Designation: B62 - 17

Standard Specification for Composition Bronze or Ounce Metal Castings¹

This standard is issued under the fixed designation B62; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This specification² establishes requirements for an alloy having a composition of copper, tin, lead, and zinc, used for component castings of valves, flanges, and fittings. The common trade name of this alloy is 85-5-5-5; the correct identification is Copper Alloy UNS No. C83600.³
- 1.2 The castings covered are used in products that may be manufactured in advance and supplied from stock from the manufacturer or other dealer.
- 1.3 *Units*—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:⁴

B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings

B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys
E8/E8M Test Methods for Tension Testing of Metallic Materials

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 MSS Standard:⁵

SP-25 Standard Marking System for Valves, Fittings, Flanges and Unions

3. General Requirements

- 3.1 The following sections of Specification B824 constitute a part of this specification. In the event of a conflict between this specification and Specification B824, the requirements of this specification shall take precedence.
 - 3.1.1 Other Requirements (Section 7),
- 3.1.2 Dimensions, Mass, and Permissible Variations (Section 8),
 - 3.1.3 Workmanship, Finish, and Appearance (Section 9),
 - 3.1.4 Sampling (Section 10),
 - 3.1.5 Number of Tests and Retests (Section 11),
 - 3.1.6 Specimen Preparation (Section 12),
 - 3.1.7 Test Methods (Section 13),
 - 3.1.8 Significance of Numerical Limits (Section 14),
 - 3.1.9 Inspection (Section 15),
 - 3.1.10 Rejection and Rehearing (Section 16),
 - 3.1.11 Certification (Section 17),
 - 3.1.12 Test Report (Section 18),
 - 3.1.13 Product Marking (Section 19), and
 - 3.1.14 Packaging and Package Marking (Section 20).

4. Terminology

4.1 For definitions of terms relating to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following information when placing orders for castings under this specification:
 - 5.1.1 Quantity of castings required;
 - 5.1.2 Copper Alloy UNS No. (Table 1);

¹ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.05 on Castings and Ingots for Remelting.

Current edition approved April 1, 2017. Published May 2017. Originally approved in 1926. Last previous edition approved in 2015 as B62-15. DOI: 10.1520/B0062-17.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-61 of that Code.

³ The UNS system for copper and copper alloys (see Practice E527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00". The suffix can be used to accommodate composition variations of the base alloy.

⁴ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁵ Available from Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, 127 Park St., NE, Vienna, VA 22180-4602, http://www.msshq.org.

TABLE 1 Chemical Requirements Copper Alloy UNS No. C83600

Elements	Composition, % max (Except as Indicated)	
Copper	84.0-86.0	
Tin	4.0-6.0	
Lead	4.0-6.0	
Zinc	4.0-6.0	
Nickel including Cobalt	1.0 ^A	
Iron	0.30	
Antimony	0.25	
Sulfur	0.08	
Phosphorus ^B	0.05	
Aluminum	0.005	
Silicon	0.005	

 $[^]A$ In determining copper minimum, copper may be calculated as copper plus nickel. B For continuous castings, Phosphorus shall be 1.5 % max.

- 5.1.3 Specification title, number, and year of issue;
- 5.1.4 Pattern or drawing number and condition (as-cast, machined);
- 5.1.5 Pressure test requirements, if specified in the purchase order (Specification B824);
- 5.1.6 Soundness requirements, if specified in the purchase order (Specification B824);
- 5.1.7 Certification, if specified in the purchase order (Specification B824):
- 5.1.8 Foundry test report, if specified in the purchase order (Specification B824);
- 5.1.9 Witness inspection, if specified in the purchase order (Specification B824);
- 5.1.10 ASME Boiler and Pressure Vessel application (Section 10); and
- 5.1.11 Product marking, if specified in the purchase order (Specification B824 and Section 11).
- 5.2 When material is purchased for agencies of the U.S. Government, specify the Supplementary Requirements in Specification B824.

6. Materials and Manufacture

- 6.1 Material(s):
- 6.1.1 The material of manufacture shall be a casting of Copper Alloy UNS No. C83600 of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 6.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.
 - 6.2 Manufacture:
- 6.2.1 The product shall be manufactured by such casting methods as to produce a uniform finished product.
- 6.2.2 Castings shall not be repaired, plugged, welded, or burned-in.

TABLE 2 Tensile Properties

Tensile strength, min, ksi ^A (MPa ^B)	30 (205)
Yield strength, C min, ksiA (MPaB)	14 (95)
Elongation in 2 in. or 50 mm, min, %	20

^A ksi = 1000 psi.

7. Chemical Composition

- 7.1 The material shall conform to the chemical composition requirements specified in Table 1 for the Copper Alloy UNS No. C83600
- 7.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.3 Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 1 are analyzed, their sum shall be as follows:

8. Mechanical Property Requirements

8.1 Mechanical properties shall be determined from separately cast test bars and shall meet the requirements shown in Table 2, when tested in accordance with Test Methods E8/E8M.

9. Specimen Preparation

9.1 Copper Alloy UNS No. C83600 test bar castings for tensile testing shall be cast to the form and dimensions shown in Fig. 2, Fig. 3, or Fig. 4 of Practice B208.

10. Certification

10.1 When material is specified to meet the requirements of *ASME Boiler and Pressure Vessel Code*, the certification requirements of Specification B824 are mandatory.

11. Packaging and Package Marking

11.1 Valves, flanges, and fittings shall be marked in accordance with the latest revision of the Standard Marking System for Valves, Fittings, Flanges, and Unions (ANSI/MSS SP-25) of the Manufacturers Standardization Society of the Valve and Fittings Industry, and in such position as not to injure the usefulness of the casting.

12. Keywords

12.1 copper-alloy castings; Copper Alloy UNS No. C83600; fittings; flanges; ounce metal castings; red brass castings; valves

^B See Appendix X1.

 $^{^{\}it C}$ Yield strength shall be determined as the stress producing an elongation under load of 0.5 %; that is, 0.01 in. (0.25 mm) in a gage length of 2 in. (51 mm).

APPENDIX

(Nonmandatory Information)

X1. METRIC EQUIVALENTS

X1.1 The SI unit for strength properties now shown is in accordance with the International System of Units (SI). The derived SI unit for force is the newton (N), which is defined as that force which when applied to a body having a mass of one kilogram gives it an acceleration of one metre per second squared ($N = kg \cdot m/s^2$). The derived SI unit for pressure or

stress is the newton per square metre (N/m^2) , which has been named the pascal (Pa) by the General Conference on Weights and Measures. Since 1 ksi = 6 894 757 Pa the metric equivalents are expressed as megapascal (MPa), which is the same as MN/m^2 and N/mm^2 .

SUMMARY OF CHANGES

Committee B05 has identified the location of selected changes to this standard since the last issue (B62-15) that may impact the use of this standard. (Approved April 1, 2017.)

- (1) A comprehensive review was made, incorporating current proper form and style practices.
- (2) Added Section 6 and renumbered sections that follow.
- (3) Relocated requirements of Section 8 into new Section 6.
- (4) Renamed and revised Section 9 to align with referenced requirements in Specification B824.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/