuminan	t C, 1931 O	bserver	Table 6.8	Illuminan	t C, 1964 O	bserver
	2	0 nm Inter	val		20	0 nm Interv	al 💮
360	0.000	0.000	0.000	360	0.000	0.000	0.00
380	0.066	0.000	0.311	380	0.043	0.002	0.21
400	-0.164	0.001	-0.777	400	-0.122	-0.004	-0.62
420	2.373	0.044	11.296	420	3.216	0.301	15.02
440	8.595	0.491	42.561	440	8.476	1.239	43.14
460	6.939	1.308	39.899	460	6.668	2.577	38.43
480	2.045	3.062	18.451	480	1.430	5.320	15.66
500	-0.217	6.596	4.728	500	-0.249	8.742	3.21
520	0.881	12.925	1.341	520	1.734	12.466	0.89
540	5.406	18.650	0.319	540	6.364	16.891	0.18
560	11.842	20.143	0.059	560	12.790	18.284	-0.01
580	17.169	16.095	0.028	580	17.338	14.617	0.00
600	18.383	10.537	0.013	600	17.597	10.019	-0.00
620	14.348	6.211	0.002	620	13.045	5.925	0.00
640	7.148	2.743	0.000	640	6.283	2.581	0.00
660	2 484	0 911	0 000	660	2 055	0.800	0.00

0.000 0.000 0.000 0.000 0.000

0.000 0.000 **118.231**

118.232

660 680

700

720

740

760 780

Check Sum

White Point

2.055 0.488

0.100 0.021 0.004

0.004 0.001 0.000 **97.282 97.285**

0.800 0.191

0.039 0.008 0.002

0.000 0.000 **100.000**

100.000

0.00

0.00 0.00 0.00 0.00 0.00 116.14 116.14

660 680

700 720 740

760 780

Check Sum

White Point

2.484 0.600

0.136

0.031 0.006

0.002 0.000 **98.073**

98.074

0.911 0.218

0.049 0.011

0.002

0.001 0.000 99.998

100.000

Table 6.10		ant D50, 19 0 nm Interv	31 Observer	Table 6.12		nt D50, 196 nm Interva	64 Observer
nm	w _x	W _v	W _z	nm	W _{10,x}	W _{10,y}	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.021	0.000	0.100	380	0.001	-0.001	0.010
400	-0.013	0.003	-0.060	400	0.035	0.009	0.131
420	1.297	0.023	6.170	420	1.856	0.174	8.631
440	5.218	0.290	25.788	440	5.234	0.748	26.634
460	5.326	0.984	30.489	460	5.206	1.975	29.874
480	1.554	2.291	13.965	480	1.104	4.046	12.054
500	-0.191	5.461	4.224	500	-0.238	7.459	2.948
520	0.915	13.421	1.430	520	1.816	13.203	0.969
540	5.528	18.956	0.313	540	6.614	17.441	0.186
560	11.324	19.226	0.057	560	12.430	17.746	-0.014
580	17.119	16.204	0.028	580	17.595	14.952	0.004
600	20.222	11.611	0.014	600	19.678	11.219	-0.001
620	16.400	7.117	0.002	620	15.166	6.902	0.000
640	7.922	3.030	0.000	640	7.075	2.898	0.000
660	2.835	1.043	0.000	660	2.387	0.931	0.000
680	0.741	0.268	0.000	680	0.612	0.240	0.000
700	0.150	0.054	0.000	700	0.111	0.043	0.000
720	0.044	0.016	0.000	720	0.030	0.012	0.000
740	0.009	0.003	0.000	740	0.006	0.002	0.000
760	0.002	0.001	0.000	760	0.001	0.000	0.000
780	0.001	0.000	0.000	780	0.001	0.000	0.000
Check Sum White Point	96.424 96.422	100.002 100.000	82.520 82.521	Check Sum White Point	96.720 96.720	99.999 100.000	81.426 81.427

Table 6.14		ant D55, 19 0 nm Interv	31 Observer al	Table 6.16	Table 6.16 Illuminant D55, 1964 Observe 20 nm Interval				
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,\gamma}$	$W_{10,z}$		
360	0.000	0.000	0.000	360	0.000	0.000	0.000		
380	0.027	0.000	0.127	380	0.001	-0.001	0.013		
400	-0.016	0.004	-0.072	400	0.044	0.010	0.165		
420	1.578	0.029	7.506	420	2.237	0.210	10.414		
440	5.983	0.334	29.586	440	5.965	0.856	30.366		
460	5.881	1.094	33.691	460	5.721	2.183	32.860		
480	1.663	2.481	15.012	480	1.170	4.359	12.878		
500	-0.202	5.771	4.413	500	-0.246	7.830	3.064		
520	0.950	13.833	1.471	520	1.870	13.538	0.992		
540	5.611	19.197	0.314	540	6.678	17.576	0.186		
560	11.328	19.214	0.057	560	12.373	17.649	-0.013		
580	16.931	16.001	0.028	580	17.314	14.694	0.004		
600	19.527	11.196	0.013	600	18.909	10.768	-0.001		
620	15.581	6.759	0.002	620	14.336	6.522	0.000		
640	7.384	2.823	0.000	640	6.563	2.688	0.000		
660	2.600	0.956	0.000	660	2.177	0.849	0.000		
680	0.669	0.242	0.000	680	0.551	0.216	0.000		
700	0.137	0.049	0.000	700	0.101	0.039	0.000		
720	0.040	0.014	0.000	720	0.027	0.011	0.000		
740	0.008	0.003	0.000	740	0.006	0.002	0.000		
760	0.001	0.001	0.000	760	0.001	0.000	0.000		
780	0.001	0.000	0.000	780	0.000	0.000	0.000		
Check Sum	95.682	100.001	92.148	Check Sum	95.798	99.999	90.928		
White Point	95.682	100.000	92.149	White Point	95.799	100.000	90.926		

Table 6.18		ant D65, 19 20 nm Inte	931 Observer	Table 6.20		nt D65, 19 0 nm Inte	64 Observer
					4	o um tute	rvai
nm	\mathbf{w}_{x}	\mathbf{w}_{y}	W_z	nm	$W_{10,x}$	$W_{10,y}$	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
380	0.040	0.000	0.187	380	0.003	-0.001	0.025
400	-0.026	0.004	-0.120	400	0.056	0.013	0.199
420	2.114	0.041	10.065	420	2.951	0.280	13.768
440	7.323	0.411	36.235	440	7.227	1.042	36.808
460	6.815	1.281	39.090	460	6.578	2.534	37.827
480	1.843	2.797	16.753	480	1.278	4.872	14.226
500	-0.219	6.291	4.727	500	-0.259	8.438	3.254
520	1.003	14.463	1.532	520	1.951	14.030	1.025
540	5.723	19.509	0.314	540	6.751	17.715	0.184
560	11.284	19.106	0.058	560	12.223	17.407	-0.013
580	16.548	15.600	0.027	580	16.779	14.210	0.004
600	18.528	10.607	0.013	600	17.793	10.121	-0.001
620	14.397	6.240	0.002	620	13.135	5.971	0.000
640	6.646	2.540	0.000	640	5.859	2.399	0.000
660	2.290	0.842	0.000	660	1.901	0.741	0.000
680	0.574	0.208	0.000	680	0.469	0.184	0.000
700	0.120	0.043	0.000	700	0.088	0.034	0.000
720	0.034	0.012	0.000	720	0.023	0.009	0.000
740	0.007	0.003	0.000	740	0.005	0.002	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
780	0.001	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.046	99.998	108.883	Check Sum	94.812	100.001	107.306
White Point	95.047	100.000	108.883	White Point	94.811	100.000	107.304

Table 6.22	2 Illuminant D75, 1931 Observer Table 6.24 Illuminant 20 nm Interval 20					t D75, 1964 Observer) nm Interval		
nm	W_x	$\mathbf{W}_{\mathbf{y}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	W _{10,z}	
360	0.000	0.000	0.000	360	0.000	0.000	0.000	
380	0.050	0.000	0.235	380	0.003	-0.002	0.029	
400	-0.030	0.005	-0.142	400	0.071	0.015	0.252	
420	2.571	0.051	12.243	420	3.555	0.339	16.605	
440	8.429	0.475	41.731	440	8.252	1.195	42.050	
460	7.578	1.434	43.498	460	7.268	2.815	41.829	
480	1.982	3.045	18.114	480	1.358	5.270	15.257	
500	-0.231	6.706	4.973	500	-0.266	8.912	3.401	
520	1.042	14.911	1.575	520	2.006	14.363	1.045	
540	5.798	19.708	0.314	540	6.791	17.776	0.182	
560	11.210	18.953	0.057	560	12.060	17.154	-0.013	
580	16.196	15.245	0.026	580	16.311	13.796	0.004	
600	17.836	10.201	0.012	600	17.015	9.671	-0.001	
620	13.604	5.892	0.002	620	12.327	5.601	0.000	
640	6.169	2.358	0.000	640	5.403	2.212	0.000	
660	2.102	0.773	0.000	660	1.733	0.676	0.000	
680	0.518	0.188	0.000	680	0.421	0.165	0.000	
700	0.109	0.039	0.000	700	0.080	0.031	0.000	
720	0.031	0.011	0.000	720	0.021	0.008	0.000	
740	0.007	0.002	0.000	740	0.005	0.002	0.000	
760	0.001	0.000	0.000	760	0.001	0.000	0.000	
780	0.000	0.000	0.000	780	0.000	0.000	0.000	
Check Sum	94.972	99.997	122.638	Check Sum	94.415	99.999	120.640	
White Point	94.972	100.000	122.638	White Point	94.416	100.000	120.641	

Table 6.26	Illuminant F2, 1931 Observer 20 nm Interval			Table 6.28	Illuminant F2, 1964 Observer 20 nm Interval			
nm	W_x	w _v	W _z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$	
360	0.000	0.000	0.000	360	0.000	0.000	0.000	
380	-0.015	-0.001	-0.075	380	-0.038	-0.005	-0.171	
400	0.126	0.006	0.604	400	0.234	0.028	1.066	
420	0.723	0.016	3.459	420	1.022	0.100	4.782	
440	7.638	0.413	37.775	440	7.898	1.121	39.933	
460	2.320	0.518	13.826	460	2.301	1.042	13.716	
480	0.931	1.364	8.340	480	0.686	2.475	7.408	
500	-0.106	3.077	2.271	500	-0.133	4.279	1.613	
520	0.034	5.636	0.725	520	0.444	5.769	0.511	
540	5.711	18.719	0.319	540	6.953	17.713	0.191	
560	13.144	23.526	0.088	560	14.911	22.281	-0.001	
580	27.390	25.997	0.044	580	28.878	24.639	0.002	
600	24.880	13.965	0.017	600	24.810	13.883	0.000	
620	12.425	5.247	0.001	620	11.708	5.211	0.000	
640	3.276	1.258	0.000	640	3.014	1.241	0.000	
660	0.613	0.222	0.000	660	0.516	0.197	0.000	
680	0.082	0.030	0.000	680	0.073	0.030	0.000	
700	0.014	0.005	0.000	700	0.010	0.004	0.000	
720	0.002	0.001	0.000	720	0.001	0.001	0.000	
740	0.000	0.000	0.000	740	0.000	0.000	0.000	
760	0.000	0.000	0.000	760	0.000	0.000	0.000	
780	0.000	0.000	0.000	780	0.000	0.000	0.000	
Check Sum	99.188	99.999	67.394	Check Sum	103.288	100.009	69.050	
White Point	99.186	100.000	67.393	White Point	103.279	100.000	69.027	

Table 6.30	0 Illuminant F7, 1931 Observer 20 nm Interval			Table 6.32	Table 6.32 Illuminant F7, 1964 Observ				
nm	w _x `	W	W _z	nm	W _{10,x}	W _{10,y}	W _{10,z}		
360	0.000	0.000	0.000	360	0.000	0.000	0.000		
380	-0.007	-0.001	-0.033	380	-0.036	-0.005	-0.161		
400	0.121	0.007	0.578	400	0.246	0.031	1.106		
420	1.323	0.028	6.323	420	1.824	0.177	8.525		
440	10.790	0.584	53.336	440	10.807	1.533	54.683		
460	4.665	0.963	27.365	460	4.506	1.899	26.455		
480	1.708	2.492	15.213	480	1.222	4.373	13.104		
500	-0.218	5.611	4.189	500	-0.261	7.596	2.884		
520	0.379	11.237	1.309	520	1.147	11.062	0.890		
540	7.709	23.952	0.351	540	9.029	21.938	0.199		
560	10.453	18.318	0.071	560	11.459	16.827	0.000		
580	18.791	17.848	0.030	580	19.208	16.389	0.002		
600	17.996	10.198	0.013	600	17.412	9.821	-0.001		
620	13.114	5.650	0.001	620	12.049	5.451	0.000		
640	5.970	2.291	0.000	640	5.311	2.182	0.000		
660	1.965	0.720	0.000	660	1.641	0.638	0.000		
680	0.204	0.074	0.000	680	0.169	0.067	0.000		
700	0.073	0.026	0.000	700	0.055	0.021	0.000		
720	0.003	0.001	0.000	720	0.001	0.000	0.000		
740	0.003	0.001	0.000	740	0.002	0.001	0.000		
760	0.000	0.000	0.000	760	0.000	0.000	0.000		
780	0.000	0.000	0.000	780	0.000	0.000	0.000		
Check Sum	95.042	100.000	108.746	Check Sum	95.791	100.001	107.686		
White Point	95.041	100.000	108.747	White Point	95.792	100.000	107.686		

Table 6.34		ant F11, 19 20 nm Inte	31 Observer rval	Table 6.36	20	nm Interv	64 Observer val
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	W _{10,x}	W _{10,y}	W _{10,z}
360	0.000	0.000	0.000	360	0,000	0.000	0.000
380	-0.014	-0.001	-0.076	380	-0.029	-0.005	-0.142
400	0.100	0.005	0.509	400	0.181	0.026	0.869
420	0.256	-0.001	1.093	420	0.414	0.019	1.729
440	8.207	0.419	40.877	440	8.515	1.220	43.348
460	1.559	0.623	9.228	460	1.544	0.977	9.002
480	0.600	0.507	8.258	480	0.319	1.693	7.470
500	1.524	7.107	4.371	500	1.673	8.341	3.484
520	-5.091	-14.004	-0.965	520	-5.992	-13.547	-0.739
540	20.536	58.821	1.039	540	24.601	55.948	0.625
560	3.973	7.524	-0.034	560	4.494	7.060	-0.051
580	9.894	9.370	0.032	580	10.526	8.885	0.014
600	24.253	13.848	0.011	600	24.099	13.702	-0.004
620	37.637	17.208	0.009	620	36.033	17.112	0.001
640	-4.377	-2.270	-0.002	640	-4.279	-2.247	0.000
660	2.164	0.978	0.001	660	2.026	0.952	0.000
680	-0.411	-0.200	0.000	680	-0.397	-0.198	0.000
700	0.172	0.075	0.000	700	0.155	0.072	0.000
720	-0.025	-0.012	0.000	720	-0.025	-0.013	0.000
740	0.006	0.003	0.000	740	0.006	0.003	0.000
760	-0.001	-0.001	0.000	760	-0.001	-0.001	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
	100.962 100.962	99.999 100.000	64.351 64.350	Check Sum White Point	103.863 103.863	99.999 100.000	65.606 65.607

Table 6.1	1	nt A, 1931 (.0 nm Inter		Table 6.3	1	Observer val	
nm	$\mathbf{W}_{\mathbf{x}}$	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.000
390	0.004	0.000	0.018	390	0.002	0.000	0.007
400	0.017	0.000	0.081	400	0.018	0.002	0.078
410	0.057	0.002	0.272	410	0.118	0.012	0.540
420	0.246	0.007	1.178	420	0.372	0.038	1.760
430	0.660	0.025	3.214	430	0.686	0.082	3.374
440	0.942	0.059	4.710	440	0.982	0.154	5.024
450	1.039	0.113	5.454	450	1.094	0.255	5.876
460	1.043	0.205	5.969	460	1.024	0.414	5.882
470	0.790	0.353	5.209	470	0.747	0.688	5.023
480	0.416	0.608	3.602	480	0.326	1.073	3.236
490	0.410	1.012	2.277	490	0.061	1.589	1.926
500	0.146	1.749	1.493	500	0.001	2.397	1.129
510	0.018	3.047	0.963	510	0.189	3.503	0.638
520	0.028	4.778	0.505	520	0.169	4.857	0.377
530	1.187	6.345	0.305	530	1.617	6.096	0.205
540	2.288	7.625	0.157	540	2.823	7.290	0.100
550 560	3.702 5.484	8.594 9.255	0.071 0.034	550 560	4.296 6.177	8.116 8.799	0.028 -0.003
570	7.562	9.496	0.020	570	8.285	9.039	0.001
580	9.739	9.265	0.018	580	10.218	8.758	0.000
590	11.644	8.567	0.013	590	12.041	8.350	0.000
600	12.811	7.563	0.010	600	12.850	7.492	0.000
610	12.782	6.365	0.004	610	12.441	6.337	0.000
620	11.460	5.076	0.002	620	10.872	5.025	0.000
630	8.991	3.689	0.001	630	8.604	3.753	0.000
640	6.536	2.543	0.000	640	5.951	2.469	0.000
650	4.296	1.616	0.000	650	3.846	1.537	0.000
660	2.583	0.954	0.000	660	2.259	0.891	0.000
670	1.405	0.514	0.000	670	1.242	0.485	0.000
680	0.780	0.283	0.000	680	0.643	0.250	0.000
690	0.388	0.140	0.000	690	0.324	0.126	0.000
700	0.200	0.072	0.000	700	0.160	0.062	0.000
710	0.106	0.038	0.000	710	0.078	0.030	0.000
720	0.054	0.020	0.000	720	0.039	0.015	0.000
730	0.028	0.010	0.000	730	0.019	0.007	0.000
740	0.014	0.005	0.000	740	0.010	0.004	0.000
750	0.007	0.002	0.000	750	0.005	0.002	0.000
760	0.003	0.001	0.000	760	0.002	0.001	0.000
770	0.002	0.001	0.000	770	0.001	0.001	0.000
780	0.001	0.000	0.000	780	0.001	0.000	0.000
heck Sum	109.848	99.997	35.586	Check Sum	111.143	99.999	35.201
hite Point	109.850	100.000	35.585	White Point	111.144	100.000	35.200
nite Point	109.850	100.000	35.585	White Point	111.144	100.000	35

Table 6.5		nt C, 1931		Table 6.7		nt C, 1964	
		0 nm Inter			1	0 nm Inter	vai
nm	\mathbf{w}_{x}	\mathbf{w}_{y}	W_z	nm	$W_{10,x}$	$\mathbf{W_{10,y}}$	W _{10,z}
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.003	370	0.000	0.000	0.000
380	0.004	0.000	0.017	380	0.000	0.000	0.000
390	0.015	0.000	0.069	390	0.006	0.001	0.025
400	0.074	0.002	0.350	400	0.071	0.007	0.317
410	0.261	0.007	1.241	410	0.519	0.054	2.362
420	1.170	0.032	5.605	420	1.690	0.173	7.995
430	3.074	0.118	14.967	430	3.050	0.364	15.015
440	4.066	0.259	20.346	440	4.055	0.638	20.751
450	3.951	0.437	20.769	450	3.974	0.936	21.364
460	3.421	0.684	19.624	460	3.207	1.316	18.457
470	2.292	1.042	15.153	470	2.067	1.938	13.957
480	1.066	1.600	9.294	480	0.792	2.693	7.968
490	0.325	2.332	5.115	490	0.123	3.489	4.126
500	0.025	3.375	2.788	500	0.008	4.395	2.006
510	0.052	4.823	1.481	510	0.297	5.276	0.935
520	0.535	6.468	0.669	520	0.939	6.275	0.480
530	1.496	7.951	0.381	530	1.944	7.299	0.244
540	2.766	9.193	0.187	540	3.259	8.401	0.114
550	4.274	9.889	0.081	550	4.739	8.926	0.030
560	5.891	9.898	0.036	560	6.340	8.995	-0.003
570	7.353	9.186	0.019	570	7.694	8.357	0.001
580	8.459	8.008	0.015	580	8.479	7.236	0.001
590	9.036	6.621	0.013	590	8.929	6.171	0.000
600	9.005	5.302	0.007	600	8.630	5.020	0.000
610	8.380	4.168	0.007	610	7.794	3.966	0.000
620	7.111	3.147	0.003	620	6.446	2.978	0.000
630	5.300	2.174	0.001	630	4.848	2.114	0.000
640	3.669	1.427	0.000	640	3.191	1.323	0.000
650	2.320	0.873	0.000	650	1.986	0.793	0.000
660	1.333	0.673	0.000	660	1.114	0.439	0.000
670	0.683	0.492	0.000	670	0.577	0.439	0.000
680	0.883	0.250	0.000	680	0.577	0.226	0.000
		0.129	0.000		0.280	0.109	0.000
690	0.162			690			
700	0.077	0.028	0.000	700	0.059	0.023	0.000
710	0.038	0.014	0.000	710	0.027	0.010	0.000
720	0.018	0.006	0.000	720	0.012	0.005	0.000
730	0.008	0.003	0.000	730	0.005	0.002	0.000
740	0.004	0.001	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
heck Sum	98.074	99.999	118.231	Check Sum	97.286	99.999	116.144
hite Point	98.074	100.000	118.232	White Point	97.285	100.000	116.145

Table 6.9	1	nt D50, 193 0 nm Interv	1 Observer	Table 6.11	10	nm Interv	64 Observer al
nm	W_{x}	\mathbf{w}_{v}	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.005	370	0.000	0.000	0.000
380	0.003	0.000	0.014	380	0.001	0.000	0.002
390	0.008	0.000	0.039	390	0.002	0.000	0.009
400	0.058	0.002	0.277	400	0.059	0.006	0.263
410	0.191	0.005	0.906	410	0.385	0.040	1.751
420	0.751	0.021	3.603	420	1.087	0.112	5.154
430	1.592	0.060	7.747	430	1.598	0.190	7.864
440	2.519	0.158	12.593	440	2.556	0.398	13.066
450	2.824	0.310	14.834	450	2.888	0.675	15.511
460	2.556	0.511	14.659	460	2.437	1.000	14.023
470	1.717	0.776	11.344	470	1.574	1.469	10.623
480	0.832	1.246	7.240	480	0.630	2.130	6.312
490	0.250	1.783	3.934	490	0.096	2.715	3.227
500	0.025	2.892	2.447	500	0.006	3.842	1.796
510	0.047	4.610	1.432	510	0.284	5.138	0.919
520	0.538	6.586	0.688	520	0.965	6.500	0.501
530	1.590	8.435	0.403	530	2.101	7.872	0.263
540	2.770	9.185	0.186	540	3.317	8.532	0.114
550	4.210	9.733	0.080	550	4.745	8.931	0.031
560	5.662	9.503	0.035	560	6.194	8.780	-0.003
570	7.092	8.882	0.019	570	7.547	8.214	0.001
580	8.681	8.225	0.016	580	8.847	7.557	0.000
590	9.175	6.728	0.010	590	9.218	6.375	0.000
600	9.966	5.884	0.008	600	9.712	5.663	0.000
610	9.556	4.752	0.003	610	9.035	4.597	0.000
620	8.099	3.584	0.002	620	7.465	3.447	0.000
630	5.835	2.392	0.000	630	5.426	2.366	0.000
640	4.199	1.633	0.000	640	3.713	1.541	0.000
650	2.539	0.954	0.000	650	2.208	0.882	0.000
660	1.517	0.560	0.000	660	1.289	0.509	0.000
670	0.831	0.304	0.000	670	0.714	0.279	0.000
680	0.423	0.153	0.000	680	0.338	0.131	0.000
690	0.178	0.064	0.000	690	0.144	0.056	0.000
700	0.096	0.035	0.000	700	0.075	0.029	0.000
710	0.049	0.018	0.000	710	0.035	0.014	0.000
720	0.020	0.007	0.000	720	0.014	0.005	0.000
730	0.012	0.004	0.000	730	0.008	0.003	0.000
740	0.006	0.002	0.000	740	0.004	0.002	0.000
750	0.002	0.001	0.000	750	0.002	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.001	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	96.422	99.998	82.524	Check Sum	96.720	100.001	81.427
White Point	96.422	100.000	82.521	White Point	96.720	100.000	81.427

Table 6.13	Illuminant D55, 1931 Observer 10 nm Interval			Table 6.15	Illuminant D55, 1964 Observer 10 nm Interval		
nm	W_{x}	\mathbf{w}_{v}	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.001	0.000	0.006	370	0.000	0.000	0.000
380	0.004	0.000	0.019	380	0.001	0.000	0.003
390	0.011	0.000	0.051	390	0.003	0.000	0.012
400	0.072	0.002	0.343	400	0.073	0.008	0.326
410	0.232	0.006	1.105	410	0.466	0.048	2.122
420	0.897	0.026	4.303	420	1.291	0.133	6.120
430	1.872	0.071	9.113	430	1.870	0.222	9.203
440	2.881	0.181	14.405	440	2.910	0.454	14.875
450	3.169	0.348	16.648	450	3.224	0.755	17.323
460	2.831	0.567	16.238	460	2.686	1.104	15.458
470	1.874	0.849	12.388	470	1.710	1.599	11.543
480	0.896	1.346	7.807	480	0.675	2.289	6.773
490	0.266	1.902	4.187	490	0.101	2.882	3.418
500	0.026	3.042	2.570	500	0.007	4.021	1.876
510	0.050	4.806	1.490	510	0.296	5.329	0.952
520	0.554	6.779	0.707	520	0.989	6.657	0.513
530	1.624	8.605	0.411	530	2.134	7.993	0.267
540	2.807	9.303	0.188	540	3.345	8.600	0.115
550	4.236	9.789	0.080	550	4.751	8.939	0.031
560	5.660	9.497	0.035	560	6.162	8.732	-0.003
570	7.052	8.829	0.018	570	7.468	8.126	0.001
580	8.575	8.123	0.015	580	8.697	7.426	0.000
590	8.968	6.574	0.010	590	8.966	6.199	0.000
600	9.626	5.681	0.008	600	9.336	5.442	0.000
610	9.151	4.550	0.003	610	8.610	4.380	0.000
620	7.698	3.406	0.002	620	7.061	3.261	0.000
630	5.508	2.258	0.000	630	5.097	2.222	0.000
640	3.916	1.523	0.000	640	3.446	1.430	0.000
650	2.356	0.885	0.000	650	2.039	0.814	0.000
660	1.393	0.514	0.000	660	1.178	0.465	0.000
670	0.757	0.277	0.000	670	0.647	0.253	0.000
680	0.383	0.139	0.000	680	0.305	0.119	0.000
690	0.162	0.059	0.000	690	0.131	0.051	0.000
700	0.087	0.031	0.000	700	0.067	0.026	0.000
710	0.045	0.016	0.000	710	0.032	0.012	0.000
720	0.018	0.007	0.000	720	0.012	0.005	0.000
730	0.011	0.004	0.000	730	0.007	0.003	0.000
740	0.005	0.002	0.000	740	0.004	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.001	0.000
760	0.001	0.000	0.000	760	0.001	0.000	0.000
770	0.001	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.678	99.998	92.150	Check Sum	95.799	100.001	90.928
White Point	95.682	100.000	92.149	White Point	95.799	100.000	90.926

Table 6.17	Illuminant D65, 1931 Observer 10 nm Interval			Table 6.19	Table 6.19 Illuminant D65, 1964 Observer 10 nm Interval			
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$	
360	0.000	0.000	0.000	360	0.000	0.000	0.000	
370	0.002	0.000	0.009	370	0.000	0.000	-0.001	
380	0.006	0.000	0.029	380	0.001	0.000	0.004	
390	0.016	0.000	0.077	390	0.005	0.000	0.020	
400	0.097	0.003	0.460	400	0.097	0.010	0.436	
410	0.311	0.009	1.477	410	0.616	0.064	2.808	
420	1.164	0.033	5.581	420	1.660	0.171	7.868	
430	2.400	0.092	11.684	430	2.377	0.283	11.703	
440	3.506	0.221	17.532	440	3.512	0.549	17.958	
450	3.755	0.413	19.729	450	3.789	0.888	20.358	
460	3.298	0.662	18.921	460	3.103	1.277	17.861	
470	2.141	0.973	14.161	470	1.937	1.817	13.085	
480	1.001	1.509	8.730	480	0.747	2.545	7.510	
490	0.293	2.107	4.623	490	0.110	3.164	3.743	
500	0.028	3.288	2.769	500	0.007	4.309	2.003	
510	0.054	5.122	1.584	510	0.314	5.631	1.004	
520	0.581	7.082	0.736	520	1.027	6.896	0.529	
530	1.668	8.833	0.421	530	2.174	8.136	0.271	
540	2.860	9.472	0.191	540	3.380	8.684	0.116	
550	4.257	9.830	0.081	550	4.735	8.903	0.030	
560	5.632	9.446	0.034	560	6.081	8.614	-0.003	
570	6.960	8.709	0.018	570	7.310	7.950	0.001	
580	8.344	7.901	0.015	580	8.393	7.164	0.000	
590	8.676	6.357	0.009	590	8.603	5.945	0.000	
600	9.120	5.379	0.007	600	8.771	5.110	0.000	
610	8.568	4.259	0.003	610	7.996	4.067	0.000	
620	7.119	3.149	0.001	620	6.476	2.990	0.000	
630	5.049	2.070	0.000	630	4.635	2.020	0.000	
640	3.522	1.370	0.000	640	3.074	1.275	0.000	
650	2.112	0.794	0.000	650	1.814	0.724	0.000	
660	1.229	0.454	0.000	660	1.031	0.407	0.000	
670	0.658	0.240	0.000	670	0.557	0.218	0.000	
680	0.331	0.120	0.000	680	0.261	0.102	0.000	
690	0.142	0.051	0.000	690	0.114	0.044	0.000	
700	0.074	0.027	0.000	700	0.057	0.022	0.000	
710	0.039	0.014	0.000	710	0.028	0.011	0.000	
720	0.016	0.006	0.000	720	0.011	0.004	0.000	
730	0.009	0.003	0.000	730	0.006	0.002	0.000	
740	0.005	0.002	0.000	740	0.003	0.001	0.000	
750	0.002	0.001	0.000	750	0.001	0.000	0.000	
760	0.001	0.000	0.000	760	0.000	0.000	0.000	
770	0.001	0.000	0.000	770	0.000	0.000	0.000	
780	0.000	0.000	0.000	780	0.000	0.000	0.000	
Check Sum	95.047	100.001	108.882	Check Sum	94.813	99.997	107.304	
White Point	95.047	100.000	108.883	White Point	94.811	100.000	107.304	

Table 6.21	1	0 nm Inter		Table 6.23	Illuminant D75, 1964 Observer 10 nm Interval		
nm	W_x	\mathbf{w}_{v}	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.003	0.000	0.012	370	0.000	0.000	-0.001
380	0.008	0.000	0.038	380	0.001	0.000	0.005
390	0.021	0.001	0.098	390	0.006	0.001	0.026
400	0.120	0.003	0.567	400	0.119	0.013	0.535
410	0.378	0.010	1.798	410	0.745	0.077	3.396
420	1.403	0.040	6.728	420	1.985	0.205	9.410
430	2.820	0.108	13.727	430	2.773	0.330	13.652
440	4.028	0.254	20.146	440	4.009	0.628	20.503
450	4.244	0.467	22.301	450	4.254	0.998	22.859
460	3.677	0.739	21.106	460	3.437	1.417	19.790
470	2.350	1.071	15.552	470	2.112	1.986	14.275
480	1.087	1.642	9.485	480	0.805	2.751	8.104
490	0.313	2.262	4.951	490	0.116	3.374	3.981
500	0.029	3.484	2.929	500	0.008	4.534	2.105
510	0.058	5.371	1.657	510	0.328	5.863	1.043
520	0.599	7.281	0.754	520	1.051	7.042	0.539
530	1.702	9.005	0.430	530	2.203	8.241	0.274
540	2.890	9.564	0.192	540	3.392	8.711	0.116
550	4.265	9.845	0.081	550	4.713	8.858	0.030
560	5.592	9.375	0.034	560	5.997	8.493	-0.003
570	6.853	8.571	0.018	570	7.149	7.773	0.001
580	8.161	7.725	0.015	580	8.154	6.959	0.000
590	8.429	6.174	0.009	590	8.303	5.736	0.000
600	8.777	5.176	0.007	600	8.386	4.885	0.000
610	8.176	4.064	0.003	610	7.580	3.855	0.000
620	6.737	2.980	0.001	620	6.088	2.811	0.000
630	4.728	1.938	0.000	630	4.312	1.879	0.000
640	3.279	1.275	0.000	640	2.843	1.179	0.000
650	1.956	0.735	0.000	650	1.669	0.666	0.000
660	1.128	0.417	0.000	660	0.940	0.371	0.000
670	0.599	0.219	0.000	670	0.504	0.197	0.000
680	0.301	0.109	0.000	680	0.236	0.092	0.000
690	0.128	0.046	0.000	690	0.102	0.040	0.000
700	0.067	0.024	0.000	700	0.051	0.020	0.000
710	0.036	0.013	0.000	710	0.025	0.010	0.000
720	0.014	0.005	0.000	720	0.010	0.004	0.000
730	0.009	0.003	0.000	730	0.006	0.002	0.000
740	0.004	0.002	0.000	740	0.003	0.001	0.000
750	0.002	0.001	0.000	750	0.001	0.000	0.000
760	0.001	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	94.972	99.999	122.639	Check Sum	94.416	100.002	120.640
White Point	94.972	100.000	122.638	White Point	94.416	100.000	120.641

Table 6.25	Illuminant F2, 1931 Observer 10 nm Interval			Table 6.27	Illuminant F2, 1964 Observe 10 nm Interval		
nm	W_x	\mathbf{w}_{y}	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	$0.00\bar{0}$	360	0.000	0.000	0.000
370	0.000	0.000	0.000	370	0.000	0.000	0.000
380	0.001	0.000	0.004	380	0.001	0.000	0.003
390	-0.007	0.000	-0.038	390	-0.020	-0.001	-0.097
400	0.082	0.002	0.390	400	0.130	0.014	0.588
410	0.175	0.005	0.836	410	0.326	0.034	1.494
420	-0.048	-0.010	-0.293	420	0.088	-0.005	0.303
430	2.994	0.139	14.707	430	3.107	0.407	15.491
440	4.235	0.248	21.081	440	4.387	0.658	22.288
450	1.115	0.145	5.992	450	1.169	0.312	6.415
460	1.462	0.290	8.373	460	1.441	0.587	8.294
470	1.020	0.463	6.727	470	0.954	0.895	6.428
480	0.487	0.714	4.211	480	0.383	1.257	3.794
490	0.150	1.063	2.353	490	0.060	1.664	1.973
500	0.008	1.592	1.318	500	0.002	2.156	0.989
510	0.025	2.406	0.738	510	0.151	2.752	0.492
520	0.292	3.473	0.370	520	0.528	3.519	0.267
530	0.656	4.112	0.214	530	0.934	3.956	0.148
540	2.917	9.247	0.176	540	3.551	8.791	0.108
550	5.409	12.968	0.124	550	6.295	12.243	0.056
560	6.217	10.369	0.034	560	6.984	9.828	-0.004
570	10.109	12.644	0.027	570	11.012	11.985	0.000
580	13.826	13.167	0.024	580	14.508	12.451	0.000
590	13.136	9.598	0.014	590	13.512	9.315	0.000
600	12.110	7.113	0.009	600	12.111	7.032	0.000
610	9.497	4.706	0.003	610	9.208	4.671	0.000
620	6.361	2.802	0.001	620	6.030	2.776	0.000
630	3.637	1.484	0.000	630	3.450	1.496	0.000
640	1.867	0.723	0.000	640	1.702	0.704	0.000
650	0.864	0.324	0.000	650	0.767	0.305	0.000
660	0.363	0.134	0.000	660	0.317	0.125	0.000
670	0.140	0.051	0.000	670	0.122	0.048	0.000
680	0.054	0.020	0.000	680	0.045	0.017	0.000
690	0.021	0.008	0.000	690	0.017	0.007	0.000
700	0.008	0.003	0.000	700	0.006	0.002	0.000
710	0.003	0.001	0.000	710	0.002	0.001	0.000
720	0.001	0.000	0.000	720	0.001	0.000	0.000
730	0.001	0.000	0.000	730	0.000	0.000	0.000
740	0.000	0.000	0.000	740	0.000	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	99.188	100.004	67.395		103.281	100.002	69.030
White Point	99.186	100.000	67.393		103.279	100.000	69.027

Table 6.29	Illuminant F7, 1931 Observer 10 nm Interval			Table 6.31	Illuminant F7, 1964 Observer 10 nm Interval		
nm	W_x	$\mathbf{w}_{\mathbf{v}}$	W_z	nm	$W_{10,x}$	$W_{10,y}$	$W_{10,z}$
360	0.000	0.000	0.000	360	0.000	0.000	0.000
370	0.000	0.000	-0.001	370	0.000	0.000	0.000
380	0.001	0.000	0.005	380	0.000	0.000	0.001
390	-0.004	0.000	-0.021	390	-0.021	-0.001	-0.101
400	0.105	0.003	0.499	400	0.156	0.016	0.700
410	0.266	0.007	1.265	410	0.493	0.051	2.259
420	0.203	-0.005	0.904	420	0.461	0.030	2.055
430	4.113	0.186	20.179	430	4.148	0.535	20.642
440	5.834	0.346	29.065	440	5.863	0.885	29.819
450	2.301	0.278	12.246	450	2.334	0.589	12.685
460	2.650	0.527	15.185	460	2.532	1.034	14.581
470	1.855	0.842	12.235	470	1.682	1.578	11.335
480	0.889	1.303	7.684	480	0.677	2.224	6.711
490	0.273	1.933	4.285	490	0.106	2.935	3.483
500	0.016	2.937	2.432	500	0.004	3.858	1.770
510	0.052	4.495	1.372	510	0.278	4.979	0.888
520	0.537	6.254	0.661	520	0.934	6.139	0.462
530	1.118	6.620	0.329	530	1.518	6.168	0.221
540	3.686	11.541	0.214	540	4.342	10.634	0.126
550	5.727	13.711	0.131	550	6.462	12.551	0.058
560	4.699	7.698	0.021	560	5.108	7.073	-0.006
570	7.124	8.867	0.019	570	7.520	8.149	0.000
580	9.875	9.422	0.017	580	10.048	8.637	0.000
590	8.833	6.445	0.010	590	8.809	6.065	0.000
600	8.895	5.236	0.007	600	8.627	5.018	0.000
610	7.999	3.978	0.003	610	7.521	3.826	0.000
620	6.510	2.879	0.001	620	5.988	2.766	0.000
630	4.709	1.929	0.000	630	4.332	1.886	0.000
640	3.068	1.192	0.000	640	2.715	1.126	0.000
650	1.924	0.723	0.000	650	1.659	0.663	0.000
660	1.076	0.397	0.000	660	0.912	0.359	0.000
670	0.417	0.152	0.000	670	0.354	0.138	0.000
680	0.168	0.061	0.000	680	0.134	0.052	0.000
690	0.073	0.026	0.000	690	0.058	0.022	0.000
700	0.029	0.011	0.000	700	0.023	0.009	0.000
710	0.013	0.005	0.000	710	0.009	0.003	0.000
720	0.005	0.002	0.000	720	0.003	0.001	0.000
730	0.002	0.001	0.000	730	0.001	0.001	0.000
740	0.001	0.000	0.000	740	0.001	0.000	0.000
750	0.000	0.000	0.000	750	0.000	0.000	0.000
760	0.000	0.000	0.000	760	0.000	0.000	0.000
770	0.000	0.000	0.000	770	0.000	0.000	0.000
780	0.000	0.000	0.000	780	0.000	0.000	0.000
Check Sum	95.042	100.002	108.747	Check Sum	95.791	99.999	107.689
White Point	95.041	100.000	108.747	White Point	95.792	100.000	107.686

Table 6.33 Illuminant F11, 1931 Observer Table 6.35 Illuminant F11, 1964 Observer 10 nm Interval 10 nm Interval W_z W, W_{10,x} W_{10,z} W_{10,y} nm w, nm 360 0.000 0.000 0.000 360 0.000 0.000 0.000 0.000 370 0.000 0.000 0.000 370 0.000 0.000 380 0.001 0.000 0.005 380 0.001 0.000 0.004 390 0.000 -0.048 390 -0.019 -0.001 -0.088 -0.009400 0.061 0.002 0.291 400 0.102 0.011 0.460 0.003 410 0.897 410 0.107 0.511 0.1960.021 420 -0.205-0.014-1.044420 -0.134-0.028-0.756430 2.800 0.130 13.758 430 2.908 0.381 14.502 440 4.264 0.251 21.231 440 4.426 0.666 22,492 450 1.277 0.164 6.849 450 1.339 0.355 7.327 460 1.367 0.280 7.848 460 1.348 0.566 7.783 470 0.695 0.255 4.495 470 0.657 0.513 4.313 480 0.435 0.754 3.956 480 0.329 1.316 3.539 490 0.341 2.063 4.778 490 0.176 3.206 4.053 -0.004 1.088 0.792 500 -0.0060.581 500 1.464 0.007 0.469 0.054 510 0.020 510 0.039 0.510 520 -0.0010.229 0.032 520 0.015 0.238 0.024 -0.925-2.067 0.000 530 -1.070-1.9510.005 530 540 9.613 29.254 0.535 540 11.643 27.854 0.327 28.030 0.300 550 11.438 550 13.374 26.520 0.149 560 0.196-0.695-0.031560 0.159 -0.660-0.023570 0.602 0.870 0.002 570 0.674 0.822 0.000 7.362 580 7.021 6.565 0.012 6.226 0.000 590 9.070 6.866 0.011 590 9.374 6.653 0.000 600 4.247 2.617 0.004 600 4.309 2.597 0.000 610 29.903 14.812 0.010 610 29.011 14.710 0.000 13.567 6.132 0.003 620 12.930 6.080 0.000 620 630 3,446 1.329 0.000 630 3.263 1.353 0.000 640 0.630 0.240 0.000 640 0.571 0.232 0.000 0.534 0.1990.000 0.4730.000 650 650 0.187660 0.297 0.110 0.000 660 0.261 0.103 0.000 670 0.084 0 031 0.000 670 0.073 0.029 0.000 680 0.043 0.016 0.000 680 0.036 0.014 0.000 690 0.028 0.010 0.000 690 0.023 0.009 0.000 700 0.013 0.005 0.000 700 0.010 0.004 0.000 710 0.020 0.007 0.000 710 0.015 0.006 0.000 720 0.000 0.000 0.001 0.000 0.000 0.001 720 730 0.000 0.000 0.000 730 0.000 0.000 0.000 740 0.000 0.000 740 0.000 0.000 0.000 0.000 0.000 750 0.000 0.000 0.000 750 0.000 0.000 760 0.000 0.000 0.000 760 0.000 0.000 0.000 770 0.000 0.000 0.000 770 0.000 0.000 0.000 780 0.000 0.000 0.000 780 0.000 0.000 0.000 100.005 **Check Sum** 100.964 64.354 Check Sum 103.869 100.006 65.609 White Point 100.962 100.000 64.350 White Point 103.863 100.000 65.607

REFERENCES

- (1) Foster, W. H., Jr., Gans, R., Stearns, E. I., and Stearns, R. E., "Weights for Calculation of Tristimulus Values from Sixteen Reflectance Values," *Color Engineering*, Vol 8, No. 3, 1970, pp. 35–47.
- (2) Stearns, E. I., "Weights for Calculation of Tristimulus Values," *Clemson Review of Industrial Management and Textile Science*, Vol 14, No. 1, 1975, pp. 79–113.
- (3) Commission Internationale de l'Éclairage, Publication CIE No. 15.2004, *Colorimetry*, Central Bureau of the CIE, Vienna, 2004.
- (4) Commission Internationale de l'Éclairage, Publication CIE No. 17, International Lighting Vocabulary, 3rd ed., 1970; 4th ed., 1987. Central Bureau of the CIE, Vienna.
- (5) Judd, D. B., and Wyszecki, G., "Calculation of Tristimulus Values and Chromaticity Coordinates," *Color in Business, Science and Industry*, 3rd ed., John Wiley and Sons, New York, 1975, pp. 139–149.
- (6) Billmeyer, F. W., and Saltzman, M., Principles of Color Technology, 2nd ed., John Wiley and Sons, New York, 1981.

- (7) Hunter, R. S., and Harold, R. W., The Measurement of Appearance, 2nd ed., John Wiley and Sons, New York, 1987.
- (8) Wyszecki, G., and Stiles, W. S., Color Science, 2nd ed., John Wiley and Sons, New York, 1982.
- (9) Billmeyer, F. W., and Fairman, H. S., "CIE Method for Calculating Tristimulus Values," *Color Research and Application*, Vol 12, 1987, pp. 27–36.
- (10) Fairman, H. S., "The Calculation of Weight Factors for Tristimulus Integration," *Color Research and Application*, Vol 10, 1985, pp. 199–203.
- (11) Stearns, E. I., and Stearns, R. E., "An Example of a Method for Correcting Radiance Data for Bandpass Error," *Color Research and Application*, Vol 13, 1988, pp. 257–259.
- (12) Venable, W. H., "Accurate Tristimulus Values from Spectral Data," Color Research and Application, Vol 14, 1989, pp. 260–267.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/