STANDARD

SPINDLE NOSES AND ADJUSTABLE ADAPTERS FOR MULTIPLE SPINDLE DRILLING HEADS

ASA B5.11-1964

Reaffirmed 1983

REAFFIRMED 1994

FOR CURRENT COMMITTEE PERSONNEL PLEASE SEE ASME MANUAL AS-11 ONE OF A SERIES OF STANDARDS FOR SMALL TOOLS AND MACHINE TOOL ELEMENTS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

Sponsors

American Society of Tool and Manufacturing Engineers Society of Automotive Engineers National Machine Tool Builders' Association The American Society of Mechanical Engineers

Published by

THE AMERICAN United Engineering Center SOCIETY OF MECHANICAL 345 East 47th Street

ENGINEERS New York, N.Y. 10017

Foreword

THIS standard for Adjustable Adapters for Multiple Spindle Drilling Heads was developed by Sectional Committee B5 on the Standardization of Small Tools and Machine Tool Elements, organized September, 1922, under procedure of the American Standards Association and is sponsored by the National Machine Tool Builders' Association, the Society of Automotive Engineers, American Society of Tool and Manufacturing Engineers, and The American Society of Mechanical Engineers.

On December 2, 1937, this standard was approved by the American Standards Association and designated as American Standard (ASA B5.11-1937).

Subsequent to a request from the sponsor organizations for a revision of the standard, a new technical committee was appointed on September 24, 1947, to review and make recommendations for revision.

In August, 1953, at the request of the sponsors, the technical committee was authorized to include the standardization of spindle noses for use with adjustable adapters. With the inclusion of spindle noses, the title of the project was changed to Spindle Noses and Adjustable Adapters for Multiple Spindle Drilling Heads.

A draft dated December 1, 1953, was approved by Technical Committee No. 18 and in February, 1954, the proposal was presented to the members of Sectional Committee B5 for letter ballot vote.

Following approval of the sectional committee and sponsor organizations, the proposal was submitted to the American Standards Association for approval and designation as American Standard. This was granted on August 18, 1954, and it was designated as American Standard (ASA B5.11-1954).

In 1959 the committee was reactivated for the purpose of the regular five-year review. Concurrently with the review by committee, a request was received from ASTME Chapter No. 5 of Chicago, Illinois to extend the standard to smaller sizes of adjustable adapters. We acknowledge the help and suggestions received from them. Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

In a meeting in 1962 it was agreed to consider the subject of the smaller size adapters as a separate standard, both to expedite the issuance of the existing standard for approval of revisions, and also because the physical construction of the smaller sizes had to depart from that of the larger sizes.

The revised standard was submitted to B5 Sectional Committee for letter ballot on December 14, 1962. Following approval by the Sectional Committee and the sponsors, the standard was approved by ASA on June 10, 1964 and designated as American Standard (ASA B5.11-1964).

Any part of this standard may be quoted. Credit lines should read: "Extracted from American Standard Spindle Noses and Adjustable Adapters for Multiple Spindle Drilling Heads (ASA B5.11-1964) with the permission of the publisher, The American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, N.Y. 10017."

Standardization of Small Tools and Machine Tool Elements, B5

OFFICERS OF SECTIONAL COMMITTEE

- W. H. Seacord, Chairman, General Supervisor, Manufacturing Standards Research, International Harvester Co., 5225 S. Western Boulevard, Chicago 9, Ill.
- F. Steele Blackall, III, Vice-Chairman, President, The Taft-Peirce Manufacturing Company, Woonsocket, R.I.
- *C. T. Blake, Vice-Chairman, Vice-President, Engineering, The Warner and Swasey Company, 5701 Carnegie Avenue, Cleveland, Ohio.

Harold Cooper, Vice-Chairman, Manager, Non-Productive Standards, Manufacturing Engineering Office, Chrysler Corporation, Detroit, Michigan.

J. E. Rotchford, Vice-Chairman, 7 East Main Street, Hopkinton, Massachusetts.

H. I. Knobeloch, Secretary, John S. Barnes Corp., 301 South Water Street, Rockford, Ill.

Personnel of Technical Committee No. 18 on Spindle Noses and Adjustable Adapters for Multiple Spindle Drilling Heads

S. Jackson Hunt, Chairman, Vice-President in Charge of Engineering, National Automatic Tool Company, Inc., Richmond, Indiana. Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled V

- B. R. Better, Director of Research, Scully-Jones & Company, Chicago, Illinois.
- J. O. Snyder, Aeronautical Systems Division, Manufacturing Technical Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio.
- G. D. Stewart, Chief Engineer, Machinery Engineering Division, Ex-Cell-O Corporation, Detroit, Michigan.

C. S. Kyser, Senior Production Engineer, Oldsmobile Division of G.M.C., Lansing, Michigan.

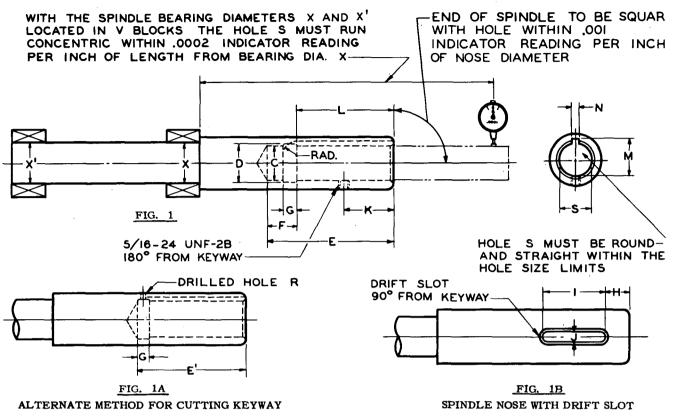
* Vice-Chairman concerned with preparation of this Standard.

TABLE OF CONTENTS

	Figure	Table	Page
Spindle Noses, General Dimensions	I, 1A, 1B	1	6 ·
Adjustable Adapter Assembly, General Dimensions	2	2	7
Adjustable Adapter Body, Detail Dimensions	3	3	8,9
Adjustable Extension Adapter Assembly,			
Taper and Shank Sizes	4	4	10
Adjustable Extension Adapter Assembly,			
General Dimensions	4	5	10
Adjustable Extension Adapter, Detail Dimensions	5	6	11,12
Adjustable Adapter Locknuts, Detail Dimensions	6	7	13

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

AMERICAN STANDARD


Spindle Noses and Adjustable Adapters for Multiple Spindle Drilling Heads

SCOPE AND PURPOSE

This standard is to provide the means for individual axial adjustment of drilling, reaming, and tapping tools, etc. in the spindles of single or multiple spindle heads.

Further, its purpose is to permit interchangeability of adapters into different manufacturers' machines consistent with necessary accuracy.

Its scope is primarily in the medium to large size of drill spindles, i.e. from No. 0 Morse Taper and .375 American Standard Taper through No. 4 American Standard Taper. AMERICAN STANDARD

Spindle Nose for Adapter	Hole Diameter S Min Max		Hole Diameter	Diameter of Relief	Length o	of Hole		Length of Relief
Nominal Size	Min	Мах	с	D	E	Е'	F	G
1/2	0.5000	0.5005	0,493	9/16	3 1/8	2 7/8	5/8	3/8
5/8	0.6250	0.6255	0.618	11/16	3 1/8	2 7/8	5/8	3/8
3/4	0.7500	0.7505	0.740	13/16	3 1/8	2 7/8	5/8	3/8
7/8	0.8750	0.8755	0.865	15/16	4	3 1/2	7/8	3/8
1	1.0000	1.0005	0.990	1 1/16	4	3 1/2	7/8	3/8
1 1/16	1.0625	1.0630	1.052	1 1/8	4	3 1/2	7/8	3/8
1 3/8	1.3750	1.3755	1.365	1 7/16	5 1/8	4 1/2	1	3/8
1 7/8	1.8750	1.8755	1.860	1 15/16	6 3/8	5 3/8	1 3/8	3/8

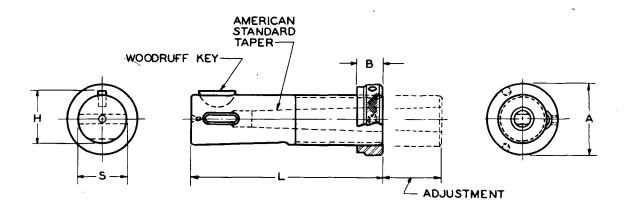

TADLE 1 CENEDAL DIMENSIONS FOR SDINDLE NOSES

TABLE 1 GENERAL DIMENSIONS FOR SPINDLE NOSES (Cont.)

Spindle	End of			End of		Woo	druff Keywa	ay Dimension	s	_
Nose For Adapter	Spindle to Drift	Drift	Slot	Spindle to Tapped	Length of Keyway	Keyway Di M		Wid 1	lth N	Drille Hole
Nominal Size	Slot H	Length I	Width J	Hole K	L	Min	Max	Min	Max	R
1/2	3/8	1 3/4	1/4	1 1/4	2 7/16	0.5756	0.5856	0.1290	0,1330	3/1:
5/8	11/16	1 3/4	1/4	1 1/4	2 7/16	0.7032	0.7132	0.1603	0.1643	7/3
3/4	11/16	1 3/4	1/4	1 1/4	2 7/16	0,8299	0.8399	0.1603	0.1643	7/35
7/8	11/16	2 5/16	5/16	1 9/16	3 1/8	0.9685	0.9785	0.1915	0.1955	1/4
1	11/16	2 5/16	5/16	1 9/16	3 1/8	1.0948	1.1048	0.1915	0.1955	1/4
1 1/16	11/16	2 5/16	5/16	1 9/16	3 1/8	1.1579	1,1679	0.1915	0.1955	1/4
1 3/8	3/4	3 1/8	3/8	1 13/16	4	1.4985	1.5085	0.2540	0.2580	5/1(
1 7/8	1 1/16	3 7/16	9/16	2 5/16	4 7/8	2.0281	2.0381	0.3165	0.3205	3/8

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

SPINDLE NOSES AND ADJUSTABLE ADAPTERS FOR MULTIPLE SPINDLE DRILLING HEADS

The purpose of these adapters is to obtain axial adjustment for taper shank tools.

FIG. 2

Adapter Nominal Size S	American Standard Taper Number	Woodruff Key Size	Top of Opposite Diam Min	Side of	Adapter Length L	Diameter of Nut A	Thickness of Nut B	Approx. Adjustment of Adapter
1/2	0	1/8 x 5/8	0.5605	0.5706	3	3/4	1/2*	15/16
1/2	0	1/8 x 5/8	0.5605	0.5706	3	7/8	1/2	15/16
1/2	.375	1/8 x 5/8	0.5605	0.5706	3	3/4	1/2•	15/16
1/2	.375	1/8 x 5/8	0.5605	0.5706	3	7/8	1/2	15/16
5/8	0	5/32 x 5/8	0.6882	0.6982	3	7/8	1/2*	1
5/8	0	5/32 x 5/8	0.6882	0.6982	3	1	1/2	1
5/8	1	5/32 x 5/8	0.6882	0.6982	3	7/8	1/2*	1
5/8	1	5/32 x 5/8	0.6882	0.6982	3	1	1/2	1
3/4	1	5/32 x 5/8	0.8149	0.8249	3	1 1/4	9/16	15/16
7/8	1	$3/16 \times 3/4$	0.9535	0.9635	3 5/8	1 1/4	9/16	1 1/16
7/8	2	$3/16 \times 3/4$	0.9535	0.9635	3 5/8	1 1/4	9/16	1 1/16
1	1	3/16 x 7/8	1.0798	1.0898	3 5/8	1 1/2	9/16	1 1/16
1	2	3/16 x 7/8	1.0798	1.0898	3 5/8	1 1/2	9/16	1 1/16
1 1/16	1	3/16 x 7/8	1,1429	1.1529	3 5/8	1 9/16	9/16	1 1/16
1 1/16	2	3/16 x 7/8	1.1429	1.1529	3 5/8	1 9/16	9/16	1 1/16
1 3/8	2	1/4 x 1	1.4835	1.4935	4 5/8	1 7/8	9/16	1 5/16
1 3/8	3	1/4 x 1	1.4835	1.4935	4 5/8	1 7/8	9/16	1 5/16
1 7/8	3	5/16 x 1 1/4	2.0131	2.0231	5 5/8	2 5/8	3/4	1 3/4
1 7/8	4	5/16 x 1 1/4	2.0131	2.0231	5 5/8	2 5/8	3/4	1 3/4

TABLE 2 GENERAL DIMENSIONS OF ADJUSTABLE ADAPTER ASSEMBLY

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

* Jam nut used in pairs. Dimension includes both nuts.

All dimensions given in inches.

FINISH. All surfaces must be finished.

MARKING. Thread size, and manufacturer's name or trademark, and American Standard taper number to be marked on end. MANUFACTURE. Tolerances on fractional dimensions are ± 0.010 unless otherwise specified.

No. 0 TAPER. Size No. 0 is not an American Standard Taper, but is included to meet special needs.

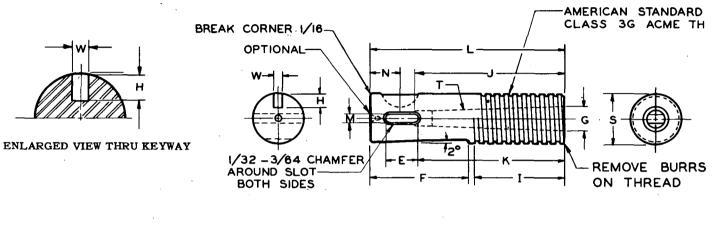


FIG. 3

TABLE 3 DETAIL DIMENSIONS OF ADJUSTABLE ADAPTER BODY

			Ar	nerican Stan	dard Class	3G ACME	Thread				
Adapter Nominal Size	Length of Adapter	Body Di an Major Di	d	Pitch I	Diameter	Minor Di	lameter	Threads per Inch	Helix Angle at Basic Pitch Dia	Length of Thread	Length of Flat
S	L	Max	Min	Max	Min	Мах	Min		1 1100 D14	I	F
1/2	3	0.4993	0.4990	0.46455	0.45905	0.42750	0.41925	16	2° 25′ 49″	1 7/16	1 1/2
5/8	3	0.6243	0.6240	0.58905	0.58335	0.55250	0.54395	16	1°55′9″	1 1/2	1 3/8
3/4	3	0.7493	0.7490	0.70313	0.69663	0.65667	0.64692	12	2° 8′40″	1 1/2	1 3/8
7/8	3 5/8	0.8743	0.8740	0.82773	0.82103	0.78167	0.77162	12	1° 49 ′ 23″	1 5/8	1 7/8
1	3 5/8	0.9993	0.9990	0.95233	0.94533	0.90667	0.89647	12	1° 35′ 8″	1 5/8	1 7/8
1 1/16	3 5/8	1.0615	1.0612	1.01483	1.00783	0.96917	0.95867	12	1° 29′ 18″	1 5/8	1 7/8
1 3/8	4 5/8	1.3740	1.3737	1.32633	1.31901	1.28167	1.27069	12	1° 8′23″	1 7/8	2 5/8
1 7/8	5 5/8	1.8740	1.8737	1.82543	1.81743	1,78167	1.76967	12	0° 49 ′ 44″	2 1/2	3

(Cont. on next page.)

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

		Ameri	ican Stand	ard	Taper			End	D	rive Slo	t	End				Wood	ruff Key	Slot		
Adapter Nominal Size	Diam Large		Tap er Per Foot		Depth Faper ocket	ASA Taper Number	1	of Body to Drive Slot	Length	Wid		of Body to Center of Key		loodi Kej lomi	/	American Standard Number	Wi	dth V	Dej H	
s	Max	Min	т		J			ĸ	Е	Max	Min	N		Siz	e		Mex	Min	Max	Min
1/2	0,356	0.354	0.62460	2	1/16	0	1	15/16	9/16	0.178	0.172	7/16	1/8	x	5/8	405	0.1255	0.1240	0.1875	0.1825
1/2	0.375	0.373	0.50200	1	5/8	.375	1	15/32	5/8	0.209	0.203	7/16	1/8	x	5/8	405	0.1255	0.1240	0.1875	0.1825
5/8	0.356	0.354	0.62460	2	1/16	0	1	15/16	9/16	0.178	0.172	1/2	5/3	2 🛛	5/8	505	0.1568	0.1553	0.1719	0,1669
5/8	0.475	0.473	0.59858	2	3/16	1	2	1/16	3/4	0.224	0.218	1/2	5/3	2 x	5/8	505	0.1568	0.1553	0,1719	0.1669
3/4	0.475	0.473	0.59858	2	3/16	1	2	1/16	3/4	0.224	0.218	1/2	5/3	2 x [`]	5/8	505	0.1568	0.1553	0.1719	0.1669
7/8	0.475	0.473	0.59858	2	3/16	1	2	1/16	3/4	0.224	0.218	1/2	3/1	б х	3/4	606	0.1880	0.1863	0.2193	0.2143
7/8	0.700	0,698	0.59941	2	21/32	2	2	1/2	7/8	0.272	0.266	1/2	3/1	6 x	3/4	606	0,1880	0.1863	0.2193	0.2143
1	0.475	0.473	0,59858	2	3/16	1	2	1/16	3/4	0.224	0.218	5/8	3/1	бж	7/8	607	0.1880	0.1863	0.2813	0.2763
1	0.700	0.698	0.59941	2	21/32	2	2	1/2	7/8	0.272	0.266	5/8	3/1	6 x	7/8	607	0.1880	0. 1863	0.2813	0.2763
1 1/16	0.475	0.473	0.59858	2	3/16	1	2	1/16	3/4	0.224	0.218	5/8	3/1	6 x	7/8	607	0.1880	0.1863	0.2813	0.2763
1 1/16	0.700	0.698	0.59941	2	21/32	2	2	1/2	7/8	0.272	0.266	5/8	3/1	б ж	7/8	607	0.1880	0.1863	0.2813	0.2763
1 3/8	0.700	0.698	0.59941	2	21/32	2	2	1/2	7/8	0.272	0.266	3/4	1/4	x	1	808	0.2505	0.2487	0.3130	0.3080
	0.030	0.000	0 60005						1. 2/10	0.004	0.000									
, -				-			1 ⁻								-					0.3080
							- T						•							0.3858
						-	-		7/8	0.272 0.334 0.334			1/4 1/4 5/1	x x 6 x	1			05 05 30	05 0.2487 05 0.2487 30 0.3111	05 0.2487 0.3130 05 0.2487 0.3130 05 0.2487 0.3130 30 0.3111 0.3908

TABLE 3 DETAIL DIMENSIONS OF ADJUSTABLE ADAPTER BODY (Cont.)

CENTRICITY OF HOLE G. Hole must run true with respect to outside diameter, within 0.002 in. total indicator reading on a plug, at all points up to 6 in. away from end of adapter.

TRALITY OF DRIVING SLOT M. To be within .0025 with center line of taper (.005 Total Indicator Variation).

KING. Adapter size and ASA taper number to be marked on end.

UFACTURING. All burrs must be removed and threaded portion must be free of scale. Tolerances on fractional dimensions are)10 in, unless otherwise specified.

W THREAD. The pitch diameter of the threads and the axial center line of adapter shall be parallel within 0.002 in. per inch ngth. The major diameter is based on maintaining the basic mating hole size of + 0.0005 - 0.0000.

0 TAPER. Size No. 0 is not an American Standard Taper, but is included to meet special needs.

DRUFF KEY. Assembling of key must not result in growth of shank O.D. beyond maximum eter given.

Adapter Nominal Shank Size and ACME Thread S		yle "b"	American Standard Taper Numb er	Nose Dia D	Minimum Length of Extension From Nut C		
$ \begin{array}{r} 1/2 - 16 \\ 1/2 - 16 \\ 5/8 - 16 \\ 5/8 - 16 \\ 3/4 - 12 \\ 3/4 - 12 \\ \end{array} $	a a a	b	0 .375 0 1 1 2	1/2 1/2 1/2 5/8 5/8 1 1/16	$ \begin{array}{r} 3 \\ 2 \\ 1/2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1/2 \\ \end{array} $		STYLE "a"
7/8 - 12 $7/8 - 12$ $1 - 12$ $1 - 12$ $1 - 12$ $1 - 12$ $1 - 12$ $1 - 12$ $1 - 12$ $1 - 12$	a	b b b	1 2 1 2 3 1	3/4 1 1/16 7/8 7/8 1 5/16 15/16	3 3 1/2 4 1/2 3	+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	b b b b	2 3 2 3 4 3 4	$ \begin{array}{r} 15/16\\ 1 5/16\\ 1 1/4\\ 1 1/4\\ 1 3/4\\ 1 3/4\\ 1 3/4\\ 1 3/4\\ \end{array} $			STYLE "b" (alternate)

TABLE 4 TAPER AND SHANK SIZES

DIMENSION C. Additional lengths in 1/2 - inch increments. No. 0 TAPER. Size No. 0 is not an American Standard Taper, but is included to meet special needs.

TABLE 5	GENERAL DIMENSIONS OF A	DJUSTABLE EXTENSION ADAPTER	ASSEMBLY (STYLE "a" AND "b")
---------	-------------------------	-----------------------------	------------------------------

FIG. 4

Adapter Nominal Shank Size	Woodru Key Siz		1	of Key to Side of Dia H	Length of Shank	Diameter of Nut	Thickness of Nut	Approximate Adjustment of Adapter
S			Min	Max	L	Α	В	inauptor
1/2	1/8 x	5/8	0.5605	0.5706	3	3/4	1/2*	15/16
1/2	1/8 x	5/8	0.5605	0.5706	3	7/8	1/2	15/16
5/8	5/32 x	5/8	0.6882	0.6982	3	7/8	1/2*	1
5/8	5/32 x	5/8	0.6882	0.6982	3	1	1/2	1
3/4	5/32 x	5/8	0.8149	0.8249	3	1 1/4	9/16	15/16
7/8	3/16 x 🔅	3/4	0.9535	0.9635	3 5/8	1 1/4	9/16	1 1/16
1	3/16 x	7/8	1.0798	1.0898	3 5/8	1 1/2	9/16	1 1/16
1 1/16	3/16 x	7/8	1.1429	1.1529	3 5/8	1 9/16	9/16	1 1/16
1 3/8	1/4 x 1		1.4835	1.4935	4 5/8	1 7/8	9/16	1 5/16
1 7/8	5/16 x 1	1/4	2.0131	2.0231	5 5/8	2 5/8	3/4	1 3/4

* Jam nut used in pairs. Dimension includes both nuts.

All dimensions given in inches.

FINISH. All surfaces must be finished.

MARKING. Thread size, and manufacturer's name or trademark, and ASA taper number to be marked on end. MANUFACTURE. Tolerances on fractional dimensions are ± 0.010 unless otherwise specified.

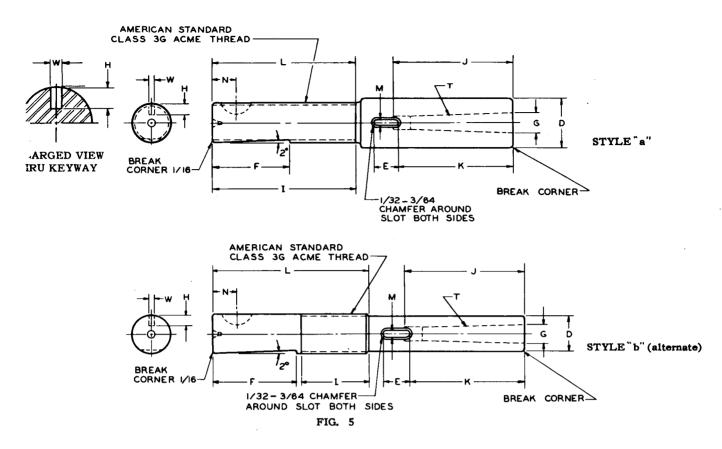


TABLE 6 DETAIL DIMENSIONS OF ADJUSTABLE EXTENSION ADAPTERS (STYLE "a" AND "b")

Adapter		Am	erican Stan	dard Class	3G ACME	Thread				Length of Thread		
Nominal Size and	Major D	ameter	Pitch D	iameter	Minor D	iameter	Helix Angle	Length of	Length of			
ACME Thread	Max	Min	Max	Min	Max	Min	at Basic Pitch Dia	Shank L	Flat F	Style ``a″	Style "b"	
1/2 - 16	0.4993	0.4990	0.46455	0.45905	0.42750	0.41925	2°25′49"	3,00	1 1/2		1 7/16	
5/8 - 16	0.6243	0.6240	0.58905	0.58335	0.55250	0.54395	1°55′9″	3.00	1 3/8	3	1 1/2	
3/4 - 12	0.7493	0.7490	0.70313	0.69663	0.65667	0.64692	2° 8′40″	3,00	1 3/8	3	1 1/2	
7/8 - 12	0.8743	0.8740	0.82773	0.82103	0.78167	0.77162	.1°49′23″	3.62	1 7/8	3 5/8	1 5/8	
- 12	0.9993	0,9990	0.95233	0.94533	0.90667	0.89647	1°35′8″	3.62	1 7/8	3 5/8	1 5/8	
1/16 - 12	1.0615	1.0612	1.01483	1.00783	0.96917	0.95867	1°29′18″	3.62	1 7/8	3 5/8	1 5/8	
3/8 - 12	1.3740	1.3737	1.32633	1.31901	1.28167	1.27069	1° 8′ 23″	4.62	2 5/8	4 5/8	1 7/8	
7/8 - 12	1.8740	1.8737	1.82543	1.81743	1.78167	1.76967	0°49′44″	5.62	3	5 5/8		

(Cont. on next page)

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

	Adapter			Woo	druff Key S	Slot		
4	Nominal Size and ACME Thread 1/2 - 16 5/8 - 16	End of Shank to Center of Key	Nominal Size	American Standard		dth W	Depth H	
DATA	Intead	N		Number	Max	Min	Max	Min
2	1/2 - 16	7/16	1/8 x 5/8	405	0.1255	0. 1240	0.1875	0.1825
	5/8 - 16	1/2	5/32 x 5/8	505	0.1568	0.1553	0.1719	0.1669
1	3/4 - 12	1/2	5/32 x 5/8	505	0.1568	0.1553	0.1719	0.1669
	7/8 - 12	1/2	3/16 x 3/4	606	0.1880	0.1863	0.2193	0.2143
	1 - 12	5/8	3/16 x 7/8	607	0, 1880	0.1863	0.2813	0.2763
	1 1/16 - 12	5/8	3/16 x 7/8	607	0.1880	0, 1863	0,2813	0.2763
	1 3/8 - 12	3/4	$1/4 \times 1$	808	0.2505	0.2487	0.3130	0.3080
	1 7/8 - 12	15/16	5/16 x 1 1/4	1010	0.3130	0.3111	0.3908	0.3858

TABLE 6 DETAIL DIMENSIONS OF ADJUSTABLE EXTENSION ADAPTERS (STYLE "a" AND "b") (Cont.)

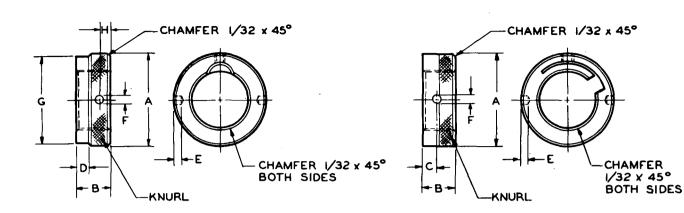
TABLE 6 DETAIL DIMENSIONS OF ADJUSTABLE EXTENSION ADAPTERS (STYLE "a"AND "b") (Cont.)

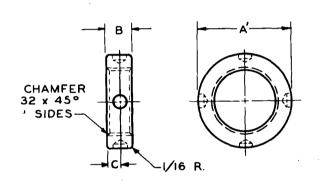
Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

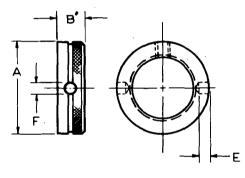
		American	Standard T	aper			Drive Slot						
IA	American Standard Taper	Depth Tape r Socket	Taper per Foot	Larg	neter e End G	End of Nose to Slot	Length	Width M					
DATA	Number	J	T	Max	Min	ĸ	E	Max	Min				
TAPER	0 .375 1 2 3 4	2 1/16 1 5/8 2 3/16 2 21/32 3 5/16 4 3/16	0.62460 0.50200 0.59858 0.59941 0.60235 0.62326	0.356 0.375 0.475 0.700 0.938 1.231	0.354 0.373 0.473 0.698 0.936 1.229	1 15/16 1 15/32 2 1/16 2 1/2 3 1/16 3 7/8	9/16 5/8 3/4 7/8 1 3/16 1 1/4	0.178 0.209 0.224 0.272 0.334 0.490	0.172 0.203 0.218 0.266 0.328 0.484				

CONCENTRICITY OF HOLE G. Hole must run true with respect to outside diameter, within 0.002 in. total indicator reading on a taplug, at all points up to 6 in. away from end of adapter.

CENTRALITY OF DRIVING SLOT M. To be within 0.0025 with center line of taper (0.005 Total Indicator Variation).


MARKING. Adapter size and American Standard taper number to be marked on end.


MANUFACTURING. All burrs must be removed and threaded portion must be free of scale. Tolerances on fractional dimensions are ± 0.010 in. unless otherwise specified.


SCREW THREAD. The pitch diameter of the threads and the axial center line of adapter shall be parallel within 0.002 in. per inch of length. The major diameter is based on maintaining the basic mating hole size of +0.0005-0.0000.

No. 0 TAPER. Size No. 0 is not an American Standard Taper, but is included to meet special needs.

WOODRUFF KEY. Assembling of key must not result in growth of shan k O.D. beyond maximum diameter given.

ALTERNATE THIN NUT

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

FIG.	6

Adapter Jominal ize and ACME Thread	Internal American Standard Class 3G ACME Thread													Holes for			l
	Major Diameter		Pitch Dismeter Mi		Minor D	lameter		Dia of Nut	Dia of Nut	Thick- ness	Thick- ness			Spanner Wrenches			
	Min	Max	Min	Max	Min	Mex	Helix Angle	•	A'	в	(Alt.) B'	с	D	Depth E	Dia F	G	н
1/2 - 16	0.5100	0.5200	0.46875				2° 25 ' 49"		3/4	1/4	3/8	1/8		1/16	1/8		
1/2 - 16	0,5100	0.5200	0.46875				2 [•] 25′ 49″	7/8	n (n	1/2	3/8	1/4	3/16	3/32 1/16	3/16 1/8	13/16	5/32
5/8 - 16	0.63500			0.59945					7/8	1/4	3/8	1/8 1/4	3/16	3/32	3/16	15/16	5/32
5/8 - 16	0,63500	0.64500	0.59375	0.59945	0.56250	0.56750	1°55′9″	1		1/2	3/8	1/4	3/10	3/ 34	3/10	15/10	5/ 32
3/4 - 12	0,76000	0.77000	0.70833	0.71483	0.66667	0.67167	2º 8'40"	1 1/4		9/16	3/8	9/32	13/64	1/8	1/4	1 3/16	3/16
7/8 - 12	0.88500			0.83893			1° 49′ 23″	1 1/4		9/16	3/8	9/32	13/64	1/8	1/4	1 3/16	3/16
- 12	1.01000		1	0.96433				1 1/2		9/16	3/8	9/32	13/64	1/8	1/4	1 7/16	3/16
1/16 - 12	1.07250	1.08250	1.02083	1.02783	0.97917	0.98417	1* 29' 18"	1 9/16		9/16	3/8	9/32	13/64	1/8	1/4	1 1/2	3/16
3/8 - 12	1.38500	1 39500	1.33333	1.34065	1.29167	1.29667	1 8' 23"	1 7/8		9/16	3/8	9/32	13/64	1/8	1/4	1 13/16	3/16
3/8 - 12 7/8 - 12	1.88500	1.89500			1.79167		0" 49' 44"	2 5/8		3/4	1/2	3/8	9/32	3/16	1/4	2 9/16	15/64

TABLE 7 DETAIL DIMENSIONS FOR ADJUSTABLE ADAPTER LOCK NUTS

No attempt is made to identify the preferred means of locking, as this varies with different manufacturers.

MANUFACTURING. All burrs must be removed and threads must be free of scale. Tolerances on fractional dimensions are \pm 0.010 in. unless otherwise specified. Face of nut to be square with respect to thread within 0.002 in. full indicator reading.

American Standards for Small Tools and Machine Tool Elements

TITLE OF STANDARD

T-Slots, Their Bolts, Nuts Tongues, and Cutters							B5.1–1949
Milling Cutters						•	B5.3–1960
Taps-Cut and Ground Threads				•	•		B5.4–1959
Rotating Air Cylinders and Adapters					•		B5.5-1959
							B5.6–1962
Circular and Dovetailed Forming Tool Blanks					•		B5.7-1954
Chucks and Chuck Jaws			B5	.8–	1954	í (Rea	affirmed 1959)
Spindle Noses for Tool Room Lathes, Engine Lathes,							
Turret Lathes, and Automatic Lathes			•				B5.9–1960
Machine Tapers \ldots \ldots \ldots \ldots \ldots				•			B5.10-1963
Spindle Noses and Adjustable Adapters for							
Multiple Spindle Drilling Heads							B5.11-1964
Twist Drills							B5.12-1958
Reamers.							B5.14-1959
Involute Splines, Serrations and Inspection							B5.15-1960
Accuracy of Engine and Tool Room Lathes							B5.16-1952
Markings for Identifying Grinding Wheels and Other Bonded Ab	rasi	ves	5				B5.17-1958
Spindle Noses and Arbors for Milling Machines							B5.18-1960
Life Tests of Single-Point Tools		. 1	B5.	19-	1940	6 (Re	
Machine Pins				-/		• •	B5.20-1958
Straight Cut-Off Blades for Lathes and Screw Machines							B5.21-1949
Single Point Tools and Tool Posts							B5.22-1950
Inserted Blade Milling Cutter Bodies		•			•		B5.23-1958
Punch and Die Sets for Two-Post Punch Press Tools			•	2	•		B5.25-1950
Drill Drivers							B5.27-1959
Mounting Dimensions of Lubricating and Coolant							
Pumps for Machine Tools					•		B5.28–1958
High Speed Steel and Cast Nonferrous Single Point Tools							
and Tool Holders					•		B5.29–1959
Knurling				•	•		B5.30-1958
Designation and Working Ranges of Grinding Machines	•	•		•	•	. BЭ.	32 & 33-1975
Life Tests for Single-Point Tools of Sintered Carbide							B5.34–1956
Machine Mounting Specifications for Abrasive Discs and							
Plate Mounted Wheels				•			B5.35-1957
Carbide Blanks and Cutting Tools							B5.36-1957
Driving and Spindle Ends for Portable Air and Electric Tools							B5.38-1958
Spindle Flanges for Precision Boring Machines		•			•		B5.39–1961
Spindle Noses and Tool Shanks for Horizontal Boring Machines	s						B5.40-1962

Binders for holding standards are available.

A complete list of American Standards published by The American Society of Mechanical Engineers obtainable upon request.

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v