ASME B29.17M-1998 [Revision of ANSI/ASME B29.17M-1983 (R1995)]

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

AN AMERICAN NATIONAL STANDARD

The American Society of Mechanical Engineers

Α Ν Α Μ Ε R С A N 10 Ν A L S Т I Ν Α Т Α Ν D Α R D

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND Sprocket teeth

ASME B29.17M-1998 [Revision of ANSI/ASME B29.17M-1983 (R1995)]

Date of Issuance: March 30, 1999

This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda or written interpretations of the requirements of this Standard issued to this edition.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large. Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable Letters Patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations issued in accordance with governing ASME procedures and policies which precludes the issuance of interpretations by individual volunteers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016-5990

Copyright © 1999 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All Rights Reserved Printed in U.S.A.

FOREWORD

(This Foreword is not part of ASME B29.17M-1998.)

Steel chains of the type covered by this Standard were first introduced in the late 1930s. These chains met with considerable success on material conveying applications.

In 1973, a subcommittee of American National Standards Committee B29 was appointed to draft a standard for these hinge type flat top conveyor chains. This Committee was composed of interested members of the American Chain Association.

The standard developed by this Committee covered only those dimensions that affect interchangeability and interconnectability.

To promote the use of this Standard in international trade, metric equivalents of all dimensions and capacities are given.

The American National Standards Institute approved the previous edition of this Standard on June 21, 1983, and it was reaffirmed in 1995.

The Standard was modified in 1997 to include two straight running nonmetallic chains (24P26 and 24P86). This edition received ANSI approval on September 9, 1998.

ASME STANDARDS COMMITTEE B29 Chains, Attachments, and Sprockets for Power Transmission and Conveying

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS

J. L. Wright, Chair K. M. Padilla, Secretary

COMMITTEE PERSONNEL

E. B. Beardslee, Beardslee Transmission Equipment Co., Long Island City, New York

P. J. Ensch, Rexnord Plastics Division, Milwaukee, Wisconsin

W. C. Hall, Ramsey Products Corp., Charlotte, North Carolina

L. E. Hampel, Allied-Locke Industries, Inc., Dixon, Illinois

J. Kane, U.S. Tsubaki Inc., Holyoke, Massachusetts

J. M. Lewis, Webster Industries Inc., Tiffin, Ohio

A. M. McCarty, Emerson Power Transmission, Ithaca, New York

C. McDonald, Jervis B. Webb Co., New Hudson, Michigan

D. Moore, Jeffrey Chain Co., Morristown, Tennessee

C. B. Norberg, Consultant, Ithaca, New York

V. D. Petershack, Hitachi Maxco Ltd., Oconomowoc, Wisconsin

R. A. Reinfried, Conveyor Equipment Manufacturers Association, Manassas, Virginia

v

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

S. Rhoad, Webster Industries, Inc., Tiffin, Ohio

V. E. Skipper, Hitachi Maxco Ltd., Oconomowoc, Wisconsin

C. G. Springman, Diamond Chain Co., Indianapolis, Indiana

K. J. Smith, Drives, Inc., Fulton, Illinois

R. H. Uttke, Rexnord Corp., Milwaukee, Wisconsin

J. L. Wright, Consultant, Indianapolis, Indiana

D. N. Zwiep, Worcester Polytechnic Institute, Worcester, Massachusetts

CONTENTS

Fore	word	iii
Stand	dards Committee Roster	v
1	Chain Nomenclature	1
2	General Chain Proportions and Designations	1
3	Explanation of the Chain Numbering System	1
4	Chain Dimensions	1
5	Sprocket Tooth Form — General	1
Figu	Ires	
1	Steel Hinge Type Flat Top Conveyor Chain	2
2	Steel Hinge Type Flat Top Conveyor Chain Nomenclature	3
3	Plastic Hinge Type Flat Top Conveyor Chain — 24P26	3
4	Plastic Hinge Type Flat Top Conveyor Chain — 24P26	4
5	Plastic Hinge Type Flat Top Conveyor Chain — 24P86	5
6	Plastic Hinge Type Flat Top Conveyor Chain — 24P86	5
7	Sprocket Tooth Form, Type A — Radius Tooth Form	8
8	Sprocket Tooth Form, Type B — Straight Face Tooth Form	10
9	Sprocket Tooth Dimensions	12
Tabl	les	
1	General Chain Dimensions, M.U.T.S. Rating, and Measuring Load for Checking	
	Chain Length	6
2	Maximum and Minimum Controlling Dimensions for Interchangeable Links	7
3	Chain Clearance Dimensions	7
4	Pitch Diameter and Maximum Outside and Bottom Diameter for Normal	
	Range of Sprocket Teeth Available With Type A Tooth Form Sprockets	9
5	Standard Pitch Diameter, Maximum Outside and Bottom Diameter, and Pressure	
	Angle Limits for Normal Range of Sprocket Teeth Available With Type B	
	Tooth Form Sprockets	11
6	Maximum Eccentricity and Face Runout Tolerances of Sprocket Teeth	12

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

1 CHAIN NOMENCLATURE

steel hinge type flat top conveyor chains: a series of steel (carbon or stainless) flat surfaces of various widths as specified herein made integral with hinge-like barrels on each side. These barrels are designed to interlace so that pins inserted through the holes formed by the barrels connect adjacent links, thus forming a continuous length of flat top conveyor chain free to flex in one direction. Pins are retained by press fit and/or heading with respect to the barrels of one link while being a free or slip fit with respect to the interlaced barrels of the adjacent link. The chain so formed is driven by meshing the curl outside diameters with sprocket teeth.

plastic hinge type flat top conveyor chains: similar to steel type flat top chains except that the chain links are molded of plastic material. Pins are usually made of stainless steel and may be retained by press fit or knurls.

See also Figs. 1 through 6.

2 GENERAL CHAIN PROPORTIONS AND DESIGNATIONS

2.1 Minimum Ultimate Tensile Strength (M.U.T.S.)

Minimum Ultimate Tensile Strength (M.U.T.S.) for chain covered by this Standard is the minimum force at which an unused, undamaged chain could fail when subjected to a single tensile loading test.

(a) WARNING: The M.U.T.S. is not a "working load". The M.U.T.S. greatly exceeds the maximum force that may be applied to the chain.

(b) Test Procedure. A tensile force is slowly applied, in an uniaxial direction, to the ends of the chain sample.

(c) The tensile test is a destructive test. Even though the chain may not visibly fail when subjected to the M.U.T.S., it will have been damaged and will be unfit for service.

2.2 Measuring Load

The measuring load as listed in Table 1 is approximately 2% of the minimum ultimate tensile strength. This is the load under which a chain should be measured for length.

2.3 Chain Length Tolerance

New chains may exceed theoretical length by 0.38 in. in 120 in. (9.7 mm in 3048 mm) but must not be under the theoretical length.

2.4 Dimensions for Chain Components

To allow chain from one manufacturer to interconnect with that of another, certain limiting dimensions have been adopted. These are not dimensions used in manufacturing chain, but have been chosen, maximum and minimum, to define an envelope within which components must fit to achieve the desired interchangeability.

All dimensions are based on the decimal inch system. The metric equivalent dimensions are for reference only.

3 EXPLANATION OF THE CHAIN NUMBERING SYSTEM

Chain numbers for this Standard consist of two pairs of digits separated by a letter. The first two digits are the number of sixteenths of an inch in one pitch. The letter designates material.

- A = austenitic stainless steel, link and pin
- C = carbon or alloy steel, link and pin
- P = plastic

The last two digits are equal to the hinge width in sixteenths of an inch. For example, 24A26 designates an austenitic stainless steel chain of 1.5 in. pitch having a nominal hinge width of 1.625 in.

The chains are available with various top plate widths, which must be specified independently from the chain part number.

4 CHAIN DIMENSIONS

Refer to Tables 1 through 3.

5 SPROCKET TOOTH FORM --- GENERAL

To reflect common usage, two separate tooth forms

ASME B29.17M-1998

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

are recorded in this Standard:

(a) Type A — Radius Tooth Form: one tooth form cutter used for a full range of teeth. See Fig. 7 and Table 4.

(b) Type B — Straight Face Tooth Form: optimizes

load absorption and chain elongation allowable. Requires more than one cutter for a full range of teeth. Five cutters could cut the 12 through 41 teeth shown in this Standard. See Fig. 8 and Table 5.

For other sprocket data, see Fig. 9 and Table 6.

FIG. 1 STEEL HINGE TYPE FLAT TOP CONVEYOR CHAIN

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

ASME B29.17M-1998

FIG. 3 PLASTIC HINGE TYPE FLAT TOP CONVEYOR CHAIN - 24P26

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

Direction of travel

4

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

ASME B29.17M-1998

FIG. 5 PLASTIC HINGE TYPE FLAT TOP CONVEYOR CHAIN - 24P86

FIG. 6 PLASTIC HINGE TYPE FLAT TOP CONVEYOR CHAIN - 24P86

TABLE 1 GENERAL CHAIN DIMENSIONS, M.U.T.S. RATING, AND MEASURING LOAD FOR CHECKING CHAIN LENGTH

	Dimensions, in.			
Chain Number	24A26	24C26	24P26	24P86
P = Chain pitch	1.50	1.50	1.50	1.50
A = Pin body diameter	0.25	0.25	0.25	0.25
H = Outside diameter/overall height	0.525	0.525	0.565	0.565
E_1 = Width over press fit barrels	1.625	1.625	1.64	5.37
T = Top plate thickness	0.12	0.12	0.16	0.19
G = Top plate widths	3.25	3.25	3.25	7.50
	4.00	4.00	4.00	10.00
	4.50	4.50	4.50	12.00
	6.00	6.00	6.00	
	7.50	7.50	7.50	
M.U.T.S., Ib (see para. 2.1)	2000	2400	850	1570
Number of pitches/nominal 120 in.	80	80	80	80
Theoretical length in nominal 120 in. strand	120.0	120.0	120.0	120.0
Measuring load, lb	40	40	20	20
	Dimensions, mm			1.0
P = Chain pitch	38.1	38.1	38.1	38.1
A = Pin body diameter	6.4	6.4	6.4	6.4
H = Outside diameter/overall height	13.3	13.3	14.35	14.35
E_1 = Width over press fit barrels	41.28	41.28	41.6	136.4
T = Top plate thickness	3.0	3.0	4.1	4.8
G = Top plate widths	82.6	82.6	82.6	190.5
	101.6	101.6	101.6	254.0
	114.3	114.3	114.3	304.8
	152.4	152.4	152.4	
	190.5	190.5	190.5	
M.U.T.S., kN (see para. 2.1)	8.896	10.676	3.78	6.98
Number of pitches/nominal 3048 mm strand	80	80	80	80
Theoretical length in nominal 3048 mm strand	3048	3048	3048	3048
Measuring load, kN	0.178	0.178	0.089	0.089

CAUTION: The numerical values set forth in this Table do not afford a sufficient or appropriate basis for determining chain application and must be read in conjunction with the definitions and explanatory notes appearing in paras. 2 and 3 and Fig. 1.

 E_2

24P86

0.251

0.252

3.696

3.725

5.388

. . .

. . .

• • •

. . .

. . .

1.131

TABLE 2	MAXIMUM AND MINIMUM CONTROLLING DIMENSIONS FOR	R
	INTERCHANGEABLE LINKS	

Dimensions, in.

Chain Number 24A26 24C26 24P26 A = Pin body diameter (max.)0.251 0.251 0.251 B = Slip fit barrel inside diameter (min.) 0.252 0.252 0.252 C = Center barrel width (max.) 0.781 0.781 1.021 D = Center barrel clearance width (min.) 0.790 0.790 1.035 E_1 = Width over press fit barrels (max.) 1.655 1.655 1.655 F = Press fit barrel clearance width (min.) 1.656 1.656 . . . L = Slip fit barrel clearance radius (min.) 0.264 0.264 . . . J = Press fit barrel clearance radius (min.) 0.264 0.264 • • • K = Clearance — slip fit barrel center line to top plate edge (min.) 0.016 0.016 . . . M = Clearance — press fit barrel center line to top plate edge (min.) 0.016 0.016 . . . R = Center barrel width (max.) 0.231 • • • . . . S = Center barrel clearance width (min.) 0.238

S = Center barrel clearance width (min.)			0.238	1.140
Dimensions, mm		·		
A = Pin body diameter (max.)	6.38	6.38	6.38	6.38
B = Slip fit barrel inside diameter (min.)	6.40	6.40	6.40	6.40
C = Center barrel width (max.)	19.84	19.84	25.93	93. 88
D = Center barrel clearance width (min.)	20.07	20.07	26.29	94.62
E_1 = Width over press fit barrels (max.)	42.04	42.04	42.04	136.86
F = Press fit barrel clearance width (min.)	42.06	42.06		• • • •
L = Slip fit barrel clearance radius (min.)	6.70	6.70		
J = Press fit barrel clearance radius (min.)	6.70	6.70		
K = Clearance — slip fit barrel center line to top plate edge (min.)	0.41	0.41		
M = Clearance — press fit barrel center line to top plate edge (min.)	0.41	0.41		
R = Center barrel width (max.)			5.87	2 8.7 3
S = Center barrel clearance width (min.)			6.05	28.96

Dimensions, in.							
Chain Number	24A26	24C26	24P26	24P86			
H = Overall height (max.)	0.525	0.525	0.575	0.575			
G = Top plate width (max.)	3.250	3.250	3.250	7.500			
	4.000	4.000	4.000	10.000			
	4.500	4.500	4.500	12.000			
	6.000	6.000	6.000				
	7.500	7.500	7.500				
E_2 = Assembled pin length (max.)	1.676	1.676	•••				
	Dimensions, m	ım					

TABLE 3 CHAIN CLEARANCE DIMENSIONS

Dimensions, mm							
H = Overall height (max.)	13.34	13.34	14.61	14.61			
G = Top plate width (max.)	82.55	82.55	82.6	190.5			
	101.60	101.60	101.6	254.0			
	114.30	114.30	114.3	304.8			
	152.40	152.40	152.4				
	190.50	190.50	190.5				
E_2 = Assembled pin length (max.)	42.57	42.57					

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

GENERAL NOTE:

All numbers of teeth may be made with one cutter if non-topping.

FIG. 7 SPROCKET TOOTH FORM, TYPE A --- RADIUS TOOTH FORM

TABLE 4PITCH DIAMETER AND MAXIMUM OUTSIDE AND BOTTOM DIAMETER FOR NORMAL
RANGE OF SPROCKET TEETH AVAILABLE WITH TYPE A TOOTH FORM SPROCKETS
(See Fig. 7)

Number of Teeth		Maximum Outside Maximum Pitch Diameter Diameter Diameter		Maximum Outside Diameter		m Bottom meter	
Actual	Effective	in.	mm	in.	mm	in.	mm
12	6	3.000	76.20	2.848	72.34	2.475	62.87
13	6 ¹ /2	3.228	81.99	3.108	78.94	2.703	68.66
14	7	3.457	87.81	3.365	85.47	2.932	74.47
15	7½	3.688	93.68	3.619	91.92	3.163	80.34
16	8	3.920	99.57	3.871	98.32	3.395	86.23
17	8 ¹ / ₂	4.152	105.46	4.122	104.70	3.627	92.13
18	9	4.386	111.40	4.371	111.02	3.861	98.07
19	9½	4.620	117.35	4.620	117.35	4.095	104.01
20	10	4.854	123.29	4.854	123.29	4.329	109.96
21	10½	5.089	129.26	5.089	129.26	4.564	115.93
22	11	5.324	135.23	5.324	153.23	4.799	121.89
23	111/2	5.560	141.22	5.560	141.22	5.035	127.89
24	12	5.796	147.22	5.786	147.22	5.271	133.88
25	12½	6.032	153.21	6.032	153.21	5.507	139.88
26	13	6.268	159.21	6.268	159.21	5.743	145.87
27	13½	6.504	165.20	6.504	165.20	5.979	151.87
28	14	6.741	171.22	6.741	171.22	6.216	157.89
29	14 ¹ ⁄ ₂	6.978	177.24	6.97 8	177.24	6.453	163.91
30	15	7.215	183.26	7.215	183.26	6.690	169.93
31	15½	7.452	189.28	7.452	189.28	6.927	175.95
32	16	7.689	195.30	7.689	195.30	7.164	181.97
33	16½	7.926	201.32	7.926	201.32	7.401	187.99
34	17	8.163	207.34	8.163	207.34	7.638	194.01
35	17½	8.401	213.39	8.401	213.39	7.876	200.05
36	18	8.638	219.41	8.638	219.41	8.113	206.07
37	18 ¹ /2	8.876	225.45	8.876	225.45	8.351	212.12
38	19	9.113	231.47	9.113	231.47	8.588	218.14
39	19½	9.351	237.52	9.351	237.52	8.826	224.18
40	20	9.589	243.56	9.589	243.56	9.064	230.23
41	20 ¹ / ₂	9.826	249.60	9.826	249.60	9.301	236.25

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

e : .*

FIG. 8 SPROCKET TOOTH FORM, TYPE B — STRAIGHT FACE TOOTH FORM

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

TABLE 5STANDARD PITCH DIAMETER, MAXIMUM OUTSIDE AND BOTTOM DIAMETER,
AND PRESSURE ANGLE LIMITS FOR NORMAL RANGE OF SPROCKET TEETH AVAILABLE
WITH TYPE B TOOTH FORM SPROCKETS
(See Fig. 8)

Number of Teeth [Note (1)]		Pitch D	Pitch Diameter		Maximum Outside Diameter		m Bottom neter	Maximum Pressure
Act.	Eff.	in.	mm	in.	mm	in.	mm	[Note (2)]
12	6	3.000	76.20	2.850	72.39	2.475	62.87	10
13	6½	3.228	81.99	2.110	78.99	2.703	68.66	12
14	7	3.457	87.81	3.370	85.60	2.932	74.47	13
15	71/2	3.688	93.68	3.630	92.20	3.163	80.34	13
16	8	3.920	99.57	3.860	98.04	3.395	86.23	14
17	8½	4.152	105.46	4.120	104.65	3.627	92.13	15
18	9	4.386	111.40	4.370	111.00	3.861	9 8.07	15
19	9 ¹ / ₂	4.620	117.35	4.610	117.09	4.095	104.01	16
20	10	4.854	123.29	4.861	123.47	4.329	109.96	16
21	10½	5.089	129.26	5.120	130.05	4.564	115.93	17
22	11	5.324	135.23	5.349	135.86	4.799	121.89	17
23	11½	5.560	141.22	5.590	141.99	5.035	127.89	18
24	12	5.7 9 6	147.22	5.830	148.08	5.271	133.88	18
25	12 ¹ ⁄2	6.032	153.21	6.070	154.18	5.507	139.88	18
26	13	6.268	159.21	6.311	160.30	5.743	.145.87	19
27	13½	6.504	165.20	6.560	166.62	5.979	151.87	19
28	14	6.741	171.22	6.804	172.82	6.216	157.89	19
29	14 ¹ / ₂	6.978	177.24	7.050	179.07	6.453	163.91	19
30	15	7.215	183.26	7.285	185.04	6.690	169.93	19
31	15½	7.452	189.28	7.530	191.26	6.927	175.95	20
32	16	7.689	195.30	7.749	196.82	7.164	181 .9 7	20
33	16 ¹ ⁄2	7.926	201.32	7.986	202.84	7.401	187.99	20
34	17	8.163	207.34	8.223	208.86	7.638	194.01	20
35	17½	8.401	213.39	8.460	214.88	7.876	200.05	20
36	18	8.638	219.41	8.698	220.93	8.113	206.07	20
37	18½	8.876	225.45	8.935	226.95	8.351	212.12	21
38	19	9.113	231.47	9.173	232.99	8.588	218.14	21
39	19 ¹ ⁄2	9.351	237.52	9.451	240.06	8.826	224.18	21
40	20	9.589	243.56	9.689	246.10	9.064	230.23	21
41	20 ¹ / ₂	9.826	249.60	9.926	252.12	9.301	236.25	22

NOTES:

(1) Since 1.50 pitch chain is used in 0.75 in. pitch sprockets, the chain makes contact with every other sprocket tooth.

Effective no. of teeth =
$$\frac{\text{Actual no. of teeth}}{2}$$

(2) Pressure angle shall not be less than 0 deg.

ASME B29.17M-1998

HINGE TYPE FLAT TOP CONVEYOR CHAINS AND SPROCKET TEETH

GENERAL NOTE: Values for pitch diameter, outside diameter, and bottom diameter for sprocket sizes ranging from 12 teeth through 41 teeth are shown in Table 5.

FIG. 9 SPROCKET TOOTH DIMENSIONS

TABLE 6 MAXIMUM ECCENTRICITY AND FACE RUNOUT TOLERANCES OF SPROCKET TEETH

Dimensions, in.						
Bottom Diameter	Maximum Eccentricity	Maximum Face Runout				
0–7.00	0.010 + 0.001 (B.D.)	0.020				
7.001-20.000	0.010 + 0.001 (B.D.)	0.003 (B.D.)				
20.001-30.000	0.030	0.003 (B.D.)				
30.001 and up	0.030	0.090				
	Dimensions, mm					
0-177.80	0.25 + 0.001 (B.D.)	0.51				
177.81-508.00	0.25 + 0.001 (B.D.)	0.003 (B.D.)				
508.01-762.00	0.76	0.003 (B.D.)				
762.01 and up	0.76	2:29				

