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 FOREWORD 
Different approaches currently exist in the ASME code for the determination of monotonic stress-
strain curves.  ASME Section VIII Div. 2 and FFS-1 use predominantly a two power law approach 
based on Y-1 and U-table values for direct prediction of true stress-strain curves.  Sometimes, also a 
single power law approach for direct determination of true stress strain curves is used.  Section III 
uses a rational polynomial for determination of isochronous stress strain curves.  The report evaluates 
capabilities and limitations of the different methods using experimental results from literature and 
elaborates on a method which could minimize current deficiencies without having severe impact on 
the huge amount of already existing evaluations and data.  The method should have the capability to 
introduce stress-strain curves in future code editions. 

Established in 1880, the American Society of Mechanical Engineers (ASME) is a professional not-
for-profit organization with more than 127,000 members promoting the art, science and practice of 
mechanical and multidisciplinary engineering and allied sciences.  ASME develops codes and 
standards that enhance public safety, and provides lifelong learning and technical exchange 
opportunities benefiting the engineering and technology community.  Visit www.asme.org for more 
information. 

The ASME Standards Technology, LLC (ASME ST-LLC) is a not-for-profit Limited Liability 
Company, with ASME as the sole member, formed in 2004 to carry out work related to newly 
commercialized technology.  The ASME ST-LLC mission includes meeting the needs of industry and 
government by providing new standards-related products and services, which advance the application 
of emerging and newly commercialized science and technology and providing the research and 
technology development needed to establish and maintain the technical relevance of codes and 
standards.  Visit www.stllc.asme.org for more information. 

http://www.asme.org/
http://www.stllc.asme.org/
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EXECUTIVE SUMMARY 
For the determination of monotonic stress-strain curves, different approaches currently exist in the 
ASME code.  Section VIII/2 and FFS-1 use predominantly a two power law approach based on Y-1 
and U-table values for direct prediction of true stress-strain curves (in the following referred to as 
MPC approach).  Sometimes, also a single power law approach for direct determination of true stress 
strain curves is used (RO).  Section III uses a rational polynomial for determination of isochronous 
stress strain curves.  It was a major aim of the current report to evaluate capabilities and limitations of 
the different methods using experimental results from literature and to elaborate on a method which 
could minimize current deficiencies without having severe impact on the huge amount of already 
existing evaluations and data.  The method should have the capability to introduce stress-strain curves 
in future code editions.  With respect to the different methods the results are the following. 

The MPC-approach gives good results for low strains and for high strains.  However, it shows a kink 
which is a result of switching between the two different power laws employed.  Another problem 
concerns the determination of the ultimate tensile strain which will be discussed later. 

The RO-approach as used in FFS-1 is a one power law approximation of the true stress-strain curve. 
In this respect it differs from the original Ramberg-Osgood (RO) method which is based on the 
engineering stress-strain curve and not on the true stress-strain curve.  The ASME RO-approach leads 
to smooth looking curves but they often do not match the experimental values which is a result of the 
mathematical structure of the power law when engineering stress and strain is replaced by true stress 
and strain. 

The rational polynomial can only be applied for small strains (up to 2%) but there are some 
difficulties to match with the high strain regime (particularly with ultimate tensile strain). 

Best results were obtained with the original Ramberg-Osgood parameterization based on engineering 
stresses and strains (called in the following RO-eng).  

 
Where e is engineering strain, s is engineering stress, E is Young’s modulus, s0 is normalizing stress 
(usually 0.2% yield stress). 

The constants K and n can be determined from yield stress and ultimate tensile stress under the 
assumption that both stress values belong to the stress-strain curve.  Yield stress and 1.1 x ultimate 
tensile stress can be found in Sect. II /D stress tables (Tables Y-1 and U) which means that the 
engineering stress-strain curve is fully determined with already existing code data.  The true stress-
strain curve is obtained by plotting the true stress vs. true strain values.  Comparison of this RO-eng 
method with experimental data revealed that this approach nicely agrees with experimental results 
and it also matches the MPC-values for low and high strains without showing a kink.  Compared with 
the RO-method based directly on true stresses and strains, it leads to much better results because it 
does not have the numerical problems with fitting stress-strain data dependent on each other with one 
power law.  Comparisons with the rational polynomial led to a fair agreement as discussed in 
appendix B. 

The problem of determination of the ultimate tensile strain remains the same for all approaches based 
on ultimate tensile stress.  The MPC-method proposes materials dependent values which are governed 
by the ratio between yield stress and ultimate tensile stress which may not always provide satisfactory 
solutions.  An alternative which was used in this report is materials independently based on the 
difference between ultimate tensile stress and yield stress.  Although more accurate values than the 
MPC-method could be obtained, the determination of ultimate tensile strains cannot be considered to 
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be fully satisfactory and further improvements should be envisaged.  However, it could be shown that 
most accurate parameterizations can be obtained with measured ultimate tensile strains which 
demonstrate the capability of the RO-eng approach.  All methods described work only for materials 
possessing stress-strain curves with a power law shape.  This is the case for a vast majority of metals 
and alloys.  Specific effects like Lueders strains cannot be built into the MPC-method but they could 
be successfully implemented into the RO-eng approach.  

Based on all these results the RO-eng approach is proposed for implementation of monotonic stress-
strain curves into the code.  Usually, reference to Y-1 and U-Tables would be sufficient.  Specific 
issues like Lueder’s strain, ultimate tensile strain, expected deviations from power law, etc. could be 
introduced as notes into code tables. 

The MPC-curves for tangent moduli show expectedly also a discontinuity at the transition from low 
strain to high strain.  The RO-eng curve allows an analytic expression of the tangent modulus of true 
stress-strain curves without discontinuity.  

Cyclic stress-strain curves fulfill usually a power law relationship but they are strongly dependent on 
material and even pre-treatment and they can therefore not be constructed from Y-1 and U-values.  It 
is necessary to define them on a case to case basis.  Existing cyclic stress-strain curves in Section 
VIII/2 seem to be based on published results.  Although for cyclic stress-strain curves the differences 
between RO and RO-eng are almost negligible (because usually only low strains are considered) RO-
eng is also recommended for establishing those curves.  Data for additional cyclic stress-strain curves 
can be taken from the literature and databases (e.g. NIMS [25]), where much LCF-work has been 
published.  The RO-eng approach enables simple reconstruction of cyclic stress strain curves even 
from LCF data as usually published.  An important point concerns the consistency between 
monotonic stress-strain curves (determined from Y-1/U-tables) and cyclic stress-strain curves from 
other sources.  It must be taken into consideration that cyclic softening and/or hardening happens 
relative to the monotonic data.  To avoid misinterpretations, scaling may have to be performed when 
comparing data from different sources.  For different sources, scaling with the ratio of yield stresses is 
proposed.  

The cyclic stress-strain curves can be used for construction of the hysteresis loop by scaling with a 
factor of two. 

Although quite consistent results could be established still a few points would need further research: 

• Method of determination of ultimate tensile strain 

• Clear criteria when Lueders stress and/or other irregularities must be considered 

• Determination of amount of Lueder’s stress to be included 

• Further proof of RO-eng-concept with additional experimental data and link with Y-1/U-
table values 

• Establishing missing cyclic stress-strain curves from literature 

• Activating of stress-strain data available in different laboratories of ASME members 

• Coupling of establishment of stress-strain curves with ASME database activities.  
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1 INTRODUCTION 
This project resulted from ASME Pressure Technology Codes and Standards (PTCS) Standards 
Committee requests to identify, prioritize and address technology gaps in PTCS Codes, Standards and 
Guidelines, and is intended to establish and maintain the technical relevance of ASME codes and 
standards products.  In this context the inclusion of sound stress-strain curves for design purpose is 
required.  As a first step a study shall provide: 

a. Literature review to evaluate material strength models and the required material parameters 
for high priority materials in Section VIII, Divisions 1, 2 and 3.  

b. Modification of existing, or development of new, models for the monotonic and cyclic 
stress-strain curves.  

c. Collection of the required material parameters for these models and introduction into 
Divisions 2 and 3.  

d. Preparation of a proposal for providing information on lower priority materials.  

e. Documentation of materials where data does not exist including a proposal for a test 
program.  

After evaluation of the data and examination of potential constitutive models to be used, a 
recommendation will be made to ASME for an efficient and simplified format of conveying behavior 
for the purposes of design. 

Special emphasis will be placed on the most common materials or high priority materials, as 
determined by ASME, used for construction such as  

• Carbon steel (all strength levels)  

• Chromium molybdenum (vanadium) steels like 1.25Cr-1Mo and 2.25 Cr-1Mo, including                                                  
enhanced alloys (all strength levels) 

• Ferritic –martensitic steels (e.g. 9-12% Cr) including enhanced alloys  

• Stainless steels (austenitic, ferritic-martensitic, duplex, precipitation hardening) 

• Nickel-base alloys (e.g.  N06600, N06625 and N08800) 

• Aluminum based alloys 

• Titanium based alloys 

• Copper based alloys 

• Zirconium based alloys. 

True stress-strain diagrams should be made available for inclusion into the code.  Currently, different 
approaches for determination of stress-strain curves are in use: For the true stress strain curves Sect. 
VIII Div. 2 employs a two-slope approach discriminating between low plastic strains and high plastic 
strains.  Cyclic stress-strain diagrams (which show basically the same behavior) are covered with a 
traditional Ramberg-Osgood parameterization and within Sect. III NH, another (different) method is 
used.  In the case of Sect. III Div. 2, formulae to determine the true strain for a given true stress and 
the tangent modulus are given for certain classes of materials using Y-1 and U-table values.  The 
current project should develop a procedure along the following guidelines. 
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• The procedure shall be able to predict true (and engineering) stress-strain curves for the 
classes of materials specified in the whole stress range from elastic to ultimate tensile 
stress. 

• The curves shall be based on yield strengths and ultimate tensile strengths given in the Y-
1 and U-tables. 

• The procedure shall allow a quick determination of the whole true and engineering stress-
strain curves in the range specified. 

• The procedure should cover several Code needs (true stress-strain, engineering stress 
strain, cyclic stress strain) for a wide temperature range. 
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2 METHODS OF PARAMETERIZATION OF STRESS-STRAIN CURVES 

2.1 Engineering Stress-Strain Curves 
Attempts to predict stress strain curves properly are very old.  Ramberg and Osgood reported on 
attempts to describe the plastic strain with a power law in 1943 [1].  

 
Where e is engineering strain, s is engineering stress, E is Young’s modulus, s0 is normalizing stress 
(usually the yield stress), K and n are fitting constants.  

The designations e and s for engineering stress and engineering strain were chosen in agreement with 
the bulk of literature to differentiate between engineering stress-strain and true stress-strain. For the 
applications which will be discussed in this report describing the stress-strain behavior only until 
ultimate tensile stress and not further into the real necking regime, the well-known relations between 
engineering and true stress-strain (σ, ε) can be used: 

σ = s(1+e) and ε = ln(1+ e)    (2) 

For the true stress-strain curve often the term “flow curve“ is used.  

Equation (1) essentially states that the stress-strain curve of many metals and alloys in the region of 
uniform plastic deformation can be expressed by the simple power curve relation  

 
Where ep is the plastic strain, n is the strain-hardening exponent and K is the strength coefficient. 
Using the elastic strain eel the relation  

e = eel + epl  (4) 

becomes equivalent to the Ramberg-Osgood equation (1).  

Although from the engineering stress-strain curve it is always possible (below necking) to calculate 
the true stress strain curve via relations (2) it is difficult to calculate for a given true stress σ the 
related true strain, ε, directly (without using the engineering data). Figure 1 shows an engineering 
stress-strain curve and a flow curve of 316 steel measured at room temperature [2]. The appearance of 
the engineering stress-strain curve is quite different to the true stress-strain curve which shows for the 
higher strains almost a linear shape.  The difference becomes more visible in a logarithmic plot of the 
stresses as a result of the respective plastic strains as shown in Figure 2 and  3.  

Before further discussing possible parameterizations of the true stress-strain curve I would like to 
elaborate on the engineering stress-strain curve and possibilities to predict its shape from sYS, sUT and 
E.  The assumption that the yield stress is part of the curve given in equation (1) leads to the 
following: 

 

with e0.2 =  + 0.002 one obtains for K the value of 0.002. 

Assuming the ultimate tensile stress being part of the same curve one calculates: 



STP-PT-056                                    Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves  

 4 

 
or 

 
which finally leads to: 

 
 

 
Figure 1—Engineering and True Stress-strain Curves for 316 Measured at Room Temperature  
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Figure 2—Engineering Stress vs. Engineering Plastic Strain for 316 Measured at Room 

Temperature 

 

 
Figure 3—True Stress vs. True Plastic Strain for 316 Measured at Room Temperature 

This means that under the given assumptions the stress-strain curve can be fully determined.  One 
point which still remains open is the determination of euts.  This will be discussed in a later section.  

Within ASME also another model for establishing engineering stress-strain curves (particularly for 
low plastic strains) is employed.  Discussions with Bob Swindeman concerning stress-strain curves 
for isochronous curves in ASME III Div. 5 triggered some discussions on the rational polynomial 
method which shall be introduced with Swindeman’s statement: 
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Yes, the basic equation is a rational polynomial.  The equation may be written; 

S = So +  [h (Su-So) (ep)^0.5]/[1 + h (ep^0.5)] 

This equation has the characteristic of a proportional limit: So when ep is zero and an upper limit of 
Su when ep is very large.  (When h (ep^0.5) is large compared to 1 the term cancels with the term in 
the numerator and one is left with So + Su - So or Su, the ultimate strength.  The hardening 
parameter, h, may be calculated by inserting Sy for S and 0.2% for strain into the equation and 
solving for h. 

One gets h = (So-Sy)/[(Sy-Su)(0.2)^.5] 

In our work on alloy 800H we noticed that So was approximately 0.72Sy.   

The equation only works for engineering strains to a few percent but that is all that is needed for the 
isochronous curves and buckling analyses in III-NH.  Other austenitic alloys may have different 
values for the ratio of proportional limit to 0.2% yield strength.  The attractive feature of the simple 
approach is that one only needs the Y-1 value and the U value given in II-D.  We recently used this 
equation for alloy 253 with some success.  A more elaborate model using the rational polynomial was 
published by Joe Hammond and Vinod Sikka in 1977.  See J. P. Hammond and V. K. Sikka, 
"Predicted Strains in Austenitic Stainless Steels at Stresses above Yield,"  pp. 309-322 in Effects of 
Melting and Processing Variables on the Mechanical Properties of Steel, MPC-6, ASME, New York, 
1977. 

This approach gives certainly very good values for austenitic materials but they were not more 
accurate than the procedure described above using YS and UTS.  A general application of this method 
needed determination of S0-values for other classes of materials which could be done but it needed an 
additional effort and further parameterization work.  More information can be found in the literature 
[6][7].  A critical comparison of the results gained with the rational polynomial and with the 
Ramberg-Osgood fit for IN 800 H is given in Appendix II. 

2.2 True Stress-Strain Curves 
Many attempts were made to get a relation similar to equation (1) for the true stress-strain curves.  
Hollomon [3] proposed an approach similar to equation (3) also for the true stress strain curve. 

 
Cofie et al. made a similar attempt to get a one-power law fit of true stress-strain data specifically 
tuned to ASME needs [8] and they proposed a power law of the form 

 
for the true stress-strain curve particularly with respect to austenitic materials.  The idea of this 
approach was the demand that the yield strength as well as the ultimate tensile strength must be points 
of the curve.  This allowed the determination of a and n in equation (10) and consequently an 
analytical expression for the true stress-strain curve.  The results of this approach were compared with 
others and a very good agreement amongst them was found.  However, the agreement with real 
measurements turned out to be less convincing which can already be expected from the results shown 
in Figure 3. 

The results shown in Figure 3 clearly demonstrate that a simple power-law type of fit cannot lead 
proper results, because there is no simple power law relationship between the true plastic strain and 
the true plastic stress.  This is to some extent due to the structure of the relationship itself as quickly 
demonstrated in the following. 



Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves                                  STP-PT-056 

 7 

Let us assume for the engineering stress strain curve the validity of the following equation: 

 
Where s is engineering stress, e is engineering strain and E is Young’s modulus. 

In case of a true stress-strain curve the power law expression would become something like 

 

As is only for norming purpose it has not been converted further.  Equation (2) can be written as: 

 
The second term is a polynomial with rational exponent which can be developed into a series which 
gives (taking only the first order term): 

 
In other words the conversion from engineering to true stress adds an additional element to the power 
law describing the engineering curve which can be seen also from Figure 3.  It is important to notice 
that a single power law fit to true stress-strain data is still used in current code documents as a 
possible alternative to the MPC 2-power law description.  As long as this remains confined to small 
stresses only (e.g. cyclic stress-strain curves) this might be valid, but for the whole strain range (up to 
UTS) highly non-conservative assessments can be obtained.  

This discrepancy between parameterization of engineering vs. true stress-strain curve is not at all new 
and it has been several times discussed in the literature.  Equations like the Ludewik equation (12) 

 
or the similar Swift equation (13) 

 
were proposed and deeper analysis of them can be found in the literature e.g. [2][4][5][9][10][11].  

A general representation of a true stress-strain curve would be a multiple power law expression. 
Usually, two power law terms as shown in equation (17) are sufficient.  

 
Such an approach is currently used for the determination of the true stress-strain curves in several 
ASME (e.g. Sect VIII /2) procedures.  It allows a construction of true stress-strain curves from yield 
stress and ultimate tensile stress both given in tables Y-1 and U (MPC-method).  

Due to its importance in current code procedures the method shall be described and analyzed in more 
depth.  

The general expression is given as  
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                  (18) 

With the two power law expressions  

  and                                 (19) 

for the low stress portion and for the high stress portion.  The exponent 1/m2 and the coefficient A2 
are mainly determined by the demand that the point (σUTS,εUTS) must be part of the curve.  The 
expression m2 is therefore an expression for the true ultimate tensile strain which is obviously based 
on earlier experimental findings.  This is a critical point also for the determination of the engineering 
stress-strain curves (mentioned already above) which will discussed separately later.  

For the low stress portion ε1 is demanded that the yield stress (more precisely the 0.2% proof stress) 
and the point when significant plasticity happens (εp) are points of the curve.  The discrimination 
between low and high strain portion (H) is based on the difference between the actual true strain and a 
function H which depends on yield stress and ultimate tensile stress shown in equation (20). 

    (20) 

To gain better insight into what numerically happens during this procedure we analyzed the behavior 
for 304L at room temperature where a set of measured data exists [14].  A yield stress of 258 MPa 
and an ultimate tensile stress of 617 MPa were assumed for the calculations. Additionally, Young’s 
modulus of 196,000 GPa was used.  The results can be seen from Figures 4 and 5.  Gamma 1 and 
gamma 2 are the low stress related strain and the high stress related strain, respectively.  The 
functions (1.0 ± tanh[H]) describe a smoothened step function between the two strains (Figure 4).  
The situation becomes better visible in Figure 5 where different results were plotted.  It can be seen 
that the two strains eps_1 and eps_2 are really two different power functions which meet far above 
the calculated stress when eps_1 changes to eps_2.  It is obvious that a discontinuity occurs when 
changing from eps_1 to eps_2 control as reflected in the curve called MPC_value.   

 
Figure 4—Shape of (1+tanhyp(H)) and (1-tanhyp(H)) for 304 L Stainless Steel at Room 

Temperature 
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Figure 5—Comparison of Different Parameterizations of a True Stress-strain Curve for an 

Austenitic Steel at Room Temperature   

Eps_1 and eps_2 are the two power law functions of the MPC approach.  MPC represents the final 
results of the MPC procedure.  RO-eng represents a Ramberg-Osgood fit performed in the 
engineering stress-strain frame from which the true stress-strain data were obtained and experiment 
means experimental data.  

The real interesting comparison is the one with experimental data (experiment) which shows that in 
this case the agreement between MPC-values and experiment is good up to about 350 MPa (eps_1) 
and for stresses above 600 MPa (eps_2).  But between 350 and 600 MPa the agreement is not good at 
all.  However, a really good prediction of the experimental data is found with the RO-eng approach 
which was based on the engineering stress-strain curve from which the true stress-strain values were 
determined according to equations (2).   

Similar analyses of experimental data from for different materials led to the same result.  The MPC-
procedure could well describe the low strain and the high strain regime, but there was always a 
portion of the stress-strain curve where at the change from low to high strain a discontinuity occurred.  
It became also evident that the RO-eng curve determined for the engineering stress-strain curve and 
converted into a true stress-strain curve gave the best agreement with the experimental data.  

In the following improvements of the MPC-procedure to smoothen the difference between the low 
strain and the high strain portion will be discussed. 

One problem is the definition of the function H which is exclusively responsible for the switch. Using 
the notation of ASME VIII/2 with σt, true stress, σys, engineering yield stress and σuts, engineering 
ultimate tensile stress, H is defined as: 

                 (21) 

As K is also defined as a polynomial in σys/σuts the whole expression depends only on the difference 
between σt and a constant (for given σys and σuts).  This term does not provide any possibility for 
modifications.  

As smoothening approach it was tried to determine the point where the slopes of the low strain and 
the high strain curves are the same: 
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Let us start from the assumption that we have two power laws describing different portions of one 
curve: 

 
 

The stress where the slopes of both curves are the same, , can be determined by setting the 
derivatives of the two curves to equal which leads to: 

 
In a next step the curve describing the higher stress portion is shifted by the difference between the 

strains at  towards lower strain.  The resulting curve is shown in Figure 6 as “equal slope.”  The 
other curves shown are the same as the ones shown already in Figure 4 and Figure 5.  The agreement 
with the experimental data is now considerably better up to a strain of about 0.1.  However, there is 
now a higher deviation from the measured data at higher strains.  

 
Figure 6—Comparison of a Modified MPC True Stress-strain Curve (Equal Slope) with the 

Other Stress-strain curve parameterizations shown in Figures 4 and 5  
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Figure 7—Comparison of Results from MPC and RO-eng Results Omitting Data-points at the 

Transition from Low Strain to High Strain for the MPC Approach 

 
Figure 8—Comparison of Different True Stress-strain Parameterizations  

In Figure 8, MPC Ben and RO Ben Refer to the ASME FFS-1 Procedure Provided in [15], MPC Wolf 
represents the own evaluation according to ASME VIII/2 which is the same as FFS-1.  RO Wolf is 
the Ramberg-Osgood fit starting from the engineering stress-strain curve, equal slope stands again for 
the MPC-procedure modified by fitting low and high strain regimes at equal slopes of the two power 
laws. 

The second smoothening procedure was just to omit the data in the cross-over regime and draw a 
smooth curve. The result is compared in Figure 7 with experimental data and the engineering stress-
strain based Ramberg-Osgood curve. This leads to an extremely good agreement of all three curves. 
The only problem remains the smoothening procedure which is a bit of an arbitrary procedure. 

Similar results were also obtained with 2.25 Cr-1Mo in a comparison with the ASME FFS-1 
evaluation provided by Ben Hantz [15] which was summarized in Figure 8. 



STP-PT-056                                    Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves  

 12 

 

It becomes obvious that the MPC-Ben solution gives exactly the same results as MPC Wolf which 
means that the ASME FFS-1 MPC procedure fully agrees with the MPC-procedure adopted for this 
report.  RO Wolf is the RO-parameterization based on the engineering stress-strain curve (usually 
called RO-eng) whereas RO Ben is a single power law fit of the true stress-strain curve similar to the 
Hollomon or Cofie-approach (see equ. 9 and 10).  As highlighted in equations 11-13 a single power 
law fit is normally not able to map the true stress strain curve properly and it leads in almost all cases 
to an extended arc between YS and UTS, leading to exaggerated stresses.  
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3 THE DILEMMA OF FINDING THE (USUALLY NOT AVAILABLE) 
ULTIMATE TENSILE STRAIN 

Before recommendations concerning applicability of the different methods will be given another 
critical issue must be highlighted; the determination of the ultimate tensile strain.  

3.1 Rasmussen Procedure  
The discussion will commence with the ideas of Rasmussen [16].  He analyzed the ultimate tensile 
strain for austenitic, ferritic and duplex steels and he obtained the best correlation with the 
parameterization (see also Figure 9): 

 
Where εu is ultimate engineering tensile strain, σ0.2 is engineering proof stress, σu is engineering 
ultimate tensile stress. 

 
Figure 9—Correlation between Yield Stress, Ultimate Tensile Stress and Ultimate Tensile 

Strain (replotted from Rasmussen [16]) 

The high scatter of data is not surprising for experimentally determined mechanical values. However, 
my own trials with other experimental data from the literature did not show the behavior anticipated 
by Rasmussen.  Also the ultimate tensile strains of ferritic and duplex materials in Figure 9 seem to be 
rather independent form σ0.2/σu. 

3.2 The MPC-approach 
From relation (24), which is given in the MPC procedure, the true ultimate tensile stress can be 
obtained using  
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with material dependent values given in Table 1.  Using the usual conversion between true 
stress/strain and engineering stress strain (equ 1) one obtains with σuts,t  = suts(1+e) for euts: 

 
or 

 
 

This means that under the assumption of the validity of Table 1 the strain values at ultimate tensile 
stress can be determined which allows the construction of engineering stress-strain curves only with 
yield stresses and ultimate tensile stresses given in Y-1 and U tables.  

Table 1—Parameters for Ultimate Tensile Strain (m2) and for Start of Plastic Deformation (εp) 
for Different Classes of Materials as Defined in the MPC ASME VIII/2 Procedure 

 

 
Figure 10—Ultimate Tensile Strains Determined According to Table 1 for Different Classes of 

Materials as Function of Ratio between Yield Stress and Ultimate Tensile Stress 

MPC relations are straight lines when plotted against YS/UTS as shown in Figure 10.  However, there 
is a differentiation between the different types of materials.  For low values of YS/UTS the ultimate 
tensile strain for gamma prime hardening superalloys would exceed 100% which does not sound 
reasonable.  As gamma prime hardening superalloys expectedly have a high YS/UTS ratio this 
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discrepancy is most probably not very significant.  When YS and UTS are very close (i.e. YS/UTS 
close to 1) negative ultimate tensile strains are calculated which leads to erroneous results as shown 
later.  Also, unfortunately, traditional materials like austenitic steels do not necessarily follow the 
expectations as shown in Figure 11.  To improve the correlation another approach was attempted 
which will be described in the following. 

 
Figure 11—Comparison of Predicted and Measured Ultimate Tensile Strains Experimental Data 

Exclusively from [1] 

3.3 The UTS-YS Approach 
Let us start with equation (24) which can be re-written using the notation of equation (28): 

 
The difference between the ultimate tensile stress and the yield stress determines in first order the 
slope of the inelastic part of the engineering stress-strain curve according to the relation 

 
Assuming that 0.002 is small compared with the ultimate tensile strain we try to correlate the ultimate 
tensile strain with the difference between ultimate tensile stress and the yield stress.  
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Figure 12—Experimentally Determined Ultimate Tensile Strains (see Table 1) as a Function of 

the Differences between Ultimate Tensile Stress and Yield Stress 

 

 

 
Figure 13—Comparison between Calculated and Measured Ultimate Tensile Strains  

 

In Figure 13, MPC Refers to Strains Determined According to Table 1.  UTS-YS Refers to the Third 
Order Polynomial Shown in Figure 12.  
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Table 2—Measured Ultimate Tensile and Yield Stresses 
UTS YS UTE UTS-YS YS/UTS material m2

1222 630 0.1 592 0.51554828 steel 0.29067103
1220 1170 0.026 50 0.95901639 steel 0.02459016
1320 1300 0.01 20 0.98484848 steel 0.00909091

436 256 0.218 180 0.58715596 steel 0.24770642
518 343 0.183 175 0.66216216 steel 0.2027027
520 366 0.164 154 0.70384615 steel 0.17769231
853 796 0.077 57 0.93317702 steel 0.04009379
245 79 0.289 166 0.32244898 steel 0.40653061
733 264 0.751 469 0.36016371 aust 0.38390177
239 121 0.167 118 0.50627615 aust 0.37029289
259 128 0.13 131 0.49420849 aust 0.37934363
272 130 0.134 142 0.47794118 aust 0.39154412
255 124 0.142 131 0.48627451 aust 0.38529412
801 760 0.1 41 0.94881398 ti 0.01559301
944 866 0.08 78 0.91737288 ti 0.03131356
714 439 0.27 275 0.61484594 ti 0.18257703
837 837 0.002 0 1 ti -0.01
706 572 0.27 134 0.8101983 ti 0.08490085
825 563 0.24 262 0.68242424 ti 0.14878788
935 935 0.002 0 1 ti -0.01
851 846 0.002 5 0.99412456 ti -0.00706228
660 277 0.642 383 0.4200627 aust 0.43495298
504 210 0.369 294 0.41586867 aust 0.4380985
466 157 0.319 310 0.33579882 aust 0.49815089
660 270 0.616 390 0.40961338 aust 0.44278997
478 168 0.385 311 0.35014409 aust 0.48739193
449 154 0.344 295 0.34254992 aust 0.49308756
662 305 0.584 356 0.46145833 aust 0.40390625
507 217 0.35 290 0.42857143 aust 0.42857143
478 224 0.289 254 0.46897547 aust 0.3982684
671 261 0.691 410 0.38848921 aust 0.45863309
483 144 0.374 339 0.29857143 aust 0.52607143
454 166 0.332 288 0.3662614 aust 0.47530395
652 419 0.445 233 0.64232804 aust 0.26825397
501 334 0.288 167 0.66712517 aust 0.24965612
470 294 0.282 176 0.62609971 aust 0.28042522
609 248 0.484 361 0.40656852 aust 0.44507361
459 298 0.232 161 0.64864865 aust 0.26351351
440 179 0.263 261 0.40752351 aust 0.44435737
568 199 0.591 369 0.35072816 aust 0.48695388
474 176 0.356 298 0.37117904 aust 0.47161572
443 150 0.316 294 0.33748056 aust 0.49688958
615 287 0.437 328 0.46636771 aust 0.40022422
516 256 0.304 260 0.4959893 aust 0.37800802
496 195 0.287 301 0.39305556 aust 0.45520833
645 260 0.585 385 0.40277778 aust 0.44791667
515 161 0.326 354 0.31191432 aust 0.51606426
472 182 0.316 290 0.38596491 aust 0.46052632
640 287 0.616 353 0.44827586 aust 0.4137931
485 232 0.366 254 0.47727273 aust 0.39204545
470 146 0.313 323 0.3113069 aust 0.51651982
599 388 0.417 211 0.64787112 aust 0.26409666
492 299 0.28 193 0.60784314 aust 0.29411765
459 209 0.259 250 0.45495495 aust 0.40878378
544 260 0.53 284 0.47782003 aust 0.39163498
478 169 0.249 309 0.35353535 aust 0.48484848
436 125 0.268 311 0.28751975 aust 0.53436019
374 152 0.3 222 0.40641711 al 0.2982631
348 308 0.065 40 0.88505747 al 0.04937011
476 420 0.01 56 0.88235294 steel 0.07058824
449 385 0.101 64 0.85746102 steel 0.08552339
551 385 0.142 166 0.69872958 steel 0.18076225
546 352 0.165 194 0.64468864 steel 0.21318681
504 325 0.173 179 0.64484127 steel 0.21309524

1457 1181 0.145 276 0.81056966 gamma prime 0.22691764  
UTE refers to ultimate tensile strains according to Figure 12, whereas m2 refers to the ultimate tensile 
strains determined according to the MPC procedure (Table 1).  
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Figure 12 shows the results of this correlation based on data coming from a variety of different 
materials as shown in Table 2.  The correlation with UTS-YS is surprisingly good.  Most simple 
parameterization can be made with a linear function or a bi-linear function.  The best fit is obtained 
with a 3rd order polynomial.  Several attempts to normalize UTS-YS by some stress (YS, UTS, E) 
made the correlation worse and therefore no further change was made (although a non-normalized 
stress does not look like a very physical solution).  The real surprising result was the comparison with 
the MPC procedure for UT-strain determination which is shown in Figure 13.  The MPC-data were 
calculated from m2 as determined according to Table 1.  The UTS-YS-data were determined with the 
3rd order polynomial just described.  Both calculated values were compared with the experimental 
results given in Table 2.  Ideally a straight line with slope 1 is expected.  It can be seen that the UTS-
YS-approach leads to much better results than the MPC-procedure.  It is fair to say that the scatter in 
experimental data coming even from one batch of material is high and therefore sometimes 
significant discrepancies between calculated and measured values cannot be avoided.  Basically, this 
would not be an extremely severe problem if the m2-values as well as the ultimate tensile strain would 
not have an impact on the shapes of the MPC-curve and the RO-eng curve because they directly 
define the exponent in the power functions. 

This shall be highlighted taking an austenitic steel as an example.  The experimentally determined 
properties were YS: 156 MPa, UTS: 466 MPa, UT-strain: 0.319.  Yield stress and UTS were used for 
the determination of the stress-strain curve according to MPC and RO-eng procedures.  The results 
are shown in Figure 14a.  The MPC-approach leads to high UT-strains and the previously discussed 
change from low strain to high strain regime is clearly visible.  The RO- eng approach with the UTS-
YS correlation for the ultimate tensile strain leads to a smooth curve and a quite good prediction of 
the ultimate tensile strain.  Figure 14b shows the result when m2 is set to meet the experimental UT-
strain value and the RO-eng curve is also determined by the measured UT-strain. The RO-eng curve 
stays pretty much the same (which is no surprise because of the small difference between measured 
UT-strain and calculated one. However, the changes in the MPC-curve become significant.  The 
curve smoothens out, and the stress values also change.  The value at a strain of 0.1 increases by more 
than 25% from 340 MPa to 460 MPa.   

     
 (a) as calculated (b) using measured UT-strain               
Figure 14—Comparison of RO-eng and MPC Curves as Calculated (a) and Using the Actually 

Measured Ultimate Tensile Strain (b)  

This is only one example demonstrating the necessity for a sound determination of the ultimate tensile 
strain.  Since several parameterizations based on yield stress (Y-1) and ultimate tensile stress (U) 
need the ultimate tensile strain the determination of this quantity needs specific attention.  It is 
obvious that the current MPC-procedure does not always lead to very accurate results.  However, it is 
also not clear that the UTS-YS correlation covers really the variety of several classes of materials.  It 
is therefore strongly recommended to perform further research into this important issue.  
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4 CRITICAL ASSESSMENT OF THE DIFFERENT APPROACHES USING 
ACTUAL STRESS-STRAIN CURVES 

In the previous sections the capabilities and problems of different approaches for the determination of 
stress-strain curves from yield stress and ultimate tensile stress were discussed.  Now the different 
classes of materials shall be highlighted in more detail.  Generally it can be stated that (except the 
question of ultimate tensile strain) no problems are expected in all cases where the engineering stress-
strain curve can be described by a power law relationship.  Difficulties will emerge when deviations 
from the power law occur.  It turned out that the temperature is only of minor importance concerning 
the parameterization of stress strain curves.  However, strain-rate effects or differences in the 
materials response to tensile or compression are not included in the current approach.  It is also 
important to stress that the considerations are limited to strains below where necking occurs.  For 
higher strains ideally plastic deformation (without strain correction) should be used.  This is not only 
valid for elevated and high temperatures; this is generally true for several types of strain rate 
dependence.  From this point of view it seems to be justified to limit the construction of stress-strain 
curves to the same boundary assumptions as the ones valid for Y-1 and U-Tables.  Stress-strain 
curves comparing results from the different methods with experimental data are shown in     
Appendix C.  

4.1 Carbon Steels 
Although these steels are frequently used and they were also very well investigated they provide some 
challenges for the determination of stress-strain curves as shown in Figure 15 [17].  It is well known 
that low carbon steels (C < 0.25-0.30 %) tend to form Lueders bands which lead to a constant stress 
portion of the curve.  The mechanism that stimulates such behavior is known as "dynamic strain 
aging," or the pinning of dislocations by interstitial atoms (in steels, typically carbon and nitrogen), 
around which “atmospheres” or “zones” naturally congregate.  These so- called Cottrell clouds hinder 
the dislocation movement until a certain “break-away” stress is reached.  This behavior is often 
accompanied by an upper and lower yield stress.  Neither the occurrence of this phenomenon nor the 
amount of constant strain can be predicted in a way that it could be used for our assessment.  As rules 
of thumb it can be assumed that: 

• It is common to low-carbon steels and certain Al-Mg alloys 
• It remains usually limited to temperatures below about 150 C 
• Typical constant strain ranges at yield are 0.02 [m/m] 
• The difference between upper and lower yield point is negligible for our considerations 
• It seem to vanish for pre-treated steels 
• It only happens when the yield point is reached for the first time.  It is therefore irrelevant 

for cyclic deformation.   
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Figure 15—Stress-strain Curves of Different Carbon Steels [17] 

 

 
 

Figure 16—Stress-strain Curves for SA-36 Determined According to MPC and RO-eng 
Procedures without Lueders Strain Corrections   

In Figure 16, RO-eng_lueders refers to the Lueders corrected RO-eng procedure. 

In a good approximation the pronounced yield point can be taken as an equivalent to the proof stress.  
This is obviously also the case for Table Y-1 values where no discrimination between yield point and 
proof stress is made.  Table Y-1 and U values were taken from ASME II-D to predict the A36 (SA-
36) behavior shown in Figure 15.  The results are shown in Figure 16.  The “meas” points were taken 
from Figure 15 and the MPC and RO-eng curves were determined with the Table IID values for this 
steel.  It can be seen that the agreement in the Lueders part of the stress-strain curve is not very good 
and it can also be seen that the kink calculated by the MPC-method is only a calculation effect which 
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has nothing to do with yield point behavior.  Taking the “rules of thumb” mentioned above into 
consideration an attempt at modifying the RO-eng procedure was made in the following way: 

• calculate the curve without modification 
• consider the proof stress as yield point 
• shift the strains above the yield point by 0.02. 

The results are shown as RO-eng_lueders in Figure 16 and a good agreement with A36 shown in 
Figure 15 is found.  

 
Figure 17—Comparison of Results from MPC and RO-eng Parameterizations of A514 (see 

Figure 15) with the Result from the Lueders-modified RO Approach (RO-eng_lueders) 

The same procedure could also parameterize the A514 curve as shown in Figure 17.  In this case yield 
stress and ultimate tensile stress were determined from the curve directly as for this material no Y-1 
and U-values exist.  It looks like this simple rule would have the capability to handle Lueders-strains 
but this must be further explored.  

 
Figure 18—Stress-strain Curve of a Carbon Steel Without Occurrence of Lueders Strain   
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Figure 18 demonstrates how the RO-eng approach gives more accurate results concerning the shape 
of the curve.  However, the ultimate tensile strains are not correctly reproduced. 

In case no pronounced yielding is observed the experimental values can be well reproduced by RO-
eng and MPC procedures (except ultimate tensile strain) as shown in Figure 18.  

In conclusion, it can be stated that the phenomenon of yield points for carbon steels is difficult to 
generalize because it happens for several strength levels (inluding HSLA and TMT).  Current Y-1 
tables also do not discriminate between yield point and proof stress.  The current MPC-procedure 
does not take this phenomenon explicitly into consideration.  The RO-eng approach could be 
modified to account for yield point phenomena.  Taking materials scatter and other uncertainties into 
consideration the question remains if for assessments like J-Integral or strain energy it would not be 
sufficient to work with a power law type of approach neglecting yield point phenomena. 

4.2 Ferritic Steels 
Engineering stress-strain curves for this class of materials follow usually a power law.  Few 
exceptions from this rule are reported and it might be that for low alloy steels and low carbon 
contents yield point phenomena occur.  This can be even the case for one type of material like 2.25 
Cr- 1Mo in normalized/tempered condition.  Whereas in [18] a yield point was observed at room 
temperature, no such phenomenon was found in [19].  The differences were mentioned, but not 
further commented.  The power law shape of the stress-strain-curves remains for several temperatures 
(see appendix C).  The other points concerning the MPC-procedure and the RO-eng procedure remain 
as previously discussed. 

4.3 Martensitic Steels 
Similar to ferritic steels also the martensitic steels follow usually a power law and can therefore be 
well described by a RO-eng and MPC approach.  

4.4 Austenitic Steels 
The stress-strain curves of austenitic steels usually follow also a power law.  Sometimes a two-slope 
behavior is found as demonstrated in Figure 19 with an example.  

 
Figure 19—Occurrence of Secondary Hardening for Austenitic Steel at Temperatures below 

Room Temperature [18] 
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This behavior varies by alloy stability, with alloys like 201 and 301 showing pronounced two-slope 
behavior above room temperature, while stable alloys like 316 and 310 showing it only at sub-zero 
temperatures [26].  

For inclusion of such effects even the engineering stress-strain approach would need a two-power law 
parameterization.  For cases wher the two slope shape occurs below room temperature it is fair to say 
that the room temperature curve provides at least a conservative assessment and it should be clarified 
if these effects need to be considered in future code editions. 

4.5 Gamma Prime Hardening Superalloys 
Most difficulties for this class of materials come from sometimes occurring large differences in the 
expected ultimate tensile strains which shall be highlighted taking IN-718 as an example.  

  
 (a) as calculated (b) using measured ultimate tensile strain 

Figure 20—Comparison of Measured and Calculated Stress-strain Curves of IN-718 at Room 
Temperature   

In Figure 20 the results using calculated ultimate tensile strain values are compared with results using 
the measured ultimate tensile strain.  Figure 20 compares different approaches with measured data.  
MPC is the result of an application of the current MPC-procedure together with the m2-value given 
for gamma prime hardening alloys.  RO-eng is the result of the RO-eng approach using the previously 
described third order polynomial for the determination of the ultimate tensile strain.  Both approaches 
predict much too high ultimate tensile strains and consequently much too high true ultimate tensile 
stresses.  Whereas for the MPC-approach also the shape of the curve differs significantly from the 
experimental values can the RO-eng approach much better predict the measured shape. Interesting is 
the outcome when instead of the calculated ultimate tensile strain the actually measured ultimate 
tensile strain is used (MPC meas.-strain, RO-eng meas.-strain).  With this input the experimental 
curve can be very well predicted.  

4.6 Other Classes of Materials 
Other material classes like Cu, Ti, Zr or Al show usually a power law dependence for the engineering 
stress-strain curves.  Most differences come from differences between measured and predicted 
ultimate tensile strains.  Particularly titanium alloys show sometimes only small differences between 
YS and UTS which can make troubles for the m2-determination (see Table 2). 

Appendix C shows a variety of examples how the current MPC-method and the RO-eng method can 
predict experimentally determined stress-strain curves and tangent moduli from yield stress and 
ultimate tensile stress.  A clear disadvantage of the current MPC approach is the discontinuity at the 
point where the slopes of the two power laws change.  It has currently also no option built into to 
account for special effects like Lueders strains.  It is therefore proposed to use the RO-eng approach 
for further code related procedures.  
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5 TANGENT MODULUS      
The tangent modulus gives the slopes of the true stress-strain curves.  It is therefore the first 
derivative of the true stress-strain curve.  It can be derived either by numeric differentiation of the 
true stress strain curve or—when the analytic form of the curve is available—by simple calculation of 
the first derivative.  In case of the MPC approach the formula is given in Sect. VIII/2 as shown in 
Figure 21. 

 
Figure 21—Scheme for Determination of the Tangent Modulus According to the MPC 

Procedure Described in Section VIII/2 

For the RO-eng approach the tangent modulus can be determined according to the following 
procedure using the notation e,s for engineering strain and stress and ε, σ for true strain and stress: 

 
 

With the expression for the RO-fit in the engineering stress-strain picture  

 
one obtains 

 
And finally for the tangent modulus: 
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With this expression the tangent modulus can be easily calculated once the engineering stress-strain 
curve is known.  As in the RO-approach only one slope occurs where the curves of the tangent moduli 
do not show the discontinuity of the MPC approach when at the point of change between the two 
slopes which is shown in Figure 22 taking 2.25Cr-1Mo at room temperature as an example. 

 
Figure 22—Comparison of Tangent Moduli Determined According to the MPC and to the RO-

eng Procedure (Materials 2.25Cr-1Mo, RT) 

It can be seen from this figure that except for the “jump” at slope change in the MPC representation 
the shape of the curve is very similar.  More examples of tangent moduli can be found in Appendix C.   
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6 CYCLIC STRESS-STRAIN CURVES 
Until now the discussion was limited to monotonic stress-strain curves.  More complex is the field of 
fatigue curves or cyclic stress-strain curves.  Basically, they are of same nature as tensile curves and 
they usually show a power law dependence.  As typical low cycle fatigue deformations seldom 
exceed a total strain range of 1-2%, cyclic stress strain curves remain limited to the “low strain” 
regime and a one-power law approach can be used even for correlation between true cyclic strain and 
true cyclic stress.  This procedure is used for determination of cyclic stress-strain curves in ASME 
VIII/2 according to the following formula: 

(34) 

With total true strain amplitude, εta, true stress amplitude, σa, Young’s modulus, Ey, and tabulated, 
materials dependent constants, Kcss and ncss.   

The main problem with cyclic stress-strain curves is that cyclic softening/hardening behavior of a 
material is currently unpredictable from materials data like yield stress, tensile stress or Young’s 
modulus with an engineering type of approach because it depends not only on the material but also on 
the condition of a material which shall be demonstrated with a simple example. 

   
(a) cold worked    (b) annealed 

Figure 23—Cyclic Response of a Ti-containing Austenitic Steel at 650°C in 20% Cold Worked 
and in Annealed Condition [21] 

Figure 23 shows the cyclic response of a Ti-containing austenitic steel at 650°C in 20% cold worked 
and in annealed condition.  The cold worked material strongly cyclic softens, whereas the annealed 
quality strongly cyclic hardens.  Although such behavior can be understood in terms of 
microstructure, it is currently impossible to quantify it in terms of stresses and strains without 
experiments.  Cyclic stress-strain curves are usually determined at ½ of the fatigue life which is on a 
logarithmic scale for number of cycles relatively close to the drop to final rupture.  Cyclic stress-
strain curves can be determined from different samples or with the so-called incremental step 
procedure where only one sample for which the stress is stepwise increased is used.  

For code considerations it is important that cyclic stress-strain curves can only be established on the 
basis of existing experimental data.  It is therefore anticipated that the cyclic stress-strain data given 
in Sect VIII/2 are based on measured data rather than on Y-1 and U-table values.  Figure 24 shows a 
comparison of cyclic stress-strain curve for austenitic 304 steel published in the ASM-handbook [18] 
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with the curve determined for the same material under the same conditions in ASME VIII/2.  A good 
agreement was found taking into consideration that the ASM-cyclic represents the measured curve 
whereas the ASME-curve is the result of equation 42. 

 
Figure 24—Comparison of Cyclic Stress-strain Curves for 304 at Room Temperature   

In Figure 24, ASM_cycl represents the Data from the ASM handbook of stress-strain curves and 
ASMEcycl represents the curve which was calculated according to the ASME Code procedure. 

Possible procedures for the inclusion of new cyclic data into the code shall be discussed now.  For 
this purpose it is important to notice that for many materials literature data exist which are usually 
given in form of the curves shown in Figure 23and sometimes also cyclic stress-strain curves are 
given.  But even when cyclic stress-strain curves are not given it is possible to construct cyclic stress-
strain curves according to the procedure given in Appendix B as highlighted in the following with 
examples.   

Figure 25 shows experimental results from LCF-tests of the austenitic steel 316LN in annealed 
condition [20].  From this figure stress amplitudes and total strain amplitudes for lowest and highest 
strain range can be determined at half-life.  Under the assumption that these two points belong to a 
power law type stress-strain curve the full curve can be determined as shown in Figure 26a.  The 
measured points refer to the measured cyclic stress-strain curve (which in this case was given in the 
paper together with the monotonic stress-strain curve as shown in Figure 26b).  Taking the scatter of 
the experimental data into consideration an extremely good reproduction of the cyclic stress-strain 
curve was obtained with only two data points from the cyclic hardening curves.  

The technically very important judgment if a material cyclic hardens or softens is only possible when 
both cyclic and monotonic stress-strain curves are known, which is the case for this demonstration 
example.  But a procedure for introduction of cyclic stress-strain curves which is consistent with the 
Y-1 and U-tables is still missing and a pragmatic proposal for such a procedure will be given in the 
following.  

Steel 316 LN is also part of Y-1 and U-Tables and therefore the monotonic stress-strain curve 
according to the code can be obtained as previously discussed.  This curve is considerably lower than 
the monotonic curve determined in the paper which can be seen from Figure 27a. “Experimental” 
refers in this figure to the published data (Figure 26b) and “Y-1/U” refers to the monotonic curve 
determined from Y-1 and U tables.  If for future code developments a consistent set of cyclic stress-
strain curves shall be established also scaling according to differences in monotonic curves becomes 
necessary.  It is proposed to use the ratio between the yield stresses of the monotonic curves also for 
scaling of the cyclic curves.  The results of such scaling are shown in Figure 27b.  In this figure 
“cyclic-paper” refers to the published experimental data. “Cyclic_proposal” represents the cyclic 
stress-strain curve after scaling with the ratio of the monotonic yield stresses for possible introduction 
into a future code.   
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Figure 25—Experimental Results from LCF-tests of the Austenitic Steel 316LN in Annealed 

Condition [20] 

   
(a) Calculated cyclic stress-strain curve         (b) Measured cyclic and monotonic stress-strain curves 

Figure 26—Comparison of a Measured Cyclic Stress-strain Curve (b) with a Cyclic Stress-
strain Curve Determined only from Two Data Points (a) Given in [20] 

The monotonic stress-strain curve in (b) is considered for comparison with the monotonic stress-strain 
curve determined from Y-1/ Table values.  

  
 (a) Monotonic stress-strain curve from Fig 26(b) (b) Scaled cyclic stress strain curve 

Figure 27—Proposal for Scaling of Cyclic Stress-strain Curve when Different Monotonic 
Curves Exist 
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For 316 LN the experimentally measured monotonic curve is considerably higher than the curve 
calculated from the Y-1/U Tables (a).  For inclusion into the code this difference must be accounted 
for.  It is proposed to use the ratio of the yield stresses for scaling – cyclic_proposal in (b). 

High strength low alloy steel (HSLA) shall be taken as another example for conversion of literature 
data into cyclic stress-strain curves.   Data for different HSLA steels were found in [22] for V, Cb and 
Ti-containing HSLA steels and in [23] for A-723 (SA-723).  In both investigations monotonic stress-
strain curves were found to follow very well to reasonably well a power law relation and comparable 
cyclic hardening was found.  The literature data could be very well reproduced using the methods 
described above.  Based on this information monotonic and cyclic stress-strain curves for different 
classes of SA-723 could be established using again the yield stress ratios for scaling.  For the two 
extreme classes (Cl.1 and Cl.5) the results are shown in Figures 28a and b.  

  
   (a) SA-723 Cl.1               (b) SA-723 Cl.5 

Figure 28—Monotonic and Cyclic Stress-strain Curves for Different Classes of SA-723 as 
Derived from Literature 

Precipitation hardened austenitic steels of type 17-4 PH in qualities H900 and H1150 are considered 
as a final example for determination of cyclic stress-strain curves.  The data were taken from an 
analysis of the fatigue behavior of notched samples [24].  To reconstruct the cyclic stress-strain 
curves the following procedure was chosen.  

The fatigue curves were given in a Manson-Coffin representation (equ.35): 

 (35) 

The different coefficients and exponents were given in the paper which allowed the determination of 
the total stress amplitude, εa.  The stress amplitude could be determined according to: 

  (36) 

This was found in [24] as the best correlation between number of cycles to failure and stress/strain 
amplitudes for several samples and several mean loads.  For zero mean stress is σmax equal to σa and 
therefore the cyclic stress-strain curve is fully determined.  Since also yield stress, ultimate tensile 
stress and Young’s modulus have been given for the different qualities it was possible to determine 
also the monotonic stress-strain curve with the RO-eng method.  The results of this analysis are 
shown in Figure 29 a,b for the qualities H900 and H1050.  The dashed lines represent the monotonic 
curves as calculated according to RO-eng. For determination of 
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 (a)  H900 (b)  H1050 

Figure 29—Cyclic and Monotonic Stress-strain Curves of 17-4 PH in Two Different Qualities 

 

the squared points equations 43 and 44 were solved for different values on Nf.  In good approximation 
it can be concluded that for 17-4 PH, the cyclic and monotonic stress-strain curves can be considered 
to be the same (at least for these qualities). 

In many cases monotonic stress-strain curves and cyclic stress-strain curves are not available for the 
same material which can lead to confusion and errors concerning cyclic hardening/softening of 
materials as highlighted with an example from the current code edition.  As an example, 9Cr-1Mo 
(grade 91) which is known as a cyclic softening martensitic steel was chosen. 

It is included in the cyclic stress-strain curves of Sect. VIII/2 and it is also included in the Japanese 
NIMS database [25].  Figure 30a compares the cyclic stress-strain curve from NIMS and the cyclic 
stress-strain curve from ASME VIII/2 and an almost perfect agreement between those two curves can 
be seen.  However, comparing the monotonic curves based on YS and UTS values given for this 
material in NIMS [25] and in Y-1-U-Tables, respectively a pronounced difference exists (Figure 30b).  

    
 (a) cyclic stress-strain curves (b) monotonic stress-strain curves 

Figure 30—Cyclic and Monotonic Stress-strain Curves of Grade 91 Martensitic Steel 
According to the Japanese NIMS [25] Database and the ASME Code 

 

In a next step the combination of monotonic curve and cyclic curve according to the code is shown in 
Figure 31a.  From this figure the material is expected to be clearly cyclic hardening which is not at all 
true!  Correcting the cyclic curve in the same way as previously discussed by the ratio between the 
yield stresses the cyclic curve shows clear cyclic softening, in agreement with NIMS [25] and the 
other literature. 
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 (a) Current situation in the ASME-code (b) After scaling of cyclic stress-strain curve 
Figure 31—Comparison of Cyclic and Monotonic Stress-strain Curves for Grade 91 in Current 

Code Edition 

 

Without scaling, the material is expected to cyclic harden (Figure 31a).  With yield-stress scaling, the 
expected (cyclic softening) behavior of the material is obtained. 

Detailed knowledge about the cyclic stress-strain curve is important for fracture mechanics 
considerations like determination of the cyclic J-integral for fatigue crack growth which needs the 
hysteresis loop and determined the driving force of fatigue cracks in the LCF regime.  Hysteresis 
loops are usually determined by scaling the cyclic stress-strain function by a factor of 2 which 
corresponds to the determination of the cyclic stress strain curves.  With the notation of equation 42 
the hysteresis loop can be determined according to equation 37: 

   (37) 

Summarizing, it can be stated that for cyclic stress-strain curves the shape is no problem, because for 
several materials a power law relationship is found and complications like Lueders strain do not exist. 
The real uncertainty concerns the cyclic hardening/softening behavior which is almost unpredictable 
and which can only be determined with experimental results.  But even then a careful adjustment 
between cyclic and monotonic curves has to be made to get consistent code entries.  To provide sound 
solutions for these issues it is recommended that further research based on existing data and literature 
be performed. 
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7 PROPOSAL FOR IMPLEMENTATION OF STRESS-STRAIN CURVES INTO 
THE ASME CODE  

It is an aim of further code editions to add monotonic and cyclic stress-strain curves and it was one 
aim of this study to analyze current procedures with respect to possible implementation.  

Currently most widely used in the code is the MPC-approach which is a two power law 
approximation of the true stress strain curve using only Y-1 Table and U-Table values for 
reconstruction of the true stress-strain curve.  Additional data like the expected ultimate tensile strain 
(m2) and strain when first plasticity occurs (εp) are available as materials dependent tabulated values.  
This is a sound procedure which has certainly it merits but also its limitations (discontinuities when 
switching from low strain to high strain regime, inaccurate ultimate strain values, etc.). 

Besides this method also a one-power law parameterization for the true stress strain curve (called 
Ramberg Osgood in the code) is in use.  This designation is not quite correct because Ramberg-
Osgood developed their parameterization for engineering stress-strain curves, not for true stress-strain 
curves.  It was Hollomon [3] who proposed a power law fit of the true stress-strain curve. Simple 
mathematic considerations reveal that due to the nature of the definition of true stress and true strain a 
one power law fit of the true stress-strain curve will fail even if the engineering stress-strain curves 
can be very well described with one power law relation.  

For the determination of isochronous stress-strain curves in Sect III, a polynomial fit is employed for 
the determination of stress-strain curves.  

An amended procedure shall: 

• Give (where possible) more accurate results as the current procedures 
• Allow constructing stress-strain-curves from Y-1 and U-Table values 
• Lead to results which allow maintaining existing data and procedures as much as possible 
• Be simple and straightforward in its application. 

Based on analyses of experimental data and comparisons of different approaches the following 
procedure for determination of stress-strain curves (engineering and true) is proposed: 

Determine the engineering stress-strain (e-s) curve according to 

 
 

with sYS = yield stress according to Y-1 Table, Young’s modulus, E. 

The exponent n is calculated according to:  

 
 

with sUTS = StRt (U-table value corrected by 1.1) and eUTS = ultimate tensile strain determined from Δs 
which is the difference between sUTS-sYS by: 

eUTS= 1.1903E-08. Δs3-5.687E-06. Δs2+1.847E-3. Δs 
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Determine the true stress-strain curve according to the well-known procedure: 

ε=ln(1+e) and σ=s(1+e) 

 

Determine tangent modulus according to: 

 
Comments: 

• This procedure covers the wide range of materials for which the engineering stress-strain 
curve follows a power law relationship.  This is no restriction in comparison with the current 
code procedures which are also based on this assumption.  

• Most uncertainties are in the determination of eUTS which needs further analysis based on 
more experimental data.  The third order potential proposed here gives reasonable results 
which are comparable with the Sect VIII/2 m2 values. 

• For materials where eUTS is known this value shall be used instead of the 3rd order 
polynomial. 

• Lueders-strains which often occur for low carbon steels can be included into the procedure.  
• Secondary hardening effects (encountered e.g. for austenitic steels at temperatures below 

room temperature and other occasionally occurring effects, e.g. pronounced upper and lower 
yield strength ) cannot be accounted for.  It is recommended to cover such materials and 
material conditions with experimental data. 

• Inclusion into the current stress tables can be done simply by reference to YS and UTS and a 
set of notes referring to the above mentioned comments. 

• The attached Excel-map (Appendix D) allows determination of such curves including the 
option of entering the measured UT-strain and a Lueders-strain. 

Although cyclic stress-strain curves usually follow a power law relationship its determination cannot 
be based on YS and UTS because of the strong influence of material and materials conditions on the 
cyclic hardening/softening behavior.  Already existing cyclic stress strain curves in the code appear to 
be based on experimental results.  Although for the small strains which are usually considered for 
cyclic stress-strain curves also the true stress-strain curves can be described by a simple power law it 
is recommended to start also the cyclic stress-strain curves from the engineering picture.  Many cyclic 
data are available in the open literature and in databases like the Japanese NIMS [25] database and 
could be used to establish more cyclic stress-strain curves.  

As usually total strain amplitudes and stress amplitudes are reported it is possible to determine the 
cyclic stress strain curves according to: 

 
 

with the strain amplitude, ea, the stress amplitude, sa and a normalizing stress, si. 
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Pick two appropriate pairs of total strain amplitudes and total stress amplitudes from a typical LCF-
investigation: (e1, s1) and (e2, s2) and take e.g. s1 as normalizing stress.  The equation above can then 
be written as: 

 
 

with e1,pl being the plastic part of e1 which can always be determined from total strain and Young’s 
modulus. 

One obtains: 

 
And for n one calculates 

 
which defines the required stress-strain curve.  

It is important to point to the fact that for inclusion of cyclic curves into the code a consistency 
between monotonic curves and cyclic curves must be given.  It is therefore proposed to scale curves 
from different investigations with the ratio of the yield stresses.  

Hysteresis loops can be conveniently constructed by scaling the cyclic stress-strain curves with a 
factor of two.  Effects like the Bauschinger effect  are not covered this way which seems to be 
acceptable in the same way as also for monotonic curves no differentiation between tensile and 
compression curves is made.  
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APPENDIX A – DETERMINATION OF THE STRESS-STRAIN CURVE USING 
TWO DATA POINTS 

Let us assume that the engineering stress-strain curve can be described with a Ramberg-Osgood 
relationship: 

 
with S, engineering stress, Si, normalizing stress, e, engineering strain, E, Young’s modulus, A and n, 
constants. 

Assume two data points from a given engineering stress-strain curve: (e1, S1) and (e2, S2) and take e.g. 
S1 as normalizing stress.  Equation A.1 can then be written as: 

 
with e1,pl being the plastic part of e1.  

And one obtains: 

 
 

Using the second point gives: 

 
After some rearrangement one gets: 

 
The shape of the curve is now fully described by A and n given in equations (A.3) and (A.5).  From 
this curve usually σ0.2 can be easily determined.  

Determination of the Ultimate Tensile Stress (UTS): 

The UTS cannot be easily determined from the stress-strain curve.  One possibility offers the 
Consideré plot in which the true stress is plotted as a function of the engineering strain as shown in 
Figure 32.  
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Figure 32—Consideré Plot for the Determination of the Maximum Stress (UTS) 

 

Based on different trials with existing curves it could be shown that the curve 0-C can be very well 
approximated by a power law: 

 
with σi, true stress at point i, ei, engineering strain at point i and B, β, constants.  With two points 
from the curve 0-C (σ1, e1 and σ2, e2) the constants can be easily calculated according to the 
relations (A.7) and (A.8): 

 
and  

 
We therefore obtain 

 
The second condition comes from the fact that the line -1-C is a tangent to the curve 0-C at point C. 
This leads to the relation 

 
From which we calculate 

 
 

Together with relation (9)  and  can be calculated. 
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This leads to the following general procedure for reconstruction of a full range stress-strain curve. 

1. Obtain a given stress-strain curve as data points (either experimental values or after 
digitization). 

2. Determine A and n according to equations A.3 and A.5 which defines the curve in terms of a 
Ramberg-Osgood parametrization. 

3. Determine the yield stress as the intersection of the curve with the line 

epl=0.002. 
4. Convert the Ramberg-Osgood curve from an e-s into an e-σ-representation using equations 

A.6, A.7, A.8. 
5. Determine eUTS according to A.8, A.9, A.10 and A.11.  
6. Determine the standardized form of the Ramberg-Osgood curve based on 0.2 pct yield 

strength and ultimate tensile stress. 
7. Determine the true stress-strain curve according to the standard procedure described in the 

main part of the paper.  

Although this looks like a very complicated procedure it is extremely straightforward and it can be 
conveniently performed as an Excel-based procedure. 

This procedure was applied to a set of published engineering stress-strain curves of 2 ¼ Cr-1Mo 
measured at different temperatures. 
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APPENDIX B – COMPARISON FOR IN 800H (RATIONAL POLYNOMIAL, 
ASME II, RAMBERG-OSGOOD) 

Figure 33 compares the polynomial fit from the Task 13 report with a recently discussed Ramberg-
Osgood type power law fit which is also exclusively based on YS and UTS.  It is currently considered 
as one option to determine ASME stress-strain curves from Y-1 and U-Table values. 

 
Figure 33—Comparison of the Polynomial Fit with a YS and UTS Based Power Law Fit 

 
Figure 34—Comparison of Different Parameterizations of Stress-strain Curves Applied to IN 

800H Determined at 1100F 

Figure 33 shows that there is a discrepancy between the two fitting techniques.  However, one could 
argue that the polynomial fit must be valid only at rather small strains whereas the power law fit 
should cover the whole range up to UTS.  And from that point of view one could even state that the 
agreement is not too bad.  However, finally the curves must meet the UTS at reasonable strains 
(expectedly 10-30%) which should also be reflected in the slope.  The more global perspective can be 
seen in Figure 34.  The curve compares the fitting of the rational (taken from the Task 13 report) with 
the fit of the results of the current ASME-VIII-2 stress-strain curve fitting and a Ramberg-Osgood 
type fitting (called power in Figures  33 and 34).  Also ASME VIII-2 and power are exclusively based 
on YS and UTS.  The very important information concerns the UTS which is indicated as dotted line 
and which must be finally reached by several approaches.  In this frame the power law fit shows a 
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very appropriate appearance in contrast to the polynomial fit.  For further clarification the German 
KTA-rules were considered in accordance with the Task 13 report. The analyses were performed with 
data representing 900°C which are shown in Figure 35.  The 0.01h curve was chosen as representative 
(like in the Task 13 report).  This curve was digitized and the points taken are shown in Figure 36.  

                 
Figure 35—Isochronous Stress-strain Curves from the German KTA 

 
 

Figure 36—Identification of the Points Taken for Digitization of the KTA Stress-strain Curve 

 

This curve was now compared with the results gained from the power law parametrization using 
exclusively YS and UTS (mean values) given in the KTA.  The result is shown in Figures 37 and 38 
which are comparable to Figure 33 and  34.   
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Figure 37—Comparison of YS-UTS Based Power Law Fit with KTA-data at Low Strains 

                   
 

Figure 38—Comparison of YS-UTS Based Power Law Fit with KTA-data at High Strains 

In the low strain regime an almost perfect agreement was found.  And also in the high strain regime 
the data agree quite well.  The differences are mainly determined by the choice of the UT-strain used 
for the power law.  In this analysis the UT-strain was determined from the (UTS-YS)/E which turned 
out to give reasonably good assessments.  The two curves also meet the UTS in the expected range.  
In the KTA also the plastic strains are shown (see Figure 39).  These plastic strains were compared 
with the plastic strains determined with the power law fit described above.  The agreement is 
surprisingly good. 
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Figure 39—Plastic Strains for the Stress-Strain Curves Determined in KTA. 

Legend: Dehnung/plastic strain, Zeit (h) means basically time, but the values refer to the stress (in 
MPa) corresponding to the respective plastic strains.  

 

            
Figure 40—Comparison of Plastic Strains Taken from Figure 39 with the Ones Determined with 

the Power Law Fit Procedure 

Conclusions: 

• The polynomial fit for the stress-strain curves presented in the task 13 report are certainly in 
good agreement with NH-curves.  

• However, it looks like the determined slopes would not account properly for the UTS. 
• A Ramberg-Osgood type power law fit only reasonably well agrees with the polynomial fit 

for NH, however it better accounts for the UTS. 
• In contrast to this, the power law fit showed an excellent representation of the old KTA-

curves at 900°C.  
• It is therefore impossible to judge about the capability of the different fitting procedures 
• It would be interesting to make the comparison with a set of experimental data which have 

not already been biased by code related smoothening exercises like for NH or KTA.  
• The results of such a comparison could be used for eventual reconsideration of the NH stress-

strain curves.  
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APPENDIX C – DATA-SHEETS (TRUE STRESS-STRAIN CURVES, MODULUS) 
FOR CROSS COMPARISON 

 

 

2.25 Cr-1Mo,  norm./temp, 21 °C  

  

2.25Cr-1Mo,  norm./temp, 302° C  

  

2.25 Cr- 1Mo,  norm./temp, 399° C  
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2.25-1Mo,  norm./temp, 482° C  

  

2.25Cr-1Mo,  norm./temp, 566° C  

 
 

AISI 316, 21°C  
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AISI 316, 149°C  

  

AISI 316, 315°C  

 

 

X20 (Martensitic steel) RT  
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Grade 91 RT  

  

Carbon steel UNS G10230 RT  

  
Mild steel (RO with and without Lueders 
strain) RT 
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HSLA SA-723 Cl.5 MPC with m2 class 1 

 

 

17-4 ph H 1150 MPC with m2 class 1 

 

 

17-4 ph H 1100  

  
 

 



Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves                                  STP-PT-056 

 49 

 

Ti Al6 V4 sol. treated+ aged RT  

  
Al 6084-T6, RT  

 

 

Al 5083-0, RT  
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Copper UNS C23000, RT  

 

 

A-286 (gamma prime) RT  

 
 

 



Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves                                  STP-PT-056 

 51 

APPENDIX D – EXCEL MAP WHICH CALCULATES STRESS-STRAIN CURVES 
AND TANGENT MODULI ACCORDING TO MPC AND RO-ENG 

 

Optionally experimentally determined ultimate tensile strain or Lueders strain can be inserted.  For 
each curve 200 data points are calculated.… 

 

………………………………………………………… 

 
 

 



STP-PT-056                                    Extend Stress-Strain Parameters and Cyclic Stress-Strain Curves  

 52 

ACKNOWLEDGMENTS 
The author acknowledges, with deep appreciation, the activities of ASME ST-LLC and ASME staff 
and volunteers who have provided valuable technical input, advice and assistance with review of, 
commenting on, and editing of, this document. 

 



A2421Q


	1 INTRODUCTION
	2 METHODS OF PARAMETERIZATION OF STRESS-STRAIN CURVES
	2.1 Engineering Stress-Strain Curves
	2.2 True Stress-Strain Curves

	3 THE DILEMMA OF FINDING THE (USUALLY NOT AVAILABLE) ULTIMATE TENSILE STRAIN
	3.1 Rasmussen Procedure 
	3.2 The MPC-approach
	3.3 The UTS-YS Approach

	4 CRITICAL ASSESSMENT OF THE DIFFERENT APPROACHES USING ACTUAL STRESS-STRAIN CURVES
	4.1 Carbon Steels
	4.2 Ferritic Steels
	4.3 Martensitic Steels
	4.4 Austenitic Steels
	4.5 Gamma Prime Hardening Superalloys
	4.6 Other Classes of Materials

	5 TANGENT MODULUS     
	6 CYCLIC STRESS-STRAIN CURVES
	7 PROPOSAL FOR IMPLEMENTATION OF STRESS-STRAIN CURVES INTO THE ASME CODE 
	8 REFERENCES 
	APPENDIX A – DETERMINATION OF THE STRESS-STRAIN CURVE USING TWO DATA POINTS
	APPENDIX B – COMPARISON FOR IN 800H (RATIONAL POLYNOMIAL, ASME II, RAMBERG-OSGOOD)
	APPENDIX C – DATA-SHEETS (TRUE STRESS-STRAIN CURVES, MODULUS) FOR CROSS COMPARISON
	APPENDIX D – EXCEL MAP WHICH CALCULATES STRESS-STRAIN CURVES AND TANGENT MODULI ACCORDING TO MPC AND RO-ENG

