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FOREWORD

(This Foreword is not part of ASME PTC 21-1991.)

The need to update the 1941 version of this Code (PTC 21-1941, Dust Separating
Apparatus) led to the reorganization of the PTC 21 Committee in 1980. In the course
of the complete revision, the scope was broadened beyond that of the original doc-
ument, leading to the current more comprehensive title and content. The PTC 21 code
draftwas approved by the Board on Performance Test Codeson June 1,1990. The Code
was adopted by the American National Standards Institute as an American National
Standard on August 16, 1991.
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SECTION 0 — INTRODUCTION

0.1 The term particulate matter collection equip-
ment is intended to include all devices used for
separating gas borne particles from the medium in
which they are transported. This Code is designed
to cover efficiency determination and perfor-
mance testing for all types of particulate matter col-
lection equipment installed in conjunction with
both industrial and utility combustion processes.
Its use for other gas streams is not precluded if test
parameters are compatible with those discussed in
PTC 38, Determining the Concentration of Partic-
ulate Matter in a Gas Stream.

Particulate matter collection equipment in-
cludes, but is not limited to, the following devices
or combinations thereof: baghouse, fabric filter,
mechanical collector, catcher, cyclone, eliminator,
filter, wet or dry electrostatic precipitator, wet or
dry scrubber, trap, washer, and fixed or moving
bed filter.

0.2 Unless otherwise specified, all references to
other test codes are to ASME Performance Test
Codes, latest edition.

0.3 This Code provides recommended test pro-
cedures and instrumentation for determination of
efficiency and performance of particulate matter
collection equipment used to control emissions

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

from combustion processes. It is the intent of this
Code to minimize uncertainty so that final effi-
ciency results do not exceed +2%. Uncertainty,
however, depends upon actual values measured
and utilized in a given test.

0.4 Test objective(s) shall be agreed to by the in-
terested parties prior to the test.

0.5 The following ASME documents should be
available to the user of this Code: PTC 28, Deter-
mining the Properties of Fine Particulate Matter;
PTC 38, Determining the Concentration of Partic-
ulate Matter in a Gas Stream; and PTC 19.1, Mea-
surement Uncertainty.

0.6 Unless otherwise indicated, the technical terms
and numerical constants which are used in this
Code have the meanings and values as defined in
Section 2.

0.7 Test results shall be reported as determined,
and only tests which comply with the requirements
of this Code may be designated as “ASME PTC 21
Code Approved.”

Not for Resale
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SECTION 1 — OBJECT AND SCOPE

1.1 The object of the test is to determine the per-
formance characteristics of equipment designed
to collect particulate matter from a gas stream. This
Code specifies methods for determining the per-
formance of the equipment with regard to the fol-
lowing:

(a) overall mass collection efficiency of the
equipment;

(b) particulate matter concentration atinletand
outlet of collector;

(c) efficiency of collection according to size of
particle;

(d) resistance to gas flow, i.e., the total pressure
drop across the equipment;

(e) quantity of gas passing through the equip-
ment; and

() power consumption of the collection equip-
ment.

1.2Therules and instructions included in this Code
are for the particulate matter collection equipment
proper, as indicated by para. 1.1. I the scope of the
test includes any auxiliary apparatus, it will be nec-
essary to consult other ASME codes, as applicable.

Copyright ASME International
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1.3 The determination of the particulate matter
count, extensively used as a measure of atmo-
spheric particulate matter pollution, is outside the
scope of this Code.

1.4 This Code cautions against the extrapolation of
the performance of a complete particulate matter
collection installation on the basis of testing only
a single unit of multiple unit equipment.

1.5 Should specific directions given in this Code
for any particular measurement differ from those
given in other ASME Performance Test Codes for
similar measurements, the instructions of this
Code shall prevail, unless otherwise agreed by the
parties to the test.

1.6 This Code specifies the desired conditions and
procedures for obtaining valid and accurate test
results. Factors affecting overall test accuracy and
validity are considered in paras. 5.4 and 5.5.

Not for Resale
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SECTION 2 — DEFINITIONS AND DESCRIPTIONS OF
TERMS

2.1 This Code specifies the procedures to be em-
ployed in determining the efficiency of particulate
matter collection equipment. The terms used in
connection with the procedures are defined in PTC
38. Table 1is an alphabetized and updated version
of Table 2.1 in PTC 38-1980.

2.2 For the purpose of this Code, particulate matter
is defined as finely divided material, other than un-
combined water, suspended in a gas stream at the
prevailing temperature of the gas stream under
consideration — such material being separable

from the gas phase by filtration when using the
agreed upon sampling apparatus and procedures
described in this Code.

This definition is intended to exclude from con-
sideration those substances which may be formed:

(a) outside the stack or duct;

(b) in a sampling train; or

(c) upon cooling the gas stream to a lower tem-
perature than at the inlet.

2.3 The definitions of specific terms with sub-
scripts utilized in this Code are described in the
appropriate parts of the text.
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SECTION 3 — GUIDING PRINCIPLES

3.1 GENERAL

3.1.1 Determination of the performance of partic-
ulate matter collection equipment requires the use
of measurements made in accordance with other
test codes, especially PTC 28 (Determining the
Properties of Fine Particulate Matter) and PTC 38
(Determining the Concentration of Particulate
Matter in a Gas Stream). The procedures specified
in such references provide numerous options for
adapting the chosen techniques to suit the con-
ditions under which measurements are to be made.
It is incumbent upon the parties to a particular in-
vestigation to develop sufficient knowledge of the
applicable conditions and options to ensure se-
lection of correct procedures.

3.2 ITEMS OF AGREEMENT

3.2.1 Where the purpose of a test involves the in-
terests of two or more parties, an agreementamong
these parties must be formulated in advance of the
test.

The following is a checklist of pertinent items
upon which agreement in writing should be
reached by the parties to the test:

(a) objective(s) of the test;

(b) date and time of the test;

{c) number, type, and location of sample trains
and other instruments where alternates are per-
mitted and the test procedures to be employed in
their use;

(d) number and location of all sampling and
measurement points;

(e) operating conditions of the process, includ-
ing type and rate of fuel fired;

() method of determining and maintaining con-
stancy of process conditions during the test;

(g) gas flow rates in duct(s) or stack(s) to be
tested;

(h) method of determining total gas flow;

whether by combustion calculations, by process
calculations, or by velocity head measurements;

(i) number and duration of runs;

() duration of steady state operation before
sampling is commenced and, in the case of new or
modified installations, the minimal ‘“shakedown’’
operational period required prior to testing;

(k) designation of the procedures for making
calibrations, weighings, and other appropriate
measurements, and selection of the laboratories
for carrying out various test procedures;

() maximum deviations of test measurements
and conditions between duplicate runs that will be
acceptable, and the requirements for additional
runs where such deviations are exceeded;

(m) method for determination of collection ef-
ficiency (see para 3.5);

(n) format and content of report of results;

(o) portions of the tested equipment (if any) to
be out of service during the test.

3.3 MEASUREMENT UNCERTAINTY

Ideal test conditions may be unobtainable in
many test situations. This Code specifies the de-
sired conditions and procedures for obtaining valid
and accurate test results and also provides guid-
ance for dealing with nonideal conditions. Factors
affecting overall test accuracy are considered in
Section 5. The concepts described, and the for-
mulas shown, combined with information pro-
vided in PTC 19.1, are sufficient to perform a
complete error analysis.

In conducting the efficiency testdescribed in this
Code, itis necessary to follow the directions of PTC
28 and PTC 38 in the selection of test equipment
and instrumentation. The largest error is in the pi-
tot measurement of total gas flow due to the pos-
sibilities of varying flow quantities during the test
and flows not running exactly parallel to the duct-
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work. The error is usually on the side of higher than
actual flow rate,

An example of the effects of variations in instru-
mentation and flow rates on the efficiencies of high
performance equipment is shown in the following
table:

Effect on Efficiency, %, When

ASME PTCx21 91 ER 0759670 0542974 1Th -

PARTICULATE MATTER COLLECTION FQUIPMENT

objectives, that portion of the test results, or the
test run itself, shall be deleted.

3.5 METHODS OF TESTING

3.5.1 It is recommended that collection efficiency
be calculated by simultaneous determinations of
the mass of particulate matter entering and leaving

Inlet . .
Conditions Inlet Conditions the collection equipment.
Vary, Outlet Are Constant,

Conditions Outlet

Item Varied Are Constant Conditions Vary

Stack velocity head,

3.5.2 In cases where reasonably accurate mea-
surement of particulate matter at the inlet is ex-
cessively difficult or impossible, determination of

O:i’f?c‘?r'e"aa?;: 0.0m% —0.009% collection efficiency by simultaneous measure-
+0.20 in. H,0 0.000% 0.000% ment of the particulate matter collected by the
Stack temperature, equipment and that leaving the outlet may be con-
+10°F -0.003% 0.003% sidered by the parties to the test. It should be noted
Sampler catch weight, that accurate determination of the collector catch
O;;Z’: in flue gas 0.050% —0.055% in a given test period may be difficult. If this mea-
+0.5% ’ —0.000% 0.000% surement is to be used, the parties must carefully
Stack gas flow rate, consider and agree upon procedures and equip-
+11.76% 0.058% -0.065% ment to be used, especially taking into account the
Square root of the tendency for varying residual deposits to be re-
sum of the squares +0.078% +0.086% tained in the collector at the time of measure-

The highest uncertainty would occur when the
inlet and outlet gas flow rates varied in opposite
directions, as shown below:

—11.76%
+11.76%

Stack gas inlet

— %
Stack gas outlet } 0.147%

Square root of the sum of the squares: +0.158%

Details of the specific example are shown in Ap-
pendix F.

Provisions for less-than-desirable test condi-
tions must be agreed upon inadvance by all parties
to the test. This agreement should be clearly stated
in the test report.

3.4 WITNESS TO A TEST

3.4.1 Accredited representatives of all parties con-
cerned should be present to witness that all as-
pects of the test are conducted in accordance with
the agreements,

3.4.2 Should an accredited representative estab-
lish to all parties that the observed test procedures
and conditions will invalidate or prejudice the test

10

ments.

3.5.3 inlet and outlet particulate matter concen-
tration in the gas stream shall be measured in ac-
cordance with the procedures, options, and
precautions described in PTC 38.

3.5.4 When required, particle size distribution of
particulate matter in the inlet and outlet gas
streams shall be determined by the methods of PTC
28 (see para. 4.2.1).

3.5.5 Fractional mass efficiency by particle size can
be determined for most particulate matter collec-
tion equipment only by simultaneous in-situ size
measurement of the particulate matter in the inlet
and outlet gas streams. Due to cohesive forces be-
tween particles, redispersion of fine particles cap-
tured in the collector (for the purpose of
determination of particle size distribution) may not
be possible with sufficient completeness to allow
accurate calculation of fractional efficiency.

3.5.6 Calculation of collection efficiency may be
done in accordance with the procedures appear-
ing in Section 5.
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SECTION 4 — INSTRUMENTS AND METHODS OF
MEASUREMENT

4.1 INSTRUMENTS
‘4.1.1 Necessary Testing Apparatus. A list of required

instruments is given in this Section. A detailed de-

iscription of these instruments is given in PTC 38,

Determining the Concentration of Particulate Mat-
ter in a Gas Stream. Before proceeding to select or
construct instruments, those chapters of the PTC
19 series of Instruments and Apparatus Supple-
ments dealing with these instruments should be
consulted for detailed information.

(a) Standard pitot tubes or other calibrated de-
vices for making gas velocity measurements in the
gas stream.

(b) Sampling equipment — consisting of noz-
zles, sampling probes, and particulate matter col-
lectors — for proper sampling of the gas stream
and for collecting representative samples of the
particulate matter entrained therein.

(c) Metering devices, usually orifices and/or gas
meters, for determining the flue gas sampling rate
and total volume.

(d) Exhausting devices for withdrawing the re-
quired gas samples.

{e) Thermometers or thermocouples with tem-
perature indicator(s) for measuring the gas tem-
peratures at the sampling locations in the gas
stream, at the orifices or gas meters, and attheinlet
and outlet of the collector.

() Inclined manometers, orinstruments of equal
or greater accuracy, for use with pitot tubes or other
calibrated devices in reading gas velocity and/or
velocity pressures.

(g) Inclined or vertical manometers, or gages of
equal accuracy, for indicating the pressure drop
across the metering orifices.

(h) Manometers or suitable gages for measuring
the static pressure at the discharge of the metering
orifice.

(i) Manometers or suitable gages for measuring
the static pressure at the sampling location.
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() Inclined or vertical manometers, or gages of
equal accuracy, for determining pressure drop
across the particulate collection device.

(k) A drying oven suitable for removing mois-
ture from the samples and filters before weighing,
and a desiccator, with fresh desiccant, to hold the
samples and filters while cooling after drying and
before weighing. Drying temperature shall be
105°C, or higher, to meet the requirements of spe-
cific sampling conditions.

() Orsatequipment, or otherinstrumentation of
equal or betteraccuracy, for use indetermining the
analysis of the sampled gas. Such an analysis is re-
quired to permit correction to design excess air or
percent O, basis and is necessary if gas flow rates
are to be determined by combustion calculations
or other stoichiometric means. The Orsat appa-
ratus and its operation are described in PTC 19.10,
Flue and Exhaust Gas Analyses. Fuel samples, rates,
and analyses are required for combustion calcu-
lations.

(m) Timing device.

{n) Barometer.

{o) Humidity measurement equipment.

(p) Equipment for measuring particle size dis-
tribution of the particles in the inlet and outlet
ducts.

(@) Voltmeter, ammeter, and wattmeter to mea-
sure electrical energy consumption.

() Weighing equipment for determining the
amount of particulate matter caught, when the par-
ticulate matter is caught dry and when the weigh-
ing equipment does not interfere with the
operation of the particulate matter collection
equipment.

4.2 DESCRIPTION OF INSTRUMENTS

Detailed descriptions of instruments not cov-
ered by PTC 38 are given below.
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4.2.1 Particle Size Analysis Equipment. Detailed de-
scription of particle size analysis equipment is be-
yond the scope of this Code (see PTC 28 and Section
7, references 2 and 3).

The particle size distribution measurement is
done preferably with in-situ instruments such as
cascade impactors during the testing period (see
para. 3.5.5).

Experience indicates that no single method for
size analysis of particulate matter will give reliable
results for all types of particles. Since particulate
matter differs greatly as to shape, density, and
tendency to break or agglomerate, the ingenuity
and experience of the person(s) making the anal-
ysis must be applied in selecting a specific mea-
surement procedure. The procedure followed shall
be explained in detail in the test report. Operator
experience in making size analysis measurements
is necessary to obtain reliable results.

4.2.2 Electrical Power Consumption Measurement
Equipment. Industrial type voltmeters, ammeters,
and wattmeters with specified accuracy shall be
used. Refer to PTC 19.6, Electrical Measurements
in Power Circuits.

4.2.3 Weighing Equipment. Platform scales or sim-
ilar weighing equipment with sensitivity of at least
0.2% of the net weight and with accuracy within
+0.5% shall be used.

4.3 METHOD OF MEASUREMENT

PTC 38 and this Code contain the information
required for the proper selection of the instru-
mentation, methods of measurement, and the test
procedures to be used for obtaining valid test re-
sults under various test situations.

4.3.1 Designation of Test Equipment. Appendix C of
PTC 38 contains illustrations of basic sampling sys-
tem configurations which are recommended by
this Code for various applications. Options are
provided, in respect to both the filtration section
and the gas flow control section of the train, to meet
various test requirements. These options may be
supplemented by additional requirements and/or
guidelines appropriate to the nature of the test.
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4.3.2 Designation of Methods of Test, After a study
has been made of all the factors involved in con-
ducting a test on a specific installation under the
desired operating conditions, the following factors
should be utilized to define the nature of the test
program which will provide the most valid and
meaningful test results:

(a) operatingconditions of the plantand the par-
ticulate matter collection equipment during the
test;

(b) number and duration of test runs;

(c) description of sampling equipment to be
used;

(d) number and location of sampling points;

(e} methods for obtaining data;

() supplementary test data required and the
means for obtaining such data;

(&) procedures for handling test data and re-
porting test results;

(h) manner of interpretation of test results.

4.3.3 Isokinetic Sampling. PTC 38 contains infor-
mation on isokinetic sampling and aids for estab-
lishing and maintaining isokinetic flow rates.

4.3.4 Overall Mass Collection Efficiency and Frac-
tional Efficiency Measurements. The recommended
method for the greatest accuracy in determining
overall mass collection efficiency of the equipment
is measurement of the inlet and outlet particulate
matter concentrations by sampling trains operat-
ing simultaneously. With high efficiency collection
equipment, the sampling time at the outlet might
be more than 1 hr. A few preliminary runs to de-
termine the required sampling time of the inletand
outlet sampling trains are recommended. The op-
erating time for the inlet sampler might be shorter
due to more rapid buildup of particulate matter on
the filter. Extended sampling time may be possible
by selection of a smaller sample nozzle size for the
inlet collection. If this is not effective, then mul-
tiple measurements may be made at the inlet so
that a time average of the inlet measurements over
the outlet sampling period may be determined.

Particle size measurements, as described in para.
4.2.1,areto be performed as separate tests from the
overall mass efficiency measurement. Impactors
are not intended to give total mass loading.

The fractional efficiency is determined by a size
analysis of the particulate matter at the inlet and
the outlet. The most commonly used method is
in-situ sampling with cascade impactors. By weigh-
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ing each of the stages which collect progressively
finer particles, the particle size distribution can be
determined. From these distributions, the frac-
tional mass-collection efficiency within each size
range can be determined (see Section 5). To obtain
particle size distribution in the submicron range,
the so-called "“diffusion battery’”” has been used
with some success. This method has been com-
bined with impactors to give size distribution over
a range from 0.01 micron to 10 microns.

It is advisable to perform preliminary runs to
make sure that the stages and filters are not un-
derloaded or overloaded with particulate matter.

In certain cases, particle size analysis of the col-
lected sample can be performed in alaboratory (see
PTC 28).

4.3.5 Pressure Drop. Pressure drop is a perfor-
mance parameter for most particulate matter col-
lection equipment.

When pressure drop across the equipment is
measured, i.e., from the inlet flange to the outlet
flange, the following precautions must be taken:

(a) ensure that the measurement is taken where
the gas flow is relatively uniform (see PTC 38);

(b) ensure that the methods utilized for mea-
surement have taken into consideration the dif-
ferences between the two measurement stations.
These differences could be in configuration and/or
in gas flow characteristics, e.g., different cross sec-
tion and/or different gas density, respectively (see
para. 5.3.1);

{c) ensure that repeated measurements are
made at each cross section and the values aver-
aged. On installations with equal inlet and outlet
cross section and relatively uniform velocity dis-
tribution, the pressure drop can be measured di-
rectly by a single manometer connected between
inlet and outlet flanges (see para. 5.2);

(d) ensure that the manometers used have suf-
ficient sensitivity for the pressure differential to be
measured.

4.3.6 Flow or Capacity Measurement. The collec-
tion equipment is commonly specified to have a
certain capacity in terms of throughput flow rate.
The inlet and outlet flow rates will be determined
as part of the determination of the inlet and outlet
particulate concentration (see PTC 38).

A comparison of these two measurements will
give an indication of measurement accuracy and/
or the amount of gas leakage into or out of the col-
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lector. Gas lost to or gained from the ash conveying
systems, insulator purge systems for electrostatic
precipitators, and/or bag cleaning air in baghouses
must also be taken into account.

Actual gas flow rates together with pressure
drops are performance indicators for most collec-
tion equipment.

4.3.7 Temperature Drop. On certain collection
equipment operating in a dry state, i.e., electro-
static precipitators and baghouses, a maximum al-
lowable temperature drop across the device is
often specified.

The best method for obtaining the temperature
drop is to utilize the temperature data from the ve-
locity pressure traverses made in the inlet and the
outlet ducts of the collection device during the de-
termination of the flow rate through the equip-
ment. Arithmetic averaging of the temperature data
will yield realistic temperature drop values. The is-
sue of boundary layer temperatures and ductinner
wall temperatures and their effect on the temper-
ature averaging is subject to pretest agreement by
the parties to the test (e.g., ignoring low wall tem-
peratures as long as they are above a certain min-
imum).

If there is significant heat loss between the sam-
pling point and the collection equipment (e.g., un-
insulated duct), temperature measurements at the
inletand outlet of the collection equipment should
be performed. The temperature measurements
shall be performed during the particulate matter
sampling period.

4.3.8 Electrical Power Consumption Measurements.
The methods suitable for measuring the power
consumption of the main equipment and any aux-
iliaries are adequately covered in other ASME pub-
lications. For the consumption of electrical energy,
refer to PTC 19.6, Electrical Measurements in Power
Circuits.

The specifications under which the collection
device has been engineered normally specify the
power consumption, which is considered a param-
eter of performance. This includes the primary
power to an electrostatic precipitator, pump power
for a scrubber, reverse gas fan power for a bag-
house, and auxiliary power for the equipment.

The power consumption measurements shall be
performed during the sampling and flow mea-
surement period.
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SECTION 5 — COMPUTATIONS

5.1 INTRODUCTION

This Section deals with three main computations
for the performance of particulate matter collec-
tion equipment:

(a) formulas for both overall and fractional col-
lection efficiency;

(b) formulas for equipment pressure drop;

(c) procedures for uncertainties with respect to
both validity of data and accuracy of results.

5.2 COMPUTATION OF COLLECTION
EFFICIENCY

5.2.1 Overall Mass Collection Efficiency. If the gas
mass flow rate and particulate matter concentra-
tion are known at the inlet and outlet of the par-
ticulate collection equipment, the total mass of the
particulate matter may be calculated to determine
the overall mass collection efficiency E, as in Egs.
(1) and (2).

G, -G,
‘ 2l 02‘100 )

tD1

E, % =

where
Gy, = CenlGy) (2)

and
n = 1 for inlet and 2 for outlet
Cg,, = particulate matter concentration at the in-
let or outlet of the collector (unit mass/unit
mass flue gas)
E = overall mass collection efficiency {(percent)

Gip, = total particulate matter (unit mass/unit
time)

G, = weight of flue gas (unit mass flue gas/unit
time)

When the particulate matter mass concentration
is expressed per unit gas volume, the conversion

to Cg, is
Co =—2 3)

where
C,,, = particulate matter concentration atinlet or
outlet of the collector (unit mass per unit
gas volume)
p¢, = density of gas at standard dry conditions
(unit mass per unit volume)

Inthose special cases when the volumetric gas flow
atthe inlet and outlet are considered the same, Eq.
(4) may be employed, utilizing particulate matter
concentration measurements obtained from both
the inlet and outlet of the particulate matter col-
lection equipment.

R e (4
, % —L Con ]100 )

5.2.2 Fractional Mass Collection Efficiency. The par-
ticle size distribution is usually represented graph-
ically on logarithmic-probability paper, with Stokes
particle diameter on the logarithmic scale (log
scale) versus cumulative percent by mass less than
or greater than the stated size on the probability
scale (see Fig. 1).

(a) Based on the particle size distribution at the
inlet and outlet of the collection equipment, effi-
ciency for particles larger than a certain size can
be calculated as follows.

G
, Dy 5"
+0 7 G +D

E,p=————1——(100) (5)

’

+D

or

100 - E

S+D
100
E,p = - (100) 6
S+D
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Fractional efficiency between two particulate sizes
D, and D, can be calculated as follows.

G,
s’ _ D 5”
“Dp4D1 T & ~D2+ Dy

1D1

(100) @

E*Dz+D| = S’
~D2+Dn

It can be shown that G,, /G
Thus

= (100 — F)/100.

D,

100 - £ _,

S’ p+o

S‘D:+D| -

(100)  (8)

£ -Dh+Dy <

where

= efficiency of equipment in re-
moval of particles with diameter
larger than D, %

= efficiency of equipment in re-
moval of particles with diameter
larger than D, and smaller than

D, (Note: D, > D;), %
= percentage by weight of the par-

ticles of diameter larger than D at

the inlet of the equipment, %

= same as S’,; except at the outlet
of the equipment

= percentage by weight of the par-

ticles of diameter larger than D,

and smaller than D, at the inlet of

the separator, %
= same as S’ p,,p, except at the
outlet of the separator
D = particle diameter [customarily
given in pm (10~°m)]

(b) If an overall efficiency guarantee has been
made based on a specified size analysis of the par-
ticulate matter entering the collection equipment,
then the efficiency corrected to this size analysis
may be calculated as follows.

”
S+D

’
S—D3+D|

S—Dz-\‘—D]

0, — ’ ’
E(orrm!vd; % = (E+§OS vs50 T E7‘30+3(15 -50+ 130

, ,
+ E 3010520+ + E-w+s8 1045

1
+E 5.5 5+ E ST (%6) 9

Note that the S values in Eq. (9) are estimated or
specified before the test, while the E values are the
actual measured values. The numerical values of
the subscripts given in Eq. (9) are an example; any
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other set of particle diameters can be utilized as
per the pretest determination.

5.2.3 Other Particulate Matter Collection Equipment
Performance Criteria. For a variety of reasons, per-
formance criteria other than (or attimes in addition
to)those described in paras.5.2.1and 5.2.2 are often
required.

(@) In solid or liquid fuel burning boilers, it is
often required that the average particulate matter
loading in the flue gas leaving the collection equip-
ment shall not exceed a given level of particulate
thass per unit of heat input or per unit volume of
gas leaving (corrected to a specified gas compo-
sition), while burning a given type of fuel (e.g., coal
plus fuel oil, for which all analyses are defined). See
PTC 38, Section 5.

There may be additional requirements regarding
the opacity of the flue gas.

(b) Inthe case of wet scrubbers, where the mass
of the flue gas is changed during the scrubbing
process, the performance requirement can be ex-
pressed in terms of the average mass of particulate
matter per dry volume of the gas leaving the col-
lecting equipment, sometimes corrected to 12%
CO, by volume.

5.3 EQUIPMENT PRESSURE DROP

The performance of particulate matter collection
equipment is also evaluated by the measured av-
erage total pressure drop through the equipment.
The total pressure drop is directly related to the
equipment energy consumption and, for some
types of equipment, is correlated with the partic-
ulate collection efficiency; e.g., cyclones and wet
scrubbers (see Appendix B).

5.3.1 Necessary Conditions. The selection of pres-
suredrop calculation method depends upon which
of the following conditions can be complied with:

(a) work performed on the system does not ex-
ceed 1% of the system total loss of power due to
the pressure drop;

(b) heat lost or gained by the system is not more
than 5% of the flue gas internal energy, or 5% with
respect to the flue gas heat content;

{c) the extent of permitted deviation from steady
state is a function of the actual method of mea-
surement and must be determined on a case-by-
case basis; however, changes affecting the flue gas
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rate less than 5% during the measurement can be
considered as steady state for the purpose of pres-
sure drop measurement;

(d) the flue gas mass, average velocity, and den-
sity can be considered the same for both mea-
surement stations as long as the measured
difference between them is less than +10%.

5.3.2 Total Pressure Drop — Static Pressure Method.
Providing that all the conditions in para. 5.3.1 are
met, the total pressure drop can be found by

(AP) -y = APy 2 + (Zy = Z)or — Y <g£> (1)

C.

where, in consistent units,

(APp -, = total pressure drop
(AP,),_, = static pressure drop
pr = average gas density at duct conditions
p. = average density of the fluid (gas) in the

tubes connecting the static probes to
the instrument which measures the
(a Psg)1 ~2
Z,, Z, = height of the static probe port above
a common reference
g = gravitational acceleration
g. = gravitational conversion factor

The measurement is performed with the two static
probes connected to an instrument or a device
which measures (AP), _, directly.

If the measurement of the static pressure dif-
ferential between the inlet and the outlet of the
particulate collection equipment is done with two
separate instruments (one for the inlet and one for
the outlet), and the instruments are adjacent to
their test ports, then in Eq. (10) replace p; by pambients
and replace static pressure drop (A Pyo); _, by (P,
— (Psg),. Therefore, Eq. (10) becomes

(API)1—2 = (Psg)1 - (Psg)2

+ (Z1 - 22) (Pf - I_Jamb) (‘gg_>

c

5.3.3 Total Pressure Drop — Total Pressure Method.
In cases where only velocity varies among the con-
ditions in para. 5.3.1, and the density can be con-
sidered the same for both stations, then the total
pressure drop can be found by

(AP)i -y = (P)y — (P + pi(Z) — Z) (f) (11)
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where

_ 1 _—,
P=P,+ Em V- (12)

and

P, =Py, + Py (13)

In consistent units,
P, = average total pressure, Ibf /ft*

P., = absolute static pressure, Ibf/ft’
P., = gage static pressure, Ibf/ft’
P, = barometric pressure, Ibf/ft*

V = average gas velocity, ft/sec

pr = average flue gas density, Ibm/ft?
Note that on systems with large differences in el-
evation between the measurement stations, the
barometric pressure should be measured at each
station and the respective valuesinserted in Eq. (13)
for stations 1 and 2.

5.3.4 Total Pressure Drop — General Total Pressure
Method. Thermodynamic analysis utilizing the First
Law and the concept of enthalpy can be utilized to
deal with a situation where none of the conditions
listed in para. 5.3.1 are valid. This type of analysis
is beyond the scope of PTC 21. For particulate col-
lection equipment, the methods of paras. 5.3.2and
5.3.3 are sufficient. In the case of work performed
onthe system (e.g., accelerating droplets, etc.), this
work is usually an integral part of the system par-
ticulate collection process and therefore should be
part of the energy balance as expressed by the total
pressure drop. A detailed discussion is included in
Appendix C.

5.4 VARIATION OF TEST RESULTS — OUTLIERS

According to Daniel and Wood (Section 7, ref. 1),
“most large collections of data, and occasionally
even small collections, contain a few ‘wild points,’
sometimes called mavericks or outliers. What hap-
pened to make them nontypical cannot usually be
reconstructed. They must be spotted, however,
since to retain them may invalidate the judgments
we make.”
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TABLE 2 STATISTICAL VALUE OF DATA
POINTS (DEVIATION VS PROBABILITY)
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(b) Exceeding a Statistical Criterion. CAUTION:
This method should be applied only to the average
result obtained when performing the test. For ex-

T P, N . . IR .
[Note (1] [Note ()] [Note (3] ample, ifa given duct cross section is divided into
several subsections for the purpose of measuring
15 0.8664 4 the velocity profile, temperature, particulate mat-
1.55 0.8789 4 ter concentration, and major gas composition (as
1'25 g'gg‘;‘: g per the recommended procedure in PTC 38), only
17 0.9109 6 the average value of the velogity, temperatu re, or
particulate matter concentration, etc., is to be uti-
1.75 0.9200 6 lized when analyzing for outliers. Hence, the num-
1.8 0.9281 6 ber of cases evaluated statistically is the number
]‘25 g'gigz g of complete tests performed.
1.95 0.9488 10 A nu'mber'of s‘tatistic.al methods for setting limits
for point rejection exist (see PTC 19.1, Measure-
2.0 0.9545 10 ment Uncertainty). One of those methods, Chau-
2.1 0.9643 10 venet’s Criterion, is reviewed below because of its
;g 8‘2;2}2 ;g applicability to particulate matter determination.
24 0.9836 20 It is assumed that the errors are normally distrib-
uted such that Table 2 can be utilized to find prob-
25 0.9876 50 ability values. A statement of the criterion is: Any
2.6 0.9907 50 reading of a series of N readings shall be rejected
27 0.9931 >0 if the magnitude of its deviation from the true or
2.8 0.9949 100 - -
mean value is such that the probability of occur-
29 0.9963 100 rence of such deviation does not exceed P, from
3.0 0.9973 500 Table 2, where
35 0.9995 500
4.0 0.9999 500 1
Po=1-— 14
s IN (14)
NOTES:
(1) T is ratio of deviations from calculated mean value of stan- and
dard deviation. .
(2) P, is probability of occurrence (area under the normal dis- N = number of data points (N must be 24)
tribution curve, between ¥ = #7). P, = probability of occurrence

(3) N is number of data points (N must be =4).

5.4.1 Criteria for Determining Outliers. When there
are no obvious errors (i.e., obvious process upsets,
instrument malfunctions, or calculation errors), an
analysis of outliers may be useful.

(@) Imbalance Beyond a Calculated Criterion. If
a balance equation (e.g., mass balance) can be uti-
lized to check the test results and if, after consid-
ering the testing errors, most results are in
agreement with the balance equation, then a test
result which is in disagreement may be an outlier.
For example, the combustion stoichiometric cal-
culation and O, measurementindicate the gas mass
flow rate. If any measurement of velocity, tem-
perature, pressure, or O, yields a result which is
greatly different, then that result could be an out-
lier.

19

Upon calculation of P, [Eq. (14)], the value of the
dimensionless T should be found from Table 2. T
is the ratio of the deviation from the calculated
mean value to a

— 'Xn - Yl
[

T (15)

where
X, = actual value of each of the data points

X = mean value of all X values
o = standard deviation (see PTC 19.1)

This value of T should not be exceeded for any point
among the N data points. To obtain T, i.e., the
value of the calculated T for the sample, the esti-
mated standard deviation S is required.

& 12
% (X, = X)?

S:
N-1

(16)
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or
N 2 172
(5
N ) n=1
x —_
n=1 n N
= 1
S N =1 (17)
where
N
_Ex
X= N (18)
Finally, to check for outliers
X, — X
LAY 9

If Tcy > Tin Table 2, the datum point is an outlier.

The user of this method is cautioned that the pro-
cedure should be done only once; i.e., after elim-
inating the outliers, the procedure should not be
repeated again with a new N. As previously noted,
this method should not be utilized unless N = 4.

5.5 ERROR ANALYSIS

5.5.1 General. For most particulate matter collec-
tion equipment, performance tests are done by one
of the following two methods.

(a) Point Source Testing. Traversing of the duct
up and downstream of the equipment is necessary
in order to establish average flue gas flow rate, av-
erage total pressure, and average particulate mat-
ter concentration. Temperature, O,, and velocity
are measured simultaneously and at each point.
These tests are usually performed only a few times
and always under somewhat different test condi-
tions.

(b) Continuous Monitoring. The measurements
are performed continuously or at a prescribed fre-
quency. The instrument and the data recording
systems (and at times, the data reduction systems
as well) are such that a very large number of tests
are performed, e.g., opacity monitoring in a stack.

The true value of the measured variable is never
known. However, an error analysis which is aided
by calculated criteria [see para. 5.4.1 (a)], experi-
ence, and common sense can provide an accept-
able estimation of the true value of the measured
variable.

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

20

PARTICULATE MATTER COLLECTION EQUIPMENT

Methaod A presents a problem in performing an
error analysis when it results in only two or three
tests. It should be established prior to the actual
test which type of error analysis, if any, shall be per-
formed, and what will constitute an acceptable
“truevalue.” The results obtained through Method
B can be analyzed by random error analysis; see
PTC 19.1.

5.5.2 Glossary

accuracy — closeness of agreement between a
measured value and the true value

average value X — arithmetic mean of N readings
[see Eq. (18]

bias 8 — difference between the average of the
measurement population and the true value. The
true systematic or fixed error which characterizes
every number of any set of measurement in the
population.

measurement error — difference between the true
value and the measured value. lItincludes both bias
and precision error.

mistake — divergence arising from an uninten-
tional departure from the usual procedure, e.g., a
misreading of scale, etc. (from Section 7, ref. 5)
parameter — quantity such as temperature or pres-
sure used in deriving a result

precision error — random error based on a set of
repeated measurements

result r — value calculated from a number of pa-
rameters

sample size N — number of individual measure-
ments of a parameter in a sample

sensitivity — ratio of the change in a result to a
change in a parameter

5.5.3 Maximum Error. When random error analysis
is impractical due to the limited number of tests,
i.e., very small sample size N, maximum error anal-
ysis can be performed. Theoretically, maximum er-
ror analysis is all inclusive (i.e., bias error, precision
error, and mistakes) and generates error-band
width which often leads to a large overestimate of
the error. However, prior to the actual maximum
error analysis, all efforts should be made to reduce,
if not eliminate, the bias errors and the mistakes.
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The maximum error is determined for a given
result r by

ar or ar
= — AXy + | + ot =
Armax + l ax1 1' aX2 AXZ BXN AXN )
(20)
where
r="fXy, Xy ..., Xy, and the absolute values

are required since AX; y is usually
+AXi. . N
The values for the AX,, can be established for the
specific test or be developed based on past ex-
perience. Actually, if estimated standard deviation
is available, AX,, = 3S, can be utilized. [See Eq. (16)
or (17), and PTC 19.1.]

5.5.4 Random Error Analysis. The random error is
determined for a given result r by
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or 2 ar 2 ar 2]1/ 2
nl — R
Kam S*‘) * <3X2 5*’) * (axN 5"“).

(21)

S =

See PTC 19.1 for the method of obtaining the
Sy...

n

5.5.5 Conclusion. The subject of error analysis as it
applies to particulate collection equipment is ad-
dressed in PTC 21 only to the extent necessary for
the practical application of this Code. The variety
of methods and instruments involved in the mea-
surement of particulate collection equipment per-
formance (particulate matter load, static and
dynamic pressures, temperatures, and flue gas
composition) renders the detailed and complete
treatment of the subject outside the scope of PTC
21,
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SECTION 6 — REPORT OF RESULTS

6.1 IMPORTANCE OF REPORTS

6.1.1 Most of the tests conducted in accordance
with this Code are performed to obtain dataon pro-
cess emissions or the performance of emission
control systems for operational, commercial, and/
or regulatory purposes. Therefore, establishing the
accuracy and assuring completeness of the test re-
ports are of the utmost importance.

The test report may be subject to scrutiny with
respect to the nature and conduct of the tests per-
formed. The actual test data will probably be cor-
related with the design and operation of the
emission source and emission control systems in-
volved. Often tests conducted for one particular
purpose are later utilized to provide useful infor-
mation differing in application from that for which
the test was originally conducted.

6.1.2 The purpose of this Section of the Code is to
provide guidance with respect to that information
which should be obtained during the test program
and to recommend formats for recording this in-
formation and presenting it in a suitable manner
to meet the strict requirements cited above.

6.2 REPORTS AND THEIR CONTENT

A properly conducted test program should re-
sult in a final test report containing the following
information in a well-organized format, as com-
plete and accurate as possible:

(a) reason(s) for conducting test and the infor-
mation desired from the test results;

(b) description of the particulate matter collec-
tion equipment being tested, with data covering
both the source itself (e.g., boiler, incinerator) and
all equipment or other factors which may directly
or indirectly affect test results (e.g., electrostatic
precipitator, fans, duct configuration);

{c) operating conditions of the emission source
and all the other equipment and systems listed
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above, including the nature and flow rates of all
material consumed and/or emitted during the test
period;

(d) identification and description of the sam-
pling train and test procedures used, with infor-
mation regarding the basis of their selection;

(e) outline of the manner in which the tests were
conducted, with commentary on any deviation
from normal action which may have been neces-
sary; include calibration procedures;

(f) test results — both the detailed tabulation of
data taken during the test and the calculated test
results obtained therefrom;

(g) summary of test results correlated with per-
tinent operating data and other factors involved.
Commentary on the test results and their signifi-
cance may or may not be required, depending
upon the nature of the test assignment.

6.3 RECOMMENDED REPORTING
PROCEDURES

The following is presented as a guide for ob-
taining and presenting the data necessary to fulfill
the test objective. These recommendations apply
to a typical efficiency and emission test program.
The great variation in the nature and conditions of
any specific test program may necessitate devia-
tion from these recommended procedures. How-
ever, in all cases, the reporting procedure should
be so planned and carried out as to achieve the re-
quirements of the above stated criteria for the final
test report.

6.3.1 Presurvey Report. In order to properly plan
the test program, a preliminary survey of the emis-
sion source and the test site should be made. The
information obtained during this presurvey should
provide considerable help in the selection of the
proper testing procedures to be employed and the
preparation of a well-organized test plan.
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The presurvey should include the acquisition of
data on the design, operation, and physical ar-
rangement of the particulate matter collection
equipment and the related equipment of concern.
These data can be obtained from a study of per-
tinentdesign and operating data available from the
owner, operator, and vendors involved, plus actual
inspection of the test area. The availability and use-
fulness of installed instrumentation, including
meteorological equipment, should also be inves-
tigated.

The use of a questionnaire or presurvey report
form, suitable for the type of emission source in-
volved, can be very helpful. Samples of such forms
for combustion sources, incinerators, and indus-
trial processes are shown in PTC 38. These forms
should be augmented by appropriate process flow
diagrams and scaled plan and elevation drawings
of the equipment involved, including the actual
sampling site. A cross section drawing of the duct
or stack at the sampling locations, showing exact
location of sampling ports, should be prepared.
Actual sample point locations should be added to
this when determined.

6.3.2 Gas Flow Measurement, Sampling, and Analyt-
ical Data. The wide variation in the type of source
to be tested, the nature and conditions of the test,
and the test procedures employed necessitate a
wide variation in the format of the data sheets and
report forms required. Typical forms for gas ve-
locity and volume data, field sampling meter data,
and analytical data for the samples collected, fuel
burned, etc., are included in PTC 38.

The data taken should not be limited to that
which may seem essential to the current objectives
of the test program. Any supplementary data and
observations which may later be useful (e.g., eval-
uating data for outliers) should be included to the
maximum extent practical.

6.3.3 Operating Data. The wide variation in the type
of particulate matter collection equipment to be
tested and the nature and conditions of the test
necessitate a wide variation in the format of the
forms needed to record and report operating data.
Typical forms for boilers, incinerators, and indus-
trial processes are included in PTC 38. They should
be supplemented by similar forms covering the de-
tailed operating data for the other systems and
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equipment involved in the test — emission control
systems, gas flow systems, etc.

6.3.4 Calculations. The calculation procedures used
to compute the final test results are an important
part of a test report. The test procedures used, the
conditions of the test, and the computation facil-
ities available can vary greatly and will determine
the methods of calculation and their presentation
in the report. The calculation section of a test re-
port may vary in format, ranging from a computer
printout of test data and calculated results, accom-
panied by an example of a typical set of calcula-
tions, to a complete set of manually performed
calculations presented on appropriate forms.
The primary criteria in presenting calculationsin
a test report are that the nomenclature and units
of measurement used are defined and that the
sources of all input data, formulas, constants, and
conversion factors are clearly identified. Section 2
of this Code contains a Table of Terms (Table 1)
which should be utilized to the maximum extent
possible in the tabulation of test data and the cal-
culation and presentation of test results.

6.3.5 Emission Data. Both a detailed report of the
calculated efficiencies and emission data obtained
during the test, with a summary of the test results,
correlated with pertinent operating parameters,
are usually required in the final test report. Typical
forms for presenting detailed emission data from
a combustion source and for presenting a sum-
mary of test data, correlated with pertinent oper-
ation data, are shown in PTC 38. Both are subject
to considerable variation to meet the requirements
and conditions of a specific test program.

6.3.6 Responsibility for Test Results. Depending
upon the nature and requirements of the test pro-
gram, it may be necessary to assign the respon-
sibility for obtaining valid test data and preparation
of the reports to a specific party or parties. If this
is the case, the final test report should be certified
or validated in a manner appropriate to the cir-
cumstances involved and in accordance with the
mutual agreements of parties concerned. In all
cases, the final test report should clearly identify
all the personnel and organizations involved in the
conduct of the test and the determination of test
results.
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APPENDIX A
TEST CONSIDERATIONS FOR PARTICULATE MATTER
COLLECTION EQUIPMENT

(This Appendix is not part of ASME PTC 21-1991.)

There are four basic types of particulate collec-
tion devices in general use — cyclones, electro-
static precipitators, fabric filters, and scrubbers.
Each device has distinctive features which affect
the way in which it should be tested to obtain per-
formance data. The following brief descriptions of
operating parameters are intended to specify par-
ticular concerns in determining performance for
each collection device.

A1 CYCLONE

This type of collector utilizes centrifugal force to
extract particulate matter from a rotating gas
stream. The collector may be a single large cyclone
or a multitude of small (typically 3 in. to 12 in. di-
ameter) cyclones arranged in parallel. Figure A1l
shows a typical cyclone tube and its location in the
device. Since the principle of operation depends
upon centrifugal force, the device performs best
at or near the design velocity specified by the man-
ufacturer in terms of the pressure drop across the
unit. There is an optimum operation range below
which centrifugal force is inadequate to efficiently
separate particles from the gas stream.

The efficiency of cyclone collectors is related to
the sizes and densities of particles being collected,
as shown in Fig. A2. Performance determination
must include a size analysis of the entering par-
ticles to obtain a size distribution from which to
predict performance. Efficiency is determined by
comparison of inlet and outlet particulate matter
concentrations (see PTC 21, Section 5).

A high volume sampling train capable of col-
lecting large particulate matter samples is used (see
PTC 38). This train collects a sufficient amount of
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the sample for size determination by centrifugal
classification per PTC 28.

The parameters usually specified for a given par-
ticulate matter collection efficiency are the gas flow
rate, the gas density, and the anticipated pressure
drop. In order to arrive at the most accurate rep-
resentation of cyclone operation, tests should be
made at or near the design flow rate and temper-
ature.’

Test data and results required are as follows:

(a) gas flow rate;

(b) total pressure drop across equipment, inlet
to outlet (in most cases, static pressure drop is sat-
isfactory); ‘

(c) inlet particulate matter concentration;

(d) outlet particulate matter concentration;

(e) inlet and outlet particle size distribution re-
quired for fractional efficiency determination;

(f) gas temperature;

(g) collection efficiency.

A2 ELECTROSTATIC PRECIPITATOR

This equipment uses electrostatic forces to col- :
lect particulate matter (see Fig. A3). Gas molecules
are ionized by corona current discharge from high
voltage electrodes and the particles are subse-
quently charged so that they will be attracted to the
collecting plates.

The efficiency of an electrostatic precipitator is
a function of a number of factors, including par-
ticle size distribution; the chemical composition of
the particulate matter; electrical resistivity; oper-

*The pressure drop is affected by density, which is in turn af-
fected by temperature, pressure, and flue gas composition.
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GENERAL NOTE: Courtesy Aerotech Industries.

FIG. A1l

ating voltage and current; inlet and outlet gas flow
distribution in the precipitator; and the velocity,
temperature, density, and composition of the gas
stream.

Since performance is affected by the local gas
stream velocity, it is important that gas flow rates
be as close to design as possible and the gas be
distributed across the face of the precipitator as
evenly as possible. This is usually accomplished by
installing distribution baffles at the inletand outlet.
Acceptable distribution should be confirmed by a
field pretest with no power to the electrodes and
with air flowing through the precipitator rather
than process gas.

Sampling trains are usually low volume, of the
type discussed in PTC 38. Since these trains usually
employ coincident velocity measurement, isoki-
netic sampling is easily obtainable. Mass loading
is determined by the train, but size distribution

28

TYPICAL CYCLONE TUBE AND COLLECTOR ARRANGEMENT

should be determined separately by an impactor.
The determined size distribution is useful in eval-
uating precipitator performance. The chemical ash
composition should be determined from a sample
of the ash collected during the test. Pressure drop
is ordinarily low and may not be a significant factor
in performance.

Sometimes gas conditioning agents are used to
alter the precipitator performance by modifying
the gas composition or the electrical resistivity. The
quantity of any gas conditioner(s) should be noted
in the result so that future comparative tests will
be meaningful.

CAUTION: Since the gas stream is ionized, a large potential for
electrostatic charge exists. Trains and all measurement probes
in both the inlet and outlet location must be well grounded.

Electrostatic precipitators are cleaned by rap-
ping or vibrating the collecting plates and the dis-
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Efficiencies are shown for a dust concentration of 3.0 gr/ft, gas temperatures from 70°F to 700°F,

and an ash specific gravity of 2.5,

FIG. A2 BASIC PERFORMANCE CHARACTERISTIC OF TYPICAL CYCLONE COLLECTOR

charge electrodes. The frequency, intensity, and
duration of the cleaning procedure will determine
the cleanliness of the internal parts. Since partic-
ulate matter can be reentrained into the gas stream
during cleaning, it is essential that cleaning pro-
grams be optimized before tests are done. Clean-
ing should be continued at the optimum rate
during the test.

Electrostatic precipitators are considered con-
stant-efficiency devices; that is, all other things
being equal, the precipitator will remove a con-
stant percentage of the incoming particulate mat-
ter.

Test data and results required are as follows:

(a) gas flow rate, inlet and outlet;

(b) gas temperature, inlet and outlet;

(c) gas velocity distribution between collecting
plates;
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(d) pressure drop across precipitator, inlet to
outlet, including any flow distribution devices (in
most cases, static pressure drop is satisfactory);

(e) inlet particulate matter concentration;

(f) outlet particulate matter concentration;

(g inlet and outlet particle size distribution (re-
quired for fractional efficiency);

(h) power input to transformer/rectifier sets;

(i) power input to auxiliary equipment such as
blowers and heaters;

j) spark rate;

(k) voltage and current of precipitator power
supply equipment;

() particulate matter composition (elemental ash
analysis);

(m) amount and type of gas conditioning agent
used;

(n) cleaning factors — frequency, intensity, and
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ASME PTCx21 91 BN 0759570 0542991 cé5

Transformer
rectifier

Discharge
electrode
rapper

High voltage Collecting

system support electrode
insulator rapper
Penthouse
Perforated Hot roof
plate

Access door
between
collecting
electrode
fields

Extended
column

Hopper
baffle

GENERAL NOTE: Courtesy Research-Cottrell.

FIG. A3 TYPICAL WIRE AND PLATE TYPE PRECIPITATOR
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duration for both high voltage electrodes and col-
lecting plates;

o) composition of flue gas (O,, CO,, 50,, SO;,
H,0);

{p) collection efficiency;

(@) fuel analysis;

() ash analysis.

A3 FABRIC FILTER

This equipment uses a filter medium to remove
the particles from the gas stream. As shown in Fig.
A4, the equipment causes the gas stream to pass
through a filter material which retains the particles
on the material. The particulate matter may be col-
lected on either the outside or inside surface of the
filter medium. The filter medium is usually felted
or woven cloth. It provides a substrate on which
the particles are collected, and the resultant cake
of particulate matter assists in filtering the gas
stream. The thickness of the cake affects the per-
formance, so agreement must be reached on the
pressure drop across the tubesheet (i.e., through
the cloth and cake) to be used during the test.
Cleaning frequency and intensity required are a
function of inlet particulate matter concentration
and pressure drop.

All things being equal, fabric filters are consid-
ered constant-emission devices, because the out-
let particulate matter loading is more a function of
leaks and bleed-through of the fabric than of par-
ticulate load. For this reason, collection efficiency
of a fabric filter is an unrealistic representation of
performance. Thetrue performance indicator is the
outlet mass concentration. Therefore, outlet tests
are usually sufficient to indicate performance.

Since filter performance is based mainly on
physical properties of the particles, it is not nec-
essary to obtain a particulate matter sample for
composition analysis. Where desired, impactors
are used to collect samples for particle size distri-
bution. The size and shape of the particles will have
an effect on the porosity of the filter cake and,
hence, the pressure drop across the filter. Gas tem-
perature should be sufficiently above acid dew
point to avoid condensation on the cake and filter
medium.

Cleaning of the filter medium is accomplished
by reversing the flow of gases (or air) through the
fabric, shaking the fabric, or a combination of the
two. The performance test should reflect the nor-
mal cleaning procedures. If a filter is cleaned con-
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tinuously, the test must be run under the operating
conditions of cleaning. If a filter needs to be
cleaned only every 12 hr, testing should not in-
clude a cleaning cycle. The majority of cases fall
between these conditions.

Test sample trains are low volume, as described
in PTC 38. Though there are no large electrostatic
forces, grounding of sample trains is recom-
mended to avoid the possibility of explosion.

Test data and results needed are as follows:

{a) gas flow rate;

(b) gas temperature, inlet and outlet;

{c) gas-to-cloth ratio;

{d) total pressure drop across filters, inlet to out-
let (in most cases, static pressure drop is satisfac-
tory);

{e) pressure drop across tubesheet (cloth and
filter cake) of each module;

(f) cleaning procedures — frequency, duration,
volume, and pressure of cleaning fluid;

(g) power of auxiliary equipment, such as re-
verse gas fan and/or air compressor;

(h) inlet particulate matter concentration (if re-
quired);

(i) outlet particulate matter concentration.

A4 SCRUBBERS

Scrubbers are used to remove particulate matter
from a gas stream and, with a chemical solution,
to minimize the amount of SO, and/or other gas-
eous constituents in the effluent. Analysis of gas
removal performance is beyond the scope of this
Code (see PTC 40, Flue Gas Desulfurization Units).

A4.1in the wet scrubber, the flue gases are passed
through a contactor (e.g., venturi, packed bed,
open spray chamber) where they come in contact
with a liquid or a slurry (see Fig. A5). The particulate
matter is captured by the liquid through entrap-
ment in droplets, in liquid film, or in liquid bath.
The saturated outlet gases and droplets/iwet par-
ticles pass through a mist eliminator of centrifugal,
mesh, or chevron type which minimizes carryover.
Mist eliminator performance affects collection ef-
ficiency, since many droplets have solid particles
entrapped. Some installations reheat the gases or
use another source of hot gases to provide buoy-
ancy to the saturated gas stream and to minimize
visible plume formation. Outlet measurements for
efficiency determinations must be made immedi-
ately after the scrubber. Measurements for source
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FIG. A4 TYPICAL FABRIC FILTERS
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emission must be made sufficiently downstream of
the confluence of both gas streams to assure non-
stratified conditions.

Low volume sampling trains are identified in the
Appendix of PTC 38. The interpretation of test re-
sults on a saturated gas stream is difficult due to
chemical reactions in the sampling equipment.
Measurement of particle size distribution in the
scrubber outlet before reheat is not practical; inlet
particle size distribution is determined by impac-
tor.

The collection efficiency of awet scrubber is the
result of the turbulent contact between the liquid,
gases, and particles. This contact is usually a func-
tion of the pressure drop across the unit and the
pumping power utilized by the scrubber. De-
pending upon the type of scrubber, a combination
of some of the following parameters should be
measured.

Test data and results required are as follows:

(a) inlet gas flow rate;

(b) outlet gas flow rate;

(c) inlet gas density;

(d) outlet gas density;

(e) inlet gas temperature;

(f) outlet gas temperature, before and after re-
heat;

(g) inlet gas humidity;

(h) outlet gas humidity;

(i) energy required for reheat;

() liquid or slurry flow rate to scrubber;

(k} pressuredrop across scrubber contactor and
breechings;

() inlet particle size distribution;

(m) outlet particle size distribution after reheat;

(n) power to fan and pumps;
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(o) slurry system discharge solids concentra-
tion;

(p) liquid make up flow rate;

(q@) inlet particulate matter concentration;

(r) outlet particulate matter concentration;

(s) collection efficiency.

A4.2 In a dry scrubber, the flue gases are passed
through an open spray chamber, where they are
contacted by a liquid spray containing sorbents.
The quantity of liquid is closely controlled to keep
the temperature of the flue gases above the dew
point (usually 15-40°F above), to keep the gases, fly
ash, dry reaction products, and sorbent in a dry
form. A coliecting device is added to remove these
dry substances from the gases (see PTC 40 for per-
formance measurement during collection of acid
gases in a dry scrubber).

When an electrostatic precipitator is used, the
concentration of input particulate matter to the
collection device should be measured down-
stream of the spray dryer. Outlet particulate con-
centrations are measured after the collection
device. The guidelines in para. A2 for precipitator
performance and in para. A3 for fabric filter per-
formance may be used.

A4.3 In dry injection systems, sorbents are added
to the flue gas upstream of the particulate matter
collection device which removes fly ash, dry re-
action products, and unreacted sorbent from the
gas stream. To determine efficiency, the guidelines
in para. A2 for precipitator performance and in
para. A3 for fabric filter performance may be used.
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APPENDIX B
COMPUTATION OF COLLECTION EFFICIENCY —
EXAMPLE

(This Appendix is not part of ASME PTC 21-1991.)

A high efficiency cyclone dust collector was
tested with the following results.
Inlet (Station 1)
Q, = 31,880 ACFM

T, = 200°F
P, =285 in. Hg
(Peghy = =7 in. WG

(h); = 10% moisture by volume
M; = 28 Ibm/lb-mole

C,, = 3.8 gr/SDCF

G, = 11.7 Ibm/min

Outlet (Station 2)
Gy, = Gy,
T, = 195°F
G,,. = 0.5846 Ibm/min
(P, = —10in. WG
(AP,)1._2 = 3in. WG
(hl)2 = (hl)1

Table B1 depicts the test results and calculated
information regarding the particulate matter.
From Eq. (1) of PTC 21, Section 5,

£ o (11.7000 — 0.5846

11.7000 ) (100

= 95.0034 = 95% total efficiency

NOTE: G,, should be calculated using Eq. (2). It is not rec-
ommended to sum up the fractional concentrations obtained
with a cascade collector, since it may lead to a large error. A
comparison of the total particulate loads obtained from the cas-
cade collectors to that obtained when total concentration was
measured is recommended.

If £, 45 is to be determined using data from Table
B1, Eq. (6) can be used as follows:
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S%5=20+3+5+4=320%

Sty =20+ 031 + 0513 + 0.41 = 3.233%

100 — 95
32~ K—jl-b—o——> (3.233)]

32

(100) = 99.495%

+15 =

If the fractional efficiency E_4 , 5 is required, Eq.
(8) can be used as follows:

100 — 95
375 — [(T) (68.1)]

375

E_1945 = (100) = 90.920%

If required, the values of Cg,, C,,, and G,, can be
found from the above information, although these
values were required already in order to develop
part of Table B1:

From Eq. (3):

Co = 3.80

"= 0.0724 52.5 gr/(lbm dry gas)

{Qqa)1 = (Qy) (temperature correction)
X (pressure correction; barometric and inside

the duct) (moisture correction)

- ( 460 + 7o> [28.5 — 7(0.0735)
" \460 + 200 29.92

] 0.9)

35
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TABLE B1 CYCLONE TEST RESULTS (PARTICULATE COLLECTION EFFICIENCY)

Average Inlet Percent by Mass Percent by Mass
Particle Size Particle Size, at Inlet, % Particle Mass at at Qutlet, % Particle Mass at
at Inlet, pm pm (Totals 100%) Inlet, Ibm/min (Totals 100%) Outlet, Ibm/min
+ 50 50 4.0 0.4700 0.410 0.0024
=50 + 40 45 5.0 0.5900 0.513 0.0030
-40 + 30 35 3.0 0.3500 0.310 0.0018
—-30 + 20 25 20.0 2.3300 2.00 0.0117
=20 + 10 15 28.0 3.3300 2.86 0.0167
-10 +5 7.5 37.5 4.4200 68.1 0.3981
-5+0 2.5 2.5 0.2900 25.8 0.1510

(Qs1 = 0.676 Q; = (0.676)(31,880.0) = 21,551 SDCFM

Therefore,
G, = (0.0724)(21,551) = 1,560 Ibm/min
From Eq. (2),
Gy, = (52.5)(1,560) = 81,900 gr/min = 11.7 Ibm/min

This can also be calculated as follows:

21,550
= 3.80 {=—————) = 11.7 Ibm/mi
Gy, = 3.80 (7000 gr/lbm) bm/min

36
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APPENDIX C
TOTAL PRESSURE DROP — GENERAL TOTAL PRESSURE
METHOD

(This Appendix is not part of ASME PTC 21-1991.)

In dealing with energy loss (mechanical energy
converted into heat), only kinetic energy is con-
sidered. Therefore, AP, should be zero under static
conditions. In all the equations in para. 5.2 of PTC
21, itis of no consequence whether the upstream
station is number 1 or number 2. When selecting
the reference elevation, the proper sign for the di-
rection should be utilized. If the reference eleva-
tion is below the test station, Z is positive. If it is
above the test station, Z is negative.

Assuming steady state and constant mass flow
rate, but with all the other conditions in para. 5.3.1
violated, it can be shown that

372 2 172
L§+!1—Sﬂé—4§—11=r—m (22)
8 28 1P 8 28

where
F = friction loss, ft-Ibf/lbm
W. = work by external source on the system,
ft-Ibf/lbm

If p; = constantand W, = 0, then Eq. (11) will result.
Assuming that the system is isothermal, i.e., the
flue gas temperature is unchanged, then

n = - —In=>* 23
1 Pr M Pf2 M Pz @3)

[or_ _RT o0 RT P
where
R = gas constant = 1546 [(ft-Ibf)/(°R-Ib-mole)]
T = absolute flue gas temperature (°R = °F +

460)

M = molecular weight of the flue gas, Ibm/Ib-
mole

P,, = absolute flue gas static pressure, Ibf/ft*
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Then

g 1 ) 2 RT . P
=2 @Z -Zy+—Vi-V)+—InT 4w,
c ( ! 2) zgc ( ! 2) M " PsaZ ¢

(24)

NOTES:

(1) A situation where W, is present occurs when a pump gen-
erated water jet in a wet scrubber, after a quencher, adds
energy through momentum exchange to the flue gas stream
at constant temperature.

(2) Pressure drop is calculated by multiplying F (ft-Ibf/ib), as de-
termined by Eq. (24), by the calculated average flue gas den-
sity (Ibm/ft’).

EXAMPLE 1

A calculation of the system AP,, i.e., between sta-
tions 1 and 4 in Fig. C1, is required. None of the
equations given above is applicable, since the mass
ratio between stations 4 and 1 is 1.08 > 1.05 (see
para. 5.3.1). Therefore, AP, is calculated between
stations 2 and 4. The energy required by the fan to
overcome the energy losses between stations 1and
2 can be calculated as stated in para. 5.3.4. How-
ever, the specific analysis is not within the scope
of PTC 21. Based on the data given in Table C1, a
review of the conditions given in para. 5.3.1 indi-
cated that the only items which should be checked

“are the conditions for the flue gas density and av-

erage velocity. For both, the deviation is greater
than 5%. Therefore, the last two conditions were
not met.

Hence, the General Total Pressure Method in this
Appendix should be utilized. However, in order to
simplify the calculation, the Total Pressure Method
of para. 5.3.3 is utilized, and therefore the average
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TABLE C1 TABULATION OF VALUES FOR EXAMPLE 1
Station
Variable . 1 2 3 4
Flue gas weight, Ibm/min 537.5 582.0 582.0 582.0
Flue gas volume, ft/min 25,000 11,323 11,975 11,975
Flue gas temperature, °F 1,200 165 165 165
Flue gas density p;, Ibm/ft® 0.0215 0.0514 0.0486 0.0486
Average velocity V, ft/sec 60 60 60 50
Measured static pressure P, in. WG -2.0 -4.0 —25.0 —-25.5
Elevation Z, ft 60 30 25 5
Barometric pressure Py, Ibf/in.? [Note (1)] 14.0 14.0 14.0 14.0
NOTE:
(1) Barometric pressure P, may not be constant due to the elevation difference of 55 ft.
{ 1\
~ ‘ Stack
Quenching
chamber
—-—- >
2
T Mist
N eliminator
- —P- Venturi
scrubber
L
? Makeup
. ‘ +— - —— -
J , Pump 1 . .
44— ' Station elevation 2
. Tank
To disposal A4

I

GENERAL NOTES:

Z

i

{a) Sampling stations 1 through 4 are described in Table C1.

(b} The liquid loop is designated

-

{c) The gas loop is designated

FIG. C1
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density is employed (see Example 2 for the effect
of this precision). Then

_ 00514 + 0.0486

3 5 = 0.0500 lbm/ft?

Using Eq. (13),

Py = -4 + P, = - 0.19224 + (14)(144)
= 1995.19 Ibf /ft?
25.5
Py = —255+ P, = —
(P.)s 5.5 A 019204 + (14)(144)
= 1883.35 Ibf/ft*
From Eq. (12),
= 1 5
P, = 199519 + ‘ 202478 4)| (0.0500) (60%)
= 1997.99 Ibf/ft*
P = __1._ 2
P, = 1883.35 + ‘(2)(32_ 174)! (0.0500)(50%

1885.29 1bf/ft?

1

NOTE: 1/0.19224 is utilized to convert in. WG into Ibf/ft?, and
similarly 144 is utilized to convert 14 Ibf/in.% into Ibf/ft>.

Then from Eq. (11),

{AP); _ 4 = 1997.99 — 1885.29 + (0.0500)(30) — (0.05)(5)

113.95 Ibf/ft>
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or

(AP),_ 4 = (113.95)(0.19224) = 21.91 in. WG

EXAMPLE 2

We repeat the previous example, except that this
time the densities are not averaged. Instead, the
method of para. 5.3.4 is utilized. Here

W.=0
T = 460 + 165 = 625°R
M = 28 Ibm/lb-mole
Using Eq. (24) [note that while numerically g = g,
the units are, of course, different; they are ft/sec?

for g and (ft-lbm)/(sec’-1bf) for g,

0 — _1 — en2
F=00 5)4’2(32.174) (60% — 50%)

(1546)(625) .,  1995.19
+ In

28 1883.35

= 2032.82 ft-Ibf/lbm

(AP)r—4 = (F)(pr)(0.19224), in. WG

= (2032.82)(0.0486)(0.19224) = 18.99 in. WG

Therefore, the averaging of p; in Example 1 gen-
erated an error of about 3 in. WG in overestimating
the pressure drop which the fan has to overcome.
Note that the pressure drop was calculated after
the flue gas was quenched, and therefore the as-
sumption of isothermal process is valid.

39
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APPENDIX D
EXCEEDING STATISTICAL CRITERION — EXAMPLE

(This Appendix is not part of ASME PTC 21-1991.)

The average particulate matter concentration at
an inlet of an electrostatic precipitator in a power
plant burning coal, with a spray dryer for SO, re-
moval, was measured 10 times, i.e., N = 10. The
results were (in griscfm): 14.3, 15.2, 14.6, 14.7, 14.8,
13.4, 14.6, 15.2, 14.5, and 15.0.

From Eq. (14), P, = 1 — [1/(2)(10)] = 0.95.

From Table 2, T = 1.96.

From Eq. (17), § = 0.523.

From Eq. (18), X = 14.63.

Utilizing Eq. (19) for each of the test results in-
dicates that only for X = 13.4,

4 — 14,
Tea = %523—63 =235 > 1.96

All other comparison valuesyield T, < 1.96; there-
fore, it is clear that the only outlier is for X = 13.4.

M
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APPENDIX E
MAXIMUM ERROR — EXAMPLE

(This Appendix is not part of PTC 21-1991.)

Measurement of velocity pressure in a duct, uti-
lizing a pitot tube and a manometer, is analyzed by

1 —
=K ___‘—)fvl

where

P, = average velocity pressure, Ibf/ft?

K, = pitot tube constant (K, = f[V])

Assuming that a single point measurement (pre-
calibrated) yields Py for the duct cross section,

V= (£>1/2 <E‘—/)1IZ
Kp P
Applying Eq. 20) on V,’

12
e
KP

'The two terms inside the brackets in the equation for AV are
added because absolute values are used in Eq. (20).

1Py 1 oy, -3
2 0% APy + 2 (P} (o) ™" |Apd
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It was determined that
P, = 0.54 in. WG = 2.81 Ibf/ft?
APy = £0.1in. WG = +0.52 Ibf/ft?
7 = 0.055 Ibm/ft® and Ap; = +2.75 X 103 Ibm/

ft3
K, =1
Then
AV; = ¢ [(2)(32.17)]"

[1 2.81)"" 1 2.81)"

it LA — -3
2 (0.055)"2 052 +3 (0.055)* @75 x 10 )]

+6.74 ft/sec

Then for V, where

12
V= l(—(z)(312'17)> <——-—02(§?5>] = 57.33 ft/sec,

the maximum error is [(6.74)/(57.33)}(100) = 11.76%.
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APPENDIX F
EFFECT ON EFFICIENCIES OF VARIATIONS IN TEST
MEASUREMENTS

(This Appendix is not part of ASME PTC 21-1991.)

Table F1 provides an example from an actual test of a fabric filter on an industrial steam gen-
erator rated at 640,000 b steam / hr with better than average sampling locations and test facilities.
Sampling tests conducted in accordance with PTC 38.

45
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COMPLETE LISTING OF ASME PERFORMANCE TEST CODES

PTC 1 — General InStructions ..........coovieiiiiiiiiiiiiiiiiiiiiii i, 1986
PTC 2 — Definitions and Values ...........coocoviiiiiiiiiiiiiiii 1980
(R1985)
PTC 3.1 — Diesel and Burner Fuels .............ccoooiiiiiiiiiiiiii 1958
(R1985)
PTC 3.2 — Solid Fuels .......c.ccviviiiiiiiiiiii i 1954
(R1984)
PTC 3.3 — Gaseous FUels ........cooveiiiiiiiiiiiiiiiiiiii i 1969
(R1985)
PTC 4.1 — Steam-Generating Units (With 1968 and
1969 Addenda) ..........ccooiiiiiiiiiiiiii 1964
(R1991)
Diagram for Testing of a Steam Generator,
Fig. 1 (Pad of 100)
Heat Balance of a Steam Generator,
Fig. 2 (Pad of 100)
PTC 4.1a — ASME Test Form for Abbreviated Efficiency Test —
Summary Sheet (Pad of 100) ..........ccoviiiiiiiiiiiiiii, 1964
PTC 4.1tb  — ASME Test for Abbreviated Efficiency Test —
Calculation Sheet (Pad of 100) ........ccooiiiiiiiiiiiiinneniinnen. 1964
PTC 4.2 — Coal Pulverizers .........ccoiiiiiiiiiiiiiiiii 1969
(R1991)
PTC 4.3 e 2 LI 1= L] 1968
(R1991)
PTC 4.4 — Gas Turbine Heat Recovery Steam Generators ............c..ceveeenns 1981
(R1987)
PTC 5 — Reciprocating Steam ENgines ..........ocoviieviiviiiiiiiiieiiiinina, 1949
PTC 6 — Steam Turbines ........coiiiiiiiiiiiiiii e 1976
(R1991)
PTC 6A — Appendix A to Test Code for Steam Turbines
(With 1958 Addenda) .........cccovvviiiiiiiiiiiiiiiani, 1982
PTC 6 — Guidance for Evaluation of Measurement Uncertainty
Report in Performance Tests of Steam Turbines ..............oooviiiiiin 1985
(R1991)
PTC 6S — Procedures for Routine Performance Tests
Report of Steam Turbines ... 1988
PTC 6.1 — Interim Test Code for an Alternative Procedure
for Testing Steam Turbines ... 1984
PTC 6 on Steam Turbines— Interpretations 1977 —1983
PTIC 7 — Reciprocating Steam-Driven Displacement Pumps .................... 1949
(R1969)
PTC 7.1 — Displacement PUMPS ....cooeiiniiiiiiiiiiiiiiiiiiiiiiii i, 1962
{R1969)
PTC 8.2  — Centrifugal PUMPS ....ooovviiiiiiiiiiiii e 1990



PTC9

PTC 10
PTC 11
PTC 12.1

PTC 12.2
PTC 12.3

PTC 14
PTC 16
PTC 17

PTC 18
PTC 18.1

PTC 19.1
PTC 19.2
PTC 19.3

PTC 19.5

PTC 19.5.1
PTC 19.6
PTC 19.7
PTC198

PTC19.10
PTC19.11

PTC19.12
PTC19.13
PTC19.14
PTC19.16
PTC19.17
PTC19.22
PTC19.23

PTC 20.1

PTIC 20.2

PTC 20.3
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— Displacement Compressors, Vacuum Pumps and

Blowers (With 1972 Errata) ......coveviivrerinreenennrenennns

— Steam-Condensing Apparatus ...........c.ccovvuviniiininninann..
— Deaerators .......ooviiiiiiiiiiiiii i e

— Evaporating Apparatus ............ooiiiieeiiiiiiiinieiiiiiieinn,
— Gas Producers and Continuous Gas Generators .................
— Reciprocating Internal-Combustion Engines ......................

— Hydraulic Prime Movers ..........ccooovviviiiniiiiiiiiiiininn...
— Pumping Mode of Pump/Turbines .................ooiiiiiil

— Measurement Uncertainty ............c.cooviiiiiiiiiiiiiiiinn
— Pressure Measurement ...........oiiiiiiiiiiiii
— Temperature Measurement ............ovvvveiiiiiiiiiereeianann,

— Application, Part Il of Fluid Meters: Interim Supplement

on Instruments and Apparatus ...........ccciiiiiiiiiiiiiin.,
— Weighing Scales ...
— Electrical Measurements in Power Circuits ..............ooeoeues
— Measurement of Shaft Power ............... e
— Measurement of Indicated Horsepower ..........................

— Flue and Exhaust Gas Analyses ...........ccovciiniiiiiinnnnnn,

— Water and Steam in the Power Cycle (Purity and Quality,

Lead Detection and Measurement) ...............cooeiiiiin
— Measurement of Time ..........cooiiiiiiiiiiiii i,
— Measurement of Rotary Speed ..........c.cooviiiiiiiiiiinnnnns
— Linear Measurements ..........ccoeiiiiiiiiiiiiiiiiii
— Density Determinations of Solids and Liquids ...................
— Determination of the Viscosity of Liquids ........................
— Digital Systems Techniques ...........cocviiiiiiiiiiiii.,
— Guidance Manual for Model Testing .............c.ccvieiiiii,

— Speed and Load Governing Systems for Steam

Turbine-Generator Units ........ovveeiiiiireneranenernrenrenenns

— Overspeed Trip Systems for Steam Turbine-Generator

[0 11 S

— Pressure Control Systems Used on Steam

Turbine-Generator UNits ......vveviiiiiiireriirrererisensenenns
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PTC 21 — Particulate Matter Collection Equipment ..............cooviiiiinnan 1991
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PERFORMANCE

TEST

CODES A complete list of all Performance Test Codes appears
at the end of this book.

While providing for exhaustive
tests, these Codes are so drawn
that selected parts may be used
for tests of limited scope.

This document is printed
on 50% recycled paper.

50% RECOVERED PAPER MATERIAL
means paper waste generated after the
completion of the papermaking
process, such as postconsumer
materials, text books, envelopes,
bindery waste, printing waste, cutting
and converting waste, butt rolls,
obsolete inventories, and rejected
unused stock.
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