AN AMERICAN NATIONAL STANDARD

Gages and Gaging for Unified Inch Screw Threads

ANSI/ASME B1.2-1983

IREVISION OF ANSI B1 2 19741

REAFFIRMED 1991

SPONSORED AND PUBLISHED BY

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 East 47th Street New York, N.Y. 10017 United Engineering Center

ACCEPTANCE NOTICE

The above non-Government document was adopted on 5 March 1985 and is approved for use by the Federal agencies. The indicated industry group has furnished the clearance required by existing regulations. Copies of the document are stocked by the DoD Single Stock Point, Naval Publications and Forms Center, Philadelphia, PA 19120, for issue to DoD activities only. Contractors and industry groups must obtain copies directly from:

The American Society of Mechanical Engineers	or	The American National Standards Institute,
United Engineering Center, 345 E. 47th Street		1430 Broadway, New York, NY 10018
New York, NY 10017		
Title of Document: Gages and Gaging for Unified Inch S	Screw Threads	
Date of Specific Issue Adopted: 16 May 1983		
Releasing Industry Group: The American Society of Me	chanical Engineers	

NOTE: See FED-STD-H28/6: Screw-Thread Standards for Federal Services, Section 6, Gages and Gaging for Unified Screw Threads – UN and UNR Thread Forms

NOTICE: When reaffirmation, amendment revision, or cancellation of this standard is initially proposed, the industry group responsible for this Standard shall inform the military coordinating activity of the proposed change and request their participation.

Custodians: Army – AR; Navy – AS; Air Force – 11

Review Activities: Army - AT, AV, GL, ME

User Activities: Navy - EC

Civil Agency Coordinating Activities: Commerce – NBS DOT – ACO, APM, FAA, FRA, NHT GSA – FSS, PCD; HUD – HCC; Justice – FPI NASA – JFK, LRC, MSF; USDA – AFS

Military Coordinating Activity: DLA - IS

(Project THDS-0045)

AREA-THDS

Gages and Gaging for Unified Inch Screw Threads

ANSI/ASME B1.2-1983

(REVISION OF ANSI B1.2-1974)

SPONSORED AND PUBLISHED BY

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERSUnited Engineering Center345 East 47th StreetNew York, N. Y. 10017

This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda or written interpretations of the requirements of this Standard issued to this Edition.

Date of Issuance: June 15, 1984

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Consensus Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment which provides an opportunity for additional public input from industry, academia, regulatory agencies, and in the public-at-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable Letters Patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME does not accept any responsibility for interpretations of this document made by individual volunteers,

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright © 1984 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All Rights Reserved Printed in U.S.A.

FOREWORD

(This Foreword is not part of American National Standard ANSI/ASME B1.2-1983, Gages and Gaging for Unified Inch Screw Threads.)

American National Standards Committee B1 for the Standardization of screw threads was organized in 1920 as Sectional Committee B1 under the aegis of the American Engineering Standards Committee (later the American National Standards Association, then the United States of America Standards Institute and, as of October 6, 1969, the American National Standards Institute, Inc.), with the Society of Automotive Engineers and the American Society of Mechanical Engineers as joint sponsors.

In 1982, American National Standards Committee B1 was reorganized as the ASME Standards Committee B1, and since then it has operated under the American Society of Mechanical Engineers Procedures to produce and update standards which may become ANSI Standards after final approval by the American National Standards Institute.

A declaration of accord with respect to the unification of screw threads was signed on November 18, 1948, by representatives of the services and industry of the United States, the United Kingdom, and Canada. The ANSI Unified Screw Thread Standard B1.1, through the quadripartite standardization agreement (QST AG) 247, Unified Threads, is subject to an international standardization agreement through the instrumentality of the American-British-Canadian-Australian Army Standardization Program, which recognizes B1.1 as a standard for Unified Threads when it is required to effect the interchangeability of parts and equipment between the armies of the participating nations.

The first American National Standard for Screw Thread Gages and Gaging was published as ASA B1.2-1941 to supplement the parent Standard ASA B1.1-1935, Screw Threads for Bolts, Nuts, Machine Screws and Threaded Parts. That Standard was revised and republished as a Unified Standard ASA B1.1-1949 and again as ASA B1.1-1960. The Unified Gage Standard was republished as ASA B1.2-1951 and USA B1.2-1966.

On February 9, 1973, a meeting was held by the Department of Commerce at the National Bureau of Standards, Washington, D.C., attended by representatives of government and industry screw thread interests. With the goal of eliminating parallel standards, those at the meeting recommended that the NBS Handbook H-28 be converted into a coordinating document for government screw thread standards wherein sections of H-28 would be replaced by single page references to existing industry standards. It was further recommended that the chairman of American National Standards Committee B1 set up a group to clearly define and establish identified levels of acceptability for screw threads.

At an American National Standards Committee B1 meeting held on May 3, 1973, unanimous approval was given to the following motion: "The B1 Committee recognizing the needs of industry for different levels of acceptability for screw threads, establishes new scopes for Standards B1.1 and B1.2 and sets up a new standard, B1.3." References to conformance criteria were removed from ANSI B1.2-1974 and additional gages and gaging data were added to suit additional conformance requirements specified in ANSI B1.3 or other B1 thread documents.

This new publication, designated ANSI/ASME B1.2-1983, has had considerable new material added to cover the many options of gages and measuring equipment shown in ANSI B1.3, Screw Thread Gaging Systems for Dimensional Acceptability. It has also re-

applied HI and LO to function as NOT GO gages and has eliminated gages with pitch diameter outside product thread limits. ANSI B1.2 was approved by the ASME Standards Committee B1 on March 18, 1983.

The proposed standard was submitted by the ASME Board of Standardization to the American National Standards Institute. It was approved and formally designated an American National Standard on May 16, 1983.

ASME STANDARDS COMMITTEE B1 Standardization and Unification of Screw Threads

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS

D. J. Emanuelli, Chairman H. W. Ellison, Vice Chairman C. E. Lynch, Secretary

COMMITTEE PERSONNEL

AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC. G. G. Gerber, McDonnell Douglas, St. Louis, Missouri H. Borrman, Alternate, Sperry Gyroscope Division, Great Neck, New York AMERICAN IRON AND STEEL INSTITUTE

F. Dallas, Jr., Sawhill Tubular Division, Sharon, Pennsylvania

AMERICAN MEASURING TOOL MANUFACTURERS ASSOCIATION

D. Dodge, Pennoyer-Dodge Company, Glendale, California

C. W. Jatho, Alternate, American Measuring Tool Manufacturers Association, Birmingham, Michigan

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

AMERICAN PIPE FITTINGS ASSOCIATION

W. C. Farrell, Stockham Valves and Fittings, Birmingham, Alabama

DEFENSE INDUSTRIAL SUPPLY CENTER

E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania

F. S. Ciccarone, Alternate, Defense Industrial Supply Center, Philadelphia, Pennsylvania

ENGINE MANUFACTURERS ASSOCIATION

G. A. Russ, Cummins Engine Company, Columbus, Indiana

FARM AND INDUSTRIAL EQUIPMENT INSTITUTE

J. F. Nagy, Ford Motor Company, Dearborn, Michigan

INDUSTRIAL FASTENERS INSTITUTE

R. B. Belford, Industrial Fasteners Institute, Cleveland, Ohio

R. M. Harris, Bethlehem Steel Company, Lebanon, Pennsylvania

K. E. McCullough, SPS Technologies, Inc., Jenkintown, Pennsylvania

J. C. McMurray, Russell, Burdsall and Ward Inc., Mentor, Ohio

J. A. Trilling, Holo-Krome Company, West Hartford, Connecticut

E. D. Spengler, Alternate, Bethlehem Steel Company, Lebanon, Pennsylvania

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTING INDUSTRY W. C. Farrell, Stockham Valves and Fitting, Birmingham, Alabama

METAL CUTTING TOOL INSTITUTE (TAP AND DIE DIVISION)

N. F. Nau, Union/Butterfield, Athol, Massachusetts

A. D. Shepherd, Jr., Alternate, Union/Butterfield, Derby Line, Vermont

NATIONAL AUTOMATIC SPRINKLER AND FIRE CONTROL ASSOCIATION, INC.

W. Testa, Grinnell Fire Protection Systems Company, Inc., Providence, Rhode Island

R. P. Fleming, Alternate, National Automatic Sprinkler and Fire Control Association, Inc., Patterson, New York

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION

J. L. Griffin, Wheatland Tube Company, Wheatland, Pennsylvania

J. B. Levy, General Electric Company, Schenectady, New York

- F. F. Weingruber, Westinghouse Electric Corp., Pittsburgh, Pennsylvania
- W. R. Williford, Alternate, National Electrical Manufacturers Association, Washington, D.C.

NATIONAL MACHINE TOOL BUILDERS ASSOCIATION

- R. J. Sabatos, The Cleveland Twist Drill Company, Cleveland, Ohio
- D. R. Stoner, Jr., Teledyne Landis Machine, Waynesboro, Pennsylvania

NATIONAL SCREW MACHINE PRODUCTS ASSOCIATION

T. S. Meyer, Fischer Special Manufacturing Company, Cold Spring, Kentucky

H. A. Eichstaedt, Alternate, National Screw Machine Products Association, Brecksville, Ohio

SOCIETY OF AUTOMOTIVE ENGINEERS

H. W. Ellison, General Motors Technical Center, Warren. Michigan

SOCIETY OF MANUFACTURING ENGINEERS

D. Davidson, Morse/Hemco Corporation, Holland, Michigan

TUBULAR RIVET AND MACHINE INSTITUTE

R. M. Byrne, Industry Service Bureaus, Inc., White Plains, New York

- U.S. DEPARTMENT OF THE AIR FORCE
 - R. P. Stewart, Wright-Patterson, Ohio

U.S. DEPARTMENT OF THE ARMY

- F. J. Clas, U.S. Department of the Army, Watervliet, New York
- J. Crowley, U.S. Army Material Development and Readiness Command, Alexandria, Virginia
- F. L. Jones, Alternate, U.S. Army Missle Command, Redstone Arsenal, Alabama

U.S. DEPARTMENT OF DEFENSE

E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania

U. S. DEPARTMENT OF THE NAVY

C. T. Gustafson, Portsmouth Naval Shipyard, Portsmouth, New Hampshire

INDIVIDUAL MEMBERS

- C. T. Appleton, Jefferson, Massachusetts
- J. Boehnlein, PMC Industries, Wickliffe, Ohio
- R. Browning, Southern Gage Company, Erin, Tennessee
- R. S. Chamerda, The Johnson Gage Company, Bloomfield, Connecticut
- J. F. Cramer, Des Moines, Washington
- E. W. Drescher, Lancaster, Pennsylvania
- D. J. Emanuelli, Greenfield Tap and Die, Greenfield, Massachusetts
- C. G. Erickson, Colt Industries Sterling Die Operation, West Hartford, Connecticut
- S. I. Kanter, P.E., The Hanson-Whitney Company, Hartford, Connecticut
- R. W. Lamport, The Van Keuren Company, Watertown, Massachusetts
- A. R. Machell, Jr., Xerox Corp., Rochester, New York
- A. E. Masterson, Watervliet, New York
- R. E. Mazzara, Geometric Tool, New Haven, Connecticut
- P. V. Pastore, Regal Beloit Corp., South Beloit, Illinois
- M. M. Schuster, Hi-Shear Corporation, Torrance, California
- A. G. Strang, Boyds, Maryland
- A. F. Thibodeau, Swanson Tool Manufacturing, Inc., West Hartford, Connecticut
- J. W. Turton, The Bendix Corp., Greenfield, Massachusetts

Subcommittee B1.2 - Screw Thread Gages and Gaging

- R. Browning, Chairman, Southern Gage Company, Erin, Tennessee
- A. F. Thibodeau, Secretary, Swanson Tool Manufacturing, Inc., West Hartford, Connecticut
- P. F. Bitters, Greenfield Tap and Die, Greenfield, Massachusetts
- J. Boehnlein, PMC Industries, Wickliffe, Ohio

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

- D. Cadieux, Greenfield Tap and Die, Greenfield, Massachusetts
- R. S. Chamerda, The Johnson Gage Company, Bloomfield, Connecticut
- M. Davidson, Morse/Hemco Corp., Holland, Michigan
- D. Dodge, Pennoyer-Dodge Company, Glendale, California
- H. W. Ellison, General Motors Technical Center, Warren, Michigan
- J. J. Fiscella, Latham, New York
- G. Garcina, Indianapolis, Indiana
- C. T. Gustafson, Metrology Laboratories Division, Portsmouth, New Hampshire
- S. I. Kanter, The Hanson-Whitney Company, Hartford, Connecticut
- R. W. Lamport, The Van Keuren Company, Watertown, Massachusetts
- A. E. Masterson, Watervliet, New York
- K. E. McCullough, SPS Technologies, Inc., Jenkintown, Pennsylvania
- J. C. McMurray, Russell, Burdsall and Ward, Inc., Mentor, Ohio
- J. Preziosi, Amerace-Esna Corp., Union, New Jersey
- M. M. Schuster, Hi-Shear Corp., Torrance, California
- E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania
- A. G. Strang, Boyds, Maryland
- J. W. Turton, The Bendix Corp., Greenfield, Massachusetts
- A. Zaverucha, McMellon Brothers, Stratford, Connecticut

Task Group B1.16 — Gages and Gaging for Metric M Screw Threads

- C. G. Erickson, Chairman, West Hartford, Connecticut
- R. Browning, Secretary, Southern Gage Company, Erin, Tennessee
- R. S. Chamerda, The Johnson Gage Company, Bloomfield, Connecticut
- M. Davidson, H. E. Morse Company, Holland, Michigan
- D. Emanuelli, Greenfield Tap and Die, Greenfield, Massachusetts
- S. I. Kanter, The Hanson-Whitney Company, Hartford, Connecticut
- R. W. Lamport, The Van Keuren Company, Watertown, Massachusetts
- K. E. McCullough, SPS Technologies, Inc., Jenkintown, Pennsylvania
- J. C. McMurray, Russell, Burdsall, and Ward, Inc., Mentor, Ohio
- E. Schwartz, Defense Industrial Supply Center, Philadelphia, Pennsylvania
- A. G. Strang, Boyds, Maryland

Intentionally left blank

CONTENTS

•

Fo	reword		iii
Sta	ndards	Committee Roster	v
1	Intro	luction	1
•	11	References	î
	1.1	Classification	î
	1.2	Federal Government Use	i
2	Basic	Principles	1
	2.1	Accuracy in Gaging	1
	2.2	Limitations of Gaging	1
	2.3	Determining Size of Gages	10
	2.4	Standard Temperature	10
3	Gene	ral Practice	10
	3.1	General Design	10
	3.2	Types of Gages	10
	3.3	Interpretation of Tolerances	10
	3.4	Direction of Tolerances on Gages	10
	35	Standard Thread Gage Tolerances	11
	3.5	Tolerance on Lead	11
	2.0	Tolerance on Holf Angle	11
	3.1 70	Check of Effect of Lood and Elenk Anale Variations on Braduet Thread	11
	3.8	Check of Effect of Lead and Flank Angle variations on Product Infread	11
	3.9	Calibration Requirements and Standards	11
4	Type	s of Gages for Product Internal Thread	11
•	41	GO Working Thread Plug Gages	11
	4.1 1 2	NOT CO (HI) Thread Plug Gages	13
	4.2	Thread Span Gages - GO Segments or Polls	14
	4.5	Thread Shap Gages OO Segments of Kons	20
	4.4	Inread Snap Gages – NOT GO (HI) Segments of Kolls	20
	4.5	Thread Snap Gages — Minimum Material: Pitch Diameter Cone and	20
	16	Thread Snan Gages Minimum Material: Thread Groove Diameter	20
	4.0	Tuno	23
	47	Type	20
	4./	Infread-Setting Solid King Gages	24
	4.8	Plain Plug, Snap, and Indicating Gages to Check Minor Diameter of	24
	4.0	Span and Indicating Coase to Check Moior Dispeter of Internal Thread	24
	4.9	Shap and indicating Gages to Check Major Diameter of Internal Infead	20
	4.10	runctional indicating i nread Gages for internal i hread	20
	4.11	Minimum-Material Indicating Thread Gages for Internal Thread	33
	4.12	Indicating Runout Thread Gage for Internal Thread	33
	4.13	Differential Gaging	37

	4.14 4.15 4.16 4.17 4.18 4.19 4.20	Pitch Micrometers Thread-Measuring Balls Optical Comparator and Toolmaker's Microscope Profile Tracing Instrument Surface Roughness Equipment Roundness Equipment Miscellaneous Gages and Gaging Equipment	39 39 39 40 40 40 40
5	Type	s of Gages for Product External Thread	40
	5.1	GO Working Thread Ring Gages	40
	5.2	NOT GO (LO) Thread Ring Gages	128
	5.3	Thread Snap Gages — GO Segments or Rolls	129
	5.4	Thread Snap Gages — NOT GO (LO) Segments or Rolls	131
	5.5	Thread Snap Gages — Cone and Vee	133
	5.6	Thread Snap Gages — Minimum Material: Thread Groove Diameter Type	133
	5.7	Plain Ring and Snap Gages to Check Major Diameter of Product	
		External Threads	133
	5.8	Snap Gages for Minor Diameter of Product External Threads	135
	5.9	Functional Indicating Thread Gages for External Thread	135
	5.10	Mimimum-Material Indicating Thread Gages for External Thread	139
	5.11	Indicating Runout Gage for External Threads	139
	5.12	Differential Gaging	139
	5.13	W Tolerance Thread-Setting Plug Gages	143
	5.14	Plain Check Plug Gages for Thread Ring Gages	148
	5.15	Indicating Plain Diameter Gages — Major Diameter of Product	
		External Threads	148
	5.16	Indicating Gages to Check Minor Diameter of External Thread	148
	5.17	Thread Micrometers	159
	5.18	Thread-Measuring Wires	159
	5.19	Optical Comparator and Toolmaker's Microscope	159
	5.20	Profile Tracing Instrument	160
	5.21	Electromechanical Lead Tester	160
	5.22	Helical Path Attachment Used With GO Type Thread Indicating Gage	160
	5.23	Helical Path Analyzer	160
	5.24	Surface Roughness Equipment	161
	5.25	Roundness Equipment	161
	5.26	Miscellaneous Gages and Gaging Equipment	161

Figures

1	Maximum-Material GO Functional Limit	12
2	Partial End Threads and Chip Grooves	14
3	NOT GO (HI) Functional Diameter Limit	16
4	Thread Snap Gages — Maximum-Material GO Functional Limit	19
5	Thread Snap Gages — NOT GO (HI) Functional Diameter Limit	21
6	Thread Snap Gages — Minimum-Material Pitch Diameter Limit — Cone and Vee	22
7	Thread Snap Gages — Minimum-Material Thread Groove Diameter Limit	23
8	Thread Form of Solid Thread-Setting Ring Gages	26
9	Minor Diameter Limit — Cylindrical Plug Gages	27
10	Indicating Plain Diameter Gages — MaxMin. Minor Diameter Limit	
	and Size	29
11	Snap and Indicating Diameter Gages — MaxMin. Major Diameter	
	Limit and Size	30

۰.

12	Indicating Thread Gages — Maximum-Material GO Functional Limit and Size	31
13	Indicating Thread Gages — Minimum-Material Pitch Diameter Limit and	
	Size — Cone and Vee	34
14	Indicating Thread Gages — Minimum-Material Pitch Diameter Limit	
	and Size — Ball and Radius	35
15	Indicating Thread Gages — Diameter Runout — Minor to Pitch	36
16	Indicating Thread Gages — Differential Gaging	38
17	Inside Micrometer, Caliper Type	39
18	Maximum-Material GO Functional Limit	127
19	NOT GO (LO) Functional Diameter Limit	129
20	Thread Snap Gages — Maximum-Material GO Functional Limit	130
21	Thread Snap Gages — NOT GO (LO) Functional Diameter Limit	132
22	Thread Snap Gages — Minimum-Material Pitch Diameter Limit — Cone and Vee	134
23	Thread Snap Gages — Minimum-Material Thread Groove Diameter Limit	135
24	Major Diameter Limit	136
25	Minor Diameter Limit Snap Type	137
26	Indicating Thread Gages — Maximum-Material GO Functional Diameter Limit	
	and Size	138
27	Indicating Thread Gages — Minimum-Material Pitch Diameter Limit	
	and Size — Cone and Vee	140
28	Indicating Thread Gages — Minimum-Material Thread Groove Diameter	
	Limit and Size	141
29	Indicating Thread Gages — Diameter Runout — Major to Pitch	142
30	Indicating Thread Gages — Differential Gaging	144
31	Thread Form of Truncated Thread-Setting Plug Gages	146
32	Thread Form of Full-Form Thread-Setting Plug Gages	147
33	Indicating Plain Diameter Gage — MaxMin. Major Diameter Limit and Size	149
34	Indicating Diameter Gages — MaxMin. Minor Diameter Limit and Size	150
35	Indicating Gages — Helical Path Attachment Used With GO Type	
	Indicating Gage	160

Tables

Ξ

1	Screw Thread Gages and Measuring Equipment for External Product Thread Characteristics	2
2	Screw Thread Gages and Measuring Equipment for Internal Product	-
	Thread Characteristics	6
3	Recommended Widths for Chip Grooves	13
4	Specifications and Format for Tables 10 and 11 — Limits of Size of	
	Threaded and Plain Gages for Unified External and Internal Threads	15
5	Specifications and Format for Tables 10 and 11 — Limits of Size of Thread-	
	Setting Gages for Unified Thread Working Gages	17
6	X Gage Tolerances for Thread Gages	18
7	W Gage Tolerances for Thread Gages	25
8	Gage Tolerances for Plain Cylindrical Gages	28
9	Constants for Computing Thread Gage Dimensions	32
10	Gages for Standard Thread Series, Classes 1A, 2A, 3A, 1B, 2B, and 3B Unified	
	Screw Threads — Limits of Size	41
11	Setting Gages for Standard Thread Series, Classes 1A, 2A, 3A, 1B, 2B,	
	and 3B Unified Screw Threads — Limits of Size	83
12	Calibration Requirements and Standards for X Tolerance Thread Gages,	
	Indicating Gages, Plain Gages, and Measuring Equipment for External	
	Product Threads	151

13	Calib	ration Requirements and Standards for X Tolerance Thread Gages,	
	Ind	icating Gages, Plain Gages, and Measuring Equipment for Internal	155
	Pro	duct Threads	155
14	Calib	ration Requirements for Thread- and Plain-Setting Gages	159
Ap	pendic	ces	
A	Calib	ration and Inspection of Limit Gages, Snap Gages, Indicating Gages,	
		General	163
	A]	Thread Dive Gogo Colibration	163
	A2	Thread Ping Gage Inspection	164
	A3 A4	Plain Plug Gage Calibration	167
	Δ5	Plain Ping Gage Calibration	168
	Δ6	Plain Snan Gages	168
	A7	Polls With Zero Lead Thread Form Used on Snan and Indicating	100
	A/	Games	168
	48	Inspecting Perinheral Contacting Segments Used on External	100
	Au	Product Thread	168
	40	Inspection of Thread Contact Segments Used on	100
	~	Internal Product Thread	170
	A 10	Check for Magnification Discrepancies Due to Indicating	170
	AIU	System Linkage	170
	A 11	Calibration of Dial and Electronic Indicators	170
	A12	Assessment of Surface Quality	171
	A12		171
В	Metr	ology of 60 deg. Screw Threads	173
	B 1	Wire Method of Measurement of Pitch Diameter (Thread Groove	172
	DO	Size of Wiree	1/3
	B2 D2	Size of Wires	173
	B3	Methods of Measuring wires Considering the Effect of Deformation	1/3
	B4	Steeles I See Geotier for Wing wires	1/0
	82	Standard Specification for wires and Standard Practice in Measurement	176
	D/	of wires of ou deg. I hreads	1/0
	B0	General Formula for Measurement of Pitch Diameter	177
	B/	Simplified Formula for Pitch Diameter	170
	Bð	Setting Measuring Instruments with variable Measuring Force	1/0
	B9 B10	Infead Balls	170
	BIU	Internal Pitch Diameter Measurement	1/9
Fia	ure		
BĨ	A Th	ree-Wire Method of Measuring Pitch (Thread Groove)	
	Dia	ameter of Thread Plug Gages	174
- .			
lat	bles	Marification	164
AI	Minii	num Magnification	165
A2	60 de	g. Included Inread Angle	105
A3	Leng	the of AGD Taperlock and Trilock Thread Plug Gage Blanks	166
	Sei	ected From ANSI B4/.	100
A4	Leng	the of AGD Inread King Gage Blanks and Iotal Inread Lengths	
	0I	Standard Truncated-Setting ring Gage Blanks Selected from AINSI	160
DI	В4	1.1	175
BI	Inrea	ad-measuring wires for ou deg. Screw Inreads	1/3
B 2	wieas	d Wire Calibration, and Culindrical Diameter for Wire Calibration	176
Ъž	and	u wile Calibration, and Cymhulical Diameter for wile Calibration	170
ВJ	wreas	outing route over datis for internal ritch Diameter	170
	IVI C		1/7

AN AMERICAN NATIONAL STANDARD

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

1 INTRODUCTION

This Standard provides essential specifications and dimensions for the gages used on Unified inch screw threads (UN and UNR thread form), and covers the specifications and dimensions for the thread gages and measuring equipment listed in Tables 1 and 2. The basic purpose and use of each gage are also described.

1.1 References

=

i

The latest editions of the following documents form a part of this Standard, to the extent specified herein.

American National Standards

ANSI B1.1	Unified Inch Screw Threads (UN
	and UNR Thread Form
ANSI B1.3	Screw Thread Gaging Systems for
	Dimensional Acceptability
ANSI B1.7	Nomenclature, Definitions, and
	Letter Symbols for Screw Threads
ANSI B46.1	Surface Texture: Surface Rough-
	ness, Waviness, and Lay
ANSI B47.1	Gage Blanks
ANSI B89.1.6	Measurement of Qualified Plain
	Internal Diameters for Use as
	Master Rings and Ring Gages
ANSI B89.1.9	Precision Inch Gage Blocks for
	Length Measurement (Through 20
	in.)
ANSI B89.3.1	Measurement of Out-of-Round-
	ness

1.2 Classification

In this Standard, the term NOT GO, previously known as HI and LO, is used to identify functional diameter thread gages.

1.3 Federal Government Use

When this Standard is approved by the Department of Defense and federal agencies and is incorporated into FED-STD-H28/6, Screw Thread Standard for Federal Services, Section 6, the use of this Standard by the federal government will be subject to all requirements and limitations of FED-STD-H28/6.

2 BASIC PRINCIPLES

2.1 Accuracy in Gaging

Thread plug gages are controlled by direct measuring methods. Thread ring gages, thread snap limit gages, and indicating thread gages are controlled by reference to the appropriate setting gages or direct measuring methods or both.

2.2 Limitations of Gaging

2.2.1 Product threads accepted by a gage of one type may be verified by other types. It is possible, however, that parts which are near a limit may be accepted by one type and rejected by another. Also, it is possible for two individual limit gages of the same type to be at opposite extremes of the gage tolerances permitted, and borderline product threads accepted by one gage could be rejected by another. For these reasons, a product screw thread is considered acceptable when it passes a test by any of the permissible gages in ANSI B1.3 for the gaging system specified, provided the gages being used are within the tolerances specified in this Standard.

2.2.2 Gaging large product external and internal threads equal to or greater than 6.25 in. nominal size with plain and threaded plug and ring gages presents problems for technical and economic reasons. In these instances, verification may be based on use of modified snap or indicating gages or measurement of thread elements. Various types of gages or measuring devices in addition to those defined in this document are available and acceptable when properly correlated to this Standard. Producer and user should agree on the method and equipment used.

TABLE 1 SCREW THREAD GAGES AND MEASURING EQUIPMENT FOR EXTERNAL PRODUCT THREAD CHARACTERISTICS

				Uni	ified Incl	n Thread	5		
		Max	imum Ierial	NO	N	tinimun	n Materi	al	
				Func Dian	tional neter	Pitch	Diam.	Thd. G Dia	iroove ım.
	Thread Gages	Func. Limit	Func. Size	Func. Limit	Func. Size	Limit	Size	Limit	Size
	and Measuring Equipment	A ₁	A ₂	B ₁	B ₂	C1	C ₂	D 1	D ₂
1	Split or Solid Threaded Rings (ANSI B47.1) 1.1 GO	•							
	1.2 NOT GO (LO)			•					
2	Thread Snap Gages 2.1 GO segments	•							
	2.2 NOT GO (LO) segments			•					
	2.3 GO rolls	•							
	2.4 NOT GO (LO) rolls			•					
	2.5 Minimum material — pitch diameter type — cone and vee					•			
	2.6 Minimum material — thread groove diameter type — cone only							¢	
3	Plain Diameter Gages 3.1 Plain cylindrical ring for major diameter								
	3.2 Major diameter snap type								
	3.3 Minor diameter snap type								
	3.4 Maximum and minimum major diameter snap type								
	3.5 Maximum and minimum minor diameter snap type								
4	Indicating Thread Gages Having either two contacts at 180 deg. or three contacts at 120 deg. 4.1 GO segments	•	•	•	•				
	4.3 GO rolls	•	•	•	•				
	4.5 Minimum material — pitch diameter type — cone and vee					•	•		
	4.6 Minimum material — thread groove diameter type — cone only							•	•
	4.7 Major diameter and pitch diameter runout gage								

Ī

=

.

				EXTER	NAL P	RODUCT	THREAD	CHAR/	CTER	ISTICS (C	ONT'	D)		
	Round Pitch C /al deg.	Iness of Cylinder Mult 120	iłobe deg.	- Ta of I Cyli	per Pitch nder	Lead	ri	Ma Dian	ajor neter	Mine	or		Diam.	
Limit	Size	Limit	Size	Limit	Size	Helix Variation	Flank Angle Variation	Limit	Size	Limit	Size	Root Rad.	Major to Pitch	Surface Texture
E1	E2	F ₁	F ₂	G 1	G ₂	н	<u> </u>	J 1	J ₂	K ₁	K2	L	м	N
		-								(Note 1)				
•										(Note 1)				
•				•										
•		<u> </u>								(Note 1)				
•				•										
•				•										
								•						
								•						
										•				
								•						
										•				
•	•	•	•							(Note 1)				
•	•	•	•							(Note 1)				
•	•	•	•	•	•									
•	•	•	•	•	•	•								
													•	

SCREW THREAD CACES AND MEASURING FOURMENT FOR TADIE 1

Thd. Groove

Diam.

Size

 D_2

Limit

 D_1

.

 C_2

TABLE 1 SCREW THREAD GAGES AND MEASURING EQUIPMENT FOR **EXTERNAL PRODUCT THREAD CHARACTERISTICS (CONT'D) Unified Inch Threads** Maximum **Minimum Material** NOT GO Material Functional GO Diameter Pitch Diam. Func. Func. Func. Func. **Thread Gages** Limit Limit Size Limit Size Size and B₁ **Measuring Equipment** C_1 A₁ \mathbf{A}_2 B₂ 4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in lead (including uniformity of helix); and a minimum material indicating gage to yield a diameter equivalent for variation in flank angle

5	Indicating Plain Diameter Gages 5.1 Major diameter type

Surface Measuring Equipment

16 Roundness Equipment

	5.2 Minor diameter type					
6	Pitch Micrometer With Standard Contacts [Approximately NOT GO (LO) Profile] Cone and Vee		•	•		
7	Pitch Micrometer With Modified Contacts [Approximately Pitch Diameter Contact] Cone and Vee				•	•
8	Thread-Measuring Wires With Suitable Measuring Means					
9	Optical Comparator and Toolmaker's Microscope With Suitable Fixturing				•	•
10	Profile Tracing Equipment With Suitable Fixturing					
11	Lead Measuring Machine With Suitable Fixturing					
12	Helical Path Attachment Used With GO Type Indicating Gage					
13	Helical Path Analyzer					
14	Plain Micrometer and Calipers Modified As Required					
		t	 +			

NOTE:

15

(1) Maximum minor diameter limit is acceptable when product passes GO gage on UN and UNR threads.

				EXIER	NAL P	RODUCI				SIICS (C	UNI	D)		
Round Pitch C Oval 180 deg.		dness of Cylinder Multilobe 120 deg.		ess of linder Taper Multilobe of Pitch 120 deg. Cylinder		Lead	flagt.	Major Diameter		Minor Diameter			Diam.	
Limit	Size	Limit	Size	Limit	Size	Helix Variation	Angle Variation	Limit	Size	Limit	Size	Root Rad.	Major to Pitch	Surface Texture
E ₁	E ₂	F1	F ₂	G ₁	G ₂	н	I	J1	J ₂	К1	K ₂	L	м	N
•	•	•	•	•	•	•	•							
								•	•					
										•	•	•		
•	•			•	•									
						1		-						

SCREW THREAD GAGES AND MEASURING EQUIPMENT FOR AL DOODLICT THREAD CHARACTERISTICS

•		TABL	.E 1 EXT
d	ness of ylinder		
	Multi 120 c		
	Limit	Size	Lim
	F1	F ₂	G
	•	•	•
			•
			•
			•
	•	•	
	•	•	

•

•

•

• • • •

•

•

٠

•

•

•

•

.

•

.

•

•

٠

٠

•

•

•

٠

TABLE 2SCREW THREAD GAGES AND MEASURING EQUIPMENT FOR
INTERNAL PRODUCT THREAD CHARACTERISTICS

		Unified Inch Threads										
		Maxi	mum	NO	001	N	linimun	n Material				
		G	0	- Func Dian	tional neter	Pitch Diam.		Thd. G Dia	roove m.			
	Thread Gages	Func. Limit	Func. Size	Func. Limit	Func. Size	Limit	Size	Limit	Size			
	and Measuring Equipment	A ₁	A ₂	B ₁	B ₂	C 1	C2	D ₁	D ₂			
1	Threaded Plugs (ANSI B47.1) 1.1 GO	•										
	1.2 NOT GO (HI)			•								
2	Thread Snap Gages 2.1 GO segments	•										
	2.2 NOT GO (HI) segments			•								
	2.3 GO rolls	•										
_	2.4 NOT GO (HI) rolls			•								
	2.5 Minimum material — pitch diameter type — cone and vee					•						
	 2.6 Minimum material — thread groove diameter type — cone only 						-	•				
3	Plain Diameter Gages 3.1 Plain cylindrical plugs for minor diameter											
	3.2 Major diameter snap type											
	3.3 Minor diameter snap type											
	3.4 Maximum and minimum major diameter snap type											
	3.5 Maximum and minimum minor diameter snap type											
4	Indicating Thread Gages Having either two contacts at 180 deg or three contacts at 120 deg. 4.1 GO segments	•	•									
	4.3 GO rolls	•	•									

= I

> _ 2

I

				INTER	NAL P	RODUCT	THREAD	CHARA	CTERI	STICS (CONT	D)		[
Roundness of Pitch Cylinder Oval Multilobe 180 deg. 120 deg.		ess of inder Taper		Lead		Major Diameter		Minor Diameter						
		of Pitch Cylinder									Diam.			
Limit	Size	Limit	Size	Limit	Size	Inci. Helix Variation	Flank Angle Variation	Limit	Size	Limit	Size	Root Rad.	Runout Minor to Pitch	Surface Texture
E 1	E2	F1	F ₂	G1	G ₂	н	I	Jı	J ₂	Κı	K ₂	L	м	N
								(Note 1)						
								(Note 1)						
								(Note 1)						·
٠				•										
•				•							 			
•				•										
										•				
								•						
										•				
								•						
										•				
•	•	•	•						(Note 1)					
•	•	•	•						(Note 1)					

TABLES SCREW THREAD CACES AND MEASURING FOURMENT FOR

TABLE 2SCREW THREAD GAGES AND MEASURING EQUIPMENT FORINTERNAL PRODUCT THREAD CHARACTERISTICS (CONT'D)

			Uni	fied Incl	n Thread	s	_	
	Maxi	mum	NOI		м	linimun	n Materia	al
	G		- Funct Dian	Functional Diameter		Diam.	Thd. G Dia	roove m.
Thread Gages	Func. Limit	Func. Size	Func. Limit	Func. Size	Limit	Size	Limit	Size
and Measuring Equipment	A1	A ₂	B ₁	B ₂	C 1	C ₂	D ₁	D ₂
4.5 Minimum material — pitch diameter type — cone and vee					•.	•		
4.6 Minimum material — thread groove diameter type — cone only							•	•
4.7 Minor diameter and pitch diameter runout gage								
4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in lead (including uniformity of helix), and a minimum material indicating gage to yield a diameter equivalent for variation in flank angle								
Indicating Plain Diameter Gages 5.1 Major diameter type								
5.2 Minor diameter type								
Pitch Micrometer With Standard Contacts [Approximately NOT GO (HI) Profile] Cone and Vee			•	•				
Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee					•	•		
Thread-Measuring Balls With Suitable Measuring Means							•	•
Optical Comparator and Toolmaker's Microscope With Suitable Fixturing and Cast Replica					•	•		
Profile Tracing Equipment With Suitable Fixturing								
Surface Measuring Equipment								
Roundness Equipment								
	Thread Gages and Measuring Equipment 4.5 Minimum material — pitch diameter type — cone and vee 4.6 Minimum material — thread groove diameter type — cone only 4.7 Minor diameter and pitch diameter runout gage 4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in lead (including uniformity of helix), and a minimum material indicating gage to yield a diameter equivalent for variation in flank angle Indicating Plain Diameter Gages 5.1 Major diameter type 5.2 Minor diameter type Pitch Micrometer With Standard Contacts [Approximately NOT GO (HI) Profile] Cone and Vee Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee Pitch Micrometer With Suitable Measuring Means Optical Comparator and Toolmaker's Microscope With Suitable Fixturing and Cast Replica Profile Tracing Equipment With Suitable Fixturing Suitable Fixturing and Cast Replica Profile Tracing Equipment With Suitable Fixturing	Thread Gages and Maximat Maximat 4.5 Minimum material — pitch diameter type — cone and vee A1 4.5 Minimum material — pitch diameter type — cone and vee C 4.6 Minimum material — thread groove diameter type — cone only C 4.7 Minor diameter and pitch diameter runout gage C 4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in lead (including uniformity of helix), and a minimum material indicating gage to yield a diameter equivalent for variation in flank angle C Indicating Plain Diameter Gages S.1 Maximater type 5.2 Minor diameter type C Pitch Micrometer With Standard Contacts [Approximately NOT GO (HI) Profile] Cone and Vee C Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee C Pitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and Vee C Pitch Micrometer With Suitable Measuring Means C Optical Comparator and Toolmaker's Microscope With Suitable Fixturing and Cast Replica C Profile Tracing Equipment With Suitable Fixturing C Surface Measuring Equipment C C <td>Image: Image: Im</td> <td>UniMaximum MaterialNot MaterialThread Gages and Measuring EquipmentFunc. CoFunc. Dian4.5 Minimum material – pitch diameter type – cone and veeImitA1A2B14.5 Minimum material – thread groove diameter type – cone onlyImitImitImitImit4.6 Minimum material – thread groove diameter type – cone onlyImitImitImitImit4.7 Minor diameter and pitch diameter runout gageImitImitImitImit4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in flank angleImitImitImitIndicating Plain Diameter Gages 5.1 Major diameter typeImitImitImitImit5.2 Minor diameter typeImitImitImitImitImitPitch Micrometer With Standard Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitPitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitPitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitProfile Tracing EquipmentImitImitImitImitImitSurface Measuring EquipmentImitImitImitImitImitSurface Measuring EquipmentImitImitImitImitImitSurface Measuring EquipmentImit</td> <td>Unified InclMaterialMaximum MaterialNOT GO Functional DiameterThread Gages and Measuring EquipmentFunc. LimitFunc. SizeFunc. LimitFunc. SizeFunc. LimitFunc. Size4.5Minimum material — pitch diameter type — cone and veeIndianaIndianaIndianaIndiana4.5Minimum material — thread groove diameter type — cone onlyIndianaIndianaIndiana4.6Minimum material — thread groove diameter type — cone onlyIndianaIndianaIndiana4.7Minor diameter and pitch diameter runout gageIndianaIndianaIndiana4.8Differential segment or roll (GO profile for one pitch in length) used in combination with a CO indicating gage to yield a diameter equivalent for variation in lead (including uniformity of helix), and a minimum material indicating gage to yield a diameter equivalent for variation in flank angleIndiIndiIndi1.1Major diameter typeIndiIndiIndiIndiIndi5.2Minor diameter typeIndiIndiIndiIndi9Pitch Micrometer With Standard Contacts [Approximately NOT GO (HI) Profile] Cone and VeeIndiIndiIndi9Pitch Micrometer With Modified Contacts (Approximately NOT GO (HI) Profile] Cone and VeeIndiIndiIndi9Pitch Micrometer With Modified Contacts (Approximately NOT GO (HI) Profile] Cone and VeeIndiIndiIndi9Pitch Micrometer With Modified Contacts (Appro</br></br></td> <td>Unified tark threadMaximum MaterialMaximum<b< td=""><td>Unified Term term term term term term term term t</td><td>Unified transmission in the set of the se</td></b<></td>	Image: Im	UniMaximum MaterialNot MaterialThread Gages and Measuring EquipmentFunc. CoFunc. Dian4.5 Minimum material – pitch diameter type – cone and veeImitA1A2B14.5 Minimum material – thread groove diameter type – cone onlyImitImitImitImit4.6 Minimum material – thread groove diameter type – cone onlyImitImitImitImit4.7 Minor diameter and pitch diameter runout gageImitImitImitImit4.8 Differential segment or roll (GO profile for one pitch in length) used in combination with a GO indicating gage to yield a diameter equivalent for variation in flank angleImitImitImitIndicating Plain Diameter Gages 5.1 Major diameter typeImitImitImitImit5.2 Minor diameter typeImitImitImitImitImitPitch Micrometer With Standard Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitPitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitPitch Micrometer With Modified Contacts (Approximately Pitch Diameter Contact) Cone and VeeImitImitImitProfile Tracing EquipmentImitImitImitImitImitSurface Measuring EquipmentImitImitImitImitImitSurface Measuring EquipmentImitImitImitImitImitSurface Measuring EquipmentImit	Unified InclMaterialMaximum MaterialNOT GO Functional DiameterThread Gages and Measuring EquipmentFunc. LimitFunc. 	Unified tark threadMaximum MaterialMaximum <b< td=""><td>Unified Term term term term term term term term t</td><td>Unified transmission in the set of the se</td></b<>	Unified Term term term term term term term term t	Unified transmission in the set of the se

NOTE:

(1) Minimum major diameter limit is acceptable when product passes GO gage.

TABLE 2SCREW THREAD GAGES AND MEASURING EQUIPMENT FOR
INTERNAL PRODUCT THREAD CHARACTERISTICS (CONT'D)

Roundness of Pitch Cylinder				Lead	Flank									
0 180	Oval Multilobe 180 deg. 120 deg.		of Pitch Cylinder			Major Diameter		Minor Diameter			Diam. Runout			
Limit	Size	Limit	Size	Limit	Size	Helix Variation	Angle Variation	Limit	Size	Limit	Size	Root Rad.	Minor to Pitch	Surface Texture
E1	E ₂	F ₁	F ₂	G1	G2	н	1	J ₁	J ₂	κ1	K ₂	L	м	N
•	•	•	•	•	•					1				
•	•	•	•	•	•									
													•	
•	•	•	•	•	•	•	•							
								•	•					
										•	•			
•	•			•	•									
•	•			•	•					,				
•	•			•	•									
						•	•	•	•			•		
							•					•		•
														•
•	•	•	•											

2.2.3 Indicating gages for internal threads smaller than 3/16 in. are not available.

2.3 Determining Size of Gages

2.3.1 Measuring Pitch Diameter. The threewire method of determining pitch diameter size of thread plug gages is standard for gages in this Standard. Refer to Appendix B.

2.3.2 Size limit adjustments of thread ring and external thread snap gages are determined by their fit on their respective calibrated setting plugs. Indicating gages and thread gages for product external threads are controlled by reference to appropriate calibrated setting plugs.

2.3.3 Size limit adjustments of internal thread snap gages are determined by their fit on their respective calibrated setting rings. Indicating gages and other adjustable thread gages for product internal threads are controlled by reference to appropriate calibrated setting rings or by direct measuring methods.

2.4 Standard Temperature

2.4.1 A temperature of 68° F (20° C) is the standard temperature used internationally for linear measurements. Nominal dimensions of gages and product as specified and actual dimensions as measured shall be within specified limits at this temperature. For screw thread gaging, the acceptable tolerance on the standard temperature is $\pm 2^{\circ}$ F ($\pm 1^{\circ}$ C).

2.4.2 As product threads are frequently checked at temperatures which are not controlled, it is desirable that the coefficient of the thermal expansion of gages be the same as that of the product on which they are used. Inasmuch as the majority of threaded product consists of iron or steel, and screw thread gages are ordinarily made of hardened steel, this condition is usually fulfilled without special attention, provided thread gages and product have stabilized to the same temperature. When the materials of the product thread and the gage are dissimilar, the differing thermal coefficients can cause serious complications and must be taken into account, unless both product and gage at the time of gaging are at a temperature of:

(a) 68°F ±4°F (20°C ±2°C) for 1 in. and smaller
(b) 68°F ±2°F (20°C ±1°C) for sizes above 1 in.
to 3 in.

(c) $68^{\circ}F \pm 1^{\circ}F$ (20°C $\pm 0.5^{\circ}C$) for sizes above 3 in. to 6 in.

3 GENERAL PRACTICE

3.1 General Design

The design of gages is specified only to the extent that it affects the results obtained in the gaging of product threads. Moreover, to serve their intended purposes satisfactorily, thread gages should be produced by the latest and best manufacturing techniques. The type of steel or wear-resistant material selected, together with the heat-treating and stabilization processes, should provide wear life and dimensional stability. Thread gaging elements should be precisely manufactured to assure adequate refinement of surface texture, prevention or elimination of amorphous or smear metal, and uniformity of thread form over the entire length of the gaging member.

3.2 Types of Gages

For GO thread gages, check either the maximummaterial limit or size to assure interchangeable assembly. For NOT GO (HI and LO) thread gages, inspect the NOT GO functional diameter limit.

For GO and NOT GO plain cylindrical plug or ring gages and snap or indicating gages, check the limit or size of the minor diameter of product internal threads and the major diameter of product external threads, respectively.

3.3 Interpretation of Tolerances

Tolerances on lead, half-angle, and pitch diameter are variations which may be taken independently for each of these elements and may be taken to the extent allowed by respective tabulated dimensional limits. The tabulated tolerance on any one element must not be exceeded, even though variations in the other two elements are smaller than the respective tabulated tolerances.

3.4 Direction of Tolerances on Gages

At the maximum-material limit (GO), the dimensions of all gages used for final conformance gaging are to be within the limits of size of the product thread. At the functional diameter limit, using NOT GO (HI and LO) thread gages, the standard practice is to have the gage tolerance within the limits of size of the product thread. Specifications for gage limits are listed in Tables 4 and 5.

3.5 Standard Thread Gage Tolerances

Standard tolerances for thread-working gages, thread-setting plugs, and setting rings are as follows:

(a) W tolerance, shown in Table 7, represent the highest commercial grade of accuracy and workmanship and are specified for thread-setting gages;

(b) X tolerances, shown in Table 6, are larger than W tolerances and are used for product inspection gages.

Unless otherwise specified, all thread gages and gaging contacts which directly check the product thread shall be X tolerance.

3.6 Tolerance on Lead

Cumulative effect of progressive or erratic helix variation and thick or thin end thread variations is specified as an allowable variation between any two threads not farther apart than the length of the standard taperlock or trilock gage, shown in ANSI B47.1. In the case of setting plugs, the specified tolerance shall be applicable to the thread length in the mating ring gage or nine pitches, whichever is smaller. For setting rings, the tolerance applies to a thread length of three pitches. The tolerance on lead establishes the width of a zone, measured parallel to the axis of the thread, within which the actual helical path must lie for the specified length of the thread. Measurements will be taken from a fixed reference point located at the start of the first full thread to a sufficient number of positions along the entire helix to detect all types of lead variations. The amounts that these positions vary from their basic (theoretical) positions will be recorded with due respect to sign. The greatest variation in each direction [plus and minus (\pm)] will be selected and the sum of their values, disregarding sign, shall not exceed the specified tolerance. If the variations are all in one direction, the maximum value governs conformance. In the case of truncated setting plugs, the lead variations present on the fullform portion and the truncated portion of an individual gage shall not differ from each other by more than 0.0001 in. over any portion equivalent to the length of the thread ring gage, or nine pitches, whichever is less. (When linear lead and drunkenness are measured as individual elements and the sum of these does not exceed the tolerance specified, the gage is well within tolerance.)

3.7 Tolerances on Half-Angle

Tolerances are specified for the half-angles rather than the included angle to assure that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent of the variation from the true thread form caused by such irregularities as convex, concave or wavy flanks, rounded crests, or slight projections on the thread form shall not exceed the tolerance permitted on half-angle.

3.8 Check of Effect of Lead and Flank Angle Variations on Product Thread

When this check is specified, there are two general methods available for the inspection procedures involved.

(a) Direct Measurement of Lead and Half-Angle of Flanks. The lead and flank angles of the product thread may be measured by means of available measuring equipment, such as thread indicating gages, projection comparators, measuring microscopes, graduated cone points, lead measuring machines, helix variation measuring machines, thread flank charting equipment, etc. Diameter equivalents of such variations from nominal may be calculated: each 0.0001 in. variation in lead amounts to 0.00017 in. $(1.732 \times .00001)$ increase in functional pitch diameter on external threads or a decrease in functional pitch diameter on internal threads for 60 deg. screw threads. The tangent of half-angle variation times 1.5p equals the approximate maximum change in functional pitch diameter, based on a height of thread engagement of 0.625H and equal half-angle variations.

(b) Differential Gaging Utilizing Indicating Thread Gages. See Sections 4 and 5 for explanation and illustration of differential gaging for internal and external threads.

3.9 Calibration Requirements and Standards

Calibration requirements and standards for X tolerance thread gages, snap gages, and indicating gages; Z tolerance plain gages and measuring instruments are given in Table 12 for external product threads, in Table 13 for internal product threads, and in Table 14 for setting gages. See Appendix A for methods of calibrating and inspecting gages.

4 TYPES OF GAGES FOR PRODUCT INTERNAL THREAD

4.1 GO Working Thread Plug Gages (Table 2 — Gage 1.1)

4.1.1 Purpose and Use. The GO thread plug gage inspects the maximum-material GO functional limit, A_1 , of product internal thread. The GO thread

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

gage represents the maximum-material GO functional limit of the product internal thread, and its purpose is to assure interchangeable assembly of maximummaterial mating parts. GO thread plug gages must enter and pass through the full-threaded length of the product freely. The GO thread plug gage is a cumulative check of all thread elements except the minor diameter.

4.1.2 Basic Design. The maximum-material limit on GO thread plus gages is made to the prescribed maximum-material limit of the product internal thread, and the gaging length is equal to the length of the gaging plug.

4.1.3 Gage Blanks. For practical and economical reasons, the design and lengths of the gaging plug members have been standardized for various size ranges and pitches (see ANSI B47.1 or Table A3).

4.1.4 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 1.

4.1.5 Thread Crests. The major diameter of the GO thread plug gage shall be the same as the minimum major diameter of the product internal thread with a plus gage tolerance. The thread crests shall be flat in an axial section and parallel to the axis.

4.1.6 Thread Roots. The minor diameter of the GO thread plug gage shall be cleared beyond a p/8 width of flat either by an extension of the sides of the thread toward a sharp vee or by an undercut no greater than p/8 maximum width and approximately central.

4.1.7 Runout of Pitch and Major Cylinders. On thread plug gages an eccentric condition produces an oversize effective major diameter having a width of flat less than p/8, which may encroach on the minimum permissible limit for the root profile of the product internal thread. The permissible maximum effective major diameter, as determined by adding measurement of runout (full-indicator movement) with respect to the pitch cylinder to the measured major diameter, shall not exceed the maximum major diameter specified.

4.1.8 Pitch Cylinder. The pitch cylinder shall be round and straight within the gage pitch diameter limits specified.

4.1.9 Lead and Half-Angle Variations. Lead and half-angle variations shall be within the limits specified. See Table 6.

4.1.10 Incomplete Thread. The feather edge at both ends of the threaded section of the gaging member shall be removed. On pitches coarser than 28 threads/in., not more than one complete turn of the end threads shall be removed to obtain a full-thread form blunt start. See Fig. 2. On pitches 28 threads/in. and finer, a 60 deg. chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.1.11 Chip Grooves. Each GO thread plug gage, except in sizes No. 8 (0.164 in.) and smaller, shall be provided with a chip groove at the entering end. On reversible gages, a chip groove shall be provided at each end. Chip grooves that are in accordance with commercial practice are acceptable, such as a groove cut at an angle with the axis or a longitudinal groove cut parallel with the axis and extending the complete length of the gaging member. The groove shall be located circumferentially at the start of the full thread, and in all cases the depth shall extend below the root of the first full thread. The distance from the major diameter of the thread plug to the crest of the convolution rise in front of the chip groove, due to the radius of the convoluting tool, shall be a minimum of H/2 as shown in Fig. 2. The beginning of the first thread shall be full form. The recommended widths for chip grooves are as shown in Table 3.

4.1.12 Identification. The GO thread plugs should be identified by the nominal size, threads/in., thread series, GO, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC GO PD.2175

4.2 NOT GO (HI) Thread Plug Gages (Table 2 — Gage 1.2)

4.2.1 Purpose and Use. The NOT GO (HI) thread plug gage inspects the NOT GO (HI) functional diameter limit, B_1 , of product internal thread. The NOT GO (HI) thread plug gage represents the

TABLE 3 RECOMMENDED WIDTHS FOR CHIP GROOVES

	Chip (Widt	Groove h, in.
Nominal Diameter, in.	Max.	Min
No. 8 (0.164) and smaller	No gro reau	chip ove uired
Above No. 8 (0.164) to and including No. 12 (0.216) Above No. 12 (0.216) to and including	0.036	0.026
3/8 (0.375) Above 3/8 (0.375) to and including	0.052	0.042
1/2 (0.500) Above 1/2 (0.500) to and including 1 (1.000)	0.067 0.083	0.057 0.067
Above 1 (1.000) to and including 1-3/4 (1.750) Above 1-3/4 (1.750)	0.130 0.193	0.067 0.067

NOT GO (HI) functional diameter limit of the product internal thread.

Thread plug gages when applied to the product internal thread may engage only the end threads (which may not be representative of the complete thread). Entering threads on product are incomplete and permit gage to start. Starting threads on NOT GO (HI) plugs are subject to greater wear than the remaining threads. Such wear in combination with the incomplete product threads permits further entry of the gage. NOT GO (HI) functional diameter is acceptable when the NOT GO (HI) thread plug gage applied to the product internal thread does not enter more than three complete turns. The gage should not be forced. Special requirements such as exceptionally thin or ductile material, small number of threads, etc., may necessitate modification of this practice.

4.2.2 Basic Design. To better check the maximum functional diameter limit, the flank contact is reduced by truncating the major diameter, and the length of the gaging element, where practical, is less than that of the GO gage.

4.2.3 Gage Blanks. For practical and economic reasons, the designs and lengths of the gaging elements have been standardized for various size ranges and pitches (see ANSI B47.1 or Table A3).

4.2.4 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 3.

4.2.5 Thread Crests. The maximum major diameter of the NOT GO (HI) thread plug gage shall ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 2 PARTIAL END THREADS AND CHIP GROOVES

be equal to the maximum pitch diameter of the product internal thread plus 0.5H with the gage tolerance minus. This corresponds to a width of flat at the crest of the gage equal to 0.25p. See Table 4.

4.2.6 Thread Roots. The minor diameter of the NOT GO (HI) thread plug gage shall be cleared beyond a p/8 width of flat by an extension toward a sharp vee of the sides of the thread from the position corresponding to this approximate width; or by an undercut to any dimension no wider than the width resulting from p/8 maximum width, either side of and approximately central with the center line of the thread groove.

4.2.7 Runout of Pitch and Major Cylinders. The permissible maximum effective diameter, as determined by adding measurements of runout (fullindicator movement) with respect to the pitch cylinder to the measured major diameter, shall not exceed the maximum major diameter specified.

4.2.8 Pitch Cylinder. The pitch cylinder shall be round and straight within the gage pitch diameter limits specified.

4.2.9 Lead and Half-Angle Variations. Lead and half-angle variations shall be within the limits specified. See Table 6.

4.2.10 Incomplete Thread. The feather edge at both ends of the threaded section of the gaging member shall be removed. On pitches coarser than 28 threads/in., not more than one complete turn of the end threads shall be removed to obtain a full-thread blunt start. See Fig. 2. On pitches 28 threads/in. and finer, a 60 deg. chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.2.11 Identification. The NOT GO (HI) thread plug gage should be marked with the nominal size, threads/in., thread series, class, NOT GO, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B NOT GO PD.2224

4.3 Thread Snap Gages — GO Segments or Rolls (Table 2 — Gages 2.1 and 2.3)

4.3.1 Purpose and Use. The thread snap gage with two GO threaded segments or two GO zero lead

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

TABLE 4 SPECIFICATIONS AND FORMAT FOR TABLES 10 AND 11 — LIMITS OF SIZE OF THREADED AND PLAIN GAGES FOR UNIFIED EXTERNAL AND INTERNAL THREADS

Nominal Size	and Threads/in.			1	(To be specified)
Series Designa	tion and Tolerance Cla	ass		2	Of external thread to be checked
			Pitch diameter	3	Max. pitch diameter of external thread; gage tolerance minus
		GO	Minor diameter	4	Max. pitch diameter of external thread; minus H/2; gage tolerance minus
Gages for	Thread gages		Pitch diameter	5	Min. pitch diameter of external thread; gage tolerance plus
External Threads		NOT GO (LO)	Minor diameter	6	Min. pitch diameter of external thread minus 0.25H; gage tolerance plus
	Plain gages	GO		7	Max. major diameter of external thread; gage tolerance minus
	for major diameter	NOT (50	8	Min. major diameter of external thread; gage tolerance plus
			Major diameter	9	Min. major diameter of internal thread; gage tolerance plus
		GO	Pitch diameter	10	Min. pitch diameter of internal thread; gage tolerance plus
Gages for	Thread gages		Major diameter	11	Max. pitch diameter of internal thread plus H/2; gage tolerance minus
Internal Threads		NOT GO (HI)	Pitch diameter	12	Max. pitch diameter of internal thread; gage tolerance minus
	Plain gages	GO		13	Min. minor diameter of internal thread; gage tolerance plus
	for minor diameter	NOT	00	14	Max. minor diameter of internal thread; gage tolerance minus
Series Designa	tion and Tolerance Cla	ass		15	Of internal thread to be checked

rolls inspects the maximum-material GO functional limit, A_1 , of product internal thread. The setting of the GO segments or rolls represents the maximum-material GO functional limit of the product internal thread, and its purpose is to assure interchangeable assembly of maximum-material mating parts. The segments or rolls theoretically engage over the full-threaded length of the product. The segments or rolls have a cumulative check of all thread elements except the minor diameter.

l

Internal thread snap gages by design must have an outside diameter of gaging elements below minor diameter of internal thread in order to enter. The gage checks all thread elements by sensing the resistance of contact after being set to a master. The GO thread snap gage can also indicate out-ofroundness of pitch cylinder for 180 deg. ovality by using the gage at different internal diametral locations on the product thread.

4.3.2 Basic Design. The GO segments and rolls assembled into gage frames are the design of the individual gage manufacturer. The lengths of the two threaded segments and the two thread rolls spaced 180 deg. apart are equivalent to the standard gage blank lengths for practical and economic reasons. See Table A3 and Fig. 4. Internal product threads less than 3/16 in. in diameter are not practical to check with snap gages. GO thread segments shall engage 25% or more of the product circumference. Product shall be

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

checked around circumference of thread at sufficient axial positions to check the full-thread length. Thread rolls shall be applied at several locations (three if possible) axially over the full-thread length of product. The circumference shall be checked at each position.

4.3.3 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 4.

4.3.4 Thread Crests. The outside diameter of the threaded portion of the GO segments or rolls has the equivalent of a P/8 flat on the thread with a plus gage tolerance. The thread crest shall be flat in an axial section and parallel to the axis of the gaging member.

4.3.5 Thread Roots. The minor diameter of the threaded portion of the GO segments or rolls shall be cleared beyond a P/8 flat either by an extension of the flanks of the thread toward a sharp vee or by an undercut no greater than P/8 maximum width and approximately central.

4.3.6 Runout. The pitch and major cylinders of the threaded portion of the GO segments or rolls shall not exceed the runout as determined by measurements of runout (full-indicator movement) on each gaging member, with respect to the pitch cylinder. Runout shall not exceed one-half the X gage major diameter tolerance.

4.3.7 Pitch Cylinder. The pitch cylinder of the threaded portion of the GO segments or rolls shall be straight and round within the X gage pitch diameter limits specified.

4.3.8 Lead, Pitch, and Half-Angle Variations. Lead, pitch, and half-angle variations shall be within the limits specified. See Table 6.

4.3.9 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, GO, PD, and pitch diameter.

EXAMPLE: 1/4-20 (or .250-20) UNC GO PD.2175

16

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

TABLE 5 SPECIFICATIONS AND FORMAT FOR TABLES 10 AND 11 — LIMITS OF SIZE OF THREAD-SETTING GAGES FOR UNIFIED THREAD WORKING GAGES

Nominal Size	e and Threads/in.			1	(To be specified)
Series Designation and Tolerance Class					Of external thread to be checked by gage set with plug
		Major	Truncated*	3	Max. major diam. of external thread (equals min. major diam. of full portion of GO setting plug) minus (0.060 $\sqrt[3]{\rho^2}$ + 0.017 p); gage tolerance minus
	Plug for GO	diameter	Full-form	4	Max. major diameter of external thread; gage tolerance plus
		Pitch diameter		5	Max. pitch diameter of external thread; gage tolerance minus
Full-Form and			Truncated* (Note 1)	6	Min. pitch diameter of external thread plus H/2; gage tolerance minus
Setting Plugs	Plug for NOT GO (LO)	Major diameter	Full-form	7	Max. major diameter of external thread provided major diameter crest width shall not be less than 0.001 in. (0.0009 in. truncation). Apply W tolerance plus for max. size except that for 0.001 in. crest width apply tolerance minus. For the 0.001 in. crest width, major diameter is equal to maximum major diameter of external thread plus 0.216506 <i>p</i> minus the sum of external thread pitch diameter tolerance and 0.0017 in.
		Pitch diameter		8	Min. pitch diameter of external thread; gage tolerance plus
		Ring for	Pitch diameter (Note 2)	9	Min. pitch diameter of internal thread; W gage tolerance plus
Solid Thread	-Setting Rings for	GO	Minor diameter	10	Min. minor diameter of internal thread; W gage tolerance minus
Snap and Inc	dicating Gages	Ring for	Pitch diameter (Note 2)	11	Max. pitch diameter of internal thread; W gage tolerance minus
		I NOT GO (HI)	Minor diameter	12	Max. minor diameter of internal thread; W gage tolerance minus
Series Design	nation and Tolerance	Class		13	Of internal thread to be checked by gage set with ring

* Indicated rows apply to truncated setting plugs only.

NOTES:

(1) Truncated portion is required when optional sharp root profile in Figs. 18, 19, 20, 21, and 26 is used.

(2) Tolerances greater than W tolerance for pitch diameter are acceptable when internal indicating or snap gage can accomodate a greater tolerance and when agreed upon by supplier and user.

GA	GES	AND GA	GING FOR
UNIFIED	INCH	SCREW	THREADS

			Tolerance o or Minor D (Note	on Major Piameters e 4)	Tolerance on Pitch Diameter (Notes 2, 4)					
Threads/in.	Tolerance on Lead, in. (Notes 1, 3)	ToleranceTolerance onToleranceHalf-Angleon Lead, in.of Thread,(Notes 1, 3)deg. ± min.		Above 4 in. Diam.	To and Including 1½ in. Diam.	Above 1½ in. to 4 in. Diam.	Above 4 in. to 8 in. Diam.	Above 8 in. to 12 in. Diam. (Note 2)		
1	2	3	4	5	6	7	8	9		
80	0.0002	0 30	0.0003		0.0002					
72	.0002	0 30	.0003		.0002					
64	.0002	0 30	.0004		.0002					
56	.0002	0 30	.0004		.0002	0.0003				
48	.0002	0 30	.0004		.0002	.0003				
44	.0002	0 20	.0004		.0002	.0003				
40	.0002	0 20	.0004		.0002	.0003				
36	.0002	0 20	.0004		.0002	.0003				
32	.0003	0 15	.0005	0.0007	.0003	.0004	0.0005	0.0006		
28	.0003	0 15	.0005	.0007	.0003	.0004	.0005	.0006		
27	.0003	0 15	.0005	.0007	.0003	.0004	.0005	.0006		
24	.0003	0 15	.0005	.0007	.0003	.0004	.0005	.0006		
20	.0003	0 15	.0005	.0007	.0003	.0004	.0005	.0006		
18	.0003	0 10	.0005	.0007	.0003	.0004	.0005	.0006		
16	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
14	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
13	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
12	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
111/2	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
11	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
10	.0003	0 10	.0006	.0009	.0003	.0004	.0006	.0008		
9	.0003	0 10	.0007	.0011	.0003	.0004	.0006	.0008		
8	.0004	0 5	.0007	.0011	.0004	.0005	.0006	.0008		
7	.0004	0 5	.0007	.0011	.0004	.0005	.0006	.0008		
6	.0004	0 5	.0008	.0013	.0004	.0005	.0006	.0008		
5	.0004	0 5	.0008	.0013		.0005	.0006	.0008		
41/2	.0004	0 5	.0008	.0013		.0005	.0006	.0008		
4	.0004	0 5	.0009	.0015		.0005	.0006	.0008		

TABLE 6 X GAGE TOLERANCES FOR THREAD GAGES

NOTES:

(1) Allowable variation in lead between any two threads shall not be farther apart than the length of the standard gage that is shown in ANSI B47.1.

(2) Above 12 in., the tolerance is directly proportional to the tolerance in col. 9, in the ratio of the diameter to 12 in.

(3) See 5.13.9.

(4) Tolerances apply to designated size of thread. Apply tolerances in accordance with Table 4.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

4.4 Thread Snap Gages — NOT GO (HI) Segments or Rolls (Table 2 — Gages 2.2 and 2.4)

4.4.1 Purpose and Use. The thread snap gage with two NOT GO (HI) segments or two NOT GO (HI) rolls inspects the NOT GO (HI) functional diameter limit, B_1 , of product internal thread. The setting of the NOT GO (HI) segments or rolls represents the maximum functional diameter limit of the product internal thread. In applying the thread snap limit gage, the NOT GO (HI) functional diameter is acceptable when gaging elements do not pass the product thread.

Internal thread snap gages by design must have an outside diameter of gaging elements below minor diameter of internal thread in order to enter. The gage checks the NOT GO functional diameter limit by sensing the resistance to contact after being set to master.

The NOT GO (HI) thread snap gage will also indicate out-of-roundness of the pitch cylinder for 180 deg. ovality by using the gage at different diametral locations on internal thread. The NOT GO (HI) thread snap gage will also check for taper of pitch cylinder by using the gage at different locations axially on internal thread.

4.4.2 Basic Design. In order that the NOT GO (HI) thread snap gage may effectively check the NOT GO (HI) functional diameter limit, the flank contact is reduced by truncating the thread on segments and rolls. As the design of the segments and rolls are different with each gage manufacturer, the number of threads engaged in product thread will vary. Usually, the number of pitches engaged is approximately two. Internal product threads less than 3/16 in. in diameter are not practical to check with snap gages.

4.4.3 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 5.

4.4.4 Thread Crests. The maximum major diameter of the NOT GO (HI) segments and rolls shall be equal to the pitch diameter of segment or roll plus 0.5H with the gage tolerance minus. This corresponds to a width of flat at the crest equal to 0.25p. See Table 4.

4.4.5 Thread Roots. The minor diameter of the NOT GO (HI) segments and rolls shall be cleared beyond a P/8 width of flat by an extension toward a sharp vee of the sides of the thread or by an undercut to any dimension no wider than P/4. Undercut is to

be approximately central with the center line of the thread groove. See Fig. 5.

4.4.6 Runout. The pitch and major cylinders of the threaded portion of the NOT GO (HI) segments or rolls shall not exceed the runout as determined by measurements of runout (full-indicator reading) on each gaging member, with respect to the pitch cylinder. Runout shall not exceed one-half the X gage major diameter tolerance.

4.4.7 Pitch Cylinder. The pitch cylinder of the threaded portion of the NOT GO (HI) segments or rolls shall be round within the X gage pitch diameter limits specified.

4.4.8 Lead, Pitch, and Half-Angle Variations. Lead, pitch, and half-angle variations shall be within the limits specified. See Table 6.

4.4.9 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, NOT GO, PD, and pitch diameter. EXAMPLE:

1/4-20 (or .250-20) UNC-2B NOT GO PD.2224

4.5 Thread Snap Gages — Minimum Material: Pitch Diameter Cone and Vee (Table 2 — Gage 2.5)

4.5.1 Purpose and Use. The thread snap gage with two segments or two rolls, both made to cone and vee design as shown in Fig. 6, inspects the minimum-material limit pitch diameter, C_1 , of the product internal thread.

Internal thread snap gages by design must have an outside diameter of gaging elements below minor diameter of internal thread in order to enter. The gage checks the minimum-material pitch diameter limit by sensing the resistance of contact after being set to master.

The cone and vee snap gage can check roundness of pitch cylinder for 180 deg. ovality by using the gage at different diametral locations on internal thread.

The cone and vee snap gage can check taper of pitch cylinder by using the gage at different locations axially on internal thread.

4.5.2 Basic Design. The segments are usually made having a surface contact slightly above the pitch line near the center of the flank. The rolls are made with a point or line contact approximately at the pitch line, depending upon the angle variations of the

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 6 THREAD SNAP GAGES — MINIMUM-MATERIAL PITCH DIAMETER LIMIT — CONE AND VEE
ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 7 THREAD SNAP GAGES — MINIMUM-MATERIAL THREAD GROOVE DIAMETER LIMIT

thread flanks. See Fig. 6 for details. Internal product threads less than 3/16 in. in diameter are not practical to check with snap gages.

4.5.3 Thread Form. The specifications for thread form, thread crests, and thread roots are summarized in Fig. 6.

4.5.4 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B PD.2224

4.6 Thread Snap Gages — Minimum Material: Thread Groove Diameter Type (Table 2 — Gage 2.6)

4.6.1 Purpose and Use. The thread snap gage with two rolls with "best size" thread wire radius contacts inspects the minimum-material limit pitch diameter, D_1 , of the product internal thread.

Internal thread snap gages by design must have an outside diameter of gaging elements below minor diameter of internal thread in order to enter. The gage checks the minimum-material pitch diameter limit by sensing the resistance of contact after being set to master.

The roll thread snap gage will check roundness of the pitch cylinder for 180 deg. ovality by using the gage at different diametral locations.

Also, the roll thread snap gage will check taper of the pitch cylinder by using the gage at different locations axially.

4.6.2 Basic Design. The "best size" thread wire radius contacts on the rolls check the threads at the pitch cylinder. Ribs on roll contacts are made one pitch apart. Internal product threads less than 3/16 in. in diameter are not practical to check with snap gages.

4.6.3 Thread Form. The specifications for the form on gage rolls are summarized in Fig. 7.

4.6.4 Identification. The assembled gage with rolls should be marked with the nominal size, threads/in., thread series, class, PD, and pitch diameter.

EXAMPLE: 1/4-20 (or .250-20) UNC-2B PD.2224

4.7 Thread-Setting Solid Ring Gages

4.7.1 Purpose and Use. Thread-setting ring gages are used for setting internal thread indicating and snap gages. GO thread-setting ring gages are made to the maximum-material limit of the internal thread specification and NOT GO (HI) thread-setting rings to the minimum-material limit. Setting rings under 3/16 in. diameter are too small to be practical.

4.7.2 Gage Blanks. GO and NOT GO (HI) solid thread ring gage blanks have been standardized for various size ranges and pitches. (See ANSI B47.1.) Length of gage thread is a minimum of four pitches.

4.7.3 The GO and NOT GO (HI) thread-setting gage threads are stated in detail below and are summarized in Tables 5, 7, and 11, and Fig. 8.

4.7.4 Thread Crests

4.7.4.1 The minor diameter of the GO setting ring gage is equal to the minimum minor diameter of the internal thread.

4.7.4.2 The minor diameter of the NOT GO (HI) setting ring gage is equal to the maximum minor diameter of the internal thread.

4.7.5 Thread Roots

4.7.5.1 The major diameter of the GO setting ring gage shall be cleared beyond P/8 width of flat by either an extension of the flanks toward a sharp vee or by a clearance cut of substantially P/8 width and approximately central.

4.7.5.2 The major diameter of the NOT GO (HI) setting ring gage shall be cleared by a clearance cut of substantially 0.25p width and approximately central. The form is optional; it may clear a P/8 flat if not undercut.

4.7.6 Runout of Pitch and Minor Diameter Cylinders for Sizes 3/16 in. and Larger. The pitch and minor cylinders of setting ring gages shall not exceed the runout as stated hereinafter. The permissible minimum effective minor diameter as determined by runout (full-indicator movement) with respect to the pitch cylinder subtracted from measured minor diameter shall not be less than the specified minimum minor diameter minus the sum of the W gage tolerances for pitch and minor diameter for GO setting gages, and minus twice the sum for NOT GO (HI) setting gages. **4.7.7 Pitch Cylinder.** Conformance of these elements is normally determined by the manufacturing of the setting ring gages to the applicable setting plug gage.

4.7.8 Pitch Diameter Limitation of Taper. The taper shall be within gage pitch diameter limits.

4.7.9 Lead and Half-Angle. Lead and half-angle variations shall be within limits specified in Table 7.

4.7.10 Incomplete Threads. The feather edge at both ends of the thread ring gage shall be removed. On gages larger than 1/2 in. nominal size, or having pitches coarser than 20 threads/in., not more than one complete turn of the end threads shall be removed to obtain a full-thread blunt start. On gages 1/2 in. nominal size and smaller, or having pitches of 20 threads/in. or finer, a 60 deg. chamfer from the axis of the gage is acceptable in lieu of the blunt start.

4.7.11 Identification. The GO and NOT GO (HI) thread-setting ring gages should be identified by nominal size, threads/in., thread series, GO or NOT GO, class on NOT GO; SETTING, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC GO SETTING PD.2175 1/4-20 (or .250-20) UNC-2B NOT GO SETTING PD.2224

4.8 Plain Plug, Snap, and Indicating Gages to Check Minor Diameter of Internal Thread

4.8.1 Purpose and Use. The GO and NOT GO (HI) thread gages of all designs are cleared at the root but do not check the minor diameter of the product internal thread. Accordingly, the following paragraphs (4.8.1 through 4.8.6) describe types of plain diameter gage or precision instruments used to check the maximum- and minimum-material limits of the minor diameter.

4.8.2 GO and NOT GO Plain Cylindrical Plug Gages (Table 2 — Gage 3.1). Plug gages shall be made to Z tolerances and as shown in Fig. 9. GO shall be made to plus tolerance; NOT GO shall be made to minus tolerance. GO cylindrical plug gage must enter and pass through the length of the product without force. NOT GO cylindrical plug must not enter. See Table 8 for gage tolerances.

				···>							
	Tolerance	on Lead ^{1,3}	Tolerance on	Tolerance of	n Major or Min	or Diameters ⁴		Tolerance	e on Pitch Diar	meter ^{2, 4}	
Threads/in.	To and Including ½ in. Diam.	Above ½ in. Diam.	Half-Angle of Thread, deg. ± min.	To and Including ½ in. Diam.	Above ½ in. to 4 in. Diam.	Above 4 in. Diam.	To and Including ½ in. Diam.	Above ½ in. to 1½ in. Diam.	Above 1½ in. to 4 in. Diam.	Above 4 in. to 8 in. Diam.	Above 8 in. to 12 in. Diam. ²
-	2	3	4	5	9	7	8	6	10	11	12
80	0.0001	0.00015	0 20	0.0003	0.0003		0 001	0.00015			
72	.000	.00015	0 20	.0003	.0003	•	0001	00015	•		•
64	.0001	.00015	0 20	.0003	.0004		.000	.00015			
56	.000	.00015	0 20	.0003	.0004	•	.000	.00015	0.0002	•	•
48	.000	.00015	0 18	.0003	.0004	•	.000	.00015	.0002	· ·	
44	0001	00015	0 15	0003	0004	•	1000	00016	0000		
4	000	.00015	0 15	0003	.0004		1000.	21000.	7000		
36	000.	.00015	0 12	.0003	.0004		1000	21000	2000.	•	•
32	.000	.00015	0 12	.0003	.0005	0.0007	000	21000.	2000.	0.00055	
28	.00015	.00015	0 8	.0005	.0005	.000	.000	.00015	.0002	.00025	.0003
22	.00015	.00015	0 8	.0005	.0005	.000	0001	00015	000	00036	2000
24	.00015	.00015	0 8	.0005	.0005	2000.	.000	.00015	0002	00025	5000
20	.00015	.00015	0 8	.0005	.0005	2000.	.000	.00015	.0002	.00025	0003
18	.00015	.00015	0 8	.0005	.0005	2000.	.000	.00015	.0002	.00025	.0003
16	.00015	.00015	0	9000.	.0006	6000.	.000	.0002	.00025	.0003	.0004
14	.0002	.0002	0 6	9000.	.0006	6000	.0015	.0002	.000.25	0003	0004
13	.0002	.0002	0 6	.0006	9000.	6000.	.0015	.0002	.00025	0003	.0004
12	.0002	.0002	0 6	.0006	9000	6000.	.0015	.0002	.00025	.0003	0004
111/2	.0002	.0002	0	.0006 2000	9000	6000	.0015	.0002	.00025	.0003	.0004
=	7000.	7000.	0	0000.	0000.	6000.	.0015	.0002	.00025	.0003	.0004
10		.00025	0 6		.0006	6000		.0002	.00025	.0003	0004
6		.00025	9 0		2000.	.0011		.0002	.00025	.0003	0004
8		.00025	0 5		.000	.0011		.0002	.00025	.0003	.0004
7		.0003	0		.0007	.0011		.0002	.00025	.0003	.0004
9	:	.0003	0 5		.0008	.0013	-	.0002	.00025	.0003	0004
S		.0003	0 4		0008	.0013			.00025	.0003	0004
41/2		.0003	0 4		.0008	.0013			.00025	.0003	.0004
4		.0003	0 4		6000'	.0015			.00025	.0003	.0004

W GAGE TOLERANCES FOR THREAD GAGES **TABLE 7**

> NOTES: Ē

Allowable variation in lead between any two threads shall not be farther apart than the length of the standard gage that is shown

in ANSI B47.1.

(2) (2) (2)

Above 12 in., the tolerance is directly proportional to the tolerance in col. 12, in the ratio of the diameter to 12 in. See 5.13.9.

Tolerances apply to designated size of thread. Apply tolerance in accordance with Table 5.

Limit and NOT GO (HI) Thread Gage

FIG. 8 THREAD FORM OF SOLID THREAD-SETTING RING GAGES

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 9 MINOR DIAMETER LIMIT - CYLINDRICAL PLUG GAGES

The design of the GO and NOT GO cylindrical plain plug members has been standardized for various sizes, ranges, and pitches. See ANSI B47.1.

4.8.3 Identification. The cylindrical gage shall be marked with the nominal size, threads/in., thread series, GO or NOT GO, class on NOT GO, and minor diameter limits.

EXAMPLE:

1/4-20 (or .250-20) UNC GO.1960 1/4-20 (or .250-20) UNC-2B NOT GO.2070

4.8.4 Precision Instruments (Table 2 – Gage 13). Precision instruments such as dial calipers, inside micrometer calipers, pocket slide calipers, and vernier inside calipers can also be used to measure the minor diameter of product internal thread.

4.8.5 Snap (Table 2 — Gages 3.3 and 3.5) and Indicating Gages (Table 2 — Gages 3.3, 3.5, and 5.2): Plain Diameter Gages for Checking Minor Diameter of Internal Thread. Gages are made to the individual gage manufacturer's standard with gaging contacts (segments or rolls) at 120 deg. or 180 deg. Size range for segment type is approximately 3/16 in. to 2-1/2 in. in diameter. Above 2-1/2 in., gage contacts are plain diameter rolls. Another design is the use of prism fingers for 3/16 in. size and larger with contacts at 180 deg. See Fig. 10 for details. In each design, the gages are set with cylindrical ring gages, outside micrometers, vernier calipers, or a gap made with gage blocks and jaw accessories. Gage contacts are collapsed into tapped hole and released to contact product minor diameter. Dial indicator gages give the size of the product between minimum and maximum tolerance. Snap gages check the minor diameter limits by sensing the resistance at contact after being set to master.

4.8.6 Identification. After contacts have been assembled in the snap or indicating gage, the assembled gage should be tagged with the nominal size, threads/in., thread series, class, and minor diameter limits.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B.1960 - .2070

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

 GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

 GAGES

 Ste 2)
 ZZ

 7

 010
 0.00020

 010
 0.00020

 010
 0.00020

 010
 0.00020

 010
 0.00020

 0.000040

 0.00064

 0.00064

 Odd of the triang indicating

Siz	ze Range, in.		Tole	rances, in. (No	öte 1)	_
Above	To and Including	xx	x	Y	Z (Note 2)	ZZ
1	2	3	4	5	6	7
0.020	0.825	0.00002	0.00004	0.00007	0.00010	0.00020
.825	1.510	0.00003	0.00006	0.00009	0.00012	0.00024
1.510	2.510	0.00004	0.00008	0.00012	0.00016	0.00032
2.510	4.510	0.00005	0.00010	0.00015	0.00020	0.00040
4.510	6.510	0.000065	0.00013	0.00019	0.00025	0.00050
6.510	9.010	0.00008	0.00016	0.00024	0.00032	0.00064
9.010	12.010	0.00010	0.00020	0.00030	0.00040	0.00080

TABLE 8 GAGE TOLERANCES FOR PLAIN CYLINDRICAL GAGES

NOTES:

(1) Tolerances apply to actual diameter of plug or ring. Apply tolerances in accordance with Table 4. Symbols XX, X, Y, Z, and ZZ are standard gage tolerance classes.

(2) Used as tolerance on plain cylindrical plug and ring gages to check minor diameter for internal threads and outside diameter for external threads. Also used for masters for setting indicating thread gages where design permits.

4.9 Snap (Table 2 — Gage 3.4) and Indicating (Table 2 — Gage 5.1) Gages to Check Major Diameter of Internal Thread

4.9.1 Purpose and Use. The minimum major diameter limit of the product internal thread is considered acceptable when the product thread accepts GO gages. If further gaging is required, 4.9.2 describes the types of gages used to check the maximum- and minimum-material limits of the major diameter.

4.9.2 Snap and Indicating Major Diameter Gages. Gages are made to manufacturer's standard with 55 deg. maximum gage contacts at 180 deg. in the form of relieved thread contacts. See Fig. 11, sketch (a) for segment type. Size ranges from approximately 3/16 in. to 2-1/2 in. Above 2-1/2 in., gage contacts are thread relieved rolls at 120 deg. See Fig. 11, sketch (b). Another design is the use of conical contact on one finger and two "best size" thread balls on other contact as shown in Fig. 11, sketch (c). In each design, the indicating gages are set with cylindrical ring gages, outside micrometers, vernier calipers, or gap made with gage blocks and jaw accessories. Gage contacts are collapsed into tapped hole and released to contact product major diameter. Dial indicator gages give the size of the product between minimum and maximum tolerances. Snap gage checks the major diameter limit by sensing the resistance at contact after being set to master.

4.9.3 Identification. After contacts have been assembled in the snap or indicating gage, the assembled gage should be tagged with the nominal size,

threads/in., thread series major diameter limits, and MAJOR DIAMETER INTERNAL.

EXAMPLE: 1/4-20 (or .250-20) UNC GO.250 NOT GO (Customer's Specifications) MAJOR DIAMETER INTERNAL

4.10 Functional Indicating Thread Gages for Internal Thread (Table 2 — Gages 4.1 and 4.3)

4.10.1 Purpose and Use. The GO indicating thread gage (4.1 and 4.3) inspects the maximum-material GO functional limit and size, A_1 and A_2 , and the NOT GO (HI) functional diameter limit and size, B_1 and B_2 , of product internal thread. By the use of segments, rolls, or fingers, the gage is also used to check roundness of pitch cylinder. Some types of indicating gages are set by using thread-setting ring gages. See 4.7. Other types may be set with plain ring gages or with gage blocks and jaws. Readings indicate the position of product thread within the tolerance range.

4.10.2 Basic Design. Indicating gages have three contacts at 120 deg. or two contacts at 180 deg. Gages are made with segments, rolls, or fingers with the length of the functional GO gaging elements equal to the length of the standard GO thread plug gage. Internal product threads less than 3/16 in. in diameter are not practical to check with indicating gages.

4.10.3 Thread Form. The specifications for thread form on GO functional segments, rolls, or fingers are summarized in Table 4 and Fig. 12.

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

FIG. 10 INDICATING PLAIN DIAMETER GAGES — MAX.-MIN. MINOR DIAMETER LIMIT AND SIZE

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 11 SNAP AND INDICATING DIAMETER GAGES — MAX.-MIN. MAJOR DIAMETER LIMIT AND SIZE

ţ
•

4.10.4 Thread Crests. The major diameter of the GO segments, rolls, or fingers are equivalent to a P/8 flat with a plus gage tolerance. The thread crests shall be flat in an axial plane and parallel to the axis of the segment, roll, or finger.

4.10.5 Pitch Cylinder. The pitch cylinder of the segments, rolls, or fingers shall be round and straight within the gage pitch diameter limits specified in Table 6.

4.10.6 Lead and Half-Angle Variations. Lead and half-angle variations on thread of segments, rolls, and fingers shall be within the limits specified. See Table 6.

4.10.7 Thread Roots

4.10.7.1 The minor diameter of the GO threaded segments, rolls, or fingers shall be cleared beyond a P/8 width of flat either by extension of the sides of the thread toward a sharp vee or by an undercut no greater than P/8 maximum width and approximately central.

4.10.8 Runout. The pitch and major cylinders of the threaded portion of the GO segments or rolls shall not exceed the runout as determined by measurements of runout (full-indicator movement) on each gaging member, with respect to pitch cylinder. Runout shall not exceed one-half X gage major diameter tolerance.

4.10.9 Identification. The gaging elements, segments, rolls, or fingers shall be identified by the nominal size and threads/in. When indicating gage is assembled with proper contacts, the gage should be tagged with the nominal size, threads/in., thread series, class, PD, and pitch diameter limits.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B PD.2175-.2224

4.11 Minimum-Material Indicating Thread Gages for Internal Thread (Table 2 — Gages 4.5 and 4.6)

4.11.1 Purpose and Use. The indicating thread gage inspects the minimum-material limit and size $(C_1$ and C_2 , D_1 and D_2) of product internal threads. By the use of interchangeable segments, rolls, or balls, the gage is also used to check roundness and taper of pitch cylinder. Some types of indicating gages are set by using a thread-setting ring gage. See 4.7. Readings indicate the position of product thread within the

tolerance range. Other types may be set with gage blocks and jaws, plain ring gages, or measuring machine.

4.11.2 Basic Design. Indicating gages have three contacts at 120 deg. or two contacts at 180 deg. Gages are made with segments, rolls, or ball design with cone and vee configuration (pitch diameter type) or ball only (thread groove diameter type). It is impractical to attempt checking internal product threads smaller than 3/16 in. with indicating gages.

4.11.3 Thread Form. The specifications for cone and vee segments are shown in Fig. 13; the ball design and thread groove diameter type are shown in Fig. 14.

4.11.4 The major diameter of the cone and vee segments or rolls are made to manufacturer's standard. See Figs. 13 and 14.

4.11.5 Identification. The gaging elements, segments, rolls, or ball fingers should be marked with nominal size and threads/in. When gage is assembled with proper gaging contacts, the indicating gage should be tagged with the nominal size, threads/in., thread series, class, PD, and pitch diameter.

1/4-20 (or .250-20) UNC-2B PD.2224

4.12 Indicating Runout Thread Gage for Internal Thread (Table 2 — Gage 4.7)

4.12.1 Purpose and Use. This indicating gage inspects the runout of the minor diameter to the pitch diameter of the product internal thread. Readings indicate the position of product minor diameter to the pitch diameter, M_1 , within the tolerance specified.

4.12.2 Basic Design. Indicating gages have three contacts, one plain and two threaded, at 120 deg.; or two contacts, one plain and one threaded, at 180 deg. See Fig. 15, sketch (a). The range of segments is 3/16 in. and larger; the range of rolls is 1-3/4 in. and larger.

The ball-type indicating gage has two balls on one contact engaging two threads, and one contact has a plain prism shaped finger 180 deg. apart from the ball contact. See Fig. 15, sketch (b): the range is 5/8 in. and larger.

The indicating gage is set by a GO setting ring gage (see Fig. 8) with plain gaging contact on minor diameter of thread ring gage and the thread contact on pitch diameter of ring thread gage.

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 13 INDICATING THREAD GAGES --- MINIMUM-MATERIAL PITCH DIAMETER LIMIT AND SIZE --- CONE AND VEE

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled when printe

.

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

FIG. 15 INDICATING THREAD GAGES - DIAMETER RUNOUT - MINOR TO PITCH

4.12.3 Thread Form. The specifications for thread form on vee segments or rolls are summarized in Fig. 15. Plain contacts have line bearing on minor diameter of product. Balls are "best size" thread ball contacting thread at pitch line.

4.12.4 Thread Crests. The thread crests shall be flat in an axial plane and parallel to axis of segment or roll.

4.12.5 Lead and Half-Angle Variations. Lead and half-angle variations on threaded segments or rolls shall be within the limits specified. See Table 6.

4.12.6 Identification. The gaging elements, segments, rolls, or ball finger should be marked with the nominal size and threads/in. When gage is assembled with proper gaging contacts, the indicating gage should be tagged with the nominal size, threads/in., thread series, class, and RUNOUT.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B RUNOUT

4.13 Differential Gaging (Table 2 – Gage 4.8)

4.13.1 The concept of differential gaging for product internal screw threads makes use of fundamental geometric theorems that relate directly to size, position, and form.

For differential gaging, two methods are used for measuring screw thread size:

(a) GO functional size

(b) pitch diameter (or thread groove diameter)

Only when a screw thread has perfect position and form [i.e., zero variation in lead (including helical path), flank angle, taper, and roundness] are these two measurements equal. Differential gaging is a variables method of in-process inspection, final conformance inspection, or both, that provides the actual numerical values for both GO functional and pitch diameter sizes. These are the two extreme sizes of any product screw thread. One of the sizes, pitch diameter, is the size of the thread pitch diameter with essentially zero variation in all other thread elements, while the other size, GO functional size, is the size of the thread with the effects of all variations in all other thread elements added to the pitch diameter. The numerical difference between these two sizes is called a cumulative thread element variation differential and represents the diametral effect of the total amount of thread element variations.

The inspection process that further refines the total amount of thread element variation so that the amount of variation for each individual element becomes known is called *single thread element variation differential*.

4.13.2 Cumulative Thread Element Variation Differential. Indicating gages have either three contacts at 120 deg. spacing or two contacts at 180 deg. spacing. The indicating gages with segments or rolls as shown in Figs. 12 and 16, sketch (a) give the functional size indicating reading, Z. The indicating gages with cone and vee segments or rolls with one thread pitch engagement at pitch diameter line, Fig. 13, and thread groove diameter type, Fig. 14, sketch (a) or (b), or both, shown in Fig. 16, sketches (c) and (d), give the pitch diameter size indicating reading, X. The difference in the indicator readings, X - Z, between the two types of gages gives the cumulative form differential reading which corresponds to the pitch diameter equivalent, $\Delta D_2 C_2$, for the combination of lead, helix, flank angle, roundness, and taper variations on the product thread. See Fig. 16.

4.13.3 Single Thread Element Variation Differential

4.13.3.1 Lead (Helix) Differential Reading. The indicating gage reading, Y, using the full-form thread segments or rolls with one thread pitch engagement, similar to Figs. 12 and 16, sketch (b), is compared to the reading, Z, using the functional size gage shown in Figs. 12 and 16, sketch (a). The difference between the measured values, Y - Z, is the lead differential reading which corresponds to the pitch diameter equivalent, $\Delta D_2 \lambda$, for the lead and helix variation of the product thread.

4.13.3.2 Flank Angle Differential Reading. The indicating gage reading, X, using segments or rolls with cone and vee design, Figs. 13 and 16, sketch (c), is compared to reading, Y, using the full-form thread segments or rolls, similar to Figs. 12 and 16, sketch (b). Both designs have one thread pitch engagement. The difference between the measured values, X - Y, is the flank angle differential reading which corresponds approximately to the pitch diameter equivalent, $\Delta D_2 \propto$, for the combined flank angle variation on the product thread.

4.13.3.3 Roundness and Taper Differential Readings. By the use of full-form thread segments or rolls with one thread pitch engagement, similar to Figs. 12 and 16, sketch (b); cone and vee segments or rolls, Figs. 13 and 16, sketch (c); or thread groove diameter type, Figs. 14, sketch (a) or (b), and 16, sketch (d), the roundness and taper of pitch cylinder is

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 16 INDICATING THREAD GAGES - DIFFERENTIAL GAGING

checked. Rotate the product between contacts at different axial locations on thread for maximum difference in roundness and taper readings. Two contacts spaced 180 deg. apart give even lobing outof-round measurement. Three contacts spaced 120 deg. apart give odd lobing out-of-round measurements.

4.13.4 Thread Form. The functional segments or rolls, Fig. 16, sketch (a), are described in 4.10. The full-form one thread vee segment or roll, Figs. 12 and 16, sketch (b) upper contact, has a depth of thread equivalent to the functional type, but relieved on the outside thread flanks. The full-form cone segment or roll, Figs. 12 and 16, sketch (b) lower contact, has a P/8 flat on outside diameter. The cone and vee segments or rolls, Fig. 16, sketch (c), are described and shown in Fig. 13. Thread groove diameter type, Fig. 16, sketch (d), is described and shown in Fig. 14.

4.13.5 Identification. The gaging elements, segments, or rolls should be identified by nominal size and threads/in. Indicating gages, assembled with proper contacts, should be tagged with nominal size, threads/in., thread series, class, and the type of differential reading specified above.

EXAMPLE:

1/4-20 (or .250-20) UNC-2B Flank angle differential variation

4.14.1 Purpose and Use. Inside micrometers, caliper type, are direct reading measuring instruments. Cone and vee contact points are modified for a NOT GO (HI) profile or pitch diameter contact only. See Fig. 17.

4.15 Thread-Measuring Balls (Table 2 — Gage 8)

4.15.1 Purpose and Use. One indicating gage using thread-measuring balls as gaging elements inspects the pitch diameter of the internal thread. It is shown in Fig. 14, sketch (a). Special fixturing and ball probes may be required when using a three-axis coordinate measuring machine for internal measurement of pitch diameter. See Appendix B9 and B10 for more information on thread-measuring balls.

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 17 INSIDE MICROMETER, CALIPER TYPE

4.16 Optical Comparator and Toolmaker's Microscope (Table 2 — Gage 9)

4.16.1 Purpose and Use. The optical comparator magnifies and projects the thread profile on a screen. Internal threads are checked using cast replicas. For best profile image, the threaded item is positioned so that the light is aligned with the thread lead angle. Since the thread profile is defined in a plane containing the axis, a correction factor must be added to the measured flank angle observed normal to the lead angle. For most standard single lead threads, the correction factor is less than 0 deg., 5 min.

Optical comparators are generally fitted with lenses providing various magnifications between 10X and 100X. Profile dimensions are checked using appropriate linear and angular scales on the machine and by application of thread profile, radius, and other overlay charts. Flank angles, thread crest and root flats, root radius, other groove and ridge dimensions, and axial plane pitch and lead may be checked. Major, minor, and pitch diameters are identified, then measured using table traverse readouts.

4.16.2 The toolmaker's microscope is similar in function to the optical comparator but does not include screen projection or overlay charts. Magnifi-

cations are generally lower than those of optical comparators. Profile reticules are used in place of charts.

4.17 Profile Tracing Instrument (Table 2 — Gage 10)

4.17.1 Purpose and Use. The instrument inspects thread contour to an accuracy of 0.0002 in. for 1 in. of horizontal and 0.100 in. of vertical travel at 100X magnification.

The tracing on the chart paper may be analyzed for elements of the thread profile, including depth, crest width, lead, angle, and radius at root of thread.

The instrument is generally able to check internal threads of 0.1875 in. and larger at magnifications from 5X to 100X.

4.18 Surface Roughness Equipment (Table 2 — Gage 14)

4.18.1 Purpose and Use. Measurement of surface roughness on screw thread flanks is usually made with an instrument which traverses a radiused stylus across the lay. The stylus displacement due to the surface irregularities is electronically amplified and the meter reading displays the arithmetical average roughness height in microinches (see ANSI B46.1, Surface Texture: Surface Roughness, Waviness, and Lay). Some instruments produce a chart of the traced path which shows the peak-to-valley heights of the surface irregularities. Special fixturing is required to position and guide stylus over thread surface.

4.19 Roundness Equipment (Table 2 — Gage 15)

4.19.1 Purpose and Use. There are two types of precision roundness measuring instruments: precision rotary tables and precision spindles. A special stylus coupled to an electric unit records the out-ofroundness on a circular chart as it traces around the internal cylindrical surface of the workpiece. The instrument provides a series of magnifications for stylus displacement, a filtering system for isolating lobing from surface irregularities, various means for centering the amplified stylus trace on the polar chart, and a selection of rotating speeds. For details on measuring and for other methods for checking roundness, see ANSI B89.3.1, Measurement of Out-of-Roundness.

4.20 Miscellaneous Gages and Gaging Equipment

4.20.1 The description of internal gages in 4.1 through 4.19 is definitely not a complete catalog of the various types available for inspection purposes. The gages not described above may be used provided they adhere to the standard thread practice noted in this Standard (i.e., truncation, form of thread, tolerance, etc.) and have producer and consumer agreement.

5 TYPES OF GAGES FOR PRODUCT EXTERNAL THREAD

5.1 GO Working Thread Ring Gages (Table 1 — Gage 1.1)

5.1.1 Purpose and Use. The GO thread ring gage inspects the maximum-material GO functional limit, A_1 , of product external thread. The GO thread ring gage when properly set to its respective calibrated thread-setting plug represents the maximum-material GO functional limit of the product external thread, and its purpose is to assure interchangeable assembly of maximum-material mating parts.

Adjustable GO thread ring gages must be set to the applicable W (see Table 5, Note 2) tolerance-setting plugs. The product thread must freely enter the GO thread ring gage for the entire length of the threaded portion. The GO thread ring gage is a cumulative check of all thread elements except the major diameter.

5.1.2 Basic Design. The maximum-material limit or GO thread ring gage is made to the prescribed maximum-material limit of the product thread, and the gaging length is equal to the thickness of the thread ring gage.

5.1.3 Gage Blanks. For practical and economic reasons, the designs and thicknesses of thread ring gages have been standardized for various size ranges and pitches (see ANSI B47.1 or Table A4).

5.1.4 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 18.

5.1.5 Thread Crests. The minor diameter of the GO thread ring gage shall be equal to the maximum pitch diameter of the product external thread minus H/2 with a minus gage tolerance. This corresponds to a width of flat of P/4. The thread crests shall be flat in an axial section and parallel to the axis.

40

				S	ges for Ex	ternal Thr	eads			G	ges for Int	ternal Thr	reads		
				X Threa	d Gages		7 Plain	agae for		X Threa	d Gages				
			Ö	0	NOT G	0 (10)	Major [Jameter	ŭ	0	NOT G	(IH) O	Ainor E	Jiameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	00	NOT CO	Class
-	2	3	4	2	9	7	8	6	9	11	12	13	14	15	16
		10	in.	in.	.e	in.	Ë	Ľ	. <u>e</u>	Ŀ.	Ë.	. <u>.</u>	i.	Ŀ	
0-80 or 0.060-80	Ż	ZA	0.0514	0.0460	0.0496	0.0469	0.0595	0.0563	0.0600	0.0519	0.0596	0.0542	0.0465	0.0514	2B
		3 A	.0519	.0465	0506	0479	0090	.0568	0090.	.0519	.0590	.0536	.0465	.0514	38
				2010.	8	704.0.	cero:	coro:	6000-	1700.	/0cn-	4ccu.	.0406	51 cn.	
1-64 or 0.073-64	UNC	2 A	.0623	.0555	.0603	.0569	.0724	.0686	0230	.0629	.0723	.0655	.0561	.0623	2B
		٩۶	1790,	1550.	c000.	6/cU.	0730	/800.	0730	.0631	9120.	.0653	.0562	.0622	
			.0627	.0557	.0616	.0584	.0729	.0693	.0734	.0631	.0712	.0646 .0646	.0562	.0623	38
1-72 or 0.073-72	UNF	2A	.0634	.0574	.0615	.0585	.0724	.0689	.0730	.0640	.0725	.0665	.0580	.0635	28
			.0632	.0571	.0617	.0588	.0723	0690.	.0733	.0642	.0722	.0663	.0581	.0634	2
		3 A	.0640	.0580	.0626	.0596	.0730	.0695	.0730	.0640	0719	.0659	.0580	.0635	3B
			.0638	7720.	.0628	.0599	.0729	.0696	.0733	.0642	.0716	.0657	.0581	.0634	
2-56 or 0.086-56	UNC	2 A	.0738	.0661	.0717	.0678	.0854	.0813	.0860	.0744	.0849	.0772	.0667	.0737	2B
		4.0	.0736	.0657	.0719	.0682	.0853	.0814	.0864	.0746	.0845	.0770	.0668	.0736	
		¥ç	.0/44	.0663 .0663	0730	.0693	.0860	0819	0860	.0746 0746	.0842 0838	.0763	.0667	.0737	38
										2	2000	<u>}</u>	2000.	oc	
2-64 or 0.086-64	UNF	2A	.0753	.0685	.0733	0699. 2070	.0854	.0816	.0860	.0759	.0854	.0786	.0691 2022	.0753	2B
		3 A	0759	1000.	.0744	CO//0.	0980.	.081/	.0860	0/01	0690.	9770	.0692 0691	26/0.	38
			.0757	.0687	.0746	.0714	.0859	.0823	.0864	.0761	.0843	.0777	.0692	.0752	2
3-48 or 0.099-48	UNC	2A	.0848	.0758	.0825	.0780	.0983	9260.	0660.	.0855	.0975	.0885	.0764	.0845	28
			.0846	.0754	.0827	.0784	.0982	.0939	.0994	.0857	1260.	.0883	.0765	.0844	
		3 A	.0855	.0765 .0761	.0838	. 0797 7670.	0660. 0660.	.0945 .0946	.0990. 1994	.0855 .0857	.0967 0963	.0875	.0764 .0765	.0845 .0844	38
3-56 or 0.099-56	UNF	2A	.0867	0620.	.0845	.0806	6960.	.0942	0660.	.0874	6260.	.0902	7670.	.0865	28
			.0865	.0786	.0847	.0810	.0982	.0943	.0994	.0876	.0975	0060.	0798.	.0864	
		3 A	.0874	7670.	.0858	.0819	0660.	.0949	0660'	.0874	.0972	.0895	0797.	.0865	38
			.0872	.0793	.0860	.0823	<u>.0989</u>	.0950	.0994	.0876	.0968	.0893	.0798	.0864	
4-40 or 0.112-40	UNC	2A	0360.	.0842	.0925	.0871	.1112	.1061	.1120	.0958	,1099	1660.	.0849	.0939	28
			.0948	.0838	.0927	.0875	.1111	.1062	.1124	0960.	.1095	6860.	.0850	.0938	
		34	.0956	.0850 .0846	.0939 0941	.0885 0889	.1120	.1069	.1120	.0958 0960	.1090	0980	.0849 0850	0939	38
													2000	00000	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

5 1A, 2A, 3A, 1B, 2B, AND 3B	E (CONT'D)
D SERIES, CLASSE	- LIMITS OF SIZI
STANDARD THREAL	D SCREW THREADS
ILE 10 CAGES FOR	UNIFIE
IAI	

				l G	zes for Fr	ternal Thr	Pads			Cae Cae	tes for Int	ernal Thr			
				X Threa	d Gages		Ē			X Thread	l Gages				
			0	0	NOT G	0 (10)	Z FIAIN V Major D	Jiameter	5	0	NOT G	(IH) O	2 Plain C Minor D	iages tor liameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	00	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOI	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
4-48 or 0.112-48	CNF	2A	in. 0.0978	in. 0.0888	in. 0.0954	in. 0.0909	in. 0.1113	in. 0.1068	in. 0.1120	in. 0.0985	in. 0.1106	in. 0.1016	in. 0.0894	in. 0.0968	2B
		3A	.0976 2995 .0983	4880 . 0895 0891	9560. 7960. 0969.	.0913 .0922 .0926	.1112 .1120 .1119	.1069 .1075 .1076	.1124	7890. 2890. 7860.	.1102 .1098 .1094	.1014 .1008 .1008	.089 5 .0894 .0895	7960. 8960. 7960.	38
5-40 or 0.125-40	UNC	24	.1080	.0972 0068	.1054	.1000	.1242	.1191 1107	.1250	.1088	.1229 1225	1121	9790. 0800	.1062	5B
		ЗА	.1088 .1088	0960. 0960.	.1069 1071.	.1015 .1019	.1250 .1249	.1199	.1250	.1088	.1221	1113 1113	0860.	.1062 .1061	38
5-44 or 0.125-44	UNF	2A	.1095	7990. 1000	.1070	.1021	1243	.1195	.1250	.1102	.1232	.1134	.1004	.1079	5B
		3A	.1093 1102 1100	.1000 1000	.10/2 .1083 .1085	-201. -1034 -1038	.1242 .1250 .1249	.1202	.1254 .1250 .1254	.1102 .1102 .1104	.1228 .1224 .1220	.1132 .1126 .1124	-1005 -1004	8/01. 1079 1078	38
6-32 or 0.138-32	UNC	24	.1169	.1034	.1141 .1144	.1073 .1078	.1372 .1371	.1312 .1313	.1380 .1385	.1177 .1180	.1349 .1344	.1214 .1211	.1040 .1041	.1140 .1139	2B
		ЗА	.1177	.1042	.1156 .1159	.1088 .1093	.1380 .1379	.1320 .1321	.1380	.1177	.1339 .1334	.1204	.1040	.1140	3B
6-40 or 0.138-40	UNF	2A	.1210	.1102 1098	.1184 .1186	.1130 .1134	.1372 .1371	.1321	.1380 .1384	.1218 .1220	.136 0 .1356	.1252 .1250	1110	.1190 1189	2B
		ЗA	.1218	.1110	.1198	.1144 .1148	.1380 .1379	.1329 .1330	.1380 .1384	.1218 .1220	.1351 .1347	.1243 .1241	0111.	.1186 .1185	3 B
8-32 or 0.164-32	UNC	2 A	.1428	.1293	1399	.1331	.1631	.1571	.1640 1646	.1437	.1610	.1475	.1300	0661.	2B
		ЗA	.1437 .1437 .1434	.1302 .1302	.1415 .1418 .1418	.1347	.1640	.1580 .1580 .1581	.1640	.1437	.1595	.1465	.1300	.1389 .1389 .1388	38
8-36 or 0.164-36	UNF.	24	.1452	.1332	.1424	.1364 1368	.1632	.1577	.1640	.1460	.1616	.1496	.1340	.1420	2B
		3A	.1460	.1340	.1439 .1439 .1441	.1379 .1379 .1383	.1640	.1585	.1640 .1640	.1460 .1460 .1462	.1607	.1487	.1340 .1340 .1341	- 14 15 . 14 16 . 14 15	38
10-24 or 0.190-24	UNC	2A	.1619	.1439	.1586	.1496	.1890	.1818	.1900	.1629	.1852	.1672	.1450	.1560	2B
		3A	.1616 .1629	.1434	.1589 1604	.1514	.1869	.1819 .1828	-1905 	.1629	.184/ .1841	.1661	.1450	.1555 .1555	38
-			0701.	!	1001.	202	. 1077	1027		7001.	0001.	0001	Ē.	100.	

38	
AND	
28,	
1 8,	
3A,	ć
2 A ,	INC.
1 ,	Ŭ
SSES	SIZE
CLA	0
SERIES,	LIMITS
READ	ADS -
H	HRE
DARD	EW TI
INV.	SCR
R ST	ED
<u>6</u>	NI
GAGES	3
10	
ABLE	

es for neter GO NOT GO (F) NOT Major Pitch Major Pit 9 10 11 12 1 1 1 1 12 1 1 10 11 12 1 1 10 11 12 1 1 10 11 12 1 1.1831 0.1900 0.1697 0.1866 1 1.1841 .1905 .1700 .1861 1 1 1.841 .1905 .1700 .1866 .1 1 1 .2079 .2160 .1892 .2103 .1 2 .1
NOT Major GO Diam. 9 10 in. 11831 0.1900 11840 11900 11841 11905 11841 11905 11841 11905 2079 2165 2088 2160 2089 2165 2085 2160
9 10 in. 11831 0.1900 11840 1.1900 1.1840 1.1900 1.1841 1.1900 1.1841 1.1900 1.1841 2.160 2.2079 2.216 2.2085 2.216
in. 1.1831 1.1831 1.1840 1.1840 2.079 2.079 2.089 2.089
<u> </u>
. 1890 . 1900 . 1899 . 2150 . 2150 . 2150 . 2150 . 2150 . 2150
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
.1845 .1755 .1848 .1760 .1863 .1773 .1866 .1778 .1886 .1899
7916991845 7616941848 3917091866 3617041866 17631866
11886 11886 11918
.1918 .1763

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

AGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B	UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)
GAGES FOI	UNIF
TABLE 10	

										5					
				Ğ	ges for Ex	ternal Thr	eads			Gag	ses for Int	ernal Thre	eads		
				X Threa	d Gages		7 Plain C	age for		X Thread	Gages				
			ŭ	0	NOT G	0 (10)	Major D	iameter	ö		NOT G	(IH) C	Minor D	ages ror iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOT	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	41	15	16
V// 10 0 313E 10		;	in.	in.	in.	in.	in.	in.	in.		in.	Ë.		i.	
01-071000 10 01-014		<u><</u>	22/20 .2749	2506	0.2694	1/62.0	3112	2983	3130	0.2/64	3079	0.2843	0.2520	0.2650	18
		2A	.2752	.2511	.2712	.2592	.3113	.3026	.3125	.2764	3058	.2817	.2520	.2650	2 B
		٩٤	.2749 2764	2506	.2715 273 4	.2597 2614	.3112 3125	.3027 3028	.3130	.2767	.3053	.2814 2803	.2521	2649	90
		5	.2761	.2518	.2737	.2619	2124	3039 3039	.3130	.2767	.3039	.2800	0262. 1222.	.2629	38
¥16-20 or 0.3125-20	NN	2A	.2788	.2571	.2748	.2640	.3113	.3032	.3125	.2800	.3069	.2852	.2580	.2700	2B
		٩٤	2785	.2566	.2751	.2645 2667	.3112	3033	.3130	.2803	3064	.2849	.2581	.2699	ac
		ç	2797	.2578	2773	.2667	.3124	.3045	.3130	.2803	.3051	2836	.2581	.2679	38
¥16-24 or 0.3125-24	UNF	٦	.2843	.2663	.2788	.2698	.3114	.3006	.3125	.2854	.3105	.2925	.2670	.2770	18
			.2840	.2658	.2791	.2703	.3113	.3007	.3130	.2857	.3100	.2922	.2671	.2769	
		2A	.2843 2840	.2663 2658	2806	.2716	3114	.3042 3043	3125	.2854 2857	3082	2902	.2670	.2770	2B
		3 A	.2854	.2674	.2827	.2737	3125	.3053	3125	.2854	.3070	.2890	.2670	.2754	38
			.2851	.2669	.2830	.2742	.3124	.3054	.3130	.2857	.3065	.2887	.2671	.2753	
¥16-28 or 0.3125-28	N	2A	.2883	.27.28	.2849	.2772	.3115	.3050	.3125	.2893	.3092	.2937	.2740	.2820	2B
		:	.2880	.2723	.2852	.2772	.3114	.3051	.3130	.2896	.3087	.2934	.2741	.2819	
		34	.2893	.27 38 .2733	.2867	.2790	.3125 .3124	.3060 .3061	.3125 .3130	.2893	.3081 .3076	.2926	.2740	.2807 .2806	38
¥16-32 or 0.3125-32	UNEF	2A	.2912	.2777	.2880	.2812	.3115	.3055	.3125	.2922	3099	.2964	.2790	.2860	28
			.2909	.2772	.2883	.2817	.3114	.3056	.3130	.2925	.3094	.2961	.2791	.2859	
		2	2262. 2919	.2/8/	.2901	.2830 .2835	.3125 .3124	.3065 .3066	.3125	.2922	.3088 3083	.2953	1672.	.2847 .2846	38
¥8-16 or 0.375-16	UNC	4	.3331	.3060	.3266	.3131	.3737	.3595	.3750	.3344	.3700	.3429	.3070	.3210	18
			.3328	.3054	.3269	.3137	.3736	.3596	.3756	.3347	.3694	.3426	.3071	.3209	
		2 A	.3328	.3060	3287	.3152 3158	.3737	.3643 3644	.3750	3347	.3672 3666	.3401 3398	.3070	.3210 3209	2B
		3 A	.3344	.3073	.3311	.3176	.3750	.3656	.3750	.3344	.3658	3387	3070	.3182	3B
			.3341	.3067	.3314	.3182	.3749	.3657	.3756	.3347	.3652	.3384	.3071	.3181	
¥e-20 or 0.375-20	N	2 A	.3413	.3196	.3372	.3264	.3738	.3657	.3750	.3425	3696	.3479	.3210	.3320	2B
			.3410	.3191	.3375	.3269	.3737	.3658	.3755	.3428	.3691	.3476	.3211	.3319	
		3A	.3425 .3422	.3208 .3203	.3394	.3286 .3291	.3750 .37 4 9	.3669 .3670	.3750 .3755	.3425 .3428	.3682 .3677	.3465 .3462	.3210 .3211	.3297 .3296	38

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

ND 3B	
SES 1A, 2A, 3A, 1B, 2B, A	IZE (CONT'D)
READ SERIES, CLASS	NDS — LIMITS OF SI
OR STANDARD THR	IFIED SCREW THREA
TABLE 10 GAGES F	

									•	•					
				Ga	ges for Ex	ternal Thu	reads			G	ges for In	ternal Thu	reads		
				X Threa	d Gages		7 Blain (X Threa	d Gages		7 of sin /	far	
			9	0	NOT G	0 (10)	A riall Major I	Diameter	Ŭ	0	NOT G	(IH) O	Ainor E	Jiameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOI	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT GO	Class
-	2	e	4	5	9	7	8	6	10	11	12	13	14	15	16
			Ë	Ľ	Ľ	in.	in.	in.	in.	in.	in.	Ŀ.	'n.	Ŀ	
¥8-24 or 0.375-24	UNF	14	0.3468	0.3288	0.3411	0.3321	0.3739	0.3631	0.3750	0.3479	0.3733	0.3553	0.3300	0.3400	1B
		٩c	.3465	.3283	.3414	.3326	.3738	.3632	3755	3482	3728	3550	.3301	3399	ac
		¥7	.3465	.3200	.3433	.3345	3738	.3668	3755	3482	3703	.3525	00000 10000	3399	97
		3A	3479	.3299	.3450	.3360	3750	3678 3678	3750	3479	3696. 1975	.3516	.3300 1055	.3372	38
			2.15.	2070			2			2		2.20		-	
¥e-28 or 0.375-28	Z	2A	.3507	.3352	.3471	.3394	3739	.3674	.3750	.3518	3719	.3564	.3360	.3450	2B
		į	.3504	.3347	.3474	.3399	.3738	.3675	.3755	.3521	3714	.3561	.3361	.3449	90
		<u>ک</u>	3515 3515	.3358	.3494	.3419	0c/c.	.3686	3755	3521	3703	.3550	.3361	.3425	2
¥8-32 or 0 375-32	UNEF	2A	3537	3402	.3503	.3435	.3740	.3680	.3750	.3547	.3726	.3591	.3410	.3490	28
			.3534	.3397	.3506	.3440	3739	.3681	.3755	.3550	.3721	.3588	.3411	.3489	
		3A	.3547	.3412	.3522	.3454	.3750	3690	.3750	.3547	.3715	.3580	.3410	.3469	3B
			.3544	.3407	.3525	.3459	.3749	.3691	.3755	.3550	.3710	.3577	.3411	.3468	
7/16-14 or 0.4375-14	UNC	1A	3897	.3588	.3826	.3671	.4361	.4206	.4375	3911	.4312	.4003	.3600	.3760	18
			.3894	.3582	.3829	.3677	.4360	.4207	.4381	.3914	.4306	.4000	.3601	.3759	
		2A	3897	.3588	.3850	.3695	.4361	.4258	.4375	.3911	.4281	.3972	.3600	.3760	2B
			.3894	.3582	.3853	.3701	.4360	.4259	.4381	.3914	.4275	3969	.3601	.3759	
		3A	.3911	.3602	.3876	3721	.4375	.4272	.4375	1105.	.4266	.3957	.3600	3717	38
			0065.	0600	6/0C.	17/C.	+/0+.	C /74.	1004.	-	0074-		1000		
7/16-16 or 0.4375-16	N	2A	.3955	.3684	606E.	.3774	.4361	.4267	.4375	3969	.4299	.4028	.3700	.3840	2B
			.3952	.3678	.3912	.3780	.4360	.4268	.4381	.3972	.4293	.4025	3701	3839	90
		Ŷ	3965. 3966	.3692 3692	8695.	.3806	.4374	.4282	.4381	3972	.4279	4011	3701	66/£.	2
7/16-20 or 0.4375-20	UNF	1	4037	.3820	.3974	.3866	.4362	.4240	.4375	.4050	.4348	.4131	.3830	.3950	8
			.4034	.3815	3977	.3871	.4361	.4241	.4380	.4053	.4343	.4128	.3831	.3949	
		2A	.4037	.3820	3995	.3887	.4362	.4281	.4375	.4050	.4321	.4104	.3830	.3950	2B
		-	.4034	.3815	3998	.3892	.4361	.4282	.4380	.4053	.4316	.4101	.3831	.3949	
		3 A	.4050	.3833	.4019	.3911	.4375	.4294	.4375	.4050	.4308	.4091	.3830	.3916	38
			.4047	.3828	.4022	.3916	.4374	.4295	.4380	.4053	.4303	.4088	.3831	.3915	
7/16-28 or 0.4375-28	UNEF	2A	.4132	3977	.4096	.4019	.4364	.4299	.4375	.4143	.4344	.4189	3990	.4070	2B
			.4129	.3972	.4099	.4024	.4363	.4300	.4380	.4146	.4339	.4186	1991.	.4069	
		ЗA	.4143	3988	.4116	.4039	.4375	.4310	.4375	.4143	.4333	.4178	0668.	.4051	38
			.4140	.3983	.4119	.4044	.4374	.4311	.4380	.4146	.4328	.4175	1665.	.4050	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

2 B, AND 3 B	
, 2A, 3A, 1B,	ONT'D)
CLASSES 1A	'S OF SIZE (C
HREAD SERIES,	EADS LIMIT
R STANDARD TH	FIED SCREW THR
GAGES FO	
ABLE 10	

					for for Eu	The second	-					Thur Thur			
				3	Res lot EX		cops			7 7			caus		
				X Threa	d Gages		7 Plain C	ages for		X Thread	d Gages		7 Plain C		
			Ō	0	NOT G	0 (10)	Major D	iameter	3	c	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Q	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NO1 CO	Class
-	2	m	4	ß	و	7	8	6	10	11	12	13	14	15	16
			.e	Ē	.e		Ë	ċ	Ŀ	Ĺ	.ċ	Ŀ.	Ľ	Ĺ	
7/16-32 or 0.4375-32	Z D	2 A	0.4162	0.4027	0.4128	0.4060	0.4365	0.4305	0.4375	0.4172	0.4351	0.4216	0.4040	0.4110	2B
		34	4172	4037	4147	4065	.4364	.4306	.4375	.41/2 4172	.4346 .4340	.4213	.4041	.4094 .4094	3B
			.4169	.4032	.4150	.4084	.4374	.4316	.4380	.4175	.4335	.4202	.4041	.4093	
<i>Y</i> 2-13 or 0.500-13	UNC	4	.4485	.4152	.4411	.4245	.4985	.4822	.5000	.4500	.4930	.4597	.4170	.4340	18
			.4482	.4146	.4414	.4251	.4984	.4823	2006	.4503	.4924	.4594	.4171	.4339	ę
		2 A	4485	.4152	.4435	.4269	.4985	.4876	2000	.4500	.4898	.4565	.4170	.4340	28
		34	4500	4167	4463	c/24. 4297	.5000	.4891	.5000	4500	.4881	.4548	.4170	.4284	3B
			.4497	.4161	.4466	.4303	.4999	.4892	.5006	.4503	.4875	.4545	.4171	.4283	
1/2-16 or 0.500-16	Z	2A	.4580	.4309	.4533	.4398	.4986	.4892	.5000	.4594	.4926	.4655	.4320	.4460	28
			.4577	.4303	.4536	.4404	.4985	.4893	.5006	.4597	.4920	.4652	.4321	.4459	
		3 A	.4594	.4323	.4559	.4424	.5000	.4906	.5000	.4594	.4911	.4640	.4320	.4419	3B
			.4591	.4317	.4562	.4430	.4999	.4907	.5006	.4597	.4905	.4637	.4321	.4418	
<i>1</i> /2-20 or 0.500-20	UNF	1	.4662	.4445	.4598	.4490	.4987	.4865	.5000	.4675	.4976	.4759	.4460	.4570	1B
			.4659	.4440	.4601	.4495	.4986	.4866	.5005	.4678	.4971	.4756	.4461	.4569	
		2A	.4662	.4445	.4619	.4511	.4987	.4906	.5000	.4675	.4948	.4731	.4460	.4570	2B
			.4659	.4440	.4622	.4516	.4986	.4907	.5005	.46/8	.4943	.47.28	.4461	.4569	90
		3A	.4675 .4672	.4458 .4453	.4645 .4646	.4540 .4540	.4999	.4920	.5005	. 4678	.4929	.4714 .4714	.4461	.4536	ŝ
<i>1</i> /2-28 or 0.500-28	UNEF	2A	.4757	.4602	.4720	.4643	.4989	.4924	.5000	.4768	.4971	.4816	.4610	.4700	2B
			.4754	.4597	.4723	.4648	.4988	.4925	.5005	.4771	.4966	.4813	.4611	.4699	
		3 A	.4768 .4765	.4613 .4608	.4740 .4743	.4663 .4668	.5000	.4935 .4936	.5005	.4768	.4959	.4804 .4801	.4610 .4611	.4676 .4675	38
<i>1</i> /2-32 or 0.500-32	Z	2A	.4787	.4652	.4752	.4684	.4990	.4930	.5000	.4797	.4977	.4842	.4660	.4740	28
			.4784	.4647	.4755	.4689	.4989	.4931	.5005	.4800	.4972	.4839	.4661	.4739	_
		3A	.4797	.4662	.4771	.4703	.5000	.4940	.5000	.4797	.4966	.4831	.4660	.4719	38
			.4794	.4657	.4774	.4708	.4999	.4941	.5005	.4800	.4961	.4828	.4661	.4718	
¥16-12 or 0.5625-12	UNC	۲	.5068	.4707	.4990	.4810	.5609	.5437	.5625	.5084	.5547	.5186	.4720	.4900	18
			.5065	.4701	.4993	.4816	.5608	.5438	.5631	.5087	.5541	.5183	.4721	.4899	
		2A	.5068	.4707	.5016	.4836	.5609	.5495	.5625	.5084	.5513	.5152	.4720	.4900	28
		į	.5065	.4701	.5019	.4842	.5608	.5496	.5631	7805.	2022	-5149 5135	47.20	4849	ac
		۲	.5081	4717	.5048	.4871	.5624	.5512	.5631	.5087	.5490	.5132	.4721	.4842	

-	
ND 3	
2B, A	
, 1 B,	
1, 3A	ľŪ,
A, 2/	NOU
LASSES 1	OF SIZE (
SERIES, C	LIMITS
HREAD S	LEADS
DARD T	REW THR
R STAN	IED SCI
ES FOI	
CAG	
ABLE 10	

								ĺ		•					
				S	ges for Ex	ternal Thr	eads			3	ges for In	ternal Th	reads		
				X Threa	l Gages		7 Pisin 7	and and		X Threa	d Gages		v elete v		
			9	0	NOT G	0 (10)	Major D	Jameter	Ö	0	NOT G	(IH) O	Minor [uages for Diameter	
Nominal Size and Threads/in.	Seri es Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOI CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOI CO	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
¥ı6-16 or 0.5625-16	NN	2A	in. 0.5205 5202	in. 0.4934 4078	in. 0.5158 5161	in. 0.5023	in. 0.5611 5610	in. 0.5517 5518	in. 0.5625 5631	in. 0.5219	in. 0.5351 5545	in. 0.5280	in. 0.4950 4051	in. 0.5090 5080	2 B
		3A	.5219 .5216 .5216	.4948 .4942	.5184 .5187	.5049 .5049 .5055	.5625 .5624	.5531 .5532	.5631	.5219 .5222	.5536 .5536	.5265	.4950	.5040 5039	38
¥16-18 ог 0.5625-18	UNF	1A	.5250	5009	.5182	.5062 5067	.5611	.5480	.5625	.5264	.5594	.5353	.5020	.5150	1B
		2 A	.524/	5009 5009	.5205	.5085	.5611	.5524	.5625	.5264	.5564	.5323	.5020	.5150	2 B
		3A	.5247 .5264 5264	.5004 .5023 5023	.5208 .5230 5230	5090 5110 115	.5610 .5625 	.5525 .5538 .5538	.5630 .5625 5625	.5267 .5264 5264	.5559 .5549 .544	.5320 .5308 .5308	.5021 .5020 5021	.5149 .5106	38
			1970.	010C.	2626.	CI IC.	+70C;	400C.	ncoc.	/07C.	#+CC:	cocc.	1700.	C01 C.	
¥1€-20 or 0.5625-20	NU	2A	.5287 5287	.5070	.5245 5248	.5137	.5612	.5531	.5625	.5300	.5572	.5355	.5080 5081	.5200	2B
		ЗA	.5300	.5083	.5268	5160	5625	.5544	.5625	5300	.5558	.5341	5080	.5162 5162	38
			/625.	8/05.	1/75.	col c.	47QC.	C+CC.	UCOC.	cucc.	נכנכ.	866 .	1800	1916.	
%16-24 or 0.5625-24	UNEF	2A	.5342 .5339	.5162 .5157	.5303	.5213 .5218	.5613 .5612	.5541 .5542	.5625 .5630	.535 4 .5357	.5585 .5580	.5405	.5170 .5171	.5270 .5269	2B
		3A	.5354 .5351	.5174 .5169	.5325 .5328	.5235 .5240	.5625 .5624	.5553 .5554	.5625	.5354 .5357	.5572 .5567	.5392	.5170 .5171	.5244 .5243	38
¥16-28 or 0.5625-28	Ŋ	2A	.5382	.5227	.5345 5348	.5268	.5614	.5549	.5625	5393	.5596	.5441 5441	.5240	.5320	2B
		3 A	.5393 5393 5390	.5238 .5238 .5233	5365	.5288	.5625 .5624	.5560 .5561	.5625	.5393 5396	.5584 .5579	.5429 .5426	.5240	5301 5300	38
¥16-32 or 0.5625-32	S	2A	.5412	.5277	.5377	.5309	.5615	.5555	.5625	.5422	.5602	.5467	.5290	.5360	2B
		3A	.5409 .5422 .5419	.5287 .5287 .5282	.5396 5396 5399	.5328 .5328 .5333	.5625 .5625 .5624	5565 5566	.5630 .5630	5422 5422 5425	.5591 .5586 -	.5456 .5456 .5453	.5290 .5290	5344 5343 5343	38
¥8-11 or 0.625-11	UNC	14	.5644	.5250	.5561 5561	.5364	.6234	.6052 6053	.6250 6256	.5660 5663	.6161 6155	.5767	.5270	.5460 5450	18
		2A	.5644	.5250	.5589	.5392	.6234	.6113	.6250	.5660	.6126	.5732	.5270	.5460	2B
			.5641	.5244	.5592	.5398	.6233	.6114	.6256	.5663	.6120	.5729	.5271	.5459	į
		3A	.5660 .5657	.5266 .5260	.5619 .5622	.5422 .5428	.6250 .6249	.6129 .6130	.6250 .6256	.5660 .5663	.6108 .6102	.5714	.5270	.5391 .5390	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

				Ga	ges for Ex	ternal Thr	eads			G	ges for In	ternal Thi	reads		
				X Threa	d Gages		Z Plain	Gages for		X Threa	d Gages		Z Plain (Lares for	
			3	0	NOT G	(01) 0	Major I	Diameter	Ŭ	0	NOT O	(IH) O	Minor L	Diameter	
Nominal Size Ind Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT CO	Class
-	2	e	4	5	9	7	80	6	10	11	12	13	14	15	16
			Ľ	Ŀ	Ë	Ŀ	i.	Ŀ	Ŀ	. <u>e</u>	Ë	Ŀ	Ľ	in	
12 or 0.625-12	N	2A	0.5693	0.5332	0.5639	0.5459	0.6234	0.6120	0.6250	0.5709	0.6141	0.5780	0.5350	0.5530	2B
			.5690	.5326	.5642	.5465	.6233	.6121	.6256	.5712	.6135	.5777	.5351	.5529	
		3A	.5709	.5348	.5668 .5671	.5488	.6250	.6136 .6137	.6250 .6256	.5709 .5712	.6123	.5762	.5350	.5463 .5462	38
6 or 0.625-16	N	2A	.5830	.5559	.5782	.5647	.6236	.6142	.6250	.5844	.6177	.5906	.5650	.5710	28
			.5827	.5553	.5785	.5653	.6235	.6143	.6256	.5847	.6171	.5903	.5571	.5709	
		3A	.5844 .5841	.5573 .5567	.5808	.5673	.6250 .6249	.6156 .6157	.6250 .6256	.5844	.6161 .6155	.5890	.5570	.5662 .5661	38
8 or 0.625-18	UNF	1	.5875	.5634	.5805	.5685	.6236	.6105	.6250	.5889	.6221	.5980	.5650	.5780	18
			.5872	.5629	.5808	.5690	.6235	.6106	.6255	.5892	.6216	.5977	.5651	.5779	
		2A	.5875	.5634	.5828	.5708	.6236	.6149	.6250	.5889	.6190	.5949	.5650	.5780	2B
			.5872	.5629	.5831	.5713	.6235	.6150	.6255	.5892	.6185	.5946	.5651	.5779	Ģ
		۶۶	.5886 .5886	.5643 .5643	.5857	-5739 -5739	.6249 .6249	.6164 .6164	.6255	.5892	c/19.	.5931	.5651	.5729	9
0 or 0.625-20	N	2A	.5912	.5695	.5869	.5761	.6237	.6156	.6250	.5925	.6198	.5981	.5710	.5820	28
			5909	.5690	.5872	.5766	.6236	.6157	.6255	.5928	.6193	.5978	.5711	.5819	
		3A	.5925	.5708	.5893	.5785	.6250	.6169	.6250	.5925	.6184	5967	.5710	.5787	3B
			.5922	.5703	.5896	.5790	.6249	.6170	.6255	.5928	.6179	.5964	.5711	.5786	
4 or 0.625-24	UNEF	2A	2962	.5787	.5927	.5837	.6238	.6166	.6250	.5979	.6211	.6031	.5800	.5900	2B
			.5964	.5782	.5930	5842	.6237	.6167	.6255	.5982	.6206	.6028	.5801	.5899	
		3 A	.5979 .5976	.5799 .5794	.5949 .5952	.5859 .5864	.6250 .6249	.6178 .6179	.6250 .6255	.5979	.6198 .6193	.6018	.5800	.5869 .5868	38
8 or 0.625-28	ND	2A	6007	.5852	5969	.5892	.6239	.6174	.6250	.6018	.6222	.6067	.5860	.5950	2B
			.6004	.5847	.5972	.5897	.6238	.6175	.6255	.6021	.6217	.6064	.5861	.5949	
		3A	.6018	.5863	.5990	.5913	.6250	.6185	.6250	.6018	.6210	.6055	.5860	.5926	38
			.6015	.5858	.5993	.5918	.6249	.6186	.6255	.6021	.6205	.6052	.5861	.5925	
2 or 0.625-32	N	2A	.6036	.5901	.6000	.5932	.6239	.6179	.6250	.6047	.6228	.6093	.5910	.5990	2B
			.6033	.5896	.6003	.5937	.6238	.6180	.6255	.6050	.6223	0609.	.5911	.5989	
		3 A	.6047	5912	.6020	.5952	.6250 6240	.6190 6191	6250	.6047 6050	.6217	.6082	.5910	.5969 5968	38
		ł		106C.	C200.	1000	6470'	1610.	CC20.	0000.	7170-	700. 701.2	1160.	0066.	Ę
-12 OF U.68/5-12	Z	V 7	5150.	/666.	-2029.	-5005	4C00.	0/40.	C/00.	+CC0.	00/07	C040.	0/60.	0610.	97
		v c	c159.	1696.	/979.	06090	2683	.b/4b 5751	.6861	1550. 1221	09/9.	5902	1/66.	5085 5085	ac
			.6331	5962	.6296	.6119.	.6874	.6762	.6881	.6337	.6742	.6384	1265.	.6084	2

				G	ges for Ex	ternal Thr	eads			Ga	ges for In	ternal Thi	eads		
				X Threa	d Gages					X Threa	d Gages				
			Ũ	0	NOT G	0 (10)	Z Flain Major E	uages tor Diameter	Ū	0	NOT G	(IH) O	Z Plain (Minor D	lages for iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOT GO	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	4	15	16
									.!					.	
¹ // 16 -16 or 0.6875-16	N N	2A	0.6455	0.6184	0.6407	п. 0.6272	0.6861	In. 0.6767	IN. 0.6875	ID. 6469	ID. 0.6802	ID. 0.6531	1D. 0.6200	in. 0.6340	ac
			.6452	.6178	.6410	.6278	.6860	.6768	.6881	.6472	.6796	.6528	.6201	.6339	97
		ЗA	.6469	.6198	.6433	.6298	.6875	.6781	.6875	.6469	.6786	.6515	.6200	.6284	38
			.6466	.6192	.6436	.6304	.6874	.6782	.6881	.6472	.6780	.6512	.6201	.6283	
¹ /y ₁₆₋ 20 or 0.6875-20	N	2A	.6537	.6320	.6494	.6386	.6862	.6781	.6875	.6550	.6823	9099.	.6330	.6450	2B
			.6534	.6315	.6497	.6391	.6861	.6782	.6880	.6553	.6818	.6603	.6331	.6449	
		34	.6550	.6333 6328	.6518	.6410 6415	.6875 6874	.6794 5705	.6875	.6550	6089. 2003	.6592	.6330	.6412	3B
			/+co.	0760.	1700	CI 4 0.	+ /00.	C6/0.	0000.	2000.	.6804	6869.	.6331	.6411	
¹ //i6-24 or 0.6875-24	UNEF	2A	.6592	.6412	.6552	.6462	.6863	1629.	.6875	.6604	.6836	.6656	.6420	.6520	2B
			.6589	.6407	.6555	.6467	.6862	.6792	.6880	.6607	.6831	.6653	.6421	.6519	
		34	.6604	.6424	.6574	.6484	.6875	.6803	.6875	.6604	.6823	.6643	.6420	.6494	3B
			-1099 -	.6419	.6577	.6489	.68/4	.6804	.6880	.6607	.6818	.6640	.6421	.6493	
¹ //i6-28 or 0.6875-28	N	2A	.6632	.6477	.6594	.6517	.6864	6629.	.6875	.6643	.6847	.6692	.6490	.6570	2B
			.6629	.6472	.6597	.6522	.6863	.6800	.6880	.6646	.6842	.6689	.6491	.6569	
		ЗA	.6643	.6488	.6615	.6538	.6875	.6810	.6875	.6643	.6835	.6680	.6490	.6551	38
			.6640	.6483	.6618	.6543	.6874	.6811	.6880	.6646	.6830	.6677	.6491	.6550	
¹ //16-32 or 0.6875-32	N	2A	.6661	.6526	.6625	.6557	.6864	.6804	.6875	.6672	.6853	.6718	.6540	.6610	2B
			.6658	.6521	.6628	.6562	.6863	.6805	.6880	.6675	.6848	.6715	.6541	6099.	
		3 A	.6672	.6537	.6645	.6577	.6875	.6815	.6875	.6672	.6842	.6707	.6540	.6594	38
			6999.	.6532	.6648	.6582	.6874	.6816	.6880	.6675	.6837	.6704	.6541	.6593	
¥4-10 or 0.750-10	UNC	1٨	.6832	6399	.6744	.6528	.7482	.7288	.7500	.6850	.7398	.6965	.6420	.6630	18
			.6829	.6393	.6747	.6534	.7481	.7289	.7506	.6853	.7392	.6962	.6421	.6629	
		X 7	.6832		.b//3 5775		./482 7481	./353 7354	./500	.6850	7360	7269. 2022	.6420	.6630	2B
		3A	.6850	.6 641 7	.0//0 9089.	.6590	.7500	7371	.7500	.6850	.7340	4760 [.]	.6420	.6545	38
			.6847	.6411	6089.	.6596	.7499	.7372	.7506	.6853	.7334	.6904	.6421	.6544	
¥-12 or 0.750-12	N	2A	.6942	.6581	.6887	.6707	.7483	.7369	.7500	.6959	.7392	.7031	.6600	.6780	28
			6669.	.6575	0689.	.6713	.7482	.7370	.7506	.6962	.7386	.7028	.6601	6779.	
		SA SA	.6959 .6956	.6598 .6592	.6918 .6921	.6738 .6744	.7500 .7499	.7386 .7387	.7500	.6959 .6962	.7374 .7368	.7013 .7010	.6600 .6601	.6707 .6706	38
¥-16 or 0.750-16	UNF	7	6202.	.6808	.7004	6969.	.7485	.7343	.7500	.7094	.7463	.7192	.6820	0969.	8
			.7076	.6802	.7007	.6875	.7484	.7344	.7506	7097	.7457	.7189	.6821	.6959	
		2A	6202	6808.	.7029	.6894	.7485	.7391	.7500	.7094	.7430	.7159	.6820	0969.	2B
		ł	-7076	.6802	./032	0069.	./484	7192	./506	7607.	./424	./156	.6821	.6959	a,
		5	+60/.	.6817 .6817	.7059	.6927	.7499	.7407	.7506	-7097.	.7408	.7140	.682U .6821	.6907 6907	8

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

ID 3E	
AN,	
B, 28	
3A, 1	ñ
2A, 3	
1A,	
CLASSES	S OF SIZI
SERIES,	- LIMIT
THREAD	HREADS -
STANDARD	D SCREW TH
OR	LEIEL
GAGES	5
ABLE 10	

-															
				Ga	ges for Ex	ternal Th	reads			ß	ges for In	ternal Thi	reads		
				X Threa	d Gages		7 Plain	Cases for		X Three	d Gages		7 olsis	and some	
			9	0	NOT C	O (LO)	Major	Diameter	9	0	NOT G	(IH) O	Minor	Diameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
¥+-20 or 0.750-20	LNFF	24	in. 0.7162	in. 0.6945	in. 0.7118	in. 0.7010	in. 0.7487	in. 0.7406	in. 0.7500	in. 0.7175	in. 0.7449	in. 0.7232	in. 0.6960	in. 0.7070	28
			.7159	.6940	.7121	.7015	.7486	.7407	.7505	.7178	.7444	.7229	.6961	.7069	
		3A	.7175	.6958 .6953	.7142 .7145	.7034 .7039	.7500	.7419 .7420	.7500	.7175	.7435	.7218 .7215	.6960	.7037 .7036	38
¥+28 or 0.750-28	R	2A	.7256	.7101	.7218	.7141	.7488	.7423	.7500	.7268	.7473	.7318	.7110	.7200	2B
		į	.7253	.7096	.7221	.7146	.7487	.7424	.7505	.7271	.7468	.7315	1117.	.7199	Ę
		٩۶	.7265	.7108	.7242	7917.	.7499	.7436	./200 7505	.7271	.7455	c067.	.110	.7175	38
¥+32 or 0.750-32	Z	2A	.7286	.7151	.7250	.7182	.7489	.7429	.7500	.7297	.7479	.7344	.7160	.7240	2B
			.7283	.7146	.7253	.7187	.7488	.7430	.7505	.7300	.7474	.7341	.7161	.7239	
		3A	.7297 7294	.7162	.7270	.7202	.7500	.7440	.7500	.7297	.7468	.7333	.7160	.7219 .7218	3B
		;													4
¹ ¥16-12 or 0.8125-12	Z	2A	.7567	.7206	7512	7338	8108	7995	.8125 8131	./587 7587	8017	.7653	7220	.7399	7B
		3A	.7584	.7223	.7543	.7363	.8125	1108.	.8125	.7584	6667.	.7638	.7220	.7329	3B
			.7581	.7217	.7546	.7369	.8124	.8012	.8131	.7587	.7993	.7635	.7221	.7328	
¹ 3/16-16 or 0.8125-16	N	2A	.7704	.7433	.7655	.7520	.8110	.8016	.8125	.7719	.8053	.7782	.7450	.7590	2B
		į	.7701	.7427	.7658	.7526	.8109	.8017	.8131	.7722	.8047	9222	.7451	.7589	5
		۲ç ۲	.7716 1	.7440	.7686	.7554	.8124	.8032	.0121 .8131	2772	.8031	.7763	.7451	.7532	ac
^{13/16-} 20 or 0.8125-20	UNEF	2A	.7787	.7570	.7743	.7635	.8112	.8031	.8125	.7800	.8074	.7857	.7580	.7700	2B
			.7784	.7565	.7746	.7640	.8111	.8032	.8130	.7803	.8069	.7854	.7581	.7699	
		3A	.7800	.7583 .7578	. <i>7767</i> .7770	.7664	.8125 .8124	.8045 .8045	.8125 .8130	.7800	.8060	.7843 .7840	.7580	.7662 .7661	38
¹ ¥16-28 or 0.8125-28	3	2A	.7881	.7726	.7843	.7766	.8113	.8048	.8125	.7893	8098.	.7943	.7740	.7820	2B
			.7878	.7721	.7846	1777.	.8112	.8049	.8130	.7896	.8093	.7940	.7741	.7819	
		34	.7893 .7890	.7738 .7733	.7864 .7867	.7787 .7792	.8125 .8124	.8060 .8061	.8125	.7893	.8085 .8080	.7930	.7740	.7800	38
^{13/16-} 32 or 0.8125-32	N	2A	.7911	.7776	.7875	.7807	.8114	.8054	.8125	.7922	.8104	6962.	0677.	.7860	2B
			.7908	1777.	.7878	.7812	.8113	.8055	.8130	.7925	6608.	.7966	1677.	.7859	
		3 A	.7922 .7919	.7787 .7782	.7895 .7898	.7827 .7832	.8125 .8124	.8065 .8066	.8125 .8130	.7922 .7925	.8093 8088	.7958 .7955	06 <i>77.</i> 1977.	.7844 .7843	38

DR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B	IFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)
GAGES FOR SI	UNIFIED
TABLE 10	

ι	JNIF	ED I	NCH SC	REW	TH	IRE	AC	S																	AN	IA	MEF	RICA	۹N	NA	TIO	NAL	SI	'AN	IDAI	RD			
	_	_	Class	16		1B		2B		38	ļ	9	38	2	Ë	2	2B		38		2B		38		28		38		2B	ЗR	<u>}</u>	28		38		2B		38	
		lages for	NOI	15	Ŀ.	0.77800	.77788	.77800	.77788	.76810 .76798	00000		79520	.79508	81400	81388	.81400	.81388	.80680	.80668	.82100	.82088	.81580	.81568	.83200	.83188	.82870 82858	20070-	.84500	.84488 84260	.84248	84900	.84888	.84690	.84678	.86500	.86488	.85750	nc /co.
reads		Z Plain C Minor D	8	4	.e	0.75500	.75512	.75500	.75512	.75500	70500	0000/.	21 CO/.	.78512	70800	79812	79800	.79812	.79800	.79812	.80700	.80712	80700.	.80712	.82100	.82112	.82100 82112	-	.83600	.83612	.83612	84100	,84112	.84100	.84112	.84700	.84712	.84700	71 /#0.
ternal Th		(IH) O	Pitch Diam.	13	Ŀ	0.8151	.8148	.8110	.8107	6808. 9908.	1900	1070.	0/20.	.8260	8307	8389	.8356	.8353	.8339	.8336	.8407	.8404	.8391	.8388	.8482	.8479	.8468 8465	221.22	.8568	.8565 8555	.8552	.8594	.8591	.8583	.8580	8068.	.8905	9889.	0000'
ges for Int	Gages	NOT G	Major Diam.	12	. <u>e</u>	0.8632	.8625	.8591	.8584	.8570 .8563	6647	7400.	0000. 86.78	.8618	8701	8695	.8665	.8659	.8648	.8642	.8678	.8672	.8662	.8656	.8699	.8694	.8685 8680	2000-	.8723	8718. 8710	.8705	8729	.8724	.8718	.8713	.9269	.9263	.9250	++76.
G	X Thread	0	Pitch Diam.	#	ė	0.8028	.8031	.8028	.8031	.8028 .8031	0000	6020	2120.	.8212	8786	8289	.8286	.8289	.8286	.8289	.8344	.8347	.8344	.8347	.8425	.8428	.8425 8428	24.5	.8518	.8521 8518	.8521	8547	.8550	.8547	.8550	.8834	.8837	.8834	/000.
		Ğ	Major Diam.	10	Ŀ	0.8750	.8757	.8750	.8757	.8750	0750	9278	8750	.8756	8750	8756	.8750	.8756	.8750	.8756	.8750	.8756	.8750	.8756	.8750	.8755	.8750 8755	22.22	.8750	.8755 8750	.8755	8750	.8755	.8750	.8755	.9375	.9381	.9375	1006.
		ages tor iameter	NOT GO	6	Ŀ	0.85230	.85242	.85920	.85932	.86110	00100	06100	20200.	.86372	85700	85802	.86310	.86322	.86470	.86482	.86410	.86422	.86560	.86572	.86560	.86572	.86690 86702		.86730	.86742 86850	.86862	86790	.86802	00698.	.86912	.92440	.92452	.92610	77076.
eads		Z Plain G Major D	09	80	Ē	0.87310	.87298	.87310	.87298	.87488	06670	91579	01 0 00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	.87488	87340	87578	87340	.87328	.87500	.87488	.87350	.87338	87500	.87488	.87370	.87358	.87500 87488	84)):	.87380	.87368	.87488	87390	.87378	.87500	.87488	.93580	.93568	.93750	00/06.
ernal Thr		0 (10)	Minor Diam.	7	. <u>.</u>	0.7673	.7680	.7705	.7712	.7740	1061	/CE/.	C06/.	.7994	8034	8040	.8061	8067	0608.	9608.	.8145	.8151	.8173	.8179	.8260	.8265	.8284 8789		.8391	.8396	.8417	8437	.8437	.8452	.8457	.8580	.8586	.8612	0100
ges for Ext	l Gages	NOT G	Pitch Diam.	و	ŗ.	0.7914	.7917	.7946	.7949	.7981	1017	1510.	.0140. 8168	.8171	8180	C010.	.8216	.8219	.8245	.8248	.8280	.8283	.8308	.8311	.8368	.8371	.8392 8305		.8468	.8471	.8492	8500	.8503	.8520	.8523	.8760	.8763	.8792 2225	CC/Q.
Ga	X Threa	0	Minor Diam.	S	Ë.	0.7528	.7521	.7528	.7521	.7547 .7540	10.71	100/.	C20/.	.7842	7061	7955	7961	.7955	7977.	1797.	.8058	.8052	.8073	.8067	.8195	.8190	.8208 8203	CV20.	.8351	.8346	.8358	R401	.8396	.8412	.8407	.8456	.8450	.8473	.040/
		Ŭ	Pitch Diam.	4	Ë,	0.8009	8006	6008.	8006	.8028 .8025	610.7	19192	2010. 007.8	.8206	0.770	0/20. 8267	8270	.8267	.8286	.8283	.8329	.8326	.8344	.8341	.8412	.8409	.8425 8422	7710.	.8506	.8503	.8515	8536	.8533	.8547	.8544	2188.	.8814	.8834	1 500.
			Class	3		1		2 A		3 A	;	5	46	Ś	4	4	2A	i	3A		2A		ЗA		2A		ЗA		2A		5	٩¢	ì	3A		2A		3A	
			Series Designation	2		UNC					-	Z			INE						Z				UNEF				N			Z	5			Ŋ			
			Nominal Size and Threads/in.	-		7/8-9 or .875-9					74.40 - 0.077.40	/8-12 OF 0.8/5-12			7/0 14 00 0 075 14	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					7/ 8 -16 or 0.875-16				7/e-20 or 0.875-20				7/8-28 or 0.875-28			7/4-37 or 0 875-37				^{15/16-} 12 or 0.9375-12			

GAGES AND GAGING FOR

ANSI/ASME B1.2-1983

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

-

38	
INA	
, 2 B ,	
, 1B	
, 3A	ľ,D
A , 2A	Z
ES 1/	ZE (C
CLASSI	S OF SIZ
SERIES,	- LIMIT
THREAD	HREADS -
TANDARD	SCREW TH
FOR S	NIFIED
CAGES I	'n
ABLE 10	

										•					
				Cal	ges for Ex	ternal Thr	eads			Gag	ses for Int	ernal Thr	eads		
				X Threa	d Gages		7 Plain C	ares for		X Thread	Gages		7 Plain C		
			Ŭ	0	NOT G	0 (10)	Major D	lameter	ŭ	0	NOT G	(IH) O	Minor Di	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	60	NOT CO	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
^{1\$} 16-16 or 0.9375-16	N	2A	in. 0.8954 .8951	in. 0.8683 .8677	in. 0.8904 .8907	in. 0.8769 .8775	in. 0.93600 .93588	in. 0.92660 .92672	in. 0.9375 .9381	in. 0.8969 .8972	in. 0.9305 .9299	in. 0.9034 9031	in. 0.87000 87012	in. 0.88400 88388	28
		3A	8969. 8966.	.8698 .8692	.8932 .8935	.8797 .8803	.93750 .93738	.92810	.9375 .9381	.8969	.9289	.9018	.87000	.87830	38
¹⁵ /16-20 or 0.9375-20	UNEF	2A	.9036 2036	.8819	.8991 1000	.8883	.93610	.92800	.9375	.9050	.9326	.9109	.88300	.89500	2B
		3A	.9050 .9050	.0014 .8833 .8828	-9016 -9019 -9019	.8908 .8908 .8913	.93750 .93750 .93738	.92012 .92940 .92952	.9375 .9380	.9050 .9053	.9311 .9316 .9306	.9094 9094 9091	.88312 .88300 .88312	.89488 89120 89108	38
¹ \$16-28 or 0.9375-28	Ŋ	2A	.9131	.8976	.9091 1	.9014	.93630	.92980	.9375	.9143	.9350	.9195	00668.	00206.	28
		3 A	.9128 .9143	1798. 8988.	.9094 .9113	.9019 .9036	.93618 .93750	.92992 .93100	.9380 .9375	.9146 .9143	.9345 .9337	.9192 .9182	.89912	.90688	38
			.9140	.8983	.9116	.9041	.93738	.93112	.9380	.9146	.9332	.9179	.89912	.90498	
¹⁵ /16-32 or 0.9375-32	N	2A	.9161 .9158	.9026 .9021	.9123 9126	.9055	.93640 .93628	.93040 .93052	.9375 .9380	.9172 .9175	.9356 .9351	.9221 .9218	.90400	.91100 91088	28
		3 A	.9172 .9169	.9037 .9032	.9144 .9147	.9076 9081	.93750 .93738	.93150 .93162	.9375	.9172	.9344 .9339	.9209	.90400 .90412	.90940 .90928	38
1-8 or 1.000-8	UNC	1A	.9168 9164	.8627 8620	.9067 1709	.8796 8088	.99800 94788	.97550 97562	1.0000	.9188 9192	.9861 9854	.9320 9316	.86500 86512	00068. 89000	18
		2A	.9168	.8627	.9100	.8829	00866.	.98300	1.0000	.9188	.9817	.9276	.86500	00068.	2B
		3A	.9164 .9188 .9184	.8640 .8647 .8640	-9137 -9137 -9141	.0030 .8866 .8873	1.00000 1.00000 99988	.98500 .98500 .98512	1.0000	.9192 .9188 .9192	.9795 .9788	.9254 .9250	.86500 .86500 .86512	.87970 .87970 .87958	3B
1-12 or 1.000-12	UNF	1A	.9441	0806.	.9353	.9173	.99820	.98100	1.0000	.9459	.9934	.9573	.91000	92800	3
		2A	.9438 .9441	-90/4 	.9382 .9382	.9202	.99808 99820	.98680 98680	1.0006	.9462 .9459	9696.	.9535 .9535	21012. 00019.	.92/88	2B
		3A	.9438 9459	.9074 9098	.9385 .9415	.9208 9235	.99808 1.00000	.98692	1.0006	.9462 9459	0689. 7877	9532	.91012 91000	.92788 91980	38
		5	.9456	.9092	.9418	.9241	88666.	.98872	1.0006	.9462	.9871	.9513	.91012	.91968	3
1-16 or 1.000-16	N	2A .	.9579 0576	.9308	.9529 9532	.9394 0400	.99850 85820	.98910 08022	1.0000	.9594 9597	.9930	.9659 0656	.93200	.94600 04588	2B
		3A	.9594 .9591	.9323 .9317	.9557 .9560	.9422 .9428	1.00000 99988	.99060 99072	1.0006	.9594 .9597		.9640 .9640	.93200 .93212	.94080 .94068	38
			-												

, 2A, 3A, 1B, 2B, AND 3B	ONT'D)
₹	ũ
CLASSES	S OF SIZE
SERIES,	- LIMIT
õ	
THREA	IREADS
0	Ē
FOR STANDAR	INIFIED SCREW
ES	-
GAG	
ABLE 10	

			;												
				Ğ	ges for Ex	ternal Thr	eads			Ğ	ges for Int	ternal Thr	reads		
				X Threa	d Gages) nicla 7	acree for		X Threa	d Gages		7 nicla 7	Trate for	
			Ū	0	NOT G	0 (10)	Major D	iameter	3	0	NOTC	(IH) O		Jameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	9	NOI 00	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOT CO	Class
-	2	3	4	s	و	7	8	6	10	11	12	13	14	15	16
1-20 or 1.000-20	UNEF	2A 3A	in. 0. 966 1 .9658 .9675 .9675	in. 0.9444 .9439 .9458	in. 0.9616 .9619 .9641	in. 0.9508 .9513 .9533 9533	in. 0.99860 .99848 1.00000	in. 0.99050 .99062 .99190	in. 1.0000 1.00005 1.00005	in. 0.9675 .9678 .9675	in. 0.9951 .9946 .9936	in. 0.9734 .9731 .9719 .9716	in. 0.94600 .94612 .94600 .94600	in. 0.9 5 700 .95688 .95370	3B 2B
1-28 or 1.000-28	Z,	2A 3A	.9756 .9753 .9768 .9768	.9601 .9596 .9613 .9608	.9716 .9719 .9738 .9741	.9639 .9644 .9661 .9666	.99880 .99868 1.00000	.99230 .99242 .99350 .99362	1.0000 1.0005 1.0000 1.0000	.9768 .9771 .9768 .9768	.9975 .9970 .9962 .9957	.9820 .9817 .9807 .9804	.96100 .96112 .96100 .96110	.97000 .96988 .96760 .96748	2B 3B
1-32 or 1.000-32	z	2A 3A	.9786 .9783 .9797 .9794	.9651 .9646 .9662 .9657	.9748 .9751 .9769 .9772	.9680 .9685 .9701 .9706	99890 99878 1.00000 1.09988	.99290 .99302 .99400 .99412	1.0000 1.0005 1.0000 1.0000	7979. 0086. 7979.	.9981 .9976 .9969 .9964	.9846 .9843 .9834 .9831	.96600 .96612 .96612 .96612	.97400 .97388 .97190 .97178	2B 3B
11/16-8 or 1.0625-8	Z	2A 3A	.9793 .9789 .9813 .9809	.9252 .9245 .9272 .9265	.9725 .9729 .9762 .9766	.9454 .9461 .9491 .9498	1.06050 1.06038 1.06238 1.06238	1.04550 1.04562 1.04750 1.04762	1.0625 1.0632 1.0632 1.0632	.9813 .9817 .9813 .9813	1.0443 1.0436 1.0421 1.0414	.9902 .9898 .9880 .9876	.92700 .92712 .92700 .92712	.95200 .95188 .94220 .94208	2B 3B
11/16-12 or 1.0625-12	Z C	2A 3A	1.0067 1.0064 1.0084 1.0081	.9706 .9700 .9723 .9717	1.0010 1.0013 1.0042 1.0045	.9830 .9836 .9862 .9868	1.06080 1.06068 1.06068 1.06250 1.06238	1.04940 1.04952 1.05110 1.05122	1.0625 1.0631 1.0631 1.0625 1.0631	1.0084 1.0087 1.0087 1.0087	1.0519 1.0513 1.0500 1.0494	1.0158 1.0155 1.0139 1.0136	.97200 .97212 .97200 .97212	.99000 .98988 .98230 .98218	2B 3B
11/16-16 or 1.0625-16	S	2A 3A	1.0204 1.0201 1.0219 1.0216	.9933 .9927 .9948 .9942	1.0154 1.0157 1.0182 1.0185	1.0019 1.0025 1.0047 1.0053	1.06100 1.06088 1.06250 1.06238	1.05160 1.05172 1.05310 1.05322	1.0625 1.0631 1.0625 1.0631	1.0219 1.0222 1.0219 1.0222	1.0555 1.0549 1.0539 1.0533	1.0284 1.0281 1.0268 1.0265	.99500 .99512 .99500 .99512	1.00900 1.00888 1.00330 1.00318	2B 3B
11/16-18 or 1.0625-18	UNEF	2A 3A	1.0250 1.0247 1.0264 1.0261	1.0009 1.0004 1.0023 1.0018	1.0203 1.0206 1.0228 1.0231	1.0083 1.0088 1.0108 1.0113	1.06110 1.06098 1.06250 1.06238	1.05240 1.05252 1.05380 1.05392	1.0625 1.0630 1.0625 1.0630	1.0264 1.0267 1.0264 1.0264	1.0567 1.0562 1.0551 1.0546	1.0326 1.0323 1.0310 1.0307	1.00200 1.00212 1.00200 1.00200	1.01500 1.01488 1.01050 1.01038	2B 3B
11⁄16-20 or 1.0625-20	Z C	2A 3A	1.0286 1.0283 1.0300 1.0297	1.0069 1.0064 1.0083 1.0078	1.0241 1.0244 1.0266 1.0269	1.0133 1.0138 1.0158 1.0163	1.06110 1.06098 1.06250 1.06238	1.05300 1.05312 1.05440 1.05440	1.0625 1.0630 1.0630 1.0630	1.0300 1.0303 1.0303 1.0300	1.0576 1.0571 1.0561 1.0556	1.0359 1.0356 1.0344 1.0341	1.00800 1.00812 1.00800 1.00800	1.02000 1.01988 1.01620 1.01608	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

(, AND 31	
V, 1B, 2B	
A, 2A, 3A	CONT'D)
CLASSES 1	OF SIZE (
SERIES, (- LIMITS
THREAD	HREADS -
STANDARD	D SCREW TH
GAGES FOR	UNIFIE
ABLE 10 (

~

				ۍ ا	iges for E	xternal Thr	reads			Ca	ges for Int	ternal Thr	eads		
		_		X Threa	id Gages) nield 7	Jages for		X Thread	l Gages				
	_		9	0	NOT G	0(10)	Major E	Viameter	Ŭ	0	NOT	O (HI)	Ainor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	ION CO	Class
-	2	3	4	5	و	~	8	6	10	=	12	13	14	15	16
11/16-28 or 1.0625-28	Z D	3A 2A	in. 1.0381 1.0378 1.0393	in. 1.0226 1.0238 1.0238	in. 1.0341 1.0344 1.0363	in. 1.0264 1.0286	in. 1.06130 1.06118 1.06250	in. 1.05480 1.05492 1.05600	in. 1.0625 1.0630 1.0625	in. 1.0393 1.0396 1.0393	in. 1.0600 1.0595 1.0587	in. 1.0445 1.0442 1.0432	in. 1.02400 1.02412 1.02400	in. 1.03200 1.03188 1.03010	2B 3B
			1.0390	1.0233	1.0366	1.0291	1.06238	1.05612	1.0630	1.0396	1.0582	1.0429	1.02412	1.02998	
11⁄8-7 or 1.125-7	UNC	1A 2A	1.0300 1.0296 1.0300	.9681 .9674 .9681	1.0191 1.0195 1.028	.9882 .9889 9919	1.12280 1.12268 1.12268	1.09820 1.09832 1.10640	1.1250 1.1257 1.1257	1.0322 1.0326 1.0326	1.1082 1.1075 1.1035	1.0463 1.0459 1.0416	.97000 .97012 .00020	00869. 88799.	18
		34	1.0326 1.0322 1.0318	.9674 .9703 .9696	1.0232 1.0268 1.0272	.9926 .9959 .9966	1.12268 1.12500 1.12488	1.10860 1.10860 1.10872	1.1257 1.1250 1.1257	1.0326 1.0322 1.0326	1.1028 1.1012 1.1005	1.0389	.97012 .97000 .97000	.98750 .98750 .98738	38
11⁄8-8 or 1.125-8	N C	2A 3A	1.0417 1.0413 1.0438 1.0434	9789. 9892. 9892.	1.0348 1.0352 1.0386 1.0390	1.0077 1.0084 1.0115 1.0122	1.12290 1.12278 1.12500 1.12488	1.10790 1.10802 1.11000 1.11012	1.1250 1.1257 1.1250 1.1250 1.1257	1.0438 1.0442 1.0442 1.0438 1.0442	1.1069 1.1062 1.1046 1.1039	1.0528 1.0524 1.0505 1.0501	.99000 .99012 .99000 .99012	1.01500 1.01488 1.00470 1.00458	2B 3B
1/8-12 or 1.125-12	J.	1A 2A 3A	1.0691 1.0688 1.0691 1.0688 1.0709 1.0706	1.0330 1.0324 1.0330 1.0334 1.0348 1.0348	1.0601 1.0604 1.0631 1.0634 1.0664 1.0667	1.0421 1.0427 1.0451 1.0457 1.0484 1.0484	1.12320 1.12308 1.12308 1.12308 1.12308 1.12500 1.12488	1.10600 1.10612 1.11180 1.11192 1.11360 1.11372	1.1250 1.1256 1.1250 1.1250 1.1250 1.1250	1.0709 1.0712 1.0709 1.0709 1.0709 1.0712	1.1187 1.1181 1.1148 1.1148 1.1129 1.1129	1.0826 1.0823 1.0787 1.0784 1.0768 1.0768	1.03500 1.03512 1.03500 1.03500 1.03512 1.03512	1.05300 1.05288 1.05300 1.05288 1.04480 1.04468	18 28 38
1/8-16 or 1.125-16	N	2A 3A	1.0829 1.0826 1.0844 1.0841	1.0558 1.0552 1.0573 1.0567	1.0779 1.0782 1.0807 1.0810	1.0644 1.0650 1.0672 1.0678	1.12350 1.12338 1.12500 1.12488	1.11410 1.11422 1.11560 1.11572	1.1250 1.1256 1.1256 1.1256	1.0844 1.0847 1.0847 1.0847	1.1180 1.1174 1.1164 1.1158	1.0909 1.0906 1.0893 1.0890	1.05700 1.05712 1.05700 1.05712	1.07100 1.07088 1.06580 1.06568	2B 3B
1/8-18 or 1.125-18	UNEF	2A 3A	1.0875 1.0872 1.0889 1.0886	1.0634 1.0629 1.0648 1.0643	1.0828 1.0831 1.0853 1.0856	1.0708 1.0713 1.0733 1.0738	1.12360 1.12348 1.12500 1.12488	1.11490 1.11502 1.11630 1.11642	1.1250 1.1255 1.1255 1.1250 1.1255	1.0889 1.0892 1.0889 1.0889	1.1192 1.1187 1.1187 1.1176 1.1171	1.0951 1.0948 1.0935 1.0932	1.06500 1.06512 1.06512 1.06500 1.06512	1.07800 1.07788 1.07788 1.07300 1.07288	2B 3B
1½-20 or 1.125-20	S	2A 3A	1.0911 1.0908 1.0925 1.0922	1.0694 1.0689 1.0708 1.0703	1.0866 1.0869 1.0891 1.0894	1.0758 1.0763 1.0783 1.0788	1.12360 1.12348 1.12500 1.12488	1.11550 1.11562 1.11690 1.11702	1.1250 1.1255 1.1250 1.1250	1.0925 1.0928 1.0925 1.0928	1.1201 1.1196 1.1186 1.1181	1.0984 1.0981 1.0969 1.0966	1.07100 1.07100 1.07100 1.07100	1.08200 1.08188 1.07870 1.07858	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TABLE 10 GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				Ga	ges for Ex	ternal Thr	eads			G	ges for Int	ernal Thr	reads		
				X Threa	d Gages		7 Plain C	Jone for		X Threa	l Gages		7 alcia	and for	_
			Ŭ	0	NOT G	0 (00)	Major D	liameter	Ũ	0	NOT G	(IH) O	Minor D	vages for Viameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOT CO	Class
1	2	3	4	'n	9	7	8	6	10	11	12	13	14	15	16
11⁄8-28 or 1.125-28	3	2A	in. 1.1006	in. 1.0851	in. 1.0966	in. 1.0889	in. 1.12380	in. 1.11730	in. 1.1250	in. 1.1018	in. 1.1225	in. 1,1070	in. 1.08600	in. 1.09500	28
		VC	1.1003	1.0846	1.0969	1.0894	1.12368	1.11742	1.1255	1.1021	1.1220	1.1067	1.08612	1.09488	; ;
		¥r	1.1015	1.0858	1.0991	1.0916	1.12488	1.11862	1.1255	1.1016	1.1212	1.1054	1.08600	1.09248	¥
1¥16-8 or 1.1875-8	N N	2A	1.1042	1.0501	1.0975	1.0701 1.0708	1.18540 1.18528	1.17040	1.1875	1.1063 1.1067	1.1695 1.1688	1.1154	1.05200	1.07700 1.07688	2B
		3A	1.1063	1.0522	1.1011	1.0740	1.18738	1.17262	1.1875	1.1063 1.1067	1.1672 1.1665	1.1131	1.05200 1.05212	1.06708	38
1¥16-12 or 1.1875-12	Ŋ	2A	1.1317	1.0956 1.0956	1.1259	1.1079 1.1085	1.18580 1.18560	1.17440	1.1875	1.1334	1.1770	1.1409	1.09700	1.11500	28
		3 A	1.1334	1.0967	1.1294 1.1294	11111	1.18738	1.17610	1.1875	1.1334	1.1745	1.1390	1.09700 1.09700 1.09712	1.10730	38
1¥16-16 or 1.1875-16	Ŋ	2A	1.1454	1.1183	1.1403 1.1406	1.1268	1.18600 1.18588	1.17660	1.1875	1.1469 1.1472	1.1806	1.1535	1.12000	1.13400 1.13388	2B
		3 A	1.1469 1.1466	1.1198	1.1434	1.1296	1.18738	1.17822	1.1875	1.1469 1.1472	1.1790	1.1516	1.12000	1.12830	38
1¥16-18 or 1.1875-18	UNEF	2A	1.1499 1.1496	1.1258	1.1450 1.1453	1.1330	1.18600	1.17730	1.1875 1.1880	1.1514	1.1818 1 1813	1.1577	1.12700	1.14000 1.13988	2B
		3A	1.1514	1.1273	1.1478 1.1481	1.1358	1.18738	1.17880	1.1875	1.1514	1.1802	1.1561	1.12700	1.13538	38
1¥16-20 or 1.1875-20	S	2A	1.1536 1.1533	1.1319 1.1314	1.1489 1.1492	1.1381 1.1386	1.18610 1.18598	1.17800 1.17812	1.1875 1.1880	1.1550 1.1553	1.1828 1.1823	1.1611 1.1608	1.13300 1.13312	1.14500 1.14488	2B
		3 A	1.1550 1.1547	1.1333 1.1328	1.1515 1.1518	1.1407 1.1412	1.18750 1.18738	1.17940 1.17952	1.1875 1.1880	1.1550 1.1553	1.1812 1.1807	1.1595 1.1592	1.13300	1.14120 1.14108	38
1¥16-28 or 1.1875-28	z	2A	1.1631 1.1628	1.1476 1.1471	1.1590 1.1593	1.1513 1.1518	1.18630 1.18618	1.17980 1.17992	1.1875 1.1880 -	1.1643 1.1646	1.1851 1.1846	1.1696 1.1693	1.14900 1.14912	1.15700 1.15688	2B
		3A	1.1643 1.1640	1.1488 1.1483	1.1612 1.1615	1.1535 1.1540	1.18750 1.18738	1.18100 1.18112	1.1875 1.1880	1.1643 1.1646	1.1838 1.1833	1.1683 1.1680	1.14900 1.14912	1.15510 1.15498	3B
114-7 or 1.250-7	UNC	4٢	1.1550	1.0931	1.1439	1.1130	1.24780	1.22320	1.2500	1.1572	1.2335	1.1716	1.09500	1.12300	1B
		2A	1.1550	1.0931	1.1476 1.1476	1.1167	1.24780	1.23140	1.2500	1.1572	1.2287	1.1/12	1.09500	1.12288 1.12300	2B
		3A	1.1546 1.1572	1.0924 1.0953	1.1480 1.1517	1.1174 1.1208	1.24768 1.25000	1.23152 1.23360	1.2507 1.2500	1.1576 1.1572	1.2280 1.2263	1.1664 1.1644	1.09512 1.09500	1.12288 1.11250	3B
			1.1568	1.0946	1.1521	1.1215	1.24988	1.23372	1.2507	1.1576	1.2256	1.1640	1.09512	1.11238	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

			N	FIED SC	REW TH	READS	— LIMIT	S OF SIZ	E (CON	ľ'D)					
				Ga	ges for Ex	ternal Thr	eads			Ca	ges for Int	ernal Thr	eads		
				X Threa	d Gages) nicla 7	Same for		X Thread	l Gages				
			9	0	NOT G	0 (LO)	Major D)iameter	Ğ	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NO1 CO	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
174-8 or 1.250-8	N	2A	in. 1.1667	in. 1.1126	in. 1.1597	in. 1.1326	in. 1.24790	in. 1.23290	in. 1.2500	in. 1.1688	in. 1.2321	in. 1.1780	in. 1.11500	in. 1.14000	R
		3A	1.1663 1.1688	1.1119 1.1147	1.1601 1.1635	1.1333 1.1364	1.24778 1.25000	1.23302	1.2500	1.1692 1.1688	1.2314	1.1776 1.1757	1.11512	1.13988	B.
			1.1684	1.1140	1.1639	1.1371	1.24988	1.23512	1.2507	1.1692	1.2291	1.1753	1.11512	1.12958	2
1¥+12 or 1.250-12	UNF	1A	1.1941 1 1938	1.1580 1.1574	1.1849 1 1852	1.1669 1.1675	1.24820 1 24808	1.23100	1.2500	1.1959	1.2440 1.2434	1.2079	1.16000	1.17800 1.17788	8
		2A	1.1941	1.1580	1.1879	1.1699	1.24820	1.23680	1.2500	1.1959	1.2400	1.2039	1.16000	1.17800	2B
		3 A	1.1938 1.1959 1.1966	1.1598 1.1598	1.1913 1.1913 1.1015	1.1733	1.25000	1.23860	1.2500	1.1962 1.1959 1.1062	1.2380	1.2036	1.16000	1.1//88 1.16980	38
			9661.1	7661.1	0161.1	6671.1		1.238/2	90027-1	1.1902	1.23/4	91.07.1	1.16012	1.16968	
11⁄4-16 or 1.250-16	N	2 A	1.2079	1.1808 1 1802	1.2028	1.1893	1.24850 1.24838	1.23910	1.2500	1.2094	1.2431	1.2160	1.18200	1.19600 1.19588	2B
		3 A	1.2094	1.1823	1.2056	1.1921	1.25000 1.24988	1.24060	1.2500	1.2094	1.2415	1.2144	1.18200	1.19068	38
11/4-18 or 1.250-18	UNEF	2A	1.2124	1.1883	1.2075	1.1955	1.24850	1.23980	1.2500	1.2139	1.2443	1.2202	1.19000	1.20300	2B
		3A	1.2121 1.2139	1.1878 1.1898	1.2078 1.2103	1.1960	1.24838 1.25000	1.23992 1.24130	1.2505 1.2500	1.2142 1.2139	1.2438 1.2427	1.2199	1.19012	1.20288	3B
		_	1.2136	1.1893	1.2106	1.1988	1.24988	1.24142	1.2505	1.2142	1.2422	1.2183	1.19012	1.19788	
1¼+-20 or 1.250-20	N	2 A	1.2161 1.2158	1.1944	1.2114	1.2006	1.24860	1.24050	1.2500	1.2175	1.2453 1 2448	1.2236	1.19600	1.20700	2 B
		3 A	1.2175	1.1958	1.2140	1.2032	1.25000	1.24190	1.2500	1.2175	1.2437	1.2220	1.19600	1.20358	38
114-28 or 1.250-28	N	2A	1.2256	1.2101	1.2215 1.2218	1.2138	1.24880 1.24868	1.24230	1.2500	1.2268	1.2476	1.2321	1.21100	1.22000	28
		3 A	1.2268	1.2108	1.2240	1.2160	1.25000	1.24350 1.24350 1.24362	1.2505	1.2268	1.2463	1.2308	1.21100	1.21760 1.21760 1.21748	38
1¥16-8 or 1.3125-8	NU	2A	1.2292 1.2288	1.1751	1.2221	1.1950	1.31040 1.31028	1.29540 1.29552	1.3125	1.2313	1.2946	1.2405	1.17700	1.20200	2B
		3A	1.2313	1.1772	1.2264	1.1989	1.31250	1.29762	1.3125	1.2313	1.2923	1.2382	1.17712	1.19208	38

TABLE 10 CAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

TABLE 10 GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				Gai	ges for Ex	ternal Thr	eads			Ga	ges for Ini	ternal Thr	eads		
				X Threa	d Gages					X Threac	l Gages				
			Ŭ	0	NOT G	0 (10)	Z Major D	iameter	. .	0	NOT G	(IH) O	Ainor D	ages for iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	GO	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	0 <u>9</u>	ION OS	Class
1	2	3	4	5.	9	7	8	6	10	=	12	13	4	15	16
1¥ı6-12 or 1.3125-12	N <u>n</u>	2A 3A	in. 1.2567 1.2564 1.2584	in. 1.2206 1.2200 1.2223	in. 1.2509 1.2512 1.2541	in. 1.2329 1.2335 1.2361	in. 1.31080 1.31068 1.31250	in. 1.29940 1.29952 1.30110	in. 1.3125 1.3131 1.3125	in. 1.2584 1.2587 1.2584	in. 1.3020 1.3014 1.3001	in. 1.2659 1.2656 1.2640	in. 1.22200 1.22212 1.22200	in. 1.24000 1.23988 1.23230	38 28
			1.2581	1.2217	1.2544	1.2367	1.31238	1.30122	1.3131	1.2587	1.2995	1.2637	1.22212	1.23218	
1 \$ 16-16 or 1.3125-16	N N	2A	1.2704 1.2701	1.2433 1.2427	1.2653 1.2656	1.2518 1.2524	1.31100 1.31088	1.30160 1.30172	1.3125 1.3131	1.2719 1.2722	1.3056 1.3050	1.2785 1.2782	1.24500	1.25900 1.25888	28
		3A	1.2719 1.2716	1.2448 1.2442	1.2681 1.2684	1.2546 1.2552	1.31250 1.31238	1.30310	1.3125 1.3131	1.2719 1.2722	1.3040	1.2769 1.2766	1.24500	1.25330 1.25318	38
1¥16-18 or 1.3125-18	UNEF	2A	1.2749	1.2508	1.2700	1.2580	1.31100	1.30230	1.3125	1.2764	1.3068	1.2827	1.25200	1.26500	2B
		3A	1.2764 1.2764 1.2761	1.2523 1.2523 1.2518	1.2728 1.2728 1.2731	1.2585 1.2608 1.2613	1.31088 1.31250 1.31238	1.30242 1.30380 1.30392	1.3130 1.3125 1.3130	1.2767 1.2764 1.2767	1.3063 1.3052 1.3047	1.2824 1.2811 1.2808	1.25212 1.25200 1.25212	1.26488 1.26050 1.26038	3B
1¥16-20 or 1.3125-20	Ŋ	2A	1.2786	1.2569 1.2564	1.2739	1.2631	1.31110	1.30300	1.3125	1.2800	1.3078	1.2861	1.25800	1.27000	28
		3A	1.2797	1.2583	1.2765 1.2768	1.2657 1.2662 1.2662	1.31250 1.31250 1.31238	1.30440	1.3125 1.3130	1.2803	1.3062 1.3057	1.2845 1.2842	1.25800	1.26620 1.26620 1.26608	38
1¥16-28 or 1.3125-28	N N	2A	1.2881 1.2881	1.2726	1.2840 1.2843	1.2763 1.2768	1.31130 1 31118	1.30480	1.3125	1.2893 1.2896	1.3101 1 3096	1.2946 1.2943	1.27400	1.28200	28
		3A	1.2893	1.2738	1.2865	1.2785	1.31250 1.31238	1.30600	1.3125	1.2896	1.3083	1.2930	1.27400	1.28010 1.28010 1.27998	38
1 3 %-6 or 1.375-6	UNC UNC	٩L	1.2643	1.1921	1.2523	1.2162	1.37260 1.37248	1.34530	1.3750 1.3758	1.2667 1.2671	1.3544	1.2822 1.2818	1.19500	1.22500	18
		2A	1.2643	1.1921	1.2563	1.2202	1.37260	1.35440	1.3750	1.2667	1.3493	1.2771	1.19500	1.22500	2B
		3 A	1.2663	1.1945	1.2607	1.2254	1.37488	1.35692	1.3750 1.3758	1.2667	1.3467 1.3459	1.2745 1.2745 1.2741	1.19500	1.21460 1.21460 1.21448	38
1¥e-8 or 1.375-8	N	2A	1.2916	1.2375	1.2844 1.2848	1.2573	1.37280	1.35780	1.3750	1.2938	1.3572 1.3566	1.3031	1.24000	1.26500	28
		34	1.2938	1.2397	1.2884	1.2620	1.37488	1.36012	1.3750	1.2942	1.3549 1.3542	1.3008 1.3008 1.3004	1.24000	1.25470	3B
1 3 /8-12 or 1.375-12	UNF	1A	1.3190	1.2829	1.3096	1.2916	1.37310	1.35590	1.3750	1.3209	1.3693	1.3332	1.28500	1.30300	18
		40	1.3187	1.2823	1.3099	1.2922	1.37298	1.35602	1.3756	1.3212	1.3687	1.3329	1.28512	1.30288	ģ
		5	1.3187	1.2823	1.3130	1.2953	1.37298	1.36182	1.3756	1.3212	1.3646	1.3288	1.28512	1.30288	97
		34	1.3209 1.3206	1.2848 1.2842	1.3162 1.3165	1.2982 1.2988	1.37500 1.37488	1.36360 1.36372	1.3750 1.3756	1.3209 1.3212	1.3631 1.3625	1.3270 1.3267	1.28500 1.28512	1.29480 1.29468	38

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

~	
36	
Z	
Υ.	
28	-
B,	
÷	_
. 3	5
2	Ž
ŕ	20
S1	Ĕ
SSE	SIZ
Z	ð
S	S
ES	3
E	
õ	
E	DS
Ħ	EA
E	H
R	Ž
D	NEV.
¥	SCI
ST	0
SR	FIE
F	Z
GES	-
X	
U	
10	
3LE	
Z	

				Ğ	ges for Ex	ternal Thr	eads			Gag	es for Inte	ernal Thre	eads			
				X Threa	d Gages		7 Plain C	are for		X Thread	Gages		7 Plain C	To a series		
			Ğ	0	NOT G	0 (10)	Major D	iameter	Ğ	0	NOT GO	(IH) C	Minor D	iameter		
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	9	NOI CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NO1 CO	Class	
-	2	3	4	5	9	7	8	6	10	ii	12	13	14	15	16	
1 } %-16 or 1.375-16	Š	24	in. 1.3329	in. 1.3058	in. 1.3278	in. 1.3143	in. 1.37350	in. 1.36410	in. 1.3750	in. 1.3344	in. 1.3681	in. 1.3410	in. 1.30700	in. 1.32100	28	
		34	1.3326	1 3052	1.3281	1.3149 1 3171	1.37338	1.36422	1.3756 1 3750	1.3347	1.3665	1.3394	1.30712	1.32088	38	
		Ś	1.3341	1.3067	1.3309	1.3177	1.37488	1.36572	1.3756	1.3347	1.3659	1.3391	1.30712	1.31568	8	
1∛8-18 or 1.375-18	UNEF	2A	1.3374	1.3133	1.3325	1.3205	1.37350	1.36480	1.3750	1.3389	1.3693 1.3688	1.3452	1.31500	1.32800 1.32880	28	
		ЗА	1.3389	1.3148	1.3356	1.3238	1.37488 1.37488	1.36630	1.3750 1.3755	1.3389 1.3392	1.3672	1.3436	1.31500	1.32300	3B	
1 3 8-20 or 1.375-20	N	2A	1.3411	1.3194	1.3364	1.3256	1.37360	1.36550	1.3750	1.3425	1.3703	1.3486	1.32100	1.33200	2B	
			1.3408	1.3189	1.3367	1.3261	1.37348	1.36562	1.3755	1.3428	1.3698	1.3483	1.32112	1.33188	ę	
		3 A	1.3425 1.3422	1.3208 1.3203	1.3390 1.3393	1.3282 1.3287	1.37500 1.37488	1.36690 1.36702	1.3750	1.3425 1.3428	1.3687 1.3682	1.3467	1.32100	1.32870 1.32858	38	
1 } 8-28 or 1.375-28	CN	2A	1.3506	1.3351	1.3465	1.3388	1.37380	1.36730	1.3750	1.3518	1.3726	1.3571	1.33600	1.34500	2 B	
		3A	1.3518	1.3363	1.3487	1.3410	1.37500	1.36850	1.3750	1.3518	1.3713	1.3558	1.33600	1.34260	38	
			1.3515	1.3358	1.3490	1.3415	1.37488	1.36862	1.3755	1.3521	1.3708	1.3555	1.33612	1.34248		
17/16-6 or 1.4375-6	N	2A	1.3268	1.2546	1.3188 1.3192	1.2827	1.43510	1.41690	1.4375	1.3292	1.4118 1.4110	1.3396	1.25700	1.28800	2 B	
		34	1.3292 1.3288	1.2570	1.3232 1.3236	1.2871	1.43750 1.43738	1.41930 1.41942	1.4375	1.3292 1.3296	1.4092 1.4084	1.3370 1.3366	1.25700 1.25712	1.27710 1.27698	38	
17/16-8 or 1.4375-8	CN	2A	1.3541	1.3000	1.3469	1.3198	1.43530	1.42030	1.4375	1.3563	1.4198	1.3657	1.30200	1.32700	2B	
		3A	1.3563	1.3022	1.3509	1.3238 1.3238	1.43750	1.42042 1.42250 1.42250	1.4302 1.4375 1.4382	1.3563	1.4175 1.4175 1.4168	1.3634	1.30200	1.31720 1.31720	38	
			FCCC.1		CI CC-1	C+7C'I	00/01-1	70774-1	7001-1	/0001	0011-1	2000	717001	00/10/1		
17/16-12 or 1.4375-12	N	2 A	1.3816	1.3455	1.3757	1 3583	1.43570 1.43558	1.42430	1.4375 1.4381	1.3834	1.4271 1.4265	1.3910 1 3907	1.34700	1.36500 1.36488	2B	
		3A	1.3834	1.3467	1.3793	1.3610	1.43750	1.42610	1.4375	1.3834 1.3837	1.4252 1.4246	1.3891 1.3888	1.34700 1.34712	1.35730	38	
17/16-16 or 1 4375-16	N	2A	1 3953	1.3682	1.3901	1.3766	1.43590	1.42650	1.4375	1.3969	1.4308	1.4037	1.37000	1.38400	28	
	}		1.3950	1.3676	1.3904	1.3772	1.43578	1.42662	1.4381	1.3972	1.4302	1.4034	1.37012	1.38388		
		34	1.3969	1.3698 1.3692	1.3930	1.3795 1.3801	1.43750 1.43738	1.42810 1.42822	1.4375 1.4381	1.3969 1.3972	1.4291 1.4285	1.4020 1.4017	1.37000 1.37012	1.37830 1.37818	38	
				Gag	es for Ext	ernal Thre	eads			Gag	es for Int	ernal Thr	eads			l
------------------------------------	-----------------------	----------------	--	--	--	--	---	---	--	--	--	--	--	---	----------------	----------------
				X Thread	Gages					X Thread	Gages		•			JNIF
			3		NOT G	0 (01)	Z Plain G Major D	iages for iameter	3		NOT G	(IH) C	Z Plain (Minor D	iages for iameter		IED I
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	9	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	60	NOT GO	Class	NCH SC
-	2	3	4	s	9	7	8	6	10	11	12	13	14	15	16	CHEW
17⁄16-18 or 1.4375-18	UNEF	2A 3A	in. 1.3999 1.3996 1.4014	in. 1.3758 1.3753 1.3773	in. 1.3949 1.3952 1.3977	in. 1.3829 1.3834 1.3857	in. 1.43600 1.43588 1.43750	in. 1.42730 1.42742 1.42880	in. 1.4375 1.4380 1.4380	in. 1.4014 1.4017 1.4017	in. 1.4320 1.4315 1.4303	in. 1.4079 1.4076 1.4062	in. 1.37700 1.37712 1.37700	in. 1.39000 1.38988 1.38550	2B 3B	/ THREADS
			1.4011	1.3768	1.3980	1.3862	1.43738	1.42892	1.4380	1.4017	1.4298	1.4059	1.37712	1.38538	2	
1 ⁷ /16-20 or 1.4375-20	N	2A 3A	1.4036 1.4033 1.4050 1.4047	1.3819 1.3814 1.3833 1.3828	1.3988 1.3991 1.4014 1.4017	1.3880 1.3885 1.3906 1.3911	1.43610 1.43598 1.43750 1.43738	1.42800 1.42812 1.42940 1.42952	1.4375 1.4380 1.4380 1.4375 1.4380	1.4050 1.4053 1.4050 1.4053	1.4329 1.4324 1.4313 1.4308	1.4112 1.4109 1.4096 1.4093	1.38300 1.38312 1.38300 1.38312	1.39500 1.39488 1.39120 1.39108	38 28	
17/16-28 or 1.4375-28	N N	2A 3A	1.4130 1.4127 1.4143 1.4140	1.3975 1.3970 1.3988 1.3983	1.4088 1.4091 1.4112 1.4115	1.4011 1.4016 1.4035 1.4040	1.43620 1.43608 1.43750 1.43738	1.42970 1.42982 1.43100 1.43112	1.4375 1.4380 1.4375 1.4380 1.4380	1.4143 1.4146 1.4146 1.4143 1.4146	1.4353 1.4348 1.4339 1.4334	1.4198 1.4195 1.4184 1.4181	1.39900 1.39912 1.39900 1.39912	1.40700 1.40688 1.40510 1.40510	2B 3B	
1}2-6 or 1.500-6	UNC	1A 2A 3A	1.3893 1.3889 1.3889 1.3893 1.3893 1.3917 1.3913	1.3171 1.3163 1.3161 1.3163 1.3163 1.3163 1.3187	1.3772 1.3776 1.3812 1.3816 1.3856 1.3860	1.3411 1.3419 1.3451 1.3459 1.3495 1.3503	1.49760 1.49748 1.49760 1.49748 1.49748 1.50000 1.49988	1.47030 1.47042 1.47940 1.47952 1.48180 1.48192	1.5000 1.5008 1.5000 1.5000 1.5000 1.5000	1.3917 1.3921 1.3917 1.3917 1.3921 1.3921	1.4797 1.4789 1.4744 1.4736 1.4718 1.4710 1.4710	1.4075 1.4071 1.4022 1.4018 1.3996 1.3992	1.32000 1.32012 1.32000 1.32012 1.32012 1.32012	1.35000 1.34988 1.35000 1.34988 1.33960 1.33948	1B 2B 3B	
1½-8 or 1.500-8	S	2A 3A	1.4166 1.4162 1.4188 1.4188	1.3625 1.3618 1.3647 1.3640 1.3640	1.4093 1.4097 1.4133 1.4137	1.3822 1.3829 1.3862 1.3869	1.49780 1.49768 1.50000 1.49988	1.48280 1.48292 1.48500 1.48512	1.5000 1.5007 1.5000 1.5007	1.4188 1.4192 1.4188 1.4188 1.4192	1.4824 1.4817 1.4800 1.4793	1.4283 1.4279 1.4259 1.4255	1.36500 1.36512 1.36500 1.36512	1.39000 1.38988 1.37970 1.37958	2B 3B	
1}2-12 or 1.500-12	UN N	1A 2A 3A	1.4440 1.4437 1.4437 1.4440 1.4437 1.4459 1.4459	1.4079 1.4073 1.4079 1.4073 1.4098 1.4092	1.4344 1.4347 1.4376 1.4379 1.4379 1.4411 1.4414	1.4164 1.4170 1.4196 1.4202 1.4231 1.4237	1.49810 1.49798 1.49810 1.49798 1.50000 1.49988	1.48090 1.48102 1.48670 1.48682 1.48860 1.48860 1.48872	1.5000 1.5006 1.5006 1.5006 1.5006 1.5006	1.4459 1.4462 1.4459 1.4462 1.4462 1.4462	1.4945 1.4939 1.4903 1.4897 1.4883 1.4883 1.4877	1.4584 1.4581 1.4542 1.4539 1.4539 1.4519	1.41000 1.41012 1.41000 1.41000 1.41012 1.41012	1.42800 1.42788 1.42788 1.42788 1.42788 1.41980 1.41968	1B 2B 3B	IERICAN NATION
1 <i>1</i> /2-16 or 1.500-16	Z N	3A 3A	1.4578 1.4575 1.4594 1.4591	1.4307 1.4301 1.4301 1.4323 1.4317	1.4526 1.4529 1.4555 1.4558	1.4391 1.4397 1.4420 1.4426	1.49840 1.49828 1.50000 1.49988	1.48900 1.48912 1.49060 1.49072	1.5000 1.5006 1.5000 1.5000	1.4594 1.4597 1.4594 1.4594	1.4933 1.4927 1.4916 1.4910	1.4662 1.4659 1.4645 1.4645 1.4642	1.43200 1.43212 1.43200 1.43200	1.44600 1.44588 1.44080 1.44068	2B 3B	AL STANDAN
1 <i>1</i> /2-18 or 1.500-18	UNEF	3A 3A	1.4624 1.4621 1.4639 1.4636	1.4383 1.4378 1.4398 1.4398	1.4574 1.4577 1.4602 1.4605	1.4454 1.4459 1.4482 1.4487	1.49850 1.49838 1.50000 1.49988	1.48980 1.48992 1.49130 1.49142	1.5000 1.5005 1.5000 1.5005	1.4639 1.4642 1.4639 1.4642	1.4945 1.4940 1.4928 1.4923	1.4704 1.4701 1.4687 1.4684	1.44000 1.44012 1.44000 1.44012	1.45200 1.45188 1.44800 1.44788	2B 3B	U

GAGES AND GAGING FOR UNIFIED INCH SCREW THREAD

ANSI/ASME B1.2-1983 AMERICAN NATIONAL STANDARD Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

8, 2 B, AND 3 B	
ASSES 1A, 2A, 3A, 1I	F SIZE (CONT'D)
THREAD SERIES, CL	READS — LIMITS O
GES FOR STANDARD	UNIFIED SCREW TH
TABLE 10 GA	

				Ga	ges for Ex	ternal Thr	eads			Gag	ges for Int	ernal Thr	reads		
				X Threa	d Gages		7 Plain C	age for		X Thread	l Gages		7 Plain G	ages for	
			Ū	0	NOT G	0 (01)	Major D	Diameter	3	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	00	NOT GO	Class
-	2	3	4	2	و	7	8	6	10	1	12	13	14	15	16
1½-20 or 1.500-20	Z C	2A	in. 1.4661	in. 1.4444	in. 1.4613	in. 1.4505	in. 1.49860	in. 1.49050	in. 1.5000	in. 1.4675	in. 1.4954	in. 1.4737	in. 1.44600	in. 1.45700	2B
		3A	1.4658 1.4675 1.4672	1.4439 1.4458 1.4453	1.4616 1.4639 1.4642	1.4510 1.4531 1.4536	1.49848 1.50000 1.49988	1.49062 1.49190 1.49202	1.5005 1.5000 1.5005	1.4675 1.4675 1.4678	1.4949 1.4938 1.4933	1.4/34 1.4721 1.4718	1.44612 1.44600 1.44612	1.45370 1.45370 1.45358	38
1 <i>1</i> /2-28 or 1.500-28	z	2A 3A	1.4755 1.4752 1.4768 1.4768	1.4600 1.4595 1.4613 1.4608	1.4713 1.4716 1.4737 1.4737 1.4740	1.4636 1.4641 1.4660 1.4665	1.49870 1.49858 1.50000 1.49988	1.49220 1.49232 1.49350 1.49362	1.5000 1.5005 1.5000 1.5000	1.4768 1.4771 1.4771 1.4768 1.4771	1.4978 1.4973 1.4964 1.4959	1.4823 1.4820 1.4809 1.4806	1.46100 1.46112 1.46112 1.46100 1.46112	1.47000 1.46988 1.46748 1.46748	2B 3B
1%16-6 or 1.5625-6	N N	2A 3A	1.4518 1.4513 1.4542 1.4537	1.3796 1.3788 1.3820 1.3812	1.4436 1.4441 1.4481 1.4486	1.4075 1.4083 1.4120 1.4128	1.56010 1.55994 1.56250 1.56234	1.54190 1.54206 1.54206 1.54446 1.54446	1.5625 1.5633 1.5633 1.5633 1.5633	1.4542 1.4547 1.4547 1.4542 1.4547	1.5370 1.5362 1.5344 1.5336	1.4648 1.4643 1.4622 1.4617	1.38200 1.38216 1.38200 1.38200 1.38216	1.41300 1.41284 1.40210 1.40194	2B 3B
1916-8 or 1.5625-8	z	2A 3A	1.4791 1.4786 1.4813 1.4808	1.4250 1.4243 1.4272 1.4265	1.4717 1.4722 1.4758 1.4763	1.4446 1.4453 1.4487 1.4494	1.56030 1.56014 1.56250 1.56234	1.54530 1.54546 1.54750 1.54766	1.5625 1.5632 1.5625 1.5632	1.4813 1.4818 1.4813 1.4818	1.5450 1.5443 1.5426 1.5419	1.4909 1.4904 1.4885 1.4880	1.42700 1.42716 1.42700 1.42700 1.42716	1.45200 1.45184 1.44220 1.44204	2B 3B
1%16-12 or 1.5625-12	Z S	2A 3A	1.5066 1.5062 1.5084 1.5080	1.4705 1.4699 1.4723 1.4717	1.5007 1.5011 1.5040 1.5044	1.4827 1.4833 1.4860 1.4866	1.56070 1.56054 1.56250 1.56234	1.54930 1.54946 1.55110 1.55126	1.5625 1.5631 1.5625 1.5631	1.5084 1.5088 1.5084 1.5088	1.5521 1.5515 1.5502 1.5496	1.5160 1.5156 1.5141 1.5137	1.47200 1.47216 1.47200 1.47200 1.47216	1.49000 1.48984 1.48230 1.48214	2B 3B
1916-16 or 1.5625-16	z	2A 3A	1.5203 1.5199 1.5219 1.5215	1.4932 1.4926 1.4948 1.4942	1.5151 1.5155 1.5180 1.5184	1.5016 1.5022 1.5045 1.5051	1.56090 1.56074 1.56250 1.56234	1.55150 1.55166 1.55310 1.55326	1.5625 1.5631 1.5625 1.5631	1.5219 1.5223 1.5229 1.5223	1.5558 1.5552 1.5541 1.5535	1.5287 1.5283 1.5283 1.5266	1.49500 1.49516 1.49500 1.49500 1.49516	1.50900 1.50884 1.50330 1.50314	2B 3B
1916-18 or 1.5625-18	UNEF	2A 3A	1.5249 1.5245 1.5264 1.5260	1.5008 1.5003 1.5023 1.5018	1.5199 1.5203 1.5227 1.5231	1.5079 1.5084 1.5107 1.5112	1.56100 1.56084 1.56250 1.56234	1.55230 1.55246 1.55380 1.55396	1.5625 1.5630 1.5625 1.5630	1.5264 1.5268 1.5268 1.5268	1.5570 1.5565 1.5553 1.5548	1.5329 1.5325 1.5312 1.5308	1.50200 1.50216 1.50200 1.50200 1.50216	1.51500 1.51484 1.51050 1.51034	38
1 % 16-20 or 1.5625-20	S	2A 3A	1.5286 1.5282 1.5300 1.5296	1.5069 1.5064 1.5083 1.5078	1.5238 1.5242 1.5264 1.5268	1.5130 1.5135 1.5156 1.5161	1.56110 1.56094 1.56250 1.56234	1.55300 1.55316 1.55440 1.55456	1.5625 1.5630 1.5625 1.5623	1.5300 1.5304 1.5304 1.5300	1.5579 1.5574 1.5563 1.5558	1.5362 1.5358 1.5346 1.5346	1.50800 1.50816 1.50800 1.50800	1.52000 1.51984 1.51620 1.51604	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

				Gaf	ges for Exi	ternal Thr	eads			Ga	ges for Int	ternal Thr	eads			
				X Thread	d Gages					X Threa	J Gages		7			
			9	0	NOT G	0 (10)	Major D	Jameter	Ğ	0	NOT G	(IH) O	Ainor D	iameter		.20
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	g	NOT GO	Class	
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	GREV
1			in.	i.	in.	in.	in.	'n.	Ŀ	.Ë	Ŀ.	. <u>e</u>	Ŀ	in.		•
1 3 8-6 or 1.625-6	Z D	2 A	1.5142	1.4420	1.5060	1.4699	1.62250	1.60430	1.6250	1.5167	1.5996	1.5274	1.44500	1.47500	2B	
	_	V C	1.5137	1.4412	1.5065	1.4707	1.62234	1.60446	1.6258	1.5172	1.5988	1.5269	1.44516	1.47484	Ę	
		Kn	1.5162	1.4437	1.5110	1.4752	1.62484	1.60696	1.6258	1.5172	1.5961	1.5242	1.44516	1.46460 1.46444	30	3
15%-8 or 1.625-8	Z C	2A	1.5416	1.4875	1.5342	1.5071	1.62280	1.60780	1.6250	1.5438	1.6076	1.5535	1.49000	1.51500	28	
			1.5411	1.4868	1.5347	1.5078	1.62264	1.60796	1.6257	1.5443	1.6069	1.5530	1.49016	1.51484	1	
		3 A	1.5438 1.5433	1.4897 1.4890	1.5382 1.5387	1.5111 1.5118	1.62500 1.62484	1.61000	1.6250 1.6257	1.5438 1.5443	1.6051 1.6044	1.5510 1.5505	1.49000 1.49016	1.50470 1.50454	38	
1 3 %-12 or 1.625-12	Ŋ	2A	1.5691	1.5330	1.5632	1.5452	1.62320	1.61180	1.6250	1.5709	1.6146	1.5785	1.53500	1.55300	28	
			1.5687	1.5324	1.5636	1.5458	1.62304	1.61196	1.6256	1.5713	1.6140	1.5781	1.53516	1.55284		
		34	1.5709	1.5348	1.5665	1.5485	1.62500	1.61360	1.6250	1.5709	1.6127	1.5766	1.53500	1.54480	3B	
			1.5/05	1.5342	1.5669	1.5491	1.62484	1.61376	1.6256	1.5713	1.6121	1.5762	1.53516	1.54464		
1 3 %-16 or 1.625-16	N	2 A	1.5828	1.5557	1.5776	1.5641	1.62340	1.61400	1.6250	1.5844	1.6183	1.5912	1.55700	1.57100	2B	
		• •	1.5824	1.5551	1.5780	1.5647	1.62324	1.61416	1.6256	1.5848	1.6177	1.5908	1.55716	1.57084	ę	
		ζ,	1.5840	1.5567	1.5809	1.5676	1.62484	1.61576	1.6256	1.5848	1.6160	1.5891	1.55716	1.56564	38	
1\$%-18 or 1.625-18	UNEF	2A	1.5874	1.5633	1.5824	1.5704	1.62350	1.61480	1.6250	1.5889	1.6195	1.5954	1.56500	1.57800	28	
			1.5870	1.5628	1.5828	1.5709	1.62334	1.61496	1.6255	1.5893	1.6190	1.5950	1.56516	1.57784		
		3A	1.5889 1.5885	1.5648 1.5643	1.5852	1.5732	1.62500 1.62484	1.61630 1.61646	1.6250 1.6255	1.5889 1.5893	1.6178	1.5937	1.56500	1.57300 1.57284	38	
1 ^{5/8} -20 or 1.625-20	n	2A	1.5911	1.5694	1.5863	1.5755	1.62360	1.61550	1.6250	1.5925	1.6204	1.5987	1.57100	1.58200	28	
			1.5907	1.5689	1.5867	1.5760	1.62344	1.61566	1.6255	1.5929	1.6199	1.5983	1.57116	1.58184		-1.1
		34	1.5925 1.5921	1.5708	1.5889 1.5893	1.5786	1.62500 1.62484	1.61690 1.61706	1.6250	1.5925	1.6188 1.6183	1.5967	1.57100	1.57870	38	
1 ¹ 1/16-6 or 1.6875-6	N C N	2A	1.5767	1.5045	1.5684	1.5323	1.68500	1.66680	1.6875	1.5792	1.6622	1.5900	1.50700	1.53800	28	
		34	1.5792	1.5070	1.5730	1.5369	1.68750	1.66930	1.6875	1.5792	1.6595	1.5873	1.50700	1.52710	38	~ 11
			1.5787	1.5062	1.5735	1.5377	1.68734	1.66946	1.6883	1.5797	1.6587	1.5868	1.50716	1.52694		
1 ¹ / ₁₆₋₈ or 1.6875-8	CN	2A	1.6041	1.5500	1.5966	1.5695	1.68530	1.67030	1.6875	1.6063	1.6701	1.6160	1.55200	1.57700	2B	2.31
			1.6036	1.5493	1.5971	1.5702	1.68514	1.67046	1.6882	1.6068	1.6694	1.6155	1.55216	1.57684	!	
		34	1.6063 1.6058	1.5522 1.5515	1.6007 1.6012	1.5736 1.5743	1.68750 1.68734	1.67250 1.67266	1.6875 1.6882	1.6063 1.6068	1.6677 1.6670	1.6136 1.6131	1.55200 1.55216	1.56720 1.56704	38	DARL
1 ¹ / ₁₆ -12 or 1.6875-12	N	2A	1.6316	1.5955	1.6256	1.6076	1.68570	1.67430	1.6875	1.6334	1.6773	1.6412	1.59700	1.61500	2B	,
			1.6312	1.5949	1.6260	1.6082	1.68554	1.67446	1.6881	1.6338	1.6767	1.6408	1.59716	1.61484	Ę	
		34	1.6330	1.5967	1.6289 1.6293	1.6115	1.68734 1.68734	1.67626	1.6881	1.6338	1.6747	1.6388	1.59716	1.60/30	38	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AMERICAN NATIONAL STANDARD

-

				Cal	ges for Ex	ternal Thr	eads			Cag	ges for Int	ernal Thr	eads		
_				X Threa	d Gages		7 Plain C	- Juliane		X Thread	Gages		7 Plain C		
			Ũ	0	NOT G	0 (10)	Major D	iameter	ŭ	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	03	ION 05	Class
-	2	~	4	s	و	7	8	6	10	11	12	13	14	15	16
111/16-16 or 1 6875-16	<u>z</u>	AC	in. 1 6453	in. 16182	in. 16400	in. 1.6265	in. 1.68590	in. 1.67650	in. 1.6875	in. 1.6469	in. 1.6809	in. 1.6538	in. 1.62000	in. 1.63400	28
)	í 	1.6449	1.6176	1.6404	1.6271	1.68574	1.67666	1.6881	1.6473	1.6803	1.6534	1.62016	1.63384	Ì
		34	1.6469 1.6465	1.6198 1.6192	1.6429 1.6433	1.6294 1.6300	1.68750 1.68734	1.67810 1.67826	1.6875 1.6881	1.6469 1.6473	1.6792 1.6786	1.6521 1.6517	1.62000 1.62016	1.62830 1.62814	38
1 ¹ <i>1</i> /16-18 or 1.6875-18	UNEF	2A	1.6499	1.6258	1.6448	1.6328	1.68600	1.67730	1.6875	1.6514	1.6821	1.6580	1.62700	1.64000	28
		3A	1.6495 1.6514 1.6510	1.6253 1.6273 1.6268	1.6452 1.6476 1.6480	1.6356 1.6356 1.6361	1.68584 1.68750 1.68734	1.67880 1.67880 1.67896	1.6880 1.6875 1.6880	1.6518 1.6514 1.6518	1.6815 1.6804 1.6799	1.6563 1.6559 1.6559	1.62716 1.62700 1.62716	1.63534 1.63550 1.63534	38
4111- 20 4 COTT 20		,	1 (135	1 1 1 1	207.7	1 6 2 7 0	002821	1 67700	1 6076	1 660	00001	(1221	1 63300	1 64600	ę
11/16-20 or 1.68/5-20	Z	5	1.6531 1.6531	1.6318	1.6491 1.6491	1.63/9	1.68584	1.67806	1.6880	1.6554	1.6825	1.6609	1.63316	1.64484	9 7
		34	1.6550 1.6546	1.6333 1.6328	1.6514 1.6518	1.6406 1.6411	1.68750 1.68734	1.67940 1.67956	1.6875 1.6880	1.6550 1.6554	1.6814 1.6809	1.6597 1.6593	1.63300 1.63316	1.64120 1.64104	38
1 3 4-5 or 1.750-5	UNC	4	1.6174	1.5308	1.6040	1.5607	1.74730	1.71650	1.7500	1.6201	1.7241	1.6375	1.53400	1.56800	18
			1.6169	1.5300	1.6045	1.5615	1.74714	1.71666	1.7508	1.6206	1.7233	1.6370	1.53416	1.56784	ę
		<	1.61/4 1.6169	1.5300	1.6090	1.5660	1.74714	1.72696	1.7508	1.6206	1.7175	1.6312	1.53416	1.56784	97
		3A	1.6201 1.6196	1.5335 1.5327	1.6134 1.6139	1.5701 1.5709	1.75000 1.74984	1.72950 1.72966	1.7500 1.7508	1.6201 1.6206	1.7154 1.7146	1.6288 1.6283	1.53400 1.53416	1.55750 1.55734	38
1 3 4-6 or 1.750-6	C	2A	1.6392	1.5670	1.6309	1.5948	1.74750	1.72930	1.7500	1.6417	1.7247	1.6525	1.57000	1.60000	2B
			1.6387	1.5662	1.6314	1.5956	1.74734	1.72946	1.7508	1.6422	1.7239	1.6520	1.57016	1.59984	1
		34	1.6417 1.6412	1.5695 1.5687	1.6354 1.6359	1.5993	1.74984	1./3180	1.7508	1.641/ 1.6422	1.7212	1.6498 1.6493	1.57016	1.58944	85
134-8 or 1.750-8	N	2A	1.6665	1.6124	1.6590	1.6319	1.74770	1.73270	1.7500	1.6688	1.7327	1.6786	1.61500	1.64000	2B
		3A	1.6688 1.6688	1.611/ 1.6147	1.6595 1.6631	1.6360 1.6360	1.75000	1.73500	1.7500	1.6688	1.7303 1.7303 1.7305	1.6/81 1.6762	01616.1 1.61500 21212 1	1.62970	38
			C000-I	0+10.1	0000.1	/000.1	1-/ 1-001			CC00'I	067 / 1	10.10.1	017101	+0670'1	
1 ∛ 4-12 or 1.750-12	NU	2A	1.6941 1.6037	1.6580	1.6881 1.6885	1.6701	1.74820 1.74804	1.73680 1 73696	1.7500	1.6959 1.6963	1.7398	1.7037	1.66000 1.66016	1.67800 1.67784	2B
		3A	1.6959	1.6598	1.6914	1.6734	1.75000	1.73860	1.7500	1.6959	1.7378	1.7017	1.66000	1.66980	38
			1.6955	1.6592	1.6918	1.6740	1./4984	1./38/6	1./506	1.6963	1.73/2	1./013	1.66016	1.66964	
1 } 4-16 or 1.750-16	N	2A	1.7078	1.6807	1.7025	1.6890	1.74840	1.73900	1.7500	1.7094	1.7434	1.7163	1.68200	1.69600 1.60504	2B
		3A	1.7094	1.6823	1.7054	1.6919	1.75000	1.74060	1.7500	1.7094	1.7417	1.7146	1.68200	1.69080	38
			1.7090	1.6817	1.7058	1.6925	1.74984	1.74076	1.7506	1.7098	1.7411	1.7142	1.68216	1.69064	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

B, 2B, AND 3B	
RIES, CLASSES 1A, 2A, 3A, 1	IMITS OF SIZE (CONT'D)
GAGES FOR STANDARD THREAD SE	UNIFIED SCREW THREADS — I
TABLE 10 C	

	, <u> </u>		Class	16	38 88	38 58	38 28	38 58	38 28	38 28	38 38	2B 3B	2B 3B
		Gages for Diameter	٥ N S	15	in. 1.70700 1.70684 1.70370 1.70354	1.66300 1.66284 1.65210 1.65194	1.70200 1.70184 1.69220 1.69204	1.74000 1.73984 1.73230 1.73230	1.75900 1.75884 1.75330 1.75314	1.77000 1.76984 1.76620 1.76604	1.72500 1.72484 1.71460 1.71444	1.76500 1.76484 1.75470 1.75454	1.80300 1.80284 1.79480 1.79464
reads		Z Plain (Minor E	9	14	in. 1.69600 1.69616 1.69600 1.69616	1.63200 1.63216 1.63200 1.63200 1.63216	1.67700 1.67716 1.67700 1.67700	1.72200 1.72216 1.72200 1.72200	1.74500 1.74516 1.74500 1.74500 1.74516	1.75800 1.75816 1.75800 1.75800 1.75816	1.69500 1.69516 1.69500 1.69500	1.74000 1.74016 1.74000 1.74000	1.78500 1.78516 1.78500 1.78516
ternal Th		(IH) O	Pitch Diam.	13	in. 1.7238 1.7234 1.7222 1.7218	1.7151 1.7146 1.7124 1.7119	1.7412 1.7407 1.7387 1.7382	1.7662 1.7658 1.7642 1.7638	1.7788 1.7784 1.7771 1.7771	1.7863 1.7859 1.7847 1.7843	1.7777 1.7772 1.7749 1.7744	1.8038 1.8033 1.8013 1.8008	1.8287 1.8283 1.8267 1.8263
ges for In	d Gages	NOT G	Major Diam.	12	in. 1.7455 1.7450 1.7439 1.7434	1.7873 1.7865 1.7846 1.7838	1.7953 1.7946 1.7928 1.7928	1.8023 1.8017 1.8003 1.7997	1.8059 1.8053 1.8042 1.8036	1.8080 1.8075 1.8064 1.8059	1.8499 1.8491 1.8471 1.8463	1.8579 1.8572 1.8554 1.8554 1.8547	1.8648 1.8642 1.8628 1,8622
Ğ	X Threa	0	Pitch Diam.	1	in. 1.7175 1.7179 1.7179 1.7175	1.7042 1.7047 1.7042 1.7047	1.7313 1.7318 1.7313 1.7313	1.7584 1.7588 1.7584 1.7588	1.7719 1.7723 1.7719 1.7723	1.7800 1.7804 1.7804 1.7800	1.7667 1.7672 1.7667 1.7672	1.7938 1.7943 1.7938 1.7943	1.8209 1.8213 1.8209 1.8213
		0	Major Diam.	10	in. 1.7500 1.7505 1.7500 1.7500	1.8125 1.8133 1.8125 1.8133	1.8125 1.8132 1.8125 1.8132	1.8125 1.8131 1.8125 1.8131	1.8125 1.8131 1.8125 1.8135	1.8125 1.8130 1.8125 1.8130	1.8750 1.8758 1.8750 1.8758	1.8750 1.8757 1.8750 1.8750 1.8757	1.8750 1.8756 1.8750 1.8756
		iages tor iameter	NOT GO	9	in. 1.74040 1.74056 1.74190 1.74206	1.79180 1.79196 1.79430 1.79446	1.79520 1.79536 1.79750 1.79766	1.79930 1.79946 1.80110 1.80126	1.80150 1.80166 1.80310 1.80326	1.80290 1.80306 1.80440 1.80456	1.85430 1.85446 1.85680 1.85696	1.85770 1.85786 1.86000 1.86016	1.86180 1.86196 1.86360 1.86376
eads		Z Flain G Major D	60	8	in. 1.74850 1.74834 1.74834 1.74984	1.81000 1.80984 1.81250 1.81234	1.81020 1.8100 4 1.81250 1.81234	1.81070 1.81054 1.81250 1.81234	1.81090 1.81074 1.81250 1.81234	1.81100 1.81084 1.81084 1.81250 1.81234	1.87250 1.87234 1.87500 1.87484	1.87270 1.87254 1.87500 1.87484	1.87320 1.87304 1.87500 1.87484
ternal Thro		0 (10)	Minor Diam.	7	in. 1.7004 1.7009 1.7031 1.7031	1.6572 1.6580 1.6618 1.6626	1.6943 1.6950 1.6985 1.6992	1.7326 1.7332 1.7359 1.7365	1.7515 1.7521 1.7544 1.7550	1.7629 1.7634 1.7656 1.7661	1.7197 1.7205 1.7243 1.7251	1.7567 1.7574 1.7610 1.7617	1.7951 1.7957 1.7984 1.7990
ges for Ex	d Gages	NOT G	Pitch Diam.	9	in. 1.7112 1.7116 1.7139 1.7143	1.6933 1.6938 1.6979 1.6984	1.7214 1.7219 1.7256 1.7261	1.7506 1.7510 1.7539 1.7543	1.7650 1.7654 1.7679 1.7683	1.7737 1.7741 1.7764 1.7768	1.7558 1.7563 1.7604 1.7609	1.7838 1.7843 1.7881 1.7886	1.8131 1.8135 1.8164 1.8168
Ğ	X Threa	0	Minor Diam.	s	in. 1.6943 1.6938 1.6958 1.6953	1.6295 1.6287 1.6320 1.6312	1.6749 1.6742 1.6772 1.6765	1.7205 1.7199 1.7223 1.7223	1.7432 1.7426 1.7448 1.7442	1.7568 1.7563 1.7583 1.7578	1.6920 1.6912 1.6945 1.6937	1.7374 1.7367 1.7397 1.7390	1.7830 1.7824 1.7848 1.7842
		0	Pitch Diam.	4	in. 1.7160 1.7156 1.7175 1.7171	1.7017 1.7012 1.7042 1.7037	1.7290 1.7285 1.7313 1.7308	1.7566 1.7562 1.7584 1.7580	1.7703 1.7709 1.7719 1.7715	1.7785 1.7781 1.77800 1.7796	1.7642 1.7637 1.7667 1.7662	1.7915 1.7910 1.7938 1.7933	1.8191 1.8187 1.8209 1.8205
			Class	3	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A	3A	2A 3A	3A 3A
			Series Designation	2	Z D	Ŋ	N	N	Ŋ	Ŋ	N	N	N
			Nominal Size and Threads/in.	1	1 ¾+-20 or 1.750-20	1 ¹ ¥16-6 or 1.8125-6	1 ¹ ¥16-8 or 1.8125-8	1 ¹ ¥ı6-12 or 1.8125-12	1 ¹ ¥16-16 or 1.8125-16	1 ¹ ¥16-20 or 1.8125-20	178-6 or 1.875-6	1%-8 or 1.875-8	17⁄8-12 or 1.875-12

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

				S	ges for Ex	ternal Thr	eads			Ca	ges for Int	ernal Thr	eads		
				X Threa	d Gages		7 Plain (ages for		X Thread	d Gages		7 Plain C	ages for	
			0	0	NOT G	(01) 0	Major D	Diameter	Ğ	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT CO	Class
٢	2	e	4	5	9	7	8	6	10	11	12	13	14	15	16
			.e	.e		.e	Ë.	Ē.	.Ľ	Ľ	Ľ	Ŀ.	. <u>.</u>	ŗ.	
17/8-16 or 1.875-16	Z	2►	1.8328	1.8057	1.8275 1.8279	1.8140 1.8146	1.87340	1.86400 1.86416	1.8750 1.8756	1.8344 1.8348	1.8684 1.8678	1.8413 1.8409	1.80700	1.82100 1.82084	2 B
		ЗA	1.8340	1.8073	1.8308	1.8175	1.87484	1.86560	1.8750	1.8348	1.8667	1.8395	1.80700	1.81564	38
1 ^{7/8-} 20 or 1.875-20	Z	2A	1.8410	1.8193	1.8362	1.8254	1.87350	1.86540	1.8750	1.8425	1.8705	1.8488	1.82100	1.83200	2B
			1.8406	1.8188	1.8366	1.8259	1.87334	1.86556	1.8755	1.8429	1.8700	1.8484	1.82116	1.83184	
		34	1.8425 1.8421	1.8208 1.8203	1.8389	1.8281 1.8286	1.87500 1.87484	1.86690	1.8750 1.8755	1.8425 1.8429	1.8689 1.8684	1.8472 1.8468	1.82100 1.82116	1.82870 1.82854	38
1 ^{15/16-6} or 1.9375-6	N N	2A	1.8266	1.7544	1.8181	1.7820	1.93490	1.91670	1.9375	1.8292	1.9125	1.8403	1.75700	1.78800	2B
		3A	1.8261	1.7570	1.8228	1.7867	1.934/4	1.91930	1.9375	1.8292	1.9097	1.8375	1.75700	1.77710	3B
		, ,	1.8287	1.7562	1.8233	1.7875	1.93734	1.91946	1.9383	1.8297	1.9089	1.8370	1.75716	1.77694	1
1 ¹⁵ /16-8 or 1.9375-8	Z	2A	1.8540	1.7999	1.8463	1.8192	1.93520	1.92020	1.9375	1.8563	1.9204	1.8663	1.80200	1.82700	2B
			1.8535	1.7992	1.8468	1.9199	1 03750	1.92036	1 0275	1.8563	1.919/	1.8658	1.80216	1.82684	90
		K	1.8558	1.8015	1.8510	1.8241	1.93734	1.92266	1.9382	1.8568	1.9172	1.8633	1.80216	1.81704	n
1 ^{15/16-} 12 or 1.9375-12	Z S	2A	1.8816	1.8455	1.8755	1.8575	1.93570	1.92430	1.9375	1.8834	1.9274	1.8913	1.84700	1.86500	2B
		34	1.8812 1.8834	1.8449	1.8759 1.8789	1.8581	1.93554	1.92446	1.9381	1.8838	1.9268	1.8909	1.84716 1.84700	1.85730	38
			1.8830	1.8467	1.8793	1.8615	1.93734	1.92626	1.9381	1.8838	1.9248	1.8889	1.84716	1.85714	
1 ¹ ¥ ₁₆ -16 or 1.9375-16	Z	2A	1.8953	1.8682	1.8899	1.8764	1.93590	1.92650	1.9375	1.8969	1.9310	1.9039	1.87000	1.88400	2B
		3A	1.8969	1.8698	1.8929	1.8794	1.93750	1.92810	1.9375	. 1.8969 1.8969	1.9304	1.9021	1.87000	1.878304	38
			1.8965	1.8692	1.8933	1.8800	1.93734	1.92826	1.9381	1.8973	1.9286	1.9017	1.87016	1.87814	
1 ¹ ¥16-20 or 1.9375-20	N	2 A	1.9035	1.8818	1.8986	1.8878	1.93600	1.92790	1.9375	1.9050	1.9331	1.9114	1.88300	1.89500	2B
		34	1.9050	1.8813	0668.1	1.8883	1.93750	1.92806	1.9380	1.9050	1.9326	1.9098	1.88316	1.89484	3B
			1.9046	1.8828	1.9017	1.8910	1.93734	1.92956	1.9380	1.9054	1.9310	1.9094	1.88316	1.89104	
2-47/2 or 2.000-4.5	UNC	4٢	1.8528	1.7566	1.8385	1.7904	1.99710	1.96410	2.0000	1.8557	1.9705	1.8743	1.75900	1.79500	18
		ł	1.8523	1.7558	1.8390	1.7912	1.99694	1.96426	2.0008	1.8562	1.9697	1.8738	1.75916	1.79484	-
		5	1.8523	1.7558	1.8438	1.7960	1.99694	1.97526	2.0008	1.8562	1.9635	1.8676	1.75916	1.79484	9
		3 A	1.8557	1.7595	1.8486	1.8005	2.00000	1.97800	2.0000	1.8557	1.9612	1.8650	1.75900	1.78610	38
			1.8552	1.7587	1.8491	1.8013	1.99984	1.97816	2.0008	1.8562	1.9604	1.8645	1.75916	1.78594	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

ANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B	SCREW THREADS — LIMITS OF SIZE (CONT'D)
GAGES FOR STANDAR	UNIFIED SCREW
TABLE 10	

				Ü	ges for Ex	ternal Thr	eads			Gag	ses for Ini	ternal Thr	eads		
				X Threa	d Gages					X Thread	l Gages				
			Ŭ	0	NOT G	0 (00)	Z Flain C Major D	lameter	Ū	0	NOT G	(IH) O	Z Plain (Minor D	Gages for Jiameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	03	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	3	NOT	Class
1	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16
2-6 or 2.000-6	2	2A 3A	in. 1.8891 1.8886 1.8917 1.8912	in. 1.8169 1.8161 1.8195 1.8187	in. 1.8805 1.8810 1.8853 1.8858	in. 1.8444 1.8452 1.8492 1.8500	in. 1.99740 1.99724 2.00000 1.99984	in. 1.97920 1.97936 1.98180 1.98196	in. 2.0000 2.0008 2.0008 2.0008	in. 1.8917 1.8922 1.8917 1.8922	in. 1.9750 1.9742 1.9722 1.9714	in. 1.9028 1.9023 1.9000 1.8995	in. 1.82000 1.82016 1.82010 1.82010	in. 1.85000 1.84984 1.83960 1.83944	38
2-8 or 2.000-8	Ŋ	2A 3A	1.9165 1.9160 1.9188 1.9183	1.8624 1.8617 1.8647 1.8640	1.9087 1.9092 1.9130 1.9135	1.8816 1.8823 1.8859 1.8866	1.99770 1.99754 2.00000 1.99984	1.98270 1.98286 1.98500 1.98516	2.0000 2.0007 2.0000 2.0000	1.9188 1.9193 1.9188 1.9188	1.9830 1.9823 1.9805 1.9798	1.9289 1.9284 1.9264 1.9259	1.86500 1.86516 1.86516 1.86500 1.86516	1.89000 1.88984 1.87970 1.87954	38
2-1 2 or 2.000-12	N	2A 3A	1.9441 1.9437 1.9459 1.9455	1.9080 1.9074 1.9098 1.9092	1.9380 1.9384 1.9414 1.9418	1.9200 1.9206 1.9234 1.9240	1.99820 1.99804 2.00000 1.99984	1.98680 1.98696 1.98860 1.98876	2.0000 2.0006 2.0000 2.0000	1.9459 1.9463 1.9459 1.9463	1.9899 1.9893 1.9879 1.9873	1.9538 1.9534 1.9518 1.9514	1.91000 1.91016 1.91000 1.91016	1.92800 1.92784 1.91980 1.91964	2B 3B
2-1 6 or 2.000-16	Z D	2A 3A	1.9578 1.9574 1.9594 1.9590	1.9307 1.9301 1.9323 1.9317	1.9524 1.9528 1.9554 1.9558	1.9389 1.9395 1.9419 1.9425	1.99840 1.99824 2.00000 1.99984	1.98900 1.98916 1.99060 1.99076	2.0000 2.0006 2.0000 2.0000	1.9594 1.9598 1.9594 1.9598	1.9935 1.9929 1.9917 1.9917	1.9664 1.9660 1.9646 1.9642	1.93200 1.93216 1.93200 1.93216	1.94600 1.94584 1.94080 1.94064	2B 3B
2-20 or 2.000-20	Z N	2A 3A	1.9660 1.9656 1.9675 1.9671	1.9443 1.9438 1.9458 1.9453	1.9611 1.9615 1.9638 1.9642	1.9503 1.9508 1.9530 1.9535	1.99850 1.99834 2.00000 1.99984	1.99040 1.99056 1.99190 1.99206	2.0000 2.0005 2.0000 2.0000	1.9675 1.9679 1.9675 1.9675	1.9956 1.9951 1.9940 1.9935	1.9739 1.9735 1.9723 1.9719	1.94600 1.94616 1.94600 1.94600 1.94616	1.95700 1.95684 1.95370 1.95354	2B 3B
2½+6 or 2.125-6	z	2A 3A	2.0141 2.0136 2.0167 2.0162	1.9419 1.9411 1.9445 1.9437	2.0054 2.0059 2.0102 2.0107	1.9693 1.9701 1.9741 1.9749	2.12240 2.12224 2.12500 2.12484	2.10420 2.10436 2.10680 2.10696	2.1250 2.1258 2.1258 2.1258	2.0167 2.0172 2.0162 2.0167 2.0172	2.1002 2.0994 2.0973 2.0965	2.0280 2.0275 2.0251 2.0251	1.94500 1.94516 1.94500 1.94500 1.94516	1.97500 1.97484 1.96460 1.96444	2 B 3B
21/8-8 or 2.125-8	Z S	38	2.0414 2.0409 2.0438 2.0433	1.9873 1.9866 1.9897 1.9890	2.0335 2.0340 2.0379 2.0384	2.0064 2.0071 2.0108 2.0115	2.12260 2.12244 2.12500 2.12484	2.10760 2.10776 2.11000 2.11016	2.1250 2.1257 2.1250 2.1250 2.1257	2.0438 2.0443 2.0443 2.0438 2.0443	2.1081 2.1074 2.1056 2.1056 2.1049	2.0540 2.0535 2.0515 2.0510 2.0510	1.99000 1.99016 1.99000 1.99016	2.01500 2.01484 2.00470 2.00454	38
2%-12 or 2.125-12	Z D	2A 3A	2.0691 2.0687 2.0709 2.0705	2.0330 2.0324 2.0348 2.0342	2.0630 2.0634 2.0664 2.0668	2.0450 2.0456 2.0484 2.0490	2.12320 2.12304 2.12500 2.12484	2.11180 2.11196 2.11360 2.11376	2.1250 2.1256 2.1250 2.1256	2.0709 2.0713 2.0709 2.0713	2.1149 2.1143 2.1129 2.1129 2.1123	2.0788 2.0784 2.0768 2.0768	2.03500 2.03516 2.03500 2.03500 2.03516	2.05300 2.05284 2.04480 2.04464	2B 3B
2Ve-16 or 2.125-16	Z	2A 3A	2.0828 2.0824 2.0844 2.0840	2.0557 2.0551 2.0573 2.0567	2.0774 2.0778 2.0804 2.0808	2.0639 2.0645 2.0669 2.0675	2.12340 2.12324 2.12500 2.12484	2.11400 2.11416 2.11560 2.11576	2.1250 2.1256 2.1250 2.1256	2.0844 2.0848 2.0844 2.0844 2.0848	2.1185 2.1179 2.1167 2.1167 2.1161	2.0914 2.0910 2.0896 2.0892	2.05700 2.05716 2.05700 2.05700 2.05716	2.07100 2.07084 2.06580 2.06564	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled w

				Gag	ges for Ex	ternal Thr	eads			Gag	ses for Int	ernal Thre	eads		
				X Thread	d Gages		7 Plain C	aves for		X Thread	Gages		7 Plain G	age for	
			Ũ	0	NOT G	0 (10)	Major D	liameter	3	0	NOT C	(IH) O	Minor Di	ages rue	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT 60	Class
-	2	e	4	S	9	7	8	6	10	11	12	13	14	15	16
208-20 or 2 125-20	Z	×c	in. 2.0910	in. 2 0693	in. 2 0861	in. 2.0753	in. 2.12350	in. 2.11540	in. 2.1250	in. 2 0925	in. 2.1206	in. 2 0989	in. 2.07100	in. 2.08200	HK HK
	5	i i	2.0906	2.0688	2.0865	2.0758	2.12334	2.11556	2.1255	2.0929	2.1201	2.0985	2.07116	2.08184	27
		34	2.0925 2.0921	2.0708 2.0703	2.0888 2.0892	2.0780 2.0785	2.12500 2.12484	2.11690 2.11706	2.1250 2.1255	2.0925 2.0929	2.1190 2.1185	2.0973 2.0969	2.07100 2.07116	2.07870 2.07854	38
21/4-41/2 or 2.250-4.5	UNC	۲	2.1028	2.0066	2.0882	2.0401	2.24710	2.21410	2.2500	2.1057	2.2209	2.1247	2.00900	2.04500	18
		2 A	2.1023 2.1028	2.0058 2.0066	2.0931	2.0409 2.0450	2.24694 2.44710	2.21426 2.22510	2.2508	2.1062 2.1057	2.2201	2.1242 2.1183	2.00916	2.04484 2.04500	28
			2.1023	2.0058	2.0936	2.0458	2.24694	2.22526	2.2508	2.1062	2.2137	2.1178	2.00916	2.04484	1
		3 A	2.1057 2.1052	2.0095 2.0087	2.0984 2.0989	2.0503 2.0511	2.25040 2.24984	2.22800 2.22816	2.2500 2.2508	2.1057 2.1062	2.2114 2.2106	2.1152 2.1147	2.00900 2.00916	2.03610 2.03594	38
21⁄4-6 or 2.250-6	Ŋ	7	2.1391	2.0669	2.1303	2.0942	2.24740	2.22920	2.2500	2.1417	2.2253	2.1531	2.07000	2.10000	28
		٩٤	2.1386	2.0661	2.1308 2.1351	2.0950	2.24724	2.22936	2.2508	2.1422 2.1417	2.2245	2.1526	2.07016	2.09984 2.08960	ЗВ
		ĥ	2.1412	2.0687	2.1356	2.0998	2.24984	2.23196	2.2508	2.1422	2.2216	2.1497	2.07016	2.08944	2
274-8 or 2.250-8	3	2A	2.1664	2.1123	2.1584	2.1313	2.24760	2.23260	2.2500	2.1688	2.2333	2.1792	2.11500	2.14000	28
			2.1659	2.1116	2.1589	2.1320	2.24744	2.23276	2.2507	2.1693	2.2326 2.2326	2.1787	2.11516	2.13984	ŗ
		Y 5	2.1683	2.1140	2.1633	2.1364	2.24984	2.23516	2.2507	2.1693	2.2300	2.1761	2.11516	2.12970 2.12954	95
21⁄4-12 or 2.250-12	z	2A	2.1941	2.1580	2.1880	2.1700	2.24820	2.23680	2.2500	2.1959	2.2399	2.2038	2.16000	2.17800	28
		3A	2.1959	2.15/4 2.1598	2.1884 2.1914	2.1/06 2.1734	2.24804 2.25000	2.23860 2.23860	2.2500	2.1963 2.1959	2.2379 2.2379	2.2034 2.2018	2.16016 2.16000	2.16980	38
			2.1955	2.1592	2.1918	2.1740	2.24984	2.23876	2.2506	2.1963	2.2373	2.2014	2.16016	2.16964	
24+16 or 2.250-16	Ŋ	2A	2.2078	2.1807	2.2024	2.1889	2.24840	2.23900	2.2500	2.2094	2.2435	2.2164	2.18200	2.19600	28
		34	2.2074	2.1801	2.2028	2.1895 2.1919	2.24824	2.23916	2.2506	2.2098 2.2094	2.2429 2.2417	2.2160 2.2146	2.18216 2.18200	2.19584 2.19080	38
			2.2090	2.1817	2.2058	2.1925	2.24984	2.24076	2.2506	2.2098	2.2411	2.2142	2.18216	2.19064	}
274-20 or 2.250-20	3	2A	2.2160	2.1943	2.2111	2.2003	2.24850	2.24040	2.2500	2.2175	2.2456	2.2239	2.19600	2.20700	2B
		34	2.2156	2.1938 2.1958	2.2115 2.2138	2.2008	2.24834	2.24056	2.2505	2.2179 2.2175	2.2451 2.2440	2.2235	2.19616 2.19600	2.20684	38
		ŝ	2.2171	2.1953	2.2142	2.2035	2.24984	2.24206	2.2505	2.2179	2.2435	2.2219	2.19616	2.20354	2
2¥8-6 or 2.375-6	N	2A	2.2640	2.1918	2.2551	2.2190	2.37230	2.35410	2.3750	2.2667	2.3504	2.2782	2.19500	2.22600	2B
			2.2635	2.1910	2.2556	2.2198	2.37214	2.35426	2.3758	2.2672	2.3496	2.2777	2.19516	2.22584	i.
		ЗА	2.2667 2.2662	2.1945 2.1937	2.2601	2.2240 2.2248	2.37500 2.37484	2.35680 2.35696	2.3750 2.3758	2.2667 2.2672	2.3475 2.3467	2.2753 2.2748	2.19500 2.19516	2.21460 2.21444	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

ES 1A, 2A, 3A, 1B, 2B, AND 3B	ZE (CONT'D)
STANDARD THREAD SERIES, CLASSE	ED SCREW THREADS — LIMITS OF SIZ
TABLE 10 GAGES FOR	UNIFI

GA UN	GES IFIED		GAGII	NG F EW 1	OR	AD	S															٩N	AME	RIC	AN	ANS NAT	I/AS	SME AL	ST	1.2- AND	1983)AR[3 0	
			Class	16		2B	38		2B	38		2B		38		2 B	5	1	ę	8	2 B		38	28		38	a	97	38		2B	9	38
	actor	biameter	NOT	5	Ľ	2.26500	2.25470	2.25454	2.30300	2.29480	2.29464	2.32100	2.32084	2.31580	40CIC.7	2.33200	2.33184	2.32854	00220 0	2.26/00	2.26700	2.26684	2.25940 2.25924	2.35000	2.34984	2.33960 2.33944		2.38984	2.37970	2.37954	2.42800	2.42784	2.41980
reads	7 niela 7	Minor D	09	4	. <u>e</u> .	2.24000	2.24000	2.2401b	2.28500	2.28500	2.28516	2.30700	2.30716	2.30700		2.32100	d1126.2	2.32100		2.22900	2.22900	2.22916	2.22900 2.22916	2.32000	2.32016	2.32000 2.32016	7 2600	2.36516	2.36500	2.36516	2.41000	2.41016	2.41000
ternal Th		O (HI)	Pitch Diam.	13	'n.	2.3043	2.3017	2.3012	2.3290	2.3269	2.3265	2.3416	2.3412	2.3398	+600.2	2.3491	2.348/	2.3471 2.3471	7 3578	2.35/8	2.3511	2.3506	2.3477 2.3472	2.4033	2.4028	2.4004 2.3999	NOCK C	2.4289	2.4268	2.4263	2.4540	2.4536	2.4519
ges for In	d Gages	NOT G	Major Diam.	12	Ŀ.	2.3584	2.3558	1 666.2	2.3651	2.3630	2.3624	2.3687	2.3681	2.3669 2.3663	C00C.2	2.3708	2.3/03	2.3687 2.3687	1334 0	2.4661 2.4652	2.4594	2.4585	2.4560 2.4551	2.4755	2.4747	2.4726 2.4718	7 4035	2.4828	2.4809	2.4802	2.4901	2.4895	2.4880 2.4874
Cai	X Thread	0	Pitch Diam.	=	'n.	2.2938	2.2938	2.2943	2.3209	2.3209	2.3213	2.3344	2.3348	2.3344 2.3348	04007	2.3425	2.3429	2.3429	2266 6	2.33/6 2 3381	2.3376	2.3381	2.3376 2.3381	2.3917	2.3922	2.3917 2.3922	1100	2.4193	2.4188	2.4193	2.4459	2.4463	2.4459
		5	Major Diam.	10	in.	2.3750	2.3750	16/5.7	2.3750	2.3750	2.3756	2.3750	2.3756	2.3750	DC /C.7	2.3750	CC/C.7	2.3755		2.5000	2.5000	2.5009	2.5000 2.5009	2.5000	2.5008	2.5000 2.5008	2 5000	2.5007	2.5000	2.5007	2.5000	2.5006	2.5000
	ages for	iameter	NOT CO	6	in.	2.35760	2.36000	41.092.2	2.36170	2.36360	2.36376	2.36390	2.36406	2.36560	0/000.7	2.36540	900000	2.36706	0C136 C	2.46120	2.47310	2.47326	2.47620 2.47636	2.47910	2.47926	2.48180 2.48196	03007 0	2.48276 2.48276	2.48500	2.48516	2.48670	2.48686	2.48860 2.48876
eads	7 Plain C	Major D	09	~	Ŀ	2.37260	2.37500	2.3/484	2.37310	2.37500	2.37484	2.37330	2.37314	2.37500	+0+/C.7	2.37350	2.3/334	2.37484	00507 0	2.49690	2.49690	2.49674	2.50000 2.49984	2.49730	2.49714	2.50000 2.49984	03207.0	2.49744	2.50000	2.49984	2.49810	2.49794	2.50000
ernal Thro		0 (LO)	Minor Diam.	~	Ľ	2.2562	2.2607	7.2014	2.2948	2.2983	2.2989	2.3137	2.3143	2.3168	£/IC.7	2.3251	00200.0	2.32/9	0120 0	2.2649	2.2700	2.2709	2.2757 2.2766	2.3439	2.3447	2.3489 2.3497	1100 0	2.3818	2.3856	2.3863	2.4198	2.4204	2.4233
ges for Ext	d Gages	NOT G	Pitch Diam.	9	ij.	2.2833	2.2878	2.2883	2.3128	2.3163	2.3167	2.3272	2.3276	2.3303	1066.2	2.3359	2.3363	2.338/ 2.3391	1 3100	2.3190	2.3241	2.3246	2.3298 2.3303	2.3800	2.3805	2.3850 2.3855		2.4087	2.4127	2.4132	2.4378	2.4382	2.4413
G	X Threa	0	Minor Diam.	5	Ŀ	2.2373 2.2373	2.2397	2.2390	2.2829	2.2848	2.2842	2.3056	2.3050	2.3073	/000.2	2.3193	2.3188	2.3208 2.3203	1 1700	2.2262	2.2262	2.2253	2.2293 2.2284	2.3168	2.3160	2.3195 2.3187		2.3616	2.3647	2.3640	2.4079	2.4073	2.4098 2.4098
		Ŭ	Pitch Diam.	4	'n.	2.2914	2.2938	2.2933	2.3190	2.3209	2.3205	2.3327	2.3323	2.3344	0400.7	2.3410	2.3406	2.3421	11146	2.3345	2.3345	2.3340	2.3376 2.3371	2.3890	2.3885	2.3917 2.3912	1914	2.4159	2.4188	2.4183	2.4440	2.4436	2.4459
			Class	3		2 ^	3 A		2 A	ЗA		2A		3 A		2A		٩ç	4	≺ L	2 A		3 A	2A		3 A		5	3A		2A		3A
			Series Designation	2		Ŋ			N			NN			1	N				ONC				CN				Z			۲N		
			Nominal Size and Threads/in.	-		2¾-8 or 2.375-8			2¥∎-12 or 2.375-12			2 3 8-16 or 2.375-16				2¾-20 or 2.375-20				2 72-4 or 2.500-4				21/2-6 or 2.500-6			0 0 0 0 0 0	8-00C.7 JO 8-747			2 ½-12 or 2.500-12		

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

Gages for External Thre	Gages for External Thre	Gages for External Thre	Gages for External Thre	es for External Thre	ernal Thre		ads			Gag	es for Int	ernal Thr	eads		
X Thread G	X Thread G	X Thread G	X Thread G	2	ages		Z Plain G	ares for		X Thread	Gages		Z Plain G	ages for	
00	CO	CO	v o	ž	DT C	0 (10)	Major Di	ameter	00		NOT G	(IH) C	Minor D	iameter	
Series Fitch Minor Pit Designation Class Diam. Diam. Di	Pitch Minor Pit Class Diam. Diam. Di	Pitch Minor Pi Diam. Diam. Dia	Minor Pit Diam. Dia	ië ö	m.	Minor Diam.	09	NOI	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	CO	NOT GO	Class
2 3 4 5	3 4 5	4 5	5		9	7	8	6	10	11	12	13	14	15	16
in.	in.	in. in.	in.		. <u>c</u>	Ŀ.	in.	Ċ	. <u>c</u>	. <u>c</u>	Ŀ	.e	. <u>c</u>	. <u>-</u>	
UN 2A 2.4577 2.4306	2A 2.4577 2.4306	2.4577 2.4306	2.4306	_	2.4522 2.4526	2.4387 2.4393	2.49830	2.48890 7.48906	2.5000	2.4594 2.4598	2.4937 2.4931	2.4666 2.4667	2.43200 2.43216	2.44600 2.44584	2B
3A 2.4594 2.4323	3A 2.4594 2.4323	2.4594 2.4323	2.4323		2.4553	2.4418	2.50000	2.49060	2.5000	2.4594	2.4919	2.4648	2.43200	2.44080	38
2.4590 2.4317	2.4590 2.4317	2.4590 2.4317	2.4317		2.4557	2.44.24	2.49984	2.490/b	9005.2	2.4598	2.4913	2.4644	2.4321b	2.44064	
UN 2A 2.4660 2.4443	2A 2.4660 2.4443	2.4660 2.4443	2.4443		2.4609	2.4501	2.49850	2.49040	2.5000	2.4675	2.4958	2.4741	2.44600	2.45700	2B
2.4656 2.4438	2.4656 2.4438 2.4438 2.4438 2.4438 2.4438 2.4438 2.4438 2.4458 2.4558 2.4458 2.4558 2.4458 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.4558 2.45888 2.45888 2.45888 2.4588 2.4588 2.4588 2.4588 2.4588 2.4588 2.4588	2.4656 2.4438 2.4675 2.4438	2.4438		2.4613	2.4506	2.49834 2.50000	2.49056	2.5005	2.4679 2.4675	2.4953	2.4737 2.4735	2.44616	2.45684	38
2.4671 2.4453	2.4671 2.4453	2.4671 2.4453	2.4453		2.4641	2.4534	2.49984	2.49206	2.5005	2.4679	2.4937	2.4721	2.44616	2.45354	2
UN 2A 2.5140 2.4418	2A 2.5140 2.4418	2.5140 2.4418	2.4418		2.5050	2.4689	2.6223	2.6041	2.6250	2.5167	2.6007	2.5285	2.4450	2.4750	2B
2.5135 2.4410	2.5135 2.4410	2.5135 2.4410	2.4410		2.5055	2.469/	2.6221	2.6043 2.6068	05297	2/107	2,5077	2.5280	2.4452 2.4450	2.4/40 2.4646	38
3A 2.5167 2.4437 2.5162 2.4437 2.5162 2.4437 2.5163	2.5162 2.4437	2.5162 2.4437	2.4437		2.5104	2.4746	2.6248	2.6070	2.6258	2.5172	2.5969	2.5250	2.4452	2.4644	2
UN 2A 2.5413 2.4872	2A 2.5413 2.4872	2.5413 2.4872	2.4872		2.5331	2.5060	2.6225	2.6075	2.6250	2.5438	2.6086	2.5545	2.4900	2.5150	28
2.5408 2.4865	2.5408 2.4865	2.5408 2.4865	2.4865	_	2.5336	2.5067	2.6223	2.6077	2.6257	2.5443	2.6079	2.5540	2.4902	2.5148	
3A 2.5438 2.4897 2 2.5433 2.4890 2	3A 2.5438 2.4897 2 2.5433 2.4890 2	2.5438 2.4897 2.5433 2.4890 2	2.4897		2.5376 2.5381	2.5105	2.6250 2.6248	2.6100 2.6102	2.6250 2.6257	2.5438 2.5443	2.6059 2.6052	2.5518 2.5513	2.4900 2.4902	2.5047 2.5045	38
1 N 34 5 5690 3 5339	3A 7 5400 7 5370) 5600 2 5370	2 5329	-	2 56.7R	2 544B	2 6231	2,6117	2,6250	2.5709	2,6151	2.5790	2.5350	2.5530	28
2.5686 2.5323	2.5686 2.5323	2.5686 2.5323	2.5323	_	2.5632	2.5454	2.6229	2.6119	2.6256	2.5713	2.6145	2.5786	2.5352	2.5528	
3A 2.5709 2.5348	3A 2.5709 2.5348	2.5709 2.5348	2.5348	_	2.5663	2.5483	2.6250	2.6136	2.6250	2.5709	2.6130	2.5769	2.5350	2.5448	38
2.5705 2.5342	2.5705 2.5342	2.5705 2.5342	2.5342		2.5667	2.5489	2.6248	2.6138	2.6256	2.5713	2.6124	2.5765	2.5352	2.5446	
UN 2A 2.5827 2.5556	2A 2.5827 2.5556	2.5827 2.5556	2.5556		2.5772	2.5637	2.6233	2.6139	2.6250	2.5844	2.6187	2.5916	2.5570	2.5710	2B
2.5823 2.5550	2.5823 2.5550	2.5823 2.5550 2.5844 2.5550	2.5550		2.5776 2.5803	2.5643 2.5668	2.6231	2.6141 2.6156	2.6256	2.5848 2.5844	2.6181 2.6169	2.5912 2 5898	2.55/2	2.5/08	ЗR
2.5840 2.5567	2.5840 2.5567	2.5840 2.5567	2.5567		2.5807	2.5674	2.6248	2.6158	2.6256	2.5848	2.6163	2.5894	2.5572	2.5656	}
UN 2A 2.5910 2.5693	2A 2.5910 2.5693 2	2.5910 2.5693 2	2.5693		2.5859	2.5751	2.6235	2.6154 2.6154	2.6250	2.5925 2.5925	2.6208	.2.5991 2.5091	2.5710	2.5820 2.5818	2B
3A 2.5925 2.5708	3A 2.5925 2.5708	2.5925 2.5708	2.5708		2.5887	2.5779	2.6250	2.6169	2.6250	2.5925	2.6192	2.5975	2.5710	2.5787	38
2.5921 2.5703	2.5921 2.5703	2.5921 2.5703	2.5703		2.5891	2.5784	2.6248	2.6171	2.6255	2.5929	2.6187	2.5971	2.5712	2.5785	
UNC 1A 2.5844 2.4761	1A 2.5844 2.4761	2.5844 2.4761	2.4761		2.5686	2.5145	2.7468	2.7111	2.7500	2.5876	2.7165	2.6082	2.4790	2.5170	18
	2.2839 2.4/52 xr	25/4/2 2:4/52	72740		1606.2	4CI C.7	2.7400	CI1/7	2/ 2US	1000.7	0CI /.7	2 E012	76/#.7 0027 C	001 C.7 0 C17 C	Яć
2.5839 2.4752	2.5839 2.4752	2.5839 2.4752	2.4752	_	2.5744	2.5207	2.7466	2.7232	2.7509	2.5881	2.7087	2.6008	2.4792	2.5168	3
3A 2.5876 2.4793	3A 2.5876 2.4793	2.5876 2.4793	2.4793		2.5797	2.5256	2.7500	2.7262	2.7500	2.5876 3 5881	2.7062 2.7053	2.5979 2 5074	2.4790	2.5094 2 5094	38
+0/+7 1/007	+0/+-7 1 /nc·7	40/4"7 I /0C"7	10/1-7	_	700017	CN7C-7	7.170	F.1 EV-1							

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

GAG UNIF	es a Ied I	ND (NCH	GAGING SCREV	5 FO	R READS									AN A	MERI	AN CAN N	NSI/A ATIO	SME E	31.2-1 TAND	983 ARD
			Class	16	28	38	28	38	2B	38	28	38	2B	38	2B	38	2B	3B	2B	38
		iages for	NO1 00	15	in. 2.6000	2.5998 2.5896 2.5894	2.6400	2.6297 2.6297 2.6295	2.6780 2.6780	2.6698 2.6698 2.6696	2.6960	2.6958 2.6908 2.6906	2.7070	2.7037	2.7250	2.7146 2.7146 2.7144	2.7650	2.7648 2.7547 2.7545	2.8030	2.8028 2.7948 2.7946
reads		Ainor D	03	14	in. 2.5700	2.5702 2.5700 2.5702	2.6150	2.6152 2.6150 2.6152	2.6600	2.6600	2.6820	2.6822 2.6820 2.6822	2.6960	2.6960 2.6960 2.6962	2.6950	2.6950 2.6950 2.6952	2.7400	2.7402 2.7400 2.7400	2.7850	2.7852 2.7850 2.7852
ternal Th		(IH) O	Pitch Diam.	13	in. 2.6536	2.6531 2.6506 2.6501	2.6796	2.6769 2.6769 2.6764	2.7040 2.7036	2.7019 2.7015 2.7015	2.7166	2.7162 2.7148 2.7144	2.7241	2.725	2.7787	2.7757 2.7752 2.7752	2.8048	2.8043 2.8020 7.8015	2.8291	2.8287 2.8271 2.8267
ges for In	l Gages	NOT G	Major Diam.	12	in. 2.7258	2.7250 2.7228 2.7220	2.7337	2.7300 2.7310 2.7303	2.7401	2.7374 2.7374	2.7137	2.7431 2.7419 2.7413	2.7458	2.7437	2.8509 2.8509	2.8479 2.8471 2.8471	2.8589	2.8582 2.8561 2.8554	2.8652	2.8646 2.8632 2.8626
Ga	X Thread		Pitch Diam.	11	in. 2.6417	2.6422 2.6417 2.6422	2.6688	2.6693 2.6688 2.6693	2.6959 2.6963	2.6963 2.6963	2.7094	2.7098 2.7094 2.7098	2.7175	2.7175	2.7667	2.7667 2.7667 2.7672	2.7938	2.7943 2.7938 2.7943	2.8209	2.8213 2.8209 2.8213
		3	Major Diam.	10	in. 2.7500	2.7508 2.7500 2.7508	2.7500	2.7500 2.7500 2.7507	2.7500 2.7506	2.7500	2.7500	2.7506 2.7506	2.7500	2.7500	2.8750	2.8750	2.8750	2.8757 2.8750 2.8757	2.8750	2.8756 2.8750 2.8756
		iameter	NOT GO	6	in. 2.7291	2.7293 2.7318 2.7320	2.7325	2.7350 2.7352 2.7352	2.7367 2.7369	2.7386	2.7389	2.7406 2.7408	2.7404	2.7421	2.8540 2.8540	2.8568 2.8568 2.8570	2.8575	2.8577 2.8600 2.8602	2.8617	2.8619 2.8636 2.8638
eads	7 Plain	Major D	00	8	in. 2.7473	2.7471 2.7500 2.7498	2.7475	2.7500	2.7481 2.7479	2.7500	2.7483	2.7498 2.7498	2.7485 2.7483	2.7498	2.8722	2.8750 2.8748	2.8725	2.8750 2.8750 2.8748	2.8731	2.8729 2.8750 2.8748
ternal Thr		0 (10)	Minor Diam.	7	in. 2.5938	2.5946 2.5988 2.5996	2.6309	2.6354 2.6354 2.6361	2.6698 2.6704	2.6733	2.6887	2.6918 2.6918 2.6924	2.7001	2.7029	2.7186 2.7194	2.7237	2.7558	2.7604 2.7604 2.7611	2.7947	2.7953 2.7982 2.7988
ges for Ext	l Gages	NOT G	Pitch Diam.	6	in. 2.6299	2.6304 2.6349 2.6354	2.6580 2.6580	2.6630 2.6630 2.6630	2.6878 2.6882	2.6913 2.6917	2.7022	2.7053 2.7053 2.7057	2.7109	2.7137 2.7141	2.7547	2.7598	2.7829	2.7834 2.7875 2.7880	2.8127	2.8131 2.8162 2.8166
Ga	X Threa	0	Minor Diam.	5	in. 2.5668	2.5660 2.5695 2.5687	2.6122 2.6125	2.6147 2.6147 2.6140	2.6579 2.6573	2.6598 2.6592	2.6806	2.6823 2.6823 2.6817	2.6943 2.6943	2.6958	2.6917 2.6917	2.6945 2.6937	2.7372	2.7397 2.7397 2.7390	2.7829	2.7823 2.7848 2.8742
		Ŭ	Pitch Diam.	4	in. 2.6390	2.6385 2.6417 2.6412	2.6663 2.6658	2.6688 2.6688 2.6683	2.6940 2.6936	2.6959	2.7077	2.7094 2.7094 2.7090	2.7160 2.7156	2.7175	2.7639	2.7667	2.7913	2.7938 2.7938 2.7933	2.8190	2.8186 2.8209 2.8205
			Class	3	2A	3A	2A	3A	2A	3 A	2A	3A	ZA	3 A	2A	3A	2A	3A	2A	3A
			Series Designation	2	N C		ĊN		N		CN		CN		N		Ŋ		Ŋ	
			Nominal Size and Threads/in.	1	2¥4-6 or 2.750-6		2¥4-8 or 2.750-8		2¥+12 or 2.750-12		2¥4-16 or 2.750-16		2¥4-20 or 2.750-20		27/8-6 or 2.875-6		27/8-8 or 2.875-8		27/8-12 or 2.875-12	

				Gag	ses for Ex	ternal Thr	eads			Gag	ges for Int	ternal Thr	eads			
				X Thread	Gages		7 Plain (Games for		X Thread	l Gages		7 Plain (Jame for		
			Ŭ	0	NOT G	Q (LO)	Major [Diameter	5	•	NOT G	(IH) O		Diameter		
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	60	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT GO	Class	
-	2	3	4	s.	9	2	8	6	10	۲	12	13	14	15	16	
27/8-16 or 2.875-16	Z	2A	in. 2.8327	in. 2.8056	in. 2.8271	in. 2.8136	in. 2.8733	in. 2.8639	in. 2.8750	in. 2.8344	in. 2.8688	in. 2.8417	in. 2.8070	in. 2.8210	28	
		3A	2.8323 2.8344 2.8340	2.8050 2.8073 2.8067	2.8275 2.8302 2.8306	2.8142 2.8167 2.8173	2.8731 2.8750 2.8748	2.8641 2.8656 2.8658	2.8756 2.8750 2.8756	2.8348 2.8344 2.8348	2.8682 2.8670 2.8664	2.8413 2.8399 2.8395	2.8072 2.8070 2.8072	2.8208 2.8158 2.8156	38	
27/8-20 or 2.875-20	Ŋ	2A	2.8409	2.8192	2.8357	2.8249	2.8734	2.8653	2.8750	2.8425	2.8710	2.8493	2.8210	2.8320	28	
		3A	2.8425 2.8421 2.8421	2.8208 2.8208 2.8203	2.8390 2.8386 2.8390	2.828	2.8750 2.8750 2.8748	2.8669 2.8669 2.8671	2.8750 2.8750 2.8755	2.8429 2.8425 2.8429	2.8693 2.8688	2.8476 2.8476 2.8472	2.8210 2.8210 2.8212	2.8287 2.8287 2.8285	38	
3-4 or 3.000-4	UNC	1A	2.8344 2.8339	2.7261 2.7252	2.8183 2.8188	2.7642 2.7651	2.9968 2.9966	2.9611 2.9613	3.0000 3.0009	2.8376 2.8381	2.9668 2.9659	2.8585 2.8580	2.7290 2.7292	2.7670 2.7668	18	
		2A	2.8344 2.8339	2.7261	2.8237 2.8242	2.7696 2.7705	2.9968 2.9966	2.9730 2.9732	3.0000 3.0009	2.8376 2.8381	2.9598 2.9589	2.8515 2.8510	2.7290 2.7292	2.7670 2.7668	2B	
		3 A	2.8376 2.8371	2.7293 2.7284	2.8296 2.8301	2.7755 2.7764	3.0000 2.9998	2.9762 2.9764	3.0000 3.0009	2.8376 2.8381	2.9563 2.9554	2.8480 2.8475	2.7290 2.7292	2.7594 2.7592	38	
1-6 or 3.000-6	NU	2A	2.8884	2.8167 2.8159	2.8796 2.8801	2.8435 2.8443	2.9972 2.9970	2.9790 2.9792	3.0008 3.0008	2.8917 2.8922	2.9760 2.9752	2.9038 2.9033	2.8200 2.8202	2.8500 2.8498	2B	
		3A	2.8917	2.8195 2.8187	2.8847 2.8852	2.8494	3.0000 2.9998	2.9820	3.0008	2.8917 2.8922	2.9730	2.9008	2.8200 2.8202	2.8396	38	
1-8 or 3.000-8	N	2A	2.9162	2.8621 2.8614	2.9077 2.9082	2.8806	2.9974 2.9974	2.9824 2.9826	3.0000	2.9188 2.9193	2.9840 2.9833	2.9299	2.8650 2.8650	2.8900 2.8900	2B	
		3A	2.9188 2.9183	2.8640	2.9124	2.8853	3.0000 2.9998	2.9850	3.0000	2.9188 2.9193	2.9812	2.9271	2.8650	2.8795	38	_
3-12 or 3.000-12	N	2A	2.9440 2.9436	2.9079 2.9073	2.9377 2.9381	2.9197 2.9203	2.9981 2.9979	2.9867 2.9869	3.0000 3.0006	2.9459 2.9463	2.9902 2.9896	2.9541 2.9537	2.9100	2.9280 2.9278	28	
		<u>د</u>	2.9455	2.9092	2.9416	2.9238	2.9998	2.9888	3.0006	2.9463	2.9876 2.9876	2.9517	2.9102	2.9196	5	
3-16 or 3.000-16	NU	2A	2.9577	2.9306 2.9300	2.9521 2.9525	2.9386 2.9392	2.9983 2.9981	2.9889 2.9891	3.0006 3.0006	2.9594 2.9598	2.9938 2.9932	2.9667 2.9663	2.9320	2.9460 2.9458	28	
		ЗA	2.9594 2.9590	2.9323 2.9317	2.9552 2.9556	2.9417 2.9423	3.0000 2.9998	2.9906 2.9908	3.0000 3.0006	2.9594 2.9598	2.9920 2.9914	2.9649 2.9645	2.9320 2.9322	2.9408 2.9406	38	
1-20 or 3.000-20	N	2A	2.9659 2.9655	2.9442 2.9437	2.9607 2.9611	2.9499 2.9504	2.9984 2.9982	2.9903 2.9905	3.0000 3.0005	2.9675 2.9679	2.9960 2.9955	2.9743 2.9739	2.9460 2.9462	2.9570 2.9568	2B	
		ЗA	2.9675 2.9671	2.9458 2.9453	2.9636 2.9640	2.9528 2.9533	3.0000 2.9998	2.9919 2.9921	3.0000 3.0005	2.9675 2.9679	2.9943 2.9938	2.9726 2.9722	2.9460 2.9462	2.9537 2.9535	38	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

SES 1A, 2A, 3A, 1B, 2B, AND 3B	ize (cont'd)
S FOR STANDARD THREAD SERIES, CLASSI	UNIFIED SCREW THREADS — LIMITS OF SIZ
TABLE 10 GAGE	

				Ga	ges for Ex	ternal Thr	eads			G	ges for Int	ternal Thr	reads		
				X Threa	d Gages		Z Plain C	ages for		X Threa	d Gages) niela (ages for	
			Ŭ	0	NOT G	(O1) O	Major D	Diameter	Ũ	0	NOT G	(IH) O	Minor D	biameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	g	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NO 60	Class
-	2	e	4	ŝ	و	7	8	6	10	11	12	13	14	15	16
			Ċ	Ŀ.	Ë	Ŀ.	Ľ	Ë	Ľ	Ľ	Ľ	i.	Ŀ.	.Ë	
3 /9-6 or 3.125-6	N	2A	3.0139	2.9417	3.0045	2.9684	3.1222	3.1040	3.1250	3.0167	3.1011	3.0289	2.9450	2.9750	2B
		3A	3.0167	2.9445	3.0097	2.9736	3.1250	3.1068	3.1250	3.0167	3.0961	3.0259	2.9450	2.9646	3B
3V8-8 or 3.125-8	Z	2	3.0412	2.9871	3.0326	3.0055	3.1224	3.1074	3.1250	3.0438	3.1091	3.0550	2.9900	3.0150) R
	;	i	3.0407	2.9864	3.0331	3.0062	3.1222	3.1076	3.1257	3.0443	3.1084	3.0545	2.9902	3.0148	2
		¥	3.0438 3.0433	2.9897 2.9890	3.037 4 3.0379	3.0103 3.0110	3.1250 3.1248	3.1100 3.1102	3.1250 3.1257	3.0438 3.0443	3.1063 3.1056	3.0522 3.0517	2.9900 2.9902	3.0047 3.0045	38
378-12 or 3.125-12	N	ZA	3.0690	3.0329	3.0627	3.0447	3.1231	3.1117	3.1250 ·	3.0709	3.1152	3.0791	3.0350	3.0530	2B
		3A	3.0709	3.0348	3.0662	3.0482	3.1250	3.1136	3.1250	3.0709	3.1132	3.0771	3.0350	3.0448	38
			3.0705	3.0342	3.0666	3.0488	3.1248	3.1138	3.1256	3.0713	3.1126	3.0767	3.0352	3.0446	
31⁄8-16 or 3.125-16	N N	2A	3.0827	3.0556	3.0771	3.0636	3.1233	3.1139	3.1250	3.0844	3.1188	3.0917	3.0570	3.0710	2B
		ł	3.0823	3.0550	3.0775	3:0642	3.1231	3.1141	3.1256	3.0848	3.1182	3.0913	3.0572	3.0708	ŝ
		۲ç	3.0844 3.0840	3.0567	3.0806	3.0673	3.1248 3.1248	3.1158	3.1256	3.0848	3.11/0 3.1164	3.0895	3.0572	3.0656	38
31⁄4-4 or 3.250-4	UNC	۲	3.0843	2.9760	3.0680	3.0139	3.2467	3.2110	3.2500	3.0876	3.2171	3.1088	2.9790	3.0170	18
		24	3.0838	2.9751	3.0685	3.0148	3.2465 3.2467	3.2112 3.2229	3.2509	3.0881 3.0876	3.2162	3.1083	2.9792	3.0168	2 R
			3.0838	2.9751	3.0739	3.0202	3.2465	3.2231	3.2509	3.0881	3.2091	3.1012	2.9792	3.0168	
		3 A	3.0876 3.0871	2.9793 2.9784	3.0794 3.0799	3.0253 3.0262	3.2500 3.2498	3.2262 3.2264	3.2500 3.2509	3.0876 3.0881	3.2065 3.2056	3.0982 3.0977	2.9790 2.9792	3.0094 3.0092	38
3 1/4-6 or 3.250-6	CN	2A	3.1389	3.0667	3.1294	3.0933	3.2472	3.2290	3.2500	3.1417	3.2262	3.1540	3.0700	3.1000	28
		3A	3.1384 3.1417	3.0655	3.1299	3.0941 3.0985	3.2500	3.2318	3.2508	3.1422	3.2254 3.2231	3.1535 3.1509	3.0702	3.0998	38
			3.1412	3.0687	3.1351	3.0993	3.2498	3.2320	3.2508	3.1422	3.223	3.1504	3.0702	3.0894	
3 V 4-8 or 3.250-8	NΝ	2 A	3.1662	3.1121	3.1575	3.1304	3.2474	3.2324	3.2500	3.1688	3.2342	3.1801	3.1150	3.1400	2B
		3A	3.1688	3.1147	3.1623	3.1352	3.2500	3.2350	3.2500	3.1688	3.2314	3.1773	3.1150	3.1297	3B
			3.1683	3.1140	3.1628	3.1359	3.2498	3.2352	3.2507	3.1693	3.2307	3.1768	3.1152	3.1295	
3V4-12 or 3.250-12	N	2 A	3.1940	3.1579	3.1877	3.1697	3.2481	3.2367	3.2500	3.1959	3.2402	3.2041	3.1600	3.1780	2B
		į	3.1936	3.1573	3.1881	3.1703	3.2479	3.2369	3.2506	3.1963	3.2396	3.2037	3.1602	3.1778	ç
		۲ç	3.1955	3.1592	3.1916	3.1738	3.2498	3.2388	3.2506	3.1963	3.2302	3.2017	3. 1602	3.1696	đ

				G	ges for Ex	ternal Thr	eads			C.	ges for Ini	iernal Thr	eads		
				X Threa	d Gages		7 Plain (ares for		X Threa	d Gages		7 Plain	Lance for	
			0	0	NOT G	(01) 0	Major E	biameter	Ŭ	0	NOT G	(IH) O	Minor D	vages ror Viameter	
Nominal Size and Threads/in.	Seri es Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	g	NOT CO	Class
-	2	3	4	5	و	7	8	6	10	11	12	13	14	15	16
			Ċ	Ŀ	.e	Ľ	in.	. <u>c</u>	.e	. <u>.</u>			Ŀ		
374-16 or 3.250-16	N	5 ×	3.2077	3.1806	3.2021	3.1886 3.1892	3.2483	3.2389	3,2500	3.2094	3.2438	3.2167	3.1820	3.1960	2B
		3A	3.2094	3.1823 3.1823 3.1817	3.2052	3.1917	3.2500	3.2406	3.2500	3.2094	3.2420	3.2149	3.1820 3.1820 2.1820	3.1908	38
			0007.0		0007.0	C7C .C	0023.0	0047°C	80C7.C	0607.6	+1+7°C	C+17.0	7701.C	0061.0	
3 3 %-6 or 3.375-6	N	2 A	3.2638	3.1916	3.2543	3.2182	3.3721	3.3539	3.3750	3.2667	3.3513	3.2791	3.1950	3.2250	2B
		3A	3.2667	3.1945	3.2595	3.2234	3.3750	3.3568	3.3750	3.2667	3.3482 3.3482	3.2760	3.1950	3.2248 3.2146	38
			3.2662	3.1937	3.2600	3.2242	3.3748	3.3570	3.3758	3.2672	3.3474	3.2755	3.1952	3.2144	
3 3 8-8 or 3.375-8	Ŋ	2A	3.2912	3.2371	3.2824	3.2553 3.2553	3.3724	3.3574	3.3750	3.2938	3.3593	3.3052	3.2400	3.2650	2B
		3A	3.2938	3.2397	3.2872	3.2601	3.3750	3.3500	3.3750	3.2938	3.3564	3.304/	3.2402	3.2648	Я£
			3.2933	3.2390	3.2877	3.2608	3.3748	3.3602	3.3757	3.2943	3.3557	3.3018	3.2402	3.2545	2
3¥8-12 or 3.375-12	Z C	2A	3.3190	3.2829	3.3126	3.2946	3.3731	3.3617	3.3750	3.3209	3.3654	3.3293	3.2850	3.3030	2B
			3.3186	3.2823	3.3130	3:2952	3.3729	3.3619	3.3756	3.3213	3.3648	3.3289	3.2852	3.3028	
		3A	3.3209 3.3205	3.2848 3.2842	3.3161 3.3165	3.2961 3.2967	3.3750 3.3748	3.3636 3.3638	3.3750 3.3756	3.3209 3.3213	3.3633 3.3627	3.3272 3.3268	3.2850 3.2852	3.2948 3.2946	88
334-16 or 3 375-16		40	1 1177	3 3056	3 3760	1 2124	2 2 7 2 2	9535 5	3 3750		0036.6	0110 0	0200 0	OFCE C	1
	5	5	3.3323	3.3050	3.3273	3.3140	3.3731	3.3641	3.3756	3.3348	3.3684	3.3415	3.3072	3.3208	97
		3A	3.3344 3.3340	3.3073 3.3067	3.3301 3.3305	3.3166 3.3172	3.3750 3.3748	3.3656 3.3658	3.3750 3.3756	3.3344 3.3348	3.3671 3.3665	3.3400 3.3396	3.3070 3.3072	3.3158 3.3156	38
3 <i>1</i> /2-4 or 3.500-4	UNC	4	3.3343	3.2260	3.3177	3.2636	3.4967	3.4610	3.5000	3.3376	3.4674	3.3591	3.2290	3.2670	18
			3.3338	3.2251	3.3182	3.2645	3.4965	3.4612	3.5009	3.3381	3.4665	3.3586	3.2292	3.2668	
		5×	3.3343 3.3338	3.2260 3.2251	3.3233 3.3238	3.2692 3.2701	3.4967 3.4965	3.4729 3.4731	3.5000	3.3376 3.3381	3.4602 3.4593	3.3519 3.3514	3.2290	3.2670 3.2668	2B
		34	3.3376	3.2293	3.3293	3.2752	3.5000	3.4762	3.5000	3.3376	3.4567	3.3484	3.2290	3.2594	38
			- /// .	1077.0	0670.0	10/7.0	nect-r	5	conc.r	10000	0004.0	£/#C.C	7677.0	7607.0	
3 72-6 or 3.500-6	S	2A	3.3888	3.3166	3.3792	3.3431	3.4971	3.4789	3.5000	3.3917	3.4764	3.4042	3.3200	3.3500	28
_		3A	3.3917	3.3195	3.3845	3.3484	3.5000	3.4818	3.5000	3.3917	3.4733	3.403/	3.3202	3.3498	38
			3.3912	3.3187	3.3850	3.3492	3.4998	3.4820	3.5008	3.3922	3.4725	3.4006	3.3202	3.3394	Ŗ
3 72-8 or 3.500-8	Z	2 A	3.4162	3.3621	3.4074	3.3803	3.4974	3.4824	3.5000	3.4188	3.4844	3.4303	3.3650	3.3900	28
			3.4157	3.3614	3.4079	3.3810	3.4972	3.4826	3.5007	3.4193	3.4837	3.4298	3.3652	3.3898	
		¥.	3.4188 3.4183	3.3647 3.3640	3.4122 3.4127	3.3851 3.3858	3.5000 3.4998	3.4850 3.4852	3.5000 3.5007`	3.4188 3.4193	3.4815 3.4808	3.4274 3.4269	3.3650 3.3652	3.3797 3.3795	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

3, AND 3B	
B , 2B	
GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1	UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)
TABLE 10	

				Gag	ges for Ex	ternal Thr	eads			Gag	ges for Int	ernal Th <i>r</i>	eads		
				X Thread	l Gages		7 Plain C	are for		X Threat	l Gages		7 Pilair	and for	
			Ö	0	NOT G	0 (10)	Major D	liameter	Ğ	0	NOT G	(IH) O	Ainor D	Jages for	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	10N 60	Class
-	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16
316-13-22-3 500-13	2	4	in.	in.	in.	in. 2.4406	in. 2 4004 5	in.	in.	in.	in.	in.	in.	in.	,
21-00C.C JO 21-246	20	5	3.4440 3.4436	3.4073	3.43/0	3.4202	3.4979	3.4869 3.4869	3.5006	3.4459 3.4463	3.4904 3.4898	3.4539 3.4539	3.4100 3.4102	3.4280 3.4278	7B
		3A	3.4459 3.4455	3.4098 3.4092	3.4411 3.4415	3.4231 3.4237	3.5000 3.4998	3.4886 3.4888	3.5000 3.5006	3.4459 3.4463	3.4883 3.4877	3.4522 3.4518	3.4100 3.4102	3.4198 3.4196	3B
31/2-16 or 3.500-16	Ŋ	2A	3.4577	3.4306	3.4519	3.4384	3.4983	3.4889	3.5000	3.4594	3.4940	3.4669	3.4320	3.4460	28
		٩Ł	3.4573 3.4594	3.4300	3.4523	3.4390 3.4416	3.4981	3.4891 3.4906	3.5006	3.4598 3.4594	3.4934	3.4665	3.4322	3.4458 3.4408	ав
			3.4590	3.4317	3.4555	3.4422	3.4998	3.4908	3.5006	3.4598	3.4915	3.4646	3.4322	3.4406	2
3\$/8-6 or 3.625-6	N N	2A	3.5138	3.4416	3.5041	3.4680	3.6221	3.6039	3.6250	3.5167	3.6015	3.5293	3.4450	3.4750	2B
		٩٤	3.5133	3.4408 3.4445	3.5046 3.5094	3.4688	3.6250	3.6041	3.6258	3.5172	3.5984	3.5288	3.4452 3.4450	3.4748 3.4646	3R
		5	3.5162	3.4437	3.5099	3.4741	3.6248	3.6070	3.6258	3.5172	3.5976	3.5257	3.4452	3.4644	2
3 7 8-8 or 3.625-8	S	2A	3.5411	3.4870	3.5322	3.5051	3.6223	3.6073	3.6250	3.5438	3.6095	3.5554	3.4900	3.5150	28
			3.5406	3.4863	3.5327	3.5058	3.6221	3.6075	3.6257	3.5443	3.6088	3.5549	3.4902	3.5148	
		3A	3.5438 3.5433	3.4897 3.4890	3.5371 3.5376	3.5100 3.5107	3.6250 3.6248	3.6100 3.6102	3.6250 3.6257	3.5438 3.5443	3.6066 3.6059	3.5525 3.5520	3.4900 3.4902	3.5047 3.5045	38
35/8-12 or 3.625-12	Z C	2	3.5690	3.5329	3.5626	3.5446	3.6231	3.6117	3.6250	3.5709	3.6154	3.5793	3.5350	3.5530	28
			3.5686	3.5323	3.5630	3.5452	3.6229	3.6119	3.6256	3.5713	3.6148	3.5789	3.5352	3.5528	
		3A	3.5709 3.5705	3.5348 3.5342	3.5661 3.5665	3.5481 3.5487	3.6250 3.6248	3.6136 3.6138	3.6250 3.6256	3.5709 3.5713	3.6133 3.6127	3.5772 3.5768	3.5350 3.5352	3.5448 3.5446	3B
3\$%-16 or 3.625-16	S	2A	3.5827	3.5556	3.5769	3.5634	3.6233	3.6139	3.6250	3.5844	3.6190	3.5919	3.5570	3.5710	2B
		3A	3.5823 3.5844	3.5550	3.5801	3.5666	3.6250	3.6141 3.6156	3.6250	3.5848 3.5844	3.6184	3.5900	3.5570	3.5708 3.5658	38
			3.5840	3.5567	3.5805	3.5672	3.6248	3.6158	3.6256	3.5848	3.6165	3.5896	3.5572	3.5656	
3¥4-4 or 3.750-4	UNC	1٨	3.5842	3.4759	3.5674	3.5133	3.7466	3.7109	3.7500	3.5876 3.5881	3.7177 3.7168	3.6094 3.6089	3.4790	3.5170 3.5168	18
		2A	3.5842	3.4759	3.5730	3.5189	3.7466	3.7228	3.7500	3.5876	3.7104	3.6021	3.4790	3.5170	2B
		į	3.5837	3.4750	3.5735	3.5198	3.7464	3.7230	3.7509	3.5881	3.7095	3.6016	3.4792	3.5168	ç
		<u>ج</u>	3.5871	3.4/93 3.4784	3.5797	3.5260	3.7498	3.7264	3.7509	3.5881 3.5881	3.7059 3.7059	3.5980	3.4790 3.4792	3.5094 3.5092	38
3 3 4-6 or 3.750-6	Ŋ	2A	3.6388	3.5666	3.6290	3.5929	3.7471	3.7289	3.7500	3.6417	3.7266	3.6544	3.5700	3.6000	28
		;	3.6383	3.5658	3.6295	3.5937	3.7469	3.7291	3.7508	3.6422	3.7258	3.6539	3.5702	3.5998	Ģ
		٩ç	3.041/ 3.6412	3.5687	3.6349	3.5991	3.7498	3.7320	3.7508	3.6422	3.7226	3.6507	3.5702	3.5894	e,

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

38	
AND	
, 2 B ,	
, 1B	
, 3A	ľ)
V, 2A	NO NO
S 1A	E C
CLASSE	S OF SIZ
SERIES,	- LIMITS
THREAD	READS -
NDARD .	CREW TH
STA	DSC
FOR	ZIFIE
GAGES I	5
10	
TABLE	

				Gag Gag	es for Ext	ernal Thre	eads			Gag	es for Into	ernal Thre	eads			AN
				X Thread	Gages		7 Plain C			X Thread	Gages		7 Philo C			AM
			3	0	NOT G	(O1) C	Major D	iameter	5	•	NOT GO	(IH) C	Minor Di	ages ror iameter		ERIC/
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	g	NOT 60	Class	AN NAT
-	2	3	4	S	و	7	80	6	10	11	12	13	4	15	16	IUNA
			Ŀ.	. <u>:</u>	Ľ	. <u>e</u>	Ŀ	. <u>.</u>	. <u>c</u>	.e	. <u> </u>	. <u>e</u>	. <u>c</u>	Ŀ.		AL 31
4-8 or 3.750-8	Ŋ	2 ^	3.6661	3.6120	3.6571	3.6300	3.7473	3.7323	3.7500	3.6688 3.6688	3.7346	3.6805 2.6805	3.6150	3.6400	2B	AN
		3A	3.6683 3.6683	3.6147 3.6140 3.6140	3.6626 3.6626	3.6350	3.7498 3.7498	3.7350	3.7500	3.6693	3.7310 3.7310	3.6776 3.6771	3.6150 3.6152	3.6297 3.6295	38	DARD
4-12 or 3.750-12	N	24	3.6940	3.6579	3.6876	3.6696	3.7481	3.7367	3.7500	3.6959	3.7404	3.7043	3.6600	3.6780	28	
		3A	3.6959 3.6959 3.6955	3.6598	3.6915 3.6915	3.6737 3.6737 3.6737	3.7498 3.7498	3.7386 3.7386 3.7388	3.7506 3.7506	3.6959 3.6959	3.7383 3.7383	3.7018 3.7018	3.6602 3.6602	3.6698 3.6698 3.6696	38	
4-16 or 3.750-16	NU	2	3.7077	3.6806	3.7019	3.6884 3.6890	3.7483 3.7481 3.7481	3.7389 3.7381	3.7500	3.7094 3.7098	3.7440	3.7169 3.7165	3.6820	3.6960 3.6958	28	
		3A	3.7094	3.6823 3.6817	3.7055	3.6916 3.6922	3.7500 3.7498	3.7406 3.7408	3.7506	3.7094 3.7098	3.7421	3.7150 3.7146	3.6820 3.6822	3.6906 3.6906	38	
e-6 or 3.875-6	N	24	3.7637 3.7637	3.6915 3.6907	3.7538	3.7177 3.7185	3.8720 3.8718	3.8538	3.8750 3.8758	3.7667	3.8517 3.8517	3.7795	3.6950	3.7250	28	
		34	3.7667 3.7662	3.6945 3.6937	3.7598	3.7240	3.8750	3.8570 3.8570	3.8750	3.7667 3.7672	3.8485 3.8477	3.7763 3.7758	3.6950	3.7146 3.7144	38	
-8 or 3.875-8	ß	2٨	3.7911	3.7370	3.7820	3.7549	3.8723	3.8573	3.8750	3.7938	3.8597	3.8056	3.7400	3.7650	28	
		3A	3.79 06 3.7938 3.7933	3.7363 3.7397 3.7390	3.7825 3.7870 3.7875	3.7599 3.7599 3.7606	3.8727 3.8750 3.8748	3.85/5 3.8600 3.8602	3.8/5/ 3.8750 3.8757	3.7943 3.7938 3.7943	3.8590 3.8567 3.8560	3.8051 3.8026 3.8021	3.7402 3.7400 3.7402	3.7648 3.7547 3.7545	38	
+12 or 3.875-12	Ŋ	×	3.8189 3.9185	3.7828	3.8124	3.7944 3.7944	3.8730	3.8616 3.8618	3.8750	3.8209	3.8655	3.8294 3.8294	3.7850	3.8030 2.6030	28	Ū
	_	3	3.8209	3.7848 3.7848	3.8160	3.7986	3.8750	3.8636 3.8638	3.8756	3.8209 3.8213	3.8628	3.8273 3.8273 3.8269	3.7850	3.7946 3.7946	38	
+16 or 3.875-16	N	2	3.8326	3.8055 3.8040	3.8267 3.8271	3.8132 3.8138	3.8732	3.8638 3.8640	3.8750 3.8756	3.8344 3.8344	3.8691 3.8685	3.8420 3.8416	3.8070	3.8210 3.8208	28	
		34	3.8344	3.8073 3.8067	3.8300	3.8165	3.8746 3.8748	3.8656 3.8658	3.8756	3.8344 3.8348 3.8348	3.8666	3.8401 3.8397	3.8070 3.8072	3.8158 3.8156	38	
l or .4.000-4	UNC	1٨	3.8342	3.7259	3.8172	3.7631	3.9966	3.9609	4.0000	3.8376	3.9680	3.8597	3.7290	3.7670	18	
		2	3.8337 3.8342	3.7250 3.7259	3.8177 3.8229	3.7640 3.7688	3.9966	3.9728 3.9728	4.0009	3.8381 3.8376	3.9606 3.9606	3.8592 3.8523	3.7292 3.7290	3.7668 3.7670	2B	
			3.8337	3.7250	3.8234	3.7697 2 7750	3.9964	3.9730	4.0009	3.8381	3.9597	3.8518	3.7292	3.7668	8	•
		5	3.8371	3.7284	3.8296 3.8296	3.7759	3.9998	3.9764	4.0009	3.8381	3.9561	3.8482	3.7292	3.7592	8	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDAR

									-	•					
				Ga	ges for Ex	ternal Thr	eads			Gag	ges for Int	ernal Thr	eads		
				X Threa	d Gages		7 nicla 7	- June for		X Thread	d Gages		7 nicla 7	Same for	
			Ũ	0	NOT G	(01) 0	Major E	Diameter	Ğ	•	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT CO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	00	NOT GO	Class
-	2	3	4	5	و	7	8	6	10	11	12	13	14	15	16
4-6 or 4.000-6	Z	2A	in. 3.8887	in. 3.8165	in. 3.8788	in. 3.8427	in. 3.9970	in. 3.9788	in. 4.0000	in. 3.8917	in. 3.9768	in. 3.9045	in. 3.8200	in. 3.8500	2B
		3А	3.8982 3.8917 3.8912	3.815/ 3.8195 3.8187	3.8/93 3.8843 3.8848	3.8435 3.8482 3.8490	3.9966 4.0000 3.9998	3.9818 3.9818 3.9820	4.0008 4.0000 4.0008	3.8922 3.8917 3.8922	3.97360 3.9736 3.9728	3.9041 3.9014 3.9009	3.8202 3.8200 3.8202	3.8498 3.8396 3.8394	38
4-8 of 4.000-8	N D	2A 3A	3.9161 3.9156 3.9188 3.9188 3.9183	3.8620 3.8613 3.8647 3.8640	3.9070 3.9075 3.9120 3.9125	3.8799 3.8806 3.8849 3.8856	3.9973 3.9971 4.0000 3.9998	3.9823 3.9825 3.9850 3.9852	4.0000 4.0007 4.0000 4.0000	3.9188 3.9193 3.9188 3.9188	3.9848 3.9841 3.9818 3.9811	3.9307 3.9302 3.9277 3.9272	3.8650 3.8652 3.8652 3.8650 3.8652	3.8900 3.8898 3.8797 3.8795	2B 3B
4-12 or 4.000-12	N D	2A 3A	3.9439 3.9435 3.9459 3.9455	3.9078 3.9072 3.9098 3.9092	3.9374 3.9378 3.9410 3.9414	3.9194 3.9200 3.9230 3.9236	3.9980 3.9978 4.0000 3.9998	3.9866 3.9868 3.9886 3.9886 3.9888	4.0000 4.0006 4.0006 4.0006	3.9459 3.9463 3.9459 3.9463	3.9905 3.9899 3.9884 3.9878	3.9544 3.9540 3.9523 3.9523 3.9519	3.9100 3.9102 3.9100 3.9100	3.9280 3.9278 3.9198 3.9196	38
4-16 or 4.000-16	z	2A 3A	3.9576 3.9572 3.9594 3.9590	3.9305 3.9299 3.9323 3.9317	3.9517 3.9521 3.9550 3.9554	3.9382 3.9388 3.9415 3.9421	3.9982 3.9980 4.0000 3.9998	3.9888 3.9890 3.9906 3.9908	4.0000 4.0006 4.0006 4.0006	3.9594 3.9598 3.9594 3.9598	3.9941 3.9935 3.9922 3.9916	3.9670 3.9666 3.9651 3.9647	3.9320 3.9322 3.9320 3.9320	3.9460 3.9458 3.9408 3.9406	2B 3B
478-6 or 4.125-6	Z	2A 3A	4.0137 4.0131 4.0167 4.0167	3.9415 3.9402 3.9445 3.9432	4.0037 4.0043 4.0092 4.0098	3.9676 3.9689 3.9731 3.9744	4.1220 4.1218 4.1250 4.1248	4.1038 4.1040 4.1068 4.1070	4.1250 4.1263 4.1250 4.1263	4.0167 4.0173 4.0167 4.0173	4.1019 4.1006 4.0986 4.0973	4.0297 4.0291 4.0264 4.0258	3.9450 3.9452 3.9450 3.9452	3.9750 3.9748 3.9646 3.9644	2B 3B
41%-12 or 4.125-12	2 C	2A 3A	4.0689 4.0683 4.0709 4.0703	4.0328 4.0319 4.0348 4.0339	4.0624 4.0630 4.0660 4.0666	4.0444 4.0453 4.0480 4.0489	4.1230 4.1228 4.1250 4.1248	4.1116 4.1118 4.1136 4.1138	4.1250 4.1259 4.1250 4.1250	4.0709 4.0715 4.0709 4.0715	4.1155 4.1146 4.1134 4.1125	4.0794 4.0788 4.0773 4.0767	4.0350 4.0352 4.0352 4.0352	4.0530 4.0528 4.0448 4.0446	2B 3B
416-16 or 4.125-16	CN	2A 3A	4.0826 4.0820 4.0844 4.0838	4.0555 4.0546 4.0573 4.0564	4.0767 4.0773 4.0800 4.0806	4.0632 4.0641 4.0665 4.0665	4.1232 4.1230 4.1250 4.1248	4.1138 4.1140 4.1156 4.1158	4.1250 4.1259 4.1250 4.1250	4.0844 4.0850 4.0850 4.0844 4.0850	4.1191 4.1182 4.1172 4.1172 4.1163	4.0920 4.0914 4.0901 4.0895	4.0570 4.0572 4.0570 4.0572	4.0710 4.0708 4.0658 4.0656	2B 3B
4)4-4 or 4.250-4	N N	2A 3A	4.0842 4.0836 4.0876 4.0870	3.9759 3.9744 3.9793 3.9778	4.0727 4.0733 4.0790 4.0796	4.0186 4.0201 4.0249 4.0264	4.2466 4.2464 4.2500 4.2498	4.2228 4.2230 4.2262 4.2264	4.2500 4.2515 4.2500 4.2515	4.0876 4.0882 4.0876 4.0882	4.2108 4.2093 4.2071 4.2056	4.1025 4.1019 4.0988 4.0982	3.9790 3.9792 3.9790 3.9792	4.0170 4.0168 4.0094 4.0092	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

38	
AND	
2B ,	
1 B,	
, 3 A ,	ľ,
2A	Z
1 A ,	č
CLASSES	S OF SIZE
SERIES,	- IIMIT
THREAD	HREADS -
TANDARD	SCREW TH
FOR S	INIFIED
GAGES	-
FABLE 10	

Cages lor txterr X Thread Cages NOT GO (Aninor Pitch M 5 6 4. 6 4.1286 4. 7 1n. in. 1. 1n. in. 1. 4.0655 4.1292 4.0665 4.1342 4. 4. 4.0682 4.1342 4. 4. 4.1578 4.1874 4. 4. 4.1569 4.1916 4. 4. 4.1598 4.1916 4. 4. 4.1593 4.1916 4. 4. 4.1805 4.1916 4. 4. 4.1805 4.1916 4. 4. 4.1805 4.2023 4. 4. 4.1814 4.2056 4. 4. 4.1915 4.2056 4. 4.
hread Gages NOT GO (m. Pitch M m. Diam. D m. Diam. D m. Diam. D m. Diam. D m. 1n. 6 6 4.1286 4.1342 6 4.1342 4.1342 82 4.1342 4.1348 882 4.1910 4.1348 69 4.1910 4.2023 813 4.2023 4.2017 96 4.2023 4.2055 114 4.2056 4.2053 115 4.2053 4.2053
NOT GO Pitch M Diam. D 6 6 10. 4.1286 4.1292 4.1343 4.1342 4.1348 4.1348 4.1348 4.1348 4.1348 4.1342 4.1348 4.1343 4.1348 4.1343 4.1348 4.13910 4.4 4.1910 4.4 4.2017 4. 4.2016 4. 4.2017 4. 4.2016 4. 4.2017 4. 4.2016 4.
Pitch M Diam. D 6 6 6 4. 4.1292 4. 4.1342 4. 4.1342 4. 4.1342 4. 4.1348 4. 4.1348 4. 4.1348 4. 4.1348 4. 4.1348 4. 4.1348 4. 4.1310 4. 4.1916 4. 4.2017 4. 4.2053 4. 4.2056 4.
6 in. t1286 4. t1292 4. t1342 4. t1348 4. t1356 4. t1200 4. t1200 4. t1200 4. t1200 4. t1200 4. t1200 5. t1200 4. t1200 5. t12000 5. t12000 5. t12000 5. t12000 5. t12000 5. t12000 5. t120000 5. t120000 5. t120000 5. t12000000000000000000000000000000000000
in. 4.1286 4. 4.1292 4. 1292 4. 4.1348 4. 4.1348 4. 4.1916 4. 4.1916 4. 4.2055 4. 4.2056 4. 4.2056 4.
4.1292 4. 4.1342 4. 4.1348 4. 4.1348 4. 4.1874 4. 4.1916 4. 4.1916 4. 4.2017 4. 4.2053 4. 4.2056 4. 4.2056 4.
4.1874 4. 4.1874 4. 4.1890 4. 4.1910 4. 4.1916 4. 4.1916 4. 4.12050 4. 4.2053 4. 4.2056 4.
4.1880 4. 4.1910 4. 4.1916 4. 4.2017 4. 4.2053 4. 4.2056 4. 4.2536 4.
4.2017 4. 4.2023 4: 4.2050 4. 4.2056 4.
4.2050 4. 4.2050 4. 4.2056 4. 4.2536 4.
4.2536 4.
1 2547 4
2591 4. 2597 4.
.3124 4. 3130 4
3160 4. 3166 4.
.3267 4.
4.32/3 4. 4.3300 4. 4.3306 4.
.3225 4.
3289 4. 3289 4. 3295 4.
4.3784 4.
1.3846 4.

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDAR

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

8	
AND 3	
28,	
Ë	
3 A ,	õ
2)	ž
1 ,	ũ
CLASSES	5 OF SIZE
SERIES,	- LIMITS
THREAD	READS -
STANDARD	D SCREW TH
ÖR	HFIE
GAGES F	5
TABLE 10	

			5							5					
				Ga	ges for Ex	ternal Thr	eads			Gaf	ges for Int	ernal Thr	eads		
				X Threa	d Gages		7 Picial	The for		X Thread	I Gages		7 aida 7		
			Ū	0	NOT G	0 (00)	Major D	iameter	Ğ	0	NOT G	(IH)	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	g	ION 03	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
4 <i>1</i> /2-12 or 4.500-12	Z D	2A 3A	in. 4.4439 4.4433 4.4459 4.4453	in. 4.4078 4.4069 4.4089 4.4089	in. 4.4374 4.4380 4.4410 4.4416	in. 4.4194 4.4203 4.4230 4.4239	in. 4.4980 4.4978 4.5000 4.4998	in. 4.4866 4.4868 4.4886 4.4888	in. 4.5000 4.5000 4.5000 4.5000	in. 4.4459 4.4465 4.4465 4.4465	in. 4.4905 4.4896 4.4884 4.4875	in. 4.4544 4.4538 4.4523 4.4517	in. 4.4100 4.4100 4.4100 4.4100	in. 4.4280 4.4278 4.4198 4.4196	2B 3B
4 ½-16 or 4.500-16	Z	2A 3A	4.4576 4.4570 4.4594 4.4588	4.4305 4.4296 4.4323 4.4314	4.4517 4.4523 4.4550 4.4556	4.4382 4.4391 4.4415 4.4424	4.4982 4.4980 4.5000 4.4998	4.4888 4.4890 4.4906 4.4908	4.5000 4.5009 4.5009 4.5009	4.4594 4.4600 4.4594 4.4600	4.4941 4.4932 4.4922 4.4913	4.4670 4.4664 4.4651 4.4645	4.4320 4.4322 4.4322 4.4320 4.4322	4.4460 4.4458 4.4408 4.4406	2B 3B
4 5 8-6 or 4.625-6	z ⊃	2A 3A	4.5136 4.5130 4.5167 4.5167	4.4414 4.4401 4.4445 4.4432	4.5033 4.5039 4.5090 4.5096	4.4672 4.4685 4.4729 4.4742	4.62190 4.62165 4.62500 4.62475	4.60370 4.60395 4.60680 4.60705	4.6250 4.6263 4.6250 4.6263	4.5167 4.5173 4.5167 4.5173	4.6022 4.6009 4.5989 4.5976	4.5300 4.5294 4.5267 4.5261	4.44500 4.44525 4.44500 4.44525	4.47500 4.47475 4.46460 4.46435	2B 3B
4 5 %-12 or 4.625-12	Z D	2A 3A	4.5689 4.5683 4.5709 4.5703	4.5328 4.5319 4.5348 4.5339	4.5622 4.5628 4.5659 4.5665	4.5442 4.5451 4.5479 4.5488	4.62300 4.62275 4.62500 4.62475	4.61160 4.61185 4.61360 4.61385	4.6250 4.6259 4.6250 4.6250	4.5709 4.5715 4.5709 4.5715	4.6157 4.6148 4.6136 4.6127	4.5796 4.5790 4.5775 4.5769	4.53500 4.53525 4.53500 4.53500	4.55300 4.55275 4.54480 4.54455	2B 3B
4 5 %-16 or 4.625-16	Z D	2A 3A	4.5826 4.5820 4.5844 4.5838	4.5555 4.5546 4.5573 4.5573 4.5564	4.5765 4.5771 4.5799 4.5805	4.5630 4.5639 4.5664 4.5664	4.62320 4.62295 4.62500 4.62475	4.61380 4.61405 4.61560 4.61585	4.6250 4.6259 4.6259 4.6250 4.6259	4.5844 4.5850 4.5844 4.5850	4.6194 4.6185 4.6174 4.6165	4.5923 4.5917 4.5903 4.5897	4.55700 4.55725 4.55700 4.55700	4.57100 4.57075 4.56580 4.56555	2B 3B
4¾-4 or 4.750-4	Z C	2A 3A	4.5841 4.5835 4.5876 4.5870 4.5870	4.4758 4.4743 4.4793 4.4778	4.5724 4.5730 4.5788 4.5794	4.5183 4.5198 4.5247 4.5262	4.74650 4.74625 4.75000 4.74975	4.72270 4.72295 4.72620 4.72645	4.7500 4.7515 4.7500 4.7515	4.5876 4.5882 4.5882 4.5882	4.7112 4.7097 4.7073 4.7058	4.6029 4.6023 4.5990 4.5984	4.47900 4.47925 4.47900 4.47900	4.51700 4.51675 4.50940 4.50915	2B 3B
4¾-6 or 4.750-6	Z C	2A 3A	4.6386 4.6380 4.6417 4.6411	4.5664 4.5651 4.5695 4.5682	4.6283 4.6289 4.6340 4.6346	4.5922 4.5935 4.5979 4.5992	4.74690 4.74665 4.75000 4.74975	4.72870 4.72895 4.73180 4.73205	4.7500 4.7513 4.7500 4.7513	4.6417 4.6423 4.6417 4.6423	4.7273 4.7260 4.7240 4.7227	4.6551 4.6545 4.6518 4.6512 4.6512	4.57000 4.57025 4.57000 4.57000	4.60000 4.59975 4.58960 4.58935	2B 3B
4¾-12 or 4.750-12	Z C	2A 3A	4.6939 4.6933 4.6959 4.6953	4.6578 4.6569 4.6598 4.6589	4.6872 4.6878 4.6909 4.6915	4.6692 4.6701 4.6729 4.6738	4.74800 4.74775 4.75000 4.74975	4.73660 4.73685 4.73885 4.73885	4.7500 4.7509 4.7509 4.7500	4.6959 4.6965 4.6959 4.6965	4,7407 4.7398 4.7386 4.7377	4.7046 4.7040 4.7025 4.7019	4.66000 4.66025 4.66000 4.66025	4.67800 4.67775 4.66980 4.66955	2B 3B

38	
AND	
, 2 B ,	
=	
. З А ,	j,
2	Z
1 ,	č
CLASSES	OF SI7F
SERIES, (- IIMITS
THREAD	DEADS -
STANDARD	ED SCREW TH
FOR	NIFI
CAGES	-
ABLE 10	

								ſ							
				Ĵ	ges for Ex	ternal Thr	eads			Gag	ges for Int	ernal Thr	eads		
				X Three	d Gages) nicle (and for		X Thread	Gages		7 airla 7		
			9	0	NOT G	0 (LO)	Major D	iameter	ö	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/In.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	9	NOT CO	Class
1	2	3	4	5	9	7	8	6	10	1	12	13	14	15	16
4∛4-16 or 4.750-16	NU	2A	in. 4.7076	in. 4.6805	in. 4.7015	in. 4.6880	in. 4.74820	in. 4.73880	in. 4.7500	in. 4.7094	in. 4.7444	in. 4.7173	in. 4.68200	in. 4.69600	7 B
		3A	4.7070 4.7094 4.7088	4.6796 4.6823 4.6814	4.7021 4.7049 4.7055	4.6889 4.6914 4.6923	4.74795 4.75000 4.74975	4.74060 4.74060	4.7509 4.7500 4.7509	4.7100 4.7094 4.7100	4.7425 4.7424 4.7415	4.7167 4.7153 4.7147	4.68225 4.68200 4.68225	4.69050 4.69080 4.69055	38
4%=6 or 4.875-6	Ŋ	2A 3A	4.7636 4.7630 4.7667 4.7667	4.6914 4.6901 4.6945 4.6932	4.7532 4.7538 4.7589 4.7595	4.7171 4.7184 4.7228 4.7241	4.87190 4.87165 4.87500 4.87475	4.85370 4.85395 4.85680 4.85680 4.85705	4.8750 4.8763 4.8750 4.8750 4.8763	4.7667 4.7673 4.7667 4.7667	4.8524 4.8511 4.8490 4.8477	4.7802 4.7796 4.7768 4.7768	4.69500 4.69525 4.69500 4.69500	4.72500 4.72475 4.71460 4.71435	38 28
4%-12 or 4.875-12	Z	2A 3A	4.8189 4.8183 4.8209 4.8203	4.7828 4.7819 4.7848 4.7839	4.8122 4.8128 4.8159 4.8165	4.7942 4.7951 4.7979 4.7988	4.87300 4.87275 4.87500 4.87475	4.86160 4.86185 4.863850 4.86385	4.8750 4.8759 4.8750 4.8750 4.8759	4.8209 4.8215 4.8209 4.8215	4.8657 4.8648 4.8636 4.8636	4.8296 4.8290 4.8275 4.8269	4.78500 4.78525 4.78500 4.78500	4.80300 4.80275 4.79480 4.79455	28 38
4%-16 or 4.875-16	S	2A 3A	4.8326 4.8320 4.8344 4.8338	4.8055 4.8046 4.8073 4.8064	4.8265 4.8271 4.8299 4.8305	4.8130 4.8139 4.8164 4.8164 4.8173	4.87320 4.87295 4.87500 4.87475	4.86380 4.86360 4.86560 4.86585	4.8750 4.8759 4.8750 4.8759	4.8344 4.8350 4.8344 4.8350	4.8694 4.8685 4.8674 4.8665	4.8423 4.8417 4.8403 4.8397	4.80700 4.80725 4.80700 4.80700	4.82100 4.82075 4.81580 4.81555	3B 3B
5-4 or 5.000-4	S	2A 3A	4.8340 4.8334 4.8376 4.8370	4.7257 4.7242 4.7293 4.7278	4.8221 4.8227 4.8287 4.8287 4.8293	4.7680 4.7695 4.7746 4.7761	4.99640 4.99615 5.00000 4.99975	4.97260 4.97285 4.97620 4.97645	5.0000 5.0015 5.0000 5.0015	4.8376 4.8382 4.8376 4.8376	4.9613 4.9598 4.9575 4.9560	4.8530 4.8524 4.8492 4.8486	4.72900 4.72925 4.72900 4.72900	4.76700 4.76675 4.75940 4.75915	2B 3B
5-6 or 5.000-6	N	2A 3A	4.8886 4.8880 4.8917 4.8911	4.8164 4.8151 4.8195 4.8182	4.8781 4.8787 4.8839 4.8845	4.8420 4.8433 4.8478 4.8491	4.99690 4.99665 5.00000 4.99975	4.97870 4.97895 4.98180 4.98205	5.0000 5.0013 5.0000 5.0013	4.8917 4.8923 4.8917 4.8923	4.9775 4.9762 4.9741 4.9728	4.9053 4.9047 4.9019 4.9013	4.82000 4.82025 4.82000 4.82000	4.85000 4.84975 4.83960 4.83935	3B 3B
5-12 or 5.000-12	N	2A 3A	4.9439 4.9433 4.9459 4.9453	4.9078 4.9069 4.9098 4.9089	4.9372 4.9378 4.9409 4.9415	4.9192 4.9201 4.9229 4.9238	4.99800 4.99775 5.00000 4.99975	4.98660 4.98685 4.98860 4.98860 4.98885	5.0009 5.0009 5.0000 5.0000	4.9459 4.9465 4.9459 4.9465	4.9907 4.9898 4.9886 4.9886	4.9546 4.9540 4.9525 4.9519	4.91000 4.91025 4.91000 4.91000	4.92800 4.92775 4.91980 4.91955	38 38
5-16 or 5.000-16	S	2A 3A	4.9576 4.9570 4.9594 4.9588	4.9305 4.9296 4.9323 4.9314	4.9515 4.9521 4.9549 4.9555	4.9380 4.9389 4.9414 4.9423	4.99820 4.99795 5.00000 4.99975	4.98880 4.98905 4.99060 4.99060	5.0000 5.0009 5.0000 5.0000	4.9594 4.9600 4.9594 4.9600	4.9944 4.9935 4.9924 4.9915	4.9673 4.9667 4.9653 4.9647	4.93200 4.93225 4.93200 4.93225	4.94600 4.94575 4.94080 4.94055	3B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

ND 38	
8, 28, 4	
A, 2A, 3A, 1	CONT'D)
CLASSES 1	OF SIZE ((
SERIES,	- LIMITS
THREAD	HREADS -
STANDARD	D SCREW TH
GAGES FOR	CNIFIE
TABLE 10	

									,						
				3	iges for Ex	ternal Thu	reads			G	ges for ln	ternal Thi	reads		
				X Threa	d Gages		7 Pisin (Tame for		X Threa	d Gages		7 olicio		
			9	0	NOT G	(01) 0	Major E	Diameter	Ğ	0	NOT G	(IHI) O		Viameter	
Nominal Size and Threads/in.	Seri es Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	99	NOT GO	Class
-	2		4	5	9	7	8	6	10	=	12	13	41	15	16
578-6 or 5.125-6	Z)	2 A	in. 5.0135 5.0129	in. 4.9413 4.9400	in. 5.0030 5.0036	in. 4.9669 4.9682	in. 5.12180 5.12155	in. 5.10360 5.10385	in. 5.1250 5.1263	in. 5.0167 5.0173	in. 5.1026 5.1013	in. 5.0304 5.0298	in. 4.94500 4.94525	in. 4.97500 4.97475	58
		38	5.0167 5.0161	4.9445 4.9432	5.0088 5.0094	4.9727 4.9740	5.12500 5.12475	5.10680 5.10705	5.1250 5.1263	5.0167 5.0173	5.0992 5.0979	5.0270 5.0264	4.94500 4.94525	4.96460 4.96435	38
51/8-12 or 5.125-12	N	24	5.0689 5.0683	5.0328 5.0319	5.0622 5.0628	5.0442 5.0451	5.12300 5.12275	5.11160 5.11185	5.1250 5.1259	5.0709 5.0715	5.1157 5.1148	5.0796 5.0790	5.03500	5.05300	28
		3A	5.0709 5.0703	5.03 48 5.0339	5.0659 5.0665	5.0479 5.0488	5.12500 5.12475	5.11360 5.11385	5.1250 5.1259	5.0709 5.0715	5.1136 5.1127	5.0775	5.03520	5.04480 5.04455	38
5½-16 or 5.125-16	N	2A	5.0826 5.0820	5.0555	5.0765	5.0630	5.12320 5.12295	5.11380	5.1250 5.1259	5.0844 5.0850	5.1194 5.1185	5.0923 5.0917	5.05700	5.07100	2B
		3A	5.0844 5.0838	5.0573	5.0805	5.0664 5.0673	5.12475	5.11560 5.11585	5.1250 5.1259	5.0844 5.0850	5.1174	5.0903 5.0897	5.05700	5.06580	38
514-4 or 5.250-4	Ň	2A	5.0840	4.9757	5.0720	5.0179	5.24640 5.24640	5.22260 5.23260	5.2500	5.0876	5.2115	5.1032	4.97900	5.01700	28
		3A	5.0876	4.9778	5.0786	5.0245	5.24975	5.22645	5.2500	5.0876 5.0882	5.2076 5.2061	5.0993 5.0987	4.97925	5.00940 5.00940 5.00915	38
574-6 or 5.250-6	N	2A	5.1385	5.0663	5.1279 5.1285	5.0918 5.0931	5.24680	5.22860 5.22885	5.2500	5.1417 5.1423	5.2277	5.1555	5.07000	5.10000	28
		3A	5.1417 5.1411	5.0695 5.0682	5.1338 5.1344	5.0990	5.25975	5.23180	5.2500	5.1417 5.1423	5.2242	5.1520	5.07000	5.08935	38
514-12 or 5.250-12	N	2A	5.1939 5.1933	5.1578 5.1569	5.1872 5.1878	5.1692 5.1701	5.24800 5.24775	5.23660 5.23685	5.2500	5.1959 5.1065	5.2407 5.2308	5.2046	5.16000	5.17800	28
		3A	5.1959	5.1598	5.1909	5.1729 5.1738	5.24975	5.23885	5.2509	5.1965 5.1965	5.2377	5.2025	5.16000 5.16000 5.16025	5.16980 5.16955	38
514-16 or 5.250-16	N	2A	5.2076	5.1805	5.2015	5.1880 5.1889	5.24820 5.24795	5.23880	5.2500	5.2094	5.2444	5.2173	5.18200 5.18205	5.19600 5.10575	28
		3A	5.2094 5.2088	5.1823 5.1814	5.2049	5.1914 5.1923	5.24975	5.24085	5.2500	5.2094 5.2100	5.2415	5.2153 5.2147	5.18225	5.19080	38
5¥8-6 or 5.375-6	N	2A	5.2635	5.1913	5.2529	5.2168	5.37180	5.35360	5.3750	5.2667	5.3527	5.2805	5.19500	5.22500	2B
		3A	5.2629 5.2667	5.1900 5.1945	5.2535 5.2587	5.2181 5.2226	5.37155 5.37500	5.35385 5.35680	5.3763 5.3750	5.2673 5.2667	5.3514 5.3493	5.2799	5.19525 5.19500	5.22475	38
			5.2661	5.1932	5.2593	5.239	5.37475	5.35705	5.3763	5.2673	5.3480	5.2765	5.19525	5.21435	ŝ

				G	ges for Ext	ternal Thr	eads			G	ges for Int	lernal Thr	eads		
				X Thread	d Gages		7 Plain C	actor for		X Threat	d Gages		7 airla 7		
			3	0	NOT G	0 (00)	Major D	iameter	3	0	NOT G	(IH) O	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	00	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	g	ION OS	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
			Ľ	in.	in.	'n.	ij.	Ľ	Ľ	in.	Ë.	'n.	Ľ	. <u>c</u>	
5¥8-12 or 5.375-12	N	2 A	5.3189	5.2828	5.3122	5.2942	5.37300	5.36160	5.3750	5.3209	5.3657	5.3296	5.28500	5.30300	2B
		3A	5.3183	5.2848	5.3128 5.3159	5.2979	5.37500	5.36360	5.3750	5.3209	5.3636	5.3290	5.28525	5.30275 5.29480	38
			5.3203	5.2839	5.3165	5.2988	5.37475	5.36385	5.3759	5.3215	5.3627	5.3269	5.28525	5.29455	}
5¥8-16 or 5.375-16	Z	2A	5.3326	5.3055	5.3265	5.3130	5.37320	5.36380	5.3750	5.3344	5.3694	5.3423	5.30700	5.32100	28
			5.3320	5.3046	5.3271	5.3139	5.37295	5.36405	5.3759	5.3350	5.3685	5.3417	5.30725	5.32075	
		3 A	5.3344 5.3338	5.3073 5.3064	5.3299	5.3164 5.3173	5.37500 5.37475	5.36560 5.36585	5.3750 5.3759	5.3344 5.3350	5.3674 5.3665	5.3403 5.3397	5.30700 5.30725	5.31580 5.31555	38
51/2-4 or 5.500-4	Z	2A	5.3340	5.2257	5.3219	5.2678	5.49640	5.47260	5.5000	5.3376	5.4617	5.3534	5.22900	5.26700	28
			5.3334	5.2242	5.3225	5.2693	5.49615	5.47285	5.5015	5.3382	5.4602	5.3528	5.22925	5.26675	
		3 A	5.3376	5.2293 5.278	5.3285	5.2744	5.50000	5.47620	5.5000	5.3376	5.4577	5.3494 5 3488	5.22900	5.25940 5.25940	38
		;													1
5Y2-6 or 5.500-6	N	2 A	5.3885 5.3879	5.3163	5.3778 5.3784	5.3417	5.49680	5.47860 5.47885	5 5013	5.3917	5.4778 5.4765	5.4056	5.32000	5.35000	2B
		3 A	5.3917	5.3195	5.3837	5.3476	5.50000	5.48180	5.5000	5.3917	5.4743	5.4021	5.32000	5.33960	38
			5.3911	5.3182	5.3843	5.3489	5.49975	5.48205	5.5013	5.3923	5.4730	5.4015	5.32025	5.33935	
51/2-12 or 5.500-12	N C	2 A	5.4439	5.4078	5.4372	5.4192	5.49800	5.48660	5.5000	5.4459	5.4907	5.4546	5.41000	5.42800	2B
			5.4433	5.4069	5.4378	5.4201	5.49775	5.48685	5.5009	5.4465	5.4898	5.4540	5.41025	5.42775	1
		3A	5.4459 5.4453	5.4098	5.4409 5.4415	5.4229 5.4238	5.49975	5.4886U 5.48885	5.5009	5.4459 5.4465	5.4886 5.4877	5.4525 5.4519	5.41000 5.41025	5.41980 5.41955	38
51/2-16 or 5.500-16	Ŋ	2A	5.4576	5.4305	5.4515	5.4380	5.49820	5.48880	5.5000	5.4594	5.4944	5.4673	5.43200	5.44600	28
		;	5.4570	5.4296	5.4521	5.4389	5.49795	5.48905	5.5009	5.4600	5.4935	5.4667	5.43225	5.44575	
		¥5	5.4594 5.4588	5.4323 5.4314	5.4549 5.4555	5.4414 5.4423	5.49975	5.49060 5.49085	5.5009	5.4594 5.4600	5.4924 5.4915	5.4653 5.4647	5.43200 5.43225	5.44080 5.44055	38
5\$%-6 or 5.625-6	N	2×	5.5135	5.4413	5.5027	5.4666	5.62180	5.60360	5.6250	5.5167	5.6029	5.5307	5.44500	5.47500	28
		į	5.5129	5.4400	5.5033	5.4679	5.62155	5.60385	5.6263	5.5173	5.6016	5.5301	5.44525	5.47475	
		3A	5.5167 5.5161	5.4445 5.4432	5.5086 5.5092	5.4725 5.4738	5.62500 5.62475	5,60680 5.60705	5.6250 5.6263	5.5167 5.5173	5.5994 5.5981	5.5272 5.5266	5.44500 5.44525	5.46460 5.46435	38
5%-11 of 5 675-17	2	• د	5 5689	5 5377	5 5610	5 5430	5 62200	5 61150	5 6750	5 5700	5 6160	5 5700	E CJEAN	C EE JOU	ģ
71-07000 10 71-040		Ş	5.5682	5.5318	5.5625	5.5448	5.62265	5.61175	5.6259	5.5715	5.6151	5.5793	5.53525	5.55275	9
		3 A	5.5709	5.5348	5.5657	5.5477	5.62500	5.61360	5.6250	5.5709	5.6137	5.5776	5.53500	5.54480	3B
			5.5703	5.5339	5.5663	5.5486	5.62475	5.61385	5.6259	5.5715	5.6128	5.5770	5.53525	5.54455	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

5 1A, 2A, 3A, 1B, 2B, AND 3B E (CONT'D)	Gages for Internal Threads	
AGES FOR STANDARD THREAD SERIES, CLASSE UNIFIED SCREW THREADS — LIMITS OF SIZ	Gages for External Threads	
ABLE 10 G.		

				Ca	ges for Ext	ternal Thr	eads			Ga	ges for Int	ernal Thr	eads		
		_		X Threa	d Gages		7 nicla 7	and for		X Threa	Gages		C at a P		
			Ğ	0	NOT G	0 (10)	Major D	liameter	Ũ	0	NOT G	(IH) Q	Minor D	iameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	09	NOT GO	Major Diam.	Pitch Diam.	Major Diam.	Pitch Diam.	09	NOT 60	Class
-	2	ñ	4	Ś	و	7	8	6	10	11	12	13	4	5	16
5 %-16 or 5.625-16	۲ د	7	in. 5.5825	in. 5.5554	in. 5.5763	in. 5.5628	in. 5.62310	in. 5.61370	in. 5.6250	in. 5.5844	in. 5.6196	in. 5.5925	in. 5.55700	in. 5.57100	2B
		3A	5.5819 5.5844 5.5838	5.5545 5.5573 5.5564	5.5769 5.5797 5.5803	5.5637 5.5662 5.5671	5.62285 5.62500 5.62475	5.61395 5.61560 5.61585	5.6259 5.6250 5.6259	5.5850 5.5844 5.5850	5.6187 5.6176 5.6167	5.5919 5.5905 5.5899	5.55725 5.55700 5.55725	5.57075 5.56580 5.56555	38
5%+4 or 5.750-4	۲ ۲	2A	5.5839 5.5833	5.4756 5.4741	5.5717	5.5176 5.5176 5.5101	5.74630 5.74630 5.74605	5.72250 5.72250	5.7500 5.7515	5.5876 5.5876	5.7118 5.7103	5.6035	5.47900 5.47900	5.51700	2B
		3 A	5.5870 5.5870	5.4778 5.4778	5.5784 5.5784 5.5790	5.5283 5.5283	5.74975	5.72620 5.72620 5.72645	5.7500 5.7515	5.5882 5.5882	5.7063 5.7063	5.5989 5.5989	5.47925 5.47900 5.47925	5.50940 5.50940 5.50915	38
5¥+6 or 5.750-6	N N	2A	5.6385 5.6379	5.5663 5.5650	5.6277 5.6283	5.5916 5.5929	5.74680 5.74655	5.72860 5.72885	5.7500	5.6417 5.6423	5.7280 5.7267	5.6558 5.6552	5.57000	5.60000 5.59975	2B
		3A	5.6417 5.6411	5.5695 5.5682	5.6336 5.6342	5.5975 5.5988	5.75000 5.74975	5.73180 5.73205	5.7500 5.7513	5.6417 5.6423	5.7245 5.7232	5.6523 5.6517	5.57025	5.58960 5.58935	3 B
5 ¥+12 or 5.750-12	Š	3	5.6938 5.6932 5.6959	5.6577 5.6568 5.5698	5.6869 5.6875 5.6907	5.6689 5.6698 5.6727	5.74790 5.74765 5.75000	5.73650 5.73675 5.73860	5.7500 5.7509 5.7500	5.6959 5.6965 5.6959	5.7410 5.7401 5.7387	5.7049 5.7043 5.7026	5.66000 5.66025 5.66000	5.67800 5.67705 5.67775	2B 3B
			5.6953	5.6589	5.6913	5.6736	5.74975	5.73885	5.7509	5.6965	5.7378	5.7020	5.66025	5.66955	}
5¾+16 or 5.750-16	N	2 A	5.7075 5.7069	5.6804 5,6795	5.7013 5.7019	5.6878 5.6887	5.74810 5.74785	5.73870 5.73895	5.7500 5.7509	5.7094 5.7100	5.7446 5.7437	5.7175 5.7169	5.68200 5.68225	5.69600 5.69575	28
		3A	5.7094 5.7088	5.6823 5.6814	5.7047 5.7053	5.6912 5.6921	5.75000 5.74975	5.74060 5.74085	5.7500 5.7509	5.7094 5.7100	5.7426 5.7417	5.7155 5.7149	5.68200 5.68225	5.69080	38
3%+6 or 5.875-6	N	2٨	5.7634 5.7628	5.6912 5.6899	5.7525 5.7531	5.7164 5.7177	5.87170 5.87145	5.85350 5.85375	5.8750 5.8763	5.7667 5.7673	5.8531	5.7809 5.7803	5.69500 5.69525	5.72500 5.72475	28
		ЗA	5.7667 5.7661	5.6945 5.6932	5.7585 5.7591	5.722 4 5.7237	5.87500 5.87475	5.85680 5.85705	5.8750 5.8763	5.7667 5.7673	5.8495 5.8482	5.7773 5.7767	5.69500 5.69525	5.71460 5.71435	38

	eads		
E (CONT'D)	Gages for Internal Thr	X Thread Gages	
- LIMITS OF SIZ	eads	7 Plain Gasse for	
REW THREADS	ges for External Thr	l Gages	
UNIFIED SCI	Ga	X Thread	

TABLE 10 GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B

				Ca	ges for Exi	ternal Thr	eads			Gag	ses for Int	ernal Thre	eads		
				X Thread	l Gages		2 nicld 7	ages for		X Thread	l Gages		7 Bin C		
			ŭ	0	NOT G	(01) 0	Major D	iameter	Ğ	0	NOT CO	(IH) O	Minor Di	ages tor lameter	
Nominal Size and Threads/in.	Series Designation	Class	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	00	NOT	Major Diam.	Pitch Diam,	Major Diam.	Pitch Diam.	09	10 N OJ	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
57e-12 or 5.875-12	ň	2A 3A	in. 5.8188 5.8182 5.8209	in. 5.7827 5.7818 5.7848	in. 5.8119 5.8125 5.8157	in 5.7939 5.7948 5.7977 5.7977	in. 5.87290 5.87265 5.87265 5.87500	in. 5.86150 5.86175 5.86360	in. 5.8750 5.8759 5.8750	in. 5.8209 5.8215 5.8215 5.8209	in. 5.8660 5.8651 5.8637 5.8637	in. 5.8299 5.8293 5.8276	in. 5.78500 5.78500 5.78500 5.78500	in. 5.80300 5.80275 5.79480	2B 3B
57e-16 or 5.875-16	Ŋ	2A 3A	5.8325 5.8319 5.8319 5.8344	5.8054 5.8045 5.8045 5.8073	5.8263 5.8269 5.8297	5.8128 5.8137 5.8137 5.8162	5.87310 5.87285 5.87285	5.86370 5.86395 5.86395	5.8750 5.8759 5.8750	5.8344 5.8350 5.8350 5.8344	5.8696 5.8687 5.8676	5.8425 5.8419 5.8405	5.80700 5.80700 5.80700	5.82100 5.82075 5.81580	2B 3B
6-4 or 6.000-4	Z C	2A 3A	5.8339 5.8339 5.83370 5.8370	5.7256 5.7241 5.7241 5.7293 5.7278	5.8215 5.8215 5.8221 5.8283 5.8283	5.7674 5.7689 5.7742 5.7757	5.99630 5.99605 5.99605 6.00000 5.99975	5.97250 5.97275 5.97645 5.97645	6:0000 6:0015 6:0015 6:0005 6:0015	5.8376 5.8376 5.8382 5.8376 5.8382	5.9620 5.9620 5.9579 5.9564	5.8537 5.8537 5.8531 5.8496 5.8490	5.72900 5.72925 5.72926 5.72926	5.75940 5.75940 5.75940 5.75915	38 38
6-6 or 6.000-6	Z	2A 3A	5.8884 5.8878 5.8917 5.8911	5.8162 5.8149 5.8195 5.8182	5.8775 5.8781 5.8835 5.8835 5.8841	5.8414 5.8427 5.8474 5.8487	5.99670 5.99645 6.00000 5.99975	5.97850 5.97875 5.98180 5.98205	6.0000 6.0013 6.0000 6.0000	5.8917 5.8923 5.8917 5.8917 5.8923	5.9781 5.9768 5.9768 5.9746 5.9733	5.9059 5.9053 5.9024 5.9018	5.82000 5.82025 5.82000 5.82000 5.82025	5.85000 5.84975 5.83960 5.83935	2B 3B
6-12 or 6.000-12	5	2A 3A	5.9438 5.9432 5.9459 5.9453	5.9077 5.9068 5.9089 5.9089	5.9369 5.9375 5.9407 5.9413	5.9189 5.9198 5.9227 5.9236	5.99790 5.99765 6.00000 5.99975	5.98650 5.98675 5.98860 5.98885	6.0000 6.0009 6.0009 6.0009	5.9459 5.9465 5.9465 5.9465	5.9910 5.9901 5.9887 5.9878	5.9549 5.9543 5.9526 5.9520	5.91000 5.91025 5.91025 5.91026 5.91025	5.92800 5.92775 5.91980 5.91955	2B 3B
6-16 or 6.000-16	N	2A 3A	5.9575 5.9569 5.9594 5.9588	5.9304 5.9295 5.9323 5.9314	5.9513 5.9519 5.9547 5.9553	5.9378 5.9387 5.9412 5.9421	5.99810 5.99785 6.00000 5.99975	5.98870 5.98895 5.99060 5.99085	6.0000 6.0000 6.0000 6.0000	5.9594 5.9600 5.9594 5.9500	5.9946 5.9937 5.9926 5.9917	5.9675 5.9669 5.9655 5.9649	5.93200 5.93225 5.93200 5.93200	5.94600 5.94575 5.94080 5.94080	2B 3B

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

3	
AND	
2 B,	
1 B,	
3A,	
2Å	
1 V	ш
SSES	2IZ
CLA	C
ES,	AITS
SERI	
AD	S S
HRE	EAL
DI	THE
DAR	EV
NN.	SCR
R ST	E
5	NI
GES	
S	
N.	
SET	
Ξ	
SLE 1	
Z	

				3	V Thread-S	etting Plugs			>	V Thread-So	etting Ring	2	
				GO		Z	01 60 (10)		0		NOT G	(IH) O:	
Mominal Size			Major D	hiameter	Ditch.	Major D	liameter	- House	Ditch	-criM	-		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Minor Diam.	Class
-	2	e	4	ŝ	9	7	80	6	10	=	12	13	4
			.i	Ŀ	i.	Ē	Ŀ	Ŀ.	in.	E	.5		
0-80 or 0.060-80	UNF	2A	0.0561	0.0595	0.0514	0.0550	0.0584	0.0496	:	:		:	:
			.0558	.0598	.0513	.0547	.0587	.0497		:	:	:	:
		34	.0566	0090.	.0519	.0560	.0594	.0506	:	:	:	:	:
			cocn.	cnon.	0I CN.	/ccn:	/6ch:	/000.	••••	•	••••	•••	
1-64 or 0.073-64	UNC	2A	.0684	.0724	.0623	.0671	.0718	.0603	:	••••			:
			.0681	.0727	.0622	.0668	.0721	.0604	:	:	:	:	:
		3 A	0690.	.0730	.0629	.0682	670.	.0614	:	:	:	:	:
			/990.	.0/33	8790.	6/90.	.0/32	c190.	:	:	•	•	:
1-72 or 0.073-72	UNF	2A	.0687	.0724	.0634	.0675	.0715	.0615	:	:	 		
			.0684	.0727	.0633	.0672	.0718	.0616	:	:	:	:	:
		3 A	.0693	.0730	.0640	.0686	.0726	.0626	:	:	:	:	:
			.0690	.0733	.0639	.0683	.0729	.0627		:	:	:	÷
2-56 or 0.086-56	UNC	2A	.0810	.0854	.0738	.0794	.0852	.0717	•••	:		:	
			.0807	.0857	.0737	.0791	.0855	.0718	:	:	:	:	:
		3 A	.0816	.0860	.0744	.0805	.0860	.0728	:	:	:	:	:
			.0813	.0863	.0743	.0802	.0863	.0729	:	•	•	•••	:
2-64 or 0.086-64	UNF	2A	0.814	.0854	.0753	.0801	.0848	.0733		:	:	:	
			.0811	.0857	.0752	.0798	.0851	.0734	:	:	:	:	:
		3 A	.0820	.0860	.0759	.0812	.0859	.0744	:	:	:	:	:
			.0817	.0863	.0/58	6080.	.0862	.0745	:	:	:	:	:
3-48 or 0.099-48	UNC	2A	.0934	.0983	.0848	.0915	.0983	.0825	:	:	:	:	:
			.0931	.0986	.0847	.0912	.0986	.0826	:	:	:	:	:
		3 v	.0941	0660	.0855	.0928	0660	.0838	:	:	:	:	:
			8560.	5660.	4cou.	C760.	5660.	.0839	:	:	:	:	:
3-56 or 0.099-56	UNF	2A	6£60.	.0983	.0867	.0922	0860.	.0845	:			:	
			.0936	.0986	.0866	.0919	.0983	.0846	:	:	:	:	:
		3 A	.0946	0660	.0874	.0935	0660.	.0858	÷	:	:	:	:
			.0943	.0993	.0873	.0932	.0993	.0859	:	•		•••••	•
4-40 or 0.112-40	UNC	2A	.1056	.1112	.0950	.1033	.1112	.0925	•			:	
			.1053	.1115	.0949	.1030	.1115	.0926	:	:	:	:	:
		ЗA	.1064	.1120	.0958	.1047	.1120	.0939	:	:	:	:	:
			.1061	.1123	.0957	401.	.1123	0940					

•

				3	V Thread-S	etting Plugs			3	V Thread-S	etting Ring	Si	
				CO		Ż	OT GO (LO)		0	0	NOT G	(IH) O	
			Major D	iameter	4	Major D	Diameter	9 4 4	d . ia	Minor	Ditch Lain	Ninor	
Nominal size and Threads/in.	besignation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	•	4	S	و	2	8	6	10	11	12	13	4
			in.		i.	i.	.e	ŗ.	Ŀ.	Ľ	Ľ	Ë	1
4-48 or 0.112-48	UNF	2 A	0.1064	0.1113	0.0978	0.1044	0.1113	0.0954	:	:	:	:	•
			.1061	.1116	.0977	.1041	.1116	.0955	÷	:	:	:	•
		34	1071.	.1120	.0985	1057	.1120	.0967	:	:		:	•
			0001*	C7 -	+nch-	t		BCCC:	•	:	:	:	:
5-40 or 0.125-40	UNC	2A	.1186	.1242	.1080	.1162	.1242	.1054	:	:	:	:	:
			.1183	.1245	.1079	.1159	.1245	.1055	:	:	:	•	:
		ЗA	1194	.1250	.1088	7711.	.1250	.1069	:	:	:	:	:
			1191.	.1253	.1087	.1174	.1253	0/01.	:	:	:	:	:
5-44 or 0.125-44	C NF	2A	.1191	.1243	.1095	.1168	.1243	.1070	:	:	:	:	:
			.1183	.1246	.1094	.1165	.1246	.1071	:	:	:	:	:
		ЗA	.1198	.1250	.1102	.1181	.1250	.1083	:	:	÷	:	:
			.1195	.1253	.1101	.1178	.1253	.1084	:	•	•	:	:
6-32 or 0.138-32	UNC UNC	2A	.1307	.1372	.1169	.1276	.1372	.1141	:	:	:	:	•
			.1304	.1375	.1168	.1273	.1375	.1142	:	•	:	:	:
		ЗA	.1315	1380	.1177	.1291	.1380	.1156	:	•	:	:	•
			.1312	.1383	.1176	.1288	.1383	.1157	:	: :	: :	:	:
6-40 or 0.138-40	UNF	2A	.1316	.1372	.1210	.1292	.1372	.1184	:	:	:	:	÷
			.1313	.1375	.1209	.1289	.1375	.1185	:	:	:	:	:
		ЗA	.1324	.1380	.1218	.1306	.1380	.1198	:	:	:	:	:
			.1321	.1383	.1217	.1303	.1383	.1199	:	:	:	:	:
8-32 or 0.164-32	CNC C	2A	.1566	.1631	.1428	.1534	.1631	.1399	:	:	:	•	:
			.1563	.1634	.1427	.1531	.1634	.1400	÷	:	:	:	•
		3A	.1575	.1640	.1437	.1550	.1640	.1415	:	:	:	:	:
			.1572	.1643	.1436	.1547	.1643	.1416	:	:	· . •	:	:
8-36 or 0.164-36	UNF	2A	.1572	.1632	.1452	.1544	.1632	.1424	:	:	:	:	:
			.1569	.1635	.1451	.1541	.1635	.1425	÷	:	:	:	:
		3 A	.1580	.1640	.1460	.1559	.1640	.1439	:	:	:	:	:
			.1577	.1643	.1459	.1556	.1643	.1440	:	:		:	:
10-24 or 0.190-24	UNC	2A	.1811	.1890	.1619	.1766	.1890	.1586	.1629	.1450	.1672	.1560	2 B
			.1806	.1895	.1618	.1761	.1895	.1587	.1630	.1445	.1671	.1555	
		3A	.1821	.1900	.1629	.1784	.1900	.1604	.1629	.1450	.1661	.1555	38
			.1816	1905	.1628	1779	. 1905	. 1605	.1630	.1445	.1660	.1550	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

38	
AND	
2B ,	
₽,	
3A ,	
2 A ,	6
1 ,	Ż
SES	00
JLAS	IZE
S, C	DF S
ERI	TS C
S	M
HRE/	I
t C	NDS
ARI	HRE
Ş	
ST	REV
õ	SO
GES	IFIE
ğ	Z
ÿ	
S	
LE 1	
AB	

			ONITE	IN SUREW	INKEAL	22	OL SIZE							
				-	W Thread-	Setting Plugs			X	V Thread-S	etting Ring	. 2		
				60		Z	OT GO (LO)		Ū	0	NOT G	(IH) O		
Mominal Geo	Series		Major D	biameter	Dit.	Major C	Diameter	dit.	لارد م		الردا			. 50
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class	
-	2	3	4	5	9	7	8	6	10	11	12	13	14	
			in.	in.	in.	in.	in.	in.	'n.	i	Ľ	i.		
10-32 or 0.190-32	UNF	2A	0.1826	0.1891	0.1688	0.1793	0.1891	0.1658	0.1697	0.1560	0.1736	0.1640	2B	.0
		3A	.1825	1894	.1697	06/L. 1809	-1894 1900	. 1674 1674	.1698	.1557	1735	.1637 1641	38	
			.1832	.1903	.1696	.1806	.1903	.1675	.1698	.1557	.1725	.1638	5	
12-24 or 0.216-24	UNC	2A	.2071	.2150	.1879	.2025	.2150	.1845	.1889	.1710	.1933	.1810	28	
			.2066	.2155	.1878	.2020	.2155	.1846	.1890	.1705	.1932	.1805		
		ЗA	.2081	.2160	.1889	.2043	.2160	.1863	.1889	.1710	.1922	.1807	38	
			9/07.	c 912.	9991.	8602.	C 012.	.1864	.1890	.1705	.1921	.1802		
12-28 or 0.216-28	UNF	2A	.2079	.2150	.1918	.2041	.2150	.1886	.1928	.1770	.1970	.1860	2B	
			.2074	.2155	.1917	.2036	.2155	.1887	.1929	.1765	.1969	.1855		
		3 V	.2089	.2160	.1928	.2059	.2160	.1904	.1928	.1770	.1959	.1857	38	
			.2084	.2165	7291.	.2054	.2165	.1905	.1929	.1765	.1958	.1852		
12-32 or 0.216-32	UNEF	2A	.2086	.2151	.1948	.2052	.2151	.1917	.1957	.1820	.1998	.1900	2B	
			.2083	.2154	.1947	.2049	.2154	.1918	.1958	.1817	.1997	.1897		
		ЗA	.2095	.2160	.1957	.2068	.2160	.1933	.1957	.1820	.1988	.1895	38	
			7607.	COI 7.	0061.	CON7.	C017.	+661.	9061.	/181.	. 196/	7691.		
V+20 or 0.250-20	UNC	1A	.2399	.2489	.2164	.2325	.2489	.2108	.2175	.1960	.2248	.2070	18	
			.2394	.2494	.2163	.2320	.2494	.2109	.2176	.1955	.2247	.2065		í
		2A	.2399	.2489	.2164	.2344	.2489	2127 9414	.2175	.1960	.2224	.2070	2B	
		٩٤	7410	0050	2012.	7364	0050	7147	21/12	0961	C777.	2902	Яβ	
			.2405	.2505	.2174	.2359	.2505	.2148	.2176	.1955	.2210	.2062	2	
1/+-28 or 0.250-28	UNF	1A	.2419	.2490	.2258	.2363	.2490	.2208	.2268	.2110	.2333	.2200	8	
			.2414	.2495	.2257	.2358	.2495	.2209	.2269	.2105	.2332	.2195		
		2A	.2419	.2490	.2258	.2380	.2490	.2225	.2268	.2110	.2311	.2200	2B	
			2414	.2495	1222.	2375 9055	.2495	2226	.2269	.2105	.2310	.2195	Ę	
		5	.2424	.2505	.2267	.2393	.2505	.2244	.2269	.2105	.2299	.2185	8	
V+32 or 0.250-32	UNEF	2A	.2425	.2490	.2287	.2390	.2490	.2255	.2297	.2160	2339	.2240	28	
			.2422	.2493	.2286	.2387	.2493	.2256	.2298	.2157	.2338	.2237		
		3A	.2435	.2500	.2297	.2408	.2500	.2273	.2297	.2160	.2328	.2229	3B	
			.2432	.2503	.2296	.2405	.2503	.2274	.2298	.2157	.2327	.2226		

AND 31	
3, 2B, /	
v, 2A, 3A, 1	
CLASSES 1A	SIZE (CON
D THREAD SERIES ,	UDS - HMITS OF
FOR STANDARD	ED SCREW THREA
SETTING GAGES	
TABLE 11	

ċ

					W Thread-	Setting Plugs			>	V Thread-S	etting Ring	5	
				09		Ž	OT GO (LO)		Ŭ	0	NOT G	(IH) O	
			Major D	iameter	Pitch.	Major D	iameter				-	3	
	Series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Dìam.	Class
1	2	e	4	Ś	9	7	æ	6	10	11	12	13	14
1				ŗ		in.	.e	.e	. <u>:</u>	Ŀ	in.		
	UNC	1	0.3016	0.3113	0.2752	0.2932	0.3113	0.2691	0.2764	0.2520	0.2843	0.2650	18
			1106.	.3118	.2751	7292.	.3118	.2692	.2765	.2515	.2842	.2645	2
		2A	.3016	.3113	.2752	.2953	.3113	.2712	.2764	.2520	.2817	.2650	2B
			.3011	.3118	.2751	.2948	.3118	.2713	.2765	.2515	.2816	.2645	
		3A	.3028	.3125	.2764	.2975	.3125	.2734	.2764	.2520	.2803	.2630	38
			.3023	.3130	.2763	.2970	.3130	.2735	.2765	.2515	.2802	.2625	
1	S	24	.3023	.3113	.2788	.2965	.3113	.2748	.2800	.2580	.2852	.2700	28
			.3018	.3118	.2787	.2960	.3118	.2749	.2801	.2575	.2851	.2695	
		3A	.3035	.3125	.2800	.2987	.3125	.2770	.2800	.2580	.2839	.2680	38
			.3030	.3130	.2799	.2982	.3130	.2771	.2801	.2575	.2838	.2675	
1	UNF	11	.3035	.3114	.2843	.2968	.3114	.2788	.2854	.2670	.2925	.2770	18
			.3030	.3119	.2842	.2963	.3119	.2789	.2855	.2665	.2924	.2765	
		2A	.3035	.3114	.2843	.2986	.3114	.2806	.2854	.2670	.2902	.2770	2B
			.3030	.3119	.2842	.2981	.3119	.2807	.2855	.2665	.2901	.2765	1
		5	3040	0215	2853	7005.	3130	2828	2855	7665	0602.	074C	20
							2	2-2				<u>.</u>	
	S	2A	.3044	.3115	.2883	.3004	.3115	.2849	.2893	.2740	.2937	.2820	2B
			.3039	.3120	.2882	.2999	.3120	.2850	.2894	.2735	.2936	.2815	
		3A	.3054	.3125	.2893	.3022	.3125	.2867	.2893	.2740	.2926	.2807	38
			.3049	.3130	.2892	.3017	.3130	.2868	.2894	.2735	.2925	.2802	
	UNEF	2A	.3050	.3115	.2912	.3015	.3115	.2880	.2922	.2790	.2964	.2860	2B
			.3047	.3118	.2911	.3012	.3118	.2881	.2923	.2787	.2963	.2857	
		3 A	.3060	.3125	.2922	.3033	.3125	.2898	.2922	.2790	.2953	.2847	38
			.3057	.3128	.2921	.3030	.3128	.2899	.2923	.2787	.2952	.2844	
	UNC	1	.3632	.3737	.3331	.3537	.3737	.3266	.3344	.3070	.3429	.3210	18
			.3626	.3743	.3330	.3531	.3743	.3267	.3345	.3064	.3428	.3204	
		2A	.3632	.3737	.3331	.3558	.3737	.3287	.3344	.3070	.3401	.3210	2B
			.3626	.3743	.3330	.3552	.3743	.3288	.3345	.3064	.3400	.3204	
		3 A	.3645	.3750	.3344	.3582	.3750	.3311	.3344	.3070	.3387	.3182	38
			.3639	.3756	.3343	.3576	.3756	.3312	.3345	.3064	.3386	.3176	
	N	2A	.3648	.3738	.3413	.3589	.3738	.3372	.3425	.3210	.3479	.3320	2B
			.3643	.3743	.3412	.3584	.3743	.3373	.3426	.3205	.3478	.3315	
		3 A	.3660	.3750	.3425	.3611	.3750	.3394	.3425	.3210	.3465	.3297	38
			.3655	.3755	.3424	.3606	.3755	.3395	.3426	.3205	.3464	.3292	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

AND	
2 B .	•
18,	•
З,	
2 ,	ć
Ľ,	ļ
SES	ŝ
LAS.	75 /
Ū	J
RIES	C
SER	E I
9	2
RE	Ī
H	ÿ
5	EAI
M	a H
Ž	۲ ۲
ST	RFJ
N	ÿ
S F	5
G	
5	
ÿ	
Ē	
SE	
=	
Ľ	
Z	
_	

		NCH				EA 	05	2B		88	82	1	38		8		38		8		2B		38		58 58		en ca			38		ڊ چ	514		1	ĕ
-	Ê			m		6	395	8	395	372	450	445	426	421	490	487	469	466	260	754	760	754	112	=	840	834	26 80 7 94	950	556	950	945	916	116	020	065	051
ing:	H) 09			-	=. 	- m	<u>.</u>	ų.	,	<u> </u>		<u>ن</u> ہ :		<u>ښ</u>	 نہ	 ښ	 ښ	ų.			<u>ω</u>		<u> </u>	, ,	Ξ.	Ξ.	—— wi wi	ř.	, m	ň	ň	ŗ.	ŗ.	4	<u>4</u>	<u>4</u>
etting R	ÖZ	i	Diam	12	Ē	.3553	.3552	.3528	.3527	.3516 .3515	.3564	.3563	.3553	.3552	.3591	.3590	.3580	.3579	.4003	.4001	.3972	.3970	3957		.4028	.4027	.4014 .4013	4131	4130	4104	.4103	4091	.4090	.4189	.4188	.4178
V Thread-S	0		Minor Diam.	=	<u>.</u>	.3300	.3295	3300	.3295	.3300 .3295	.3360	.3355	.3360	.3355	.3410	.3407	.3410	.3407	3600	.3594	.3600	.3594	3600	Krr.	3700	.3694	.3700	3830	3825	.3830	.3825	.3830	.3825	3990	.3985	3990
			Diam.	10	Ę	.3479	.3480	.3479	.3480	.3479 .3480	.3518	.3519	.3518	.3519	.3547	.3548	.3547	.3548	.39110	39125	.39110	.39125	.39110	C716C.	.3969	.3970	.39 6 9	4050	4051	.4050	.4051	.4050	.4051	.4143	4144	.4143
			Diam.	6	Ë,	.3411	.3412	.3430	.3431	.3450 .3451	.3471	.3472	.3491	.3492	.3503	3504	.3522	.3523	.38260	.38275	.38500	.38515	38760		3909	.3910	.3935 .3936	.3974	3975	.3995	3996	4019	.4020	.4096	.4097	.4116
	OT GO (LO)	iameter	Full-Form	*	. <u></u>	.3739	.3744	.3739	.3744	.3750	.3739	.3744	.3750	.3755	.3740	.3743	.3750	.3753	.4361	.4367	.4361	.4367	4375		.4361	.4367	.4381	4362	.4367	.4362	.4367	.4375	.4380	.4364	.4369	.4375
etting Plugs	ž	Major D	Truncated	7	Ľ	.3591	.3586	.3610	.3605	.3630 .3625	.3626	.3621	.3646	.3641	.3638	.3635	.3657	.3654	.4135	.4129	.4159	.4153	4179		.4180	4174	.4200	.4191	.4186	.4212	.4207	.4236	.4231	.4251	.4246	.4271
/ Thread-S			Diam.	6	in.	.3468	.3467	.3468	.3467	.3479 3478	.3507	.3506	.3518	.3517	.3537	.3536	.3547	.3546	38970	38955	38970	.38955	39095		.3955	.3954	8965. 3968	.4037	.4036	.4037	.4036	.4050	.4049	.4132	.4131	.4143
3	CO	ameter	Fuli-Form	5	Ē.	.3739	.3744	.3739	.3744	.3750 .3755	3739	.3744	.3750	.3755	.3740	.3743	.3750	.3753	.4361	.4367	.4361	.4367	2/24. 4381		.4361	.4367	.4381 .4381	.4362	.4367	.4362	.4367	.4375	.4380	.4364	.4369	.4375
		Major Di	Truncated	+	ii.	.3660	.3655	.3660	.3655	.3671 .3666	.3668	.3663	.3679	.3674	3675	.3672	.3685	.3682	.4246	.4240	.4246	.4240	4254		.4256	.4250	.4264	.4272	.4267	.4272	.4267	.4285	.4280	.4293	.4288	.4304
			Class	3		۲		2►		38	2		34		24		3		۲,		5		۲		2		Ś	4		2		3A		2 A		34
			Designation	2		120					z				UNEF				UNU UNU						z			Ц.						UNEF		
	•	· ·	and Threads/in.			M-24 or 0.375-24					Ve-28 or 0.375-28				Ve-32 or 0.375-32				/16-14 or 0.4375-14						/16-16 or 0.4375-16			/16-20 or 0.4375-20						716-28 or 0.4375-28		

GAGES AND GAGING FOR

ANSI/ASME B1.2-1983

38	
AND	
8, 2B ,	
iA, 11	
2A, 3	6
5 1A,	
CLASSE	SIZE (CC
SERIES,	ITS OF
HREAD	
IDARD T	THREADS
R STAN	CREW .
ES FOI	IED S
GAGI	
SETTING	
LE 11	
ABI	

;

							-						
				-	V Ihread-S	setting Plugs			\$	Thread-Se	etting Ring	S	
				09		ž	OT GO (LO)		ŏ	•	NOT G	(IH) O	
			Major D	iameter	-	Major D	iameter	-	- 12		-		
Nominal Size ind Threads/in.	Series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Pitch Diam.	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Class
-	2	æ	4	ŝ	و	7	80	6	10	1	12	13	14
			Ŀ	.e		Ľ	Ŀ	Ľ	Ľ	.Ë	Ŀ	Ľ	
-32 or 0.4375-32	N	2 A	0.4300	0.4365	0.4162	0.4263	0.4365	0.4128	0.4172	0.4040	0.4216	0.4110	2B
			.4297	.4368	.4161	.4260	.4368	.4129	.4173	.4035	.4215	.4105	
		34	.4310 .4307	.4375 .4378	.4172 .4171	.4282 .4279	.4375 .4378	.4147 .4148	.4172 .4173	.4040 .4035	.4205 .4204	.4094 .4089	38
13 or 0.500-13	CNC	1	.4863	.4985	.44850	.4744	4985	44110	45000	4170	45970	4340	1
			.4857	.4991	.44835	.4738	.4991	.44125	.45015	.4164	.45955	4334	ļ
		2 A	.4863	.4985	.44850	.4768	.4985	.44350	.45000	.4170	.45650	.4340	2B
			.4857	.4991	.44835	.4762	.4991	.44365	.45015	.4164	.45635	.4334	
		3 A	.4878	.5000	.45000	.4796	5000	.44630	.45000	.4170	.45480	.4284	38
			2 /04-	000C.	C0644	.4/90	anne:	C+0++.	CI UC4.	.4 104	c0+c+.	.42/8	
16 or 0.500-16	N	2A	.4881	.4986	.4580	.4804	.4986	.4533	.4594	.4320	.4655	.4460	2B
			.4875	.4992	.4579	.4798	.4992	.4534	.4595	.4314	.4654	.4454	
,		34	.4895	.5000	.4594	.4830	.5000	.4559	.4594	.4320	.4640	.4419	38
			.4889	9006	.4593	.4824	.5006	.4560	.4595	.4314	.4639	.4413	
0 or 0.500-20	UNF	1	.4897	.4987	.4662	.4815	.4987	.4598	.4675	.4460	.4759	.4570	18
			.4892	.4992	.4661	.4810	.4992	.4599	.4676	.4455	.4758	.4565	
		2A	.4897	.4987	.4662	.4836	.4987	.4619	.4675	.4460	.4731	.4570	2B
			.4892	.4992	.4661	.4831	-4992	.4620	.46/6	.4455	.4730	.4565	ç
		5	.4910	5005.	.4674	.4855	.5005.	4644	.4676	.4455	.4716	.4532	a c
00 00 00 00	- INEE	40	4019	0007	4757	4876	0807	00.24	4769	0134	1815	0024	q
		5	1012	1001	4756	4870	4994	4721	4769	4605	4815	4695	3
		3 A	.4929	.5000	.4768	.4895	.5000	.4740	.4768	.4610	4804	.4676	38
			.4924	.5005	.4767	.4890	.5005	.4741	.4769	.4605	.4803	.4671	
32 or 0.500-32	N N	2A	.4925	.4990	.4787	.4887	.4990	4752	.4797	.4660	.4842	.4740	28
			.4922	.4993	.4786	.4884	.4993	.4753	.4798	.4657	.4841	.4737	
		3 A	.4935	.5000	.4797	.4906	.5000	.4771	.4797	.4660	.4831	.4719	3B
			.4932	.5003	.4796	.4903	.5005	.4772	.4798	.4657	.4830	.4716	
12 or 0.5625-12	UNC	1	.5480	.5609	.5068	.5351	5609	.4990	.5084	.4720	.5186	.4900	18
			.5474	.5615	.5066	.5345	.5615	.4992	.5086	.4714	.5184	.4894	
		2 A	.5480	-209	.5068	.5377	.5609	.5016	.5084	.4720	.5152	.4900	2B
		į	.5474	.5615	2006	5371	.5615	.5018	.5086	4714.	.5150	.4894	ţ
		34	5496	5623	5084		(79C.		- 2084 - 2084	.4720	.5135 2223	.4843	38
			U6+C.	1 COC.	7000	W+C.	1000.	/#nc.	00000	-4/14	CCIC .	/004.	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

ASSES 1A, 2A, 3A, 1B, 2B, AND 31	JE SIZE
CAGES FOR STANDARD THREAD SERIES, CL	UNIFIED SCREW THREADS — LIMITS C
TABLE 11 SETTING	

•

			N CH	JUNI	_ • •	111																				~	,								. J				•	
			Class	14		2B	l	38		18		2B		38		2B		38		28		38		28		3B		2B		38		18		2B		38		28		38
<u>s</u>	(III) O		Minor Diam.	13	.9	0.5090	.5084	.5040	.5034	.5150	.5145	.5150	.5145	.5106 5101	2	.5200	.5195	.5162	.5157	.5270	.5265	.5244	.5239	.5320	.5315	.5301	.5296	.5360	.5355	.5344	.5339	.5460	.5454	.5460	.5454	.5391	.5385	.5530	.5524	.5463 .5457
etting Ring	NOT G	-	Pitch Diam.	12	.5	0.5280	.5278	.5265	.5263	.53530	.53515	.53230	.53215	53080		.53550	.53535	.53410	.53395	.54050	.54035	.53920	.53905	.54410	.54395	.54290	.54275	.54670	.54655	.54560	.54545	.5767	.5765	.5732	.5730	.5714	.5712	.5780	.5778	.5762 .5760
/ Thread-Se	0		Minor Diam.	11		0.4950	.4944	.4950	.4944	.5020	.5015	.5020	.5015	5020	2.22	.5080	.5075	.5080	.5075	.5170	.5165	.5170	.5165	.5240	.5235	.5240	.5235	.5290	.5285	.5290	.5285	.5270	.5264	.5270	.5264	.5270	.5264	.5350	.5344	.5350 .5344
5	0		Pitch Diam.	10		0.5219	.5221	.5219	.5221	.52640	.52655	.52640	.52655	52640		.53000	.53015	.53000	.53015	.53540	.53555	.53540	.53555	53930	.53945	.53930	.53945	.54220	.54235	.54220	.54235	.5660	.5662	.5660	.5662	.5660	.5662	60/5.	.5711	.5709 .5711
		n: L	Pitch Diam.	6	. <u>c</u>	0.5158	.5160	.5184	.5186	.51820	.51835	.52050	.52065	57315		.52450	.52465	.52680	.52695	.53030	.53045	.53250	.53265	.53450	.53465	.53650	.53665	.53770	.53785	.53960	.53975	.5561	.5563	.5589	.5591	.5619	.5621	.5639	.5641	.5668
	01 GO (LO)	iameter	Full-Form	8	ü.	0.5611	.5617	.5625	.5631	.5611	.5616	.5611	.5616	629C.		.5612	.5617	.5625	.5630	.5613	.5618	.5625	.5630	.5614	.5619	.5625	.5630	.5615	.5620	.5625	.5630	.6234	.6240	.6234	.6240	.6250	.6256	.6234	.6240	.6250 .6256
etting Plugs	Ž	Major D	Truncated	7		0.5429	.5423	.5455	.5449	.5423	.5418	.5446	.5441	- 74/. 5466		.5462	.5457	.5485	.5480	.5483	.5478	.5505	.5500	.5500	.5495	.5520	č ľčč.	.5512	.5507	.5531	.5526	.5955	.5949	.5983	.5977	.6013	.6007	.6000	.5994	.6029 .6023
/ Thread-S		Ditch	Diam.	9		0.5205	.5203	.5219	.5217	.52500	.52485	.52500	.52485	.52625		.52870	.52855	.53000	.52985	.53420	.53405	.53540	.53525	.53820	.53805	.53930	51952.	.54120	.54105	.54220	.54205	.5644	.5642	.5644	.5642	.5660	.5658	.5693	.5691	.5709 .5707
X	60	iameter	Full-Form	5	Ë.	0.5611	.5617	.5625	.5631	.5611	.5616	.5611	.5616	5630 5630		.5612	.5617	.5625	.5630	.5613	.5618	.5625	.5630	.5614	.5619	.5625	.5630	.5615	.5620	.5625	.5630	.6234	.6240	.6234	.6240	.6250	.6256	.6234	.6240	.6250 .6256
		Major D	Truncated	4		0.5506	.5500	.5520	.5514	.5514	.5509	.5514	5509	.5523		.5522	.5517	.5535	.5530	.5534	.5529	.5546	.5541	.5543	.5538	.5554	9456.	.5550	.5545	.5560	.5555	2609.	.609	.609	.6091	.6113	.6107	.6105	6609'	.6121 .6115
	_	-	Class	3		2A		3A		1A		2A		V r		2A		3A		2A		3A		2 A		3 A		2A		3A		1A		2A		34		2A		3A
		Control	series Designation	2		N				UNF						N				UNEF				N				NU				UNC						N		
			and Threads/in.	-		%16-16 or 0.5625-16				¥16-18 or 0.5625-18						9/16-20 or 0.5625-20				%16-24 or 0.5625-24				%16-28 or 0.5625-28				%16-32 or 0.5625-32				¥+-11 or 0.625-11						≸8-12 or 0.625-12		

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

े

AN /	AMEI	RICA	N NA			.S1		ID/	ARD	1														1			ι	JNIF	1E() II	NCH	I SC	RE	W	THF		S		
	,	-	Clas	4			n7 	38))	18		2B		38		2B		38		2B	-	3B		2B		38		2B		38		28		38		2B		38	
st	(IH) O		Minor Diam.	13		0 5710	5704	5662	.5656	.5780	.5775	.5780	.5775	.5730	.5725	.5820	.5815	.5787	.5782	.5900	.5895	.5869	.5864	.5950	.5945	.5926	.5921	0665.	.5985	.5969	.5964	.6150	.6144	.6085	6209.	.6340	.6334	.6284	6278
etting Ring	NOT		Diam.	12			5904	5890	5888.	.59800	.59785	.59490	.59475	.59340	.59325	.59810	.59795	.59670	.59655	.60310	.60295	.60180	.60165	.60670	.60655	.60550	.60535	060930	.60915	.60820	.60805	.6405	.6403	.6387	.6385	.6531	.6529	.6515	6513
Thread-S			Diam.	11		0 5570	5564	5570	.5564	.5650	.5645	.5650	.5645	.5650	.5645	.5710	.5705	.5710	.5705	.5800	.5795	.5800	.5795	.5860	.5855	.5860	.5855	.5910	.5905	.5910	.5905	.5970	.5964	.5970	.5964	.6200	.6194	.6200	6194
5	Ğ	Ditch	Diam.	10		0 5844	5846	5844	.5846	.58890	.58905	.58890	.58905	.58890	.58905	.59250	.59265	.59250	.59265	.59790	.59805	.59790	.59805	.60180	.60195	.60180	.60195	.60470	.60485	.60470	.60485	.6334	.6336	.6334	.6336	.6469	.6471	.6469	6471
		0 1 1	Diam.	6	.9	0 5787	5784	5808	.5810	.58050	.58065	.58280	.58295	.58540	.58555	.58690	.58705	.58930	.58945	.59270	.59285	.59490	.59505	.59690	59705	59900	.59915	.60000	.60015	.60200	.60215	.6264	.6266	.6293	.6295	.6407	.6409	.6433	6435
	01 CO (LO)	ameter	Full-Form	æ	.9	0.6736	6242	6250	.6256	.6236	.6241	.6236	.6241	.6250	.6255	.6237	.6242	.6250	.6255	.6238	.6243	.6250	.6255	.6239	.6244	.6250	.6255	.6239	.6244	.6250	.6255	.6859	.6865	.6875	.6881	.6861	.6867	.6875	6881
etting Plugs	Ň	Major Di	Truncated	7		0 6053	6047	6209	.6073	.6046	.6041	6909.	.6064	.6095	0609.	9809.	.6081	.6110	.6105	.6107	.6102	.6129	.6124	.6124	.6119	.6145	.6140	.6135	.6130	.6155	.6150	.6625	.6619	.6654	.6648	.6678	.6672	.6704	669R
/ Thread-So		- Pitch	Diam.	9		0 5830	5828	.5844	.5842	.58750	.58735	.58750	.58735	.58890	.58875	.59120	59105	.59250	.59235	.59670	.59655	.59790	.59775	.60070	.60055	.60180	.60165	.60360	.60345	.60470	.60455	.6318	.6316	.6334	.6332	.6455	.6453	.6469	6467
2	00	ameter	Full-Form	ŝ		0.6736	6242	6250	.6256	.6236	.6241	.6236	.6241	.6250	.6255	.6237	.6242	.6250	.6255	.6238	.6243	.6250	.6255	.6239	.6244	.6250	.6255	.6239	.6244	.6250	.6255	.6859	.6865	.6875	.6881	.6861	.6867	.6875	6881
		Major Di	Truncated	4		0.6131	6125	.6145	.6139	.6139	.6134	.6139	.6134	.6153	.6148	.6147	.6142	.6160	.6155	.6159	.6154	.6171	.6166	.6168	.6163	.6179	.6174	.6174	.6169	.6185	.6180	.6730	.6724	.6746	.6740	.6756	.6750	.6770	6764
			Class	m		AC AC	i	3A		٩L		2 A		3 A		2A		3A		2A		3 A		2A		3 A		2A		3A		2A		3A		2¥		3A	
		Carine	Designation	2		Z	5			UNF						N				UNEF				S				N C				د د				Z			
		Nominal Ciza	and Threads/in.	-		5/8-16 or 0.625-16				5/8-18 or 0.625-18						¥8-20 or 0.625-20				5/8-24 or 0.625-24				¥8-28 or 0.625-28				¥e-32 or 0.625-32				11/16-12 or 0.6875-12				¹ / 16- 16 or 0.6875-16			

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

38	
ANI	
, 2B,	
A, 1B	
A, 3/	_
1A, 2	1,0
CLASSES '	SIZE (CO)
SERIES,	AITS OF
THREAD	
DARD	THRFAL
STAN	SFW
FOR	C S C
GES	IFIF
GA	
SETTING	
E 11	
TABL	
-	

				2	/ Thread-S	etting Plugs			3	Thread-Se	etting Ring	s		
				, CO		ž	OT GO (LO)		GG		NOT G	(IH) O		
			Major Di	ameter	Ditch	Major D	iameter	Ditch	Ditch	Minor	Ditch	Minor		
u sıze ads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class	
	2	e	4	5	9	7	8	6	10	11	12	13	14	
			. <u>:</u>	. <u>e</u>	.e	Ë	Ë.	.Ë	. <u>e</u>	. <u>:</u>	Ē	Ē		
0.6875-20	NU	2٨	0.6772	0.6862	0.65370	0.6711	0.6862	0.64940	0.65500	0.6330	0.66060	0.6450	2B	- •
		i	.6767	.6867	.65355	.6706	.6867	.64955	.65515	.6325	.66045	.6445	Ę	
		٨٤	c@/9.	c/99.	.65485	c£/9. 6730	c/99.	.65195	.65515	.6325	07609.	.6407	8	
0.6875-24	UNEF	2A	.6784	.6863	.65920	.6732	.6863	.65520	.66040	.6420	.66560	.6520	28	
			6779.	.6868	.65905	.6727	.6868	.65535	.66055	.6415	.66545	.6515		
		3 A	.6796 6791	.6875 6880	66040	.6754 6749	.6875 6880	.65755	.66040	.6420 6415	.66430 .66415	.6494 6489	3B	
			;											
0.6875-28	N	2A	.6793	.6864	.66320	.6749	.6862	.65940	.66430	.6490	.66920	.6570	2B	
		46	.6/88 5904	.0009 6875	CU209.	.6/44 6770	.000/ 6875	CCECO.	06440d.	C040	CU600.	COCO. 1333	ЯĽ	
		5	66/9.	.6880	.66415	.6765	.6880		.66445	.6485	.66785	.6546	2	
0.6875-32	Z N	2A	6629.	.6864	.66610	.6760	.6864	.66250	.66720	.6540	.67180	.6610	28	
			.6794	.6869	.66595	.6755	.6869	.66265	.66735	.6535	.67165	.6605		
		3 A	.6810	.6875	.66720	.6780 2775	.6875	.66450	.66720	.6540	.67070 67055	.6594	38	
			C099.	0000.	CD/00.	c//0.	0000.	C0+00.	cc/00.	CCC0.	CCU /0.	6000.		
750-10	UNC	11	.7336	.7482	.6832	.7177	.7482	.6744	.6850	.6420	.6965	.6630	18	
			.7330	.7488	.6830	1717.	.7488	.6746	.6852	.6414	.6963	.6624	ų	
		2 ×	7336	./482 7488	.6832 6830	7200	./462 7488	.6775 6775	.6850 6852	.6414	.6925	.06030 6624	97	
		3A	.7354	.7500	.6850	.7239	.7500	9089.	.6850	.6420	.6907	.6545	38	
			.7348	.7506	.6848	.7233	.7506	.6808	.6852	.6414	.6905	.6539		
.750-12	NU	2A	.7354	.7483	.6942	.7248	.7483	.6887	6369.	.6600	.7031	.6780	2B	
			.7348	.7489	.6940	.7242	.7489	.6889	.6961	.6594	.7029	.6774		
		34	7371	.7500	.6959 6957	<i>9121.</i> 7777	.7500	.6918 6920	.6959 6961	.6600 6594	.7013	.6707	38	
		;								0000	1001		5	
750-16	NF	۲	.7380	./485 7401	6/0/. 7707	6/7/: 09(2	C847/. 7491	7006	7096	.0282U	7190	0969. 6954	8	
		AC.	7380	7485	6202	7300	7485	7029	7094	.6820	.7159	0969	2 B	
		~7	.7374	.7491	707.	.7294	.7491	.7031	.7096	.6814	.7157	.6954	1	
		3 A	.7395	.7500	.7094	.7327	.7500	.7056	.7094	.6820	.7143	8069.	38	
			.7389	.7506	.7092	.7321	.7506	.7058	.7096	.6814	.7141	.6902		

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3

Minor Class 13 14 1.0. 28 0.7070 28 7.7037 38 7.7032 38	Minor Class 13 14 13 14 10.7070 28 .70337 38 .70337 38 .70337 38 .70337 38 .7033 38 .7034 28 .7195 38 .7171 38 .7173 38 .7171 38 .7173 38 .7174 38 .7175 38 .7171 38 .7173 38 .7174 38 .7219 38 .7219 38	Minor Class 13 14 13 14 13 14 10.7070 28 7037 38 7705 38 77171 28 77171 28 77171 38 77171 38 771711 38 7717111111111111111111111111111111111	Minor Lass 13 14 13 14 13 14 10.7050 28 7.7055 38 7.7056 28 7.7057 28 7.7057 28 7.7050 28 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7171 38 7.7219 38 7.7323 38 7.7323 38 7.7552 38 7.7553 38 7.7565 38 7.8015 38 7.796 38 7.796 38 7.796
12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	12 13 in. in. in. in. in. 0.7070 73305 .7035 .72305 .7037 .72305 .7037 .73165 .7033 .73165 .7176 .73165 .7176 .73165 .7176 .73315 .7177 .73335 .7177 .73333 .7333 .73335 .7177 .73335 .7175 .73335 .7177 .73335 .7177 .73335 .7175 .73335 .7235 .7335 .7235 .7335 .7235	13 13 10. in. in. 0.7070 7.23305 7.055 7.23180 7.037 7.23180 7.037 7.3165 7.705 7.3165 7.715 7.33165 7.716 7.3335 7.716 7.3335 7.734 7.3335 7.240 7.3335 7.240 7.3335 7.233 7.3335 7.233 7.3335 7.233 7.3335 7.233 7.7466 7.334 7.7780 7.733 7.7782 7.734 7.7782 7.734 7.7464 7.758 7.766 7.533	13 13 11 in. 11 in. 11 in. 12 13 13 in. 705 705 705 705 705 703 705 703 711 703 703 703 703 703 703 703 703 703 703 703 703 703 717 7303 7171 7303 7171 7303 7171 7303 7171 7303 7171 7303 7171 7303 7171 7303 7171 7333 7171 7333 7172 733 7184 733 766 733 764 770 7766 733 7766 770
0 11 1. in. 1.750 0.6960 1.750 0.6960 1.750 .6955 .6955 .710	0 11 n. in. 1750 0.6960 1755 6.955 1750 0.6960 1750 6.955 1750 6.955 1750 6.955 1750 5.956 1750 5.955 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7115 2695 .7115 2695 .7115 2985 .7155	0 11 n. in. 1750 0.6960 1755 .6955 1765 .6955 1750 0.6960 1750 .6955 1755 .6955 1755 .6955 2680 .7110 2680 .7110 2695 .7160 2695 .7160 2695 .7160 2695 .7160 2695 .7160 2696 .7110 2696 .7110 2696 .7116 2697 .7155 2985 .7155 2986 .7214 384 .7220 386 .7214 271 .7450 744 .744 719 .7444 719 .7444	0 11 0. 11. 750 0.6960 7750 0.6960 7750 0.6960 7750 0.6960 7750 0.6955 7750 0.6960 7710 5095 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7110 2695 .7116 284 .7224 219 .7450 219 .7450 211 .7450 211 .7450 211 .7450 211 .7450 211 .7450
in. 0.71180 0.71750 .71195 .71765 .71420 .71766 .71420 .71766	in. 0.71180 0.71750 7.1195 7.7165 7.1420 7.7165 7.1435 7.7165 7.2180 7.2680 7.2195 7.2690 7.2195 7.2695 7.2390 7.2695 7.2515 7.2995 7.2515 7.2995 7.2515 7.2995 7.2515 7.2995	in. 0.71180 0.71750 7.1195 7.1755 7.1420 7.7165 7.1435 7.1766 7.2180 7.2669 7.2195 7.2695 7.2195 7.2695 7.2195 7.2695 7.2195 7.2695 7.2195 7.2695 7.2515 7.2995 7.2515 7.2995 7.2514 7.2995 7.2514 7.2995 7.2514 7.2995 7.2515 7.7595 7.7595 7.7595 7.7595 7.7595 7.7595 7.7595 7.7595 7.7595 7.7595 7.7719 7.7595 7.7719	in. 0.71180 0.71750 7.1195 7.1765 7.1420 7.1765 7.1435 7.1750 7.2180 7.72680 7.2180 7.26895 7.2180 7.26895 7.2195 7.2695 7.2195 7.2695 7.2515 7.2695 7.2515 7.2695 7.2514 7.2965 7.2543 7.2965 7.2543 7.2965 7.2543 7.729 7.655 7.7719 7.683 7.7719 7.683 7.7719 7.683 7.7719 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.683 7.7721 7.7845 7.8015 7.7845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8015 7.8845 7.8845 7.8015 7.8845 7.8845 7.8015 7.8845 7.8845 7.8015 7.8845 7.
0.7487 7.492 7.500 7.7505 7.75	0.7487 7500 77505 7500 77505 777505 77505 77750505 777505 777505 777505 777505 77750505 777505 777505 77750505 77750505 77750505 77750505 77750505 7775050505 77750505050	0.7487 7.500 7.7505 7.7505 7.7505 7.7505 7.7505 7.7505 7.7505 8114 8114 8113 8116 8116 8116 8116 8116 8116 8116	0.7487 7500 77500 77500 77500 77500 77500 8113 8113 8113 8113 8113 8113 8113 81
0 0.7335 05 .7330 06 .7359 15 .7354	0.7335 0.7335 5.7330 5.7359 6.7373 5.7388 6.7389 6.7388 7.389 6.7388 7.389 6.7388 7.7388 7.7388 6.7388 7.7388 6.7388 7.7388 6.7788 7.7388 6.7788 7.7388 7.7405 7.74	00 0.7335 15 .7330 15 .7330 15 .7336 15 .7336 15 .7354 15 .7354 15 .7358 15 .7386 15 .7386 15 .7386 1786 .7386 1786 .7380 1786 .7380 1786 .7380 1786 .7380 17926 .7380 .7926 .7920 .7926 .7928 .7928 .7948	00 0.7335 15 7.330 15 7.330 15 7.336 15 7.335 15 7.336 15 7.385 15 7.386 15 7.386 15 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.386 17 7.7385 17 7.7385 17 7.7385 17 7.7385 17 7.7385 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 17 7.7926 18014 7.7938 18014 7.7938 18014 7.7938
500 .71750 505 .71735	500 .71750 505 .71735 488 .72560 488 .72545 500 .726680 505 .726680 489 .72860 489 .72845 500 .72970 505 .72955	500 .71750 505 .71735 505 .71735 488 .72560 493 .72566 505 .72665 505 .72666 505 .72665 505 .72665 506 .72956 600 .72955 505 .72956 505 .72955 506 .72955 505 .72956 505 .72956 505 .7567 108 .7567 114 .7565 125 .7702 131 .7702 131 .7719 131 .7719	500 71750 605 71735 605 71735 603 71735 603 772660 603 72860 604 72866 605 72860 606 72866 600 72865 600 72865 600 72970 505 72865 506 72955 507 72956 508 72956 714 7567 114 7562 113 7563 116 7704 111 7702 111 7703 131 77870 131 77795 131 77795 131 77795 131 77795 131 77795 131 77795 131 77795 132 77795 133 77795 141
111	.7417 .7488 .7412 .7493 .7429 .7500 .7424 .7505 .7424 .7489 .7419 .7484 .7419 .7484 .7435 .7500	.7417 .7488 .7412 .7493 .7429 .7505 .7424 .7505 .7419 .7489 .7435 .7489 .7435 .7506 .7435 .7506 .7435 .7506 .7436 .8114 .7999 .8116 .7999 .7506 .8116 .8116 .7999 .8116 .8116 .7999 .8116 .8116 .7999 .8116 .8116 .7999 .8116 .8116 .7999 .8116 .8116 .7999 .8116 .7999 .8116 .7999 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .7999 .8116 .79999 .7999 .7999 .7999 .7999 .7999 .7999 .7999 .7999 .7999	.7417 .7488 .7412 .7493 .7429 .7505 .7424 .7505 .7435 .7494 .7435 .7494 .7435 .7493 .7435 .7493 .7435 .7493 .7435 .7493 .7435 .7493 .7436 .7493 .7437 .7493 .7999 .8116 .7999 .8116 .8005 .8116 .8014 .8131 .8035 .8113 .8036 .8113 .8037 .8113 .8037 .8132 .8037 .8132 .8037 .8132 .8037 .8132 .8037 .8132
	2A 3A 3A 3A	2 A 3	2A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A
	Z Z	5 5 5 5	S N N N N
74-28 OF U./ JU-28	4-32 or 0.750-32	₩-32 or 0.750-32 ∦16-12 or 0.8125-12 ¥16-16 or 0.8125-16	¥-32 or 0.750-32 ¥-32 or 0.750-32 17/16-12 or 0.8125-16 17/16-20 or 0.8125-20

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

AND 3	
B, 2B,	
A, 3A, 1	_
SES 1A, 2	CUNT/O
S, CLASS	F SITE (
SERIES	MITS O
THREAD	
UDARD	THRFAF
DR STAP	SCREW
AGES FC	NIFIFD
SETTING G	
TABLE 11	

60

							01 317E						
				>	V Thread-	Setting Plugs			x	V Thread-S	etting Ring	si	
				CO		Ž	OT GO (10)		Ŭ	0	NOT G	(IH) O	
	, and a second		Major D	liameter	Ditch	Major D	iameter	Ditch	4-+;0		Ditch		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	3	4	S	9	7	æ	6	10	11	12	13	14
			Ü	in.	in.	in.	in.	in.	'n.	in.	i.	Ľ	
7/8-9 or 0.875-9	UNC	14	0.8573	0.8731	0.8009	0.8395	0.8731	0.7914	0.8028	0.7550	0.8151	0.7780	18
		2A	.8573	.8738 .8731	/008. 6008.	.8388 .8427	.8/38 .8731	.7946	.8030	./343	.8149 .8110	.7780	28
			.8566	.8738	.8007	.8420	.8738	.7948	.8030	.7543	.8108	.7773	ł
		3A	.8592 .8585	.8750 .8757	.8028 .8026	.8462 .8455	.8750 .8757	.7981 .7983	.8028 .8030	.7550 .7543	.8089. 8087	.7681 .7674	38
7/8-12 or 0.875-12	CN	2A	.8604	.8733	.8192	.8498	.8733	.8137	.8209	.7850	.8281	.8030	28
			.8598	.8739	.8190	.8492	.8739	.8139	.8211	.7844	.8279	.8024	
		3A	.8621 .8615	.8750 .8756	.8209 .8207	.8529 .8523	.8750 .8756	.8168 .8170	.8209 .8211	.7850 .7844	.8263 .8261	.7948	38
7/6 14 of 0 875-14		14	8610	8734	8.770	8408	8734	8180	вляк	7980	8307	8140	18
+1 +C /0'N IN +1 -0/.		<u>c</u>	.8613	.0/ 37 8740	.8268	.8492	.8740		.8288	.7974	.8390	.8134	2
		2A	.8619	.8734	.8270	.8525	.8734	.8216	.8286	.7980	.8356	.8140	2B
			.8613	.8740	.8268	.8519	.8740	.8218	.8288	.7974	.8354	.8134	
		3A	.8635	.8750	.8286	.8554	.8750 8755	.8245	.8286 9799	7074	.8339 7559	8068	38
			6700.	OC /0'	+070.	0+00'	DC /0'	.024/	0070.	+/6/-	/cco.	7000	
7/8-16 or 0.875-16	Ŋ	2A	.8630	.8735	.8329	.8551	.8735	.8280	.8344	.8070	.8407	.8210	2B
			.8624	.8741	.8327	.8545	.8741	.8282	.8346	.8064	.8405	.8204	ţ,
		٩	.8639	0c/8. 8756	.8344 .8342	.8573 8573	0c/9. 8756	.8308 .8310	.8344 .8346	.8064	.8391 .8389	.8158 .8152	38
⁷ /8-20 or 0.875-20	UNEF	2A	.8647	.8737	.84120	.8585	.8737	.83680	.84250	.8210	.84820	.8320	2B
			.8642	.8742	.84105	.8580	.8742	.83695	.84265	.8205	.84805	.8315	
		٩٤	.8660	.8750	.84250	8609	.8750	.83920	.84250	.8210	.84680	.8287	38
			.8655	.8755	.84235	.8604	.8755	.83935	.84265	.8205	.84665	.8282	
⁷ /8-28 or 0.875-28	N	2A	.8667	.8738	.85060	.8623	.8738	.84680	.85180	.8360	.85680	.8450	2B
			.8662	.8743	.85045	.8613	.8743	.84695	.85195	.8355	.85665	.8445	
		3A	8679.	.8750	.85180	.8644	.8750	.84890	.85180	.8360	.85550	.8426	38
			.8674	.8755	.85165	.8639	.8755	.84905	.85195	.8355	.85535	.8421	
7/8-32 or 0.875-32	Ŋ	2A	.8674	.8739	.85360	.8635	.8739	.85000	.85470	.8410	.85940	.8490	2B
			.8669	.8744	.85345	.8630	.8744	.85015	.85485	.8405	.85925	.8485	1
		3A	.8685	.8750	.85470	.8655	.8750	.85200	.85470	.8410	.85830	.8469	38
			.8680	.8755	.85455	.8650	.8/55	61268.	63463.	6405	CL8C8.	.8464	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

JR A	7 (ny	
18	ŝ	
A 2A		_
1 4 3	ĉ	C í N
CI A SSES	うろうくろう	CUTE /CO
SERIES.		ALTS OF
THREAD		
FOR STANDARD		IN SCREW THREAL
SETTING CACES		
A RI F 11		

								12					
				>	V Thread-S	etting Plugs			3	/ Thread-Se	etting Ring	S	
				60		Ž	OT GO (LO)		ö	0	NOT G	(IH) O	
Manimal Gira			Major D	liameter	Ditch	Major D	iameter	0.4.5	Ditch	Minor	Ditch	Minor	
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	e	4	S	9	7	8	6	10	11	12	13	14
			Ë	.i	Ŀ	.ċ	Ŀ	i.	Ľ	. <u>e</u>	Ŀ.	.ċ	
^{15/16-} 12 or 0.9375-12	Ŋ	2A	0.9229	0.9358	0.8817	0.9121	0.9358	0.8760	0.8834	0.8470	0.8908	0.8650	8
			.9223	.9364 0375	.8815	.9115	.9364	.8762	.8836	.8464	9068.	.8644	90
		45	.9240 .9240	c/ce. 1381	.0034 .8832	5147 9147	c / c.c. 1381	.0/92 .8794	.8836	.8464	.8887	c /co.	a n
^{15/16-} 16 or 0.9375-16	R	2A	.9255	.9360	.8954	.9175	.9360	.8904	6968.	.8700	.9034	.8840	2B
			.9249	.9366	.8952	.9169	.9366	9068.	.8971	.8694	.9032	.8834	
		3A	.9270 .9264	.9375 .9381	6968. 7967	.9203 .9197	.9375 .9381	.8932 .8934	6969. 1268.	.8700 .8694	.9018 .9016	.8783 	38
^{15/16-20} or 0 9375-20	LNFF	2.4	9271	9361	90360	9208	9361	89910	90500	8830	91090	.8950	28
		i	.9266	.9366	.90345	.9203	.9366	.89925	.90515	.8825	.91075	.8945	ì
		3A	.9285	.9375	.90500	.9233	.9375	.90160	.90500	.8830	.90940	.8912	3B
			.9280	.9380	.90485	.9228	.9380	.90175	.90515	.8825	.90925	.8907	
^{15/16-} 28 or 0.9375-28	Z C	2A	.9292	.9363	.91310	.9246	.9363	.90910	.91430	0668.	.91950	.9070	2B
			.9287	.9368	.91295	.9241	.9368	.90925	.91445	.8985	.91935	.9065	
		34	9304 9299	.9375 9380	.91430	.9268 9263	.9375	.91130	.91430 91445	8985 8985	.91805	.9051 9046	38
^{15/16-} 32 or 0.9375-32	Ŋ	2 A	.9299	.9364	.91610	.9258	.9364	.91230	.91720	.9040 2025	.92210	.9110	2B
		46	4676.	5005. 2750	00210	0270	2006.	01440	00210	0000	00000	C01 C.	38
		5	9305	. 9380 9380	.91705	.9274	0380 0380	.91455	.91735	.9035	.92075	6806.	2
1-8 or 1.000-8	UNC	٩٢	6086.	0866.	.9168	9096.	0866.	-9067	.9188	.8650	.9320	.8900	18
			.9802	.9987	.9166	1096.	7866.	6906.	.9190	.8643	.9318	.8893	
		2A	6086.	.9980	.9168	.9641	.9980	.9100	.9188	.8650	.9276	0068.	2B
		34	9829	1.0000	9188	9678	1.0000	2016.	.9188 9188	.8650	- 32/4 - 9254	.evo.	3B
			.9822	1.0007	.9186	1296.	1.0007	.9139	.9190	.8643	.9252	.8790	
1-12 or 1.000-12	UNF	14	.9853	.9982	.9441	.9714	.9982	.9353	.9459	.9100	.9573	.9280	1B
			.9847	9988.	.9439	9708	.9988	.9355	.9961	.9094	.9571	.9274	
		2A	.9853	.9982	.9441	.9743	.9982	.9382	.9459	.9100	.9535	.9280	2B
			.984/	9966.	.9439	15/9.	9966.	.9364 041E	.9401	4005	2120	92/4	90
		5	- 70/ I	1.0006	.9457	0/ <i>16</i> .	1.0006	11 4 6.	.9461	9094 9094	.9514	.9192	2

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD
38	
AND	
2 B ,	
, B	
3Å,	
2Å,	õ
1	ĨZ
LASSES	IZE (CC
S,	F SI
SERIE	ITS C
ģ	LIM
HRE	S
	Ö
DAR	HR
Ī	N
R ST	CRE
õ	Ū S
GES	HFIE
S	5
SETTING	
1	
TABLE	

				1	V Thread-9	Setting Plugs			3	/ Thread-Se	etting Ring	2		
				09		Ż	DT CO (LO)		Ğ		NOT G	(IH) O		
			Major D	iameter	1.11	Major D	iameter	1						
Nominal Size and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Prich Diam.	Minor Diam.	Class	
-	2	m	4	'n	y	4	-	6	10	11	12	13	2	
			Ŀ	Ŀ	Ľ	.ċ		in.	.e	Ŀ	Ľ	. <u>.</u>		
1-16 or 1.000-16	N	2 A	0.9880	0.9985	0.9579	0.9800	0.9985	0.9529	0.9594	0.9320	0.9659	0.9460	2B	
			.9874	1666.	.9577	.9794	1666.	.9531	.9596	.9314	.9657	.9454		-
		3 A	.9895 .9889	1.0000 1.0006	.959 4 .9592	.9828 .9822	1.0000 1.0006	.9557 .9559	.9594 .9596	.9320 .9314	.9643 9643	9408 9402	3 B	
1-20 or 1.000-20	UNEF	2A	9696.	9996.	.96610	.9833	9866	.96160	.96750	.9460	.97340	.9570	2B	
			.9891	1666.	.96595	.9628	1666.	.96175	.96765	.9455	.97325	.9565	I	
		34	.9910 .9905	1.0000	.96750 .96735	.9858 .9853	1.0000 1.0005	.96410 .96425	.96750 .96765	.9460 .9455	.97175 97175	.9537 .9532	3 B	
1-28 or 1 000-28	N	2	9417	9988	97560	9871	9988	97160	97680	9610	98200	9700	38	
	;	í		2666	97545	9986	6665	97175	97695	3096.	.98185	3696	1	
		3 A	92929	1,0000	97680	.9893	1.0000	.97380	.97680	.9610	98070	.9676	38	
			.9924	1.0005	.97665	9888.	1.0005	.97395	.97695	.9605	.98055	1/96.	1	
1-32 or 1.000-32	N	5A	.9924	6866.	97860	.9883	6866.	.97480	02676.	.9660	.98460	.9740	28	
			.9919	9994	.97845	.9878	.9994	.97495	.97985	.9655	.98445	.9735		
		34	.9935	1.0000	.97970 07055	-9904 	1.0000 1.0006	.97690 97705	97970 07055	.9660 0655	.98340 00375	9719	38	
			0566.	c000-1	CCE/E.	6606.	C000.1	CU//6.	C06/6.	CC06.	C7505.	41 \2.		
1 <i>1</i> /16-8 or 1.0625-8	n	2A	1.0434	1.0605	6793	1.0266	1.0605	.9725	.9813	.9270	.9902	.9520	28	
			1.0427	1.0612	1626.	1.0259	1.0612	.97.27	.9815	.9263	0066.	.9513		
		3A	1.0454 1.0447	1.0625 1.0632	.9813 9811	1.0303 1.0296	1.0625 1.0632	.9762 .9764	.9813 .9815	.9270 9263	9880. 9878.	.9422 .9415	38	
11/16-12 or 1.0625-12	N	2	1.0479	1.0608	1.0067	1.0371	1.0608	1.0010	1.0084	9720	1.0158	0066	28	
			1.0473	1.0614	1.0065	1.0365	1.0614	1.0012	1.0086	.9714	1.0156	.9894		
		ЗA	1.0496	1.0625	1.0084	1.0403	1.0625	1.0042	1.0084	.9720	1.0139	.9823	38	
			1.0490	1.0631	1.0082	1.0397	1.0631	1.0044	1.0086	.9714	1.0137	.9817		
11/16-16 or 1.0625-16	NN	2A	1.0505	1.0610	1.0204	1.0425	1.0610	1.0154	1.0219	.9950	1.0284	1.0090	28	
			1.0499	1.0616	1.0202	1.0419	1.0616	1.0156	1.0221	.9944	1.0282	1.0084		
		34	1.0520	1.0625	1.0219	1.0453	1.0625	1.0182	1.0219	.9950	1.0268	1.0033	38	
			1.0514	1.0631	1.0217	1.0447	1.0631	1.0184	1.0221	.9944	1.0266	1.0027		
1 ^{1/16-18} or 1.0625-18	UNEF	2 A	1.0514	1.0611	1.02500	1.0444	1.0611	1.02030	1.02640	1.0020	1.03260	1.0150	28	
			1.0509	1.0616	1.02485	1.0439	1.0616	1.02045	1.02655	1.0015	1.03245	1.0145		
		38	1.0528	1.0625	1.02640 1.02646	1.0469	1.0625	1.02280	1.02640 1.02655	1.0020 1.0015	1.03100	1.0105	38	
-			C7CN.I	2000.1	C7070'I	555.1	00001	L UE770.1	CC070"	3.	000001	3		

NGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3I	SCREW TUBEADS - HANTE OF SIZE (CONT'D)
BLE 11 SETTING GAGES FOR STANDA	
TAB	

Antional Size Series Antion-Series Part Witned-Series Number Size 1 2 3 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$					U JUNEN				· · · · · · · · · · · · · · · · · · ·					
Noninal Size Series $$ $ $					-	V Thread-	Setting Plugs			5	/ Thread-Se	etting Ring	js	
Nominal Sice Series, and Therack/in. Major Diameter Designation Major Diameter Law Major Diameter Diam Major Diameter Full+rom Major Diameter Diam Major Diameter Full+rom Major Diameter Diam Major Diameter Full+rom Major Diameter Diam Major Diameter Full+rom M					CO		Ž	01 GO (LO)		Ğ		NOT G	(IH) O	
and Interactive, and Interactine, and Interactive, and Interactive, and Interactive,		<u></u>		Major E	Diameter	ditio d	Major D	iameter	Ditch	Ditch	Minor	Ditch	Minor	
1 2 3 4 5 6 7 8 9 0 11 12 13 $1^{W_{w,2}0$ <11655.20 UN 2 1053 1053 10433 1065 10305 10335 10335 <t< th=""><th>Nominal Size and Threads/in.</th><th>series Designation</th><th>Class</th><th>Truncated</th><th>Full-Form</th><th>Diam.</th><th>Truncated</th><th>Full-Form</th><th>Diam.</th><th>Diam.</th><th>Diam.</th><th>Diam.</th><th>Diam.</th><th>Class</th></t<>	Nominal Size and Threads/in.	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
With The Boot The Sector The Sec	-	2	"	4	ŝ	9	2	8	6	10	11	12	13	14
$ [1.420\ or 10675-20 \ UN \ 2A \ 10561 \ 10242 \ 10616 \ 10242 \ 10000 \ 10000 \ 10050 \ 1$				Ŀ	Ľ		i	Ľ	in.	Ŀ.	in.	Ľ	in.	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	1 ^{1/16-20} or 1.0625-20	N	2A	1.0521	1.0611	1.02860	1.0458	1.0611	1.02410	1.03000	1.0080	1.03590	1.0200	2B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.0516	1.0616	1.02845	1.0453	1.0616	1.02425	1.03015	1.0075	1.03575	1.0195	Ę
$ [1^{V_{0-2}} 3^{0} \circ 1 1053^{-2} 3^{0} 1054^{0} 1054^{0} 1054^{0} 1054^{0} 1054^{0} 1024^{$			3A	1.0530	c790.1 1.0630	1.02985	1.0463	1.0630	1.02675	1.03015	1.0075	1.03425	1.0157	80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 ^{1/16-28} or 1.0625-28	N	2A	1.0542	1.0613	1.03810	1.0496	1.0613	1.03410	1.03930	1.0240	1.04450	1.0320	2B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.0537	1.0618	1.03795	1.0491	1.0618	1.03425	1.03945	1.0235	1.04435	1.0315	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3A	1.0554	1.0625	1.03930	1.0518	1.0625	1.03630	1.03930	1.0240	1.04320	1.0301	3B
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				1.0549	1.0630	1.03915	1.0513	1.0630	1.03645	1.03945	1.0235	1.04305	1.0296	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 ^{1/8-7} or 1.125-7	UNC	1A	1.1040	1.1228	1.0300	1.0810	1.1228	1.0191	1.0322	026.	1.0463	.9980	1B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.1033	1.1235	1.0298	1.0803	1.1235	1.0193	1.0324	.9693	1.0461	.9973	
$ 1.4.4 \ \text{or} 1.125 \ \text{I} 1.023 \ 1.125 \ 1.024 \ 1.125 \ 1.024 \ 1.125 \ 1.026 \ 1.0324 \ .990 \ 1.0333 \ .970 \ 1.0333 \ .071 \ .071 \ .075 \ 1.005 \ 1.$			2A	1.1040	1.1228	1.0300	1.0847	1.1228	1.0228	1.0322	.9700 0070	1.0416	0866.	2 B
1.105 1.125 0 1.002 1.120 1.002 1.120 1.002 1.120 1.003 1			• •	1.1033	1.1235	1.0298	1.0840	1.1235	1 0230	1.0324	.9693 0700	1.0414	.9973 0875	30
$ 1^{\text{Ne-B} \text{ or } 1.125 \text{ B} } \text{UN} 2\text{ A} 1.105 \text{ 1} 1.1229 1.0417 1.0889 1.1229 1.0346 1.0350 1.0440 .9991 1.0528 1.034 \\ 3\text{ A} 1.1079 1.1256 1.0438 1.0927 1.1256 1.0386 1.0440 .9991 1.0556 1.034 \\ 1.0079 1.1257 1.0386 1.0440 .9991 1.0555 1.034 \\ 1.007 1.1257 1.0386 1.0440 .9991 1.053 1.003 \\ 1.0091 1.0109 1.1232 1.0691 1.0952 1.1257 1.0388 1.0440 .9991 1.053 1.003 \\ 1.0091 1.0109 1.1238 1.0691 1.0952 1.1257 1.0388 1.0440 .9991 1.053 1.003 \\ 1.01097 1.1238 1.0691 1.0952 1.1253 1.0691 1.0709 1.0344 1.024 1.023 \\ 1.0097 1.1097 1.1238 1.0689 1.0952 1.1238 1.0601 1.0709 1.0344 1.024 1.023 \\ 1.024 1.024 1.023 \\ 1.01097 1.1238 1.0689 1.0952 1.1238 1.0691 1.0709 1.0344 1.024 1.026 \\ 1.024 1.024 1.024 \\ 1.024 1.024 1.024 \\ 1.024 1.024 1.026 \\ 1.0711 1.0344 1.026 1.068 \\ 1.0711 1.0344 1.0766 1.046 \\ 1.0711 1.0344 1.0766 1.041 \\ 1.076 1.044 1.076 1.097 \\ 1.0109 1.1256 1.0606 1.0711 1.0344 1.0766 1.047 \\ 1.0711 1.0344 1.0766 1.047 \\ 1.0712 1.1254 1.024 1.0712 1.024 1.0709 1.0344 1.076 1.097 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.097 1.078 \\ 1.044 1.076 1.099 1.078 \\ 1.044 1.076 1.099 1.076 \\ 1.044 1.076 1.099 1.076 \\ 1.044 1.076 1.099 \\ 1.044 1.076 1.099 \\ 1.044 1.076 1.099 \\ 1.044 1.076 1.099 \\ 1.064 1.076 1.0999 1.078 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 \\ 1.064 1.076 1.0999 1.076 1.0999 1.076 \\ 1.076 1.0999 1.076 \\ 1.076 1.0$			۲ç	1.1055	1.1257	1.0320	1.0880	1.1257	1.0270	1.0324	.9693	1.0391	. 2075. 19868.	a c
$ 1^{10-12} \text{ (i) 125-11} \\ 1^{1112} \text{ (i) 123-1} \text{ (i) 125-1} \\ 1^{10-12} \text{ (i) 125-1} \text{ (i) 125-1} \text{ (i) 100-1} \\ 1^{10-12} \text{ (i) 125-1} \text{ (i) 100-1} \\ 1^{10-12} \text{ (i) 125-1} \text{ (i) 100-1} \\ 1^{10-12} \text{ (i) 125-1} \text{ (i) 100-1} \\ 1^{1112} \text{ (i) 125-1} \text{ (i) 100-2} \\ 1^{1122} \text{ (i) 100-1} \\ 1^{1122} \text{ (i) 100-2} \\ 1^{102} \text{ (i) 00-2} \\ $	11/8-8 or 1.125-8	Z	2A	1.1058	1.1229	1.0417	1.0889	1.1229	1.0348	1.0438	0066.	1.0528	1.0150	28
$\frac{3A}{1.1072} 1.1079 1.1250 1.0436 1.0927 1.1250 1.0366 1.0436 1.0436 1.0631 1.0709 1.0303 1.0603 1.0704 1.0812 1.0632 1.0631 1.0709 1.0350 1.0826 1.063 1.0711 1.0344 1.0824 1.063 1.0711 1.0344 1.0824 1.053 1.0631 1.0709 1.0350 1.0768 1.044 1.076 1.0817 1.0342 1.0631 1.0709 1.0350 1.0768 1.0631 1.0709 1.0350 1.0768 1.0631 1.0709 1.0350 1.0768 1.063 1.0711 1.0344 1.0824 1.053 1.0511 1.0709 1.0350 1.0768 1.064 1.0709 1.0768 1.064 1.0709 1.0768 1.064 1.0709 1.0768 1.044 1.0768 1.044 1.0768 1.044 1.0768 1.044 1.0768 1.044 1.076 $			i	1.1051	1.1236	1.0415	1.0882	1.1236	1.0350	1.0440	.9893	1.0526	1.0143	
$ 1^{h_6-12} \circ r \cdot 1 \cdot 125 - 1 = 1 \cdot 1072 = 1 \cdot 1257 = 1 \cdot 10691 = 1 \cdot 0956 = 1 \cdot 1232 = 1 \cdot 0601 = 1 \cdot 0709 = 1 \cdot 0330 = 1 \cdot 0032 = 1 \cdot 0033 = 1 \cdot 0031 = 1 \cdot 0034 = 1 \cdot 0033 = 1 \cdot 0034 $			3A	1.1079	1.1250	1.0438	1.0927	1.1250	1.0386	1.0438	0066.	1.0505	1.0047	3B
$ \frac{1}{10^{6}-12} \circ r_{1.125-12} \qquad \bigcup NF \qquad 1A \qquad 1.1103 \qquad 1.1232 \qquad 1.0691 \qquad 1.0956 \qquad 1.1232 \qquad 1.0601 \qquad 1.0709 \qquad 1.0350 \qquad 1.0768 \qquad 1.028 \qquad 1.0284 \qquad 1.0264 \qquad 1.0244 \qquad 1.0264 \qquad 1.0244 \qquad 1.0786 \qquad 1.044 \qquad 1.0786 \qquad 1.044 \qquad 1.0768 \qquad 1.044 \qquad 1.0764 \qquad 1.0244 \qquad 1.0766 \qquad 1.0244 \qquad 1.0768 \qquad 1.044 \qquad 1.0764 \qquad 1.0244 \qquad 1.0768 \qquad 1.044 \qquad 1.0764 \qquad 1.0244 \qquad 1.0764 \qquad 1.0$				1.1072	1.1257	1.0436	1.0920	1.1257	1.0388	1.0440	.9893	1.0503	1.0040	
$\frac{1.1097}{116} \frac{1.1236}{1.123} \frac{1.0697}{1.1238} \frac{1.0693}{1.0691} \frac{1.0926}{1.0922} \frac{1.0238}{1.1232} \frac{1.0631}{1.0709} \frac{1.0709}{1.0350} \frac{1.0734}{1.0709} \frac{1.0324}{1.0350} \frac{1.0623}{1.0708} \frac{1.0709}{1.0344} \frac{1.0787}{1.0350} \frac{1.0787}{1.0708} \frac{1.078}{1.0708} \frac{1.0783}{1.0709} \frac{1.0736}{1.0350} \frac{1.0787}{1.0708} \frac{1.0783}{1.0708} \frac{1.0734}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0708} \frac{1.0734}{1.0708} \frac{1.0783}{1.0708} \frac{1.0783}{1.0768} \frac{1.0783}{1.0768} \frac{1.0783}{1.0768} \frac{1.0783}{1.0768} \frac{1.0783}{1.0768} \frac{1.0734}{1.0766} \frac{1.0734}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0768} \frac{1.0763}{1.0770} \frac{1.0763}{1.0997} \frac{1.0763}{1.0766} \frac{1.0764}{1.0770} \frac{1.0763}{1.0997} \frac{1.0764}{1.0770} \frac{1.0763}{1.0997} \frac{1.0764}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0770} \frac{1.0693}{1.0770} \frac{1.0693}{1.0770} \frac{1.0693}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0697} \frac{1.0693}{1.0697} \frac{1.0764}{1.0666} \frac{1.0764}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0770} \frac{1.0764}{1.0907} \frac{1.0764}{1.0697} \frac{1.0764}{1.0697} \frac{1.064}{1.0699} \frac{1.064}{1.0699} \frac{1.064}{1.0699} \frac{1.064}{1.0690} \frac{1.064}{1.0690} \frac{1.0764}{1.0699} \frac{1.0764}{1.0690} \frac{1.0764}{1.0690} \frac{1.0764}{1.0690} \frac{1.0764}{1.0090} \frac{1.0764}{1.00$	1 V8-12 or 1.125-12	UNF	٩٢	1.1103	1.1232	1.0691	1.0962	1.1232	1.0601	1.0709	1.0350	1.0826	1.0530	18
$\frac{2A}{11121} 1.1232 1.0691 1.0992 1.1232 1.0691 1.0922 1.1232 1.0631 1.0709 1.0787 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.056 1.056 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0768 1.0766 1.0766 1.0766 1.0768 1.0766 1.076 1.0766 1.0766 1.0766 1.0766 1.0766 1.0766 1.0776 1.0766 1.0776 1.0766 1.0776 1.0766 1.0776 1.0766 1.0776 1.0766 1.0776$				1.1097	1.1238	1.0689	1.0956	1.1238	1.0603	1.0711	1.0344	1.0824	1.0524	
1/10-1 1.105/ 1.1258 1.0059 1.0056 1.0011 1.0034 1.0023 1.0011 1.0035 1.00125 1.0011 1.0035 1.00165 1.00135 1.00165 1.0017 1.00165 1.0017 1.0017 1.00165 1.00165 1.0017 1.00165 1.00165 1.0017 1.00165 1.00165 1.0017 1.0017 1.0017 1.0017 1.00165 1.0017			2A	1.1103	1.1232	1.0691	1.0992	1.1232	1.0631	1.0709	1.0350	1.0787 1.0785	1.0530	28
TV6-16 UN 2A 1.1121 1.1256 1.0707 1.1019 1.1256 1.0709 1.0739 1.0739 1.0734 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0757 1.0757 1.0756 1.0757 1.0757 1.0756 1.0757 1.0756 1.0757 1.0756 1.0756 1.0756 1.0756 1.0756 1.0756 1.0756 1.0756 1.0756 1.0756				1001.1	1.1250	1.0009	1.0906	1.1230	6000.1	1.0/11	1 0350	CO/0.1	47CU.1	30
1 ⁷ /6-16 UN 2A 1.1130 1.1235 1.0829 1.1050 1.1235 1.0844 1.0570 1.0909 1.077 1.7/6-16 UN 2A 1.1124 1.1235 1.0827 1.1050 1.1235 1.0846 1.0570 1.0909 1.071 3.A 1.1145 1.1250 1.0827 1.1044 1.1250 1.0846 1.0564 1.0907 1.070 3.A 1.1145 1.1250 1.0844 1.1078 1.1256 1.0897 1.0893 1.065 1.061 1.1126 1.0842 1.1078 1.1256 1.0809 1.0651 1.0893 1.065 1.1139 1.1256 1.0842 1.1072 1.1256 1.0899 1.0656 1.0891 1.0651 1.0691 1.0651 1.0691 1.0651 1.0691 1.0651 1.0691 1.0651 1.0891 1.0651 1.0991 1.075 1 ⁷ / ₁ 1.1251 1.0664 1.1255 1.06955 1.06650 1.09510 1.075 <td></td> <td></td> <td>5</td> <td>1.1115</td> <td>1.1256</td> <td>1.0707</td> <td>1.1019</td> <td>1.1256</td> <td>1.0666</td> <td>1.0711</td> <td>1.0344</td> <td>1.0766</td> <td>1.0442</td> <td>ĥ</td>			5	1.1115	1.1256	1.0707	1.1019	1.1256	1.0666	1.0711	1.0344	1.0766	1.0442	ĥ
1/6-18 UNEF 2A 1.1124 1.1250 1.0044 1.1241 1.0781 1.0846 1.09564 1.0907 1.0703 3A 1.1145 1.1250 1.0844 1.1078 1.1250 1.0807 1.0844 1.0570 1.0893 1.065 1/6 1.1139 1.1256 1.0842 1.1072 1.1256 1.0807 1.0844 1.0554 1.0893 1.065 1/6 1.1139 1.1256 1.0842 1.1072 1.1256 1.0809 1.0564 1.0891 1.065 1/6-18 0r 1.1256 1.0873 1.1072 1.1256 1.0809 1.0650 1.0891 1.065 1/6-18 0r 1.1256 1.08235 1.1064 1.1256 1.08905 1.06510 1.075 1/76-18 0r 1.1256 1.08205 1.08905 1.06510 1.075 1/76 1.1124 1.08530 1.08505 1.08510 1.075 1.077 1.1148 1.1255 1.	11/8-16 or 1.125-16	Z	2A	1,1130	1.1235	1.0829	1.1050	1.1235	1.0779	1.0844	1.0570	1.0909	1.0710	28
3A 1.1145 1.1250 1.0807 1.0807 1.0844 1.0570 1.0893 1.065 1/6-18 1.1125 1.0807 1.0807 1.0809 1.0846 1.0893 1.065 1/6-18 1.1125 1.1072 1.1072 1.1256 1.0809 1.0846 1.0891 1.0891 1.065 1/6-18 0.1.125-18 UNEF 2A 1.1139 1.1236 1.08750 1.1069 1.1236 1.08990 1.06591 1.09510 1.075 3A 1.1134 1.1250 1.08295 1.08905 1.06495 1.075 1.075 3A 1.1153 1.1250 1.08530 1.08905 1.06506 1.09550 1.075 1.148 1.1255 1.08692 1.08530 1.06550 1.075 1.075				1.1124	1.1241	1.0827	1.1044	1.1241	1.0781	1.0846	1.0564	1.0907	1.0704	
1/6-18 0.1.125-18 1.1139 1.1256 1.08280 1.0846 1.0564 1.0891 1.065 1/6-18 0.1.125-18 UNEF 2A 1.1139 1.1236 1.08750 1.1069 1.1236 1.08280 1.0650 1.09510 1.075 3A 1.1134 1.1250 1.08295 1.08295 1.08890 1.08495 1.075 3A 1.1153 1.1250 1.08590 1.08890 1.08595 1.09495 1.075 1.1148 1.1255 1.08690 1.108530 1.08530 1.08595 1.09550 1.075 1.1148 1.1255 1.08995 1.0650 1.09355 1.075			3 A	1.1145	1.1250	1.0844	1.1078	1.1250	1.0807	1.0844	1.0570	1.0893	1.0658	3B
1 ¹ /be-18 UNEF 2A 1.1139 1.1236 1.0650 1.10650 1.0650 1.06510 1.09510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05510 1.05451 1.09495 1.05495 1.05495 1.05495 1.0751 3A 1.1153 1.1250 1.08530 1.08890 1.06530 1.08890 1.06550 1.09350 1.075 1.1163 1.1255 1.08875 1.08990 1.1255 1.08695 1.06505 1.09350 1.075 1.015 1.1255 1.08975 1.10899 1.1255 1.08905 1.06455 1.09355 1.075				1.1139	1.1256	1.0842	1.1072	1.1256	1.0809	1.0846	1.0564	1.0891	1.0652	
1.1134 1.1241 1.08795 1.08905 1.08495 1.073 3A 1.1153 1.1250 1.08890 1.1094 1.1250 1.08890 1.0650 1.09350 1.073 1.1148 1.1255 1.08690 1.1089 1.1255 1.08695 1.08935 1.09350 1.073	1 ^{1/8-} 18 or 1.125-18	UNEF	2A	1.1139	1.1236	1.08750	1.1069	1.1236	1.08280	1.08890	1.0650	1.09510	1.0780	2B
3A 1.1153 1.1250 1.08890 1.1094 1.1250 1.08890 1.08530 1.08890 1.0650 1.09350 1.072 1.1148 1.1255 1.08875 1.1089 1.1255 1.08645 1.08905 1.0645 1.08335 1.072				1.1134	1.1241	1.08735	1.1064	1.1241	1.08295	1.08905	1.0645	1.09495	1.0775	
			3A	1.1153 1 1148	1.1250	1.08890 1 08875	1.1094	1.1250	1.08530	1.08890 1.08905	1.0650 1.0645	1.09350 1.09335	1.0730	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDAR

GAGES AND GAGING FOR

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE

				2	V Thread-S	etting Plugs			5	Y Thread-S	etting Ring	8	
				60		Ž	OT CO (LO)		ō	0	NOT G	(IH) O	
Maminal Geo	Cariac	_	Major D	iameter	d	Major D	iameter	1.11					
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Diam.	Minor Diam.	Class
-	2	3	4	5	6	2	8	6	10	11	12	13	14
			Ŀ	Ľ	Ŀ	Ľ	in.	in.	Ľ	j.	.i	.c	
11/8-20 or 1.125-20	N	2	1.1146	1.1236	1.09110	1.1083	1.1236	1.08660	1.09250	1.0710	1.09840	1.0820	2B
			1.1141	1.1241	1.09095	1.1078	1.1241	1.08675	1.09265	1.0705	1.09825	1.0815	
		34	1.1160	1.1250	1.09250	1.1108	1.1250	1.08910	1.09250	1.0710	1.09690	1.0787	38
			cc11.1	6621.1	C(760'I	5011-1	cc71.1	C7600.1	C0760.1	c0/0.1	c/960.1	1.0/82	
1 ¹ /8-28 or 1.125-28	N	2 A	1.1167	1.1238	1.10060	1.1121	1.1238	1.09660	1.10180	1.0860	1.10700	1.0950	2B
			1.1162	1.1243	1.10045	1.1116	1.1243	1.09675	1.10195	1.0855	1.10685	1.0945	
		34	1.1179	1.1250	1.10180	1.1143	1.1250	1.09880	1.10180	1.0860	1.10570	1.0926	3B
			1.1174	1.1255	1.10165	1.1138	1.1255	1.09895	1.10195	1.0855	1.10555	1.0921	
1 ^{3/16-8} or 1.1875-8	Ŋ	2٨	1.1683	1.1854	1.1042	1.1513	1.1854	1.0972	1.1063	1.0520	1.1154	1.0770	28
			1.1676	1.1861	1.1040	1.1506	1.1861	1.0974	1.1065	1.0513	1.1152	1.0763	
		34	1.1704	1.1875	1.1063	1.1552	1.1875	1.1011	1.1063	1.0520	1.1131	1.0672	38
			1.1697	1.1682	1.1061	1.1545	1.1882	1.1013	1.1065	1.0513	1.1129	1.0665	
13/16-12 or 1.1875-12	Ŋ	24	1.1729	1.1858	1.1317	1.1620	1.1858	1.1259	1.1334	1.0970	1.1409	1.1150	28
			1.1723	1.1864	1.1315	1.1614	1.1864	1.1261	1.1336	1.0964	1.1407	1.1144	
		34	1.1746	1.1875	1.1334	1.1652	1.1875	1.1291	1.1334	1.0970	1.1390	1.1073	3B
			1.1740	1.1881	1.1332	1.1646	1.1881	1.1293	1.1336	1.0964	1.1388	1.1067	
1 ^{3/16-} 16 or 1.1875-16	Ŋ	24	1.1755	1.1860	1.1454	1.1674	1.1860	1.1403	1.1469	1.1200	1.1535	1.1340	2B
			1.1749	1.1866	1.1452	1.1668	1.1866	1.1405	1.1471	1.1194	1.1533	1.1334	
		34	1.1770	1.1875	1.1469	1.1702	1.1875 1 1881	1.1431	1.1469	1.1200	1.1519 1 1517	1.1283	38
					<u>, , , , , , , , , , , , , , , , , , , </u>	202							
1 ¥16-18 or 1.1875-18	UNEF	2٨	1.1763	1.1860	1.14990	1.1691	1.1860	1.14500	1.15140	1.1270	1.15770	1.1400	2B
		46	1.1/58	1.1865	1.149/5	1.1686	1.1865	1.14515	1.15155	1.1265	1.15755	1.1395	ę
		5	1.1773	1.1880	1.15125	1.1714	1.1680	1.14795	1.15155	1.1265	1.15595	1.1350	8
1 3/16- 20 or 1.1875-20	Ŋ	2	1.1771	1.1861	1.15360	1.1706	1.1861	1.14890	1.15500	1.1330	1.16110	1.1450	28
			1.1766	1.1866	1.15345	1.1701	1.1866	1.14905	1.15515	1.1325	1.16095	1.1445	
		34	1.1785	1.1875	1.15500	1.1732	1.1875	1.15150	1.15500	1.1330	1.15950	1.1412	38
			1.1780	1.1880	1.15485	1.1727	1.1880	1.15165	1.15515	1.1325	1.15935	1.1407	
1¥16-28 or 1.1875-28	N	2 A	1.1792	1.1863	1.16310	1.1745	1.1863	1.15900	1.16430	1.1490	1.16960	1.1570	2B
			'1.1787	1.1868	1.16295	1.1740	1.1868	1.15915	1.16445	1.1485	1.16945	1.1565	
		34	1.1804	1.1875	1.16430	1.1767	1.1875	1.16120	1.16430	1.1490	1.16830	1.1551	38
			1.1799	1.1880	1.16415	1.1762	1.1880	1.16135	1.16445	1.1485	1.16815	1.1546	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ND 3E	
2B, A	
1 B,	
3 A ,	
, 2 ,	ź
1	
CLASSES	SITE (CC
SERIES,	ALTS OF
THREAD	
OR STANDARD	SCREW THREAT
SETTING GAGES F	INIFIED
ABLE 11	

AN AN	SI/A AM	SME ERIC	B1.3	2-198 NATIC	B3 DNAL	ST	AN	DA	RD																	U	IF	G EC	AG) IN	ES ICH	AN S(D CRE	GA(EW	GINC	3 F IEA	OR DS	
				Class	14		18	l	2B	38		28		38		18		2B		38		2B		38		2B		8		28		38		28		38	
	~	(IH) O	Ninor	Diam.	13	Ë.	1.1230	1.1223	1.1230	1.1125	1.1118	1.1400	1.1393	1.1297	1.1290	1.1780	1.1774	1.1780	1.1774	1.1698	1.1692	1.1960	1.1954	1.1908	1.1902	1.2030	1.2025	1.1980	1.1975	1.2070	1.2065	1.2037	1.2032	1.2200	1.2195	1.2176	
	tting Ring	NOT G	0 افتها	Diam.	12	. <u>.</u>	1.1716	1.1714	1.1668	1.1644	1.1642	1.1780	1.1778	1.1757	1.1755	1.2079	1.2077	1.2039	1.2037	1.2019	1.2017	1.2160	1.2158	1.2144	1.2142	1.22020	1.22005	1.21860	1.21845	1.22360	1.22345	1.22200	1.22185	1.23210	1.23195	1.23080	
	Thread-Se		Ninor	Diam.	Ħ	Ë	1.0950	1.0943	0660.1	1.0950	1.0943	1.1150	1.1143	1.1150	1.1143	1.1600	1.1594	1.1600	1.1594	1.1600	1.1594	1.1820	1.1814	1.1820	1.1814	1.1900	1.1895	1.1900	1.1895	1.1960	1.1955	1.1960	1.1955	1.2110	1.2105	1.2110	
	3	3	Ditch	Diam.	10	Ľ	1.1572	1.1574	1.15/2	1.1572	1.1574	1.1688	1.1690	1.1688	1.1690	1.1959	1.1961	1.1959	1.1961	1.1959	1.1961	1.2094	1.2096	1.2094	1.2096	1.21390	1.21405	1.21390	1.21405	1.21750	1.21765	1.21750	1.21765	1.22680	1.22695	1.22680 1.22695	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ONT'D)			Dit.h	Diam.	6	,Ë	1.1439	1.1441	1.14/6	1.1517	1.1519	1.1597	1.1599	1.1635	1.1637	1.1849	1.1851	1.1879	1.1881	1.1913	1.1915	1.2028	1.2030	1.2056	1.2058	1.20750	1.20765	1.21030	1.21045	1.21140	1.21155	1.21400	1.21415	1.22150	1.22165	1.22370	
DF SIZE (C		1 GO (LO)	ımeter	Full-Form	æ	Ë.	1.2478	1.2485	1.24/8	1.2500	1.2507	1.2479	1.2486	1.2500	1.2507	1.2482	1.2488	1.2482	1.2488	1.2500	1.2506	1.2485	1.2491	1.2500	1.2506	1.2485	1.2490	1.2500	1.2505	1.2486	1.2491	1.2500	1.2505	1.2488	1.2493	1.2500	
– LIMITS (tting Plugs	ON	Major Dia	Truncated	7	Ľ	1.2058	1.2051	1.2095	1.2136	1.2129	1.2138	1.2131	1.2176	1.2169	1.2210	1.2204	1.2240	1.2234	1.2274	1.2268	1.2299	1.2293	1.2327	1.2321	1.2316	1.2311	1.2344	1.2339	1.2331	1.2326	1.2357	1.2352	1.2370	1.2365	1.2392 1.2387	
HREADS	V Thread-Se			Diam.	9	Ľ	1.1550	1.1548	1.1550	1.1572	1.1570	1.1667	1.1665	1.1688	1.1686	1.1941	1.1939	1.1941	1.1939	1.1959	1.1957	1.2079	1.2077	1.2094	1.2092	1.21240	1.21225	1.21390	1.21375	1.21610	1.21595	1.21750	1.21735	1.22560	1.22545	1.22680	
D SCREW 1	>	09	iameter	Full-Form	5	.Ľ	1.2478	1.2485	1.24/8	1.2500	1.2507	1.2479	1.2486	1.2500	1.2507	1.2482	1.2488	1.2482	1.2488	1.2500	1.2506	1.2485	1.2491	1.2500	1.2506	1.2485	1.2490	1.2500	1.2505	1.2486	1.2491	1.2500	1.2505	1.2488	1.2493	1.2500	
UNIFIE			Major D	Truncated	4	.ċ	1.2290	1.2283	1.2290	1.2312	1.2305	1.2308	1.2301	1.2329	1.2322	1.2353	1.2347	1.2353	1.2347	1.2371	1.2365	1.2380	1.2374	1.2395	1.2389	1.2388	1.2383	1.2403	1.2398	1.2396	1.2391	1.2410	1.2405	1.2417	1.2412	1.2429	
				Class	3		1A	;	ZA	3A		2A		3 A	_	1		2A		3 A		2A		3 A		2A		3 A		2A		3 A		2 A		3 A	
			Canico	oeries Designation	2		UNC					Z				UNF						ND				UNEF				ND				N			
				nominal size and Threads/in.	-		1¼-7 or 1.250-7					11/4-8 or 1.250-8				11/4-12 or 1.250-12						11/4-16 or 1.250-16				11/4-18 or 1.250-18				11/4-20 or 1.250-20				11/4-28 or 1.250-28			

GAGES AND GAGING FOR

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

														l
				>	V Thread-S	Setting Plugs			5	/ Thread-S	etting Ring	S		
				00		Ž	OT GO (LO)		Ğ	0	NOT G	(IH) O		IED
			Major D	liameter		Major D	liameter	i			-			INCE
and Threads/in.	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Class	
1	2	3	4	5	9	7	8	6	10	=	12	13	14	
			Ŀ	Ŀ	Ľ	Ľ	Ë	Ŀ	. <u>.</u>	. <u>e</u>	Ľ	, e		
1¥16-8 or 1.3125-8	N	2 A	1.2933	1.3104	1.2292	1.2762	1.3104	1.2221	1.2313	1.1770	1.2405	1.2020	2B	RE/
			1.2926	1.3111	1.2290	1.2755	1.3111	1.2223	1.2315	1.1763	1.2403	1.2013		403
		34	1.2954	1.3125	1.2313	1.2801	1.3125	1.2260	1.2313	1.1770	1.2382	1.1922	38	5
			/1467-1	70101	1167.1	# ()-	2616.1	7077.1	CI 67.1	1.1/03	1.2360	CIUL		
15/i6-12 or 1.3125-12	N	2 A	1.2979	1.3108	1.2567	1.2870	1.3108	1.2509	1.2584	1.2220	1.2659	1.2400	2B	
			1.2973	1.3114	1.2565	1.2864	1.3114	1.2511	1.2586	1.2214	1.2657	1.2394		
		3 A	1.2996	1.3125	1.2584	1.2902	1.3125	1.2541	1.2584	1.2220	1.2640	1.2323	38	
			0667.L	1.3131	1.2582	1.2896	1.3131	1.2543	1.2586	1.2214	1.2638	1.2317		
1\$/16-16 or 1.3125-16	N N	2 A	1.3005	1.3110	1.2704	1.2924	1.3110	1.2653	1.2719	1.2450	1.2785	1.2590	7 B	
			1.2999	1.3116	1.2702	1.2918	1.3116	1.2655	1.2721	1.2444	1.2783	1.2584		
		3 A	1.3020	1.3125	1.2719	1.2952	1.3125	1.2681	1.2719	1.2450	1.2769	1.2533	3B	
			1.3014	1.3131	1.2717	1.2946	1.3131	1.2683	1.2721	1.2444	1.2767	1.2527		
15/16-18 or 1.3125-18	UNEF	2 A	1.3013	1.3110	1.27490	1.2941	1.3110	1.27000	1.27640	1.2520	1.28270	1.2650	28	
			1.3008	1.3115	1.27475	1.2936	1.3115	1.27015	1.27655	1.2515	1.28255	1.2645		
		3 A	1.3028	1.3125	1.27640	1.2969	1.3125	1.27280	1.27640	1.2520	1.28110	1.2605	3B	
			1.3023	1.3130	1.27625	1.2964	1.3130	1.27295	1.27655	1.2515	1.28095	1.2600		
1 ⁵ /16-20 or 1.3125-20	N	2A	1.3021	1.3111	1.27860	1.2956	1.3111	1.27390	1.28000	1.2580	1.28610	1.2700	28	
			1.3016	1.3116	1.27845	1.2951	1.3116	1.27405	1.28015	1.2575	1.28595	1.2695		
		3 A	1.3035	1.3125	1.28000	1.2982	1.3125	1.27650	1.28000	1.2580	1.28450	1.2662	38	
			0000-1	00101	COC /7-1	1167.1	0010.1	C00/7.1	CI 007'I	c/c7·1	CC#07.1	/507.1		AN
1\$/16-28 or 1.3125-28	N	2A	1.3042	1.3113	1.28810	1.2995	1.3113	1.28400	1.28930	1.2740	1.29460	1.2820	2B	An
		40	1.3037	1.3118	1.28/95	1.2990	1.3118	1.28415	1.28945	1.2735	1.29445	1.2815	ę	161
		{	1.3049	1.3130	1.28915	1.3012	1.3130	1.28635	1.28945	1.2735	1.29315	1.2796	6	ICAI
1 3 8-6 or 1.375-6	UNC	۲	1.3516	1.3726	1.2643	1.3245	1.3726	1.2523	1.2667	1.1950	1.2822	1.2250	18	N NA
			1.3508	1.3734	1.2641	1.3237	1.3734	1.2525	1.2669	1.1942	1.2820	1.2242		
		2A	1.3516	1.3726	1.2643	1.3285	1.3726	1.2563	1.2667	1.1950	1.2771	1.2250	2B	UNA
			1.3508	1.3734	1.2641	1.3277	1.3734	1.2565	1.2669	1.1942	1.2769	1.2242	:	
		٧ç	1.3532	1.3758	1.2665	1.3321	1.3758	1.2609	1.2269	1.1942	1.2743	1.2146	38	514
134-8 or 1 375-8	Z	AC	1 3557	1 27.78	1 2016	1 2385	1 27.28	1 7844	1 2038	0,01	1 2021	1 7660	Ę	
	5	, ,	1.3550	1 3735	1 2914	1.3378	1 3735	1 2846	0662.1	1 2393	1 CUC.1	UC02.1	97	141
		34	1.3579	1.3750	1.2938	1.3425	1.3750	1.2884	1.2938	1 2400	1 3008	1 2547	38	J
			1.3572	1.3757	1.2936	1.3418	1.3757	1.2886	1.2940	1 2393	1 3006	1 25.40	ş	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS -- LIMITS OF SIZE (CONT'D)

-													
				X	V Thread-S	ietting Plugs			5	V Thread-So	etting Ring	gs	
				09		Ż	OT GO (LO)		Ŭ	0	NOT G	(IH) O	
	<u> </u>		Major D	iameter	0. 1	Major D	liameter	0 بارینا	Ditch	Vince	ا مندا	, in the second s	
•	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
	2	æ	4	2	ور	7	80	6	10	=	12	13	14
			Ŀ		. <u>e</u>	. <u>e</u>	. <u>e</u>	Ŀ		Ľ	Ľ	.Ľ	
2	UNF	٩	1.3602	1.3731	1.3190	1.3457	1.3731	1.3096	1.3209	1.2850	1.3332	1.3030	18
			1.3596	1.3737	1.3188	1.3451	1.3737	1.3098	1.3211	1.2844	1.3330	1.3024	
		2A	1.3602	1.3731	1.3190	1.3488	1.3731	1.3127	1.3209	1.2850	1.3291	1.3030	2B
			1.3596	1.3737	1.3188	1.3482	1.3737	1.3129	1.3211	1.2844	1.3289	1.3024	
		3A	1.3621	1.3750	1.3209	1.3523	1.3750	1.3162	1.3209	1.2850	1.3270	1.2948	38
_			1.3615	1.3756	1.3207	1.3517	1.3756	1.3164	1.3211	1.2844	1.3268	1.2942	
10	N	2A	1.3630	1.3735	1.3329	1.3549	1.3735	1.3278	1.3344	1.3070	1.3410	1.3210	28
			1.3624	1.3741	1.3327	1.3543	1.3741	1.3280	1.3346	1.3064	1.3408	1.3204	
		3A	1.3645	1.3750	1.3344	1.3577	1.3750	1.3306	1.3344	1.3070	1.3394	1.3158	3B
			1.3639	1.3756	1.3342	1.3571	1.3756	1.3308	1.3346	1.3064	1.3392	1.3152	
_	UNEF	2A	1.3638	1.3735	1.33740	1.3566	1.3735	1.33250	1.33890	1.3150	1.34520	1.3280	28
			1.3633	1.3740	1.33725	1.3561	1.3740	1.33265	1.33905	1.3145	1.34505	1.3275	
		3A	1.3653	1.3750	1.33890	1.3594	1.3750	1.33530	1.33890	1.3150	1.34360	1.3230	3B
			1.3648	1.3755	1.33875	1.3589	1.3755	1.33545	1.33905	1.3145	1.34345	1.3225	
	Ņ	2A	1.3646	1.3736	1.34110	1.3581	1.3736	1.33640	1.34250	1.3210	1.34860	1.3320	2B
			1.3641	1.3741	1.34095	1.3576	1.3741	1.33655	1.34265	1.3205	1.34845	1.3315	
		3A	1.3660	1.3750	1.34250	1.3607	1.3750	1.33900	1.34250	1.3210	1.34700	1.3287	38
			1.3655	1.3755	1.34235	1.3602	1.3755	1.33915	1.34265	1.3205	1.34685	1.3282	
~	N	2A	1.3667	1.3738	1.35060	1.3620	1.3738	1.34650	1.35180	1.3360	1.35710	1.3450	2B
			1.3662	1.3743	1.35045	1.3615	1.3743	1.34665	1.35195	1.3355	1.35695	1.3445	
		3A	1.3679	1.3750	1.35180	1.3642	1.3750	1.34870	1.35180	1.3360	1.35580	1.3426	38
			1.36/4	1.3/55	د م ا د <u>د.</u> ا	1.303/	دد/٤.١	C0046.1	C61 CE.1	CC22.1	COCCE. 1	1.3421	
	N N	2A	1.4141	1.4351	1.3268	1.3910	1.4351	1.3188	1.3292	1.2570	1.3396	1.2880	2 B
			1.4133	1.4359	1.3266	1.3902	1.4359	1.3190	1.3294	1.2562	1.3394	1.2872	:
		٩	1.4165	1.4375	1.3292	1.3954	C/247	1.3232	1.3292	1.42/0	0/55.1	1//7/1	38
			/014.1	1.4383	0626.1	0466.1	COC4.1	+czc.1	+676.1	7007.1	000001	C0/7.1	
8	N	2A	1.4182	1.4353	1.3541	1.4010	1.4353	1.3469	1.3563	1.3020	1.3657	1.3270	2B
			1.4175	1.4360	1.3539	1.4003	1.4360	1.3471	1.3565	1.3013	1.3655	1.3263	
		3A	1.4204	1.4375	1.3563	1.4050	1.4375	1.3509	1.3563	1.3020	1.3634	1.3172	38
			1.4197	1.4382	1.3561	1.4043	1.4382	1.3511	1.3565	1.3013	1.3632	1.3165	
-12	N	2A	1.4228	1.4357	1.3816	1.4118	1.4357	1.3757	1.3834	1.3470	1.3910	1.3650	28
			1.4222	1.4363	1.3814	1.4112	1.4363	1.3759	1.3836	1.3464	1.3908	1.3644	
		3A	1.4246	1.4375	1.3834	1.4151	1.4375	1.3790	1.3834	1.3470	1.3891	1.3573	38
			1.4240	1.4381	1.3832	1.4145	1.4381	1.3792	1.3836	1.3464	1.3889	1.3567	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

								Ī					
				2	V Thread-S	setting Plugs			3	Thread-Se	etting Ring:	s	
				CO		ž	OT GO (LO)		ŭ	0	NOT G	(IH) O	
			Major D	iameter	Ditch	Major D	iameter	Dict	DitaL		Dial		
Nominal Size and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	e	4	S.	9	7	8	6	10	=	12	13	14
			.Ë	Ľ	. <u></u>	Ľ	Ľ	Ľ	Ľ	.c	.c	. <u>e</u>	
17/16-16 or 1.4375-16	N	2 A	1.4254	1.4359	1.3953	1.4172	1.4359	1.3901	1.3969	1.3700	1.4037	1.3840	2 B
			1.4248	1.4365	1.3951	1.4166	1.4365	1.3903	1.3971	1.3694	1.4035	1.3834	4
		3A	1.4270 1.4264	1.4375	1.3967	1.4201	1.43/5 1.4381	1.3930 1.3932	1.3969 1.3971	1.3/00	1.4020 1.4018	1.3783	38
17/i6-18 or 1.4375-18	UNEF	2A	1.4263	1.4360	1.39990	1.4190	1.4360	1.39490	1.40140	1.3770	1.40790	1.3900	28
			1.4258	1.4365	1.39975	1.4185	1.4365	1.39505	1.40155	1.3765	1.40775	1.3895	
		ЗA	1.4278	1.4375	1.40140	1.4218	1.4375	1.39770	1.40140	1.3770	1.40620	1.3855	38
			1.42/3	1.4380	c710#.1	1.4213	1.4300	C8/65.1	cci 04.1	CØ/2.1	c0004-1	UC05.1	
17/16-20 or 1.4375-20	N	2A	1.4271	1.4361	1.40360	1.4205	1.4361	1.39880	1.40500	1.3830	1.41120	1.3950	2B
			1.4266	1.4366	1.40345	1.4200	1.4366	1.39895	1.40515	1.3825	1.41105	1.3945	
		ЗA	1.4285	1.4375	1.40500	1.4231	1.4375	1.40140	1.40500	1.3830	1.40960	1.3912	38
			1.4280	1.4380	1.40485	1.4226	1.4380	1.40155	1.40515	1.3825	1.40945	1.3907	
17/16-28 or 1.4375-28	N C	2A	1.4291	1.4362	1.41300	1.4243	1.4362	1.40880	1.41430	1.3990	1.41980	1.4070	28
			1.4286	1.4367	1.41285	1.4238	1.4367	1.40895	1.41445	1.3985	1.41965	1.4065	
		3A	1.4304	1.4375	1.41430	1.4267	1.4375	1.41120	1.41430	1.3990	1.41840	1.4051	38
			1.4299	1.4380	1.41415	1.4262	1.4380	1.41135	1.41445	1.3985	1.41825	1.4046	
11/2-6 or 1.500-6	UNC	۲	1.4766	1.4976	1.3893	1.4494	1.4976	1.3772	1.3917	1.3200	1.4075	1.3500	18
			1.4758	1.4984	1.3891	1.4486	1.4984	1.3774	1.3919	1.3192	1.4073	1.3492	
		2A	1.4766	1.4976	1.3893	1.4534	1.4976	1.3812	1.3917	1.3200	1.4022	1.3500	2B
		3.4	1.4/58	1 5000	1 2017	0724.1	1 5000	1 3856	1 3017	1 3200	1 3006	1 3492	3.8
		5	1.4782	1.5008	1.3915	1.4570	1.5008	1.3858	1.3919	1.3192	1.3994	1.3388	2
11/2-8 or 1.500-8	N	2A	1.4807	1.4978	1.4166	1.4634	1.4978	1.4093	1.4188	1.3650	1.4283	1.3900	2B
			1.4800	1.4985	1.4164	1.4627	1.4985	1.4095	1.4190	1.3643	1.4281	1.3893	
		3A	1.4829	1.5000	1.4188	1.4674	1.5000	1.4133	1.4188	1.3650	1.4259	1.3797	3B
			1.4822	1.5007	1.4186	1.4667	1.5007	1.4135	1.4190	1.3643	1.4257	1.3790	
11/2-12 or 1.500-12	UNF	۲	1.4852	1.4981	1.4440	1.4705	1.4981	1.4344	1.4459	1.4100	1.4584	1.4280	1B
			1.4846	1.4987	1.4438	1.4699	1.4987	1.4346	1.4461	1.4094	1.4582	1.4274	
-		2A	1.4852	1.4981	1.4440	1.4737	1.4981	1.4376	1.4459	1.4100	1.4542	1.4280	2B
			1.4846	1.4987	1.4438	1.4731	1.4987	1.4378	1.4461	1.4094	1.4540	1.4274	ç
		3A	1.48/1 1.4865	1.5006	1.4457	1.4766	1,5006	1.4411	1.4461	1.4100	1.4520	1.4192	dt.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				>	V Thread-S	etting Plugs			5	/ Thread-S	etting Ring	s	
				09	•	Ž	01 GO (LO)		Ğ	0	NOT G	(IH) O	
			Major D	iameter		Major D	iameter	D:40H	1.10		Ditch		
Nominal Size and Threads/in.	Series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	e	4	'n	و	7	8	6	10	11	12	13	14
			.i	. <u>e</u>	in.	Ľ	Ľ	. <u>:</u>	.c	. <u>E</u>	. <u>E</u>	. <u>e</u>	
11/2-16 or 1.500-16	N	2A	1.4879	1.4984	1.4578	1.4797	1.4984	1.4526	1.4594	1.4320	1.4662	1.4460	2B
			1.4873	1.4990	1.4576	1.4791	1.4990	1.4528	1.4596	1.4314	1.4660	1.4454	
		3 A	1.4895 1.4889	1.5000	1.4594 1.4592	1.4826 1.4820	1.5000 1.5006	1.4555 1.4557	1.4594 1.4596	1.4320 1.4314	1.4645 1.4643	1.4408 1.4402	38
11/- 10 1 FOO 10		۲۲	1 4000	1 4005	01021	1 4015	1 4085	1 46740	1 46 300	1 4400	1 47040	1 4520	
01-00C.1 00 01-24 1	ONEL	×7	1.4600	1.4990	1.46225	1.4810	1.4990	1.45755	1.46405	1.4395	1.47025	1.4515	07
		3A	1.4903	1.5000	1.46390	1.4843	1.5000	1.46020	1.46390	1.4400	1.46870	1.4480	38
			1.4898	1.5005	1.46375	1.4838	1.5005	1.46035	1.46405	1.4395	1.46855	1.4475	
1½-20 or 1.500-20	Z N	2A	1.4896	1.4986	1.46610	1.4830	1.4986	1.46130	1.46750	1.4460	1.47370	1.4570	28
			1.4891	1.4991	1.46595	1.4825	1.4991	1.46145	1.46765	1.4455	1.47355	1.4565	
		3 A	1.4910	1.5000	1.46750	1.4856	1.5000	1.46390	1.46750	1.4460	1.47210	1.4537	38
			1.4905	1.5005	1.46735	1.4851	1.5005	1.46405	1.46765	1.4455	1.47195	1.4532	
11/2-28 or 1.500-28	N	2A	1.4916	1.4987	1.47550	1.4868	1.4987	1.47130	1.47680	1.4610	1.48230	1.4700	2B
			1.4911	1.4992	1.47535	1.4863	1.4992	1.47145	1.47695	1.4605	1.48215	1.4695	
		3 A	1.4929	1.5000	1.47680	1.4892	1.5000	1.47370	1.47680	1.4610	1.48090	1.4676	38
			1.4924	1.5005	1.47665	1.4887	1.5005	1.47385	1.47695	1.4605	1.48075	1.46/1	
1%16-6 or 1,5625-6	N	2A	1.5391	1.5601	1.45180	1.5158	1.5601	1.44360	1.45420	1.3820	1.46480	1.4130	2B
			1.5383	1.5609	1.45155	1.5150	1.5609	1.44385	1.45445	1.3812	1.46455	1.4122	
		3 A	1.5415	1.5625	1.45420	1.5203	1.5625	1.44810	1.45420	1.3820	1.46220	1.4021	38
			1.5407	1.5633	1.45395	1.5195	1.5633	1.44835	1.45445	1.3812	CU104-1	1.4013	
1%16-8 or 1.5625-8	Z N	2 A	1.5432	1.5603	1.47910	1.5258	1.5603	1.47170	1.48130	1.4270	1.49090	1.4520	2B
			1.5425	1.5610	1.47885	1.5251	1.5610	1.47195	1.48155	1.4263	1.49065	1.4513	
		3A	1.5454	1.5625	1.48130	1.5299	1.5625	1.47580	1.48130	1.4270	1.48850 1.48850	1.4422	38
			1.544/	2696.1	CU1 04-1	7670.1	7606.1	CU0/4.1	CC104-1	C024.1	C700+.1	C1 #4.1	
1%16-12 or 1.5625-12	N	2A	1.5478	1.5607	1.50660	1.5368	1.5607	1.50070	1.50840	1.4720	1.51600	1.4900	2B
			1.5472	1.5613	1.50635	1.5362	1.5613	1.50095	1.50865	1.4714	1.51575	1.4894	;
		3 A	1.5496	1.5625	1.50840	1.5401	1.5625	1.50400	1.50840	1.4720	1.51410	1.4823	38
			1.5490	1.5631	1.50815	1.5395	1.5631	1.50425	1.50865	1.4714	1.51385	1.4817	
1%16-16 or 1.5625-16	Z N	2 A	1.5504	1.5609	1.52030	1.5422	1.5609	1.51510	1.52190	1.4950	1.52870	1.5090	2B
			1.5498	1.5615	1.52005	1.5416	1.5615	1.51535	1.52215	1.4944	1.52845	1.5084	
		3 A	1.5520	1.5625	1.52190	1.5451	1.5625	1.51800	1.52190	1.4950	1.52700	1.5033	38
			1.5514	1.5631	1.52169	1.5445	1.505.1	C281C.1	CI22C.I	1.4944	C/07C.I	1206.1	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

 TABLE 11
 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B

 UNIFIED SCREW THREADS
 LIMITS OF SIZE (CONT'D)

				>	V Thread-S	ietting Plugs			5	/ Thread-S	etting Ring		
				CO		Z	OT GO (LO)		Ö	•	NOT G	(IH) O	
Nontrol Gine	Contas		Major D	iameter	Ditch.	Major D	iameter	Ditch					
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Diam.	Minor Diam.	Class
1	2	3	4	5	6	7	8	6	10	=	12	13	7
			in.	in.	Ŀ	Ŀ.	in.	Ľ	.e	Ŀ.	Ŀ	.e	
1%16-18 or 1.5625-18	UNEF	2A	1.5513	1.5610	1.5249	1.5440	1.5610	1.5199	1.5264	1.5020	1.5329	1.5150	2 B
			1.5508	1.5615	1.5247	1.5435 1 5468	1.5615	1.5201	1.5266	1.5015	1.5327	1.5145	ę
		5	1.5523	1.5630	1.5262	1.5463	1.5630	1.5229	1.5266	1.5015	1.5310	1.5100	Ð
1%16-20 or 1.5625-20	Ŋ	2A	1.5521	1.5611	1.5286	1.5455	1.5611	1.5238	1.5300	1.5080	1.5362	1.5200	28
		i	1.5516	1.5616	1.5284	1.5450	1.5616	1.5240	1.5302	1.5075	1.5360	1.5195	
		3A	1.5535 1.5530	1.5625 1.5630	1.5300	1.5481 1.5476	1.5625 1.5630	1.5264	1.5300 1.5302	1.5080 1.5075	1.5346 1.5344	1.5162 1.5157	38
15/8-6 or 1.625-6	Ŋ	2A	1.6015	1.6225	1.51420	1.5782	1.6225	1.50600	1.51670	1.4450	1.52740	1.4750	38
			1.6007	1.6233	1.51395	1.5774	1.6233	1.50625	1.51695	1.4442	1.52715	1.4742	Ì
		3 A	1.6040	1.6250	1.51670	1.5827	1.6250	1.51050	1.51670	1.4450	1.52470	1.4646	38
			1.6032	1.6258	1.51645	1.5819	1.6258	1.51075	1.51695	1.4442	1.52445	1.4638	
1 3 /8-8 or 1.625-8	N	2A	1.6057	1.6228	1.54160	1.5883	1.6228	1.53420	1.54380	1.4900	1.55350	1.5150	2B
	-		1.6050	1.6235	1.54135	1.5876	1.6235	1.53445	1.54405	1.4893	1.55325	1.5143	
		34	1.6079	1.6250	1.54380	1.5923	1.6250	1.53820	1.54380	1.4900	1.55100	1.5047	38
			1.60/2	1.62.01	1.54359	1.5916	1.6257	1.53845	1.54405	1.4893	1.55075	1.5040	
15/8-12 or 1.625-12	N	2A	1.6103	1.6232	1.56910	1.5993	1.6232	1.56320	1.57090	1.5350	1.57850	1.5530	28
			1.6097	1.6238	1.56885	1.5987	1.6238	1.56345	1.57115	1.5344	1.57825	1.5524	
		34	1.6121	1.6250	1.57090	1.6026	1.6250	1.56650	1.57090	1.5350	1.57660	1.5448	38
			CI 10'I	0070'1	con/c.1	1.0020	9070'1	c/00C.I	cil/c.i	1.5344	ctd/c.1	1.5442	
1 ⁵ / 1	Ŋ	2 A	1.6129	1.6234	1.58280	1.6047	1.6234	1.57760	1.58440	1.5570	1.59120	1.5710	2 B
			1.6123	1.6240	1.58255	1.6041	1.6240	1.57785	1.58465	1.5564	1.59095	1.5704	;
		V 2	0.139 1.6139	1.6256	1.58415	1.6070	1.6256	1.58075	1.58465	1.5564	1.58950	1.5652	38
15/8-18 or 1.625-18	UNEF	2A	1.6138	1.6235	1.5874	1.6065	1.6235	1.5824	1.5889	1.5650	1.5954	1.5780	28
			1.6133	1.6240	1.5872	1.6060	1.6240	1.5826	1.5891	1.5645	1.5952	1.5775	
		3 A	1.6153	1.6250	1.5889	1.6093	1.6250	1.5852	1.5889	1.5650	1.5937	1.5730	3B
			1.6148	1.6255	1.5887	1.6088	1.6255	1.5854	1.5891	1.5645	1.5935	1.5725	
15/8-20 or 1.625-20	N	2A	1.6146	1.6236	1.5911	1.6080	1.6236	1.5863	1.5925	1.5710	1.5987	1.5820	28
			1.6141	1.6241	1.5909	1.6075	1.6241	1.5865	1.5927	1.5705	1.5985	1.5815	
		34	1.6160 1.6155	1.6250 1.6255	1.5925	1.6106 1.6101	1.6250 1.6255	1.5889 1.5891	1.5925	1.5710 1.5705	1.5971 1.5969	1.5787 1.5782	38

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

$ \ \ \ \ \ \ \ \ \ \ \ \ \ $					-	V Thread-S	Setting Plugs			>	V Thread-S	etting Ring	ţs	
					60		Ž	01 GO (LO)		0	0	NOT O	(IH) O	
Quark Link Turn cate Iull from Turn cate Turn c				Major D	iameter	1.1	Major D	iameter	0;;-L	0:4 - F		- T-		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13	Des	ignation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	e	4	S	9	7	8	6	10	=	12	13	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ŗ,	Ľ	Ë,	. <u>e</u>	. <u>e</u>	Ľ	Ē	.e	in.	.e	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N	2A	1.6640	1.6850	1.57670	1.6406	1.6850	1.56840	1.57920	1.5070	1.59000	1.5380	2B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.6632	1.6858	1.57645	1.6398	1.6858	1.56865	1.57945	1.5062	1.58975	1.5372	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3 A	1.6665	1.6875	1.57920	1.6452	1.6875	1.57300	1.57920	1.5070	1.58730	1.5271	38
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				1.6657	1.6883	1.57895	1.6444	1.6883	1.57325	1.57945	1.5062	1.58705	1.5263	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z N	2A	1.6682	1.6853	1.60410	1.6507	1.6853	1.59660	1.60630	1.5520	1.61600	1.5770	28
3A 15704 16875 16605 15646 16675 156795 156795 <th< td=""><td></td><td></td><td></td><td>1.6675</td><td>1.6860</td><td>1.60385</td><td>1.6500</td><td>1.6860</td><td>1.59685</td><td>1.60655</td><td>1.5513</td><td>1.61575</td><td>1.5763</td><td></td></th<>				1.6675	1.6860	1.60385	1.6500	1.6860	1.59685	1.60655	1.5513	1.61575	1.5763	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3A	1.6704	1.6875	1.60630	1.6548	1.6875	1.60070	1.60630	1.5520	1.61360	1.5672	38
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				1.6697	1.6882	1.60605	1.6541	1.6882	1.60095	1.60655	1.5513	1.61335	1.5665	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NU	2A	1.6728	1.6857	1.63160	1.6617	1.6857	1.62560	1.63340	1.5970	1.64120	1.6150	28
3A 16746 16873 16390 163315 16644 16680 163315 16630 163305 163905 16073 38 UN 2A 16740 16681 16661 16671 16681 165301 165305 163005 166305 163305 16073 38 JNFF 2A 16770 16665 16660 16661 16673 166400 165316 165305 15344 28 JNFF 2A 16770 16675 16600 16681 16670 16531 16333 38 JNFF 2A 16770 16687 16694 16680 16476 16535 16470 16533 16335 16335 16335 16336 16336 16330 16335 16336				1.6722	1.6863	1.63135	1.6611	1.6863	1.62585	1.63365	1.5964	1.64095	1.6144	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3 A	1.6746	1.6875	1.63340	1.6650	1.6875	1.62890	1.63340	1.5970	1.63920	1.6073	38
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				1.6740	1.6881	1.63315	1.6644	1.6881	1.62915	1.63365	1.5964	1.63895	1.6067	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N	2A	1.6754	1.6859	1.64530	1.6671	1.6859	1.64000	1.64690	1.6200	1.65380	1.6340	28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.6748	1.6865	1.64505	1.6665	1.6865	1.64025	1.64715	1.6194	1.65355	1.6334	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ЗA	1.6770	1.6875	1.64690	1.6700	1.6875	1.64290	1.64690	1.6200	1.65210	1.6283	3B
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$				1.6764	1.6881	1.64665	1.6694	1.6881	1.64315	1.64715	1.6194	1.65185	1.6277	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		UNEF	2A	1.6763	1.6860	1.6499	1.6689	1.6860	1.6448	1.6514	1.6270	1.6580	1.6400	28
3A 1.6778 1.6875 1.6574 1.6773 1.6875 1.6574 1.6576 1.6553 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6353 1.6514 1.6553 1.6513 1.6445 3.8 UNC 1 1.5760 1.6553 1.6573 1.6573 1.6535 1.6611 1.6535 1.6611 1.6535 1.6611 1.6535 1.6611 1.6535 1.6611 1.6445 38 UNC 1 1.5760 1.6635 1.6535 1.6535 1.6535 1.6535 1.6407 1.6532 1.6535 1.6407 1.6532 1.6407				1.6758	1.6865	1.6497	1.6684	1.6865	1.6450	1.6516	1.6265	1.6578	1.6395	
UN 2A 1.6770 1.6660 1.6535 1.6704 1.6660 1.6550 1.6531 1.6450 28 UN 2A 1.6765 1.6865 1.6533 1.6704 1.6660 1.6551 1.6532 1.6597 1.6413 1.6450 28 3A 1.6765 1.6865 1.6533 1.6769 1.6576 1.6532 1.6597 1.6412 38 3A 1.6785 1.6785 1.6576 1.6576 1.6532 1.6375 1.6407 38 UNC 1A 1.7234 1.7473 1.6740 1.6896 1.6715 1.6906 1.7473 1.60420 1.6532 1.6332 1.6407 38 UNC 1A 1.7224 1.7481 1.6740 1.6906 1.7473 1.60420 1.6332 1.6375 1.5672 1.6375 1.5672 1.5672 1.5612 1.5612 1.5672 1.5612 1.5612 1.5612 1.5612 1.5612 1.5612 1.5612 1.5610 1.5612			3 A	1.6773	1.6875 1.6880	1.6514	1.6717 1.6712	1.6875 1.6880	1.6476 1.6478	1.6514 1.6516	1.6270	1.6563 1.6561	1.6355	38
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $														
3A 1.57b3 1.6605 1.6530 1.6575 1.6412 38 UNC 1 1.7234 1.5748 1.6576 1.6586 1.6575 1.6575 1.6575 1.6477 38 2A 1.7224 1.7481 1.6174 1.6996 1.7473 1.60875 1.62010 1.5340 1.6376 1.5620 3A 1.7226 1.7481 1.60875 1.60875 1.62010 1.5340 1.5575 38 3A 1.7261 1.7720 1.61715 1.6992 1.7481 1.60875 1.62035 1.6375 1.5672 38 3A 1.7251 1.7760 1.616875 1.62035 1.62035		N	2A	1.6770	1.6860	1.6535	1.6704	1.6860	1.6487	1.6550	1.6330	1.6613	1.6450	2B
UNC 1 1.5780 1.6548 1.5726 1.6516 1.6552 1.6325 1.6407 1.6407 UNC 1 1.7224 1.7473 1.61740 1.6906 1.7473 1.60400 1.6535 1.6335 1.63750 1.5680 18 UNC 1 1.7226 1.7481 1.61740 1.6906 1.7473 1.60425 1.6335 1.63750 1.5680 18 2A 1.7226 1.7481 1.60850 1.60850 1.62010 1.5340 1.5372 1.5672 38 3A 1.7226 1.7481 1.60857 1.60857 1.62010 1.5340 1.5572 38 3A 1.7251 1.7500 1.61715 1.6992 1.7481 1.60875 1.62035 1.5332 1.5572 38 3A 1.7253 1.7500 1.61715 1.6992 1.7700 1.7750 1.62035 1.5573 38 1.7253 1.7725 1.7703 1.61365 1.616070 1.5700			3.4	1 6785	22891	1 6550	75200.1 16731	1.6875	1.6514	1 6550	0250.1	1.0011	0440.1 16417	3R
UNC 1A 1.7234 1.61740 1.6906 1.7473 1.60400 1.62010 1.5340 1.63750 1.5680 18 1.7226 1.7481 1.61715 1.6998 1.7473 1.60425 1.62035 1.63750 1.6580 18 2A 1.7226 1.7481 1.61715 1.6951 1.7473 1.60850 1.63035 1.63725 15672 15672 2A 1.7226 1.7481 1.60851 1.7473 1.60855 1.62035 1.63726 1.5572 38 1.7226 1.7481 1.61740 1.6951 1.7473 1.60855 1.62035 1.63126 1.5572 38 1.7251 1.7500 1.61365 1.61365 1.61365 1.62010 1.5340 1.6272 38 1.7253 1.7508 1.61985 1.6992 1.77483 1.61365 1.62055 1.5507 38 UN 2A 1.7253 1.61985 1.6992 1.77483 1.613090 1.62010 1.5340 <td></td> <td></td> <td></td> <td>1.6780</td> <td>1.6880</td> <td>1.6548</td> <td>1.6726</td> <td>1.6880</td> <td>1.6516</td> <td>1.6552</td> <td>1.6325</td> <td>1.6595</td> <td>1.6407</td> <td></td>				1.6780	1.6880	1.6548	1.6726	1.6880	1.6516	1.6552	1.6325	1.6595	1.6407	
I.7226 1.7481 1.61715 1.6898 1.7481 1.60425 1.63725 1.63725 1.5572 1.5672 2A 1.7226 1.7481 1.61740 1.6951 1.7481 1.6370 1.5340 1.63770 1.5680 28 1.7226 1.7481 1.61740 1.6951 1.7481 1.60875 1.62035 1.5332 1.63145 1.5562 38 3A 1.7261 1.7500 1.6010 1.7000 1.7500 1.7481 1.60875 1.62035 1.63145 1.5572 38 3A 1.7261 1.7500 1.6092 1.7481 1.6185 1.5573 38 1.7253 1.7508 1.61965 1.7000 1.7708 1.61365 1.5507 38 UN 2A 1.7255 1.61985 1.61962 1.61360 1.6526 1.6500 26 2602 1.65255 1.5507 38 UN 2A 1.7256 1.61985 1.61362 1.616106 1.5700 1.652		UNC	۲	1.7234	1.7473	1.61740	1.6906	1.7473	1.60400	1.62010	1.5340	1.63750	1.5680	18
2A 1.7234 1.7473 1.61740 1.6951 1.7473 1.60850 1.62010 1.5340 1.63170 1.5680 28 1.7226 1.7481 1.61715 1.6943 1.7481 1.60875 1.62035 1.5332 1.63145 1.5672 38 3A 1.7261 1.7500 1.60910 1.7000 1.7500 1.61015 1.6843 1.5575 38 3A 1.7261 1.7500 1.6092 1.7500 1.7500 1.61955 1.5507 38 1.7253 1.77265 1.61965 1.61962 1.61365 1.62035 1.5507 38 UN 2A 1.7255 1.7475 1.61365 1.61365 1.5502 1.6000 28 1.77265 1.7475 1.61366 1.64170 1.5700 1.65250 1.6000 28 1.77267 1.7483 1.63920 1.7743 1.63920 1.64170 1.5502 1.6000 28 1.77267 1.7483 1.63926 <t.< td=""><td></td><td></td><td></td><td>1.7226</td><td>1.7481</td><td>1.61715</td><td>1.6898</td><td>1.7481</td><td>1.60425</td><td>1.62035</td><td>1.5332</td><td>1.63725</td><td>1.5672</td><td></td></t.<>				1.7226	1.7481	1.61715	1.6898	1.7481	1.60425	1.62035	1.5332	1.63725	1.5672	
1.7226 1.7481 1.61715 1.6943 1.7481 1.60875 1.6335 1.5332 1.6345 1.5672 38 3A 1.7261 1.7500 1.6010 1.7500 1.7500 1.61340 1.6345 1.5575 38 VN 2A 1.7253 1.7500 1.61965 1.6992 1.7500 1.61365 1.62030 1.63800 1.5575 38 UN 2A 1.7255 1.7475 1.6992 1.7708 1.61365 1.62035 1.5507 1.6000 28 JN 2A 1.7255 1.7475 1.63920 1.7743 1.63115 1.64170 1.5700 1.65250 1.6000 28 3A 1.7720 1.7743 1.63115 1.64170 1.5700 1.65255 1.5992 38 3A 1.7720 1.7748 1.7703 1.77483 1.63156 1.65925 1.5992 38 3A 1.77290 1.64170 1.5700 1.64120 1.5700 1.63966			2A	1.7234	1.7473	1.61740	1.6951	1.7473	1.60850	1.62010	1.5340	1.63170	1.5680	2B
3A 1.7261 1.7500 1.62010 1.7000 1.7500 1.61340 1.62010 1.5507 38 UN 2A 1.7253 1.7508 1.61965 1.6992 1.7508 1.61365 1.62035 1.5332 1.62860 1.5507 38 UN 2A 1.7255 1.7475 1.6992 1.7475 1.61365 1.62035 1.5507 1.6000 28 UN 2A 1.7257 1.63920 1.7031 1.7475 1.63195 1.63920 1.6000 28 3A 1.7257 1.7483 1.77483 1.63115 1.64170 1.5700 1.65250 1.6992 3A 1.77297 1.77483 1.77023 1.77483 1.64170 1.5700 1.65250 1.6900 28 3A 1.77297 1.64167 1.5692 1.5692 1.5992 38 1.77297 1.64167 1.5692 1.64966 38 1.77297 1.64167 1.5692 1.64966 38				1.7226	1.7481	1.61715	1.6943	1.7481	1.60875	1.62035	1.5332	1.63145	1.5672	:
UN ZA 1.7265 1.7475 1.63920 1.7475 1.7475 1.63920 1.7475 1.63920 1.7475 1.63990 1.64170 1.5700 1.65250 1.6000 28 UN ZA 1.7265 1.7475 1.63920 1.7475 1.63990 1.64170 1.5700 1.65250 1.6000 28 1.7257 1.7483 1.63115 1.64170 1.5700 1.65225 1.5992 3A 1.7280 1.64170 1.5700 1.64195 1.5692 1.5992 3A 1.7280 1.64170 1.5700 1.64286 1.5992 38 1.7280 1.76436 1.7066 1.7506 1.635540 1.64170 1.5700 1.64926 38 1.7280 1.76436 1.7664 1.7666 1.7668 38 1.7692 1.5896 38			3A	1.7261	1.7500	1.62010	1./000	1.7500	1.61340	1.62010	1.5340	1.62880	1.5575	38
UN 2A 1.7265 1.7475 1.63920 1.7031 1.7475 1.63090 1.64170 1.5700 1.65250 1.6000 28 1.7257 1.7483 1.63895 1.7023 1.7483 1.63115 1.64195 1.5692 1.65225 1.5992 3A 1.7290 1.7500 1.64170 1.7076 1.7500 1.63540 1.64170 1.5700 1.64980 1.5896 38 1.7444 1.7744 1.7764 1.7764 1.7508 1.63554 1.64170 1.5700 1.64980 1.5896 38				1.723	1./508	C8619.1	7669.1	1./ 508	C0510.1	1.62035	1.5332	1.62855	1.550/	
3A 1.7257 1.7483 1.7023 1.7483 1.63115 1.64195 1.55025 1.5992 3A 1.7290 1.7500 1.64170 1.7706 1.7500 1.64170 1.5700 1.64980 1.5896 38 1.7502 1.7508 1.7508 1.7508 1.64170 1.5700 1.64980 1.5896 38		N	2A	1.7265	1.7475	1.63920	1.7031	1.7475	1.63090	1.64170	1.5700	1.65250	1.6000	2B
3A 1.7290 1.7500 1.64170 1.7076 1.7500 1.63540 1.64170 1.5700 1.64980 1.5896 38 1 7508 1.7508 1.7508 1.7508 1.7508 1.7508 1.7508 1.64105 1.64055 1.64055 1.6888				1.7257	1.7483	1.63895	1.7023	1.7483	1.63115	1.64195	1.5692	1.65225	1.5992	
			3A	1.7290	1.7500	1.64170	1.7076	1.7500	1.63540 1.63540	1.64170	1.5700	1.64980	1.5896	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARI

GAGES AND GAGING FOR

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

ι	JNIFI	ED I	NCH	SCR	EW	TH	REA	DS															AN	IA	MER	ICAI	NN	AT	ION	AL S	ST/	ANDA	RD		
			Class	14		2B	ac	5	28		38	28		3B		28		38		2B		38	28		38	9	7D	38		28		38	28		38
s	(III) O		Minor Diam.	13	. <u>.</u>	1.6400	1.6393	1.6290	1.6780	1.6774	1.6698 1.6692	1.6960	1.6954	1.6908	1.6902	1.7070	1.7065	1.7037	1.7032	1.6630	1.6622	1.6521 1.6513	1.7020	1.7013	1.6922 1.6915	1 7400	1.7394	1.7323	1.7317	1.7590	1.7584	1.7533	1.7700	1.7695	1.7662
etting Ring	NOT G		Pitch Diam,	12	Ľ	1.67860	1.67835	1.67595	1.70370	1.70345	1.70170	1.71630	1.71605	1.71460	1.71435	1.7238	1.7236	1.7222	1.7220	1.71510	1.71485	1.71240 1.71215	1.74120	1.74095	1.73870	00321	1.76595	1.76420	1.76395	1.77880	1.77855	1.77710	1.7863	1.7861	1.7847 1.7845
/ Thread-Se	•		Minor Diam.	=	Ľ	1.6150	1.6143	1.6143	1.6600	1.6594	1.6594	1.6820	1.6814	1.6820	1.6814	1.6960	1.6955	1.6960	1.6955	1.6320	1.6312	1.6320	1.6770	1.6763	1.6770 1.6763	1 7 7 7 0	1.7214	1.7220	1.7214	1.7450	1.7444	1.7450	1.7580	1.7575	1.7580
5	6		Pitch Diam.	10	Ē	1.66880	1.66905	1.66905	1.69590	1.69615	1.69590	1.70940	1.70965	1.70940	1.70965	1.7175	1.7177	1.7175	////'L	1.70420	1.70445	1.70420	1.73130	1.73155	1.73130	1 75840	1.75865	1.75840	1.75865	1.77190	1.//215	1.77215	1.7800	1.7802	1.7800 1.7802
		-	Pitch Diam.	6	in.	1.65900	C26C0.1	1.66335	1.68810	1.68835	1.69140	1.70250	1.70275	1.70540	1.70565	1.7112	1.7114	1.7139	1./141	1.69330	1.69355	1.69790 1.69815	1.72140	1.72165	1.72560	1 75060	1.75085	1.75390	1.75415	1.76500	c7c9/.1	1.76790 1.76815	1.7737	1.7739	1.7764 1.7766
	01 GO (LO)	iameter	Full-Form	8	. <u>c</u>	1.7477	1.7500	1.7507	1.7482	1.7488	1.7500	1.7484	1.7490	1.7500	1.7506	1.7485	1.7490	1.7500	c0c/.1	1.8100	1.8108	1.8125 1.8133	1.8102	1.8109	1.8125 1.8132	1 8107	1.8113	1.8125	1.8131	1.8109	ci 18.1	1.8125 1.8131	1.8110	1.8115	1.8125
etting Plugs	ž	Major D	Truncated	7	Ŀ.	1.7131	1.7124	1.7165	1.7242	1.7236	1.7269	1.7296	1.7290	1.7325	1.7319	1.7329	1.7324	1.7356	162/1	1.7655	1.7647	1.7701 1.7693	1.7755	1.7748	1.7797 1.7790	1 7867	1.7861	1.7900	1.7894	1.7921	ci 6/.1	1.7950	1.7954	1.7949	1.7981 1.7976
V Thread-S		1	Diam.	9	Ë.	1.66650	CZ 000.1	1.66855	1.69410	1.69385	1.69590 1.69565	1.70780	1.70755	1.70940	1.70915	1.7160	1.7158	1.7175	1./1/3	1.70170	1.70145	1.70395	1.72900	1.72875	1.73130	1 75660	1.75635	1.75840	1.75815	1.77030	c00//.1	1.77190	1.7785	1.7783	1.7800
W Thr	co	liameter	Full-Form	5	. <u>e</u>	1.7477	1.7500	1.7507	1.7482	1.7488	1.7500	1.7484	1.7490	1.7500	1.7506	1.7485	1.7490	1.7500	cuc/.1	1.8100	1.8108	1.8125 1.8133	1.8102	1.8109	1.8125 1.8132	1 8107	1.8113	1.8125	1.8131	1.8109	CI 18.1	1.8125 1.8131	1.8110	1.8115	1.8125 1.8130
		Major D	Truncated	4	Ŀ.	1.7306	1.7329	1.7322	1.7353	1.7347	1.7365	1.7379	1.7373	1.7395	1.7389	1.7395	1.7390	1.7410	c04/.1	1.7890	1.7882	1.7907	1.7931	1.7924	1.7954 1.7947	1 7978	1.7972	1.7996	1.7990	1.6004	866/1	1.8020	1.8020	1.8015	1.8035 1.8030
			Class	3		2A	34		2A	į	٩	2A	,	3 A		2A		34		2A	i	34	2A		3A	AC		3A		2 A		3A	2A		3 A
		Cantac	Designation	2		N			Ŋ			Ŋ				N				N			Ŋ			2	5			S			Ŋ		
			and Threads/in.	-		1¾+-8 or 1.750-8			1¾+12 or 1.750-12			1¾+16 or 1.750-16				134-20 or 1.750-20				1 ^{13/16-6} or 1.8125-6			1 ¹ ¥16-8 or 1.8125-8			113/6-12 or 1 8125-12				1 ^{13/16-} 16 or 1.8125-16	-		1 ¹ 3/16-20 or 1.8125-20		

ANSI/ASME B1.2-1983 A AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				2	/ Thread-S	etting Plugs			3	Thread-Se	etting Ring	s	
				GO		ž	01 GO (LO)		3		NOT G	(III) O	
Mominal Cira	Control		Major D	iameter	1. A	Major D	ameter	1 1	-		-		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Pitch Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	14
			in.	Ü	Ľ	in.	Ľ	in.		Ŀ.	.e	Ŀ	
17⁄1-6 or 1.875-6	Z	2A	1.8515 1.8507	1.8725 1.8733	1.76420 1 76395	1.8280 1.8272	1.8725 1.8733	1.75580	1.76670 1.76695	1.6950	1.77770 1.77745	1.7250	2B
		3 A	1.8540	1.8750	1.76670	1.8326	1.8750	1.76040	1.76670	1.6950	1.77490	1.7146	38
			1.8532	1.8758	1.76645	1.8318	1.8758	1.76065	1.76695	1.6942	1.77465	1.7138	
1 ^{7/8-} 8 or 1.875-8	NU	2A	1.8556	1.8727	1.79150	1.8379	1.8727	1.78380	1.79380	1.7400	1.80380	1.7650	28
	_	٩۶	1.8549 1.8579	1.8750 1.8750	1.79125 1 79380	1.8372	1.8734 1.8750	1.78405 1 78810	1.79405 1 79380	1.7393	1.80355	1.7643	30
		Ś	1.8572	1.8757	1.79355	1.8415	1.8757	1.78835	1.79405	1.7393	1.80105	1.7540	8
1 ^{7/8-} 12 or 1.875-12	N	2A	1.8603	1.8732	1.81910	1.8492	1.8732	1.81310	1.82090	1.7850	1.82870	1.8030	2B
			1.8597	1.8738	1.81885	1.8486	1.8738	1.81335	1.82115	1.7844	1.82845	1.8024	
		3 A	1.8621	1.8750	1.82090	1.8525	1.8750	1.81640	1.82090	1.7850	1.82670	1.7948	38
			1.8615	1.8756	1.82065	1.8519	1.8756	1.81665	1.82115	1.7844	1.82645	1.7942	
1 ^{7/8} -16 or 1.875-16	Z C	2A	1.8629	1.8734	1.83280	1.8546	1.8734	1.82750	1.83440	1.8070	1.84130	1.8210	2B
			1.8623	1.8740	1.83255	1.8540	1.8740	1.82775	1.83465	1.8064	1.84105	1.8204	Ę
		¥ç	1.8639	1.8756	1.83415	1.8569	1.8756	1.83065	1.83465	1.8064	1.83935	1.8152	8
1%-20 or 1.875-20	Z	24	1 8645	1.8735	1 8410	1.8579	1.8735	1.8362	1.8425	1.8210	1.8488	1.8320	28
		i	1.8640	1.8740	1.8408	1.8574	1.8740	1.8364	1.8427	1.8205	1.8486	1.8315	1
		3A	1.8660	1.8750	1.8425	1.8606	1.8750	1.8389	1.8425	1.8210	1.8472	1.8287	3B
			6608.1	cc/8.1	1.8423	1.000.1	cc /0.1	1660.1	1.842/	CU28.1	1.04/U	1.8282	
1 ^{15/16-6} or 1.9375-6	Z N	2A	1.9139	1.9349	1.82660	1.8903	1.9349	1.81810	1.82920	1.7570	1.84030	1.7880	2B
			1.9131	1.9357	1.82635	1.8895	1.935/	1.81835	1.82945	1.7562	1.84005	1.7872	ac
		5	1.9157	1.9383	1.82895	1.8942	1.9383	1.82305	1.82945	1.7562	1.83725	1.7763	a c
1 ^{15/16-8} or 1.9375-8	N	ZA	1.9181	1.9352	1.85400	1.9004	1.9352	1.84630	1.85630	1.8020	1.86630	1.8270	28
			1.9174	1.9359	1.85375	1.8997	1.9359	1.84655	1.85655	1.8013	1.86605	1.8263	
		3 A	1.9204	1.9375	1.85630	1.9046	1.9375	1.85050	1.85630 1.6565	1.8020	1.86380 1.62355	1.8172 1.8165	3B
			/616.1	1.9382	CU0C8.1	1.9039	1.9302	C/0C8.1	CC0C8.1	1.8013	CCE00.1	C018.1	
1 ¹⁵ /16-12 or 1. 9 375-12	NU	2A	1.9228	1.9357	1.88160	1.9116 1 0110	1.9357 1.0363	1.87550 1.87575	1.88340 1.88345	1.8470 1 8464	1.89130	1.8650 1.8644	2B
		3A	1.9246	1.9375	1.88340	1.9150	1.9375	1.87890	1.88340	1.8470	1.88930	1.8573	38
			1.9240	1.9381	1.88315	1.9144	1.9381	1.87915	1.88365	1.8464	1.88905	1.8567	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS LIMITS OF SIZE (CONT'D)

				>	V Thread-S	Setting Plugs			>	V Thread-S	etting Ring	5		
				00		Z	OT CO (LO)		Ŭ	0	NOT G	(IH) O		
			Major Di	iameter	1	Major D	iameter					3		
Nominal Size and Threads/in.	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Class	
-	2	~	4	S	9	7	œ	6	9	=	12	13	4	
				.9	.9	.9	.9							
¥16-16 or 1.9375-16	N	2A	1.9254	1.9359	1.89530	1.9170	1.9359	1.88990	1.89690	1.8700	1.90390	1.8840	2 B	
			1.9248	1.9365	1.89505	1.9164	1.9365	1.89015	1.89715	1.8694	1.90365	1.8834	1	
		3A	1.9270	1.9375	1.89690	1.9200	1.9375	1.89290	1.89690	1.8700	1.90210	1.8783	3 B	
			1.9264	1.9381	1.89665	1.9194	1.9381	1.89315	1.89715	1.8694	1.90185	1.8777		
У16-20 or 1.9375-20	Ŋ	2A	1.9270	1.9360	1.9035	1.9203	1.9360	1.8986	1.9050	1.8830	1.9114	1.8950	2B	
			1.9265	1.9365	1.9033	1.9198	1.9365	1.8988	1.9052	1.8825	1.9112	1.8945	Ì	
		3A	1.9285	1.9375	1.9050	1.9230	1.9375	1.9013	1.9050	1.8830	1.9098	1.8912	3 B	
			1.9280	1.9380	1.9048	1.9225	1.9380	1.9015	1.9052	1.8825	1.9096	1.8907		
41/2 or 2.000-4.5	UNC	1A	1.9713	1.9971	1.85280	1.9347	1.9971	1.83850	1.85570	1.7590	1.87430	1.7950	18	
			1.9705	1.9979	1.85255	1.9339	1.9979	1.83875	1.85595	1.7582	1.87405	1.7942		
		2A	1.9713	1.9971	1.85280	1.9395	1.9971	1.84330	1.85570	1.7590	1.86810	1.7950	2B	
			1.9705	1.9979	1.85255	1.9387	1.9979	1.84355	1.85595	1.7582	1.86785	1.7942		
		3A	1.9742	2.0000	1.85570	1.9448	2.0000	1.84860 1.04005	1.85570	1.7590	1.86500	1.7861	3B	
			1.9/34	2.0008	CPCC8.1	1.9440	2.0008	1.84885	66668.1	782/.1	1.864/5	1./853		
5 or 2.000-6	Ż	2 A	1.9764	1.9974	1.88910	1.9527	1.9974	1.88050	1.89170	1.8200	1.90280	1.8500	2B	
		2	1.9756	1.9982	1.88885	1.9519	1.9982	1.88075	1.89195	1.8192	1.90255	1.8492	;	
		۲ç	1 9782	2.0000	1.091/0	c/c6.1 1 9567	2.0000	1 88555	1.891/U 1 80105	1.8200	1.90000	1.8396	38	
			70 // 1	0000	Ct (0)	1000-1		CCC00.1	CC1 CO'1	7610'1	C/CC0.1	0000.1		
3 or 2.000-8	N	2A	1.9806	1.9977	1.91650	1.9628	1.9977	1.90870	1.91880	1.8650	1.92890	1.8900	2B	
			1.9799	1.9984	1.91625	1.9621	1.9984	1.90895	1.91905	1.8643	1.92865	1.8893		
		٩f	1.9829 1.9822	2.0000	1.91880 1.91855	1.96/1 1.9664	2.0000	1.91300	1.91880	1.8650 1.8643	1.92640 1.92615	1.8797 1.8790	38	
2 or 2.000-12	Z	٨٢	1.9853	1.998.2	1.94410	1 9741	1.9982	1 93800	1 94590	1 9100	1 95380	1 9.280	ac	
			1.9847	1.9988	1.94385	1.9735	1.9988	1.93825	1.94615	1.9094	1.95355	1.9274	1	
		3 A	1.9871	2.0000	1.94590	1.9775	2.0000	1.94140	1.94590	1.9100	1.95180	1.9198	38	
			1.9865	2.0006	1.94565	1.9769	2.0006	1.94165	1.94615	1.9094	1.95155	1.9192		
6 or 2.000-16	N	2A	1.9879	1.9984	1.95780	1.9795	1.9984	1.95240	1.95940	1.9320	1.96640	1.9460	28	
			1.9873	1.9990	1.95755	1.9789	1.9990	1.95265	1.95965	1.9314	1.96615	1.9454		
		3 A	1.9895	2.0000	1.95940	1.9825	2.0000	1.95540	1.95940	1.9320	1.96460	1.9408	3B	
			1.9889	2.0006	1.95915	1.9819	2.0006	1.95565	1.95965	1.9314	1.96435	1.9402		
20 or 2.000-20	N	2A	1.9895	1.9985	1.9660	1.9828	1.9985	1.9611	1.9675	1.9460	1.9739	1.9570	2B	
			1.9890	1.9990	1.9658	1.9823	1.9990	1.9613	1.9677	1.9455	1.9737	1.9565		
		3A	1.9910	2.0000	1.9675	1.9855	2.0000	1.9638	1.9675	1.9460	1.9723	1.9537	38	
			CU66.1	C000.2	1.90/3	0000.1	CUUU.2	1.9640	1.96//	CC49.1	1.9721	1.9532		

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AMERICAN NATIONAL STANDARD Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

101 Class m. Class 3 14 50 28 546 38 538 538	m. Class 7 14 7 13 8 14 7 14 7 18 1 14 1 1	Tot Class m. Class 3 14 3 14 550 28 546 38 546 38 546 38 546 38 546 38 547 38 548 38 550 28 58 38 58 38 56 38 56 38 56 28 56 38 56 38 57 28 58 38 58 38 58 38 56 28 57 38 58 38 56 28 57 38 58 38 58 38 58 38	Tot Time Class 3 14 4 3 3 14 4 3 3 14 Class 3 3 14 4 3 3 14 4 3	Nor Table m. m. m.
Diam. Diam. 12 13 12 13 in. in. in. in. 0.02800 1.975 0.2775 1.974 0.2510 1.964 0.2485 1.963 0.2485 1.963	Diam. Diar 12 13 11. 1.975 11. 1.975 11. 1.975 11. 1.975 11. 1.975 11. 1.945 11. 1.963 11.	Diam. Diar 12 13 1n. in. in. in. in. .02510 .02510 1.975 .02510 1.964 .02510 1.965 .02510 1.963 .05400 2.014 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.004 .05150 2.003 .07680 2.004 .07680 2.025 .07680 2.025 .09115 2.070 .09935 2.065 .0973 2.078 .0971 2.078	Diam. Diar 12 13 11. 1.975 11. 1.975 11.975 1.975 11.975 1.975 11.975 1.975 11.975 1.964 11.975 1.964 11.964 1.965 11.965 1.963 05375 2.014 05125 2.014 05125 2.014 05125 2.014 05125 2.014 05125 2.014 05125 2.014 05125 2.014 05125 2.053 07680 2.053 07680 2.055 08956 2.044 0971 2.078 0971 2.078 0971 2.045 11805 2.045 11495 2.036 11495 2.035	Diam. Diam 12 13 11. in. 11.
in. 1.9450 2.0280 1.9442 2.0277 1.9450 2.0277 1.9442 2.0240 1.9450 2.0240	in. 1.9450 2.0280 1.9450 2.0270 1.9450 2.0251 1.9462 2.0248 1.9493 2.0537 1.9893 2.0515 1.9893 2.0515 1.9893 2.0515 1.9893 2.0518 2.0350 2.0768 2.0354 2.0768 2.0354 2.0768	in. i.9450 1.9450 1.9450 1.9460 1.9462 1.9462 1.9462 1.9462 1.9462 1.9462 1.9900 1.9900 1.9900 2.0540 2.0512 2.0514 2.0514 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0563 2.0570 2.0577 2.057	in. i.9450 1.9450 1.9450 1.9442 1.9450 1.9462 1.9462 1.9462 1.9493 1.9900 1.9900 1.9900 2.0542 1.9893 2.0573 2.0564 2.0564 2.0350 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0563 2.0710 2.0989 2.0710 2.0989 2.0710 2.0989 2.0710 2.0989 2.0710 2.0989 2.0710 2.0989 2.0710 2.0989 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0710 2.0980 2.0715 2.0980 2.0715 2.0980 2.0716 2.0980 2.0716 2.0980 2.0716 2.0980 2.0716 2.0980 2.01747 2.0980 2.01747 2.0980 2.01747 2.0980 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.01747 2.0090 2.0090 2.01747 2.0090 2.01747 2.0090 2.0090 2.0090 2.01747 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.0090 2.11747 2.0090 2.0090 2.01740 2.0090 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000	in. i.9450 i.9450 1.9450 1.9450 1.9442 1.9442 1.9450 1.9462 1.9462 1.9462 1.9462 2.0540 1.9900 1.9900 2.0540 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0564 2.0705 2.0564 2.0705 2.0971 2.0705 2.0971 2.0705 2.0973 2.0973 2.0971 2.0973 2.09744 2.09745 2.09745 2.09745 2.09745 2.09745 2.09745 2.09745 2
n. in. 0540 2.01670 0565 2.01695 1020 2.01695 1045 2.01695 1045 2.01695	n. in. 0540 2.01670 0565 2.01695 1020 2.01695 1045 2.01695 3375 2.04380 3375 2.04380 3375 2.04380 3815 2.04380 3815 2.04380 5300 2.07390 5325 2.07115 5665 2.07115	n. in. 0540 2.01670 0565 2.01695 1020 2.01695 1020 2.01695 3350 2.01380 3375 2.04405 3375 2.04405 3375 2.04380 3815 2.04380 3815 2.04380 5300 2.04380 5325 2.07115 5665 2.07215 567 2.0925 568 2.0925 568 2.0925 568 2.0925	n. in. 0540 2.01670 0565 2.01695 1020 2.01695 1020 2.01695 3375 2.01695 3375 2.01405 3375 2.04380 3815 2.04380 5300 2.07090 5510 2.04405 5300 2.07090 5525 2.08465 5300 2.07090 5665 2.0115 5640 2.07115 5640 2.07115 5640 2.02465 5665 2.0115 5681 2.0925 561 2.0925 561 2.0925 561 2.0925 563 2.010595 5640 2.0925 5865 2.010595 5865 2.10595 5865 2.10595 5865 2.10595 5865 2.10595	n. in. in. 5540 2.01675 5555 2.01695 1020 5555 2.01695 1020 5555 2.01695 1020 533350 2.04380 33375 2.04380 33375 2.04380 33375 2.04380 2.04380 2.04380 2.04380 2.04380 2.07115 55300 2.07090 5532 2.07115 55300 2.07090 553 2.07115 55300 2.07090 553 2.07115 55300 2.0927 553 500 2.0927 553 500 2.0927 553 500 2.0927 553 500 2.0927 553 500 2.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.0927 553 5.114195 5.11410 5.11410 5.11410 5.11410 5.514 5.514 5.514 5.514 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5145 5.5155 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51455 5.51555 5.5155 5.5155 5.51555 5.51555 5.515555 5.51555 5.515555 5.515555 5.515555 5.51555 5.51555 5.515555
	1224 2.00540 1232 2.00565 2.01020 2.01020 1258 2.01045 2.013350 2.03355 1256 2.033790 1256 2.03815 1257 2.03815 1258 2.06300 1256 2.06665	1224 2.00540 2.010265 2.010265 2.010265 2.010265 2.01045 2.013355 2.013355 2.013375 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.033796 2.0340 2.07765 2.06640 2.026645 1.1256 2.08065 1.1255 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1256 2.08065 1.1255 1.1255 1		
2.0824 2.12 2.0816 2.12 2.0876 2.12	2.0824 2.12 2.0816 2.12 2.0876 2.12 2.0869 2.12 2.0913 2.12 2.0913 2.12 2.093 2.12 2.093 2.12 2.093 2.12 2.0913 2.12 2.093 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.1019 2.12	2.0824 2.12 2.0876 2.12 2.0876 2.12 2.0869 2.12 2.0913 2.12 2.0931 2.12 2.0935 2.12 2.0935 2.12 2.0935 2.12 2.0935 2.12 2.0935 2.12 2.0045 2.12 2.1019 2.12 2.1019 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.10769 2.12 2.10769 2.12 2.1076	2.0824 2.12 2.0876 2.12 2.0876 2.12 2.0869 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0195 2.12 2.1019 2.12 2.1025 2.12 2.1039 2.12 2.1075 2.12 2.1076 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1073 2.12 2.1085 </td <td>2.0824 2.12 2.0876 2.12 2.0876 2.12 2.0869 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.095 2.12 2.095 2.12 2.0019 2.12 2.1019 2.12 2.1025 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1073 2.12 2.1085 2.12 2.1936 2.24 2.1936 2.24 2.1938 2.24 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.2055 2.254 2.2055<!--</td--></td>	2.0824 2.12 2.0876 2.12 2.0876 2.12 2.0869 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.0913 2.12 2.095 2.12 2.095 2.12 2.0019 2.12 2.1019 2.12 2.1025 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1075 2.12 2.1073 2.12 2.1085 2.12 2.1936 2.24 2.1936 2.24 2.1938 2.24 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.1938 2.254 2.2055 2.254 2.2055 </td
2 04140 2 0	2.04140 2.0 2.04115 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.06585 2.0 2.07065 2.1	2.04140 2.0 2.04115 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.05065 2.1 2.07090 2.1 2.07095 2.1 2.070965 2.1 2.07095 2.1 2.07095 2.1 2.07095 2.1 2.07095 2.1 2.09255 2.1 2.09208 2.1 2.0923 2.1 2.0923 2.1	2.04140 2.04 2.04115 2.03 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.05910 2.0 2.05065 2.1 2.07090 2.1 2.08415 2.1 2.08415 2.1 2.0925 2.1 2.0925 2.1 2.0926 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.00255 2.1 2.10555 2.1 2.10555 2.1	2.04140 2.03 2.04115 2.04 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.04355 2.0 2.05910 2.0 2.05055 2.1 2.05065 2.1 2.0510 2.1 2.05415 2.1 2.05415 2.1 2.0503 2.1 2.0910 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.0925 2.1 2.10570 2.1 2.13805 2.1 2.13805 2.1 2.14150 2.2 2.14150 2.2
7 1776 7	2.1226 2 2.1233 2 2.1250 2 2.1257 2 2.1232 2 2.1238 2 2.1256 2 2.1256 2	2.1226 2.1226 2.1233 2.1257 2.1257 2.1255 2.1233 2.1238 2.1238 2.1238 2.1236 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1255 2.1255 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.1255 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.12555 2.2.125	2.1256 2.1256 2.1256 2.1256 2.1256 2.1255 2.1255 2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1256 2.2.1255 2.2.1256 2.2.1255 2	2.1226 2.1226 2.1257 2.1257 2.1257 2.1233 2.1236 2.1236 2.1236 2.1236 2.1256 2.1236 2.1256 2.1236 2.1256 2.1236 2.1256 2.1236 2.1256 2.1235 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.1256 2.2477 2.2568 2.2568 2.25508 2.2568 2.2568
2.1048	2.1079 2.1072 2.1103 2.1103 2.1115 2.1115	2.1079 2.1072 2.1037 2.1103 2.1103 2.1121 2.1115 2.1115 2.1129 2.1145 2.1145 2.1146 2.1146 2.1155	2.1079 2.1072 2.1097 2.1103 2.1121 2.1129 2.1129 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1146 2.1145 2.1155 2.1155 2.1155 2.1155 2.2205 2.	2.1079 2.1072 2.1037 2.1103 2.1121 2.1129 2.1129 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1145 2.1155 2.1155 2.1155 2.1155 2.1155 2.1155 2.1155 2.1155 2.1155 2.2213 2.2213 2.22256 2.22234 2.22265 2.22234 2.22265 2.
	3A 3A	3A 2A 3A 3A 2A 3A 2A 3A 3A 3A 3A 3A 3A	3A 2A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A	3A 2A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A
	3	s s s	z z z z	s s s s
	2½-12 or 2.125-12	21/8-12 or 2.125-12 21/8-16 or 2.125-16 21/8-20 or 2.125-20	21/6-12 or 2.125-12 21/6-16 or 2.125-16 21/6-20 or 2.125-20 21/4-41/2 or 2.250-4.5	216-12 or 2.125-12 276-16 or 2.125-16 216-20 or 2.125-20 214-412 or 2.250-4.5 214-6 or 2.250-6

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS - LIMITS OF SIZE (CONT'D)

							-						
				X	V Thread-S	setting Plugs			3	Thread-Se	etting Ring	5	
				60		Ň	DT GO (LO)		ö	0	NOT G	(IH) O	
			Major D	ameter	Ditch	Major D	iameter	Ditch	d. A		ارد. م	Minor	
Nominal Size and Threads/in.	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	e.	4	5	9	7	8	6	10	11	12	13	14
			. <u>c</u>	Ŀ.	Ľ	Ŀ	Ľ	Ŀ.	i.	Ľ	in.	Ľ	
21⁄4-12 or 2.250-12	Z	2 A	2.2353	2.2482	2.19410	2.2241	2.2482	2.18800	2.19590	2.1600	2.20380	2.1780	2B
		3A	2.234/ 2.2371	2.2500	2.19590	2.2275	2.2500	2.19140 2.19140	2.19590	2.1600	2.20180	2.1698 2.1698	38
			2.2365	2.2506	2.19565	2.2269	2.2506	2.19165	2.19615	2.1594	2.20155	2.1692	
2 ^{1/4-} 16 or 2.250-16	N	2A	2.2379	2.2484	2.20780	2.2295	2.2484	2.20240	2.20940	2.1820	2.21640	2.1960	2B
		•	2.2373	2.2490	2.20755	2.2289	2.2490	2.20265	2.20965	2.1814	2.21615	2.1954	ę
		34	2.2389	2.2506	2.20915	2.2319	2.2506	2.20565	2.20965	2.1820 2.1814	2.21435	2.1908 2.1902	8
21/4-20 or 2.250-20	n	2A	2.2395	2.2485	2.2160	2.2328	2.2485	2.2111	2.2175	2.1960	2.2239	2.2070	2B
			2.2390	2.2490	2.2158	2.2323	2.2490	2.2113	2.2177	2.1955	2.2237	2.2065	
		3A	2.2410	2.2500	2.2175	2.2355	2.2500	2.2138	2.2175	2.1960	2.223	2.2037	38
			2.2405	2.2505	2.2173	2.2350	2.2505	2.2140	2.2177	2.1955	2.2221	2.2032	
2 ^{3/8-6} Or 2.375-6	NU	2A	2.3513	2.3723	2.26400	2.3273	2.3723	2.25510	2.26670	2.1950	2.27820	2.2260	28
			2.3505	2.3731	2.26375	2.3265	2.3731	2.25535	2.26695	2.1942	2.27795	2.2252	
		3A	2.3540 2.3532	2.3758	2.26645	2.3323 2.3315	2.3758 2.3758	2.26010	2.26695 2.26695	2.1950 2.1942	2.27530	2.2146 2.2138	38
J3/4_8 △r ½ 275_8	2	24	7 3555	2 3776	2 2914N	2 3374	2726	7 28330	7 29380	2 2400	2 30430	7 2650	, ac
		ì	2.3548	2.3733	2.29115	2.3367	2.3733	2.28355	2.29405	2.2393	2.30405	2.2643	;
		3A	2.3579 2.3572	2.3750	2.29380 2.29355	2.3419 2 3412	2.3750	2.28780 2.28805	2.29380 2.29405	2.2400	2.30170 2 30145	2.2547	38
130 13 2 375 13	N	40	7 3607	7 27 21	2 21900	7 3489	2 3731	7 317BN	1 27000	7 785A	1 2 2 000	0505 C	ac
71-67677 10 71-027		, ,	2.3596	2.3737	2.31875	2.3483	2.3737	2.31305	2.32115	2.2844	2.32875	2.3024	77
		3A	2.3621	2.3750	2.32090	2.3524	2.3750	2.31630	2.32090	2.2850	2.32690	2.2948	38
			2.3610	2.3/36	C0022.2	2.3518	۵ς/27	2.3 1623	61126.2	2.2844	2.32665	2.2942	
2 ^{3/8-} 16 or 2.375-16	N	2A	2.3628	2.3733	2.33270	2.3543	2.3733	2.32720	2.33440	2.3070	2.34160	2.3210	2B
			2.3622	2.3739	2.33245	2.3537	2.3739	2.32745	2.33465	2.3064	2.34135	2.3204	
		3A	2.3645	2.3750	2.33440	2.3574 2 2568	2.3750	2.33030	2.33440 2.23465	2.3070	2.33980	2.3158	38
			2.3039	0C/2.7	c133412	00007	00.76.7	CCU66.2	2.33405	2.3064	2.3339	261 8.2	
2¾-20 or 2.375-20	N	2A	2.3645	2.3735	2.3410	2.3576	2.3735	2.3359	2.3425	2.3210	2.3491	2.3320	28
			2.3640	2.3740	2.3408	2.3571	2.3740	2.3361	2.3427	2.3205	2.3489	2.3315	4
		34	2.3655	2.3755	2.3423	2.3504 2.3599	2.3755	2.3389	2.3427	2.3205	2.3473	2.3282	35

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983

....

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				2	V Thread-S	etting Plugs			3	/ Thread-Se	etting Ring	S		AN /
				CO		ž)T GO (LO)		5	c	NOT G	(IH) O		AME
	-		Major D	iameter	014 - L	Major D	iameter	D:4.cL	Disc		0:1-6			RICA
Nominal Size and Threads/in.	Series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class	N NA
-	2	m	4	ß	و	7	8	6	01	11	21	13	14	TIO
			Ľ	Ŀ	i.	.ii	Ŀ	.Ė	in.	in.	in.			VAL
21/2-4 or 2.500-4	UNC N	1	2.4688	2.4969	2.33450	2.4273	2.4969	2.31900	2.33760	2.2290	2.35780	2.2670	1B	. 5
		_	2.4679	2.4978	2.33425	2.4264	2.4978	2.31925	2.33785	2.2281	2.35755	2.2661		
		2A	2.4688	2.4969	2.33450	2.4324	2.4969	2.32410	2.33760	2.2290	2.35110	2.2670	2B	NU/
			2.4679	2.4978	2.33425	2.4315	2.4978	2.32435	2.33785	2.2281	2.35085	2.2661	ļ	AHL
		ЗA	2.4719 2.4710	2.5000 2.5009	2.33760 2.33735	2.4381 2.4372	2.5000 2.5009	2.32980 2.33005	2.33760 2.33785	2.2290 2.2281	2.34770 2.34745	2.2594 2.2585	38	,
21/2-6 or 2.500-6	N	24	2.4763	2.4973	2.38900	2.4623	2.4973	2.38000	2.39170	2.3200	2.40330	2.3500	28	
	•	i	2.4755	2.4981	2.38875	2.4514	2.4981	2.38025	2.39195	2.3192	2.40305	2.3492		
		3 A	24790	2.5000	2.39170	2.4572	2.5000	2.38500	2.39170	2.3200	2.40040	2.3396	38	
			2.4782	2.5008	2.39145	2.4564	2.5008	2.38525	2.39195	2.3192	2.40015	2.3388		
21/2-8 or 2.500-8	Z	24	2.4805	2.4976	2.41640	2.4623	2.4976	2.40820	2.41880	2.3650	2.42940	2.3900	2B	
			2.4798	2.4983	2.41615	2.4616	2.4983	2.40845	2.41905	2.3643	2.42915	2.3893		
		3A	2.4829	2.5000	2.41880	2.4668	2.5000	2.41270	2.41880	2.3650	2.42680	2.3797	38	
			2.4822	2.5007	2.41855	2.4661	2.5007	2.41295	2.41905	2.3643	2.42655	2.3790		
21/2-12 or 2.500-12	Ŋ	2A	2.4852	2.4981	2.44400	2.4739	2.4981	2.43780	2.44590	2.4100	2.45400	2.4280	2B	
			2.4846	2.4987	2.44375	2.4733	2.4987	2.43805	2.44615	2.4094	2.45375	2.4274		
		3 A	2.4871	2.5000	2.44590	2.4774	2.5000	2.44130	2.44590	2.4100	2.45190	2.4198	38	
			2.4865	2.5006	2.44565	2.4768	2.5006	2.44155	2.44615	2.4094	2.45165	2.4192		
2 V2-16 or 2.500-16	S	2A	2.4878	2.4983	2.45770	2.4793	2.4985	2.45220	2.45940	2.4320	2.46660	2.4460	2B	
			2.4872	2.4989	2.45745	2.4787	2.4990	2.45245	2.45965	2.3414	2.46635	2.4454		
		3 A	2.4895	2.5000	2.45940	2.4824	2.5000	2.45530	2.45940	2.4320	2.46480	2.4408	38	
			2.4889	2.5006	2.424	2.48 8	900007	2.4000	2.4200	2.4314	2.40400	2.4402		NU
21/2-20 or 2.500-20	Ŋ	2 A	2.4895	2.4985	2.4660	2.4826	2.4985	2.4609	2.4675	2.4460	2.4741	2.4570	2B	1110
			2.4890	2.4990	2.4658 2.4658	2.4821	2.4990 2.5000	2.4611	2.4677 2.4675	2.4455	2.4739 2.4735	2.4565	90	ויט
		5	2.4910	2.5005	2.4673	2.4849	2.5005	2.4639	2.4677	2.4455	2.4723	2.4532	â	чСП
25/8-6 or 2 675-6	Z	٨	2.6013	2.6223	2.51400	2.5772	2.6223	2.50500	2.51670	2.4450	2.52850	2.4750	28	30
	}	i	2.6005	2.6231	2.51375	2.5764	2.6231	2.50525	2.51695	2.4442	2.52825	2.4742		ne
		ЗA	2.6040	2.6250	2.51670	2.5821	2.6250	2.50990	2.51670	2.4450	2.52550	2.4646	38	vv
			2.6032	2.6258	2.51645	2.5813	2.6258	2.51015	2.51695	2.4442	2.52525	2.4638		
2 ⁵ /8-8 or 2.625-8	N C	2A	2.6054	2.6225	2.54130	2.5872	2.6225	2.53310	2.54380	2.4900	2.55450	2.5150	2B	
			2.6047	2.6232	2.54105	2.5865	2.6232	2.53335	2.54405	2.4893	2.55425	2.5143		.3
		¥.	2.6079 2.6072	2.6250 2.6257	2.54380 2.54355	2.5917 2.5910	2.6250 2.6257	2.53760 2.53785	2.54380 2.54405	2.4900 2.4893	2.55180	2.5047 2.5040	38	

ANSI/ASME B1.2-1983

GAGES AND GAGING FOR

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS - LIMITS OF SIZE (CONT'D)

				X	V Thread-S	etting Plugs			X	Thread-Se	etting Ring	S	
				09		Ž	OT GO (LO)		ŭ	•	NOT G	(IH) O	
	Control 2		Major Di	iameter		Major D	iameter	D:4_F	n:a-L		- 		
nominal size and Threads/in.	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Diam.	Minor Diam.	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	14
			in.	ij.		ij.	in.	in.	in.	in.	.ċ	Ë.	
2 ⁵ /8-12 or 2.625-12	Z D	2A	2.6102	2.6231	2.56900	2.5989	2.6231	2.56280	2.57090	2.5350	2.57900	2.5530	2B
		Ŷ	2.6096	2.6237	2.56875	2.5983	2.6237	2.56305	2.57115	2.5344	2.57875	2.5524	ç
		٨	2.6115	2.6250 2.6256	2.57065	2.6018 2.6018	2.6256 2.6256	2.56655	2.57115	2.5344	2.57665	2.5448 2.5442	£
75/8-16 or 2 675-16	Z	74	2 6128	7 6733	2 58270	2 6043	7 6733	2 57720	2 58440	2 5570	7 59160	2 5710	ac
		ì	2.6122	2.6239	2.58245	2.6037	2.6239	2.57745	2.58465	2.5564	2.59135	2.5704	70
		3A	2.6145	2.6250	2.58440	2.6074	2.6250	2.58030	2.58440	2.5570	2.58980	2.5658	38
			2.6139	9629.2	c1.584.12	2.6068	9629.2	2.2808	2.58465	2.5564	2.58955	2.5652	
2 ^{5/} 8-20 or 2.625-20	Z C	2A	2.6145	2.6235	2.5910	2.6076	2.6235	2.5859	2.5925	2.5710	2.5991	2.5820	2B
			2.6140	2.6240	2.5908	2.6071	2.6240	2.5861	2.5927	2.5705	2.5989	2.5815	
		ЗA	2.6160	2.6250	2.5925	2.6104	2.6250	2.5887	2.5925	2.5710	2.5975	2.5787	38
			cc10.2	cc79.7	2.5923	2.6099	6620.2	2.2889	77657	2.5705	2.5973	2.5782	
2 ³ /4-4 or 2.750-4	UNC	14	2.7187	2.7468	2.58440	2.6769	2.7468	2.56860	2.58760	2.4790	2.60820	2.5170	18
		į	2.7178	2.7477	2.58415	2.6760	2.7477	2.56885	2.58785	2.4781	2.60795	2.5161	
		A2	2.718/ 2.718/	2.7468	2.58440 2.58415	2.6822	2./468	2.5/390	2.58760	2.4790	2.60130	2.5170	2B
		3A	2.7219	2.7500	2.58760	2.6880	2.7500	2.57970	2.58760	2.4790	2.59790	2.5094	38
		_	2.7210	2.7509	2.58735	2.6871	2.7509	2.57995	2.58785	2.4781	2.59765	2.5085	ļ
2¾-6 or 2.750-6	Z C	2A	2.7263	2.7473	2.63900	2.7021	2.7473	2.62990	2.64170	2.5700	2.65360	2.6000	2B
			2.7255	2.7481	2.63875	2.7013	2.7481	2.63015	2.64195	2.5692	2.65335	2.5992	
		3A	2.7290	2.7500	2.64170	2.7071	2.7500	2.63490	2.64170	2.5700	2.65060	2.5896	38
			2.7282	2.7508	2.64145	2.7063	2.7508	2.63515	2.64195	2.5692	2.65035	2.5888	
2¾-8 or 2.750-8	Z	2A	2.7304	2.7475	2.66630	2.7121	2.7475	2.65800	2.66880	2.6150	2.67960	2.6400	2B
			2.7297	2.7482	2.66605	2.7114	2.7482	2.65825	2.66905	2.6143	2.67935	2.6393	!
		SA SA	2.7329	2.7507	2.66855	2.7160 2.7160	2.7507	2.66275	2.66905	2.6143	2.67665 2.67665	2.629/ 2.6290	H.
2¾-12 or 2.750-12	CN	2A	2.7352	2.7481	2.69400	2.7239	2.7481	2.68780	2.69590	2.6600	2.70400	2.6780	7 B
			2.7346	2.7487	2.69375	2.7233	2.7487	2.68805	2.69615	2.6594	2.70375	2.6774	
		3A	2.7371	2.7500	2.69590	2.7274	2.7500	2.69130	2.69590	2.6600	2.70190	2.6698	38
		_	2.7365	2.7506	2.69565	2.7268	2.7506	2.69155	2.69615	2.6594	2.70165	2.6692	
2¾-16 or 2.750-16	S	2A	2.7378	2.7483	2.70770	2.7293	2.7483	2.70220	2.70940	2.6820	2.71660	2.6960	2B
			2.7372	2.7489	2.70745	2.728/	2.7489	2.70245	2.70965	2.6814	2.71635	2.6954	ţ
		5	2.7389	2.7506	2.70915	2.7318 2.7318	2.7506	2.70555	2.70965	2.6814	2.71455	2.6902	â

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS - LIMITS OF SIZE (CONT'D)

				-	V Thread-9	Setting Plugs			3	Thread-S	etting Ring	s		AN /
				60		Ž	01 CO (10)		5		NOT G	(IH) O		AME
Maminal Cira	Contor		Major D	iameter	D:4 . F	Major D	iameter	1.420	- - -		1-7,0			RICA
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Pitch Diam.	Minor Diam.	Class	N NA
1	2	3	4	J.	9	2	8	6	10	11	12	13	14	
			Ľ	Ŀ	іл.	Ľ	'n.	Ľ	Ë.	i.	Ŀ	Ŀ		NAL
2 ^{3/4-} 20 or 2.750-20	N N	2A	2.7395	2.7485	2.7160	2.7326	2.7485	2.7109	2.7175	2.6960	2.7241	2.7070	28	SI
			2.7390	2.7490	2.7158	2.7321	2.7490	2.7111	2.7177	2.6955	2.7239	2.7065		ΓAΝ
		¥	2.7410 2.7405	2.7500 2.7505	2.7175 2.7173	2.7354 2.7349	2.7500	2.7137 2.7139	2.7175 2.7177	2.6960 2.6955	2.7225 2.7223	2.7037 2.7032	38	IDAF
27/8-6 or 2 875-6	2 -	AC AC	78517	18777	002326	7 8760	18733	J 76470	02325	2 000		1 7 7 6	Ę	٩D
0-7/0-7 10 0-5/1	5	š	2.8504	2.8730	2.76365	2.8261	2.0/22	2.75495	2.76695	0660.2	2.//0/0	062/.2	7B	
		3 A	2.8540	2.8750	2.76670	2.8320	2.8750	2.75980	2.76670	2.6950	2.77570	2.7146	3B	
			2.8532	2.8758	2.76645	2.8312	2.8758	2.76005	2.76695	2.6942	2.77545	2.7138		
27/8-8 or 2.875-8	Z C	2A	2.8554	2.8725	2.79130	2.8370	2.8725	2.78290	2.79380	2.7400	2.80480	2.7650	28	
			2.8547	2.8732	2.79105	2.8363	2.8732	2.78315	2.79405	2.7393	2.80455	2.7643		
		3A	2.8579	2.8750	2.79380	2.8416	2.8750	2.78750	2.79380	2.7400	2.80200	2.7547	3B	
			2.8572	2.8757	2.79355	2.8409	2.8757	2.78775	2.79405	2.7393	2.80175	2.7540		
2 ^{7/8} -12 or 2.875-12	N	2 A	2.8602	2.8731	2.81900	2.8488	2.8731	2.81270	2.82090	2.7850	2.82910	2.8030	2B	
			2.8596	2.8737	2.81875	2.8482	2.8737	2.81295	2.82115	2,7844	2.82885	2.8024		
		34	2.8621 7.8615	2.8750	2.82090 2.82090	2.8523	2.8750	2.81620	2.82090	2.7850	2.82710	2.7948	3B	
			CI 00.7	00/07	CON70.7	/1 60.7	QC/0.7	2.8 1645	CI 128.2	2./844	2.82685	2.7942		
2 ^{7/8-} 16 or 2.875-16	Z D	2A	2.8628	2.8733	2.83270	2.8542	2.8733	2.82710	2.83440	2.8070	2.84170	2.8210	2B	
			2.8622	2.8739	2.83245	2.8536	2.8739	2.82735	2.83465	2.8064	2.84145	2.8204		
		34	2.8645	2.8750	2.83440	2.8573	2.8750	2.83020	2.83440	2.8070	2.83990	2.8158	3B	
			6000.7	DC /0.7	CI #C0.2	/0007	00/0.7	CP0C0.7	2.03405	2.8064	C04620.2	2418.2		
2 ^{7/8} -20 or 2.875-20	Z D	2A	2.8644	2.8734	2.8409	2.8574	2.8734	2.8357	2.8425	2.8210	2.8493	2.8320	2B	U
		V C	2.8639	2.8739 7.8750	2.8407	2.8569	2.8739	2.8359	2.8427	2.8205	2.8491	2.8315 2.8315	Ģ	NIF
		Ś	2.8655	2.8755	2.8423	2.8598	2.8755	2.8388	2.8427	2.8205	2.8474	2.8282	8	IED
3-4 or 3.000-4	UNC	1	2.9687	2.9968	2.83440	2.9266	2.9968	2.81830	2.83760	2.7290	2.85850	2.7670	18	INC
			2.9678	2.9977	2.83415	2.9257	2.9977	2.81855	2.83785	2.7281	2.85825	2.7661		4 5
		2A	2.9687	2.9968	2.83440	2.9320	2.9968	2.82370	2.83760	2.7290	2.85150	2.7670	2 B	SCR
		34	8/96/2 2 9719	3 0000	2.83415 2.83760	2.9311 2.9379	3 0000	2.82395 7.87060	2.83785 2.83760	2.7281	2.85125	2.7661 2.7504	80	EW
			2.9710	3.0009	2.83735	2.9370	3.0009	2.82985	2.83785	2.7281	2.84775	2.7585	2	TH
3-6 or 3.000-6	N C	2A	2.9762	2.9972	2.88890	2.9518	2.9972	2.87960	2.89170	2.8200	2.90380	2.8500	28	READ
		3.4	42/672 0 0 7 0 0	0000 8	C0000.2	01 05.2	3 0000	C02/0.2	2.89120 0.80170	2618.2	2.5025	2.8492		S
			2.9782	3.0008	2.89145	2.9561	3.0008	2.88495	2.89195	2.8192	2.90055	2.8388	8	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDAR

GAGES AND GAGING FOR

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B LUNIFIED SCREW THREADS - LIMITS OF SIZE (CONT'D)

												ĺ	
				X	V Thread-S	etting Plugs			8	Thread-Se	etting Rings		
				CO		ž	DT GO (LO)		00		NOT G	(IH) O	
Nominal Gina	Comine		Major Di	iameter	Ditch	Major D	iameter	dite.	0:: <u>.</u> L		Ditch		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Minor Diam.	Diam.	Minor Diam.	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14
			Ë	. <u>c</u>	Ŀ	.ċ	Ľ	.ċ	. <u>e</u>	. <u>e</u>	. <u>e</u>	. <u>e</u>	
3-8 or 3.000-8	N N	2A	2.9803	2.9974	2.91620	2.9618	2.9974	2.90770	2.91880	2.8650	2.92990	2.8900	2B
			2.9796	2.9981	2.91595	2.9611	2.9981	2.90795	2.91905	2.8643	2.92965	2.8893	
		٩£	2.9829 2.9822	3.0007	2.91880	2.9658 2.9658	3.0000 3.0007	2.91240 2.91265	2.91880 2.91905	2.8650 2.8643	2.92710 2.92685	2.8797 2.8790	38
3-12 or 3.000-12	N	2A	2.9852	2.9981	2.94400	2.9738	2.9981	2.93770	2.94590	2.9100	2.95410	2.9280	28
			2.9846	2.9987	2.94375	2.9732	2.9987	2.93795	2.94615	2.9094	2.95385	2.9274	
		3A	2.9871 2.9865	3.0000 3.0006	2.94590 2.94565	2.9773 2.9767	3.0000 3.0006	2.94120 2.94145	2.94590 2.94615	2.9100 2.9094	2.95210 2.95185	2.9198 2.9192	38
3-16 or 3.000-16	N N	2A	2.9878	2.9983	2.95770	2.9792	2.9983	2.95210	2.95940	2.9320	2.96670	2.9460	28
			2.9872	2.9989	2.95745	2.9786	2.9989	2.95235	2.95965	2.9314	2.96645	2.9454	
		3A	2.9895	3.0000	2.95940	2.9823	3.0000	2.95520	2.95940	2.9320	2.96490	2.9408	38
			2.9889	3.0006	2.95915	2.9817	3.0006	2.95545	2.95965	2.9314	2.96465	2.9402	
3-20 or 3.000-20	N	2A	2.9894	2.9984	2.9659	2.9824	2.9984	2.9607	2.9675	2.9460	2.9743	2.9570	2B
			2.9889	2.9989	2.9657	2.9819	2.9989	2.9609	2.9677	2.9455	2.9741	2.9565	:
		۶	2.9905	3.0005	2.96/3	2.9848 2.9848	3.0005	2.9638 2.9638	2.9677	2.9460 2.9455	2.9726 2.9724	2.9537	89
31/8-6 or 3 125-6	Z	AC AC	3 1012	3 1222	3 01390	3 0767	3 1222	3 00450	3.01670	7 0450	1 07890	2 975N	BC
	5	, Ì	3.1004	3.1230	3.01365	3.0759	3.1230	3.00475	3.01695	2.9442	3.02865	2.9742	7
		3A	3.1040	3.1250	3.01670 2.0164E	3.0819	3.1250	3.00970 3.00005	3.01670	2.9450	3.02590	2.9646	38
			7001.0	0071.0		10000	0171.0	reenn'r	CC010.C	2.3442	C0C70.C	0006.7	
31/8-8 or 3.125-8	N	2A	3.1053	3.1224	3.04120	3.0867	3.1224	3.03260	3.04380	2.9900	3.05500	3.0150	28
		VC	3.1046	3.1231	3.04095	3.0860 2.0015	3.1231	3.03285	3.04405	2.9893	3.05475 2.05770	3.0143	ac
		5	3.1072	3.1257	3.04355	3.0908	3.1257	3.03765	3.04405	2.9893	3.05195	3.0040	<u>a</u>
31/8-12 or 3.125-12	N N	2A	3.1102	3.1231	3.06900	3.0988	3.1231	3.06270	3.07090	3.0350	3.07910	3.0530	28
			3.1096	3.1237	3.06875	3.0982	3.1237	3.06295	3.07115	3.0344	3.07885	3.0524	
		3A	3.1121	3.1250	3.07090	3.1023	3.1250	3.06620	3.07090	3.0350	3.07710	3.0448	38
			3.1115	3.1256	3.07065	3.1017	3.1256	3.06645	3.07115	3.0344	3.07685	3.0442	
3 ^{1/} 8-16 or 3.125-16	N	2A	3.1128	3.1233	3.08270	3.1042	3.1233	3.07710	3.08440	3.0570	3.09170	3.0710	2B
		٩٤	3.1122 3.1145	3 1250	3 08440	9CULC	3 1750	202020	3 08440	3 0570	CF1 60.0	3.0/04	3.8
			3.1139	3.1256	3.08415	3.1067	3.1256	3.08045	3.08465	3.0564	3.08965	3.0652	2

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ABLE 11 SETTIN	G GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B	IINIFIED SCREW THREADS — IIMITS OF SIZE (CONT'D)
	FABLE 11 SETTING G	-

Al	MERI	CAN	NAT	ION/	AL S	TAN	DAF	RD													I	JNI	FIED	INC	H	SC	RE\	N TH	IRE	ADS
				Class	4		1B	28	1	38	28	ę	9 2	2B		3B		2B	ЗR	2	2B	90	5	7B		3B		2B	Ę	ŝ
	~	(IH) O		Minor Diam.	13	. <u>e</u>	3.0170	3.0161 3.0170	3.0161	3.0094 3.0085	3.1000	3.0992 2.0992	3.0888	3.1400	3.1393	3.1297	0C71.r	3.1780	3.1608	3.1692	3.1960	3.1954 2.1008	3.1902	3.2250	3.2242	3.2146	3.2138	3.2650	3.2643	3.2540
	etting Ring	NOT G		Diam.	12	Ë.	3.10880	3.10855 3.10170	3.10145	3.09820 3.09795	3.15400	3.15375	3.15065	3.18010	3.17985	3.17730	60 X 1 1	3.20410	COCU2.C	3.20185	3.21670	3.21645	3.21465	3.27910	3.27885	3.27600	3.27575	3.30520	3.30495	3.30205
	Thread-Se			Diam.	=	.ċ	2.9790	2.9790	2.9781	2.9790 2.9781	3.0700	3.0692	3.0692	3.1150	3.1143	3.1150	2	3.1600	3 1600	3.1594	3.1820	3.1814	3.1814	3.1950	3.1942	3.1950	3.1942	3.2400	3.2393	3.2393
	3	Ğ	Diter	Diam.	10		3.08760	3.08760	3.08785	3.08760 3.08785	3.14170	3.14195	3.14195	3.16880	3.16905	3.16880 3.16905		3.19590	3 19590	3.19615	3.20940	3.20965	3.20965	3.26670	3.26695	3.26670	3.26695	3.29380	3.29405	3.29405
			0.4°C	Diam.	6	Ŀ	3.06800	3.07340	3.07365	3.07940 3.07965	3.12940	3.12965	3.13485	3.15750	3.15775	3.16230 3.16255		3.18770	3.19120	3.19145	3.20210	3.20235	3.20545	3.25430	3.25455	3.25950	3.25975	3.28240	3.28265	3.28745
OL SIZE (C		DT GO (LO)	ameter	Full-Form	8	in.	3.2467	3.24/0 3.2467	3.2476	3.2500 3.2509	3.2472	3.2480 2.2500	3.2508	3.2474	3.2481	3.2500	2014	3.2481	3.2500	3.2506	3.2483	3.2489 3.2500	3.2506	3.3721	3.3729	3.3750	3.3758	3.3724	3.3731	3.3757
	etting Plugs	Ň	Major Di	Truncated	7	.u	3.1763	3.1817	3.1808	3.1877 3.1868	3.2016	3.2008 3.2068	3.2060	3.2116	3.2109	3.2164		3.2238	3.2273	3.2267	3.2292	3.2286	3.2317	3.3265	3.3257	3.3317	3.3309	3.3365	3.3358	3.3406
	V Thread-Se		Ditch	Diam.	6	in.	3.08430	3.08430	3.08405	3.08760 3.08735	3.13890	3.13865	3.14145	3.16620	3.16595	3.16880	2000	3.19400 2.10275	3.19590	3.19565	3.20770	3.20745	3.20915	3.26380	3.26355	3.26670	3.26645	3.29120	3.29095	3.29355
A SCREW I	>	GO	ameter	Full-Form	5	Ľ	3.2467	3.2467 3.2467	3.2476	3.2500 3.2509	3.2472	3.2480	3.2508	3.2474	3.2481	3.2500 3.2507		3.2481	3.2500	3.2506	3.2483	3.2489	3.2506	3.3721	3.3729	3.3750	3.3758	3.3724	3.3/31	3.3757
			Major Di	Truncated	4	ij.	3.2186	3.2186	3.2177	3.2219 3.2210	3.2262	3.2254	3.2282	3.2303	3.2296	3.2329 3.2329		3.2352	3.2371	3.2365	3.2378	3.2372 3.7395	3.2389	3.3511	3.3503	3.3540	3.3532	3.3553	3.3546	3.3572
				Class	3		1	2 A		34	2A	34	5	2A		3 A		2 A	3A		2A	٩A	5	2		3 A		2 A	• • •	¢
			Cariae	Designation	2		UNC				N			N C				z			N			Ŋ				N		
			Nominal Size	and Threads/in.	1		31/4-4 or 3.250-4				31⁄4-6 or 3.250-6			31⁄4-8 or 3.250-8				374-12 or 3.250-12			31⁄4-16 or 3.250-16			33%-6 or 3.375-6				3¾-8 or 3.375-8		

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARI

GAGES AND GAGING FOR

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

				>	V Thread-S	Setting Plugs			x	/ Thread-So	etting Ring	S	
				GO		Ž	OT GO (LO)		Ŭ	0	NOT G	(IH) O	
			Major Di	ameter	Ditch	Major D	iameter	d:4-ch	Dit o L	Miner	Ditch		
_	series Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
1	2	ñ	4	5	9	7	8	6	10	11	12	13	4
1			.i	in.	in.	in.	Ŀ	Ľ				. <u>.</u>	
	Z	2A	3.3602	3.3731	3.31900	3.3487	3.3731	3.31260	3.32090	3.2850	3.32930	3.3030	2B
	1		3.3596	3.3737	3.31875	3.3481	3.3737	3.31285	3.32115	3.2844	3.32905	3.3024	
		3A	3.3621	3.3750	3.32090	3.3522	3.3750	3.31610	3.32090	3.2850	3.32720	3.2948	38
		I	3.3615	3.3756	3.32065	3.3516	3.3756	3.31635	3.32115	3.2844	3.32695	3.2942	
	N N	2A	3.3628	3.3733	3.33270	3.3540	3.3733	3.32690	3.33440	3.3070	3.34190	3.3210	2B
			3.3622	3.3739	3.33245	3.3534	3.3739	3.32715	3.33465	3.3064	3.34165	3.3204	
		3A	3.3645	3.3750	3.33440	3.3572	3.3750	3.33010	3.33440	3.3070	3.34000	3.3158	38
			3.3639	3.3756	3.33415	3.3566	3.3756	3.33035	3.33465	3.3064	3.33975	3.3152	
		4	3.4686	3.4967	3.33430	3.4260	3.4967	3.31770	3.33760	3.2290	3.35910	3.2670	1B
			3.4677	3.4976	3.33405	3.4251	3.4976	3.31795	3.33785	3.2281	3.35885	3.2661	2
		2A	3.4686	3.4967	3.33430	3.4316	3.4967	3.32330	3.33760	3.2290	3.35190	3.2670	2B
			3.4677	3.4976	3.33405	3.4307	3.4976	3.32355	3.33785	3.2281	3.35165	3.2661	
		ЗA	3.4719	3.5000	3.33760	3.4376	3.5000	3.32930	3.33760	3.2290	3.34840	3.2594	38
			3.4710	3.5009	3.33735	3.4367	3.5009	3.32955	3.33785	3.2281	3.34815	3.2585	
	CN C	2A	3.4761	3.4971	3.38880	3.4514	3.4971	3.37920	3.39170	3.3200	3.40420	3.3500	2B
			3.4753	3.4979	3.38855	3.4506	3.4979	3.37945	3.39195	3.3192	3.40395	3.3492	
		3A	3.4790	3.5000	3.39170	3.4567	3.5000	3.38450	3.39170	3.3200	3.40110	3.3396	3B
			3.4782	3.5008	3.39145	3.4559	3.5008	3.38475	3.39195	3.3192	3.40085	3.3388	
I .	Ŋ	2A	3.4803	3.4974	3.41620	3.4615	3.4974	3.40740	3.41880	3.3650	3.43030	3.3900	2B
			3.4796	3.4981	3.41595	3.4608	3.4981	3.40765	3.41905	3.3643	3.43005	3.3893	
		3A	3.4829	3.5000	3.41880	3.4663	3.5000	3.41220	3.41880	3.3650	3.42740	3.3797	3B
			3.4822	3.5007	3.41855	3.4656	3.5007	3.41245	3.41905	3.3643	3.42715	3.3790	
	N	2A	3.4852	3,4981	3.44400	3.4737	3.4981	3.43760	3.44590	3.4100	3.45430	3.4280	2B
			3.4846	3.4987	3.44375	3.4731	3.4987	3.43785	3.44615	3.4094	3.45405	3.4274	
		3A	3.4871	3.5000	3.44590	3.4772	3.5000	3.44110	3.44590	3.4100	3.45220	3.4198	3B
			3.4865	3.5006	3.44565	3.4766	3.5006	3.44135	3.44615	3.4094	3.45195	3.4192	
	Ŋ	2A	3.4878	3.4983	3.45770	3.4790	3.4983	3.45190	3.45940	3.4320	3.46690	3.4460	2B
			3.4872	3.4989	3.45745	3.4784	3.4989	3.45215	3.45965	3.4314	3.46665	3.4454	
		3A	3.4895	3.5000	3.45940	3.4822	3.5000	3.45510	3.45940	3.4320	3.46500	3.4408	3B
			3.4889	3.5006	3.45915	3.4816	3.5006	3.45535	3.45965	3.4314	3.46475	3.4402	
	Ŋ	2A	3.6011	3.6221	3.51380	3.5763	3.6221	3.50410	3.51670	3.4450	3.52930	3.4750	28
			3.6003	3.6229	3.51355	3.5755	3.6229	3.50435	3.51695	3.4442	3.52905	3.4742	
		3 A	3.6040	3.6250	3.51670	3.5816	3.6250	3.50940	3.51670	3.4450	3.52620	3.4646	38
			3.6032	3.6258	3.51645	3.5808	3.6258	3.50965	3.51695	3.4442	3.52595	3.4638	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

AN	AME	RICA	N NA	TION	AL	. S	TA	ND	AR)																	UN	IFI	ED	IN	сн	SCI	RE	N	THF	REAL	DS	
		-	Class	14		2B	Ì	38		28		38		28		38		18		2B		38		28		38		28		3B		28		38		28		38
S	(IH) O		Minor Diam.	13	.9	3.5150	3.5143	3.5047	3.5040	3.5530	3.5524	3.5448	3.5442	3.5710	3.5704	3.5658	3.5652	3.5170	3.5161	3.5170	3.5161	3.5094	3.5085	3.6000	3.5992	3.5896	3.5888	3.6400	3.6393	3.6297	3.6290	3.6780	3.6774	3.6698	3.6692	3.6960	3.6954	3.6908
etting Ring	NOT G	9 1 1	Diam.	12		3.55540	3.55515	3.55250	3.55225	3.57930	3.57905	3.57720	3.57695	3.59190	3.59165	3.59000	3.58975	3.60940	3.60915	3.60210	3.60185	3.59850	3.59825	3.65440	3.65415	3.65120	3.65095	3.68050	3.68025	3.67760	3.67735	3.70430	3.70405	3.70220	3.70195	3.71690	3.71665	3.71500
Thread-Se		, in the second s	Diam.	11	.9	3.4900	3.4893	3.4900	3.4893	3.5350	3.5344	3.5350	3.5344	3.5570	3.5564	3.5570	3.5564	3.4790	3.4781	3.4790	3.4781	3.4790	3.4781	3.5700	3.5692	3.5700	3.5692	3.6150	3.6143	3.6150	3.6143	3.6600	3.6594	3.6600	3.6594	3.6820	3.6814	3.6820
3	Ğ	, laid	Diam.	10	۰. ٩	3.54380	3.54405	3.54380	3.54405	3.57090	3.57115	3.57090	3.57115	3.58440	3.58465	3.58440	3.58465	3.58760	3.58785	3.58760	3.58785	3.58760	3.58785	3.64170	3.64195	3.64170	3.64195	3.66880	3.66905	3.66880	3.66905	3.69590	3.69615	3.69590	3.69615	3.70940	3.70965	3.70940
		Dit.F	Diam.	6	. <u>.</u>	3.53220	3.53245	3.53710	3.53735	3.56260	3.56285	3.56610	3.56635	3.57690	3.57715	3.58010	3.58035	3.56740	3.56765	3.57300	3.57325	3.57920	3.57945	3.62900	3.62925	3.63440	3.63465	3.65710	3.65735	3.66210	3.66235	3.68760	3.68785	3.69110	3.69135	3.70190	3.70215	3.70510
	01 GO (LO)	ameter	Full-Form	8		3.6223	3.6230	3.6250	3.6257	3.6231	3.6237	3.6250	3.6256	3.6233	3.6239	3.6250	3.6256	3.7466	3.7475	3.7466	3.7475	3.7500	3.7509	3.7471	3.7479	3.7500	3.7508	3.7473	3.7480	3.7500	3.7507	3.7481	3.7487	3.7500	3.7506	3.7483	3.7489	3.7500 3.7506
etting Plugs	ž	Major Di	Truncated	7		3.5863	3.5856	3.5912	3.5905	3.5987	3.5981	3.6022	3.6016	3.6040	3.6034	3.6072	3.6066	3.6757	3.6748	3.6813	3.6804	3.6875	3.6866	3.7012	3.7004	3.7066	3.7058	3.7112	3.7105	3.7162	3.7155	3.7237	3.7231	3.7272	3.7266	3.7290	3.7284	3.7322
/ Thread-Se		4.45	Diam.	9	.9	3.54110	3.54085	3.54380	3.54355	3.56900	3.56875	3.57090	3.57065	3.58270	3.58245	3.58440	3.58415	3.58420	3.58395	3.58420	3.58395	3.58760	3.58735	3.63880	3.63855	3.64170	3.64145	3.66610	3.66585	3.66880	3.66855	3.69400	3.69375	3.69590	3.69565	3.70770	3.70745	3.70940
3	60	lameter	Full-Form	5		3.6223	3.6230	3.6250	3.6257	3.6231	3.6237	3.6250	3.6256	3.6233	3.6239	3.6250	3.6256	3.7466	3.7475	3.7466	3.7475	3.7500	3.7509	3.7471	3.7479	3.7500	3.7508	3.7473	3.7480	3.7500	3.7507	3.7481	3.7487	3.7500	3.7506	3.7483	3.7489	3.7500
		Major Di	Truncated	4		3.6052	3.6045	3.6079	3.6072	3.6102	3.6096	3.6121	3.6115	3.6128	3.6122	3.6145	3.6139	3.7185	3.7176	3.7185	3.7176	3.7219	3.7210	3.7261	3.7253	3.7290	3.7282	3.7302	3.7295	3.7329	3.7322	3.7352	3.7346	3.7371	3.7365	3.7378	3.7372	3.7395 2.7380
	-		Class	æ		2A		ЗA		2A		ЗA		2A		3A		1		2A		3A		2A		3A		2A		3A		2A		3A		2A		3A
			Designation	2		N				N				N				UNC						N				N				Z				CN C		
			and Threads/in.	-		35/8-8 or 3.625-8				3 ^{5/8-} 12 or 3.625-12				3 ^{5/8-} 16 or 3.625-16				3¾-4 or 3.750-4						3¾-6 or 3.750-6				3¾-8 or 3.750-8				3¾-12 or 3.750-12				3 ³ /4-16 or 3.750-16		

ANSI/ASME B1.2-1983

GAGES AND GAGING FOR

38	
AND	
2B ,	
18,	
3А,	
2A,	
1٨,	
CLASSES ,	SITE (CO)
SERIES,	ALTS OF
THREAD	
NDARD	/ THRFAI
R STA	CREW
S FO	2
V GE	NIEI
0	
SETTING	
1	
ABLE	

E	DIN	сня	SCRE	W TI	HREA	DS																,	٩N	۸N	1ER	ICAN	N N/	ATI	ON	IAL	STA	NI	DAF	D
				Class	14		2B	96		2B		3B		2B		38		2B		3B		18		2B	38		28		38		28		38	
	s	(IH) O	Minor	Diam.	13		3.7250	3.7242	3.7138	3.7650	3.7643	3.7547	3.7540	3.8030	3.8024	3.7948	3.7942	3.8210	3.8204	3.8158	3.8152	3.7670	3.7661	3.7670	3.7594	3.7585	3.8500	3.8492	3.8396	3.8388	3.8900	3.8893	3.8797	1 06 /0.0
	etting Ring	NOT G	Ditch	Diam.	12	in.	3.77950	3.77925	3.77605	3.80560	3.80535	3.80260	3.80235	3.82940	3.82915	3.82730	3.82705	3.84200	3.84175	3.84010	3.83985	3.85970	3.85945	3.85230	3.84870	3.84845	3.90460	3.90435	3.90140	3.90115	3.93070	3.93045	3.92770	CH /76.5
	Thread-Se) .	Minor	Diam.	11		3.6950	3.6942 2.6960	3.6942	3.7400	3.7393	3.7400	3.7393	3.7850	3.7844	3.7850	3.7844	3.8070	3.8064	3.8070	3.8064	3.7290	3.7281	3.7290	3.7290	3.7281	3.8200	3.8192	3.8200	3.8192	3.8650	3.8643	3.8650	CH00.C
	3	G	Ditch	Diam.	10	in.	3.76670	3.76695 3.76670	3.76695	3.79380	3.79405	3.79380	3.79405	3.82090	3.82115	3.82090	3.82115	3.83440	3.83465	3.83440	3.83465	3.83760	3.83785	3.83760	3.83760	3.83785	3.89170	3.89195	3.89170	3.89195	3.91880	3.91905	3.91880	CUCI 6.0
			Ditch	Diam.	6		3.75380	3.75405	3.75955	3.78200	3.78225	3.78700	3.78725	3.81240	3.81265	3.81600	3.81625	3.82670	3.82695	3.83000	3.83025	3.81720	3.81745	3.82290	3.82910	3.82935	3.87880	3.87905	3.88430	3.88455	3.90700	3.90725	3.91200	C7716.C
)T GO (LO)	ameter	Full-Form	8	Ŀ	3.8720	3.8728	3.8758	3.8723	3.8730	3.8750	3.8757	3.8730	3.8736	3.8750	3.8756	3.8732	3.8738	3.8750	3.8756	3.9966	3.9975	3.9966 2.007r	4.0000	4.0009	3.9970	3.9978	4.0000	4.0008	3.9973	3.9980	4.0000	4.000/
	etting Plugs	ž	Major Di	Truncated	7	Ľ	3.8260	3.8252	3.8307	3.8361	3.8354	3.8411	3.8404	3.8485	3.8479	3.8521	3.8515	3.8538	3.8532	3.8571	3.8565	3.9255	3.9246	3.9312	3.9374	3.9365	3.9510	3.9502	3.9565	3.9557	3.9611	3.9604	3.9661	+C06.0
	/ Thread-Se		Ditch	Diam.	9	Ľ	3.76370	3.76345	3.76645	3.79110	3.79085	3.79380	3.79355	3.81890	3.81865	3.82090	3.82065	3.83260	3.83235	3.83440	3.83415	3.83420	3.83395	3.83420	3.83760	3.83735	3.88870	3.88845	3.89170	3.89145	3.91610	3.91585	3.91880 2.018FF	CC01 2.C
	, ,	00	ameter	Full-Form	5	Ľ	3.8720	3.8728	3.8758	3.8723	3.8730	3.8750	3.8757	3.8730	3.8736	3.8750	3.8756	3.8732	3.8738	3.8750	3.8756	3.9966	3.9975	3.9966	6.66.c 4.0000	4.0009	3.9970	3.9978	4.0000	4.0008	3.9973	3.9980	4.0000	4.000/
			Major Di	Truncated	4		3.8510	3.8502	3.8532	3.8552	3.8545	3.8579	3.8572	3.8601	3.8595	3.8621	3.8615	3.8627	3.8621	3.8645	3.8639	3.9685	3.9676	3.9685	3.9719	3.9710	3.9760	3.9752	3.9790	3.9782	3.9802	3.9795	3.9829	7705.0
				Class	3		2A		5	2A		3A		2A		3A		2A		3A		1٨		2 ×	34		2A		3A		2A		3A	
			Control	Designation	2		N			Z				Z C				Z D				UNC					Z				Z D			
			Nominal Circ	and Threads/in.	1		17/8-6 or 3.875-6			17/8-8 or 3.875-8				17/8-12 or 3.875-12				37/8-16 or 3.875-16				1-4 or 4.000-4					1-6 or 4.000-6				1-8 or 4.000-8			

ANSI/ASME B1.2-1983

TABLE 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AND 3B UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)

					I NEAU		VI 3121 10						
				>	V Thread-S	etting Plugs			3	Thread-Se	etting Ring:		
				co		ž	OT GO (LO)		G		NOT G	(IH) O	
Mominal Gas	Coninc		Major D	lameter	Ditch	Major D	iameter	Ditch	Ditch	Minor	Ditch	Vince	
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
-	2	3	4	5	9	7	8	6	10	11	12	13	14
			.ċ	. <u>c</u>	Ŀ	.c	. <u></u>	Ċ	Ŀ	Ľ	. <u>:</u>	.E	
4-12 or 4.000-12	Z	2A	3.9851	3.9980	3.94390	3.9735	3.9980	3.93740	3.94590	3.9100	3.95440	3.9280	2B
		34	3.9845 3 9871	3.9986	3.94365 3.94500	3.9729 3.9771	3.9986	3.93765	3.94615 3.04500	3.9094	3.95415 3.95230	3.9274	ac
		5	3.9865	4.0006	3.94565	3.9765	4.0006	3.94125	3.94615	3.9094	3.95205	3.9192	0 0
4-16 or 4.000-16	N	2A	3.9877	3.9982	3.95760	3.9788	3.9982	3.95170	3.95940	3.9320	3.96700	3.9460	2B
			3.9871	3.9988	3.95735	3.9782	3.9988	3.95195	3.95965	3.9314	3.96675	3.9454	
		3A	3.9895 3.9889	4.0000 4.0006	3.95940 3.95915	3.9821 3.9815	4.0000 4.0006	3.95500 3.95525	3.95940 3.95965	3.9320 3.9314	3.96510 3.96485	3.9408 3.9402	38
41/8-6 or 4.125-6	N	2A	4.1010	4.1220	4.0137	4.0759	4.1220	4.0037	4.0167	3.9450	4.0297	3.9750	28
			4.0997	4.1233	4.0134	4.0746	4.1233	4.0040	4.0170	3.9437	4.0294	3.9737	
		3A	4.1040	4.1250	4.0167	4.0814	4.1250	4.0092	4.0167	3.9450	4.0264	3.9646	3B
			4.1027	4.1263	4.0164	4.0801	4.1263	4.0095	4.0170	3.9437	4.0261	3.9633	
4 ^{1/8-} 12 or 4.125-12	N N	2A	4.1101	4.1230	4.0689	4.0985	4.1230	4.0624	4.0709	4.0350	4.0794	4.0530	28
			4.1092	4.1239	4.0686	4.0976	4.1239	4.0627	4.0712	4.0341	4.0791	4.0521	
		3 A	4.1121	4.1250	4.0709	4.1021	4.1250	4.0660	4.0709	4.0350	4.0773	4.0448	38
			4.1112	4.125	4.0/00	4.1012	4.12	4.0003	4.0/12	4.0341	4.0//0	4.0439	
4 ¹ / ₈ -16 or 4,125-16	Z	2A	4.1127	4.1232	4.0826	4.1038	4.1232	4.0767	4.0844	4.0570	4.0920	4.0710	2B
			4.1118	4.1241	4.0823	4.1029	4.1241	4.0770	4.0847	4.0561	4.0917	4.0701	ŝ
		5	4.1136	4.1259	4.0841	4.1062	4.1259	4.0803	4.0847	4.0561	4.0898	4.0649	38
41/4-4 or 4.250-4	د د	2A	4.2185	4.2466	4.0842	4.1810	4.2466	4.0727	4.0876	3.9790	4.1025	4.0170	2B
			4.2170	4.2481	4.0839	4.1795	4.2481	4.0730	4.0879	3.9775	4.1022	4.0155	
		3 A	4.2219 4.2204	4.2500 4.2515	4.0876 4.0873	4.1873 4.1858	4.2500 4.2515	4.0790 4.0793	4.0876 4.0879	3.9790 3.9775	4.0988 4.0985	4.0094 4.0079	38
4 ¹ /4-6 or 4.250-6	N N	2A	4.2260	4.2470	4.1387	4.2008	4.2470	4.1286	4.1417	4.0700	4.1548	4.1000	28
			4.2247	4.2483	4.1384	4.1995	4.2483	4.1289	4.1420	4.0687	4.1545	4.0987	
		3A	4.2290	4.2500	4.1417	4.2064	4.2500	4.1342	4.1417	4.0700	4.1515	4.0896	3B
			4.2277	4.2513	4.1414	4.2051	4.2513	4.1345	4.1420	4.0687	4.1512	4.0883	
41/4-12 or 4.250-12	Z	2A	4.2351	4.2480	4.1939	4.2235	4.2480	4.1874	4.1959	4.1600	4.2044	4.1780	2B
			4.2342	4.2489	4.1936	4.2226	4.2489	4.1877	4.1962	4.1591	4.2041	4.1771	
		3A	4.2371	4.2500	4.1959 4.1956	4.2271 4.2262	4.2500 4.2509	4.1910	4.1959 4.1962	4.1591	4.2023	4.1698	38

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

3B	
AND	
2B ,	
1 B,	
ЗΑ,	
2A,	2
1 A ,	Ĭ
CLASSES ,	SIZE (CO)
SERIES,	AITS OF
THREAD	DS - LIN
STANDARD	REW THREAL
OR O	SCI
VGES F	NIFIED
NO ON	5
SETTIP	
ABLE 11	

							OF SIZE (
				v	V Thread-9	Setting Plugs			3	/ Thread-Se	etting Ring	S	
				60		Ž	DT GO (LO)		3	0	NOT G	(IH) O	
	Control		Major D	iameter	Ditch	Major D	iameter	Ditch	D:4 _ L		Ditch		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Minor Diam.	Class
1	2	3	4	5	6	7	8	6	10	11	12	13	14
			in.	in	in.	.Ľ	Ë	in.	in.	Ľ	Ŀ	. <u>e</u>	
41/4-16 or 4.250-16	Z	2A	4.2377	4.2482	4.2076	4.2288	4.2482	4.2017	4.2094	4.1820	4.2170	4.1960	2B
			4.2368	4.2491	4.2073	4.2279	4.2491	4.2020	4.2097	4.1811	4.2167	4.1951	
		3A	4.2395 4.2386	4.2500 4.2509	4.2094	4.2321 4.2312	4.2500	4.2050	4.2094 4.2097	4.1820 4.1811	4.2151 4.2148	4.1908 4.1899	38
43/8-6 or 4.375-6	Z D	2A	4.3510	4.3720	4.2637	4.3258	4.3720	4.2536	4.2667	4.1950	4.2799	4.2250	28
			4.3497	4.3733	4.2634	4.3245	4.3733	4.2539	4.2670	4.1937	4.2796	4.2237	
		ЗA	4.3540 4.3527	4.3750 4.3763	4.2667 4.2664	4.3313 4.3300	4.3750 4.3763	4.2591 4.2594	4.2667 4.2670	4.1950 4.1937	4.2766 4.2763	4.2146 4.2133	38
43/8-12 or 4.375-12	Z	2A	4.3601	4.3730	4.3189	4.3485	4.3730	4.3124	4.3209	4.2850	4.3294	4.3030	28
			4.3592	4.3739	4.3186	4.3476	4.3739	4.3127	4.3212	4.2841	4.3291	4.3021	ł
		3A	4.3621	4.3750	4.3209	4.3521	4.3750	4.3160	4.3209	4.2850	4.3273	4.2948	3B
			4.3612	4.3759	4.3206	4.3512	4.3759	4.3163	4.3212	4.2841	4.3270	4.2939	
4 ^{3/8-} 16 or 4.375-16	Z N	2A	4.3627	4.3732	4.3326	4.3538	4.3732	4.3267	4.3344	4.3070	4.3420	4.3210	2 B
			4.3618	4.3741	4.3323	4.3529	4.3741	4.3270	4.3347	4.3061	4.3417	4.3201	
		3A	4.3645	4.3750	4.3344	4.3571	4.3750	4.3300	4.3344	4.3070	4.3401	4.3158	38
			4.3030	4C/C.4	4.3341	4.3002	40.76.4	4.3303	4.334/	4.3001	4.3390	4.3149	
47/2-4 or 4.500-4	Z	2A	4.4684	4.4965	4.3341	4.4308	4.4965	4.3225	4.3376	4.2290	4.3527	4.2670	2 B
			4.4669	4.4980	4.3338	4.4293	4.4980	4.3228	4.3379	4.2275	4.3524	4.2655	
		3A	4.4719	4.5000	4.3376	4.4372	4.5000	4.3289	4.3376	4.2290	4.3489	4.2594	38
			4.4704	4.5015	4.33/3	4.435/	4.5015	4.3292	4.3379	4.2275	4.3486	4.2579	
41/2-6 or 4.500-6	Z	2A	4.4759	4.4969	4.3886	4.4506	4.4969	4.3784	4.3917	4.3200	4.4050	4.3500	2 B
			4.4746	4.4982	4.3883	4.4493	4.4982	4.3787	4.3920	4.3187	4.4047	4.3487	
		ЗA	4.4790	4.5000	4.3917	4.4562	4.5000	4.3840	4.3917	4.3200	4.4016	4.3396	38
			4.4777	4.5013	4.3914	4.4549	4.5013	4.3843	4.3920	4.3187	4.4013	4.3383	
4 ¹ / ₂ -12 or 4.500-12	Z C	2A	4.4851	4.4980	4.4439	4.4735	4.4980	4.4374	4.4459	4.4100	4.4544	4.4280	28
			4.4842	4.4989	4.4436	4.4726	4.4989	4.4377	4.4462	4.4091	4.4541	4.4271	
		ЗA	4.4871	4.5000	4.4459	4.4771	4.5000	4,4410	4.4459	4.4100	4.4523	4.4198	3B
			4.4862	4.5009	4.4456	4.4762	4.5009	4.4413	4.4462	4.4091	4.4520	4.4189	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

TABLE 11	SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 1A, 2A, 3A, 1B, 2B, AN	Z

38

Class 4 **2B** 38 **2B** 38 28 38 28 38 28 38 **2B** 38 **2B** 38 Minor Diam. 4.4408 4.4646 4.5448 4.5439 4.5710 4.5658 4.5649 4.5155 4.5094 4.6000 4.5896 4.5883 4.6698 4.6689 4.4460 4.4399 4.4750 4.4737 4.4633 4.5530 4.5521 4.5701 4.5170 4.5079 4.5987 4.6780 4.6771 4.4451 NOT GO (HI) 13 <u>.</u> W Thread-Setting Rings Pitch Diam. 4.6026 4.6551 4.6548 4.6518 4.6515 4.7046 4.7043 4.5267 4.5793 4.5775 4.5920 4.5903 4.6029 4.5990 4.7025 4.7022 4.5300 4.5297 4.5796 4.5772 4.5923 4.5900 4.5987 in. 4.4670 4.4667 4.4651 4.4648 4.5264 12 4.5350 Minor Diam. 4.4320 4.4437 4.4450 4.4437 4.5341 4.5570 4.4775 4.4790 4.4775 4.5687 4.5700 4.6600 4.6600 4.6591 4.4311 4.4311 4.4450 4.5350 4.5341 4.5570 4.5561 4.5561 4.4790 4.5700 4.5687 4.4320 Ξ Ë. 9 Pitch Diam. 4.5170 4.5167 4.5170 4.5712 4.5709 4.5712 4.5847 4.5844 4.5876 4.5879 4.5876 4.5879 4.6420 4.6417 4.6420 4.6959 4.6962 4.6959 4.4597 4.4594 4.5709 4.5844 4.5847 4.6962 in. 4.4594 4.4597 4.5167 4.6417 9 SIZE (CONI'U) Pitch Diam. 4.5659 4.5036 4.5090 4.5622 4.5625 4.5768 4.5799 4.5802 4.5724 4.5727 4.5788 4.6286 4.6340 4.6872 4.6875 4.6909 4.6912 in. 4.4517 4.4520 4.4550 4.5033 4.5093 4.5662 4.5765 4.5791 4.6283 4.6343 4.4553 6 NOT GO (LO) Full-Form 4.6219 4.6232 4.6250 4.6230 4.6239 4.6250 4.6259 4.6250 4.6259 4.7465 4.7480 4.7500 4.7515 4.7482 4.7500 4.7513 4.7480 4.7489 4.7500 4.7509 4.5000 4.5009 4.6263 4.6232 4.6241 4.7469 in. 4.4982 4.4991 **Major Diameter** 8 UNIFIED SCREW THREADS - LIMITS OF Truncated W Thread-Setting Plugs 4.5812 4.5742 4.5799 4.6020 4.6027 4.6070 4.6061 4.6792 4.7005 t.7062 4.7233 4.7270 in. 4.4788 4.4779 4.4821 4.4812 4.5755 4.5983 4.5974 4.6011 4.6036 1.6807 4.6871 4.6856 4.7049 4.7261 r Diam. Pitch 4.5838 4.6383 4.6936 4.4573 4.4594 4.5136 4.5133 4.5167 4.5164 4.5689 4.5686 4.5709 4.5706 4.5826 4.5823 4.5844 4.5876 4.5873 4.6417 4.6414 4.6939 4.6959 in. 4.4576 4.5841 4.5841 4.6386 4.6956 4.4591 ø Full-Form in. 4.4982 4.6250 4.6250 4.6250 4.7500 4.5000 4.6219 4.6230 4.6239 4.6259 4.6259 4.7465 4.7480 4.7500 4.7515 4.7482 4.7513 4.7489 4.7500 4.7509 4.4991 4.5009 4.6232 4.6263 4.6232 4.6241 4.7469 4.7480 **Major Diameter** ŝ 8 Truncated 4.6118 4.7246 4.7290 4.7277 4.4868 4.4895 4.4886 4.6009 4.6040 4.6027 4.6101 4.6092 4.6121 4.6112 4.6127 4.6145 4.6136 4.7184 4.7169 4.7219 4.7204 4.7259 4.7351 4.7342 4.7371 4.7362 in. 4.4877 4 Class 2 ¥ 2 З 2A æ 28 З¥ 2 ЗA 2 З 28 ¥ e Designation Series S Z S Z Z S Z 2 45/8-12 or 4.625-12 and Threads/in. 4^{1/2-16} or 4.500-16 4⁵/8-16 or 4.625-16 4¾4-12 or 4.750-17 **Nominal Size** 4^{5/8-6} or 4.625-6 43/4-4 or 4.750-4 43/4-6 or 4.750-6

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

38	
AND	
2 B ,	
1 B,	
3 A ,	
2 A ,	2
1 A ,	
CLASSES,	SITE (CO)
SERIES,	AITS OF
THREAD	
ANDARD	N THRFAI
FOR ST/	D SCRFV
GAGES	INITE
SETTING	
TABLE 11	

			UNIFIED	O SCREW T	HREAD	S – LIMITS	OF SIZE (C	(ONT'D)						IED
				>	V Thread-S	etting Plugs			8	Thread-Se	tting Ring:			INC
				9		Ž	01 GO (LO)		G		NOT G	(IH) O		H SU
	Contros		Major Di	ameter	Ditch	Major D	iameter	Ditch	1.10 H.	Minor	1,10	Minor		REVV
Nominal Size and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class	
-	2	e	4	5	9	7	8	6	10	11	12	13	14	TEAD
			Ę.	.Ë	in.	'n.	in.	ij.	Ŀ.	. <u>.</u>	.Ľ	. <u>c</u>		5
4¾+-16 or 4.750-16	N	2A	.4.73/7	4.7482	4.7076	4.7286	4.7482	4.7015	4.7094	4.6820	4.7173	4.6960	2B	
		٩Ł	4.7368	4.7491 4 7500	4.7073 4 7094	4.7277	4.7500	4.7018	4.7097	4.6811	4.7170	4.6951 4.6908	3R	
		, ,	4.7386	4.7509	4.7091	4.7311	4.7509	4.7052	4.7097	4.6811	4.7150	4.6899	ł	
47/8-6 or 4.875-6	N	2A	4.8509	4.8719	4.7636	4.8254	4.8719	4.7532	4.7667	4.6950	4.7802	4.7250	28	
			4.8496	4.8732	4.7633	4.8241	4.8732	4.7535	4.7670	4.6937	4.7799	4.7237		
		3A	4.8540	4.8750	4.7667	4.8311	4.8750	4.7589	4.7667	4.6950	۰.77 6 8	4.7146	3B	
			4.8527	4.8763	4.7664	4.8298	4.8763	4.7592	4.7670	4.6937	4.7765	4.7133		
47/8-12 or 4.875-12	N N	2A	4.8601	4.8730	4.8189	4.8483	4.8730	4.8122	4.8209	4.7850	4.8296	4.8030	2B	
			4.8592	4.8739	4.8186	4.8474	4.8739	4.8125	4.8212	4.7841	4.8293	4.8021		
		3 A	4.8621	4.8750	4.8209	4.8520	4.8750	4.8159	4.8209	4.7850	4.8275	4.7948	3B	
			4.8612	4.8759	4.8206	4.8511	4.8759	4.8162	4.8212	4.7841	4.8272	4.7939		
47/8-16 or 4.875-16	N	2A	4.8627	4.8732	4.8326	4.8536	4.8732	4.8265	4.8344	4.8070	4.8423	4.8210	2B	
			4.8618	4.8741	4.8323	4.8527	4.8741	4.8268	4.8347	4.8061	4.8420	4.8201		
		3A	4.8645	4.8750	4.8344	4.8570	4.8750	4.8299	4.8344	4.8070	4.8403	4.8158	38	
			4.8636	4.8759	4.8341	4.8561	4.8759	4.8302	4.8347	4.8061	4.8400	4.8149		
5-4 or 5.000-4	NU	2A	4.9683	4.9964	4.8340	4.9304	4.9964	4.8221	4.8376	4.7290	4.8530	4.7670	2B	74
			4.9668	4.9979	4.8337	4.9289	4.9979	4.8224	4.8379	4.7275	4.8527	4.7655		
		ЗA	4.9719	5.0000	4.8376	4.9370	5.0000	4.8287	4.8376	4.7290	4.8492	4.7594	38	
			4.9704	5.0015	4.8373	4.9355	5.0015	4.8290	4.8379	4.7275	4.8489	4.7579		
5-6 or 5.000-6	N	2A	4.9759	4.9969	4.8886	4.9503	4.9969	4.8781	4.8917	4.8200	4.9053	4.8500	2B	
			4.9746	4.9982	4.8883	4.9490	4.9982	4.8784	4.8920	4.8187	4.9050	4.8487		
		3A	4.9790	5.0000	4.8917	4.9561	5.0000	4.8839	4.8917	4.8200	4.9019	4.8396	38	
			4.9777	5.0013	4.8914	4.9548	5.0013	4.8842	4.8920	4.8187	4.9016	4.8383		
5-12 or 5.000-12	Ŋ	5A	4.9851	4.9980	4.9439	4.9733	4.9980	4.9372	4.9459	4.9100	4.9546	4.9280	2B	
			4.9842	4.9989	4.9436	4.9724	4.9985	4.9375	4.9462	4.9091	4.9543	4.9271		•
		3 A	4.9871	5.0000	4.9459	4.9770	5.0000	4.9409	4.9459	4.9100	4.9525	4.9198	38	
			4.9862	5.0009	4.9456	4.9761	5.0009	4.9412	4.9462	4.9091	4.9522	4.9189		

3 B	
, ANI	
B, 2B	
3 A , 1	
۱, 2A,	į
ES, 1A	LNC,
LASS	17F //
RIES, C	C DF C
D SEI	IMIT
HREA	
RD T	DEAD
ANDA	W TH
R ST/	CDE
IS FO	
CAGI	
TING	
SET	
LE 11	
TAB	

				0 SCKEW 1	HKEAU		OF SIZE (C						
				X	V Thread-9	Setting Plugs			3	Thread-Se	etting Ring:		
				00		ž	OT GO (LO)		ö		NOT G	(IH) O	
Nominal Ciza	Carioc		Major Di	iameter	Ditch	Major D	iameter	Ditch	Ditch	Minor	Ditch	, interest of the second se	
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Diam.	Class
F	2	3	4	5	9	7	8	6	10	11	12	13	14
			in.	in.	'n.	in.	in.	in.	in.	i.		. <u>:</u>	
5-16 or 5.000-16	Z D	2A	4.9877	4.9982	4.9576	4.9786	4.9982	4.9515	4.9594	4.9320	4.9673	4.9460	2B
			4.9868	4.9991	4.9573	4.9777	4.9991	4.9518	4.9597	4.9311	4.9670	4.9451	
		3A	4.9895 4.9886	5.0000 5.0009	4.9594 4.9591	4.9820 4.9811	5.0000 5.0009	4.9549 4.9552	4.9594 4.9597	4.9320 4.9311	4.9653 4.9650	4.9408 4.9399	38
51/8-6 or 5.125-6	CN	2A	5.1008	5.1218	5.0135	5.0752	5.1218	5.0030	5.0167	4.9450	5.0304	4.9750	28
			5.0995	5.1231	5.0132	5.0739	5.1231	5.0033	5.0170	4.9437	5.0301	4.9737	
		3 A	5.1040 5.1027	5.1250 5.1263	5.0167 5.0164	5.0810 5.0797	5.1250 5.1263	5.0088	5.0167 5.0170	4.9450 4.9437	5.0270 5.0267	4.9646 4.9633	38
51/8-12 or 5.125-12	ß	2A	5.1101	5.1230	5.0689	5.0983	5.1230	5.0622	5.0709	5.0350	5.0796	5.0530	28
			5.1092	5.1239	5.0686	5.0974	5.1239	5.0625	5.0712	5.0341	5.0793	5.0521	
		3 A	5.1121	5.1250	5.0709	5.1020	5.1250	5.0659	5.0709	5.0350	5.0775	5.0448	38
			5.1112	5.1259	5.0706	5.1011	5.1259	5.0662	5.0712	5.0341	5.0772	5.0439	
5 ^{1/} 8-16 or 5.125-16	CN	2A	5.1127	5.1232	5.0826	5.1036	5.1232	5.0765	5.0844	5.0570	5.0923	5.0710	2B
			5.1118	5.1241	5.0823	5.1027	5.1241	5.0768	5.0847	5.0561	5.0920	5.0701	
		3A	5.1145 5.1136	5.1250 5.1259	5.0844 5.0841	5.1070 5.1061	5.1250 5.1259	5.0799 5.0802	5.0844 5.0847	5.0570 5.0561	5.0903 5.0900	5.0658 5.0649	38
51/4-4 or 5.250-4	ß	28	5.2183	5.2464	5.0840	5.1803	5.2464	5.0720	5.0876	4.9790	5.1032	5.0170	28
			5.2168	5.2479	5.0837	5.1788	5.2479	5.0723	5.0879	4.9775	5.1029	5.0155	
		34	5.2219	5.2500	5.0876	5.1869 5.1854	5.2500	5.0786 5.0789	5.0876 5.0870	4.9790	5.0993	5.0094	38
						50.5		50.50	6 000-0	C 11C.F	ACCA-C	c /00.0	
5 ^{1/4-6} or 5.250-6	N	2A	5.2258	5.2468	5.1385	5.2001	5.2468	5.1279	5.1417	5.0700	5.1555	5.1000	2B
			5.2245	5.2481	5.1382	5.1988	5.2481	5.1282	5.1420	5.0687	5.1552	5.0987	
		3 A	5.2290	5.2500	5.1417	5.2060	5.2500 5.2513	5.1338	5.1417	5.0700	5.1520	5.0896	3B
			//77.6	6167.6	9. 14 14	7,402.0	6167.6	140.0	0.142U	/900.0	1101.0	5.0883	
51⁄4-12 or 5.250-12	N	2A	5.2351	5.2480	5.1939	5.2233	5.2480	5.1872	5.1959	5.1600	5.2046	5.1780	2B
			5.2342	5.2489	5.1936	5.2224	5.2489	5.1875	5.1962	5.1591	5.2043	5.1771	
		ЗA	5.2371	5.2500	5.1959	5.2270	5.2500	5.1909	5.1959	5.1600	5.2025	5.1698	3B
			5.2362	5.2509	5.1956	5.2261	5.2509	5.1912	5.1962	5.1591	5.2022	5.1689	

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

38	
AND	
IB, 2B,	
. 3 A, .	
, 2A	Ē
1	Ż
CLASSES ,	SIZF (CO
SERIES,	AITS OF
THREAD	NI – SO
STANDARD	EW THRFA
FOR	D SCR
GAGES	UNIFIE
SETTING	
TABLE 11	

	1 301	12.00	llass	4			2B		38	1)B	1	38	2		2B		38		28			38	38	38 38	58 38 58 38	8 28 88	88 88 88	8 8 8 8 8	8 8 8 8 8	8 8 8 8 8 8	8 8 8 8 8 8		8 8 8 8 8 8 8	8 8 8 8 8 8 8 8
ſ			am.	2 2		ċ	1960	1951	1908	1899	750	222	146	2133		3030	3021	2948	2939	3210		3201	3201 3158	3201 3158 3149	3201 3158 3149 2670	3201 3158 3149 2670 2655	3201 3158 3149 2670 2655 2594	3201 3158 3149 2670 2554 25594 2579	3201 3158 3149 2670 2655 25594 2579 3500	3201 3158 2670 2655 2579 3500 3487	3201 3158 2670 26594 2579 3500 3396	3201 3158 3158 3149 2670 2655 2579 3500 3500 3396 3396 3383	3201 3158 3158 2650 25594 25594 25594 25599 3396 3396 3396 3396 3383 3383	3201 3158 3158 2670 2655 25594 25594 25594 25594 33800 33800 33966 3396 3396 3383 3396 3383	3201 3158 3158 2670 2670 2594 2594 2594 2594 2594 3380 3396 3396 3396 3396 3396 3396 3396 339
cings	1 GO (F					.=	5.1	5.1	5.1	5.1	5					5.3	5.3	5.2	2 5.2	5.3		- - -			2.2 2.3 2.4 5.2 5.3 2.4			5.2 5.3 5.3 5.2 5.2 5.2 5.2 5.2	5.2.2.2.3.3.3 5.3.5.2.2.2.3 5.3.5.2.2.2.3 5.3.5.2.5.2.3 5.3.5.2.5.2.5.3 5.3.5.2.5.5.5 5.3.5.5.5.5.5 5.3.5.5.5.5 5.3.5.5.5.5	5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 7 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
Setting F	Ŷ		Diam	12	-	Ŀ.	5.2173	5.2170	5.2153	5.2150	5 2805	5.2803	5.277	5 2765	70/7·r	5.3296	5.3293	5.3275	5.3272	5.3423	5.3420		5.340	5.3403	5.340 5.340 5.353	5.340 5.340 5.353 5.353	5.340 5.3400 5.353 5.353 5.353	5.340 5.340 5.353 5.353 5.349 5.349	5.3405 5.3400 5.3534 5.3534 5.3494 5.3494 5.34956 5.34956	5.3405 5.3400 5.3534 5.3494 5.3494 5.3494 5.4056 5.4056 5.4056	5.3400 5.3494 5.3494 5.3494 5.3494 5.3494 5.4056 5.3494 5.4056 5.3494	5.3402 5.353405 5.353404 5.353404 5.34056 5.4056 5.4056 5.4056 5.4056 5.4056 5.4056 5.4056	5.3402 5.3402 5.3532 5.3532 5.3532 5.3402 5.3402 5.3402 5.405 5.405 5.402 5.502 5.402 5.502 5.402 5.502 5.402 5.502 5.402 5.50	5.3405 5.3405 5.3534 5.3534 5.353405 5.353405 5.35405 5.35405 5.454 5.454 5.454 5.454 5.454	5.3405 5.3405 5.3534 5.3534 5.3405 5.3534 5.3405 5.3534 5.3405 5.354 5.3405 5.354 5.454 5.354 5.455 5.45545 5.4554 5.55455 5.55555 5.55555 5.55555 5.55555 5.555555
V Thread-	0		Minor Diam.	=		Ľ	5.1820	5.1811	5.1820	5.1811	5 1950	5 1937	5,1950	5 1937	1001.0	5.2850	5.2841	5.2850	5.2841	5.3070	5.3061	5.3070		5.3061	5.3061 5.2290	5.3061 5.2290 5.2275	5.3061 5.2290 5.2275 5.2290	5.3061 5.2290 5.2275 5.2275 5.2275	5.3061 5.2290 5.2275 5.2275 5.2275 5.2275 5.2275	5.3061 5.2290 5.2275 5.2275 5.2275 5.3200 5.3187	5.3061 5.2290 5.2275 5.2275 5.2275 5.3200 5.3187 5.3200	5.3061 5.2290 5.2275 5.2275 5.2290 5.3187 5.3187 5.3187 5.3187	5.3061 5.2290 5.2275 5.2275 5.2290 5.3200 5.3187 5.3187 5.3187 5.3187	5.3061 5.2290 5.2275 5.2275 5.2275 5.2200 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187	5.3061 5.2290 5.2275 5.2275 5.2275 5.2200 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187 5.3187 5.4100
>	0	0:1.5 L	Pitch Diam.	10		. <u>e</u>	5.2094	5.2097	5.2094	5.2097	5 2667	5.2670	5.2667	5 2670	0.007.0	5.3209	5.3212	5.3209	5.3212	5.3344	5.3347	5.3344		5.334/	5.3376	5.334/ 5.3376 5.3379	5.334/ 5.3376 5.3379 5.3376	5.3376 5.3376 5.3379 5.3376 5.3376	5.3376 5.3376 5.3379 5.3376 5.3379 5.3917	5.3376 5.3376 5.3376 5.3376 5.3379 5.3917 5.3920	5.334/ 5.3376 5.3376 5.3376 5.3376 5.3379 5.3917 5.3917 5.3917	5.334/ 5.3376 5.3376 5.3379 5.3379 5.3379 5.3379 5.3379 5.3379 5.3379 5.3320 5.3320	5.334/ 5.3376 5.3379 5.3379 5.3377 5.3377 5.3377 5.3377 5.3377 5.3320 5.3920 5.3920 5.3920	5.334/ 5.3376 5.3379 5.3379 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3377 5.3372 5.3372 5.3372 5.3372 5.3372 5.3372 5.3377	5.334/ 5.3376 5.3379 5.3379 5.3376 5.3377 5.3377 5.3377 5.3377 5.3370 5.3370 5.3459 5.3459 5.3459 5.3459
		0 1, 1 1	Pitch Diam.	6		Ľ	5.2015	5.2018	5.2049	5.2052	5 2529	5.2532	5.2587	5.2590	000710	5.3122	5.3125	5.3159	5.3162	5.3265	5.3268	5.3299	5 2207	70000	5.3219	5.3219 5.3222 5.3222	5.3219 5.3222 5.3285	5.3219 5.3222 5.3285 5.3288	5.3219 5.3219 5.3285 5.3288 5.378	5.3219 5.3219 5.3285 5.3288 5.378 5.3781	5.3219 5.3222 5.3285 5.3288 5.3781 5.3781 5.3837	5.3219 5.3228 5.32285 5.3288 5.3288 5.3288 5.3781 5.3837 5.3840	5.3219 5.3219 5.3228 5.3288 5.3788 5.3788 5.3781 5.3840 5.3840	5.3219 5.3219 5.3228 5.3288 5.3788 5.3788 5.3788 5.3840 5.3840 5.3840 5.4375 5.4375	5.3219 5.3219 5.3228 5.3288 5.3781 5.3781 5.3840 5.3840 5.3840 5.409 5.409 5.4409
	DT GO (LO)	iameter	Full-Form	æ		Ľ	5.2482	5.2491	5.2500	5.2509	5 3718	5.3731	5.3750	5,3763		5.3730	5.3739	5.3750	5.3759	5.3732	5.3741	5.3750	5.3759		5.4964	5.4964 5.4979	5.4964 5.4979 5.5000	5.4964 5.4979 5.5000 5.5015	5.4964 5.4979 5.5000 5.5015 5.4968	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.5000	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.5000 5.5013	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.4981 5.5013 5.5013	5.4964 5.4979 5.5000 5.5015 5.4981 5.4981 5.4980 5.5013 5.4980 5.4989	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.4981 5.5013 5.4989 5.5000 5.5000 5.5000
etting Plugs	ž	Major D	Truncated	7		.ċ	5.2286	5.2277	5.2320	5.2311	5 3751	5,3238	5,3309	5 3296	0070.0	5.3483	5.3474	5.3520	5.3511	5.3536	5.3527	5.3570	5.3561		5.4302	5.4302 5.4287	5.4302 5.4287 5.4368	5.4302 5.4287 5.4368 5.4353	5.4302 5.4287 5.4368 5.4353 5.4353	5.4302 5.4302 5.4368 5.4368 5.4353 5.4350 5.4487	5.4302 5.4302 5.4368 5.4353 5.4353 5.4350 5.4487 5.4559	5.4302 5.4302 5.4287 5.4368 5.4363 5.4353 5.4500 5.4487 5.4559 5.4546	5.4302 5.4287 5.4287 5.4368 5.4368 5.4353 5.4569 5.4559 5.4559 5.4559 5.4533	5.4302 5.4302 5.4287 5.4287 5.4368 5.4353 5.4559 5.466 5.4724 5.4724	5.4302 5.4287 5.4287 5.4286 5.4368 5.4353 5.4560 5.4569 5.4559 5.4724 5.4770 5.4770
N Thread-S		B:tor	Diam.	و		Ľ	5.2076	5.2073	5.2094	5.2091	5 2635	5.2632	5.2667	5 2664	1007.0	5.3189	5.3186	5.3209	5.3206	5.3326	5.3323	5.3344	5.3341		5.3340	5.3340 5.3337	5.3340 5.3337 5.3376	5.3340 5.3337 5.3376 5.3373	5.3340 5.3337 5.3376 5.3376 5.3373 5.3885	5.3340 5.3376 5.3376 5.3373 5.3373 5.3885 5.3885	5.3340 5.3337 5.3376 5.3373 5.3373 5.385 5.3885 5.3882 5.3917	5.3340 5.3337 5.3376 5.3376 5.3373 5.3885 5.3885 5.3882 5.3917 5.3914	5.3340 5.337 5.3376 5.3376 5.3373 5.3885 5.3882 5.3882 5.3917 5.3914 5.3914	5.3340 5.337 5.337 5.3376 5.3373 5.3385 5.3885 5.3882 5.3882 5.3917 5.3914 5.439 5.436	5.3340 5.3376 5.3376 5.3373 5.3373 5.3385 5.3385 5.3382 5.33917 5.3914 5.439 5.4439 5.4439 5.4439
-	09	iameter	Full-Form	ŝ		Ë.	5.2482	5.2491	5.2500	5.2509	5 3718	5.3731	5.3750	5 3763	rn/r.r	5.3730	5.3739	5.3750	5.3759	5.3732	5.3741	5.3750	5.3759		5.4964	5.4964 5.4979	5.4964 5.4979 5.5000	5.4964 5.4979 5.5000 5.5015	5.4964 5.4979 5.5000 5.5015 5.4968	5.4964 5.4979 5.5000 5.5015 5.4968 5.4968	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.4981	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.4981 5.5000 5.5013	5.4964 5.4979 5.5000 5.5015 5.4968 5.4981 5.5013 5.5013	5.4964 5.4979 5.5000 5.5015 5.4981 5.4981 5.5013 5.4980 5.4989	5.4964 5.4979 5.5000 5.5015 5.4981 5.4981 5.5013 5.4980 5.4980 5.4980 5.5000
		Major D	Truncated	4		.Ľ	5.2377	5.2368	5.2395	5.2386	5 3508	5 3495	5.3540	5 3527	1300.0	5.3601	5.3592	5.3621	5.3612	5.3627	5.3618	5.3645	5.3636		5.4683	5.4683 5.4668	5.4683 5.4668 5.4719	5.4683 5.4668 5.4719 5.4704	5.4683 5.4683 5.4719 5.4704 5.4758	5.4683 5.4668 5.4719 5.4704 5.4758 5.4758	5.4683 5.4668 5.4719 5.4704 5.4758 5.4758 5.4790	5.4683 5.4668 5.4719 5.4704 5.4758 5.4745 5.47790 5.4777	5.4683 5.4688 5.4719 5.4719 5.4704 5.4758 5.4758 5.4777 5.4851	5.4683 5.4688 5.4719 5.4719 5.4704 5.4758 5.4758 5.4790 5.4777 5.4842 5.4842	5.4683 5.4688 5.4719 5.4719 5.4704 5.4758 5.4790 5.4777 5.4821 5.4842 5.4871
			Class	۳			2A		3A		74	, İ	٩A	ì		2A		3A		2A		3A			2A	2A	2A 3A	2A 3A	2A 3A 2A	2A 3A 2A	2A 3A 3A 3A	2A 3A 3A 3A	2A 3A 3A 3A 2A	2A 3A 3A 2A 2A 2A	2A 3A
			Series Designation	2			N				Z	,)			ľ	Z				N C					CN	Z	z	Z	z z	z z	z z	z z	z z z	z z z	z z z
			Nominal Size and Threads/in.	-			574-16 or 5.250-16				53/8-6 or 5 375-6					53/8-12 or 5.375-12				5¾-16 or 5.375-16					51/2-4 or 5.500-4	51/2-4 or 5.500-4	51/2-4 or 5.500-4	572-4.or 5.500-4	51/2-4. or 5.500-4 51/2-6 or 5.500-6	51/2-4. or 5.500-4 51/2-6 or 5.500-6	572-4.or 5.500-4 572-6 or 5.500-6	51/2-4. or 5.500-4 51/2-6 or 5.500-6	51/2-4. or 5.500-4 51/2-6 or 5.500-6 51/2-10 or 5.500-12	51/2-4. or 5.500-4 51/2-6 or 5.500-6 51/2-12 or 5.500-12	51/2-4. or 5.500-4 51/2-6 or 5.500-6 51/2-12 or 5.500-12

B, AND 3	
1B, 2	
V, 3A ,	
1 A , 2/	(J , D)
CLASSES,	SIZE (CON
SERIES,	MITS OF
THREAD	
ANDARD	W THREA
FOR ST	FD SCRF
GAGE	LINIF
SETTING	
TABLE 11	

ANSI/ASME B AN AMERICAN	1.2-1 I NA	983 TION	AL S	TAN	DAR	0																UN	FIE	GA ED	GES	S A CH S	ND SCF	G/ REW	۹G ۱ ۱
				Class	14		2B	38		28		38		2B		38		2B		38		2B		38		2B		38	
	~	(IH) O		Minor Diam.	13	Ŀ.	5.4460	5.4408	5.4399	5.4750	5.4737	5.4646	5.4633	5.5530	5.5521	5.5448	5.5439	5.5710	5.5701	5.5658	5.5649	5.5170	5.5155	5.5094	5.5079	5.6000	5.5987	5.5896	5.5003
0 38	tting Ring	NOT G	Dia.L	Diam.	12	Ŀ	5.4673	5.4653 5.4653	5.4650	5.5307	5.5304	5.5272	5.5269	5.5799	5.5796	5.5776	5.5773	5.5925	5.5922	5.5905	5.5902	5.6035	5.6032	5.5995	5.5992	5.6558	5.6555	5.6523	5.6520
, 2B, ANI	Thread-Se		, in the second s	Minor Diam.	11	in.	5.4320	5.4311	5.4311	5.4450	5.4437	5.4450	5.4437	5.5350	5.5341	5.5350	5.5341	5.5570	5.5561	5.5570	5.5561	5.4790	5.4775	5.4790	5.4775	5.5700	5.5687	5.5700	5.5687
ı, 3 A , 1B,	3	ğ	Bito L	Diam.	10	Ŀ	5.4594	5.4594	5.4597	5.5167	5.5170	5.5167	5.5170	5.5709	5.5712	5.5709	5.5712	5.5844	5.5847	5.5844	5.5847	5.5876	5.5879	5.5876	5.5879	5.6417	5.6420	5.6417	5.6420
S, 1A, 2A ONT'D)			D:42L	Diam.	6	. <u>e</u>	5.4515	5.4549 5.4549	5.4552	5.5027	5.5030	5.5086	5.5089	5.5619	5.5622	5.5657	5.5660	5.5763	5.5766	5.5797	5.5800	5.5717	5.5720	5.5784	5.5787	5.6277	5.6280	5.6336	5.6339
ES, CLASSE OF SIZE (C		1 CO (LO)	ameter	Full-Form	8	. <u>c</u>	5.4982	5.5000	5.5009	5.6218	5.6231	5.6250	5.6263	5.6229	5.6238	5.6250	5.6259	5.6231	5.6240	5.6250	5.6259	5.7463	5.7478	5.7500	5.7515	5.7468	5.7481	5.7500	5.7513
HREAD SERI	etting Plugs	N	Major Di	Truncated	7	.5	5.4786	5.4777 5.4820	5.4811	5.5749	5.5736	5.5808	5.5795	5.5980	5.5971	5.6018	5.6009	5.6034	5.6025	5.6068	5.6059	5.6800	5.6785	5.6867	5.6852	5.6999	5.6986	5.7058	5.7045
DARD TH	V Thread-So			Diam.	9	. <u>e</u>	5.4576	5.4573	5.4591	5.5135	5.5132	5.5167	5.5164	5.5688	5.5685	5.5709	5.5706	5.5825	5.5822	5.5844	5.5841	5.5839	5.5836	5.5876	5.5873	5.6385	5.6382	5.6417	5.6414
FOR STANI D SCREW T	2	9	ameter	Full-Form	5	Ë	5.4982	5.4991	5.5009	5.6218	5.6231	5.6250	5.6263	5.6229	5.6238	5.6250	5.6259	5.6231	5.6240	5.6250	5.6259	5.7463	5.7478	5.7500	5.7515	5.7468	5.7481	5.7500	5.7513
G GAGES I UNIFIEI			Major D	Truncated	4	. <u>.</u>	5.4877	5.4868 5.4895	5.4886	5.6008	5.5995	5.6040	5.6027	5.6100	5.6091	5.6121	5.6112	5.6126	5.6117	5.6145	5.6136	5.7182	5.7167	5.7219	5.7204	5.7258	5.7245	5.7290	5.7277
SETTIN		I		Class	3		2 ×	3A		2		34		2A		3 A		2۸		3 A		2		3A		2		34	
TABLE 11				Series Designation	2		Ŋ			Ŋ				n				N N		_		N				CN CN	1		
				Nominal Size and Threads/in.	-		51/2-16 or 5.500-16			5 ⁵ /8-6 or 5.625+6				5\$%-12 or 5.625-12				5%-16 or 5.625-16				53/4-4 or 5.750-4				53/4-6 or 5.750-6			

38	
AND	
2 B,	
1 8,	
3 A ,	
2 A ,	ć
1,	Ē
SES,	C J
CLAS	175
ES, C	S HC
SERI	ITC
AD	
HRE	4
DI	
DAR	Jan.
INN	
R SI	100
6	
\GES	NIFE
3	-
Ň	
SET	
F	
ABLE	
ì	

			CNINE	D SCKEW	HKEAU	9 - LIMII	OF SIZE (C	(a ino,					
				>	V Thread-5	setting Plugs			5	/ Thread-Se	etting Ring	2	
	_			09		Ž	DT GO (LO)		Ğ	0	NOT G	(IH) O	
			Major D	iameter		Major D	iameter		1.0				
nominal size and Threads/in.	Jeries Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	Minor Diam.	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	14
	-		i.	in.	i.	in.	'n.	i.	in.	i.	in.	in.	
5¾+12 or 5.750-12	Z)	2 A	5.7350	5.7479 5.7488	5.6938 5.6935	5.7230	5.7479 5.7488	5.6869	5.6959	5.6600	5.7049 5.7046	5.6780	2 B
		3A	5.7374	5.7500	5.6959	5.7268	5.7500	5.6907	5.6959	5.6600	5.7026	5.6698	3B
			5.7362	5.7509	5.6956	5.7259	5.7509	5.6910	5.6962	5.6591	5.7023	5.6689	
5¾+16 or 5.750-16	CN CN	24	5.7376	5.7481	5.7075	5.7284	5.7481	5.7013	5.7094	5.6820	5.7175	5.6960	2B
			5.7367	5.7490	5.7072	5.7275	5.7490	5.7016	5.7097	5.6811	5.7172	5.6951	
		3A	5.7395	5.7500	5.7094	5.7318	5.7500	5.7047	5.7094	5.6820	5.7155	5.6908	38
			5.7386	5.7509	5.7091	5.7309	5.7509	5.7050	5.7097	5.6811	5.7152	5.6899	
57/8-6 or 5.875-6	CN	2A	5.8507	5.8717	5.7634	5.8247	5.8717	5.7525	5.7667	5.6950	5.7809	5.7250	2B
			5.8494	5.8730	5.7631	5.8234	5.8730	5.7528	5.7670	5.6937	5.7806	5.7237	
		ЗA	5.8540	5.8750	5.7667	5.8307	5.8750	5.7585	5.7667	5.6950	5.777.3	5.7146	38
			5.8527	5.8763	5.7664	5.8294	5.8763	5.7588	5.7670	5.6937	5.7770	5.7133	
57/ 8 -12 or 5.875-12	۲ ۲	2A	5.8600	5.8729	5.8188	5.8480	5.8729	5.8119	5.8209	5.7850	5.8299	5.8030	2B
			5.8591	5.8738	5.8185	5.8471	5.8738	5.8122	5.8212	5.7841	5.8296	5.8021	
		₹ S	5.8621 5.8612	5.8750 5.8759	5.8209	5.8518 5.8509	5.8750 5.8759	5.8157 5.8160	5.8209	5.7850 5.7841	5.8276	5.7948	38
			1 000	22.022	20-20-2	2020-2	22.22	20.027	;		2.40.2		
57/8-16 or 5.875-16	N	2×	5.8626	5.8731	5.8325	5.8534	5.8731	5.8263	5.8344	5.8070	5.8425	5.8210	2B
			5.8617	5.8740	5.8322	5.8525	5.8740	5.8266	5.8347	5.8061	5.8422	5.8201	
		ЗA	5.8645	5.8750	5.8344	5.8568	5.8750	5.8297	5.8344	5.8070	5.8405	5.8158	38
			5.8636	5.8759	5.8341	5.8559	5.8759	5.8300	5.8347	5.8061	5.8402	5.8149	
6-4 or 6.000-4	N	2A	5.9682	5.9963	5.8339	5.9298	5.9963	5.8215	5.8376	5.7290	5.8537	5.7670	2B
			5.9667	5.9978	5.8336	5.9283	5.9978	5.8218	5.8379	5.7275	5.8534	5.7655	
		ЗA	5.9719	6.0000	5.8376	5.9366	6.0000	5.8283	5.8376	5.7290	5.8496	5.7594	38
			5.9704	6.0015	5.8373	5.9351	6.0015	5.8286	5.8379	5.7275	5.8493	5.7579	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

A, 3A, 18, 28, AND 38	
E 11 SETTING GAGES FOR STANDARD THREAD SERIES, CLASSES, 14, 24 UNIFIED SCREW THREADS — LIMITS OF SIZE (CONT'D)	
TABLI	

				x	/ Thread-S	Setting Plugs			3	/ Thread-Se	etting Ring		
				09		Ž	OT GO (LO)		0	0	NOT G	(IH) O	
	3		Major D	iameter	Dia.L	Major D	iameter	La la	- Contraction	IV	1.10		
and Threads/in.	Designation	Class	Truncated	Full-Form	Diam.	Truncated	Full-Form	Diam.	Diam.	Diam.	Diam.	minor Diam.	Class
1	2	3	4	5	9	7	8	6	10	11	12	13	4
			in.	ü.	i.	in.	Ŀ.	Ŀ.	in.	in.	in.	i.	
6-6 or 6.000-6	Ŋ	2A	5.9757	5.9967	5.8884	5.9497	5.9967	5.8775	5.8917	5.8200	5.9059	5.8500	2B
			5.9744	5.9980	5.8881	5.9484	5.9980	5.8778	5.8920	5.8187	5.9056	5.8487	
		34	5.9790	6.0000	5.8917	5.9557	6.0000	5.8835	5.8917	5.8200	5.9024	5.8396	3B
			5.9777	6.0013	5.8914	5.9544	· 6.0013	5.8838	5.8920	5.8187	5.9021	5.8383	
6-12 or 6.000-12	N	24	5.9850	5.9979	5.9438	5.9730	5.9979	5.9369	5.9459	5.9100	5.9549	5.9280	2B
			5.9841	5.9988	5.9435	5.9721	5.9988	5.9372	5.9462	5.9091	5.9546	5.9271	
		34	5.9871	6.0000	5.9459	5.9768	6.0000	5.9407	5.9459	5.9100	5.9526	5.9198	3B
			5.9862	60009	5.9456	5.9759	6.0009	5.9410	5.9462	5.9091	5.9523	5.9189	
6-16 or 6.000-16	Z	2A	5.9876	5.9981	5.9575	5.9784	5.9981	5.9513	5.9594	5.9320	5.9675	5.9460	28
			5.9867	5.9990	5.9572	5.9775	5.9990	5.9516	5.9597	5.9311	5.9672	5.9451	
		34	5.9895	6.0000	5.9594	5.9818	6.0000	5.9547	5.9594	5.9320	5.9655	5.9408	3B
			5.9886	60009	5.9591	5.9809	60009	5.9550	5.9597	5.9311	5.9652	5.9399	

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 18 MAXIMUM-MATERIAL GO FUNCTIONAL LIMIT

5.1.6 Thread Roots. The major diameter of the GO thread ring gage shall be cleared beyond P/8 width of flat by either an extension of the flanks toward a sharp vee or by a clearance cut of substantially P/8 width and approximately central. The root clearance must be such that the maximum major diameter of the full-form section of the truncated thread-setting plug gage is cleared after the gage has been properly set to size.

5.1.7 Runout of Pitch and Minor Cylinders. On thread ring gages, an eccentric condition results in an undersize effective minor diameter, having a width of flat less than P/4, which may encroach on the maximum permissible limit for the root profile of the product external thread. The permissible minimum effective minor diameter as determined by measurements of runout (full-indicator movement) with respect to the pitch cylinder shall not be less than the specified minimum minor diameter minus the sum of the gage tolerances for the pitch and minor diameters.

5.1.8 Pitch Cylinder. Pitch cylinder is transferred by the setting of the thread ring gage to the applicable truncated setting plug gage.

5.1.9 Lead and Half-Angle Variations. Lead and half-angle variations shall be within the limits specified in Table 6. Misalignment of the threads on each side of the adjustable slot may not exceed the lead limits.

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolle

5.1.10 Incomplete Thread. The feather edge at both ends of the thread ring gage shall be removed. On gages larger than 1/2 in. or with a pitch coarser than 20 threads/in., remove not more than one pitch of the partially formed thread at each end to obtain a full-thread blunt start. On gages 1/2 in. and smaller or with a pitch of 20 threads/in. or finer, the end threads may have a 60 deg. chamfer from the axis of the gage to a depth of half to one pitch. This is acceptable in lieu of the blunt start.

5.1.11 Chip Grooves. GO thread ring gages of the adjustable type do not require chip grooves as the adjusting slots serve this purpose. Solid working thread ring gages are made with or without chip grooves, depending upon the gage designer's requirements.

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

5.1.12 Identification. The GO thread ring gage should be identified by the nominal size, threads/in., thread series, class, GO, PD, and pitch diameter. EXAMPLE:

1/4-20 (or .250-20) UNC-2A GO PD.2164

5.2 NOT GO (LO) Thread Ring Gages (Table 1 — Gage 1.2)

5.2.1 Purpose and Use. The NOT GO (LO) thread ring gage inspects the NOT GO (LO) functional diameter limit, B_1 , of product external thread. The NOT GO (LO) thread ring gage, when properly set to its respective calibrated thread-setting plug, represents the NOT GO (LO) functional diameter limit of the product external thread. The NOT GO (LO) thread ring gage and NOT GO (LO) threaded segment type indicating gage are more reliable for checking thinwalled parts which might be deformed by a NOT GO (LO) thread sing gages must be set to the applicable W tolerance-setting plugs.

NOT GO (LO) thread ring gages when applied to the product external thread may engage only the end threads (which may not be representative of the complete product thread).

Starting threads on NOT GO (LO) thread ring gages are subject to greater wear than the remaining threads. Such wear in combination with the incomplete threads at the end of the product thread permit further entry in the gage. NOT GO (LO) functional diameter is acceptable when the NOT GO (LO) thread ring gage applied to the product external thread does not pass over the thread more than three complete turns. The gage should not be forced. Special requirements such as exceptionally thin or ductile material, small number of threads, etc., may necessitate modification of this practice.

5.2.2 Basic Design. To better check the NOT GO (LO) functional diameter limit, the flank contact is less than that of the GO gage, and the length of the gaging element where practical is less than that of the GO gage.

5.2.3 Gage Blanks. For practical and economic reasons, the designs and thicknesses of thread ring gages have been standardized for various size ranges and pitches (see ANSI B47.1 or Table A4).

5.2.4 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 19.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

5.2.5 Thread Crests. The minimum minor diameter of the NOT GO (LO) thread ring gage shall be equal to the minimum pitch diameter of the external thread minus 0.25H with gage tolerance plus. This corresponds to a width of flat at the crest of the gage equal to 0.375p. See Table 4.

5.2.6 Thread Roots. The major diameter of the NOT GO (LO) thread ring gage shall clear the product thread by using a clearance cut of 0.25p width approximately central. The NOT GO (LO) thread ring gage shall clear the maximum major diameter of the full-form portion of the truncated thread-setting plug for the NOT GO (LO) thread ring gage. Thus, contact of the thread gage can occur on the sides of the threads, but not on the crest or root. Also, the effect of angle variation on the fit of the gage with the product thread is minimized.

5.2.7 Runout of Pitch and Minor Diameter Cylinders. The permissible minimum effective minor diameter, as determined by subtracting runout measurement (full-indicator movement) with respect to the pitch cylinder from the measured minor diameter, shall not be less than the specified minimum minor diameter minus twice the sum of the gage tolerances for pitch and minor diameters.

5.2.8 Pitch Cylinder. Pitch cylinder is transferred by the setting of the thread ring gage to the applicable truncated setting plug gage.

5.2.9 Lead and Half-Angle Variations. Lead and half-angle variations shall be within the limits specified in Table 6.

5.2.10 Incomplete Thread. The feather edge at both ends of the thread ring gage shall be removed. On gages larger than 1/2 in. nominal size or having pitches coarser than 20 threads/in., not more than one complete turn of the end threads shall be removed to obtain a full-thread blunt start. On gages 1/2 in. nominal size and smaller or having pitches of 20 threads/in. or finer, a 60 deg. chamfer from the axis of the gage is acceptable in lieu of the blunt start.

5.2.11 Identification. The NOT GO (LO) thread gage should be identified by the nominal size. threads/ in., thread series, class, NOT GO, PD, and pitch diameter.

EXAMPLE:

1/420 (or .250-20) UNC-2A NOT GO PD.2127

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 19 NOT GO (LO) FUNCTIONAL DIAMETER LIMIT

5.3 Thread Snap Gages — GO Segments or Rolls (Table 1 — Gage 2.1 and 2.3)

5.3.1 Purpose and Use. The thread snap gage with two GO threaded segments or two GO zero lead rolls inspects the maximum-material GO functional limit, A_1 , of product external thread. The setting of the GO segments or rolls represents the maximum material GO functional limit of the product external thread, and its purpose is to assure interchangeable assembly of maximum-material mating parts. The gaging length of the segments or rolls is equal to the length of the standard GO ring gages. The segments or rolls have a cumulative check of all thread elements except the major diameter.

The GO thread snap gage can also check roundness of the pitch cylinder for 180 deg. ovality by using the gage at different external diametral locations on the product thread.

5.3.2 Basic Design. The GO segments and rolls assembled into gage frames are the design of the individual gage manufacturer. The lengths of the two threaded segments and the two thread rolls spaced 180 deg. apart are equal to the standard GO ring gage blank lengths for practical and economic reasons. See ANSI B47.1 or Table A4.

GO thread segments shall engage 25% or more of the product circumference. Product shall be checked around full circumference of thread at sufficient axial positions to check the full-thread length.

Thread rolls shall be applied at several locations (three if possible) axially over the full-thread length of the product. The circumference shall be checked at each position.

5.3.3 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 20.

5.3.4 Thread Crests. The distance between the minor diameter of the GO thread segments and the outside diameter of GO thread rolls shall be equal to the maximum pitch diameter of the product external thread minus H/2 with a minus gage tolerance when assembled in gage frame. This corresponds to a width of flat of P/4 on crests. The thread crests shall be flat in an axial plane and parallel to the axis.

5.3.5 Thread Roots. The major diameter of the GO thread segments and root diameter of the GO rolls shall be cleared beyond a P/8 flat either by an extension of the flanks of the thread toward a sharp vee or by an undercut no greater than P/8 maximum width and approximately central. The root clearance

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

ł,

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 20 THREAD SNAP GAGES - MAXIMUM-MATERIAL GO FUNCTIONAL LIMIT

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled whe
must be such that the maximum major diameter of the full-form section of the truncated thread-setting plug gage is cleared after the gage has been properly set to size.

5.3.6 Runout. The pitch and minor cylinders of the threaded portion of the GO segments or rolls shall not exceed the specified runout as determined by measurements of runout (full-indicator movement). On each gaging member, with respect to the pitch cylinder, runout shall not exceed one-half the X gage minor diameter tolerance.

5.3.7 Pitch Cylinder. The pitch cylinder of the threaded GO segments and rolls shall be straight within the X gage pitch diameter limits specified.

5.3.8 Lead, Pitch, and Half-Angle Variations. Lead, pitch, and half-angle variations shall be within the limits specified. See Table 6.

5.3.9 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, GO, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A GO PD.2164

5.4 Thread Snap Gages — NOT GO (LO) Segments or Rolls (Table 1 — Gage 2.2 and 2.4)

5.4.1 Purpose and Use. The thread snap gage with two NOT GO (LO) segments or two NOT GO (LO) rolls inspects the NOT GO (LO) functional diameter limit, B_1 , of product external thread. The setting of the NOT GO (LO) segments or rolls represents the NOT GO (LO) functional diameter limit of the product external thread. In applying the thread snap limit gage, the NOT GO (LO) functional diameter is acceptable when gaging elements do not pass over the product thread.

The NOT GO (LO) thread snap gage can also check roundness of the pitch cylinder for 180 deg. ovality by passing the gage over the thread at different diametral locations on the external thread.

The NOT GO (LO) thread snap gage can also check taper of pitch cylinder by passing the gage over the thread at different locations axially on external thread.

5.4.2 Basic Design. In order that the NOT GO (LO) thread snap gage may effectively check the NOT

GO (LO) functional diameter limit, the flank contact is reduced by truncating the thread on segments and rolls. As the design of the segments or rolls is different with each gage manufacturer, the number of threads engaged in product thread will vary. Usually, the number of pitches engaged is approximately two.

5.4.3 Thread Form. The specifications for thread form are summarized in Table 4 and Fig. 21.

5.4.4 Thread Crests. The minor diameter of the NOT GO (LO) thread segments and the inner distance between the outside diameters of NOT GO (LO) thread rolls shall be equal to the minimum pitch diameter of the product external thread minus 0.25H with the gage tolerance plus when assembled in gage frame. This corresponds to a width of flat at the crest equal to 0.375p. See Table 4.

5.4.5 Thread Roots. The major diameter of the NOT GO (LO) thread segments or root diameter of the NOT GO (LO) rolls shall clear the product thread by using a clearance cut of 0.25p width approximately central. Snap gage contacts shall clear the maximum major diameter of the full-form portion of the setting plug for the NOT GO (LO) thread snap gage. Thus, contact of the thread gage can occur on the sides of the thread but not on the crest or root. Also, the effect of angle variation on the fit of the gage with the product thread is minimized.

5.4.6 Runout. The pitch and minor cylinders of the threaded NOT GO (LO) segments or the pitch and outside cylinders of the rolls shall not exceed the specified runout as determined by measurement of runout (full-indicator movement). On each gaging member, with respect to the pitch cylinder, runout shall not exceed one-half the X gage minor diameter tolerance.

5.4.7 Pitch Cylinder. The pitch cylinder of the threaded NOT GO (LO) segments or rolls shall be straight within the X gage pitch diameter limits specified.

5.4.8 Lead, Pitch, and Half-Angle Variations. Lead, pitch, and half-angle variations shall be within the limits specified. See Table 6.

5.4.9 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, NOT GO, PD, and pitch diameter. EXAMPLE:

1/4-20 (or .250-20) UNC-2A NOT GO PD.2127

1

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolle

5.5 Thread Snap Gages — Cone and Vee (Table 1 — Gage 2.5)

5.5.1 Purpose and Use. The thread snap gage with cone and vee rolls or segments inspects minimum-material diameter limit, C_1 . The setting of the cone and vee rolls or segments represents the minimum-material limit pitch diameter of the product external thread.

The cone and vee snap gage can check roundness of pitch diameter for 180 deg. ovality by passing the gage over the thread at different diametral locations on the external thread.

The cone and vee snap gage can check taper of pitch cylinder by passing the gage over the thread at different locations axially on external thread.

5.5.2 Basic Design. The segments are usually made having a surface contact at or slightly above the pitch line near the center of the flank. The rolls make point or line contacts approximately at the pitch line, depending upon the angle variations of the thread flanks. See Fig. 22 for details.

5.5.3 Thread Form. The specifications for thread form, thread crests, and thread roots are shown in Fig. 22.

5.5.4 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A PD.2127

5.6 Thread Snap Gages — Minimum Material: Thread Groove Diameter Type (Table 1 — Gage 2.6)

5.6.1 Purpose and Use. The thread snap gage with radius type ribbed rolls inspects minimum-material diameter limit, D_1 . The setting of the thread groove diameter type snap gage by NOT GO (LO) setting plug gage represents the minimum-material limit pitch diameter of the product external thread.

The thread groove diameter type snap gage can check roundness for 180 deg. ovality by passing the gage over the thread at different diametral locations on the external thread.

The thread groove diameter type snap gage can check taper of pitch cylinder by passing the gage over the thread at different locations axially on external thread. **5.6.2 Basic Design.** The thread groove diameter type has "best size" thread wire size radius ribbed rolls which contact at the pitch line.

5.6.3 Thread Form. The specifications for radius type rolls are shown in Fig. 23.

5.6.4 Identification. The assembled gage should be marked by the nominal size, threads/in., thread series, class, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A PD.2127

5.7 Plain Ring and Snap Gages to Check Major Diameter of Product External Threads (Table 1 — Gages 3.1, 3.2, and 3.4)

5.7.1 Purpose and Use. The GO and NOT GO cylindrical ring and plain snap gages inspect the major diameter of the product external thread. The GO gage must completely receive or pass over the major diameter of the product external thread to assure that the major diameter does not exceed the maximum-material limit. The NOT GO cylindrical ring gage or NOT GO plain snap gage must not pass over the major diameter of the product external thread to assure that the major diameter is not pass over the major diameter of the product external thread to assure that the major diameter is not pass over the major diameter is not less than the minimum-material limit.

5.7.2 Design of Gage Blanks and Gages. Plain cylindrical ring blanks and plain progressive adjustable snap gages have been standardized for various size ranges (see ANSI B47.1 and Fig. 24).

5.7.3 Identification. Cylindrical rings or plain snap gages should be marked with nominal size, threads/in., thread series, class, GO and/or NOT GO, and major diameter limits.

EXAMPLE:

1/4-20 UNC-2A GO.2489 and/or NOT GO.2408

5.7.4 Precision Instruments (Table 1 — Gage 14). Precision instruments such as dial calipers, outside micrometers, vernier calipers, and pocket slide calipers can also be used to measure the major diameter of product external thread.

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 22 THREAD SNAP GAGES – MINIMUM-MATERIAL PITCH DIAMETER LIMIT – CONE AND VEE

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

FIG. 23 THREAD SNAP GAGES -- MINIMUM-MATERIAL THREAD GROOVE DIAMETER LIMIT

5.8 Snap Gages for Minor Diameter of Product External Threads (Table 1 — Gages 3.3 and 3.5)

5.8.1 Purpose and Use. The GO thread ring gages inspect the depth of thread equivalent to the minor diameter of the product internal thread. If the minor diameter of the external thread requires checking, a minimum-maximum thread snap gage may be used. GO segment or roll snap gage must pass over product thread. NOT GO segment or roll must not pass over product thread.

5.8.2 Basic Design. A thread snap gage has segments or rolls with a thread form of 55 deg. maximum. There usually are three threads on the segments or three ribs on the rolls on GO and NOT GO gaging elements. See Fig. 25.

5.8.3 Identification. Thread snap gages should be marked with nominal size, threads/in., thread series, class, GO and NOT GO minor diameter limits, and MINOR DIAMETER EXTERNAL.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A GO — NOT GO (Customer's Specifications) MINOR DIAMETER EXTERNAL

5.9 Functional Indicating Thread Gages for External Thread (Table 1 — Gages 4.1 and 4.3)

5.9.1 Purpose and Use. The GO indicating thread gage (4.1 and 4.3) inspects the maximum-material GO functional limit and size, A_1 and A_2 , and the NOT GO (LO) functional diameter limit and size, B_1 and B_2 , of product external thread. The gage is also used to check even or odd lobe roundness of pitch cylinder. Indicating thread gages must be set to the proper thread-setting plug gages. Readings indicate the position of product external thread within the tolerance range.

5.9.2 Basic Design. Indicating gages have two or three contacts at 180 deg. or 120 deg., respectively. Gages with segments or rolls are designed with the length of the GO functional maximum-material gag-

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 24 MAJOR DIAMETER LIMIT

ing elements equal to the length of the standard GO ring gages.

5.9.3 Thread Form. The specifications for thread form for GO functional maximum-material segments and rolls are summarized in Table 4 and Fig. 26.

5.9.4 Thread Crests. The minor diameter of the GO functional maximum-material thread segments and the diameter of the circle surrounded by the roll cluster of GO functional maximum-material rolls shall be equal to the maximum pitch diameter of the product external thread minus H/2 with a minus X gage tolerance when assembled in gage frame. This corresponds to a width of flat of P/4 on crests. The thread crests shall be flat in an axial plane and parallel to the axis of segment or roll.

5.9.5 Thread Roots. The major diameter of the GO functional maximum-material thread segments and the root of the GO functional maximum-material rolls shall be cleared beyond a P/8 flat either by an

extension of the flanks of the thread toward a sharp vee or by an undercut no greater than P/8 maximum width and approximately central. The root clearance must be such that the major diameter of the full-form section of the thread-setting plug gage is cleared after the assembled gage has been properly set to size.

5.9.6 Runout. The pitch and minor cylinders of the threaded segments and the pitch and outside cylinders of the rolls shall not exceed the specified runout as determined by measurements of runout (full-indicator movement). On each gaging member with respect to the pitch cylinder, runout shall not exceed one-half the X gage minor diameter tolerance.

5.9.7 Pitch Cylinder. The pitch cylinder of the thread segments and rolls should be straight within the X gage pitch diameter limits specified.

5.9.8 Lead, Pitch, and Half-Angle Variations. Lead, pitch, and half-angle variations shall be within the limits specified. See Table 6.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 25 MINOR DIAMETER LIMIT SNAP TYPE

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

5.9.9 Identification. The segments and rolls shall be identified by the nominal size and threads/in. When indicating gage is assembled with proper contacts, the gage should be tagged with the nominal size, threads/in., thread series, class, PD, and pitch diameter limits.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A PD.2164-.2127

5.10 Minimum-Material Indicating Thread Gages for External Thread (Table 1 — Gages 4.5 and 4.6)

5.10.1 Purpose and Use. The indicating thread gage with cone and vee rolls or segments and the thread groove diameter type with rolls inspects the minimum-material limit and size $(C_1 \text{ and } C_2, D_1 \text{ and } D_2)$ of product external thread. Either type of three-roll and three-segment gage can check roundness of pitch cylinder for 120 deg. lobing and taper of pitch cylinder. The two rolls and two segments check even lobing roundness and taper. The indicating gages are set to the proper thread-setting plug gage. Readings indicate the position of product external thread pitch diameter within the tolerance range.

5.10.2 Basic Design. The cone and vee indicating thread gage has rolls or segments with contact near the pitch line or contact slightly above the pitch line near the center of the flank. The thread groove diameter type indicating thread gage also has two or three rolls with the radii on the ribs of rolls made to "best size" thread wire size.

5.10.3 Thread Form. The specifications on form of cone and vee rolls and segments and thread groove diameter type rolls are shown in Figs. 27 and 28.

5.10.4 Identification. The assembled gage should be tagged with the nominal size, threads/in., thread series, class, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A PD.2127

5.11 Indicating Runout Gage for External Threads (Table 1 — Gage 4.7)

5.11.1 Purpose and Use. This indicating gage inspects the runout of the major diameter, M_1 , to the pitch diameter of the product external thread. Readings indicate the position of product major diameter to the pitch diameter within the tolerance specified.

5.11.2 Basic Design. Indicating gages have three contacts, one plain and one threaded, at 120 deg., or two contacts, one plain and one threaded, at 180 deg. The threaded segments or roll contacts are minimum-material pitch diameter type. See Fig. 27. The length of the plain and threaded contacts are designed equal to the length of the standard GO ring gages. See ANSI B47.1 and Table A4. The indicating gage with plain gaging contact on outside diameter of thread-setting plug gage and thread contact on pitch diameter of thread-setting plug gage.

5.11.3 Thread Form, Thread Crests, and Lead and Half-Angle Variations. The specifications for thread form, thread crests, and lead and half-angle of thread segments and thread rolls are noted in 5.9. Plain contacts have a line bearing on major diameter of product. See Fig. 29.

5.11.4 Identification. The gaging elements, segments, or rolls should be marked with nominal size and threads/in. When indicating gage is assembled with proper gaging contacts, the indicating gage should be tagged with nominal size, threads/in., thread series, class, and RUNOUT.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A RUNOUT

5.12 Differential Gaging (Table 1 — Gage 4.8)

5.12.1 The concept of differential gaging for product external threads makes use of fundamental geometric theorems that relate directly to size, position, and form.

For differential gaging, two methods are used for measuring screw thread size:

- (a) GO functional size
- (b) pitch diameter (or thread groove diameter)

Only when a screw thread has perfect position and form [i.e., zero variation in lead (including helical path), flank angle, taper, and roundness] are these two measurements equal. Differential gaging is a variables method of in-process inspection, final conformance inspection, or both, that provides the actual numerical values for both GO functional and pitch diameter sizes. These are the two extreme sizes of any product screw thread. One of the sizes, pitch diamter, is the size of the thread pitch diameter with essentially zero variation in all other thread elements, while the other size, GO functional size, is the size of the thread with the effects of all variations in all other

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled v

FIG. 28 INDICATING THREAD GAGES—MINIMUM-MATERIAL THREAD GROOVE DIAMETER LIMIT AND SIZE

141

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 29 INDICATING THREAD GAGES - DIAMETER RUNOUT - MAJOR TO PITCH

thread elements added to the pitch diameter. The numerical difference between these two sizes is called a *cumulative thread element variation differential* and represents the diametral effect of the total amount of thread element variation differential.

The inspection process that further refines the total amount of thread element variation so that the amount of variation for each individual element becomes known is called a *single thread element variation differential*.

5.12.2 Cumulative Thread Element Variation Differential. Indicating gages have either three contacts at 120 deg. spacing or two contacts at 180 deg. spacing. The indicating gages with segments or rolls as shown in Figs. 26 and 30, sketch (a), give the functional size indicating reading, Z. The indicating gage with cone and vee segments or rolls with one thread pitch engagement at pitch diameter line, Fig. 27; and thread groove diameter type, Fig. 28; or both, shown in Fig. 30, sketches (c) and (d), give the pitch diameter size indicating reading, X. The difference in the indicator readings, Z-X, between the two types of gages gives the cumulative form differential reading which corresponds to the pitch diameter equivalent, $\Delta d_2 C$, for for the combinatin of lead, helix, flank angle, roundness, and taper variations on the product thread. See Fig. 30.

5.12.3 Single Thread Element Variation Differential

5.12.3.1 Lead (Helix) Differential Reading. The indicating gage reading, Y, using the full-form thread segments or rolls with one thread pitch engagement, similar to Figs. 26 and 30, sketch (b), is compared to the reading, Z, using the functional size gage shown in Figs. 26 and 30, sketch (a). The difference between the measured values, Z - Y, is the lead differential reading which corresponds to the pitch diameter equivalent, $\Delta d_2 \lambda$, for the lead and helix variation on the product thread.

5.12.3.2 Flank Angle Differential Reading. The indicating gage reading, X, using segments or rolls with cone and vee design, Figs. 27 and 30, sketch (c), is compared to the reading, Y, using the full-form thread segments or rolls, similar to Figs. 26 and 30, sketch (b). Both designs have one thread pitch engagement. The difference between the measured values, Y - X, is the flank angle differential reading which corresponds approximately to the pitch diameter equivalent, $\Delta d_2 \propto$, for the combined flank angle variation on product thread. ANSI/ASME B1.2-1983 AN AMERICAN NATIONAL STANDARD

5.12.3.3 Roundness and Taper Differential Readings. By the use of full-form thread segments or rolls with one thread pitch engagement, similar to Figs. 26 and 30, sketch (b); cone and vee segments or rolls, Figs. 27 and 30, sketch (c); or thread groove diameter type, Figs. 28 and 30, sketch (d), the roundness and taper of pitch cylinder is checked. Rotate the product between contacts at different axial locations on thread for maximum difference in roundness and taper readings. Two contacts spaced 180 deg. apart give even lobing out-of-round measurement. Three contacts spaced 120 deg. apart give odd lobing out-of-round measurements.

5.12.4 Thread Form. The functional segments or rolls, Fig. 30, sketch (a), are described in 5.9. The full-form, one thread vee segment or roll, Figs. 26 and 30, sketch (b) lower contact, has a depth of thread equivalent to the functional type, but relieved on the outside thread flanks. The full-form cone segment or roll, Figs. 26 and 30, sketch (b) upper contact, has a P/8 flat on outside diameter. The cone and vee segments or rolls, Fig. 30, sketch (c), are described and shown in Fig. 27. Thread groove diameter type, Fig. 30, sketch (d), is described and shown in Fig. 28.

5.12.5 Identification. The gaging elements (segments or rolls) should be identified by nominal size and pitch. Indicating gages, assembled with proper contacts, should be tagged with nominal size, threads/in., thread series, class, and the type of differential reading specified above.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A Flank angle differential variation

5.13 W Tolerance Thread-Setting Plug Gages

5.13.1 Purpose and Use. Thread-setting plug gages are used to set adjustable thread ring gages, check solid thread ring gages, set thread snap limit gages, and set indicating thread gages. Thread-setting plug gages are also applied to detect wear on gages and gaging elements in use. GO thread-setting plug gages are made to the maximum-material limit of the external thread specification, while NOT GO (LO) thread-setting plug gages are made to the thread specification.

5.13.2 Basic Design. Thread-setting plug gages are of two standard designs which are designated as full-form and truncated setting plugs. The full-form

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 30 INDICATING THREAD GAGES - DIFFERENTIAL GAGING

GO setting plug is one having a width of flat at the crest equal to P/8. The truncated GO setting plug is the same as the full-form setting plug except that it is longer and the crest of the thread is truncated a greater amount for one-half the length of the gage giving a full-form portion and a truncated portion. See Figs. 31 and 32 and Tables 5, 7, and 11.

5.13.3 Gage Blanks. For practical and economic reasons, the lengths of setting plug gages have been standardized for various size ranges and pitches (see ANSI B47.1 or Table A4). The length of the full form and the length of the truncated sections are each at least equal in length to the thickness of the corresponding thread ring gage.

5.13.4 Thread Form. The specifications for thread form of setting plug gages are stated in detail below and are summarized in Table 5 and Figs. 31 and 32.

5.13.5 Thread Crests

5.13.5.1 The major diameter of the GO fullform setting plug and of the full-form portion of the truncated GO thread-setting plug is equal to the maximum major diameter of the product external thread.

5.13.5.2 The major diameter of the truncated portion of the truncated GO thread-setting plug is equal to the maximum major diameter of the product external thread minus $0.060\sqrt[3]{p^2} + 0.017p$. See Table 5.

5.13.5.3 The major diameter of the NOT GO (LO) full-form setting plug and of the full-form portions of the truncated NOT GO (LO) thread-setting plug is equal to the maximum major diameter of the product external thread (same as GO thread-setting plug). The maximum major diameter of any gage must correspond to a truncation that is not less than 0.0009 in. (equivalent to a crest width of 0.001 in. flat).

5.13.5.4 The major diameter of the truncated portion of the truncated NOT GO (LO) thread-setting plug is equal to the minimum pitch diameter of the product external thread plus H/2.

5.13.6 Thread Roots. The minor diameter of thread-setting plug gages shall be cleared beyond a P/8 width of flat either by an extension of the sides of the thread toward a sharp vee or by an undercut no wider than P/8.

5.13.7 Pitch Diameter Limitation of Taper. The permissible taper shall be back taper (largest diameter at entering end) and shall be confined within the gage pitch diameter limits.

5.13.8 Incomplete Thread. The feather edge at both ends of the threaded section of the setting plug shall be removed. On pitches coarser than 28 threads/ in., not more than one complete turn of the end threads shall be removed to obtain a full-thread blunt start. See Fig. 2. On pitches 28 threads/in. and finer, a 60 deg. chamfer from the axis of the gage is acceptable in lieu of the blunt start.

5.13.9 Lead Variations. In the case of truncated setting plugs, the lead variations present on the fullform portion and the truncated portion of an individual gage shall not differ from each other by more than 0.0001 in. over any portion equivalent to the length of the thread ring gage, or nine pitches, whichever is less. The specified tolerance shall be applicable to the thread length in the mating ring gage or nine pitches, whichever is smaller. The tolerance on lead establishes the width of a zone, measured parallel to the axis of the thread, within which the actual helical path must lie for the specified length of the thread. Measurements will be taken from a fixed reference point, located at the start of the first full thread, to a sufficient number of positions along the entire helix to detect all types of lead variations. The amounts that these positions vary from their basic (theoretical) positions will be recorded with due respect to sign. The greatest variation in each direction [plus or minus (\pm) will be selected, and the sum of their values, disregarding sign, shall not exceed the tolerance limits specified in Table 7.

5.13.10 Half-Angle Variations. Variations in half-angle shall be within the limits specified in Table 7.

5.13.11 Identification. The GO thread-setting plug for Class 3A is basic, and is applicable to Class 2A after coating. Accordingly, it is recommended that the gage be identified by set plug nominal size, threads/in., thread series, GO, PD, and pitch diameter. EXAMPLE:

1/4-20 (or .250-20) UNC GO PD.2175

The GO thread-setting plug gages for Classes 1A and 2A are under basic, having a common allowance. Accordingly, it is recommended that the gage be identified by set plug nominal size, threads/in., thread series, GO, PD, and pitch diameter.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

(b) Thread-Setting Plug for Minimum-Material Gages and NOT GO (LO) Functional Diameter Gages

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

į

and NOT GO (LO) Functional Diameter Gages

FIG. 32 THREAD FORM OF FULL-FORM THREAD-SETTING PLUG GAGES

EXAMPLE:

1/4-20 (or .250-20) UNC 1A-2A GO PD.2164

The NOT GO (LO) thread-setting plug gage is different for each class and, accordingly, should be identified by set plug nominal size, threads/in., thread series, class, NOT GO, PD, and pitch diameter.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A NOT GO PD.2127

5.14 Plain Check Plug Gages for Thread Ring Gages

5.14.1 Purpose and Use. GO and NOT GO plain check plug gages verify the minor diameter limits of thread ring gages after the thread rings have been properly set with the applicable thread-setting plug gages.

5.14.2 Basic Design. The direction of the gage tolerances on GO and NOT GO plug gages for GO ring minor diameter and GO and NOT GO plain plug gages for NOT GO ring minor diameter is as follows: GO — tolerance plus; NOT GO — tolerance minus. Class X tolerance is used on gages up to No. 8 (0.164 in.) size (see Table 8).

5.14.3 Gage Blanks. For standardization and economic reasons, the gaging members and handles have been standardized for various size ranges (see ANSI B47.1).

5.14.4 Identification. The GO and NOT GO plain check plug gages for the GO thread ring gage should be marked with nominal size, threads/in., thread series, class, GO and NOT GO diameters, and GO minor diameter check plug. The GO and NOT GO plain check plug gages for the NOT GO (LO) thread ring gage should be marked with nominal size, threads/in., thread series, class, GO and NOT GO diameters, and NOT GO MINOR DIAMETER CHECK PLUG.

EXAMPLES:

- For GO ring: 1/4-20 (or .250-20) UNC-2A GO.1942 NOT GO.1947
 - GO MINOR DIAMETER CHECK PLUG
- For NOT GO ring: 1/4-20 (or .250-20) UNC-2A GO.2019 NOT GO.2024 NOT GO MINOR DIAMETER CHECK PLUG

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

5.15 Indicating Plain Diameter Gages — Major Diameter of Product External Threads (Table 1 — Gage 5.1)

5.15.1 Purpose and Measuring Procedures. The indicating plain diameter gage inspects the major diameter of the external thread. After the plain contacts of the indicating gage are set to a plain diameter setting plug and the dial is read, the gage is placed on the product thread major diameter for a second reading. The difference in readings is applied to the value of the set master to obtain the major diameter size.

5.15.2 Basic Design. Indicating gages have three plain contacts at 120 deg. or two plain contacts at 180 deg. The dimensions of segments or rolls are to manufacturer's standard. See Fig. 33.

5.15.3 Identification. Indicating gages, assembled with proper contacts, should be tagged with nominal size, threads/in., thread series, class, major diameter limits, and MAJOR DIAMETER.

EXAMPLE:

1/4-20 (or .250-20) UNC-2A.2489-.2408 MAJOR DIAMETER

5.16 Indicating Gages to Check Minor Diameter of External Thread (Table 1 — Gage 5.2)

5.16.1 Purpose and Use. The maximum minor diameter limit of product external thread is considered acceptable if the product accepts GO thread gages. If further checking is required, the indicating gage with 55 deg. maximum included angle thread contacts is used to check the minor diameter.

5.16.2 Basic Design. A thread indicating gage with segments or rolls has a thread form of 55 deg. maximum. There are usually three threads in segments and three ribs on rolls. See Fig. 34.

5.16.3 Identification. Indicating gages, assembled with proper rolls, should be tagged with nominal size, threads/in., thread series, class, minor diameter limits (per customer's specifications), and MINOR DIAMETER EXTERNAL.

EXAMPLE:

^{1/4-20 (}or .250-20) UNC-2A (Minor diameter limits as specified by customer) MINOR DIAMETER EXTERNAL

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollec

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 33 INDICATING PLAIN DIAMETER GAGE — MAX.-MIN. MAJOR DIAMETER LIMIT AND SIZE

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 34 INDICATING DIAMETER GAGES - MAX.-MIN. MINOR DIAMETER LIMIT AND SIZE

TABLE 12CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES,
INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR EXTERNAL
PRODUCT THREADS

	Thread Gages and Measuring Equipment (Note 1)		Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards (Note 7)
1	Thre	ead rings (ANSI B47.1)		
	1.1	GO ring	Pitch (also helical offset at split; see A3.4), flank angles, minor diameter, pitch diameter, taper of pitch cylinder, straightness, roundness, clearance at root (Note 6)	W thread-setting plug for GO; X tolerance plain plug for minor diameter for small thread sizes
	1.2	NOT GO (LO) ring	Pitch (also helical offset at split; see A3.4), flank angles, minor diameter, pitch diameter, taper of pitch cylinder, straightness, roundness, clearance at root (Note 6)	W thread-setting plug for NOT GO (LO); X tolerance plain plug for minor diameter for small thread sizes
2	Thre	ead snap gages		
	2.1	GO segments	Pitch, flank angles, minor diameter, pitch diameter, taper, straightness, clearance at root (Notes 4–6)	W thread-setting plug for GO (Note 7)
	2.2	NOT GO (LO) segments	Pitch, flank angles, minor diameter pitch diameter, clearance at root (Notes 4–6)	W thread-setting plug for NOT GO (LO) (Note 7)
	2.3	GO rolls (zero lead)	Pitch, flank angles, width of flat at crest, taper of pitch cylinder on each roll, parallelism of axes of rolls, clearance at root (Notes 4–6)	W thread-setting plug for GO (Notes 7, 8)
	2.4	NOT GO (LO) rolls, (zero lead)	Pitch, flank angles, width of flat at crest, clearance at root (Notes 4–6)	W thread-setting plug for NOT GO (LO) (Notes 7, 8)
	2.5	Minimum-material, pitch diameter type, cone and vee	Pitch of vee, width of flat at crest, height of thread (Notes 4–6)	W thread-setting plug for NOT GO (LO) (Notes 7, 8)
	2.6	Minimum-material, thread groove diameter type, cone only, ''best size" thread wire	Radius of contacts corresponding to "best size" thread wire size (Notes 4–6)	W thread-setting plug for NOT GO (LO) (Notes 7, 8)
3	Plain diameter gages			
	3.1	Maximum plain cylindrical GO ring for major diameter	Taper, straightness, roundness, diameter	Series of plain plug gages in 0.0001 in. steps or direct diameter measure- ment with internal measuring equipment using gage blocks equal to the maximum major diameter
		Plain cylindrical NOT GO ring for major diameter	Taper, straightness, roundness, diameter	Series of plain plug gages in 0.0001 in. steps or direct diameter measure- ment with internal measuring equipment using gage blocks equal to the minimum major diameter

TABLE 12CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES,
INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR EXTERNAL
PRODUCT THREADS (CONT'D)

Th	read Gages and Measuring Equipment (Note 1)	Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards (Note 7)
3	8.2 Major diameter snap type	Parallelism, flatness of contacts, distance between contacts	Plain Z tolerance plug gage or gage blocks with roll corresponding to maximum major diameter or direct measurement
3	8.3 Minor diameter snap type (55 deg. maximum included angle)	Pitch, diameter, included angle of thread form, clearance form at tips of snap contacts	Plain Z tolerance plug gage or gage blocks equal to the maximum minor diameter or direct measurement
3	8.4 Maximum and minimum major diameter snap type	Parallelism, flatness of contacts, distance between contacts	Plain Z tolerance plug gage or gage blocks with roll corresponding to maximum or minimum major diameter or direct measurement
3	 Maximum and minimum minor diameter snap type (55 deg. maximum included angle) 	Pitch, diameter, 55 deg. maximum included angle of thread form, clearance form at tips of snap contacts	Plain Z tolerance plug gage or gage blocks equal to the maximum or minimum minor diameter
4 lı h 1 a	ndicating thread gages aving either two contacts at 80 deg. or three contacts t 120 deg.		
4	.1 GO segments	Pitch, flank angles, minor diameter, pitch diameter, taper, straightness, clearance at root, minor cylinder to pitch cylinder relationship of segments for coaxiality (Notes 4–6)	W thread-setting plug for GO (Note 7)
4.	.3 GO rolls (zero lead)	Pitch, flank angles, minor diameter, taper, straightness, parallelism of axes of rolls to each other, clearance of root (Notes 4–6)	W thread-setting plug for GO (Notes 7, 8)
4.	5 Minimum-material, pitch diameter type, cone and vee	Pitch, width of flat at crest, height of thread (Notes 4–6)	W thread-setting plug for GO or for basic pitch diameter for NOT GO (LO) (Notes 7, 8)
4.	6 Minimum-material, thread groove diameter type, cone only ("best-size" thread wire size)	Radius of contact (Notes 4-6)	W thread-setting plug for NOT GO (LO) (Notes 7, 8)
4.	.7 Major diameter and pitch diameter runout gage	Pitch and flank angles of thread segments, straightness of plain gages, major cylinder to pitch cylinder relationship of segments for coaxiality (Notes 4–6)	None

TABLE 12CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES,
INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR EXTERNAL
PRODUCT THREADS (CONT'D)

	Thread Gages and Measuring Equipment (Note 1)	Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards (Note 7)		
	4.8 Differential segments and rolls	GO profile of one pitch segment or roll requires flank angles checked GO full-form segments (see 4.1 above) GO full-form rolls (see 4.3 above) Minimum-material, pitch diameter type, cone and vee (see 4.5 above) Minimum-material, thread groove diameter type, cone only "best size" thread wire size (see 4.6 above)	Not required: special lead standards and flank angle standards with generated variation portion and near perfect portion		
5	Indicating plain diameter gages				
	5.1 Major diameter type	Parallelism and flatness of contacts (Note 5)	Plain Z tolerance plug gage for GO or basic major diameter or gage blocks		
	5.2 Minor diameter type	Pitch, diameter, 55 deg. maximum included angle of thread form, width of flat on crests	Plain Z tolerance plug gage for basic minor diameter at radiused root		
6	Pitch micrometer with standard contacts [approximately NOT GO (LO) profile] cone and vee	Pitch, flank angles. Maximum error in indicated measurements up to 1.000 in. shall not exceed 0.00012 in. for pitches up to 40 TPI, 0.00015 in. for pitches greater than 40 TPI and up to 14 TPI, and 0.0002 in. for pitches greater than 14 TPI. For measurements greater than 1.000 in., error may be increased by 0.00004 in.	W thread-setting plug for basic pitch diameter, or GO pitch diameter standard or NOT GO (LO) (Note 7)		
7	Pitch micrometer with modified contacts (approximately pitch diameter contact) cone and vee	Pitch, flank angles, width of flat at crest, height of thread, maximum error in indicated measurements up to 1.000 in. shall not exceed 0.00012 in. for pitches up to 40 TPI, 0.00015 in. for pitches greater than 40 TPI and up to 14 TPI, and 0.0002 in. for pitches greater than 14 TPI. For measurements greater than 1.000 in., error may be increased by 0.00004 in.	W thread setting plug for basic pitch diameter, or GO, or NOT GO (LO) (Note 7)		
8	Thread measuring wires ("best size" thread wire size) with suitable measuring means	Flatness and parallelism of spindle and anvil faces, screw calibration, measuring force	Calibrated "best size" thread wire size measuring wires and gage blocks		
9	Optical comparator or toolmaker's microscope with suitable fixturing	Micrometer stage, magnification, radius chart, protractor head (Note 4)	Gage blocks, plug gages, sine bar		

TABLE 12 CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES, INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR EXTERNAL PRODUCT THREADS (CONT'D)

	Thread Gages and Measuring Equipment (Note 1)	Gages and Measuring uipment (Note 1)Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	
10	Profile tracing equipment with suitable fixturing	Use manufacturer's instructions to test stylus traverse and electronic amplification	Special angle block supplied with instrument
11	Lead measuring machine with suitable fixturing	Traversing system, straightness of ways, stylus radius	Lead standard, gage blocks
12	Helical path attachment used with GO type indicating gage	Lead, flank angles, taper, straightness, clearance at root (Notes 4, 5)	Lead standard
13	Helical path analyzer	Use manufacturer's instructions to test the mechanical and electronic features	Lead standard
14	Plain micrometer and calipers, modified as required	Maximum error in indicated measurements up to 1.000 in. shall not exceed 0.00012 in. for pitches up to 40 TPI, 0.00015 in. for pitches greater than 40 TPI and up to 14 TPI, and 0.0002 in. for pitches greater than 14 TPI. For measurements greater than 1.000 in., error may be increased by 0.00004 in.	Gage blocks, or calibrated plain plug gages
15	Surface measuring equipment	Use manufacturer's instructions for calibration procedures	Precision roughness standard
16	Roundness equipment	Use manufacturer's instructions for calibration procedures	Precision glass sphere, roundness magnification standard

NOTES:

(1) See Table 1.

(2) Use applicable X, W, or Z gage tolerance.

(3) Taper, straightness including bellmouth barrel shape and hourglass shape, and roundness shall be within the X, W, or Z tolerance depending on the element measured. In other words, if these features are measured at pitch cylinder, the tolerance for pitch diameter applies.

- (4) Use manufacturer's recommended procedures for gage for checking the thread features and alignment of indicating gage components.
- (5) New rolls and segments shall be within X tolerance. Worn rolls or segments shall be replaced when a single thread element wears outside of X tolerance.
- (6) Pitch diameter is usually transferred from thread-setting gages.
- (7) When the gage is set by adjustment based upon actual measured pitch diameter of the setting master, the master shall meet all W tolerances except for pitch diameter, which may have a tolerance increased to X.
- (8) Pitch diameter size on some adjustable thread snap gages and indicating thread gages may be set from one or more of the following:
 - (a) Z tolerance plain cylindrical plug gage
 - (b) gage blocks
 - (c) direct measurement
 - (d) specially designed transfer standards

Rolls must be qualified for setting from their outside diameters.

PRODUCT THREADS Thread Gages and Measuring Calibration Requirements for Gages and Equipment (Note 1) Measuring Equipment (Notes 2, 3) Setting Gages and Standards 1 Thread plug (ANSI B47.1) Lead, flank angles, major diameter, pitch Three "best size" thread wires, 1.1 GO plug diameter, taper, straightness, gage blocks roundness, clearance at root Three "best size" thread wires. 1.2 NOT GO (HI) plug Lead, flank angles, major diameter, pitch diameter, taper, straightness, gage blocks roundness, clearance at root Thread snap gages 2 **GO** segments 2.1 Lead, flank angles, major diameter, Solid W thread-setting ring for GO pitch diameter, taper, straightness, (if direct measurement of pitch diameter is not made) (Notes 6, 8) clearance at root (Notes 4, 5) 2.2 NOT GO (HI) segments Pitch, flank angles, major diameter, Solid W thread-setting ring for NOT GO pitch diameter, clearance at root (HI) (if direct measurement of pitch (Notes 4, 5) diameter is not made) (Notes 6, 8) Pitch, flank angles, width of flat at crest, 2.3 GO rolls (zero lead) Solid W thread-setting ring for GO taper of pitch cylinder on each roll, (Notes 6, 8) straightness, parallelism of assembled rolls, clearance at root (Notes 4, 5) 2.4 NOT GO (HI) rolls Pitch, flank angles, width of flat at crest, Solid W thread-setting ring for NOT GO (zero lead) clearance at root (Notes 4, 5) (HI) (Notes 6, 8) Minimum-material, 2.5 Solid W thread-setting ring for NOT GO Pitch, width of flat at crest, height of pitch diameter type, thread (Notes 4, 5) (HI) (Notes 6, 8) cone and vee 2.6 Minimum-material, Radius of contacts (Notes 4, 5) Solid W thread-setting ring for NOTGO thread groove diameter (H1) (Notes 6, 8) type, cone only ("best size" thread balls) Plain diameter gages 3 Minimum plain Taper, straightness, roundness, Gage blocks 3.1 cylindrical plug for diameter minor diameter 3.2 Minimum major Pitch, included angle, dimension over Plain Z tolerance ring gage for GO segments or rolls, width of flat at major diameter or gage blocks diameter snap type (55 deg. maximum included crests (Note 4) between jaws angle) Plain Z tolerance ring gage for GO 3.3 Minimum minor Taper, straightness or coaxiality of diameter snap type cylindrical segments or rolls, minor diameter or gage blocks

TABLE 13 CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES, INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR INTERNAL

155

(Note 4)

between jaws

TABLE 13CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES,
INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR INTERNAL
PRODUCT THREADS (CONT'D)

Thread Gages and Measuring Equipment (Note 1)		Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards
3.4	Maximum and minimum major diameter snap type (55 deg. maximum included angle)	Pitch, included angle, dimension over segments or rolls, width of flat at crests (Note 4)	Plain Z tolerance ring gage for GO major diameter; plain Z tolerance ring gage for NOT GO (HI) major diameter or gage blocks between jaws
3.5	Maximum and minimum minor diameter snap type	Taper, straightness, coaxiality of cylindrical segments or rolls, dimension over segments or rolls (Note 4)	Plain Z tolerance ring gage for GO minor diameter; plain Z tolerance ring gage for NOT GO (HI) minor diameter or gage blocks between jaws
4 Indi eithe 180 cont	cating thread gages having er two contacts at deg. or three tacts at 120 deg.		
4.1	GO segments	Lead, flank angles, major diameter, pitch diameter, taper, straightness, clearance at root, major cylinder to pitch cylinder, relationship of segments for coaxiality (Notes 4, 5)	Solid W thread-setting ring for GO or basic pitch diameter (Notes 6–8)
4.3	GO rolls (zero lead)	Pitch, flank angles, major diameter, taper, straightness, clearance at root, parallelism of axes of rolls to each other (Notes 4, 5)	Solid W thread-setting ring for GO (Notes 6, 9)
4.5	Minimum-material, pitch diameter type, cone and vee	Pitch, width of flat at crest, height of thread (Notes 4, 5)	Solid W thread-setting ring for GO or NOT GO (HI) or basic pitch diameter (Notes 6, 9)
4.6	Minimum-material, thread groove type, cone only	Radius of contacts (Notes 4,5)	W thread-setting ring for NOT GO (HI) (Notes 6, 9)
	Minimum-material, thread groove type, three "best size" thread balls, two ball contact spaced four pitches	Ball diameter (Notes 4, 5)	Plain Z tolerance ring gages whose diameter is basic pitch diameter plus ½ the "best size" thread ball size
4.7	Minor diameter and pitch diameter runout gage	Straightness of plain gage segment, pitch, flank angle, straightness of thread segment, minor cylinder to pitch cylinder, relationship of segments for coaxiality (Notes 4, 5)	None

TABLE 13CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES,
INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR INTERNAL
PRODUCT THREADS (CONT'D)

	_			
1	Threac E	d Gages and Measuring quipment (Note 1)	Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards
	4.8	Differential segment or roll	GO profile of one pitch in length, segment or roll, requires flank angles checked GO full-form segment (see 4.1 above) GO full-form roll (see 4.3 above) Minimum material, pitch diameter type, cone and vee, (see 4.5 above) Minimum material, thread groove type, cone only, (see 4.6 above)	Not required: special internal lead standard and internal flank angle standard with generated errors portion and near perfect portion
5	Indi gage	cating plain diameter es		
	5.1	Major diameter type (55 deg. maximum included angle)	Pitch, included angle of flanks, width of flat on crests	Plain Z tolerance ring gage for basic major diameter or GO major diameter, gage blocks, direct measurement
	5.2	Minor diameter type	Straightness, parallelism of contacts (Note 5)	Plain Z tolerance ring gage for basic minor diameter, gage blocks, direct measurement
6	Inte with (app prof	rnal pitch micrometer a standard contacts proximately NOT GO (HI) file) cone and vee	Pitch, flank angles, maximum error in indicated measurement in the micrometer head shall not exceed 0.0002 in.	Solid W thread-setting ring gage for basic pitch diameter, measurement over wires (Note 6)
7	Inte with (app dian and	rnal pitch micrometer modified contacts proximately pitch neter contact) cone vee	Pitch, flank angles, width of flat at crest, height of thread. Maximum error in indicated measurement in the micrometer head shall not exceed 0.0002 in.	Solid W thread-setting ring gage for basic pitch diameter (Note 6)
8	Thre suita	ead measuring ball with able measuring means	Flatness and parallelism of internal anvils, screw calibration, measuring force	Gage blocks, calibrated "best size" thread balls
9	Opt mak suita repl	ical comparator or tool- er's microscope with able fixturing and cast ica	Micrometer stage, magnification, radius chart, protractor head (Note 4)	Gage blocks, plug gages, sine bar, stage micrometer
10	Prof with	file tracing equipment a suitable fixturing	Use manufacturer's instructions to test stylus traverse and electronic amplification	Special angle block supplied with instrument

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

TABLE 13 CALIBRATION REQUIREMENTS AND STANDARDS FOR X TOLERANCE THREAD GAGES, INDICATING GAGES, PLAIN GAGES, AND MEASURING EQUIPMENT FOR INTERNAL PRODUCT THREADS (CONT'D)

	Thread Gages and Measuring Equipment (Note 1)	Calibration Requirements for Gages and Measuring Equipment (Notes 2, 3)	Setting Gages and Standards
11	Lead measuring machine with suitable fixturing	Traversing system, straightness of ways, stylus radius	Lead standard gage blocks
12	Helical path analyzer	Use manufacturer's instructions to test the mechanical and electronic features	Lead standard
13	Plain internal micrometer and calipers modified as required	Maximum error in indicated measure- ment in the micrometer head shall not exceed 0.0002 in.	Gage blocks, or calibrated plain plug gages
14	Surface measuring equipment	Use manufacturer's instructions for calibration procedures	Precision roughness standard
15	Roundness equipment	Use manufacturer's instructions for calibration procedures	Precision glass sphere, roundness magnification standard

NOTES:

- (2) Use applicable X, W, or Z gage tolerance.
- (3) Taper, straightness including bellmouth barrel shape and hourglass shape, and roundness shall be within the X, W, or Z tolerance depending on the element measured. In other words, if these features are measured at pitch cylinder, the tolerance for pitch diameter applies.
- (4) Use manufacturer's recommended procedures for gage for checking the thread features and alignment of indicating gage components.
- (5) New rolls and segments shall be within X tolerance. Worn rolls or segments shall be replaced when a single thread element wears outside of X tolerance.
- (6) Pitch diameter is usually transferred from thread-setting gage.
- (7) When the gage is set by adjustment based on actual measured pitch diameter of the setting master, the master shall meet all W tolerances except for pitch diameter, which may have a tolerance increased to X.
- (8) Pitch diameter size on some types of adjustable gages may be set from Z tolerance plain ring gages or direct measurement. Rolls must qualify for setting from their outside diameters.
- (9) Pitch diameter size may be set by direct measurement over wires on 180 deg. segments, with specially designed transfer standards or by Z tolerance plain ring gages when rolls are qualified for setting from their outside diameters.

⁽¹⁾ See Table 2.

ANSI/ASI NATIONA TING GA taper, stra at root, coa Note 1), tap rance at roo

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

TABLE 14 CALIBRATION REQUIREMENTS FOR THREAD- AND PLAIN-SETTING GAGES

Setting Gage	Calibration Requirements		
GO, NOT GO (LO) and W thread setting plug gage, truncated and full form	Lead, flank angles, major diameter, pitch diameter, taper, straightness and roundness of major and pitch cylinders, clearance at root, coaxiality of major cylinder with pitch cylinder		
GO, NOT GO (HI) and solid W thread-setting ring gage	Lead, flank angles, minor diameter, pitch diameter (Note 1), taper, straightness and roundness of minor and pitch cylinders, clearance at root, coaxiality of minor cylinder with pitch cylinder		
Plain Z tolerance plug and ring gages	Diameter, taper, straightness, and roundness		

NOTE:

(1) Pitch diameter of an internal thread, measured by "best size" thread ball contacts, will be 0.0001 in. to 0.0002 in. larger than the pitch diameter, gaged indirectly by a snug-fitting master thread plug gage or locked segments of an indicating gage which have been measured by "best size" thread wire method. This difference is due to the functional size of the master thread plug gage or locked segments which unavoidably have small deviations in lead, flank angle, taper, and roundness.

5.17 Thread Micrometers (Table 1 — Gages 6, 7, and 14)

5.17.1 Purpose and Use. Thread micrometers with cone and vee anvils are used to inspect the minimum-material pitch diameter limit and size of external thread. Micrometer can check 180 deg. ovality of pitch diameter and taper of pitch diameter. Modified vernier calipers are used similarly.

5.17.2 Basic Design. The depth of thread on cone and vee is either approximately pitch diameter contact or the NOT GO (LO) limit profile. Measurements are made in 0 in. to 1.000 in., and 1.000 in. to 2.000 in. diameter ranges. The smallest graduation is 0.0001 in.

5.18 Thread-Measuring Wires (Table 1 — Gage 8)

5.18.1 Purpose and Use. Using a measuring machine, product thread can be checked using three measuring wires between product thread and parallel flat anvils of measuring machine. Wires are "best size" thread wire contacting at the thread groove diameter, with two wires on one side and one wire 180 deg. around. This type of measurement checks the minimum-material groove diameter limit and size. By rotating the product thread between wires, the 180 deg. ovality of groove diameter is checked. Measuring at different locations axially, the taper of the groove diameter is checked. It should be recognized that the measuring force shown for measuring hard-ened thread gages with wires may not be appropriate

for softer product thread materials due to the possibility of the wires being forced into the surface of the thread flanks. This would indicate a smaller thread size than what actually exists. See Appendix B.

5.19 Optical Comparator and Toolmaker's Microscope (Table 1 — Gage 9)

5.19.1 Purpose and Use. The optical comparator magnifies and projects the thread profile on a screen. For best profile image, the threaded item is positioned so that the light is aligned with the thread lead angle. Since the thread profile is defined in a plane including the axis, a correction factor may be added to the measured flank angle observed normal to the lead angle. For most standard single lead threads, the correction factor is less than 0 deg. 5 min.

Optical comparators are generally fitted with lenses providing various magnifications between 10X and 100X. Profile dimensions are checked using appropriate linear and angular scales on the machine and by the application of thread profile, radius, and other overlay charts. Other groove and ridge dimensions, and axial plane pitch and lead may be checked. Major, minor, and pitch diameters are identified, then measured using table traverse readouts.

5.19.2 The toolmaker's microscope is similar in function to the optical comparator but does not include screen projection or overlay charts. Magnifications are generally lower than those of optical comparators. Some microscopes have thread profile and radius templates which are inserted in the eyepiece.

5.20 Profile Tracing Instrument (Table 1 — Gage 10)

5.20.1 Purpose and Use. The instrument checks thread contours to an accuracy of 0.0002 in. for 1.000 in. of horizontal and 0.100 in. vertical travel at 100X magnifications. The chart paper trace may be analyzed for elements of the thread profile, including depth, crest width, lead, angle, and radius at root of thread.

5.21 Electromechanical Lead Tester (Table 1 — Gage 11)

5.21.1 Purpose and Use. The electromechanical lead tester consists of a precision, direct-reading headstock in combination with an axially movable carriage supporting a sine bar, two work-mounting centers, electronic thread locating head with a ball point and a milliammeter for registering the center position of the ball probes in the thread groove. Ball point stylus approximates the "best size" thread wire radius. To extend lead measurements beyond 1.000 in., gage blocks in 1.000 in. steps are used to displace the screw thread. Lead measurements accurate to 0.00002 in. are read directly from micrometer scales on head-stock.

5.22 Helical Path Attachment Used With GO Type Thread Indicating Gage (Table 1 — Gage 12)

5.22.1 Purpose and Use. To observe the presence of helical path variation with a GO type indicating gage, Fig. 35, the following procedure is used:

(a) a suitable means is used to lock (restrict) axially the lower gaging element;

(b) the top gaging element is allowed to float freely (axially) on its own stud and at least one full pitch away from the frame;

(c) the product to be inspected is inserted into the gaging elements so that the conditions described in (a) and (b) above are met;

(d) an indicator (usually attached to the comparator) is positioned so that the indicator contact point locates at the face of the free floating (top) gaging element;

(e) the product is turned one full revolution. The presence of helical path variation causes the top gaging element to displace itself axially on its own stud.

(f) the full-indicator movement is observed.

GAGES AND GAGING FOR UNIFIED INCH SCREW THREADS

FIG. 35 INDICATING GAGES — HELICAL PATH ATTACHMENT USED WITH GO TYPE INDICATING GAGE

5.23 Helical Path Analyzer (Table 1 — Gage 13)

5.23.1 Purpose and Use. A helical path analyzer is a self-contained unit consisting of a motordriven headstock, tailstock, electronic gaging head, sine bar, follower, pitch blocks, selsyn transmitter for chart recorder, and operator control panel.

The external workpiece to be measured is mounted between centers. The motor-driven headstock rotates the part through three revolutions at one setting. At the same time, this rotary motion is transmitted to the chart drive of the recorder. Simultaneously, the driving ribbon running off the headstock actuates the sine bar laterally on a ball slide in direct proportion to the spindle rotation. The sine bar is set previously to the proper angle for the particular pitch using the applicable pitch block. The electronic gage head floats axially on ball slides, the movement being controlled by constant spring pressure of the sine bar follower against the sine bar. The chart gives readings in lead variation and socalled drunken thread variation. Chart division is equal to 0.00002 in. per division.

5.24 Surface Roughness Equipment (Table 1 — Gage 15)

5.24.1 Purpose and Use. Measurement of surface roughness on screw thread flanks is usually made with an instrument which traverses a radiused stylus across the lay. The stylus displacement due to the surface irregularities is electronically amplified and the meter reading displays the arithmetical average roughness height in microinches (see ANSI B46.1 Surface Texture: Surface Roughness, Waviness and Lay). Some instruments produce a chart of the traced path which shows the peak-to-valley heights of the surface irregularities. Special fixturing is required to position and guide stylus over thread surface.

5.25 Roundness Equipment (Table 1 — Gage 16)

5.25.1 Purpose and Use. There are two types of precision roundness measuring instruments: precision rotary tables and precision spindles. A special

stylus coupled to an electric unit records the out-ofroundness on a circular chart as it traces around the cylindrical surface of the workpiece. The instrument provides a series of magnifications for stylus displacement, a filtering system for isolating lobing from surface irregularities, various means for centering the amplified stylus trace on the polar chart, and a selection of rotating speeds. For details on measuring and for other methods for checking roundness, see ANSI B89.3.1, Measurement of Out-of-Roundness.

5.26 Miscellaneous Gages and Gaging Equipment

5.26.1 The description of the external gages, as noted in 5.1 through 5.25, is definitely not a complete catalog of the various types available for inspection purposes. The gages not described above may be used provided they adhere to the standard thread practice noted in this Standard (i.e., truncation, form of thread, tolerances, etc.) and have producer and consumer agreement.

Intentionally left blank

APPENDIX A CALIBRATION AND INSPECTION OF LIMIT GAGES, SNAP GAGES, INDICATING GAGES, AND MEASURING INSTRUMENTS

(This Appendix is not part of American National Standard Gages and Gaging for Unified Inch Screw Threads, ANSI/ASME B1.2-1983, and is included for information purposes only.)

A1 GENERAL

There are more ways to calibrate gages than those briefly described herein. Since this Appendix covers only the most commonly used designs of limit, snap, and indicating gages, the inspector may have to modify the method described to become applicable. Special fixturing may be necessary for the small and large gages.

Specially designed screw thread indicating gages may at times be more practical for making measurements on thread gage elements than the cumbersome all-purpose laboratory instruments which may lack adequate fixturing to do an efficient job.

Before one calibrates, sets, or uses limit, snap, and indicating gages, they should be cleaned and examined visually for nicks, burrs, and foreign matter, using a minimum of 10X magnification. Defects must be corrected.

A2 THREAD PLUG GAGE CALIBRATION

Thread Plug Gages
Truncated Setting Plug
Thread Gages
Full-Form Thread-Setting
Plug Gages

A2.1 External Pitch Diameter Measurement

The formula and method of measuring pitch diameter on thread plug gages are described in Appendix B.

A2.2 Pitch Variation Measurement

Only those thread plug gages that have their centers intact can be mounted on centers for evaluation. The

measurements are made on a pitch-testing machine by using a hardened steel stylus with a radius matching the "best size" thread ball. The stylus, which contacts both the leading and following flanks, engages selected complete threads at the pitch line in a direction parallel to the axis of the gage.

The measurements are made at both ends of the gage and one or more positions in between along one line; then they are repeated along another line at 180 deg. around the gage. The mean of the two sets of readings is taken in order to eliminate the effect of any misalignment of the measuring axis with respect to the gage axis. The importance of pitch measurement is to estimate its effect on functional size. The diameter equivalent of a pitch variation of 0.0001 in. is 0.00017 in.

Since gages have very small pitch tolerances, the measurement of pitch by optical projection is not recommended.

A2.3 Helix Variation Measurement

Helical variation may be measured with helix measuring machines or on special fixtured indicating gages. Manufacturer's instructions should be used.

A2.4 Major Diameter Measurement

The measuring instrument is set with gage blocks, cylindrical standards, or cylindrical standard and gage block combination which approximate the major diameter size. Then the outside diameter of the thread is placed between parallel anvils of a measuring machine or micrometer. The measuring faces are brought into contact with the threads using the specified measuring force. Additional readings are taken along the axis and around the gage to verify that the variations in roundness and taper are within the major diameter tolerance.

TABLE A1 MINIMUM MAGNIFICATION

	Minimum				
ТРІ	Magnification				
More than 14	20X				
14-40	50X				
40 and less	100X				

A2.5 Thread Form

Thread form is checked by either optical projection or toolmaker's microscope. After the recommended magnification is selected, the profile may be compared to thread templates, and the root radius may be compared to a series of radii on a chart. The truncation, width of flat, and root clearance can be measured by using the micrometer screws to translate the image of the thread feature with respect to cross lines in the projector or hairlines in the microscope.

A2.6 Flank Angle Measurement

A2.6.1 If both centers are available, the flank angles may be measured by optical projection or toolmaker's microscope using magnifications shown in Table A1.

The plug gage is mounted on the centers in a fixture which can be tilted to the helix so that both flanks are in focus. See corrective angles shown in Table A2.

The leading and following 30 deg. angles are each measured with respect to the major cylinder or axial to the thread axis. The protractor head should read out to 1 min of arc. The cross line or hairline is set parallel to the thread feature permitting a very narrow slit of light between. If the thread flank is not straight, the inspector may either position the line to average out the flank irregularities or measure both the addendum and dedendum flank angles.

A2.6.2 Profile tracing equipment is available for making profile charts of each flank on 10 threads/in. and coarser.

A2.7 Runout Between Major Cylinder and Pitch Cylinder

The fixed anvil of the measuring instrument or micrometer engages the major cylinder of the gage, and the movable anvil straddles two thread-measuring wires which are pressed against the pitch cylinder with a force appropriate for pitch diameter measurement. This reading is taken and is followed by a series of readings obtained by rotating the threaded gage until the maximum and minimum values are found. The maximum difference in measurements shall be within the runout tolerance between the major cylinder and pitch cylinder.

A2.8 Minor Diameter Measurement

Minor diameter can be measured with measuring machine or micrometer, provided special 55 deg. maximum conical contacts with radius or small flat tips are used. Gage axis must be mounted normal to the measuring screw axis. A gage block combination corresponding to the basic minor diameter should be used to set the measuring screw. Optical projection may be used also.

A3 THREAD RING GAGE INSPECTION

GO and NOT GO (LO) Thread Ring Gages GO and NOT GO (HI) Thread-Setting Ring Gages

A3.1 Internal Pitch Diameter Measurement

A3.1.1 Measurement of internal pitch diameter has seldom been practiced in the United States because instrumentation has not been readily available. Thus, the pitch cylinder is transferred to split ring gages from the GO and NOT GO (LO) thread-setting plugs by adjustment. Solid working and setting ring gages are sized by lapping until a light drag is noticed as they are screwed on the setting plugs. Sizes under 3/16 in. can only be gaged with plug gages.

A3.1.2 The measured pitch diameter on rings fitted to a setting plug may be 0.0001 in. to 0.0002 in. larger than the measured pitch diameter on the plug because the pitch diameter equivalents from permissible pitch, lead, and flank angle tolerances on matched plug and ring cause some unavoidable discrepancy.

A3.1.3 Measurement of internal pitch diameter using "best size" thread ball is restricted to sizes from 3/16 in. and larger. It is measured with ball contacts mounted to caliper jaws and coupled to an indicating gage. One jaw has a fixed ball and the other jaw a pair of floating balls with center spacing of two or more pitches. The caliper jaws are usually set to zero on an X tolerance plain ring whose diameter is the sum of the basic pitch diameter of the gage plus one-half the "best size" thread ball diameter. The ball contacts are brought in contact with the flanks of the internal

Helix	Angle	Corr	ection	Helix Angle		Corr	ection
deg.	min.	deg.	min.	deg.	min.	deg.	min.
2		0	54	9		18	23
2	10	1	4	9	10	19	4
2	20	1	14	9	20	19	46
2	30	1	24	9	30	20	29
2	40	1	36	9	40	21	12
2	50	1	48	9	50	21	57
3		2	2	10		22	42
3	10	2	16	10	10	23	28
3	20	2	31	10	20	24	15
3	30	2	47	10	30	25	2
3	40	3	4	10	40	25	50
3	50	3	21	10	50	26	38
4		3	38	11		27	28
4	10	3	56	11	10	28	19
4	20	4	16	11	20	29	11
4	30	4	35	11	30	30	2
4	40	4	56	11	40	30	55
4	50	5	18	11	50	31	47
5		5	40	12		32	42
5	10	6	2	12	10	33	37
5	20	6	27	12	20	34	33
5	30	6	31	12	30	35	29
5	40	7	17	12	40	36	27
5	50	7	43	12	50	37	25
6		8	10	13		38	23
6	10	8	37	13	10	39	23
° 6	20	9	5	13	20	40	25
6	30	9	35	13	30	41	25
6	40	10	5	13	40	42	26
6	50	10	35	13	50	43	30
7		11	6	14		44	33
7	10	11	38	14	10	45	37
7	20	12	11	14	20	46	42
7	30	12	46	14	30	47	47
7	40	13	20	14	40	48	55
7	50	13	55	14	50	50	2
8		14	31	15		51	10
8	10	15	8			2.	
8	20	15	46				
8	30	16	24				
8	40	17	2				
8	50	17	42				

 TABLE A2
 60 deg. INCLUDED THREAD ANGLE

Thread Sizes Decimal Range		Thread Lengths					
		_	Thread Plug Gages				Fine-Pitch Instrument Thread Plug Gages
Above	To and Including		GO		NOT GO (HI)	co	NOT GO (HI)
1	2		3		4	5	6
in. 0.059 0.105 0.150 0.230	in. 0.105 0.150 0.230 0.365		in. 1/4 5/16 13/32 1/2			in. 3⁄16 7/32 9⁄32 5⁄16	in. 1⁄8 5⁄32 7⁄32 1⁄4
0.365 0.510 0.825	0.510 0.825 1.135		3/4 7/8 1			3/8 1/2 5/8	5⁄16 3∕8 7⁄16
1.135	1.510	12 TPI and finer 1	Coarser than 12 TPI 1¼		3/4	3/4	V2
		7 TPI and coarser	Finer than 7 TPI and coarser than 16 TPI	16 TPI and finer			
1.510 2.010 2.510 3.010	2.010 2.510 3.010 12.010	1 ⁷ /8 2 2 ¹ /8 2 ¹ /4	11/4 13/8 11/2 11/2	⁷ /8 7/8 1 1	⁷ /8 7/8 1 1	3/4 3/4 	5/8 5/8

TABLE A3 LENGTHS OF AGD TAPERLOCK AND TRILOCK THREAD PLUG GAGE BLANKS SELECTED FROM ANSI B47.1

GENERAL NOTE:

For trilock plug blanks above 0.760 in. to and including 1.510 in., and wire type plug blanks in sizes below 0.760 in., see ANSI B47.1.

thread. A series of measurements are made around the gage at both ends and in the middle. The indicator reading gives the variation from the size to which the gage was set.

A3.2 Internal Pitch Variation Measurement

The ground face of the thread ring gage is clamped to a face plate and mounted normal to the measuring axis of the pitch-testing machine. A modified stylus with "best size" thread ball radius is needed to contact the internal threads. Measurements are made along one line parallel to thread axis at two or more intervals, and then these same intervals are measured on another line after rotating the gage 180 deg. The means of the variations of corresponding intervals are taken to eliminate the effect of misalignment of measuring axis with gage axis.

A3.3 Helix Variation Measurement

Helical variations are measured on a special fixtured indicating gage. Manufacturer's instructions should be used. Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

A3.4 Helix Offset Measurement on Adjustable Thread Ring Gages

When an adjustable thread ring gage is reset, the helix offset at the split line must be checked and may not exceed the X tolerance for pitch. One way to measure the misalignment is to screw the adjustable ring partially onto its setting plug, which is clamped to a vee block on a surface plate. With the face of the ring gage parallel to the surface plate, allow the spherical probe of an electronic height gage to contact the exposed thread flank near the edge of the slit. Note the
reading. Next, slowly rotate the ring so that the probe crosses the slit and rests on the thread flank again and note the reading. The difference in readings shall not exceed X tolerance for lead. Sometimes the offset can be realigned by resetting and gently tapping it into alignment and relocking the gage.

A3.5 Minor Diameter

There are varieties of internal gages with plain cylindrical segments coupled to mechanical and electronic indicators which are suitable for the measurement. The indicating gages are set to a master gage made with parallel jaws attached to gage block combinations corresponding to the basic minor diameter. Measurements are made to locate the maximum and minimum diameters to prove that the ring minor diameter is within tolerance.

A3.6 Thread Form

Casts made of nonshrinking and nondeforming material such as dental plaster, selected resins, and silicone are necessary to evaluate thread form. The profiles are examined by optical projection or by toolmaker's microscope. Thread form templates are used for comparison purposes. Also, truncation, width of flat, and root clearance can be measured with the micrometer-driven table.

A3.7 Flank Angle Measurements

Casts are required. They are mounted with plasticine to a fixture which can be tilted in the field of the optical projector or toolmaker's microscope. Further details are given in A2.6. Profile tracing equipment is available for making profile charts of each flank angle on 10 threads/in. or coarser. Manufacturer's instructions describe the process.

A3.8 Major Diameter Measurement

Threaded segments with 55 deg. maximum included angles and slightly truncated at the crests are used with an internal indicating gage. The segments are set to a plain ring gage or to the inner sides of parallel jaws attached to a gage block combination equivalent to the basic major diameter of the ring gage. The thread ring gage is explored for maximum and minimum diameter.

A3.9 Runout Between Minor Cylinder and Pitch Cylinder

Horizontally clamp handle end of setting plug in vee block which is clamped on a surface plate. Next, screw thread ring gage part way onto plug. Lubricate threads if there is a snug fit. Position ball contact of electronic height gage on the exposed minor cylinder of the ring gage. Next, slowly rotate ring to obtain the fullindicator reading for the runout.

A4 PLAIN PLUG GAGE CALIBRATION

GO and NOT GO	Plain Plug Gages, Z Tolerance
GO and NOT GO	Plain Setting and Check Plug
	Gages, X and Y Tolerances

A4.1 Outside Diameter Measurement

A4.1.1 The Z tolerance plug gage is measured between flat parallel contacts of a micrometer which has a resolution of 0.00004 in. The micrometer is set with a tolerance Grade 3 gage block close to the size of the plug to minimize error in micrometer screw. Readings around and along the plug are taken to verify that the gage is within Z tolerance.

A4.1.2 The X or Y tolerance plug gage is measured between flat parallel anvils of a measuring machine which has a resolution to 0.00001 in. or less, with a measuring force of 1 lb. The flatness and parallelism of the anvils should be within 0.00001 in. The calibration history of the measuring screw should not exceed 0.00003 in. The measuring machine anvils are set with a tolerance Grade 3 gage block combination which corresponds to the marked diameter of the plug gage. Measurements are made around the plug near the ends and middle to determine that ovality, out-of-roundness, barrel shape, and taper are within tolerance. Also, one measured diameter is marked, and this mark is used as the starting position for generating a roundness chart on a roundness testing instrument for compliance to tolerance. Roundness is assessed by the minimum circumscribed circle method on the chart. The out-of-roundness is the radial separation between the minimum circumscribed circle and the maximum inscribed circle. Refer to ANSI B89.3.1, Measurement of Out-of-Roundness, for details on roundness measurement.

A5 PLAIN RING GAGE CALIBRATION

GO and NOT GO Plain Ring Gages, Z Tolerance GO and NOT GO Plain Setting Ring Gages, X Tolerance

A5.1 Diameter Measurement

A5.1.1 The Z tolerance ring gage is measured with internal indicating gage or measuring instrument which has a resolution of 0.00004 in. The measuring device is usually set with a master gap produced by clamping jaws to the selected gage block combination. Measurements are taken around the bore near ends and in the middle.

A5.1.2 The X tolerance ring gage is measured over two radius contacts on an internal measuring instrument. Internal measuring procedure is given in ANSI B89.1.6, Measurement of Qualified Plain Internal Diameters for Use as Master Rings and Ring Gages. The measuring device is set with a master gap produced by clamping flat parallel jaws on the gage block combination corresponding to the ring gage dimension. The gage blocks and the jaws which are accessories to gage block sets must meet the requirements specified in ANSI B89.1.9, Precision Inch Gage Blocks for Length Measurement (Thru 20 Inches). The small displacement between ring gage diameter and master gap is read on the meter. Measurements are taken around the gage, near the ends, and in the middle. The measuring instrument should have a readout of at least 0.00001 in. A referenced position at the middle of the bore is used to index the out-of-roundness check as described in A4.1.2.

A6 PLAIN SNAP GAGES

GO and NOT GO plain snap gages for external major diameter check are set with plain Z tolerance plug gages. When the adjustable anvil is locked, there should be a very light drag felt when plug gage or roll is pushed between anvils for its entire travel. If this does not occur, anvils are worn out of parallel and should be relapped. The snap may be set with gage blocks and roll whose combined thickness equals the major diameter limit. When the adjustable anvil is locked, the small roll should have a very light drag when moved across the anvil.

A7 ROLLS WITH ZERO LEAD THREAD FORM USED ON SNAP AND INDICATING GAGES

Rolls may be checked for thread form and size by optical projection (see A2.5 and A2.6). Pitch is measured as described in A2.2. New rolls should be manufactured to X tolerances. Worn rolls should be replaced when a single thread element wears outside of X tolerance.

A8 INSPECTING PERIPHERAL CONTACTING SEGMENTS USED ON EXTERNAL PRODUCT THREAD

A8.1 Inspection of the Threaded Section Used on External Product Threads

A8.1.1 Straightness (Taper, Bellmouth, and Barrel Shape)

(a) Using the last three threads of the *full-form* portion of the truncated type setting plug (handle end on taperlock blanks), engage the *first* three threads on *one* end of the segments. Note the reading.

(b) Using the same procedure, engage the *last* three threads on the *other* end of the segments. Note the reading.

(c) Repeat step (a) using *first* three threads of the *truncated* portion of the plug (opposite the handle end on taperlock blanks). Note the reading.

(d) Repeat step (b) using the first three threads of the *truncated* portion of the plug. Note the reading.

Indicated differences exceeding X tolerance for pitch diameter between reading (a) and (b) or (c) and (d) reveal the segments as having an end-to-end straightness deviation.

NOTE: More definitive analysis for bellmouth or barrel shape can be made by using a check plug (full-form or truncated) having a maximum length of three pitches, rotating the plug through the full length of the segments, and noting the plus and minus (\pm) indicator variation at specific points in the segments.

A8.1.2 Flank Angle Wear

(a) Indicated differences exceeding X tolerance for pitch diameter values obtained by A8.1.1 procedure (a) and (c), or (b) and (d), reveal that the segments have excessive flank angle wear; or

(b) Indicated differences exceeding X tolerance for pitch diameter values obtained between the full-form portion and the truncated portion of the setting plug when engaging the segments over their full length also reveal that the segments have excessive flank angle wear.

Thread Sizes, Decimal Range		Lengths of Thread Ring Gages			Total Thread Lengths of Truncated Thread-Setting Plugs		
Above	To And including	Thin Ring	Thick Ring	Fine-Pitch Instrument Ring	For Thin Ring	For Thick Ring	For Fine-Pitch Instrument Ring
1	2	3	4	5	6	7	8
0.059 0.090 0.150 0.230 0.365 0.510 0.825 1.135 1.510 2.010	0.090 0.150 0.230 0.365 0.510 0.825 1.135 1.510 2.010 2.510	3/32 5/32 3/16 11/32 7/16 9/16 11/16 3/4 13/16 7/8	···· ···· ··· ··· ··· ··· ··· ··· ···	· · · · 1/4 5/16 15/32 17/32 5/8 5/8 11/16	7/32 3/8 13/32 3/4 1 11/4 11/2 15/8 17/8 2	 17/8 2 ¹ /8 2 ³ /8 2 ⁷ /8 3	···· 9/16 11/16 1 11/8 1 ⁵ /16 1 ⁵ /16 1 ⁵ /16
2.510 3.010 3.510 4.010	3.010 3.510 4.010 6.260	⁷ /8 ¹⁵ /16 1 ⁵ /16	1 ³ ⁄8 1 ⁷ /16 1 ¹ ⁄2 1 ¹ ⁄2	· · · · · · · · · ·	1 ⁷ /8 2 2 2 ¹ /8	3 3 ¹ /8 3 ¹ /4 3 ¹ /4	···· ··· ···

TABLE A4 LENGTHS OF AGD THREAD RING GAGE BLANKS AND TOTAL THREAD LENGTHS OF STANDARD TRUNCATED-SETTING PLUG GAGE BLANKS SELECTED FROM ANSI B47.1

GENERAL NOTES:

(a) Thin gage blanks are used for all NOT GO (LO) thread ring gages. Counterbore sides as applicable.

(b) For GO thread ring gages:

(1) 0.059 in. to 0.510 in., use thin blank for all pitches, recessing sides where applicable;

(2) above 0.510 in. to 1.135 in., use thick blank for pitches coarser than 12 TPI, thin blank for pitches 12 TPI to 28 TPI, and fine-pitch instrument blank for pitches 30 TPI and finer;

(3) above 1.135 in. to 6.260 in., inclusive, use thick blank for pitches coarser than 10 TPI, thin blank for pitches 10 TPI to 28 TPI, and fine-pitch instrument blank for pitches 30 TPI and finer.

A8.1.3 Lead Error. Should the preceding checks for straightness and flank angle wear fall within X tolerance, the check for lead error is performed as follows:

(a) Using the last three threads of the *full-form* portion of the setting plug (handle end on taperlock blanks), engage the *first* three threads on one end of the segments. Note the reading.

(b) With the three thread engagement above, rotate the *full-form* portion of the plug through the segments to full length engagement. Note the reading.

An indicated difference exceeding X tolerance for pitch diameter between the first and second readings above reveals that the segments have excessive lead error.

(c) Repeat steps (a) and (b) with the *truncated* portion of the plug. Note the reading.

An indicated difference exceeding X tolerance for

pitch diameter between the first and second readings reveals that the segments have a lead error.

Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrolled

A8.1.4 Thread Form and Cylindrical Form Continuity. For checking continuity of threaded and plain surfaces (helical profile uniformity, continuous thread flank contact with setting plug, and cylindrical contacts), the conventional bluing procedure is used.

A8.1.5 Minor Cylinder to Pitch Cylinder Relationship of Each Segment

(a) With each like coded segment, measure from its mounting hole over the outside diameter of a plain plug whose diameter is that of the specified maximum minor diameter and which is resting on the minor diameter of the segment. Note the two readings.

(b) With each like coded segment, measure from its mounting hole over the outside diameter of the W

tolerance GO thread plug — full-form section — as it rests in the segment thread. Note the readings.

The differences between matching sets of readings from steps (a) and (b) for each segment must be within the X tolerance for minor diameter.

NOTE: Inspection fixtures can be used for the above.

A8.1.6 Minor Cylinder Size Compared to Pitch Cylinder Diameter Size and Minor Diameter Straightness (As a Coded Pair)

(a) Using the full-form portion of the W tolerancesetting plug, engage its entire length into the segments and zero-out the indicator.

(b) Using a plain cylindrical plug having a size equal to the maximum-material minor diameter of the thread size in question, engage that plug fully into the segments and note the reading.

The difference in reading must be within the X tolerance specified for minor diameter.

(c) To verify the taper of the minor diameter, partially engage the plain cylindrical plug from each end of the segments.

(d) Measure directly for straightness from the segment mounting hole directly to the minor diameter flats of each thread in the segment.

A8.1.7 Minor Cylinder to Pitch Cylinder Coaxiality Relationship (As a Coded Pair)

NOTE: Even though the size of the minor diameter may be within tolerances, they may not be coaxial.

(a) Using the full-form portion of the W tolerancesetting plug, engage the entire length into the segments and zero-out the indicator at the high point. Lock the segments on the studs, with the set screws provided in the backs of the segments to prevent them from pivoting. Lift the pivot arm and back out the plug.

NOTE: The pivot arm will not lift high enough to allow total disengagement. Consequently, the plug must be screwed out.

(b) Using the plain cylindrical plug having a size equal to the maximum-material minor diameter of the thread size in question, engage the plug by sliding it in (right to left or left to right) from the end. Note the reading.

(c) The indicated difference between steps (a) and (b) above should not exceed X tolerance for minor diameter.

(d) Loosen and reverse the top segment 180 deg. (ledge side out) and using the full-form portion of the W tolerance-setting plug, engage the entire length into the segments and zero-out the indicator at the high

1

point. With the bottom segment still locked as in step (a), lock the top segment on the stud with the set screw provided in the back of the segment to prevent it from pivoting. Lift the pivot arm and back out the plug.

NOTE: The pivot arm will not lift high enough to allow total disengagement. Consequently, the plug must be screwed out.

(e) Repeat step (b) above.

(f) The indicated difference between steps (d) and (e) above should not exceed X tolerance for minor diameter.

A9 INSPECTION OF THREAD CONTACT SEGMENTS USED ON INTERNAL PRODUCT THREAD

The coded pairs of segments are locked or clamped when engaging the plain ring gage or thread-setting ring. Then thread form, pitch diameter, major diameter, pitch, and straightness can be inspected by methods described in A2.1 through A2.8.

A10 CHECK FOR MAGNIFICATION DISCREPANCIES DUE TO INDICATING SYSTEM LINKAGE

Two X tolerance plain plug gages for the external thread indicating gages and two X tolerance plain ring gages for the internal thread indicator gages, whose diameter difference corresponds with the working range of the indicator dial, are required. When they are applied to the cluster of rolls or segments, the difference in indicator dial readings should not deviate by more than ± 1 least graduation from the calibrated difference between the two gages.

A11 CALIBRATION OF DIAL AND ELECTRONIC INDICATORS

Calibration of the indicator may be done by displacing the spindle with a calibrated micrometer screw or with tolerance Grade 3 gage blocks inserted between a fixed anvil and the spindle. The accuracy of the micrometer screw should be 0.00003 in. and is used for calibrating indicators with resolution of 0.00008 in. and larger. The zero setting for calibrating dial indicators is at the 12 o'clock position. A minimum of four equally spaced increments per revolution is calibrated. On electronic indicators each numbered division is calibrated.

A12 ASSESSMENT OF SURFACE QUALITY

Product threads which exhibit torn or rough surface may be assessed with indicating gages. The rapid fluctuation of the indicating needle when the part is rotated slowly between the gage contacts may not exceed 0.0001 in. For external threads, a roll type indicating gage with "best size" thread radius rolls is used.

For internal threads, a gage with "best size" thread ball contacts is used.

Intentionally left blank

APPENDIX B METROLOGY OF 60 deg. SCREW THREADS

(This Appendix is not part of American National Standard Gages and Gaging for Unified Inch Screw Threads, ANSI/ASME B1.2-1983, and is included for information purposes only.)

B1 WIRE METHOD OF MEASUREMENT OF PITCH DIAMETER (THREAD GROOVE DIAMETER)

This Section presents specifications and techniques for the measurement of screw thread plug gages and setting plugs by measuring over accurate cylinders or wires inserted in the thread grooves. The purpose is to make available a standard United States method for making such measurements. The practices described measure groove diameter, which is equal to pitch diameter only on a thread with perfect pitch spacing.

B2 SIZE OF WIRES

In the three-wire method of measuring pitch diameter, hardened steel cylinders or wires of appropriate size are placed in the thread groove, two on one side of the screw and one on the opposite side, as shown in Fig. B1. The contact face of the comparator, measuring machine, or micrometer anvil or spindle which is over the two wires must be sufficiently large in diameter or width to touch both wires; that is, it must be greater than the pitch of the thread. It is best to select wires of such a size that they touch the sides of the thread at points where the groove is equal to 0.5p (groove diameter). This is done so that the measurement of pitch diameter is least affected by any error in thread angle. The size of wire which touches exactly at the groove diameter of a perfect thread of a given pitch is termed the "best size" thread wire for that pitch.

The depth at which a wire of given diameter will rest in a thread groove depends primarily on the pitch and included angle of the thread; and, secondarily, on the angle made by the helix at the point of contact of the wire and the thread, with a plane perpendicular to the axis of the screw. Variation in the lead angle has a very small effect in the measurement of groove diameter with wires. It is desirable to use one size of wire to measure all threads of a given pitch and included angle. The "best size" thread wire is taken as that size which will touch at the groove diameter of a groove cut around a cylinder perpendicular to the axis of the cylinder. The size of the "best size" thread wire, resting in a zero lead angle 60 deg. vee thread, is given by the formula:

$$w = 0.5p \times \sec \alpha \tag{1}$$

where

w = diameter of wire p = pitch $\alpha =$ half-angle of thread Reduce this formula to

$$w = 0.57735 \times p \tag{2}$$

for 60 deg. threads.

On occasion, it may be necessary when a "best size" thread wire is not available to measure pitch diameter by means of wires of other than the "best size." The minimum size which may be used is limited to that permitting the wire to project above the crest of the thread, and the maximum, to that permitting the wire to rest on the flanks of the thread just below the crest and not ride on the crest of the thread. The diameters of the best size, maximum, and minimum wires for 60 deg. threads are given in Table B1.

B3 METHODS OF MEASURING WIRES CONSIDERING THE EFFECT OF DEFORMATION

Measurement of the pitch diameter of a thread gage by means of the three-wire method is most conveniently made when sufficient force is applied to the wires by the measuring instrument to properly align the wires and gage. Since a wire touches a minute area on each

FIG. B1 A THREE-WIRE METHOD OF MEASURING PITCH (THREAD GROOVE) DIAMETER OF THREAD PLUG GAGES

thread flank, the deformation of the wire and thread will be sufficiently large to require some type of correction and the measuring force must be limited to avoid permanent deformation of the wire and gage. As an indication of the need for compensation for the deformations, it can be shown that the total effect on pitch diameter of the deformations of three wires and a 1/2-20 thread gage is 0.00019 in. when measured under 2.5 lb_{force}. It is practical to compensate for the major portion of this deformation by a simple procedure described in the following paragraphs.

(a) It would be possible to prepare tables of the deformation of all standardized sizes of gages, but this would not take care of special combinations of pitch and diameter. Another method of compensating for the deformations is to measure the thread wires under conditions which provide deformations equivalent to those which occur when the wires are used to measure a thread. This can be accomplished by the measurement of the thread wires between a flat anvil and a cylinder with the axes of cylinder and wire at 90 deg. to each other if an appropriate selection of cylinder diameter

and the measuring force is made. Optimum compensation for the deformations which occur in the measurement of pitch diameter would require the calibration of wires with a different cylinder or force for every thread diameter-pitch combination. Calibration of wires involving such a variety of conditions is neither practical nor necessary, as the measurement procedure which is generally followed will assure uniformity of values. It is desirable to keep the effects of deformation small.

(b) It can be shown, for example, that all sizes of threads from 0.138 in. to 1.500 in. can be measured with wires calibrated against a 0.750 in. diameter cylinder using the forces recommended for pitch diameter measurements in Table B2 with deviations from true pitch diameter (neglecting the effect of lead angle) not in excess of 0.000035 in. Slightly larger discrepancies in the 2 in. to 4 in. size range are relatively unimportant because these sizes have larger tolerances. For sizes smaller than 0.138 in. it is necessary to calibrate wires against a 0.125 in. cylinder which has a radius more nearly equal to the radius of curvature of the thread flank.

Threads/in., n	Pitch, $\rho = \frac{1}{n}$	Wire Sizes, W			c.
		Best¹ 0.577350 <i>p</i>	Maximum² 1.010363 <i>p</i>	Minimum² 0.505182p	C, Best Size" Thread Wire Constant, ³ 0.866025 <i>p</i>
	in.	in.	in.	in.	 in.
80	0.012500	0.00722	0.01263	0.00631	0.010825
72	.013889	.00802	.01403	.00702	.012028
64	.015625	.00902	.01579	.00789	.013532
56	.017857	.01031	.01804	.00902	.015465
50	.020000	.01155	.02021	.01010	.017321
48	.020833	.01203	.02105	.01052	.018042
44	.022727	.01312	.02296	.01148	.019682
40	.025000	.01443	.02526	.01263	.021651
36	.027778	.01604	.02807	.01403	.024056
32	.031250	.01804	.03157	.01579	.027063
30	.033333	.01924	.03368	.01684	.028868
28	.035714	.02062	.03608	.01804	.030929
27	.037037	.02138	.03742	.01871	.032075
26	.038462	.02221	.03886	.01943	.033309
24	.041667	.02406	.04210	.02105	.036084
22	.045455	.02624	.04592	.02296	.039365
20	.050000	.02887	.05052	.02526	.043301
18	.055556	.03208	.05613	.02807	.048113
16	.062500	.03608	.06315	.03157	.054127
14	.071429	.04124	.07217	.03608	.061859
13	.076923	.04441	.07772	.03886	.066617
12	.083333	.04811	.08420	.04210	.072169
11 ½	.086957	.05020	.08786	.04393	.075307
11	.090909	.05249	.09185	.04593	.078730
10	.100000	.05774	.10104	.05052	.086603
9	.111111	.06415	.11226	.05613	.096225
8	.125000	.07217	.12630	.06315	.108253
7 ¹ /2	.133333	.07698	.13472	.06736	.115470
7	.142857	.08248	.14434	.07217	.123718
6	.166667	.09623	.16839	.08420	.144338
5 ¹ /2	.181818	.10497	.18370	.09185	.157459
5	.200000	.11547	.20207	.10104	.173205
4 ¹ /2	.222222	.12830	.22453	.11226	.192450
4	.250000	.14434	.25259	.12630	.216506

THREAD-MEASURING WIRES FOR 60 deg. SCREW THREADS TABLE B1

NOTES:

The diameters of "best size" thread balls are the same as the diameters of "best size" thread (1) wires.

(2) Measured PD = M_w + 0.886025p - 3W (3) If "best size" thread wire is used, PD = M - C.

Threads/in.	Measuring Force (±10%)	Cylinder Diameter, in.
20 or less	2.5 lb	0.750
Over 20 but not over 40	1 lb	0.750
Over 40 but not over 80	8 oz	0.125
Over 80 but not over 140	4 oz	0.050
Over 140	2 oz	0.020

TABLE B2 MEASURING FORCE FOR OVER-WIRE MEASUREMENTS OF EXTERNAL PITCH DIAMETER AND WIRE CALIBRATION, AND CYLINDRICAL DIAMETER FOR WIRE CALIBRATION

(c) As previously noted, the force applied by the measuring device must be limited to avoid permanent deformation of the wires or gage, or both. Even for large diameter threads having coarse pitches, the maximum compressive stress at the points where a wire touches the thread flanks is high, and it increases to a point where permanent deformation may occur for the small diameter threads. It therefore becomes necessary to reduce the measuring force progressively as the sizes of threads decrease. See Table B2.

B4 METHODS OF MEASUREMENT USING WIRES

The computed value for the pitch diameter of a screw thread gage obtained from readings over wires will depend upon the accuracy of the measuring instrument used, the measuring force, and the value of the diameter of the wires used in the computations. In order to measure the pitch diameter of a screw thread gage to an accuracy of 0.0001 in., strict adherence to the methods specified is required.

(a) The "best size" thread wires shall comply with the specifications listed in B2. The diameter of the wires must be known to within 0.000020 in.

(b) The measurement over wires should be made with a measuring instrument which reads directly to 0.000010 in. and has flat parallel contacts within 0.000004 in.

(c) A wire presses on the flanks of a 60 deg. thread with the force that is applied to the wire by the measuring instrument. Inasmuch as the wire and thread deform at the contact areas, it is desirable to determine the size of the wire under conditions which will compensate for this deformation. It is recommended for standard practice that diameters of wires be measured between a flat contact and a hardened and accurately ground and lapped steel cylinder having a diameter in accordance with Table B1 with the measuring force specified in Table B2. The plane of the flat contact should be parallel to the contact element of the cylinder within 0.000004 in.

To avoid a permanent deformation of the material of the wire or gages, it is necessary to limit the contact force and, for consistent results, a uniform practice as to contact force in making wire measurements of hardened screw threads gages is necessary. The recommended force for external pitch diameter measurements is given in Table B2.

The use of other contact forces will cause a difference in the reading over the wires, and to completely compensate for such errors is impractical. Variations in diameter around the wire should be determined by rotating the wire between a spherical or flat measuring contact and an anvil having the form of a 60 deg. vee groove. Variations in diameter along the wire should be determined by measuring between a spherical or flat contact and a cylindrical anvil. Copyrighted material licensed to Stanford University by Thomson Scientific (www.techstreet.com), downloaded on Oct-05-2010 by Stanford University User. No further reproduction or distribution is permitted. Uncontrollector

(c) The wires should be free to assume their positions in the thread grooves without restraint. (The practice of holding wires in position with elastic bands can introduce errors in measurement.)

(d) To assure accurate values for pitch diameter measurement, the measured value should be given to five decimal places.

(e) Measurements shall be standard at 68° F.

B5 STANDARD SPECIFICATION FOR WIRES AND STANDARD PRACTICE IN MEASUREMENT OF WIRES OF 60 deg. THREADS

The following specifications represent present practice relative to thread-measuring wires.

(a) Composition. The wires shall be accurately finished steel cylinders, the hardness of which shall not be less than that corresponding to a Knoop indentation number of 776 minimum. The surface texture shall not exceed the equivalent of $2 \mu in$. aa (arithmetic average).

(b) Length of Wires. The working surface shall be at least 1.000 in. in length. The wire may be provided with a suitable means of suspension.

(c) Diameter of Wires. One set of wires shall consist of three wires which shall have the same diameter within 0.00001 in., and this common diameter shall be within 0.00002 in. of that corresponding to the "best size" for the pitch for which the wires are to be used. Wires shall be measured between a flat contact and a hardened and accurately finished cylinder having a surface texture not over 2 μ in. aa. The measuring forces and cylinder diameter shall be per Table B2.

(d) Variation in Diameter. Variations in diameter along a wire (taper) over the 1.000 in. interval at the center of its length shall not exceed 0.00001 in. as determined by measuring between a spherical or flat contact and a cylindrical contact.

Variations from true cylindrical contour of a wire (out-of-roundness, or noncircular cross section) over its 1.000 in. central interval shall not exceed 0.00001 in. as determined by measuring between a spherical or flat measuring contact and a well-finished 60 deg. vee groove. For the 80 pitch wire, the spherical contact is attached to the tip of a 55 deg. or less cone, or the flat contact is formed by truncating a 55 deg. or less cone point to an approximate 0.010 in. width.

(e) Container and Marking. A suitable container shall be provided for each set of wires. The pitch for which the wires are the "best size" and the diameter of the 1.000 in. central interval of the wires, as determined by measurements under standard conditions as specified, shall be marked on the container. The measuring force and C corrections shall be marked in the container.

B6 GENERAL FORMULA FOR MEASUREMENT OF PITCH DIAMETER

The general formula for determining the pitch diameter of any thread whose sides are symmetrical with respect to a line drawn through the vertex and perpendicular to the axis of the thread in which the slight effect of lead angle is taken into account is:

$$d_2 = M_w + \left(\frac{\cot \alpha}{2}\right)(p) - w[1 + (\operatorname{cosec}^2 \alpha + \cot^2 \alpha \tan^2 \lambda')^{1/2}]$$
(3)

where

$$d_2$$
 = pitch diameter
 M_w = measurement over wires
 α = half-angle of thread
 p = pitch

 $\tan \lambda' = \frac{\text{lead}}{3.1416d_2} = \text{lead angle (angle between axis of wire and plane perpendicular to axis of thread)}$

W = mean diameter of wires

This formula is a very close approximation, being based on certain assumptions regarding the positions of the points of contact between the wire and the thread.

Formula (3) can be converted to the following simplified form, which is particularly useful when measuring threads of large lead angle:

$$d_2 = M_w + \left(\frac{\cot \alpha}{2}\right)(p) - W(1 + \csc \alpha') \qquad (4)$$

in which $\alpha' =$ the angle whose tangent equals tan $\alpha \cos \lambda'$.

When formula (3) is used, the usual practice is to expand the square root term as a series, retaining only the first and second terms, which gives the following:

$$d_{2} = M_{w} + \left(\frac{\cot \alpha}{2}\right)(p) - W\left(1 + \csc \alpha + \frac{\tan^{2} \lambda \cos \alpha \cot \alpha}{2}\right)$$
(5)

B7 SIMPLIFIED FORMULA FOR PITCH DIAMETER

In the measurement of pitch diameter, the term

$$\left(\frac{w\,\tan^2\lambda'\,\cos\alpha\,\cot\alpha'}{2}\right)$$

is neglected, as its value is small, being in all cases less than 0.00015 in. for standard single lead fastening screws when the "best size" thread wire is used. Formula (5) takes the simplified form:

$$d_2 = M_w + \left(\frac{\cot \alpha}{2}\right)(p) - W(1 + \csc \alpha) \qquad (6)$$

The practice of using formula (6) for such threads is

permissible in order to maintain uniformity of practice in the United States and thus avoid confusion.

For a 60 deg. thread of correct angle and thread form, formula (6) simplifies to

$$d_2 = M_w + 0.866025p = 3W \tag{7}$$

For a given set of "best size" thread wires

$$d_2 = M_w - C$$

where

$$C = W \left[1 + \operatorname{cosec} \alpha - \left(\frac{\cot \alpha}{2} \right) (p) \right]$$

The quantity C is a constant for a given thread angle and, when the wires are used for measuring threads of the pitch and angle for which they are the "best size," the pitch diameter is obtained by the simple operation of subtracting this constant from the measurement taken over the wires. In fact, when "best size" thread wires are used, this constant is changed very little by a moderate variation or error in the angle of the thread. Consequently, the constants for the various sets of wires in use may be tabulated, thus saving a considerable amount of time in the inspection of gages. However, when wires of other than the best size are used, this constant changes appreciably with a variation in the angle of the thread.

With the exception of large pitch screws, it has been shown that variation in angle from the basic size causes no appreciable change in the quantity C for the "best size" thread wires. (For angle variation of 2 deg., C increases by 0.00004 in. for 16 threads/in., and 0.00008in. for 8 threads/in.) On the other hand, when a wire near the maximum or minimum allowable size is used, a considerable change occurs, and the values of the cotangent and the cosecant of the actual measured half-angle are to be used. It is apparent, therefore, that there is a great advantage in using wires very closely approximating the best size. For convenience in carrying out computations, the value C for pitches as shown in Table B1 should be used.

B8 SETTING MEASURING INSTRUMENTS WITH VARIABLE MEASURING FORCE

Recommended practice for setting measuring instruments using gage blocks is as follows.

(a) Wipe anvils and gage blocks free from dirt and dust.

(b) Wring the gage blocks to both anvils at maximum measuring force setting, or press with fingers the tailstock spindle against the gage blocks while wringing them to the anvils.

(c) With the gage blocks still in the instrument, reduce the measuring force to that which will be used and reset the instrument at this working measuring force. This procedure provides adequate force for wringing gage blocks in with relatively large areas of anvil faces. The final setting at the working measuring force to be used compensates for any instrument deflection variation that may occur at the higher measuring forces.

B9 THREAD BALLS

B9.1 ''Best Size'' Thread Balls Specifications

Thread balls shall meet the following requirements: (a) for a 60 deg. thread, the "best size" thread ball sizes are identical to the "best size" thread wire sizes and are given in Table B1;

(b) one set of "best size" thread balls consists of three hardened steel balls that have the same diameter within 0.00001 in., and their common diameter should be within 0.00002 in. of the corresponding "best size" thread ball for the specified pitch. The sphericity should not exceed 0.00001 in.

B9.2 Method of Measuring Thread Balls

The following procedures shall be used when measuring pitch diameter thread balls.

(a) In order to measure the pitch diameter of a 60 deg. thread ring gage to an accuracy of within 0.0001 in. by means of thread balls, it is necessary to know the thread ball diameters to within 0.00002 in. Thus, it is necessary to use a measuring instrument that reads accurately to 0.000010 in.

(b) The thread ball presses on the flanks of a 60 deg. thread with the force that is applied to the thread ball by the measuring instrument. Since the thread ball and thread deform at the contact areas, the size of the thread ball should be determined under conditions which nearly compensate for this deformation. The thread ball should be measured between parallel, flat, hardened steel contacts which are set with calibrated gage blocks. The contact should be parallel within 0.000004 in.

(c) To avoid exceeding the elastic limit of the thread balls and thread gages and to prevent excessive deformation compensation, it is necessary to recommend a uniform practice for measuring force for the calibra-

TABLE B3MEASURING FORCE OVERBALLS FOR INTERNAL PITCHDIAMETER MEASUREMENTAND BALL CALIBRATION

Threads/in. Range	Measuring Force (±10%), lb
32-20	0.250
20-8	0.375
8 and coarser	0.500

tion of thread balls and for their use in measuring internal pitch diameter. Table B3 gives the recommended measuring forces.

(d) Variations in diameter around the thread ball should be determined by rotating the thread ball between parallel measuring contacts.

B10 INTERNAL PITCH DIAMETER MEASUREMENT

Indicating gages with "best size" thread ball contacts are set to either a calibrated plain ring gage or a gage block gap which is larger than the basic pitch diameter of the product thread by one-half of the diameter of the "best size" thread ball. The measured internal pitch diameter is obtained by adding the indicator reading change directly to the basic pitch diameter size. Setting to a plain ring gage permits less uncertainty in deformation compensation. The recommended measuring force over thread balls for internal pitch diameter measurement is given in Table B3. Intentionally left blank

Intentionally left blank

