This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: C542 - 05 (Reapproved 2017)

Standard Specification for Lock-Strip Gaskets¹

This standard is issued under the fixed designation C542; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

1.1 This specification defines the required properties of lock-strip gaskets where resistance to sunlight, weathering, flame, oxidation, permanent deformation under load, and diminution of gripping pressure are prime essentials.

Note 1—The requirement of flame propagation may be waived by the architect or professional engineer when doing so does not conflict with local codes or ordinances.

1.2 This specification applies only to the "locking" compression type of gasket, sometimes referred to as the "zipper" type.

Note 2—Structural integrity and weather-tightness of the wall requires the sound design and installation of the entire system of which the gasket is only one component.

1.3 The values stated in SI units are to be regarded as the standard.

1.4 Test Method C1166, as referenced in this specification, should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.

1.5 The following precautionary caveat pertains only to the test method portion, Section 7, of this specification: *This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.*

1.6 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- C1166 Test Method for Flame Propagation of Dense and Cellular Elastomeric Gaskets and Accessories
- D15 Method of Compound and Sample Preparation for Physical Testing of Rubber Products (Withdrawn 1975)³
- D395 Test Methods for Rubber Property-Compression Set
- D412 Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension
- D573 Test Method for Rubber—Deterioration in an Air Oven
- D624 Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers
- D746 Test Method for Brittleness Temperature of Plastics and Elastomers by Impact
- D1149 Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment
- D2240 Test Method for Rubber Property—Durometer Hardness
- 2.2 Other Standard:

Rubber Handbook, Specifications for Rubber Products⁴

3. Materials and Manufacture

3.1 All materials and workmanship shall be in accordance with good commercial practice.

3.2 Gaskets shall be manufactured from an ozone-resistant compound and shall not be dependent for ozone resistance on

¹ This specification is under the jurisdiction of ASTM Committee C24 on Building Seals and Sealants and is the direct responsibility of Subcommittee C24.73 on Compression Seal and Lock Strip Gaskets.

Current edition approved June 1, 2017. Published June 2017. Originally approved in 1965. Last previous edition approved in 2011 as C542 – 05(2011). DOI: 10.1520/C0542-05R17.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from Rubber Manufacturers Association, 444 Madison Ave., New York, NY.

surface protection which can be removed by abrasion, detergents, or other means.

3.3 Gaskets shall be free of porosity, surface defects, and dimensional irregularities, particularly in the sealing area.

3.4 Unless otherwise specified, the material shall be black.

3.5 Lubricants used in installation, shall be as recommended by the gasket manufacturer.

4. Physical Properties

4.1 The physical properties of the gasket shall conform to the requirements specified in Table 1.

5. Dimensions and Permissible Variations

5.1 Minimum thickness of material between the locking strip cavity and the panel or rail channel shall be 2.5 mm (0.10 in.).

5.2 All cross-sectioned dimensions shall have an RMA Class 2 tolerance, as specified in Table 2 unless otherwise agreed by the purchaser and seller.

6. Sampling

6.1 When proof of conformance with this specification is required, the samples shall be taken from the finished product whenever possible.

6.2 When the thickness or shape of the finished product makes sampling, as specified in Section 6, impossible, the manufacturer shall, upon request of the purchaser at the time of ordering, furnish a sufficient number of test slabs or blocks prepared in accordance with Methods D15 for the proper performance of the required tests. The slabs or blocks shall be prepared from the compound of the same source production lot used in the gasket.

7. Test Methods

7.1 *Tensile Strength and Elongation*—Test in accordance with Test Methods D412. Determine percentage change in tensile strength and elongation after oven aging for 70 h at 100 \pm 1°C (212 \pm 2°F).

 TABLE 2 Cross-Sectional Tolerances Lock-Strip Gaskets

 RMA Class 2, Schedule I, Commercial ^A

Dimension, mm (in.)	Tolerance, plus or minus
Over 0 to 2.54 (0 to 0.10) incl.	0.32 (0.013)
Over 2.54 to 4.06 (0.10 to 0.16) incl.	0.40 (0.016)
Over 4.06 to 6.35 (0.16 to 0.25) incl.	0.50 (0.020)
Over 6.35 to 10.16 (0.25 to 0.40) incl.	0.63 (0.025)
Over 10.16 to 16.0 (0.40 to 0.63) incl.	0.80 (0.032)
Over 16.0 to 25.4 (0.63 to 1.00) incl.	1.00 (0.040)
Over 25.4 to40.64 (1.00 to 1.60) incl.	1.25 (0.050)
Over 40.64 to 63.5 (1.60 to 2.50) incl.	1.60 (0.063)

^ARubber Handbook, Specifications for Rubber Products, Table 12.

7.2 *Tear Resistance*—Test in accordance with Test Method D624 using Die C.

7.3 *Hardness*—Test in accordance with Test Method D2240, using a Type A durometer. If size or shape of the specimen precludes testing of the finished surface, make measurements on a squarely cut end or on a flat sliced or buffed surface. Determine change in hardness after oven aging for 70 h at 100 \pm 1°C (212 \pm 2°F).

7.4 Compression Set—Test in accordance with Test Methods D395, Method B. Hold the sample under test for 22 h at $100 \pm 1^{\circ}C$ (212 $\pm 2^{\circ}F$). Buffed specimen, taken from material 1.5 mm ($\frac{1}{16}$ in.) minimum thickness may be superimposed to a total thickness of 13.0 mm ($\frac{1}{2}$ in.).

7.5 *Brittleness Temperature*—Test in accordance with Test Method D746.

7.6 Ozone Resistance—Test in accordance with Test Method D1149 (Specimen A). Use an ozone concentration of 100 mPa, an exposure time of $40 \pm 2^{\circ}$ C ($104 \pm 3.6^{\circ}$ F), and a specimen elongation of 20 %.

7.7 *Heat Aging*—Test the effects of heat aging in accordance with Test Method D573.

7.8 Flame Propagation—Test Method C1166.

7.8.1 This test is designed to differentiate the flame propagation characteristics of candidate materials used in lock-strip

Property	Requirements	Test Method
Tensile strength, min ^A	14 MPa (2000 psi)	D412
Elongation at rupture, min, %	175	D412
Tear resistance, min	214 N/linear cm (120 lbf/linear in.)	D624 (Die C)
Hardness, durometer A ^A	75 ± 5	D2240
Compression set, max, %, 22 h at 100°C (212°F)	35	D395 (Method B)
Brittleness temperature, min	-40°C (-40°F)	D746
Ozone resistance, 100 mPa ozone		
100 h at 40°C (104°F), 20 % elongation	no cracks @ 7× magnification	D1149 (Specimen A)
Heat aging, 70 h at 100°C (212°F)		D573
Change in hardness, max	0 to + 10 Durometer points	
Loss in tensile strength, max, %	15	
Loss in elongation, max, %	40	
Flame propagation ^B	100 mm (4 in.), max.	C1166
Lip pressure ^C		
Extruded section, min	7 N/linear cm (4 lbf/linear in.)	as specified (see 7.9)
Corners, min	7 N/linear cm (4 lbf/linear in.)	

TABLE 1 Physical Requirements and Test Methods for Gaskets

^AIf a separate stock is used for the locking strip, it may have a hardness of 80 ± 5 durometer points, and a minimum tensile strength of 12.5 MPa (1800 psi). In all other respects, it must meet these specifications.

^BThis requirement may be waived (see Note 1).

^CIn the case of molded corners with integral sealing devices, the requirement for corner lip pressure may be lowered by the architect or professional engineer.

gaskets. It is a small-scale test which enables the specifier to exercise engineering prudence in the selection of materials. It should not be used to predict the performance of the tested material in an actual fire situation. It should not be used to predict fuel contribution, rate of flame spread, smoke generation, or the nature of the products of combustion. Test conditions are those most conducive to flame propagation and the method simulates the worst possible exposure condition. The specimen is mounted vertically. The igniting flame is hot; the fuel supply is unlimited; and the flame is not removed from the specimen throughout the test.

7.9 Lip Pressure:⁵

7.9.1 This test method determines the pressure exerted by the gasket on collateral material positioned within the gasket channel or channels. It simulates actual use conditions and provides a measurement of the force required to open the lips of the gasket channel to that distance representing the thickness of material for which the gasket is designed. In the case of double channel gaskets, this measurement is made with a solid material of the intended thickness in position in the channel opposite to that being tested. Thus these measurements reflect the forces to be encountered during application.

7.9.2 Apparatus:

7.9.2.1 The testing machine shall be a power-driven tension-testing machine of the movable cross-head type, equipped with adjustable cross-head speed and a suitable dynamometer and indicating or recording device for measuring the applied force within $\pm 2 \%$.

7.9.2.2 The grips to be used with the testing machine described in 7.9.2.1 shall be of a type similar to those shown in Fig. 1. They shall exert a uniform pressure across the gripping surface, increasing as the tension increases, so as to prevent uneven slipping.

7.9.2.3 The lip dividers used to separate the lips of the test specimen shall be made of stainless steel as shown in Fig. 2. Their length shall be at least equal to that of the test specimen.

7.9.2.4 The metal spacer to be used when testing doublechannel gaskets, as shown in Fig. 1, shall be the same length as the test specimen, the same thickness as the material the gasket is designed to hold, and at least 13 mm ($\frac{1}{2}$ in.) wider than the depth of the channel.

7.9.3 Test Specimen:

7.9.3.1 The extruded test specimen shall be a piece of the actual gasket at least 25 mm (1 in.) in length. A minimum of four specimens from each lot shall be tested.

7.9.4 Procedure:

7.9.4.1 Place the test specimen in the testing machine as shown in Fig. 1, ensuring that the locking strip is in place and that, if it is a double-channel-type gasket, the specified spacer is properly positioned in the channel opposite from that being tested. Provide means of supporting the test assembly so that when tension is applied to the channel lips, the assembly will remain in a horizontal position (Note 3). It is important to ensure that the lip dividers have a secure hold on the gasket lips

FIG. 1 Tension Tester for Lip Pressure

and that they are also securely held by the grips of the machine. Conduct the test at $23 \pm 1^{\circ}$ C (73.4 $\pm 1.8^{\circ}$ F).

Note 3—When testing single channel gaskets, the spacers obviously cannot be used. However, some means must be provided to hold the test specimen in a horizontal position during testing.

7.9.4.2 Separate the lips of the gasket channel at a uniform rate of 5.1 mm (0.20 in.)/min, until the distance between the lips is equal to the minimum thickness of the material they are designed to hold.

7.9.4.3 When the lips have been separated the specified distance, stop the testing machine and record the amount of force in lbf (or kgf) required to produce this opening.

7.9.4.4 Repeat 7.9.4.1 - 7.9.4.3 until all of the extruded channels of a minimum of four specimens of each type have been tested.

7.9.4.5 Calculate the lip pressure of each channel tested as follows:

 $^{^{\}rm 5}$ Supporting data are available from ASTM Headquarters. Request RR:C24-1009.

FIG. 2 Lip Dividers

Lip pressure, N/linear cm (lbf/linear in.) = F/L (1)

where:

- F = force required to open the lips the specified distance, N (lbf), and
- L =length of test specimen in cm (in.), to the nearest 0.2 cm (0.1 in.).

7.9.5 *Report*—The following test information shall be reported:

7.9.5.1 Date of test,

7.9.5.2 Type of testing machine used,

7.9.5.3 Description or numbers of the lot or lots tested,

7.9.5.4 The width of the filler strip to the nearest 0.025 mm (0.001 in.), and

7.9.5.5 Lip pressure for each gasket channel tested.

8. Keywords

8.1 compression; elastomer; elastomeric; gasket; locking; lock-strip; preformed; seal; strip; zipper

(2017) C542 – 05 (2017)

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/