

# **Designation: B241/B241M - 16**

# Standard Specification for Aluminum and Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube<sup>1</sup>

This standard is issued under the fixed designation B241/B241M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\varepsilon$ ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

### 1. Scope\*

1.1 This specification<sup>2</sup> covers aluminum and aluminum-alloy seamless pipe in the alloys (Note 1) and tempers shown in Table 1 [Table 2] and seamless extruded round tube in the alloys and tempers shown in Table 3 [Table 4] intended for pressure applications. The standard sizes for seamless pipe are listed in Table 16.7 of ANSI H35.2 and H35.2(M). Nonstandard alloys, tempers, and sizes of pipe are produced as seamless extruded tube. Also included in this standard are seamless extruded pipe and seamless extruded tube for Oil & Gas Transmission previously covered under Specification B345/B345M.

Note 1—Throughout this specification, use of the term *alloy*, in the general sense, includes aluminum as well as aluminum alloy.

Note 2—For drawn seamless tubes, see Specifications B210 and B210M; for extruded tubes, Specifications B221 and B221M; for drawn seamless tubes for condensers and heat exchangers, Specifications B234 and B234M; for seamless condenser and heat exchanger tubes with integral fins, Specification B429/B429M; and for drawn tube for general purpose applications, Specifications B483/B483M.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 5 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.
- 1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.
- 1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.4.1 The SI units are shown either in brackets or in separate tables.

### 2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
  - 2.2 ASTM Standards:<sup>3</sup>
  - B210 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes
  - B210M Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes (Metric)
  - B221 Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
  - B221M Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric)
  - B234 Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers
  - B234M Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes for Condensers and Heat Exchangers (Metric)
  - B429/B429M Specification for Aluminum-Alloy Extruded Structural Pipe and Tube
  - B483/B483M Specification for Aluminum and Aluminum-Alloy Drawn Tube and Drawn Pipe for General Purpose Applications
  - B557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
  - B557M Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)
  - B594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products
  - B647 Test Method for Indentation Hardness of Aluminum Alloys by Means of a Webster Hardness Gage
  - B648 Test Method for Indentation Hardness of Aluminum

<sup>&</sup>lt;sup>1</sup> This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved Feb. 1, 2016. Published February 2016. Originally approved in 1949. Last previous edition approved in 2012 as  $B241/B241M - 12^{\epsilon 1}$ . DOI: 10.1520/B0241 B0241M-16.

<sup>&</sup>lt;sup>2</sup> For ASME Boiler and Pressure Vessel Code applications see related specifications 241/SB241-241M/SB241M in Section II of that code.

<sup>&</sup>lt;sup>3</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

Alloys by Means of a Barcol Impressor

B660 Practices for Packaging/Packing of Aluminum and Magnesium Products

B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products

B807/B807M Practice for Extrusion Press Solution Heat Treatment for Aluminum Alloys

B881 Terminology Relating to Aluminum- and Magnesium-Alloy Products

B918 Practice for Heat Treatment of Wrought Aluminum Alloys

B945 Practice for Aluminum Alloy Extrusions Press Cooled from an Elevated Temperature Shaping Process for Production of T1, T2, T5 and T10–Type Tempers

B985 Practice for Sampling Aluminum Ingots, Billets, Castings and Finished or Semi-Finished Wrought Aluminum Products for Compositional Analysis

E18 Test Methods for Rockwell Hardness of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere (Withdrawn 2011)<sup>4</sup>

E716 Practices for Sampling and Sample Preparation of Aluminum and Aluminum Alloys for Determination of Chemical Composition by Spectrochemical Analysis

E1004 Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method

E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry

G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products

2.3 ANSI Standards:

B2.1 Pipe Threads (except Dryseal)<sup>5</sup>

B36.10 Wrought Steel and Wrought Iron Pipe<sup>5</sup>

H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum<sup>6</sup>

H35.2 Dimensional Tolerances for Aluminum Mill Products<sup>6</sup>

H35.2(M) Dimensional Tolerances for Aluminum Mill Products [Metric]<sup>6</sup>

2.4 American Welding Society Standard

D10.7 Recommended Practices for Gas Shielded Arc Welding of Aluminumnd Aluminum-Alloy Pipe<sup>7</sup>

2.5 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)<sup>8</sup> 2.6 *Military Standard*:

MIL-STD-129 Marking for Shipment and Storage<sup>8</sup>

2.7 AMS Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials<sup>9</sup>

2.8 CEN EN Standards

CEN EN 14242 Aluminum and Aluminum Alloys— Chemical Analysis—Inductively Coupled Plasma Optical Emission Spectral Analysis<sup>10</sup>

### 3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 alclad seamless pipe or alclad seamless round tube, n—a composite pipe or tube product composed of a seamless aluminum alloy core having on either the inside or the outside surface a metallurgically bonded aluminum or aluminum-alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.2 *capable of, adj*—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.
- 3.1.3 extruded seamless alclad tube, n—a composite round tube product composed of an aluminum alloy core having on either the inside or outside surface a metallurgically bonded aluminum or aluminum alloy coating that is anodic to the core, thus electrolytically protecting the core against corrosion.
- 3.1.4 extruded seamless pipe, n—extruded seamless round tube with standardized sizes of outside diameter and wall thickness commonly designated by "Nominal Pipe Sizes" and American National Standards Institute (ANSI) "Schedule Numbers."
- 3.1.5 extruded seamless round tube, n—a hollow product having a round cross section and a uniform wall thickness, brought to final dimensions by extruding from a hollow cast ingot or mandrel pierced ingot.
- 3.1.6 *producer*, *n*—the primary manufacturer of the material
- 3.1.7 seamless pipe, n—extruded or drawn seamless tube having certain standardized sizes of outside diameter and wall thickness commonly designated by "Nominal Pipe Sizes" and American National Standards Institute (ANSI) "Schedule Numbers."
- 3.1.8 *supplier*, *n*—jobber or distributor as distinct from producer.
- 3.2 Other Definitions—For all other definitions of product terms, refer to Terminology B881.

<sup>&</sup>lt;sup>4</sup> The last approved version of this historical standard is referenced on www.astm.org.

<sup>&</sup>lt;sup>5</sup> Available from American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036.

<sup>&</sup>lt;sup>6</sup> Available from Aluminum Association, Inc., 1400 Crystal Dr., Suite 430, Arlington, VA 22202 http://www.aluminum.org.

<sup>&</sup>lt;sup>7</sup> Available from the American Welding Society, 8669 NW 36th St, Miami, FL 33166.

<sup>&</sup>lt;sup>8</sup> Available from Standardization Documents Order Desk, DODSSP, Bldg. 4, Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http://dodssp.daps.dla.mil.

 $<sup>^9</sup>$  Available from SAE International (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.

<sup>&</sup>lt;sup>10</sup> Available from European Committee for Standardization (CEN), 36 Rue de Stassart, B-1050, Brussels, Belgium, http://www.cenorm.be.

### 4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

Note 3—For inch-pound orders specify Specification B241; for metric orders specify Specification B241M. Do not mix units.

- 4.1.2 Quantity in pieces or pounds [kilograms],
- 4.1.3 Alloy (Section 7),
- 4.1.4 Temper (Section 9),
- 4.1.5 Pipe size and schedule number (Table 12.55 of ANSI H35.2 and H35.2(M)), or outside diameter and wall thickness (tube). Dimensional tolerances for 14, 16, 18, and 20-in. pipe sizes (see Table 4(a)) shall be agreed upon between the producer and purchaser and shall be specified contract or purchase order.
- 4.1.6 For alloy Alclad 3003, state clad inside or outside (Section 13).
  - 4.1.7 End configuration (Sections 15.4 and 15.5).
  - 4.1.8 Length (Section 14).
- 4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether solution treatment at the press is unacceptable (8.3),
- 4.2.2 Whether heat treatment in accordance with Practice B918 is required (8.4),
- 4.2.3 Whether pipe size under 1 in. (25 mm) shall be extruded only (5.1 and Table 1 [Table 2], Footnote F),

- 4.2.4 Whether threaded ends are required (see 15.2),
- 4.2.5 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 16),
- 4.2.6 Whether Practices B660 applies and, if so, the levels of preservation, packaging, and packing required (20.3),
- 4.2.7 Whether certification of the material is required (Section 21),
- 4.2.8 Requirements for tensile property and dimensional tolerance for sizes not specifically covered (9.1.2 and 14.2),
- 4.2.9 Whether ultrasonic inspection is required (Section 16, Table 6 [Table 7]),
- 4.2.10 Whether Sections 10 and 11 apply to 6063 and 6061 alloys, and
- 4.2.11 Whether the term "Seamless" is required in product marking in accordance with Practice B666/B666M.

### 5. Materials and Manufacture

- 5.1 The pipe and tube shall be produced from hollow extrusion ingot (cast in hollow form, or drilled, or pierced from solid ingot) and shall be extruded by use of the die and mandrel method.
- 5.1.1 At the option of the producer, the pipe and tube may be drawn after extrusion, provided all the requirements of this specification aremet.

### 6. Quality Assurance

6.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test

TABLE 1 Tensile Property Limits for Pipe, Inch-Pound Units<sup>A,B</sup>

| Alloy | Temper        | Pipe Size,<br>in. | Tensile Strength,<br>min, ksi | Yield Strength<br>(0.2 % Offset),<br>min, ksi | Elongation in<br>2 in. or 4 ×<br>Diameter, min, % <sup>C</sup> |
|-------|---------------|-------------------|-------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| 3003  | H18           | Under 1           | 27.0                          | 24.0                                          | 4                                                              |
|       | H112          | 1 and over        | 14.0                          | 5.0                                           | 25                                                             |
| 6005  | T1            | All               | 25.0                          | 15.0                                          | 16                                                             |
|       | T5            | All               | 38.0                          | 35.0                                          | 8                                                              |
| 6005A | T1            | All               | 25.0                          | 14.5                                          | 15                                                             |
|       | T5            | All               | 38.0                          | 31.0                                          | 7                                                              |
|       | T61           | Under 0.250       | 38.0                          | 35.0                                          | 8                                                              |
|       |               | 0.250-1.000       | 38.0                          | 35.0                                          | 10                                                             |
| 6041  | Т6            | All               | 45.0                          | 40.0                                          | 10                                                             |
| 6042  | T5, T5511     | All               | 38.0                          | 35.0                                          | 10                                                             |
| 6061  | T6 (Extruded) | Under 1           | 38.0                          | 35.0                                          | 8                                                              |
|       |               | 1 and over        | 38.0                          | 35.0                                          | 10 <sup>D</sup>                                                |
|       | T6 (Drawn)    | Under 1           | 42.0                          | 35.0                                          | 8 <sup>E</sup>                                                 |
|       |               | 1 and over        | 38.0                          | 35.0                                          | 10 <sup>F</sup>                                                |
| 6063  | Т6            | All               | 30.0                          | 25.0                                          | 8                                                              |
| 6064  | Т6            | All               | 42.0                          | 38.0                                          | 10                                                             |
| 6082  | Т6            | All               | 45.0                          | 38.0                                          | 8                                                              |
| 6105  | T1            | All               | 25.0                          | 15.0                                          | 16                                                             |
|       | T5            | All               | 38.0                          | 35.0                                          | 8                                                              |
| 6262  | Т6            | All               | 38.0                          | 35.0                                          | 10                                                             |
| 6351  | T5            | All               | 38.0                          | 35.0                                          | 10 <sup>D</sup>                                                |
|       | Т6            | All               | 42.0                          | 37.0                                          | 10 <sup>G</sup>                                                |

<sup>&</sup>lt;sup>A</sup> The basis for establishment of tensile property limits is shown in Annex A1.

<sup>&</sup>lt;sup>B</sup> For purposes of determining conformance with this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi, and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

Elongation of full-section and cut-out sheet-type specimens is measured in 2 in.; of round specimens, in 4 x specimen diameter.

 $<sup>^{</sup>D}$  For wall thicknesses less than 0.250 in., the minimum elongation is 8 %.

<sup>&</sup>lt;sup>E</sup> For wall thickness 0.050 to 0.259 in., the minimum elongation is 10 %.

<sup>&</sup>lt;sup>F</sup> For wall thickness 0.260 to 0.500 in., the minimum elongation is 12 %.

<sup>&</sup>lt;sup>G</sup> For wall thickness less than 0.125 in., the minimum elongation is 8 %.

TABLE 2 Tensile Property Limits for Pipe [SI Units]<sup>A,B</sup>

| Aller | Temper        | Dia - Oine and | Tensile Strength, | Yield Strength                | Elongati        | on, <sup>C</sup> min, % |
|-------|---------------|----------------|-------------------|-------------------------------|-----------------|-------------------------|
| Alloy | (Product)     | Pipe Size, mm  | min, MPa          | (0.2 % Offset), -<br>min, MPa | in 50 mm        | in 5 × Diameter         |
| 3003  | H18           | Under 25       | 185               | 165                           | 4               |                         |
|       | H112          | 25 and over    | 95                | 35                            | 25              | 22                      |
| 6005  | T1            | All            | 170               | 105                           | 16              | 14                      |
|       | T5            | All            | 260               | 240                           | 8               |                         |
| 6005A | T1            | All            | 170               | 100                           | 15              |                         |
|       | T5            | All            | 260               | 215                           | 7               | 6                       |
|       | T61           | All            | 260               | 240                           | 8               |                         |
| 6041  | Т6            | All            | 310               | 275                           | 10              | 9                       |
| 6042  | T5, T5511     | All            | 260               | 240                           | 10              | 9                       |
| 6061  | T6 (Extruded) | Under 25       | 260               | 240                           | 8               |                         |
|       | , ,           | 25 and over    | 260               | 240                           | 10 <sup>D</sup> | 9                       |
|       | T6 (Drawn)    | Under 25       | 290               | 240                           | 8 <sup>E</sup>  |                         |
|       | ,             | 25 and over    | 260               | 240                           | 10 <sup>F</sup> | 9                       |
| 6063  | Т6            | All            | 205               | 170                           | 8               | 7                       |
| 6064  | Т6            | All            | 290               | 260                           | 10              | 9                       |
| 6082  | Т6            | All            | 310               | 260                           | 10              | 8                       |
| 6105  | T5            | All            | 260               | 240                           | 8               | 7                       |
|       | Т6            | All            | 290               | 255                           | 10              | 9                       |
| 6262  | Т6            | All            | 260               | 240                           | 10              | 9                       |
| 6351  | T5            | All            | 260               | 240                           | 10 <sup>D</sup> | 9                       |
|       | Т6            | All            | 290               | 255                           | 10 <sup>G</sup> | 9                       |

<sup>&</sup>lt;sup>A</sup> The basis for establishment of mechanical property limits is shown in Annex A1.

requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections and tests are deemed necessary to ensure that material conforms to prescribed requirements.

- 6.2 Lot Definition—An inspection lot shall be defined as follows:
- 6.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 6.2.2 For non-heat treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form alloy, temper, and nominal dimensions subjected to inspection at one time.

### 7. Composition

7.1 Limits—The pipe or tube shall conform to the composition limits specified in Table 5. Conformance shall be determined by the producer, by taking samples in accordance with Practices E716, when the ingots are poured, and analyzing those samples in accordance with Test Methods E34, E607, E1251, or EN 14242. At least one sample shall be taken for each group of ingots poured simultaneously from the same source of molten metal. If the producer has determined the composition during pouring of the ingots, they shall not be required to sample and analyze the finished product.

- 7.2 If it becomes necessary too analyze the finished or semi-finished product for conformance to chemical composition limits, the methods of sampling and methods of analysis shall be as provided in the following:
- 7.2.1 *Methods of Sampling*—Samples for chemical analysis shall be taken in accordance with Practice B985.
- 7.2.2 *Methods of Analysis*—Analysis shall be performed in accordance with Test Methods E607, E1251, E34, or CEN EN 14242 (ICP method).

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

### 8. Heat Treatment

- 8.1 For the production of T1 and T5-type tempers, producer or supplier heat treatment shall be in accordance with Practice B945.
- 8.2 For the production of T3, T4, T6, T7, and T8-type tempers, except as noted in 8.3 or 8.4, shall be in accordance with AMS 2772.

<sup>&</sup>lt;sup>B</sup> For purposes of determining conformance with this specification, each value for ultimate strength and yield strength shall be rounded to the nearest 1 MPa, and each value for elongation shall be rounded to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

<sup>&</sup>lt;sup>C</sup> Elongations in 50 mm apply for pipe tested in full-section and to sheet type specimens taken from pipes having a wall up to 12.50 mm thick. Elongations in 5D, where D and A are diameter and cross-sectional area of the specimens respectively, apply to round test specimens machined from wall thicknesses over 6.30 mm.

<sup>&</sup>lt;sup>D</sup> For wall thicknesses up through 6.30 mm the minimum elongation is 8 %.

<sup>&</sup>lt;sup>E</sup> For wall thicknesses over 1.25 through 6.60 mm, the minimum elongation is 10 %.

F For wall thicknesses over 6.60 through 12.50 mm, the minimum elongation is 12 %.

<sup>&</sup>lt;sup>G</sup> For wall thicknesses up through 3.20 mm the minimum elongation is 8 %.

# TABLE 3 Tensile Property Limits for Extruded Tube, Inch-Pound Units $^{A\!,B}$

| Temper                                   | Specified Section or Wall Thickness, in. | Area, in. <sup>2</sup>        | Tensile Str   | ength, ksi | Yield Stre<br>(0.2 % Offs |         | Elongation in<br>in. or 4 ×<br>— Diameter, mi |
|------------------------------------------|------------------------------------------|-------------------------------|---------------|------------|---------------------------|---------|-----------------------------------------------|
|                                          | vvaii inickness, in.                     |                               | Min           | Max        | Min                       | Max     | — Diameter, mil                               |
|                                          |                                          |                               | Aluminum 1060 |            |                           |         |                                               |
| 0                                        | all                                      | all                           | 8.5           | 14.0       | 2.5                       |         | 25                                            |
| H112                                     | all                                      | all                           | 8.5           |            | 2.5                       |         | 25                                            |
| $F^D$                                    | all                                      | all                           |               |            |                           |         |                                               |
|                                          |                                          |                               | Aluminum 1100 |            |                           |         |                                               |
| 0                                        | all                                      | all                           | 11.0          | 15.5       | 3.0                       |         | 25                                            |
| H112<br>F <sup>D</sup>                   | all<br>all                               | all<br>all                    | 11.0          |            | 3.0                       |         | 25                                            |
| '                                        | ali                                      | all                           |               |            | • • •                     | • • • • |                                               |
|                                          |                                          |                               | Alloy 2014    |            |                           |         |                                               |
| 0                                        | all                                      | all                           |               | 30.0       |                           | 18.0    | 12                                            |
| T4<br>T4510 <sup>E</sup>                 | all                                      | all                           | 50.0          |            | 35.0                      |         | 12                                            |
| T4511 <sup>E</sup>                       | all                                      | all                           | 50.0          |            | 00.0                      |         | 12                                            |
| )                                        |                                          |                               |               |            |                           |         |                                               |
| T42                                      | all                                      | all                           | 50.0          |            | 29.0                      |         | 12                                            |
| T6 、                                     | up thru 0.499                            | all                           | 60.0          |            | 53.0                      |         | 7                                             |
| T6510 <sup>E</sup>                       | 0.500-0.749                              | all                           | 64.0          |            | 58.0                      |         | 7                                             |
| T6511 <sup>E</sup>                       | 0.750 and over                           | up thru 25                    | 68.0          |            | 60.0                      |         | 7                                             |
| )                                        |                                          |                               |               |            |                           |         |                                               |
|                                          |                                          | over 25 thru 32               | 68.0          |            | 58.0                      | • • •   | 6                                             |
| T62                                      | up thru 0.749                            | all                           | 60.0          |            | 53.0                      |         | 7                                             |
|                                          | 0.750 and over                           | up thru 25                    | 60.0          |            | 53.0                      |         | 7                                             |
| $F^D$                                    | all                                      | over 25 thru 32<br>all        | 60.0          |            | 53.0                      |         | 6                                             |
|                                          |                                          |                               | Alloy 2024    |            |                           |         |                                               |
| 0                                        | all                                      | all                           |               | 35.0       |                           | 19.0    | 12                                            |
| Т3                                       | up thru 0.249                            | all                           | 57.0          |            | 42.0                      |         | 10                                            |
| T3510 <sup>E</sup>                       | 0.250-0.749                              | all                           | 60.0          |            | 44.0                      |         | 10                                            |
| T3511 <sup>E</sup>                       | 0.750–1.499                              | all                           | 65.0          |            | 46.0                      |         | 10                                            |
|                                          |                                          |                               | =0.0          |            | 40.0                      |         |                                               |
|                                          | 1.500 and over                           | up thru 25<br>over 25 thru 32 | 70.0<br>68.0  |            | 48.0<br>46.0              |         | 10<br>8                                       |
|                                          |                                          |                               |               |            |                           |         |                                               |
| T42                                      | up thru 0.749                            | all                           | 57.0          |            | 38.0                      |         | 12                                            |
|                                          | 0.750–1.499                              | all                           | 57.0          |            | 38.0                      |         | 10                                            |
|                                          | 1.500 and over                           | up thru 25<br>over 25 thru 32 | 57.0<br>57.0  |            | 38.0<br>38.0              |         | 10<br>8                                       |
|                                          |                                          | 0001 20 11110 02              | 07.0          |            | 00.0                      |         | · ·                                           |
| T81 _                                    | 0.050-0.249                              | all                           | 64.0          |            | 56.0                      |         | 4                                             |
| Γ8510 <sup>E</sup>                       | 0.250-1.499                              | all                           | 66.0          |            | 58.0                      |         | 5                                             |
| Γ8511 <sup><i>E</i></sup>                | 1.500 and over                           | up thru 32                    | 66.0          |            | 58.0                      | • • •   | 5                                             |
|                                          |                                          |                               |               |            |                           |         |                                               |
| $F^D$                                    | all                                      | all                           |               |            |                           |         |                                               |
|                                          |                                          |                               | Alloy 2219    |            |                           |         |                                               |
| 0                                        | all                                      | all                           |               | 32.0       |                           | 18.0    | 12                                            |
| T31                                      |                                          |                               | 40.0          |            | 00.5                      |         |                                               |
| T3510 <sup>E</sup><br>T3511 <sup>E</sup> | up thru 0.499<br>0.500–2.999             | up thru 25<br>up thru 25      | 42.0<br>45.0  |            | 26.0<br>27.0              |         | 14<br>14                                      |
| 10011                                    | 1.500-2.999                              | up IIIIu ∠5                   | 45.0          |            | 21.0                      |         | 14                                            |

| Temper                 | Specified Section or Wall Thickness, in. | Area, in. <sup>2</sup> | Tensile Str       | ength, ksi | Yield Stre<br>(0.2 % Offs |       | Elongation in 2<br>in. or 4 ×<br>— Diameter, min, |
|------------------------|------------------------------------------|------------------------|-------------------|------------|---------------------------|-------|---------------------------------------------------|
|                        | vvali Tilickiless, III.                  |                        | Min               | Max        | Min                       | Max   | — Diameter, min, % <sup>C</sup>                   |
| T62                    | up thru 0.999                            | up thru 25             | 54.0              |            | 36.0                      |       | 6                                                 |
| T81                    | 1.000 and over                           | up thru 25             | 54.0              |            | 36.0                      |       | 6                                                 |
| T8510 <sup>E</sup>     | up thru 2.999                            | up thru 25             | 58.0              |            | 42.0                      |       | 6                                                 |
| T8511 <sup>E</sup>     |                                          |                        |                   |            |                           |       |                                                   |
| $F^D$                  | all                                      | all                    |                   |            |                           |       |                                                   |
|                        | <del></del>                              | <del></del>            | Alloy 3003        |            |                           |       |                                                   |
|                        | -11                                      | -11                    |                   | 10.0       | 5.0                       |       | 05                                                |
| O<br>H112              | all<br>all                               | all<br>all             | 14.0<br>14.0      | 19.0       | 5.0<br>5.0                |       | 25<br>25                                          |
| F <sup>D</sup>         | all                                      | all                    |                   |            |                           |       |                                                   |
|                        |                                          |                        | Alclad Alloy 3003 | <b>I</b>   |                           |       |                                                   |
| 0                      | all                                      | all                    | 13.0              | 18.0       | 4.5                       |       | 25                                                |
| H112                   | all                                      | all                    | 13.0              |            | 4.5                       |       | 25                                                |
| $F^D$                  | all                                      | all                    |                   |            |                           |       |                                                   |
|                        |                                          |                        | Alloy 5052        |            |                           |       |                                                   |
| 0<br>F <sup>D</sup>    | all                                      | all                    | 25.0              | 35.0       | 10.0                      |       |                                                   |
| F <sup>D</sup>         | all                                      | all                    |                   |            |                           |       |                                                   |
|                        |                                          |                        | Alloy 5083        |            |                           |       |                                                   |
| 0                      | all                                      | up thru 32             | 39.0              | 51.0       | 16.0                      |       | 14                                                |
| H111                   | all                                      | up thru 32             | 40.0              |            | 24.0                      |       | 12                                                |
| H112                   | all                                      | up thru 32             | 39.0              |            | 16.0                      |       | 12                                                |
| F <sup>D</sup>         | all                                      | all                    |                   |            |                           |       |                                                   |
|                        |                                          |                        | Alloy 5086        |            |                           |       |                                                   |
| 0                      | all                                      | up thru 32             | 35.0              | 46.0       | 14.0                      |       | 14                                                |
| H111                   | all                                      | up thru 32             | 36.0              |            | 21.0                      |       | 12                                                |
| H112<br>F <sup>D</sup> | all<br>all                               | up thru 32<br>all      | 35.0              |            | 14.0                      |       | 12                                                |
|                        |                                          |                        | Alloy 5154        |            |                           |       |                                                   |
|                        | -11                                      | -11                    |                   | 44.0       | 44.0                      |       |                                                   |
| O<br>H112              | all<br>all                               | all<br>all             | 30.0<br>30.0      | 41.0       | 11.0<br>11.0              |       |                                                   |
|                        |                                          |                        | Alloy 5454        |            |                           |       |                                                   |
| 0                      | all                                      | up thru 32             | 31.0              | 41.0       | 12.0                      |       | 14                                                |
| H111                   | all                                      | up thru 32             | 33.0              |            | 19.0                      |       | 12                                                |
| H112<br>F <sup>D</sup> | all                                      | up thru 32             | 31.0              |            | 12.0                      |       | 12                                                |
| F                      | all                                      | all                    |                   |            |                           | • • • |                                                   |
|                        |                                          |                        | Alloy 5456        |            |                           |       |                                                   |
| 0                      | all                                      | up thru 32             | 41.0              | 53.0       | 19.0                      |       | 14                                                |
| H111                   | all                                      | up thru 32             | 42.0              |            | 26.0                      |       | 12                                                |
| H112<br>F <sup>D</sup> | all<br>all                               | up thru 32<br>all      | 41.0              |            | 19.0                      |       | 12<br>                                            |
|                        | <del></del>                              | <del></del>            | Alloy 6005        |            |                           |       |                                                   |
| T1                     | up thru 0.500                            | all                    | 25.0              |            | 15.0                      |       | 16                                                |
| T5                     | up thru 0.124                            | all                    | 38.0              |            | 35.0                      |       | 16<br>8                                           |
|                        | 0.125–1.000                              | all                    | 38.0              |            | 35.0                      |       | 10                                                |
|                        |                                          |                        | Alloy 6005A       |            |                           |       |                                                   |
| T1                     | up thru 0.249                            | all                    | 25.0              |            | 14.5                      |       | 15                                                |
| T5                     | up thru 0.249                            | all                    | 38.0              |            | 31.0                      |       | 7                                                 |
| T61                    | 0.250–0.999<br>up thru 0.249             | all<br>all             | 38.0<br>38.0      |            | 31.0<br>35.0              |       | 9<br>8                                            |
|                        | 0.250-1.000                              | all                    | 38.0              |            | 35.0                      |       | 10                                                |

| Temper                                   | Specified Section or Wall Thickness, in. | Area, in. <sup>2</sup> | Tensile Stre  | ength, ksi | Yield Stre<br>(0.2 % Offse |      | Elongation in in. or 4 × Diameter, mi |
|------------------------------------------|------------------------------------------|------------------------|---------------|------------|----------------------------|------|---------------------------------------|
|                                          | wan mickness, in.                        |                        | Min           | Max        | Min                        | Max  | — Diameter, mi                        |
|                                          |                                          |                        | Alloy 6013    |            |                            |      |                                       |
| T6,<br>T6511                             | 0.200-0.499                              | all                    | 49.0          |            | 46.0                       |      | 8                                     |
| 10011                                    | 0.500-0.749                              | all                    | 49.0          |            | 46.0                       |      | 8                                     |
|                                          | 0.750-2.000                              | all                    | 49.0          |            | 45.0                       |      | 8                                     |
|                                          |                                          |                        | Alloy 6041    |            |                            |      |                                       |
| T6,<br>T6511                             | 0.400–2.000                              | all                    | 45.0          |            | 40.0                       |      | 10                                    |
|                                          |                                          |                        | Alloy 6042    |            |                            |      |                                       |
| T5,                                      | 0.400-0.499                              | all                    | 38.0          |            | 35.0                       |      | 10                                    |
| T5511                                    | 0.500-1.800                              | all                    | 42.0          |            | 35.0                       |      | 10                                    |
|                                          |                                          |                        | Alloy 6061    |            |                            |      |                                       |
| 0                                        | all                                      | all                    |               | 22.0       |                            | 16.0 | 16                                    |
| T1                                       | up thru 0.625                            | all                    | 26.0          |            | 14.0                       |      | 16                                    |
| T4                                       |                                          |                        |               |            |                            |      |                                       |
| T4510 <sup>E</sup><br>T4511 <sup>E</sup> | all                                      | all                    | 26.0          |            | 16.0                       |      | 16                                    |
| J                                        |                                          |                        |               |            |                            |      |                                       |
| T42                                      | all                                      | all                    | 26.0          |            | 12.0                       |      | 16                                    |
| T51                                      | up thru 0.625                            | all                    | 35.0          |            | 30.0                       |      | 8                                     |
| T6, T62                                  |                                          |                        |               |            |                            |      |                                       |
| T6510 <sup>E</sup><br>T6511 <sup>E</sup> | up thru 0.249<br>0.250 and over          | all<br>all             | 38.0<br>38.0  |            | 35.0<br>35.0               |      | 8<br>10                               |
| J                                        |                                          |                        |               |            |                            |      |                                       |
| $F^D$                                    | all                                      | all                    |               |            |                            |      |                                       |
|                                          |                                          |                        | Alloy 6063    |            |                            |      |                                       |
| 0                                        | all                                      | all                    |               | 19.0       |                            |      | 18                                    |
| T1 <sup>G</sup>                          | up thru 0.500                            | all                    | 17.0          |            | 9.0                        |      | 12                                    |
| • •                                      | 0.501–1.000                              | all                    | 16.0          |            | 8.0                        |      | 12                                    |
| Г4, Т42                                  | up thru 0.500                            | all                    | 19.0          |            | 10.0                       |      | 14                                    |
| _                                        | 0.501–1.000                              | all                    | 18.0          |            | 9.0                        |      | 14                                    |
| T5                                       | up thru 0.500<br>0.501–1.000             | all<br>all             | 22.0<br>21.0  |            | 16.0<br>15.0               |      | 8<br>8                                |
| T52                                      | up thru 1.000                            | all                    | 22.0          | 30.0       | 16.0                       | 25.0 | 8                                     |
| Г6, Т62                                  | up thru 0.124                            | all                    | 30.0          |            | 25.0                       |      | 8                                     |
| $F^D$                                    | 0.125–1.000<br>all                       | all<br>all             | 30.0          |            | 25.0                       |      | 10                                    |
| •                                        | <u></u>                                  |                        | Alloy 6064    |            |                            |      |                                       |
| T6,                                      | 0.400-2.000                              | all                    | 42.0          |            | 38.0                       |      | 10                                    |
| T6511                                    | 0.400-2.000                              | dII                    | 4 <b>∠.</b> U |            | 30.U                       |      | 10                                    |
|                                          |                                          |                        | Alloy 6066    |            |                            |      |                                       |
| 0                                        | all                                      | all                    |               | 29.0       |                            | 18.0 | 16                                    |
| T4,                                      |                                          |                        |               |            |                            |      | 14                                    |



| Temper                                              | Specified Section or                           | Area, in. <sup>2</sup>          | Tensile Str          |      | Yield Stre<br>(0.2 % Offs |      | Elongation in 2 in. or 4 ×      |
|-----------------------------------------------------|------------------------------------------------|---------------------------------|----------------------|------|---------------------------|------|---------------------------------|
| remper                                              | Wall Thickness, in.                            | Alea, III.                      | Min                  | Max  | Min                       | Max  | — Diameter, min, % <sup>C</sup> |
| T42                                                 | all                                            | all                             | 40.0                 |      | 24.0                      |      | 14                              |
| T6,<br>T6510, <sup>E</sup><br>T6511 <sup>E</sup>    | all                                            | all                             | 50.0                 |      | 45.0                      |      | 8                               |
| T62                                                 | all                                            | all                             | 50.0                 |      | 42.0                      |      | 8                               |
|                                                     |                                                |                                 | Alloy 6070           |      |                           |      |                                 |
| T6, T62 <sup>F</sup>                                | up thru 2.999                                  | up thru 32                      | 48.0                 |      | 45.0                      | 6    | 5                               |
|                                                     |                                                |                                 | Alloy 6082           |      |                           |      |                                 |
| Т6                                                  | 0.200-1.000                                    | all                             | 45.0                 |      | 38.0                      |      | 8                               |
|                                                     |                                                |                                 | Alloy 6105           |      |                           |      |                                 |
| T1<br>T5                                            | up thru 0.500<br>up thru 0.500                 | all<br>all                      | 25.0<br>38.0         |      | 15.0<br>35.0              |      | 16<br>8                         |
|                                                     |                                                |                                 | Alloy 6162           |      |                           |      |                                 |
| T5,<br>T5510 <sup>E</sup><br>T5511 <sup>E</sup>     | up thru 1.000                                  | all                             | 37.0                 |      | 34.0                      |      | 7                               |
| T6,<br>T6510 <sup>E</sup><br>T6511 <sup>E</sup>     | up thru 0.249<br>0.250–0.499                   | all<br>all                      | 38.0<br>38.0         |      | 35.0<br>35.0              |      | 8<br>10                         |
|                                                     |                                                |                                 | Alloy 6262           |      |                           |      |                                 |
| T6,<br>T6511                                        | all                                            | all                             | 38.0                 |      | 35.0                      |      | 10                              |
|                                                     |                                                |                                 | Alloy 6351           |      |                           |      |                                 |
| T4<br>T6                                            | up thru 0.749<br>up thru 0.124<br>0.125–0.749  | all<br>                         | 32.0<br>42.0<br>42.0 |      | 19.0<br>37.0<br>37.0      |      | 16<br>8<br>10                   |
|                                                     |                                                |                                 |                      |      |                           |      |                                 |
|                                                     |                                                |                                 | Alloy 7075           |      |                           |      |                                 |
| 0                                                   | all                                            |                                 |                      | 40.0 |                           | 24.0 | 10                              |
| T6, T62<br>T6510 <sup>E</sup><br>T6511 <sup>E</sup> | up through 0.249<br>0.250–0.499<br>0.500–1.499 | all<br>all<br>all               | 78.0<br>81.0<br>81.0 |      | 70.0<br>73.0<br>72.0      |      | 7<br>7<br>7                     |
|                                                     | 1.500–2.999                                    | all                             | 81.0                 |      | 72.0                      |      | 7                               |
| T73<br>T73510<br>T73511                             | 0.062-0.249<br>0.250-1.499<br>1.500-2.999      | all<br>up thru 25<br>up thru 25 | 68.0<br>70.0<br>69.0 |      | 58.0<br>61.0<br>59.0      |      | 7<br>8<br>8                     |
| F <sup>D</sup>                                      | all                                            | all                             |                      |      |                           |      |                                 |

<sup>&</sup>lt;sup>A</sup> The basis for establishment of mechanical property limits is shown in Annex A1.

<sup>&</sup>lt;sup>B</sup> To determine conformance to this specification, each value for ultimate strength and for yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off-method of Practice E29.

<sup>&</sup>lt;sup>C</sup> Elongation of full-section and cut-out sheet-type specimens is measured in 2 in.; of round specimens, in 4 × specimen diameter. See 9.1.1 for conditions under which measurements are not required.  $^{D}$  Tests for tensile properties in the F temper are not required.

For stress relieved tempers (T3510, T3511, T4510, T4511, T5510, T5511, T6510, T6511, T73510, T73511, T8510, T8511), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

F While material in the T42 and T62 tempers is not available from the material producer, the properties are listed to indicate those which can usually be obtained by the user when the material is properly solution heat treated or solution and precipitation heat treated from the O (annealed) or F (as-fabricated) tempers. These properties apply when samples of material supplied in the O or F temper are heat treated by the producer to the T42 or T62 tempers to determine that the material will respond to proper themal treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.

<sup>G</sup> Formerly designated T42 temper. When properly aged (precipitation heat-treated) 6063-T1 extruded products are designated T5.

- 8.3 Unless otherwise specified (4.2.1), alloys 6005A, 6041, 6061, 6063, 6064, 6162, 6082, and 6351 may be solution heat treated and quenched at the extrusion press in accordance with Practice B807/B807M for the production of T4 and T6-type tempers, as applicable.
- 8.4 When specified (4.2.2), heat treatment for the production of T3, T4, T6, T7, and T8-type tempers shall be in accordance with Practice B918.

### 9. Tensile Properties

- 9.1 *Limits*—The material shall conform to the tensile property requirements specified in Table 1 [Table 2] and Table 3 [Table 4] as applicable.
- 9.1.1 The elongation requirements shall not be applicable to the following:
- 9.1.1.1 Material of such dimensions that a standard test specimen cannot be taken in accordance with Test Methods B557 [B557M].
- 9.1.1.2 Tubes less than 0.062 in. [up through 1.60 mm] in wall thickness.
- 9.1.2 Tensile property limits for sizes not covered in Table 3 [Table 4] shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
  - 9.2 Number of Specimens:
- 9.2.1 For material having a nominal weight of less than 1 lb/linear ft [up through 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 lb [500 kg] or fraction thereof in the lot.
- 9.2.2 For material having a nominal weight of 1 lb or more/linear ft [over 1.7 kg/linear m], one tension test specimen shall be taken for each 1000 ft [300 m] or fraction thereof in the lot.
- 9.2.3 Other procedures for selecting samples may be employed if agreed upon by the producer and the purchaser.
- 9.3 *Test Methods*—The tension tests shall be made in accordance with Test Methods B557 [B557M].

### 10. Producer Confirmation of Heat Treatment Response

- 10.1 The producer shall determine that heat treatable alloys supplied in the O or F tempers (within the size limits specified in Table 3 [Table 4]) respond to heat treatment in accordance with the following:
- 10.1.1 Alloys 2014, 2024, 6061, and 6063 shall, after proper solution heat treatment and natural aging for not less than four days at room temperature, conform to the properties specified in Table 3 [Table 4] for T42 temper material. The heat-treated samples may be tested prior to four days natural aging but if they fail to conform to the T42 temper properties, the tests may be repeated after completion of the four days natural aging without prejudice.

- 10.1.2 Alloys 2024, 2219, 6061, 6063, and 7075 shall, after proper solution heat treatment and precipitation heat treatment, conform to the properties specified in Table 3 [Table 4] for T62 temper material.
- 10.2 *Number of Specimens*—The number of specimens from each lot of O and F temper material shall be as specified in 9.2.
- 10.3 Quality Assurance Screening of Extrusion Press Heat Treated Pipe and Tube—Pipe and tube heat-treated at the extrusion press shall conform to all the requirements of Section 9. In addition, hardness tests shall be performed on each extruded length or, with the approval of the purchaser, on samples selected in accordance with a mutually agreeable sampling plan. The minimum hardness control value shall be in accordance with Table 8 [Table 9] for pipe and with Table 10 [Table 11] for tube for the type of hardness tester used. The specific type of hardness tester shall be left to the discretion of the producer, but the test method shall be in accordance with Test Methods B647, B648, or E18, as applicable.
- 10.3.1 Individual pieces within a lot that fail to conform to the minimum applicable hardness values may be accepted provided that samples from the two pieces exhibiting the lowest minimum hardness values are tension tested and found to conform to the requirements of Table 1 [Table 2] for pipe or Table 3 [Table 4] for tube.

Note 6—It may be necessary in the case of 6xxx—naturally aged tempers to allow for the elapse of four days subsequent to heat treatment for the material to attain its expected strength. Material in these tempers that has been tested for mechanical properties prior to an elapse of four days and fails may be retested after four days without prejudice.

### 11. Heat Treatment and Reheat Treatment Capability

- 11.1 As-received material in the O or F temper in alloys 2014, 2024, 6061, and 6063 (within the size limits specified in Table 3 [Table 4] and without the imposition of cold work) shall be capable of attaining the properties specified in Table 3 [Table 4] for T42 temper material, upon being properly solution heat-treated and natural aged for not less than four days at room temperature.
- 11.2 As-received material in the O or F temper in alloys 2014, 2219, 6061, 6063, and 7075 (within the size limits specified in Table 3 [Table 4] and without the imposition of cold work) shall be capable of attaining the properties specified in Table 3 [Table 4] for T62 tempers, upon being properly solution and precipitation heat-treated.
- 11.3 Material in alloys and tempers 2014-T4, T4510, T4511, T6, T6510, and T6511 and 2024-T3, T3510, T3511, T81, T8510, and T8511 shall be capable of attaining the properties specified in Table 3 [Table 4] for the T42 temper, upon being properly resolution heat-treated and natural aged for not less than four days at room temperature.

## TABLE 4 Tensile Property Limits for Extruded Tube [SI Units] $^{A,B}$

| Tomps:                                     | Specified Sec<br>Thicknes |                | Area,      | mm <sup>2</sup> | Tensile Streng  | gth, MPa |            | ngth (0.2 %<br>), MPa | Elongation, <sup>C</sup> %, min |                    |
|--------------------------------------------|---------------------------|----------------|------------|-----------------|-----------------|----------|------------|-----------------------|---------------------------------|--------------------|
| emper -                                    | over                      | through        | over       | through         | min             | max      | min        | max                   | in 50 mm                        | in 5 ×<br>diameter |
|                                            |                           |                |            |                 | Aluminum 1060   |          |            |                       |                                 |                    |
| 0                                          | all                       |                | all        |                 | 60              | 95       | 15         |                       | 25                              | 22                 |
| H112<br>F <sup>D</sup>                     | all                       |                | all        |                 | 60              |          | 15         |                       | 25                              | 22                 |
| Г                                          | all                       |                | all        |                 |                 | • • •    | • • • •    |                       |                                 | • • • •            |
|                                            |                           |                |            |                 | Aluminum 1100   |          |            |                       |                                 |                    |
| 0                                          | all                       |                | all        |                 | 75              | 105      | 20         |                       | 25                              | 22                 |
| H112<br>F <sup>D</sup>                     | all<br>all                |                | all<br>all |                 | 75<br>          |          | 20         |                       | 25<br>                          | 22                 |
| •                                          |                           |                | <u> </u>   |                 |                 |          |            |                       |                                 |                    |
|                                            |                           |                |            |                 | Alloy 2014      |          |            |                       |                                 |                    |
| 0                                          | all                       |                | all        |                 |                 | 205      |            | 125                   | 12                              | 10                 |
| T4 )                                       | all                       |                | all        |                 | 345             |          | 240        |                       | 12                              | 10                 |
| Γ4510 <sup>E</sup>                         |                           |                |            |                 |                 |          |            |                       |                                 |                    |
| Г4511 <sup>E</sup> Ј                       |                           |                |            |                 |                 |          |            |                       |                                 |                    |
| T42 <sup><i>G</i></sup>                    | e II                      |                | all.       |                 | 0.45            |          | 000        |                       | 10                              |                    |
|                                            | all                       |                | all        |                 | 345             |          | 200        |                       | 12                              |                    |
| T6<br>T6510 <sup>E</sup>                   | 12.50                     | 12.50          | all        |                 | 415             |          | 365<br>400 |                       | 7                               | 6                  |
| Г6510 <sup>2</sup>  <br>Г6511 <sup>E</sup> | 12.50<br>18.00            | 18.00          | all<br>    | 16 000          | 440<br>470      |          | 400<br>415 |                       |                                 | 6<br>6             |
| J                                          |                           |                |            |                 |                 |          |            |                       |                                 |                    |
|                                            | 18.00                     |                | 16 000     | 20 000          | 470             |          | 400        |                       |                                 | 5                  |
|                                            |                           | 18.00          | all        |                 | 415             |          | 365        |                       | 7                               | 6                  |
|                                            | 18.00                     |                |            | 16 000          | 415             |          | 365        |                       |                                 | 6                  |
| T62 <sup><i>G</i></sup>                    | 18.00                     |                | 16 000     | 20 000          | 415             |          | 365        |                       |                                 | 5                  |
|                                            |                           |                |            |                 |                 |          |            |                       |                                 |                    |
| $F^D$                                      | all                       |                | all        |                 |                 |          |            |                       |                                 |                    |
|                                            |                           |                |            |                 | Alloy 2024      |          |            |                       |                                 |                    |
| 0                                          | all                       |                | all        |                 |                 | 240      |            | 130                   | 12                              | 10                 |
| Т3                                         |                           | 6.30           | all        |                 | 395             |          | 290        |                       | 10                              |                    |
| Γ3510 <sup>E</sup> }                       | 6.30                      | 18.00          | all        |                 | 415             |          | 305        |                       | 10                              | $9^{H}$            |
| Г3511 <sup>Е</sup> Ј                       | 18.00                     | 35.00          | all        |                 | 450             |          | 315        |                       |                                 | 9                  |
|                                            | 35.00                     |                |            | 16 000          | 485             |          | 330        |                       |                                 | 9                  |
|                                            | 35.00                     |                | 16 000     | 20 000          | 470             |          | 315        |                       |                                 | 7                  |
|                                            |                           | 10.00          | e II       |                 | 205             |          | 000        |                       | 10                              | 40                 |
|                                            | 18.00                     | 18.00<br>35.00 | all<br>all |                 | 395<br>395      |          | 260<br>260 |                       | 12                              | 10<br>9            |
| T42 <sup>G</sup>                           | 35.00                     |                |            | 16 000          | 395             |          | 260        |                       |                                 | 9                  |
|                                            | 35.00                     |                | 16 000     | 20 000          | 395             |          | 260        |                       |                                 | 7                  |
|                                            | -                         |                |            |                 |                 |          |            |                       |                                 |                    |
| T81                                        | 1.20                      | 6.30           | all        |                 | 440             |          | 385        |                       | 4                               |                    |
| T8510 <sup>E</sup>                         | 6.30<br>35.00             | 35.00          | all        | 20 000          | 455<br>455      |          | 400        |                       | 5                               | 4<br>4             |
| 10011                                      | 33.00                     |                |            | ZU UUU          | <del>4</del> 00 |          | 400        |                       |                                 | 4                  |
|                                            |                           |                |            |                 |                 |          |            |                       |                                 |                    |
|                                            | all                       |                | all        |                 |                 |          | • • •      |                       |                                 |                    |
| $F^D$                                      |                           |                |            |                 |                 |          |            |                       |                                 |                    |
| F <sup>ν</sup>                             |                           |                |            |                 | Alloy 2219      |          |            |                       |                                 |                    |

| Town s :                                      | Specified Sec<br>Thicknes |                | Area        | , mm²                      | Tensile Stren     | gth, MPa    |                   | ngth (0.2 %<br>, MPa | Elonga         | tion, <sup>C</sup> %, min |
|-----------------------------------------------|---------------------------|----------------|-------------|----------------------------|-------------------|-------------|-------------------|----------------------|----------------|---------------------------|
| emper                                         | over                      | through        | over        | through                    | min               | max         | min               | max                  | in 50 mm       | in 5 ×<br>diameter        |
| 731<br>5510 <sup>E</sup><br>3511 <sup>E</sup> | 12.50                     | 12.50<br>80.00 |             | 16 000<br>16 000           | 290<br>310        |             | 180<br>185        |                      | 14<br>         | 12<br>12                  |
| Г62 <sup>G</sup>                              | £ 25.00                   | 25.00          |             | 16 000<br>20 000           | 370<br>370        |             | 250<br>250        |                      | 6              | 5<br>5                    |
| T81<br>8510 <sup>E</sup> }                    |                           | 80.00          |             | 16 000                     | 400               |             | 290               |                      | 6              | 5                         |
| $F^D$                                         | all                       |                | all         |                            |                   |             |                   |                      |                |                           |
|                                               |                           |                |             |                            | Alloy 3003        |             |                   |                      |                |                           |
| 0                                             | all                       |                | all         |                            | 95                | 130         | 35                |                      | 25             | 22                        |
| H112<br>F <sup>D</sup>                        | all<br>all                |                | all<br>all  |                            | 95<br>            |             | 35                |                      | 25<br>         | 22<br>                    |
|                                               |                           |                |             | A                          | Iclad Alloy 3003  |             |                   |                      |                |                           |
| O<br>H112                                     | all<br>all                |                | all<br>all  |                            | 90<br>90          | 125         | 30<br>30          |                      | 25<br>25       | 22<br>22                  |
| $F^D$                                         | all                       |                | all         |                            |                   |             |                   |                      |                |                           |
|                                               |                           |                |             |                            | Alloy 5052        |             |                   |                      |                |                           |
| O<br>F <sup>D</sup>                           | all<br>all                |                | all<br>all  |                            | 170               | 240         | 70<br>            |                      |                |                           |
|                                               |                           |                |             |                            | Alloy 5083        |             |                   |                      |                |                           |
| O<br>H111<br>H112<br>F <sup>D</sup>           | all<br>all<br>all         |                | <br><br>all | 20 000<br>20 000<br>20 000 | 270<br>275<br>270 | 350<br><br> | 110<br>165<br>110 |                      | 14<br>12<br>12 | 12<br>10<br>10            |
|                                               |                           |                |             |                            | Alloy 5086        |             |                   |                      |                |                           |
| O<br>H111<br>H112<br>F <sup>D</sup>           | all<br>all<br>all         |                | <br><br>all | 20 000<br>20 000<br>20 000 | 240<br>250<br>240 | 315<br><br> | 95<br>145<br>95   |                      | 14<br>12<br>12 | 12<br>10<br>10            |
|                                               |                           |                |             |                            | Alloy 5154        |             |                   |                      |                |                           |
| O<br>H112                                     | all<br>all                |                | all<br>all  |                            | 205<br>205        | 285         | 75<br>75          |                      |                |                           |
|                                               |                           |                |             |                            | Alloy 5454        |             |                   |                      |                |                           |
| 0                                             | all                       |                |             | 20,000                     |                   | 205         | 05                |                      | 14             | 10                        |
| O<br>H111                                     | all<br>all                |                |             | 20 000<br>20 000           | 215<br>230        | 285         | 85<br>130         |                      | 14<br>12       | 12<br>10                  |
| H112<br>F <sup>D</sup>                        | all<br>all                |                | all         | 20 000                     | 215               |             | 85<br>            |                      | 12             | 10                        |
| •                                             | All                       |                | <u></u>     |                            |                   |             |                   |                      |                |                           |
|                                               |                           |                |             |                            | Alloy 5456        |             |                   |                      |                |                           |
| O<br>H111                                     | all                       |                |             | 20 000                     | 285               | 365         | 130               |                      | 14<br>12       | 12<br>10                  |
| H111<br>H112                                  | all<br>all                |                |             | 20 000<br>20 000           | 290<br>285        |             | 180<br>130        |                      | 12<br>12       | 10<br>10                  |
| $F^D$                                         | all                       |                | all         |                            |                   |             |                   |                      |                |                           |

| T                                        | Specified Sec<br>Thicknes |                | Area       | , mm²   | Tensile Stren | gth, MPa | Yield Strer<br>offset) | ngth (0.2 %<br>, MPa | Elonga   | tion, <sup>C</sup> %, min |
|------------------------------------------|---------------------------|----------------|------------|---------|---------------|----------|------------------------|----------------------|----------|---------------------------|
| Temper -                                 | over                      | through        | over       | through | min           | max      | min                    | max                  | in 50 mm | in 5 ×<br>diameter        |
|                                          |                           |                |            |         | Alloy 6005    |          |                        |                      |          |                           |
| T1                                       |                           | 12.50          | all        |         | 170           |          | 105                    |                      | 16       | 14                        |
| T5                                       |                           | 3.20           |            |         | 260           |          | 240                    |                      | 8        |                           |
|                                          | 3.20                      | 25.00          |            |         | 260           |          | 240                    |                      | 10       | 9                         |
|                                          |                           |                |            |         | Alloy 6005A   |          |                        |                      |          |                           |
| T1                                       |                           | 6.30           | all        |         | 170           |          | 100                    |                      | 15       |                           |
| T5                                       |                           | 6.30           | all        |         | 260           |          | 215                    |                      | 7        |                           |
| T61                                      | 6.30                      | 25.00<br>6.30  | all<br>all |         | 260<br>260    |          | 215<br>240             |                      | 9<br>8   | 8                         |
| 101                                      | 6.30                      | 25.00          | all        |         | 260           |          | 240                    |                      | 10       | 9                         |
|                                          |                           |                |            |         | Alloy 6013    |          |                        |                      |          |                           |
| то                                       | 5.00                      | 10.50          |            |         |               |          | 0.15                   |                      |          |                           |
| T6,<br>T6511                             | 5.00                      | 12.50          | all        |         | 340           |          | 315                    |                      | 8        |                           |
|                                          | 12.50                     | 20.00          | all        |         | 340           |          | 315                    |                      |          | 7                         |
|                                          | 20.00                     | 50.00          |            |         | 340           |          | 310                    |                      |          | 7                         |
|                                          |                           |                |            |         | Alloy 6041    |          |                        |                      |          |                           |
| T6,                                      | 10.00                     | 50.00          |            |         | 310           |          | 275                    |                      | 10       | 9                         |
| T6511                                    |                           |                |            |         |               |          |                        |                      |          |                           |
|                                          |                           |                |            |         | Alloy 6042    |          |                        |                      |          |                           |
| T5,                                      | 10.00                     | 12.50          | all        |         | 260           |          | 240                    |                      | 10       |                           |
| T5511                                    |                           |                |            |         |               |          |                        |                      |          |                           |
|                                          | 12.50                     | 50.00          | all        |         | 290           |          | 240                    |                      |          | 9                         |
|                                          |                           |                |            |         | Alloy 6061    |          |                        |                      |          |                           |
| 0                                        | all                       |                | all        |         |               | 150      |                        | 110                  | 16       | 14                        |
| T1                                       |                           | 16.00          | all        |         | 180           |          | 95                     |                      | 16       | 14                        |
| T4 、                                     |                           |                | all        |         | 190           |          |                        |                      | 16       | 14                        |
| ì                                        |                           |                | all        |         | 180           |          | 110                    |                      | 16       | 14                        |
| T4510 <sup>E</sup>                       | all                       |                |            |         |               |          |                        |                      |          |                           |
| T4511 <sup>E</sup> J                     |                           |                |            |         |               |          |                        |                      |          |                           |
| T42 <sup><i>G</i></sup>                  | all                       |                | all        |         | 180           |          | 85                     |                      | 16       | 14                        |
| 142                                      | all                       |                | all        |         | 100           |          | 65                     |                      | 10       | 14                        |
| T51                                      |                           | 16.00          | all        |         | 240           |          | 205                    |                      | 8        | 7                         |
| Γ6, Τ62 <sup><i>G</i></sup>              |                           | 6.30           | all        |         | 260           |          | 240                    |                      | 8        |                           |
| T6510 <sup>E</sup><br>T6511 <sup>E</sup> | 6.30                      |                | all        |         | 260           |          | 240                    |                      | 10       | 9                         |
| 10311                                    |                           |                |            |         |               |          |                        |                      |          |                           |
|                                          |                           |                |            |         |               |          |                        |                      |          |                           |
| $F^D$                                    | all                       |                | all        |         |               |          |                        |                      |          |                           |
|                                          |                           |                |            |         | Alloy 6063    |          |                        |                      |          |                           |
| 0                                        | all                       |                | all        |         |               | 130      |                        |                      | 18       | 16                        |
|                                          |                           |                |            |         |               |          |                        |                      |          |                           |
| T1                                       | 12.50                     | 12.50<br>25.00 | all<br>all |         | 115<br>110    |          | 60<br>55               |                      | 12       | 10<br>10                  |
|                                          |                           |                |            |         |               |          |                        |                      |          |                           |
| T4,T42 <sup><i>G</i></sup>               | 12.50                     | 12.50<br>25.00 | all<br>all |         | 130<br>125    |          | 70<br>60               |                      | 14       | 12<br>12                  |
|                                          | 12.30                     |                |            |         |               |          |                        |                      |          |                           |
| T5                                       |                           | 12.50          | all        |         | 150           |          | 110                    |                      | 8        | 7                         |
|                                          | 12.50                     | 25.00          | all        |         | 145           |          | 105                    |                      |          | 7                         |
|                                          |                           |                |            |         |               |          |                        |                      |          |                           |
| T52                                      |                           | 25.00          | all        |         | 150           | 205      | 110                    | 170                  | 8        | 7                         |

| Tom:                                            | Specified Sec<br>Thicknes |                        | Area,      | mm <sup>2</sup> | Tensile Stren     | gth, MPa | Yield Strer<br>offset | ngth (0.2 %<br>), MPa | Elonga        | tion, <sup>C</sup> %, min |
|-------------------------------------------------|---------------------------|------------------------|------------|-----------------|-------------------|----------|-----------------------|-----------------------|---------------|---------------------------|
| Temper -                                        | over                      | through                | over       | through         | min               | max      | min                   | max                   | in 50 mm      | in 5 ×<br>diameter        |
|                                                 | 3.20                      | 25.00                  | all        |                 | 205               |          | 170                   |                       | 10            | 9                         |
| $F^D$                                           | all                       |                        | all        |                 |                   |          |                       |                       |               |                           |
|                                                 |                           |                        |            |                 | Alloy 6064        |          |                       |                       |               |                           |
| T6,<br>T6511                                    | 10.00                     | 50.00                  |            |                 | 290               |          | 240                   |                       | 10            | 9                         |
|                                                 |                           |                        |            |                 | Alloy 6066        |          |                       |                       |               |                           |
| O<br>T4,                                        | all                       |                        | all        |                 |                   | 200      |                       | 125                   | 16            | 14                        |
| T4510 <sup>E</sup> }                            | all                       |                        | all        |                 | 275               |          | 170                   |                       | 14            | 12                        |
| T42<br>T6,                                      | all                       |                        | all        |                 | 275               |          | 165                   |                       | 14            | 12                        |
| T6510 <sup>E</sup> }                            | all                       |                        | all        |                 | 345               |          | 310                   |                       | 8             | 7                         |
| T62                                             | all                       |                        | all        |                 | 345               |          | 290                   |                       | 8             | 7                         |
|                                                 |                           |                        |            |                 | Alloy 6070        |          |                       |                       |               |                           |
| T6, T62 <sup>F</sup>                            | 80.00                     |                        | 20.000     |                 | 330               |          | 310                   |                       | 6             | 5                         |
|                                                 |                           |                        |            |                 | Alloy 6082        |          |                       |                       |               |                           |
| T6                                              | 5.00                      | 25.00                  |            |                 | 310               |          | 260                   |                       | 8             | 10 <sup>H</sup>           |
|                                                 |                           |                        |            |                 | Alloy 6105        |          |                       |                       |               |                           |
| T1<br>T5                                        |                           | 12.50<br>12.50         | all<br>all |                 | 170<br>260        |          | 105<br>240            |                       | 16<br>8       | 14<br>7                   |
|                                                 |                           |                        |            |                 | Alloy 6162        |          |                       |                       |               |                           |
| T5,<br>T5510 <sup>E</sup><br>T5511 <sup>E</sup> |                           | 25.00                  | all        |                 | 255               |          | 235                   |                       | 7             | 6                         |
| T6,                                             |                           | 6.30                   | all        |                 | 260               |          | 240                   |                       | 8             |                           |
| T6510 <sup>E</sup> }                            | 6.30                      | 12.50                  | all        |                 | 260               |          | 240                   |                       | 10            | 9                         |
|                                                 |                           |                        |            |                 | Alloy 6262        |          |                       |                       |               |                           |
| T6,<br>T6511                                    | all                       |                        | all        |                 | 260               |          | 240                   |                       | 10            | 9                         |
|                                                 |                           |                        |            |                 | Alloy 6351        |          |                       |                       |               |                           |
| T4<br>T6                                        | <br><br>3.20              | 20.00<br>3.20<br>25.00 | all<br>    |                 | 220<br>290<br>290 |          | 130<br>255<br>255     |                       | 16<br>8<br>10 | 14<br>9                   |
|                                                 | J.EV                      |                        |            |                 | Alloy 7075        |          |                       |                       |               |                           |
|                                                 | all                       |                        | oll.       |                 |                   | 075      |                       | 165                   | 10            | 0                         |
| 0                                               | all                       |                        | all        |                 |                   | 275      |                       | 165                   | 10            | 9                         |

| Tompor                                     | Specified Section or Wall<br>Thickness, mm |                        | Area, mm² |                            | Tensile Strength, MPa |     | Yield Strength (0.2 % offset), MPa |     | Elongation, <sup>C</sup> %, min |                    |
|--------------------------------------------|--------------------------------------------|------------------------|-----------|----------------------------|-----------------------|-----|------------------------------------|-----|---------------------------------|--------------------|
| Temper                                     | over                                       | through                | over      | through                    | min                   | max | min                                | max | in 50 mm                        | in 5 ×<br>diameter |
| T6, T62 <sup>G</sup>                       |                                            | 6.30                   | all       |                            | 540                   |     | 485                                |     | 7                               |                    |
| T62510 <sup>E</sup>                        | 6.30                                       | 12.50                  | all       |                            | 560                   |     | 505                                |     | 7                               | 6                  |
| T6511 <sup>E</sup>                         | 12.50                                      | 70.00                  | all       |                            | 560                   |     | 495                                |     |                                 | 6                  |
| T73 T73510 <sup>E</sup>                    | 1.60<br>6.30<br>35.00                      | 6.30<br>35.00<br>70.00 | all       | 13 000<br>16 000<br>16 000 | 470<br>485<br>475     |     | 400<br>420<br>405                  |     | 7<br>8                          | 7<br>7             |
| J<br>T73511 <sup>E</sup><br>F <sup>D</sup> | all                                        |                        | all       |                            |                       |     |                                    |     |                                 |                    |

<sup>&</sup>lt;sup>A</sup> The basis for establishment of tensile property limits is shown in Annex A1.

11.4 Material in alloys and tempers 2219-T31, T3510, T3511, T81, T8510, and T8511, 7075-T6, T6510 and T6511 shall be capable of attaining the properties specified in Table 3 [Table 4] for T62 tempers, upon being properly resolution heat-treated and precipitation heat-treated.

11.5 Material in T31, T3510, T3511, T4, T4510, and T4511 tempers shall be capable of attaining the properties specified in Table 3 [Table 4] for the T81, T8510, T8511, T6, T6510, and T6511 tempers, respectively, upon being properly precipitation heat-treated.

### 12. Stress-Corrosion Resistance

- 12.1 Alloy 7075 extruded tube in the T73-type tempers shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 12.2.
- 12.1.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot shall be established by testing the previously selected tension-test samples to the criteria shown in Table 12 [Table 13].
- 12.1.2 For surveillance purposes, each month the producer shall perform at least one stress-corrosion test in accordance with 12.2 on each of the T73-type tempers for each thickness range 0.750 in. [20.00 mm] and over listed in Table 3 [Table 4] produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 8 [Table 9]. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The

producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.

- 12.2 The stress-corrosion cracking test shall be performed on extruded tube with wall thickness 0.750 in. [20.00 mm] and over as follows:
- 12.2.1 The stress-corrosion test shall be made in accordance with Test Method G47.
- 12.2.2 Specimens shall be stressed in tension in the short transverse direction with respect to the grain flow and held at constant strain. The stress level shall be 75 % of the specified minimum yield strength.
- 12.2.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 17.2 shall apply.

### 13. Cladding

- 13.1 The aluminum alloy coating of clad tube shall comprise the inside surface of the tube, the outside surface of the tube, or both, and its thickness shall be approximately 10 % of the total wall thickness (inside) or 7 % of the total wall thickness (outside) of the tube.
- 13.2 When the thickness of the coating is to be determined on finished tube, transverse cross sections of at least three tubes from the lot shall be polished for examination with a metal-lurgical microscope. Using a magnification of  $100 \times$ , the coating thickness at four points,  $90^{\circ}$  apart, in each sample shall

<sup>&</sup>lt;sup>B</sup> To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 1 MPa and each value for elongation to the nearest 0.5 %, both in accordance with the rounding-off method of Practice E29.

<sup>&</sup>lt;sup>C</sup> Elongation in 50 mm apply for shapes tested in full section and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5 *D*, where *D* and *A* are diameter and cross-sectional area of the specimen respectively, apply to round test specimens machined from thicknesses over 6.30. See 9.1.1 for conditions under which measurements are not required.

<sup>&</sup>lt;sup>D</sup> No mechanical properties are specified or guaranteed.

<sup>&</sup>lt;sup>E</sup> For stress-relieved tempers (T3510, T3511, T4510, T4511, T5510, T5511, T6510, T6511, T73510, T73511, T76510, T76511, T8510, T8511), characteristics and properties offer than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic tempers.

F While material in the T42 and T62 tempers is not available from the material producer, the properties are listed to indicate those which can usually be obtained by the

F While material in the T42 and T62 tempers is not available from the material producer, the properties are listed to indicate those which can usually be obtained by the user when the material is properly solution heat treated or solution and precipitation heat treated from the O (annealed) or F (as-fabricated) tempers. These properties apply when samples of material supplied in the O or F temper are heat treated by the producer to the T42 or T62 tempers to determine that the material will respond to proper thermal treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.

<sup>&</sup>lt;sup>G</sup> Material in the T42 and T62 tempers is not available from the material producers.

<sup>&</sup>lt;sup>H</sup> For Table 12.1 in both ASD and ASD(M):

For purposes of harmonization, the 5D and 50 mm elongation limits were established to match extruded tube elongation values previously published in EN 755-2 [1997]. The relationship among the US customary and metric elongation values does not comply with the conversion rules of the Aluminum Association.

TABLE 4 (a) Nominal Size and Weight<sup>A</sup> of Aluminum-Alloy Pipe<sup>D</sup>

| Nominal Pipe Size, in. <sup>B</sup> | Schedule Number <sup>C</sup> | Nominal Outside Diameter,<br>in. [mm] | Nominal Wall Thickness,<br>in. [mm] | Nominal Weight per Foot, lb (kg/m] <sup>A</sup> |
|-------------------------------------|------------------------------|---------------------------------------|-------------------------------------|-------------------------------------------------|
| 14                                  | 10                           | 14.000 [356]                          | 0.250 [6.35]                        | 12.70 [18.83]                                   |
|                                     | 20                           |                                       | 0.312 [7.92]                        | 15.78 [23.38]                                   |
|                                     | 30                           |                                       | 0.375 [9.52]                        | 18.88 [27.98]                                   |
|                                     | 40                           |                                       | 0.438 [11.13]                       | 21.95 [32.56]                                   |
|                                     | 60                           |                                       | 0.594 [15.04]                       | 29.42 [43.50]                                   |
|                                     | 80                           |                                       | 0.750 [19.05]                       | 36.71 [54.45]                                   |
| 16                                  | 10                           | 16.000 [406]                          | 0.250 [6.35]                        | 14.55 [21.53]                                   |
|                                     | 20                           | • •                                   | 0.312 [7.92]                        | 18.08 [26.74]                                   |
|                                     | 30                           |                                       | 0.375 [9.52]                        | 21.65 [32.02]                                   |
|                                     | 40                           |                                       | 0.500 [12.70]                       | 28.63 [42.37]                                   |
|                                     | 60                           |                                       | 0.656 [16.66]                       | 37.19 [55.02]                                   |
|                                     | 80                           |                                       | 0.844 [21.44]                       | 47.26 [69.94]                                   |
| 18                                  | 40                           | 18.000 [457]                          | 0.562 [14.27]                       | 36.21 [53.59]                                   |
| 20                                  | 40                           | 20.000 [508]                          | 0.594 [15.09]                       | 42.59 [63.09]                                   |

<sup>&</sup>lt;sup>A</sup> Based on density of 0.098 lb/in.<sup>3</sup> [270].

be measured and the average of all measurements shall be taken as the thickness. In the case of tube having a diameter larger than can properly be mounted for polishing and examination, the portions of the cross section polished for examination may consist of an arc about ½ in. [13 mm] in length.

Alloy and Cladding
Approximate
% of Spe
Alclad 3003 (clad inside)
Alclad 3003 (clad outside)

Approximate Thickness of Cladding, % of Specified Wall Thickness 10

### 14. Dimensional Tolerances

14.1 Variations from the specified dimensions for the type of material ordered shall not exceed the permissible variations prescribed in the following tables of ANSI H35.2 [H35.2(M)]:

| Table No.    | Title                                    |
|--------------|------------------------------------------|
| (Section) 12 | Extruded Tube and Pipe                   |
| 12.2         | Diameter, Round Tube                     |
| 12.4         | Wall Thickness, Round Extruded Tube      |
| 12.6         | Length-Extruded Tube                     |
| 12.8         | Straightness, Tube in Straight Lengths   |
| 12.10        | Squareness of Cut Ends                   |
| 12           | Tube and Pipe                            |
| 12.49        | Outside Diameter Tolerance-Extruded Pipe |
|              | and Extruded and Drawn Pipe              |
| 12.50        | Wall Thickness Tolerance-Extruded Pipe   |
|              | and Extruded and Drawn Pipe              |
| 12.51        | Weight Tolerances-Extruded Pipe          |
|              | and Extruded and Drawn Pipe              |
| 12.52        | Length Tolerance-Extruded Pipe           |
|              | and Extruded and Drawn Pipe              |
| 12.55        | Diameters, Wall Thicknesses, Weights     |
|              |                                          |

- 14.2 Tolerances for tempers and sizes not included in ANSI H35.2 [H35.2(M)] shall be as agreed upon between producer and purchaser and shall be so specified in the contract or purchase order.
- 14.3 *Sampling for Inspection*—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

- 14.4 Nominal sizes and weights of 14, 16, 18, and 20-in. pipe are given in Table 11a. Dimensional Tolerances for these sizes shall be agreed upon between the producer and purchaser and shall be specified in the contract or purchase order.
- 14.5 Length Tolerance—Eighty-five percent or more of the ordered quantity shall be the specified length  $\pm 1$  in. [25 mm]. Fifteen percent of the ordered quantity may be a minimum of 90 % of the specified length, unless other agreement is made between the purchaser and producer.
- 14.6 Sampling for Inspection—Examinations for dimensions shall be made to ensure conformance to the tolerance specified.

### 15. General Quality

- 15.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Dents and surface finish conditions which do not detract from its usefulness for piping systems shall not be causes for rejection. Grinding to remove minor surface defects is permitted if the dimensional tolerances are met. Any requirement not so covered is subject to negotiation between producer and purchaser.
- 15.2 When so specified in the contract or order, both ends of each length of pipe, or extruded tube except pipe of alloy 3003, temper H112, shall be threaded using American National Standard Taper Pipe Thread B2.1. The variation from standard, when tested with the standard working gauge, shall not exceed  $\pm 1\frac{1}{2}$  turns. Beveled ends shall be agreed upon between the producer and the purchaser. The threaded ends shall be free from burrs and suitably protected against damage in transit.
- 15.3 Each pipe and tube shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser however, the producer may use a system of statistical quality control for such examinations. Discoloration that is characteristic of proper solution heat treatment shall not be cause for rejection

<sup>&</sup>lt;sup>B</sup> Other pipe sizes with outside diameters listed in Table 2 of ANSI B36.10 may be considered covered by this specification if agreed upon between the producer and the purchaser.

<sup>&</sup>lt;sup>C</sup> ANSI B36.10.

 $<sup>^{\</sup>it D}$  Large size pipe previously covered under Specification B345/B345M.

# TABLE 5 Composition Limits A,B,C,D

|          |                                                                   |                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other Elements <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ements <sup>E</sup>                                                                                                                                                                              |                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iron     | Copper                                                            | Manganese       | Magnesium                                                                        | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Titanium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΞŌ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                                                                                                                                            | Aluminum                                                                                                                                                                                         |
| 0.35     | 0.05                                                              | 0.03            | 0.03                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                | 99.60                                                                                                                                                                                            |
| 3i + Fe  | 0.05-0.20                                                         | 0.05            | :                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | 99.00                                                                                                                                                                                            |
| 0.7      |                                                                   | 0.40–1.2        | 0.20-0.8                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | min"<br>remainder                                                                                                                                                                                |
| 0.50     |                                                                   | 0.30-0.9        | 1.2–1.8                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.30     |                                                                   | 0.20-0.40       | 0.02                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02-0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.7      | Ŭ                                                                 | 1.0–1.5         | :                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| :        |                                                                   | :               | :                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                | :                                                                                                                                                                                                |
| 0.40     |                                                                   | 0.10            | 2.2-2.8                                                                          | 0.15-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.40     |                                                                   | 0.40-1.0        | 4.0-4.9                                                                          | 0.05-0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.20-0.7        | 3.5-4.5                                                                          | 0.05-0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.40     |                                                                   | 0.50-1.0        | 2.4-3.0                                                                          | 0.05-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.40     |                                                                   | 0.50-1.0        | 4.7-5.5                                                                          | 0.05-0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.35     |                                                                   | 0.10            | 0.40-0.6                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.35     |                                                                   | 0.50            | 0.40-0.7                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.05^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.20-0.8        | 0.8-0.1.2                                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.15-0.7 |                                                                   | 0.05-0.20       | 0.8-1.2                                                                          | 0.05-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30-0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35 - 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.7      |                                                                   | 0.40            | 0.7-1.2                                                                          | 0.04-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20-0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15 - 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.7      | _                                                                 | 0.15            | 0.8-1.2                                                                          | 0.04-0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.35     |                                                                   | 0.10            | 0.45-0.9                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.7      | _                                                                 | 0.15            | 0.8-1.2                                                                          | 0.05-0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50-0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20-0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.6-1.1         | 0.8-1.4                                                                          | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.40-1.0        | 0.6 - 1.2                                                                        | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.35     |                                                                   | 0.15            | 0.45-0.8                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.10            | 0.7-1.1                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.7      | _                                                                 | 0.15            | 0.8-1.2                                                                          | 0.04-0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.40-0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40-0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.40-0.8        | 0.40-0.8                                                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     | _                                                                 | 0.40-1.0        | 0.50-1.2                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| Si + Fe  |                                                                   | 0.10            | 0.10                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8-1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
| 0.50     |                                                                   | 0.30            | 2.1–2.9                                                                          | 0.18-0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1-6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                             | remainder                                                                                                                                                                                        |
|          | 0.35 Si + Fe 0.7 0.50 0.7 0.50 0.40 0.40 0.40 0.40 0.40 0.40 0.40 | 2 0 0 0 0 0 0 0 | 0.05 0.05-0.20 3.9-5.0 3.8-4.9 5.8-6.8 0.05-0.20 0.10 0.10 0.10 0.10 0.10 0.10 0 | Ocopper Manganese Magnese Magn | Copper         Manganese         Magnesium           0.05         0.03         0.03           0.05-0.20         0.05            3.9-5.0         0.40-1.2         0.20-0.8           3.8-4.9         0.30-0.9         1.2-1.8           5.8-6.8         0.20-0.40         0.02           0.05-0.20         1.0-1.5            0.10         0.20-0.40         0.02           0.10         0.20-0.7         3.5-4.5           0.10         0.20-0.7         3.5-4.5           0.10         0.20-0.7         3.5-4.5           0.10         0.20-0.7         3.5-4.5           0.10         0.20-0.7         3.5-4.5           0.10         0.20-0.7         3.5-4.5           0.10         0.50-1.0         2.4-3.0           0.50         0.00-1.2         0.40-0.6           0.50         0.00-0.6         0.40-0.6           0.10         0.10         0.7-1.2           0.15-0.40         0.15         0.45-0.9           0.10         0.10         0.45-0.8           0.10         0.10         0.7-1.1           0.10         0.10         0.7-1.1           0.10 | Copper         Manganese Magnesium         Chromium           0.05         0.03         0.03            0.05-0.20         0.05             0.05-0.20         0.05             0.39-0.20         1.2-1.8         0.10            0.88-6.8         0.20-0.40         0.02            0.05-0.20         1.0-1.5             0.10         0.40-1.0         2.2-2.8         0.15-0.35           0.10         0.40-1.0         4.0-4.9         0.05-0.20           0.10         0.20-0.7         3.5-4.3         0.05-0.25           0.10         0.40-1.0         4.0-4.9         0.05-0.25           0.10         0.20-0.7         3.5-4.3         0.05-0.25           0.10         0.10         0.40-0.6         0.10           0.10         0.50-1.0         2.4-3.0         0.05-0.20           0.6-1.1         0.20-0.7         3.5-4.3         0.05-0.20           0.6-1.1         0.20-0.7         3.5-4.3         0.05-0.20           0.50-1.0         0.40-0.6         0.10         0.10           0.15-0.4         0.5-0.1         0.40-0.6 | Copper         Manganese Magnesium         Chromium         Zinc         TI           0.05         0.03         0.03          0.05           0.05-0.20         0.05           0.10           3.9-5.0         0.40-1.2         0.20-0.8         0.10         0.25           3.8-4.9         0.30-0.9         1.2-1.8         0.10         0.25           5.8-6.8         0.20-0.40         0.02          0.10         0.10           0.05-0.20         1.0-1.5           0.10         0.10           0.05-0.20         1.0-1.5           0.10         0.10           0.10         0.40-1.0         4.0-4.9         0.05-0.25         0.25         0.10           0.10         0.40-1.1         4.0-4.9         0.05-0.25         0.25         0.10         0.10           0.10         0.40-1.1         4.0-4.9         0.05-0.25         0.25         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10 <t< td=""><td>Copper         Manganese Magnesium         Chromium         Zinc         Titanium           0.05         0.03         0.03          0.05         0.03           0.05-0.20         0.05          0.10         0.25         0.15/           3.9-5.0         0.40-1.2         0.20-0.8         0.10         0.25         0.15/           3.8-6.8         0.20-0.49         0.02          0.10         0.25         0.15/           5.8-6.8         0.20-0.40         0.02          0.10         0.25         0.15/           0.05-0.20         1.0-1.5           0.10         0.25         0.15/           0.10         0.20-0.20         0.02          0.10             0.10         0.40-1.0         4.0-4.9         0.05-0.25         0.25         0.15           0.10         0.20-0.1         2.2-2.8         0.15-0.35         0.15         0.15           0.10         0.20-0.1         2.4-3.0         0.05-0.25         0.25         0.15           0.10         0.20-0.1         2.4-4.3         0.05-0.25         0.25         0.15           0.10         0.10</td><td>Copper         Manganese Magnesium         Chromium         Zinc         Titanium         Bi           0.05         0.03         0.03          0.05         0.03            0.05-0.20         0.05           0.10             3.9-5.0         0.40-1.2         0.20-0.8         0.10         0.25         0.15/            3.8-4.9         0.30-0.9         1.2-1.8         0.10         0.25         0.15/            5.8-6.8         0.20-0.40         0.02           0.10         0.02-0.10            0.55-0.20         1.0-1.5           0.10         0.02-0.10             0.10         0.10-1.0         2.2-2.8         0.15-0.35         0.10                                      &lt;</td><td>Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi           0.05         0.03         0.03          0.05         0.03            0.05-0.20         0.05           0.10         0.05            3.9-5.0         0.040-1.2         0.20-0.8         0.10         0.25         0.15′            5.8-6.8         0.20-0.40         0.02           0.10         0.02-0.10            5.8-6.8         0.20-0.40         0.02            0.10         0.02-0.10            0.05-0.20         1.0-1.5                                                <td< td=""><td>Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03                                                                                      </td><td>Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03                                                                                      </td></td<></td></t<> | Copper         Manganese Magnesium         Chromium         Zinc         Titanium           0.05         0.03         0.03          0.05         0.03           0.05-0.20         0.05          0.10         0.25         0.15/           3.9-5.0         0.40-1.2         0.20-0.8         0.10         0.25         0.15/           3.8-6.8         0.20-0.49         0.02          0.10         0.25         0.15/           5.8-6.8         0.20-0.40         0.02          0.10         0.25         0.15/           0.05-0.20         1.0-1.5           0.10         0.25         0.15/           0.10         0.20-0.20         0.02          0.10             0.10         0.40-1.0         4.0-4.9         0.05-0.25         0.25         0.15           0.10         0.20-0.1         2.2-2.8         0.15-0.35         0.15         0.15           0.10         0.20-0.1         2.4-3.0         0.05-0.25         0.25         0.15           0.10         0.20-0.1         2.4-4.3         0.05-0.25         0.25         0.15           0.10         0.10 | Copper         Manganese Magnesium         Chromium         Zinc         Titanium         Bi           0.05         0.03         0.03          0.05         0.03            0.05-0.20         0.05           0.10             3.9-5.0         0.40-1.2         0.20-0.8         0.10         0.25         0.15/            3.8-4.9         0.30-0.9         1.2-1.8         0.10         0.25         0.15/            5.8-6.8         0.20-0.40         0.02           0.10         0.02-0.10            0.55-0.20         1.0-1.5           0.10         0.02-0.10             0.10         0.10-1.0         2.2-2.8         0.15-0.35         0.10                                      < | Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi           0.05         0.03         0.03          0.05         0.03            0.05-0.20         0.05           0.10         0.05            3.9-5.0         0.040-1.2         0.20-0.8         0.10         0.25         0.15′            5.8-6.8         0.20-0.40         0.02           0.10         0.02-0.10            5.8-6.8         0.20-0.40         0.02            0.10         0.02-0.10            0.05-0.20         1.0-1.5 <td< td=""><td>Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03                                                                                      </td><td>Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03                                                                                      </td></td<> | Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03 | Copper         Manganese         Magnesium         Chromium         Zinc         Titanium         Bi         Lead         Tin         Log           0.05         0.03          0.05         0.03 |

Limits are in weight [mass] percent maximum unless shown as a range or stated otherwise.

<sup>B</sup> Analysis shall be made for the elements for which limits are shown in this table.

<sup>G</sup> Vanadium 0.05 % maximum.

16

C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E29.

On case there is a discrepancy in the values listed in Table 5 with those listed in the International Alloy Designations and Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys (commonly known as the "Teal Sheets"), the composition limits registered with The Aluminum Association and published in the "Teal Sheets" should be considered the controlling composition. The "Teal Sheets" are available http://www.aluminum.org/tealsheets.

is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others E Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis elements exceeds the limit of Total, the material shall be considered nonconforming.

Other Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.

<sup>&</sup>quot;The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

<sup>&#</sup>x27;A maximum limit of 0.20 % for zirconium + titanium is permitted upon agreement between the purchaser and producer.

'Vanadium 0.05–0.15 %; zirconium, 0.10–0.25 %. The total for other elements does not include vanadium and zirconium.

<sup>&</sup>quot; Vanadium 0.05–0.15 %; zirconium, 0.10–0.25 %. The total for other ele K Alloy 3003 clad with alloy 7072.

Alloy soos clad Will alloy

Meginning in the 1965 issue, the requirements for alloy 6062 were combined with alloy 6061 by revision of the minimum chromium content of 6061 from 0.15 to 0.04. This action cancelled alloy 6062

 $<sup>^{\</sup>prime\prime}$  Cladding on Alclad 3003.  $^{\prime\prime}$  for zirconium + titanium is permitted upon agreement between the purchaser and producer.

TABLE 6 Ultrasonic Discontinuity Limits<sup>A</sup> for Seamless Extruded Tube, Inch-Pound Units

| Alloy | Wall Thickness,<br>in. | Max Weight<br>per Piece, lb | Max Width:<br>Thickness<br>Ratio | Discontinuity<br>Class <sup>B</sup> |
|-------|------------------------|-----------------------------|----------------------------------|-------------------------------------|
| 2024  | 0.500 & over           | 600                         | 10:1                             | В                                   |
| 7075  | 0.500-1.499            | 600                         | 10:1                             | В                                   |

<sup>&</sup>lt;sup>A</sup> Discontinuities in excess of those listed in this table shall be allowed, subject to the approval of the procuring activity, if it is established that they will be removed by machining or that they are in noncritical areas.

TABLE 7 Ultrasonic Discontinuity Limits<sup>A</sup> for Seamless Extruded Tube, [SI Units]

| Alloy | Wall Thick | ness, mm <sup>B</sup> | Max Mass<br>per Piece, | Max Width:<br>Thickness | Discontinuity      |
|-------|------------|-----------------------|------------------------|-------------------------|--------------------|
| Alloy | Over       | Through               | kg                     | Ratio                   | Class <sup>C</sup> |
| 2024  | 12.50      |                       | 300                    | 10:1                    | В                  |
| 7075  | 12.50      | 35.00                 | 300                    | 10:1                    | В                  |
|       | 35.00      |                       | 300                    | 10:1                    | Α                  |

<sup>&</sup>lt;sup>A</sup> Discontinuities in excess of those listed in this table shall be allowed, subject to the approval of the procuring activity, if it is established that they will be removed by machining or that they are in noncritical areas.

### 15.4 Grooved ends shall be as specified by the purchaser.

15.5 Threaded ends shall be in accordance with ANSI B2.1. The threaded ends shall be free from burrs and suitably protected from damage during in handling Threading of pipe made from non heat-treatable alloys inn a temper softer than H14 is not recommended.

Note 7—Many end configurations have been developed such as the V groove, which appear to be superior to the straight bevel under many circumstances. The "modified vee" described in AWS D10.7 is one example.

### 16. Internal Quality

16.1 When specified by the purchaser at the time of placing the contract or order, each tube 0.500 in. or greater [over 12.50 mm] in thickness, in alloys 2024, and 7075 shall be tested ultrasonically in accordance with Practice B594 to the discontinuity acceptance limits of Table 6 [Table 7].

Note 8—Many end configurations have been developed such as the V groove, which appear to be superior to the straight bevel under many circumstances. The "modified vee" described in AWS D10.7 is one example.

### 17. Source Inspection

- 17.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.
- 17.2 When such inspections or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspec-

tion and tests shall be conducted so there is no unnecessary interference with the producer's operations.

### 18. Retest and Rejection

- 18.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.
- 18.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.
- 18.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 18.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier.

### 19. Identification Marking of Product

- 19.1 All pipe and tube shall be marked in accordance with Practice B666/B666M, unless otherwise specified, and when specified (4.2.11) the marking legend shall include the word "seamless."
- 19.2 The requirements specified in 19.1 are minimum. Marking systems that involve added information, larger characters and greater frequencies are acceptable under this specification.

### 20. Packaging and Package Marking

- 20.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of material unless otherwise agreed upon. The type of packaging and gross weight of containers shall, unless otherwise agreed upon, be at the producer's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 20.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 20.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B660. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 for civilian agencies and MIL-STD-129 for military agencies.

### 21. Certification

21.1 The supplier or producer shall, on request, furnish to the purchaser a certificate stating that the material has been sampled, tested, and inspected in accordance with this specification, and has met the requirements.

<sup>&</sup>lt;sup>B</sup> The discontinuity class limits are defined in Section 11, Discontinuity Class Limits, of Practice B594.

<sup>&</sup>lt;sup>b</sup>The thickness of any element of a "profile" is deemed to be the smallest dimension of that element and the discontinuity class applicable to that particular thickness applies to that element of the profile.

 $<sup>^{\</sup>it C}$  The discontinuity class limits are defined in Section 11, Discontinuity Class Limits, of Practice B594.

TABLE 8 Hardness Screening Values for Seamless Extruded Tube, Inch-Pound Units<sup>A</sup>

| Allan and Taman  | On a sifical Wall Thinks are in |         | Hardness Number, min <sup>£</sup> | 3,C        |
|------------------|---------------------------------|---------|-----------------------------------|------------|
| Alloy and Temper | Specified Wall Thickness, in.   | Webster | Barcol                            | Rockwell E |
| 6005-T5          | 0.050 and over                  | 15      | 76                                | 89         |
| 6005A-T61        | 0.050 and over                  | 15      | 76                                | 89         |
| 6041-T6          | 0.050 and over                  | 15      | 80                                | 92         |
| 6042-T5, T5511   | 0.050 and over                  | 15      | 76                                | 89         |
| 6061-T4          | 0.050 and over                  |         | 64                                | ···        |
| -T6              | 0.050 through 0.075             | 15      | 76                                | 89         |
|                  | 0.076 through 0.499             | 15      | 76                                | 89         |
|                  | 0.500 through 1.000             | 15      | 76                                | ***        |
| 6063-T1          | 0.050 through 0.500             |         | 50                                | ···        |
| -T4              | 0.050 through 0.500             | •••     | 60                                |            |
| -T5              | 0.050 through 0.500             |         | 65                                | ···        |
| -T6              | 0.050 through 1.000             | 12      | 72                                | 75         |
| 6064-T6          | 0.050 and over                  | 15      | 76                                | 89         |
| 6082-T6          | 0.050 and over                  | 16      | 80                                | 92         |
| 6105-T5          | 0.050 and over                  | 15      | 76                                | 89         |
| 6262-T6          | 0.050 and over                  | 15      | 76                                | 89         |
| 6351-T6          | 0.050 through 0.749             | 16      | ···                               | •••        |

<sup>&</sup>lt;sup>A</sup> See 10.3.

TABLE 9 Hardness Screening Values for Seamless Extruded Tube [SI Units]<sup>A</sup>

| Allow and Tampar | Charified Wall Thickness mm    |         | Hardness Number, Minimum <sup>B,0</sup> | 0          |
|------------------|--------------------------------|---------|-----------------------------------------|------------|
| Alloy and Temper | Specified Wall Thickness, mm — | Webster | Barcol                                  | Rockwell E |
| 6005-T5          | 1.25 and over                  | 15      | 76                                      | 89         |
| 6005A-T61        | 1.25 and over                  | 15      | 76                                      | 89         |
| 6041-T6          | 1.25 and over                  | 15      | 7                                       | 89         |
| 6042-T5, T5511   | 1.25 and over                  | 15      | 76                                      | 89         |
| 6061-T4          | 1.25 and over                  |         | 64                                      |            |
| -T6              | 1.25 through 1.50              | 15      | 76                                      | 89         |
|                  | over 1.50 through 12.5         | 15      | 76                                      | 89         |
|                  | over 12.5 through 25.0         | 15      | 76                                      |            |
| 6063-T1          | 1.25 through 12.5              |         | 50                                      |            |
| -T4              | 1.25 through 12.5              |         | 60                                      |            |
| -T5              | 1.25 through 12.5              |         | 65                                      |            |
| -T6              | 1.25 through 25.0              | 12      | 72                                      | 75         |
| 6064-T6          | 1.25 and above                 | 15      | 76                                      | 89         |
| 6082-T6          | 1.25 and above                 | 16      | 80                                      | 92         |
| 6105-T5          | 1.25 and above                 | 15      | 76                                      | 89         |
| 6262-T6          | 1.25 and above                 | 15      | 76                                      | 89         |
| 6351-T6          | 1.25 through 19.00             | 16      |                                         |            |

<sup>&</sup>lt;sup>A</sup> See Section 10.3.

### 22. Keywords

22.1 aluminum alloy; seamless extruded tube; seamless pipe

<sup>&</sup>lt;sup>B</sup> Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

<sup>&</sup>lt;sup>C</sup> The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

<sup>&</sup>lt;sup>B</sup> Alternative minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

<sup>&</sup>lt;sup>C</sup> The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

TABLE 10 Hardness Screening Values for Seamless Pipe, Inch-Pound Units<sup>A</sup>

| Alloy and Temper | Pipe Size,  | Wall Thickness,     |         | Hardness Number, min <sup>E</sup> | ,c         |
|------------------|-------------|---------------------|---------|-----------------------------------|------------|
| Alloy and Temper | in.         | in.                 | Webster | Barcol                            | Rockwell E |
| 6005-T5          | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6005A-T61        | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6041-T6          | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6042-T5, T5511   | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6061-T6          | Less than 1 | 0.050 and over      | 15      | •••                               |            |
|                  | 1 and over  | 0.050 to 0.075      | 15      | 76                                | 89         |
|                  |             | 0.076 to 0.499      | 15      | 76                                | 89         |
|                  |             | 0.500 through 1.000 | 15      | 76                                |            |
| 6063-T6          | All         | 0.050 through 1.000 | 12      | 72                                | 75         |
| 6351-T5          | All         | 0.050 through 1.000 | 15      | 76                                | 89         |
| -T6              | All         | 0.050 through 1.000 | 16      |                                   |            |
| 6064-T6          | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6082-T6          | All         | 0.050 and over      | 16      | 80                                | 92         |
| 6105-T5          | All         | 0.050 and over      | 15      | 76                                | 89         |
| 6262-T6          | All         | 0.050 and over      | 15      | 76                                | 89         |

TABLE 11 Hardness Screening Values for Seamless Pipe [SI Units]<sup>A</sup>

| Alloy and Temper | Pipe Size, mm     | Wall Thickness, mm —       | Н       | ardness Number, Minimum | B,C        |
|------------------|-------------------|----------------------------|---------|-------------------------|------------|
| Alloy and Temper | ripe Size, IIIIII | waii iiiickiiess, iiiiii — | Webster | Barcol                  | Rockwell E |
| 6005-T5          | All               | 1.25 and over              | 15      | 76                      | 89         |
| 6005A-T61        | All               | 1.25 and over              | 15      | 76                      | 89         |
| 6041-T6          | All               | 1.25 and over              | 15      | 76                      | 89         |
| 6042-T5, T5511   | All               | 1.25 and over              | 15      | 76                      | 89         |
| 6061-T6          | Less than 25      | 1.25 and over              | 15      |                         |            |
|                  | 25 and over       | 1.25 through 1.50          | 15      | 76                      | 89         |
|                  |                   | over 1.50 through 12.5     | 15      | 76                      | 89         |
|                  |                   | over 12.5 through 25.0     | 15      | 76                      |            |
| 6063-T6          | All               | over 1.25 through 25.0     | 12      | 72                      | 75         |
| 6351-T5          | All               | over 1.25 through 25.0     | 15      | 76                      | 89         |
| -T6              | All               | over 1.25 through 25.0     | 16      |                         |            |
| 6064-T6          | All               | 1.25 and over              | 15      | 76                      | 89         |
| 6082-T6          | All               | 1.25 and over              | 16      | 80                      | 92         |
| 6105-T5          | All               | 1.25 and over              | 15      | 76                      | 76         |
| 6262-T6          | All               | 1.25 and over              | 15      | 76                      | 89         |

<sup>&</sup>lt;sup>A</sup> See 10.3.

A See 10.3.

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

A See 10.3.

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

B Alternate minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer. <sup>C</sup> The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

<sup>&</sup>lt;sup>B</sup> Alternative minimum hardness values and hardness testing devices may be used provided agreement is reached between the purchaser and supplier or producer.

<sup>&</sup>lt;sup>C</sup> The hardness values shown do not guarantee material will pass the applicable mechanical property requirements but are for informational purposes only. It is the responsibility of the user of this specification to establish the relationship between the hardness values and tensile properties.

### TABLE 12 Lot Acceptance Criteria for Resistance to Stress Corrosion, Inch-Pound Units

|                          |                                               | Lot Acceptance Criteria                                                                     |                           |
|--------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|
| Alloy and<br>Temper      | Electrical Conductivity <sup>A</sup> , % IACS | Level of Tensile Properties                                                                 | Lot Acceptance<br>Status  |
| 7075–T73,                | 40.0 or greater                               | per specified requirements                                                                  | acceptable                |
| T73510,<br>and<br>T73511 | 38.0 thru 39.9                                | per specified requirements and yield strength does not exceed minimum by more than 11.9 ksi | acceptable                |
|                          | 38.0 thru 39.9                                | per specified requirements but yield strength exceeds minimum 12.0 ksi or more              | unacceptable <sup>B</sup> |
|                          | less than 38.0                                | any level                                                                                   | unacceptable <sup>B</sup> |

A Sampling for electrical conductivity tests shall be the same as for tensile tests as specified in 9.2. Test specimens may be prepared by machining a flat, smooth surface of sufficient width for proper testing. For small sizes of tubes, a cut-out portion may be flattened and the conductivity determined on the surface. milling may be used on flat surface samples. The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations:

Wall Thickness, in. Location

up thru 0.100 su 0.101 thru 0.500 su 0.501 thru 1.500 su

over 1.500

surface of tensile sample subsurface after removal of approximately 10 % of thickness of tensile sample subsurface at approximately center of wall thickness on a plane parallel to the longitudinal center line

of the material

subsurface on tensile test sample surface which is closest to the center of the wall thickness and on a plane parallel to the extrusion surface

### TABLE 13 Lot Acceptance Criteria for Resistance to Stress Corrosion, [SI Units]

|                                       |                                             | Lot Acceptance Criteria                                                                                                    |                           |
|---------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Alloy and<br>Temper                   | Electrical Conductivity <sup>A</sup> , MS/m | Level of Mechanical Properties                                                                                             | Lot Acceptance<br>Status  |
| 7075–T73,<br>T73510,<br>and<br>T73511 | 23.2 or greater<br>22.0 thru 23.1           | per specified requirements<br>per specified requirements and yield strength does not exceed minimum by<br>more than 82 MPa | acceptable<br>acceptable  |
|                                       | 38.0 thru 39.9                              | per specified requirements but yield strength exceeds minimum by 83 MPa or more                                            | unacceptable <sup>B</sup> |
|                                       | less than 38.0                              | any level                                                                                                                  | unaccentable <sup>B</sup> |

A Sampling for electrical conductivity tests shall be the same as for tensile tests as specified in 0.2. Test specimens may be prepared by matching a flat, smooth surface of sufficient width for proper testing. For small sizes of tubes, a cut-out portion may be flattened and the conductivity determined on the surface. milling may be used on flat surface samples. The electrical conductivity shall be determined in accordance with Practice E1004 in the following locations:

Wall Thickness, mm Location

| Over  | Through |                                                                                                                                                 |
|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2.50    | surface of tensile sample                                                                                                                       |
| 2.50  | 12.50   | subsurface after removal of approximately 10 % of thickness of tensile sample                                                                   |
| 12.50 | 40.00   | subsurface at approximately center of wall thickness on a plane parallel to the longitudinal center line of the material                        |
| 40.00 |         | subsurface on tensile test sample surface which is closest to the center of the wall thickness and on a plane parallel to the extrusion surface |

<sup>&</sup>lt;sup>B</sup> When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving, straightening, and precipitation heat treatment, when applicable).

<sup>&</sup>lt;sup>B</sup> When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment, or re-solution heat treatment, stress relieving, straightening and precipitation heat treatment, when applicable).

### **ANNEXES**

(Mandatory Information)

### A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

- A1.1 Mechanical property limits are established in accordance with Section 6, Standards Section, of the most current edition of the Aluminum Standards and Data and the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products (Yellow and Tan Sheets)".
- A1.2 Limits are based on a statistical evaluation of the data indicating that at least 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits are based on the statistical analyses of at least 100 tests from at least five cast lots of standard production material with no more than ten observations from a given heat treat or inspection lot. Mechanical properties limits for press solution heat treated products have specific additional requirements which are provided in the "Tempers for Aluminum and Aluminum Alloy Products".
- A1.3 Limits denoted as "Tentative" by the Aluminum Association may be included. Requirements for tentative property registrations are defined in the latest edition of the Aluminum Association publication "Tempers for Aluminum and Aluminum Alloy Products." Tentative property limits are established at levels at which at least 99 % of the data conform at a confidence level of 95 %. Tentative property limits, which are subject to revision, shall be based on a statistical analysis of at least 30 tests from at least three cast lots of standard production material with no more than ten observations from a given heat treat or inspection lot. Where tentative property limits are listed, they shall be shown in italics and footnoted as Tentative in the standard.
- A1.4 All tests are performed in accordance with the appropriate ASTM test methods.

# A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association<sup>6</sup> holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
  - A2.2.3 The complete composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.
- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain

refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.

A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

| Less than 0.001 % 0.001 to but less than 0.01 %                             | 0.000X<br>0.00X |
|-----------------------------------------------------------------------------|-----------------|
| 0.01 to but less than 0.10 %                                                | 0.007           |
| Unalloyed aluminum made by a refining process                               | 0.0XX           |
| Alloys and unalloyed aluminum not made by a refining process                | 0.0X            |
| 0.10 through 0.55 %                                                         | 0.XX            |
| (It is customary to express limits of 0.30 through 0.55 % as 0.X0 or 0.X5.) |                 |
| Over 0.55 %                                                                 | 0.X, X.X, etc.  |

(except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)

- A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc; Titanium (Note A2.1); Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).
- Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their symbols between zinc and titanium, or are specified in footnotes.
- Note A2.2—Aluminum is specified as minimum for unalloyed aluminum and as a remainder for aluminum alloys.



### A3. PART OR IDENTIFYING NUMBERS (PINs) FOR USE BY THE DEPARTMENT OF DEFENSE

A3.1 Part numbers are essential to maintain the integrity of the Department of Defense cataloging system as multiple National Stock Numbers (NSN) exist for this product.

A3.2 Part numbers shall be formulated by selecting from the options in this specification as follows:

| B241                   | -XXXX | -XXXX  | -XX                                    | -XX              | -XX            |
|------------------------|-------|--------|----------------------------------------|------------------|----------------|
| Document<br>Identifier | Alloy | Temper | Pipe size<br>in 0.25 in.<br>increments | Schedule<br>size | Length in feet |

A3.3 Examples of Part Numbers:

B429–6063–T6–03–40–20 indicates a Specification B429/B429M standard structural pipe in 6063 alloy and T6 temper that is <sup>3</sup>/<sub>4</sub>-in. pipe size, ANSI schedule 40, with a 20–ft length. B429–3003–H112–04–10–10 indicates a Specification B429/B429M standard structural pipe in 3003 alloy and H112 temper that is 1-in. pipe size, ANSI schedule 10, with a 10-ft length.

### SUMMARY OF CHANGES

Committee B07 has identified the location of selected changes to this standard since the last issue  $(B241/B241M - 12^{\epsilon 1})$  that may impact the use of this standard. (Approved Feb 1, 2016.)

- (1) Combined Specification B345/B345M into this standard, which resulted in numerous.
- (2) Added 6070 alloy as part of combining with Specification B345/B345M.
- (3) Added Table 4 from Specification B345/B345M to cover large diameters.
- (4) Adjusted Webster hardness in Tables 10 and 11, from 16 to 15, for consistency.
- (5) Deleted from all tables alloy 7178 since this alloy has been deactivated by The Aluminum Association in Tan and Yellow sheets, and removed from AS&D.

Note 11—By this combination of documents, AMS 2772 becomes the default heat treatment specifications, and Sections 10 and 11 apply to 6063 and 6061 unless waived by agreement between producer and user.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9555 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/