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Standard Practice for
Reporting Uniaxial Strength Data and Estimating Weibull
Distribution Parameters for Advanced Ceramics1

This standard is issued under the fixed designation C1239; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the evaluation and reporting of
uniaxial strength data and the estimation of Weibull probability
distribution parameters for advanced ceramics that fail in a
brittle fashion (see Fig. 1). The estimated Weibull distribution
parameters are used for statistical comparison of the relative
quality of two or more test data sets and for the prediction of
the probability of failure (or, alternatively, the fracture
strength) for a structure of interest. In addition, this practice
encourages the integration of mechanical property data and
fractographic analysis.

1.2 The failure strength of advanced ceramics is treated as a
continuous random variable determined by the flaw population.
Typically, a number of test specimens with well-defined
geometry are failed under isothermal, well-defined displace-
ment and/or force-application conditions. The force at which
each test specimen fails is recorded. The resulting failure stress
data are used to obtain Weibull parameter estimates associated
with the underlying flaw population distribution.

1.3 This practice is restricted to the assumption that the
distribution underlying the failure strengths is the two-
parameter Weibull distribution with size scaling. Furthermore,
this practice is restricted to test specimens (tensile, flexural,
pressurized ring, etc.) that are primarily subjected to uniaxial
stress states. The practice also assumes that the flaw population
is stable with time and that no slow crack growth is occurring.

1.4 The practice outlines methods to correct for bias errors
in the estimated Weibull parameters and to calculate confi-
dence bounds on those estimates from data sets where all
failures originate from a single flaw population (that is, a single
failure mode). In samples where failures originate from mul-
tiple independent flaw populations (for example, competing
failure modes), the methods outlined in Section 9 for bias
correction and confidence bounds are not applicable.

1.5 This practice includes the following:
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1.6 The values stated in SI units are to be regarded as the
standard per IEEE/ASTM SI 10.

2. Referenced Documents

2.1 ASTM Standards:2

C1145 Terminology of Advanced Ceramics
C1322 Practice for Fractography and Characterization of

Fracture Origins in Advanced Ceramics
E6 Terminology Relating to Methods of Mechanical Testing
E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
IEEE/ASTM SI 10 American National Standard for Use of

the International System of Units (SI): The Modern Metric
System

3. Terminology

3.1 Proper use of the following terms and equations will
alleviate misunderstanding in the presentation of data and in
the calculation of strength distribution parameters.

3.1.1 censored strength data—strength measurements (that
is, a sample) containing suspended observations such as that
produced by multiple competing or concurrent flaw popula-
tions.

1 This practice is under the jurisdiction of ASTM Committee C28 on Advanced
Ceramics and is the direct responsibility of Subcommittee C28.01 on Mechanical
Properties and Performance.
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3.1.1.1 Consider a sample where fractography clearly estab-
lished the existence of three concurrent flaw distributions
(although this discussion is applicable to a sample with any
number of concurrent flaw distributions). The three concurrent
flaw distributions are referred to here as distributions A, B, and
C. Based on fractographic analyses, each test specimen
strength is assigned to a flaw distribution that initiated failure.
In estimating parameters that characterize the strength distri-
bution associated with flaw distribution A, all test specimens
(and not just those that failed from Type A flaws) must be
incorporated in the analysis to ensure efficiency and accuracy
of the resulting parameter estimates. The strength of a test
specimen that failed by a Type B (or Type C) flaw is treated as
a right censored observation relative to the A flaw distribution.
Failure due to a Type B (or Type C) flaw restricts, or censors,
the information concerning Type A flaws in a test specimen by
suspending the test before failure occurred by a Type A flaw
(1).3 The strength from the most severe Type A flaw in those
test specimens that failed from Type B (or Type C) flaws is
higher than (and thus to the right of) the observed strength.
However, no information is provided regarding the magnitude
of that difference. Censored data analysis techniques incorpo-
rated in this practice utilize this incomplete information to
provide efficient and relatively unbiased estimates of the
distribution parameters.

3.2 Definitions:
3.2.1 competing failure modes—distinguishably different

types of fracture initiation events that result from concurrent
(competing) flaw distributions.

3.2.2 compound flaw distributions—any form of multiple
flaw distribution that is neither pure concurrent nor pure
exclusive. A simple example is where every test specimen
contains the flaw distribution A, while some fraction of the test
specimens also contains a second independent flaw distribution
B.

3.2.3 concurrent flaw distributions—type of multiple flaw
distribution in a homogeneous material where every test
specimen of that material contains representative flaws from
each independent flaw population. Within a given test
specimen, all flaw populations are then present concurrently
and are competing with each other to cause failure. This term
is synonymous with “competing flaw distributions.”

3.2.4 effective gage section—that portion of the test speci-
men geometry that has been included within the limits of
integration (volume, area, or edge length) of the Weibull
distribution function. In tensile test specimens, the integration
may be restricted to the uniformly stressed central gage
section, or it may be extended to include transition and shank
regions.

3.2.5 estimator—well-defined function that is dependent on
the observations in a sample. The resulting value for a given
sample may be an estimate of a distribution parameter (a point
estimate) associated with the underlying population. The arith-
metic average of a sample is, for example, an estimator of the
distribution mean.

3.2.6 exclusive flaw distributions—type of multiple flaw
distribution created by mixing and randomizing test specimens
from two or more versions of a material where each version
contains a different single flaw population. Thus, each test
specimen contains flaws exclusively from a single distribution,
but the total data set reflects more than one type of strength-
controlling flaw. This term is synonymous with “mixtures of
flaw distributions.”

3.2.7 extraneous flaws—strength-controlling flaws observed
in some fraction of test specimens that cannot be present in the
component being designed. An example is machining flaws in
ground bend test specimens that will not be present in
as-sintered components of the same material.

3.2.8 fractography—analysis and characterization of pat-
terns generated on the fracture surface of a test specimen.
Fractography can be used to determine the nature and location
of the critical fracture origin causing catastrophic failure in an
advanced ceramic test specimen or component.

3.2.9 fracture origin—the source from which brittle fracture
commences (Terminology C1145).

3.2.10 multiple flaw distributions—strength controlling
flaws observed by fractography where distinguishably different
flaw types are identified as the failure initiation site within
different test specimens of the data set and where the flaw types
are known or expected to originate from independent causes.

3.2.10.1 Discussion—An example of multiple flaw distribu-
tions would be carbon inclusions and large voids which may
both have been observed as strength controlling flaws within a
data set and where there is no reason to believe that the
frequency or distribution of carbon inclusions created during
fabrication was in any way dependent on the frequency or
distribution of voids (or vice-versa).

3.2.11 population—totality of potential observations about
which inferences are made.

3.2.12 population mean—average of all potential measure-
ments in a given population weighted by their relative frequen-
cies in the population.

3 The boldface numbers in parentheses refer to the list of references at the end of
this practice.

FIG. 1 Example of Weibull Plot of Strength Data
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3.2.13 probability density function—function f(x) is a prob-
ability density function for the continuous random variable X
if:

f~x! $ 0 (1)

and

*
2`

`

f~ x! dx 5 1 (2)

The probability that the random variable X assumes a
value between a and b is given by the following equation:

Pr~a,X,b! 5 *
a

b
f~x! dx (3)

3.2.14 sample—collection of measurements or observations
taken from a specified population.

3.2.15 skewness—term relating to the asymmetry of a prob-
ability density function. The distribution of failure strength for
advanced ceramics is not symmetric with respect to the
maximum value of the distribution function but has one tail
longer than the other.

3.2.16 statistical bias—inherent to most estimates, this is a
type of consistent numerical offset in an estimate relative to the
true underlying value. The magnitude of the bias error typically
decreases as the sample size increases.

3.2.17 unbiased estimator—estimator that has been cor-
rected for statistical bias error.

3.2.18 Weibull distribution—continuous random variable X
has a two-parameter Weibull distribution if the probability
density function is given by the following equations:

f~x! 5 S m
β D S x

β D m21

expF2S x
β D

mG x.0 (4)

f~x! 5 0 x # 0 (5)

and the cumulative distribution function is given by the
following equations:

F~x! 5 1 2 expF2S x
β D

mG x.0 (6)

or

F~x! 5 0 x # 0 (7)

where:
m = Weibull modulus (or the shape parameter) (>0), and
β = scale parameter (>0).

3.2.19 The random variable representing uniaxial tensile
strength of an advanced ceramic will assume only positive
values, and the distribution is asymmetrical about the mean.
These characteristics rule out the use of the normal distribution
(as well as others) and point to the use of the Weibull and
similar skewed distributions. If the random variable represent-
ing uniaxial tensile strength of an advanced ceramic is char-
acterized by Eq 4-7, then the probability that this advanced
ceramic will fail under an applied uniaxial tensile stress σ is
given by the cumulative distribution function as follows:

Pf 5 1 2 expF2S σ
σθ
D mG σ.0 (8)

Pf 5 0 σ # 0 (9)

where:
Pf = probability of failure, and
σθ = Weibull characteristic strength.

Note that the Weibull characteristic strength is dependent on
the uniaxial test specimen (tensile, flexural, or pressurized ring)
and will change with test specimen size and geometry. In
addition, the Weibull characteristic strength has units of stress
and should be reported using units of megapascals or gigapas-
cals.

3.2.20 An alternative expression for the probability of
failure is given by the following equation:

Pf 5 1 2 expF2*
v
S σ

σ0
D m dV G σ.0 (10)

P f 5 0 σ # 0 (11)

The integration in the exponential is performed over all
tensile regions of the test specimen volume if the strength-
controlling flaws are randomly distributed through the volume
of the material, or over all tensile regions of the test specimen
area if flaws are restricted to the test specimen surface. The
integration is sometimes carried out over an effective gage
section instead of over the total volume or area. In Eq 10, σ0 is
the Weibull material scale parameter. The parameter is a
material property if the two-parameter Weibull distribution
properly describes the strength behavior of the material. In
addition, the Weibull material scale parameter can be described
as the Weibull characteristic strength of a test specimen with
unit volume or area forced in uniform uniaxial tension. The
Weibull material scale parameter has units of stress·(volume)
1/mand should be reported using units of MPa·(m)3/m or
GPa·(m)3/m if the strength-controlling flaws are distributed
through the volume of the material. If the strength-controlling
flaws are restricted to the surface of the test specimens in a
sample, then the Weibull material scale parameter should be
reported using units of MPa·(m)2/m or GPa·(m)2/m. For a given
test specimen geometry, Eq 8 and Eq 10 can be equated, which
yields an expression relating σ0 and σθ. Further discussion
related to this issue can be found in 7.6.

3.3 For definitions of other statistical terms, terms related to
mechanical testing, and terms related to advanced ceramics
used in this practice, refer to Terminologies E456, C1145, and
E6 or to appropriate textbooks on statistics (2-5).

3.4 Symbols:

A = test specimen area (or area of effective gage section,
if used).

b = gage section dimension, base of bend test specimen.
d = gage section dimension, depth of bend test specimen.
F(x) = cumulative distribution function.
f(x) = probability density function.
Li = length of the inner span for a bend test specimen.
Lo = length of the outer span for a bend test specimen.
+ = likelihood function.
m = Weibull modulus.
m̂ = estimate of the Weibull modulus.
m̂U = unbiased estimate of the Weibull modulus.
N = number of test specimens in a sample.
Pf = probability of failure.
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r = number of test specimens that failed from the flaw
population for which the Weibull estimators are being
calculated.

t = intermediate quantity defined by Eq 27, used in
calculation of confidence bounds.

V = test specimen volume (or volume of effective gage
section, if used).

X = random variable.
x = realization of a random variable X.
β = Weibull scale parameter.
ε = stopping tolerance in the computer algorithm MAXL.
µ̂ = estimate of mean strength.
σ = uniaxial tensile stress.
σi = maximum stress in the ith test specimen at failure.
σj = maximum stress in the jth test specimen at failure.
σO = Weibull material scale parameter (strength relative to

unit size) defined in Eq 10.
σθ = Weibull characteristic strength (associated with a test

specimen) defined in Eq 8.
σ̂O = estimate of the Weibull material scale parameter.
σ̂θ = estimate of the Weibull characteristic strength.

4. Summary of Practice

4.1 This practice enables the experimentalist to estimate
Weibull distribution parameters from failure data. Begin by
performing a fractographic examination of each failed test
specimen (optional, but highly recommended) in order to
characterize fracture origins. Usually discrete fracture origins
can be grouped by flaw distributions. Screen the data associ-
ated with each flaw distribution for outliers. Compute estimates
of the biased Weibull modulus and Weibull characteristic
strength. If necessary, compute the estimate of the mean
strength. If all failures originate from a single flaw distribution,
compute an unbiased estimate of the Weibull modulus and
compute confidence bounds for both the estimated Weibull
modulus and the estimated Weibull characteristic strength.
Prepare a graphical representation of the failure data along with
a test report.

5. Significance and Use

5.1 Advanced ceramics usually display a linear stress-strain
behavior to failure. Lack of ductility combined with flaws that
have various sizes and orientations leads to scatter in failure
strength. Strength is not a deterministic property but instead
reflects an intrinsic fracture toughness and a distribution (size
and orientation) of flaws present in the material. This practice
is applicable to brittle monolithic ceramics that fail as a result
of catastrophic propagation of flaws present in the material.
This practice is also applicable to composite ceramics that do
not exhibit any appreciable bilinear or nonlinear deformation
behavior. In addition, the composite must contain a sufficient
quantity of uniformly distributed reinforcements such that the
material is effectively homogeneous. Whisker-toughened ce-
ramic composites may be representative of this type of
material.

5.2 Two- and three-parameter formulations exist for the
Weibull distribution. This practice is restricted to the two-
parameter formulation. An objective of this practice is to obtain
point estimates of the unknown parameters by using well-

defined functions that incorporate the failure data. These
functions are referred to as estimators. It is desirable that an
estimator be consistent and efficient. In addition, the estimator
should produce unique, unbiased estimates of the distribution
parameters (6). Different types of estimators exist, including
moment estimators, least-squares estimators, and maximum
likelihood estimators. This practice details the use of maximum
likelihood estimators due to the efficiency and the ease of
application when censored failure populations are encountered.

5.3 Tensile and flexural test specimens are the most com-
monly used test configurations for advanced ceramics. The
observed strength values are dependent on test specimen size
and geometry. Parameter estimates can be computed for a
given test specimen geometry (m̂, σ̂θ), but it is suggested that
the parameter estimates be transformed and reported as
material-specific parameters (m̂, σ̂0). In addition, different flaw
distributions (for example, failures due to inclusions or ma-
chining damage) may be observed, and each will have its own
strength distribution parameters. The procedure for transform-
ing parameter estimates for typical test specimen geometries
and flaw distributions is outlined in 8.6.

5.4 Many factors affect the estimates of the distribution
parameters. The total number of test specimens plays a
significant role. Initially, the uncertainty associated with pa-
rameter estimates decreases significantly as the number of test
specimens increases. However, a point of diminishing returns
is reached when the cost of performing additional strength tests
may not be justified. This suggests that a practical number of
strength tests should be performed to obtain a desired level of
confidence associated with a parameter estimate. The number
of test specimens needed depends on the precision required in
the resulting parameter estimate. Details relating to the com-
putation of confidence bounds (directly related to the precision
of the estimate) are presented in 9.3 and 9.4.

6. Interferences

6.1 CAUTION—Many ceramics are susceptible to slow
crack growth (SCG—either environmentally-assisted or
thermally-activated) in which flaw sizes/shapes/locations
change with time and result in changes in the strength
distributions. The analysis methods used in this practice
assume that flaws and strength are stationary (non-variant with
time) with identical statistics of ensemble and sample.
Therefore, if SCG occurs during testing (for example, high
temperature or high humidity) or SCG is determined from
fractography, a time-variable process exists, the baseline as-
sumptions of the practice are not met, and the analysis and
calculation methods in this practice will not give valid, reliable
estimates of the Weibull parameters.

6.2 Note that oxide ceramics, glasses, glass ceramics, and
ceramics containing boundary phase glass are particularly
susceptible to slow crack growth. Time-dependent effects that
are caused by environmental factors (for example, water as
humidity in air) may be minimized through the use of inert
testing atmosphere such as dry nitrogen gas or vacuum.

6.3 Thermally activated slow crack growth may occur at
elevated temperatures even in inert atmospheres. Thermally
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activated SCG can be reduced or eliminated by testing at
accelerated testing rates. (See the appropriate ceramic me-
chanical testing standard—tensile, flexure, compression, cyclic
loading, creep, etc.)

6.4 Many ceramics such as boron carbide, silicon carbide,
aluminum nitride and many silicon nitrides have no sensitivity
to slow crack growth at room or moderately elevated tempera-
tures.

7. Outlying Observations

7.1 Before computing the parameter estimates, the data
should be screened for outlying observations (outliers). An
outlying observation is one that deviates significantly from
other observations in the sample. It should be understood that
an apparent outlying observation may be an extreme manifes-
tation of the variability of the strength of an advanced ceramic.
If this is the case, the data point should be retained and treated
as any other observation in the failure sample. However, the
outlying observation may be the result of a gross deviation
from prescribed experimental procedure or an error in calcu-
lating or recording the numerical value of the data point in
question. When the experimentalist is clearly aware that a gross
deviation from the prescribed experimental procedure has
occurred, the outlying observation may be discarded, unless the
observation can be corrected in a rational manner. The proce-
dures for dealing with outlying observations are detailed in
Practice E178.

8. Maximum Likelihood Parameter Estimators for
Competing Flaw Distributions

8.1 This practice outlines the application of parameter
estimation methods based on the maximum likelihood tech-
nique. This technique has certain advantages, especially when
parameters must be determined from censored failure popula-
tions. When a sample of test specimens yields two or more
distinct flaw distributions, the sample is said to contain
censored data, and the associated methods for censored data
must be employed. Fractography (see Section 10) should be
used to determine whether multiple flaw distributions are
present. The methods described in this practice include cen-
soring techniques that apply to multiple concurrent flaw
distributions. However, the techniques for parameter estima-
tion presented in this practice are not directly applicable to data
sets that contain exclusive or compound multiple flaw distri-
butions (7). The parameter estimates obtained using the maxi-
mum likelihood technique are unique (for a two-parameter
Weibull distribution), and as the size of the sample increases,
the estimates statistically approach the true values of the
population.

8.2 This practice allows failure to be controlled by multiple
flaw distributions. Advanced ceramics typically contain two or
more active flaw distributions each with an independent set of
parameter estimates. The censoring techniques presented
herein require positive confirmation of multiple flaw
distributions, which necessitates fractographic examination to
characterize the fracture origin in each test specimen. Multiple
flaw distributions may be further evidenced by deviation from
the linearity of the data from a single Weibull distribution (for

example, Fig. 2). However, since there are many exceptions,
observations of approximately linear behavior should not be
considered sufficient reason to conclude that only a single flaw
distribution is active.

8.2.1 For data sets with multiple active flaw distributions
where one flaw distribution (identified by fractographic analy-
sis) occurs in a small number of test specimens, it is sufficient
to report the existence of this flaw distribution (and the number
of occurrences), but it is not necessary to estimate Weibull
parameters. Estimates of the Weibull parameters for this flaw
distribution would be potentially biased with wide confidence
bounds (neither of which could be quantified through use of
this practice). However, special note should be made in the
report if the occurrences of this flaw distribution take place in
the upper or lower tail of the sample strength distribution.

8.3 The application of the censoring techniques presented in
this standard can be complicated by the presence of test
specimens that fail from extraneous flaws, fractures that
originate outside the effective gage section, and unidentified
fracture origins. If these complications arise, the strength data
from these specimens should generally not be discarded.
Strength data from specimens with fracture origins outside the
effective gage section in tension specimens, and outside the
inner span region of four-point flexural specimens, should be
examined to ascertain whether fracture was caused by an
extraneous flaw or fixture misalignment. Specimens with
fractures that originate from extraneous flaws should be
censored; and the maximum likelihood methods presented in
this standard are applicable.

8.3.1 Test specimens with unidentified fracture origins
sometimes occur. It is imperative that the number of unidenti-
fied fracture origins, and how they were classified, be stated in
the test report. This practice recognizes four options the
experimentalist can pursue when unidentified fracture origins

NOTE 1—The boxes refer to surface flaws; the circles refer to volume
flaws.

FIG. 2 Example—Failure Data in Section 11.2
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are encountered during fractographic examinations. The situa-
tion may arise where more than one option will be used within
a single data set. Test specimens with unidentified fracture
origins can be:

8.3.1.1 Option a—Assigned a previously identified flaw
distribution using inferences based on all available fracto-
graphic information,

8.3.1.2 Option b—Assigned the same flaw distribution as
that of the test specimen closest in strength,

8.3.1.3 Option c—Assigned a new and as yet unspecified
flaw distribution, and

8.3.1.4 Option d—Be removed from the sample.

NOTE 1—The user is cautioned that the use of any of the options
outlined in 8.3.1 for the classification of test specimens with unidentified
fracture origins may create a consistent bias error in the parameter
estimates. In addition, the magnitude of the bias cannot be determined by
the methods presented in 9.2.

8.3.2 A discussion of the appropriateness of each option in
8.3.1 is given in Appendix X2. If the strength data and the
resulting parameter estimates are used for component design,
the engineer must consult with the fractographer before and
after performing the fractographic examination. Considerable
judgement may be needed to identify the correct option.
Whenever partial fractographic information is available,
8.3.1.1 is strongly recommended, especially if the data are used
for component design. Conversely, 8.3.1.4 is not recommended
by this practice unless there is overwhelming justification.

8.4 The likelihood function for the two-parameter Weibull
distribution of a censored sample is defined by the following
equation (8):

+H II
i51

r S m̂
σ̂θ
D S σ i

σ̂θ
! m̂21 exp F2S σ i

σ̂θ
! m̂G J II

j5r11

N

expF2S σ j

σ̂θ
! m̂G

(12)

This expression is applied to a sample where two or more
active concurrent flaw distributions have been identified from
fractographic inspection. For the purpose of the discussion
here, the different distributions will be identified as flaw Types
A, B, C, etc. When Eq 12 is used to estimate the parameters
associated with the A flaw distribution, then r is the number of
test specimens where Type A flaws were found at the fracture
origin, and i is the associated index in the first summation. The
second summation is carried out for all other test specimens not
failing from type A flaws (that is, Type B flaws, Type C flaws,
etc.). Therefore, the sum is carried out from (j = r + 1) to N (the
total number of test specimens) where j is the index in the
second summation. Accordingly, σi and σj are the maximum
stress in the ith and jth test specimen at failure. The parameter
estimates (the Weibull modulus m̂and the characteristic
strength σ̂θ) are determined by taking the partial derivatives of
the logarithm of the likelihood function with respect to m̂ and
σ̂θ and equating the resulting expressions to zero. Note that σ̂θ
is a function of test specimen geometry and the estimate of the
Weibull modulus. Expressions that relate σ̂θ to the Weibull
material scale parameter σ̂0 for typical test specimen geom-
etries are given in 8.6. Finally, the likelihood function for the
two-parameter Weibull distribution for a single-flaw popula-
tion is defined by the following equation:

+ 5 II
i51

N S m̂
σ̂ θ

D S σ i

σ̂θ
! m̂21 expF2S σ i

σ̂θ
! m̂ G (13)

where r was taken equal to N in Eq 12.

8.5 The system of equations obtained by maximizing the log
likelihood function for a censored sample is given by the
following equations (9):

(
i51

N

~σ i!
m̂ 1n~σ i!

(
i51

N

~σ i!
m̂

2
1
r (

i51

r

1n~σ i! 2
1
m̂

5 0 (14)

and

σ̂θ 5 F S (
i51

N

~σ i!
m̂D 1

r G
1/m̂

(15)

where:
r = number of failed test specimens from a particular group

of a censored sample.

When a sample does not require censoring, r is replaced by
N in Eq 14 and Eq 15. Eq 14 is solved first for m̂. Subsequently
σ̂θ is computed from Eq 15. Obtaining a closed-form solution
of Eq 14 for m̂ is not possible. This expression must be solved
numerically. When there are multiple active flaw populations,
Eq 14 and Eq 15 must be solved for each flaw population. A
computer algorithm (entitled MAXL) that calculates the root of
Eq 14 is presented as a convenience in Appendix X1.

8.6 The numerical procedure in accordance with 7.5 yields
parameter estimates of the Weibull modulus (m̂) and the
characteristic strength ( σ̂θ). Since the characteristic strength
also reflects test specimen geometry and stress gradients, this
standard suggests reporting the estimated Weibull material
scale parameter σ̂0.

8.6.1 The following equation defines the relationship be-
tween the parameters for tensile test specimens:

~σ̂0! V
5 ~V!1/~m̂ !v~σ̂θ! V

(16)

where V is the volume of the uniform gage section of the
tensile test specimen, and the fracture origins are spatially
distributed strictly within this volume. The gage section of a
tensile test specimen is defined herein as the central region of
the test specimen with the smallest constant cross-sectional
area. However, the experimentalist may include transition
regions and the shank regions of the test specimen if the
volume (or area) integration defined by Eq 10 is analyzed
properly. This procedure is discussed in 8.6.3. If the transition
region or the shank region, or both, are included in the
integration, Eq 16 is not applicable. For tensile test specimens
in which fracture origins are spatially distributed strictly at the
surface of the test specimens tested, the following equation
applies:

~ σ̂ 0!A
5 ~A! 1/~m̂ !A~ σ̂ θ!A

(17)

where A = surface area of the uniform gage section.
8.6.2 For flexural test specimen geometries, the relation-

ships become more complex (10). The following relationship is
based on the geometry of a flexural test specimen found in Fig.
3. For fracture origins spatially distributed strictly within both
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the volume of a flexural test specimen and the outer span, the
following equation applies:

~σ̂0!V
5 ~σ̂θ!V

U VF S Li

L o
D ~m̂!v

11G
2@~m̂!v

11# 2
U 1/~m̂ !V

(18)

where:
Li = length of the inner span,
Lo = length of the outer span,
V = volume of the gage section defined by the following

expression:

V 5 b d Lo (19)

and:
b,d = dimensions identified in Fig. 2.

For fracture origins spatially distributed strictly at the
surface of a flexural test specimen and within the outer span,
the following equation applies:

~σ̂0!A
5 ~σ̂θ! A

F L oS d

~m̂!A
11

1bD S S Li

Lo
D ~m̂!A

11

~m̂!A
11

D G 1/~m̂ ! A

(20)

8.6.3 Test specimens other than tensile and flexure test
specimens may be utilized. Relationships between the estimate
of the Weibull characteristic strength and the Weibull material
scale parameter for any test specimen configuration can be
derived by equating the expressions defined by Eq 8 and Eq 10
with the modifications that follow. Begin by replacing σ (an
applied uniaxial tensile stress) in Eq 8 with σmax, which is
defined as the maximum tensile stress within the test specimen
of interest. Thus:

Pf 5 1 2 expF2S σmax

σθ
D mG (21)

8.6.4 Also perform the integration given in Eq 10 such that

P f 5 1 2 expF2kVS σmax

σ0
D mG (22)

where k is a dimensionless constant that accounts for test
specimen geometry and stress gradients. Note that in general,
k is a function of the estimated Weibull modulus m̂, and is
always less than or equal to unity. The product (kV) is often
referred to as the effective volume (with the designation VE).
The effective volume can be interpreted as the size of an
equivalent uniaxial tensile test specimen that has the same risk
of rupture as the test specimen or component. As the term
implies, the product represents the volume of material subject

to a uniform uniaxial tensile stress (11). Setting Eq 21 and Eq
22 equal to one another yields the following expression:

~ σ̂ 0! V
5 ~kV! 1/~m̂ !V~ σ̂ θ! V

(23)

8.6.5 Thus, for an arbitrary test specimen, the experimen-
talist evaluates the integral identified in Eq 10 for the effective
volume (kV), and utilizes Eq 23 to obtain the estimated Weibull
material scale parameter σ̂0. A similar procedure can be
adopted when fracture origins are spatially distributed at the
surface of the test specimen.

8.7 An objective of this practice is the consistent represen-
tation of strength data. To this end, the following procedure is
the recommended graphical representation of strength data.
Begin by ranking the strength data obtained from laboratory
testing in ascending order, and assign to each a ranked
probability of failure Pf according to the estimator as follows:

Pf~σ i! 5
i 2 0.5

N
(24)

where:
N = number of test specimens, and
i = ith datum.

Compute the natural logarithm of the ith failure stress, and
the natural logarithm of the natural logarithm of [1/(1 − Pf)]
(that is, the double logarithm of the quantity in brackets),
where Pf is associated with the ith failure stress.

8.8 Create a graph representing the data as shown in Fig. 2.
Plot ln$ ln@1/~12P f!#% as the ordinate, and ln(σ) as the abscissa.
A typical ordinate scale assumes values from +2 to −6. This
approximately corresponds to a range in probability of failure
from 0.25 to 99.9 %. The ordinate axis must be labeled as
probability of failure Pf, as depicted in Fig. 2. Similarly, the
abscissa must be labeled as failure stress (flexural, tensile, etc.),
preferably using units of megapascals or gigapascals.

8.9 Included on the plot should be a line (two or more lines
for concurrent flaw distributions) whose position is fixed by the
estimates of the Weibull parameters. The line is defined by the
following mathematical equation:

Pf 5 1 2 expF2S σ
σ̂θ
D m̂G (25)

The slope of the line, which is the estimate of the Weibull
modulus m̂, should be identified, as shown in Fig. 2. The
estimate of the characteristic strength σθ should also be
identified. This corresponds to a Pf of 63.2 %, or a value of
zero for ln|ln@1/1~12Pf!#. A test report (that is, a data sheet) that
details the type of material characterized, the test procedure
(preferably designating an appropriate standard), the number of
failed test specimens, the flaw type, the maximum likelihood
estimates of the Weibull parameters, the unbiasing factor, and
the information that allows the construction of 90 % confi-
dence bounds is depicted in Fig. 4. This data sheet should
accompany the graph to provide a complete representation of
the failure data. Insert a column on the graph (in any conve-
nient location), or alternatively provide a separate table that
identifies the individual strength values in ascending order as
shown in Fig. 5. (12) This will permit other users to perform

FIG. 3 Flexural Test Specimen Geometry
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FIG. 4 Sample Test Report
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alternative analyses (for example, future implementations of
bias correction or confidence bounds, or both, on multiple flaw
populations). In addition, the experimentalist should include a
separate sketch of the test specimen geometry that includes all
pertinent dimensions. An estimate of mean strength can also be
depicted in the graph. The estimate of mean strength |gm is
calculated by using the arithmetic mean as the estimator in the
following equation:

µ̂ 5 S (
i51

N

σ iD S 1
N D (26)

Note that this estimate of the mean strength is not appropri-
ate for samples with multiple failure populations.

9. Unbiasing Factors and Confidence Bounds

9.1 Paragraphs 9.2 through 9.4 outline methods to correct
for statistical bias errors in the estimated Weibull parameters
and outlines methods to calculate confidence bounds. The
procedures described herein to correct for statistical bias errors
and to compute confidence bounds are appropriate only for
data sets where all failures originate from a single flaw
population (that is, an uncensored sample). Procedures for bias
correction and confidence bounds in the presence of multiple
active flaw populations are not well developed at this time.
Note that the statistical bias associated with the estimator σ̂θ is
minimal (<0.3 % for 20 test specimens, as opposed to .7 %
bias for m̂ with the same number of test specimens). Therefore,
this practice allows the assumption that σ̂θ is an unbiased
estimator of the true population parameter. The parameter
estimate of the Weibull modulus (m̂) generally exhibits statis-
tical bias. The amount of statistical bias depends on the number
of test specimens in the sample. An unbiased estimate of m
shall be obtained by multiplying m̂ by unbiasing factors (13).
This procedure is discussed in the following sections. Statisti-
cal bias associated with the maximum likelihood estimators
presented in this practice can be reduced by increasing the
sample size.

9.2 An unbiased estimator produces nearly zero statistical
bias between the value of the true parameter and the point
estimate. The amount of deviation can be quantified either as a
percent difference or with unbiasing factors. In keeping with
the accepted practice in the open literature, this practice
quantifies statistical bias through the use of unbiasing factors,
denoted here as UF. Depending on the number of test speci-
mens in a given sample, the point estimate of the Weibull
modulus m̂may exhibit significant statistical bias. An unbiased
estimate of the Weibull modulus (denoted as m̂U) is obtained by
multiplying the biased estimate with appropriate unbiasing
factor. Inbiasing factors for m̂ are listed in Table 1. The
example in 11.3 demonstrates the use of Table 1 in correcting
a biased estimate of the Weibull modulus. As a final note, this
procedure is not appropriate for censored samples. The theo-
retical approach was developed for uncensored samples where
r = N.

9.3 Confidence bounds quantify the uncertainty associated
with a point estimate of a population parameter. The size of the
confidence bounds for maximum likelihood estimates of both
Weibull parameters will diminish with increasing sample size.
The values used to construct confidence bounds are based on
percentile distributions obtained by Monte Carlo simulation.
For example, the 90 % confidence bound on the Weibull
modulus is obtained from the 5 and 95 percentile distributions
of the ratio of m̂to the true population value m. For the point
estimate of the Weibull modulus, the normalized values (m̂/m)
necessary to construct the 90 % confidence bounds are listed in
Table 2. The example in 10.3 demonstrates the use of Table 2
in constructing the upper and lower bounds in m̂. Note that the
statistical biased estimate of the Weibull modulus must be used
here. Again, this procedure is not appropriate for censored
statistics.

FIG. 5 Example—Failure Data with Fractography Information (12)

TABLE 1 Unbiasing Factors for the Maximum Likelihood
Estimate of the Weibull Modulus

Number of Test
Specimens, N

Unbiasing Factor,
UF

Number of Test
Specimens, N

Unbiasing Factor,
UF

5 0.700 42 0.968
6 0.752 44 0.970
7 0.792 46 0.971
8 0.820 48 0.972
9 0.842 50 0.973

10 0.859 52 0.974
11 0.872 54 0.975
12 0.883 56 0.976
13 0.893 58 0.977
14 0.901 60 0.978
15 0.908 62 0.979
16 0.914 64 0.980
18 0.923 66 0.980
20 0.931 68 0.981
22 0.938 70 0.981
24 0.943 72 0.982
26 0.947 74 0.982
28 0.951 76 0.983
30 0.955 78 0.983
32 0.958 80 0.984
34 0.960 85 0.985
36 0.962 90 0.986
38 0.964 100 0.987
40 0.966 120 0.990
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9.4 Confidence bounds can be constructed for the estimated
Weibull characteristic strength. However, the percentile distri-
butions needed to construct the bounds do not involve the same
normalized ratios or the same tables as those used for the
Weibull modulus. Define the function as follows:

t 5 m̂ln~σ̂θ/σθ! (27)

The 90 % confidence bound on the characteristic strength is
obtained from the 5 and 95 percentile distributions of t. For the
point estimate of the characteristic strength, these percentile
distributions are listed in Table 3. The example in 11.3
demonstrates the use of Table 3 in constructing upper and
lower bounds on σ̂θ. Note that the biased estimate of the
Weibull modulus must be used here. Again, this procedure is
not appropriate for censored statistics. Note that Eq 27 is not
applicable for developing confidence bounds on σ̂0, therefore
the confidence bounds on σ̂θ should not be converted through
the use of Eq 8 and Eq 10.

10. Fractography

10.1 Fractographic examination of each failed test specimen
is highly recommended in order to characterize the fracture
origins. The strength of advanced ceramics is often limited by
discrete fracture origins that may be intrinsic or extrinsic to the
material. Porosity, agglomerates, inclusions, and atypical large
grains would be considered intrinsic fracture origins. Extrinsic
fracture origins are typically on the surface of the test specimen
and are the result of contact stresses, impact events, or adverse
environment. When the means are available to the
experimentalist, fractographic methods should be used to
locate, identify, and classify the strength limiting fracture
origin causing catastrophic failure in an advanced ceramic test

specimen. Moreover, for the purpose of parameter estimation,
each classification of fracture origin must be identified as a
surface fracture origin or a volume fracture origin in order to
use the expressions given in 8.6. The classification shall be
based on the spatial distribution of a given flaw type (that is,
volume-distributed pores versus surface-distributed machining
damage) and not the specific location of a given flaw in a
particular test specimen. Thus, there may exist several classi-
fications of fracture origins within the volume (or surface area)
of the test specimens in a sample. It should be clearly indicated
on the test report (Fig. 4) if a fractographic analysis is not
performed. The experimentalist is urged to follow the guide-
lines established in Practice C1322 concerning fractography.

10.2 Optional—Perform a fractographic analysis and label
each datum with a symbol identifying the type of fracture
origin. This can either be a word, an abbreviation, or a different
symbol for each type of fracture origin, as depicted in Fig. 5.
For example, the abbreviations in LG in Fig. 5 represents
failure due to a large grain.

11. Examples

11.1 For the first example, consider the failure data in Table
4. The data represent four-point (1⁄4 point) flexural test speci-
mens fabricated from HIP’ed (hot isostatically pressed) silicon
carbide (14). The solution of Eq 14 requires an iterative
numerical scheme. Using the computer algorithm MAXL (see
Appendix X1), a parameter estimate of m̂ = 6.48 was obtained.
(Note that an unbiased value of m̂ = 6.38 is shown in Fig. 6;
See 11.3 and Eq 31.) Subsequent solution of Eq 15 yields a
value of σ̂θ = 556 MPa. These values for the Weibull param-
eters were generated by assuming a unimodal failure sample
with no censoring (that is, r = N). Fig. 6 depicts the individual

TABLE 2 Normalized Upper and Lower Bounds on the Maximum
Likelihood Estimate of the Weibull Modulus—90 % Confidence

Interval

Number of Test
Specimens, N q0.05 q0.95

Number of Test
Specimens, N q0.05 q0.95

5 0.683 2.779 42 0.842 1.265
6 0.697 2.436 44 0.845 1.256
7 0.709 2.183 46 0.847 1.249
8 0.720 2.015 48 0.850 1.242
9 0.729 1.896 50 0.852 1.235

10 0.738 1.807 52 0.854 1.229
11 0.745 1.738 54 0.857 1.224
12 0.752 1.682 56 0.859 1.218
13 0.759 1.636 58 0.861 1.213
14 0.764 1.597 60 0.863 1.208
15 0.770 1.564 62 0.864 1.204
16 0.775 1.535 64 0.866 1.200
17 0.779 1.510 66 0.868 1.196
18 0.784 1.487 68 0.869 1.192
19 0.788 1.467 70 0.871 1.188
20 0.791 1.449 72 0.872 1.185
22 0.798 1.418 74 0.874 1.182
24 0.805 1.392 76 0.875 1.179
26 0.810 1.370 78 0.876 1.176
28 0.815 1.351 80 0.878 1.173
30 0.820 1.334 85 0.881 1.166
32 0.824 1.319 90 0.883 1.160
34 0.828 1.306 95 0.886 1.155
36 0.832 1.294 100 0.888 1.150
38 0.835 1.283 110 0.893 1.141
40 0.839 1.273 120 0.897 1.133

TABLE 3 Normalized Upper and Lower Bounds on the Function
t—90 % Confidence Interval

Number of Test
Specimens, N t0.05 t0.95

Number of Test
Specimens, N t0.05 t0.95

5 −1.247 1.107 42 −0.280 0.278
6 −1.007 0.939 44 −0.273 0.271
7 −0.874 0.829 46 −0.266 0.264
8 −0.784 0.751 48 −0.260 0.258
9 −0.717 0.691 50 −0.254 0.253

10 −0.665 0.644 52 −0.249 0.247
11 −0.622 0.605 54 −0.244 0.243
12 −0.587 0.572 56 −0.239 0.238
13 −0.557 0.544 58 −0.234 0.233
14 −0.532 0.520 60 −0.230 0.229
15 −0.509 0.499 62 −0.226 0.225
16 −0.489 0.480 64 −0.222 0.221
17 −0.471 0.463 66 −0.218 0.218
18 −0.455 0.447 68 −0.215 0.214
19 −0.441 0.433 70 −0.211 0.211
20 −0.428 0.421 72 −0.208 0.208
22 −0.404 0.398 74 −0.205 0.205
24 −0.384 0.379 76 −0.202 0.202
26 −0.367 0.362 78 −0.199 0.199
28 −0.352 0.347 80 −0.197 0.197
30 −0.338 0.334 85 −0.190 0.190
32 −0.326 0.323 90 −0.184 0.185
34 −0.315 0.312 95 −0.179 0.179
36 −0.305 0.302 100 −0.174 0.175
38 −0.296 0.293 110 −0.165 0.166
40 −0.288 0.285 120 −0.158 0.159
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failure data and a curve based on the estimated values of the

parameters. Next, assuming that the failure origins were
surface distributed and then inserting the estimated value of m̂
and σ̂θ into Eq 20 along with the test specimen geometry (that
is, Lo = 40 mm, Li = 20 mm, d = 3.5 mm, and b = 4.5 mm)
yields ( σ̂0)a = 137 MPa·(m)0.309. Note that ( σ̂0)a has units of
stress·(area)1/m̂; thus, 0.309 = (2./6.48). Alternatively, if one
were to assume that the failure origins were volume
distributed, then the solution of Eq 18 yields
( σ̂0)V = 37.0 MPa·(m)0.463. Note that ( σ̂0)V has units of

stress·(volume)1/m̂; thus, 0.463 = (3./6.48). The different values
obtained from assuming surface and volume fracture origins
underscore the necessity of conducting a fractographic analy-
sis.

11.2 Next, consider a sample that exhibits multiple active
flaw distributions (see Table 5). Here each flexural test speci-
men was subjected to a fractographic analysis. The failure
origin was identified as either a volume or a surface fracture
origin, and parameter estimates were obtained by using Eq 14
and Eq 15. For the analysis with volume fracture origins, r =
13, and the calculations yielded values of (m̂)V = 6.79 and (

TABLE 4 Unimodal Failure Stress Data for Hipped (Hot
Isostatically Pressed) Silicon Carbide—Example 1

Test Specimen
number, N

Strength, σi,
MPa

Test Specimen
number, N

Strength, σi,
MPa

1 281 41 516
2 291 42 520
3 358 43 528
4 385 44 531
5 389 45 531
6 391 46 546
7 392 47 549
8 403 48 553
9 412 49 560

10 413 50 562
11 414 51 563
12 418 52 566
13 418 53 566
14 427 54 570
15 438 55 573
16 440 56 575
17 441 57 576
18 442 58 580
19 444 59 583
20 445 60 588
21 446 61 589
22 452 62 591
23 452 63 591
24 453 64 593
25 470 65 599
26 474 66 600
27 476 67 610
28 476 68 613
29 479 69 620
30 484 70 620
31 485 71 622
32 486 72 622
33 489 73 640
34 492 74 649
35 493 75 657
36 496 76 660
37 506 77 664
38 512 78 674
39 512 79 674
40 514 80 725

FIG. 6 Example—Failure Data in 11.1

TABLE 5 Bimodal Failure Stress Data—Example 2

Number of
Test
Specimens,
N

Strength,
MPa

Fracture
Origin typeA

Number of
Test

Specimens,
N

Strength,
MPa

Fracture
OriginA

1 416 V 41 671 S
2 458 S 42 672 S
3 520 V 43 672 S
4 527 V 44 674 S
5 546 S 45 677 S
6 561 V 46 677 S
7 572 S 47 678 S
8 595 V 48 680 S
9 604 S 49 683 S

10 604 S 50 684 S
11 609 V 51 686 S
12 612 S 52 687 S
13 614 S 53 687 S
14 621 V 54 691 S
15 622 S 55 694 S
16 622 S 56 695 S
17 622 V 57 700 S
18 622 S 58 703 S
19 625 S 59 703 S
20 626 V 60 703 S
21 631 S 61 703 S
22 640 S 62 704 S
23 643 V 63 704 S
24 649 S 64 706 S
25 650 S 65 710 S
26 652 V 66 713 S
27 655 S 67 716 S
28 657 S 68 716 S
29 657 V 69 716 S
30 660 S 70 716 S
31 660 S 71 716 S
32 662 V 72 717 S
33 662 S 73 725 S
34 662 S 74 725 S
35 664 S 75 725 S
36 664 S 76 726 S
37 664 S 77 727 S
38 666 S 78 729 S
39 669 S 79 732 S
40 671 S . . . . . . . . .
A Volume fracture origin, V; surface flaw origin, S.
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σ̂θ)V = 876 MPa. For the analysis with surface fracture origins,
r = 66, and the calculations yielded values of ( m̂)a = 21.0 and
( σ̂θ)a = 693 MPa. For the most part, the data as plotted in Fig.
2 fall near the solid curve, which represents the combined
probability of failure as follows (15):

Pf 5 1 2 @1 2 ~P f!A#@1 2 ~ Pf!V# (28)

where (Pf)V is calculated by using the following equation:

~P f!V
5 1 2 expF2S σ

~σ̂θ!V
D ~m̂ !VG (29)

and (Pf)A is calculated by using the following equation:

~P f!A
5 1 2 expF2S σ

~σ̂θ!a
D ~m̂ !AG (30)

The curve obtained from Eq 28 asymptotically approaches
the intersecting straight lines that are defined by the estimated
parameters and calculated from Eq 29 and Eq 30. Inserting the
estimated Weibull parameters (obtained from the analysis for
volume fracture origins) into Eq 18 along with the test
specimen geometry (Lo = 40 mm, Li = 20 mm, d = 3.5 mm,
and b = 4.5 mm) yields ( σ̂0)V = 65.6 MPa·(m)0.442. Inserting
the estimated Weibull parameters (obtained from the analysis
for surface fracture origins) into Eq 20 yields ( σ̂0)a = 446
MPa·(m)0.95.

11.2.1 It must be noted in this example that fractography
apparently indicated that all volume failures were initiated
from a single distribution of volume flaws, and that all surface
failures were initiated from a single distribution of surface
flaws. Often, fractography will indicate more complex situa-
tions such as two independent distributions of volume flaws
(for example, inclusions of foreign material and large voids) in
addition to a distribution of surface flaws. Analysis of this type
of sample would be very similar to the analysis discussed in
10.1, except that Eq 14 and Eq 15 would be used three times
instead of twice, and the resulting figure would include three
straight lines labelled accordingly.

11.3 As an example of computing unbiased estimates of the
Weibull modulus, and bounds on both the Weibull modulus and
the Weibull characteristic strength, consider the unimodal
failure sample presented in 10.1. The sample contained 80 test

specimens and the biased estimate of the Weibull modulus was
determined to be m̂ = 6.48. The unbiasing factor corresponding
to this sample size is UF = 0.984, which is obtained from Table
1. Thus, the unbiased estimate of the Weibull modulus is given
as follows:

m̂ U 5 m̂ 3 UF

5~6.48!~0.984!

56.38 (31)

The upper bound on m̂for this example is as follows:

m̂upper 5 m̂/q 0.05

56.48/0.878

57.38 (32)

where q0.05 is obtained from Table 2 for a sample size of 80
failed test specimens. The lower bound is as follows:

m̂lower 5 m̂/q 0.95

56.48/1.173

55.52 (33)

where q0.95 is obtained from Table 2. Similarly, the upper
bound on σ̂θ is as follows:

~σ̂θ!upper
5 σ̂θexp~2t 0.05/m̂!

5~556!exp~0.197/6.48!

5573 MPa (34)

where t0.05 is obtained from Table 3 for a sample size of 80
failed test specimens. The lower bound on σ̂θ is as follows:

~σ̂θ! lower
5 σ̂θexp~2t0.95/m̂!

5~556!exp~0.197/6.48!

5539 MPa (35)

where t0.95 is also obtained from Table 3.

12. Keywords

12.1 advanced ceramics; censored data; confidence bounds;
fractography; fracture origin; maximum likelihood; strength;
unbiasing factors; Weibull characteristic strength; Weibull
modulus; Weibull scale parameter; Weibull statistics

APPENDIXES

(Nonmandatory Information)

X1. COMPUTER ALGORITHM MAXL

X1.1 Using maximum likelihood estimators to compute
estimates of the Weibull parameters requires solving Eq 14 and
Eq 15 for m̂ and σ̂θ, respectively. The solution of Eq 15 is
straightforward once the estimate of the Weibull modulus m̂ is
obtained from Eq 14. Obtaining the root of Eq 14 requires an
iterative numerical solution. In this appendix, the theoretical
approach is presented for the numerical solution of these
equations, along with the details of a computer algorithm
(optional) that can be used to solve Eq 14 and Eq 15. A flow

chart of the algorithm, which is entitled MAXL, is presented in
Fig. X1.1.

X1.2 The MAXL algorithm employs a Newton-Raphson
technique (16) to find the root of Eq 14. The root of Eq 14
represents a biased estimate of the Weibull modulus. Solution
of Eq 15, which depends on the biased value of m̂, is
effectively an unbiased estimate of the characteristic strength.
The reader is cautioned not to correct m̂for bias prior to
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computing the characteristic strength. This would yield an
incorrect value of σ̂θ. This approach expands Eq 14 in a Taylor
series about m̂0;

f~m̂! 5 f~m̂0!1~m̂ 2 m̂0!@f '~m̂0!# (X1.1)

1F ~m̂ 2 m̂0!2

2 G f " ~m̂0!1 . . .

wheref (m̂) represents the right-hand side of Eq 14 and m̂0 is
not a root of f(m̂) but is reasonably close. Taking:

∆m̂ 5 m̂ 2 m̂0 (X1.2)
and setting Eq X1.1 equal to zero, then:

0 5 f~m̂0!1~∆m̂ !@f '~m̂0!#1F ~∆m̂ !2

2 G f"~m̂0!1 . . . (X1.3)

If the Taylor series expansion is truncated after the first three
terms, the resulting expression is quadratic in ∆m̂. The roots of
the quadratic form of Eq X1.3 are as follows:

∆m̂a,b 5 2F f '~m̂!
f"~m̂! G6F S f '~m̂!

f"~m̂!D
2

2 2 S f~m̂!
f"~m̂!D G

1/2

(X1.4)

After obtaining ∆m̂a,band knowing m̂0, Eq X1.2 is then
solved for two values of m̂ that represent improved (better than
m̂0) estimates of the roots of f(m̂), thus

m̂a 5 m̂ 01∆m̂a (X1.5)

and

m̂b 5 m̂ 01∆m̂b (X1.6)

Eq 14 is evaluated with both values of m̂, and the quantity
that yields a smaller functional value is accepted as the updated
estimate. This updated value ofm̂ replaces m̂0 in Eq X1.4, and
the next iteration is performed. The iterative procedure is
terminated when the functional evaluation of Eq 14 becomes
less than some predetermined tolerance ε.

X1.3 The following variable name list is provided as a
convenience for interpreting the source code of the algorithm
MAXL: DF, DDF—first and second derivatives with respect to
m̂ of Eq 14.
EPS—predetermined convergence criterion.
F—function defined in Eq 14.
NLIM—maximum numbers of iterations allowed in determin-
ing the root of Eq X1.3.
NSUSP—number of suspended (or censored) data (<NT).
NT—number of failure stresses.
ST—failure stress; an argument passed to MAXL as input.
STNORM—the largest failure stress; used to normalize all
failure stresses to prevent computational overflows.
MO—updated value of m̂.
MA, MB—values of the roots m̂a and m̂b.
WCS—estimated Weibull characteristic strength.
WMT—maximum likelihood estimate of the Weibull modulus.

X1.4 A listing of the FORTRAN source code of the algo-
rithm MAXL is given in Fig. X1.2.

X2. TEST SPECIMENS WITH UNIDENTIFIED FRACTURE ORIGINS

X2.1 Paragraphs 8.3.1.1 to 8.3.1.4 describe four options, (a)
through (d), the experimentalist can utilize when unidentified
fracture origins are encountered during fractographic examina-
tion. The following four subsections further define the four
options, and use examples to illustrate appropriate and inap-
propriate situations for their use.

X2.1.1 Option (a) involves using all available fractographic
information to subjectively assign a test specimen with an
unidentified origin to a previously identified fracture origin
classification. Many test specimens with unidentified fracture
origins have some fractographic information that was judged to
be insufficient for positive identification and classification. (It
should be noted that the degree of certainty required for
“positive identification” of a fracture-initiating flaw varies
from one fractographer to another.) In such cases, Option (a)
allows the experimentalist the use of the incomplete fracto-

graphic information to assign the unidentified fracture origin to
a previously identified flaw classification. This option is
preferred when partial fractographic information is available.
As an example, consider a tensile test specimen where frac-
tography was inconclusive. Fractographic markings may have
indicated that the origin was located at or very near the test
specimen surface, but the fracture-initiating flaw could not be
positively identified. Other test specimens from the sample
were positively identified as failing from machining flaws. It is
recognized that machining damage is often difficult to discern.
Therefore, in this case it would be appropriate to use Option (a)
and infer that the origin is machining damage. The test report
(see 8.9 and Fig. 4) must clearly indicate each test specimen
and where this (or any other) option is used for classifying
unidentified test specimens. The conclusion of machining
damage in this example, however, could be erroneous. For

FIG. X1.1 MAXL Flow Chart
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FIG. X1.2 FORTRAN Source Code of the Algorithm MAXL
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FIG. X1.2 FORTRAN Source Code of the Algorithm MAXL (continued)
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instance, the fracture-initiating flaw may have been a “main-
stream microstructural feature”4(17)(which is also typically
difficult to resolve and identify) that happen to be located near

the test specimen surface. The possibility of erroneous classi-
fication such as this are unavoidable in the absence of positive
identification of fracture origins.

X2.1.2 Option (b) involves assigning the unidentified frac-
ture origin to the fracture origin classification of the test
specimen closest in strength. The test specimen closest in
strength must have a positively identified fracture origin (not
one assigned using Options (a) through (d)). As an example of

4 “Mainstream microstructural features” or “ordinary microstructural features”
are fracture origins that occur at features such as very large grains that are part of
the ordinary distribution of the microstructure, albeit at the large end of the
distribution of such features. These are distinguished from abnormal microstructural
features such as inclusions or grossly large pores.

FIG. X1.2 FORTRAN Source Code of the Algorithm MAXL (continued)
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use of this option, consider a tensile test specimen that
shattered upon failure such that the fracture origin was dam-
aged and lost, but fracture was clearly initiated from an internal
flaw. Other test specimens from the sample included positive
identification of inclusions and large pores as two active
volume-distribution fracture origin classifications. When the
fracture strengths from the total data set were ordered, the test
specimen closest in strength to the test specimen with the
unidentified fracture origin was the test specimen that failed
from an inclusion. Use of Option (b) for this test specimen
would then allow the unidentified origin to be classified as an
inclusion. Justification for Option (b) arises from the tendency
of concurrent (competing) flaw distributions to group together
test specimens with the same origin classification when the test
specimens are listed in order of fracture strength. Therefore,
the most likely fracture origin classification of a random
unidentified test specimen is the classification of the test
specimen closest in strength. The above example can be
modified slightly to illustrate a situation where Option (b)
would be inappropriate. If the fracture origin classification of
the test specimen closest in strength was a machining flaw, then
Option (b) would lead to a conclusion inconsistent with the
fractographic observation that failure occurred from an internal
flaw. Fractographic evidence should always supersede conclu-
sions from Option (b).

X2.1.3 Option (c) assumes that the unidentified fracture
origins belong to a new, unclassified flaw type and treats these
fracture origins as a separate flaw distribution in the censored
data analysis. This may occur when the fractographer cannot
recognize the flaw type because features of the flaw are
particularly subtle and difficult to resolve. In such cases, the
fractographer may consistently fail to locate and classify the
fracture origin. Examples of flaw types that are difficult to
identify include: machining damage, zones of atypically high
microporosity, and mainstream microstructural features. Op-
tion (c) may be appropriate if a set of test specimens with
unidentified fracture origins have similar and apparently re-
lated features. Unfortunately, there are many situations where
Option (c) is incorrect and where use of this option could result
in substantial errors in parameter estimates. For instance,
consider the case where several unidentified test specimens are
concentrated in the upper tail (high strength) of the strength
distribution. These fracture origins may belong to a classifica-
tion that has been previously identified, but the smaller flaws at
the origins were harder to locate, or possibly the origins were
lost due to the greater fragmentation associated with high-
strength test specimens. Use of Option (c) to treat these
high-strength test specimens as a new flaw classification would
create a bias error of unknown magnitude in the parameter
estimates of the proper flaw classification.

X2.1.4 Option (d) involves the removal of test specimens
with unidentified fracture origins from the sample (that is, the
strengths are removed from the list of observed strengths). This
option is rarely appropriate, and is not recommended by this
practice unless there is clear justification. Option (d) is only
valid when test specimens with unidentified fracture origins are
randomly distributed through the full range of strengths and
flaw classifications. There are few plausible physical processes

that create such a random selection. An example where Option
(d) is justified is a data set of 50 test specimens where the first
10 fractured test specimens (in order of testing) were misplaced
or destroyed after testing but prior to fractography. The
unidentified test specimens were therefore created by a process
that is random. That is, the 10 strengths are expected to be
randomly distributed through the strength distribution of the
remaining 40, and the 10 origin classifications are expected to
be randomly distributed through the origin types of the
remaining 40. (In this example, Option (b) could also be
considered.) Option (d) is not appropriate where unidentified
fracture origins are a consequence of high-strength test speci-
mens shattering virulently such that the fragment with the
origin is lost. This situation occurs with more frequency in the
upper tail (high strength) of the strength distribution, and thus
the unidentified fracture origins would not occur at random
strengths.

X2.2 Paragraphs X2.2.1 to X2.2.6 expand on the proper use
and implementation of the four options described in X2.2.1.

X2.2.1 When partial fractographic information is available,
Option (a) is preferred and should be used to incorporate the
information as completely as possible into the assignment of
fracture origin classification. Option (d) should be used only in
unusual situations where a random process for creation of
unidentified origins can be justified.

X2.2.2 Situations may arise where more than one option
will be used within a single data set. For instance, of five test
specimens with unidentified origins, three might be classified
based on partial fractographic information using Option (a),
while the remaining two, which have no fractographic hints,
might then be classified using Option (b).

X2.2.3 When test specimens with unidentified fracture ori-
gins are contained within a data set, the test report (see 8.9)
must include a full description of which test specimens were
unidentified, and which option or options were used to classify
the test specimens.

X2.2.4 If the unidentified fracture origins occur frequently
in the lower tail of the strength distribution, then caution and
extra attention is warranted. Strength analyses are typically
extrapolated to lower strengths and lower probabilities of
failure than those observed in the data set. Proper statistical
evaluation and assignment of fracture origin classifications
near the lower-strength tail is therefore particularly important
because the low-strength distribution typically dominates ex-
trapolations of this type.

X2.2.5 When only a few fracture origins are unidentified,
effects of incorrect classification are minimal. When more than
5 or 10 % of the origins are unidentified, substantial statistical
bias in estimates of parameters can result. When used for
design applications, proper choice of options from X2.1 is
critical and should be carefully justified in the test report. In
such design applications, it may be prudent to carry out the
analysis for more than one option to determine the sensitivity
to choice of an improper option. For instance, in a group of 50
test specimens with 10 unidentified origins (no partial fracto-
graphic information), the analysis could be conducted first
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using Option (b) then again using Option (c). The results from
the two analyses could then be used individually to estimate the
behavior of the designed component. If a conservative predic-
tion of component behavior is warranted, the more conserva-
tive result of the two analyses should be used.

X2.2.6 Finally, if most or all of the test specimens within a
sample contain unidentified fracture origins, then censored data

analysis according to this practice is not possible. The strengths
should be plotted on Weibull probability axes and, if the data
reveal a pronounced bend (concave upwards) which is charac-
teristic of two or more concurrent flaw distributions, then the
methods described in this practice cannot be used without
further refinements.
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