

Standard Practice for Determination of Quasistatic Fracture Toughness of Welds¹

This standard is issued under the fixed designation E2818; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This practice provides methods for preparing specimens from welds in metallic materials and interpreting subsequent test results when used in conjunction with standards Test Methods E1290 and E1820 for the determination of fracture toughness. The fatigue pre-cracking procedures included in this practice may also be used to aid in preparing straight pre-cracks for weld specimens in accordance with Test Method E1681.
- 1.2 This practice draws heavily from ISO 15653: Metallic materials Method of test for the determination of quasistatic fracture toughness of welds. All references to ISO 12135 in that test method should be replaced with the applicable ASTM Test Methods (E1820, E1290 or E1681).
- 1.3 The recommended specimen is a single-edge bend [SE(B)] with width, W, equal to twice the specimen thickness, B. An alternate SE(B) specimen with W/B equal to one and a span, S, to W ratio of 4 may be used but may produce different toughness values. A compact tension [C(T)] specimen may be used if it can be demonstrated that the analysis of results properly accounts for weld-to-base metal strength mismatch effects on fracture toughness.
- 1.4 The recommended limitation on weld-to-base metal yield strength ratio is

$$0.5 < \frac{\sigma_{ys}^{weld}}{\sigma_{vs}^{base}} < 1.5 \tag{1}$$

Undermatching within this limitation leads to conservative estimates of fracture toughness, while overmatching may lead to an overestimation of the fracture toughness by up to 10%.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

E8/E8M Test Methods for Tension Testing of Metallic Materials

E1290 Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement (Withdrawn 2013)³

E1681 Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials

E1820 Test Method for Measurement of Fracture Toughness E1823 Terminology Relating to Fatigue and Fracture Testing 2.2 *ISO Standard*:⁴

 ISO 12135 Metallic materials – Unified method of test for the determination of quasistatic fracture toughness
ISO 15653 Metallic materials–Method of test for the determination of quasistatic fracture toughness of welds

3. Terminology

- 3.1 Terminology of E1823 and ISO 15653 are applicable to this test practice with the following additions.
 - 3.2 Definitions:
- 3.2.1 base metal yield strength—The base metal 0.2% offset yield strength (σ_{ys}^{base}) is defined by testing tensile specimens per Test Method E8/E8M.
- 3.2.1.1 *Discussion*—ISO 15653 uses $R_{p0,2b}$ to represent the base metal yield strength.
 - 3.2.2 overmatched—Any weldment having $\frac{\sigma_{ys}^{weld}}{\sigma_{ys}^{base}} > 1$
- 3.2.3 test temperature—The test temperature for tensile specimens shall either be identical to the test temperature for the fracture toughness specimens, or evidence shall be provided to demonstrate that there is not an appreciable change in

¹ This practice is under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture and is the direct responsibility of Subcommittee E08.07 on Fracture Mechanics.

Current edition approved May 1, 2011. Published July 2011. DOI: 10.1520E2818-11.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from International Organization for Standardization (ISO), 1, ch. de la Voie-Creuse, Case postale 56, CH-1211, Geneva 20, Switzerland, http://www.iso.ch.

the yield strength between the test temperature used for the tensile and fracture toughness tests.

- 3.2.4 *undermatched*—Any weldment having $\frac{\sigma_{ys}^{weld}}{\sigma_{ys}^{base}} < 1$
- 3.2.5 weld metal yield strength—The weld metal 0.2% offset yield strength (σ_{ys}^{weld}) is defined by testing tensile specimens per Test Method E8/E8M.
- 3.2.5.1 *Discussion*—ISO 15653 uses $R_{p0,2w}$ to represent the weld metal yield strength.

4. Summary of Practice

- 4.1 This test practice complements ISO 15653 for the quasistatic fracture toughness testing of welds. When testing welds, it is important that the crack tip sample the region and microstructure of interest. Procedures given in ISO 15653 for selecting a specimen orientation, positioning of the fatigue precrack relative to the weld or heat affected zone (HAZ), and verifying that the resulting measured fracture toughness is representative of the target region or microstructure apply to this practice.
- 4.2 This test practice references ISO 15653 for recommendations for relieving non-uniform residual stresses ahead of notch tips in weld fracture toughness specimens to allow for an improvement in the straightness of fatigue precracks. Where thermal stress relief treatments are found inadequate, the local compression technique, which involves indenting the sides of the specimens to encompass the notch tip, is the recommended procedure.
- 4.3 This practice follows the guidance provided in ISO 15653 for relaxation in crack front straightness requirements provided in the applicable fracture toughness test method; however, this relaxation is valid only for SE(B) specimens evaluated in terms of J or CTOD (not for $K_{\rm Ic}$ evaluation).

5. Significance and Use

- 5.1 This test practice provides a recommended procedure for preparing fracture toughness specimens from welds to improve the likelihood of obtaining useful fracture toughness values.
- 5.1.1 The subsequent fracture toughness values, that have significance and use as stated in the applicable ASTM test method, may allow for flaw tolerance assessments of welded structures. Flaw tolerance assessments require an understanding and compensation for the differences that may exist between laboratory test results and field conditions.
- 5.1.2 The shallow-notched specimen testing procedures described in Annex E of ISO 15653 may be used by agreement between the parties involved as long as it is understood that Annex E is "Informative" and the result is a geometry dependent measurement of toughness that is not validated by the applicable test standard.

6. Apparatus

6.1 The apparatus for specimen preparation and testing is as described in ISO 15653 and the applicable ASTM fracture toughness test method.

7. Specimen Configuration, Dimensions, and Preparation

- 7.1 The following sections override ISO 15653 where applicable.
 - 7.1.1 Specimen:
- 7.1.1.1 Standard Configuration—A single edge notch bend, SE(B), specimen having a ratio of width W to thickness B (W/B) of two and a span S to W ratio of four is the standard configuration.
- 7.1.1.2 Alternative Configuration—A specimen having W/B=1 may also be tested with a S/W=4. However, this configuration may produce different toughness values than the standard configuration.
- 7.1.1.3 Shallow-crack SE(B) specimen testing—When the microstructure of interest in a weld occurs only at a location where the precrack in a SE(B) specimen must be placed at a/W < 0.45, conducting a fracture test will sample the toughness of that microstructure; however, it is subject to low constraint conditions that will elevate the measured toughness. If this microstructure only occurs at this a/W, then the measured fracture toughness is representative of the weld. On the other hand, if the microstructure could occur at deep crack locations in some applications, then the measured fracture toughness could be non-conservative. Consequently, the shallow-notched specimen testing procedures described in Annex E of ISO 15653 may be used by agreement between the parties involved as long as it is understood that Annex E is "Informative" and the result is a geometry dependent measurement of toughness.
- 7.1.1.4 Alternative Specimen—The compact tension, C(T), specimen, which is routinely used to measure fracture toughness for base materials, is not recommended for fracture toughness testing of weldments due to a lack of experience with both the testing and analysis of welded C(T) specimens. The C(T) specimen may be used if the user demonstrates that the equations for interpreting the results appropriately account for weld-to-base metal strength mismatch effects on fracture toughness.
- 7.1.1.5 *Notch Orientation*—ISO 15653 provides orientation codes for weld and parent metal specimens. The parent metal directions designated X, Y, and Z correspond to directions L, T and S in Test Method E1823.
 - 7.2 Pretest Hydrogen Release Heat Treatment:
- 7.2.1 Applicability to Service Conditions—The presence of diffusible hydrogen in a weld can reduce fracture toughness, especially when the rate of straining is low. If the time between welding and testing is shorter than the time between welding and the structure experiencing its first major loading, it may be necessary to carry out hydrogen release heat treatment on the test weldment. Conversely, when the time between welding and the structure entering service is short, heat treatment of the welded test panel for hydrogen release would be inappropriate.
- 7.2.2 Comparability of Multiple Test Weldments—Heat treatment may also be required when it is necessary to compare the fracture toughness of different weldments and it is not possible to ensure that the time between welding and testing is the same. The purpose of the heat treatment is to ensure that the level of diffusible hydrogen is the same as that in the structural weld, or that consistent hydrogen levels are obtained in different panels.

7.2.3 Heat Treatment Parameters—Hydrogen release heat treatment is carried out at approximately 150°C (300°F), or within the range of interpass temperatures for a particular weldment. The time at temperature depends on the thickness of the weld and the level of diffusible hydrogen in the weld.⁵ However, if prolonged heat treatment at these temperatures is expected to influence the fracture toughness by mechanisms other than hydrogen release, then hydrogen release heat treatment is not recommended.

7.3 Fatigue Precracking:

- 7.3.1 Fatigue Precracking Requirements—Requirements concerning precracking forces, the extent of precrack extension from the machined notch, and the detail of the machined notch shall conform to the applicable ASTM fracture toughness test method. All other applicable sections of ISO 15653 apply.
- 7.3.1.1 Thermal Stress Relief—Post-weld heat treatment or local post-weld heat treatment will relieve, to some extent, residual stresses produced by welding. These thermal stress relief treatments may be employed prior to fatigue precracking only for weldments that will be used in a thermally stress relieved condition. The thermal stress relief procedure used shall be consistent with that employed in service.
- (1) Demonstration of Precrack Preparation Procedure Effectiveness—In cases where Annex C of ISO 15653 is used to modify the residual stress field in a specimen, it is advisable to check the straightness of the precrack in the first specimen for a test series from a particular weld to verify the effectiveness of the specimen preparation procedure.

8. Procedure

- 8.1 *Number of Specimens*—The minimum number of valid tests conducted shall be 3. Due to the complications associated with weldment testing, it may be necessary to test from 5 to 6 samples to obtain 3 valid results.
- 8.2 *Test Procedure*—Fracture toughness tests shall be conducted according to the applicable ASTM test method.

9. Post-test Metallography

9.1 Post-test metallography sections of ISO 15653 apply.

10. Post-test Analysis

- 10.1 The post-test analysis sections of ISO 15653 apply with the provision that all references in ISO 15653 to ISO 12135 shall be replaced with the applicable ASTM test method, and the following sections override ISO 15653 where applicable.
- 10.2 Validity Requirements—All validity requirements of the corresponding ASTM test standard shall apply with the exception of the crack front straightness requirement for non- K_{Ic} evaluated SE(B) specimens. In this case, the relaxed crack front straightness requirement of ISO 15653 applies.

11. Report

- 11.1 The report shall include all of the information required by the applicable ASTM fracture toughness test standard used in conjunction with this test practice.
- 11.1.1 The following information is required in addition to the information required by ISO 15653.
 - 11.2 Additional Information:
- 11.2.1 *Notch location*—A sketch of the notch location and orientation relative to the etched cross section of the weld shall be provided.
- 11.2.2 Specimen Removal and Straightening—A description of how the specimen was removed from the original weldment, how much the thickness was reduced (if applicable), and how it was straightened prior to machining (if applicable) shall be included.
- 11.2.3 Procedures used to ensure adequate crack front straightness—Indicate the technique used. For thermal stress relief, document the applied thermal cycle and size of coupon when stress relieved. For local compression indicate platen type used, platen dimensions, depth of indent and force required to produce the indent. Alternative techniques shall also be fully documented.
- 11.2.4 *Hydrogen Removal*—Describe procedure used for hydrogen release heat treatment, if applicable.
- 11.2.5 *Post test metallography*—Provide results of metallography used to qualify test results.
- 11.2.6 *Weld Discontinuities*—Document any weld discontinuities found on the fracture surface by post-test examination, and quantify their proximity to the crack tip.
- 11.3 In cases where the weldment has been prepared for the express purpose of fracture testing, the following information should be noted as part of the test record. If this information is known for weldments removed from service the information should also be recorded, but it is not mandatory.
- 11.3.1 Base metal—Specification, composition, product form and heat treatment.
- 11.3.2 *Weld consumable*—Filler metal specification, heat number, flux type and specification, shielding gas.
- 11.3.3 *Weld process parameters*—Process and position, heat input, preheat and interpass temperature, weld sequence and number of passes.
 - 11.3.4 *Weld configuration*—Joint type, set up, and restraint.
- 11.3.5 *Weld clean-up*—Back-gouging of weld root and inter-pass grinding.
 - 11.3.6 Postweld heat treatment—(PWHT).

12. Precision and Bias

- 12.1 *Precision*—The precision statement of the applicable fracture toughness test standard applies.
- 12.2 *Bias*—The bias statement of the applicable fracture toughness test standard applies.

13. Keywords

13.1 fracture toughness; heat affected zone; hydrogen release; overmatched; post-test metallography; residual stress; shallow-crack; SE(B); undermatched; welds

⁵ Coe, F. R., "Welding Steels without Hydrogen Cracking," The Welding Institute, Cambridge, England, 1973.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/