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Standard Practice for
Size Scaling of Tensile Strengths Using Weibull Statistics
for Advanced Ceramics1

This standard is issued under the fixed designation C1683; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This standard practice provides methodology to convert
fracture strength parameters (primarily the mean strength and
the Weibull characteristic strength) estimated from data ob-
tained with one test geometry to strength parameters represent-
ing other test geometries. This practice addresses uniaxial
strength data as well as some biaxial strength data. It may also
be used for more complex geometries proved that the effective
areas and effective volumes can be estimated. It is for the
evaluation of Weibull probability distribution parameters for
advanced ceramics that fail in a brittle fashion. Fig. 1 shows the
typical variation of strength with size. The larger the specimen
or component, the weaker it is likely to be.

1.2 As noted in Practice C1239, the failure strength of
advanced ceramics is treated as a continuous random variable.
A number of functions may be used to characterize the strength
distribution of brittle ceramics, but the Weibull distribution is
the most appropriate especially since it permits strength scaling
for the size of specimens or component. Typically, a number of
test specimens with well-defined geometry are broken under
well-defined loading conditions. The force at which each test
specimen fails is recorded and fracture strength calculated. The
strength values are used to obtain Weibull parameter estimates
associated with the underlying population distribution.

1.3 This standard is restricted to the assumption that the
distribution underlying the failure strengths is the two-
parameter Weibull distribution with size scaling. The practice
also assumes that the flaw population is stable with time and
that no slow crack growth occurs.

1.4 This practice includes the following topics:
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1.5 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.5.1 The values stated in SI units are in accordance with
IEEE/ASTM SI 10.

1.6 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

1 This practice is under the jurisdiction of ASTM Committee C28 on Advanced
Ceramics and is the direct responsibility of Subcommittee C28.01 on Mechanical
Properties and Performance.
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2. Referenced Documents

2.1 ASTM Standards:2

C1145 Terminology of Advanced Ceramics
C1161 Test Method for Flexural Strength of Advanced

Ceramics at Ambient Temperature
C1211 Test Method for Flexural Strength of Advanced

Ceramics at Elevated Temperatures
C1239 Practice for Reporting Uniaxial Strength Data and

Estimating Weibull Distribution Parameters for Advanced
Ceramics

C1273 Test Method for Tensile Strength of Monolithic
Advanced Ceramics at Ambient Temperatures

C1322 Practice for Fractography and Characterization of
Fracture Origins in Advanced Ceramics

C1323 Test Method for Ultimate Strength of Advanced
Ceramics with Diametrally Compressed C-Ring Speci-
mens at Ambient Temperature

C1366 Test Method for Tensile Strength of Monolithic
Advanced Ceramics at Elevated Temperatures

C1499 Test Method for Monotonic Equibiaxial Flexural
Strength of Advanced Ceramics at Ambient Temperature

E6 Terminology Relating to Methods of Mechanical Testing
E456 Terminology Relating to Quality and Statistics

3. Terminology

3.1 Unless otherwise noted, the Weibull parameter estima-
tion terms and equations found in Practice C1239 shall be used.

3.2 For definitions of other statistical terms, terms related to
mechanical testing, and terms related to advanced ceramics
used in this guide, refer to Terminologies E6, E456, and C1145,
or to appropriate textbooks on statistics (1-4).3

3.3 Nomenclature:
AT = gage area of a uniaxial tensile test specimen
AB4 = gage area of a four-point flexure test specimen
AB3 = gage area of a three-point flexure test specimen
APOR = gage area of a pressure-on-ring test specimen
AROR = gage area of a ring-on-ring test specimen
ACR = gage area of a C-ring test specimen
b = thickness of a C-ring
b = width of a flexure test specimen
d = thickness of a flexure test specimen
D = diameter of a round flexure test specimen
D = overall diameter of a ring-on-ring disk test specimen
DL = loading (inner) ring diameter, ring-on-ring disk speci-

men
DS = support ring diameter, ring-on-ring or pressure-on-ring

disk specimen
h = thickness of pressure-on-ring or ring-on-ring disk test

specimen
k = load factor
Lgs = length of the gage section in a uniaxial tensile test

specimen
Li4 = length of the inner span for a four-point flexure test

specimen
Lo4 = length of the outer span for a four-point flexure test

specimen
Lo3 = length of the outer span for a three-point flexure test

specimen
m = Weibull modulus
Pf = probability of failure
ri = inner radius of a C-ring
ro = outer radius of a C-ring
t = thickness of a C-ring
Rs = radius of the support ring for pressure-on-ring
Rd = radius of the pressure-on-ring disk specimen
SE = effective surface area of a test specimen
VE = effective volume of a test specimen
VPOR = gage volume of a pressure-on-ring test specimen
VROR = gage volume of a ring-on-ring disk test specimen
VT = gage volume of tensile test specimen
VB4 = gage volume of a four-point flexure test specimen
VB3 = gage volume of a three-point flexure test specimen
VCR = gage volume of a C-ring test specimen
σ = uniaxial tensile stress
σmax = maximum tensile stress in a test specimen at fracture
σ1, σ2, σ3 = principal stresses (tensile) at the integration

points in any finite element
σ0 = Weibull material scale parameter (strength relative to

unit size)
σθ = Weibull characteristic strength
σθT = Weibull characteristic strength of a uniaxial tensile test

specimen
σθB4 = Weibull characteristic strength for a four-point flexure

test specimen
σθB3 = Weibull characteristic strength for a three-point flex-

ure test specimen
σθCR = Weibull characteristic strength for a C-ring test speci-

men

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.

FIG. 1 Strength Scales with Size
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σθPOR = Weibull characteristic strength for a pressure-on-
ring test specimen

σθROR = Weibull characteristic strength for a ring-on-ring
test specimen

σ* = an arbitrary, assumed estimate of the Weibull material
scale factor

σ̄ = mean strength
σ̄T = mean strength for a uniaxial tensile test specimen
σ̄B4 = mean strength for a four-point flexure test specimen
σ̄B3 = mean strength for a three-point flexure test specimen
σ̄CR = mean strength for a C-ring test specimen
σ̄POR = mean strength for a pressure-on-ring test specimen
σ̄ROR = mean strength for a ring-on-ring test specimen
θ = angle in a C-ring test specimen
ν = Poisson’s ratio

4. Summary of Practice

4.1 The observed strength values of advanced ceramics are
dependent on test specimen size, geometry and stress state.
This standard practice enables the user to convert tensile
strength parameters obtained from one test geometry to that of
another, on the basis of assumptions listed in 5.5. Using the
existing fracture strength data, estimates of the Weibull char-
acteristic strength σθ, and the Weibull modulus m, are calcu-
lated in accordance with related Practice C1239 for the original
test geometry. This practice uses the test specimen and loading
sizes and geometries, and σθ and m to calculate the Weibull
material scale parameter σ0. The Weibull characteristic strength
σθ, the mean strength σ̄, or the Weibull material scale factor σ0,
may be scaled to alternative test specimen geometries. Finally,
a report citing the original test specimen geometry and strength
parameters, as well as the size scaled Weibull strength param-
eters is prepared.

5. Significance and Use

5.1 Advanced ceramics usually display a linear stress-strain
behavior to failure. Lack of ductility combined with flaws that
have various sizes and orientations typically leads to large
scatter in failure strength. Strength is not a deterministic
property but instead reflects the intrinsic fracture toughness and
a distribution (size and orientation) of flaws present in the
material. This standard is applicable to brittle monolithic
ceramics which fail as a result of catastrophic propagation of
flaws. Possible rising R-curve effects are also not considered,
but are inherently incorporated into the strength measurements.

5.2 Two- and three-parameter formulations exist for the
Weibull distribution. This standard is restricted to the two-
parameter formulation.

5.3 Tensile and flexural test specimens are the most com-
monly used test configurations for advanced ceramics. Ring-
on-ring and pressure-on-ring test specimens which have multi-
axial states of stress are also included. Closed-form solutions
for the effective volume and effective surfaces and the Weibull
material scale factor are included for these configurations. This
practice also incorporates size scaling methods for C-ring test
specimens for which numerical approaches are necessary. A

generic approach for arbitrary shaped test specimens or com-
ponents that utilizes finite element analyses is presented in
Annex A3.

5.4 The fracture origins of failed test specimens can be
determined using fractographic analysis. The spatial distribu-
tion of these strength controlling flaws can be over a volume or
an area (as in the case of surface flaws). This standard allows
for the conversion of strength parameters associated with either
type of spatial distribution. Length scaling for strength con-
trolling flaws located along edges of a test specimen is not
covered in this practice.

5.5 The scaling of strength with size in accordance with the
Weibull model is based on several key assumptions (5). It is
assumed that the same specific flaw type controls strength in
the various specimen configurations. It is assumed that the
material is uniform, homogeneous, and isotropic. If the mate-
rial is a composite, it is assumed that the composite phases are
sufficiently small that the structure behaves on an engineering
scale as a homogeneous and isotropic body. The composite
must contain a sufficient quantity of uniformly-distributed,
randomly-oriented, reinforcing elements such that the material
is effectively homogeneous. Whisker-toughened ceramic com-
posites may be representative of this type of material. This
practice is also applicable to composite ceramics that do not
exhibit any appreciable bilinear or nonlinear deformation
behavior. This standard and the conventional Weibull strength
scaling with size may not be suitable for continuous fiber-
reinforced composite ceramics. The material is assumed to
fracture in a brittle fashion, a consequence of stress causing
catastrophic propagation of flaws. The material is assumed to
be consistent (batch to batch, day to day, etc.). It is assumed
that the strength distribution follows a Weibull two parameter
distribution. It is assumed that each test piece has a statistically
significant number of flaws and that they are randomly
distributed. It is assumed that the flaws are small relative to the
specimen cross section size. If multiple flaw types are present
and control strength, then strengths may scale differently for
each flaw type. Consult Practice C1239 and the example in 9.1
for further guidance on how to apply censored statistics in such
cases. It is also assumed that the specimen stress state and the
maximum stress are accurately determined. It is assumed that
the actual data from a set of fractured specimens are accurate
and precise. (See Terminology E456 for definitions of the latter
two terms.) For this reason, this standard frequently references
other ASTM standard test methods and practices which are
known to be reliable in this respect.

5.6 Even if test data has been accurately and precisely
measured, it should be recognized that the Weibull parameters
determined from test data are in fact estimates. The estimates
can vary from the actual (population) material strength param-
eters. Consult Practice C1239 for further guidance on the
confidence bounds of Weibull parameter estimates based on
test data for a finite sample size of test fractures.

5.7 When correlating strength parameters from test data
from one specimen geometry to a second, the accuracy of the
correlation depends upon whether the assumptions listed in 5.5
are met. In addition, statistical sampling effects as discussed in
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5.6 may also contribute to variations between computed and
observed strength-size scaling trends.

5.8 There are practical limits to Weibull strength scaling that
should be considered. For example, it is implicitly assumed in
the Weibull model that flaws are small relative to the specimen
size. Pores that are 50 µm (0.050 mm) in diameter are
volume-distributed flaws in tension or flexural strength speci-
mens with 5 mm or greater cross section sizes. The same may
not be true if the cross section size is only 100 µm.

6. Probability of Failure Relationships

6.1 General:
6.1.1 The random variable representing uniaxial tensile

strength of an advanced ceramic will assume only positive
values, and the distribution is usually asymmetric about the
mean. These characteristics limit the use of the normal distri-
bution (as well as others) and point to the use of the Weibull
and similar skewed distributions. Fig. 2 shows the shape of the
Weibull distribution as compared to a normal distribution. If
the random variable representing uniaxial tensile strength of an
advanced ceramic is characterized by a two-parameter Weibull
distribution (see Practice C1239 for a detailed discussion
regarding the mathematical description of the Weibull
distribution), then the failure probability for a test specimen
fabricated from such an advanced ceramic is given by the
cumulative distribution function:

Pf 5 1 2 expF2S σmax

σθ
D mG σmax.0 (1)

Pf 5 0 σmax # 0 (2)

where:
Pf = the probability of failure,
σmax = maximum tensile stress in a test specimen at failure,
σθ = the Weibull characteristic strength (corresponding to

a Pf = 0.632 or 63.2 %), and
m = Weibull modulus.

6.1.2 As noted earlier, the Weibull characteristic strength is
dependent on the test specimen and will change with test
specimen geometry as well as the stress state. The Weibull
characteristic strength has units of stress, and should be
reported using units of MPa or GPa. As was noted in the
previous section, strength controlling flaws can be spatially
distributed over the volume or the surface (area) of a test
specimen. If the strength controlling flaws are volume-
distributed, the volume characteristic strength shall be desig-
nated as (σθ)V, and the volume Weibull modulus shall be
designated mV. If the strength controlling flaws are surface-
distributed, the area characteristic strength shall be designated
as (σθ)A, and the area Weibull modulus shall be designated mA.
Fractographic Practice C1322 should be used to determine
whether flaws are surface- or volume-distributed. It should be
borne in mind that a flaw located at the surface of a test
specimen does not necessarily mean it was a surface-
distributed flaw. It may be a surface-distributed flaw, or it may
be a volume-distributed flaw which by chance is located at the
surface.

6.2 Volume Distribution:
6.2.1 An alternative expression for the probability of failure

is given by:

Pf 5 1 2 expF *
V
S σ

~σ0!V
D mV

dVG (3)

Pf 5 0 σ # 0 (4)

6.2.1.1 The integration within the exponential function is
performed over all tensile stressed regions of the test specimen
volume if the strength-controlling flaws are randomly distrib-
uted through the volume of the material. mV is the Weibull
modulus associated with strength controlling flaws distributed
through the volume. (σ0)V is the Weibull material scale
parameter and can be described as the Weibull characteristic
strength of a hypothetical test specimen with unit volume
loaded in uniform uniaxial tension. The Weibull material scale

FIG. 2 The Probability Density Function Graphs for Weibull and Gaussian (Normal) Strength Distributions
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parameter has units of stress·(volume)1/mV and should be
reported using units of MPa·(m)3/ mV or GPa·(m)3/mV. Eq 1 and
Eq 3 can be equated for a given test specimen geometry, which
yields an expression relating (σ0)V and (σθ)V for that test
specimen geometry. Expressions for specific test specimen
geometries are presented in Sections 7 and 8.

6.2.2 For the general case where stress varies with position
within a test specimen are volume-distributed, the integration
given by Eq 3 can be carried out to yield the following
expression:

Pf 5 1 2 expF2kVS σmax

~σ0!V
D mVG (5)

6.2.2.1 Here k is a dimensionless factor and has been
identified as a “load factor” (e.g., Johnson and Tucker (6)).
σmax is the maximum stress in the test specimen at failure.
Thus, in general:

~σ0!V
5 ~σθ!V ~kV!1/mV 5 ~σθ!V

VE
1/mV (6)

when the strength controlling flaws are spatially distributed
through the volume. Inclusions are an example of such flaws.
For all loading geometries except uniaxial tension (see 7.1), k
is a function of the Weibull modulus m and the test geometry.
The load factor is evaluated numerically and is always positive
and usually less than unity. Notice that the Weibull modulus in
this instance, mV, is associated with volume flaws.

6.2.3 The product k times V is often termed an “effective
volume, VE,” in the ceramic literature. The effective volume is
the size of a hypothetical tension test specimen that, when
stressed to the same level as the test specimen in question, has
the same probability of fracture. Expressions for the effective
volume of specific test specimen geometries are given Sections
7 and 8. Noting that (σ0)V is a material parameter (that is in
principle independent of the test specimen type), then:

~σ0!V
5 ~σθ ,1!V ~k1V1!1/mV 5 ~σθ ,2!V ~k2V2!1/mV (7)

where the subscripts 1 and 2 denote two different geometries
of test specimens fabricated from the same material. This leads
to the following relationship:

~σθ ,1!V

~σθ ,2!V

5
~k2V2!1/mV

~k1V1!1/mV
5 S k2V2

k1V1
D 1/mV

5 S VE ,2

VE ,1
D 1/mV

(8)

6.2.3.1 It is implied that the same type of volume-
distributed flaws control strength in each geometry. Eq 8 means
that knowledge of the effective volume of both specimen types
allows the computation of one characteristic strength value
based on the characteristic strength value of the other specimen
geometry. Test specimens with stress gradients have effective
volumes less than the size of the test piece. In other words,
k < 1. For example, flexural strength specimens expose only a
small amount of material to the maximum stress and k << 1.
The flexure specimen is “equivalent” to a much smaller test
piece that is pulled in uniaxial direct tension. The k factors
depend upon the geometry and loading configuration and they
usually are very sensitive to the Weibull modulus.

6.3 Surface Distribution:
6.3.1 If the strength controlling flaws are distributed along

the surface of the test specimens, then the following expres-
sion:

Pf 5 1 2 expF *
A
S σ

~σ0!A
D mA

dAG (9)

Pf 5 0 σ # 0 (10)

shall be utilized for the probability of failure. The integration
within the exponential is performed over all tensile regions of
the test specimen surface. The integration is sometimes carried
out over the area of an effective gage section instead of over the
total area of the test specimen. In Eq 9, mA is the Weibull
modulus associated with surface flaws. (σ0)A is the Weibull
material scale parameter and can be described as the Weibull
characteristic strength of a test specimen with unit surface area
loaded in uniform uniaxial tension. Here the Weibull material
scale parameter should be reported using units of MPa·(m)2/mA

or GPa·(m)2/mA. For a given test specimen geometry, Eq 1 and
Eq 9 can be equated, which yields an expression relating (σ0)A

and (σθ)A. Expressions for specific test specimen geometries
are presented in Sections 7 and 8.

6.3.2 For the general case where stress varies within a test
specimen and the flaws are surface distributed, the integration
given by Eq 3 can be carried out for the surface areas of the
specimens that are stressed in tension. This yields the follow-
ing expression:

Pf 5 1 2 expF2kAS σmax

~σ0!A
D mAG (11)

6.3.2.1 Again, k is a dimensionless factor and has been
identified as a “load factor” (e.g., Johnson and Tucker (6)). For
all loading geometries except uniaxial tension (see 7.1), k is a
function of the Weibull modulus m and the test geometry.
Notice that the Weibull modulus in this instance, mA, is
associated with surface flaws. σmax is the maximum stress in
the test specimen at failure. Thus, in general:

~σ0!A
5 ~σθ!A ~kA!1/mA 5 ~σθ!A

SE
1/mA (12)

when the strength controlling flaws are spatially distributed
along the surfaces of the test specimens. Surface grinding
cracks are an example of such.

NOTE 1—The conventional nomenclature in the literature is used here.
Areas are denoted by symbols with the letter A. The effective area or
effective surface is commonly denoted by the letter S.

6.3.3 For all loading geometries except for uniaxial tension
(see 7.2), k is a function of the Weibull modulus m. The load
factor, k, is evaluated numerically and is always positive and
usually less than unity. In the ceramics literature, the product k
times A is often termed an “effective area” or “effective
surface, SE.” The effective surface is the size of a hypothetical
uniaxial tensile test specimen that, when stressed to the same
level as the test specimen in question, has the same probability
of fracture. Expressions for the effective area of specific test
specimen geometries are given in Sections 7 and 8. Noting that
(σ0)A is a material parameter (that is in principle independent of
the test specimen type), then:

~σθ ,1!A

~σθ ,2!A

5
~k2A2!1/mA

~k1A1!1/mA
5 S k2A2

k1A1
D 1/mA

5 S SE ,2

SE ,1
D 1/mA

(13)

where the subscripts 1 and 2 denote two different geometries
for test specimens fabricated from the same material. It is
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implied that the same type of surface-distributed flaws control
strength in each geometry. Eq 13 means that knowledge of the
effective surfaces of both specimen types allows the computa-
tion of one characteristic strength value based on the charac-
teristic strength value of the other specimen geometry. Test
specimens with stress gradients have effective surface areas
that are less than the size of the test piece and k < 1. The flexure
specimen is “equivalent” to a smaller test piece that is pulled in
uniaxial direct tension. The k factors depend upon the geom-
etry and loading configuration and they usually are very
sensitive to the Weibull modulus.

6.4 Mixed Distributions:
6.4.1 Strength scaling relations such as Eq 8 and Eq 13 shall

not be used to scale strengths where the flaw type in one test
specimen type is surface-distributed (e.g., machining cracks)
and the flaw type in the second specimen type is volume-
distributed (e.g. inclusions), or vice versa. The scaling equa-
tions are only suited for cases where the same flaw type is
active in the two specimen types. For example, if inclusions
control strength in specimen type 1, then the scaling may be
suitable if inclusions control strength in specimen type 2. If
inclusions control strength in specimen type 1, but pores
control strength in specimen type 2, then the correlation will
probably not be accurate.

6.5 What May be Scaled:
6.5.1 Eq 8 and Eq 13 are for scaling the Weibull character-

istic strengths, σθ, of two different type specimens. The
characteristic strengths correspond to a probability of failure,
Pf, of 63.2 % for each test specimen set. The equations may
also be used to scale strengths at other probabilities of failure,
Pf. For example, the median strength (Pf = 50 %) of one
specimen type can be compared to the median strength of
another size or type specimen. Similarly, the strengths at a 1 %
probability of failure may be scaled.

NOTE 2—These equations may also be used to scale mean strengths,
since they closely approximate the median strengths.

NOTE 3—Scaling predictions or correlations at the 1 % probabilities of
failure will be subject to considerable uncertainty, since the confidence
intervals for such estimates are much broader than those for the
characteristic, median, or mean strengths. It is beyond the scope of this
Practice to quantify the confidence intervals for the scaled strengths.

6.6 Edge-Distributed:
6.6.1 Weibull edge or length scaling is not covered in this

practice. In principle, the same concepts and similar mathemat-
ics could be used to scale strengths for edge-distributed flaws,
however edge-distributed flaws are often very specific to a
particular test specimen type. Edge-distributed flaws are those
which form as a result of some process such as chipping,
cutting, or grinding and are only found at an edge. Volume or

surface type flaws such as pores, inclusions, or normal grinding
cracks, which by chance are located at a test specimen edge,
are not considered edge-distributed flaws. If test specimens
have origins that are by nature edge-distributed flaws, the data
should be censored as discussed in Practice C1322 in order to
properly analyze the surface- and volume distribution param-
eters.

7. Test Specimens with Uniaxial Stress States—Effective
Volume and Area Relationships

7.1 Uniaxial Tensile Test Specimens:
7.1.1 For ambient test temperatures uniaxial tensile test

specimens such as shown in Fig. 3 should be tested in
accordance with Practice C1273. For elevated test tempera-
tures tensile test specimens shall be tested in accordance with
Test Method C1366. Various accepted test specimen geom-
etries are presented within these standards. In general, the
volume of material subjected to a uniform tensile stress for a
single uniaxially-loaded tensile test specimen may be many
times that of a single flexural test specimen. Strength values
obtained using the different recommended tensile test speci-
mens (Practice C1273 or Test Method C1366) with different
volumes (areas) of material will be different due to these
volume (area) differences. Characteristic or mean strength
values can be scaled to any gage section and to other test
configurations using the volume and area relationships pre-
sented in this section, which are applicable to the test specimen
geometries presented in Practice C1273 and Test Method
C1366.

7.1.2 Volume Distribution—The relationship between the
characteristic strength (σθT)V and the Weibull material scale
parameter (σ0)V for a tension test specimen with volume flaws
is:

~σ0!V
5 ~σθT!V

VT
1/mV (14)

7.1.2.1 This expression is obtained by setting Eq 1 equal to
Eq 3, after the integration in Eq 3 has been performed over the
gage section volume of the uniaxial tensile test specimen. Thus
VT is the volume of the gage section. Comparison of Eq 14 with
Eq 6 yields the following formulation for the effective volume:

VE 5 kV 5 VT (15)

7.1.2.2 Thus, for uniaxial tension, k is equal to unity. An
expression (7) similar to Eq 14 can be derived relating the
material scale parameter to the average uniaxial tensile
strength, that is:

~σ0!V
5

~σ̄T!V
VT

1/mV

ΓF 1
mV

11G (16)

NOTE 1—
Lgs is the length of the gage section.

FIG. 3 Example of a Round Tension Strength Specimen
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NOTE 4—Ideally the tapered regions at the end of a gage section should
be included in the volume, but their contribution to the effective volume
usually is relatively small compared to the gage section. They therefore
are omitted here for simplicity.

NOTE 5—The gamma function in the denominator may be found in any
handbook on mathematical functions.

7.1.2.3 The procedure in 7.1.2 is an approximation that does
not include the tapered portions of the test piece on either side
of the gage section. Hence, k and VE are underestimated by a
small amount. Better estimates of k and the effective volume
should be obtained by numerical analysis as discussed in
Annex A3.

7.1.3 Surface Distribution—The following equation defines
the relationship between the characteristic strength and the
material scale parameter for a tension test specimen with
surface flaws is:

~σ0!A
5 ~σθT!A

AT
1/mA (17)

7.1.3.1 This expression is obtained by Eq 1 and Eq 9, after
the integration in Eq 9 has been performed over the gage
section area of the uniaxial tensile test specimen. AT is the area
of the gage section. Comparison of Eq 17 with Eq 12 yields the
following formulation for the effective area:

SE 5 kA 5 AT (18)

7.1.3.2 Thus for uniaxial tension k is equal to unity. An
expression similar to Eq 17 can be derived relating the material
scale parameter to the average uniaxial tensile strength, that is:

~σ0!A
5

~σ̄T!A
AT

1/mA

ΓF 1
mA

11G (19)

NOTE 6—Ideally the tapered regions at the end of a gage section should
be included in the area, but their contribution to the effective area usually
is relatively small compared to the gage section. They therefore are
omitted here for simplicity.

7.1.3.3 The procedure in 7.1.3 is an approximation and does
not include the portions of the test piece on either side of the
gage section. Hence, k and SE are underestimated by a small
amount. Improved estimates of k and SE should be obtained by
numerical analysis as discussed in Annex A3.

7.1.4 No adjustments are made to the volume or surface
integrals for the presence of chamfers or edge rounding in
square or rectangular cross section tension specimens. This is

an acceptable approximation provided that the chamfer and
rounding sizes are small. See section 6.6 if origins are on the
specimen edges.

7.2 Rectangular Flexure Test Specimens:

7.2.1 For ambient test temperatures, flexure test specimens
with rectangular cross sections such as shown in Fig. 4 should
be tested in three- or four-point flexure in accordance with Test
Method C1161. For elevated test temperatures, flexure test
specimens should be tested in accordance with Test Method
C1211. Since volume and/or surface effects will affect strength
values, then the strength values obtained using bend bars with
different sizes and loading configurations (e.g., three-point,
1⁄4-point four-point, or 1⁄3-point 4-point) will vary. Character-
istic or mean strength values can be scaled to other test
specimen geometries using the volume and area relationships
presented in this section.

7.2.2 Volume Distribution—For flexural test specimen
geometries, the strength relationships become more complex
due to the nonuniform stress state (8, 9). The stress state is
primarily uniaxial, however. For four-point flexure test
specimens, the gage volume within the outer supporting points
VB4 is given by:

VB4 5 bdLo4 (20)

where b and d are dimensions identified in Fig. 4. One half
of this gage volume is stressed in tension. The relationship
between the characteristic strength (σθB4)V and the Weibull
material scale parameter (σ0)V for a rectangular flexure speci-
men with volume flaws is (8, 9):

~σ0!V
5 ~σθB4!V H F S Li4

Lo4
D ~mV!11G F 1

2~mV11!2G VB4J 1/mV

(21)

which relates the Weibull characteristic strength (σθ)V to the
Weibull material scale parameter (σ0)V

where:
Li4 = length of inner span identified in Fig. 4, and
Lo4 = length of outer span identified in Fig. 4.

NOTE 1—
The four-point configuration is shown.

FIG. 4 Typical Flexural Strength Test Specimen Geometry
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7.2.2.1 Eq 21 is obtained by setting Eq 1 equal to Eq 3, after
the integration in Eq 3 has been performed over the gage
section volume of the flexure test specimen. Comparing Eq 21
with Eq 6 yields the following formulation for the effective
volume:

VE 5 kVB4 5 F S Li4

Lo4
D ~mV!11G F 1

2~mV11!2G VB4 (22)

7.2.2.2 For specific flexural strength configurations the
above formula simplifies considerably. For example, for 1⁄4-
point, 4-point loading as specified in Test Methods C1161 and
C1211:

VE 5 kVB4 5
~mV12!

4~mV11!2 VB4 (23)

7.2.2.3 For the general four-point configuration, the rela-
tionship between the mean flexure strength (σ̄B4) and the
Weibull material scale parameter (σ0)V is:

~σ0!V
5

~σ̄B4!V H F S Li4

Lo4
D ~mV!11G F 1

2~mV11!2G VBJ 1/mV

ΓS 1
mV

11D (24)

7.2.3 Surface Distribution—The total gage area within the
outer supporting points AB4 for four-point loading is given by:

AB4 5 2Lo4 ~b1d! (25)

7.2.3.1 Only half of this area is stressed in tension. The
relationship between the characteristic strength (σθB4)A and the
Weibull material scale parameter (σ0)A for rectangular flexure
specimens with surface flaws is:

~σ0!A
5 ~σθB4!AH Lo4F d

~mA11!
1bG F S Li4

Lo4
D mA

11G F 1

~mA11! G J
1/mA

(26)

7.2.3.2 This expression is obtained by Eq 1 and Eq 9 after
the integration in Eq 9 has been performed over the gage
section area of the flexure specimen. This integration includes
both the bottom tensile surface as well as the portions of the
side surfaces that are stressed in tension. Comparing Eq 26
with Eq 12 yields the following formulation for the effective
area:

SE 5 kAB4 5 Lo4F d

~mA11!
1bG F S Li4

Lo4
D mA11G F 1

~mA11! G
(27)

7.2.3.3 The average flexure strength (σ̄B4 )A is related to the
Weibull material scale parameter (σ0)A:

~σ0!A
5

~σ̄B4!AH Lo4F d
mA11

1bG F S Li4

Lo4
D mA11G F 1

mA11 G J
1/mA

ΓS 1
mA

11D
(28)

7.2.4 Three-Point Flexure—The Weibull material scale
parameter, and the effective volumes and effective areas of
rectangular cross sectional beams in three-point bending can be
obtained by simply setting Li4 = 0, and using Lo3 in place of Lo4

in Eq 21, Eq 22, Eq 24, Eq 27, and Eq 28.
7.2.5 Stress scaling ratios for flexural strength specimens of

various types usually depend upon whether the flaws are
surface- or volume-distributed. An important exception is for
flexural strength test specimens of identical cross section size
(9). The strength scaling between any two flexural loadings are
the same, irrespective of whether volume or surface scaling is
used. For example, the relationship of the characteristic
strengths of three-point and four-point flexure strengths for
either volume or surface flaws is:

σθB3

σθB4

5 S Lo4

Lo3
D 1/m S m12

2 D 1/m

(29)

7.2.5.1 This is true only if both sets break from volume
flaws (or alternatively both sets from surface flaws). The mean
strengths also scale according to Eq 29.

7.2.6 No adjustments are made to the volume or surface
integrals for the presence of chamfers or edge rounding in
flexure specimen. This is an acceptable approximation pro-
vided that the chamfer and rounding sizes are small. See
section 6.6 if origins are on the specimen edges.

7.3 Round Flexural Strength Specimens:
7.3.1 Round rods such as shown in Fig. 5 may be tested by

any flexural testing procedure provided that it produces accu-
rate and precise strength data. The strength values obtained
using round rods with different sizes and loading configura-
tions (e.g., three-point, 1⁄4-point four-point, or 1⁄3-point 4-point)

FIG. 5 Round Flexural Strength Test Geometry
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will vary. Characteristic or mean strength values can be scaled
to other test specimen geometries using the volume and area
relationships presented in this section.

7.3.2 Volume Distribution—For round flexure test
specimens, the gage volume within the outer supporting points
VB is given by:

VB4 5 πD2Lo4/4 (30)

where dimensions are identified in Fig. 5. Only half of this
gage volume is stressed in tension. The relationship between
the characteristic strength (σθB4)V and the Weibull material
scale parameter (σ0)V for round four-point flexure specimens
with volume flaws is (10):

~σ0!V
5 ~σθB4!VH F S Li4

Lo4
D ~mV!11G F 1

mV11 G S G
π D VB4J 1/mV

(31)

where:
Li4 = length of inner span identified in Fig. 4,
Lo4 = length of outer span identified in Fig. 4, and
G = a combined gamma function given by:

G 5 1 ΓS m11
2 D ΓS 3

2 D
ΓS m14

2 D 2 (32)

7.3.2.1 G is shown in Annex A1 for typical values of
Weibull moduli. Eq 31 is obtained by setting Eq 1 equal to Eq
3, after the integration in Eq 3 has been performed over the
gage section volume of the round flexure specimen. Comparing
Eq 31 with Eq 6 yields the following formulation for the
effective volume:

VE 5 kVB4 5 F S Li4

Lo4
D ~mV!11G F 1

~mV11! G S G
π D VB4 (33)

7.3.2.2 For specific flexural strength configurations the
above formula simplifies considerably. For example for 1⁄4-
point, 4-point loading:

VE 5 kVB4 5
~mV12!

2~mV11! S G
π D VB4 (34)

7.3.2.3 For the general case of 4-point loading, the relation-
ship between the mean flexure strength (σ̄B4) and the Weibull
material scale parameter (σ0)V is:

~σ0!V
5

~σ̄B4!V H F S Li4

Lo4
D ~mV!11G F 1

~mV11! G VB4J 1/mV

ΓS 1
mV

11D (35)

7.3.3 Surface Distribution—The total gage area within the
outer supporting points AB4 for four-point loading is given by:

AB4 5 Lo4 ~πD! (36)

7.3.3.1 Only half of this area is stressed in tension. The
relationship between the characteristic strength (σθB4)A and the
Weibull material scale parameter (σ0)A for a round flexure
specimen with surface flaws is:

~σ0!A
5 ~σθB4!AH F S Li4

Lo4
D ~mA!11G F ~mA12!

2 G F 1

~mA11! G
S G

π DAB4J 1/mV

(37)

which relates the Weibull characteristic strength (σθ)A to the
Weibull material scale parameter (σ0)A. Comparing Eq 37 with
Eq 12 yields the following formulation for the effective area:

SE 5 kAB4 5 F S Li4

Lo4
D mA11G F ~mA12!

2 G F 1

~mA11! G S G
π D AB4

(38)

7.3.3.2 This expression is obtained by Eq 1 and Eq 9, after
integration in Eq 9 has been performed over the gage section
area of the flexure bar. For specific flexural strength configu-
rations the above formula simplifies considerably. For
example, for 1⁄4-point, 4-point loading:

SE 5 kAB4 5
~mA12!2

4~mA11! S G
π D AB4 (39)

7.3.3.3 For the general case of 4-point loading, the average
flexure strength (σ̄B4) is related to the Weibull material scale
parameter (σ0)A:

~σ0!A
5 (40)

~σ̄B4!AH F S Li4

Lo4
DmA11G F ~mA12!

2 G F 1

~mA11! G S G
π DAB4J 1/mA

ΓS 1
mA

11D
7.3.4 The Weibull material scale parameter, and the effec-

tive volume and effective area of round rods in three-point
bending can be obtained by simply setting Li4 = 0, and using
Lo3 in place of Lo4 in Eq 31, Eq 33, Eq 35, Eq 37, and Eq 38.

7.3.5 Stress scaling ratios for flexural strength specimens of
various types usually depend upon whether the flaws are
surface- or volume-distributed. An important exception is
round flexural strength specimens with identical diameters
(10). The strength scaling between any two flexural loadings
are the same irrespective of whether volume or surface scaling
is used. For example, the relationship of the characteristic
strengths (or mean strengths) of three-point and four-point
flexure strengths for either volume or surface flaws is:

σθB3

σθB4

5 S LB4

LB3
D 1/m S m12

2 D 1/m

(41)

7.3.5.1 This is true only if both sets break from volume
flaws (or alternatively both sets from surface flaws). The mean
strengths also scale according to Eq 41.

NOTE 7—This is the same outcome as for rectangular test specimens in
7.2.5.

7.4 C-Ring Test Specimens:
7.4.1 C-ring test specimens such as shown in Fig. 6 shall be

tested in diametral compression in accordance with Test
Method C1323. The strength values obtained using C-ring test
specimens with different sizes will vary. Characteristic or mean
strength values can be scaled to other test specimen geometries
using the volume and area relationships presented in this
section.
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7.4.2 Volume Distribution—The gage section volume for a
C-ring specimen is:

VCR 5 π~ro
2 2 ri

2!b/2 (42)

7.4.2.1 This is the volume of the C-ring on the right hand
side of Fig. 6 between the top and bottom loading points. The
relationship between the characteristic strength (σθCR)V and the
Weibull material scale parameter (σ0)V for a C-ring test
specimen with volume flaws is (11):

~σ0!V
5 ~σθCR!V @~ro!mV f~θ! f~r!#1/mV (43)

where:

f~θ! 5 =π 3 ΓS mV11
2 D

ΓS mV

2
11D 4 (44)

f~r! 5 2

ro

*
ra

S r 2 ra

ro 2 ra
D mV

r ~12mV!dr (45)

where ra = (ro – ri)/2. The expression in Eq 43 is obtained by
setting Eq 1 equal to Eq 3, after the integration in Eq 3 has been
performed over the gage section volume of the C-ring test
specimen. Comparison of Eq 43 with Eq 6 yields the following
formulation for the effective volume:

VE 5 kVCR 5 ~ro!mVf~θ!f~r! (46)

7.4.2.2 This equation also must be solved by numerical
means since a closed form solution does not as yet exist. For
C-ring specimens, the average strength (σ̄CR)V is related to the
Weibull material scale parameter, (σ0)V :

~σ0!V
5

~σ̄CR!V @~ro!mVf~θ!f~r!#1/mV

ΓF 1
mV

11G (47)

7.4.3 Surface Distribution—The relationship between the
characteristic strength (σθCR)A and the Weibull material scale
parameter (σ0)A for a C-ring specimen with surface flaws is
(11):

~σ0!A
5 ~σθCR!A @b ro f~θ!12~ro!mA f~θ! f~r!#1/mA (48)

7.4.3.1 This expression is obtained by Eq 1 and Eq 9, after
the integration in Eq 9 has been performed over the gage
section area of the C-ring test specimen. The gage section area
is the area of the C-ring on the right hand side of Fig. 6
between the top and bottom loading points. It includes the front
and back face surfaces between these two locations as well as
the outer curved surface area. Eq 48 must be solved by
numerical means since a closed form solution does not as yet
exist. Comparison of Eq 48 with Eq 12 yields the following
formulation for the effective surface (effective area):

SE 5 kACR 5 b ro f~θ!12ro
mA f~θ! f~r! (49)

7.4.3.2 This equation must be solved by numerical means
since a closed form solution does not as yet exist. For C-ring
specimens, the average strength (σ̄CR)A is related to the Weibull
material scale parameter, (σ0)A:

~σ0!A
5

~σ̄CR!A @b ro f~θ!12~ro!mA f~θ! f~r!#1/mA

ΓF 1
mA

11G (50)

7.4.4 No adjustments are made to the volume or surface
integrals for the presence of chamfers or edge rounding in
C-ring specimen, if such exist. This is an acceptable approxi-
mation provided that the chamfer and rounding sizes are small.
See section 6.6 if origins are on the specimen edges.

8. Test Specimens with Multiaxial Stress States—
Effective Volume and Area Relationships

8.1 Pressure-on-Ring Test Specimens:
8.1.1 Pressure-on-ring (POR) test specimens such as shown

in Fig. 7 shall be tested in accordance with any procedure
provided that it produces accurate and precise strength data.
The strength values obtained using different sized specimens
will vary. Characteristic or mean strength values can be scaled
to other test specimen geometries using the volume and area
relationships presented in this section.

8.1.2 Volume Distribution—The stress state is primarily
equibiaxial in the middle, but mixed radial and hoop tension

FIG. 6 Typical Compression C-Ring Test Specimen Geometry
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away from the middle out to the support ring. The pressurize-
on-ring disk gage volume is the volume of the disk test
specimen within the support ring:

VPOR 5 πRS
2h (51)

where h is the disk thickness and RS is the support ring
radius. The relationship between the characteristic strength
(σθPOR)V and the Weibull material scale parameter (σ0)V for a
pressure-on-ring test specimen with volume flaws is (12):

~σ0!V
5 (52)

~σθPOR!VH H 4π~11ν!
11mV

S RS

Rd
D 2 F 2Rd

2~11ν!1RS
2~1 2 ν!

~31ν!~113ν! G J
H h

2~mV11! J J
1/mV

where:
RS = the support ring radius, and
ν = Poisson’s ratio.

8.1.2.1 The expression in Eq 52 is based on the Principal
Independent Action (PIA) model (12, 13) for the effect of
multiple tension stresses on a material element.

NOTE 8—The PIA model simply assumes that each principal stress
contributes independently to the risk of rupture for each volume or area
sub element in a body. See Annex A2.

8.1.2.2 Comparing Eq 52 with Eq 6 yields the following
formulation for the effective volume:

VE 5 kVPOR5 (53)

F 4π~11ν!
11mV

S Rs

Rd
D 2F 2Rd

2~11ν!1Rs
2~1 2 ν!

~31ν!~113ν! G H h
2~mV11! J G

8.1.2.3 For pressure-on-ring disk specimens, the average
strength (σ̄POR)V is related to the Weibull material scale
parameter, (σ0)V:

~σ0!V
5 (54)

~σ̄POR!VH F 4π~11ν!
11mV

G S Rs

Rd
D 2

F 2Rd
2~11ν!1Rs

2~1 2 ν!

~31ν!~113ν! G H h
2~mV11! J J

1/mV

ΓF 1
mV

11G
8.1.3 Surface Distribution—The gage area of a pressure-on-

ring test specimen is the circular surface area within the
support ring:

APOR 5 πRs
2 (55)

8.1.3.1 The relationship between the characteristic strength
(σθB4)A and the Weibull material scale parameter (σ0)A for a
pressure-on-ring specimen with surface flaws is (12):

~σ0!A
5 ~σθPOR!AH 4π~11ν!

11mA
S Rs

Rd
D 2 F 2Rd

2~11ν!1Rs
2~1 2 ν!

~31ν!~113ν! G J 1/mA

(56)

8.1.3.2 Eq 56 is obtained by setting Eq 1 equal to Eq 9, after
the integration in Eq 9 has been performed over the gage
section area of the pressure-on-ring test specimen, assuming a
principle of independent action (PIA) reliability model. Com-
parison of Eq 56 with Eq 12 yields the following formulation
for the effective surface effective area:

SE 5 kAPOR 5
4π~11ν!

11mA
S Rs

Rd
D 2 F 2Rd

2~11ν!1Rs
2~1 2 ν!

~31ν!~113ν! G (57)

8.1.3.3 The material scale parameter is related to the aver-
age pressure-on-ring disk strength by:

~σ0!A
5

~σ̄POR!A H 4π~11ν!
11mA

S Rs

Rd
D 2 F 2Rd

2~11ν!1Rs
2~1 2 ν!

~31ν!~113ν! G J 1/mA

ΓF 1
mA

11G
(58)

8.2 Ring-on-Ring Test Specimens:
8.2.1 Ring-on-ring test specimens such as shown in Fig. 8

shall be tested in accordance with Test Method C1499. The
strength values obtained using ring-on-ring specimens vary
with test specimen size. Characteristic or mean strength values
can be scaled to other test specimen geometries using the
volume and area relationships presented in this section. The
analysis is based on a Principal Independent Action (PIA)
model for the contribution of the multiple stresses acting on
any element of the material (13, 14).

NOTE 9—The PIA model simply assumes that each principal stress

FIG. 7 Pressure-on-Ring Test Specimen Geometry (from Salem and Adams) (12)
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contributes independently to the risk of rupture for each volume or area
sub element in a body. See Annex A2.

8.2.2 Volume Distribution—The gage volume of a ring-on-
ring test specimen is the volume of the disk within the support
ring:

VROR 5 πDs
2h/4 (59)

8.2.2.1 About half of this volume is under tensile stress. The
relationship between the characteristic strength (σθ ROR)V and
the Weibull material scale parameter (σ0)V for a ring-on-ring
test specimen with volume flaws, from Test Method C1499 and
Ref (14) is:

~σ0!V
5~σθROR!V H π

2
DL

2J 1/mV

(60)

H H 11F 44~11ν!

3~11mV!
G F 51mV

21mV
G S DS 2 DL

DSD D 2F 2D2
~11ν!1~DS 2 DL!2~1 2 ν!

~31ν!~113ν!
G J H h

2~mV11!
J J 1/mV

where:
DL = loading ring diameter,
DS = support ring diameter,
D = overall disk diameter,
h = disk thickness, and
ν = Poisson’s ratio.

8.2.2.2 Note that the outer diameter of the disk, D plays a
role as well as the inner loading diameter, DL, and the outer
support ring diameter, DS. Note also that, in this case, the
second term on the right is not VROR. Portions of the third and
fourth terms on the right contribute to VROR. Eq 60 is obtained
by setting Eq 1 equal to Eq 3, after the integration in Eq 3 has
been performed over the gage section volume of the ring-on-
ring test specimen, assuming a principle of independent action
(PIA) reliability model. Comparison of Eq 60 with Eq 6 yields
the following formulation for the effective volume:

VE 5 kVROR5 (61)

$ π
2

DL
2%H 11F 44~11ν !

3 ~11mV! G F 51mV

21mV
G S DS 2 DL

DSD D 2F 2D2 ~11ν !1~DS 2 DL!2 ~12ν !

~31ν !~113ν !
G J H h

2 ~mV11 ! J

8.2.2.3 Note again that the first term on the right is only a
portion of VROR. For ring-on-ring disk specimens, the average
strength (σ̄ROR)V is related to the Weibull material scale
parameter, (σ0)V:

S DS 2 DL

DSD D 2F 2D2
~11ν!1~DS 2 DL!2~1 2 ν!

~31ν!~113ν!
G J H h

2~mV11!
J G 1/mV

ΓF 1
mV

11G
(62)

~σ0!V
5

~σ̄ROR!VF H π
2

DL
2J H 1 1 F 44~11ν!

3~11mV! G F 51mV

21mV
G

8.2.3 Surface Distribution—The gage area of a ring-on-ring
test specimen is the circular area of the disk within the support
ring:

AROR 5 πDS
2/4 (63)

8.2.3.1 The relationship between the characteristic strength
(σ̄ROR)A and the Weibull material scale parameter (σ0)A for a
ring-on-ring test specimen with volume flaws, from Test
Method C1499 and Ref (14) is:

~σ0!A
5 (64)

~σθROR!A H π
2

DL
2J 1/mAH F 11F 44~11ν!

3~11mA!
G F 51mA

21mA
G S DS 2 DL

DSD D 2F 2D2
~11ν!1~DS 2 DL!2~1 2 ν!

~31ν!~113ν!
G G J 1/mA

8.2.3.2 Eq 64 is obtained by setting Eq 1 equal to Eq 9, after
the integration in Eq 9 has been performed over the gage
section area of the ring-on-ring test specimen, assuming a
principle of independent action (PIA) reliability model. Com-
parison of Eq 64 with Eq 12 yields the following formulation
for the effective surface (effective area):

SE 5 kAROR5 (65)

π
2

DL
2H 11F 44~11ν !

3 ~11mA! G F 51mA

21mA
G S DS 2 DL

DSD D 2F 2D2 ~11ν !1~DS 2 DL!2 ~12ν !

~31ν !~113ν !
G J

8.2.3.3 The material scale parameter is related to the aver-
age ring-on-ring disk strength by:

~σ0!A
5 (66)

~σ̄ROR!AF π
2

DL
2H 11F 44~11ν!

3~11mA!
G F 51mA

21mA
G S DS 2 DL

DSD D 2F 2D2
~11ν!1~DS 2 DL!2~1 2 ν!

~31ν!~113ν!
G J G 1/mA

ΓF 1
mA

11G

9. Examples—Converting Characteristic Strengths

9.1 Example—Converting Characteristic Strengths: Uni-
axial Tensile Test Specimens:

9.1.1 Consider the tensile strength data from Ref (15) listed
in Table 1. The material is a silicon nitride monolithic ceramic

FIG. 8 Ring-on-Ring Test Specimen Geometry from Test Method C1499
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that has multiple flaw populations. The treatment of the
multiple flaw populations follows the procedures specified in
Practice C1239 and Ref (16). The test specimen geometry
(developed at Oak Ridge National Laboratory (ORNL, Ref
(17)) is given in Fig. 9.

9.1.2 The failure origin for each test specimen was identi-
fied as either a volume or a surface fracture origin, and
parameter estimates were obtained by using maximum likeli-
hood estimators in a manner outlined in Practice C1239. For
this data the analysis yielded values of (m̂)a = 6.66 and (σ̂θ)a =
787 MPa. (The symbol “`” over the stress terms denotes that
these are estimates of the population parameters as per guide-
lines in Practice C1239.) Focusing on the surface flaw param-
eters and utilizing Eq 19 with AT = 330 mm2, then σ̂0)a = 1881
MPa·(mm)0.30 or 237 MPa·(m)0.30. With only two volume
outcomes, no meaningful estimate of the Weibull volume
parameters can be made.

9.1.3 The area strength values (characteristic and/or mean
strengths) can be scaled to any gage section using the area
relationships presented earlier. A B-size 1⁄4-point four-point
flexural test specimen in Test Method C1161 (3 mm by 4 mm
by 40+ mm) would have an effective area of 99.3 mm2 (from
Eq 27). The surface area strength parameters obtained from the
tensile test specimen strength data would yield a characteristic
strength of σ̂θ)a = 943 MPa (from Eq 13) and a mean strength
of (σ̄B)a = 880 MPa for the flexural test specimen (from Eq 28).

9.2 Example—Converting Characteristic Strengths: Flexure
Test Specimens of Different Sizes and Loading Configurations:

9.2.1 Table 2 shows flexural strength data from Refs (6, 18)
for a sintered silicon carbide using both three-point and
four-point configurations for sizes A, B, and C as specified in
Test Method C1161. Fractographic analyses indicated that
surface-distributed flaws controlled the strengths in most
specimens. Forty-eight specimens tested in the four-point B
configuration confirmed that the data fit a Weibull two param-
eter distribution very well. Fig. 10 shows the average strengths
of the specimens as a function of the effective area. The data fit
the expected trend very well with the sole exception of the

four-point A sized specimens. The slope of the linear-
regression fitted line (area regressed on stress in this instance)
is –1/mA, which leads to a seventh estimate of the Weibull
modulus as 14.4. The apparent deviation of the four-point A set
could be simply statistical sampling error or it could be a
manifestation of alignment difficulties of the small A sized
specimens in a small four-point fixture.

9.2.2 This data set illustrates how data from multiple data
sets can be pooled to provide superior estimates of the Weibull
parameters (6, 18). It is beyond the scope of this Practice at this
time to specify practices for pooling data.

10. Report

10.1 Report all original test data including individual test
outcomes from each test configuration that is available. Report
the flaw type for each datum if possible. At the minimum, the
flaw distribution type (volume, surface, edge) should be
reported. Report the flaw type (e.g., inclusion, grinding crack)
if possible. Report the number of test data points.

10.2 Report the original test configuration and whether the
test was done in accordance with a standard. Report any
deviations from procedures in the standard, if such occur.

10.3 Report the Weibull characteristic strengths, the mean
strength, and the Weibull modulus for the original data set(s).

10.4 Report the Weibull material scale factor, σ0.

10.5 Report the scaled strengths for a second (or third) test
configuration.

11. Precision and Bias

11.1 Accurate and precise scaling estimates can only be
obtained if the assumptions in section 5.5 are met. In particular,
the flaw types must be the same in each type test configuration
and the test data must be nearly error free. The stresses must be
accurately known.

11.2 All Weibull parameters produced from test sets are
estimates of population parameters. As such, the estimates
from small numbers of test specimens (e.g., 10, 30) are subject
to small sample size statistics. The Weibull modulus is espe-
cially sensitive to statistical fluctuations. Consult Practice
C1239 for guidance on statistical variations and confidence
intervals for the Weibull parameter estimates. It is beyond the
scope of this Practice at this time to specify confidence
intervals for the scaled strength parameters.

11.3 Reference (5) has a compilation of many successful
Weibull strength scaling exercises from a number of studies
using many different test configurations.

12. Keywords

12.1 advanced ceramics; censored data; effective area; ef-
fective volume; fractography; fracture origin; size scaling;

TABLE 1 Silicon Nitride Failure Data—Ref (15)

Test Specimen
Number

Failure Stress
(MPa)

Fracture
Origin

1 570 Surface
2 579 Surface
3 633 Surface
4 626 Surface
5 641 Volume
6 683 Surface
7 726 Surface
8 722 Surface
9 741 Surface

10 811 Volume
11 813 Surface
12 852 Surface
13 958 Surface

FIG. 9 ORNL Button Head Tensile Test Specimen
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strength; Weibull characteristic strength; Weibull modulus;
Weibull scale parameter; Weibull statistics

ANNEXES

(Mandatory Information)

A1. COMBINED GAMMA FUNCTION FOR ROUND RODS TESTED IN FLEXURE

A1.1 The effective volume and effective surface expressions
for rod tested in flexure includes a term that combines several
Gamma functions:

G 5 1 ΓS mV11
2 D ΓS 3

2 D
ΓS mV14

2 D 2 (A1.1)

A1.1.1 G only depends upon the Weibull modulus. Fig.
A1.1 shows how G varies with m. Use mV for volume-
distributed flaws, or mA for surface-distributed flaws.

TABLE 2 Sintered Silicon Carbide Flexural Strength Data from Refs (6, 18)

Configuration
Number of

Specimens Tested
Average Strength

(MPa)
Std. Dev.

(MPa)

mA

Weibull Modulus
Estimated from the Set

σoB

Weibull Material Scale Parameter
Estimated from the Set

MPa·mm2/m (MPa·m2/m)

3-point A 18 388 33 14.6 431 (167)
4-point A 17 313 35 9.4 459 (106)
3-point B 18 351 31 12.2 450 (145)
4-point B 48 303 24 14.3 430 (164)
3-point C 18 326 22 16.4 419 (180)
4-point C 18 284 22 14.5 441 (170)

NOTE 1—The uncertainties are one standard deviation. Regression of the mean strengths as a function of stressed area provides another good estimate
of the Weibull modulus.

FIG. 10 Average Flexural Strengths of Sintered Silicon Carbide as a Function of Weibull Effective Area for All Six Testing Configura-
tions in Test Method C1161
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A2. COMPONENTS OR TEST SPECIMENS WITH MULTIAXIAL STRESS DISTRIBUTIONS

A2.1 Many test configurations have multiaxial tensile stress
states. Each tensile stress component may contribute to the risk
of rupture.

A2.2 The Principal Independent Action (PIA) model simply
assumes that each principal stress contributes independently to
the risk of rupture for each volume or area sub element in a
body. Other multiaxial failure criteria may be based on
different mechanics principles, but there is no consensus on the
best model for all cases. The best criterion probably varies with
flaw type and material. The simple PIA model lends itself to the
complex integrations necessary to compute the effective sur-
faces and volumes. The latter usually do not differ significantly
whether the PIA or more complex models are used. Reference
(12) compares the criteria for one material. However, the
solutions are sensitive to Weibull modulus.

A2.3 For volume-distributed flaws, the effective volume is:

VE 5 kV 5
*
V
S σ1

σmax
D m

1S σ2

σmax
D m

1S σ3

σmax
D m

dV (A2.1)

where σmax is the maximum stress, and σ1, σ2, and σ3 are the
principal stresses (tensile) in each element of the test specimen
or component.

A2.4 For surface-distributed flaws, the effective area is:

SE 5 kA 5
*
A
S σ1

σmax
D m

1S σ2

σmax
D m

dA (A2.2)

where σmax is the maximum stress, and σ1 and σ2 are the
principal stresses (tensile) in each element of the test specimen
or component.

A2.5 If closed form stress solutions are not available for a
test specimen or component, then Eq A2.1 and A2.2 can be
determined numerically, element-by-element, from finite ele-
ment analysis as described in Annex A3.

FIG. A1.1 G, the Combined Gamma Function is a Function of the Weibull Modulus
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A3. COMPONENTS OR TEST SPECIMENS WITH COMPLEX GEOMETRIES AND STRESS DISTRIBUTIONS

A3.1 Effective Volume and Area Relationships for Compo-
nents with Complex Stress States:

A3.1.1 As indicated in 6.3, expressions for VE(= kV) can be
obtained by setting Eq 1 equal to Eq 3, after the integration of
Eq 3 has been performed over the gage section of the test
specimen. Expressions for SE(= kA) also can be obtained by
setting Eq 1 equal to Eq 9, after the integration of Eq 9 has
been performed over the gage section of the test specimen. This
approach requires the values of m, σθ, and a closed form
integration of Eq 3 or Eq 9. For many test specimen geometries
Eq 3 or Eq 9 cannot be integrated to yield a closed form
solution. A numerical integration of Eq 3 or Eq 9 can be
performed using structural reliability algorithms such as
CARES(19), ERICA (20), STAU (21), CERAM (22), or GFICES
(23) and the results can be utilized to compute either kV or kA
for a specific test specimen geometry. The procedure for
obtaining results using this numerical approach are outlined in
this appendix.

A3.1.2 For a test specimen geometry fabricated from a
given ceramic, the failure data for volume-distributed flaws is
analyzed and mV as well as (σθ)V are obtained using maximum
likelihood estimators. Note that (σθ)V is not relevant to the
computation of VE, but is required for the computation of (σ0)V

utilizing the approach outlined in this section. A finite element
analysis of the test specimen geometry is conducted using a
sufficiently refined mesh. In the process of refining a mesh for
a given test specimen geometry an asymptotic value of VE is
used to assess when a quality mesh has been attained. As an
example consider a C-ring test specimen geometry discussed in
section 7.4. Duffy et al. (24) conducted analytical studies and
published figures similar to Fig. A3.1 in the process of
verifying the expressions listed in section 7.4. Note the
asymptotic behavior as the density of the mesh increases.

A3.1.2.1 In order to generate a relationship between VE and
the finite element mesh, utilize Eq 3 but with:

~σ0!V
5 ~σ*!V

(A3.1)

where σ* is an arbitrary, assumed estimate of the Weibull
material scale factor. This yields:

Pf 5 1 2 expF *
V
S σ

~σ*!V
D mV

dVG (A3.2)

A3.1.2.2 Rearranging Eq A3.2 yields:

Pf 5 1 2 expF2S σMAX

~σ*!V
D mV *

V
S σ

σMAX
D mV

dVG (A3.3)

where σMAX is an equivalent (or effective) normalizing stress
obtained from a CARES (19), ERICA (20), STAU (21), CERAM
(22), or GFICES (23) analysis. Now define:

VE 5 kV 5
*
V
S σ

σMAX
D mV

dV (A3.4)

A3.1.2.3 Substitution into Eq A3.2 yields:

Pf 5 1 2 expF2kVS σMAX

~σ*!V
D mVG (A3.5)

A3.1.2.4 Solving this expression for kV results in:

kV 5
2ln~1 2 Pf!

F σMAX

~σ*!V
G mV

(A3.6)

A3.1.2.5 The finite element analysis of the test specimen
geometry and the resulting component probability of failure
(Pf) must be computed using mV obtained from the maximum
likelihood estimators in accordance with Practice C1239. The
resulting component probability of failure (Pf ) is inserted into
Eq A3.5 along with the assumed value of (σ0)V (= σ*), mV, and
σMAX. The effective volume of the test specimen geometry is
calculated directly from Eq A3.6.

A3.1.3 A similar analysis can be conducted in order to
determine an effective area (SE, kA) for a given test specimen
geometry. Here:

SE 5 kA 5
2ln~1 2 Pf!

F σMAX

~σ*!A
G mA

(A3.7)

A3.1.4 Alternatively, the integrals:

SE 5 kA 5
*
A
S σ1

σMAX
D mA

1S σ2

σMAX
D mA

dA (A3.8)

and

VE 5 kV 5
*
V
S σ1

σMAX
D mV

1S σ2

σMAX
D mV

1S σ3

σMAX
D mV

dV (A3.9)

can be determined numerically element-by-element from the
finite element analysis output where σMAX is the maximum
tensile stress in the model and σ1, σ2 and σ3 are the principal
stresses (tensile) at the integration points in any element:

SE 5 kA 5 (
i51

n F S σ1i

σMAX
D mA

1S σ2i

σMAX
D mAG (A3.10)

VE 5 kV 5 (
i51

n F S σ1i

σMAX
D mV

1S σ2i

σMAX
D mV

1S σ3i

σMAX
D mVG (A3.11)

where n is the number of elements with tensile (positive)
stresses (25).

C1683 − 10 (2015)

16

 



REFERENCES

(1) Mann, N. R., Schafer, R. E., and Singpurwalla, N. D., Methods for
Statistical Analysis of Reliability and Life Data, John Wiley & Sons,
New York, NY, 1974.

(2) Kalbfleisch, J. D., and Prentice, R. L., The Statistical Analysis of
Failure Time Data, John Wiley & Sons, New York, NY, 1980.

(3) Lawless, J. F., Statistical Models and Methods for Lifetime Data, John
Wiley & Sons, New York, NY, 1982.

(4) Nelson, W., Applied Life Data Analysis, John Wiley & Sons, New
York, NY, 1982.

(5) Quinn, G. D., and Morrell, R., “Design Data for Engineering
Ceramics: A Review of the Flexure Test,” Journal of the American
Ceramic Society, Vol 74, No. 9, Sept. 1991, pp. 2037–2066.

(6) Johnson, C. A., and Tucker, W. T., “Advanced Statistical Concepts of
Fracture in Brittle Materials,” Ceramics and Glasses, Engineered
Materials Handbook, Vol 4: S. J. Schneider, tech. chair., 1991, pp.
709–715.

(7) Jayatilaka, A de S., Fracture of Engineering Brittle Materials, Applied
Science Publ., London, 1979.

(8) Weil, N. A., and Daniel, I. M., “Analysis of Fracture Probabilities in
Nonuniformly Stressed Brittle Materials,” Journal of the American
Ceramic Society, Vol 47, No. 6, June 1964, pp. 268–274.

(9) Quinn, G. D., “Weibull Strength Scaling for Standardized Rectangular
Flexure Specimens,” Journal of the American Ceramic Society, Vol
86, No. 3, March 2003, pp. 508–510.

(10) Quinn, G. D., “Weibull Effective Volumes and Surfaces for Cylin-
drical Rods Loaded in Flexure,” Journal of the American Ceramic
Society, Vol 86, No. 3, March 2003, 475–479.

(11) Jadaan, O. M, Shelleman, D. L., Conway, Jr., J. C., Mecholsky, Jr.,
J. J., and Tressler, R. E., “Prediction of the Strength of Ceramic
Tubular Components: Part 1–Analysis,” Journal of Testing and
Evaluation, Vol 19, No. 3, March 1991, pp. 181–191.

(12) Salem, J. A., and Adams, M., “The Multiaxial Strength of Tungsten
Carbide,” Ceramic Engineering and Science Proceedings, Vol 20,
No. 4, 1999, pp. 459–466.

(13) Barnett, R. L., Connors, C. L., Hermann, P. C., and Wingfield, J. R.,
“Fracture of Brittle Materials Under Transient Mechanical and
Thermal Loading,” U. S. Air Force Flight Dynamics Laboratory,
AFFDL-TR-66-220, March 1967.

(14) Salem, J. A. and Power, L., “Guidelines for the Testing of Plates,”
Ceramic Engineering and Science Proceedings, 24 [3-4], 2003, pp.
351–364.

(15) Andrews, M. J., Wereszczak, A. A, Kirkland, T. P., and Breder, K.,
“Strength and Fatigue of NT551 Silicon Nitride and NT551 Exhaust
Valves,” ORNL TM-1999/332, U.S. Department of Energy, 1999.

(16) Johnson, C. A., “Fracture Statistics of Multiple Flaw Populations,”
Fracture Mechanics of Ceramics, Vol 5, R. C. Bradt, et al, eds.,
1983, pp. 365–386.

(17) Jenkins, M. G., Ferber, M. K., Martin, R. L., Jenkins, V. T., and
Tennery, V. J., “Study and Analysis of the Stress State in a Ceramic,
Button-Head, Tensile Specimen,” ORNL TM-11767, Oak Ridge
National Laboratory, 1991.

(18) Johnson, C. A. and Tucker, W. T., “Weibull Estimators for Pooled
Fracture Data,” Life Prediction Methodologies and Data for Ceramic
Materials, ASTM STP 1201, eds. C. R. Brinkman and S. F. Duffy,
ASTM, Philadelphia, PA 1994, pp. 250–264.

(19) Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P.,
Ceramics Analysis and Reliability Evaluation of Structures Life
Prediction Program (CARES/LIFE) Users and Programmers
Manual, 1993.

(20) Schenk, B., Brehm, P. G., Menon, M. N., Tucker, W. T., and Peralta,
A. D., “Status of the CERAMIC/ERICA Probabilistic Life Predic-
tion Codes Development for Structural Ceramic Applications,”
ASME paper 99-GT-318, presented at the International Gas Turbine
and Aeroengine Congress and Exposition, Indianapolis, IN, USA,
June 7–10, 1999.

(21) Heger, A., Brückner-Foit, A., and Munz, D., “STAU—A Computer
Code to Calculate the Failure Probability of Multiaxially Loaded
Ceramic Components,” Euroceramics II, Vol 2, Structural Ceramics
and Composites, eds. G. Ziegler and H. Hausner, German Ceramic
Society, Berlin, 1991, pp. 1143–1147.

(22) Lamon, J., “Reliability Analysis of Ceramics Using the CERAM
Computer Program,” ASME paper 90-GT-98, presented at the Gas
Turbine and Aeroengine Congress and Exposition, Brussels,
Belgium, June 11–14, 1990 .

(23) Suzuki, A. and Hamanaka, J., “Design Guide for Fine Ceramics
Components,” IHI Engineering Review, 26[4], 1993, pp. 133–137.

(24) Duffy, S. F., Baker, E. H., Wereszczak, A. A., and Swab, J. J.,
“Weibull Analysis Effective Volume and Effective Area for a
Ceramic C-Ring Test Specimen,” ASTM Journal of Testing and
Evaluation, Vol 33, No. 4, July 2005, pp. 233–238.

FIG. A3.1 Asymptotic Behavior of VE(= kV) as a Function of Mesh Size for a C-Ring Test Specimen

C1683 − 10 (2015)

17

 



(25) Powers, L. M., Starlinger, A., and Gyekenyesi, J. P. “Ceramic
Component Reliability with the Restructured NASA/Cares Com-

puter Program,” NASA TM-105856, National Aeronautics and
Space Administration, 1992.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

C1683 − 10 (2015)

18

 


