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FOREWORD

The ISO Guide to the Expression of Uncertainty in Measurement (GUM) is now the internation-
ally accepted method of expressing measurement uncertainty [1]. The U.S. has adopted the GUM
as a national standard [2]. The evaluation of measurement uncertainty has been applied for
some time at national measurement institutes; more recently, increasingly stringent laboratory
accreditation requirements have increased the use of measurement uncertainty analysis in indus-
trial calibration laboratories. In some cases, measurement uncertainty calculations have even been
applied to factory floor measurements.

Given the potential impact to business practices, national and international standards commit-
tees are working to publish new standards and technical reports that will facilitate the integration
of the GUM approach and the consideration of measurement uncertainty in product conformance
decisions. In support of this effort, the ASME B89 Committee for Dimensional Metrology has
formed Subcommittee 7 — Measurement Uncertainty.

Measurement uncertainty has important economic consequences for calibration and inspection
activities. In calibration reports, the magnitude of the uncertainty is often taken as an indication
of the quality of the laboratory, and smaller uncertainty values generally are of higher value and
cost. In industrial measurements, uncertainty has an economic impact through the decision rule
employed in accepting and rejecting products. ASME B89.7.3.1, Guidelines for Decision Rules:
Considering Measurement Uncertainty in Determining Conformance to Specifications, addresses
the role of measurement uncertainty when accepting or rejecting products based on a measurement
result and a product specification.

With significant economic interests at stake, it is advisable that manufacturers guard against
accepting bad products and rejecting good ones. Even with a very good measurement system,
there will be some risk of decision errors, with cost impacts that vary depending upon the nature
of the product and its intended end use. While the evaluation of measurement uncertainty is a
technical activity well-described in the GUM, the selection of a decision rule is a business decision
that involves cost considerations.

ASME B89.7.3.1 provides uniform, unambiguous terminology for documenting a decision rule.
It describes the relationship between the conformance zone (locating conforming characteristics)
and the acceptance zone (locating acceptable measurement results). This Technical Report
addresses the problem of determining the gauging limits (or test limits) that define the boundaries
of the acceptance zone. The limits are chosen to balance the risks of the two types of decision
errors, whose relative magnitudes depend upon product-specific economic factors that are outside
the scope of this Report.
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MEASUREMENT UNCERTAINTY AND CONFORMANCE TESTING:
RISK ANALYSIS

1 SCOPE

This Technical Report provides guidelines for setting
gauging (or test) limits in support of accept/reject deci-
sions in workpiece inspections, instrument verifications,
and general conformance tests where uncertain numeri-
cal test results are compared with specified require-
ments.

In accepting or rejecting workpieces or instruments
based on the results of inspection measurements, the
presence of unavoidable measurement uncertainty intro-
duces the risk of making erroneous decisions. By imple-
menting a decision rule that defines a range of acceptable
measurement results, one can balance the risks of
rejecting conforming workpieces or instruments and
accepting nonconforming ones.

2 DEFINITIONS AND TERMINOLOGY

For the purposes of this Technical Report, the follow-
ing definitions apply [1-4]:

accept—reject measurement: measurement made for the
purpose of accepting or rejecting a workpiece, work-
piece feature, or measuring instrument [4].

acceptance: decision that the measured value of a charac-
teristic satisfies the acceptance criteria.

acceptance criterion: specification criterion for acceptance
of a workpiece, workpiece feature, or measuring instru-
ment based upon the result of a measurement or test.

NOTE: The most common acceptance criterion for accept/reject
decisions is acceptance when the measured characteristic lies in
the acceptance zone and rejection otherwise.

acceptance zone: set of values of a characteristic, for a
specified measurement process and decision rule, that
results in product acceptance when a measurement
result is within this zone [3].

binary decision rule: decision rule with only two possible
outcomes, either acceptance or rejection [3].

characteristic: property that helps to identify or differenti-
ate between items of a given population [5, para. 1.5.1].
In this Report, a characteristic is typically a workpiece
feature or the error of a measuring instrument subject
to a conformance test.

conformance test: measurement of a characteristic in order
to decide conformance or nonconformance with specifi-
cations.

conforming: a characteristic is conforming if its true value
lies within or on the boundary of the tolerance zone.

NOTE: In ASME B89.7.2-1999, conforming is defined as having a
measured value lying within or on the boundary of the allowable
tolerance band. This definition would be correct if measured were
changed to true.

consumer’s risk: probability of a pass (or Type II) error.
(The cost of such an error is generally borne by the
consumer.)

decision rule: documented rule that describes how mea-
surement uncertainty will be allocated with regard to
accepting or rejecting a product according to its specifi-
cation and the result of a measurement [3].

fail error: rejection, as a result of measurement error,
of a characteristic whose true value is within specified
tolerances (also known as a Type I error) [4].

gauging limits: specified limits of a measured value [4].

guard band: magnitude of the offset from a specification
limit to an acceptance or rejection zone boundary [3].

inspection: activities such as measuring, examining, test-
ing, and gauging one or more characteristics of a product
or service, and comparing with specified requirements
to determine conformity [5, para. 1.2.1].

inspection by variables: method that consists in measuring
a quantitative characteristic for each item of a popula-
tion or a sample taken from this population [6, para. 3.1].

NOTE: Inspection by variables may be compared with a related
concept, inspection by attributes. In the latter, one simply notes
the presence (or absence) of some characteristic of an item, while
in the former one measures and records a numerical value of a
characteristic, with reference to a continuous scale. In the inspec-
tion of a ballpoint pen, for example, an inspection by attributes
might consist of noting whether or not the pen will write, while
an inspection by variables might require a measurement of the
pen’s ball diameter and a comparison with a tolerance.

measurand: particular quantity subject to measurement
[2, para. 2.6; 7, para. B.2.9].

measured value: value obtained by measurement.

NOTE: The measured value is the result of the measurement [2,
para. 3.1] and is the value attributed to the measurand after per-
forming a measurement.
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measurement capability index, C,,: in the case of measuring
a characteristic for conformance to a two-sided tolerance
zone of width T, C,, = T/4u,,, where u,, is the standard
uncertainty associated with the estimate of the charac-
teristic; for a one-sided tolerance zone of width T, C,,, =
T/2u,,; and in the case of calibration or verification of
a measuring instrument with specified maximum per-
missible error +MPE, C,, = MPE/2u,, where u, is the
standard uncertainty associated with the estimate of the
instrument error.

nonacceptance: decision that the measured value of a char-
acteristic does not satisfy the acceptance criteria.

nonconforming: a characteristic is nonconforming if its
true value lies outside the boundary of the tolerance
zone.

NOTE: In ASME B89.7.2-1999, nonconforming is defined as having
a measured value lying outside the boundary of the allowable
tolerance band. This definition would be correct if measured were
changed to true.

pass error: acceptance, as a result of measurement error,
of a characteristic whose value is outside specified toler-
ances (also known as a Type II error) [4].

process distribution: probability distribution characteriz-
ing reasonable belief in values of a characteristic
resulting from a manufacturing process.

NOTE: The form of this distribution can be inferred from a fre-
quency distribution (usually displayed in a histogram) of measured
characteristics from a large sample of items.

producer’s risk: probability of a fail (or Type I) error. (The
cost of such an error is generally borne by the producer.)

. rejection: see nonacceptance.

- rejection zone: set of values of a characteristic, for a speci-
 fied measurement process and decision rule, that results
- in product rejection when a measurement result is within
- this zone [3].

| specification limits: see tolerance limits.
test limits: see gauging limits.

tolerance: total amount by which a specific characteristic
is permitted by specifications to vary.

NOTE: The tolerance is the difference between the upper and
lower specification limits [5, para. 1.4.4; 8, para. 1.3.3].

tolerance interval: region between, and including, the tol-
erance limits [5; para. 1.4.5].

tolerance limits: specified values of the characteristic, giv-
ing upper and/ or lower bounds of the permissible value
[5, para. 1.4.3].

lower tolerance limit (T ): specification limit that defines
the lower conformance boundary for an individual unit
of a manufacturing or service operation.

upper tolerance limit (Ty): specification limit that
defines the upper conformance boundary for an individ-
ual unit of a manufacturing or service operation.

MEASUREMENT UNCERTAINTY AND CONFORMANCE TESTING:
RISK ANALYSIS

NOTE: For a single-sided conformance test, there is only a single
tolerance limit.

tolerance zone: see tolerance interval.

3 INSPECTION MEASUREMENTS AND PASS/FAIL
DECISIONS

In a typical inspection measurement or conformance
test, a characteristic or feature is measured' and the
result compared with a specified acceptance criterion in
order to establish whether there is an acceptable proba-
bility that the characteristic conforms to its tolerance
requirements. Such a conformance test consists of the
following sequence of three operations:

(a) measure a characteristic of interest

(b) compare the result of the measurement with a
specified requirement

(c) decide on the subsequent action

In practice, once the measurement data are in hand,
the comparison/decision operations are typically imple-
mented by way of a decision rule that depends on the
measurement result and its associated uncertainty, the
specified requirement, and the chances and conse-
quences of making an erroneous decision. The producer
is generally responsible for choosing the decision rule
to be used when making conformance decisions.

Documentary guidance is available regarding the for-
mulation of a decision rule. ASME B89.7.3.1-2001 [3],
for example, provides a unified set of guidelines for
documenting a chosen decision rule, including an
explicit description of the role of the measurement
uncertainty in setting the test limits (or guard bands).

In an industrial and commercial setting, inspection
measurement or conformance test procedures are
designed to obtain, at reasonable cost, information that
will enable rational business decisions to be made.
Money spent to reduce uncertainty below the level at
which a rational business decision can be made will
usually lead to lost revenue. An inspection sequence
with its associated decision rule (measure = compare/
decide) is thus necessarily very closely tied to matters
such as costs and risks. As such, the design of an effective
inspection measurement or conformance test is not a
purely technical exercise, but also depends upon eco-
nomic factors that are specific to the particular enter-
prise. For this reason, generic or default decision rules
(such as those proposed in ISO 14253-1) that are based
only on the measurement uncertainty and with no con-
sideration of costs can be inadequate for maximizing
return on investment.

! This Report considers only scalar characteristics that are measur-
able on a continuous scale. An inspection measurement of such a
characteristic is called inspection by variables.
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Tolerance zone

A

N\

T Xo Ty

GENERAL NOTE: The tolerance zone [5,8] is equivalent to the
specification zone [3].

Fig. 1 Tolerance Zone

4 FREQUENCY DISTRIBUTIONS: VARIABLE
PRODUCTION PROCESSES AND NOISY
MEASUREMENTS

4.1 Specification and Tolerance

The following simple one-dimensional example will
serve to illustrate in detail the development of a pass /fail
conformance test procedure for a manufactured work-
piece. Amanufacturer produces metal spacers of nominal
length x,. The design specification includes a tolerance T
and calls for xg to lie at the center of a tolerance zone of
length T. An acceptable spacer must therefore have a
length X in the range T} < X < T, where the lower toler-
ance limit T; = xy — T/2 and the upper tolerance limit
Ty = xo+ T/2. The tolerance is simply related to the toler-
ance limits by T = Ty — T\, as shown in Fig. 1. A spacer
is said to be conforming if its length X lies in the specifica-
tion zone and nonconforming otherwise.

4.2 Process Variation

By design and adjustment, the manufacturing process
can be arranged so that, on average, it produces a spacer
whose length equals the nominal value x;. Due to unpre-
dictable and unavoidable process variations, however,
there will be some distribution of actual lengths in any
particular batch of parts. The nature of this distribution
can be studied by measuring a large sample of spacers
and plotting the results in a histogram. In such a study,
any nonrepeatability in the measuring system will be
superimposed on the variability due to the production
process. In studying process variation, the measurement
data can be corrected for this effect (see para. 4.5).

Figure 2 shows a histogram for the lengths of a batch of
spacers produced by a hypothetical production process.?
Thevertical axis shows the fraction (or relative frequency)
of parts whose lengths lie in the various narrow bins dis-
tributed along the horizontal (length) axis. The width of
the histogram is a measure of the variability of the produc-
tion process. The data in Fig. 2 show that most of the spac-
ers are conforming, but there are clearly some
nonconforming ones in the batch. The goal of a confor-
mance test plan is to detect and remove these bad parts.

% The data in Fig. 2 are taken to be the true lengths of the sample.

ASME B89.7.4.1-2005
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Fig. 2 Frequency Distribution of a Sample of
Spacers

Denoting by x1, xy, ..., xy theindividual lengths of a sam-
ple of Nspacers, itis common to summarize the character-
istics of the sampleby calculating the sample mean, X, and
the sample variance, s?, given by

1

=1

N
Exk
k=1

z|

and
1 Y >
. =
s ‘N—1k§1(x" x)

The square root of the sample variance is called the
sample standard deviation

%(xk_z)z
=1 N-1

(€

For a stable manufacturing process, the sample
parameters X and s are, respectively, estimates of the
process mean u, and process standard deviation oy, that
would characterize the average length and dispersion
of a very large (N — =) sample of spacers.

In many cases, the observed variability, as displayed
in a histogram, can be well-approximated by a Gaussian
(or normal) curve. The solid line in Fig. 2 shows such
a curve overlaid on the length measurement data.

A Gaussian distribution is uniquely specified by its
mean, u, and standard deviation, ¢, and these two num-
bers provide a convenient way to summarize the produc-
tion process.

In this Report it is assumed that the frequency distri-
bution of produced spacers is a Gaussian distribution
with mean u = x(, the design length, and standard
deviation o = g, estimated by Eq. (1). If N workpieces
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have been measured, with N > 30 or so, then the relative
uncertainty in the estimate of o, will be less than 10%
or so.

The histogram in Fig. 2 is a measured frequency distri-
bution of spacer lengths. The Gaussian approximation
is given by

2

1(x - x
exp —7 Up

flx) = )

oy 2

The meaning of f(x) is as follows: Given a large sample
of parts, the fraction of them with lengths between x
and x+Ax is just f(x)Ax. If the size of the sample is N,
then approximately Nf(x)Ax of them would have lengths
in the interval [x, x+Ax].

4.3 Process Capability Index

In statistical quality control, a common measure of the
quality of a production process is the inherent process
capability index, C,, defined by

Ty-T, T
Cp= “6s, 6o, €)

This particular definition is chosen so that C, = 1 for
a process characterized by a value of ¢, equal to one-
sixth of the tolerance. The choice of the factor of 6 in
Eq. (3), rather than a factor of 3 or 10, is clearly arbitrary,
but C, as defined does give a useful way to compare
degrees of variability of various processes.

Given C, for a centered process [i.e., xo = (Ty + T1)/2]
with a Gaussian frequency distribution, one can calcu-
late the fraction of spacers that will conform, in the
absence of process drift, with specification (see Manda-
tory Appendix I). This is just the fraction of the area
under the process frequency distribution [Eq. (2)]
between the tolerance limits of xyp = T/2 = xy + 3C,0,,.

Figure 3 and Table 1 show how the yield of conforming
parts increases with increasing process capability. For
C, = 1, the fraction conforming is 0.997 (99.7%), so that
0.003 of them (0.3%) would be expected to be out of
tolerance. For a more variable process (40, = Tor C, =
24), the fraction conforming is about 0.96 (96%), so that
on average about 0.04 (4%) of manufactured spacers
would be out of tolerance.

Numerical Example. Values for the process parameters
in the following example are taken from ASME B89.7.2
[4]. The process density for a feature of length is centered
at a mean value xy = 1500 mm. The process standard
deviation is g, = 0.12 mm. The upper and lower toler-
ance limits are T; = 1500.2 mm and T;, = 1499.8 mm,
so that C, = (Ty — T1)/60;, = 0.55. For this process, Table
1 shows a fraction 0.902 of conforming parts, so that
about 9.8% of production would be out of tolerance. If
the manufacturer simply shipped every spacer pro-
duced, nearly one in ten would be nonconforming.

MEASUREMENT UNCERTAINTY AND CONFORMANCE TESTING:
RISK ANALYSIS

By reducing the variability of the process (increasing
Gy, the manufacturer could reduce the fraction of spac-
ers that fail to meet specification. Of course, such process
improvements cost money and, as shown in Fig. 3, there
is a diminishing return on such investment as the process
becomes increasingly tightly controlled. At some point it
will usually be more economical to invest, not in process
improvement, but rather in workpiece inspection. In
such a case, it would be cheaper to detect and remove
nonconforming parts rather than to try to prevent their
production. The exact nature of such tradeoffs between
process improvement and workpiece inspection will
depend upon the economics of the marketplace.

4.4 Generalizations

In the remainder of this Report, it is assumed that (1)
the process is centered, so that the average length of a
spacer (the process mean) equals the design length, u, =
xo = (Tp + Ty)/2, and (2) the variability of the process
is well-characterized by a Gaussian frequency distribu-
tion. In a case where these assumptions are not valid,
the risk calculations that are developed in detail in Man-
datory Appendix II can be modified to account for the
characteristics of the actual production process.

Many process capability indices have been suggested
for processes that do not satisfy one or both of the
assumptions above. A noncentered Gaussian process,
for example, where the average spacer length, w,, does
not lie at the center of the tolerance zone, can be charac-
terized by a more general process capability index, Cy,
defined by

Cyr = min Tu-wy ,—'”—’u mlll}
P 30, 30,

In general, Cy < C,, with equality for a centered pro-
cess, i.e., u, = Xo.

It should be recognized that while process capability
indices such as C, and Cy; can be useful summary param-
eters for stable production processes, such parameters
add no new information. All such indices are calculated
from more basic quantities, such as T, Ty, Ty, and s
that characterize the process and the tolerance require-
ments. What is needed in order to calculate the risks
associated with erroneous accept/reject decisions is a
probability density function that characterizes belief in
possible values of a workpiece feature (such as a spacer
length) before it is measured. Such a probability density
is assigned based on knowledge of the process, usually
acquired by measurements of a suitable sample of work-
pieces.

If the probability density is Gaussian, then the use of
C,, Cp, or some other index might be useful in simpli-
fying the notation in calculations and for communicat-
ing results. In a case where the probability density is
not Gaussian, the risks can still be calculated, given a
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GENERAL NOTE: For C, = 1, about 3 parts in 1,000 will be nonconforming. The shape of the curve suggests that for a well-
controlled process (C, = 1 or so), improving the yield by means of better process control can become increasingly difficult.

Fig. 3 Fraction of Workpieces Conforming Versus Process Capability Index

suitable analytic form for the density. A useful discus-
sion of a variety of capability indices and the effects of
non-Gaussian process densities may be found else-
where [9].

4.5 Nonrepeatable Measurement Results

Itis a very common experience in industrial metrology
for repeated measurements to yield different results.
Among the many sources of measurement variability
are small setup variations and instabilities, vibration,
electrical noise, dirt, and operator effects. Because of
this lack of repeatability, part of the observed variability
when measuring a batch of parts will be due to the
measurement system.

Measurement repeatability can be studied by repeat-
edly measuring a stable artifact and examining the fre-
quency distribution of the results. Such repeatability
data will typically show a central tendency, with a dis-
persion characterized by a standard deviation, o, It is
important in this kind of study for the measurement
system to be calibrated so that results are expressed in
units of the measurand.

It should be emphasized that o;, characterizes mea-
surement variability and is only one component of mea-
surement uncertainty. It is possible for a measurement
process to be highly repeatable and yet have a large

uncertainty. A perfectly repeatable length measurement,
for example, might be performed in an environment
where the temperature is stable and uniform, but poorly
known. In such a case, the measurement uncertainty
could be dominated by this poor knowledge of the work-
piece and instrument temperatures and their coefficients
of thermal expansion.

Suppose that the sample of spacers in Fig. 2 were
measured with a noisy measurement system with a vari-
ability characterized by a standard deviation o, with
each measurement consisting of a single reading. Then,
under very general conditions, the total standard devia-
tion, oy, of the frequency distribution of measurement
results would be o7 (single measurement) =

oL+ T, .

If the spacers were each measured # times, with the
result taken to be the average of the n measurements,
then for the frequency distribution of averages,

or(n) = /0-%7 + o2,/n . These results show (1) how the

effect of measurement nonrepeatability can be reduced
by averaging and (2) how process variation can be distin-
guished from the variability of the measurement system.
The latter point follows from the expressions above.
From a histogram of single measurements, one would
calculate a total standard deviation, o7, from which the
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Table 1 Fraction Conforming Versus Process
Capability Index

Process Fraction of
Capability Spacers
Index, C, Conforming
0.50 0.866
0.55 0.902
0.60 0.928
0.65 0.949
0.70 0.964
0.75 0.976
0.80 0.984
0.85 0.989
0.90 0.993
0.95 0.996
1.00 0.997
1.05 0.998
1.10 0.9990
1.15 0.9994
1.20 0.9997
1.25 0.9998

process standard deviation follows from

o, = lo% - o2, . An analogous result is obtained if
each measurement is repeated n times, with ¢, replaced

by 0'171/\/77-

5 PROBABILITY DENSITIES: PRIOR INFORMATION
AND STANDARD UNCERTAINTY

5.1 Conditional Probabilities

The nature of manufacturing and measurement is
such that the value of a quantity of interest, such as the
length of a workpiece or the magnitude of a measure-
ment error, cannot be known exactly. In general, there
will be an infinite number of possible values that are
consistent (in the sense of being plausible) with one’s
knowledge of the manufacturing and/or measurement
processes.

In this common situation, one’s confidence in the vari-
ous possible values of an uncertain quantity is repre-
sented by a continuous probability density. It is assumed
that the reader is familiar with the concept of probability
as a numerical representation of degree of belief, with
certainty represented by a probability equal to one and
impossibility represented by a probability equal to zero.

All probabilities are conditional on whatever informa-
tion is available that is relevant to the situation. Consider
the following statement: “The length of the spacer is
25.000 + 0.001 mm, with a 99% level of confidence.” This
statement might or might not be true, and it could be
made in a variety of contexts. For example, it might
describe:

MEASUREMENT UNCERTAINTY AND CONFORMANCE TESTING:
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(a) aspacer chosen at random from a batch of similar
parts produced by a well-characterized manufacturing
process

(b) a spacer whose length has just been measured in
an inspection operation

(c) aspacer purchased from a vendor based on a pub-
lished specification

The source and nature of the background information
is quite different in these three situations.

In this Report, the symbol I will be used to represent
conditioning information and probabilities will be writ-
ten in a way that explicitly displays their conditional
nature. Thus, for some assertion A, the quantity p(A|l)
is the probability that A is true, given information I. In
such probability expressions, quantities to the right of
the vertical bar are assumed to be true. For a quantity
y that can assume a continuous range of values, the
expression p(y|[)Ay will stand for the probability that y
lies in the range [y, y+Ay], given information I.

5.2 Probability Density of the Production Process:
Prior Information

Consider again the production process described in
para. 4.2 and suppose that a spacer is chosen at random
during a production run. What can be said about the
length of this particular part? Given the information
provided by the sample data (Fig. 2), it would seem
reasonable to believe that the length of the spacer would
be more likely to be near the average length x, than to
be much larger or smaller than average. It also seems
reasonable that the range of plausible lengths could be
characterized by the standard deviation, o;, of the fre-
quency distribution (see Fig. 2). In the absence of any
measurement data, the best that can be done is to esti-
mate or infer the length of the spacer based on informa-
tion about the process provided by its production
history.

Such an inference takes the form of a probability den-
sity function (pdf), p(x|I), called the process probability
density or, in short, the process density. In the language
of probability theory, this density is often called the prior
density for the probable lengths of the spacer, since it
characterizes a state of knowledge or degree of reason-
able belief in the length of the spacer before it is mea-
sured.

The prior information, I, that conditions this pre-
measurement knowledge of the length of a workpiece
includes the frequency data of Fig. 2. It might also
include other data, such as sample measurements
performed as part of a statistical quality control
program. Such information is valuable in assuring that
the process is free of drift or abnormal variability.

The form of the process density, p(x|I), follows from
the information provided by the measurement data of
Fig. 2. It seems intuitively reasonable, and in fact can
be shown, that the probability p(x|)Ax that the spacer
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Tolerance zone

\

N Xo Ty
Length, x

GENERAL NOTE: This density characterizes what is known about the
workpiece length before it is measured. The area under the curve
between the tolerance limits is the probability that the workpiece
conforms to specification.

Fig. 4 Process Probability Density for the Length of
a Randomly Chosen Workpiece

length, X, lies in the interval between x and x+Ax is
numerically equal to the fraction of the sample of mea-
sured spacers in the same interval. This fraction is given
by Eq. (2), and so the process density is

px(D) =

u, \J2m

with u, = . Figure 4 shows this probability density.
The most probable length is just xo = u,, the process
average. The standard deviation, u,, is a measure of
the range of values about x; where the probability is
appreciable. In the ISO Guide to the Expression of Uncer-
tainty in Measurement (GUM) [7], x( is called an estimate
of X and u, is the associated standard uncertainty. The
two numbers, x; and iy, together characterize the credi-
ble values of the length of an unmeasured workpiece.

5.3 The Difference Between o}, and u,

While the quantities o, and u,, are both standard devia-
tions and have the same numerical value, they are con-
ceptually different in nature.

The process standard deviation, oy, is calculated, to
within a relative uncertainty that decreases with increas-
ing sample size, from a sample of measured lengths.
This experimentally estimated quantity characterizes
the dispersion of the sample of measurements and, as
such, is a collective property of the measured sample
and the production process.

ASME B89.7.4.1-2005

The standard uncertainty, Uy, by contrast, is an
assigned quantity characterizing the dispersion of val-
ues that could reasonably be attributed to a particular
unmeasured spacer, based on knowledge of the produc-
tion process acquired via the sample measurements.
Thus, u, characterizes a degree of belief and is not some-
thing that could itself be measured. The probability den-
sity, p(x|I), and its standard deviation, iy, are not physical
properties of the spacer, but rather they characterize
what is reasonable to believe about its length, based on
what is known about the production process.

5.4 Conformance of an Unmeasured Workpiece

For the purposes of this Report, it will be convenient
to describe the two possible quality states of a workpiece
by the symbols C for conformance and C for noncon-
formance. For a spacer of unknown length X, the sym-
bols stand for the following propositions:

(1) C = the spacer conforms to specification, i.e., Ty
<X<Ty

(b) C = the spacer does not conform to specification,
ie, X<Tpor X>Ty

The probability that a spacer conforms (i.e., the proba-
bility that C is true) is then written as p(C|I) and the
probability that it does not conform is p(ClI). Since a
spacer either conforms or does not, these probabilities
must add up to one: p(CI) + p(C]) = 1.

For a spacer chosen at random but not measured, the
conformance probability, p(C|I), is equal to the fraction
of the area under the probability density, p(x|I), that lies
between the tolerance limits. This fraction, shown as the
unshaded portion of the area in Fig. 4, is given by

Ty
p(C|I) = j p(x|D) dx

T.

Numerically, this probability is the same as the frac-
tion of conforming spacers in a large sample as shown
in Table 1 and Fig. 3. Thus, unmeasured parts can be
accepted for use with acceptable risk so long as the
process is controlled and C, is large enough.

The acceptance of unmeasured workpieces based on
knowledge of the process is very common in modern
manufacturing. It might seem somewhat unusual to
claim a level of confidence in accepting a part that has
never been measured — it is a pure inference. But it is
conceptually the same as accepting a part based on the
result of a measurement. The uncertainty will be smaller
in the latter case because of the additional information
provided by the measurement, but the true length
remains unknown.
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6 WORKPIECE INSPECTION: MEASUREMENTS AND
MEASUREMENT UNCERTAINTY

6.1 Measurement Probability Density

As part of a quality control system, a spacer is mea-
sured in order to decide its conformance to specification.
Once corrections have been made for all known signifi-
cant systematic errors, the result of the measurement is
a number, x,,, which is a best estimate of the value of
the length, and an associated standard uncertainty, u,,.
Even with a high-accuracy measurement, the length can-
not be known exactly. Possible values are then repre-
sented by a probability density function.

Let I,, stand for the information available after per-
forming the measurement. Symbolically, I,, = DI, the
prior information, I (what’s known before the measure-
ment), updated to include the data, D, acquired in the
measurement process. D includes the estimates and
associated standard uncertainties of all input quantities
that contribute to the evaluation of the estimate, x,,, and
its associated measurement uncertainty. The probability
density for the length of the spacer following a measure-
ment is called the measurement probability density or,
for short, the measurement densi’cy.3

The modeling of the measurement process, including
the assignment of probability densities to the influence
quantities and the evaluation of the measurement uncer-
tainty, form the subject of the GUM. In this Report, we
assume that the knowledge of the measurand (in this
case, the length of the spacer) following a measurement
is well represented by the Gaussian probability density

2

p(x|1m) = exp |—={—— 4)

Uy 2T

The expectation (or mean) of this density, as well as
the most probable value of x, is the estimate x,,. The
standard deviation, u,, characterizes the range of rea-
sonably probable post-measurement lengths and is
another way of writing the combined standard uncer-
tainty, u.(x), associated with the result of the mea-
surement.

The expanded uncertainty, U, is calculated from u,,
by multiplying by a coverage factor, k: U = ku,,. Unless
otherwise stated, in this Report we will use the term
measurement uncertainty to mean the expanded uncer-
tainty U with a coverage factor k = 2, which is the most
common coverage factor used nationally and interna-
tionally. For the familiar Gaussian density [Eq. (4)], the
expanded uncertainty corresponds to a level of confi-
dence of about 95%. This means that there is a probability
of about 95% that the (true) length of a measured spacer
lies in the uncertainty interval [x,, — U, x,, + U].

% In probability theory, this density is often called the posterior
density for the probable lengths of the spacer, since it characterizes
knowledge of the length of the spacer after it is measured.
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6.2 Measurement Capability Index

The definition of the process capability index, C,, in
para. 4.3 illustrates the natural length scale provided
by the tolerance. By analogy with C,, the measurement
capability index, C,, is defined by

T T
Cm:% =350 @)

which is just the ratio of the tolerance to the width of
the uncertainty interval. Just as C, serves as a useful
index of process quality (large C, — low process variabil-
ity), C,, characterizes the quality of the measurement
system (large C,, = low measurement uncertainty).

There is a close connection between the measurement
capability index, C,, and various rules and ratios that
have been used to characterize measurement quality.
Among these are gauging ratio, gauge maker’s rule, test
accuracy ratio (TAR), test uncertainty ratio (TUR), and
others. Sometimes these are stated as numbers, such as
a 10-to-1 rule or a TUR of 4:1. One has to be very careful
in interpreting these quantities when they are encoun-
tered, because they are often ambiguously or incom-
pletely defined.

With respect to the TUR, for example, the American
Association of Laboratory Accreditation (A2LA) states
[10]: “A2LA interprets this ratio to mean that the total
uncertainty of the measurement system (as opposed to a
simple combination of the uncertainties of the reference
standards) does not exceed a given fraction of the speci-
fied tolerance.” Here the meaning of total uncertainty
is ambiguous.

Similarly, the Instrument Society of America (ISA), in
a Web-based dictionary [11], defines the test uncertainty
ratio (TUR) as “a measure of calibration accuracy — the
ratio of observation uncertainty of a unit being cali-
brated to the output uncertainty of the calibration
source.” In this case, the terms observation uncertainty
and output uncertainty have no clear meanings.

The definition of C,, in Eq. (5) is unambiguous in
the case of workpiece inspection with upper and lower
tolerance limits. It is consistent with the nomenclature
of ASME B89.7.3.1 [3]. In that standard, for example, a
4:1 Decision Rule means that C,, = 4.

In the case of a one-sided measurement of a feature
such as flatness, there is a lower bound of zero and a
single (upper) tolerance limit, T. In this case, the mea-
surement capability index is defined to be C,, = T/
2u,, = T/U (one-sided measurement).

In the calibration or verification of measuring instru-
ments, the instrument specification is often in terms of
a maximum permissible error (MPE) that should bound
the absolute value of instrument errors. In this case, C,,
is defined as in Eq. (5) with the replacement of T by
2MPE, so that C,, = 2MPE/2U = MPE/U. The expanded
uncertainty, U, of the observed errors will generally have
contributions from the imperfect standards used in the
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GENERAL NOTE: The best estimate, x,,, lies in the tolerance zone, indicating conformance, but there is a possibility that the
spacer is too long. The range of reasonably probable lengths is characterized by the standard uncertainty, u,,. About 95%
of the probability lies in the uncertainty interval [x,, — U, x,, + U], where U = 2up,. In this example, the measurement

capability index is C,, = T/2U = 2.

Fig. 5 Probability Density for the Lengths of a Measured Workpiece

calibration, environmental effects, and from uncertain-
ties in the instrument’s readings.

6.3 Conformance of a Measured Workpiece

Figure 5 shows the measurement density, p(x|I,,), of
Eq. (4) that characterizes the knowledge of the length
of a particular spacer after an inspection measurement.
The most probable length is the estimate, x,,. The associ-
ated standard uncertainty, u,,, is a measure of the region
about x,, where most of the probability is concentrated;
95% of the probable lengths lie in the uncertainty interval
X £ 2u,, or x, = U. For the example shown in Fig. 5,
u,, is one-eighth of the tolerance, so the measurement
capability index, C,, is equal to 2.

Since the measurement result, x,,, lies in the tolerance
zone, one might decide to accept the spacer as conform-
ing to specification; this is an example, for C,, = 2, of
a decision rule called simple 2:1 acceptance (see ASME
B89.7.3.1 [3]). Acceptance is not the same as confor-
mance, however; in Fig. 5, for example, there is an obvi-
ous fraction (shown hatched) of the probable lengths of

the spacer that are outside of the upper tolerance limit,
corresponding to a part that is too long.

Given the measurement data, the probability, p( C\Im),
that a measured spacer conforms to its specification
equals the fraction of the probable lengths contained
between the tolerance limits. Writing p(C|I,,) = Pc, the
probability of conformance is

Ty
Pc = J.p(x|lm) dx
TL

Inserting the Gaussian measurement density [Eq. (4)]
yields explicitly

Tu 2
Pc = 1 exp |- % I (6)
Uy, @ Uy
TL

This integral cannot be evaluated in closed form, but
can be expressed (see Mandatory Appendix I) in terms

Copyright ASME International
Provided by IHS under license with ASME

No reproduction or networking permitted without license from IHS Not for Resale



ASME B89.7.4.1-2005

of the well-known standard normal cumulative distribu-
tion function (CDF), ®(z), defined by

z

Jfo(f) dt

where fy(t) = (1/ /2m) exp (—+2/2) is called the standard
normal probability density function.

The cumulative probability, ®(z), is a number between
0 and 1, tabulated in most statistics books, and included
in commercial spreadsheet and mathematics software.
Letting t = (x — x,,)/u,, in Eq. (6) then gives:

~— Xm ) (TLM_ Xm
m

4

d(z) = L exp (-2/2)dt =
27

PC:(I)TU

m

This result expresses the conformance probability, Pc,
in terms of the particular product specification limits
(Tr, Ty) and the result of a particular measurement (x,,,
u,,). Because of the natural length scale provided by the
tolerance, T, this result can be rewritten in a form that
is suitable for a general inspection problem. Defining a
scaled measurement result, X, by

Xm — TL
T

i= @)
and using Eq. (5) for the measurement capability index,
Cy, the conformance probability, Pc, can be written as
follows:

Pc=® [4c,,, a- &)] - @ (-4C,, 3)

= Pc (%, Cw) ®)

The probability, P¢, that a measured spacer conforms
to specification thus depends on the two dimensionless
numbers ¥ and C,,. For a given dimensional measure-
ment plan, the measurement capability index, C,,, is usu-
ally a constant. In this case, a question as to whether or
not a measured part is in tolerance, given a required
level of confidence, may be decided on the basis of the
best estimate, x,,, via Egs. (7) and (8).

Numerical Example. Consider again the example dis-
cussed in para. 4.3. Here the tolerance zone for a feature
of length is the interval T; = 1499.8 mm to Ty; = 1 500.2
mm, so that T = 0.4 mm. The measurement standard
uncertainty is u,, = 0.04 mm, so that the measurement
capability index is

Cn = T/4u,, = 04/0.16 = 2.5

Suppose that an inspector measures this feature on a
particular workpiece, with the resulting estimate x,, =
1 500.16 mm. What is the probability, Pc, that the feature
is in tolerance?

From Eq. (7), the scaled measurement result, %, is

% = (ty - Ty)/T = (1500.16 — 1499.8)/0.4 = 0.9

10
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Then, from Eq. (8),

Pc=®[4 x 251 -0.9)] - ® (-4 x 25 x 0.9)

= d (1) - d(-9)

From a table of the normal CDF ®(z), we find ®(1) =
0.84 and ®(-9) = 0. Thus, P- = 0.84 and there is an 84%
probability that the feature conforms to specification
and a 16% probability that it does not.

For a particular part length measurement, the esti-
mate, x,,, and the associated standard uncertainty, u,,
uniquely determine ¥ and C,,, and therefore the confor-
mance probability, Pc, via Eq. (8). There are an infinite
number of pairs (x,, 1) that yield a given level of confi-
dence, Pc. A useful and informative way of displaying
this information is shown in Fig. 6, for a level of confi-
dence P- = 95%.

In Fig. 6, the vertical axis shows C,, = T/4u, on a
logarithmic scale with values corresponding to various
gauging ratios. The horizontal axis shows values of the
scaled measurement result, X = (x,, — T;)/T, in the range
from 0 to 1, corresponding to values of x,, between T}
and Ty, i.e., measurement results within the tolerance
zone. The restriction of x,, to this range is a practical
one. For a measurement result, x,,, outside of the toler-
ance limits, the probability of conformance is less than
50% no matter what the measurement uncertainty. It is
unlikely that such a workpiece would be found
acceptable.*

The solid curve in Fig. 6 is a line of constant 95%
probability that divides the measurement results into
regions of conformance and nonconformance at a 95%
level of confidence. A spacer for which the result (x,,
) yields a point in the shaded region below the curve
has a conformance probability, P¢, of less than 95%.

7 GAUGING (OR TEST) LIMITS AND GUARD
BANDS

7.1 Defining an Acceptance Zone Using Gauging (or
Test) Limits

If their lengths could be measured exactly, a batch of
spacers could be sorted good from bad without risk of
error. Because of the uncertainty of any real measure-
ment process, however, the situation is not so simple.
A part whose measured length lay within the tolerance
zone might in fact be too long or too short. Similarly, a
part measuring too long or too short might well be
conforming.

Consider, for example, a spacer whose measured
length, x,,, lay right at one of the tolerance limits. Such
a spacer would be equally probable of conforming or
not conforming to specification. Whether such a part

* In the case of inspection during production, such workpieces
might be accepted, provided they were sufficiently rare.
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Fig. 6 Measurement Capability Index Versus Scaled Measurement Result

was accepted or rejected, there would be a 50% chance
of making a mistake.

The risk of accepting nonconforming workpieces can

be reduced by setting a pair (G, Gy;) of upper and lower
gauging limits (also called test limits) inside the toler-
ance limits. Such gauging limits define a reduced accept-
.ance zone, as shown in Fig. 7. In a typical dimensional
‘measurement plan, a workpiece is accepted (passes
‘inspection) if its measured length lies in the acceptance
‘zone and is rejected otherwise. This is a binary decision
‘rule, where there are only two possible outcomes of a
‘conformance test measurement.”’

For gauging limits inside the tolerance zone, as in Fig.

7, the resultant acceptance zone is called a stringent
acceptance zone. With a binary decision rule, stringent
acceptance is accompanied by relaxed rejection, so called
because a workpiece can be rejected even though its
measured length lies in the tolerance zone (i.e., in one of
the regions between the gauging limits and the tolerance
limits). In this situation, business economics favor a
larger risk of rejecting a good part in order to decrease
the probability of accepting a bad one.

® In this and the following paragraphs, the nomenclature follows
the terminology of ASME B89.7.3.1, Guidelines for Decision Rules.

If the gauging limits are placed outside of the tolerance
zone, the resulting relaxed acceptance zone is accompa-
nied by a stringent rejection zone, as shown in Fig. 8.
In this situation, business economics would favor a
larger risk of accepting a bad workpiece in order to
decrease the probability of rejecting a good one.

7.2 Guard Bands

The magnitudes of the offsets between the tolerance
limits and the gauging limits are called guard bands
[12-18]. The function of these offsets, depending on their
placement, is to guard against accepting bad workpieces
or rejecting good ones.

Figures 7 and 8 show lower (g;) and upper (g;) guard
bands for the cases of stringent acceptance and stringent
rejection, respectively. Depending upon the costs associ-
ated with faulty accept/reject decisions, the lower and
upper guard bands might have different magnitudes.®
In the case of a quantity such as roundness error, which

% In the production of one-dimensional spacers, e.g., workpieces
that are too long could be reworked in a downstream operation,
while ones that are too short could not be made to function and
would have to be scrapped. The decision rule then might favor a
higher risk of accepting a nonconforming long spacer and a lower
risk of accepting a nonconforming short one.

11
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GENERAL NOTE: The offsets between the tolerance limits and the gauging limits are the guard bands g, and gy. A stringent
acceptance decision rule reduces the probability of accepting a nonconforming workpiece.

Fig. 7 Stringent Acceptance Zone

Stringent
rejection zone

Relaxed
acceptance zone

Stringent
rejection zone

A

GENERAL NOTE: The offsets between the tolerance limits and the gauging limits are the guard bands g, and gy. A stringent
rejection decision rule reduces the probability of rejecting a conforming workpiece.

Fig. 8 Relaxed Acceptance Zone

is always positive, there would typically be a single
tolerance limit and only one guard band.

This Report considers, in detail, symmetric two-sided
guard banding where the guard bands are the same size,
g1 = gu = &, and are expressed in units of the expanded
uncertainty, U

g =hu
where

h > 0 for stringent acceptance
h < 0 for relaxed acceptance

The quantity, &, is called a guard band multiplier and
its numerical value is used in specifying an unambigu-
ous decision rule. As a particular example, taking & =
+1 (i.e., g = +U) results in a decision rule called stringent
acceptance with a 100% guard band, using the nomen-
clature of ASME B89.7.3.1.

8 CONTROLLING THE QUALITY OF INDIVIDUAL
WORKPIECES
8.1 Acceptance Zones and Levels of Confidence

Consider the measurement of spacers, and suppose
that economic considerations require that every spacer
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measured and accepted for use must have at least a
probability Pc of conforming to specification. The size
of the appropriate acceptance zone can be understood
by reference to Fig. 9, which shows curves of constant
95% and 99% conformance probability.

For a given measurement capability index, C,, =
T/4u,,, and level of confidence, Pc, the associated accept-
ance zone, as a fraction of the tolerance, is the width of
the curve of constant P- where it intersects the line of
constant C,,. For a given level of confidence, such as
Pc = 99%, the acceptance zone shrinks in size with
decreasing C,, (increasing measurement uncertainty)
and ultimately reduces to zero. In Fig. 9, for example,
we see that for C,, less than about 1.4, no measured
spacers could be accepted at a 99% level of confidence.
At such low measurement capabilities, more than 1%
of the probability would lie outside the tolerance zone
regardless of the result of the measurement.

8.2 Setting Guard Band Limits for Individual
Workpieces

Once the required level of confidence (conformance
probability) is chosen, setting the guard band limits is
straightforward. Figure 10 shows the measurement
probability density for a spacer whose measured length
lies exactly at the upper gauging (or test) limit, Gy;.
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GENERAL NOTE: For a given level of confidence, the width of the acceptance zone increases with better measurement
quality (i.e., larger values of measurement capability index C,, = T/4u,,).

Fig. 9 Desired Level of Confidence Defines an Acceptance Zone

For stringent acceptance at a level of confidence P,
the upper gauging limit, G, is set inside the upper
tolerance limit, creating an upper guard band of magni-
tude g = hU, > 0. In two-sided symmetric guard band-
ing, an equal offset inside the lower tolerance limit fixes
the location of the lower gauging limit, G;. By only
accepting spacers whose measured lengths lie in the
acceptance zone of width T — 2g, those that pass inspec-
tion will conform to specification with a probability of at
least Pc. Figure 11 shows this stringent acceptance zone.

The measurement probability density shown in Fig.
10, with a measurement result at the upper gauging
limit, is given by Eq. (4) with x,, = Gy

p(x|xm = GU/ Im) =

1
Uy \/Z

The conformance probability follows from Eq. (8), with
¥x=Gyu-T)/T=1-g/Torx =1-h/2C,

13

Pe=® [4cm a- 5:)] ~ @ (-4C,, )

= ®Qh) - D(2h - 4C,,) )

The second term in Eq. (9) represents the leakage of a
small fraction of the measurement density into the
region below the lower tolerance limit. In situations of
practical interest, this probability will be very close to
zero. Taking h = 1, for example, so that g = U, and
assuming a rather poor measurement capability index,
Cp, equal to 2, then ®(2h - 4C,,) = O(-6) = 107 Usually
Cy is 4 or larger, so that the second term can be safely
neglected and we have

Pe = ®(2h)

Then the multiple of U in setting the guard band ¢ =
hU is given by

1
h =5 @7 (Pc)
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, Guard ;’aund . Table 2 Conformance Probability Versus Guard
Measurement : 9= ! Band Multiplier
o . |
pr&bﬁb;llty density ! f Conformance Guard Band
p Xt : ! Probability, Multiplier,
| : PC h
! |
| ! 0.80 0.42
Guard band is | 0.85 0.52
chosen so that | 0.90 0.64
a fraction R of | 0.95 0.82
the area under | 0.99 1.16
the curve lies ' 0.999 1.55
inside the |
tolerance zone |
|
! T
I ~< >
|
i NIy  Stringent acceptance zone N\ g\
| NN NN
a " v
G T . . .
v v Fig. 11 Stringent Acceptance Zone for Symmetric
Upper Upper Two-Sided Guard Banding
gauging tolerance
limit limit

GENERAL NOTE: The curve shows the measurement density for an
estimate x,, at the upper gauging (or test) limit. The guard band
magnitude g = hU is chosen so that a fraction P¢ of the probability
lies inside the tolerance zone.

Solution. From Table 2, with P = 0.99, we see that
h = 1.16. Thus, the guard band limits should be set
inside the tolerance limits by 116% of the expanded
uncertainty. Then the upper gauging limit is

Gu = Tu - hU
Fig. 10 Guard Band Chosen to Reduce the Probability = 1500.2 mm - 1.16 X 0.08 mm
of Accepting a Workpiece That Is Too Long ~ 1500.1 mm

and the lower gauging limit is

where G, =T, +hU
®! = inverse of the normal cumulative distribution = 1499.8 mm + 1.16 X 0.08 mm
function =~ 1499.9 mm

Table 2 gives values for the guard band multiplier, #,
for several levels of confidence. To assure a conformance
probability of 90%, for example, the gauging (or test)
limits should be offset from the tolerance limits by g =
0.64U. The corresponding decision rule would be stated
as 64% stringent acceptance.

The following examples illustrate choosing guard
band limits when conformance probability must be con-
trolled for every measurement.

8.2.1 Example 1. Consider again the process
described in para. 4.3. The upper and lower tolerance
limits are T;; = 1500.2 mm and T; = 1499.8 mm for a
feature of nominal length xy = 1 500 mm. The measure-
ment standard uncertainty is u#,, = 0.04 mm, so that the
measurement capability index is C,, = T/4u,, = 2.5.

In order for a workpiece to be acceptable, the feature
must conform to specification with a level of confidence,
P, of at least 99%. Where should the guard bands be
placed?

14

Note that for this relatively poor measurement capa-
bility (C,, = 2.5) and large required conformance proba-
bility (Pc = 99%), the acceptance zone is only one-half
the width of the tolerance zone.

8.2.2 Example 2. This example comes from electrical
metrology and involves the testing of a measuring
instrument for conformance to a maximum permissible
error, MPE, requirement.

A digital voltmeter is to be tested by applyinga 1V
dc input from a precision voltage reference source. For
this input, the voltmeter specification states that MPE =
+10.4 wV. The k = 2 expanded uncertainty, U, of the 1
V dc reference input is 4.2 wV. Where should the guard
bands be set so that a voltmeter that passes inspection
has a probability, Pc, of at least 95% of conforming to
specification?

Solution. Here the measurand is the voltmeter error
and the tolerance zone is centered at zero with a width
equal to 2MPE. The measurement capability index is
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then given by C,, = 2MPE/2U = MPE/U = 104/42 =
2.5. The required level of confidence for an instrument
passing inspection is Pc = 95%.

From Table 2, for Pc = 0.95, we see that h = 0.82.
The guard band limits should thus be placed inside the
maximum permissible error limits by 0.82U = 3.45 pV,
so that the test (or gauging) limits that define the accept-
ance zone are set at £(10.4 — 3.45) = +6.95 pV.

9 CONTROLLING THE AVERAGE QUALITY OF
WORKPIECES

9.1 Average Versus Individual Level of Confidence

In para. 8, guard banding was used to assure a mini-
mum level of confidence for each individual workpiece.
In situations where large numbers of parts are produced,
it can be economically advantageous to use less restric-
tive guard banding, with gauging (or test) limits chosen
to assure an acceptable average level of confidence when
workpieces are inspected.

In such a case, it might be acceptable as a business
decision for an occasional part that passes inspection to
have a higher probability of not conforming to specifica-
tion than the average accepted part. With this type of
guard banding, more parts will pass inspection and
fewer will be rejected, so long as the average level of
confidence is acceptable.

Unlike the procedure in para. 8, setting the guard
band limits in this type of inspection relies on prior
knowledge of the process density. Consider a manufac-
turer who requires a typical workpiece to conform to
specification at a 95% level of confidence or greater. The
manufacturer can achieve this with a process capability
index, Cp = 0.65 or greater and no measurement at all,
except for an occasional measurement to verify that the
process is stable and that Cp > 0.65.

Now, if the manufacturer decides, for economic rea-
sons, that a typical workpiece must conform at a 99%
level of confidence, then a measurement system with
appropriate gauging limits can be used to ensure this
outcome. Workpiece characteristics with values that are
far from the process average (and thus nonconforming)
will be more likely to fail inspection than those near the
process average. The average conformance probability
of accepted workpieces will thus rise, and an acceptance
zone can be calculated that will yield an average level
of confidence of 99%.

The following paragraphs describe these calculations.

9.2 Consumer’s Risk and Producer’s Risk

There are four possible outcomes of an inspection
measurement with a binary decision rule: a workpiece
could be conforming (C) or nonconforming (C), and it
could pass (P) or fail (F) inspection.

The events P and F are introduced by the following
definitions:
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For a spacer that passes inspection, let
P = the measured length x,, lies in the acceptance zone
GL < Xm < Gu

For a spacer that fails inspection, let
F = the measured length x,, does not lie in
the acceptance zone
= Xu < GL or x,, > Gu

Combining in pairs each possible quality state (C, C)
with each possible result (P, F) of the length measure-
ment yields the following four possible outcomes of an
inspection measurement:

(a) PC (the spacer passes inspection and conforms to
specification). This is a desired outcome of an inspection
measurement, leading to acceptance of a good part.

(b) PC (the spacer passes inspection and does not
conform to specification). This is a mistake, variously
called a pass error, a Type II error, a false accept, or a
false positive. The probability of a pass error, p(PClly) =
Rc, is often called the consumer’s risk, since the cost
associated with an out-of-tolerance part is usually borne
by the customer.

(c) FC (the spacer fails inspection and conforms to
specification). This is another mistake, variously called
afail error, a Type I error, a false reject, or a false negative.
The probability of a fail error, p(FC|ly) = Rp, is often
called the producer’s risk, since the cost of rejecting a
conforming part is usually borne by the manufacturer.

(d) FC (the spacer fails inspection and does not con-
form to specification). This is a desired outcome leading
to rejection of a bad part.

Figure 12 shows a contingency table containing the
probabilities of the four possible outcomes of a spacer
conformance test. At the bottom are the marginal proba-
bilities of conformance and nonconformance, which
depend only on the process distribution. The right-hand
column shows the marginal probabilities of passing or
failing inspection.

9.3 Consumer’s and Producer’s Risk Calculations

Evaluation of the consumer’s and producer’s risks
requires numerical integration, an exercise that may be
performed manually or with the aid of a computer pro-
gram. A particular example of the manual approach
is given in ASME B89.7.2. This paragraph presents a
generalized approach that yields equivalent results. The
mathematical details are given in Mandatory Appendix
I of this Report.

It should be noted that in the following procedures,
the risks are calculated, given a known set of gauging
limits. In most real applications, a desired level of risk
is chosen and one needs to choose gauging limits that
will ensure that the risk target is met. Such a calculation
is not straightforward. A practical way to determine
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(g) Form the function F(z) = ®(y — rz) — ®(—y - r2).

Spacer Spacer does 5 - T ’
conforms, not conform, Here, ® is the standard normal cumulative distribution
C Cc function (see Mandatory Appendix I).
(h) Compute the probability of a fail error that is the
Spacer : Probability that producer’s risk, Rp
passes, p(PCl 1) p(PCl 1) spacer passes,
P p(Plly)
Ry = p(FC|Iy)
Spacer _ Probability that 3G,
fails, p(FCl1Iy) p(FC|Iy) spacer fails, - f [1 - F@)filz) dz (10)
F p(Flk)
-3¢,
Probability  Probability that where
that spacer spacer does 5
conforms,  not conform, fol2) = (1/ J2_1-r> exp (—Z /2>
p(Clly) p(Cl )

GENERAL NOTE: The table entries are the probabilities of the various
outcomes. The quantity p(PEIO) is the probability of a pass error, which
means accepting a nonconforming spacer. This probability is often
called the consumer’s risk, written R¢. Similarly, the quantity p(FCllo) is

is the standard normal probability density function (see
Mandatory Appendix I).

(i) Compute the probability of a pass error that is the
consumer’s risk, Rc

the probability of a fail error, which means rejecting a conforming Rc = p(palo)
spacer. This probability is often called the producer’s risk, written Rp. 3¢
14 o0
Fig. 12 Contingency Table for an Inspection = f F(z) fo(z) dz + f F(z) fo(z) dz

Measurement

gauging limits for a desired level of risk is via graphs
such as those in Figs. 16 through 19, as described below.

Calculation of the consumer’s risk, R, and producer’s
risk, Rp, requires knowledge of the following quantities:

(a) the process density, assumed to be a Gaussian (or
normal) probability density, characterized by the esti-
mate (expectation) xy and associated standard uncer-
tainty u, = o,, where o, is an estimated standard
deviation that characterizes the process variability. The
process is centered, meaning xo = (T, + Ty)/2.

(b) the measurement density, also assumed to be a
Gaussian or normal probability density, with estimate
Xy, and associated standard uncertainty u,,.

(c) the upper and lower tolerance limits, T;; and T;.

(d) the upper and lower gauging (or test) limits, Gy
and G;.

9.3.1 Procedure. Once the above quantities are
known, the procedure is as follows:

(a) Compute the tolerance, T = Ty — T}.

(b) Compute the guard band multiplier, h = (T -
GU)/ 2um-

(c) Compute the inherent process capability index,
C, = T/6u,.

(d) Compute the measurement capability index, C,, =
T/4u,,.

(e) Compute r = u,/u,, = % (Cu/Cp).

(f) Compute y = 2(C,, — h).
NOTE: yis the width of the acceptance zone in units of expanded
uncertainty U.

16
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3C
4

9.3.2 Numerical Example. Consider again the exam-
ple from para. 4.3. Assume that the data refer to a steel
spacer of nominal length x, = 1500 mm and that such
parts are measured in an environment where the mean
temperature is 25°C. The coefficient of thermal expan-
sion of the workpiece material is 12x10/°C. The mea-
surement plan specifies that spacer length
measurements are to be corrected for nominal thermal
expansion (a systematic error), which in this case
amounts to AL aLAT (12x107°°/
°C)(1 500 mm)(5°C) = 0.09 mm. Evaluation of the com-
bined standard uncertainty of the measurement process
according to the GUM should include a term that
accounts for the uncertainty of this correction.

(a) The following data apply to the production and
inspection processes:

(1) The process density is a Gaussian with mean
value xo = 1500 mm and standard uncertainty u,
o, = 0.12 mm.

(2) The measurement density is a Gaussian with
standard uncertainty u,, = 0.04 mm.

(3) The upper and lower tolerance limits are T;; =
1500.2 mm, T;, = 1499.8 mm.

(4) The upper and lower gauging limits are Gy =
1500.18 mm, G; = 1499.82 mm.

(b) With this information, the steps leading to the
associated risks are as follows:

(1) Tolerance, T = (1500.2 -1 499.8) mm = 0.4 mm

(2) h = (1500.2 — 1500.18)/(2 x 0.04) = 0.25

(3) C, = T/6u, = 04/(6 x 0.12) = 0.55

(4) C, = T/4u,, = 04/(4 x 0.04) = 2.5

Copyright ASME International
Provided by IHS under license with ASME

No reproduction or networking permitted without license from IHS Not for Resale



MEASUREMENT UNCERTAINTY AND CONFORMANCE TESTING:
RISK ANALYSIS

ASME B89.7.4.1-2005

4)r= 2Cm/3CP = 3.025 Spacer Spacer does
(6) y=225-025) =45 conforms, not conform,
(7) F(z) = ®(4.5 - 3.025z) — d(—4.5 - 3.025z) c C
1.653
(8) p(FC|Iy) = [1-F@)]fo(z) dz Spacer Consumer’s Probability that
_1653 passes, 83.3% risk spacer passes,
Carrying out the numerical integration yields the pro- P 1.0% 84.3%
ducer’s risk, Rp
Spacer Producer’s Probability that
Rp = p(FC|IO) 0.0694 = 6.94% fails, risk 8.8% spacer fails,
F 6.9% 15.7%
-1.653 o
(9) p(PC|Iy) = f F(2) fo(z) dz + J' F(2) fo(z) dz Probability ~ Probability that
Y 1253 that spacer spacer does
Carrying out the numerical integration yields the con- conforms,  not conform,
90.2% 9.8%

sumer’s risk, Rc
Re = p(PClI)) = 0.0101 = 1%

In para. 4.3, it was shown that simply accepting all
parts produced by this process, with no inspection,
would result in a 9.8% defect rate or consumer’s risk,
meaning nearly one out of every ten spacers produced
would be out of tolerance. This example shows how the
risk is reduced by the conformance test procedure and
associated decision rule,” with a post-measurement con-
sumer’s risk of about 1%, at the cost of rejecting about
7% of conforming spacers. Whether or not this is an
acceptable situation is a business decision that depends
on the costs associated with accept/reject errors.

Another way to reduce the risks would be to improve
the process by reducing its variability. If the process
standard deviation were reduced from 0.12 mm to 0.08
mm (a reduction of about 35%), then all spacers could
be shipped with a fraction nonconforming of about 1%
and no retention of costly scrap. The manufacturer
would have to compare the cost of this process improve-
ment with the costs of inspection and the subsequent
generation of scrap spacers.

Once the consumer’s and producer’s risks have been
calculated, the other probabilities in the contingency
table can be easily found. Since p(PC|ly) + p(FC|Iy)
p(ClIy), and since p(C\IO) = 0.902 or 90.2% (see para.
4.4), the probability that a spacer conforms and passes
inspection is just

p (PC|Iy) = p (C|Ip) - p (FC|Iy) = 90.2% — 6.9% = 83.3%

Similarly, the probability that a spacer does not con-
form and fails inspection is

p (EC|lp) = p(C|ly) - p (PC|Ip) = 9.8% — 1.0% = 8.8%

Figure 13 shows the completed contingency table for
this example.

7 In this example, with & = 0.25, the decision rule according to
ASME B89.7.3.1 would be called 25% stringent acceptance.
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GENERAL NOTE: The probabilities for the four possible outcomes sum
to 100%, as do the marginal probabilities for pass/fail and conform/
nonconform.

Fig. 13 Contingency Table for the Worked Example

(c) The following features of this example confor-
mance test procedure can be noted:

(1) The manufacturing process continues to pro-
duce 90.2% conforming and 9.8% nonconforming
spacers.

(2) The inspection measurements serve to detect
and remove 8.8% out of the 9.8% bad parts, the
remaining 1% being falsely accepted as conforming.

(3) 84.3% of the manufactured spacers pass inspec-
tion; of these, 83.3/84.3 = 99% conform to specification,
while about 1% are out of tolerance.

(4) Of the 15.7% of spacers that fail inspection,
6.9/15.7 = 44% are in tolerance. This is one of the prices
to be paid for passing only 1% bad product.

Figure 14 graphically displays the producer’s risk and
consumer’s risk versus the measurement capability
index, C,, = T/4u,, for an inherent process capability
index C, =055, the value used in the worked numerical
example. The various curves correspond to different
choices of guard band g = T;; — Gy; the heavy solid
curve corresponds to the value used in the worked exam-
ple: ¢ = +0.02 mm = +0.25U. Positive values of g indi-
cate guard bands located inside the tolerance limits (i.e.,
stringent acceptance).

A study of Fig. 14 shows that acting to reduce the
acceptance of nonconforming spacers by increasing the
guard band (reducing the consumer’s risk) always
results in an increased number of conforming spacers
that are falsely rejected (increased producer’s risk). This
inverse relationship between the producer’s and con-
sumer’s risks is well-illustrated in Fig. 15, which shows
Rp versus R for this example.
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Flgures 16-19 show graphs of Rp versus R¢ for C, =
1.5, 1,%, and %, respectively, for values of measurement
capability index in a range from C,, = 2 to C,, = 10
and guard bands in a range from g = —U (100% relaxed
acceptance) to ¢ = +U (100% stringent acceptance).
These graphs can be useful in choosing an economically
acceptable decision rule [19].

9.4 Guide to Use of the Graphs

The basic quantities needed to use Figs. 16-19, in
addition to the specified tolerance, T, are the process
capability index, C, and the measurement capability
index, C,,.

The process capability index is evaluated by studying
the distribution of characteristics (such as lengths) pro-
duced by the process and estimating the process stan-
dard deviation, g;,. Then C, = T/60, and the appropriate
figure can be chosen. It is unhkely that C, will be exactly
equal to % or any of the other three Values shown in
the four graphs; one can interpolate between the graphs
in order to choose appropriate guard bands.

The measurement capability index is evaluated by
performing an uncertainty analysis of the measurement
process and calculating the standard uncertainty, u,,,
associated with the measured values of characteristics.
Then C,, = T/4u,, = T/2U, which fixes the particular
curve in the figure corresponding to the value of C,.
One can interpolate between these curves for values of

C,, different from those shown.

Example. Suppose a process is characterized by C,

' and the measurement capability is such that C,, = 4 In
order to maximize return on investment, the consumer’s
risk, Rc, must be held to 2% or less. Where should the
guard bands be located in order to satisfy the risk
réquirement7

. Figure 19 shows the risks, R¢ and Rp, for C 4. A
vertical line upwards from Rc = 2% intersects the curve
for C,, = 4 near the point g = 0. In this case, the gauging
limits coincide with the tolerance limits, so there are no
guard bands and the acceptance zone coincides with
the tolerance zone. The decision rule is then 4:1 simple
acceptance. This operating point has a producer’s risk
of Rp = 3%, so that about 3% of measured workpieces
would fail inspection and yet conform with specifi-
cation.

Now suppose the same process capability (C, = 4)
and a less-accurate measurement process with measure-
ment capability index C,, = 2. The Rc = 2% vertical
line intersects the curve for C,, = 2 near the point § =
+0.25. With the less-capable measurement system, a con-
sumer’s risk of 2% can still be achieved by using a 25%
stringent acceptance decision rule. The price to be paid
for the less-accurate measurements is an increase in pro-
ducer’s risk from about 3% to more than 10%, resulting
in more costly rejection of conforming workpieces.

This example shows that a desired quality level for
accepted workpieces can be achieved using a variety of
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measurement systems. In general, the lower the mea-
surement capability, the lower the cost of measurement.
But less-accurate measurements will require a reduced
acceptance zone and more rejection of conforming work-
pieces. The higher cost associated with the rejection of
these conforming workpieces must be balanced against
the lower cost of the measurements. The optimum choice
of an accept/reject decision rule is thus a matter of busi-
ness economics.
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GENERAL NOTE: The risks are plotted versus the measurement capability index, C,, = T/4u,, for various values of guard
band magnitude g = T, — Gy. The thick solid curve corresponds to g = 0.25U, the value used in the worked example.
Positive values of g correspond to guard bands inside the tolerance limits, implying a stringent acceptance decision rule.

Fig. 14 Producer’s and Consumer’s Risks for the Worked Example
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25 wg=+U

20

15

Operating point in worked example

10

Producer’s Risk, Rp, %

Consumer’s Risk, R¢, %

GENERAL NOTE: Several values of guard band magnitude g are shown. The point g = 0 corresponds to a simple 2.5:1
acceptance decision rule (no guard bands), while values of g > 0 correspond to stringent acceptance. Moving the location
of the guard bands invokes a tradeoff between the two kinds of risks. The choice of a particular value of g depends upon
the costs associated with accepting bad spacers or rejecting good ones. Analysis of these costs is a matter of business
economics, with guard bands chosen to maximize profit [19]. In this example, the producer is willing to scrap about 7% of
conforming spacers in order to reduce the fraction of falsely accepted nonconforming spacers to 1%. The operating point
that achieves this objective, shown above, is g = +0.25U, stringent acceptance with a 25% guard band.

Fig. 15 Producer’s Risk Versus Consumer’s Risk for the Worked Example With C, = 0.55 and C,, = 2.5
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GENERAL NOTE: The five curves correspond to values of measurement capability index C,, in a range from 2 to 10. The
solid points locate guard bands ranging from g = —U (100% relaxed acceptance) to g = +U (100% stringent acceptance).
The curves can be useful in choosing a decision rule after an economic analysis has provided an acceptable balance of
risks. For example, if C,, = 8, then choosing a relaxed acceptance rule with a 25% guard band (g = -0.25U) would result
in a consumer’s risk of about 0.0003% and a producer’s risk of about 0.0004%. Note that the Rp scale is logarithmic.

Fig. 16 Producer’s Risk Versus Consumer’s Risk for C, = 1.5
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GENERAL NOTE: The five curves correspond to values of measurement capability index C,, in a range from 2 to 10. The
solid points locate guard bands ranging from g = —U (100% relaxed acceptance) to g = +U (100% stringent acceptance).
Note that the Rp scale is logarithmic.

Fig. 17 Producer’s Risk Versus Consumer’s Risk for C, = 1
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GENERAL NOTE: The five curves correspond to values of measurement capability index C,, in a range from 2 to 10. The
solid points locate guard bands ranging from g = —U (100% relaxed acceptance) to g = +U (100% stringent acceptance).
Both scales are logarithmic.

Fig. 18 Producers Risk Versus Consumer’s Risk for C, = %;
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10

Producer’s Risk, Rp, %

0.1

Consumer’s Risk, R¢, %

GENERAL NOTE: The five curves correspond to values of measurement capability index C,, in a range from 2 to 10. The
solid points locate guard bands ranging from g = —U (100% relaxed acceptance) to g = +U (100% stringent acceptance).
Both scales are logarithmic.

Fig. 19 Producer’s Risk Versus Consumer’s Risk for C, = 15
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MANDATORY APPENDIX |
PROPERTIES OF GAUSSIAN PROBABILITY DENSITIES

I-1 GAUSSIAN PROBABILITY DENSITY

Assume that knowledge of the length, X, of a work-
piece, after performing a measurement, is well-
characterized by a Gaussian (normal) probability
density

p(x|1m ) = (1)

1 |: 1 X — Xy 2]
Um \/Eexp 2( U )
where the result, x,, is the best estimate (expectation)
of X and u,, is the standard deviation of the density
function.! Information, I,,, includes the measurement
data as well as prior knowledge of the characteristics
of the production process. The density [Eq. (1)] expresses
the fact that, since X cannot be known exactly, there are
an infinite number of possible lengths consistent with
what is known, summed up in I,. The density means
that p(x|I,)Ax is the probability that X lies in the interval
(¥, x+Ax). Because the length is certain to have some
value, the density is normalized, which means that

fp(xum) dx =1

For a coverage factor, k, the expanded uncertainty is
defined to be U = ku,,. The probability that the length of
the measured workpiece lies in an expanded uncertainty
interval [x,, — U, x,,, + U] about the measurement result
is just the fraction of the area under the density [Eq. (1)]
between these limits, given by

X +ku
m o m

p(‘x_xm‘ < u|1m) = J p(x|lm) dx

x —ku
m

@

The probability [Eq. (2)] is called a containment proba-
bility, coverage probability, or (in the GUM) a level of
confidence.

I-2 GAUSSIAN INTEGRALS

In computing probabilities and the risks of quantities
such as pass and fail errors, one needs to evaluate inte-
grals of Gaussian functions between finite limits. Such

! In the nomenclature of the GUM, the quantity u,, is called
the combined standard uncertainty, denoted u.(x). The simpler
notation u,, is used in this Report.

25

integrals cannot be evaluated in a simple closed form,
and are therefore evaluated numerically and tabulated.
In order to simplify the notation, it is convenient to
introduce a standard normal probability density func-
tion, fy(z), defined by

fi(2) E%exp (22/2) @)

There are two common ways that one finds Gaussian
integrals evaluated, either in tabular form or computed
numerically in computer software. These are

(a) the standard normal cumulative distribution func-
tion, ®(k), defined by

P(y) = exp (~2%/2) dz

1 y

=
Yy

- f foe) dz

(b) the error function, erf(y), defined by

y
erf(y) = % f exp (-2%) dz

These functions are simply related. From their defini-
tions it can be seen that

() = %[l v erf (y/ﬁ)}

Given these definitions, consider the probability that the
value of X lies in the interval 2 < X < b. This is

b
pa<X<b|L,) = fp(x\lm) dx

Given the Gaussian density [Eq. (1)], this is

b
! f ex [_1 (_x _ x”’)z} dx
Uy \/2_11' " P 2 Uy

(x — x,)/ Uy, dz =

p@<X<b|l,) =

Now, making the substitutions z
dx/u,,, this equation becomes
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®)
using Egs. (4) and (3) for fy(z).

I-3 LEVELS OF CONFIDENCE FOR GAUSSIAN
DENSITIES

In the special case where 2 and b define an expanded
uncertainty interval about the measurement result x,,
which means a = x,, — ku,, and b = x,, + ku,,, Eq. (5)
reduces to

MANDATORY APPENDIX |

. (6)

P
where xj is the average length of a workpiece and o, is
the measured standard deviation of the process, calcu-
lated from the measured lengths of a large sample of
workpieces. Given the distribution [Eq. (6)], after a very
long production run, the fraction of workpieces with
lengths in a small range [x, x+Ax] would be approxi-
mately f(x)Ax. The fraction of workpieces with lengths
in any desired range from a minimum value X, to a
maximum value X,y can then be calculated by integrat-
ing the distribution f(x) over this interval

X
fraction of lengths between Xy and Xmax = J fx)dx
X

min

k @)
P(‘X - xm| Skum“m) = ffo(z) dz .

o If the process has been adjusted so that the average
= k) - D(-k) length, x, lies at the center of a specified tolerance zone
= erf(k/J2) of width T, the fraction, fc, of workpieces that conform
= Py(k) to specification is given by Eq. (7) with xpin = T — x¢/2

Any good text on statistics, computational software
package, or commercial spreadsheet software will show
the familiar results for these symmetric Gaussian con-
tainment probabilities or levels of confidence

and Xy = T + Xo/2

xO+T/2
1 f exp |- 1(3( — x0>2 iy
Op J2m 2T/ 2\ o

fe=

Py(1) = @(1) - (-1) . ..
= erf(1/2) Now, letting z = (x — x0)/ 0, and dz = dx/o,, and defining
_ the inherent process capability index by C, = T/60,,
= 0.683 . . b r
the fraction conforming, fc, becomes
Py(2) = P(2) - P(-2)
= erf(2/42) 5,
= 0955 fe= f fol2) dz
-3¢
Py(3) = D) - D(-3) = BGC,) - B(-3C))
= erf(3/2) 3C
= 0997 = erf (T;) ®

These containment probabilities are often called
1-sigma, 2-sigma, and 3-sigma levels of confidence.

I-4 FRACTION OF WORKPIECES CONFORMING FOR
A GAUSSIAN FREQUENCY DISTRIBUTION

A production process produces workpieces whose
length frequency distribution is well-characterized by
the Gaussian function

26

Consider the numerical example in para. 4.3 of this
Report. For this process, the tolerance is T = 0.4 mm
and the process standard deviation is g, = 0.12mm, so
that C, = 0.551. From Eq. (8), it follows that the desired
probability is ®(1.653) — ®(-1.653) = 0.902. Thus, 90.2%
of workpieces produced by this process would have
lengths in conformance to the tolerance requirement and
100% — 90.2% = 9.8% would be nonconforming.
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MANDATORY APPENDIX Il
RISK CALCULATIONS

-1 CONSUMER’S RISK

A procedure for calculating the consumer’s risk, Rc,
was given in para. 9. The details of these calculations
are presented here.

The consumer’s risk is the probability of a pass error
or false accept, meaning that a nonconforming character-
istic passes a measurement inspection. Let PC denote
the joint proposition that the measured characteristic
passes inspection and does not conform to specification.

Conditioned on the available information, I, that
characterizes knowledge of the production and mea-
surement processes, Rc is just equal to the probability
that PC is true

Re = p(PC|Iy)

Denoting by x the possible values of the characteristic
X, the risk above can be written as a marginal probability

Rc = f p(PEx\IU) dx
xeR
= [ p(eTht - pel) ax o)

xeR

where the range of integration, R, includes all values of
X that are outside of the conformance zone defined by
the tolerance limits (T, Ty): R = [X < Ty and X > Ty].
The first integral in Eq. (1) has been rewritten in the
second line by using the product rule of probability
theory.

The quantity p(xIy) in Eq. (1) is the prior density for
the values of characteristic X. It is assumed that this
prior knowledge is well-characterized by a Gaussian

Together, the tolerance, T = T;;— T, and standard uncer-
tainty, u, (taken equal to the process standard deviation,
0y), define the inherent process capability index, C, =
T/6u,,. _

The quantity p(PC|xIy) in Eq. (1) is the probability that
a characteristic known to be nonconforming neverthe-
less yields a measurement result, x,,, within the accept-
ance zone, defined by the gauging (or test) limits G| <

m < Gu. This situation is illustrated in Fig. II-1.

For a given assumed known value, x, and given mea-
surement process, there will be a range of reasonably
probable measurement results, x,, that are consistent
with the available information, I,. For a measurement
process corrected for all known significant systematic
errors, one’s degree of belief in this range of probable
results will be characterized by a probability density
function, p(xm\xlo), taken to be a Gaussian density whose
standard deviation is equal to the measurement com-
bined standard uncertainty, u,,

2
1(x, —x

2
Ny X, )

p(xm|7d0)

Um \/2—17

®)

Together, the tolerance, T, and standard uncertainty,
Uy, define the measurement capability index, C,, =
T/4u,,.

The probability density [Eq. (3)] is shown in Fig. II-1.
The conditional probability, p(PC|xI,), of a pass error for
this particular value of x is equal to the fraction of the
area under p(x,,/xIp) contained between the gauging lim-
its, shown cross-hatched in the figure. This probability is

distribution B Gu
, p(PC\xIO) = jp(x,,,|x10) dx
_ G
pali) = —— exp |- 2T oGy :
y 2 ’ - f exp |- T =X
P 2\ uy,
Uy, \/ZT G
= N(x; xo, uf,) ) :
Substituting w = (x,, — x)/u,, and using fy(z) =
where 2 /0y : : .
1//2m) exp (—z°/2) in this expression gives
Yo = (Ty + Tu)/2 (Iy2m) exp (-2°/2) p 8
= the nominal value (assumed to lie at the center _ Wy
of the tolerance zone) p(PClxlp) = f folz) dw
u, = associated standard uncertainty that character- W,

izes the range of reasonably probable values of
X prior to performing a measurement
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= P(wy) - B(wy) (4)
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Area = p(PC| xly)

MANDATORY APPENDIX 11

P (x| x1g) \

P S I P

GENERAL NOTE: For this particular item, x is too large, lying beyond the upper tolerance limit, Ty. The curve shows the
distribution p(xmbdo) of probable values of x,, that might reasonably result when measuring a characteristic X with true value
x. The probability that the characteristic passes inspection and is accepted is equal to the fraction of the area under the
curve p()(mlxlo) , shown cross-hatched, within the acceptance zone defined by the gauging limits (G;, G).

Fig. II-1 Probability of Accepting a Nonconforming Workpiece

where
wy = (Gy = x)/uy
wp, = (G — x)/uy,
®(w) = standard normal cumulative distribution
function

Substituting the results from Egs. (2) and (4) in Eq. (1)

gives:
T 2
Re = —— [[@Gwg) - dwp] exp |- 3|2 |ax
u, J2m 4
1 [ 1(x - x
+ J [CD(wu) - CI)(wL)] exp |- 5 u dx
u 2 T,
Letting ; = (x < Xo)/ 1y, this becomes
2,
Re = [0 - @] fite)
+ [ @) - Sl fie) d= ©)

Zu
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where

_ T —x _
u

-3C,

Zy p

p

T, —
Zy = ”M—px‘) = +3C,
Now define the guard band multiplier h = (Ty -
Gu)/U = (Ty - Gu)/2uy and let r = u,/u,,. Then, since
x = xp + zu,, the quantities wy; and w; can be written

as functions of z as follows:

Gu—x

uﬂl
2(Cp = h)—rz
=y-rz

wy =

_ GL - X

uﬂl
=-2(C,,—-h)-rz
=-y-rz

where the constant y = 2(C,, — h). Then the quantity in
brackets in the integrals in Eq. (5) can be replaced by
the function, F(z), defined by

Fz) = O(y - rz) - ®(-y-r2) (6)
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Finally, the consumer’s risk [Eq. (5)] becomes

-3¢ -
Rc = f F(z) fo(z) dz + f F(z) fo(z) dz 7)
s 3C

Equation (7) here is the same as Eq. (11) in the
main text.

1I-2 PRODUCER’S RISK

The producer’s risk, Rp, is the probability of a fail error
or false reject, meaning that a conforming characteristic
fails a measurement inspection. Let FC denote the joint
proposition that the measured characteristic fails inspec-
tion and conforms to specification.

Conditioned on the available information, I, that
characterizes knowledge of the production and mea-
surement processes, Rp is just equal to the probability
that FC is true

Rp = p(FC|Lo)

In analogy with Eq. (1) for the consumer’s risk, the
producer’s risk can be written as a marginal probability

Ty
Rp = J p(FCx|Io) dx
Ty

Ty

= [ pteCtg) - peel dx ®
T,

where the limits of integration cover the range of con-
forming values of X, i.e., the tolerance zone, T; < x < Ty;.

The quantity p(FClxI) in Eq. (8) is the probability that
a characteristic known to be conforming nevertheless
yields a measured value, x,,, outside of the acceptance
zone defined by G < x,, < G;. This situation is illustrated
in Fig. 1I-2.

For the particular value of x shown in Fig. II-2, the
conditional probability, p(FC|xIy), of a pass error is equal
to the fraction of the area under the curve p(x,,xlp) that
lies outside of the acceptance zone defined by the gaug-
ing limits (G;, Gy). For the Gaussian density [Eq. (3)],
this probability is

Letting w = (X, — X)/th, fo(2) = (1/2m) exp (-Z%/2),
and substituting in Eq. (9) yields
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wy, w
ffo(z) dw + Jfg(Z) dw

p(FClxlp) =
wu
= O(wy) + 1 - P(wy) (10)
where
wr, = (Gp — x)/uy,
wy = (Gu = x)/uy

Using the result [Eq. (10)] together with the prior proba-
bility density [Eq. (2)], the producer’s risk [Eq. (8)]
becomes

Tu 2
Rp = ! J[l — O(wy) + D(wy)] exp [— %(ﬂ) ]dx

Mp 2T TL
and letting z = (x — x¢)/u,, this becomes

3C
P

Ro = [[1- 0wy + @)l a
-3¢,

From the steps leading to the definition of F(z) in Eq.
(6), it can be seen that

1 - ®d(wy) + dw;) = 1 - )

so that the producer’s risk [Eq. (11)] is

3C
4

Re = [ [1 - F)lite) (12)

-3C
P

Equation (12) here is the same as Eq. (10) in the
main text.

1I-3 ONE-SIDED MEASUREMENTS

Some conformance tests involve characteristics with a
single specification (or tolerance) limit. Examples include

(a) the roundness error of a cylindrical shaft, specified
to be no greater than 0.1 um

(b) the concentration of mercury in a sample of indus-
trial wastewater, required to be less than 10 ng/L

(c) a particulate air filter, specified to remove no less
than 99.97% of particles 0.3 pm in diameter

(d) the insertion loss of a fiber optic connector, speci-
fied to be less than 0.2 dB

A typical example of a single-sided specification zone
and associated guard band is shown in Fig. II-3.

The probabilities, R¢ (consumers’ risk) and Rp (produc-
er’s risk), of pass errors and fail errors in such a case can
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P(Xep | XIo) ~a

MANDATORY APPENDIX 11

Area = p(FC| xly)

<

X F-——— - —

GENERAL NOTE: For this particular item, x lies within the tolerance zone. The curve shows the distribution, p(xmlxlo), of
probable values of x,, that might reasonably result when measuring a characteristic X with true value x. The probability that
the characteristic fails inspection and is rejected is equal to the fraction of the area under the curve p(xmlxlo), shown cross-
hatched, that lies outside of the acceptance zone defined by the gauging limits (G,, Gy). For this particular item, there is a
negligible probability that x,, would be less than the lower gauging limit, G;.

Fig. 1I-2 Probability of Rejecting a Conforming Workpiece

be calculated in a manner analogous to the procedures
derived above for two-sided measurements. For the con-
sumer’s risk,

o

Re = [peClay) - pi) dx (13)
T
where the range of nonconforming values of Xis T<x <.

The conditional consumer’s risk, p(PCxIy), following
the development leading to Eq. (4), is

G 2
p(PaxIO) = jexp —% xmu_—x dx

Uy J27 7 "
wy

= f Fo(z) dw
w1

= O(w,) — P(wn)

where
wy = —X/u,

wy = (G-x)/uy
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Then Eq. (13) becomes

o

Re = [[@@w) - @] - peeliy dx 1)
T

A similar analysis, following the development leading
to Eq. (10), yields the producer’s risk

T
Ry = [[1 - by + D] pelyax — 15)
0

The function p(x\lo) in Egs. (13) and (15) is the prior
probability density and characterizes knowledge of X
before performing a measurement. For a quantity
restricted to the range x = 0, such as the concentration
of mercury in a sample of water, one could represent
prior knowledge by a Gaussian function. Such a func-
tion, however, would have to be truncated and set equal
to zero for impossible values of x, namely x <0, requiring
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l«—— Specification zone —>

ASME B89.7.4.1-2005

o

a

2
Var(X) = f [x - E®)] g(x; a, b) dx = = (18)
—>| g=2hu, 0 b
[«— Acceptance zone —»|
Given a particular state of prior information, appro-
0 G T priate values for a and b can be easily calculated using

GENERAL NOTE: Here a characteristic of interest, X (such as the
concentration of a water contaminant), is greater than or equal to
zero and specified to have a value less than an upper limit, 7. A
gauging (ortest) limit, G, is set inside the specification limit, T, creating
a stringent acceptance zone. The guard band has width g = 2hup,
where u,, is the standard uncertainty associated with the result x,,
of the test measurement and h is the guard band multiplier chosen
in the course of formulating a decision rule.

Fig. II-3 One-Sided Specification Zone

the calculation of a new normalization constant so that
the truncated Gaussian density integrates to one.!

Just as in the two-sided case, assigning a prior proba-
bility density in one-sided decision problems is com-
monly based upon a measured frequency distribution
(histogram) of characteristics (flatness errors, contami-
nant concentrations, etc.) acquired from a representative
sample. The prior probability density, p(x|Ip), will then
follow the measured frequency distribution, f(x).

In a case where values of the characteristic near zero
are rarely observed, such a measured frequency distribu-
tion can often lead to the assignment of a gamma proba-
bility density, defined by

b b
—1 —
=—x" e forx>0

@ (16)

p[lo) = g(x;a,b)
Here a and b are two positive parameters, and I'(a) is
the gamma function

I'a)= J'xaflefx dx fora>0
0

The expectation, E(X), and variance, Var(X), of the
gamma density [Eq. (16)] are simply related to the
parameters a and b

E(X)

17)

(Sl IR

=J’xg(x; a, b) dx
0

! A Gaussian pdf for any inherently positive quantity (such as
the length of a spacer) will assign a positive belief to impossible
values. For real spacers, the probability of negative lengths is infini-
tesimal; for quantities such as flatness errors or contaminant con-
centrations, a sizable fraction of the total probability might be
distributed over impossible negative values. Thus, a Gaussian pdf
might reasonably model belief in the length of a spacer but be an
unreasonable model of belief in a quantity whose value is very
close to zero.
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these results.

In the most common case, prior information about
possible values of X is obtained by measuring a large
sample of characteristics, and calculating a sample mean
and standard deviation (or variance). Assuming that
the process is stable, the best estimate and associated
standard uncertainty of a future, unmeasured character-
istic are assigned to be equal to the measured sample
statistics as described above. Denoting the estimate (or
expectation) of X by X and the associated variance
(whose square root is the standard uncertainty) by u*(x),
then Eqgs. (17) and (18) can be solved for the appropriate
values of a and b

(19)

II-4 EXAMPLE: RISK CALCULATIONS FOR
BALL-BEARING PRODUCTION

A manufacturer produces large numbers of precision
ball bearings. The performance specification for these
bearings requires that the radial error motion® be less
than 2 pm. In order to characterize the production pro-
cess, the radial error motions of a large sample of bear-
ings are measured, using a high-accuracy test apparatus
with negligible measurement uncertainty. For this sam-
ple, the average observed radial error motion is
X = 1 pm, with an associated sample standard devia-
tion s = 0.5 pm.

Prior to shipment, bearings are tested for conformance
to specification. In these tests, the radial error motion
is measured using a calibrated test apparatus. The stan-
dard uncertainty of the test measurements is u,,
0.25 pm. For economic reasons, the fraction of noncon-
forming bearings sold to customers as conforming must
be held to 0.1% or less. How can a gauging limit, G, be
chosen to achieve this level of consumer’s risk?

Solution. Since the radial error motion is always posi-
tive, the prior density for values of radial error motion
will be modeled using a gamma probability density.
Based on the sample measurements, the expectation and
standard uncertainty of the prior density are assigned:
X =1 pm, u(x) = s = 0.5 pm. Then, using Eq. (19), the
parameters g and b are calculated

2
1— =4and b = 1
(0.5) (0.5)

a =

2 Radial error motion of a bearing is undesired motion perpendic-
ular to the axis of rotation. For a perfect bearing, the radial error
motion would be zero; any real bearing will have a positive radial
error motion.
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Probability

MANDATORY APPENDIX 11

Tolerance limit =2 um

Radial Error Motion, um

GENERAL NOTE: The specification zone is the region 0 <x < T, where the tolerance is T = 2 wm. The mean of the distribution is
the estimate x = 1 wm and the associated standard uncertainty is ulx) = 0.5 wm. The most probable value of X is the mode of
the distribution, which in this case is equal to 0.75 wm. Because the distribution is not symmetric, the mean and mode do not
coincide. For this state of prior knowledge, there is a probability of about 4.2% that a roller bearing chosen at random would
display a radial error motion outside of the 2 wm tolerance, a region shown cross-hatched in the figure. If all bearings produced
were shipped without being measured, about 4.2% of them would be nonconforming. The post-process inspection system is
designed to reduce the probability of shipping nonconforming bearings. A gauging limit is desired that will reduce this risk (the

consumer’s risk, R¢) to 0.1% or better.

Fig. ll-4 Prior Probability Density for Radial Error Motion of Ball Bearing

The prior density, p(x\lo), for values of radial error
motion is then

128 5
P(X|Io) =gq(x; 4, 4) = = Bk 20)

This probability density function is shown in Fig. II-4.

Given the prior probability density [Eq. (20)], the risks
can be calculated using Eqgs. (14) and (15). The quantities
w; and w, in these expressions are given by

These quantities have been written explicitly in terms
of h, the guard band multiplier (see Fig. II-3). The con-
sumer’s and producer s risks, as functions of the location
of the guard band, are thus given by

Re(h) = % j [D(8 — 21 — 4x) — D(—4x) [P dx
2

wy = —x/uy= —4x 2
Rp(h) = % f [1 - D8 — 21 — 4x) + D(—4x) e dx
G-
w2 - unlx '
These integrals cannot be evaluated in closed form,
_ T —2hu,, —x but they can be calculated numerically for any chosen
- Uy, values of h.
The risks Re(h) and Rp(h) are shown in Figs. II-5 and
=8-2h-4x II-6, for -1 < h < 1. Positive & means G < T (stringent
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Guard Band Multiplier, h

GENERAL NOTE: Forh = 0.65 (G = T- 2hu,, = 1.7 pm), the desired
risk, Rc = 0.1%, is achieved.

Fig. II-5 Consumer’s Risk Versus Guard Band
Multiplier for Ball-Bearing Example

acceptance) and negative h means G > T (relaxed accept-
ance). For i = 0, there is no guard band (G = T), leading
to the decision rule called simple acceptance.

Figure II-5 shows that the desired level of consumer’s
risk, Rc = 0.1%, can be achieved by setting the guard
band multiplier # = +0.65. This results in a stringent
acceptance zone with a gauging (or test) limit at G =
T — 2hu,, = 1.7 pm. This solves the decision problem.

Figure II-6 shows the producer’s risk, Rp, that results
from the chosen decision rule. For i = +0.65, the produc-
er’s risk is nearly 9%. This means that 9 out of every
100 bearings that fail inspection are actually conforming,
resulting in the loss of revenue that would accrue if
these good bearings were sold. The generation of an
increasing amount of conforming scrap is a cost of strin-
gent acceptance rules, which guard against accepting
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Guard Band Multiplier, h

GENERAL NOTE: The choice h = 0.65 that limits consumer’s risk to
0.1% results in a producer’s risk of nearly 9%.

Fig. 1I-6 Producer’s Risk Versus Guard Band
Multiplier for Ball-Bearing Example

nonconforming products. This general rule is well-
illustrated by Fig. II-7, which shows Rp versus R for
the ball-bearing example.

As seen in Fig. II-7, acting to reduce the consumer’s
risk, Re, by reducing the size of the acceptance zone
(increasing h) will always result in an increase in the
producer’s risk, Rp. There are costs associated with
accepting a nonconforming bearing (probability R¢) and
with rejecting a conforming bearing (probability Rp). In
general, the producer must choose an operating point
along a curve such as that shown in Fig. II-7 that will
balance these risks and yield a maximum profit. The
choice of such an operating point is a business decision
that requires an economic analysis of the decision prob-
lem [18].
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15

10 h = +0.65 (operating point for ball bearing conformance testing)

Producer’s Risk, Rp, %

Consumer’s Risk, R¢, %

GENERAL NOTE: Any point on the curve corresponds to a particular value of h, the guard band multiplier, with several
particular values identified. Acting to reduce the consumer’s risk by moving the gauging limit farther inside the tolerance
zone (increasing h) always increases the risk of falsely rejecting conforming bearings. An economic analysis is required to
choose an optimal decision rule that maximizes profit. The operating point in the example is identified by the open circle.

Fig. 1I-7 Producer’s Risk Versus Consumer’s Risk for Ball-Bearing Example
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