

Standard Specification for Concentric-Lay-Stranded Self-Damping Aluminum Conductors, Steel Reinforced (ACSR/SD)¹

This standard is issued under the fixed designation B701/B701M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (\$\epsilon\$) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers concentric-lay-stranded self-damping aluminum conductor, steel-reinforced (ACSR/SD), and its component wires for use as overhead electrical conductors (Explanatory Notes 1 and 2).
- 1.2 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the specification. For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values stated or derived in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.
- 1.2.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.

Note 1—ACSR/SD is designed to control aeolian vibration by integral damping. The conductors consist of a central core of a round steel wire or wires surrounded by two layers of trapezoidal aluminum 1350-H19 wires or two layers of trapezoidal aluminum 1350-H19 wires and one layer of round aluminum 1350-H19 wires (Fig. 1). The trapezoidal-wire layers are separated from each other and from the steel core by two small annular gaps that provide the conductors self-damping characteristics. The round aluminum wires are in tight layer contact between themselves and the underlying trapezoidal wire layer. Different strandings of the same size of conductor are identified by type, which is the approximate ratio of steel area to aluminum area, expressed in percent (Table 1 and Table 2).

Note 2—The aluminum and temper designations conform to ANSI Standard H 35.1. Aluminum 1350 corresponds to UNS A91350 in accordance with Practice E527.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.
 - 2.2 ASTM Standards:²
 - B230/B230M Specification for Aluminum 1350–H19 Wire for Electrical Purposes
 - B232/B232M Specification for Concentric-Lay-Stranded Aluminum Conductors, Coated-Steel Reinforced (ACSR)
 - B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
 - B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
 - B498/B498M Specification for Zinc-Coated (Galvanized) Steel Core Wire for Use in Overhead Electrical Conductors
 - B500/B500M Specification for Metallic Coated or Aluminum Clad Stranded Steel Core for Use in Overhead Electrical Conductors
 - B502 Specification for Aluminum-Clad Steel Core Wire for Use in Overhead Electrical Aluminum Conductors
 - B549 Specification for Concentric-Lay-Stranded Aluminum Conductors, Aluminum-Clad Steel Reinforced for Use in Overhead Electrical Conductors
 - B606 Specification for High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Aluminum and Aluminum-Alloy Conductors, Steel Reinforced
 - B802/B802M Specification for Zinc-5 % Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR)
 - B803 Specification for High-Strength Zinc-5 % Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.07 on Conductors of Light Metals.

Current edition approved May 1, 2013. Published June 2013. Originally approved in 1981. Last previous edition approved in 2006 as B701/B701M-06. DOI: 10.1520/B0701_B0701M-13.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

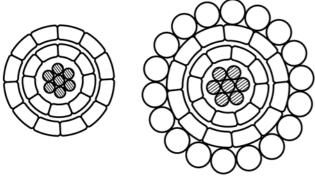


FIG. 1 Illustrations of Typical ACSR/SD Strandings

2.3 ANSI Documents:³

ANSI H35.1 American National Standard Alloy and Temper Designation Systems for Aluminum

2.4 NIST Documents:⁴

NBS Handbook 100 —Copper Wire Tables of the National Bureau of Standards

2.5 Aluminum Association Documents:⁵

Publication 50, Code Words for Overhead Aluminum Electrical Conductors

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 ACSR/SD covered by this specification has five types of coated core wire and one type of aluminum-clad core wire which are designated by abbreviations as follows (Explanatory Notes 2 and 10):
- 3.1.2 *ACSR/SD/AW2*—ACSR/SD using aluminum-clad steel wire (Specification B502).
- 3.1.3 *ACSR/SD/GA2*—ACSR/SD using Class A zinc-coated steel wire (Specification B498/B498M).
- 3.1.4 *ACSR/SD/GC2*—ACSR/SD using Class C zinc-coated steel wire (Specification B498/B498M).
- 3.1.5 *ACSR/SD*—ACSR/SD using extra high-strength steel wire (Specification B606).
- 3.1.6 *ACSR/SD/MA2*—ACSR/SD using Class A zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.7 *ACSR/SD/MB2*—ACSR/SD using Class B zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.8 *ACSR/SD/MC2*—ACSR/SD using Class V zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.9 *ACSR/SD*—ACSR/SD using high-strength zinc-5 % Aluminum-mischmetal alloy-coated steel core wire (Specification B803).

3.2 For definitions of terms relating to conductors, refer to Terminology Standard B354.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
 - 4.1.1 Quantity of each size and type (Note 1),
 - 4.1.2 Conductor size: kcmil area,
- 4.1.3 Conductor type and number of wires, aluminum and steel (Table 1),
- 4.1.4 Type of steel core wire and if zinc or Zn-5 % Al-MM alloy coated, area density (Classes A, B, and C) of coating (see 5.2),
 - 4.1.5 Special tension test, if required (see 9.2),
 - 4.1.6 Place of inspection (Section 15),
 - 4.1.7 Package size (see 16.1),
 - 4.1.8 Special package marking, if required (Section 17), and
 - 4.1.9 Heavy wood lagging, if required (see 16.3).

5. Requirement For Wires

- 5.1 Before stranding, the round and trapezoidal aluminum wires shall conform to the requirements of Specification B230/B230M except for shape and diameter tolerance of the trapezoidal wires. The tensile strength and elongation requirements of trapezoidal wires shall be the same as for round wires of equal area. The area tolerances shall be such that the finished conductor conforms to Section 12.
- 5.2 Before stranding, the steel core wire shall meet the requirements of Specifications B498/B498M, B502, B606, B802/B802M, or B803, whichever is applicable.

6. Joints

- 6.1 Electric-butt welds, electric-butt, cold-upset welds, or cold-pressure welds may be made in the individual aluminum wires during the stranding process. No weld shall occur within 50 ft. [15 m] of any other weld in the completed conductor (Explanatory Note 3).
 - 6.2 There shall be no joints made in the finished steel wires.

7. Lay

- 7.1 The nominal lay factors for the trapezoidal aluminum wires are shown in Table 1 (Explanatory Note 1 and Note 4).
- 7.2 The lay factor for the round aluminum wires shall be not less than 10 nor more than 13.
- 7.3 The lay factor for the steel core shall be set forth by Specification B500/B500M.
- 7.4 The direction of lay of the outside layer of aluminum wires shall be right-hand.
- 7.5 The direction of lay of the aluminum and steel wires shall be reversed in successive layers.
- 7.6 For the purpose of this specification the lay factor is the ratio of the length of lay to the external diameter of the corresponding layer of wires or members in the stranded conductor.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from National Institute of Standards and Technology (NIST), 100 Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http://www.nist.gov.

 $^{^5}$ Available from Aluminum Association, Inc., 1525 Wilson Blvd., Suite 600, Arlington, VA 22209, http://www.aluminum.org.

TABLE 1 Construction Requirements of Aluminum Conductors, Self Damping, Concentric-Lay-Stranded, Steel-Reinforced

Conductor Size		Stranding Number of Wires and Diameter, in Aluminum			Steel ^C	Nominal Alumi- num	Mass per	Rated Strength,	Nominal Outside
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Round	Lay Factor	1000 ft, lb	kip ^{A,B}	Diameter, in.
2156	8	Bluebird		10 × 0.2179 15 × 0.2184	19 × 0.0961	14.5 12.1	2504	60.7	1.716
1780	8	Chukar	21 × 0.2145	9 × 0.2041 13 × 0.2150	19 × 0.0874	11.0 14.5 12.0	2068	51.1	1.565
1780	5	Smew	21 × 0.1957	8 × 0.2171 14 × 0.2128	7 × 0.1144	11.0 16.0 12.5	1921	43.6	1.531
1590	13	Falcon	21 × 0.1914	10 × 0.1891 14 × 0.1977	19 × 0.1030	11.5 13.5 11.7	2039	55.1	1.521
1590	7	Lapwing	24 × 0.1690	8 × 0.2059 12 × 0.2130	7 × 0.1253	11.5 15.9 12.8	1791	42.6	1.468
1590	5	Ratite	21 × 0.1835	8 × 0.2095 13 × 0.2143	7 × 0.1083	11.5 15.4 12.5	1715	39.1	1.447
1431	13	Plover	23 × 0.1669	10 × 0.1792 14 × 0.1868	19 × 0.0977	11.5 13.5 11.7	1835	49.6	1.448
1431	7	Bobolink	24 × 0.1609	8 × 0.1946 12 × 0.2015	7 × 0.1189	11.5 15.1 12.2	1612	38.9	1.398
1431	5	Popinjay	21 × 0.1747	8 × 0.1936 13 × 0.1972	7 × 0.1025	11.5 16.0 12.5	1544	35.3	1.381
1351.5	13	Martin	21 × 0.1726 21 × 0.1772	11 × 0.1604 15 × 0.1652	19 × 0.0949	11.5 14.7 12.8	1733	46.8	1.417
1351.5	10	Frigate	21 × 0.1772	9 × 0.1786 14 × 0.1757	7 × 0.1377	11.5 14.5 12.2 11.0	1629	41.7	1.389
1351.5	7	Dipper	21 × 0.1733	8 × 0.1890 12 × 0.1954	7 × 0.1155	15.2 12.2 11.0	1522	36.7	1.361
1351.5	5	Ringdove	21 × 0.1680	8 × 0.1946 12 × 0.1949	7 × 0.0997	16.0 12.8 11.5	1458	33.4	1.344
1272	13	Pheasant	21 × 0.1723	11 × 0.1552 15 × 0.1599	19 × 0.0921	14.7 12.8 11.5	1631	44.1	1.378
1272	7	Bittern	21 × 0.1653	8 × 0.1829 12 × 0.1894	7 × 0.1121	14.5 12.3 11.5	1433	34.6	1.323
1272	5	Scissortail	21 × 0.1631	7 × 0.1929 11 × 0.2029	7 × 0.0967	15.7 12.3 11.5	1372	31.4	1.305
1192.5 1192.5	13 7	Grackle Bunting		10 × 0.2147 16 × 0.2138 8 × 0.1768	19 × 0.0892 7 × 0.1085	14.2 11.5 15.1	1526 1343	41.9 32.4	1.274 1.284
1192.5	5	Oxbird	21 × 0.1604	12 × 0.1831 7 × 0.1868	7 × 0.0936	12.2 11.5 15.7	1286	29.5	1.266
1113	13	Finch	21 × 0.1582	11 × 0.1960 9 × 0.2188	19 × 0.0862	12.3 11.5 14.2	1424	39.1	1.233
1113	7	Bluejay	21 × 0.1553	15 × 0.2133 8 × 0.1705 12 × 0.1765	7 × 0.1049	11.5 15.9 12.8 11.5	1254	30.3	1.242
1113	5	Avocet		7 × 0.1818 12 × 0.1798	7 × 0.0904	16.0 12.4	1200	27.5	1.226
1033.5	13	Curlew	21 × 0.1533	9 × 0.2106 14 × 0.2129	7 × 0.1383	11.5 14.2 11.5	1329	36.3	1.191
1033.5	7	Ortolan		8 × 0.2168 14 × 0.2167	7 × 0.1010	15.2 11.5	1161	28.1	1.145

TABLE 1 Continued

		S	Nominal - Alumi-		Rated	Nominal			
Conductor Size		Aluminum			Steel ^C	num Lay	Mass per 1000 ft, lb	Strength, kip ^{A,B}	Outside Diameter
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Round	Factor		МР	in.
1033.5	5	Snowbird		7 × 0.1746	7 × 0.871	16.0	1115	25.9	1.185
			21 × 0.1481	12 × 0.1731		12.4 11.5			
954	13	Cardinal		8 × 0.2147	7 × 0.1329	14.2	1227	33.5	1.147
054	-	D-il		13 × 0.2122	7 0 0074	11.5	1070	00.4	1 100
954	7	Rail		8 × 0.2080 13 × 0.2163	7 × 0.0971	15.2 11.5	1073	26.1	1.103
954	5	Phoenix		7×0.2196	7 × 0.0836	15.6	1027	23.7	1.088
795	16	Droko		13 × 0.2178	7 v 0 1260	11.5 13.9	1093	31.8	1.077
795	10	Drake		9×0.1865 13×0.1926	7 × 0.1360	11.5	1093	31.0	1.077
795	13	Condor		8 × 0.1957	7×0.1213	14.2	1023	28.2	1.055
795	10	Puffin		12×0.2018 7×0.2067	7 × 0.1056	11.5 14.7	956	25.1	1.034
755	10	i diiii		12 × 0.2033	7 × 0.1000	11.5	330	20.1	1.004
795	7	Tern		7 × 0.2034	7×0.0886	15.2	893	21.9	1.013
795	5	Macaw		11 × 0.2144 6 × 0.2167	7 × 0.0764	11.5 15.6	856	19.8	0.999
	Ü	macan		11 × 0.2160	, , o.o.o.	11.5	000		0.000
636	16	Grosbeak		9 × 0.1666	7 × 0.1216	13.9	874	25.4	0.975
636	13	Rook		13 × 0.1723 8 × 0.1749	7 × 0.1085	11.5 14.3	818	22.9	0.955
				12 × 0.1806		11.5			
636	10	Goldfinch		7 × 0.1848	7×0.0945	14.7 11.5	765	20.1	0.935
636	7	Killdeer		12 × 0.1819 7 × 0.1815	7 × 0.0793	15.2	715	17.7	0.917
				12×0.1838		11.5			
636	5	Pipit		6 × 0.1938 11 × 0.1932	7 × 0.0684	15.8 11.5	684	16.1	0.903
556.5	16	Dove		9 × 0.1557	7 × 0.1138	14.0	765	22.6	0.919
		5		13 × 0.1613		11.5	=		
556.5	13	Parakeet		8 × 0.1637 13 × 0.1662	7 × 0.1015	14.3 11.5	716	20.0	0.901
556.5	10	Sapsucker		7×0.1728	7×0.0884	14.7	669	17.8	0.882
556.5	7	Sunbird		12×0.1702 7×0.1707	7 × 0.0741	11.5 15.2	625	15.5	0.863
330.3	,	Gulibila		11 × 0.1790	7 × 0.0741	11.5	023	10.0	0.000
556.5	5	Blackbird		6 × 0.1820	1 × 0.1692	15.8	599	13.6	0.843
477	16	Hawk		10×0.1892 9×0.1438	7 × 0.1053	11.5 14.0	655.8	19.5	0.860
				13×0.1496		11.5			
477	13	Flicker		8×0.1515 13×0.1502	7×0.0940	14.4 11.5	613.5	17.2	0.843
477	10	Toucan		7 × 0.1599	7 × 0.0818	14.8	573.4	15.3	0.824
	_			12 × 0.1576		11.5		40.0	
477	7	Jackdaw		7×0.1577 12×0.1589	7 × 0.0686	15.2 11.5	535.8	13.3	0.808
477	5	Kestrel		6 × 0.1656	1 × 0.1566	16.0	513.3	11.7	0.787
207 F	10	lhio		10 × 0.1768	70.0061	11.5	E 4 0 E	10.4	0.771
397.5	16	lbis		9 × 0.1278 14 × 0.1338	7 × 0.0961	14.2 11.5	546.5	16.4	0.771
397.5	10	Stork		7 × 0.1424	7×0.0747	15.0	477.9	12.9	0.750
397.5	7	Longspur		12 × 0.1459 6 × 0.1501	1 × 0.1657	11.5 15.8	446.1	10.6	0.725
007.0	,	Longopui		11 × 0.1544	1 × 0.1007	11.5		10.0	0.720
397.5	5	Erne		6 × 0.1558	1 × 0.1430	15.6	427.7	9.74	0.717
336.4	16	Linnet		10 × 0.1587 10 × 0.1041	7 × 0.0884	11.5 14.7	462.4	14.3	0.716
				16×0.1194		11.5			
336.4	10	Woodcock		8×0.1215 14×0.1249	7 × 0.0687	15.1 11.5	404.5	11.0	0.688
336.4	7	Hummingbird		6 × 0.1406	1 × 0.1525	15.6	377.7	9.13	0.664
006.4	-	Coudeinel		11 × 0.1407	104045	11.5	004.0	0.5	0.007
336.4	5	Cowbird		6×0.1416 10×0.1470	1 × 0.1315	15.9 11.5	361.9	8.5	0.667
266.8	16	Partridge		10×0.0881	7 × 0.0788	15.0	367.0	11.35	0.645
266.8	10	Spoonbill		12 × 0.1256 8 × 0.0978	1 × 0.1619	11.5 16.0	320.0	8.45	0.610
200.0	10	Орооныш		11 × 0.1315	1 × 0.1019	11.3	320.0	0.40	0.010
	7	Eider		7×0.1080	1 × 0.1358	16.0	299.4	7.61	0.601

TABLE 1 Continued

		Str	anding Number o	f Wires and Diameter, in	Nominal - Alumi-	Mass per 1000 ft, lb	Rated Strength, kip ^{A,B}	Nominal Outside Diameter,	
Conducto	or Size		Aluminum		Steel ^C				num
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Round	- Lay Factor		KIP ^{A, D}	in.
266.8	5	Titmouse		6 × 0.1183 12 × 0.1234	1 × 0.1171	16.0 11.1	286.9	6.92	0.593

A Conversion Factors:

TABLE 2 Comparison of ACSR/SD with Equivalent Stranding of ACSR^A

	•
ACSR/SD Type Number ^B	Conventional ACSR Stranding ^C
5	42/7
7	45/7
8	84/19
10	22/7
13	54/7
13	54/19
13	24/7
16	26/7

^A The equivalent stranding is that stranding of conventional ACSR that has the same area of aluminum and steel as a given ACSR/SD type.

8. Construction

8.1 The nominal aluminum cross-sectional area, type, stranding, and equivalent wire diameters shall be as shown in Table 1 (Explanatory Note 1).

8.2 The smaller sizes of ACSR/SD consist of a steel core, an inner gap surrounded by a layer of trapezoidal aluminum wires (called the inner layer), and an outer gap surrounded by a second layer of trapezoidal aluminum wire (called the outer layer). The larger sizes of ACSR/SD consist of a steel core, an inner gap surrounded by a layer of trapezoidal aluminum wires (called the inner layer), an outer gap surrounded by a layer of trapezoidal aluminum wires (called the middle layer), and a layer of round aluminum wires (called the outer layer) fitting tightly over the middle layer. The diameter and number of steel core wires, the number and equivalent round wire diameters of the trapezoidal aluminum wires, and the number and diameter of the round aluminum wires shall be as shown in Table 1.

8.3 All conductor gaps shall be measured radially. The nominal thickness of the gap is 0.030 in. [0.75 mm]. The tolerance of both the inner and outer gaps shall be plus 0.000 in. [0.00 mm] and minus 0.010 in. [0.25 mm].

8.4 Tests to determine the actual diameter of the conductor are not required by this specification but shall be made if agreed upon between the manufacturer and purchaser at the time of placing the order. When measurements of the diameter are made, these shall be made in the manufacturer's premises during fabrication and at the central point between the final

closing die of the strander and the capstan when the conductor is under tension. When so measured the maximum difference in mean diameter from the nominal diameter shall be $1\,\%$ (measured in the transverse plane), and the maximum difference in diameter at any transverse section shall be not greater than $3\,\%$.

9. Strength of Conductor

9.1 The rated strength of a complete conductor, as shown in Table 1, shall be taken as the aggregate strength of the aluminum and steel components calculated as follows. The strength contribution of the aluminum 1350-H19 wires shall be taken as the percentage indicated in Table 3, in accordance with the number of aluminum layers, of the sum of the wire strengths calculated from the specified diameter of the round wires and from the diameters of round wires having the same area as the trapezoidal wires shown in Table 1, and the appropriate minimum average tensile strength given in Specification B230/B230M. The strength contribution of the steel core wires shall be taken as the percentage, indicated in Table 3, of the sum of the strengths of the steel wires calculated from their specified nominal wire diameter and the appropriate specified minimum stress at 1 % extension given in Specifications B498/B498M, B502, B606, B802/B802M, or B803, whichever is applicable (Explanatory Note 5).

9.1.1 The rated strengths of conductors calculated in accordance with 9.1 and 9.3, using Class A zinc-coated steel wires in accordance with Specification B498/B498M, are listed in Table 1.

TABLE 3 Rating Factors

Nu	ımber of Laye	rs	No. of	Rating Factor, %		
Alum	inum	Steel	Steel			
Round	Trape- zoidal	Round	Wires	Alumi- num	Steel	
	2	Α	1	95	96	
	2	1	7	95	96	
	2	2	19	95	93	
1	2	1	7	93	96	
1	2	2	19	93	93	

^A Central steel wire only; the 96 % rating factor is applied to the single steel wire core as a factor of safety in the event the steel wire contains a weld (made prior to drawing).

¹ kcmil = 0.5067 mm²1 in. = 25.4 mm1 kip = 1000 lbf = 4.448 kN.

^B Rated strengths of complete conductors are calculated in accordance with 9.1 and with Class A zinc-coated steel core wire in accordance with Specification B498/B498M.

^C Lay factors for steel core are the same as for equivalent stranding of conventional ACSR.

^D The type number is the approximate ratio of the steel to aluminum area in percent.

^E Code words shown in this column are obtained from, "Publication 50, Code Words for Overhead Aluminum Electrical Conductors," by the Aluminum Association. They are provided here for information only.

F Wire size indicates equal area round wire diameter.

^BACSR/SD type number is the approximate ratio of the steel area to the aluminum area in %.

^C See Specifications B232/B232M and B549.

- 9.2 Routine production testing after stranding is not required. However, when such tests are requested by the purchaser and agreed to by the manufacturer at the time of ordering (or made for other reasons) aluminum wires removed from the completed conductor shall have tensile strengths of not less than 95 % of the minimum tensile strength specified for the wire before stranding. The electrical resistivity shall meet the minimum resistivity specified for wire before stranding. Elongation tests may be made for information purposes only and no minimum values are assigned (Explanatory Note 6). The frequency of these tests shall be decided upon between the purchaser and the manufacturer.
- 9.3 Rated strength and breaking strength values shall be rounded to three significant figures in the final value only, in accordance with Practice E29.

10. Density

- 10.1 For the purpose of calculating mass per unit length, cross-sections, and so forth, the density of aluminum wire shall be taken as 2705 kg/m^3 [0.0975 lb/in.³] at 20°C (Explanatory Note 7).
- 10.2 For the purpose of calculating mass per unit length, cross-sections, and so forth, the density of zinc coated, zinc-5 % aluminum-mischmetal alloy-coated steel or aluminized steel wire shall be taken as 7780 kg/m³ [0.2810 lb/in.³] at 20°C.
- 10.3 For the purpose of calculating mass per unit length, cross-sections, and so forth, the density of aluminum-clad steel wire shall be taken as 6590 kg/m³ [0.2381 lb/in.³] at 20°C.

11. Mass per Unit Length and Electrical Resistance

11.1 The mass per unit length and electrical resistance of a unit length of stranded conductor are a function of the length of lay. The approximate mass per unit length and electrical resistance of a stranded conductor may be determined using the standard increments shown in Table 4. When greater accuracy is desired, the increment based on the actual lay of the conductor may be calculated (Explanatory Note 8).

TABLE 4 Standard Increments Due to Stranding

	Increment (Increase),%						
Stranding of	Mass per Unit Length and Electrical Resistance						
Type No.	Steel	Aluminum	Steel				
Two layer designs							
5	1	2.1	0				
5	7	2.1	0.4				
7	1	2.1	0				
7	7	2.1	0.4				
10	1	2.0	0				
10	7	2.25	0.4				
13	7	2.3	0.4				
13	19	2.3	0.6				
16	7	2.35	0.4				
Three layer designs							
5	7	2.35	0.4				
7	7	2.4	0.4				
8	19	2.6	0.6				
13	19	2.65	0.6				

11.2 In the calculation of the electrical resistance of a completed conductor, the resistivity of zinc-coated steel, zinc-5 % aluminum-mischmetal alloy-coated steel or aluminum-coated steel core wires shall be taken as 0.19157 Ω mm²/m at 20°C [68°F]. The resistivity of aluminum-clad steel core wires shall be taken as 0.0848 Ω mm²/m at 20°C. These are typical values and are not guaranteed.

12. Variations in Area

12.1 The area of cross-section of the aluminum wires of the conductor shall be not less than 98 % of the area specified. The area of each wire shall be determined by Test Method B263. In applying this method, the increment in area density resulting from stranding may be the applicable value specified in Table 4, or it may be calculated from the measured dimensions of the sample under test. In case of questions regarding area compliance, the actual area density increment due to stranding shall be calculated.

13. Workmanship, Finish, and Appearance

13.1 The conductor shall be clean and free of imperfections not consistent with good commercial practice.

14. Mechanical and Electrical Tests

- 14.1 Tests for mechanical and electrical properties of aluminum wires shall be made before stranding (Explanatory Note 5).
- 14.2 Tests for the properties of the steel core wires shall be made before stranding (Explanatory Note 5).
- 14.3 Measurement of gap dimensions specified in 8.3 shall be made during fabrication of the conductor. These measurements, as a minimum, shall be made after each new production setup and at least once for each 500 000 ft [150 000 m] of production unless otherwise agreed upon between the manufacturer and the purchaser at the time of placing the order (Explanatory Note 9).

15. Inspection

- 15.1 Unless otherwise specified in the contact or purchase order, the manufacturer shall be responsible for the performance of all inspection and test requirements specified.
- 15.2 All inspections and tests shall be made at the place of manufacture unless otherwise especially agreed upon between the manufacturer and the purchaser at the time of the purchase.
- 15.3 The manufacturer shall afford the inspector representing the purchaser all reasonable manufacturer's facilities to satisfy him that the material is being furnished in accordance with this specification.

16. Packaging and Package Marking

- 16.1 Package sizes and kind of package, reels, etc. shall be agreed upon between the manufacturer and the purchaser.
 - 16.2 There shall be only one length of conductor on a reel.
- 16.3 The conductors shall be protected against damage in ordinary handling and shipping. If heavy wood lagging is required, it shall be specified by the purchaser at the time of placing the order.

16.4 The net mass, length, size, kind of conductor, conductor type, stranding, type of steel coating or cladding, class of zinc or Zn-5 % Al-MM alloy coating (if used) and any other necessary identification shall be marked on a tag attached to the conductor inside the package. This same information, together with the purchase order number, the manufacturer's serial number (if any), and all shipping marks and other information required by the purchaser shall appear on the outside of the package.

17. Keywords

17.1 aluminum electrical conductors; concentric-lay stranded aluminum conductors; concentric-lay stranded aluminum conductors, steel-reinforced; concentric-lay stranded self-damping aluminum conductors, steel reinforced; electrical conductors; electrical conductors—aluminum; self-damping conductors; steel reinforced stranded aluminum conductors; stranded aluminum conductors

EXPLANATORY NOTES

Note 1—In this specification only concentric-lay-stranded self-damping aluminum conductors, steel-reinforced, are specifically designated. Conductor constructions not included in this specification should be agreed upon between the manufacturer and the purchaser when placing the order.

Note 2—For definitions of terms relating to conductors, refer to Terminology ${\bf B354}$.

Note 3—The behavior of properly spaced joints in aluminum wires in stranded conductors is related to both their tensile strength and elongation. Because of its higher elongation properties, the lower-strength electric-butt weld gives equivalent overall performance to that of a cold-pressure weld or an electric-butt, cold-upset weld in stranded conductors.

Note 4—The lay factor with respect to the outside diameter of a layer of wires varies for different layers and for different diameters of conductor, being larger for the inside layers than for the outside layer.

Note 5—To obtain the actual breaking strength of ACSR/SD tested as a unit requires special devices for gripping the ends of the aluminum and steel wires without causing damage thereto and resultant failure below the actual strength of the conductor. Various special dead-end devices are available for this purpose, such as compression sleeves. Ordinary grips or clamping devices are usually not suitable.

Note 6—Wire unlaid from conductors may have different physical properties from those of the wire prior to stranding because of the deformation brought about by stranding and straightening for test.

Note 7—This density is based upon 1350 aluminum.

Note 8—This increment of mass per unit length or electrical resistance of a complete concentric-lay-stranded conductor (k) in percent is:

$$k = 100(m - 1)$$

where m is the stranding factor, and is also the ratio of the mass per unit length or electrical resistance of a unit length of stranded conductor to that of a solid conductor of the same cross-sectional area or of a stranded conductor with infinite length of lay, that is, all wires parallel to the conductor axis. The stranding factor for the completed stranded conductors is the *numerical average* of the stranding factors for each of the individual wires in the conductor, including the straight core wire, if any (for which the stranding factor is unity). The stranding factor $(m_{\rm ind})$ for any given wire in a concentric-lay-stranded conductor is:

$$m_{\rm ind} = \sqrt{1 + (9.8696/n^2)}$$

where:

n

length of lay

diameter of helical path of wire

The derivation of the above is given in NBS Handbook 100.4

The factors k and m are to be determined separately for the steel core (Section 7).

Note 9—Tests for measuring the size of the gaps can be carried out by either of the following methods: Note 7(a)—Method A consists of drilling, radially, two small holes approximately 8 in. [200 mm] apart through the aluminum layers to the outside of the steel core while the conductor is under tension in the strander. The gaps in the conductor, including voids, are then filled through these holes with a permanent quick-setting compound. After the compound has set, the sample is removed from the conductor. From this sample a short section is further encapsulated; one cross-section of which is polished. Gap measurements are then taken (with a microscope of known magnification) to determine the average gap dimension. The average gap is the arithmetic mean of the individual gap measurements taken between the inner layer of trapezoidal aluminum wires and the nearest point on the outer aluminum trapezoidal layer or the steel core as the case may be, allowing for any misalignment that may exist in the individual trapezoidal wires.

Method B consists of encapsulating a short section of each trapezoidal wire layer of the conductor as it is fabricated in the strander in a quick-setting soft compound. This encapsulation is cut and removed in one piece from the trapezoidal wire layer under test. Measurements are then made of this encapsulation (with a comparator of known magnification) to determine the maximum amount of misalignment of the wires in each trapezoidal wire layer. The amount of this misalignment is then subtracted from the average gap which has been calculated from measurements taken of the core wire size, layer diameters, and trapezoidal wire thickness in order to determine the net gap of the sample.

Note 10—Some of the abbreviations for standard aluminum conductors with steel core have changed. The following tabulation shows the new designations and the prior designations:

ACSR/SD/AW2 was ACSR/SD/AW ACSR/SD/GA2 was ACSR/SD/GA ACSR/SD/GC2 was ACSR/SD/GC ACSR/SD/GA3 was ACSR/SD/HS ACSR/SD/MA2 was ACSR/SD/MA ACSR/SD/MB2 was ACSR/SD/MB ACSR/SD/MC2 was ACSR/SD/MC ACSR/SD/MA3 was ACSR/SD/MS ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/