
Designation: C 970 – 87 (Reapproved 2006)

Standard Practice for
Sampling Special Nuclear Materials in Multi-Container
Lots1

This standard is issued under the fixed designation C 970; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice provides an aid in designing a sampling
and analysis plan for the purpose of minimizing random error
in the measurement of the amount of nuclear material in a lot
consisting of several containers. The problem addressed is the
selection of the number of containers to be sampled, the
number of samples to be taken from each sampled container,
and the number of aliquot analyses to be performed on each
sample.

1.2 This practice provides examples for application as well
as the necessary development for understanding the statistics
involved. The uniqueness of most situations does not allow
presentation of step-by-step procedures for designing sampling
plans. It is recommended that a statistician experienced in
materials sampling be consulted when developing such plans.

1.3 The values stated in SI units are to be regarded as the
standard.

1.4 This standard does not purport to address all of the
safety problems, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: 2

E 300 Practice for Sampling Industrial Chemicals
2.2 Other Standard:
NUREG/CR-0087, Considerations for Sampling Nuclear

Materials for SNM Accounting Measurements3

3. Terminology Definitions

3.1 analysis of variance—the body of statistical theory,
methods, and practice in which the variation in a set of

measurements, as measured by the sum of squares of the
measurements, is partitioned into several component sums of
squares, each attributable to some meaningful cause (source of
variation).

3.2 confidence interval—(a) an interval estimator used to
bound the value of a population parameter and to which a
measure of confidence can be associated, and (b) the interval
estimate, based on a realization of a sample drawn from the
population of interest, that bounds the value of a population
parameter [with at least a stated confidence].

3.3 Estimation, Estimator, Estimate:
3.3.1 Estimation, in statistics, has a specific meaning, con-

siderably different from the common interpretation of guess-
ing, playing a hunch, or grabbing out of the air. Instead,
estimation is the process of following certain statistical prin-
ciples to derive an approximation (estimate) to the unknown
value of a population parameter. This estimate is based on the
information available in a sample drawn from the population.

3.4 estimator—a function of a sample (X1, X2, ... , Xn) used
to estimate a population parameter.

NOTE 1—An estimator is a random variable; therefore, not every
realization (x1, x2, ... , xn) of the sample (X1, X2, ... , Xn) will lead to the
same value (realization) of the estimator. An estimator can be a function
that, when evaluated, results in a single value or results in an interval or
region of values. In the former case the estimator is called a point
estimator, and in the latter case it is referred to as an interval estimator.

3.5 estimate, (a: n)—a particular value or values realized by
applying an estimator to a particular realization of a sample,
that is, to a particular set of sample values (x1, x2, ... , xn). (b:
v)—to use an estimator.

3.6 nested design— one of a particular class of experimental
designs, characterized by “nesting” of the sources of variation:
for each sampled value of a variable A, a given number of
values of a second variable B is sampled; for each of these, a
given number of values of the next variable C is sampled, etc.
The result is that each line of the “Expected Value of Mean
Square” column in an analysis of variance table contains all but
one of the terms of the preceding line.

3.7 random variable— a variable that takes on any one of
the values in its range according to a [fixed] probability
distribution. (Synonyms: chance variable, stochastic variable,
variate.)

1 This practice is under the jurisdiction of ASTM Committee C26 on Nuclear
Fuel Cycle and is the direct responsibility of Subcommittee C26.08 on Quality
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3.8 standard deviation (s.d.)—the positive square root of the
variance.

3.9 variance—(a: population) the expected value of the
square of the difference between a random variable and its own
expected value; that is, the second moment about the mean. (b:
sample) The sum of squared deviations from the sample mean
divided by one less than the number of values involved.

4. Significance and Use

4.1 Plans for sampling and analysis of nuclear material are
designed with two purposes in mind: the first is related to
material accountability and the second to material specifica-
tions.

4.2 For the accounting of special nuclear material, sampling
and analysis plans should be established to determine the
quantity of special nuclear material held in inventory, shipped
between buyers and sellers, or discarded. Likewise, material
specification requires the determination of the quantity of
nuclear material present. Inevitably there is uncertainty asso-
ciated with such measurements. This practice presents a tool
for developing sampling plans that control the random error
component of this uncertainty.

4.3 Precision and accuracy statements are highly desirable,
if not required, to qualify measurement methods. This practice
relates to“ precision” that is generally a statement on the
random error component of uncertainty.

5. Designing the Sampling Plan—Measuring Random
Error

5.1 The random error component of measurement uncer-
tainty is due to the various random errors involved in each
operation such as weighing, sampling, and analysis. The
quantification of the random error is usually given in terms of
the variance of the mean of the measurements. When analyzing
a lot of nuclear material to estimate the true concentration, p,
of a constituent such as uranium, the sample mean, p̄, is the
calculated estimator. The variance of p̄, s p̄

2 , is a measure of
the random error associated with the measurement process.
This practice deals primarily with random error; measurement
process systematic error will be discussed briefly in 8.2.

5.2 To estimate the true concentration, p, in a lot consisting
of N containers using a completely balanced nested design,
randomly select n of the N containers; from each of the n
containers, randomly select m samples; perform r laboratory
analyses on each of the nm samples. (It is assumed that the
amount of material withdrawn for samples is only a small
fraction of the total quantity of material.) Let

Xijk 5 measured concentration of the constituent in the k th analysis
on the jth sample from the i th container, or
5 p 1 bi 1 sij 1 aijk. (1)

where:
p = true concentration,
bi = effect due to container i,
s ij = effect due to the jth sample from container i, and
aijk = effect due to the kth analysis on the jth sample from

container i.
Then, if each container holds the same amount of material,

(Note 2), the sample mean

p̄ 5 X̄ 5
1

nmr (
i 5 1

n

(
j 5 1

m

(
k 5 1

r

Xijk (2)

is an estimator of the true value p. The true variance of p̄ is
then

sp̄
2 5

sb
2

n
~N 2 n!

N 2 1 1
ss

2

nm 1
sa

2

nmr (3)

where:
sb

2 = true variance among the N containers in the
given lot, defined as N−1(p i

2 − N−2((p i)
2;

ss
2 = true variance among samples taken from a

single container,
sa

2 = true variance of the laboratory analysis on
a homogeneous sample, and

N 2 n
N 2 1

= finite population correction factor.

NOTE 2—If the ith container has gi grams of material, then the true
average concentration is (1

Nwip i, where wi = g i/(1
N gi. However, the

variance of the corresponding estimate can still be calculated as shown in
this guideline; the true variance will be only slightly larger if the gi values
do not differ too much. For example, if the s.d. of the g i were 20 % of the
average gi, it can be shown that the s.d. of p would be underestimated by
about 2 % of the true standard deviation; for gi’s having s.d.’s of 10 % or
30 % of their average, the underestimation is 0.5 % or 4.5 % respectively.
Note that a set of 25 weights gi, uniformly spread from 3.3 to 6.7 kg, has
a s.d. equal to 20 % of the average (5 kg). (It is assumed that errors in the
estimation of net weights are insignificant compared to differences
between containers, sampling variability, and analytical uncertainty, or
both.)

5.3 Since the true variances s b
2, ss

2, and sa
2 are generally

unknown, they may be estimated using appropriate data. Those
data can be historical data obtained from analyzing production
samples, as long as there have been no changes in the process
with time. If such data are not available, as for example during
the start-up of a facility or after a change in process conditions,
a designed experiment is required to obtain estimates of the
variances.4

5.4 An estimate s p̄
2 of the variance of the sample mean can

be obtained from Eq 3, by inserting estimates of the variances
appearing there. If a designed experiment is performed, the
estimates can be obtained from the mean squares.

It is shown in Appendix X1 that estimates of the variances
are as follows:

sa
2 5 MS a, (4)

ss
2 5

1
r ~MS s 2 MSa!, (5)

sb
2 5

N 2 1
Nmr ~MSb 2 MS s!, (6)

where:
MSa, MSb, and MSs are the “mean squares” for analyses,

4 This topic can be found in many standard statistical texts, for example,
Brownlee, K. A., Statistical Theory and Methodology in Science and Engineering,
2nd ed., John Wiley and Sons, New York, 1965; Bennett, C. A., and Franklin, N. L.,
Statistical Analysis in Chemistry and the Chemical Industry, John Wiley and Sons,
New York, 1954; Mendenhall, William, Introduction to Linear Models and the
Design and Analysis of Experiments, Duxbury Press, Belmont, CA, 1968; and in
Jaech, J. L., “Statistical Methods in Nuclear Material Control,” (TID-26298,
USAEC, 1973).
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containers and samples. The estimated variance of p̄ is ob-
tained by replacing the true variances in Eq 3 by their
estimates:

s p̄
2 5

1
n

N 2 n
N 2 1 sb

2 1
1

nm s s
2 1

1
nmr sa

2 (7)

Finally, expressed in terms of the mean squares, this be-
comes

sp̄
2 5

1
nmr

N 2 n
N MS b 1

1
Nmr MS s. (8)

5.5 The variance of the sample mean, s p̄
2, or its estimate, s

p̄
2, is used to calculate confidence limits for the quantity and

concentration of nuclear materials. Therefore, it is desirable to
reduce this variance and, in this way, reduce the random error.
Obviously, this can be done by using large values of n, m, and
r (large number of samples and laboratory analyses). The cost
and time required by that approach could be prohibitive.
Another approach is to improve the overall process such that
the basic variances sb

2, ss
2, sa

2 are reduced.
5.6 Eq 8 gives an estimate of the variances p̄

2 for any given
n, m, and r and therefore can be used for comparing different
sampling plans. An example of two sampling plans involving
the same number of analyses but having different random
errors is given in Appendix X3.

5.7 When one has fixed resources within which the sam-
pling plan must function, the question arises as how to allocate
these resources to obtain the “best” sampling plan. Sections 6
and 7 discuss this problem when “cost” is considered. “Cost”
is used generically here—it need not be a monetary quantity; it
could be time or something else.

6. Determining Sample Sizes

6.1 There are two common situations in which sampling
plans must be developed for use in nuclear material measure-
ment when there are constraints on resources. In the first
situation a constraint is imposed upon the “cost” of sampling
and analysis. In this case, the problem is to find a plan that
minimizes the variance of the sample mean (minimizes random
error) subject to the cost constraint. In the second situation, a
constraint is imposed upon the variance of the sample mean
(upon the random error) and the problem is to find a plan which
minimizes cost subject to this constraint. Since this latter
problem is the most frequently encountered, methods for its
solution will be given. The former problem, for which the
solution technique closely parallels the one given, will be
covered in footnotes.

6.2 Component Variances Are Known:
6.2.1 If the variance constraint is expressed as a maximum

value for the width, 2D, of a confidence interval for p, it can be
transformed immediately to a maximum value for s p̄, by using
the relationship

D 5 ~Z12a/2!s p̄

(9)

where:
Z1-a/2 = value having a probability a/2 of being exceeded by a
standard normal variate.
Therefore, if D is limited to D o, say, then s p̄ is limited to D o/

Z1−a/2. Since the minimum cost is achieved when the constraint
is barely satisfied, we need to minimize cost subject to the
constraint

sp̄
2 5 K (10)

where K is a constant, either specified directly or computed
from Do and a.

6.2.2 When the underlying variances are known from pre-
vious history, the problem of achieving a minimum cost within
a stated confidence interval width reduces to finding a suitable
set of values for n, m, and r. In Appendix X2 it is shown that
the optimum r and m are given by

r 5
sa

ss
Scs

ca
D1 / 2

(11)

m 5
ss

sb
Scb

cs

N 2 1
N D1 / 2

(12)

where:
cb = marginal cost of choosing one additional container

and preparing it for sampling,
cs = marginal cost of drawing an additional sample from a

container and preparing it for analysis, and
ca = marginal cost of an additional laboratory analysis.

Therefore, the optimum values for r and m do not depend on
n, and in fact can be calculated immediately from the vari-
ances, the “costs,” and N.

6.2.3 Once m and r are determined and inserted into Eq 3, s

p̄
2 is seen to be a monotonic decreasing function of n, so that

one need only make n large enough to achieve the required
bound on s p̄

2(Note 3). Letting cs = ca = cb = 1.0 provides the
optimum values of r, m, and n when costs are considered equal.
In practice, the optimum values for m and r obtained this way
are unlikely to be integers. Unless these values are very close
to integers, it is prudent to consider both bracketing values, that
is, if the optimum value for r is 1.4, try both r = 1 and r = 2.
The reason is that the final value of n will generally be different
and it is not clear beforehand which set of values of r, m, and
n will achieve the required variance at minimum cost. It is also
possible to use different values of m (or r, or both) for different
containers or samples, or both, to obtain a non-integer “effec-
tive” value of m (or r, or both). In this case, p̄ should be
replaced by a weighted average; s p̄

2 becomes more compli-
cated; and the expected values of the mean squares also
become more complicated, as does the estimate of s p̄

2. The
advice of a statistician is strongly suggested if this approach is
being considered.

NOTE 3—The same values of m and r provide minimum variance for
given cost. When these are inserted into the cost function, it is seen to be
proportional to n, so that n should be chosen as large as the cost constraint
will allow.

6.2.4 An example with further discussion is given in Ap-
pendix X3.

6.3 Component Variances Are Not Known:
6.3.1 The approach to finding values for n, m, and r

described in Appendix X2 is also valid when the basic
variances are not known, provided some estimates of these
variances are available. As in 6.2, values for m and r can be
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obtained from estimates of the variances and cost factors.
There is a complication in the calculation of an optimum value
of n, however: since the final uncertainty will be based not on
the true variances but rather on estimates, the t-distribution4

must be used instead of the Normal. Given the allowable
half-width D, we have

D 5 sp̄t12a/2~n! (13)

where:
t1−a/2(n) = value having probability a/2 of being exceeded by a
“Student’s t” variable with degrees of freedom n, and s
p̄ = estimated standard deviation of the mean.
Unfortunately, n depends upon n, m, and r (and if prior data are
to be combined with present data in computing s p̄ it depends
also upon the degrees of freedom appropriate to those data).
We therefore proceed iteratively. We guess n, calculate n (as
described in 6.3.2), obtain t from standard tables, and calculate
s p̄ from Eq 13. We then use this target value and our estimates
of the basic variances to obtain an optimum value for n as in
6.2.3. If this optimum value is as large as, but not too much
larger than, the guessed value, it should be used. Otherwise,
use it in place of the initial guess and repeat the procedure.

6.3.2 The uncertainty in the final p̄ will be expressed in
terms of an estimated variance s p̄

2. The t-factor used with s p̄

in Eq 13 has been shown to be approximately correct, provided
the degrees of freedom parameter, n, is properly chosen.
Satterthwaite’s formula is applicable, whether or not the data
from a prior experiment are to be used. In the simple case
where only the n 3 m 3 r data values under consideration are
used, the formula5 is

n 5 s p̄
4FSN 2 n

nmrND 2 MSb
2

n 2 1 1 S 1
mrND 2 MSs

2

n~m 2 1!
G21

(14)

When prior data are combined with these data, the formula
is more complicated.

6.3.3 When n and m are both greater than one, the approach
given here leads to an unbiased estimate of s p̄

2 . If n or m, or
both, are chosen to be one, then the corresponding mean
square(s) (Appendix X1) are undefined. If n = 1, no estimate of
s p̄

2 is available. If n > 1 and m = 1, then only an overestimate
of s p̄

2 is available: (1/nmr) MS b has expected value (sb
2/n)

(N/(N − 1)) + (ss
2/nm) + (sa

2/nmr), in which the first term is
too big by the factor (N/(N − 1)). Therefore, in order to avoid
this problem, it is desirable to choose n greater than one; and
unless N is large, also choose m greater than one.

7. Compositing Samples

7.1 In the example of Appendix X3 at least seven samples
and seven laboratory analyses (measurements) were needed to
reduce the variance of the sample mean to the specified value.
Laboratory measurements are usually costly and time consum-
ing. Sampling operations, on the other hand, are relatively
inexpensive from the viewpoint of required instrumentation
and operator time. Furthermore, in many SNM accountability
situations the variance components due to between- and

within-container variabilities are not known with the same
degree of confidence as the laboratory variance. To reduce the
effort in the laboratory and to minimize the random error, it
could be desirable to blend samples to form a composite.

7.2 When each container in a lot (n = N) is sampled m times
with r analyses per sample, the finite population correction
factor in Eq 3 becomes zero and Eq 3 becomes:

sp̄
2 5

1
N S ss

2

m 1
sa

2

mr D 5
1

Nm S ss
2 1

sa
2

r D (15)

If the m samples from each individual container are com-
posited and thoroughly mixed (Note 4) and each of the N
composites is analyzed r times, Eq 15 is replaced by:

sp̄
2 5

1
N Sss

2

m 1
sa

2

r D (16)

The laboratory effort is still rather large, since even for r = 1
a total of Nr = N measurements must be made.

NOTE 4—Thorough mixing is very important to give effective homog-
enizing of the composite samples, thereby reducing the error from
subsampling to a negligibly small value.

7.3 To further reduce the laboratory effort, the m samples
from each of the N containers in the lot may be composited into
a lot master sample and thoroughly mixed. The contributions to
the master sample from each of the N containers should be
proportional to the net weights in the corresponding containers.
A sub-sample (Note 5) of the composite is then analyzed r
times. The variance of the sample mean is given by

sp̄
2 5

ss
2

Nm 1
sa

2

r (17)

NOTE 5—Dissolution of the material is a step in the laboratory analysis;
therefore, the sub-sample must contain an amount of material sufficient for
further subdivision into r portions.

7.4 For this latter case, it is shown in Appendix X4 that the
values of m and r that minimize “cost” for a given variance
bound k are

m 5
ss

N S=ca s a 1 =cs s s

k=cs
D, and (18)

r 5 s a S= ca sa 1 =cs ss

k=ca
D (19)

Finally, the minimum cost is given by

minimum cost 5
1
k ~=ca sa 1 =cs ss!

2 (20)

(Note 6)

Note that, while Eq 18 and Eq 19 give m and r, the values
will not generally be integers. If the values are rounded to
integers, then Eq 20 is not appropriate for calculating the actual
cost corresponding to the chosen m and r. Instead, the cost
would be calculated as c s Nm + car.

NOTE 6—If it is desired to minimize the variance for given cost C, the
same technique leads to

mN=cs

s s
5

r= ca

sa
5

C

=cs s s 1 =ca s a
, and (21)

5 Mendenhall (op cit), p. 352; also Jaech (op cit), pp. 157–161.
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the minimum variance is given by

minimum variance 5
1
C ~=ca sa 1 =cs ss!

2 (22)

7.5 An example with further discussion is given in Appen-
dix X5.

7.6 Compositing in this way has a major drawback, in that
it is impossible to estimate ss

2, the within-container variance,
on a continuing basis. Quite possibly ss

22 may change,
especially if there has been a change in process conditions or
supplier. Periodically, and especially at those times when a
change in s s

2 might be expected, a number of samples may be
drawn from each container and analyzed separately in replicate
to establish current estimates of ss

2 and sa
2.

8. Mechanical and Physical Aspects of Sampling

8.1 The common types of nuclear material encountered are
liquid and solids (powder and pellets). In whatever form
encountered, the principal task in sampling is to remove a
sample that is typical of the bulk material, at least as far as the
parameters of interest are concerned. The selection of a
procedure and equipment for sampling must be made based on
factors such as the following:

8.1.1 Type and form of the material,
8.1.2 Degree of homogeneity,
8.1.3 Stability of the material,
8.1.4 Location of the material,
8.1.5 Purpose and requirements for analyzing the material,

and
8.1.6 Accessibility for sampling all units or containers

involved.
8.1.7 Practice E 300 and NUREG/CR-0087 present prin-

ciples and guidelines for sampling materials. The mechanical
and physical aspects of sampling are discussed. NUREG/CR-

0087 addresses sampling nuclear materials to determine their
chemical and isotopic contents.

8.2 Some Sources of Error:
8.2.1 There are various sources of error in the sampling

process such as nonhomogeneity, contamination of the sample
after removal from the bulk material, failure of the equipment,
failure of the operator to follow the procedure, bias, and
chemical and physical changes in the material during sampling.
The latter two sources of error are discussed briefly in 8.2.2 and
8.2.3.

8.2.2 Bias occurs when, in addition to the random errors, all
measured values are shifted consistently from the true value in
the same direction. Likely sources of bias are improper
sampling procedures, faulty sampling devices, and improperly
calibrated instruments. The problem is to detect the existence
of such biases and to account for them in the results. The
solution to this problem usually requires designing an appro-
priate study.6 This may not always be possible. For example, if
the sample were contaminated to an unknown degree and new
samples are not available, it may be impossible to estimate the
bias.

8.2.3 An example of errors due to chemical or physical
changes occurs with plutonium dioxide powder.7 This material,
which is usually handled as a fine powder with a large surface
area, readily picks up or loses water if exposed to a change in
humidity. Plutonium dioxide powder can gain over 1 % in
weight within a few hours if exposed to an increase in
humidity. Therefore, very careful control over conditions must
be established and maintained when sampling this material,
particularly if it is relocated and then sampled.

APPENDIXES

(Nonmandatory Information)

X1. ESTIMATION OF VARIANCES IN A NESTED ANALYSIS OF VARIANCE DESIGN

X1.1 Let Xijk be the kth measurement on the jth sample
from the ith container, k = 1, ... , r; j = 1, ... , m; i = 1, ... , n.
Let

Xij. 5 (
k 5 1

r

X ijk, X̄ij. 5
1
r Xij., (X1.1)

Xi.. 5 (
j 5 1

m

(
k 5 1

r

Xijk, X̄i.. 5
1

mr Xi.., and (X1.2)

X... 5 (
i 5 1

n

(
j 5 1

m

(
k 5 1

r

X ijk, X̄... 5
1

nmr X.... (X1.3)

X1.1.1 Then the mean squares may appear in a nested
analysis of variance (ANOVA) table as follows:
Source Mean Square Expected Value of

Mean Square
Containers MSb = [mr/(n − 1)]

· ((n
i = 1.(X̄i.. − X̄...)

2
[mrN/(N − 1)]sb

+ rss
2 + sa

2

Source Mean Square
Expected Value of

Mean Square
Samples MSs = [r/n(m − 1)]

·( n
i = 1(m

j = 1(X̄ij. − X̄i..)
2

rss
2 + sa

2

Analyses MSa = [1/nm(r − 1)]
·( n

i = 1( m
j = 1( r

k = 1(Xijk − X̄ij.)
2

sa
2

6 Stephens, F. B., et al, Methods for the Accountability of Uranium Dioxide,
NUREG-75/010, pp. 1–17, U. S. Nuclear Regulatory Commission, National
Technical Information Service, Springfield, VA, 1975.

7 Gutmacher, R. G., et al, Methods for the Accountability of Plutonium Dioxide,
USAEC Report WASH-1335, 1974.
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Note that factor [(N/(N − 1)] is due to the finite number of
containers. From the preceding table, it is seen that estimates of
the variances are as follows:

sa
2 5 MS a, (X1.4)

ss
2 5

1
r ~MSs 2 MSa!, and (X1.5)

sb
2 5

N 2 1
Nmr ~MSb 2 MSs!. (X1.6)

X1.1.2 In practice the latter two estimates could be negative
which would require modification of this estimation
procedure.4

X2. FINDING THE OPTIMAL VALUES OF r AND m FOR MINIMIZING “COST” SUBJECT TO THE
CONSTRAINT THAT s p̄2 = K (see 6.2)

X2.1 The total cost8 of sampling and analysis is not linear
(in n, m, and r) over the whole range of these variables.
However, in the neighborhood of the optimum, a linear
approximation is likely to be reasonable. Write the variable
part of the cost as

c 5 c b n 1 cs m8 1 ca r8 (X2.1)

where:
m8 = mn,
r8 = nmr and, as in 6.2.2,
cb = marginal cost of choosing one additional container

and preparing it for sampling,
cs = marginal cost of drawing an additional sample from a

container and preparing it for analysis, and
ca = marginal cost of an additional laboratory analysis.

Then applying the Lagrange multiplier technique,9 we con-
sider the expression

L 5 C 1 l~s p̄
2 2 K!, (X2.2)

where (see Eq 3, S 5.2 ):

s p̄
2 5

sb
2

n ·
N 2 n
N 2 1 1

ss
2

m8
1

sa
2

r8 (X2.3)

Taking partial derivatives with respect to r8, m8, n, and l,
setting them equal to zero, and solving for l gives

l 5
ca

sa
2r8

2 5
cs

ss
2m8

2 5
c b

sb
2

N 2 1
N n2 (X2.4)

From this it follows that the optimum r and m are given by

r 5
r8
m8

5
sa

s s
Scs

ca
D1 / 2

, and (X2.5)

m 5
m8

n 5
ss

sb
Scb

cs

N 2 1
N D1 / 2

(X2.6)

X3. EXAMPLE

X3.1 Find values of n, m, and r that meet a variance
constraint and minimize “cost” (6.2.4). Let N = 20; sb = 0.3;
ss = 0.1; and s a = 0.04. For a = 0.05, Z1−a/2 = 1.96 and if
D = 0.2, the target value for s p̄

2 is given by:

K 5 D2/Z1
2
2a/2 5

0.22

1.962 5 0.0104 (X3.1)

From Eq 3 in X2, r 5
0.04
0.1

cs
1/2

ca
,

which is close to 1 whenever 5 < cs⁄ca < 10. Since the cost of
sampling is unlikely to be more than ten times the cost of an
analysis and since r $ 1, r will usually be taken equal to one.

Likewise, m 5
0.1
0.3 ~c b/c s 3 19 / 20!1/2 , which is close

to 1 whenever 8 < cb⁄cs < 15. Since m $ 1, m will usually be
taken to be one. With r = m = 1,

sp̄
2 5

0.09
n

20 2 n
19 1

0.01
n 1

0.0016
n (X3.2)

5
0.10633

n 2 0.00473; (X3.3)

setting s p̄
2 = 0.0104, we obtain n = 7.03.

Thus the required variance is (approximately) achieved by
taking n = 7, m = r = 1.

X3.2 The previous paragraph shows that at least 7 contain-
ers out of the 20 must be selected, sampled once, and each
sample analyzed once to obtain the target value of 0.0104 for
s p̄

2 and therefore meet the specified confidence interval width
(2D) of 0.4. The seven containers must be selected at random,
that is, each of the 20 containers is assigned one of a sequence
of numbers and a random number table is used to select the
seven containers.

X3.3 Note that in this case, the variance term involving
only n, namely sb2⁄n N − n⁄N − 1 , is greater by itself than the
variance bound of 0.0104, unless n $ 7; and the other terms
contribute so little that for n = 7, the total variance is down to
the required value even for m = r = 1. Therefore, (a) we need
n $ 7 and (b) once n = 7, m and r do not need to be any larger
than their minimum value, so these optimum values are really
independent of the costs. This will not always be so, of course.

X3.4 Significant improvements in the variance s p̄
2 can

8 Cost need not be monetary.
9 Mendenhall, op cit, p. 355.
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sometimes be achieved with small additional cost by judi-
ciously choosing values for n, m,and r. This is apparent by
comparing the sets: n = 7, m = 2, r = 1 and n = 14, m = 1,
r = 1. In both situations 14 sampling operations and 14
analyses are required, that is, the total effort is about equal.

However, for the second set ( n = 14), the variance is 0.0029,
which is lower by a factor of three than for the first set (n = 7),
which has a variance of 0.0096. Therefore, the set with n = 14
is preferred, unless the cost of choosing additional containers is
quite large.

X4. FINDING THE OPTIMAL VALUES FOR r AND m—COMPOSITE SAMPLE CASE (7.4)

X4.1 Selection of m and r to minimize cost for a given
variance bound K is achieved by the Lagrange multiplier
technique that was used in Appendix X2. The function to be
considered is

L 5 c sNm 1 car 1 l Sss
2

Nm 1
s a

2

r 2 KD (X4.1)

Setting the partial derivatives with respect to m and r equal
to zero, and solving for l yields

l 5
csN

2m2

s s
2 5

car
2

sa
2

Then, using ss2⁄Nm + sa2⁄r = K , the values for m and r can
be given in symmetric form as

mN =cs

ss
5

r=ca

sa
5

= ca sa 1 =css s

K (X4.2)

X5. EXAMPLE

X5.1 Find values of m and r that meet a variance constraint
and minimize “cost”—composite sample case (7.5).

X5.1.1 A lot consists of N = 20 containers.
Let

ss
2 = 0.01

sa
2 = 0.0025

cs = 1 unit
ca = 16 units

X5.1.1.1 Suppose the variance of p̄ is not to exceed
k = 0.001. Then, from X4,

mN
0.1 5

4r
0.05 5

0.2 1 0.1
0.001 5 300, (X5.1)

so that

m 5
300 3 0.1

20 5 1.5 (X5.2)

r 5
300 3 0.05

4 5 3.75. (X5.3)

X5.1.1.2 The minimum cost is found to be 90 units. If m and
r are rounded up to 2 and 4, the actual cost is, of course,
1 3 20 3 2 + 16·4 = 104 units, and the actual variance is
0.000875. If instead of compositing, one sample were taken
from each container and analyzed, the cost would be 340 units,
and the variance would be 0.000625.
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