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FOREWORD

Since the mid-1960s, computer simulations have come to dominate engineering mechanics
analysis for all but the simplest problems. With today’s increasing reliance on complicated simula-
tions using computers, it is necessary to use a systematic program of verification and validation
(V&V) to ensure the accuracy of these simulations. This document is intended to describe such
a program.

The concept of systematic V&V is not a new one. The software development community has
long recognized the need for a quality assurance program for scientific and engineering software.
The Institute of Electrical and Electronic Engineers, along with other organizations, has adopted
guidelines and standards for software quality assurance (SQA) appropriate for developers. SQA
guidelines, while necessary, are not sufficient to cover the nuances of computational physics and
engineering or the vast array of problems to which end-users apply the codes. To fill this gap,
the concept of application-specific V&V was developed.

Application-specific V&V has been the focus of attention for several groups in scientific and
engineering communities since the mid-1990s. The Department of Defense’s Defense Modeling and
Simulation Office (DMSO) produced recommended practices suitable for large-scale simulations.
However, the DMSO guidelines generally do not focus on the details of first-principles—-based
computational physics and engineering directly. For the area of computational fluid dynamics
(CFD), the American Institute of Aeronautics and Astronautics (AIAA) produced the first V&V
guidelines for detailed, first-principle analyses.

Recognizing the need for a similar set of guidelines for computational solid mechanics (CSM),
members of the CSM community formed a committee under the auspices of the United States
Association for Computational Mechanics in 1999. The American Society of Mechanical Engineers
(ASME) Board on Performance Test Codes (PTC) granted the committee official status in 2001
and designated it as the PTC 60 Committee on Verification and Validation in Computational
Solid Mechanics. The PTC 60 committee undertook the task of writing these guidelines. Its
membership consists of solid mechanics analysts, experimenters, code developers, and managers
from industry, government, and academia. Industrial representation includes the aerospace/
defense, commercial aviation, automotive, bioengineering, and software development industries.
The Department of Defense, the Department of Energy, and the Federal Aviation Administration
represent the government.

Early discussions within PTC 60 revealed an immediate need for a common language and
process definition for V&V appropriate for CSM analysts, as well as their managers and customers.
This document describes the semantics of V&V and defines the process of performing V&V in
a manner that facilitates communication and understanding among the various performers and
stakeholders. Because the terms and concepts of V&V are numerous and complex, it was decided
to publish this overview document first, to be followed in the future by detailed treatments of
how to perform V&V for specific applications.

Several experts in the field of CSM who were not part of PTC 60 reviewed a draft of this
document and offered many helpful suggestions. The final version of this document was approved
by PTC 60 on May 11, 2006 and was approved and adopted by the American National Standards
Institute on November 3, 2006.
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CORRESPONDENCE WITH THE
PTC 60 COMMITTEE

General. ASME Codes are developed and maintained with the intent to represent the consensus
of concerned interests. As such, users of this Guide may interact with the Committee by requesting
interpretations, proposing revisions, and attending Committee meetings. Correspondence should
be addressed to:

Secretary, PTC 60 Committee
The American Society of Mechanical Engineers

Three Park Avenue
New York, NY 10016-5990

Proposing Revisions. Revisions are made periodically to the Guide to incorporate changes that
appear necessary or desirable, as demonstrated by the experience gained from the application
of the Guide. Approved revisions will be published periodically.

The Committee welcomes proposals for revisions to this Guide. Such proposals should be as
specific as possible, citing the paragraph number(s), the proposed wording, and a detailed descrip-
tion of the reasons for the proposal, including any pertinent documentation.

Interpretations. Upon request, the PTC 60 Committee will render an interpretation of any
requirement of the Guide. Interpretations can only be rendered in response to a written request
sent to the Secretary of the PTC 60 Committee.

The request for interpretation should be clear and unambiguous. It is further recommended
that the inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry.

Edition: Cite the applicable edition of the Guide for which the interpretation is being
requested.

Question: Phrase the question as a request for an interpretation of a specific requirement

suitable for general understanding and use, not as a request for an approval
of a proprietary design or situation. The inquirer may also include any plans
or drawings which are necessary to explain the question; however, they should
not contain proprietary names or information.

Requests that are not in this format will be rewritten in this format by the Committee prior
to being answered, which may inadvertently change the intent of the original request.

ASME procedures provide for reconsideration of any interpretation when or if additional
information that might affect an interpretation is available. Further, persons aggrieved by an
interpretation may appeal to the cognizant ASME Committee or Subcommittee. ASME does not
“approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

Attending Committee Meetings. The PTC 60 Committee regularly holds meetings, which are
open to the public. Persons wishing to attend any meeting should contact the Secretary of the
PTC 60 Committee.
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PREFACE

This document provides general guidance for implementing verification and validation
(V&V) of computational models for complex systems in solid mechanics. The guidance is based
on the following key principles:

(a) Verification (addressing programming errors and estimating numerical errors) must precede
validation (assessing a model’s predictive capability by comparing calculations with experiments).

(b) The need for validation experiments and the associated accuracy requirements for computa-
tional model predictions are based on the intended use of the model and should be established
as part of V&V activities.

(c) Validation of a complex system should be pursued in a hierarchical fashion from the
component level to the system level.

(d) Validation is specific to a particular computational model for a particular intended use.

(e) Simulation results and experimental data must have an assessment of uncertainty to be
meaningful.

Although the state of the art of V&V does not yet lend itself to writing a step-by-step perform-
ance code/standard, this guide provides the computational solid mechanics (CSM) community
with a common language and conceptual framework to enable managers and practitioners of
V&V to better assess and enhance the credibility of CSM models. Implementation of a range of
V&V activities is discussed, including model development for complex systems, verification
of numerical solutions to governing equations, attributes of validation experiments, accuracy
requirements, and quantification of uncertainties. Remaining issues for further development of
a V&V protocol are identified.

viii



ASME V&V 10-2006

GUIDE FOR VERIFICATION AND VALIDATION IN
COMPUTATIONAL SOLID MECHANICS

1 EXECUTIVE SUMMARY

Program managers need assurance that computa-
tional models of engineered systems are sufficiently
accurate to support programmatic decisions. This docu-
ment provides the technical community — engineers,
scientists, and program managers — with guidelines for
assessing the credibility of computational solid mechan-
ics (CSM) models.

Verification and validation (V&V) are the processes by
which evidence is generated, and credibility is thereby
established, that computer models have adequate accu-
racy and level of detail for their intended use. Definitions
of V&V differ among segments of the practicing commu-
nity. The PTC 60 committee has chosen definitions con-
sistent with those published by the Defense Modeling
and Simulation Office of the Department of Defense
(DoD) [1] and by the American Institute of Aeronautics
and Astronautics (AIAA) in their 1998 Guide for the
Verification and Validation of Computational Fluid
Dynamics [2], which the present American Society of
Mechanical Engineers (ASME) document builds upon.
Verification assesses the numerical accuracy of a compu-
tational model, irrespective of the physics being mod-
eled. Both code verification (addressing errors in the
software) and calculation verification (estimating
numerical errors due to under-resolved discrete repre-
sentations of the mathematical model) are addressed.
Validation assesses the degree to which the computa-
tional model is an accurate representation of the physics
being modeled. It is based on comparisons between
numerical simulations and relevant experimental data.
Validation must assess the predictive capability of the
model in the physical realm of interest, and it must
address uncertainties that arise from both experimental
and computational procedures.

Although the state of the art of V&V does not yet
lend itself to writing a step-by-step performance code/
standard, the guidance provided here will enable man-
agers and practitioners of V&V to better assess and
enhance the credibility of CSM models. The PTC 60
Committee recognizes that program needs and resources
vary and that the application of the guidance provided
in this document to specific cases must accommodate
specific budget and risk considerations. The scope of
this document is to explain the principles of V&V so
that practitioners can better appreciate and understand

how decisions made during V&V can impact their ability
to assess and enhance the credibility of CSM models.

As suggested by Fig. 1, the V&V processes begin with
a statement of the intended use of the model so that the
relevant physics are included in both the model and the
experiments performed to validate the model. Modeling
activities and experimental activities are guided by the
response features of interest and the accuracy require-
ments for the intended use. Experimental outcomes for
component-level, subsystem-level, or system-level tests
should, whenever possible, be provided to modelers
only after the numerical simulations for them have been
performed with a verified model. For a particular appli-
cation, the V&V processes end with acceptable
agreement between model predictions and experimental
outcomes after accounting for uncertainties in both,
allowing application of the model for the intended use.
If the agreement between model and experiment is not
acceptable, the processes of V&V are repeated by updat-
ing the model and performing additional experiments.

Finally, the importance of documentation in all of the
V&V activities should be emphasized. In addition to
preserving the compiled evidence of V&V, documenta-
tion records the justifications for important decisions,
such as selecting primary response features and setting
accuracy requirements. Documentation thereby sup-
ports the primary objective of V&V: to build confidence
in the predictive capability of computational models.
Documentation also provides a historical record of the
V&V processes, provides traceability during an engi-
neering audit, and captures experience useful in men-
toring others.

2 INTRODUCTION

CSM is playing an increasingly important role in the
design and performance assessment of engineered sys-
tems. Automobiles, aircraft, and weapon systems are
examples of engineered systems that have become more
and more reliant on computational models and simula-
tion results to predict their performance, safety, and reli-
ability. Although important decisions are made based
on CSM, the credibility (or trustworthiness) of these
models and simulation results is oftentimes not ques-
tioned by the general public, the technologists who
design and build the systems, or the decision makers
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Fig. 1 Elements of V&V
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who commission their manufacture and govern their
use.

What is the basis for this trust? Both the public and
decision makers tend to trust graphical and numerical
presentations of computational results that are plausible
and that make sense to them. This trust is also founded
on faith in the knowledge and abilities of the scientists
and engineers who develop, exercise, and interpret the
models. Those responsible for the computational models
and simulations on which society depends so heavily
are, therefore, keepers of the public trust with an abiding
responsibility for ensuring the veracity of their simula-
tion results.

Scientists and engineers are aware that the computa-
tional models they develop and use are approximations
of reality and that these models are subject to the limita-
tions of available data, physical theory, mathematical
representations, and numerical solutions. Indeed, a fun-
damental approximation in solid mechanics is that the
nonhomogeneous microstructure of materials can be
modeled as a mathematical homogeneous continuum.
Further approximations are commonly made, such as
assuming the sections of a beam to remain plane during
bending. Additionally, characterization of complex
material behavior subject to extreme conditions is a sig-
nificant approximation that must be made. The use of
these approximations, along with their attendant mathe-
matical formulations and numerical solution tech-
niques, has proved to be a convenient and acceptably
accurate approach for predicting the behavior of many
engineered structures.

Analysts always need to ensure that their approxima-
tions of reality are appropriate for answering specific
questions about engineered systems. Primarily, an ana-
lyst should strive to establish that the accuracy of a
computational model is adequate for the model’s
intended use. The required accuracy is related to the
ability of a simulation to correctly answer a quantitative
question — a question that requires a numerical value
as opposed to one that requires a simple “yes” or “no”

response. Accuracy requirements vary from problem to
problem and can be influenced by public perception
and economic considerations, as well as by engineering
judgment.

The truth of a scientific theory, or of a prediction made
from the theory, cannot be proven in the sense of deduc-
tive logic. However, scientific theories and subsequent
predictions can and should be tested for trustworthiness
by the accumulation of evidence. The evidence collected,
corroborative or not, should be organized systematically
through the processes of computational model V&V.
V&V address the issue of trustworthiness by providing
a logical framework for accumulating and evaluating
evidence and for assessing the credibility of simulation
results to answer specific questions about engineered
systems.

2.1 Purpose and Scope

The purpose of this document is to provide the compu-
tational solid and structural mechanics community with
a common language, a conceptual framework, and gen-
eral guidance for implementing the processes of compu-
tational model V&V. To this end, the reader will find a
glossary of terms, figures illustrating the recommended
overall approach to V&V activities, and discussions of
factors that should be considered in developing and
executing a V&V program. In creating this document,
the PTC 60 committee benefited from the earlier contri-
butions to the field of V&V by other groups, especially
Reference 2 as well as References 3 and 4. Although the
state of the art of V&V does not yet lend itself to writing a
step-by-step performance code/standard, the guidance
provided here will enable managers and practitioners
of V&V to better assess and enhance the credibility of
CSM models.

To maximize the value to the engineering community,
the PTC 60 committee chose to write from the perspec-
tive of V&V for high-consequence computational pre-
dictions of complex engineering systems. However, the
guidance provided here is also appropriate for simpler
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applications, recognizing that smaller budgets and
lower risks will reduce the scope of the V&V effort. Also,
while the concepts and terminology presented here are
applicable to all applied mechanics, the focus is on CSM.

2.2 General Concepts of V&V

To avoid confusion, the terms “code,” “model,” and
“"_: . 172 .
simulation results” are defined here as follows:

"o

code: the computer implementation of algorithms devel-
oped to facilitate the formulation and approximate solu-
tion of a class of problems.

model: the conceptual, mathematical, and numerical rep-
resentations of the physical phenomena needed to repre-
sent specific real-world conditions and scenarios. Thus,
the model includes the geometrical representation, gov-
erning equations, boundary and initial conditions, load-
ings, constitutive models and related material
parameters, spatial and temporal approximations, and
numerical solution algorithms.

simulation results: the output generated by the computa-
tional model.

The terms “verification” and “validation” have been
used interchangeably in casual conversation as syn-
onyms for the collection of corroborative evidence. Defi-
nitions that have been adopted in this document are
largely consistent with those published by the DoD [1]
and the ATAA [2].

validation: the process of determining the degree to
which a model is an accurate representation of the real
world from the perspective of the intended uses of the
model.

verification: the process of determining that a computa-
tional model accurately represents the underlying math-
ematical model and its solution.

In essence, “verification” is the process of gathering
evidence to establish that the computational implemen-
tation of the mathematical model and its associated solu-
tion are correct. “Validation,” on the other hand, is the
process of compiling evidence to establish that the
appropriate mathematical models were chosen to
answer the questions of interest by comparing simula-
tion results with experimental data.

Readers might find it helpful at this point to look at
definitions of the terms used throughout this document.
The glossary (Mandatory Appendix I) defines terms that
form part of the shared language for V&V as used herein.

The objective (i.e., desired outcome) of V&V is to vali-
date a model for its intended use. From the perspective
of the model builder, the model is considered validated
for its intended use once its predetermined requirements
for demonstration of accuracy and predictive capability
have been fulfilled. From the perspective of the decision
maker or stakeholder, the intended use also defines the
limitations imposed on the applicability of the model.
An example of an intended use would be to predict the

response of a particular make and model of automobile
in frontal impacts against a wall at speeds up to 30 mph.
Validation might consist of predicting the compaction
of the front end and the acceleration of the occupant
compartment to within 20% for tests at 10, 20, and
30 mph. The validated model could then be used to
predict the same response features at any speed up to
30 mph. However, it would not be validated for other
makes or models of automobiles, for higher speeds, or
for rear-end or side collisions.

A detailed specification of the model’s intended use
should include a definition of the accuracy criteria by
which the model’s predictive capability will be assessed.
The accuracy criteria should be driven by application
(i.e., intended use) requirements. For instance, in the
previous example, 20% accuracy is based on consider-
ation of how the predictions will be used. Although
accuracy criteria and other model requirements may
have to be changed before, during, or after validation
assessments of the entire system, it is best to specify
validation and accuracy criteria prior to initiating
model-development and experimental activities in order
to establish a basis for defining “how good is good
enough?”

The recommended approach to conducting model
V&V emphasizes the need to develop a plan for conduct-
ing the V&V program. For complex, high-consequence
engineered systems, the initial planning will preferably
be done by a team of experts. The V&V plan should be
prepared before any validation experiments are per-
formed. The plan, at a minimum, should include a
detailed specification of the intended use of the model
to guide the V&V effort; a detailed description of the full
physical system, including the behavior of the system’s
parts both in isolation and in combination; and a list of
the experiments that need to be performed. The plan
may also provide details about the approach that will
be taken to verify the model, as well as information
related to such program factors as schedule and cost.
Key considerations in developing the V&V plan are dis-
cussed in para. 2.5, following presentation of the V&V
processes.

2.3 Approach to Modeling Complex Systems

Many real-world physical systems that would be the
subject of model V&V are inherently complex. To
address this complexity and prepare a detailed descrip-
tion of the full system, it is helpful to recognize that the
real-world physical system being modeled is hierarchi-
cal in nature. As illustrated in Fig. 2, the hardware of a
physical system is typically composed of assemblies,
each of which consists of two or more subassemblies; a
subassembly, in turn, consists of individual components.

The top-level reality of interest in Fig. 2 can be viewed
as any level of a real physical system. For example, it
could be a complete automobile, or it could be the drive
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Fig. 2 Hierarchical Structure of Physical Systems

Real-world physical system
(Top-level reality of interest)

Subassemblies

(

Components

train of an automobile. If an automobile is the top-level
reality of interest, it might be composed of assemblies
such as the drive train, the frame, the body, and the
interior. Considering the drive train as an assembly, it
might be composed of subassemblies like the engine, the
transmission, the drive shaft, and the rear differential.
Similarly, a subassembly such as the engine might con-
tain components like the engine block and the radiator.
In terms of V&V, the requirements on the model for the
top-level reality of interest, as well as for all lower levels,
depend on the intended use for which the model is being
developed.

2.4 Bottom-Up Approach to V&V

A top-down decomposition of the physical system
into its hardware constituents, as discussed above,
serves as the basis for developing a model of this system.
However, the recommended approach to V&V is to
develop such a hierarchy and then work from the bottom
up to identify and describe the physical phenomena
at each level of the hierarchy that must be accurately
simulated with the model, beginning at the lowest tier
in the hierarchy (i.e., the component level). Component
phenomena could include fundamental behavior such
as deformation, natural frequencies, and buckling loads.
The bottom-up approach recognizes that some of the
physical responses of components may be representative
of a single physical phenomenon, while at levels of the
hierarchy above that of components, interaction effects
that are not exhibited by the individual components are

Fig. 3 Example of Bottom-Up Approach to V&V

Validated model
applied to
top-level reality of interest
(intended use)

Production vehicles
in real traffic accidents

Complete vehicles

System model .
Y in laboratory crashes

Frame and drive-train
assemblies in a range

Assembly models of crash conditions

h

Static collapse test

Subassembly of automobile frame

models

i

1 Ll 1
1 L1
II : 1
Component models

likely, such as effects of frictional interfaces and joints.
For example, a model of a subassembly consisting of a
welded automobile frame could introduce behavior that
is not present when individual struts are modeled sepa-
rately.

Building a model from the bottom up will result in
a multitiered set of individual models (a system-level
model and its embedded submodels) and form the basis
for defining validation experiments that need to be con-
ducted at each tier of the hierarchy to ensure that the
constituent models at the particular tier function appro-
priately. Models for components, subassemblies, and
assemblies that have been validated previously can and
should be reused if the response mechanisms they have
been shown to exhibit, and the predictive accuracy they
have demonstrated, clearly meet the requirements of the
new system. Fig. 3 depicts an overview of the bottom-
up approach to validation. The left side of the figure
identifies the models that would be constructed at each
tier, and the right side of the figure provides examples
of the types of experiments and predictions that might
be performed at the respective tiers. In this example,

Combined compression
and bending test
of tubular steel strut
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validation of the system model will be achieved, by
consensus of the program experts, if the responses of
complete vehicles in laboratory crashes are successfully
predicted. It is common that the highest-tier validation
experiments are either special cases of the expected
operating conditions or idealized versions of the real-
world system. It is important to complete V&V with
computations and experiments at the system level to
assess whether the bottom-up approach adequately con-
sidered complex nonlinear interactions at all levels of
the hierarchy (i.e., that the appropriate hierarchical
decomposition was used).

It may be tempting to perform validation of system
models directly from data taken from tests of the com-
plete system without new or archived validation at
lower levels in the hierarchy. This can be problematic
for a large number of components or if the subsystem
models contain complex connections or interfaces,
energy dissipation mechanisms, or highly nonlinear
behavior. If there is poor agreement between the simula-
tion results and the experiment, it is often difficult, if
not impossible, to isolate which subsystem model is
responsible for the discrepancy. Even if good agreement
between calculation and experiment is observed, it is still
possible that the model quality could be poor because of
error cancellation among the subsystem models. There-
fore, a better strategy is to conduct a sequence of experi-
ments that builds confidence in the model’s ability to
produce accurate simulations at multiple levels in the
hierarchy.

2.5 V&V Activities and Products

Once the elements of the physical system’s hierarchy
(whether one or many tiers) have been defined and
prioritized, a systematic approach can be followed for
quantifying confidence in model predictions through
the logical combination of hierarchical model building,
focused laboratory and field experimentation, and
uncertainty quantification. This process is discussed
below.

Figure 4 identifies the activities and products in the
recommended V&V approach for CSM. The activities
are denoted by simple text, such as “mathematical mod-
eling” and “physical modeling”; the products of these
activities are highlighted in rounded boxes (e.g., the
mathematical model is the product of the mathematical
modeling activity). Modelers follow the left branch to
develop, exercise, and evaluate the model. Experiment-
ers follow the right branch to obtain the relevant experi-
mental data via physical testing. Modelers and
experimenters collaborate in developing the conceptual
model, conducting preliminary calculations for the
design of experiments, and specifying initial and bound-
ary conditions for calculations for validation.

The process shown in Fig. 4 is repeated for each mem-
ber of every tier of the hierarchy in the system decompo-
sition exercise discussed previously, starting at the

component level and progressing upward through the
system level. Thus, the reality of interest is an individual
subsystem each time this approach is followed. Ulti-
mately, the reality of interest at the top of Fig. 4 would
be the complete system. However, in the bottom-up
approach, both preliminary conceptual model develop-
ment and V&V planning for all levels in the hierarchy,
especially the system level, are performed before the
main validation activities for components, subassem-
blies, and assemblies begin.

Abstraction of the reality of interest into the concep-
tual model requires identifying the domain of interest,
important physical processes and assumptions, and
system-response quantities of interest. The abstraction
essentially produces the modeling approach based on
these considerations. It is also intimately connected to
the development of the overall V&V plan that establishes
the validation requirements, including the types of
experiments to be performed and the required level of
agreement between the experimental outcomes and the
simulation outcomes. Thus, this activity is typically iter-
ative and involves modelers, experimenters, and deci-
sion makers.

2.5.1 The Modeling Branch. In the mathematical
modeling activity, the modeler constructs a mathemati-
cal interpretation of the conceptual model. The resulting
mathematical model is a set of equations and modeling
data that describe physical reality, including the geomet-
ric description, governing equations, initial and bound-
ary conditions, constitutive equations, and external
forces.

During the subsequent implementation activity, the
modeler develops the computational model, which is
the software implementation on a specific computing
platform of the equations developed in the mathematical
model, usually in the form of numerical discretization,
solution algorithms, and convergence criteria. The com-
putational model includes numerical procedures, such
as finite element or finite difference, for solving the equa-
tions prescribed in the mathematical model with specific
computer software.

In the assessment activity of code verification, the
modeler uses the computational model on a set of prob-
lems with known solutions. These problems typically
have much simpler geometry, loads, and boundary con-
ditions than the validation problems, to identify and
eliminate algorithmic and programming errors. Then,
in the subsequent activity of calculation verification,
the version of the computational model to be used for
validation problems (i.e., with the geometries, loads, and
boundary conditions typical of those problems) is used
for identifying sufficient mesh resolution to produce an
adequate solution tolerance, including the effects of
finite precision arithmetic. Calculation verification
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Fig. 4 V&V Activities and Products
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yields a quantitative estimate of the numerical precision
and discretization accuracy for calculations made with
the computational model for the validation experiments.

In the calculation activity, the modeler runs the com-
putational model to generate the simulation results for
validation experiments. The simulation results can also
be postprocessed to generate response features for com-
parison with experimental data. A feature could be as
simple as the maximum response for all times at a spe-
cific location in the object being tested, or it could be
as complex as a fast Fourier transform of the complete
response history at that location.

In the subsequent uncertainty quantification activity,
the modeler should quantify the uncertainties in the
simulation results that are due to the inherent variability
in model parameters or to lack of knowledge of the

parameters or the model form. The results of the param-
eter and model-form uncertainty quantification should
be combined with those of the calculation verification
to yield an overall uncertainty estimate associated with
simulation results. Features of interest extracted from
simulation results and estimates of uncertainty combine
to form the simulation outcomes that are used for com-
parison with the experimental outcomes.

2.5.2 The Experimental Branch. In the first two
activities of the right branch of Fig. 4, validation experi-
ments are conceived via the physical modeling activity
and designed as part of the implementation activity.
The purpose of validation experiments is to provide
information needed to assess the accuracy of the mathe-
matical model; therefore, all assumptions should be
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understood, well defined, and controlled. To assist with
experiment design, preliminary calculations (including
sensitivity and uncertainty analyses) are recommended,
for example, to identify the most effective locations and
types of measurements needed from the experiment.
These data should include not only response measure-
ments, but also measurements needed to define model
inputs and model input uncertainties associated with
loading, initial conditions, boundary conditions, etc. The
modeler and the experimenter should continue to work
together, so that they are both continually aware of
assumptions in the models or the experiments. By
observing the preparations for the experiment, for exam-
ple, the modeler will frequently detect incorrect assump-
tions in the model. However, experimental results
should not be given to the modeler to preclude inadver-
tent or intentional tuning of the model to match experi-
mental results.

The experimentation activity involves the collection
of raw data from various instruments used in the experi-
ment, such as strain and pressure gauges and high-speed
cameras, and the generation of processed data such as
time integrals, averages, or the determination of velocity
from high-speed video. As necessary, the experimental
data can be transformed into experimental features that
are more useful for direct comparison with simulation
outcomes. Repeat experiments are generally required to
quantify uncertainty due to lack of repeatability and
inherent variability.

The experimenter then performs uncertainty quantifi-
cation to quantify the effects of various sources of uncer-
tainty on the experimental data. Among these sources
are measurement error, design tolerances, manufactur-
ing and assembly variations, unit-to-unit fabrication dif-
ferences, and variations in performance characteristics
of experimental apparatuses. Experimental outcomes,
which are the product of this uncertainty quantification
activity, will typically take the form of experimental data
plus uncertainty bounds as a function of time or load.

2.5.3 Obtaining Agreement. Once experimental out-
comes and simulation outcomes for the actual test condi-
tions have been generated, the modeler and
experimenter perform the validation assessment activity
by comparing these two sets of outcomes.

The metrics for comparing experimental outcomes
and simulation outcomes as well as the criteria for
acceptable agreement will have been specified during
the formulation of the V&V plan. The degree to which
the model accurately predicts the data from system-level
validation experiments is the essential component of the
overall assessment of the model’s predictive capability.
Note, however, that the diamond symbol denoting
“acceptable agreement” at the bottom of Fig. 4 provides
an objective decision point for initiating improvements
in the conceptual, mathematical, and computational
models and in the experimental designs.

The block at the bottom of Fig. 4 denotes that the
process repeats for the next submodel to be validated,
either at the same tier or at the next higher tier of the
hierarchy. Thus, as V&V is performed, the results of the
component-level activities are propagated to the next
higher tier of the hierarchy, and so on up to the
full-system level.

2.6 Development of the V&V Plan

As mentioned previously, a V&V program should be
thoughtfully planned before the major activities in
model development and experimentation are initiated.
In particular, it is essential to define the requirements
for system-level validation in the V&V plan.

2.6.1 Validation Testing. In many cases, the most
difficult part of V&V planning is to establish the relation-
ship between validation experiments and the reality of
interest. That is, for what set of cases should the model
have to demonstrate predictive capability so that the
user will have sufficient confidence that the model can
predict the reality of interest with the required accuracy?
In some cases, this is a matter of interpolation or perhaps
minor extrapolation. In other cases, however, it may not
be possible either to test the complete system or to test
over the full range of the reality of interest, such as for
a model whose intended use is to predict the response
of a high-rise building to an earthquake. Still, by a con-
sensus of experts, a plan must always be developed
that defines the set of conditions for which the system
model’s predictive capability is to be demonstrated in
order to be accepted for its intended use.

2.6.2 Selection of Response Features. Complex
physical systems and the model simulations that predict
their behavior encompass an enormous array of
response features. And because only a limited number
of measurements can be made in validation experiments,
it is important to identify the features of interest before
the experiments are designed. Selecting which response
features to measure and compare with predictions
should first be driven by application requirements. At
the system level, this may require product safety or reli-
ability parameters to be defined in engineering terms.
For example, occupant injury in automobile crashes may
be related to occupant-compartment accelerations and
protrusions, and thus those features should be measured
and predicted. The appropriate response features of
assemblies, subassemblies, and components depend on
how their responses affect the critical features of the
system response. Specifications should also be made for
the metrics used for comparisons of outcomes, such as
root-mean-square (RMS) differences of simulation and
experimental acceleration histories.

2.6.3 Accuracy Requirements. The accuracy require-
ments for predicting the response features of interest
with the system-level model are based on the intended
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use and may rely on engineering judgment or a formal
risk analysis. Specification of accuracy requirements
allows the “acceptable agreement” question to be
answered quantitatively. Only with accuracy require-
ments can the decision be made about whether to accept
or revise a model. Without accuracy requirements, the
question “how good is good enough?” cannot be
answered.

System-level accuracy requirements are used to estab-
lish accuracy requirements for each submodel in the
V&V hierarchy. These requirements should be estab-
lished such that models for assemblies, subassemblies,
and components are refined at least to the degree
required to meet the accuracy goal of the system-level
model. A sensitivity analysis of the complete system
can be used to estimate the contribution of each model;
the estimated contributions can then be used to establish
commensurate accuracy requirements. It is reasonable
to expect that the accuracy requirement for component
behavior will be more stringent than the accuracy
requirements for the complete system due to the simpler
nature of problems at the component level and the com-
pounding effect of propagating inaccuracy up through
the hierarchy. For example, a 10% accuracy requirement
might be established for a model that calculates the axial
buckling strength of a tubular steel strut in order to
achieve 20% accuracy of the collapse strength of a frame
made of many such components.

2.7 Documentation of V&V

It is important to document both the results and the
rationale of V&V not only for the current intended use,
but also for potential future uses. V&V allow a knowl-
edge base to be built from the various levels in the
hierarchy and later reused in subsequent applications.
For example, in many applications, derivative or closely
related product designs are used in the development of
future designs. If a thorough execution and documenta-
tion of hierarchical V&V has been performed for the
model of the basic design, many of the hierarchical ele-
ments for V&V of the model for the derivative design
might be reusable. In this way, the value of investment
in hierarchical V&V can be leveraged to reduce V&V
costs for future projects. Documentation also provides
the basis for possible limitations on reuse and thus pre-
vents unjustifiable extrapolations. The V&V documenta-
tion should be comprehensive, self-contained,
retrievable, and citable.

2.8 Overview of Subsequent Sections

Section 2 has outlined the basic principles and charac-
teristics of a careful and logical approach to implement-
ing model V&V for CSM. The guidelines for
accomplishing the various activities in V&V form the
contents of sections 3 through 5. Model development
activities are the focus of section 3. In section 4, the two
assessment activities of code verification and calculation

verification are described. Section 5 discusses the experi-
mental and assessment activities involved in validating
a model. The concluding remarks in section 6 identify
issues that need to be addressed so that V&V for CSM
can evolve into a more robust and quantitative method-
ology. The concluding remarks are followed by manda-
tory appendices, which comprise a glossary of V&V
terms (Mandatory Appendix I), nomenclature (Manda-
tory Appendix II), and a bibliography (Mandatory
Appendix III).

3 MODEL DEVELOPMENT

This section describes the activities involved in devel-
oping the computational model, starting with the formu-
lation of the conceptual and mathematical models, then
revising these models during V&V, and, finally, quantify-
ing the uncertainty in the resulting model. The descrip-
tion of the model development activities begins with
the assumption that the reality of interest, the intended
use of the model, the response features of interest, and
the accuracy requirements have been clearly defined.
However, there will be some interplay between the
development of the conceptual model and the V&V plan.

In general, the system model (conceptual to computa-
tional) is built up from subassembly, assembly, and com-
ponent models, as illustrated in Fig. 2. At the highest
level, the “reality of interest” within Figs. 3 and 4 will
be the real-world system under the intended range of
realistic operating conditions; the corresponding
“intended use” of the model is to predict system behav-
ior for cases that cannot, or will not, be tested.

Figure 5 illustrates the path from a conceptual model
to a computational model. An example of a conceptual
model is a classical Bernoulli-Euler beam with the
assumptions of elastic response and plane sections. This
conceptual model can be described with differential cal-
culus to produce a mathematical model. The equations
can be solved by various numerical algorithms, but typi-
cally in CSM they would be solved using the finite ele-
ment method. The numerical algorithm is programmed
into a software package, here called a “code.” With the
specification of physical and discretization parameters,
the computational model is created.

3.1 Conceptual Model

The conceptual model is defined as the idealized rep-
resentation of the solid mechanics behavior of the reality
of interest. This model should therefore include those
mechanisms that impact the key mechanical and physi-
cal processes that will be of interest for the intended use
of the model. The activity of conceptual model develop-
ment involves formulating a mechanics-based represen-
tation of the reality of interest that is amenable to
mathematical and computational modeling, that
includes the appropriate level of detail, and that is
expected to produce results with adequate accuracy for
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the intended use. Essentially, it is defining the modeling
approach.

The formulation of the conceptual model is important
to the overall model-development process because many
fundamental assumptions are made that influence inter-
pretation of the simulation results. These assumptions
include the determination of how many separate parts
or components will be included in the model, the
approach to modeling the material behavior, the elimina-
tion of unimportant detail features in the geometry, and
the selection of interface and boundary types (e.g., fixed,
pinned, contact, friction, etc.). If an important mechani-
cal phenomenon is omitted from the conceptual model,
the resulting simulations might not be adequate for the
intended use of the model.

An essential step in developing the conceptual model
is to identify which physical processes in the reality of
interest are anticipated initially to have significant effects
on the system’s response. Likewise, it is important to
identify which physical processes do not have a signifi-
cant effect and to note that such mechanics will be
ignored in the conceptual model. Identifying the essen-
tial physical processes will help to ensure that the com-
putational model sufficiently represents the mechanics
involved and does not waste computational effort mod-
eling physical effects that do not affect the responses
of interest. Development of the conceptual model also
requires knowledge of the range of operating environ-
ments that are relevant to the model’s intended use. The
environments affect choices in the modeling, such as
whether to include plasticity or thermal softening.
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Table 1 PIRT Example

Importance to Level of
Type of Response of Confidence
Phenomenon Phenomenon Interest in Model
A Interface High Medium
B Plasticity Medium High
C Loads Medium Low
D Fracture Low Low

Response features of interest are the characteristics of
the response of the physical system that the computa-
tional model has to predict for the intended use. They
could include characteristics such as the maximum ten-
sile stress in bolts, the peak acceleration of the center of
a floor, the average value of pressure in a chamber, the
deflection of the center of a glass window, the modal
frequencies of a radio tower, or the strain energy release
rate at the tip of a fracture. Knowledge of the features of
interest is important in the conceptual modeling activity
because interest in certain features may influence deci-
sions that are made during the mathematical and com-
putational modeling activities. For example, if the
deflections of a particular part are of interest, the compli-
ance of materials surrounding that part probably should
not be neglected.

During development of the conceptual model, the best
tools available for identification of the key physical pro-
cesses are engineering expertise and judgment. Thor-
ough documentation of the rationale for what is
included in — or excluded from — the conceptual
model is an important part of proper model develop-
ment. Note that once the computational model has been
developed, a sensitivity analysis can be used to investi-
gate the importance of a physical process to the response
of the system (see para. 3.5).

Constructing a Phenomena Identification and Rank-
ing Table (PIRT) can be a useful exercise for identifying
the key physical processes [5]. The PIRT is both a process
and a product. The exercise involves gathering a diverse
group of subject-matter experts together to rank the
physical processes according to their importance to the
system responses of interest. The product is the table
itself, which presents a summarized list of the physical
phenomena, along with a ranking (e.g., high, medium,
low) of the importance of each phenomenon to the sys-
tem responses of interest. Sample entries in a PIRT are
shown in Table 1. The PIRT can be used either to con-
struct a conceptual model (starting from scratch) or to
prioritize the conceptual model of a large general-pur-
pose code that may have the ability to model hundreds
of phenomena, only a subset of which are relevant to
the subject model.

In addition, the PIRT could also include at this stage
of model development a qualitative judgment regarding
the ability of either existing computational models or
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to-be-developed computational models to describe the
physical processes accurately (last column in Table 1).
This information is useful to help prioritize which physi-
cal processes will be investigated experimentally during
validation (i.e., this is part of the interplay between the
development of the conceptual model and the develop-
ment of the V&V plan). For the example in Table 1,
phenomenon B would have a low priority for validation
because it can already be modeled with high confidence.
Similarly, phenomenon D would have a low priority
because of its low importance to the model response of
interest.

3.2 Mathematical Model

The development of the mathematical model consists
of specifying the mathematical descriptions of the
mechanics represented in the conceptual model. In the
mathematical model, principles of mechanics, the mate-
rial behavior, interface properties, loads, and boundary
conditions are cast into equations and mathematical
statements. For example, if the property of an interface
between two bodies is to be described with Coulomb
friction, the mathematical model would be 7 = u o,
where 7 is the shear stress, u is the Coulomb friction
coefficient, and o is the normal stress.

The specification of the mathematical model then
allows the model input parameters to be defined. The
model input parameters describe the various
user-specified inputs to the model, such as material con-
stants, applied loads, and the Coulomb friction coeffi-
cient in the above example. The domain of interest can
then be expressed in terms of these parameters. For
example, if the application domain specifies a range of
applied loads, a specific parameter (or set of parameters)
in the mathematical model can be used to define that
range of loads.

3.3 Computational Model

The computational model is the numerical implemen-
tation of the mathematical model that will be solved
on a computer to yield the computational predictions
(simulation results) of the system response. As defined
herein, the computational model includes the type and
degree of spatial discretization of the geometry (e.g.,
into finite elements), the temporal discretization of the
governing equations, the solution algorithms to be used
to solve the governing equations, and the iterative con-
vergence criteria for the numerical solutions. With this
inclusive definition, models employing solution-adap-
tive mesh-generation methods are defined by their adap-
tive control parameters.

The computational model can be simple or compli-
cated, and it can employ in-house or commercial
finite-element software to develop and solve the numeri-
cal equations. An analyst is often tempted to jump
directly from a geometric description of the reality of
interest to the development of a computational mesh,
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especially given the availability of highly automated
preprocessing software. Meshing, however, is not mod-
eling. The analyst must understand the underlying
conceptual model and mathematical model in order to
understand the effects on the model outcomes that are
caused by the assumptions and mathematical simplifica-
tions inherent in the computational model. Without this
understanding, it is difficult to know whether the com-
putational model is inadequate or inappropriate for the
intended use. For example, the analyst must consider the
type of boundary conditions to be imposed in buckling
problems, because buckling results are sensitive to the
end conditions used in the model.

3.4 Model Revisions

Commonly, at some stage of validation, the modeler
will find that the computational model needs revisions
to achieve the desired accuracy or to account for new
requirements. In a general sense, there are two classes
of possible revisions to the mathematical and computa-
tional models. The first class of revisions covers updates
to parameters in the mathematical or computational
model that are determined by calibrating the computa-
tional model to experimental data (e.g., apparent mate-
rial parameters, modal damping coefficients for linear
vibration, or friction coefficients for a mechanical inter-
face). The second class of revisions covers changes to
the form of the mathematical or conceptual model to
improve the description of the mechanics of interest so
that better agreement with the reference experimental
data can be achieved. The two classes of revisions are
discussed below.

3.4.1 Updates to Model Parameters by Calibration.
Revision by parametric model calibration is extensively
used in the field of linear structural dynamics to bring
computational predictions into better agreement with
measured response quantities such as modal frequencies
and mode shapes. This revision process is commonly
known as “model updating,” “model tuning,” “parame-
ter calibration,” and “parameter estimation.” The pro-
cess allows the most common sources of modeling (and
experimental) difficulties in linear structural dynam-
ics — compliance in joints, energy loss/damping,
unmeasured excitations, uncertain boundary condi-
tions — to be represented as simple mechanical models
and calibrated so that the global response of the compu-
tational model is in agreement with the experimental
data.

Parametric model calibration, however, determines
only the model’s fitting ability, not its predictive capabil-
ity. A model calibrated to experimental data may not
yield accurate predictions over the range of its intended
use. This means that the model should not be used as
a calibration framework for some uncertain parameters
if these parameters can be evaluated in an independent
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test. Data used for model calibration must remain independent
of data used to assess the predictive capability of the model.

The type of experiment used to determine the values
of unknown or uncertain model input parameters is
generally referred to as a “calibration experiment.” A
calibration experiment is distinct from a validation
experiment. The purpose of a calibration experiment is
to generate values or quantified probability distributions
for model input parameters under specific types of
experimental conditions. For example, an optimization
approach may be used to determine the parameter val-
ues using a computational model of the calibration
experiment and the measured data from the calibration
experiment. In contrast to calibration experiments, vali-
dation experiments are designed and performed to pro-
vide an independent, objective assessment of the
predictive capabilities of the computational model.

It is a reality of modeling, given cost and schedule
constraints, that model calibration is often performed
after an initial validation assessment has been made and
acceptable agreement (as indicated in Fig. 4) has not
been achieved. That is, the modeler finds a set of parame-
ter values that provides acceptable agreement with the
validation test data, but only after failing to achieve
that agreement with a prediction. Unfortunately, to then
assess predictive capability (outside the now updated
domain of the validation referent data), subsequent vali-
dation against other independent experiments is still
necessary. Any revisions to the parameter values after
V&YV are applied signifies new model-development
activity, triggering a repetition of some model V&V.

3.4.2 Updates to Model Form. The second class of
model revisions consists of changes to the form of the
conceptual model and, in turn, the mathematical model
and the computational model. Typically, the need to
revise the model form is observed during the quantita-
tive comparison activity, when some characteristics in
the response of the structure are not consistent with the
corresponding characteristics of the model output, and
the differences are not attributable to reasonable uncer-
tainties in the model parameters.

Many common types of deficiencies in model form
can be responsible for inaccurate simulation results:
two-dimensional models that cannot represent
three-dimensional response effects; inappropriate form
for representation of material behavior; assumptions
about contacting surfaces being tied when in reality a
gap develops between the parts; assumptions that two
parts do not move relative to one another when in reality
they do, resulting in development of significant friction
forces; assumed rigid boundary conditions that turn out
to have significant compliance, etc. It is important to
look for possible violation of the assumptions of the
form of the mathematical model when reconciling the
measured data with the results of the computational
simulation. As with parameter calibration, any revisions
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to the model after V&V are applied signifies new model-
development activity, triggering a repetition of some
model V&V.

3.5 Sensitivity Analysis

One way besides intuition and experience to identify
important phenomena is to perform a sensitivity analy-
sis using the computational model. Sensitivity analysis
is the general process of discovering the effects of model
input parameters on the response features of interest
using techniques such as analysis of variance (ANOVA)
[6]. When performed before the computational model
is validated (but not before it is verified), a sensitivity
analysis can provide important insight into the charac-
teristics of that computational model and can assist in
the design of experiments as part of the PIRT process.
Model sensitivities, however, must eventually be subject
to the same scrutiny of V&V as the main parameters of
interest. As with engineering judgment or even the ini-
tial PIRT prioritization, unvalidated model sensitivities
may be wrong in magnitude or even in sign. Thus, model
sensitivity analysis should be revisited after model
revision.

Local sensitivity analysis is used to determine the
character of the response features with respect to the
input parameters in a local region of the parameter space
(i-e., in the vicinity of a single point). Finite difference
techniques or adjoint methods are used to determine
the local gradients at points in the design space. Global
sensitivity analysis is concerned with some type of aver-
age behavior of the response features over a large
domain of the parameters and is often used to select a
subset of the parameters for detailed local sensitivity
analysis.

3.6 Uncertainty Quantification for Simulations

Validation for computational mechanics models must
take into account the uncertainties associated with both
simulation results and experimental data. The uncer-
tainties associated with experimental data are discussed
in section 5. Throughout the modeling process (left
branch of Fig. 4), and especially during the uncertainty
quantification activity, all significant sources of uncer-
tainty in model simulations must be identified and
treated to quantify their effects on predictions made
with the model. It is useful to categorize uncertainties
as being either irreducible or reducible.

Irreducible uncertainty (also called “aleatory uncer-
tainty”) refers to inherent variations in the physical sys-
tem being modeled. This type of uncertainty always
exists and is an intrinsic property of the system. Exam-
ples of irreducible uncertainty are variations in geome-
try, material properties, loading environment, and
assembly procedures. The inherent variability in model
parameters is typically characterized by performing rep-
licate component-level tests that cover the range of con-
ditions over which the individual parameters will be
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exercised in the intended use of the model. If no
component-level validation testing is performed, esti-
mates of the inherent variability in model parameters
should be based on prior experience and engineering
judgment. However, even the most complete set of test
information will not eliminate irreducible uncertainty —
it can only be better quantified, for example, by
determining a parameter’s mean value, distribution, and
distribution form (e.g., normal, uniform, log-normal).

Using probabilistic analysis, inherent variability can
be propagated through the simulation to establish an
expected variability in the simulation output quantities.
Sampling-based propagation methods, such as Monte
Carlo and Latin Hypercube, are straightforward tech-
niques for propagating variability [7]. Sampling-based
methods draw samples from the input parameter popu-
lations, evaluate the deterministic model using these
samples, and then build a distribution of the appropriate
response quantities. Well-known sensitivity-based
methods include the first-order reliability method
(FORM) [8], advanced mean value (AMYV) [9], and adap-
tive importance sampling (AIS) [10].

Reducible uncertainty (also called “epistemic uncer-
tainty”) refers to deficiencies that result from a lack of
complete information or knowledge. Two important
sources of reducible uncertainty are statistical uncer-
tainty and model form uncertainty. Statistical uncer-
tainty arises from the use of limited samples. For
example, if the mean value of a material property is
calculated with only two or three measurements of the
material property, then the mean value will contain sta-
tistical uncertainty, which can be reduced by considering
additional measurements of the material property.
Model form uncertainty refers to the uncertainty associ-
ated with modeling assumptions, such as a constant
parameter assumption (regardless of its assigned
numerical value) in the partial differential equations
(PDEs). In other words, a parameter in an equation in
the computational model could be defined as having
a constant value, whereas in reality the value of the
parameter varies with time, temperature, or position. In
general, model form uncertainty is extremely difficult
to quantify, but some innovative approaches to this prob-
lem have been developed [11, 12].

3.7 Documentation of Model Development Activities

It is important that model development activities be
documented to facilitate reuse of the model. The docu-
mentation should explain the rationale for model devel-
opment (e.g., modeling assumptions) and describe the
conceptual, mathematical, and computational models.
The description of the mathematical model should
include assumptions about the mechanics of interest and
the sources of information for the model parameters. The
description of the computational model should include
discretization assumptions, computational parameters,
and other parameters of interest.
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4 VERIFICATION

The process of verification assesses the fidelity of the
computational model to the mathematical model. The
mathematical model is commonly a set of PDEs and the
associated boundary conditions, initial conditions, and
constitutive equations. The computational model is the
numerical implementation of the mathematical model,
usually in the form of numerical discretization, solution
algorithms, and convergence criteria. Verification assess-
ments consider issues related to numerical analysis, soft-
ware quality engineering (SQE), programming errors
in the computer code, and numerical error estimation.
Verification precedes validation, which assesses the pre-
dictive capability of the computational model by com-
parisons with experimental data.

Verification is composed of two fundamental activi-
ties: code verification and calculation verification. Code
verification is the assessment activity for ensuring, to
the degree necessary, that there are no programming
errors in a computer code and that the numerical algo-
rithms for solving the discrete equations yield accurate
solutions with respect to the true solutions of the PDEs.
Calculation verification is the assessment activity for
estimating the numerical solution errors that are present
in every simulation result; examples include temporal
and spatial discretization error, iterative error, and
round-off error. Calculation verification is also referred
to as numerical error estimation. References 13 and 14
discuss the differences and emphases of code verifica-
tion and calculation verification.

Mathematically rigorous verification of a code would
require proof that the algorithms implemented in the
code correctly approximate the underlying PDEs and
the stated initial conditions and boundary conditions.
In addition, it would also have to be proven that the
algorithms converge to the correct solutions of these
equations in all circumstances under which the code
will be applied. Such proofs are currently not available
for general-purpose computational physics software.
Executing the elements of code verification and calcula-
tion verification that are identified as necessary in this
document is critical for V&V, but not sufficient in the
sense of mathematical proof [15].

4.1 Code Verification

The assessment activity of code verification can be
logically segregated into the following two parts:

(a) numerical code verification, which focuses on the
underlying mathematical correctness and specific imple-
mentations of discrete algorithms for solving PDEs

(b) SQE or software quality assurance (SQA), which
address such matters as configuration management, ver-
sion control, code architecture, documentation, and
regression testing [15]

Although CSM code users are typically not directly
involved in developing and producing the modeling
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software they use, it is important that these users provide
feedback to the developers to ensure that the best soft-
ware engineering practices are consistently employed
for the codes they use. Otherwise, unnecessary faults in
the code may impact simulation results intermittently
and unpredictably.

4.1.1 Numerical Code Verification. The objective of
numerical code verification is to verify that the numeri-
cal solution algorithms are correctly implemented (pro-
grammed) in the code and that these algorithms are
functioning as intended. Numerical code verification
relies on careful investigations of topics such as spatial
and temporal convergence rates, iterative convergence
rates, independence of numerical solutions to coordinate
transformations, and appropriate preservation of sym-
metry related to various types of initial and boundary
conditions. In CSM, the primary solution algorithms
are the finite-element method and the finite-difference
method. Although the formal (theoretical) order of accu-
racy of these algorithms may be known from power
series expansions of the discrete equations, the observed
order of accuracy can be different. Thus, an important
part of code verification is to determine the observed
order of accuracy of the solution algorithm, which is
the rate at which the solution asymptotically approaches
the exact solution as the discretization is refined. This
can be done by comparing two or more computational
results with different discretizations to an exact solution
and observing the rate of convergence.

Many factors can degrade the observed order of accu-
racy relative to the formal order of accuracy that is
reported as a mathematical feature of an algorithm.
These factors include programming errors, insufficient
mesh resolution to achieve the asymptotic range, mixed
accuracy issues, singularities, discontinuities, contact
surfaces, mesh clustering, inadequate iterative conver-
gence, and over-specified boundary conditions [13, 16].
In verification, all of these reasons for degradation in the
order of accuracy are evidence of possible algorithmic or
code errors and must be understood.

The primary tasks in numerical code verification are
to define appropriate test problems for evaluating the
accuracy of the numerical algorithms and to assess the
performance of these algorithms on the test problems.
Numerical code verification depends on comparing
computational solutions to the “correct answer,” which
is provided by analytical solutions or highly accurate
numerical solutions for a set of well-chosen test prob-
lems. The correct answer to a physically meaningful
problem can only be known in a relatively small number
of simple cases that generally exercise only a limited
portion of the code. Fortunately, the method of manufac-
tured solutions (MMS) offers a technique for deriving
amathematically exact solution to a closely related prob-
lem in order to exercise all aspects of the code that
would be activated by the physical problems of interest.
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Because such cases assume a very important role in
verification, they should be carefully formulated to pro-
vide a comprehensive set of test problems for verifica-
tion of the code.

Given the paucity of good benchmarks for complex
mathematical models, two points must be made. The
first point is that some solutions are better than others;
therefore, a hierarchy of confidence should be recog-
nized. Similar to the AIAA Guide [2], the following
organization of confidence (from highest to lowest) for
the testing of algorithms is advocated:

(a) exact analytical solutions (including manufac-
tured solutions)

(b) semianalytic solutions [reduction to numerical
integration of ordinary differential equations (ODEs),
etc.]

(c) highly accurate numerical solutions to PDEs

The second point is that some test problems are more
appropriate than others, so application-relevant test
problems should be used. These test problems could be
ones with which users have a great deal of experience,
or they could be ones that are constructed to address
specific needs that arise when planning the verification
activities.

Paragraphs 4.1.1.1 through 4.1.1.4 provide additional
information on the kinds of tests and techniques
employed in numerical code verification.

4.1.1.1 Analytical Solutions. Two categories of
analytical solutions are of interest in code verification.
First, there are those that correspond to plausible — if
often greatly simplified — real-world physics. Second,
there are manufactured solutions, which are defined and
discussed in para. 4.1.1.2.

“Physically plausible” analytical solutions are solu-
tions to the mathematical model’s PDEs, with initial
conditions and boundary conditions that can realisti-
cally be imposed, such as uniform pressure on a simply
supported elastic plate. These solutions are sometimes
exact (requiring only arithmetic evaluations of explicit
mathematical expressions), but are often semianalytic
(represented by infinite series, complex integrals, or
asymptotic expansions). Difficulties can arise in comput-
ing any of these semianalytic solutions, especially infi-
nite series. The analyst must ensure that when used for
code verification, numerical error has been reduced to
an acceptable level.

Typically for problems that allow analytical solutions,
whether exact or semianalytic, pass/fail criteria can be
stated in terms of the following two types of comparison:

(a) the agreement between the observed order of accu-
racy and the formal order of accuracy of the numerical
method

(b) the agreement of the converged numerical solu-
tion with the analytical solution using specified norms

When computational solutions are compared with
analytic solutions, either the comparisons should be
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examined in the regions of interest or the error norms
should be computed over the entire solution domain.
The accuracy of each of the dependent variables or func-
tionals of interest should be determined as part of the
comparison.

4.1.1.2 Method of Manufactured Solutions (MMS).

The MMS is a technique for developing a special type
of analytical solution [13, 17]. To apply it, an analyst
prescribes solution functions for the PDEs and finds the
forcing functions that are consistent with the prescribed
solution. That is, the prescribed solution functions are
inserted into the PDESs, and the equations are rearranged
such that all remaining terms in excess of the terms in
the original PDEs are grouped into forcing functions or
source terms. Initial conditions and boundary condi-
tions are similarly derived, based on the prescribed solu-
tion on the boundary. For example, for the simply
supported plate problem, one could prescribe a solution
of displacements that requires a highly variable pressure
distribution or even applied internal moments. If this
pressure and moment “forcing function” can be derived,
it can then be applied using a computational model for
the plate, and the computed displacement field can be
compared to the prescribed solution.

The advantages of the MMS are many. It can be applied
to a wide variety of highly nonlinear problems. It can
test a large number of numerical features in the code,
such as the numerical method, the spatial-transforma-
tion technique for mesh generation, the mesh distribu-
tion technique, and the correctness of algorithm coding
[13]. The MMS provides a clear assessment because
unless there are software errors, the computational
results must agree with the solution used to derive the
forcing function.

The MMS, however, is not without its disadvantages.
In any nontrivial application of this method, the algebra
and calculus required to derive the forcing function can
become very complex, and symbolic manipulation soft-
ware may offer the only practical recourse. Using the
MMS can also require special coding and compilation
if the code does not admit separate externally applied
nodal forces for every degree of freedom at every node,
each with its own time history. While the MMS can
efficiently highlight the presence of errors, it cannot
point to the sources of these errors and cannot identify
mistakes in algorithm efficiency [13, 17].

4.1.1.3 Numerical Benchmark Solutions. When
analytic solutions cannot be found or derived, the only
other option for benchmark solutions is numerically
derived ones. There are two distinct categories of highly
accurate numerical benchmark solutions. One category
consists of solutions in which the PDEs have been
reduced by similarity transformations or other means
to one or more ODEs that must be integrated numeri-
cally. The other category consists of solutions in which
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the PDEs have been solved directly by numerical meth-
ods. The accuracy of such numerical benchmark solu-
tions has to be critically assessed to qualify them for
use in code verification. For the numerical integration
of ODEs, well-established standard methods are avail-
able for assessing accuracy. In the case of numerically
integrated PDEs, no published solution can be consid-
ered a benchmark until the code used in producing that
solution has been thoroughly verified and documented.
In addition, comprehensive numerical error estimation
must be reported. Credibility will be enhanced if inde-
pendent investigators, preferably using different numer-
ical approaches and computer software, produce
multiple solutions that agree. Using multiple indepen-
dent sources for the solutions will mitigate the risk of
errors in the verification benchmark.

4.1.1.4 Consistency Tests. Consistency tests can
be used to verify numerical algorithms. Global as well
as local tests should be made for the conservation of
mass, momentum, and energy [18]. An algorithm can
satisfy the conservation laws exactly, or it can satisfy
the laws in the limit of infinite resolution; this distinction
should be considered when assessing the accuracy of
an algorithm. Consistency tests can also be made that
involve geometry (e.g., checking that the same numerical
solution is obtained in different coordinate systems or
determining whether specific symmetry features are
preserved in the solution). Consistency tests should be
considered complementary to the other types of algo-
rithm tests described herein for numerical algorithm
verification. If they can be devised, consistency tests are
especially important because the failure of these tests
indicates that there are unacceptable errors in the code.

4.1.2 Software Quality Engineering (SQE). The SQE
part of code verification refers to procedures used to
provide evidence that the software implementation of
the numerical algorithms is free of programming errors
and implementation faults. Most commonly, such errors
reside in the source code, but occasionally flaws in the
compiler introduce them. Evidence of error-free software
from SQE is a necessary element of verification. SQE
determines whether the software system is reliable and
produces reliable results on specified computer hard-
ware with a specified software environment (compilers,
libraries). To optimize its influence on code verification,
SQE should be planned and used during the develop-
ment of the software product, not as a retrospective
activity for a fielded software implementation [19].
However, feedback from users to developers is highly
encouraged.

4.2 Calculation Verification

Calculation verification is applied to a computational
model that is intended to predict validation results.
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Thus, each computational model developed in a valida-
tion hierarchy would be subject to calculation verifica-
tion. The goal of calculation verification is to estimate
the numerical error associated with the discretization.
In most cases, exercising the computational model with
multiple meshes is required to estimate this error.
Another source of error is mesh bias, wherein the
arrangement of the elements can influence the results,
especially if the mesh is coarse.

The two basic categories of approaches for estimating
the error in a numerical solution to a complex set of
PDEs are a priori and a posteriori. A priori approaches
use only information about the numerical algorithm that
approximates the partial differential operators and the
given initial and boundary conditions [13, 20, 21]. A
posteriori error estimation approaches use all of the a
priori information plus the results from two or more
numerical solutions to the same problem that have dif-
ferent mesh densities and/or different time steps. The
discussion here focuses on a posteriori error estimates
because they can provide quantitative assessments of
numerical error in practical cases of nonlinear PDEs.

4.2.1 A Posteriori Error Estimation. A posteriori
error estimation has primarily been approached using
either finite-element-based error estimation techniques
[22, 23] or multiple-mesh solutions combined with Rich-
ardson extrapolation and extensions thereof [13].

Two fundamentally different types of finite-element-
based discretization error estimators have been devel-
oped. The most commonly used are recovery methods,
which involve postprocessing of either solution gradi-
ents or nodal values in patches of neighboring elements.
These provide direct error estimates only in the global
energy norm; however, they provide ordered error esti-
mates for specific field quantities of interest (i.e., the
estimate improves with mesh refinement).

The second class of finite-element-based error estima-
tors consists of residual-based methods. Like recovery
methods, residual methods were originally formulated
to provide error estimates in the global energy norm.
Extension to error estimates in quantities of interest,
such as deflections or stresses, generally requires addi-
tional solutions [24].

Single-mesh finite-element-based error estimates,
when applicable, offer a great advantage by reducing
mesh-generation and computational effort. However,
the estimates require that the convergence rate be
assumed. Calculation of an observed convergence rate
always requires the generation of multiple meshes. The
single-mesh a posteriori methods are also important for
finite element adaptivity, where both the spatial mesh
density (known as h-adaptivity) and the order of the
finite element scheme (known as p-adaptivity) can be
adapted [22, 23].
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Standard Richardson extrapolation assumes that

(a) the observed order of accuracy (rate of conver-
gence) is known

(b) two numerical solutions at different mesh resolu-
tions have been computed

(c) both solutions are in the asymptotic convergence
regime

To estimate a bound on the numerical error, the
method then extrapolates to a more accurate value
against which to compare the original solution. Various
elaborations of Richardson extrapolation use three or
more meshes to calculate an observed order of accuracy
[13]. The observed order of accuracy can be used to
verify a theoretical order of accuracy, test whether the
solution is in the asymptotic regime, and estimate a
zero-mesh-size converged solution using extrapolation.
A grid convergence index (GCI) based on Richardson
extrapolation has been developed and advocated to
assist in estimating bounds on the mesh convergence
error [13, 25]. The GCI can convert error estimates that
are obtained from any mesh-refinement ratio into an
equivalent mesh-doubling estimate. More generally, the
GCI produces an error-bound estimate through an
empirically based factor of safety applied to the Richard-
son error estimate [13].

4.2.2 Potential Limitations. The assumption of
smoothness in solutions (i.e., the absence of singularities
and discontinuities), underlies much of the theory of
existing error estimation techniques and is quite
demanding in estimating local errors in the solution
domain; however, this assumption does not prevent the
use of an empirical approach to error estimation based
on observed convergence rates. Experience shows that
an empirical approach is more dependable when more
than three meshes are used with a least squares evalua-
tion of observed convergence rates and when functionals
rather than point values are considered.

Singularities and discontinuities commonly occur in
solid mechanics; the crack tip singularity is an example.
The difficulties of singularities and discontinuities are
compounded in very complex conceptual models, where
multiple space and time scales may be important and
very strong nonlinearities may be present. Ideally, calcu-
lation verification should be able to confront these com-
plexities. However, the “pollution” of particular regions
of a calculation by the presence of singularities such as
shock waves, geometrical singularities, or crack propa-
gation is a subject of concern in error estimation [13, 23,
26], and there is a lack of rigorous theory for guidance
in these situations.

Another complexity in numerical error estimation is
the coupling that can occur between numerical error
and the spatial and temporal scales in certain types of
physical models. Refining the mesh does not ensure that
the physics modeled will remain unchanged as the mesh
is resolved. For example, an insufficiently refined mesh
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in buckling problems will prevent the model from exhib-
iting higher modes of buckling. This observation regard-
ing mesh refinement directly influences the accuracy
and reliability of any type of a posteriori error estimation
method, especially extrapolation methods.

4.3 Verification Documentation

Documentation needs to be an integral part of the
verification process to facilitate reuse of the model. The
documentation should explain the rationale and limita-
tions of the code verification and calculation verification
activities. It should include descriptions of the error
estimation techniques employed, the results of consist-
ency tests, and the analytical solutions, manufactured
solutions, and numerical benchmark solutions used.
SQE and SQA, configuration management, and accept-
able computational systems should also be described.

5 VALIDATION

The activities described in this section are performed
for each reality of interest in the validation hierarchy
developed during preparation of the V&V plan.

The goal of validation is to determine the predictive
capability of a computational model for its intended
use. This is accomplished by comparing computational
predictions (simulation outcomes) to observations
(experimental outcomes). Three prerequisites for mean-
ingful validation are

(a) having a clear definition of the model’s
intended use

(b) having already conducted code verification and
calculation verification activities sufficiently so that the
errors discovered through validation can be isolated
from those errors discovered through verification

(c) quantifying uncertainties in both the simulation
outcomes and the experimental outcomes

The approach of validation is to measure the
agreement between the simulation outcomes from a
computational model and the experimental outcomes
from appropriately designed and conducted experi-
ments. These outcomes should incorporate the experi-
mental and modeling uncertainties in dimensions,
materials, loads, and responses. In most cases, assessing
the predictive capability of a computational model over
the full range of its intended use cannot be based solely
upon data already available at the beginning of the
V&V program. Not only might existing data inade-
quately represent the intended use of the model, it may
also have been used in model calibration during the
development of the computational model. In such cases,
new experiments and computational predictions are
required. The challenge is to define and conduct a set
of experiments that will provide a stringent enough test
of the model that the decision maker will have adequate
confidence to employ the model for predicting the reality
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of interest. If the model predicts the experimental out-
comes within the predetermined accuracy requirements,
the model is considered validated for its intended use.

5.1 Validation Experiments

Validation experiments are performed to generate
data for assessing the accuracy of the mathematical
model via simulation outcomes produced by the verified
computational model. A validation experiment is a
physical realization of a properly posed applied mathe-
matics problem with initial conditions, boundary condi-
tions, material properties, and external forces. To qualify
as a validation experiment, the geometry of the object
being tested (e.g., a component, subassembly, assembly,
or full system), the initial conditions and the boundary
conditions of the experiment, and all of the other model
input parameters must be prescribed as completely and
accurately as possible. Ideally, this thoroughness on the
part of the experimenter will provide as many con-
straints as possible, requiring few assumptions on the
part of the modeler. All of the applied loads, multiple
response features, and changes in the boundary condi-
tions should be measured; and uncertainties in the mea-
surements should be reported.

5.1.1 Experiment Design. Generally, data from the
literature are from experiments performed for other pur-
poses and thus do not meet the requirement of a valida-
tion experiment. Experiments can have many purposes
and are often focused on assessing component perform-
ance relative to safety criteria or on exploring modes of
system response. Consequently, the measurement set in
many experiments may differ from the measurements
needed for model validation. For example, a test may
show that a component fails at a load higher than an
acceptable threshold and thereby establish that the com-
ponent is acceptable for use. However, the test may not
have measured the deformation as the force was applied
because that measurement was not needed for the pur-
pose of the experiment. If both the component-failure
measurement and the deformation measurement were
necessary to validate a computational model, the test
measuring only component failure could not be used
for validation. Furthermore, it is essentially impossible
to make blind predictions of experiments whose results
are known prior to the validation effort because the
results guide, if even subconsciously, modelers” assump-
tions and their selection of unmeasured quantities. For
these reasons, it is usually necessary to perform experi-
ments that are dedicated to model validation [3].

The modeler should have input to the design of the
validation experiments. The experimenter and the mod-
eler need to share an understanding of the responses
that are difficult to measure or predict. Additionally, the
modeler needs to be certain that all the inputs (especially
for constitutive models), boundary conditions, and
imposed loads are being measured. The modeler should
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perform a parametric study with the verified model to
determine model sensitivities that need to be investi-
gated experimentally. Additionally, pretest analyses
should be conducted to uncover potential problems with
the design of the experiment. However, credibility of
the validation process will be greatly enhanced if the
modeler does not know the test results before the predic-
tion is complete, with the exception that the modeler
must be provided material properties, applied loads,
and initial and boundary conditions.

In summary, the validation experiments and measure-
ment set should be designed to leave as few unknown
parameters as possible. In the all-too-common case that
some significant parameters are not measured, the mod-
eler has to perform multiple calculations to compare
with the experiments by varying the values of those
parameters. The modeler cannot arbitrarily select a
parameter value within its accepted range and base the
validation comparison on that selection because doing
so can result in either false validation or false invalida-
tion. If all of the calculation results using a realistic range
of the parameters are within the acceptable tolerance
for validation, then validation may be claimed, even
though the experiment had uncontrolled variables. But
if the calculation results for a significant portion of the
realistic parameter range lie outside this tolerance, vali-
dation cannot be claimed, and progress can only be
made by the experimenter constraining the range of the
unmeasured or poorly measured parameters.

5.1.2 Measurement Selection. Selecting the quanti-
ties to measure should be based primarily on the
response features of interest. When possible, these fea-
tures should be measured directly rather than derived
from other measurements. For example, if strain is the
feature of interest, it would probably be better to use a
strain gauge instead of multiple measurements of dis-
placement. Similarly, if velocity can be measured
directly, that approach would be better than integrating
a measurement of acceleration or differentiating a mea-
surement of displacement. On the other hand, consist-
ency of the test data is an important attribute that
increases confidence in the data. Data consistency can
be established by independent corroborative measure-
ments (e.g., measuring displacement or acceleration to
corroborate measurements of velocity). Measurements
of point quantities made in families that allow fields to
be estimated are also useful; for example, a displacement
field can be used to corroborate measurements of
strain [27].

Another reason that variables or locations in the model
other than those specified in the validation requirements
should be measured is that agreement between these
measurements and the simulation results can contribute
significantly to overall confidence in the model.
Although some quantities may be of secondary impor-
tance, accurate calculations of these quantities provide
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evidence that the model accurately calculates the pri-
mary response for the right reason. For example, confi-
dence in a model that matches the central deflection
of a beam is greatly enhanced if it also matches the
displacements or strains all along the length of the
beam — even if central deflection is the only quantity
of interest for the intended use. This can qualitatively
or even quantitatively build confidence that the model
can be used to make accurate predictions for problem
specifications that are different from those included in
model development and validation. Thus, validation
experiments should produce a variety of data so that
multiple aspects of the model can be assessed.

5.1.3 Sources of Error. It is important to calibrate
the gauges that will be used in validation experiments
and to document their inaccuracies related to nonlinear-
ity, repeatability, and hysteresis. Many things can influ-
ence the output of a gauge. Pressure transducers, for
example, should be calibrated in an environment similar
to that of the validation experiment (e.g., at elevated
temperature). If a transducer is sensitive to the environ-
ment and the environment changes significantly during
a validation test, the transducer’s sensitivity to the envi-
ronment must already have been established (during
previous calibration of the gauge) so that the resulting
data can be corrected to account for the transducer’s
sensitivity to the environment [28].

In addition, the experimenter needs to determine and
account for effects such as the compliance or inertia of
any test fixtures if these effects contribute to the mea-
surement of displacement or force, respectively. For
example, the mass of a piston in a hydraulic testing
machine can affect the measurement of the force applied
to the specimen and, if ignored, can contribute to lack
of agreement between the simulation results and the
experimental data. Reporting the details of operating,
calibrating, and installing the gauges used in an experi-
ment helps the modeler understand the relationship
between gauge output and model output. It may even
be necessary in some cases for a modeler to build a
model that includes such parts as the test fixtures or
measurement fixtures to accurately predict the measure-
ments.

5.1.4 Redundant Measurements. For validation
experiments, redundant measurements are needed to
establish the precision (scatter) in the validation test
results and thus improve the quantification of uncer-
tainty in experimental measurements. One approach for
obtaining redundant measurements is to repeat the test
using different specimens. The test-to-test scatter could
then have contributions from differences in specimens
(initial conditions) or material properties, specimen
installation (boundary conditions), gauges, gauge instal-
lation, and data acquisition. An example would be to
perform bending tests on several members of a set of
beams and to measure the response with strain gauges
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mounted on the tension and compression surfaces. Not
only would the beams be different, they might be off
center in the testing machine by different amounts. In
addition, the strain gauges would have different scatter
in location and orientation, and the signal-wire resist-
ances would differ. Another approach for obtaining
redundant measurements is to repeat the test using the
same specimen. This approach might be taken if the cost
of testing is high or the availability of test specimens
is limited. Of course, specimen-to-specimen response
variability would not be obtained. Still another approach
for obtaining redundant measurements is to place simi-
lar transducers at symmetrical locations (if the test has
adequate symmetry) to assess scatter. The data from
these transducers could also be used to determine
whether the expected symmetry was indeed obtained.

5.2 Uncertainty Quantification in Experiments

In the uncertainty quantification activity for experi-
ments, the effects of measurement error, design toler-
ances, construction uncertainty, and other uncertainties
are quantified, resulting in the experimental outcomes.
Although published experimental results often do not
include an assessment of uncertainty, it is necessary to
estimate and report the uncertainty in the measurements
in validation experiments so that simulation results can
be judged appropriately.

In experimental work, errors are usually classified as
being either random error (precision) or systematic error
(bias). An error is classified as random if it contributes
to the scatter of the data in redundant measurements or
repeat experiments at the same facility. Random errors
are inherent to the experiment, produce nondeterminis-
tic effects, and cannot be reduced with additional testing,
although they can be better quantified with additional
testing. Sources of random error include dimensional
tolerances on test parts or measurement locations, vari-
ability of material properties, and mechanical equipment
variances due to friction. Systematic errors can produce
a bias in the experimental measurements that is difficult
to detect and estimate. Sources of systematic error
include transducer calibration error, data acquisition
error, data reduction error, and test technique error [29].

Either the experimenter or an independent reviewer
must provide an uncertainty assessment of the results.
The assessment should consider all sources of experi-
mental uncertainty, whether the sources were measured
or estimated. When possible, the uncertainties should
take the form of mean values with standard deviations
or distributions [30]. But even when statistics are not
available, an estimate of experimental uncertainty based
on previous experience or expert opinion is necessary
before proceeding to comparisons with simulation out-
comes. A common pitfall is to neglect important contri-
butions to modeling uncertainty, experimental
uncertainty, or both, and then to try to draw conclusions
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about predictive accuracy based on inadequate informa-
tion. Improper or inappropriate inferences could thus
be made about the accuracy of the computational model.

5.3 Accuracy Assessment

Following uncertainty quantification of the experi-
mental data that resulted in the experimental outcomes,
the final step in validation consists of

(a) comparing values of the metrics chosen to measure
the agreement between simulation outcomes and experi-
mental outcomes

(b) making an assessment of the accuracy of the com-
putational model relative to the goals provided in the
V&V plan for the model’s intended use

Recall that an accuracy assessment is made for each
component, subassembly, and assembly in every level
of the validation hierarchy for which validation data are
produced (Fig. 3). The determination of the system-level
model’s accuracy is made after the hierarchy of valida-
tion experiments has been performed and the composite
computational model has been validated through the
various hierarchical tiers.

5.3.1 Validation Metrics. A validation metric pro-
vides a method by which the simulation outcomes and
the experimental outcomes can be compared. A metric
is a mathematical measure of the difference between the
two outcomes such that the measure is zero only if the
two outcomes are identical. Validation metrics should
accommodate computational and experimental uncer-
tainty to the extent possible.

Features of the experimental outcomes and the simu-
lation outcomes compared using validation metrics
should be carefully selected. A feature and its associated
metric may be simple. For example, a simple binary
metric would be the following: Is the material’s yield
stress exceeded in the simulation? More typical is a
quantification metric (e.g., the difference between the
yield stress and the calculated von Mises stress). Most
often, a quantification metric is normalized by dividing
the difference by the measurement; this is often referred
to as the “relative error.” Frequently, spatial or temporal
distributions need to be compared (e.g., strain as a func-
tion of distance, or velocity at a point as a function of
time). In this case, a weighted sum of squares provides
a convenient measure of the magnitude difference. In
addition to the magnitude difference, such distributions
may have phase differences. For example, the time of
arrival for velocity waveforms can affect the phase differ-
ence; a phase metric has been proposed for this kind of
error [31]. Metrics of different types like magnitude and
phase can be combined using a simple sum of squares
[32] or a weighted average, where the weights are
assigned by subject-matter experts or by individual engi-
neering judgment.



ASME V&V 10-2006

Validation metrics can sometimes be devised to incor-
porate the uncertainties associated with the experimen-
tal outcomes and the uncertainties associated with the
simulation outcomes (e.g., the input parameter uncer-
tainties propagated through the computational model).
When multiple (repeat) experiments have been per-
formed, the mean and variance of the system response
of interest can be quantified. A metric for the special
case of multiple experiments, but no uncertainty in the
simulation outcomes, has been proposed [33]. For the
general case, where both the measurement and simula-
tion are expressed as a mean with variance, some
research has been performed [34], but this and other
aspects of validation metrics are still active areas of
research.

5.3.2 Accuracy Adequacy. It is possible that the
model will be demonstrated to fulfill only a portion of
the validation requirements. The accuracy may fall short
of the requirements in general or for a certain portion
of the intended use. For example, a 10% accuracy goal
may be unmet, but 15% accuracy may be established.
Alternately, the 10% accuracy may be met for loads
under or over a given level or for all but a particular
type, such as thermal. Assuming that the original criteria
were properly established for the intended use, this
implies that further model improvements are needed.
In the meantime, the model may have utility on a limited
basis (i.e., it may be validated to a lower standard than
that specified in the V&V plan, or it may be partially
validated). In such cases, the technical experts and deci-
sion makers have the shared burden of establishing par-
tial acceptance criteria. They could establish a new and
less-ambitious definition of the acceptable level of
agreement for validation, or they could define the limita-
tions of the model’s use. Partial validation is not uncom-
mon, and this underscores the point that a verdict or
claim of “validation” is never meaningful without
reporting the accuracy criteria and the uncertainties in
experiments and calculations.

Confidence in the model’s predictions decreases as
the conditions of application deviate from those used
in the validation process. For example, a model of an
engine block that has been developed to accurately pre-
dict the stresses on the cylinder surfaces may not give
adequately accurate predictions of the stress near an
internal cooling channel in the same model. Confidence
in the model’s output is limited to applications that
are judged to be sufficiently similar to that for which
validation was performed. Confident use for other pur-
poses requires additional validation.

5.4 Validation Documentation

Documentation of the overall validation process and
the specific validation activity (for each reality of interest
in the hierarchy) conveys an understanding of the pre-
dictive capability of the model for its intended use and

19

supports the conclusion about whether or not the model
was successfully validated for its intended use. The doc-
umentation also facilitates reuse of the knowledge base
by enabling subsequent users to build upon the estab-
lished validation activity, regardless of whether the
model was successfully validated for its original
intended use.

For each reality of interest, the validation documenta-
tion should build upon the documentation of the con-
ceptual model and the documentation describing the
verification process of the computational model.
Accordingly, the validation documentation could be
couched in terms of answering the following questions:
Are the approximations and uncertainties inherent in
the modeling approach appropriate for the intended
application? Are the model and experiments adequate
to predict the intended system responses for the reality
of interest?

Also, for each reality of interest, the validation docu-
mentation should describe all experiments that were
performed to test the associated computational model.
The description of an experiment should specify the
dimensions, the manner in which the boundary condi-
tions were applied, the method by which the measure-
ments were taken, the material properties, the types
of equipment that were used, and the uncertainties in
calibrations. Documentation of the experiments is usu-
ally the primary mode of communication between the
experimenter and the modeler, so thoroughness here is
especially important.

At the global level, as it applies to the model as a
whole, the validation documentation should present not
only the arguments for (or against) accepting the model
as validated for its intended use, but also the recom-
mended limits of its use. Idealizations and limitations
present in the system-level validation experiments
should be explained, as should the applicability of
lower-tier validation data to the intended use. The range
of system configurations, loading environments, materi-
als, etc., for which predictions are expected to have ade-
quate accuracy should be delineated. Similar to the
V&V planning process, this requires the expert judgment
of engineers and other informed participants.

6 CONCLUDING REMARKS

A summary of the guidelines presented in this docu-
ment that are designed to help assess accuracy and
enhance the credibility of CSM models is as follows: a
V&V plan should be developed to guide model develop-
ment and validation experiment design. Accuracy
requirements also should be established in this plan. A
computational model is validated for its intended use
by demonstrating its ability to predict validation experi-
ments with acceptable accuracy. Although calibration
of a model to experimental data may demonstrate the
model’s fitting ability, calibration does not demonstrate
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its predictive capability. Thus, calibration is not valida-
tion. Code verification and calculation verification must
precede validation calculations. Confidence in the model
is best achieved when validation is pursued in a hierar-
chical fashion from the component level to the system
level. Validation experiments should leave as few
unknown parameters as possible, but multiple calcula-
tions of an experiment with a range of values for
unmeasured parameters are usually needed. For mean-
ingful comparisons of simulation and experiment,
assessments of uncertainty in both simulation results
and experimental data have to be performed. The ratio-
nale and results of a V&V program should be well-
documented not only for enhancing credibility of the
model for its present intended use, but also for building
a knowledge base for future applications.

The remainder of this section briefly discusses issues
that need to be addressed so that V&V for CSM can
further evolve into a more robust and quantitative meth-
odology. These issues include both technical and mana-
gerial challenges.

With the ever-increasing complexity in CSM models,
especially constitutive models, the task of verification
becomes more difficult because of a lack of relevant
analytical solutions. The danger is that without adequate
verification, any lack of accuracy in a model’s predictive
capability cannot be isolated to either model implemen-
tation errors (the role of verification) or inadequate rep-
resentation of the physics (the role of validation). Thus,
there is an ongoing need to support verification with
the generation of analytical solutions and manufactured
solutions.

In general, V&V should support risk assessments
across the spectrum of decisions (especially
high-consequence decisions) that are intended to be
based, at least in part, on simulation in lieu of experi-
mental data before a system is constructed, during its
test and evaluation, during its operation, or when full
system testing is not achievable. The challenge is to
quantify the reduction in risk that can be achieved with
V&V. For example, enhanced confidence through V&V
can reduce the risk that safety factors employed in the
design are inadequate. Similarly, enhanced confidence
in the computational model used to predict the system
response may allow for a reduction in conservatism in
the design. Quantifying this risk reduction or cost sav-
ings can then guide the establishment of accuracy
requirements and appropriate monetary investment in
a V&V program.

The recommended V&V activities cannot guarantee
that accuracy requirements will be achieved within the
time and budget for V&V. Decision makers will some-
times have to address the trade-off between additional
cost and additional risk when a demonstration of accu-
racy does not completely fulfill a requirement. V&V
activities might expose alevel of risk that is unacceptable
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to the decision maker and force the investment in model
improvement; alternately, the decision maker might
have to accept a higher level of risk.

Investment in V&V for a computational model will
take various forms, of which the most visible and costly
is likely to be experimentation. Decades of experience —
successes and failures —in computational mechanics
have brought about fundamental changes in experimen-
tation, and the validation of computational models has
evolved as a significant justification for experimentation.
This evolution in experimentation continues, and it is
highlighting the need for validation experiments, which
are designed to produce experimental data of
high-enough quality to quantify the uncertainties in the
experimental approach. Dedicated validation experi-
ments thus contribute directly to the confidence in the
model. However, it is difficult to quantify the need for
new experiments, especially in continuing product
development programs with reliable legacy experimen-
tal data for previous product generations. Because the
value added by formal validation experiments and the
associated blind pretest calculations is difficult to quan-
tify, it can be difficult to decide how much to invest in
new experimentation.

Robust V&V is facilitated by devoting more effort
to (and placing more significance on) estimating the
uncertainty in validation experiments. In a similar vein,
it is appropriate to generate multiple predictions for an
experiment by using a range of parameter values within
their range of uncertainty and to then compare a family
of predictions to the family of experimental results, as
opposed to making one prediction for one experiment.
However, the science of quantitatively comparing two
distributions of outcomes is neither simple nor mature.

Perhaps the overarching challenge in validation is to
establish a framework for quantifying a model’s pre-
dictive capabilities in regions of the reality of interest
that are farthest from the validation tests. This can be
particularly problematic when system-level experimen-
tal data are insufficiently representative of the full
intended use; only subsystem-level data are available
(e.g., either before system construction or if full-system
testing is not achievable); or system-level data are not
supported by a hierarchy of subsystem data.

Currently, a model’s predictive capability can be quan-
titatively demonstrated for the validation test database,
but the predictive capability for other cases cannot be
quantified. As it stands, the task of establishing accuracy
requirements and estimating the accuracy of extrapola-
tions is based on expert engineering judgment. Advances
in physics modeling, decision theory, and mathematics
are needed to meet this challenge.

In closing, it is important to clarify the division of
responsibilities among management, code developers,
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code users, data users, and experimenters to enhance
the efficiency of the V&V program. Given the V&V
guidelines recommended in this document, the follow-
ing responsibilities are implied: code developers
(whether commercial, industrial, government, or univer-
sity) should take increasing responsibility for code veri-
fication; modelers should shoulder the primary
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obligation for calculation verification; modelers and
experimenters should be jointly responsible for valida-
tion activities; and management and policy makers who
base their decisions on computational simulations, and
who are ultimately accountable for assessing risk,
should have primary responsibility at the initiation of the
V&V program for setting the accuracy requirements.
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MANDATORY APPENDIX |
GLOSSARY

Various groups working in the field of V&V have
described the semantics of terms related to V&V in a
variety of ways. Thus, it is necessary for the CSM com-
munity to specify which of the existing definitions of
the terms will be used or to independently develop a
new definition. Wherever possible, existing definitions
are used herein to preserve consistency.

adequacy: the condition of satisfying all requirements for
model acceptance, including those for model accuracy
and for programmatic constraints such as implementa-
tion, cost, maintenance, and ease of use.

calculation verification: the process of determining the
solution accuracy of a particular calculation.

calibration: the process of adjusting physical modeling
parameters in the computational model to improve
agreement with experimental data.

calibration experiment: an experiment performed to
improve estimates of some parameters in the mathemat-
ical model.

code: the computer implementation of algorithms devel-
oped to facilitate the formulation and approximate solu-
tion of a class of problems.

code verification: the process of determining that the
numerical algorithms are correctly implemented in the
computer code and of identifying errors in the software.

computational model: the numerical implementation of
the mathematical model, usually in the form of numeri-
cal discretization, solution algorithm, and convergence
criteria.

conceptual model: the collection of assumptions and
descriptions of physical processes representing the solid
mechanics behavior of the reality of interest from which
the mathematical model and validation experiments can
be constructed.

error: a recognizable deficiency in any phase or activity
of modeling or experimentation that is not due to lack of
knowledge (e.g., choosing an incorrect material property
for use in the computational model, recording a gain
incorrectly during a sensor calibration, incorrectly defin-
ing a data format statement in the code).

experimental data: raw or processed observations (mea-
surements) obtained from performing an experiment.

experimental outcomes: features of interest extracted from
experimental data that will be used, along with esti-
mates of the uncertainty, for validation comparisons.
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formal order of accuracy: values of the exponents of the
leading terms of the power series expansion of the trun-
cation error in the discrete equations that represent the
PDEs of interest. This is the theoretical convergence rate
of the discretization method in both space and time.

intended use: the specific purpose for which the computa-
tional model is to be used.

irreducible uncertainty: inherent variation associated with
the physical system being modeled. Also called “ale-
atory uncertainty.” For example, the yield strength of the
steel in a production lot of beams follows a probability
distribution. With many observations, this distribution
can be defined, but it cannot be eliminated.

mathematical model: the mathematical equations, bound-
ary values, initial conditions, and modeling data needed
to describe the conceptual model.

model: the conceptual, mathematical, and numerical rep-
resentations of the physical phenomena needed to repre-
sent specific real-world conditions and scenarios. Thus,
the model includes the geometrical representation, gov-
erning equations, boundary and initial conditions, load-
ings, constitutive models and related material
parameters, spatial and temporal approximations, and
numerical solution algorithms.

model update: the process of changing the basic assump-
tions, structure, parameter estimates, boundary condi-
tions, or initial conditions of a model to improve model
accuracy.

observed order of accuracy (or convergence): the empirically
determined rate of convergence of the solution to a set
of discrete equations as the spatial and temporal discret-
izations approach zero. This rate can be obtained by
comparing multiple computational solution results that
use different levels of discretization.

PIRT (Phenomena Identification and Ranking Table): a list
of the physical processes that influence the system
responses of interest, along with a ranking (e.g., high,
medium, low) of the importance of each process.

prediction: the output from a model that calculates the
response of a physical system before experimental data
are available to the user.

reality of interest: the physical system and its associated
environment to which the computational model will be
applied.
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reducible uncertainty: the potential deficiency that can
be reduced by gathering more data, observations, or
information. Also called “epistemic uncertainty.” An
example is the mathematical form used to describe how
force in a spring develops when the spring is deformed.
The spring may be linear or nonlinear with respect to
deformation. Some simple tests will reveal the nature.

referent: data, theory, or information against which simu-
lation results will be compared.

simulation: the computer calculations performed with
the computational model (i.e., “running the model”).

simulation outcomes: features of interest extracted from
simulation results that will be used, along with estimates
of the uncertainty, for validation comparisons.

simulation results: output generated by the computa-
tional model.

uncertainty: a potential deficiency in any phase or activ-
ity of the modeling, computation, or experimentation
process that is due to inherent variability or lack of
knowledge.

uncertainty quantification: the process of characterizing
all uncertainties in the model or experiment and of quan-
tifying their effect on the simulation or experimental
outcomes.
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validated: through V&V, a model can be declared “vali-
dated for its intended use” once it has met the validation
requirements.

validation: the process of determining the degree to
which a model is an accurate representation of the real
world from the perspective of the intended uses of the
model.

validation experiment: an experiment that is designed and
performed to generate data for the purpose of model
validation.

validation metric: mathematical measure that quantifies
the level of agreement between simulation outcomes
and experimental outcomes.

validation requirements: specifications and expectations
that a computational model must meet to be acceptable
for its intended use. These requirements are established
in the V&V plan and often include descriptions of spe-
cific tests that need to be run or other referents that need
to be gathered, as well as accuracy statements about the
agreement between simulation outcomes and experi-
mental outcomes or referents.

verification: the process of determining that a computa-
tional model accurately represents the underlying math-
ematical model and its solution.
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MANDATORY APPENDIX II

NOMENCLATURE

The following commonly used terms, which appear
throughout this Guide, are defined below:

AIAA

AlS =

AMV
ANOVA
ASME

American Institute of Aeronautics and
Astronautics

adaptive importance sampling
advanced mean value

analysis of variance

= American Society of Mechanical Engi-

CSM =
DoD =

neers
computational solid mechanics
Department of Defense
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FORM
GCI
MMS
ODE
PDE
PIRT

PTC
RMS
SQA
SQE
V&V

first-order reliability method

grid convergence index

method of manufactured solutions
ordinary differential equation
partial differential equation
Phenomena Identification and Ranking
Table

Performance Test Codes
root-mean-square

software quality assurance
software quality engineering
verification and validation
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