Erratum to ASME B94.9-1999 Taps: Ground and Cut Threads (Inch and Metric Sizes)

On page 15, term no. 023, replace "gun point: see no. 060, spiral point, which is the preferred term" with "INTENTION-ALLY LEFT BLANK."

> THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS Three Park Avenue, New York, NY 10016-5990

> > October 2001

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

ASME B94.9-1999 (Revision of ASME/ANSI B94.9-1987)

TAPS: GROUND AND CUT THREADS (INCH AND METRIC SIZES)

AN AMERICAN NATIONAL STANDARD

AN AMERICAN NATIONAL STANDARD

TAPS: GROUND AND CUT THREADS (INCH AND METRIC SIZES)

ASME B94.9-1999 (Revision of ASME/ANSI B94.9-1987)

Copyright ASME International Provided by IHS under license with ASME CNo reproduction or networking permitted without license from IHS schanical Engineers Licensed by Information Handling Services

Not for Resale

Date of Issuance: January 21, 2000

This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda or written interpretations of the requirements of this Standard issued to this edition.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016-5990

Copyright © 2000 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All Rights Reserved Printed in U.S.A.

FOREWORD

A subcommittee of the National Screw Thread Commission began standardizing certain dimensions of cut and ground thread taps in 1926. The subcommittee prepared a report that was finally referred to the sectional committee on Small Tools and Machine Tool Elements (B5) organized under the procedure of the American Standards Association (ASA). The original proposal passed through the regular procedure and was designated as an American Standard by ASA in April 1930.

Following the publication of the standard in 1930, Technical Committee 12 on Cut and Ground Thread Taps decided to include in the next edition additional types and sizes, a glossary of terms and definitions, and certain commercial standards issued by the tap and die manufacturers that were reproduced from their publications. Following approval from the sectional committee and the sponsors, the proposal was approved by ASA in November 1939.

In 1962 a new sectional committee, B94, was formed for the standardization of cutting tools. Technical Committee 12 on Cut and Ground Thread Taps now operates within this framework.

In 1967 the revised Standard proposed by Technical Committee 12 was approved and designated B94.9-1967.

In 1971 the revised Standard proposed by Technical Committee 12 was approved and designated B94.9-1971.

In 1979 the revised Standard proposed by Technical Committee 12 was approved and designated B94.9-1979.

In 1987 the revised Standard proposed by Technical Committee 12 was approved following all the procedures of the American National Standards Institute (ANSI) and designated ASME/ANSI B94.9-1987.

In 1999 the revised Standard proposed by Technical Committee 12 was approved and designated ASME B94.9-1999. The American National Standards Institute designated this Standard an American National Standard on February 9, 1999. Major changes included are

(a) a complete updating of text and tables to conform to current practice

(b) the elimination of nut taps (fractional sizes)

(c) the addition of screw thread insert (STI) taps in machine screw, fractional, and metric sizes

(d) the combining of M14 and M18 spark plug taps into the standard corresponding metric tap tables

(e) the addition of tables for optional necks and optional shortened thread length tap dimension for cut and ground thread taps

(f) the addition of general dimension and standard fluting tables for machine screw, fractional, metric, and STI sizes, in addition to a general dimension table for tapered and straight pipe sizes. This addition eliminated the need for repetitive information in 26 existing tables.

(g) change in letter symbols for general dimensions to conform to those in ISO-5967

(h) redefinition of "types and styles" to conform to the SAE 2123 numbering systems for taps

(i) redefinition of "tap blank styles 1, 2, and 3" as "blank design 1, 2, and 3," which eliminates "style" being used to describe two different tap attributes

ASME B94 STANDARDS COMMITTEE Cutting Tools, Holders, Drivers, and Bushings

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS

P. Bourg, Chair B. P. Biddinger, Secretary

COMMITTEE PERSONNEL

- B. P. Biddinger, American Society of Mechanical Engineers, New York, New York
- P. Bourg, Tivoly, Inc., Derby Line, Vermont
- A. M. Bratkovich, The Association for Manufacturing Technology, McLean, Virginia
- E. J. Czopor, E&S Sales, Inc., Bloomfield Hills, Michigan
- D. Fischer, The Wapakoneta Machine Co., Wapakoneta, Ohio
- W. E. Gill, Keen Agers, Inc., Naples, Florida
- R. V. Leverenz, Stellram, Laverne, Tennessee
- D. J. Lionette, Porter Precision Products, Cincinnati, Ohio
- M. E. Merchant, Institute of Advanced Manufacturing Science, Cincinnati, Ohio
- V. J. Peterson, Kennamental, Solon, Ohio
- C. W. Preuss, Kingsford Broach and Tool, Inc., Westlake, Ohio
- A. D. Shepherd, Jr., Emuge Corp., Northborough, Massachusetts
- C. M. Stockinger, United States Cutting Tool Institute, Cleveland, Ohio
- J. Wherry, Cemented Carbide Producer's Association, Cleveland, Ohio

SUBCOMMITTEE ON TAPS

- A. D. Shepherd, Jr., Chair, Emuge Corp., Northborough, Massachusetts
- A. L. Barrows, Greenfield Industries, Greenfield, Massachusetts
- P. Bourg, Tivoly, Inc., Derby Line, Vermont
- S. R. Burns, Greenfield Industries, Lyndonville, Vermont
- L. N. Dixon, Jr., General Electric Aircraft Engine, Cincinnati, Ohio
- M. N. Jarvis II, Jarvis Cutting Tools, Inc., Rochester, New Hampshire
- R. Klinger, Brubaker Tool Corp., Millersburg, Pennsylvania
- K. A. Nelson, Besly Products Corp., South Beloit, Illinois
- P. C. Witkowski, Ford Motor Company, Dearborn, Michigan

v

CORRESPONDENCE WITH THE B94 COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing revisions, and attending Committee meetings. Correspondence should be addressed to:

Secretary, B94 Main Committee The American Society of Mechanical Engineers Three Park Avenue New York, NY 10016-5990

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be published periodically.

The Committee welcomes proposals for revisions to this Standard. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent documentation.

Attending Committee Meetings. The B94 Main Committee regularly holds meetings, which are open to the public. Persons wishing to attend any meeting should contact the Secretary of the B94 Main Committee.

Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services vii

CONTENTS

Forewo	ord	iii
Standar	rds Committee Roster	v
Commi	ittee Correspondence	vii
1	General	1
2	Tap Categorization	4
3	Tap Styles	5
4	Standard System of Tap Marking	7
5	Standard System of Tap Thread Limits and Identification, Ground Thread	8
6	Glossary of Tap Elements and Other Terms Related to Screw Threads	9
Figure	25	
1	Illustrations of Terms Applying to Taps	2
2	Straight Flute Style Taps	4
3	Spiral Pointed Style Taps	4
4	Spiral Pointed Only Style Taps	5
5	Regular Spiral Fluted Style Taps	5
6	Fast Spiral Fluted Style Taps	6
7	Thread Forming Type Taps	6
8	Pulley Type Tap	7
9	Ріре Тар Туре	7
Tables	S	
1	Thread Series Designations	25
2	Standard Tap Dimensions (Ground and Cut Thread)	26
2A	Optional Neck and Optional Shortened Thread Length (Tap Dimensions, Ground and	
	Cut Thread)	29
2B	Standard Tap Dimensions (Screw Thread Inserts [STI]: Machine Screw and	
	Fractional Size, Ground Thread Taps)	30
2C	Standard Tap Dimensions (Screw Thread Inserts [STI], Metric Size Taps)	32
3	Standard Number of Flutes (Ground and Cut Thread)	34
4	Pulley Taps, Fractional Size (High-Speed Steel, Ground Thread)	36
5	Straight and Taper Pipe Taps (Ground and Cut Thread)	37
6	Runout and Location Tolerance of Tap Elements	39
7	Tap Thread Limits and Tolerances, Formulas for Unified Inch Screw Threads (Ground Thread)	40
8	Tap Thread Limits and Tolerances, Formulas for Metric Threads (Ground Thread)	42
9	Tap Thread Limits and Tolerances, Formulas For Unified Inch Screw Threads	
	(Cut Thread)	43
10	Tap Thread Limits: Machine Screw Sizes, Ground Thread (Unified and American	
	National Thread Forms, Standard Thread Limits)	45

STD.ASME B94.9-ENGL 1999 - 0759670 0615493 47T Sm

10A	Tap Thread Limits: Fractional Sizes, Ground Thread (Unified and American National	
	Thread Forms, Standard Thread Limits)	46
11	Tap Thread Limits: Metric Sizes, Ground Thread (M Profile: Standard Thread Limits in Millimeters)	48
12	Tap Thread Limits: Machine Screw Sizes, Cut Thread (Unified and American National Thread Forms)	50
12A	Tap Thread Limits: Fractional Sizes, Cut Thread (Unified and American National Thread Forms)	51
13	Taper Pipe Tap Thread Limits (Ground and Cut Thread; Ground Thread for NPS, NPTF, and ANPT; Cut Thread for NPT Only)	52
14	Straight Pipe Tap Thread Limits: NFS, Ground Thread (American National Standard Straight Pipe Thread Form [NPSC, NPSM])	54
14A	Straight Pipe Tap Thread Limits: NFSF, Ground Thread (Dryseal American National Standard Straight Pipe Thread Form [NPSF])	55
15	Straight Pipe Tap Thread Limits: NFS, Cut Thread (American National Standard Straight Pipe Thread Form [NPSC])	56
16	Standard Chamfers for Thread Cutting Taps	57
16A	Standard Entry Taper Lengths for Thread Forming Taps	58
17	Tap Thread Limits (Screw Thread Ir serts [STI], Ground Thread, Machine Screw, and	
	Fractional Size)	59
17A	Tap Thread Limits (Screw Thread Inserts [STI], Ground Thread, Metric Size [Inch])	61
Nonn	nandatory Appendix A	63

TAPS: GROUND AND CUT THREADS (INCH AND METRIC SIZES)

1 GENERAL

1.1 Scope

This Standard covers various designs of standard taps, nomenclature, and definitions; the standard system of marking; and dimensions and tolerance tables for the following types and styles of taps:

Туре	Style	Applicable Section(s)
Standard straight	Straight fluted	3.1
thread, general	Spiral fluted	3.4 and 3.5
purpose; Ta-	Spiral point, with	3.2
bles 2 and 2A	Spiral point only, no straight flutes	3.3
Pipe, taper thread; Table 7	Straight fluted	3.8
Pipe, straight thread; Table 8	Straight fluted	3.8
Pulley: Table 5	Straight fluted	3.7
Screw thread in- sert: Table 2B	Straight fluted	3.1
Thread forming;	Straight lobes	3.6
Tables 2 and 2A	Spiral lobes	3.6

1.2 Reference Standards for Screw Thread Nomenclature and Forms of Thread

The following is a list of publications referenced in this Standard.

- ANSI B1.18M, Metric Screw Threads for Commercial Mechanical Fasteners — Boundary Profile Defined¹ ANSI B1.20.3, Dryseal Pipe Threads (Inch)¹
- ANSI/ASME B1.7M, Nomenclature, Definitions, and Letter Symbols for Screw Threads¹
- ANSI/ASME B1.20.1, Pipe Threads, General Purpose (Inch)¹
- ASME B1.1, Unified Inch Screw Threads (UN and UNR Thread Form)¹
- ASME B1.12, Class 5 Interference-Fit Thread¹

- ASME B1.13M, Metric Screw Threads M Profile¹ ASME B1.15, Unified Inch Screw Threads (UNJ Thread Form)¹
- ASME B1.20.7, Hose Coupling Screw Threads (Inch)¹
- ASME B1.21M, Metric Screw Threads: MJ Profile¹
- ASME B1.30, Standard Practice for Calculating and Rounding Dimensions¹
- ASME B18.29.1, Helical Coil Screw Thread Inserts Free Running and Screw Locking (Inch)¹
- Publisher: The American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990
- MIL-P-7105B, General Requirements for Pipe Threads, Taper, Aeronautical National Form, Symbol ANPT
- MIL-S-8879C, General Specification for Screw Threads, Controlled Radius Root With Increased Minor Diameter
- MIL-T-21309E, Tools for Inserting and Extracting Helical Coil Wire Screw Thread Inserts
- Publisher: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161

1.3 Basic Form of Thread

The basic angle of thread between the flanks of thread measured in an axial plane is 60 deg. The line bisecting this 60-deg angle is perpendicular to the axis of the screw thread (Fig. 1).

The symmetrical height of the thread form, h, is found as follows:

$$h = 0.64951905P = \frac{0.64951905}{n}$$

The basic pitch diameter (PD) is obtained by subtracting the symmetrical single thread height, h, from the basic major diameter as follows:

Basic pitch diameter =
$$D_{bsc} - h$$

where

 $D_{\rm bsc}$ = basic major diameter

Copyright ASME International Provided by IHS under license with ASME

CNo reproduction or networking permitted without license from IHS schanical Engineers Licensed by Information Handling Services Not for Resale

¹ May also be obtained from American National Standards Institute (ANSI), 11 West 42nd Street, New York, NY 10036.

TAPS: GROUND AND CUT THREADS

FIG. 1 ILLUSTRATIONS OF TERMS APPLYING TO TAPS

ASME B94.9-1999

Blank Design 3

FIG. 3 SPIRAL POINTED STYLE TAPS

- P = pitch of thread
- h = symmetrical height of thread
- n = number of threads per inch

1.4 Tap PD Size

A range of tap PD limits from which the user may select to suit local conditions is available. Tables A1 and A2 in Appendix A list tap PD limits that produce common classes of thread when used with reasonable care in average materials. Factors beyond the tap "H" limit affect final part size.

2 TAP CATEGORIZATION

Taps included in this standard are categorized according to type, style, size and chamfer, and blank design, which are explained further in the following paragraphs.

2.1 Type

Tap type is based on such general dimensions as standard straight thread, taper and straight pipe, pulley, etc., or is based on purpose, such as thread forming and screw thread insert (STI). See Fig. 1 and para. 1.1.

2.2 Style

Tap style is based on flute construction for cutting taps, such as straight, spiral, or spiral point, and on lobe style and construction for forming taps, such as straight or spiral. See Fig. 1 and para. 1.1.

2.3 Size and Chamfer

The thread size specifications for a type or style of tap may be fractional, machine screw, or metric. The thread form may be ground or cut (unground) as further defined in each table. Additionally, the cutting chamfer may be bottom, semibottom, plug, or taper, and the entry taper of form taps may be bottom or plug. Both cutting and entry tapers are defined in Tables 16 and 16A.

2.4 Blank Design

Blank design (formerly referred to as "style") further categorizes how a tap's overall length is measured, the type of centers (external or internal) it has, and whether the external center is required to be truncated.

Blank design 1 has an overall length measured from the intersection of the external center and the point diameter at the front end to the intersection of the

Copyright ASME International Provided by IHS under license with ASME

(Wo reproduction or networking permitted without license from HS echanical Engineers Licensed by Information Handling Services

Blank Design 3

FIG. 5 REGULAR SPIRAL FLUTED STYLE TAPS

external and the shank diameter (corner of the square) at the back end. The external center on the square end can be full (to a point) or truncated.

Blank design 2 has a truncated external center on the square end, and the overall length is measured from that truncation to the intersection of the external center and the point diameter at the front end.

Blank design 3 has internal centers on both ends, and its overall length is measured from end to end.

3 TAP STYLES

3.1 Straight Flute Style Taps

Straight flute style taps, illustrated in Fig. 2, have straight flutes and are for general-purpose applications. This Standard applies to machine screw, fractional, metric, and STI sizes in high-speed, steel-ground thread and to machine screw and fractional sizes in highspeed and carbon steel cut thread, with taper, plug, semibottom, and bottom chamfer.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For number of flutes see Table 3. For standard ground thread limits see Tables 10, 10A, and 11. For standard cut thread limits see Tables 12 and 12A. For chamfer designations, including taper, plug, semibottom,

and bottom, see Table 16. For runout tolerance see Table 6.

3.2 Spiral Pointed Style Taps

Spiral pointed style taps, illustrated in Fig. 3, are straight fluted. They have the cutting face of the first few threads ground at an angle to the axis of the tap to force the chips ahead to prevent clogging in the flutes. This Standard applies to machine screw, fractional, metric, and STI sizes; ground thread in machine screw, fractional, metric, and STI in high-speed steel; and cut thread in machine screw and fractional size with plug, semibottom, and bottom chamfer.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For number of flutes see Table 3. For standard ground thread limits see Tables 10, 10A, and 11. For standard cut thread limits see Tables 12 and 12A. For chamfer designations, including taper, plug, semibottom, and bottom see Table 16. For runout tolerance see Table 6.

3.3 Spiral Pointed Only Style Taps

Spiral pointed only style taps, illustrated in Fig. 4, are made with the spiral point feature only and do not have longitudinal flutes. They are especially suitable

TAPS: GROUND AND CUT THREADS

Blank Design 1

FIG. 7 THREAD FORMING TYPE TAPS

for tapping thin-walled materials. This Standard applies to machine screw and fractional size in high-speed steel, ground thread, with plug chamfer.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For number of flutes see Table 3. For standard ground thread limits see Tables 10, 10A, and 11. For standard cut thread limits see Tables 12 and 12A. For chamfer designations, including taper, plug, semibottom, and bottom see Table 16. For runout tolerance see Table 6.

3.4 Regular Spiral Fluted Style Taps

Regular spiral fluted style taps, illustrated in Fig. 5, have right-hand spiral flutes with a helix angle of 25 deg to 35 deg. They are designed to help extract the chips from the hole and/or to bridge a keyway. This Standard applies to machine screw, fractional, metric, and STI sizes in high-speed steel and to ground thread with plug, semibottom, and bottom chamfer.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For number of flutes see Table 3. For standard ground thread limits see Tables 10, 10A, and 11. For standard cut thread limits see Tables 12 and 12A. For chamfer designations, including taper, plug, semibottom, and bottom, see Table 16. For runout tolerance see Table 6.

3.5 Fast Spiral Fluted Style Taps

Fast spiral fluted style taps, illustrated in Fig. 6, have right-hand spiral flutes with a helix angle of 45 deg to 60 deg. They are designed to extract the chips from a hole and are normally used in low-tensile strength materials. This Standard applies to machine screw, fractional, metric, and STI sizes and to high-speed steel with plug, semibottom, and bottom chamfer.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For number of flutes see Table 3. For standard ground thread limits see Tables 10, 10A, and 11. For standard cut thread limits see Tables 12 and 12A. For chamfer designations, including taper, plug, semibottom, and bottom see Table 16. For runout tolerance see Table 6.

3.6 Thread Forming Type Taps

Thread forming type taps, illustrated in Fig. 7, are fluteless except as optionally designed with one or

(No reproduction or networking permitted without license from IHS schanical Engineers Licensed by Information Handling Services

FIG. 8 PULLEY TYPE TAP

FIG. 9 PIPE TAP TYPE

more lubricating grooves. The thread form on the tap is lobed, so that there is a finite number of high points contacting the work thread form. The forming lobe may be either straight or spiral to conform to the manufacturer's standards. The tap forms the thread by extrusion and does not cut. This Standard applies to machine screw, fractional, and metric sizes, in highspeed steel, ground thread form, with plug, semibottom, and bottom entry taper.

For general dimensions, optional necks, shortened thread length, and tolerance see Tables 2, 2A, 2B, and 2C. For standard ground thread limits see Tables 10, 10A, and 11. For entry taper designations, including plug and bottom, see Table 16A. For runout tolerance see Table 6.

3.7 Pulley Type Taps

Pulley type taps, illustrated in Fig. 8, were originally designed for tapping line shaft pulleys by hand. Today, the pulley tap, which is used where extended reach is required, is commonly driven by machine. Because shank diameter is the same as the nominal diameter, the shank diameter and square size are different from those listed in Table 2. Accordingly, sizes $\frac{7}{16}$ and larger require special tap holders/drivers. This Standard applies to fractional size and ground thread with plug and bottom chamfer.

For general dimensions, optional necks, thread length, and tolerance see Table 4. For number of flutes see Table 4. For standard ground thread limits see Tables 10, 10A, and 11. For chamfer designations see Table 16. For runout tolerance see Table 6.

3.8 Pipe Tap Types

Pipe tap types, illustrated in Fig. 9, are designed for producing standard straight or taper pipe threads. This Standard applies to fractional size in high-speed, steelground thread, to high-speed steel and carbon steel in cut thread, and to straight-pipe taps having plug chamfers and taper pipe taps having 2 to $3\frac{1}{2}$ threads chamfered.

For general dimensions, optional necks, and tolerance and for number of flutes see Table 5. For taper thread ground thread limits see Table 13. For taper thread cut thread limits see Table 13. For straight thread ground thread limits see Tables 14 and 14A. For straight thread cut thread limits see Table 15. For chamfer designations see Table 16. For runout tolerance see Table 6.

4 STANDARD SYSTEM OF TAP MARKING

4.1 Ground Thread Taps, Inch Screw Threads

Ground thread taps specified in the U.S. customary system are marked with the nominal size, number of threads per inch, the proper symbol to identify the thread form ("HS" for high-speed steel and "G" for ground thread), designators for tap PD, and special features, such as left-hand and multi-start threads. Tap PD designators, system of limits, and special features are specified in section 5. Thread symbol designators are specified in Table 1.

4.2 Ground Thread Taps, Metric Screw Threads: M Profile

Ground thread taps made with metric screw threads (M profile) are marked with an "M," followed by the nominal size in millimeters and the pitch in millimeters, separated by the sign "X." Also included in the marking is "HS" for high-speed steel, "G" for ground thread, designators for tap PD, and special features, such as left-hand and multi-start threads. Tap PD designators, system of limits, and special features are specified in section 5.

4.3 Cut Thread Taps, Inch Screw Threads

Cut thread taps specified in the U.S. customary system are marked with the nominal size, number of threads per inch, and the proper symbol to identify thread form. High-speed steel taps are marked "HS," whereas carbon steel taps need not be marked with the steel designation. Thread symbol designators are specified in Table 1.

7

Copyright ASME International Provided by IHS under license with ASME

No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

5 STANDARD SYSTEM OF TAP THREAD LIMITS AND IDENTIFICATION, GROUND THREAD

5.1 Unified Inch Screw Threads

5.1.1 H or L Limits. When the maximum tap PD limit is over basic PD by an even multiple of 0.0005, or the minimum tap PD limit is under basic PD by an even multiple of 0.0005, the taps are marked with "H" or "L," respectively, followed by a limit number. The limit numbers are determined as follows:

H limit number = $\frac{\text{Amount maximum tap PD limit}}{0.0005}$

	Amount minimum tap PD limit
I limit number -	is under basic PD
L minit number =	0.005

For tap PD tolerances, see Table 7, column D. For standard taps, PD limits for various H limit numbers are shown in Tables 10 and 10A.

When unified inch screw thread taps are ordered without a PD for an H or L limit number, the ap PD is normally determined from Table 7 and is marked with the appropriate H limit number.

EXAMPLES: Tap marking with H or L limit numbers.

(1) $\frac{3}{8} - 16$ NC HS G H1

```
      Maximum tap PD = Basic PD + 0.0005 in. (a)

      Minimum tap PD = Maximum tap PD - 0.0005 in. (b)

      (2) \frac{1}{4} - 7 NC HS G H4

      Maximum tap PD = Basic PD + 0.0020 in. (a)

      Minimum tap PD = Maximum tap PD - 0.0010 in. (b)

      (3) 2 - 16 NEF HS G H8

      Maximum tap PD = Basic PD + 0.0040 in. (a)

      Minimum tap PD = Basic PD + 0.0040 in. (a)

      Minimum tap PD = Maximum tap PD - 0.0015 in. (b)

      (4) \frac{3}{8} - 16 NC HS GL 2

      Minimum tap PD = Basic PD - 0.0010 in. (a)

      Maximum tap PD = Basic PD - 0.0010 in. (b)

      (4) \frac{3}{8} - 16 NC HS GL 2

      Minimum tap PD = Basic PD - 0.0010 in. (b)
```

5.1.2 Oversize or Undersize. When the maximum tap PD over basic PD or the minimum tap PD under basic PD is not an even multiple of 0.0005, the tap PD is normally designated as an amount oversize or undersize. The amount oversize is added to the basic PD to establish the *minimum* tap PD. The amount undersize is subtracted from the basic PD to establish the *minimum* tap PD. The PD tolerance from Table 7, column D, is added to the minimum tap PD to establish the maximum tap PD in both cases.

```
EXAMPLE: \frac{1}{16} - 14 NC plus 0.0017 HS G
```

(1) Minimum tap PD = Basic PD + 0.0017 in.

TAPS: GROUND AND CUT THREADS

(2) Maximum tap PD = Minimum Tap PD + 0.0005 in.

Whenever possible in the case of oversize or other special tap PD requirements, the maximum and minimum tap PD requirements should be specified.

5.1.3 Special Tap Pitch Diameter. Taps not made to H or L limit numbers, to the specifications in Table 7, or to the formula for oversize or undersize taps may be marked with "S" enclosed by a circle or another special identifier.

EXAMPLE: $\frac{1}{2}$ – 16 NC HS G (S)

5.1.4 Left-Hand Taps. Taps with left-hand threads are marked "LEFT HAND" or "LH."

EXAMPLE: $\frac{3}{8}$ - 16 NC LH HS G H3

NOTE: In general, metal cutting tools must be marked with the country of origin. Reference should be made to part 134, Customs Regulations (19 CFR Part 134) to determine the specific requirements as to the permanent marking of imported tools.

5.2 Metric Screw Threads: M Profile

All calculations for metric taps are done using millimeter values. When U.S. customary values are needed, they are translated from the three-place millimeter tap diameters, only after calculations are complete.

5.2.1 D or DU Limits. When the maximum tap PD limit is over basic PD by an even multiple of 0.013 mm (0.000512 in. reference), or the minimum tap PD limit is under basic PD by an even multiple of 0.013 mm, the taps are marked with "D" or "DU," respectively, followed by a limit number. The limit number is determined as follows:

D. Vasitarum har	Amount maximum tap PD limit is over basic PD
D limit number =	0.013
	Amount minimum tap PD limit is under basic PD

DU limit number = $\frac{18 \text{ under basic PD}}{0.013}$

For D limit increments that are based on 0.013 mm, see Table 8, column Y. For tap PD tolerances, see Table 8, column Z. For standard taps, PD limits for various D limit numbers are shown in Table 11.

When metric screw thread (M profile) ground thread taps are ordered without a PD or a D or DU limit number, the tap PD will normally be determined from

Copyright ASME International Provided by IHS under license with ASME

(No reproduction or networking permitted without license from HS echanical Engineers Licensed by Information Handling Services

ASME B94.9-1999

Table 8, and the tap will be marked with the appropriate D limit number.

EXAMPLES: Tap marking with D or DU limit numbers.

- (1) M1.6 \times 0.35 HS G D3 Maximum tap PD = Basic PD + 0.039 mm
- Minimum tap PD = Maximum tap PD 0.015 mm(b)(1) M12 × 1.75 HS G D6 Maximum tap PD = Basic PD + 0.078 mm (a)
- Maximum tap PD = Basic PD + 0.078 mm (a) Minimum tap PD = Maximum tap PD - 0.031 mm (b) (3) M39 × 4 HS G D10
- Maximum tap PD = Basic PD + 0.130 mm (a) Minimum tap PD = Maximum tap PD - 0.052 mm(b)

(4) M6 × 1 HS G DU4
 Minimum tap PD = Basic PD - 0.052 mm (a)
 Maximum tap PD = Minimum tap PD + 0.025 mm (b)

5.2.2 Metric oversize or undersize taps, taps with special PD, and left-hand taps follow the marking system given above for inch taps.

EXAMPLES:

(1) M12 × 1.75 + 0.044 HS G (2) M10 × 1.5 HS G $\widehat{(s)}$

(3) M10 × 1.5 LH HS G D6

6 GLOSSARY OF TAP ELEMENTS AND OTHER TERMS RELATED TO SCREW THREADS

(a)

No.	Term	Illustration
001	actual size: the measured size of an element on an individual part.	
002	<i>allowance</i> : a prescribed difference between the maximum material limits of mating parts. It is the minimum clearance (positive allow- ance) or maximum interference (negative al- lowance) between such parts.	Hole Hole Maximum material limit (maximum hole diameter) Maximum material limit (minimum hole diameter) Basic size Maximum material limit (maximum shaft diameter) Minimum material limit (minimum shaft diameter) Hole Hole Minimum material limit (maximum hole diameter) Maximum material limit (maximum shaft diameter) Maximum material limit (minimum shaft diameter) Negative allowance (maximum clearance)
003	<i>axis</i> : the imaginary straight line that forms the longitudinal centerline of the tool or threaded part.	Axis
004	<i>basic size</i> : the size from which the limits are derived by application of allowance and tolerance.	
005	<i>bottom tap</i> : a tap having a chamfer length of 1 to 2 pitches.	
		Bottom Tap

Copyright ASME International Provided by IHS under license with ASME CNo reproduction or networking permitted without license from IHS **schanical Engineers** Licensed by Information Handling Services

Not for Resale

9

Not for itesale

No.	1erm
006	chamfer: the tapering of the threads at the
	front end of each land of a tap by cutting
	away and relieving the crest of the first few
	teeth to distribute the cutting action over
	several teeth.

(a) bottom taps: chamfered 1 to 2 pitches.(b) semibottom taps: chamfered 2 to 3 pitches.

(c) plug taps: chamfered 3 to 5 pitches.(d) taper taps: chamfered 7 to 10 pitches.

chamfer angle: the angle formed between the chamfer and the axis of the tap measured in an axial plane at the cutting edge

chamfer bevel: an angular surface of revolution (which may or may not be relieved) preceding the point diameter on a tap.

chamfer length: the length of the chamfer measured parallel to the axis at the cutting edge.

chamfer point diameter: see no. 012, diameter, point.

chamfer relief: the gradual decrease in land height from cutting edge to heel on the chamfered portion of the land to provide radial clearance for the cutting edge.

chamfer relief angle: the complement of the angle formed between a line tangent to the relieved surface at the cutting edge and a radial line to the same point.

Illustration Bottom Semibottom Plug Taper **Chamfer Angle Chamfer Bevel** Chamfer Length Chamfer relief angle Tangent to relieved surface Radial line

007 *classes of threads*: distinguished by the amounts of tolerance or tolerances and all allowance specified. Both inch and metric screw threads have alphanumeric class designations. Class designations do not apply to the tap.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS **echanical Engineers**

Licensed by Information Handling Services

Not for Resale

TAPS: GROUND AND CUT THREADS

ter only).

No. 008

009

Term

concentric margin: a portion of the threaded land, adjacent to the cutting edge that has concentric threads (tap outside diame-

concentric thread: threads that are substantially circular for the full land width with a center coincident with the tool axis; that is, having no relief in the thread form except for that slight amount produced by back taper.

crest: the surface of the thread that joins the

flanks of the thread and is farthest from the cylinder or cone from which the thread

concentric: having a common center.

Concentric margin Concentric full width of land Crest Cutter sweep Major diameter Cutting face Direction of rotation +Core diameter

Illustration

ASME B94.9-1999

Cutting edge

projects.

010 cutter sweep: the section removed by the milling cutter or the grinding wheel in entering or leaving a flute.

011 cutting edge: the intersection of the cutting face and major diameter in the direction of rotation for cutting and which does the actual cutting.

> cutting face: the leading side of the land in the direction of rotation for cutting on which the chip impinges.

012 diameter:

core: the diameter of a circle that is tangent to the bottom of the flutes at a given point on the axis.

Not for Resale

No. T	erm
-------	-----

012

major: on a straight thread, the major di-(Cont'd) ameter is that of the major cylinder On a taper thread, the major diameter at a given position on the thread axis is that of the major cone at that position.

> minor: on a straight thread, the minor diameter is that of the minor cylinder On a taper thread, the minor diameter at a given position on the thread axis is that of the minor cone at that position.

> pitch: on a straight thread, the diameter of the imaginary coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the width of the thread groove and ridge equal. On a theoretically perfect thread, these widths are equal to one half the pitch. On taper thread, the PD at a given position on the thread axis is the diameter of the pitch cone at that position.

> point: the diameter at the cutting edge of the leading end of the chamfered section. The diameter is approximately the same as the basic minor diameter and varies with manufacturers.

- 013 dryseal: a thread system used for both external and internal pipe threads applications designed for use where the assembled product must withstand high fluid or gas pressure without the use of a sealing compound or where a sealer is functionally objectionable.
- 014 eccentric: not having a common center.
- 015 eccentricity (with respect to the tool axis): one-half of the total indicator variation (TIV). (See also no. 050, relative eccentricity, and no. 054, runout, which is the preferred term.)
- 016 entry taper: the portion of a thread-forming tap where the thread form is tapered toward the front to allow entry into the hole to be tapped. These tapered threads produce contact points that perform the forming or extrusion process.

Copyright ASME International ovided by IHS under license with ASME

(No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

No.	Term
016	entry taper length: the length, measured
(Cont'd)	on the full diameter of the thread forming
	lobe, from the entry diameter position on
	the theoretical intersection to the tap major
	diameter and entry taper angle.
	(a) Letter length 1 to 2^{1} mitches

(a) bottom length: 1 to $2\frac{1}{2}$ pitches.

(b) plug length: 3 to 5 pitches.

entry taper angle: the angle at which the thread form is tapered from the major diameter to the entry diameter portion.

entry taper diameter: the diameter measured at the full thread crest nearest the front of the tap. This diameter must be an appropriate amount smaller than the diameter of the hole produced for tapping.

- 017 *external center, full or truncated*: the pointed end on a tap. Its included angle varies with manufacturing practice. It must not be confused with a tap chamfer or a chamfer bevel. On bottoming chamfered taps the point on the front end may be removed, which is optional with manufacturer.
- 018 *female center:* see no. 029, *internal center*, which is the preferred term.
- 019 *flank*: the flank of a thread is either surface connecting the crest with the root. The flank surface intersection with an axial plane is theoretically a straight line.

(a) leading:

(1) the flank of a thread facing toward the chamfered end of a threading tool.

(2) the flank of a thread that, when the thread is about to be assembled with a mating thread, faces the mating thread.

(b) trailing: the flank of a thread that is opposite to the leading flank.

flank angle: the angle between the individual flank and the perpendicular plane to the axis of the thread, measured in an axial plane. A flank angle of a symmetrical thread is commonly termed the half angle of thread.

flank angle variation: the deviation from the basic (nominal) flank angle.

Copyright ASME International Provided by IHS under license with ASME CNo reproduction or networking permitted without license from IHS achanical Engineers Licensed by Information Handling Services

Not for Resale

Not for resale

No.	Term	
020	<i>flutes</i> : the longitudinal channels formed in a tap to create cutting edges on the thread profile and to provide chip spaces and cutting fluid passages. On a parallel or straight thread tap they may be straight, angular, or spiral, and on a taper thread tap they may be straight	
	tapered, or spiral.	
1.75	<i>lead angle:</i> the angle that a helical or spiral cutting edge at a given point makes with an	

axial plane through the same point. *length*: as applied to taps, the full axial

length of a flute including the cutter sweep. runout: see no. 010, cutter sweep.

spiral: a flute with axial lead and helix in a helical path around the axis of a cylindrical tap. A regular spiral angle is 25–35 deg, and a fast spiral angle is 45–60 deg. On taper pipe taps the spiral angle is usually less than that described above.

straight: a flute that forms a cutting edge lying in an axial plane.

tapered: a flute lying in a plane intersecting the tool axis at an angle.

Illustration

- 021 *full indicator movement (FIM)*: the total movement of an indicator where appropriately applied to a surface to measure its variations.
- 022 functional size: the functional diameter of an external or internal thread is the PD of the enveloping thread of perfect pitch, lead, and flank angles, having full depth of engagement but clear at crests and roots, and of a specified length of engagement. It may be derived by adding to the PD in the case of an external thread, or subtracting from the PD in the case of an internal thread, the cumulative effects of deviations from specified profile, including variations in lead and flank angle over a specified length of engagement. The effects of taper, out of roundness, and surface defects may be positive or negative on either external or internal threads.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

TAPS: GROUND AND CUT THREADS

No.	Term
023	gun point: see no. 060, spiral point, which is the preferred term.
024	health the adde of the land opposite the outting

024 *heel*: the edge of the land opposite the cutting edge.

025 *height of thread*: the height of a thread is the distance, measured radially between the major and minor cylinders or cones, respectively.

Illustration

026 *helix angle:* see no. 20, *flute, lead angle* and no. 64, *thread lead angle.*

helix variation: helix variation of a thread is an undulate aberration from true helical advancement. The "helical path" includes the helix with its superimposed variation and is measured either as the maximum deviation from the true helix or as the "cumulative pitch." The cumulative pitch is the distance measured parallel to the axis of the thread between corresponding points on any two thread forms whether or not they are in the same axial plane.

027

holes:

blind: a hole that does not pass through the work piece and is not threaded to its full depth.

bottom: a blind hole that is threaded close to the bottom.

obstructed: a through hole that has some obstruction beyond the hole limiting the travel of the tap.

open: a hole that passes through the work piece but is not threaded its full depth.

Copyright ASME International Provided by IHS under license with ASME

(No reproduction or networking permitted without license from HS echanical Engineers Licensed by Information Handling Services Not for Resale

ASME B94.9-1999

No.	Term
027 (Cont'd)	<i>recessed</i> : a blind hole with a recess larger than the tap major diameter and beyond the depth of full thread, limiting the travel of the tap.
	<i>stepped</i> : a blind or open hole with a change in diameter that limits the thread depth.
	<i>through</i> : a hole that passes through the work piece and is threaded to its full depth.
028	hook angle: the inclination of a concave cut- ting face, usually specified as either chordal hook or tangential hook. chordal: the angle between the chord pass- ing through the basic minor diameter and the tap crest at the cutting face and a radial line through the tap crest at the cutting edge. tangential: the angle between a line tangent to the radius of the cutting face at the major diameter and a radial line to the same point.
029	<i>internal center</i> : a countersink with clearance at the bottom, in one or both ends of a tool, which establishes the tool axis.

030 *interrupted thread tap*: a tap having an odd number of lands with alternate teeth in the thread helix removed. Alternate teeth are generally removed only for a portion of the thread length beyond the chamfer (semi-interrupted thread), or in some cases on the full thread length including the chamfer (fullinterrupted thread).

TAPS: GROUND AND CUT THREADS

Illustration

Full-Interrupted

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

No.	Term
031	<i>land</i> : one of the threaded sections between the flutes of a tap.
	land width: the chordal width of the land
	between the cutting edge and the heel mea-
	sured normal to the cutting edge.

Illustration

032 *lead*: the distance a screw thread advances axially in one complete turn.

lead deviation: the deviation from the basic nominal thread.

lead error: the deviation from prescribed limits.

progressive:

(a) on the straight thread the deviation from a true helix where the thread helix advances uniformly, or

(b) on a taper thread the deviation from a true spiral where the thread spiral advances uniformly.

033 *left-hand cut*: rotation in a counterclockwise direction for cutting when viewed from the chamfered end of a tap.

left-hand spiral flute: flutes that twist in a counterclockwise direction when viewed axially.

left-hand thread: a thread is a left-hand thread if, when viewed axially, it winds in a counterclockwise and receding direction. All left-handed threads are designated LH.

034 *length of engagement*: the length of engagement of two mating threads is the axial distance over which two mating threads are designed to contact.

Licensed by Information Handling Services

Not for Resale

No.Term035length of thread: the length of the thread
includes the chamfered threads and the full
threads but does not include an external center
or incomplete threads due to multiple rib
grinding.

- 036 *limits*: the limits of size are the applicable maximum and minimal sizes.
- 037 *male center*: see no. 017, *external center*, which is the preferred term.
- 038 margin: see no. 008, concentric margin.
- 039 *neck*: a section of reduced diameter between two adjacent portions of a tool.

Illustration

- 040 *nominal size*: a designation consisting of basic specified size before any allowance or tolerance is applied, used for general identification.
- 041 *number of threads*: see no. 064, *threads per inch*, which is the preferred term.
- 042 *oil holes*: holes through which a cutting fluid is fed to the cutting edges of a tool.

- 043 *optional number of flutes*: taps with more or less flutes than standard.
- 044 overall length: see Fig. 1.
- 045 *percent of thread*: one half the difference between the basic major diameter and the actual minor diameter of an internal thread, divided by the basic thread height, expressed as a percentage.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services TAPS: GROUND AND CUT THREADS

- No.Term046pitch: the distance from any point on a screw
thread to a corresponding point on the next
thread, measured parallel to the axis and on
the same side of the axis. In the unified inch
screw thread system, the pitch equals one
divided by the number of threads per inch.
pitch error: the deviation from the true
basic pitch measured between adjacent teeth
on a land.
- $\frac{1}{4}$ -20 UNC M6 x 1 Pitch = $\frac{1}{20}$ Pitch = 1 mm Pitch = 0.05 in.

Illustration

Examples:

- 047 *plug tap:* a tap having a chamfer length of 3 to 5 pitches.
- 048 *projection*: the distance the small end of a taper thread projects through a taper thread ring gage.

049 *rake*: the angular relationship of the straight cutting face of a tooth with respect to the radial line through the crest of the tooth at the cutting edge.

negative: the crest of the cutting face is angularly behind the balance of the cutting face of the tooth.

positive: the crest of the cutting face is angularly ahead of the balance of the cutting face of the tooth.

zero: the cutting face is directly on a radial line.

050 *relative eccentricity*: the distance between the geometric centerline of one portion of a tool and geometric centerline of some other portion.

ASME B94.9-1999

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

0759670 0615513 098 STD.ASME B94.9-ENGL 1999

ASME B94.9-1999

051

relief: the removal of metal behind the cutting edge to provide clearance between the part

being threaded and the threaded land. center: clearance produced on a portion of the land by reducing the diameter of the entire thread form between cutting edge and heel. con-eccentric: radial relief in the thread

form starting back of a concentric margin.

double eccentric: the combination of a slight radial relief in the thread form starting at the cutting edge and continuing for a portion of the land width, and a greater radial relief for the balance of the land.

eccentric: radial relief in the thread form starting at the cutting edge and continuing to the heel.

flatted land: clearance produced on a portion of the tap land by truncating the thread between the cutting edge and heel.

grooved land: clearance produced on a tap land by forming a longitudinal groove in the center of the land.

radial: the clearance produced by removal of metal from behind the cutting edge. Taps should have the chamfer relieved and should have back taper, but may or may not have relief in the angle and on the major diameter of the threads. When the thread angle is relieved, starting at the cutting edge and continuing to the heel, the tap is said to have "eccentric" relief. If the thread angle is relieved back of a concentric margin (usually one third of land width), the tap is said to have "con-eccentric" relief.

052 right-hand cut: rotation in a clockwise direction for cutting when viewed from the chamfered end of a tap or die.

> right-hand flutes: flutes that twist in a clockwise direction when viewed axially.

> right-hand thread: a thread is a right hand thread if, when viewed axially, it winds in a clockwise and receding direction.

Right-Hand Spiral Flute

Cut

20

Copyright ASME International ovided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers

Licensed by Information Handling Services

Not for Resale

TAPS: GROUND AND CUT THREADS

No.	Term
053	root: the surface of the thread that joins the
	flanks of adjacent thread forms and is identical
	to or immediately adjacent to the cylinder
	or cone from which the thread projects.

- 054 *runout*: the radial variation from a true circle that lies in a diametral plane and is concentric with the tool axis. (See also no. 021, *full indicator movement [FIM].*)
- 055 screw thread: a ridge, usually of uniform section and produced by forming a groove in the form of a helix on the external or internal surface of a cylinder, or in the form of a conical spiral on the external or internal surface of a cone or frustum of a cone. A screw thread formed on a cylinder is known as a straight or parallel thread, to distinguish it from a taper screw thread that is formed on a cone of frustum of a cone or frustum.
- 056 screw thread insert (STI): screw thread bushing coiled from diamond-shaped cross-section wire. They are screwed into oversized tapped holes to form nominal size internal threads. Commonly referred to as "helical coil insert."

screw thread insert (STI) tap: these taps are over the nominal size to the extent that the internal thread they produce will accommodate a helical coil screw insert, which at final assembly will accept a screw thread of the nominal size and pitch. Illustration

Example of Straight Screw Thread

Center removal is optional with manufacturer

semibottom tap: a tap having 2 to 3 pitches in chamfer length.

Semibottom

21

Copyright Asime international Provided by HIS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

057

Copyright ASME International

Not for Resale

ASME B94.9-1999

TAPS: GROUND AND CUT THREADS

No.	Term
058	<i>shank</i> : the portion of the tool body by which it is held and driven.

- 059 shaving: the excessive removal of material from the product thread profile by the tool thread flanks caused by an axial advance per revolution less than or more than the actual lead on the tool. In tapping, this results in an increase in product PD without an increase in product major diameter.
- 060 spiral point: the angular fluting in the cutting face of the land at the chamfered end. It is formed at an angle with respect to the tap axis of opposite hand to that of rotation. Its length is usually greater than the chamfer length, and its angle with respect to the tap axis is usually made great enough tc direct the chips ahead of the tap. The tap may or may not have longitudinal flutes.

spiral point angle: the angle made by the projection of the spiral point flute into an axial plane parallel to the tap axis.

- 061 square: four driving flats parallel to the axis on a tap shank forming a square with round corners. For location purposes, one of the flats can be longer than the three others.
- 062 taper:

back: a gradual decrease in the d-ameter of the thread form on a tap from the chamfered end of the land towards the back, which creates a slight radial relief in the threads.

front: opposite of the back taper.

taper per inch:

(a) on a taper threaded part or on a taper shank, the difference in diameter in one inch measured parallel to the axis.

(b) on a taper tap, the difference in diameter in one inch measured parallel to the axis at the cutting face.

taper tap: a tap having a chamfer length of 7 to 10 pitches.

Spiral point

22

Copyright ASME International ovided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

No.	Term
062	taper thread tap: a tap with tapered threads
(Cont'd)	for producing a tapered internal thread.

063 thread:

angle of: also known as included angle of a thread. The angle between the flanks of the thread measured in an axial plane.

base of: that which coincides with the cylindrical or conical surface from which the thread projects.

class of: the designation of the class that determines the specification of the size allowance, and tolerance to which a given threaded product is to be manufactured. It is not applicable to the tools for threading.

first full: the first thread on the cutting edge back of the chamfer. It is at this point that rake, hook, and thread elements are measured.

half angle: the angle formed by one thread flank top or line perpendicular to the axial plane.

height: see no. 025, height of thread.

interrupted: see no. 030, interrupted thread tap.

length: see no. 035, length of thread.

multiple: a thread of which the lead is an integral multiple of the pitch. On a double thread, the lead is equal to twice the pitch. On a triple thread, the lead is equal to three times the pitch, etc.

screw: see no. 055, screw thread.

single: a thread having a lead equal to the pitch.

064 *thread lead angle*: on a straight thread, the angle made by the helix of the thread at the pitch line with a plane perpendicular to the axis. On a taper thread, the lead angle at a given axial position is the angle made by the conical helix of the thread, with the plane perpendicular to the axis, at the pitch line diameter at that point.

threads per inch (TPI): the number of thread pitches in one inch of thread length.

Illustration

ASME B94.9-1999

Copyright ASME International Provided by IHS under license with ASME No reproduction or networking permitted without license from I

(No reproduction or networking permitted without license from IHS schanical Engineers Licensed by Information Handling Services

TAPS: GROUND AND CUT THREADS

No.	Term	Illustration
065	tolerance (a) the total permissible variation of size (b) the difference between the limits of size	
066	total indicator variation (TIV): the difference between maximum and minimum indicator readings during a checking cycle. (See also no. 021, full indicator movement [I ⁻ IM], which is the preferred term.)	
067	truncation: crest: the crest truncation of a thread is the radial distance between the sharp crest and the cylinder or cone that binds the crest. root: the root truncation of a thread is the radial distance between the sharp root and the cylinder or cone that binds the root.	Root truncation Crest truncation

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

ASME B94.9-1999

Standard Tap Marking	Product Thread Designation	Thread Series	American National Standards References
	<u>_</u>		
M	MJ	Metric Screw Threads — M Profile, with basic ISO 68 profile Metric Screw Threads: MJ Profile, with rounded root of radius 0.15011P to 0.18042P (external thread only)	B1.13M, B1.18M B1.21M
		Class 5 Interference — Fit Thread	
NC	NC5IF	Entire ferrous material range	B1.12
NC	NC5INF	Entire nonferrous material range	B1.12
NPS	NPSC	American Standard straight pipe threads in pipe couplings	B1.20.1
NPSF	NPSF	Dryseal American Standard fuel internal straight pipe threads	B1.20.3
NPSH	NPSH	American Standard straight hose coupling threads for joining to American Standard taper pipe threads	B1.20.7
NPSI	NPSI	Dryseal American Standard intermediate internal straight pipe threads	B1.20.3
NPSL	NPSL	American Standard straight pipe threads for loose-fitting mechanical joints with locknuts	B1.20.1
NPS	NPSM	American Standard straight pipe threads for free-fitting mechanical joints for fixtures	B1.20.1
ANPT	ANPT	Pipe threads taper, aeronautical national form	MII -P-7105
NPT	NPT	American Standard taper nine threads for general use	B1 20 1
NPTE	NPTE	Dryseal American Standard taper nine threads	B1.20.3
NPTR	NPTR	American Standard taper nine threads for railing joints	B1 20 1
PTE	PTE	Dryseal American Standard nine threads	B1 20 3
PTF-SPL	PTF-SPL	Dryseal American Standard pipe threads	B1.20.3
N	UN	Unified Inch Screw Thread, constant-pitch series	B1.1
NC	UNC	Unified Inch Screw Thread, coarse pitch series	B1.1
NE	UNF	Unified Inch Screw Thread, fine pitch series	B1.1
NEF	UNEF	Unified Inch Screw Thread, extra-fine pitch series	B1.1
N	UNJ	Unified Inch Screw Thread, constant-pitch series, with rounded root of radius 0.15011P to 0.18042P (external thread only)	MIL-S-8879
NC	UNJC	Unified Inch Screw Thread, coarse pitch series, with rounded	B1.15
		root of radius 0.15011P to 0.18042P (external thread only)	MIL-S-8879
NF	UNJF	Unified Inch Screw Thread, fine pitch series, with rounded root of radius 0.15011 <i>P</i> to 0.18042 <i>P</i> (external thread only)	B1.15 MIL-S-8879
NEF	UNJEF	Unified Inch Screw Thread, extra-fine pitch series, with rounded root of radius 0.15011 <i>P</i> to 0.18042 <i>P</i> (external thread only)	B1.15 MIL-S-8879
N	UNR	Unified Inch Screw Thread, constant-pitch series, with rounded root of radius not less than 0 108 <i>P</i> (external thread only)	B1.1
NC	UNRC	Unified Inch Screw Thread, coarse thread series, with rounded root of radius not less than 0 108 <i>P</i> (external thread only)	B1.1
NF	UNRF	Unified Inch Screw Thread, fine pitch series, with rounded	B1.1
NEF	UNREF	Unified Inch Screw Thread, extra-fine pitch series, with rounded root of radius not less than 0.108 <i>P</i> (external thread only)	B1.1
NS	UNS	Unified Inch Screw Thread, special diameter pitch, or length of engagement	B1.1
STI	STI	Helical Coil Screw Thread Inserts — Freerunning and Screwlocking (Inch Series)	B18.29.1

TABLE 1 THREAD SERIES DESIGNATIONS

é

Blank Design 3

Blank Design 2

Blank Design 1

 $^{\rm I_2}$ Ā

7

 12 Ă

2

Ā

THUR DURING DEPARTMENT

ę

TAPS: GROUND AND CUT THREADS

		TABLE	E 2 STANDAR	D TAP D		S (GROUN	ND AND CI	UT THREA	â		
				פ		SUUS					
		Machine	Nominal Fractional Diameter	Noi	minal			Ta	ip Dimension	s, in.	
Nom	inal Diameter łange, in.	Screw	(Decimal Equivalent).	Dial	etric meter	Blank Design	Overall Length,	Thread Length,	Square Length,	Shank Diameter,	Size of Square,
Over	To (Inclusive)	No.	in.	шш	in.	No.	Ĺ	-	. <u>4</u>	đ	63
0.052	0.065	0 (0.0600)	:	M1.6	(0.0630)	F	1.63	0.31	0.19	0.1410	0.110
0.065	0.078	1 (0.0730)	:	M1.8	(0.0709)	Ļ	1.69	0.38	0.19	0.1410	0.110
0.078	0.091	2 (0.0860)	:	M2 M2.2	(0.0787) (0.0866)	-	1.75	0.44	0.19	0.1410	0.110
0.091	0.104	3 (0.0990)	:	M2.5	(0.0984)	-	1.81	0.50	0.19	0.1410	0.110
0.104	0.117	4 (0.1120)				-	1.88	0.56	0.19	0.1410	0.110
0.117	0.130	5 (0.1250)	:	M3	(0.1181)	-	1.94	0.63	0.19	0.1410	0.110
0.130	0.145	6 (0.1380)	:	M3.5	(0.1378)	۴	2.00	0.69	0.19	0.1410	0.110
0.145	0.171	8 (0.1640)		M4	(0.1575)	-	2.13	0.75	0.25	0.1680	0.131
0.171	0.197	10 (0.1900)	:	M4.5 M5	(0.1772) (0.1969)		2.38	0.88	0.25	0.1940	0.152
0 197	0 223	12 (0 2160)				-	2.38	0.94	0.28	0.2200	0.165
0.23	0.260		¹ /4 (0.2500)	M6	(0.2362)	7	2.50	1.00	0.31	0.2550	0.191
0.260	0.323	:	⁵ / ₁₆ (0.3125)	M7 M8	(0.2756) (0.3150)	7	2.72	1.13	0.38	0.3180	0.238
0.323	0.395	:	3 _{/8} (0.3750)	M10	(0.3937)	2	2.94	1.25	0.44	0.3810	0.286
0.395	0.448	:	7/ ₁₆ (0.4375)		:	ю	3.16	1.44	0.41	0.3230	0.242
0.448	0.510	:	1/2 (0.5000)	M12	(0.4724)	m	3.38	1.66	0.44	0.3670	0.275
											(continued)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

STD.ASME 894.9-ENGL 1999 🗰 0759670 0615520 228 🛲

TAPS: GROUND AND CUT THREADS

ASME	R 9/	q _	1999
ASIVIE	D34.	3-	1333

					ieneral Dimen	sions					
		Moch	Nominal Fractional Diamater	2 N	minal			Ta	p Dimension	s, in.	
Nomi R	nal Diameter ange, in.	Screw	Decimal (Decimal Equivalent),	D ia	letric meter	Blank Design	Overall Length,	Thread Length,	Square Length,	Shank Diameter,	Size of Square,
Over	To (Inclusive)	No.	in.	шш	in.	No.	r ,		4	ď	c,
0.510	0.573		9/16 (0.5625)	M14	(0.5512)	ю	3.59	1.66	0.50	0.4290	0.322
0.573	0.635		5/8 (0.6250)	M16	(0.6299)	ო	3.81	1.81	0.56	0.4800	0.360
0.635	0.709	:	¹¹ / ₁₆ (0.6875)	M18	(0.7087)	с	4.03	1.81	0.63	0.5420	0.406
907 U	0.760		³ /, (0.7500)			ო	4.25	2.00	0.69	0.5900	0.442
0.760	0.823		$^{13}/_{16}$ (0.8125)	M20	(0.7874)	ო	4.47	2.00	0.69	0.6520	0.489
0.823	0.885	•	7/8 (0.8750)	M22	(0.8861)	e	4.69	2.22	0.75	0.6970	0.523
0.885	0.948	:	¹⁵ / ₁₆ (0.9375)	M24	(0.9449)	ю	4.91	2.22	0.75	0.7600	0.570
0.948	1.010		1 (1.0000)	M25	(0.9843)	ო	5.13	2.50	0.81	0.8000	0.600
1.010	1.073	•	1 ¹ / ₁₆ (1.0625)	M27	(1.0630)	e	5.13	2.50	0.88	0.8960	0.672
1.073	1.135	:	1 ¹ / ₈ (1.1250)	:	-	ю	5.44	2.56	0.88	0.8960	0.672
1.135	1.198		1 ³ / ₁₆ (1.1875)	M30	(1.1811)	ო	5.44	2.56	1.00	1.0210	0.766
1.198	1.260		11/4 (1.2500)	:		ĸ	5.75	2.56	1.00	1.0210	0.766
1 260	1 323		1 ⁵ /,e (1.3125)	M33	(1.2992)	ო	5.75	2.56	1.06	1.1080	0.831
1 323	1.385		1 ³ / ₆ (1.3750)	-		ო	6.06	3.00	1.06	1.1080	0.831
1.358	1.448		1 ^{7/16} (1.4375)	M36	(1.4173)	ო	6.06	3.00	1.13	1.2330	0.925
1.448	1.510	:	1½ (1.5000)	:	•	ю	6.38	3.00	1.13	1.2330	0.925
1.510	1.635		1 ^{5/8} (1.6250)	M39	(1.5354)	ო	6.69	3.19	1.13	1.3050	0.979
1.635	1.760	:	1 ³ / ₄ (1.7500)	M42	(1.6535)	ю	7.00	3.19	1.25	1.4300	1.072
1.760	1.885	:	1 ⁷ /a (1.8750)		-	ю	7.31	3.56	1.25	1.5190	1.139
1.885	2.010	÷	2 (2.0000)	M48	(1.8898)	ю	7.63	3.56	1.38	1.6440	1.233
											(continued)

TABLE 2 STANDARD TAP DIMENSIONS (GROUND AND CUT THREAD) (CONT'D)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale
		Tolers	Inces		
	Nomi R	nal Diameter ange, in.		Toleran in.	ce,
Element	Over	To (Inclusive)	Direction	Ground Thread	Cut Thread
Length overall, L	0.0520	1.0100	Plus or minus	0.03	0.03
2	1.0100	2.0000	Plus or minus	0.06	0.06
Length of thread, /	0.0520	0.2230	Plus or minus	0.05	0.05
)	0.2230	0.5100	Plus or minus	0.06	0.06
	0.5100	1.5100	Plus or minus	0.09	0.09
	1.5100	2.0000	Plus or minus	0.13	0.13
Length of square, <i>b</i>	0.0520	1.0100	Plus or minus	0.03	0.03
-	1.0100	2.0000	Plus or minus	0.06	0.06
Diameter of shank, d ₁	0.0520	0.2230	Minus	0.0015	0.0040
•	0.2230	0.6350	Minus	0.0015	0.0050
	0.6350	1.0100	Minus	0.0020	0.0050
	1.0100	1.5100	Minus	0.0020	0.0070
	1.5100	2.0000	Minus	0.0030	0.0070
Size of square, a	0.0520	0.5100	Minus	0.004	0.004
	0.5100	1.0100	Minus	0.006	0.006
	1.0100	2.0000	Minus	0.008	0.008

STANDARD TAP DIMENSIONS (GROUND AND CUT THREAD) (CONT'D) **TABLE 2**

GENERAL NOTES: (a) Special taps g

Special taps greater than 1.010 in. to 1.510 in. in diameter inclusive, having 14 or more threads per inch or 1.75-mm pitch and finer, and sizes over 1.510 in. diameter with 10 or more threads per inch or 2.5-mm pitch and finer are made to general dimensions shown in Table A5 in Appendix A.

.⊑

For standard ground thread tap limits see Tables 10 and 10A for inch and Table 11 for metric.

For cut thread tap limits see Tables 12 and 12A.

Special ground thread tap limits are determined by using the formulas shown in Table 7 for unified inch screw threads and Table 8 for metric M profile screw threads <u>a</u> o p

Tap sizes 0.395 in. and smaller have an external center on the thread end (may be removed on bottom taps). Sizes 0.223 in. and smaller have an external center on the shank end (½ of diameter of shank). Sizes greater than 0.395 in. have internal centers on both the thread and shank ends. (e)

For standard thread limits and tolerances see Table A1 in Appendix A for unified inch screw threads and Table A2 in Appendix A for metric threads. €ĴÊ

For runout tolerances of tap elements see Table 6. For number of flutes see Table 3.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

28

ASME B94.9-1999

			Nominal Fractional	No	minal				Tap Dim	ensions, in.		
Nom	inal Diameter	Machine Screw Size	Diameter (Decimal Fouivalent).	Dia	etric meter	Blank Design	Overall Length,	Thread Length,	Neck Length,	Square Length,	Shank Diameter,	Size of Square,
Over	To (Inclusive)	No.	in.	E E	in.	No.	Ĺ	-	4	4	q	æ
0104	0 117	4 (0.1120)		-		Ļ	1.88	0.31	0.25	0.19	0.1410	0.110
0 117	0.130	5 (0 1250)		M3	(0.1181)	-	1.94	0.31	0.31	0.19	0.1410	0.110
0.130	0.125	6 (0.1380)		M3.5	(0.1378)	F	2.00	0.38	0.31	0.19	0.1410	0.110
0.145	0.171	8 (0.1640)	· •	M4	(0.1575)	-	2.13	0.38	0.38	0.25	0.1680	0.131
0.171	0.197	10 (0.1900)	: :	M4.5 M5	(0.1772) (0.1969)	-	2.38	0.50	0.38	0.25	0.1940	0.152
2010	0 222	12 (0 2160)					2.38	0.50	0.44	0.28	0.2200	0.165
101.0 0000	0.260	1001 701 71	1/, (0.2500)	M6	(0.2362)	2	2.50	0.63	0.38	0.31	0.2550	0.191
0.260	0.323		5/16 (0.3125)	M7 M8	(0.2756) (0.3150)	7	2.72	0.69	0.44	0.38	0.3180	0.238
0000	0 305		3/ (0 3750)	M10	(0.3937)	2	2.94	0.75	0.50	0.44	0.3810	0.286
0.323		•	7/.0 (0 4375)			i M	3.16	0.88		0.41	0.3230	0.242
0,440	0,4440	•	1/2 (0 5000)	M12	(0.4724)	Ś	3.38	0.94	•	0.44	0.3670	0.275
0.510	0.573		9/16 (0.5625)	M14	(0.5512)	ŝ	3.59	1.00	:	0.50	0.4290	0.322
0 573	0 635		5/c (0.6250)	M16	(0.6299)	ო	3.81	1.09		0.56	0.4800	0.360
0.07.0	0.709		¹¹ / ₁₆ (0.6875)	M18	(0.7087)	ო	4.03	1.09	:	0.63	0.5420	0.406
	0.760		3/, (0.7500)			ო	4.25	1.22		0.69	0.5900	0.442
0.760	0.823		^{13/16} (0.8125)	M20	(0.7874)	ю	4.47	1.22	•	0.69	0.6520	0.489
0 873	0 885		7/s (0.8750)	M22	(0.8661)	ę	4.69	1.34		0.75	0.6970	0.523
0.885	0.948	•	¹⁵ / ₁₆ (0.9375)	M24	(0.9449)	m	4.91	1.34	:	0.75	0.7600	0.570
0.948	1.010		1 (1.0000)	M25	(0.9843)	e	5.13	1.50	•	0.81	0.8000	0.600
GENER	AL NOTES:											

VENAL NUCES: Thread length, *l*, is based on a length of 12 pitches of the UNC thread series. Thread length, *l*, is a minimum value and has no tolerance. When thread length, *l*, is added to neck length, *l*, the total shall be no less than the minimum Table 2 thread length, *l*. Unless otherwise specified, all tolerances are in accordance with Table 2. For runout tolerances, see Table 6. For number of flutes see Table 3. E e e c e e e

Copyright ASME International Provided by IHS under license with ASME No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

TABLE 2A

Not for Resale

29

STD.ASME B94.9-ENGL 1999 🗰 0759670 0615523 T37 🚛

ASME B94.9-1999

TAPS: GROUND AND CUT THREADS

Blank Design 1

Blank Design 2

Blank Design 3

TABLE 2BSTANDARD TAP DIMENSIONS (SCREW THREAD INSERTS [STI]: MACHINE SCREW
AND FRACTIONAL SIZE, GROUND THREAD TAPS)

					Ta	ap Dimension	is, in.		Table 2
Nominal Size	Thi per	reads Inch	Blank Design	Overall Length,	Thread Length,	Square Length,	Shank Diameter,	Size of Square,	Blank Equivalent
(STI)	NC	NF	No.	L		h	<u>d</u> 1	а	(Reference)
1	64		1	1.81	0.50	0.19	0.1410	0.110	No. 3
2	56		1	1.88	0.56	0.19	0.1410	0.110	No. 4
	•••	64	1	1.88	0.56	0.19	0.1410	0.110	No. 4
3	48		1	1.94	0.63	0.19	0.1410	0.110	No. 5
		56	1	1. 9 4	0.63	0.1 9	0.1410	0.110	No. 5
4	40		1	2.00	0.69	0.19	0.1410	0.110	No. 6
	•••	48	1	2.00	0.69	0.1 9	0.1410	0.110	No. 6
5	40		1	2.13	0.75	0.25	0.1680	0.131	No. 8
6	32		1	2.38	0.88	0.25	0.1940	0.152	No. 10
		40	1	2.13	0.75	0.25	0.1680	0.131	No. 8
8	32		1	2.38	0.94	0.28	0.2200	0.165	No. 12
		36	1	2.38	0.94	0.28	0.2200	0.165	No. 12
10	24		2	2.50	1.00	0.31	0.2550	0.191	1/4
		32	2	2.50	1.00	0.31	0.2550	0.191	1/4
12	24		2	2.72	1.13	0.38	0.3180	0.238	⁵ /16
1/4	20	• • •	2	2.72	1.13	0.38	0.3180	0.238	5/16
		28	2	2.72	1.13	0.38	0.3180	0.238	⁵ / ₁₆
⁵ /16	18		2	2.94	1.25	0.44	0.3810	0.286	³ /8
		24	2	2.94	1.25	0.44	0.3810	0.286	3/8
³ /8	16		3	3.38	1.66	0.44	0.3670	0.275	1/2
-		24	3	3.16	1.44	0.41	0.3230	0.242	7/16
7/ ₁₆	14		3	3.59	1.66	0.50	0.4290	0.322	⁹ /16
		20	3	3.38	1.66	0.44	0.3670	0.275	1/2
1/2	13		3	3.81	1.8 1	0.56	0.4800	0.360	5/8
-		20	3	3.59	1.66	0.50	0.4290	0.322	⁹ /16
⁹ /16	12		3	4.03	1.81	0.63	0.5420	0.406	11/16
		18	3	3.81	1.81	0.56	0.4800	0.360	5/8
5/8	11		3	4.25	2.00	0.69	0.5900	0.442	3/4
, U		18	3	4.03	1.81	0.63	0.5420	0.406	11/16
3/4	10		3	4.69	2.22	0.75	0.6970	0.523	7/8
		16	3	4.47	2.00	0.69	0.6520	0.489	13/10

(continued)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

					Ta	p Dimension	s, in.		Table 2
Nominal Size	Thpe	reads r Inch	Blank Design	Overall Length,	Thread Length,	Square Length,	Shank Diameter,	Size of Square,	Blank Equivalent
(STI)	NC	NF	No.	Ľ	ĭ	I2	<i>d</i> ₁	่อ	(Reference)
7/8	9		3	5.13	2.50	0.81	0.8000	0.600	1
		14	3	5.13	2.50	0.81	0.8000	0.600	1
1	8		3	5.75	2.56	1.00	1.0210	0.766	11/4
		12	3	5.44	2.56	0.88	0.8960	0.672	11/4
		14 NS	3	5.44	2.56	0.88	0.8960	0.672	1 ¹ / ₈
$1\frac{1}{8}$	7		3	6.06	3.00	1.06	1.1080	0.831	1 ³ ⁄⁄2
0		12	3	5.75	2.56	1.00	1.0210	0.766	11/4
11/4	7		3	6.38	3.00	1.13	1.2330	0.925	11/2
	• • • •	12	3	6.06	3.00	1.06	1.1080	0.831	1 ³ / ₈
1 ³ /8	6		3	6.69	3.19	1.13	1.3050	0.979	1 ⁵ /2
Ū		12	3	6.38	3.00	1.13	1.2330	0.925	1 ¹ / ₂
11/2	6		3	7.00	3.19	1.25	1.4300	1.072	1 ³ /4
-		12	3	6.69	3.19	1.13	1.3050	0.979	15/8

TABLE 2B STANDARD TAP DIMENSIONS (SCREW THREAD INSERTS [STI]: MACHINE SCREW AND FRACTIONAL SIZE, GROUND THREAD TAPS) (CONT'D)

GENERAL NOTES:

(a) These taps are larger than nominal size to the extent that the internal thread they produce will accommodate a helical coil screw insert, which at final assembly will accept a screw thread of the normal size and pitch.

(b) For optional necks, refer to Table 2A using dimensions for equivalent blank sizes.

(c) Ground thread taps, STI sizes $\frac{5}{16}$ in. and smaller, have external center on thread end (may be removed on bottom taps). (d) Ground thread taps, STI sizes no. 10 through $\frac{5}{16}$ in., will have an external partial cone center on the shank end, with the

length of the cone center approximately ¼ of the diameter of shank.
(e) Ground thread taps, STI sizes larger than ⁵/₁₆ in., may have internal centers in both the thread and shank ends.

(f) For runout tolerances of tap elements, refer to Table 6 using dimensions for equivalent blank sizes.

(g) For number of flutes, refer to Table 3 using dimensions for equivalent blank sizes.

(h) For general dimension tolerances, refer to Table 2 using Table 2 equivalent blank size.

Copyright ASME International Copyright Assire international Provided by IHS under license with ASME CNo reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

TAPS: GROUND AND CUT THREADS

TABLE 2C STANDARD TAP DIMENSIONS (SCREW THREAD INSERTS [STI], METRIC SIZE TAPS)

					Та	p Dimensior	ns, in.		
Nominal Size (STI)	Thr Pite m	ead ch, m	Blank Design No.	Overall Length, L	Thread Length, /	Square Length, <i>I</i> 2	Shank Diameter, d ₁	Size of Square, a	Table 2 Blank Equivalent (Reference)
M2.2	0.45		1	1.88	0.56	0.19	0.1410	0.110	No. 4
M2.5	0.45		1	1.94	0.63	0.19	0.1410	0.110	No. 5
M3	0.5	• • •	1	2.00	0.69	0.19	0.1410	0.110	No. 6
M3.5	0.6		1	2.13	0.75	0.25	0.1680	0.131	No. 8
M4	0.7		1	2.38	0.88	0.25	0.1940	0.152	No. 10
M5	0.8		2	2.50	1.00	0.31	0.2550	0.191	1/4
M6	1		2	2.72	1.13	0.38	0.3180	0.238	⁵ ⁄16
M7	1		2	2.94	1.25	0.44	0.3810	0.286	³ /8
M8	1.25		2	2.94	1.25	0.44	0.3810	0.286	³ / ₈
	•••	1	2	2.94	1.25	0.44	0.3810	0.286	3/8
M10	1.5		3	3.38	1.66	0.44	0.3670	0.275	1/2
	1.5	1.25	3	3.38	1.66	0.44	0.3670	0.275	1/2
		1	3	3.16	1.44	0.41	0.3230	0.242	⁷ / ₁₆
M12	1.75		3	3.59	1.66	0.50	0.4290	0.322	⁹ ⁄ ₁₆
		1.5	3	3.59	1.66	0.50	0.4290	0.322	⁹ /16
		1.25	3	3.59	1.66	0.50	0.4290	0.322	⁹ / ₁₆
M14	2		3	4.03	1.81	0.63	0.5420	0.406	¹¹ / ₁₆
	•••	1.5	3	3.81	1.81	0.56	0.4800	0.360	5/8
M16	2		3	4.25	2.00	0.69	0.5900	0.442	3/4
	•••	1.5	3	4.03	1.81	0.63	0.5420	0.406	11/16
M18	2.5		3	4.69	2.22	0.75	0.6970	0.523	7/8
	• • •	2	3	4.47	2.00	0.69	0.6520	0.489	13/16
		1.5	3	4.47	2.00	0.69	0.6520	0.489	13/16
M20	2.5		3	4.91	2.22	0.75	0.7600	0.570	15/16
		2	3	4.91	2.22	0.75	0.7600	0.570	15/16
	•••	1.5	3	4.69	2.22	0.75	0.6970	0.523	⁷ / ₈
M22	2.5		3	5.13	2.50	0.81	0.8000	0.600	1
		2	3	5.13	2.50	0.81	0.8000	0.600	1
		1.5	3	4.91	2.22	0.75	0.7600	0.570	¹⁵ / ₁₆
M24	3		3	5.44	2.56	0.88	0.8960	0.672	1 ¹ / ₈
		2	3	5.13	2.50	0.88	0.8960	0.672	1 ¹ / ₁₆
M27	3		3	5.75	2.56	1.00	1.0210	0.766	11/4
	• • •	2	3	5.44	2.56	0.88	0.8960	0.672	11/8

(continued)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

Not for Resale

32

TABLE 2C STANDARD TAP DIMENSIONS (SCREW THREAD INSERTS [STI], METRIC SIZE TAPS) (CONT'D)

_					Тај	p Dimension	ns, in.		
Nominal Size (STI)	Thi Pit m	read ch, nm	Blank Design No.	Overall Length, L	Thread Length, I	Square Length, <i>l</i> 2	Shank Diameter, d ₁	Size of Square, <i>a</i>	Table 2 Blank Equivalent (Reference)
 M30	3.5		3	6.06	3.00	1.06	1.1080	0.831	1 ³ / ₈
		2	3	5.75	2.56	1.00	1.0210	0.766	11/4
M33	3.5		3	6.38	3.00	1.13	1.2330	0.925	11/2
	•••	2	3	6.06	3.00	1.06	1.1080	0.831	1 ³ ⁄ ₈
M36	4		3	6.69	3.19	1.13	1.3050	0.979	1 ⁵ ⁄8
		3	3	6.69	3.19	1.13	1.3050	0.979	15/8
		2	3	6.69	3.19	1.13	1.3050	0.979	1 ⁵ / ₈
M39	4		3	7.00	3.19	1.25	1.4300	1.072	1 ³ ⁄4
		3	3	7.00	3.19	1.25	1.4300	1.072	13/4
		2	3	7.00	3.19	1.25	1.4300	1.072	13/4

GENERAL NOTES:

(a) These taps are larger than nominal size to the extent that the internal thread they produce will accommodate a helical coil screw insert, which at final assembly will accept a screw thread of the normal size and pitch.

(b) For optional necks, refer to Table 2 using dimensions for equivalent blank sizes.

(c) Ground thread taps, STI sizes M8 and smaller, have external center on thread end may be removed on bottom taps.

(d) Ground thread taps, STI sizes no. M5 through M8, will have an external partial cone center on the shank end with the length of the cone center approximately $\frac{1}{2}$ of the diameter of shank.

(e) Ground thread taps, STI sizes larger than M8, will have internal centers in both the thread and shank ends.

(f) For runout tolerances of tap elements, refer to Table 6 using dimensions for equivalent blank sizes.

(g) For number of flutes, refer to Table 3 using dimensions for equivalent blank sizes.

(h) For general dimension tolerances, refer to Table 2 using Table 2 equivalent blank size.

STD.ASME 894.9-ENGL 1999 📟 0759670 0615527 682 📟

ASME B94.9-1999

TAPS: GROUND AND CUT THREADS

		Nominal	Size							Number of	Flutes		
		ž	etric		Pl/Pitch		Stra Flu	ight tes	Spi Poi	ral nt	Spiral Point	Rea. Spiral	Fast Spiral
Machine Screw	Fractional	E E	. <u>.</u>	NC NC	NP NF	E E	Standard	Optional	Standard	Optional	Only (Standard)	Flute (Standard)	Flute (Standard)
0 (0.0600)		M1.6	(0.0630)	:	80	0.35	2	-	2	:		÷	÷
1 (0.0730)				64	72	:	2		2	:	:	:	:
2 (0.0860)	:	M2	(0.0787)	56	64	0.4	ო	2	2	:	:	•	•
3 (0.0990)		M2.5	(0.0984)	48	56	0.45	ო	2	2		•	:	7
4 (0.1120)	 			6	48		ю	2	2	:	2	2	2
5 (0.1250)		M3	(0.1181)	40	44	0.5	ო	2	2		2	2	2
6 (0.1380)	:	M3.5	(0.1378)	32	40	0.6	e	2	2	:	2	2	2
8 (0.1640)		M4	(0.1575)	32	36	0.7	4	2⁄3	2	:	2	0	ო (
10 (0.1900)	• •	M4.5	(0.1772)	24	32	0.75	4	² /3	2	:	7	N	ო
		M5	(0.1969)	:		0.8	4	2/ ₃	2	:	7	2	e
12 (0.2160)	 - -		•	24	28	:	4	2/3	2	:	2	2	m
•	1⁄4 (0.2500)	M6	(0.2362)	20	28	1.0	4	2/3	2	ო	2	(3 optional)	m
		2.00	10 27661	18	70	0	V	2/5	~	er.	~	ę	т
•	5/16 (0.3125)	M8	(0.3150)	<u>2</u> 82	24	1.25	1	2/2 2/3	5	ით	5	. w	m
: :	³ / ₈ (0.3750)	M10	(0.3937)	16	24	1.5	4	'n	e	:	e	e	ო
				7	00		~	ę	c		ſ	er,	c.
:	716 (0.4375)	 M12	(0 4724)	t m	2 2	1.75	1 4	ა ო	იო		, .	, :	. m
: :	₇₁₆ (0.5625)	M14	(0.5512)	12	18	2.0	4	, <u>:</u>	ŝ	÷	:		:
				ţ	ç	Ċ	•		c				
:	78 (0.6250)	01W	(0.6233)		<u>n</u> d	7.0	7 t	÷	ი ო	•		:	•
	/0000/01/ ħ/	M20	(0.7874)	2:	2 :	2.5	4	: :) : :	: :			:
	ſ			(;		•						
:	′/ ₈ (0.8750)			ກ	14	: c - c	4 4	:	:	:	:	•	
÷		M24	(U.3443)	: : :	: ;	о.c	, t	:	:		•	•	
:	(0000.1) 1	:	:	o	1	:	t	:	•	:	•	•	
:	1 ¹ / ₈ (1.1250)	:	:	7	12	:	4	:	:	:	•	•	:
:	:	M30	(1.1811)	:	:	3.5	4	:	:	:	:	÷	:
:	1 ¹ /4 (1.2500)	:	÷	7	:	:	4	:	:	:	:	:	:
					12		ų						
:	1 ³ /2 (1 3750)	:		C	2	-	> ব						
	(00 00 1) B/ 1	-			12		9			:			:
													(continued)

34

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

		Nomina	al Size							Number of	Flutes		
			Action 1		hotid/ld	-	Stra	ight tes	Spi	ral nt			-
Machine Screw	Fractional			NC NC	UNF NF	E	Standard	Optional	Standard	Optional	Spiral Point Only (Standard)	Heg. Spiral Flute (Standard)	Fast Spiral Flute (Standard)
		M36	(1.4173)			4.0	4					:	
	1 ¹ / ₂ (1.5000)			9	:	•	4	•	:	• •	: :	:	:
		•		:	12	:	9	:		:	:	:	:
•	1 ³ ⁄4 (1.7500)	:	:	ß	:	:	9				-		:
:	2 (2.0000)	:	:	41/2	:	:	9	•	:		••••	• • •	

e C C D a

pulley taps see fable 4. taper pipe see Table 5. straight pipe taps see Table 5. STI taps, use number of flutes for blank size equivalent on Table 2. optional flutes see section 5, no. 043.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

35

TAPS: GROUND AND CUT THREADS

ASME B94.9-1999

TAPS: GROUND AND CUT THREADS

TABLE 4 PULLEY TAPS, FRACTIONAL SIZE (HIGH-SPEED STEEL, GROUND THREAD)

				Ger	neral Dim	ensions			
Nominal						Тар	Dimensions, in.		
Fractional Diameter, in.	Threads per Inch (NC, UNC)	Number of Flutes	Overall Length, <i>L</i>	Thread Length, /	Neck Length, <i>I</i> 1	Square Length, <i>l</i> 2	Length of Shank Close Tolerance Section, <i>I</i> 4 [Note (1)]	Shank Diameter, <i>d</i> 1	Size of Square, a [Note (2)]
¹ ⁄ ₄ (0.2500)	20	4	6, 8	1.00	0.38	0.31	1.50	0.2550	0.191
⁵ / ₁₆ (0.3125)	18	4	6, 8	1.13	0.38	0.38	1.56	0.3180	0.238
³ / ₈ (0.3750)	16	4	6, 8, 10	1.25	0.38	0.44	1.63	0.3810	0.286
⁷ / ₁₆ (0.4375)	14	4	6, 8	1.44	0.44	0.50	1.69	0.4440	0.333
1/2 (0.5000)	13	4	6, 8, 10, 12	1.66	0.50	0.56	1.69	0.5070	0.380
⁵ ⁄ ₈ (0.6250)	11	4	6, 8, 10, 12	1.81	0.63	0.69	2.00	0.6330	0.475
³ / ₄ (0.7500)	10	4	10, 12	2.0()	0.75	0.75	2.25	0.7590	0.569
					Tolerand	ces			
	F1				0: D		D'	_	T - 1

Element	Size Range	Direction	Tolerance
Overall length, L	$\frac{1}{4}$ to $\frac{3}{4}$ (0.25 to 0.75) inclusive	Plus or minus	0.06
Thread length, /	$\frac{1}{4}$ to $\frac{3}{4}$ (0.25 to 0.75) inclusive	Plus or minus	0.06
Neck length, l ₁	$\frac{1}{4}$ to $\frac{3}{2}$ (0.25 to 0.75) inclusive	[Note (4)]	[Note (4)]
Square length, l ₂	$\frac{1}{4}$ to $\frac{3}{4}$ (0.25 to 0.75) inclusive	Plus or minus	0.03
Length of close tolerance shank, I ₄	$\frac{1}{4}$ to $\frac{3}{4}$ (0.25 to 0.75) inclusive	[Note (1)]	[Note (1)]
Shank diameter, d ₁ [Note (3)]	$\frac{1}{4}$ to $\frac{3}{4}$ (0.25 to 0.75) inclusive	Minus	0.0050
Size of square, a [Note (2)]	$\frac{1}{4}$ to $\frac{1}{2}$ (0.25 to 0.50) inclusive	Minus	0.004
	⁵ ⁄ ₈ to ³ ∕ ₄ (0.625 to 0.75) inclusive	Minus	0.006

GENERAL NOTES:

(a) These taps are standard with plug chamfer in H3 limit only.

(b) All dimensions are given in inches.

(c) These taps have internal center in the thread end.

(d) For standard thread limits see Table 10A

(e) For runout tolerances of tap elements see Table 6.

(f) For chamfer dimensions, see Table 16.

NOTES:

(1) Length of close tolerance shank, I4, is a minimum length that is held to runout tolerances per Table 6.

(2) Size of square, a, is equal to $0.75d_1$ to the neares 0.001 in.

(3) Shank diameter, d_1 , is approximately the same as the maximum major diameter for that size.

(4) Neck length, l_1 , is optional with manufacturer.

ASME B94.9-1999

37

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

TAPS: GROUND AND CUT THREADS

STD.ASME 894.9-ENGL 1999 🗰 0759670 0615531 003 🗰

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

ASME B94.9-1999

TABLE 6 RUNOUT AND LOCATION TOLERANCE OF TAP ELEMENTS

	Range S	izes (Inclusiv	ve)	Total F FIN	Runout, I, in.	
	Fractional Machine Screw	Metric	Pipe, in.	Cut Thread	Ground Thread	Location, in.
Shank, d ₁	# 0 ⁻⁵ / ₁₆ ¹¹ / ₃₂ -4	M1.6-M8 M10-M100	1/ ₁₆ 1/ ₈ -4	0.0060 0.0080	0.0010 0.0016	
Major diameter, <i>d</i> a	# 0 ⁻⁵ / ₁₆ ¹¹ / ₃₂ -4	M1.6–M8 M10–M100	¹ / ₁₆ 1/ ₈ -4	0.0050 0.0080	0.0010 0.0016	
Pitch diameter, <i>d</i> ₂ (at first full thread)	# 0 ⁻⁵ / ₁₆ ¹¹ / ₃₂ -4	M1.6-M8 M10-M100	¹ / ₁₆ ¹ / ₈ –4	0.0050 0.0080	0.0010 0.0016	
Chamfer, <i>c</i> [Note (1)]	# 0- ¹ / ₂ ¹⁷ / ₃₂ -4	M1.6–M12 M14–M100	¹ / ₁₆ - ¹ / ₈ ¹ / ₄ -4	0.0040 0.0060	0.0020 0.0030	
Square, <i>a</i> (at central point)	# 0- ¹ / ₂ ¹⁷ / ₃₂ -4	M1.6—M12 M14–M100	¹ / ₁₆ - ¹ / ₈ ¹ / ₄ -4			0.0060 0.0080

NOTE:

(1) Chamfer should preferably be inspected by light projection to avoid errors due to indicator contact points dropping into the thread groove.

TAPS: GROUND AND CUT THREADS

TABLE 7 TAP THREAD LIMITS AND TOLERANCES, FORMULAS FOR **UNIFIED INCH SCREW THREADS (GROUND THREAD)**

Formulas

Max. major diameter = Basic plus A Min. major diameter = Max. minus B Max. pitch diameter = Min. plus DMin. pitch diameter = Basic plus C

In the above formulas:

A = Constant to add = 0.130P for all pitches

B = Major diameter tolerance = 0.087P for 48 through 80 TPI

= 0.076P for 36 through 47 TPI

= 0.065P for 4 through 35 TPI

C = Amount over basic for minimum pitch diameter

D = Pitch diameter tolerance

				С			D	I	
Threads per Inch	A	В	To ⁵ / ₈ in., Inclusive	Over ⁵ / ₈ in. to 2 ¹ / ₂ in., Inclusive	Over 2 ¹ / ₂ in.	To 1 in., Inclusive	Over 1 in. to 1 ¹ / ₂ in., Inclusive	Over 1 ¹ / ₂ in. to 2 ¹ / ₂ in., Inclusive	Over $2^1/_2$ in.
80	0.0016	0.0011	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
72	0.0018	0.0012	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
64	0.0020	0.0014	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
56	0.0023	0.0016	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
48	0.0027	0.0018	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
44	0.0030	0.0017	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
40	0.0032	0.0019	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
36	0.0036	0.0021	0.0005	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
32	0.0041	0.0020	0.0010	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
28	0.0046	0.0023	0.0010	0.0010	0.0015	0.0005	0.0010	0.0010	0.0015
24	0.0054	0.0027	0.0010	0.0010	0.0015	0.0005	0.0010	0.0015	0.0015
20	0.0065	0.0032	0.0010	0.0010	0.0015	0.0005	0.0010	0.0015	0.0015
18	0.0072	0.0036	0.0010	0.0010	0.0015	0.0005	0.0010	0.0015	0.0015
16	0.0081	0.0041	0.0010	0.0010	0.0015	0.0005	0.0010	0.0015	0.0020
14	0.0093	0.0046	0.0010	0.0015	0.0015	0.0005	0.0010	0.0015	0.0020
13	0.0100	0.0050	0.0010	0.0015	0.0015	0.0005	0.0010	0.0015	0.0020
12	0.0108	0.0054	0.0010	0.0015	0.0015	0.0005	0.0010	0.0015	0.0020
11	0.0118	0.0059	0.0010	0.0015	0.0020	0.0005	0.0010	0.0015	0.0020
10	0.0130	0.0065		0.0015	0.0020	0.0005	0.0010	0.0015	0.0020
9	0.0144	0.0072		0.0015	0.0020	0.0005	0.0010	0.0015	0.0020
8	0.0162	0.0081	• • •	0.0015	0.0020	0.0005	0.0010	0.0015	0.0020
7	0.0186	0.0093		0.0015	0.0020	0.0010	0.0010	0.0020	0.0025
6	0.0217	0.0108		0.0015	0.0020	0.0010	0.0010	0.0020	0.0025
5½	0.0236	0.0118	• • •	0.0015	0.0020	0.0010	0.0015	0.0020	0.0025
5	0.0260	0.0130		0.0015	0.0020	0.0010	0.0015	0.0020	0.0025
4½	0.0289	0.0144		0.0015	0.0020	0.0010	0.0015	0.0020	0.0025
4	0.0325	0.0162		0.0015	0.0020	0.0010	0.0015	0.0020	0.0025

(continued)

40

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

STD.ASME B94.9-ENGL 1999 🗰 0759670 0615534 812 📾

TAPS: GROUND AND CUT THREADS

ASME B94.9-1999

TABLE 7TAP THREAD LIMITS AND TOLERANCES, FORMULAS FOR
UNIFIED INCH SCREW THREADS (GROUND THREAD) (CONT'D)

GENERAL NOTES:

- (a) Dimensions are given in inches.
- (b) The tables and formulas are used in determining the limits and tolerances for ground thread taps having a thread lead angle not in excess of 5 deg, unless otherwise specified.
- (c) When the tap major diameter must be determined from a specified tap pitch diameter, the maximum major diameter equals the minimum specified pitch diameter minus Constant *C*, plus 0.04951904*P* Constant *A*.
- (d) For intermediate pitches use value for next coarser pitch for C and D, but use formulas for A and B.

Lead Tolerance

A maximum lead deviation of ±0.0005 in. within any two threads not farther apart than 1 in. is permitted.

Angle	Tolerance
Threads per Inch	Deviation in Half Angle
4 to $5\frac{1}{2}$, inclusive	±0 deg 20 min
6 to 9, inclusive	±0 deg 25 min
10 to 80, inclusive	±0 deg 30 min

TAPS: GROUND AND CUT THREADS

TABLE 8TAP THREAD LIMITS AND TOLERANCES,FORMULAS FOR METRIC THREADS (GROUND THREAD)

Formulas

Min. major diameter = Basic plus WMax. major diameter = Min. plus X Max. pitch diameter = Basic plus YMin. pitch diameter = Max. minus Z

W = Constant to add to basic r ajor diameter (W = 0.080P)

X = Major diameter tolerance

Y = Amount over basic for maximum pitch diameter

Z = Pitch diameter

				Ŷ				Z		
P			M1.6	Over M6.3 to	Over M25		M1.6 to	Over M6.3 to	Over M25 to	<u> </u>
Pitch, mm	W (0.08 <i>P</i>)	x	M6.3, Inclusive	M25, Inclusive	M90, Inclusive	Over M90	M6.3, Inclusive	M25, Inclusive	M90, Inclusive	Over M90
0.3	0.024	0.025	0.039	0.039	0.052	0.052	0.015	0.015	0.020	0.020
0.35	0.028	0.025	0.039	0.039	0.052	0.052	0.015	0.015	0.020	0.020
0.4	0.032	0.025	0.039	0.052	0.052	0.052	0.015	0.015	0.020	0.025
0.45	0.036	0.025	0.039	0.052	0.052	0.052	0.015	0.020	0.020	0.025
0.5	0.040	0.025	0.039	0.052	0.052	0.065	0.015	0.020	0.025	0.025
0.6	0.048	0.025	0.052	0.052	0.065	0.065	0.020	0.020	0.025	0.025
0.7	0.056	0.041	0.052	0.052	0.065	0.065	0.020	0.020	0.025	0.025
0.75	0.060	0.041	0.052	0.065	0.065	0.078	0.020	0.025	0.025	0.031
0.8	0.064	0.041	0.052	0.065	0.065	0.078	0.020	0.025	0.025	0.031
0.9	0.072	0.041	0.052	0.065	0.065	0.078	0.020	0.025	0.025	0.031
1	0.080	0.041	0.065	0.065	0.078	0.025	0.025	0.025	0.031	0.031
1.25	0.100	0.064	0.065	0.065	0.078	0.091	0.025	0.031	0.031	0.041
1.5	0.120	0.064	0.065	0.078	0.078	0.091	0.025	0.031	0.031	0.041
1.75	0.140	0.064		0.078	0.091	0.104		0.031	0.041	0.041
2	0.160	0.064		0.091	0.091	0.104		0.041	0.041	0.041
2.5	0.200	0.063	• • •	0.091	0.104	0.117		0.041	0.041	0.052
3	0.240	0.100		0.104	0.104	0.130		0.041	0.052	0.052
3.5	0.280	0.100	· · ·	0.104	0.117	0.130		0.041	0.052	0.052
4	0.320	0.100		0.104	0.117	0.143		0.052	0.052	0.064
4.5	0.360	0.100	• • •		0.130	0.143		0.052	0.052	0.064
5	0.400	0.100			0.130	0.156			0.064	0.064
5.5	0.440	0.100	• • •		0.143	0.156			0.064	0.064
6	0.480	0.100	• • •		0.143	0.156			0.064	0.064

GENERAL NOTES:

(a) Dimensions are given in millimeters.

(b) The tables and formulas are used in determining the limits and tolerances for ground thread metric taps having a thread lead angle not in excess of 5 deg, unless otherwise specified. They apply only to metric threads having a 60-deg form with a ^p/₈ flat at the major diameter of the basic thread form. All calculations for metric taps are done using millimeter values as shown. When inch values are needed, they are translated from the three-place millimeter tap diameters only after calculations are complete.

(c) When the tap major diameter must be determined from a specified tap pitch diameter, the minimum major diameter equals the maximum specified tap pitch diameter minus Constant Y, plus 0.64951904P plus Constant W.

(d) For intermediate pitches use value for next coarser pitch.

Lead Tolerance

A maximum lead deviation of ± 0.013 mm within any two threads not farther apart than 25

		· · · ·	
mm		normittod	
	1.5	DEULUUEL	
		portitiou	

Angle To	lerance
Pitch, mm	Deviation in Half Angles
Over 0.25 to 2.5, inclusive	±0 deg 30 min
Over 2.5 to 4, inclusive	±0 deg 25 min
Over 4 to 6, inclusive	±0 deg 20 min

TABLE 9 TAP THREAD LIMITS AND TOLERANCES, FORMULAS FOR UNIFIED INCH SCREW THREADS (CUT THREAD)

Formulas

Min. major diameter = Basic plus (B + C)Max. major diameter = Min. plus A Min. pitch diameter = Basic plus BMax. pitch diameter = Min. plus D

A = Major diameter tolerance

B = Amount minimum pitch diameter is over basic

C = A constant to add:

20% of the theoretical truncation for 2 to $5 \ensuremath{^{1}\!\!/_{2}}$ threads per inch

25% for 6 to 80 threads per inch

D = Pitch diameter tolerance

	Va	lues for <i>A, B,</i> an	d D		
			В		D
Diameter of Tap, in.	A	36 or More Threads per Inch	34 or Less Threads per Inch	Coarser than N.F.	N.F. and Finer [Note (1)]
0 to 0.099, inclusive	0.0015	0.0002	0.0005	0.0010	0.0010
0.100 to 0.249, inclusive	0.0020	0.0002	0.0005	0.0015	0.0015
$\frac{1}{4}$ to $\frac{3}{8}$, inclusive	0.0025	0.0005	0.0005	0.0020	0.0015
Over $\frac{3}{8}$ to $\frac{5}{8}$, inclusive	0.0030	0.0005	0.0005	0.0025	0.0020
Over $\frac{5}{8}$ to $\frac{3}{4}$, inclusive	0.0040	0.0005	0.0005	0.0030	0.0025
Over $\frac{3}{4}$ to 1, inclusive	0.0040	0.0010	0.0010	0.0030	0.0025
Over 1 to $1\frac{1}{2}$, inclusive	0.0045	0.0010	0.0010	0.0035	0.0030
Over $1\frac{1}{2}$ to 2, inclusive	0.0055	0.0015	0.0015	0.0040	0.0030
Over 2 to $2\frac{1}{4}$, inclusive	0.0060	0.0015	0.0015	0.0045	0.0035
Over $2\frac{1}{4}$ to $2\frac{1}{2}$, inclusive	0.0060	0.0020	0.0020	0.0045	0.0035
Over $2\frac{1}{2}$ to 3, inclusive	0.0070	0.0020	0.0020	0.0050	0.0035
Over 3	0.0070	0.0025	0.0025	0.0055	0.0045

_			Value	s for C			
Threads per Inch	Constant	Threads per Inch	Constant	Threads per Inch	Constant	Threads per Inch	Constant
2	0.0217	7	0.0077	18	0.0030	36	0.0015
21⁄2	0.0173	8	0.0068	20	0.0027	40	0.0014
3	0.0144	9	0.0060	22	0.0025	48	0.0011
$3\frac{1}{2}$	0.0124	10	0.0054	24	0.0023	50	0.0011
4	0.0108	11	0.0049	26	0.0021	56	0.0010
4 ¹ / ₂	0.0096	12	0.0045	27	0.0020	60	0.0009
5	0.0087	13	0.0042	28	0.0019	64	0.0008
51/2	0.0079	14	0.0039	30	0.0018	72	0.0008
6	0.0090	16	0.0034	32	0.0017	80	0.007

(continued)

TABLE 9 TAP THREAD LIMITS AND TOLERANCES, FORMULAS FOR UNIFIED INCH SCREW THREADS (CUT THREAD) (CONT'D)

GENERAL NOTES:

(a) Dimensions are given in inches.

(b) The tables and formulas are used in determining the limits and tolerances for cut thread taps having special diameter, special pitch, or both.

(c) For intermediate pitches use constant for next coarser pitch.

NOTE:

(1) Taps over $1\frac{1}{2}$ in. with 10 or more threads per inch have tolerances for N.F. and finer.

Lead	To	erance	

A maximum lead deviation of ±0.003 in. in 1 in. of thread is permitted.

	Angle Tolerance	
Threads per Inch	Deviation in Half Angle	Deviation in Full Angle
4 and coarser	±0 deg 30 min	0 deg 45 min
$4\frac{1}{2}$ to $5\frac{1}{2}$, inclusive	±0 deg 35 min	0 deg 53 min
6 to 9, inclusive	±0 deg 40 min	0 deg 60 min
10 to 28, inclusive	±0 deg 45 min	0 deg 68 min
30 and finer	±0 deg 60 min	0 deg 90 min

44

ASME B94.9-1999

											אחאחר											
	F	hreads	s																			
		la ch	-	Major Di	ametei	L							Pi	ich Dia	meter							
Cite	UN N	L L				 	_ _	11 Limit	I	12 Limit	H3 Li	imit	H4 Lin	nīt	H5 L	imit	Ξž	b Limit ote (1)]	100 Noi	Limit te (2)]	H10 [Not	Limit e (3)]
in.	UNC	UNF	NS Ba	isic Mii	n. Ma	ıx. Baş	sic Mi	in. Max	Ξ 	n. Max.	Min.	Max.	Min.	Jax.	Min.	Max.	۲. E	Max	Min.	Max.	Min.	Max.
0		80 72	0.0	600 0.06 730 0.07 730 0.07	36 0.07 36 0.07 36 0.07	516 0.05 50 0.06 48 0.06	519 0.0 529 0.00	519 0.05 529 0.06 340 0.06	24 0.05 34 0.06 45 0.06	524 0.0529 534 0.0639 545 0.0650	:::		:::					:::	:::	:::	:::	
0 0 0	56 48	64	0.0	860 0.08 860 0.08 990 0.09	167 0.06 166 0.08 199 0.10	883 0.07 880 0.07 117 0.06	744 0.0 59	744 0.07	49 0.07 0.07 0.08	 49 0.0754 64 0.0769 860 0.0865 	· · · · · · · ·		: : :	· · · · · · ·		· · · · · · · · ·		· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·
ω44	40.	56	0.0 36 0.1	990 0.09 0.11 120 0.11	97 0.10 34 0.11 35 0.11	013 0.05 53 0.09 56 0.09	374 0.01 158 0.05 140 0.05	374 0.08 358 0.09(340 0.09	79 0.08 53 0.09 45 0.09	879 0.0884 963 0.0968 145 0.0950	· · · · · · · ·			: : :		0.0983 (4 0.0965 (4		· · · · · · ·	· · · · · · · ·	· · · · · · ·	: : :	: : : : : :
4 ሌ ሌ	. 4	48 - 48 - 48		120 0.11 250 0.12 250 0.12	29 0.11 64 0.12 63 0.12	47 0.05 83 0.10 80 0.11	885 0.09 188 0.1(02	385 0.099 388 0.109	90 0.05 93 0.10 0.11	190 0.0995 193 0.1098 07 0.1112	· · · · · · ·	· · · · · ·	· · · · · ·	::::	.1005 (4) .1108 (4) .1122 (4)	0.1010 (4 0.1113 (4 0.1127 (4			· · · · · · · ·			
ဖပ္က	32 32	40	0.1 0.1	380 0.14 380 0.13 640 0.16	01 0.14 94 0.14 61 0.16	121 0.11 113 0.12 181 0.14	77 0.1 18 0.12 37 0.12	177 0.111 218 0.122 137 0.144	32 0.11 23 0.12 12 0.14	82 0.1187 23 0.1228 42 0.1447	0.1187 (0.1192 0.1452	· · · · · · ·		.1197 (1) .1238 (1) .1457 (1)	0.1202 (1 0.1243 (1 0.1462 (1		· · · · · · ·	0.1207 0.1467	0.1212	0.1222 0.1482	0.1227 0.1487
8 0 10 10	24	36 	0.1 0.1	640 0.16 900 0.19 900 0.19	55 0.16 27 0.19 21 0.19	376 0.14 154 0.16 141 0.16	60 29 0.16 97 0.16	329 0.163 397 0.170	0.14 34 0.16 32 0.17	.65 0.1470 334 0.1639 02 0.1707	0.1639 (0.1707 (0.1644 0 0.1712 0		0 1649 1717	.1480 (1) · · ·	0.1485 (1 · · ·	0.165 0.172	4 0.165 2 0.172	9 0.1659 0.1727	0.1664	 0.1742	· · · · · · 0.1747
12	24		0.2	160 0.21 160 0.21	87 0.22 83 0.22	14 0.18 06 0.19	583 583 58	· · ·	: :	· · ·	0.1899 (0.1938 (0.1904 0 0.1943 0	.1904 0. .1943 0.	1909 1948	 	: : : : : :	0.191 0.195	4 0.191		: : : :	::	: :
GEN (a) L (c) F	ERAL imits fot all or cald	NOTE5 listed i styles culatio	S: in above of taps in of lim	e table a are ava iits othel	ire the ilable v r than 1	most c vith all those li	ommol límits sted, s	nly usec listed. ee form	in inc ulas a	dustry. nd Table 7	~											
(1) NOT (2) NOT (3) NOT (4) NOT	ES: Ainimu Ainimu Ainimu Jinimu	and m and m and m and	d maxin d maxin d maxin d maxin	num ma num ma num maj num maj	jor diar jor diar jor diar or diar	meters neters neters neters	are 0.0 are 0.0 are 0.0 are 0.0	010 larç 020 larç 035 larg 015 larg	ler tha ler tha ler tha er tha	n shown. n shown. n shown. n shown.												

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

45

TABLE 10A TAP THREAD LIMITS: FRACTIONAL SIZES, GROUND THREAD (UNIFIED AND AMERICAN NATIONAL THREAD FORMS, etannard thread I imits)

ASME B94.9-1999

Threads Preside Miler Diameter Miler Diameter Miler Diameter Miler Diameter Noise Diameter Miler Diameter Noise Diameter Miler Diameter<										5				ן נ ן									
Inch Mistor Diameter Prech Diameter </th <th></th> <th>Thr</th> <th>eads er</th> <th></th> <th>i</th> <th>i</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Thr	eads er												i	i							
NC NFL HT Limit HT Lim		<u>ا</u> <u>ـ</u>	ч	2	lajor Dia	ameter									Pitch	Diamete				5			
Wite Wite Mite Mite <th< th=""><th></th><th>- ب</th><th>ų</th><th></th><th></th><th></th><th></th><th>H</th><th>imit</th><th>H2 Li</th><th>mit</th><th>H3 Lir</th><th>mit</th><th>H4 Lir</th><th>nit</th><th>H5</th><th>Limit</th><th>H6 LI [Note</th><th>11)]</th><th>H/ L</th><th>Imi</th><th>Note</th><th>[[]]</th></th<>		- ب	ų					H	imit	H2 Li	mit	H3 Lir	mit	H4 Lir	nit	H5	Limit	H6 LI [Note	11)]	H/ L	Imi	Note	[[]]
28 0.2500 0.2553 0.2784 0.2784 0.2786 0.2774 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2786 0.2774 0.2784 0.2284	- 5	ر ۲	L L	NS Bas	sic Min	. Max.	Basic	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.
18 10<	19	0		0.25	500 0.25	32 0.256	5 0.2175	5 0.2175	0.2180	0.2180 (0.2185 0	1.2185 0	0.2190	- 0		1.2195 (1)	0.2200 (1)	:	:	:	:	:	÷
24 0.3750 0.3779 0.2854 0.2854 0.2855 0.2855 0.2855 0.2856 0.2856 0.2856 0.2856 0.2855 0.2856 0.2856 0.2856 0.2856 0.2856 0.2856 0.2856 0.2856 0.2866 0.2866 0.2864 0.3494 0.2484 0.3484 0	. *	: 00	28	0.25	500 0.25. 125 0.316	23 0.254 31 0.319	6 0.2268 7 0.2764	3 0.2268 1 0.2764	0.2273	0.2273 (0.2769 (0.2278 C 0.2774 0	0.2278 0 0.2774 0).2283 0).2779	0.2283 0	0	2784 (1)	0.2789 (1)	: :	: :).2794 (3)	0.2799 (3)	: :	: :
16 0.3750(0.377)(0.3844)(0.3874)(0.3874)(0.3846)(0.3846)(0.3846)(0.3846)(0.3846)(0.3846)(0.3846)(0.3844)(0.3846)(0.3844)(•	2	24	0.31	125 0.31	52 0.317	9 0.2854	10.2854	0.2859	0.2859 (0.2864 0	.2864 0	.2869 0	28690	.2874			-	:	0.2884 (3)	0.2889 (3)	:	÷
14 0.4375[0.4428]0.3911 0.3931[0.3921]0.3921 0.3931[0.3921]0.3926 0.3931[1] 0.3933[1] 0.3933[1] 0.3933[1] 0.3933[1] 0.3933[0.3953]0.3953 20 0.05570[0.5570]0.5770[0.5570]0.5770[0.4575]0.4570[0.4560]0.4650 0.4460[0.4656]0.4550[0.4550[0.4550]0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550]0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550]0.4550[0.4550[0.4550[0.4550]0.4550[0.4500]0.4550[0.4500]0.4550[0.4500]0.4550[0.4500]0.4550[0.4500]0.4550[0.4550[0.4550[0.4550[0.4550]0.4550[0.4500]0.4550[0.4550]0.4550[0.4500]0.4550[0.4550]	· ·	: 16	24	0.37	750 0.37	90 0.383 77 0.380	1 0.334 4 0.3475	4 0.3344 9 0.3479	0.3349	0.3349	0.3354 C).3354 C).3489 0).3359).3494 0		0).3364 (1, 	0.3369 (1)	: :	::	0.3509 (3)	0.3514 (3)	: :	: :
20 0.6000 5032 0.5659 0.573 0.5084 0.4775 0.4875 0.4875 0.4875 0.4875 0.4858 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.4880 0.5294 0.5209 0.5104 (1) 0.5700 (1) 1.1 0.5134 (1) 0.5238 (1) 1.1 0.5234 (1) 0.5238 (1) 0.5298 (1) 0.5298 (1) 0.5298 (1) 0.5298 (1) 0.5599 (1) 0.5999 (1) 0.599 (1) 0.599 (1) 0.599 (1) 0.5999		4 : 0	50	0.45	375 0.44 375 0.44	22 0.446 07 0.444 50 0.510	8 0.391' 0 0.405(0 0.450(0 4505	0.3916	0.3921 0.3921 0 0.1010	0.3921 C 0.4060 0 1.4510 0).3926).4065).4515	::	<u> </u>	0.3931 (1 0.4070 (1 0.4520 (1	0.3936 (1) 0.4075 (1) 0.4525 (1)	· · · ·	::::	:::	: : :	0.3946 0.4085 0.4535	0.3951 0.4090 0.4540
11 0.5550 0.5570 0.5689 0.5680 0.5680 0.5686 0.5694 0.5694 0.5689 0.5694 0.5693 0.5689 0.5694 0.5693		: 12 :	18	<u>0.5(</u> <u>0.5(</u> <u>0.5(</u>	000 0.50 625 0.56 625 0.56	32 0.506 79 0.573 61 0.569	5 0.467! 3 0.508 [,] 7 0.526 [,]	5 0.4675 4 · · ·	0.4680	0.4680	0.4685 ((0.5274 (0.4685 C 0.5094 C 0.5274 C	0.4690 0.5099 0.5279		<u></u>	0.4695 (1) 0.5104 (1) 0.5284 (1)) 0.4700 (1)) 0.5109 (1)) 0.5289 (1)	:::		0.5114 (3) 0.5294 (3)	0.5119 (3) 0.5299 (3)	0.4710	0.4715
10 16 0.6875 0.6915 0.6856 0.6885 0.6885 0.6886 0.6885 0.6885 0.6885 0.6885 0.6885 0.6885 0.06885 0.06885 0.7114 0.7119 0.7124 0.05885 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.7123 0.7123 0.7123 0.7123 0.7123 0.7123 0.1 0.7124 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.1 0.7123 0.8 0.7123 0.8 0.7124 0.7123 0.1 0.7124 0.7123 0.1 0.7124 0.7123 0.1 0.7124 0.7123 0.1 0.7124 0.7123 0.1 0.7123 0.8 0.7123 0.8 0.7123 0.8 0.7123 0.8 0.7123 0.8 0.7123 0.8 0.7123 0.8 0.7123 0.9 0.7123 0.9 0.7123 0.9 0.71	· · · ·	5 : :	18	11 0.65	250 0.63 250 0.62 875 0.69	09 0.636 86 0.632 34 0.699	8 0.566 2 0.588 3 0.588	 	: : :	0.5665 0.5894	0.5670(0.58990000000000000000000000000000000000	0.5670 (0.5899 (0.6295 (0.5675 0.5904 0.6300		::::	0.5680 (1 0.5909 (1) 0.5685 (1)) 0.5914 (1) · · · ·	::::	:::	0.5690 (3) 0.5919 (3) 	0.5695 (3) 0.5924 (3)	: : :	· · · · · · ·
9 0.8750 0.8822 0.8894 0.8028 0.8043 0.8048 0.8048 0.8058 0.8058 0.8058 0.8058 0.8058 0.8058 0.8058 0.8058 0.8291 0.8296 0.8306 0.8058 0.8291 0.8296 0.8306 0.9051 0.9218 0.9203 0.9218 <td></td> <td>: 2</td> <td>10</td> <td>16 0.6 0.7</td> <td>875 0.69 500 0.75 500 0.75</td> <td>15 0.695 65 0.763 40 0.758</td> <td>6 0.646 0 0.685</td> <td>9 0 4 0.7094</td> <td></td> <td>0.6855</td> <td>0.6860 0</td> <td>0.6479 (0.6860 (0.7104 (</td> <td>0.6484 0.6865 0.7109</td> <td>::::</td> <td>:::</td> <td> 0.6870 0.7114 (1</td> <td>0.6875</td> <td>::::</td> <td>:::</td> <td> 0.6880 (4) 0.7124 (4)</td> <td>0.6885 (4) 0.7129 (4)</td> <td>::::</td> <td>· · · ·</td>		: 2	10	16 0.6 0.7	875 0.69 500 0.75 500 0.75	15 0.695 65 0.763 40 0.758	6 0.646 0 0.685	9 0 4 0.7094		0.6855	0.6860 0	0.6479 (0.6860 (0.7104 (0.6484 0.6865 0.7109	::::	:::	 0.6870 0.7114 (1	0.6875	::::	:::	 0.6880 (4) 0.7124 (4)	0.6885 (4) 0.7129 (4)	::::	· · · ·
12 1.0000 1.0054 1.0108 0.9459 0.9474 0.9479 <td>•</td> <td>റ യ</td> <td>14</td> <td>1.088</td> <td>750 0.88 750 0.87 000 1.00</td> <td>22 0.885 97 0.884 82 1.016</td> <td>94 0.802 13 0.828 13 0.918</td> <td> </td> <td>:::</td> <td>0.8291</td> <td>0.8296</td> <td>:::</td> <td><u> </u></td> <td>0.8043 (0.8301 (0.9203 (</td> <td>0.8048).8306).9208</td> <td>::::</td> <td>:::</td> <td>0.8053</td> <td>0.8058 0.9218</td> <td>::::</td> <td>::::</td> <td></td> <td>· · · ·</td>	•	റ യ	14	1.088	750 0.88 750 0.87 000 1.00	22 0.885 97 0.884 82 1.016	94 0.802 13 0.828 13 0.918	 	:::	0.8291	0.8296	:::	<u> </u>	0.8043 (0.8301 (0.9203 (0.8048).8306).9208	::::	:::	0.8053	0.8058 0.9218	::::	::::		· · · ·
12 1.1250 1.1364 1.1368 1.0709 1.0724 1.0729		: : ~	12	14 1.0 14 1.0 1.1	000 1.00 000 1.00 250 1.13	1.010 147 1.005 1.145	38 0.945 33 0.953 36 1.032	7.00	::::	: : :	::::	: : :		0.9474	3.9479 3.9556 1.0342	: : :	::::	· · · ·		::::	: : :	::::	::::
		: ~ :	12 : 12	1.1.2	250 1.13 500 1.25 500 1.25	04 1.139 1.268 1.268	58 1.070 36 1.157 38 1.195	<u></u>	: : :	: : :	::::			1.0724 1.1587 1.1974	1.0729 1.1592 1.1979	::::	:::	: : :	::::		::::	:::	: : :

STD.ASME 894.9-ENGL 1999 🗰 0759670 0615539 3T4 📾

TAPS: GROUND AND CUT THREADS

Not for Resale

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

SIZES, GROUND THREAD (UNIFIED AND AMERICAN NATIONAL THREAD FORMS,	ANDARD THREAD LIMITS) (CONT'D)
TAP THREAD LIMITS: FRACTIONAL SIZE	STAND
TABLE 10A	

	-	hreads per Inch		Aajor Dia	ameter								<u>م</u>	'itch Dia	meter							
		L.					H	imit	H2 Li	mit	H3 Li	mit	H4 Li	mit	HSL	imit	H6 L [Note	.imit e (1)]	H7 L	imit	H8 L [Note	imit (2)]
olze, in.	UNC	UNF 1	NS Ba	sic Min	I. Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.
13/8	9	:	1.37	750 1.385	59 1.3967	7 1.2667		:			:	:	1.2682	1.2687	-		:	:	÷	:	÷	•
13,	:	12	1.37	750 1.380	04 1.3855	3 1.3209	:	:	:	:	:	:	1.3224	1.3229	:	:	:	:	÷		:	:
1^{1}_{2}	9	:	1.50	000 1.51(09 1.5217	7 1.3917	:	:	:	:	:	:	1.3932	1.3937	:	:	:	:	:	:	:	:
11%		12	1.50	00 1.505	54 1.5106	3 1.4459	:	:	:	:		:	1.4474	1.4479	:	:	:	:	÷	:	:	:
13,4	:	ß	1.75	500 1.763	30 1.7760	1.6201	:	:	:	:		:	1.6216	1.6221	:	:	•	:	:	:	:	:
5	:	4.5	2.00	000 2.01	45 2.0285	3 1.8557	:	;	:	:	:	:	1.8572	1.8577	:	•	•		:			
		NOTES		-	-																	

NERAL NULES: Limits listed in above table are the most commonly used in industry. Not all styles of taps are available with all limits listed. For calculation of limits other than those listed, see formulas and Table 7.

 (\hat{p})

NOTES:
(1) Minimum and maximum major diameters are 0.0010 larger than shown.
(2) Minimum and maximum major diameters are 0.0035 larger than shown.
(3) Minimum and maximum major diameters are 0.0016 larger than shown.
(4) Minimum and maximum major diameters are 0.0015 larger than shown.

TAPS: GROUND AND CUT THREADS

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

47

TAPS: GROUND AND CUT THREADS

		M	ajor Diame	ter				Pitch Diar	neter		
Nominal Diameter	Pitch					C)3	D	4	D	5
mm	mm	Basic	Min.	Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.
1.6	0.35	1.600	1.628	1.653	1.373	1.397	1.412				
2	0.4	2.000	2.032	2.057	1.740	1.764	1.779				
2.5	0.45	2.500	2.536	2.561	2.208	2.232	2.247				
3	0.5	3.000	3.040	3.065	2.675	2.699	2.714	• • •	• • •	2.725 (2),(3)	2.740 (2),(3)
3.5	0.6	3.500	3.548	3.573	3.110			3.142	3.162		
4	0.7	4.000	4.056	4.097	3.545	•••	•••	3.577	3.597		
4.5	0.75	4.500	4.560	4.601	4.013		• • •	4.045	4.065		
5	0.8	5.000	5.064	5.105	4.480		•••	4.512	4.532		• • • •
6	1	6.000	6.080	6.121	5.350		• • •		•••	5.390	5.415
7	1	7.000	7.080	7.121	6.350					6.390	6.415
8	1.25	8.000	8.100	8.164	7.188	•••	•••			7.222	7.253
10	1.5	10.000	10.120	10.184	9.026		••••				
12	1.75	12.000	12.140	12.204	10.863						
14	1.25	14.000	14.097	14.122	13.188		• • •	13.225 (1)	13.238 (1)		
14	2	14.000	14.160	14.224	12.701		• • • •				
16	2	16.000	16.160	16.224	14.701						• • • •
18	1.5	18.000	18.123	18.148	17.026	•••	• • •	17.063 (1)	17.076 {1}		
20	2.5	20.000	20.200	20.264	18.376						
24	3	24.000	24.240	24.340	22.051						
30	3.5	30.000	30.280	30.380	27.727	•••	• • •	• • •			
36	4	36.000	36.320	36.420	33.402		• • •		• • •	• • •	•••
42	4.5	42.000	42.360	43.460	39.077						
48	5	48.000	48.400	50.500	44.752		• • •		• • •		• • •

TABLE 11 TAP THREAD LIMITS: METRIC SIZES, GROUND THREAD (M PROFILE: STANDARD THREAD LIMITS IN MILLIMETERS)

GENERAL NOTES:

(a) Inch translations are listed in Table A3 in Appendix A.

(b) Limits listed in above table are the most commonly used in industry.

(c) Not all styles of taps are available with all limits listed.

(d) For calculation of limits other than those listed, see formulas and Table 8.

NOTES:

(1) These sizes are intended for spark plug applications; use the pitch diameter tolerances from Table 8, column Z.

(2) Minimum and maximum major diameters are 0.326 larger than shown.

(3) Standard D limit for thread forming taps.

(4) Minimum and maximum major diameters are 0.339 larger than shown.

(5) Minimum and maximum major diameters are 0.352 larger than shown.

(6) Minimum and maximum major diameters are 0.365 larger than shown.

Copyright ASME International

Copyright Assire international Provided by IHS under license with ASME CNo reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

ASME B94.9-1999

					Pitch Di	iameter					
C)6	D	7	D	8	D	9	D	10	D	11
Min.	Max.	Min.	Max.								
	• • •			• • •		• • •					
			• • • •		• • •	• • •		• • •	•••	• • •	
						• • •			•••		
							•••				
3.603 (2),(3)	3.623 (2),(3)										
		4.551 (3),(4)	4.571 (3),(4)								
				5.429 (3),(4)	5.454 (3),(4)						
	<i>.</i>							• • •			
• • •			• • •			7.274 (3),(5)	7.305 (3),(5)		• • •	• • •	
9.073	9.104							9.125 (3),(5)	9.156 (3),(5)		
10.910	10.941									10.975 (3),(6)	11.006 (3),(6)
• • •		• • •	• • •	• • •	• • •	• • •					
		12.751	12.792						• • •	•••	
		14.751	14.792								
							• • •	• • •		• • •	
	• • •	18.426	18.467								<i></i> .
				22.114	22.155						
						27.792	27.844				•••
					• • •	33.467	33.519		• • •		
								39.155	39.207		
								44.830	44.882		

TABLE 11 TAP THREAD LIMITS: METRIC SIZES, GROUND THREAD (M PROFILE: STANDARD THREAD LIMITS IN MILLIMETERS)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information_Handling Services 49

TAPS: GROUND AND CUT THREADS

				Sizes	and Standards	s			
	Tł	nreads per In	ich		M-: D:				_
	NC	NF	NS	 	viajor Diamete	er		Pitch Diamete	r
Size	UNC	UNF	UNS	Basic	Min.	Max.	Basic	Min.	Max.
0		80		0.0600	0.0609	0.0624	0.0519	0.0521	0.0531
1	64			0.0730	0.0740	0.0755	0.0629	0.0631	0.0641
1		72		0.0730	0.0740	0.0755	0.0640	0.0642	0.0652
2	56			0.0860	0.0872	0.0887	0.0744	0.0746	0.0756
2	• • •	64		0.0860	0.0870	0.0885	0.0759	0.0761	0.0771
3	48			0.09 9 0	0.1003	0.1018	0.0855	0.0857	0.0867
3		56		0.0990	0.1002	0.1017	0.0874	0.0876	0.0886
4			36	0.1120	0.1137	0.1157	0.0940	0.0942	0.0957
4	40			0.1120	0.1136	0.1156	0.0958	0.0960	0.0975
4		48		0.1120	0.1133	0.1153	0.0985	0.0987	0.1002
5	40			0.1250	0.1266	0.1286	0.1088	0.1090	0.1105
6	32			0.1330	0.1402	0.1422	0.1177	0.1182	0.1197
6	• • •		36	0.1330	0.1397	0.1417	0.1200	0.1202	0.1217
6		40		0.1330	0.1396	0.1416	0.1218	0.1220	0.1235
8	32		•••	0.1640	0.1662	0.1682	0.1437	0.1442	0.1457
8		36		0.1640	0.1657	0.1677	0.1460	0.1462	0.1477
8			40	0.16.40	0.1656	0.1676	0.1478	0.1480	0.1495
10	24			0.190	0.1928	0.1948	0.1629	0.1634	0.1649
10		32		0.190	0.1922	0.1942	0.1697	0.1702	0.1717
12	24			0.2160	0.2188	0.2208	0.1889	0.1894	0.1909
12		28		0.2160	0.2184	0.2204	0.1928	0.1933	0.1948
14		• • •	24	0.2420	0.2448	0.2473	0.2149	0.2154	0.2174

TABLE 12 TAP THREAD LIMITS: MACHINE SCREW SIZES, CUT THREAD (UNIFIED AND AMERICAN NATIONAL THREAD FORMS)

Lead Tolerance

A maximum lead error of ±0.003 in. in 1 in. of thread is permitted.

	Angle Tolerance	
Threads per Inch	Half Angle	Full Angle
20 to 28, inclusive	±0 deg 45 min	0 deg 65 min
30 and finer	±0 deg 60 min	0 deg 90 min

GENERAL NOTES:

(a) All dimensions are given in inches.

(b) Thread limits are computed from Table 9.

				Standar	d Thread Limi	ts			
	Tł	nreads per In	ich						
	NC	NF	NS	· · · · · ·	Major Diamete	r		Pitch Diameter	r
Size	UNC	UNF	UNS	Basic	Min.	Max.	Basic	Min.	Max.
1/8			40	0.1250	0.1266	0.1286	0.1088	0.1090	0.1105
⁵ / ₃₂			32	0.1563	0.1585	0.1605	0.1360	0.1365	0.1380
³ / ₁₆			24	0.1875	0.1903	0.1923	0.1604	0.1609	0.1624
³ / ₁₆			32	0.1875	0.1897	0.1917	0.1672	0.1677	0.1692
1/4	20			0.2500	0.2532	0.2557	0.2175	0.2180	0.2200
1/4		28		0.2500	0.2524	0.2549	0.2268	0.2273	0.2288
⁵ / ₁₆	18			0.3125	0.3160	0.3185	0.2764	0.2769	0.2789
5/16		24		0.3125	0.3153	0.3178	0.2854	0.2859	0.2874
3/8	16			0.3750	0.3789	0.3814	0.3344	0.3349	0.3369
3/8		24		0.3750	0.3778	0.3803	0.3479	0.3484	0.3499
7/16	14			0.4375	0.4419	0.4449	0.3911	0.3916	0.3941
⁷ / ₁₆		20		0.4375	0.4407	0.4437	0.4050	0.4055	0.4075
1/2	13			0.5000	0.5047	0.5077	0.4500	0.4505	0.4530
1/2		20		0.5000	0.5032	0.5062	0.4675	0.4680	0.4700
⁹ / ₁₆	12			0.5625	0.5675	0.5705	0.5084	0.5089	0.5114
9/16		18		0.5625	0.5660	0.5690	0.5264	0.5269	0.5289
5/8	11			0.6250	0.6304	0.6334	0.5660	0.5665	0.5690
5/ ₈		18		0.6250	0.6285	0.6315	0.588 9	0.5894	0.5914
3/4	10			0.7500	0.7559	0.7599	0.6850	0.6855	0.6885
3/4		16		0.7500	0.7539	0.7579	0.7094	0.7099	0.7124
⁷ /8	9			0.8750	0.8820	0.8860	0.8028	0.8038	0.8068
⁷ /8		14		0.8750	0.8799	0.8839	0.8286	0.8296	0.8321
1	8			1.0000	1.0078	1.0118	0.9188	0.9198	0.9228
1	• • •	12	•••	1.0000	1.0055	1.0095	0.9459	0.9469	0.9494
1			14	1.0000	1.0049	1.0089	0.9536	0.9546	0.9571
$1\frac{1}{8}$	7			1.1250	1.1337	1.1382	1.0322	1.0332	1.0367
1 ¹ / ₈		12		1.1250	1.1305	1.1350	1.0709	1.0719	1.0749
11/4	7			1.2500	1.2587	1.2632	1.1572	1.1582	1.1617
11/4		12		1.2500	1.2555	1.2600	1.1959	1.1969	1.1999
1 ³ / ₈	6	• • •	• • •	1.3750	1.3850	1.3895	1.2667	1.2677	1.2712
1 ³ /8		12		1.3750	1.3805	1.3850	1.3209	1.3219	1.3249
11/2	6			1.5000	1.5100	1.5145	1.3917	1.3927	1.3962
11/2		12		1.5000	1.5055	1.5100	1.4459	1.4469	1.4499
13/4	5			1.7500	1.7602	1.7657	1.6201	1.6216	1.6256
2	$4\frac{1}{2}$			2.0000	2.0111	2.0166	1.8557	1.8572	1.8612

TABLE 12A TAP THREAD LIMITS: FRACTIONAL SIZES, CUT THREAD (UNIFIED AND AMERICAN NATIONAL THREAD FORMS)

Lead Tolerance

A maximum lead error of ±0.003 in. in 1 in. of thread is permitted.

	Angle Tolerance	
Threads per Inch	Half Angle	Full Angle
$4\frac{1}{2}$ to $5\frac{1}{2}$, inclusive	±0 deg 35 min	0 deg 53 min
6 to 9, inclusive	±0 deg 40 min	0 deg 60 min
10 to 28, inclusive	±0 deg 45 min	0 deg 68 min
30 to 64, inclusive	±0 deg 60 min	0 deg 90 min

GENERAL NOTES:

(a) All dimensions are given in inches.

(b) Thread limits are computed from Table 9.

Licensed by Information Handling Services

51

TAPS: GROUND AND CUT THREADS

TABLE 13TAPER PIPE TAP THREAD LIMITS (GROUND AND CUT THREAD; GROUND THREAD FOR
NPS, NPTF, AND ANPT; CUT THREAD FOR NPT ONLY)

		Gage M	leasureme	ent, in.	Тар	er per Inc [Not	honDian e(2)]	neter		
			Tole	rance,	c	ut	Gro	und	Refere	nce Dimensions
		Projection,	Plus o	r Minus	Thr	read	Thr	ead	4	Tap Drill Size
Nominal Size, in.	Threads per Inch	in. [Note (1)]	Cut Thread	Ground Thread	Min.	Max.	Min.	Max.	Length [Note (3)]	NPT, ANPT, NPTF [Note (4)]
1/ ₁₆	27	0.312	0.0625	0.0625	0.0599	0.0703	0.0599	0.0651	0.1600	С
1/8	27	0.312	0.0625	0.0625	0.0599	0.0703	0.0599	0.0651	0.1615	Q
1/4	18	0.459	0.0625	0.0625	0.0599	0.0703	0.0599	0.0651	0.2278	7/ ₁₆
³ /8	18	0.454	0.0625	0.0625	0.0599	0.0703	0.0599	0.0651	0.2400	⁹ / ₁₆
1/2	14	0.579	0.0625	0.0625	0.0599	0.0677	0.0599	0.0651	0.3200	45/ ₆₄
3/4	14	0.565	0.0625	0.0625	0.0599	0.0677	0.0599	0.0651	0.3390	²⁹ / ₃₂
1	11%	0.678	0.0937	0.0937	0.0599	0.0677	0.0599	0.0651	0.4000	1 ⁹ ⁄ ₆₄
11/4	111/2	0.686	0.0937	0.0937	0.0599	0.0677	0.0599	0.0651	0.4200	1 ³¹ / ₆₄
11/2	111/2	0.699	0.0937	0.0937	0.059 9	0.0677	0.0599	0.0651	0.4200	1 ²³ / ₃₂
2	111/2	0.667	0.0937	0.0937	0.0599	0.0677	0.0599	0.0651	0.4360	2 ³ / ₁₆
$2^{1}/_{2}$	8	0.925	0.0937	0.093.1	0.0612	0.0664	0.0612	0.0651	0.6820	2 ³⁹ / ₆₄
3	8	0.925	0.0937	0.0937	0.0612	0.0664	0.0612	0.0651	0.7660	3 ¹⁵ / ₁₆

Lead Tolerances

Cut Thread: A maximum lead deviation of ± 0.003 in in 1 in. of thread is permitted. **Ground Thread:** A maximum lead deviation of ± 0.0005 in. within any two threads not farther apart than 1 in. is permitted.

	Cut T	nread	Ground
Threads per Inch	Half Angle	Full Angle	Thread Half Angle
$\frac{8}{11\frac{1}{2}}$ to 27 Inclusive	±0 deg 40 min ±0 deg 45 min	0 deg 60 min 0 deg 60 min	±0 deg 25 min ±0 deg 30 min

(continued)

3

TAPS: GROUND AND CUT THREADS

Widths of Flats at Tap Crests and Roots Column I Column II **NPT: Cut and Ground Thread** [Note (5)] Ground **ANPT: Ground Thread** Thread Threads NPTF [Note (5)] [Note (5)] Tap Flat per Width at Inch Min. [Note (6)] Min. [Note (6)] Max. Max. 27 Major diameter 0.0014 0.0041 0.0055 0.0040 Minor diameter 0.0040 0.0041 18 Major diameter 0.0021 0.0057 0.0050 0.0065 Minor diameter 0.0057 0.0050 14 Major diameter 0.0027 0.0064 0.0050 0.0065 Minor diameter 0.0064 0.0050 111/2 Major diameter 0.0033 0.0073 0.0060 0.0083 Minor diameter 0.0060 0.0073 8 Major diameter 0.0048 0.0090 0.0080 0.0103 Minor diameter 0.0090 0.0080

TABLE 13 TAPER PIPE TAP THREAD LIMITS (GROUND AND CUT THREAD; GROUND THREAD FOR NPS, NPTF, AND ANPT; CUT THREAD FOR NPT ONLY) (CONT'D)

GENERAL NOTE: All dimensions are given in inches.

NOTES:

(1) Distance small end of tap projects through L_1 , taper ring gage.

(2) Taper is 0.0625 in. per 1.000 in. on diameter (1:16) (³/₄ in. per 12 in.).

(3) Dimension, L₁, thickness of thin ring gage; see ASME B1.20.1 and B1.20.5.

(4) Sizes given permit direct tapping without reaming the hole, but only give full threads for approximate L_1 distance.

- (5) Cut thread taps made to Column I are marked NPT but are not recommended for ANPT applications. Ground thread taps made to Column I are marked NPT and may be used for NPT and ANPT applications. Ground thread taps made to Column II are marked NPTF and may be used for dryseal application.
- (6) Minimum minor diameter flats are not specified and may be sharp as practicable.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers

Licensed by Information Handling Services

gineers

Not for Resale

53

TABLE 14 STRAIGHT PIPE TAP THREAD LIMITS: NPS, GROUND THREAD (AMERICAN NATIONAL STANDARD STRAIGHT PIPE THREAD FORM [NPSC, NPSM])

			Standard T	hread Limits			
			Major Diameter	•		Pitch Diameter	
Nominal Size, in.	Threads per Inch	Plug at Gaging Notch	Min., G	Max., <i>H</i>	Plug at Gaging Notch, E	Min., <i>K</i>	Max., L
1/8	27	0.3983	0.4022	0.4032	0.3736	0.3746	0.3751
1/4	18	0.5286	0.5347	0.5357	0.4916	0.4933	0.4938
3/8	18	0.6640	0.6701	0.6711	0.6270	0.6287	0.6292
1/2	14	0.8260	0.8347	0.8357	0.7784	0.7806	0.7811
3/4	14	1.0364	1.0447	1.0457	0.9889	0.9906	0.9916
1	11½	1.2966	1.3062	1.3077	1.2386	1.2402	1.2412

Formula for NPS Ground Thread Taps

The maximum pitch diameter of tap is based on an allowance deducted from the maximum product pitch diameter of NPSC or NPSM, whichever is smaller.

The minimum pitch diameter of tap is derived by subtracting the ground thread pitch diameter tolerance for actual equivalent size.

Nominal	Major	Diameter	-
Size, in.	Min., G	Max., H	Minor Diameter, Max.
1/ ₈	H – 0.0010	K + A - 0.0010	M – B
$\frac{1}{4}$ to $\frac{3}{4}$, inclusive	H - 0.0010	K + A - 0.0020	M – B
1	H – 0.0015	K + A - 0.0021	M – B

	Formula	Values	
Threads per Inch	A	B	м
27	0.0296	0.0257	Actual
18	0.0444	0.0401	measured
14	0.0571	0.0525	pitch
111/2	0.0696	0.0647	diameter

Lead Tolerance

A maximum lead deviation of ±0.0005 in. within two threads not farther apart than 1 in. is permitted.

Angle Toler	ance
Threads per Inch	Half Angle
$11\frac{1}{2}$ to 27, inclusive	±0 deg 30 min

GENERAL NOTES:

(a) Taps made to the specifications in this Table are marked NPS and are used for NPSC and NPSM. (b) All dimensions are given in inches.

Licensed by Information Handling Services

TABLE 14A STRAIGHT PIPE TAP THREAD LIMITS: NPSF, GROUND THREAD (DRYSEAL AMERICAN NATIONAL STANDARD STRAIGHT PIPE THREAD FORM [NPSF])

	Standard Thread Limits											
				liameter	eter							
Nominal Size, in.	Threads Major Diameter		Plug at Gaging			Minor [Note (1)]						
	per Inch	Min., G Max., H Notch, E	Notch, E	Min., K	Max., L	Flat Max.						
¹ / ₁₆	27	0.3008	0.3018	0.2812	0.2772	0.2777	0.004					
1/8	27	0.3932	0.3942	0.3736	0.3696	0.3701	0.004					
1⁄4	18	0.5239	0.5249	0.4916	0.4859	0.4864	0.005					
³ /8	18	0.6593	0.6603	0.6270	0.6213	0.6218	0.005					
1/2	14	0.8230	0.8240	0.7784	0.7712	0.7717	0.005					
3/4	14	1.0335	1.0345	0.9889	0.9817	0.9822	0.005					

Formula for NPSF Ground Thread Taps

Nominal	Ma	ajor Diameter		Pitch Dia		Maximum	
Size, in.	Min., G	Max., H		Min., I K			Minor Diameter
1/ ₁₆	H – 0.0010	K + Q - 0.0005		L - 0.0005	E ~ F		M - Q
1/8	H - 0.0010	K + Q - 0.0005		L - 0.0005	E ~ F		M ~ Q
1/4	H - 0.0010	K + Q - 0.0005		L – 0.0005	L - 0.0005 E - F		M – Q
3/8	H - 0.0010	K + Q - 0.0005		L - 0.0005	E – F		M – Q
1/2	H – 0.0010	K + Q - 0.0005		L - 0.0005	E - F		M – Q
3/4	H - 0.0010	K + Q - 0.0005		L – 0.0005	E – F		M – Q
		Formu	la Values				
	Threads per Inch	Е	F	м		Q	
	27	Pitch diameter	0.0035	Actual me	easured	0.0251	
	18	of plug at 0.0052		2 pitch		0.0395	
	14	gaging notch 0.0067		diameter		0.0533	

Lead Tolerance

A maximum lead deviation of ±0.0005 in. within any two threads not farther apart than 1 in. is permitted.

Angle Tolerance							
Threads per Inch	Half Angle						
14 to 27, inclusive	±0 deg 30 min						

GENERAL NOTES:

(a) Ground thread shall be as specified or sharper.

(b) All dimensions are given in inches.

TAPS: GROUND AND CUT THREADS

TABLE 15 STRAIGHT PIPE TAP THREAD LIMITS: NPS, CUT THREAD (AMERICAN NATIONAL STANDARD STRAIGHT PIPE THREAD FORM [NPSC])

	Standa	rd Thread Lir	nits	
Nominal	Threads	Size at Gaging	Pitch D	iameter
Size	per Inch	Notch	Min.	Max.
1/8	27	0.3736	0.3721	0.3751
1/4	18	0.4916	0.4908	0.4938
³ /8	18	0.6270	0.6257	0.6292
1/2	14	0.7784	0.7776	0.7811
3/4	14	0.9889	0.9876	0.9916
1	111/2	1.2386	1.2372	1.2412

Formula for NPS Cut Thread Taps (Approximate)

The maximum pitch diameter of tap is based on an allowance deducted from the maximum product pitch diameter of NPSC.

The minimum pitch diameter of tap equals maximum pitch diameter minus the tolerance.

Minimum major diameter = Measured pitch diameter plus "A"

Maximum major d ameter ≈ Measured pitch diameter plus "B"

Maximum minor diameter = Measured pitch diameter minus "C"

Formula Values							
Threads per Inch	A	В	С				
27	0.0267	0.0296	0.0257				
18	0.0408	0.0444	0.0401				
14	0.0535	0.0571	0.0525				
11%	0.0658	0.0696	0.0647				

Lead Tolerance

A value of ±0.003 in. per inch is permitted.

Angle Tolerance							
Threads per Inch Half Angle Full Angle							
$11\frac{1}{2}$ to 27, inclusive	±0 deg 45 min	0 deg 68 min					

GENERAL NOTES:

(a) Taps made to the specifications in this Table are to be marked NPS and used for NPSC.

(b) All dimensions are given in inches.

(c) As the American national standard straight pipe thread form is to be maintained, the major and minor diameters vary with the pitch diameter. See formula above. Either a flat or a rounded form is allowable at both the crest and root.

ASME B94.9-1999

Straight Thread Taps

Taper Pipe Taps

TABLE 16 STANDARD CHAMFERS FOR THREAD CUTTING TAPS

The chamfer length is measured at the cutting edge and is the axial length from the point diameter to the theoretical intersection of the tap major diameter and the chamfer angle. Whenever chamfer length is specified in terms of number of threads, this length is measured in number of pitches as shown. The point diameter is approximately equal to the basic thread minor diameter. Standard types are illustrated above.

		Chamfe	r Length
Type of Tap		а	Ь
	Bottom	1 ₀	2,
	Semibottom	20	30
Straight Threads Taps:	Plug	3.	5,
	Taper	7	10
Taper Pipe Taps		2	31/2

GENERAL NOTES:

- (a) Refer to Table 6 for runout tolerances.
- (b) $a = \min (a + b)$
 - b = maximum length of chamfer
 - p = pitch

NOTE:

(1) For point diameter see section 6, no. 012.

57

TAPS: GROUND AND CUT THREADS

TABLE 16A STANDARD ENTRY TAPER LENGTHS FOR THREAD FORMING TAPS

Entry taper length is measured on the full diameter of the thread forming lobes and is the axial distance from the entry diameter position to the theoretical intersection of tap major diameter and entry taper angle.

Beveled end threads provided on taps having internal center or incomplete threads retained when external center is removed (not shown), optional with manufacturer.

Whenever entry taper length is specified in terms of number of threads, this length is measured in number of pitches, p.

Bottom length = 1 to $2^{1}/_{2}$ pitches.

Plug length
$$=$$
 3 to 5 pitches.

Entry diameter, measured at the thread crest nearest the front of the tap, is an appropriate amount smaller than the diameter of the hole drilled for tapping.

GENERAL NOTE: For entry taper diameter see section 6, no. 016.

58

TABLE 17 TAP THREAD LIMITS (SCREW THREAD INSERTS [STI], GROUND THREAD, MACHINE SCREW, AND FRACTIONAL SIZE)

		Thre	eads	Tap Maior		Recommended Tap Pitch Diameter Limits					
Machine Screw Size.	Fractional Size.	per Inch		Diameter		28			3B		
STI	STI	NC	NF	Min.	Max.	H Limit	Min.	Max.	H Limit	Min.	Max.
1		64		0.0948	0.0958	H2	0.0837	0.0842	H1	0.0832	0.0837
2		56		0.1107	0.1117	H2	0.0981	0.0986	H1	0.0976	0.0981
	•••		64	0.1078	0.1088	H2	0.0967	0.0972	H1	0.0962	0.0967
3		48		0.1279	0.1289	H2	0.1131	0.1136	H1	0.1126	0.1131
	• • •		56	0.1237	0.1247	H2	0.1111	0.1116	H1	0.1106	0.1111
4	• • •	40		0.1463	0.1473	H2	0.1288	0.1293	H1	0.1283	0.1288
	•••		48	0.1409	0.1419	H2	0.1261	0.1266	H1	0.1256	0.1261
5		40		0.1593	0.1603	H2	0.1418	0.1423	нı	0.1413	0.1418
6		32		0.1807	0.1817	H3	0.1593	0.1598	H2	0.1588	0.1593
	• • •		40	0.1723	0.1733	H2	0.1548	0.1553	H1	0.1543	0.1548
8		32		0.2067	0.2077	НЗ	0.1853	0.1858	H2	0.1848	0.1853
			36	0.2022	0.2032	H2	0.1826	0.1831	H1	0.1821	0.1826
10		24		0.2465	0.2475	НЗ	0.2180	0.2185	H2	0.2175	0.2180
	• • •		32	0.2327	0.2337	НЗ	0.2113	0.2118	H2	0.2108	0.2113
12	• • • •	24	•••	0.2725	0.2735	НЗ	0.2440	0.2445	H2	0.2435	0.2440
	1/4	20		0.3177	0.3187	H3	0.2835	0.2840	H2	0.2830	0.2835
			28	0.2985	0.2995	H3	0.2742	0.2747	H2	0.2737	0.2742
	⁵ / ₁₆	18		0.3874	0.3884	H4	0.3501	0.3506	HЗ	0.3496	0.3501
			24	0.3690	0.3700	НЗ	0.3405	0.3410	H2	0.3400	0.3405
	3/8	16		0.4592	0.4602	H4	0.4171	0.4176	H3	0.4166	0.4171
			24	0.4315	0.4325	H3	0.4030	0.4035	H2	0.4025	0.4030

(continued)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services

59

.

	Thr	eads	Tan I	Maior		Recomm	ended Tap I	Pitch Diamete	er Limits	
Fractional Size.	per	Inch	Dian	neter		2B			3B	
STI	NC	NF	Min.	Max.	H Limit	Min.	Max.	H Limit	Min.	Max.
	14	•••	0.5333	0.5343	H4	0.4854	0.4859	НЗ	0.4849	0.4854
		20	0.5052	0.5062	H4	0.4715	0.4720	H3	0.4710	0.4715
1/2	13		0.6032	0.6042	H4	0.5514	0.5519	НЗ	0.5509	0.5514
-		20	0.5677	0.5687	H4	0.5340	0.5345	H3	0.5335	0.5340
⁹ /16	12		0.6741	0.6751	H4	0.6182	0.6187	H3	0.6177	0.6182
10		18	0.6374	0.6384	H4	0.6001	0.6006	H3	0.5996	0.6001
5/8	11		0.7467	0.7477	H4	0.6856	0.6861	H3	0.6851	0.6856
Ū		18	0.6999	0.7009	H4	0.6626	0.6631	H3	0.6621	0.6626
3/4	10		0.8835	0.8850	H5	0.8169	0.8174	H3	0.8159	0.8164
·		1	0.8342	0.8352	H4	0.7921	0.7926	H3	0.7916	0.7921
7/8	9		1.0232	1.0247	H5	0.9491	0.9496	Нз	0.9481	0.9486
		14	0.9708	0.9718	H4	0.9234	0.9239	H3	0.9224	0.9229
1	8		1.1666	1.1681	H6	1.0832	1.0842	H4	1.0822	1.0832
		12	1.1116	1.1126	H6	1.0562	1.0572	H4	1.0552	1.0562
		14 NS	1.0958	1.0968	H6	1.0484	1.0494	H4	1.0474	1.0484
1½	7		1.3151	1.3171	H6	1.2198	1.2208	H4	1.2188	1.2198
		12	1.2366	1.2376	H6	1,1812	1.1822	H4	1.1802	1.1812
1 ¹ ⁄4	7		1.4401	1.4421	H6	1.3448	1.3458	H4	1.3438	1.3448
	• • • •	12	1.3616	1.3626	H6	1.3062	1.3072	H4	1.3052	1.3062
1 ³ ⁄8	6	• • • •	1.5962	1.5982	H8	1.4862	1.4872	H6	1.4852	1.4862
-		12	1.4866	1.4876	H6	1.4312	1.4322	H4	1.4302	1.4312
11/2	6		1.7212	1.7232	H8	1.6112	1.6122	H6	1.6102	1.6112
		12	1.6116	1.6126	H6	1.5562	1.5572	H4	1.5552	1.5562

TABLE 17TAP THREAD LIMITS (SCREW THREAD INSERTS [STI], GROUND THREAD, MACHINESCREW, AND FRACTIONAL SIZE) (CONT'D)

GENERAL NOTE:

ļ

These taps are over the nominal size to the extent that the internal thread they produce will accommodate a helical coil screw insert, which at final assembly will accept a screw thread of the normal size and pitch.

Tap Major		/laior	Recommended Tap Pitch Diameter Limits, in.							
Metric Size	Pitch	Diamete	er, mm	Tol	erance Class	4H	Toleran	ce Class 5H a	nd 6H	
(STI)	mm	Min.	Max.	H Limit	Max.	Min.	H Limit	Max.	Min.	
M2.5	0.45	0.1239	0.1229	1	0.1105	0.1100	2	0.1110	0.1105	
M3	0.5	0.1463	0.1453	1	0.1314	0.1309	2	0.1319	0.1314	
M3.5	0.6	0.1714	0.1704	1	0.1537	0.1532	2	0.1542	0.1537	
M4	0.7	0.1971	0.1955	2	0.1764	0.1759	3	0.1769	0.1764	
M5	0.8	0.2418	0.2403	2	0.2184	0.2179	3	0.2187	0.2184	
M6	1	0.2922	0.2906	2	0.2629	0.2624	3	0.2634	0.2629	
M7	1	0.3316	0.3300	2	0.3022	0.3017	3	0.3027	0.3022	
M8	1	0.3710	0.3694	2	0.3416	0.3411	3	0.3421	0.3416	
	1.25	0.3853	0.3828	2	0.3480	0.3475	3	0.3485	0.3480	
M10	1	0.4497	0.4481	2	0.4203	0.4198	3	0.4208	0.4203	
	1.25	0.4641	0.4616	2	0.4267	0.4262	3	0.4272	0.4267	
	1.5	0.4776	0.4751	3	0.4336	0.4331	4	0.4341	0.4336	
M12	1.25	0.5428	0.5403	3	0.5059	0.5054	4	0.5064	0.5059	
	1.5	0.5564	0.5539	3	0 5123	0.5118	4	0.5128	0.5123	
	1.75	0.5700	0.5675	3	0.5187	0.5182	4	0.5192	0.5187	
M14	1.5	0.6351	0.6326	3	0.5911	0.5906	4	0.5916	0.5911	
	2	0.6623	0.6598	3	0.6039	0.6034	5	0.6049	0.6044	
M16	1.5	0.7139	0.7114	3	0.6698	0.6693	4	0.6703	0.6698	
	2	0.7410	0.7385	3	0.6826	0.6821	5	0.6836	0.6831	
M18	1.5	0.7926	0.7901	3	0.7485	0.7480	4	0.7490	0.7485	
	2	0.8198	0.8173	3	0.7613	0.7608	5	0.7623	0.7618	
	2.5	0.8470	0.8445	3	0.7741	0.7736	5	0.7751	0.7746	
M20	1.5	0.8713	0.8688	3	0.8273	0.8268	4	0.8278	0.8273	
	2	0.8985	0.8960	3	0.8401	0.8396	5	0.8411	0.8406	
	2.5	0.9257	0.9232	3	0.8529	0.8524	5	0.8539	0.8534	
M22	1.5	0.9500	0.9475	3	0.9060	0.9055	4	0.9065	0.9060	
	2	0.9773	0.9748	3	0.9188	0.9183	5	0.9198	0.9193	
	2.5	1.0044	1.0019	3	0.9316	0.9311	5	0.9326	0.9321	
M24	2	1.0559	1.0534	4	0.9981	0.9971	6	0.9991	0.9981	
	3	1.1117	1.1078	4	1.0236	1.0226	6	1.0246	1.0236	
M27	2	1.1741	1.1716	4	1.1162	1.1152	6	1.1172	1.1162	
	3	1.2298	1.2259	4	1.1417	1.1407	6	1.1427	1.1417	
M30	2	1.2922	1.2897	4	1.2343	1.2333	6	1.2353	1.2343	
	3.5	1.3750	1.3711	4	1.2726	1.2716	6	1.2736	1.2726	
M33	2	1.4103	1.4078	4	1.3525	1.3515	6	1.3535	1.3525	
	3.5	1.4931	1.4892	4	1.3907	1.3897	6	1.3917	1.3907	
M36	2	1.5284	1.5259	4	1.4706	1.4696	6	1.4716	1.4706	
	3	1.5841	1.5802	6	1.4971	1.4961	8	1.4981	1.4971	
	4	1.6384	1.6345	6	1.5226	1.5216	8	1.5236	1.5226	
M39	2	1.6465	1.6440	4	1.5887	1.5877	6	1.5897	1.5887	
	3	1.7022	1.6983	6	1.6152	1.6142	8	1.6162	1.6152	
	4	1.7565	1.7526	6	1.6407	1.6397	8	1.6417	1.6407	
M2.5	0.45	3.147	3.122	1	2.807	2.794	2	2.819	2.807	
M3	0.5	3.716	3.691	1	3.338	3.325	2	3.350	3.338	
M3.5	0.6	4.354	4.328	1	3.904	3.891	2	3.917	3.904	

TABLE 17ATAP THREAD LIMITS (SCREW THREAD INSERTS [STI],
GROUND THREAD, METRIC SIZE [INCH])

(continued)

		Tan	Maior	Recommended Tap Pitch Diameter Limits, mm						
Metric	Pitch	itch. Diameter, in.		Tol	Tolerance Class 4H			Tolerance Class 5H and 6H		
(STI)	mm	Min	Max.	H Limít	Max.	Min.	H Limit	Max.	Min.	
 M4	0.7	5.006	4.966	2	4.481	4.468	3	4.493	4.481	
M5	0.8	6.142	6.104	2	5.547	5.535	3	5.555	5.547	
M6	1	7.422	7.381	2	6.678	6.665	3	6.690	6.678	
M7	1	8.423	8.382	2	7.676	7.663	3	7.68 9	7.676	
M8	1	9.423	9.383	2	8.677	8.664	3	8.689	8.677	
	1.25	9 .787	9.723	2	8.839	8.827	3	8.852	8.839	
M10	1	11.422	11.382	2	10.676	10.663	3	10.688	10.676	
	1.25	11.788	11.725	2	10.838	10.825	3	10.851	10.838	
	1.5	12.131	12.068	3	11.013	11.001	4	11.026	11.013	
M12	1.25	13.787	13.724	3	12.850	12.837	4	12.863	12.850	
	1.5	14.133	14.069	3	13.012	13.000	4	13.025	13.012	
	1.75	14.478	14.415	3	13.175	13.162	4	13.188	13.175	
M14	1.5	16.132	16.068	3	15.014	15.001	4	15.027	15.014	
	2	16.822	16.759	3	15.339	15.326	5	15.364	15.352	
M16	1.5	18.133	18.070	3	17.013	17.000	4	17.026	17.013	
	2	18.821	18.758	3	17.338	17.325	5	17.363	17.351	
M18	1.5	20.132	20.069	3	19.012	18.999	4	19.025	19.012	
	2	20.823	20.759	3	19.337	19.324	5	19.362	19.350	
	2.5	21.514	21.450	3	19.662	19.649	5	19.688	19.675	
M20	1.5	22.131	22.068	3	21.013	21.001	4	21.026	21.013	
	2	22.822	22.758	3	21.339	21.326	5	21.364	21.351	
	2.5	23.513	23.449	3	21.664	21.651	5	21.689	21.676	
M22	1.5	24,130	24.067	3	23.012	23.000	4	23.025	23.012	
	2	24.823	24.760	3	23.338	23.325	5	23.363	23.350	
	2.5	25.512	25.448	3	23.663	23.650	5	23.688	23.675	
M24	2	26.820	26.756	4	25.352	25.326	6	25.377	25.352	
	3	28.237	28,138	4	25.999	25.974	6	26.025	25.999	
M27	2	29.822	29,759	4	28.351	28.326	6	28.377	28.351	
	3	31.237	31.138	4	28.99 9	28.974	6	29.025	28.999	
M30	2	32.822	32.758	4	31.351	31.326	6	31.377	31.351	
	3.5	34.925	34.826	4	32.324	32.299	6	32.349	32.324	
M33	2	35.822	35.758	4	34.354	34.328	6	34.379	34.354	
	3.5	37.925	37.826	4	35.324	35.298	6	35.349	35.324	
M36	2	38.821	38.758	4	37.353	37.328	6	37.379	37.353	
	3	40.236	40.137	6	38.026	38.001	8	38.052	38.026	
	4	41.615	41.516	6	38.674	38.649	8	38.699	38.674	
M39	2	41.821	41.758	4	40.353	40.328	6	40.378	40.353	
	3	43.236	43.137	6	41.026	41.001	8	41.051	41.026	
	4	44.615	44.516	6	41.674	41.648	8	41.699	41.674	

TABLE 17A TAP THREAD LIMITS (SCREW THREAD INSERTS [STI], GROUND THREAD, METRIC SIZE [INCH]) (CONT'D)

GENERAL NOTES:

(a) These taps are over the nominal size to the extent that the internal thread they produce will accommodate a helical coil screw insert, which at final assembly will accept a screw thread of the normal size and pitch.

(b) STI basic thread dimensions are determined by adding twice the single thread height (2 × 0.64952*P*) to the basic dimensions of the nominal thread size.

(c) Formulas for major and pitch diameters are presented in MIL-T-21309E.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services STD.ASME 894.9-ENGL 1999 0759670 0615556 483

ASME B94.9-1999

NONMANDATORY APPENDIX A

TABLE A1TAP SIZE RECOMMENDATIONS FOR CLASSES 2B AND 3BUNIFIED INCH SCREW THREADS (MACHINE SCREW AND FRACTIONAL SIZES)

Size	Threads per Inch		Recommended Tap for Class of Thread [Note (1)]		Pitch Diameter Limits for Class of Thread		
	NC UNC	NF UNF	Class 2B [Note (2)]	Class 3B [Note (3)]	Min. All Classes (Basic)	Max. Class 2B	Max. Class 3B
0		80	G H2	G H1	0.0519	0.0542	0.0536
1/4 1/4	20	28	G H5 G H4	G H3 G H3	0.2175 0.2268	0.2224 0.2311	0.2211 0.2300
⁵ / ₁₆	18	24	G H5	G H3	0.2764	0.2817	0.2803
⁵ / ₁₆			G H4	G H3	0.2854	0.2902	0.2890
3/8	16	24	G H5	G H3	0.3344	0.3401	0.3387
3/8			G H4	G H3	0.3479	0.3528	0.3516
7/ ₁₆ 7/ ₁₆	14	20	G H5 G H5	G Н3 G Н3	0.3911 0.4050	0.3972 0.4104	0.3957 0.4091
$\frac{1}{2}$	13	20	G H5	G H3	0.4500	0.4565	0.4548
$\frac{1}{2}$			G H5	G H3	0.4675	0.4731	0.4717
⁹ / ₁₆	12	18	G H5	G H3	0.5084	0.5152	0.5135
9/ ₁₆			G H5	G H3	0.5264	0.5323	0.5308
5/8	1 1		G H5	G H3	0.5660	0.5732	0.5714
5/8		18	G H5	G H3	0.5889	0.5949	0.5934
³ / ₄	10	16	G H5	G H5	0.6850	0.6927	0.6907
³ / ₄			G H5	G H3	0.7094	0.7159	0.7143
7/8	9	14	G H6	G H4	0.8028	0.8110	0.8089
7/8			G H6	G H4	0.8286	0.8536	0.8339
1 1	8	12	G H6 G H6	G H4 G H4	0.9188 0.9459	0.9276 0.9535	0.9254 0.9516
1	14NS	14NS	G H6	G H4	0.9536	0.9609	0.9590
1	64		G H2	G H1	0.0629	0.0655	0.0648
1		72	G H2	G H1	0.0640	0.0665	0.0659
1½ 1½	7	12	G H8 G H6	G H4 G H4	1.0322 1.0709	1.0416 1.0787	1.0393 1.0768

(continued)

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services
ASME B94.9-1999

NONMANDATORY APPENDIX A

<u> </u>	Threads per Inch		Recomme for Class [Not	ended Tap of Thread e (1)]	Pitch Diameter Limits for Class of Thread				
Size	NC UNC	NF UNF	Class 2B [Note (2)	Class 3B [Note (3)]	Min. All Classes (Basic)	Max. Class 2B	Max. Class 3B		
11⁄4	7		G H8	G H4	1.1572	1.1668	1.1644		
11/4	• • •	12	G H6	G H4	1.1959	1.2039	1.2019		
$1^{3}/_{8}$	6		G H8	G H4	1.2667	1.2771	1.2745		
1 ³ / ₈	•••	12	G H6	G H4	1.3209	1.3291	1.3270		
1 ½	6		G H8	G H4	1.3917	1.4022	1.3996		
11/2		12	G H6	G H4	1.4459	1.4542	1.4522		
2	56		G H2	G H1	0.0744	0.0772	0.0765		
2	•••	64	G H2	G H1	0.0759	0.0786	0.0779		
3	48		G H2	G H1	0.0855	0.0855	0.0877		
3		56	G H2	G H1	0.0874	0.0902	0.0895		
4	40	• • •	G H2	G H2	0.0958	0.0991	0.0982		
4	• • •	48	G H2	G H1	0.0985	0.1016	0.1008		
5	40		G H2	G H2	0.1088	0.1121	0.1113		
5	•••	44	G H2	G H1	0.1102	0.1134	0.1126		
6	32		G H3	G H2	0.1177	0.1214	0.1204		
6	• • •	40	G H2	G H2	0.1218	0.1252	0.1243		
8	32		G H3	G H2	0.1437	0.1475	0.1465		
8	• • •	36	G H2	G H2	0.1460	0.1496	0.1487		
10	24		G H3	G H3	0.1629	0.1672	0.1661		
10	•••	32	G H3	G H2	0.1697	0.1736	0.1726		
12	24		G H3	G H3	0.1889	0.1933	0.1922		
12		28	G H3	G H3	0.1928	0.1970	0.1959		

TABLE A1 TAP SIZE RECOMMENDATIONS FOR CLASSES 2B AND 3B UNIFIED INCH SCREW THREADS (MACHINE SCREW AND FRACTIONAL SIZES) (CONT'D)

GENERAL NOTES:

(a) All dimensions are given in inches.

(b) The above recommended taps normally produce the class of thread indicated in average materials when used with reasonable care; however, if the tap specified does not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary.

NOTES:

İ

(1) Recommended taps are for cutting threads only and are not for roll-form threads.

(2) Cut thread taps in sizes #3 to 1¹/₂ in. NC and NF, inclusive, may be used under normal conditions and in average materials for producing Class 2B tapped holes.

(3) Taps suitable for Class 3B are satisfactory for Class 2B threads.

NONMANDATORY APPENDIX A

TABLE A2 TAP SIZE RECOMMENDATIONS FOR CLASS 6H METRIC SCREW THREADS

Thread	Size		Internal Thread: Product Limits, Class 6H						
Nominal		Recommended Tap Limit	Pitch Diam	neter, mm	Pitch Diameter, in.				
Diameter, mm	Pitch, mm	Number	Min.	Max.	Min.	Max.			
1.6	0.35	D3	1.373	1.458	0.05406	0.05740			
2	0.4	D3	1.740	1.830	0.06850	0.07205			
2.5	0.45	D3	2.208	2.303	0.08693	0.09067			
3	0.5	D3	2.675	2.775	0.10531	0.10925			
3.5	0.6	D4	3.110	3.222	0.12244	0.12685			
4	0.7	D4	3.545	3.663	0.13957	0.14421			
4.5	0.75	D4	4.013	4.131	0.15789	0.16264			
5	0.8	D4	4.480	4.605	0.17638	0.18130			
6	1	D5	5.350	5.500	0.21063	0.21654			
7	1	D5	6.350	6.500	0.25000	0.25591			
8	1.25	D5	7.188	7.348	0.28299	0.28929			
10	1.5	D6	9.206	9.206	0.35535	0.36244			
12	1.75	D6	10.863	11.063	0.42768	0.43555			
14	2	D7	12.701	12.913	0.50004	0.50839			
16	2	D7	14.701	14.913	0.57878	0.58713			
20	2.5	D7	18.376	18.600	0.72346	0.73228			
24	3	D8	22.051	22.316	0.86815	0.87858			
30	3.5	D9	27.727	28.007	1.09161	1.10264			
36	4	D9	33.402	33.702	1.31504	1.32685			

GENERAL NOTE:

The above recommended taps normally produce the class of thread indicated in average materials when used with reasonable care; however, if the tap specified does not give a satisfactory gage fit in the work, a choice of some other limit tap will be necessary.

ASME B94.9-1999

TABLE A3 TAP THREAD LIMITS: METRIC SIZES, GROUND THREAD (M PROFILE: STANDARD THREAD LIMITS IN INCHES)

<u></u>		Major Diameter				Pitch Diameter								
Nominal	Ditch					D3		C	D4		D5		96	
mm	mm	Basic	Min.	Max.	Basic	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
1.6	0.35	0.06299	0.06409	0.06508	0.05406	0.05500	0.05559							
2	0.4	0.07874	0.08000	0.08098	0.06850	0.06945	0.07004							
2.5	0.45	0.09843	0.09984	0.10083	0.08693	0.08787	0.08846	•••					•••	
3	0.5	0.11811	0.11969	0.12067	0.10531	0.10626	0.10685		•••	0.10278 (2),(3)	0.10787 (2),(3)		•••	
3.5	0.6	0.13780	0.13969	0.14067	0.12244			0.12370	0.12449					
4	0.7	0.15748	0.15969	0.16130	0.13957			0.14083	0.14161			0.14185	0.14264	
•	•••											(2),(3)	(2),(3)	
4.5	0.75	0.17717	0.17953	0.18114	0.15799	· • •		0.15925	0.16004					
5	0.8	0.19685	0.19937	0.20098	0.17638	•••		0.17764	0.17843					
6	1	0.23622	0.23937	0.24098	0.21063			••••		0.21220	0.21319	• • •		
7	1	0.27559	0.27874	0.28035	0.25000					0.25157	0.25256			
8	1.25	0.31496	0.31890	0.32142	0.28299					0.28433	0.28555		· · ·	
10	1.5	0.39370	0.39843	0.40094	0.35535							0.35720	0.35843	
12	1.75	0.47244	0.47795	0.48047	0.42768							0.42953	0.43075	
14	2	0 55118	0 55748	0 56000	0 50004									
14	1.25	0.55118	0.55500	0.55600	0.51920			0.52070 (1)	0.52120 (1)				•••	
16	2	0.62992	0.63622	0.63874	0.57878									
18	1.5	0.70870	0.71350	0.71450	0.67030		•••	0.67180	0.67230					
20	2.5	0.78740	0.79528	0.79780	0.72346		•••							
24	3	0.94488	0.95433	0.95827	0.86815			• • •						
30	3.5	1.18110	1.19213	1.19606	1.09161				• • •				• • •	
36	4	1.41732	1.42992	1.43386	1.31504				•••	• • •		•••	• • •	
42	4.5	1.65354	1.66772	1.71102	1.5384f									
48	5	1.88976	1.90551	1.98819	1.76189								• • •	
	-													

GENERAL NOTES:

(a) Limits listed in above table are the most commonly used in industry.

(b) Not all styles of taps are available with all limits listed.

(c) For calculation of limits other than those listed, see formulas and Table 8.

NOTES:

(1) These sizes are intended for spark plug applications; use tolerances from Table 7, column D.

- (2) Minimum and maximum major diameters are 0.00102 larger than shown.
- (3) Standard D limit for thread forming taps.
- (4) Minimum and maximum major diameters are 0.00154 larger than shown.

(5) Minimum and maximum major diameters are 0.00205 larger than shown.

(6) Minimum and maximum major diameters are 0.00256 larger than shown.

NONMANDATORY APPENDIX A

Pitch Diameter												
D	07	D8		D	9	D10		D11				
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.			
		• • • •										
							• • •	• • •	• • •			
		· • •		• • •	•••	•••			• • •			
								• • •				
			• • •									
0.17917 (3),(4)	0.17996 (3),(4)		* * *	•••	•••	•••		• • •	•••			
• • •		0.21374 (3),(4)	0.21472 (3),(4)									
						• • •						
				0.28638 (3),(5)	0.28760 (3),(5)							
	• • •	• • • •	• • •		• • •	0.35925	0.36047					
		• • •			• • •	• • •		0.43209 (3),(6)	0.43331 (3),(6)			
0.50201	0.50362											
0 58075	0 58236											
0.58075	0.58236											
0.72543	0.72705	• • • •										
		0.87063	0.87224			• • • •						
				1.09417	1.09622							
	•••			1.31760	1.31965	• • •						
	• • •		• • •		• • •	1.54154	1.54358					
						1.76496	1.76701					

TABLE A3 TAP THREAD LIMITS: METRIC SIZES, GROUND THREAD (M PROFILE: STANDARD THREAD LIMITS IN INCHES)

ASME B94.9-1999

TABLE A4 SPECIAL EXTENSION TAPS (TAP DIMENSIONS, GROUND AND CUT THREADS)

General Dimensions				Tolerances							
	Nomin	al Tap Size		For Shank Diameter, d ₁ for I ₄ Length							
			Shank		Size Range						
Fractional	Machine Screw	Pipe	Length,	Fractional, in.	Machine Screw	Pipe, in.	Direction	Tolerance			
	0–3		0.88	$\frac{1}{4}$ to $\frac{5}{8}$	0 to 14	$\frac{1}{16}$ to $\frac{1}{8}$	Minus	0.003			
	4		1.00	incl.	incl.	incl.					
	56		1.13	11_{16} to $1\frac{1}{2}$		¼ to 1	Minus	0.004			
	8		1.25	incl.		incl.					
	10-12	$\frac{1}{16}$ to $\frac{1}{4}$ incl.	1.38	1 ⁵ ∕ ₈ to 4		$1^{1}/_{4}$ to 4	Minus	0.006			
1/4	14		1.50	incl.		incl.					
5/16			1.56								
3/8		• · •	1.63								
7/16		$\frac{3}{8}$ to $\frac{1}{2}$ incl.	1.69								
1/2			1.69								
9/16		3/4	1.88								
5/8		1	2.00								
11/16			2.13								
3/4		11/4	2.25								
13/16		11/2	2.38								
7/8			2.50								
15/16			2.63								
1			2.63								
1%		2	2 75								
11/4		21/2	2.88								
13%		- / 2	3.00								
11/2		•••	3.00								
15/2		3	3.13								
1 ³ / ₄		•	3.13								
17/	• • •		3.13								
2	• • •		3.20								
2		•••	3.20								
2/8 21/		•••	3.30								
2 /4 2 ³ /	•••	• • •	3.30								
2 /8 2 ¹ /	•••		3.50								
2 /2		21/	3.50								
278		3/2	3.63								
274		•••	3.63								
2./8	• • •	•••	3.75								
3		• • •	3.75								
3%			3.88								
31/4		•••	3.88								
3%		4	4.00								
31/2		••••	4.00								
3%			4.13								
31/4		•••	4.13								
31/8			4.25								
4			4.25								

GENERAL NOTE:

Unless otherwise specified, special extension taps will be furnished with dimensions and tolerances as shown for machine screw and fractional taps Tables 2 and 2A and for pipe taps in Table 5. Exceptions are as follows: (a) Types of centers are optional with manufacture.

(b) Tolerances on shank diameter d_1 for l_4 length as shown in the above table.

(c) Shank runout tolerance in Table 6 applies only to the I4 length shown in the above table.

68

NONMANDATORY APPENDIX A

ASME B94.9-1999

TABLE A5 SPECIAL FINE PITCH TAPS, SHORT SERIES (TAP DIMENSIONS, GROUND AND CUT THREAD)

			Gener	al Dimension	s			
	······	Nominal	Nominal		Та	ap Dimension	s, in.	
Nominal Diameter Range, in.		Fractional Diameter.	Metric	Overall Length	Thread Length.	Square Length	Shank Diameter	Size of Square.
Over	To (Inclusive)	in.	mm	L	;s, I	g, k	d ₁	a - 1
1.070	1.073	1 ¹ / ₁₆	M27	4.00	1.50	0.88	0.8960	0.672
1.073	1.135	11/8		4.00	1.50	0.88	0.8960	0.672
1.135	1.198	1 ³ / ₁₆	M30	4.00	1.50	1.00	1.0210	0.766
1.198	1.260	11/4		4.00	1.50	1.00	1.0210	0.766
1.260	1.323	15/16	M33	4.00	1.50	1.00	1.1080	0.831
1.323	1.385	1 ³ / ₈		4.00	1.50	1.00	1.1080	0.831
1.385	1.448	1 ⁷ / ₁₆	M36	4.00	1.50	1.00	1.2330	0.925
1.448	1.510	11/2		4.00	1.50	1.00	1.2330	0.925
1.510	1.635	1 ⁵ ⁄8	M39	5.00	2.00	1.13	1.3050	0.979
1.635	1.760	13⁄4	M42	5.00	2.00	1.25	1.4300	1.072
1.760	1.885	1 ⁷ ⁄8		5.00	2.00	1.25	1.5190	1.139
1.885	2.010	2	M48	5.00	2.00	1.38	1.6440	1.233
2.010	2.135	2 ¹ / ₈		5.25	2.00	1.38	1.7690	1.327
2.135	2.260	21/4	M56	5.25	2.00	1.44	1.8940	1.420
2.260	2.385	2 ³ / ₈		5.25	2.00	1.44	2.0190	1.514
2.385	2.510	2 ¹ / ₂		5.25	2.00	1.50	2.1000	1.575
2.510	2.635	2 ⁵ /8	M64	5.50	2.00	1.50	2.1000	1.575
2.635	2.760	23/4		5.50	2.00	1.50	2.1000	1.575
2.760	2.885	2 ⁷ /8	M72	5.50	2.00	1.50	2.1000	1.575
2.885	3.010	3		5.50	2.00	1.50	2.1000	1.575
3.010	3.135	3½		5.75	2.00	1.50	2.1000	1.575
3.135	3.260	31⁄4	M80	5.75	2.00	1.50	2.1000	1.575
3.260	3.385	3 ³ / ₈		5.75	2.00	1.50	2.1000	1.575
3.385	3.510	31/2		5.75	2.00	1.50	2.1000	1.575
3.510	3.635	3 ⁵ /8	M90	6.00	2.00	1.75	2.1000	1.575
3.635	3.760	3 ³ / ₈		6.00	2.00	1.75	2.1000	1.575
3.760	3.885	3 ⁷ ⁄8		6.00	2.00	1.75	2.1000	1.575
3.885	4.010	4	M100	6.00	2.00	1.75	2.1000	1.575

GENERAL NOTES:

(a) Unless otherwise specified, special taps 1.010 in. to 1.510 in. in diameter, inclusive, have 14 or more threads per inch or 1.75-mm pitch and finer. Sizes greater than 1.510 in. in diameter with 10 or more threads per inch, or 2.5-mm pitch and finer will be made to the general dimensions shown above.

(b) For tolerances see Table 2.

(c) For runout tolerances of tap elements, see Table 6.

Copyright ASME International Provided by IHS under license with ASME (No reproduction or networking permitted without license from IHS echanical Engineers Licensed by Information Handling Services