
Designation: E1876 − 15

Standard Test Method for
Dynamic Young’s Modulus, Shear Modulus, and Poisson’s
Ratio by Impulse Excitation of Vibration1

This standard is issued under the fixed designation E1876; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers determination of the dynamic
elastic properties of elastic materials at ambient temperatures.
Specimens of these materials possess specific mechanical
resonant frequencies that are determined by the elastic
modulus, mass, and geometry of the test specimen. The
dynamic elastic properties of a material can therefore be
computed if the geometry, mass, and mechanical resonant
frequencies of a suitable (rectangular or cylindrical geometry)
test specimen of that material can be measured. Dynamic
Young’s modulus is determined using the resonant frequency
in either the flexural or longitudinal mode of vibration. The
dynamic shear modulus, or modulus of rigidity, is found using
torsional resonant vibrations. Dynamic Young’s modulus and
dynamic shear modulus are used to compute Poisson’s ratio.

1.2 Although not specifically described herein, this test
method can also be performed at cryogenic and high tempera-
tures with suitable equipment modifications and appropriate
modifications to the calculations to compensate for thermal
expansion.

1.3 There are material specific ASTM standards that cover
the determination of resonance frequencies and elastic proper-
ties of specific materials by sonic resonance or by impulse
excitation of vibration. Test Methods C215, C623, C747, C848,
C1198, and C1259 may differ from this test method in several
areas (for example; sample size, dimensional tolerances,
sample preparation). The testing of these materials shall be
done in compliance with these material specific standards.
Where possible, the procedures, sample specifications and
calculations are consistent with these test methods.

1.4 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

C215 Test Method for Fundamental Transverse,
Longitudinal, and Torsional Resonant Frequencies of
Concrete Specimens

C372 Test Method for Linear Thermal Expansion of Porce-
lain Enamel and Glaze Frits and Fired Ceramic Whiteware
Products by the Dilatometer Method

C623 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio for Glass and Glass-Ceramics by
Resonance

C747 Test Method for Moduli of Elasticity and Fundamental
Frequencies of Carbon and Graphite Materials by Sonic
Resonance

C848 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio For Ceramic Whitewares by Reso-
nance

C1161 Test Method for Flexural Strength of Advanced
Ceramics at Ambient Temperature

C1198 Test Method for Dynamic Young’s Modulus, Shear
Modulus, and Poisson’s Ratio for Advanced Ceramics by
Sonic Resonance

C1259 Test Method for Dynamic Young’s Modulus, Shear
Modulus, and Poisson’s Ratio for Advanced Ceramics by
Impulse Excitation of Vibration

E6 Terminology Relating to Methods of Mechanical Testing
E177 Practice for Use of the Terms Precision and Bias in

ASTM Test Methods

3. Terminology

3.1 Definitions:
3.1.1 The definitions of terms relating to mechanical testing

appearing in Terminology E6 and C1198 should be considered
as applying to the terms used in this test method.

1 This test method is under the jurisdiction of ASTM Committee E28 on
Mechanical Testing and is the direct responsibility of Subcommittee E28.04 on
Uniaxial Testing.
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3.1.2 dynamic elastic modulus, n—the elastic modulus,
either Young’s modulus or shear modulus, that is measured in
a dynamic mechanical measurement.

3.1.3 dynamic mechanical measurement, n—a technique in
which either the modulus or damping, or both, of a substance
under oscillatory applied force or displacement is measured as
a function of temperature, frequency, or time, or combination
thereof.

3.1.4 elastic limit [FL–2], n—the greatest stress that a
material is capable of sustaining without permanent strain
remaining upon complete release of the stress. E6

3.1.5 modulus of elasticity [FL–2 ], n—the ratio of stress to
corresponding strain below the proportional limit.

3.1.5.1 Discussion—The stress-strain relationships of many
materials do not conform to Hooke’s law throughout the elastic
range, but deviate therefrom even at stresses well below the
elastic limit. For such materials, the slope of either the tangent
to the stress-strain curve at the origin or at a low stress, the
secant drawn from the origin to any specified point on the
stress-strain curve, or the chord connecting any two specified
points on the stress-strain curve is usually taken to be the
“modulus of elasticity.” In these cases, the modulus should be
designated as the “tangent modulus,” the “secant modulus,” or
the “chord modulus,” and the point or points on the stress-
strain curve described. Thus, for materials where the stress-
strain relationship is curvilinear rather than linear, one of the
four following terms may be used:

(a) initial tangent modulus [FL–2], n—the slope of the
stress-strain curve at the origin.

(b) tangent modulus [FL–2 ], n—the slope of the stress-
strain curve at any specified stress or strain.

(c) secant modulus [FL–2], n—the slope of the secant
drawn from the origin to any specified point on the stress-strain
curve.

(d) chord modulus [FL–2 ], n—the slope of the chord drawn
between any two specified points on the stress-strain curve
below the elastic limit of the material.

3.1.5.2 Discussion—Modulus of elasticity, like stress, is
expressed in force per unit of area (pounds per square inch,
etc.).

3.1.6 Poisson’s ratio, µ, n—the negative of the ratio of
transverse strain to the corresponding axial strain resulting
from an axial stress below the proportional limit of the
material.

3.1.6.1 Discussion—Poisson’s ratio may be negative for
some materials, for example, a tensile transverse strain will
result from a tensile axial strain.

3.1.6.2 Discussion—Poisson’s ratio will have more than one
value if the material is not isotropic. E6

3.1.7 proportional limit [FL–2] , n—the greatest stress that a
material is capable of sustaining without deviation from
proportionality of stress to strain (Hooke’s law). E6

3.1.7.1 Discussion—Many experiments have shown that
values observed for the proportional limit vary greatly with the
sensitivity and accuracy of the testing equipment, eccentricity
of loading, the scale to which the stress-strain diagram is
plotted, and other factors. When determination of proportional

limit is required, the procedure and the sensitivity of the test
equipment should be specified.

3.1.8 shear modulus, G [FL–2 ], n—the ratio of shear stress
to corresponding shear strain below the proportional limit, also
called torsional modulus and modulus of rigidity.

3.1.8.1 Discussion—The value of the shear modulus may
depend on the direction in which it is measured if the material
is not isotropic. Wood, many plastics and certain metals are
markedly anisotropic. Deviations from isotropy should be
suspected if the shear modulus differs from that determined by
substituting independently measured values of Young’s
modulus, E, and Poisson’s ratio, µ, in the relation:

G 5
E

2~11µ!

3.1.8.2 Discussion—In general, it is advisable in reporting
values of shear modulus to state the range of stress over which
it is measured. E6

3.1.9 Young’s modulus, E [FL–2 ], n—the ratio of tensile or
compressive stress to corresponding strain below the propor-
tional limit of the material. E6

3.2 Definitions of Terms Specific to This Standard:
3.2.1 anti-nodes, n—two or more locations in an uncon-

strained slender rod or bar in resonance that have local
maximum displacements.

3.2.1.1 Discussion—For the fundamental flexure resonance,
the anti-nodes are located at the two ends and the center of the
specimen.

3.2.2 elastic, adj—the property of a material such that an
application of stress within the elastic limit of that material
making up the body being stressed will cause an instantaneous
and uniform deformation, which will be eliminated upon
removal of the stress, with the body returning instantly to its
original size and shape without energy loss. Most elastic
materials conform to this definition well enough to make this
resonance test valid.

3.2.3 flexural vibrations, n—the vibrations that occur when
the oscillations in a slender rod or bar are in a plane normal to
the length dimension.

3.2.4 homogeneous, adj—the condition of a specimen such
that the composition and density are uniform, so that any
smaller specimen taken from the original is representative of
the whole.

3.2.4.1 Discussion—Practically, as long as the geometrical
dimensions of the test specimen are large with respect to the
size of individual grains, crystals, components, pores, or
microcracks, the body can be considered homogeneous.

3.2.5 in-plane flexure, n—for rectangular parallelepiped
geometries, a flexure mode in which the direction of displace-
ment is in the major plane of the test specimen.

3.2.6 isotropic, adj—the condition of a specimen such that
the values of the elastic properties are the same in all directions
in the material.

3.2.6.1 Discussion—Materials are considered isotropic on a
macroscopic scale, if they are homogeneous and there is a
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random distribution and orientation of phases, crystallites,
components, pores, or microcracks.

3.2.7 longitudinal vibrations, n—the vibrations that occur
when the oscillations in a slender rod or bar are parallel to the
length of the rod or bar.

3.2.8 nodes, n—one or more locations of a slender rod or bar
in resonance that have a constant zero displacement.

3.2.8.1 Discussion—For the fundamental flexural
resonance, the nodes are located at 0.224 L from each end,
where L is the length of the specimen.

3.2.9 out-of-plane flexure, n—for rectangular parallelepiped
geometries, a flexure mode in which the direction of displace-
ment is perpendicular to the major plane of the test specimen.

3.2.10 resonant frequency, n—naturally occurring frequen-
cies of a body driven into flexural, torsional, or longitudinal
vibration that are determined by the elastic modulus, mass, and
dimensions of the body.

3.2.10.1 Discussion—The lowest resonant frequency in a
given vibrational mode is the fundamental resonant frequency
of that mode.

3.2.11 slender rod or bar, n—in dynamic elastic property
testing, a specimen whose ratio of length to minimum cross-
sectional dimension is at least five and preferably in the range
from 20 to 25.

3.2.12 torsional vibrations, n—the vibrations that occur
when the oscillations in each cross-sectional plane of a slender
rod or bar are such that the plane twists around the length
dimension axis.

3.3 Symbols:

A = plate constant; used in Eq A1.1
D = diameter of rod or diameter of disk
De = effective diameter of the bar; defined in Eq 10 and

Eq 11
E = dynamic Young’s modulus; defined in Eq 1 and Eq 4,

and Eq A1.4
E1 = first natural calculation of the dynamic Young’s

modulus, used in Eq A1.2
E2 = second natural calculation of the dynamic Young’s

modulus. used in Eq A1.3
G = dynamic shear modulus, defined in Eq 12, Eq 14, and

Eq A1.5
K = correction factor for the fundamental longitudinal

mode to account for the finite diameter-to-length ratio
and Poisson’s Ratio, defined in Eq 8

Ki = geometric factor for the resonant frequency of order i,
see Table A1.2 and Table A1.3

L = specimen length
MT = dynamic elastic modulus at temperature T (either the

dynamic Young’s modulus E, or the dynamic shear
modulus G)

M0 = dynamic elastic modulus at room temperature (either
the dynamic Young’s modulus E or the dynamic shear
modulus G)

R = correction factor the geometry of the bar, defined in Eq
13

T1 = correction factor for fundamental flexural mode to
account for finite thickness of bar and Poisson’s ratio;
defined in Eq 2

T1' = correction factor for fundamental flexural mode to
account for finite diameter of rod, Poisson’s ratio;
defined in Eq 4 and Eq 6

b = specimen width
f = frequency
f0 = resonant frequency at room temperature in furnace or

cryogenic chamber
f1 = first natural resonant frequency; used in Eq A1.2
f2 = second natural frequency; used in Eq A1.3
ff = fundamental resonant frequency of bar in flexure; used

in Eq 1
fl = fundamental longitudinal resonant frequency of a

slender bar; used in Eq 7 and Eq 9
fT = resonant frequency measured in the furnace or cryo-

genic chamber at temperature T, used in Eq 16
ft = fundamental resonant frequency of bar in torsion; used

in Eq 12 and Eq 14
m = specimen mass
n = the order of the resonance (n=1,2,3,...)
r = radius of the disk, used in Eq A1.1
t = specimen, disk or bar, thickness
T1 = correction factor for fundamental flexural mode to

account for finite thickness of the bar and Poisson’s
ratio; defined in Eq 2

T’1 = correction factor for fundamental flexural mode to
account for finite thickness of the rod and Poisson’s
ratio; defined in Eq 4

∆T = temperature difference between the test temperature T
and room temperature, used in Eq 16

α = average linear thermal expansion coefficient
(mm/mm/°C) from room temperature to test tempera-
ture; used in Eq 16

µ = Poisson’s ratio
ρ = density of the disk; used in Eq A1.1

4. Summary of Test Method

4.1 This test method measures the fundamental resonant
frequency of test specimens of suitable geometry by exciting
them mechanically by a singular elastic strike with an impulse
tool. A transducer (for example, contact accelerometer or
non-contacting microphone) senses the resulting mechanical
vibrations of the specimen and transforms them into electric
signals. Specimen supports, impulse locations, and signal
pick-up points are selected to induce and measure specific
modes of the transient vibrations. The signals are analyzed, and
the fundamental resonant frequency is isolated and measured
by the signal analyzer, which provides a numerical reading that
is (or is proportional to) either the frequency or the period of
the specimen vibration. The appropriate fundamental resonant
frequencies, dimensions, and mass of the specimen are used to
calculate dynamic Young’s modulus, dynamic shear modulus,
and Poisson’s ratio.

5. Significance and Use

5.1 This test method may be used for material development,
characterization, design data generation, and quality control
purposes.
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5.2 This test method is specifically appropriate for deter-
mining the dynamic elastic modulus of materials that are
elastic, homogeneous, and isotropic (1).3

5.3 This test method addresses the room temperature deter-
mination of dynamic elastic moduli of elasticity of slender bars
(rectangular cross section) rods (cylindrical), and flat disks.
Flat plates may also be measured similarly, but the required
equations for determining the moduli are not presented.

5.4 This dynamic test method has several advantages and
differences from static loading techniques and from resonant
techniques requiring continuous excitation.

5.4.1 The test method is nondestructive in nature and can be
used for specimens prepared for other tests. The specimens are
subjected to minute strains; hence, the moduli are measured at
or near the origin of the stress-strain curve, with the minimum
possibility of fracture.

5.4.2 The impulse excitation test uses an impact tool and
simple supports for the test specimen. There is no requirement
for complex support systems that require elaborate setup or
alignment.

5.5 This technique can be used to measure resonant frequen-
cies alone for the purposes of quality control and acceptance of
test specimens of both regular and complex shapes. A range of
acceptable resonant frequencies is determined for a specimen
with a particular geometry and mass. The technique is particu-
larly suitable for testing specimens with complex geometries
(other than parallelepipeds, cylinders/rods, or disks) that would
not be suitable for testing by other procedures. Any specimen
with a frequency response falling outside the prescribed
frequency range is rejected. The actual dynamic elastic modu-
lus of each specimen need not be determined as long as the
limits of the selected frequency range are known to include the
resonant frequency that the specimen must possess if its
geometry and mass are within specified tolerances.

5.6 If a thermal treatment or an environmental exposure
affects the elastic response of the test specimen, this test
method may be suitable for the determination of specific effects
of thermal history, environment exposure, and so forth. Speci-
men descriptions should include any specific thermal treat-
ments or environmental exposures that the specimens have
received.

6. Interferences

6.1 The relationships between resonant frequency and dy-
namic elastic modulus presented herein are specifically appli-
cable to homogeneous, elastic, isotropic materials.

6.1.1 This method of determining the moduli is applicable
to composite and inhomogeneous materials only with careful
consideration of the effect of inhomogeneities and anisotropy.
The character (volume fraction, size, morphology, distribution,
orientation, elastic properties, and interfacial bonding) of the
reinforcement and inhomogeneities in the specimens will have
a direct effect on the elastic properties of the specimen as a

whole. These effects must be considered in interpreting the test
results for composites and inhomogeneous materials.

6.1.2 The procedure involves measuring transient elastic
vibrations. Materials with very high damping capacity may be
difficult to measure with this technique if the vibration damps
out before the frequency counter can measure the signal
(commonly within three to five cycles).

6.1.3 If specific surface treatments (coatings, machining,
grinding, etching, and so forth) change the elastic properties of
the near-surface material, there will be accentuated effects on
the properties measured by this flexural method, as compared
to static/bulk measurements by tensile or compression testing.

6.1.4 This test method is not satisfactory for specimens that
have major discontinuities, such as large cracks (internal or
surface) or voids.

6.2 This test method for determining moduli is limited to
specimens with regular geometries (rectangular parallelepiped,
cylinders, and disks) for which analytical equations are avail-
able to relate geometry, mass, and modulus to the resonant
vibration frequencies. This test method is not appropriate for
determining the elastic properties of materials that cannot be
fabricated into such geometries.

6.2.1 The analytical equations assume parallel and concen-
tric dimensions for the regular geometries of the specimen.
Deviations from the specified tolerances for the dimensions of
the specimens will change the resonant frequencies and intro-
duce error into the calculations.

6.2.2 Edge treatments such as chamfers or radii are not
considered in the analytical equations. Edge chamfers change
the resonant frequency of the test bars and introduce error into
the calculations of the dynamic elastic modulus. It is recom-
mended that specimens for this test method not have chamfered
or rounded edges.

6.2.3 For specimens with as-fabricated and rough or uneven
surfaces, variations in dimension can have a significant effect
in the calculations. For example, in the calculation of dynamic
elastic modulus, the modulus value is inversely proportional to
the cube of the thickness. Uniform specimen dimensions and
precise measurements are essential for accurate results.

6.3 This test method assumes that the specimen is vibrating
freely, with no significant restraint or impediment. Specimen
supports should be designed and located properly in accor-
dance with the instructions so the specimen can vibrate freely
in the desired mode. In using direct contact transducers, the
transducer should be positioned away from anti-nodes and with
minimal force to avoid interference with free vibration.

6.4 Proper location to the impulse point and transducer is
important in introducing and measuring the desired vibration
mode. The locations of the impulse point and transducer should
not be changed in multiple readings; changes in position may
develop and detect alternate vibration modes. In the same
manner, the force used in impacting should be consistent in
multiple readings.

6.5 If the frequency readings are not repeatable for a
specific set of impulse and transducer locations on a specimen,
it may be because several different modes of vibration are
being developed and detected in the test. The geometry of the

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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test bar and desired vibration mode should be evaluated and
used to identify the nodes and anti-nodes of the desired
vibrations. More consistent measurements may be obtained if
the impulse point and transducer locations are shifted to induce
and measure the single desired mode of vibration.

7. Apparatus

7.1 Apparatus suitable for accurately detecting, analyzing,
and measuring the fundamental resonant frequency or period of
a vibrating free-free beam is used. The test apparatus is shown
in Fig. 1. It consists of an impulser, a suitable pickup
transducer to convert the mechanical vibration into an electri-
cal signal, an electronic system (consisting of a signal
conditioner/amplifier, a signal analyzer, and a frequency read-
out device), and a support system. Commercial instrumentation
is available that measures the frequency or period of the
vibrating specimen.

7.2 Impulser—The exciting impulse is imparted by lightly
striking the specimen with a suitable implement. This imple-
ment should have most of its mass concentrated at the point of
impact and have mass sufficient to induce a measurable
mechanical vibration, but not so large as to displace or damage
the specimen physically. In practice, the size and geometry of
the impulser depends on the size and weight of the specimen
and the force needed to produce vibration. For commonly
tested geometries (small bars, rods, and disks) an example of
such an impulser is a steel sphere 0.5 cm in diameter glued to
the end of a flexible 10-cm long polymer rod. (See Fig. 2.) An
alternate impulser is a solid metal, ceramic, or polymer sphere
(0.1 to 1.0 cm in diameter) dropped on the specimen through a
guide tube to ensure proper impulse position.

7.3 Signal Pickup—Signal detection may be by means of
transducers in direct contact with the specimen or by noncon-
tact transducers. Contact transducers are commonly acceler-
ometers using piezoelectric or strain gage methods to measure
the vibration. Non contact transducers are commonly acoustic
microphones, but they may also use laser, magnetic, or
capacitance methods to measure the vibration. The frequency
range of the transducer shall be sufficient to measure the
expected frequencies of the specimens of interest. A suitable
range would be from 100 Hz to 50 kHz for most advanced
ceramic test specimens. (Smaller and stiffer specimens vibrate
at higher frequencies.) The frequency response of the trans-
ducer across the frequency range of interest shall have a
bandwidth of at least 10 % of the maximum measured fre-
quency before –3 dB power loss occurs.

7.4 Electronic System—The electronic system consists of a
signal conditioner/amplifier, signal analyzer, and a frequency
readout device. The system should have accuracy and precision
sufficient to measure the frequencies of interest to an accuracy
of 0.1 %. The signal conditioner/amplifier should be suitable to
power the transducer and provide an appropriate amplified
signal to the signal analyzer. The signal analysis system
consists of a frequency counting device and a readout device.
Appropriate devices are frequency counter systems with stor-
age capability or digital storage oscilloscopes with a frequency
counter module. With the digital storage oscilloscope, a Fast
Fourier Transform signal analysis system may be useful for
analyzing more complex waveforms and identifying the fun-
damental resonant frequency.

7.5 Support System— The support shall isolate the specimen
from extraneous vibration without restricting the desired mode
of specimen vibration. Appropriate materials should be stable
at the test temperatures. Support materials may be either soft or
rigid for ambient conditions. An example of a soft material is
a compliant elastomeric material, such as a polyurethane foam
strip. Such foam strips should have simple flat surfaces for the
specimen to rest on. Rigid materials, such as metal or ceramic,
should have sharp knife edges or cylindrical surfaces on which
the specimen should rest. The rigid supports should rest on
isolation pads to prevent ambient vibrations from being picked
up by the transducer. Wire suspension may also be used.
Specimens shall be supported along node lines appropriate for
the desired vibration in the locations described in Section 8.

8. Test Specimen

8.1 The specimens shall be prepared so that they are either
rectangular or circular in cross section. Either geometry may be
used to measure both dynamic Young’s modulus and dynamic
shear modulus. Although the equations for computing shear
modulus with a cylindrical specimen are both simpler and more
accurate than those used with a rectangular bar, experimental
difficulties in obtaining torsional resonant frequencies for a
cylindrical specimen usually preclude its use for determining
dynamic shear modulus.

8.2 Resonant frequencies for a given specimen are functions
of the specimen dimensions as well as its mass and moduli;FIG. 1 Block Diagram of Typical Test Apparatus

FIG. 2 Diagram of Typical Impulser for Small Specimens
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dimensions should therefore be selected with this relationship
in mind. The selection of size shall be made so that, for an
estimated dynamic elastic modulus, the resonant frequencies
measured will fall within the range of frequency response of
the transducers and electronics used. For a slender rod, the ratio
of length to minimum cross-sectional dimension shall have a
value of at least five (5). However, a ratio of approximately 20
≈ 25 is preferred for ease in calculation. For dynamic shear
modulus measurements of rectangular bars, a ratio of width to
thickness of five (5) or greater is recommended for minimizing
experimental difficulties.

8.3 All surfaces on the rectangular specimen shall be flat.
Opposite surfaces across the length, thickness, and width shall
be parallel to within 0.1 %. The cylindrical specimen shall be
round and constant in diameter to within 0.1 %.

8.4 Specimen mass shall be determined to within 0.1 %.

8.5 Specimen length shall be measured to within 0.1 %. The
thickness and width of the rectangular specimen shall be
measured to within 0.1 % at three locations and an average
determined. The diameter of the cylindrical specimen shall be
measured to within 0.1 % at three locations and an average
determined.

8.6 Table 1 illustrates how uncertainties in the measured
parameters influence the calculated dynamic elastic modulus. It
shows that calculations are most sensitive to error in the
measurement of the thickness. Take special care when measur-
ing the thickness of samples with a thickness of less than 3
mm.

9. Procedure

9.1 Activate all electrical equipment, and allow it to stabi-
lize according to the manufacturer’s recommendations.

9.2 Use a test specimen established as a verification/
calibration standard to verify the equipment response and
accuracy.

9.3 Fundamental Flexural Resonant Frequency (Out-of-
Plane Flexure):

9.3.1 Place the specimen on the supports located at the
fundamental nodal points (0.224 L from each end; see Fig. 3).

9.3.2 Determine the direction of maximum sensitivity for
the transducer. Orient the transducer so that it will detect the
desired vibration.

9.3.2.1 Direct-Contact Transducers—Place the transducer
in contact with the test specimen to pick up the desired
vibration. If the transducer is placed at an anti-node (location

of maximum displacement), it may mass load the specimen and
modify the natural vibration. The transducer should be placed
only as far from the nodal points as necessary to obtain a
reading (see Fig. 3). This location will minimize the damping
effect from the contacting transducer. The transducer contact
force should be consistent, with good response and minimal
interference with the free vibration of the specimen.

9.3.2.2 Non-Contact Transducers—Place the non-contact
transducer over an anti-node point and close enough to the test
specimen to pick up the desired vibration, but not so close as
to interfere with the free vibration (see Fig. 3).

9.3.3 Strike the specimen lightly and elastically, either at the
center of the specimen or at the opposite end of the specimen
from the detecting transducer (see Fig. 3).

9.3.4 Record the resultant reading, and repeat the test until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental resonant frequency in flexure.

9.4 Fundamental Flexural Resonant Frequency (In-Plane
Flexure):

9.4.1 This procedure is the same as 9.3, except that the
direction of vibration is in the major plane of the specimen.
This measurement may be performed in two ways. In one case,
move the transducer and impulser 90° around the long axis of
the test specimen to introduce and detect vibrations in the
major plane (see Fig. 3). In the alternate method, rotate the test
bar 90° around its long axis and reposition it on the specimen
supports. Transpose the width and thickness dimensions in the
calculations. For homogeneous, isotropic materials, the calcu-
lated moduli should be the same as the moduli calculated from
the out-of-plane frequency. The comparison of in-plane and
out-of-plane frequency measurements can thus be used as a
cross check of experimental methods and calculations.

9.5 Fundamental Torsional Resonant Frequency:
9.5.1 Support the specimen at the midpoint of its length and

width (the torsional nodal planes) (see Fig. 4).
9.5.2 Locate the transducer at one quadrant of the specimen,

preferably at approximately 0.224 L from one end and toward
the edge. This location is a nodal point of flexural vibration and
will minimize the possibility of detecting a spurious flexural
mode (see Fig. 4).

9.5.3 Strike the specimen on the quadrant diagonally oppo-
site the transducer, again at 0.224 L from the end and near the
edge. Striking at a flexural nodal point will minimize the
possibility of exciting a flexural mode of vibration (see Fig. 4).

9.5.4 Record the resultant reading, and repeat the test until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental resonant frequency in torsion.

9.6 Fundamental Longitudinal Resonant Frequency:
9.6.1 Support the specimen at the midpoint of its length and

width (the same as for torsion), or brace the specimen at its mid
length, the fundamental longitudinal nodal position.

9.6.2 Locate the detecting transducer at the center of one of
the end faces of the specimen.

9.6.3 Strike the end face of the specimen opposite to the
face where the transducer is located.

TABLE 1 Effects of Variable Error on Dynamic Elastic Modulus
Calculation

Variable
Measurement

Error

Variable Exponent in
Dynamic Elastic

Modulus Equation

Calculation
Error

Frequency (f) 0.1 % f 2 0.2 %
Length (L) 0.1 % L3 0.3 %
Mass (m) 0.1 % m 0.1 %
Width (b) 0.1 % b–1 0.1 %
Thickness (t) 0.1 % t–3 0.3 %
Diameter (D) 0.1 % D–4 0.4 %
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9.6.4 Record the resultant reading, and repeat the test, until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental longitudinal resonant frequency.

10. Calculation

10.1 Dynamic Young’s Modulus (1,2):
10.1.1 For the fundamental flexure resonant frequency of a

rectangular bar (2),

E 5 0.9465S mff
2

b D S L3

t3 D T 1 (1)

where:
E = Dynamic Young’s modulus, Pa,
m = mass of the bar, g (see Note 1),
b = width of the bar, mm (see Note 1),
L = length of the bar, mm (see Note 1),
t = thickness of the bar, mm (see Note 1),
ff = fundamental resonant frequency of bar in flexure, Hz,

and
T1 = correction factor for fundamental flexural mode to

account for finite thickness of bar, Poisson’s ratio, and
so forth.

FIG. 3 Rectangular Specimens Tested for In-Plane and Out-of-Plane Flexure
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T1 5 116.585 ~110.0752 µ10.8109 µ2! S t
L D

2

2 0.868 S t
L D

4

(2)

23 8.340 ~110.2023 µ12.173 µ2! S t
L D

4

1.00016.338 ~110.1408 µ11.536 µ2!
t
L D

24
where:
µ = Poisson’s ratio.

NOTE 1—In the dynamic elastic modulus equations, the mass and length
terms are given in units of grams and millimetres. However, the defined
equations can also be used with mass and length terms in units of

kilograms and metres with no changes in terms or exponents.

10.1.1.1 If L/t ≥ 20, T1 can be simplified to the following:

T1 5 F 1.00016.585 S t
L D

2G (3)

and E can be calculated directly.
10.1.1.2 If L/t < 20 and Poisson’s ratio is known, then T1 can

be calculated directly from Eq 2 and then used to calculate E.
10.1.1.3 If L/t < 20 and Poisson’s ratio is not known,

assume an initial Poisson’s ratio to begin the computations.
Use an iterative process to determine a value of Poisson’s ratio,
based on experimental dynamic Young’s modulus and dynamic
shear modulus. The iterative process is flowcharted in Fig. 5

FIG. 4 Rectangular Specimen Tested for Torsional Vibration

FIG. 5 Process Flow Chart for Iterative Determination of Poisson’s Ratio
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and described in (1) through (5),
(1) Determine the fundamental flexural and torsional reso-

nant frequency of the rectangular test specimen, as described in
Section 9. Using Eq 12, calculate the dynamic shear modulus
of the test specimen for the fundamental torsional resonant
frequency.

(2) Using Eq 1 and Eq 2, calculate the dynamic Young’s
modulus of the rectangular test specimen from the fundamental
flexural resonant frequency, dimensions and mass of the
specimen, and initial/iterative Poisson’s ratio. Exercise care in
using consistent units for all of the parameters throughout the
computations.

(3) Substitute the dynamic shear modulus and Young’s
modulus values calculated in steps (1) and (2) into Eq 15 for
Poisson’s ratio satisfying isotropic conditions. Calculate a new
value for Poisson’s ratio for another iteration beginning at Step
(2).

(4) Repeat Steps (2) and (3) until no significant difference
(2 % or less) is observed between the last iterative value and
the final computed value of the Poisson’s ratio.

(5) Self-consistent values for the moduli are thus obtained.
10.1.2 For the fundamental flexural resonant frequency of a

rod of circular cross section (2) :

E 5 1.6067S L3

D4D ~mff
2 !T1' (4)

where:
D = diameter of rod, mm (see Note 1), and
T1' = correction factor for fundamental flexural mode to

account for finite diameter of rod, Poisson’s ratio, and
so forth.

T1' =
114.939 ~110.0752 µ10.8109 µ2! S D

L D 2

2 0.4883 S D
L D 4

23 4.691 ~110.2023 µ12.173 µ2! S D
L D 4

1.00014.754 ~110.1408 µ11.536 µ2! S D
L D 24 (5)

10.1.2.1 If L/D ≥ 20, then T1' can be simplified to the
following:

T1' 5 F 1.00014.939 S D
L D 2G (6)

10.1.2.2 If L/D < 20 and Poisson’s ratio is known, then T1'
can be calculated directly from Eq 4 and then used to calculate
E.

10.1.2.3 If L/D < 20 and Poisson’s ratio is not known,
assume an initial Poisson’s ratio to start the computations.
Determine final values for Poisson’s ratio, dynamic Young’s
modulus, and dynamic shear modulus using the same method
shown in Fig. 5 and described in (1) through (5) in 10.1.1.3, but
using the dynamic modulus equations for circular bars (Eq 4,
and Eq 14).

10.1.3 For the fundamental longitudinal resonant frequency
of a slender bar with circular cross-section:

E 5 16 m fl
2 F L

π D2 K G (7)

where:
fl = fundamental longitudinal resonant frequency of bar, Hz
D = the diameter of the bar, mm
K = correction factor for the fundamental longitudinal mode

to account for the finite diameter-to-length ratio and
Poisson’s Ratio:

K 5 1 2 F π2 µ2 D2

8 L2 G (8)

where:
µ = Poisson’s ratio

10.1.4 For the fundamental longitudinal resonant frequency
of a slender bar with square or rectangular cross-section:

E 5 4mfl
2F L

btK G (9)

where:
fl = Fundamental longitudinal frequency of bar, Hz
b = the width of the square cross section, mm
t = the thickness of the cross-section, mm
K = correction factor for the fundamental longitudinal mode

to account for the finite diameter-to-length ratio and
Poisson’s Ratio:

K 5 1 2 F π2µ2De
2

8L2 G (10)

where:
µ = Poisson’s ratio
De = the effective diameter of the bar:

De
2 5 2

b21t2

3
(11)

10.2 Dynamic Shear Modulus (3):
10.2.1 For the fundamental torsional resonant frequency of

a rectangular bar (1):

G 5
4 Lmft

2

bt
R (12)

where:
G = dynamic shear modulus, Pa,
ft = fundamental torsional resonant frequency of bar Hz.

R 5 3 11S b
t D

2

4 2 2.521
t
bS 1 2

1.991

eπ b
t 11

D 4 F 11
0.00851n2b2

L2 G

2 0.060S nb
L D 3

2S b
t

2 1D 2

(13)

n= the order of the resonance (n=1,2,3,...). For the funda-
mental resonant frequency, n=1
Eq 13 should be accurate to within ~0.2% for b/L ≤0.3 and b/t
≤10 in the fundamental mode of vibration, otherwise the errors
are estimated to be ≤ 1%.

10.2.2 For the fundamental torsion resonant frequency of a
cylindrical rod (1):

G 5 16mf t
2S L

πD2D (14)

10.3 Poisson’s Ratio:
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µ 5 S E
2G D 2 1 (15)

where:
µ = Poisson’s ratio,
E = Dynamic Young’s modulus, and
G = Dynamic shear modulus.

If Poisson’s ratio is not known or assumed, use the iterative
process described in 10.1.1.3 to determine an experimental
Poisson’s ratio, using the appropriate equations for dynamic
Young’s modulus and dynamic shear modulus and the experi-
mental geometry (round, square, or rectangular cross section)
(Fig. 6).

10.4 If measurements are made at elevated or cryogenic
temperatures, correct the calculated moduli for thermal expan-
sion effects using Eq 16.

MT 5 MoF fT

fo
G 2F 1

~1 1 α ∆ T! G (16)

where:
MT = Dynamic elastic modulus at temperature T (either

dynamic Young’s modulus E or dynamic shear modu-
lus G),

Mo = Dynamic elastic modulus at room temperature (either
dynamic Young’s modulus E or dynamic shear modu-
lus G),

fT = resonant frequency in furnace or cryogenic chamber
at temperature T,

fo = resonant frequency at room temperature in furnace or
cryogenic chamber,

α = average linear thermal expansion (mm/mm·°C) from
room temperature to test temperature (Test Method
C372 is recommended), and

∆T = temperature differential in °C between test tempera-
ture T and room temperature.

11. Report

11.1 Report the following information:
11.1.1 Identification of specific tests performed, a detailed

description of apparatus used (impulser, transducer, electrical
system, and support system), and an explanation of any
deviations from the described test method.

11.1.2 Complete description of material(s) tested stating
composition, number of specimens, specimen geometry and

mass, specimen history, and any treatments to which the
specimens have been subjected. Include comments on dimen-
sional variability, surface finish, edge conditions, observed
changes after cryogenic or high-temperature testing, and so
forth, where pertinent.

11.1.3 Specimen temperature at measurement, number of
measurements taken, numerical values obtained for measured
fundamental resonant frequencies, and the calculated values
for dynamic Young’s modulus, dynamic shear modulus, Pois-
son’s ratio for each specimen tested.

11.1.4 Date of test and name of the person performing the
test.

11.1.5 Laboratory notebook number and page on which test
data are recorded or the computer data file name, or both, if
used.

12. Precision and Bias

12.1 An evaluation (4) was conducted and published in
1990, by Smith, Wyrick, and Poole, of three different methods
of elastic modulus measurement of mechanically alloyed
materials. As part of that evaluation, the impulse modulus
measurement method,3 using a commercial instrument, was
used. With that instrument, the precision of the impulse method
was measured using a NIST Standard Reference Material 718
(alumina reference bar No. C1) in flexural vibration. The NIST
standard had a measured and specified fundamental flexural
resonant frequency of 2043.3 Hz. The fundamental flexural
resonant frequency of the NIST reference bar was measured by
the impulse method and reported by Smith, Wyrick, and Poole
as 2044.6 Hz. This was a percentage error of +0.06 %,
indicating the level of bias that is achievable with the impulse
method.

12.2 An interlaboratory round-robin test was conducted in
1993 to measure the precision of frequency measurement on
two monolithic ceramic test bars. A bias test was not conducted
because suitable standard reference bars were not readily
available.

12.2.1 The tests were conducted with an alumina test bar
(10 g, 83.0 by 6.9 by 4.8 mm) and a silicon nitride bar (2.0 g,
50 by 4.0 by 3.0 mm). The silicon nitride bar was machined to
Test Method C1161 tolerances; the alumina bar was not
machined and varied from 4.5 to 4.8 mm in thickness along its
length. The variations in the alumina bar thickness were

FIG. 6 Rectangular Specimen Tested for Longitudinal Vibration

E1876 − 15

10

 



deliberate; it provided a test of the robustness of the frequency
measurement technique.

12.2.2 Torsional frequency measurements were not per-
formed because the width-thickness ratio of the bars was not
suitable for torsional frequency measurements.

12.2.3 The bars were tested in flexural vibration at eight
laboratories using ten combinations of different frequency
analyzer test systems, impulsers, contact and non contact
transducers, and supports systems. For the alumina bar, the
mean measured fundamental flexural resonant frequency for
the ten tests was 6581 Hz, with a standard deviation of 20 Hz.
This corresponds to a coefficient of variation of 0.3 %. For the
silicon nitride bar, the mean measured fundamental flexural
resonant frequency for the ten tests was 11 598 Hz, with a
standard deviation of 34 Hz. This corresponds to a coefficient
of variation of 0.3 %.

12.2.4 The interlaboratory study did show that individuals
with experience in using the impulse test method for a given
specimen geometry produced data sets with smaller standard
deviations. For example, with the alumina test bar, the coeffi-
cients of variation for individual laboratories ranged from
0.001 to 0.6 % among the ten test sets. For the silicon nitride
bar, the range of coefficients of variation was 0.001 to 1.0 % for
the individual laboratories.

12.2.5 Based on this interlaboratory study of the impulse
test method, the repeatability and reproducibility coefficients at
the 95 % confidence level are listed in Table 2.

12.3 A propagation of errors analysis of the equations for E
and G using the stated tolerances for dimensions, mass, and

frequency measurements in this test method has shown that a
0.1 % error in the measurement of the key variables produces
a range of errors in the calculation of the modulus based on the
variable exponent in the equations. Table 1 gives the calcula-
tion error effects of errors in the different experimental vari-
ables.

12.4 It is expected that the major sources of experimental
variation in dynamic elastic modulus values for this test
method will be in two measurements—the fundamental reso-
nant frequency and the smallest dimension (thickness/
diameter) of the test bars. If a fundamental resonant frequency
of 6000 Hz is measurable to an accuracy of 18 Hz/(0.3 %) and
a 3-mm thick bar is parallel and measured to an accuracy of
0.01 mm (0.3 %), the error in the thickness measurement will
have the greater effect on the dynamic elastic modulus calcu-
lation (0.9 % for thickness error versus 0.6 % for frequency
error).

13. Keywords

13.1 dynamic; elastic modulus; elastic properties; impulse;
Poisson’s ratio; shear modulus; Young’s modulus

ANNEX

(Mandatory Information)

A1. (Disk-SHAPED SPECIMENS) FOR DYNAMIC YOUNG’S MODULUS, SHEAR MODULUS, AND POISSON’S RATIO BY
IMPULSE EXCITATION OF VIBRATION

A1.1 Scope

A1.1.1 This annex covers the evaluation of disk geometry
specimens for the determination of the dynamic elastic prop-
erties of elastic materials at ambient temperatures. With a
disk-shaped specimen, the Poisson’s ratio is determined using
the resonant frequencies of the first two natural vibration
modes. The dynamic Young’s modulus and dynamic shear
modulus are then calculated using the Poisson’s ratio, the
experimentally-determined fundamental resonant frequencies,
and the specimen dimensions and mass.

A1.1.2 In testing disk specimens for dynamic Young’s
modulus, dynamic shear modulus, and Poisson’s ratio, the disk
geometry requires a significantly different set of equations and
method of calculation and some minor changes in procedures.
This annex describes those variations as they relate to
terminology, test specimens, procedures and calculations for
the disk geometry specimens. However, the general methods,
references, terminology, significance, interferences, apparatus,

specimen requirements, and procedures described in the main
body of the test method are still pertinent to the test procedure
and the results.

A1.1.3 The use of the disk geometry is suitable for mono-
lithic and particulate/whisker/fiber reinforced materials.
However, the disk geometry is not recommended for continu-
ous fiber reinforced composite materials because of the anisot-
ropy in mechanical properties and the difficulty in determining
orientation effects on the measured frequencies.

A1.2 Terminology

A1.2.1 Description of Terms Specific to this Annex for
Disk-Shaped Specimens

A1.2.1.1 anti-nodes, n—two or more locations that have
local maximum displacements in an unconstrained resonant
specimen.

A1.2.1.2 first natural vibration, n—the vibration that occurs
when the displacements in the cross-sectional plane (the plane
that is parallel to the flat of the disk) are normal to the plane

TABLE 2 Within- and Between-Laboratory Precision

Test Bar No. and Type Al2O3 Si3N4

Measured fundamental flexural resonant frequency (Hz) 6581 11 598
95 % repeatability limit (within laboratory) CVr, %A 0.9 % 1.1 %
95 % reproducibility limit (between laboratories) CVR, %A 1.2 % 1.3 %
ACalculated in accordance with Practice E177, Section 28.
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and symmetrical around two orthogonal diameters in the plane
of the disk, producing a twisting of the disk.

A1.2.1.2.1 Discussion—This is an orthogonal anti-flexural
mode of vibration (5). For the first natural vibration mode, the
nodes are located along two orthogonal diameters, offset 45°
from the point where the vibration was induced. The anti-nodes
are located along two orthogonal (90° offset) diameters in the
disk, with one diameter intersecting the point where the
vibration was induced. See Fig. A1.1, which shows a finite
element map of anti-flexural displacement in a disk and a
schematic of the nodal and anti-nodal lines for the first natural
vibration of the disk).

A1.2.1.3 nodes, n—one or more locations that have a
constant zero displacement in an unconstrained resonant speci-
men.

A1.2.1.4 second natural vibration, n—the vibrations that
occur when the displacements in the cross-sectional plane (the
plane that is parallel to the flat of the disk) are normal to the
plane and are uniform in displacement for a given radial
distance from the center point through the entire 360° arc.

A1.2.1.4.1 Discussion—This is axisymmetric flexural vibra-
tion (5). For the second natural vibration mode of a disk, the
nodes are located in a circle concentric with the center of the
disk with a fractional radius of 0.681 of the disk radius. The
anti-nodes are located at the center and around the circumfer-
ence of the disk specimen. See Fig. A1.2, which shows a finite
element map of axisymmetric flexural displacement in a disk
and a schematic of the nodal circle and the anti-nodal points
and line for the second natural vibration of the disk.

A1.3 Test Specimen

A1.3.1 Fabricate the specimens so that they are disk-shaped
with a diameter-to-thickness ratio of at least four, with a value
of 10-20 recommended for experimental simplicity. Resonant
frequencies for a given specimen are a function of the
specimen dimensions as well as its mass and moduli; therefore,
dimensions should be selected with this relationship in mind.
By using approximate specimen dimensions and estimated
values for the moduli and Poisson’s ratio, nominal resonant
frequencies can be calculated with the formulas in Section A5.
By adjusting the size of the specimen, the resonant frequencies
can be tuned into the measurement range of the transducers and
electronics. The dimensional tolerances for the thickness,
diameter, and flatness are given in A1.3.2 – A1.3.5.

A1.3.2 Measure the specimen thickness within 0.1 % at five
locations (one at the center, two at the outer edge, and two at
the 1⁄2 radius). Determine the average of the five measurements
for a specimen thickness.

A1.3.3 Ensure that the thickness of the disk is uniform so
that opposite plane surfaces of the disk are parallel to within
0.1 % of the thickness, whichever is greater. For larger disks
where precision machining of the thickness to those tolerances
is difficult, an alternative tolerance of 0.01 mm or 6 0.5 % is
allowed, with proper allowances for the resulting loss of
precision in the calculated dynamic elastic modulus. The use of
the less precise tolerance for the thickness should be noted in
the report.

A1.3.4 Measure the specimen diameter within 0.1 % at four
locations (45° intervals around the circumference, as shown in
Fig. A1.3.) Determine an average from the four measurements.
Ensure that the diameter of the disk is uniform to within 6

0.1 %, whichever is greater. (The value of the radius is used to
determine the Poisson’s ratio.)

A1.3.5 Measure the flatness of the disk resting on a surface
plate with a dial gage, taking measurements at nine locations
(one at the center, four at the outer edge, and four at the 1⁄2
radius) on the disk. Turn the disk over and repeat the
measurement on the opposite face. The maximum difference
between any two measurements on a face shall not exceed
0.1 % of the diameter.

A1.3.6 Determine the specimen mass to the nearest 10 mg
or 0.1 % of the total weight, whichever is greater.

A1.3.7 All other specimen requirements and recommenda-
tions as described in Section 8 of the main body of this
standard are pertinent to the disk-shaped specimens.

A1.4 Procedure

A1.4.1 Active and allow all electrical equipment to stabilize
according to manufacturer’s recommendations.

A1.4.2 Use a test specimen established as an “in-house”
verification standard to check the operation of the test system.
The “in-house” standard can also be used to verify the
operation, repeatability, and precision of the system and the
operator. The standard specimen should have a geometry
similar in size and shape to the experimental specimens.

FIG. A1.1 Displacement Diagram for Disk-Shaped Specimen in First Natural Vibration
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A1.4.3 First Natural Resonant Frequency—
A1.4.3.1 Specimens may be supported either on soft poly-

urethane foam strips or on four hard support points. Specimens
with a low (<10) diameter-to-thickness ratio may be supported
on flat strips of soft polyurethane foam set in an x-pattern. If
foam supports are not available, place the specimen on four
hard support points located at the intersections of the nodal
diameters of the first natural vibration with the nodal circle of
the second natural vibration (see Fig. A1.4).

NOTE A1.1—Experience has shown that foam supports are more
compliant than hard supports and markedly reduce rattling and extraneous
vibrations in the test. Generally, visual positioning is sufficiently accurate
for larger specimens (diameter >75 mm). Specimens with a high (>20)
diameter-to-thickness ratio or a smaller diameter (<75 mm) will require
more accurate positioning. For precise support location, the nodal circle
diameter of the test specimen can be calculated as 0.681 of the geometrical
mean diameter. Then draw, or otherwise define, the nodal circle of this
diameter on a piece of paper so that it is concentric with a circle drawn
slightly larger than the diameter of the test piece specimen. Locate four
equally disposed positions around the nodal circle to define the support
points (see Fig. A1.4). Place the supports at these positions and then place
the test specimen on the supports so that the specimen is visually
concentric with the second larger drawn circle.

A1.4.3.2 Follow section 9.3.2 in the main body for orienting
and using contact and non-contact transducers. Determine the
direction of maximum sensitivity for the transducer. Orient the
transducer so that it will detect the desired vibration.

A1.4.3.3 For the first natural vibration Fig. A1.5 shows the
impulse and sensor points. Locate the transducer on a point (S1
in Fig. A1.5) on the second mode nodal circle on the flat of the
disk and offset by 45° from a support point. Strike the
specimen on the flat of the disk (X1 in Fig. A1.5) 90° away
from the transducer point. Striking at the second mode nodal
circle will minimize the possibility of exciting that particular
mode of vibration.

NOTE A1.2—Accuracy and repeatability in the impulse excitation test
depend upon developing and detecting a single vibration mode in the test
specimen, without introducing and detecting alternative vibration modes
in the specimen. Exciting and detecting a singular vibration mode for a
simple geometry of suitable size depends on three experimental variables:

• the alignment of the support points with the specimen nodal points to
favor the desired vibration mode and to minimize interference

• the location of the strike point at the anti-node of the desired vibration
mode and an elastic (rapid with short duration contact) method of striking

• the positioning of the detection transducer at a point where the desired
vibration mode is active, but where there is minimal interference from
competitive vibrations

With a minimal amount of experience and practice on a suitable
specimen geometry, most operators can obtain repeatability and accuracy
on the order of 1 % or better in a series of repeated test strikes. For a
specific specimen, the first test strikes are a means of determining the
appropriate locations and methods of specimen support, striking, and
signal detection. By slight shifts in those positions and repeated test
strikes, the proficient operator can find the appropriate locations to achieve
the consistent 1 % repeatability in a series of five consecutive readings.
This is an iterative process for every new specimen; but can be done
quickly by those operators who have experience with specimens of
different sizes and compositions.

FIG. A1.2 Displacement Diagram for Disk-Shaped Specimen in Second Natural Vibration Mode

FIG. A1.3 Diameter Measurement Locations

FIG. A1.4 Support Points for 1st and 2d Natural Vibrations in Disks
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A1.4.3.4 After repeatability of the test procedure has been
demonstrated, take and record at least five (5) readings. Use the
average of these five readings to determine the first natural
frequency (f1). If readings repeat with a variation greater than
1 %, the operator shall review the measurement technique
(supports, tap/sensor location, tapping mode) and the integrity/
geometry of the test specimen.

NOTE A1.3—Adjustments and improved consistency in technique may
improve the repeatability. Measurement technique can also be checked for
consistency by taking measurements on “in-house” calibration standards.
If technique adjustments do not improve the repeatability for the experi-
mental specimens, the operator should determine what the source of the
variation is. There are two possible causes for this variation:

• a geometry in which two vibration modes exist with similar
frequencies that interfere during the measurement

• inhomogeneities/flaws in the test specimens which produce spurious
vibrations or very rapid damping

In the case of specimens with vibration modes that are similar in
frequency, the vibration of interest can be enhanced and the undesirable
vibration can be diminished, based on iterative changes in technique
(support/tap/sensor location, tapping mode).

For example, samples of rolled sheet may exhibit poor repeatability.
Gradually rotating the sample will result in a sample position with good
repeatability for the first mode. Rotating the sample another 45° will result
in another position with good repeatability for the first mode.

A1.4.4 Second Natural Resonant Frequency
A1.4.4.1 Support the specimen at the same points used for

the first natural frequency support—the intersection of the first
natural frequency nodal diameters with the second natural
frequency nodal circle (Fig. A1.4).

A1.4.4.2 Position the transducer on the flat of the disk close
to the outer circumference (S2 in Fig. A1.5). Then strike the
disk specimen lightly at the center of the specimen (Appendix
X2 in Fig. A1.5).

A1.4.4.3 After repeatability of the test procedure has been
demonstrated, take at least five (5) readings. Use the average of
these five readings to determine the second natural frequency
(f2). If the readings vary by more than 1 % of each other,
review the measurement technique. [See Note A1.2 and Note
A1.3 following sections A1.4.3.3 and A1.4.3.4]

A1.5 Calculations

A1.5.1 The derivation and use of the equations for calcu-
lating the Poisson’s ratio and moduli from disk-shaped speci-

mens are described in detail in two references (6, 7). The
Martincek reference (6) gives the derivation and procedures for
the baseline calculation. The fundamental equation defining the
relationship between the natural resonant frequency, the mate-
rial properties, and the specimen dimensions is given by
Martincek as:

f i 5
Ki

2πr2Œ A
ρt

(A1.1)

where:
fi = the resonant frequency of interest,
Ki = the geometric factor for that resonant frequency,
r = the radius of the disk,
A = the plate constant (A = Et3/[12 (1-µ2)]
t = the disk thickness,
ρ = the density of the disk,
E = Young’s modulus of elasticity, and
µ = the Poisson’s ratio for the disk material

This is a general equation which is valid for both the first
natural and second natural vibrations. The Glandus reference
supplements the Martincek article with more extensive tables
for the geometric factors Ki and for determining Poisson’s
ratio. The overall method for calculating the Poisson’s ratio,
dynamic Young’s modulus, and the dynamic shear modulus
from the first natural and second natural frequencies is de-
scribed by Martincek and by Glandus as the following three-
step procedure.

(1) Determine the Poisson’s ratio from the experimental
values for the first and second natural resonant frequencies.

(2) Calculate two independent values for E (dynamic
Young’s modulus) using the Poisson’s ratio from step 1 and the
first natural and second natural resonant frequencies. Deter-
mine E as the average of the two independent calculations.

(3) Calculate the value of G (dynamic Shear Modulus)
using the Poisson’s ratio from step 1 and the calculated value
of E from step 2.

The details for each calculation are given in the following
sections.

A1.5.2 Poisson’s Ratio (6,7)
For the disk-shaped specimen, Poisson’s ratio (µ) can be
determined directly from the experimental values of the first

FIG. A1.5 Impulse and Sensor Points for 1ST and 2d Natural Vibration in Disks
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natural resonant frequency (f1) and the second natural resonant
frequency (f2). This is done by the use of Table A1.1, in which
the value for Poisson’s ratio (µ) is interpolated from the table
using the ratio of the second natural resonant frequency to the
first natural resonant frequency (f2/f1) correlated with the ratio
of the specimen thickness to the specimen radius (t/r).
For example, if the ratio (f2/f1) of the two experimental
resonant frequencies is 1.55 and the thickness of the disk is 3
mm and the diameter is 30 mm (giving a t/r ratio of 0.20), then
the Poisson’s ratio is 0.218 from the 9th column and 5th row of
the table.

A1.5.3 Dynamic Young’s Modulus (6,7)
A1.5.3.1 For the Young’s modulus of a disk, two calcula-

tions of E (E1 and E2) are made independently from the two
resonant frequency measurements, and then a final value E is
determined by averaging the two calculated values E1 and E2.

E1 5
@37.6991 f1

2 D2 m ~1 2 µ2!#

~K1
2 t3!

(A1.2)

E2 5
@37.6991 f2

2 D2 m ~1 2 µ2!#

~K2
2 t3!

(A1.3)

E 5
~E11E2!

2
(A1.4)

where:
E = Dynamic Young’s modulus (Pa)
E1 = first natural calculation of dynamic Young’s modulus
E2 = second natural calculation of dynamic Young’s modu-

lus
f1 = first natural resonant frequency (Hz) of the disk
f2 = second natural resonant frequency (Hz) of the disk
D = diameter (mm) of the disk
m = mass (g) of the disk
µ = Poisson’s ratio for the specimen as determined in

Section A1.5.2
K1 = first natural geometric factor from Table A1.2A &

Table A1.2B (using linear interpolation as necessary)
K2 = second natural geometric factor from Table A1.3A and

Table A1.3B (using linear interpolation as necessary)
t = thickness (mm) of the disk
r = radius (mm) of the disk

NOTE A1.4—The two tables in sets A-II and A-III give two different
ranges for the independent variables t/r and µ. The first table (A) gives the
full range (t/r = 0.0 to 0.50 and µ = 0 to 0.50), while the second table (B)
in each set gives a smaller range with smaller increments (t/r = 0.1 to 0.2
and µ = 0.14 to 0.34). The determination of a value for Ki from the tables
is done in a similar manner to the method used for Poisson’s ratio in Table
A1.1.

NOTE A1.5—The constant 37.6991 in the equation is from the Glandus
reference and is the numerical value of 12 π.

TABLE A1.1 Poisson’s Ratio (µ) Values (as a function of f2/f1 and t/r) [7]

f2/f1 1.350 1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600
t/r Ratio POISSON’S RATIO (µ)

0.00 0.015 0.043 0.070 0.094 0.118 0.141 0.163 0.184 0.205 0.226 0.247
0.05 0.018 0.044 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.226 0.247
0.10 0.020 0.045 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.227 0.247
0.15 0.023 0.049 0.075 0.100 0.124 0.148 0.171 0.192 0.212 0.233 0.254
0.20 0.025 0.053 0.080 0.105 0.130 0.154 0.178 0.198 0.218 0.239 0.260
0.25 0.033 0.060 0.088 0.114 0.139 0.162 0.186 0.206 0.227 0.247 0.268
0.30 0.040 0.068 0.096 0.122 0.148 0.171 0.193 0.214 0.235 0.255 0.275
0.35 0.051 0.078 0.105 0.130 0.155 0.179 0.203 0.224 0.245 0.264 0.284
0.40 0.062 0.088 0.113 0.138 0.162 0.187 0.212 0.234 0.255 0.274 0.292
0.45 0.070 0.096 0.123 0.148 0.173 0.197 0.221 0.242 0.263 0.281 0.300
0.50 0.078 0.105 0.132 0.158 0.183 0.206 0.229 0.250 0.270 0.289 0.307

f2/f1 1.625 1.650 1.675 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900
t/r Ratio POISSON’S RATIO (µ)

0.00 0.265 0.282 0.297 0.312 0.329 0.346 0.362 0.378 0.394 0.409 0.424 0.438
0.05 0.265 0.283 0.298 0.314 0.331 0.347 0.363 0.378 0.394 0.409 0.424 0.438
0.10 0.265 0.283 0.300 0.316 0.332 0.348 0.363 0.378 0.394 0.409 0.424 0.438
0.15 0.271 0.289 0.306 0.322 0.338 0.354 0.368 0.383 0.398 0.413 0.427 0.442
0.20 0.278 0.295 0.312 0.328 0.344 0.359 0.374 0.388 0.403 0.417 0.431 0.445
0.25 0.286 0.304 0.320 0.336 0.351 0.366 0.380 0.395 0.409 0.423 0.437 0.451
0.30 0.294 0.312 0.328 0.344 0.358 0.372 0.387 0.402 0.415 0.428 0.442 0.456
0.35 0.302 0.320 0.336 0.352 0.367 0.382 0398 0.414 0.428 0.442 0.456 0.471
0.40 0.310 0.328 0.344 0.360 0.376 0.392 0.409 0.425 0.440 0.455 0.470 0.485
0.45 0.318 0.337 0.354 0.370 0.387 0.403 0.420 0.437 0.452 0.468 0.485 0.503
0.50 0.327 0.346 0.363 0.380 0.397 0.414 0.431 0.448 0.464 0.480 0.500 0.520
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A1.5.4 Dynamic Shear Modulus (7)
A1.5.4.1 The dynamic shear modulus is determined from

the calculated dynamic Young’s modulus value and Poisson’s
ratio.

G 5 E/@2 ~11µ!# (A1.5)

where:
G = Dynamic shear modulus (Pa)
E = Dynamic Young’s modulus (Pa) calculated in section

A1.5.3
µ = Poisson’s ratio determined in section A1.5.2

TABLE A1.2 a K1 Values (as a function of t/r and µ) [7]

t/r 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500
µ K1 Value

0.000 6.170 6.144 6.090 6.012 5.914 5.800 5.674 5.540 5.399 5.255 5.110
0.050 6.076 6.026 5.968 5.899 5.816 5.717 5.603 5.473 5.331 5.178 5.019
0.100 5.962 5.905 5.847 5.782 5.705 5.613 5.504 5.377 5.234 5.079 4.915
0.150 5.830 5.776 5.720 5.657 5.581 5.490 5.382 5.256 5.115 4.962 4.800
0.200 5.681 5.639 5.587 5.524 5.446 5.351 5.240 5.114 4.975 4.826 4.673
0.250 5.517 5.491 5.445 5.380 5.297 5.197 5.083 4.957 4.822 4.681 4.537
0.300 5.340 5.331 5.290 5.223 5.135 5.030 4.913 4.787 4.656 4.523 4.390
0.350 5.192 5.156 5.120 5.052 4.961 4.853 4.734 4.610 4.483 4.358 4.234
0.400 4.973 4.964 4.931 4.865 4.775 4.668 4.551 4.429 4.306 4.186 4.070
0.450 4.781 4.756 4.723 4.661 4.576 4.476 4.365 4.249 4.131 4.013 3.899
0.500 4.540 4.525 4.490 4.436 4.365 4.280 4.182 4.075 3.960 3.841 3.720

TABLE A1.2 b K1 Values (as a function of t/r and µ) (7)

t/r 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200
µ K1 Value

0.14 5.746 5.739 5.722 5.710 5.696 5.683 5.670 5.654 5.642 5.629 5.608
0.16 5.694 5.687 5.670 5.664 5.645 5.632 5.619 5.602 5.590 5.576 5.556
0.18 5.641 5.634 5.617 5.606 5.592 5.579 5.566 5.549 5.537 5.523 5.502
0.2 5.587 5.576 5.563 5.551 5.538 5.524 5.510 5.495 5.479 5.463 5.446
0.22 5.531 5.524 5.507 5.495 5.481 5.468 5.455 5.439 5.427 5.411 5.388
0.24 5.474 5.467 5.450 5.438 5.424 5.410 5.396 5.379 5.366 5.351 5.328
0.26 5.415 5.408 5.391 5.379 5.364 5.350 5.336 5.318 5.304 5.289 5.266
0.28 5.354 5.347 5.330 5.317 5.301 5.287 5.273 5.255 5.241 5.225 5.201
0.30 5.290 5.279 5.266 5.253 5.238 5.223 5.207 5.190 5.173 5.154 5.135
0.32 5.224 5.217 5.200 5.187 5.172 5.157 5.142 5.123 5.108 5.091 5.067
0.34 5.156 5.148 5.131 5.118 5.103 5.088 5.073 5.053 5.037 5.020 4.997

TABLE A1.3 a K2 Values (as a function of t/r and µ) [7]

t/r 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500
µ K2 Value

0.000 8.240 8.226 8.151 8.027 7.863 7.670 7.455 7.227 6.991 6.754 6.520
0.050 8.378 8.339 8.252 8.124 7.963 7.777 7.570 7.350 7.120 6.885 6.649
0.100 8.511 8.459 8.364 8.233 8.071 7.885 7.679 7.459 7.228 6.991 6.751
0.150 8.640 8.584 8.485 8.349 8.182 7.990 7.779 7.553 7.316 7.074 6.830
0.200 8.764 8.712 8.611 8.469 8.294 8.092 7.871 7.635 7.390 7.141 6.889
0.250 8.884 8.840 8.738 8.589 8.403 8.189 7.954 7.706 7.450 7.191 6.931
0.300 9.000 8.962 8.860 8.705 8.508 8.280 8.030 7.767 7.497 7.226 6.960
0.350 9.111 9.081 8.977 8.814 8.605 8.363 8.098 7.819 7.535 7.253 6.979
0.400 9.219 9.193 9.085 8.913 8.692 8.436 8.157 7.865 7.569 7.276 6.991
0.450 9.321 9.292 9.178 8.997 8.766 8.499 8.208 7.905 7.598 7.295 7.001
0.500 9.420 9.376 9.252 9.063 8.824 8.550 8.252 7.940 7.625 7.313 7.010

TABLE A1.3 b K2 Values (as a function of t/r and µ) [7]

t/r 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200
µ K2 Value

0.14 8.460 8.443 8.411 8.385 8.355 8.326 8.297 8.262 8.234 8.202 8.160
0.16 8.510 8.493 8.460 8.433 8.403 8.373 8.343 8.308 8.279 8.248 8.205
0.18 8.560 8.542 8.509 8.482 8.451 8.421 8.391 8.356 8.327 8.294 8.249
0.2 8.611 8.586 8.559 8.530 8.500 8.469 8.437 8.403 8.368 8.331 8.294
0.22 8.662 8.646 8.613 8.582 8.548 8.517 8.487 8.454 8.425 8.390 8.338
0.24 8.712 8.694 8.660 8.630 8.597 8.565 8.534 8.498 8.467 8.432 8.382
0.26 8.762 8.743 8.708 8.678 8.645 8.612 8.580 8.542 8.510 8.474 8.425
0.28 8.811 8.791 8.755 8.726 8.692 8.659 8.625 8.585 8.551 8.515 8.467
0.3 8.860 8.833 8.804 8.772 8.739 8.705 8.668 8.630 8.591 8.550 8.508
0.32 8.907 8.885 8.848 8.818 8.784 8.750 8.716 8.675 8.640 8.601 8.548
0.34 8.954 8.932 8.894 8.863 8.827 8.793 8.758 8.717 8.681 8.641 8.586
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