Plate Heat Exchangers for General Refinery Services

Part 1—Plate-and-Frame Heat Exchangers

ANSI/API STANDARD 662 FIRST EDITION, FEBRUARY 2006

REAFFIRMED, FEBRUARY 2011

ISO 15547-1:2005 (Identical), Petroleum, petrochemical and natural gas industries—Platetype heat exchangers—Part 1: Plate-and-frame heat exchangers

Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

These materials are subject to the copyright claims of ISO, ANSI and API. All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 2006 American Petroleum Institute

API Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.

Suggested revisions are invited and should be submitted to the Standards and Publications Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.

	Page
API Fo	rwardii
Forewo	ordiv
Introdu	ictioniv
1	Scope1
2	Normative references1
3	Terms and definitions1
4	General4
5	Proposal information required4
6	Drawings and other data requirements5
7	Design6
8	Materials12
9	Fabrication13
10	Inspection and testing13
11	Preparation for shipment14
Annex	A (informative) Recommended practice15
Annex	B (informative) Plate-and-frame heat exchanger checklist18
Annex	C (informative) Plate-and-frame heat exchanger data sheets19
Bibliog	raphy26

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15547-1 was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures* for petroleum, petrochemical and natural gas industries, Subcommittee SC 6, Processing equipment and systems.

This first edition of ISO 15547-1, together with ISO 15547-2, cancels and replaces ISO 15547:2000, of which it constitutes a technical revision.

ISO 15547 consists of the following parts, under the general title *Petroleum, petrochemical and natural gas industries* — *Plate-type heat exchangers*:

- Part 1: Plate-and-frame heat exchangers
- Part 2: Brazed aluminium plate-fin heat exchangers

Introduction

Users of this part of ISO 15547 should be aware that further or differing requirements may be needed for individual applications. This part of ISO 15547 is not intended to inhibit a vendor from offering, or the purchaser from accepting, alternative equipment or engineering solutions for the individual application. This may be particularly applicable where there is an innovative or developing technology. Where an alternative is offered, the vendor should identify any variations from this part of ISO 15547 and provide details.

This part of ISO 15547 requires the purchaser to specify certain details and features.

A bullet (•) at the beginning of a clause or subclause indicates a requirement for the purchaser to make a decision or provide information (for information, a checklist is provided in Annex B).

In this part of ISO 15547, where practical, US Customary units are included in parentheses for information.

Petroleum, petrochemical and natural gas industries — Plate-type heat exchangers —

Part 1: Plate-and-frame heat exchangers

1 Scope

This part of ISO 15547 gives requirements and recommendations for the mechanical design, materials selection, fabrication, inspection, testing, and preparation for shipment of plate-and-frame heat exchangers for use in petroleum, petrochemical and natural gas industries. It is applicable to gasketed, semi-welded and welded plate-and-frame heat exchangers.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8501-1, Preparation of steel substrates before application of paints and related products — Visual assessment of surface cleanliness — Part 1: Rust grades and preparation grades of uncoated steel substrates and of steel substrates after overall removal of previous coatings

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

drip tray

tray that is able to collect droplets from an entire heat exchanger plate pack

3.2

end plate

plate which prevent the fluids in a plate-and-frame heat exchanger from contacting the fixed and removable covers

NOTE There are two end plates, one at each end of the plate-and-frame heat exchanger.

3.3

frame

assembly that provides the structural support and pressure containment of a plate-and-frame heat exchanger

3.4

welded plate pack

plate pack where the gaskets have been replaced by welds

3.5

heat transfer area

sum of the surface areas of one side of all plates in contact with both heat-transfer fluids

NOTE Areas of end plates are not included.

3.6

item number

purchaser's identification number for a plate-and-frame heat exchanger

3.7

minimum design metal temperature

lowest metal temperature at which pressure-containing elements can be subjected to design pressure

EXAMPLE Ambient temperature, process fluid temperature.

3.8

pass plate

plate used to change the direction of flow of a stream in a plate-and-frame heat exchanger with two or more passes

3.9

plate

sheet of material precision-pressed or -formed into a corrugated pattern

3.10

plate chevron angle

angle formed between the corrugated plate pattern and the horizontal

3.11

plate-and-frame heat exchanger

assembly of a gasketed, semi-welded or welded plate pack and its supporting frame

See Figure 1.

3.12

plate gap

b

height to the underside of a corrugation of a plate

See Figure 2.

3.13

plate pack grouping of all plates contained within a frame

3.14

port

inlet or outlet opening in the plate

3.15

pressure design code

recognized pressure vessel standard specified or agreed by the purchaser

EXAMPLE ASME Section VIII, EN 13445.

3.16

semi-welded plate pair

two adjacent plates welded together where the weld replaces the function of a gasket

NOTE Gaskets are used to seal adjacent semi-welded plate pairs

3.17

shroud

removable covering for the top and sides of the plate pack of the plate-and-frame heat exchanger, which provides protection in the event of a spray leak or fire

3.18

structural welding code

recognized structural welding code specified or agreed by the purchaser

Key

- 1 mounting feet
- 2 plate pack
- 3 fixed cover
- 4 movable cover
- 5 support column

- 6 tie bolts
- 7 guide bar (bottom)
- 8 carrying bar (top)
- 9 connections, studded or flanged
- 10 tie nuts

Figure 1 — Typical single-pass plate-and-frame heat exchanger

Key

- b plate gap
- t plate thickness
- *p* compressed pitch per plate

Figure 2 — Plate gap

4 General

• **4.1** The pressure design code shall be specified or agreed by the purchaser. Pressure components (i.e. covers, tie bolts, tie nuts and connections) shall comply with the pressure design code and the supplemental requirements in this part of ISO 15547.

The structural welding code shall be specified or agreed by the purchaser.

Annex A provides some recommended mechanical and design details for information. Annex A also includes some precautions for consideration when specifying fouling margin, fireproof shrouds and plate gaskets.

• 4.2 The vendor shall comply with the applicable local regulations specified by the purchaser.

5 Proposal information required

5.1 The vendor shall complete all information requested on the data sheet. Annex C provides suitable formats.

5.2 For components whose terms and definitions are not fully identified by Clause 3, the vendor shall describe the details of construction and assembly.

5.3 The vendor shall include a detailed description of any exception to the specified requirements.

5.4 The first-time use of a plate-and-frame heat exchanger design, component or material by the vendor for the purchaser's intended service shall be clearly indicated by the vendor.

5.5 The vendor shall state the anticipated life of the proposed gaskets in the specified service and in storage. Special requirements for gasket storage to maintain gasket shelf-life shall be specified.

5.6 The vendor shall state the method of support used for the movable cover.

5.7 The vendor shall supply a recommended spare parts list for each plate-and-frame heat exchanger.

5.8 If a fireproof shroud is specified, the plate-and-frame heat exchanger vendor shall submit proof that the proposed design has passed suitable type testing.

6 Drawings and other data requirements

6.1 Drawings

6.1.1 The vendor shall submit general arrangement drawings for each plate-and-frame heat exchanger for review. The drawings shall include the following information:

- a) service, item number, project name and location, vendor's shop order number and purchaser's order number;
- b) design pressure, test pressure, maximum design temperature, minimum design metal temperature and any restrictions regarding testing or operation of the plate-and-frame heat exchanger;
- c) dimensions and location of supports;
- d) overall exchanger dimensions;
- e) maximum and minimum compressed plate pack length;
- f) side clearance required for plate removal;
- g) mass of the plate-and-frame heat exchanger, both empty and full of water;
- h) centre of gravity of the exchanger for empty and operating conditions;
- i) corrosion allowance;
- j) material specifications for all components;
- k) allowable forces and moments on connections;
- I) size, flange rating and facing, location, orientation, and flow identification of all connections;
- m) applicable design codes;
- n) number of plates installed and maximum number of plates for specified frame;
- o) gasket materials and attachment method (e.g. glued, clip-on, etc.).

6.1.2 The vendor shall recommend the tools needed for the assembly and maintenance of the plate-and-frame heat exchanger. If torquing of bolts is required, the vendor shall provide torquing procedures.

6.1.3 The review of general configuration drawings by the purchaser shall not relieve the vendor of the responsibility of meeting the requirements of the purchase order.

6.1.4 After receipt of the purchaser's general arrangement drawing review comments, the vendor shall furnish the certified general configuration drawings and the detail drawings.

- **6.1.5** If specified by the purchaser, the vendor shall furnish copies of applicable welding procedure specifications and weld map for review or record.
- **6.1.6** If specified by the purchaser, the vendor shall furnish copies of applicable calculations for review or record.

6.2 Final records

6.2.1 The vendor shall furnish the purchaser with a user's manual, which shall contain the following:

- a) technical description;
- b) assembly instructions;
- c) operating instructions;
- d) installation and maintenance instructions (including lifting and handling);
- e) spare parts list;
- f) data sheets and drawings (as-built).

6.2.2 The vendor shall retain, for at least five years, records which confirm compliance of the material and fabrication with the requirements of this part of ISO 15547.

7 Design

7.1 General

7.1.1 The frame and tie bolts of the gasketed or semi-welded plate-and-frame heat exchanger shall be designed to permit the future installation of at least 20 % additional plates.

7.1.2 Gasketed plates shall be replaceable individually, and semi-welded plates in pairs, without having to remove any other plate.

7.1.3 The plate pack shall incorporate means for positive alignment of the plates and gaskets.

7.2 Design temperatures

• **7.2.1** The purchaser shall specify a maximum design temperature and a minimum design metal temperature.

7.2.2 The design temperatures shall be used for the design of all pressure-retaining components.

7.3 Design pressure

Unless otherwise specified or approved by the purchaser, the plate-and-frame heat exchanger shall be designed for design pressure on either side, with atmospheric pressure or, if specified, vacuum on the other side.

7.4 Fouling margin

• The purchaser shall specify a percentage fouling margin, *F*, calculated by

$$F = \left(\frac{U_{\text{clean}}}{U_{\text{service}}} - 1\right) \times 100 \tag{1}$$

where \boldsymbol{U} is the heat transfer coefficient (overall thermal transmittance).

7.5 Corrosion allowance

- 7.5.1 Corrosion allowance, if specified, shall apply to unlined connections only.
- 7.5.2 The corrosion allowance for plate material shall be zero.

7.6 Components

- **7.6.1** Plates shall conform to the following:
- a) the nominal thickness of gasketed plates before being pressed shall be sufficient to meet design conditions but shall not be less than 0,5 mm (0,02 in);
- b) the plates shall be fully supported by the carrying bar;
- c) the plates shall be designed to meet the design conditions without the need of additional stiffeners attached to the plate, unless otherwise approved by the purchaser;
- d) the thickness of pass plates shall be sufficient to withstand the total stream pressure drop across the port area;
- e) the wetted surfaces of supports for pass plates shall be of the same material as the plates;
- f) all gasketed and semi-welded plates shall have permanently stamped identification for proper assembly;
- g) end plates shall be furnished at the fixed and movable covers.
- 7.6.2 Fixed and movable covers shall conform to the following:
- a) Covers designed with the use of stiffeners shall require approval of the purchaser;
- b) Covers shall be furnished with slotted holes for tie bolts. The design shall mechanically restrain the tie bolts or nuts from turning.
- 7.6.3 Tie bolts and nuts for gasketed and semi-welded plate packs shall conform to the following:
- a) the nominal diameter of tie bolts shall be at least 16 mm (5/8 in);
- b) each tie bolt shall have one captive nut and at least one running nut. The length of each nut shall be greater than or equal to that of a heavy hexagonal type;
- c) hardened steel washers shall be provided under all rotating nuts;
- d) each tie bolt shall be supplied greased and with a plastic sleeve to protect it from the environment.

7.6.4 The carrying bar for gasketed and semi-welded plate-and-frame heat exchangers shall conform to the following:

- a) the bearing surface shall permit easy sliding of the plates and movable cover along the entire length of the carrying bar;
- b) the carrying bar shall be designed to support at least 1,5 times the total mass of the movable cover and plate pack with the maximum number of plates filled with water (or the process fluid if its density is greater than that of water).

7.6.5 Gasketed and semi-welded plate-and-frame heat exchangers shall have a support column with a mounting foot located at the movable cover end. A minimum of two mounting feet shall be provided at the fixed cover. The vendor shall design the supports for the external loads specified in the equipment data sheet

- **7.6.6** If specified by the purchaser, the vendor shall provide details of the reaction at the support points.
- **7.6.7** If specified by the purchaser, plate-and-frame heat exchangers shall be equipped with a shroud to protect against spray leaks.
- **7.6.8** If specified by the purchaser, a suitable fire protection shroud shall be provided. The level of protection shall be specified by the purchaser. For further information see A.6.
- **7.6.9** If specified by the purchaser, plate-and-frame heat exchangers shall be equipped with a drip tray.

7.6.10 All units shall have two earthing lugs, one connected at each end of the frame.

7.7 Connections

7.7.1 Connections shall be bolted and shall be of either studded or flanged design. For flanged design, the connection shall be welded to the cover.

7.7.2 The use of studded and/or flanged connections and facings shall be specified on the data sheet.

7.7.3 Drilled and tapped holes for studded connection bolts shall not pass completely through the cover plate. The hole shall be threaded for a minimum length of one times the stud diameter and the minimum undrilled thickness remaining in the cover shall be no less than one-fourth of its thickness.

7.7.4 The plate-and-frame heat exchanger shall be self-draining and self-venting through the connections for all pass arrangements.

7.7.5 For alloy-lined connections, the minimum thickness of the lining shall not be less than the plate thickness.

7.7.6 The projection of flanged connections shall be of sufficient length to allow installation and removal of the flange bolts from either side of the flange.

7.7.7 All bolt holes for flanged or studded connections shall straddle centrelines.

7.7.8 Connection sizes of DN 32 (NPS 1-1/4), DN 65 (NPS 2-1/2), DN 90 (NPS 3-1/2) or DN 125 (NPS 5) shall not be used.

• **7.7.9** For alloy nozzles, the purchaser shall define requirements for either solid or lined connections, including any connections fitted into the nozzle necks.

7.7.10 Connections shall be designed to withstand suitable forces (F) and moments (M) induced by the piping. Tables 1 and 2 indicate a suitable initial estimate of primary loadings for connections either in standard or severe service. Unless otherwise specified by the purchaser, standard nozzle loadings as shown in Table 1 shall be used. Directions of forces and moments shall be as shown in Figure 3.

Nom	A. size PN 20 PN 50 PN 110 (ASME rating 150) (ASME rating 300) (ASME rating 60					110 ating 600)						
		j	F	-	М	1	F		М		F	Ι	Л
DN	(NPS)	Ν	(lbf)	N∙m	(lbf·ft)	Ν	(lbf)	N∙m	(lbf·ft)	Ν	(lbf)	N∙m	(lbf·ft)
25	(1)	90	(20)	0	(0)	119	(27)	1	(1)	167	(37)	2	(2)
40	(1,5)	159	(36)	37	(27)	209	(47)	40	(29)	293	(66)	44	(32)
50	(2)	208	(47)	76	(56)	273	(61)	80	(59)	383	(86)	88	(65)
80	(3)	365	(82)	230	(169)	480	(108)	246	(181)	673	(151)	274	(202)
100	(4)	477	(107)	358	(264)	628	(141)	388	(286)	879	(198)	438	(323)
150	(6)	776	(175)	750	(553)	1 022	(230)	840	(620)	1 430	(322)	990	(730)
200	(8)	1 096	(246)	1 236	(911)	1 443	(324)	1 431	(1 056)	2 020	(454)	1 758	(1 297)
250	(10)	1 433	(322)	1 809	(1 335)	1 886	(424)	2 167	(1 598)	2 640	(593)	2 763	(2 038)
300	(12)	1 784	(401)	2 471	(1 822)	2 347	(528)	3 056	(2 254)	3 286	(739)	4 032	(2 974)
350	(14)	2 146	(482)	3 220	(2 375)	2 824	(635)	4 108	(3 030)	3 953	(889)	5 587	(4 121)
400	(16)	2 519	(566)	4 060	(2 995)	3 314	(745)	5 333	(3 933)	4 640	(1 043)	7 454	(5 498)
450	(18)	2 901	(652)	4 993	(3 683)	3 818	(858)	6 742	(4 973)	5 345	(1 202)	9 658	(7 123)
500	(20)	3 292	(740)	6 021	(4 441)	4 332	(974)	8 346	(6 156)	6 065	(1 363)	12 221	(9 014)

Table 1 — Standard-service nozzle loading

$$7.5 \cdot DN^{1,2} + 0.1 \cdot PN \cdot DN^{1,2}$$

NOTE The data above are based on the following equations:

$$F = \frac{7,5 \cdot \text{DN}^{1,2} + 0,1 \cdot \text{PN} \cdot \text{DN}^{1,2}}{5}$$

$$M = \frac{4(\text{DN} - 25)^{1,4} + (2 \times 10^{-5})\text{PN} \cdot \text{DN}^{2,7}}{5}$$

$$M = \frac{4(DN - 25)^{++} + (2 \times 10^{-5})PN \cdot DN^{-5}}{5}$$

where $F = F_x = F_y = F_z$; $M = M_x = M_y = M_z$

Nom	. size	PN 20 (ASME rating 150)				(PN ASME r	l 50 ating 30	0)	PN 110 (ASME rating 600)			
		1	F		М	1	7		М		F	М	
DN	(NPS)	Ν	(lbf)	N∙m	(lbf·ft)	Ν	(lbf)	N∙m	(lbf·ft)	Ν	(lbf)	N∙m	(lbf·ft)
25	(1)	452	(102)	2	(2)	595	(134)	6	(4)	833	(187)	12	(9)
40	(1,5)	795	(179)	186	(137)	1 046	(235)	198	(146)	1 464	(329)	220	(162)
50	(2)	1 039	(234)	378	(279)	1 367	(307)	401	(296)	1 913	(430)	440	(324)
80	(3)	1 826	(410)	1 148	(847)	2 402	(540)	1 230	(907)	3 363	(756)	1 368	(1 009)
100	(4)	2 386	(536)	1 788	(1 318)	3 140	(706)	1 938	(1 430)	4 396	(988)	2 189	(1 615)
150	(6)	3 882	(873)	3 750	(2 766)	5 108	(1 148)	4 200	(3 098)	7 151	(1 608)	4 951	(3 651)
200	(8)	5 482	(1 232)	6 178	(4 556)	7 213	(1 622)	7 157	(5 279)	10 099	(2 270)	8 789	(6 483)
250	(10)	7 166	(1 611)	9 047	(6 673)	9 428	(2 120)	10 836	(7 992)	13 200	(2 967)	13 817	(10 191)
300	(12)	8 918	(2 005)	12 353	(9 111)	11 734	(2 638)	15 280	(11 270)	16 428	(3 693)	20 158	(14 868)
350	(14)	10 730	(2 412)	16 101	(11 876)	14 119	(3 174)	20 539	(15 149)	19 766	(4 444)	27 935	(20 604)
400	(16)	12 595	(2 831)	20 301	(14 973)	16 572	(3 726)	26 665	(19 667)	23 201	(5 216)	37 271	(27 490)
450	(18)	14 507	(3 261)	24 965	(18 413)	19 088	(4 291)	33 711	(24 864)	26 723	(6 008)	48 288	(35 616)
500	(20)	16 462	(3 701)	30 107	(22 206)	21 661	(4 870)	41 732	(30 780)	30 325	(6 817)	61 106	(45 069)

Table 2 — Severe-service nozzle loading

NOTE The data above are based on the following equations:

 $F = 7,5 \cdot \text{DN}^{1,2} + 0,1 \cdot \text{PN} \cdot \text{DN}^{1,2}$

 $M = 4 (DN - 25)^{1,4} + (2 \times 10^{-5}) PN \cdot DN^{2,7}$

where $F = F_x = F_y = F_z$; $M = M_x = M_y = M_z$

Key

- F force
- *l* length of connection
- M moment

Figure 3 — Directions of forces on connections

7.8 Plate gaskets

7.8.1 Gaskets shall be positioned in the grooves around the heat transfer surface and around the port holes of the plate as indicated in Figure 4. Gaskets shall be secured to the plate by glue or by mechanical means.

7.8.2 Gaskets shall be compressed to achieve metal contact between plates.

7.8.3 Each sealing gasket shall be one integral piece.

7.8.4 Through-flow port areas of the plates shall be double-gasketed and vented to the atmosphere such that cross-contamination of fluids cannot occur without readily detectable external evidence.

7.8.5 The vendor shall verify the compatibility of the gasket material and glue with the specified fluids, including any specified for chemical cleaning. For further information, see A.8.

Key

- 1 through-flow port
- 2 leakage vent
- 3 double gaskets
- 4 port hole

Figure 4 — Typical plate gasket

7.9 Handling devices

The plate-and-frame heat exchanger shall be provided with suitable lifting lugs, holes or similar devices. The design of the lifting devices shall be based on twice the maximum mass of the plate-and-frame heat exchanger

8 Materials

8.1 All pressure-containing parts of carbon steel plate shall be manufactured from fully killed fine-grained steel unless otherwise approved by the purchaser.

8.2 Non-pressure-containing parts (such as lifting lugs, clips and supports) that are welded directly to pressure parts shall be weldable mild carbon steel or any steel permitted for pressure parts.

8.3 The plate-contact surface of the guide bar and carrying bar for gasketed and semi-welded plate-and-frame heat exchangers shall be stainless steel.

8.4 All nameplates shall be austenitic stainless steel.

9 Fabrication

9.1 Welding

All pressure-containing welding shall be in accordance with the pressure design code, and structural welding shall be in accordance with the structural welding code, unless otherwise specified by the purchaser.

9.2 Plate gasket installation

9.2.1 Gasket plate surfaces shall be thoroughly cleaned and dried with solvent or detergent solution, before gasketing.

9.2.2 All gaskets shall be checked for adhesion and deformation after curing. All deformed or loose gaskets shall be replaced and cured again.

9.3 Surface finish

9.3.1 Surfaces to be painted shall be degreased and cleaned by wire brushing or a similar means to remove loose scale, dirt and other foreign materials.

9.3.2 Unless otherwise specified, carbon steel covers shall be blast-cleaned in accordance with ISO 8501-1, Grade Sa 2 1/2, and then coated with an inorganic zinc-rich primer to a dry-film thickness of at least 50 μ m (0,002 in).

9.4 Assembly

Each component shall be clearly and permanently identified for proper assembly in accordance with the detailed assembly instructions.

10 Inspection and testing

10.1 Quality control

- **10.1.1** The vendor shall supply information on its quality control system and a quality control plan if specified by the purchaser.
- **10.1.2** Any requirement and extent of non-destructive testing of the heat transfer plates in addition to hydrostatic testing, such as a light box, liquid penetrant testing, helium leakage testing or equivalent, shall be specified by the purchaser.
- **10.1.3** Where set-on connections are used on covers fabricated from plate, the purchaser should specify the method of non-destructive testing to be used to detect laminations in the edge zone of the hole cut in the cover plate.

10.2 Hydrostatic testing

10.2.1 The hydrostatic test shall be separately applied to the hot side and to the cold side with atmospheric pressure on the other side.

10.2.2 The hydrostatic test pressure shall be maintained for a sufficient time to permit a thorough inspection and detection of small seepage leaks, but not less than 30 min.

10.2.3 For each hydrostatic test, two indicating gauges (or one indicating gauge and one recording gauge) shall be attached to the plate-and-frame heat exchanger.

10.2.4 The water used for hydrotesting shall be potable.

10.2.5 The minimum water temperature for hydrostatic testing shall be 7 °C (45 °F)

10.2.6 The chloride content of the test water used for equipment with austenitic stainless steel materials that would be exposed to the test fluid, shall not exceed 50 mg/kg (50 parts per million by mass). Upon completion of the hydrostatic test, the equipment shall be promptly drained and cleared of residual test fluid.

• **10.2.7** Any additional requirements for equipment drying or preservation shall be specified by the purchaser.

10.3 Nameplates

- **10.3.1** A nameplate shall be permanently attached to the plate-and-frame heat exchanger.
- **10.3.2** Standard nameplate data shall include
- a) vendor's name and plate-and-frame heat exchanger serial number,
- b) purchaser's item number,
- c) year built,
- d) pressure design code and, if required, code stamping,
- e) maximum design temperature and minimum design metal temperature,
- f) maximum design pressure and, if applicable, vacuum,
- g) hydrostatic test pressure, and
- h) mass (empty).

11 Preparation for shipment

• **11.1** The plate-and-frame heat exchanger shall be cleaned and all openings sealed before shipment. Any specific requirements for drying will be specified by the purchaser.

11.2 Tie bolt threads shall be coated with an anti-seizing lubricant.

11.3 Exposed machined carbon steel surfaces, including threads extending beyond the nuts, shall be protected with an easily removable rust-preventive coating.

11.4 Exposed flanged connections shall be protected by either of the following:

- a) gasketed steel covers fastened by the greater of
 - 50 % of the required flange bolting, or
 - four bolts;
- b) commercially available plastic covers specifically designed for flange protection.

Annex A

(informative)

Recommended practice

A.1 General

This annex has been prepared to give advice to the designer. The advice is offered for guidance only.

The descriptions and the numbers following are those of subclauses of the main body of this part of ISO 15547 but are prefixed by the letters RP.

A.2 Reports and records RP 6.2

In some cases it might be necessary to ask the vendor to provide and/or maintain a detailed manufacturing record book (MRB). A suggested contents list for the MRB is as follows:

- a) certificate of conformance;
- b) non-conformance report;
- c) vendor's data report, as specified by the design code;
- d) code calculations;
- e) material traceability, certified mill test reports for all pressure parts including plates;
- f) weld and non-destructive testing (NDE) documentation;
- g) hydrotest report/certificate or chart;
- h) nameplate rubbings or photocopy;
- i) third-party verification and certification.

A.3 Design — General RP 7.1

A.3.1 For cyclic service, the fatigue design should conform to ASME Section VIII Div. 2 or an equivalent code specified by the purchaser.

A.3.2 For services containing particles larger than 50 % of the nominal plate gap, strainers should be provided.

A.3.3 The vendor should specify the required clearance around the plate-and-frame heat exchanger for maintenance.

A.4 Design — Fouling margin RP 7.4

Conventional fouling-resistance values used with shell-and-tube heat exchangers should not be used in the thermal design of plate-and-frame heat exchangers. Actual fouling resistances, if known, should be given. In the absence of applicable data, a minimum of 10 % fouling margin should be included. For crude oil service this may need to be increased to 25 %. It is important to ensure that the addition of the extra margin is taken into account when checking the thermal design of the unit. Wall shear-stress provides a good indication of fouling tendency in a plate-and-frame heat exchanger. A minimum wall shear-stress of 50 Pa (0,007 psi) is recommended.

A.5 Design — Components RP 7.6.2

Single-pass plate-and-frame heat exchangers should have all connections located in the fixed cover in order to ease maintenance and allow the unit to have additional plates added.

If nozzles are located on the movable cover, the design should use piping spools which allow for the retraction of the movable cover for maintenance and future addition of new plates.

A.6 Design — Components RP 7.6.8

A.6.1 A fireproof shroud should

- a) be readily removable and replaceable for maintenance,
- b) provide convenient access for observation, and
- c) be fitted with a suitable vent connection.
- A.6.2 If a fireproof shroud is required, a satisfactory type test should conform to the following:
- a) type-tested on a plate-and-frame heat exchanger which contains kerosene under pressure with no flow;
- b) type-tested at a commercial size and possesses a minimum of 100 plates;
- c) demonstrate by test the ability to limit the leakage to no more than 4 l/min (1 gpm) at design pressure or 1 000 kPa (ga) (150 psig) minimum, whilst exposed to a hydrocarbon-spill fire. The test duration should be at least 1 h. The fire should envelop the unit on all sides, with flame temperatures sustained above 760 °C (1 400 °F). Temperature readings at the plate pack should be taken for information.

A.7 Design — Connections RP 7.7.10

A.7.1 The nozzle loads from attached piping are seldom defined at the time of order placement for a plate-and-frame heat exchanger. In addition, the allowable nozzle loads for plate-and-frame heat exchangers are generally lower than the calculated loads for pipe or piping flanges. It is desirable in the design stage that the plate-and-frame heat exchanger vendor and piping designers work on agreed levels of nozzle loadings that can be taken by the plate-and-frame heat exchanger. When actual piping nozzle loads become available, these should be submitted to the vendor to confirm their acceptability.

A.7.2 Nozzle loads affect nozzle attachment design, size of the plate-and-frame heat exchanger's anchor bolts, and the design of the covers and carrier rails; consequently, excessive loads should not be specified. Plate-and-frame heat exchangers located in offshore structures or pre-assembled modules are usually required to withstand higher nozzle loadings than other facilities in which more flexible piping layouts are economical.

A.7.3 It is intended that the standard nozzle loads and moments given in this document be suitable for normal applications. The "severe" levels are intended where space is limited, such as in offshore structures or pre-assembled modules.

A.8 Design — Plate gaskets RP 7.8

A.8.1 The gasket should be selected for the process application and the vendor should provide details of the gasket material and operating limitations, including anticipated gasket life. The purchaser should inform the vendor of any operating, upset or maintenance conditions that could influence the selection of the gaskets.

A.8.2 For services where swelling of the gasket can be expected, e.g. hydrocarbon service, glued gaskets are preferred for maintenance considerations.

A.8.3 If the vendor lacks experience in the use of the proposed gaskets for an application, the gasket should be subjected to an immersion test to measure gasket swelling, hardness and susceptibility to chemical attack. The test should be conducted at the operating temperature with a piece of the specified gasket material with a maximum thickness of 8 mm (0,3 in). The minimum duration of the test is 15 days. The gasket hardness change should not exceed 15 IRHD (international rubber hardness degree) for fluoropolymers and 10 IRHD for others. The volume change should not be more than 15 %.

A.8.4 If the vendor lacks experience in the use of the proposed glue for an application, the glue should be subjected to an immersion test to measure the glue strength and susceptibility to chemical attack. The test should be conducted using a 100 mm (4 in) long piece of the specified gasket at the operating temperature for a duration of 15 days. Half [50 mm (2 in)] of the gasket should be glued to a surface which is equivalent to the gasket-groove surface of the proposed plate, i.e. a smooth surface should be used if the proposed plate's gasket-groove surface is smooth and a corrugated surface if the proposed plate's gasket-groove surface is corrugated. The final peel strength in newtons should be five times the gasket width in millimetres (or, in pounds force, 28 times the gasket width in inches).

A.9 Handling devices RP 7.9

Tools should be provided to facilitate efficient assembly and tensioning of the plate pack. These may consist of a pneumatic spanner with winch attached to the top carrying bar.

A.10 Nameplates RP 10.3.2

A.10.1 Any plate-and-frame heat exchanger that has a lining (e.g. in the nozzles) such as lead, rubber, glass, epoxy, etc. should have warnings printed on the outside of the unit saying "No welding permitted".

Annex B

(informative)

Plate-and-frame heat exchanger checklist

Completion of the checklist is the responsibility of the purchaser.

This checklist is used for listing the purchaser's specific requirements for which the clauses or subclauses within this part of ISO 15547 include a choice or which designate, by use of a bullet (\bullet) in the margin, that a decision is required.

Subclause	Requirement	Iten	n
4.1	Specify (or agree) pressure design code	Complete on	data sheet
4.1	Specify (or agree) structural welding code	Complete on	data sheet
4.2	Compliance with applicable local regulations	Complete on	data sheet
6.1.5	Welding procedure specifications and weld map furnished by vendor for review or record	Yes (clarify requirements)	No
6.1.6	Calculations to be furnished by vendor for review or record	Yes (clarify requirements)	No
7.2.1	Specify a maximum design temperature and a minimum design metal temperature	Complete on	data sheet
7.4	Specify fouling margin	Complete on	data sheet
7.6.6	Details of reaction at the support points to be furnished by vendor	Yes	No
7.6.7	Specify if shroud required to protect against spray leaks	Complete on	data sheet
7.6.8	Specify if a fire-protection shroud is required and, if so, level of protection required	Complete on	data sheet
7.6.9	Specify if drip tray required	Complete on	data sheet
7.7.9	For alloy nozzles requirements for solid or lined connections	Complete on	data sheet
10.1.1	Specify if information required on quality control system and if quality control plan required	Yes (clarify requirements)	No
10.1.2	Requirements and extent of non-destructive testing of the heat transfer plates	Complete on	data sheet
10.1.3	Requirements for non-destructive testing where set-on connections are used on covers fabricated from plate	Complete on	data sheet
10.2.7	Any additional requirements for equipment drying or preservation	Complete on	data sheet
11.1	Specific drying requirements	Complete on	data sheet

Annex C (informative)

Plate-and-frame heat exchanger data sheets

The following data sheets are provided to assist the designer, vendor and purchaser to specify the data necessary for the design of a plate-and-frame heat exchanger for petroleum and natural gas services.

Completion of the data sheets is a joint responsibility of the purchaser and the vendor. The purchaser (owner or contractor) is responsible for the process data, which define the purchaser's explicit requirements.

After the exchanger has been fabricated, the vendor should complete the data sheets to make a permanent record that accurately describes the equipment "as-built".

Company	PLATE-/	AND-FRAME DATA SHEE PROC	HEA T (SI CESS	T EXCHANGER UNITS)	EXCHANGER Engineering contractor				
PO No.:	Doc. No.:				Page 1 of				
Customer:			Vend	or:					
Project:			Orde	r/eng. No.:					
Location:			Mode	el:					
Item No.:			Seria	l No.:					
Service:									
01 CASE			нот s	SIDE	COLE) SIDE			
02 Fluid									
03 Total flow	(kg/s)								
04 Flow per exchanger	(kg/s)								
05 Design temperature (max.)	(°C)								
06 Minimum design metal temp	(°C)								
07 Design pressure	[kPa (ga)]								
08 Pressure drop allow /calc -	[ki u (gu)] (kPa)		1			1			
	(Ki a)		1			1			
10 Fouling margin ^d	(°)		1			1			
	(%)								
11 OPERATING DATA		INLET		OUTLET	INLET	OUTLET			
12 Liquid flow	(kg/s)								
13 Vapour flow	(kg/s)								
14 Non-condensables flow	(kg/s)								
15 Operating temperature	(³)								
16 Operating pressure	[kPa (ga)]								
17 LIQUID PROPERTIES									
18 Density	(kg/m³)								
19 Specific heat capacity	(kJ/kg·K)								
20 Dynamic viscosity	(mPa·s)								
21 I nermal conductivity	(W/m·K)								
	(IN/ff1)								
23 VAPOUR PROPERTIES									
24 Density	(kg/m ³)								
25 Specific heat capacity	(KJ/Kg·K)								
26 Dynamic viscosity	(mPa·s)								
28 Polotivo molocular mass	(w/mrk)								
20 Relative molecular mass	(kg/kmol)								
non-condensables	(Kg/KIIIOI)								
30 Dew point/bubble point	(°C)								
31 Solids maximum size	(mm)								
32 Solids concentration (% volume)	. ,								
33 Latent heat	(kJ/kg)								
34 Critical pressure	[kPa (abs)]								
35 Critical temperature	(°C)								
36									
37 Total heat exchanged	(kW)								
38 U ^a	(W/m ² ·K)	Clean condition	1:	Ş	Service:				
39 LMTD	(°C)			/					
40 Heat transfer area	(m ²)								
41 Stream heat transfer coefficient	(W/m ² ·K)								
^a Fouling margin = $[(U_{clean}/U_{service}) -$	1] × 100 % whe	re $U = Overall he$	eat trar	sfer coefficient (therm	nal transmittance).				
Rev. No. Revision				Date	Prepared by	Reviewed by			

Company	PLA	TE-AND-FRAME I DATA SHEET MECHAI	HE. 「(S NIC	AT EXCHANGEI SI UNITS) CAL	ĸ	Engine	ering co	ntractor	
PO No.:	Doc. No	o.:				Page 2	of		
01 CONFIGURATION FOR EXCHANG	ER AND	PLATE DETAILS							
02 Number of exchangers in parallel				Heat transfer area/to	tal		(m ²)		
03 Number of exchangers in series				Heat transfer area pe	er plat	е	(m ²)		
04 Number of passes, hot side				Number of plates per	exch	angers			
05 Number of passes, cold side				Max. number of plate	es per	exchang	jers		
06 Rel. directions of fluids	Coc	current/countercurrent		Plate chevron angle	(s)				
07 Nominal plate gap (m	m)			Nominal plate thickne	ess		(mm)		
08 DESIGN DATA									
09 Pressure vessel code									
10 Material certificate type					()				
11 Code stamp		Yes ()		NO	()				
12 Applicable specifications									
14 Local register of exchanger									
		нот	r eii	DE				SIDE	
16 Test pressure	kPa (na)i		. 51				JOLD	SIDE .	
17 MAWP	kPa (ga)]								
18 Velocity between plates	(m/s)								
19 Wall shear stress	(Pa)								
20 Volume liquid per exchanger	(m ³)								
21 Length/width/height	(mm)			/		/			
22 Mass empty/full of water	(kg)			1					
23									
24 CONNECTIONS		IN		OUT		IN		OUT	
25 Nozzle size	(DN)								
26 Flange rating/type		/		1		/		/	
27 COMPONENT				MATE	RIALS	;			
28 Exchanger type		Gasketed (()	Semi-welded		()	Welded	t	()
29 Plates									
30 Gasket fixing		Glued (()	Not glued		()			
31 Gaskets hot side/cold side				/					
32 Cover fixed/movable				/					
33 Tie bolts/huts		Studdod (()	/		()			
34 Connection design			()	Flanged hozzle		()			
36 Corrosion allow on connections	(mm)								
37 Stud bolts/nuts	(1111)								
38 Shroud		None (()	Spray		()	Fire		()
39 Drip tray		Yes (()	No		()	By othe	ers	()
40 Painting specification		Mfg. std. (()	Purchaser spec.		()	,		. /
41 Insulation		Yes (()	No		()	By othe	ers	()
42									
43 LOADING									
44 Connection loads/moments		Standard (()	Severe duty		()	Purcha	ser spec.	()
45 Wind loading									
46 Explosion blast pressure									
47 Earthquake loading									
48 Transport loading at sea									
50 TESTING AND INSPECTION					V.	()			()
51 Specific drying procedure					Yes	()		No	()
52 Dried by blowing air	the pre-	ouro dooigo codo			res	()		INO	()
53 Non-destructive testing in addition to	o une pres	sure design code		Dura	hasor	()		Third parts	()
				Purc	laser	()		millio party	()

Company			PLATE-AND-FRAME HEAT EXCHANGER DATA SHEET (SI UNITS) PROCESS							Engineering contractor			
PO No.: Doc. No.:									Page 3 of				
			(INC	PHYSIC	AL PROF	PERTIES	ENT)						
	Temperatur	e	(°C)										
CASE	Pressure		[kPa (abs)]										
	Heat releas	ed	(kW)										
	Mass fraction	on vapour											
	Mass fraction	on H ₂ O in lic	quid										
	Density		(kg/m ³)										
LIQUID	Specific hea	at capacity	(kJ/kg·K)										
PHASE	Dynamic vis	scosity	(mPa⋅s)										
	Thermal co	nductivity	(W/m·K)										
	Surface ten	sion	(N/m)										
	Vapour pres	ssure	[kPa (abs)]										
	Density		(kg/m ³)										
VAPOUR	Specific hea	at	(kJ/kg·K)										
PHASE	Dynamic vis	scosity	(mPa⋅s)										
	Thermal co	nductivity	(W/m·K)										
	Vapour pres	ssure	[kPa (abs)]										
	Relative mo	blecular mas	s (kg/kmol)										
	Latent heat		(kJ/kg)										
	Critical pres	sure	[kPa (abs)]										
	Critical tem	perature	(°C)										
NOTES:													
Rev. No.		R	evision	Date			Prepare	d by		Reviewe	ed by		

Company	PLATE- DATA S	AND-FRAME SHEET (US CI PROC	HEA UST(CESS	T EXCHANGER OMARY UNITS)	Engineering co	ngineering contractor		
PO No.:	Doc. No.:				Page 1 of			
Customer:			Vend	lor:				
Project:			Orde	er/enq. No.:				
Location:			Mode	el:				
Item No.:			Seria	al No.:				
Service:								
01 CASE			нот я	SIDE	COLI	D SIDE		
02 Fluid								
03 Total flow	(lb/h)							
04 Flow per exchanger	(lb/h)							
05 Design temperature (max.)	(°E)							
06 Minimum design motal tomp	(°F)							
07 Design pressure	(1)							
	(psig)					1		
US Pressure drop allow./calc.	(psi)		. /			1		
09 Wall temperature min./max.	(°F)		/			1		
10 Fouling margin ^a	(%)					1		
11 OPERATING DATA		INLET		OUTLET	INLET	OUTLET		
12 Liquid flow	(lb/h)							
13 Vapour flow	(lb/h)							
14 Non condensables flow	(lb/h)							
15 Operating temperature	(°F)							
16 Operating pressure	(psig)							
17 LIQUID PROPERTIES						1		
18 Density	(lb/ft ³)							
19 Specific heat capacity	(BTU/lb °R)							
20 Dynamic viscosity	(cP)							
21 Thermal conductivity	(BTU/ft·h·°R)							
22 Surface tension	(Dynes/cm)							
23 VAPOUR PROPERTIES		1				I		
24 Density	(lb/ft ³)							
25 Specific heat capacity	(BTU/lb·°R)							
26 Dynamic viscosity	(cP)							
27 Thermal conductivity	(BTU/ft·h·°R)							
28 Relative molecular mass	(lb/lb·mol)							
29 Relative molecular mass,	(lb/lb·mol)							
noncondensables								
30 Dew point/bubble point	(°F)							
31 Solids maximum size	(in)							
32 Solids concentration (% Volume)		<u> </u>						
34 Critical process		<u> </u>						
35 Critical tomporature	(psia)							
	(⁻ F)							
27 Total boat evaluated								
		Close condition		(Sonvico:			
30 L MTD			I.		Service.			
40 Heat transfer area	(⁻ Γ) (#2)			1				
41 Stream heat transfer coefficient	(IL) (BTU/h.ft².∘P)							
^a Fouling margin = $[(U_{close})/U_{convict}]$	(310/11(-R))	here U = Overall	heat t	ransfer coefficient (the	ermal transmittance)			
	, 1∨ 100 M				ar a anormadnoc).			
Rev. No. Revision				Date	Prepared by	Reviewed by		

Company	PI D	LAT DAT	TE-AND-FRAME H A SHEET (US CU MECHAN	IEA Sto NIC	AT EXCHANGER OMARY UNITS) AL		Engineering contractor			
PO No.:	Doc.	No.	:				Page 2	2 of		
01 CONFIGURATION FOR EXCHANG			PLATE DETAILS							
02 Number of exchangers in parallel				TF	leat transfer area/tota	al		(ft ²)		
03 Number of exchangers in series				ŀ	leat transfer area per	plate	3	(ft ²)		
04 Number of passes, hot side				N	Number of plates per	excha	anger	(11)		
05 Number of passes, cold side				Ν	Aax. number of plates	s per	exchang	ler		
06 Rel. directions of fluids	C	Cocu	irrent/countercurrent	F	Plate chevron angle(s)		·		
07 Nominal plate gap (in)			Ν	ominal plate thickne	ss		(in)		
08 DESIGN DATA									·	
09 Pressure vessel code										
10 Material certificate type										
11 Code stamp			Yes ()		No	()				
12 Applicable specifications										
13 Local rules and regulations										
14 Local register of exchanger										
15			НОТ	SID	E			COLD	SIDE	
16 Test pressure	(ps	ig)								
17 MAWP	(ps	ig)								
18 Velocity between plates	(ft	/s)								
19 Wall shear stress	(p	si)								
20 Volume liquid per exchanger	(1	ft ³)								
21 Length/width/height	(in)								
22 Mass empty/full of water	(lb)			1					
23										
24 CONNECTIONS			IN		OUT		IN		OUT	
25 Nozzle size	(NF	PS)								
26 Flange rating/type			1		/		/		1	
27 COMPONENT					MATER	IALS				
28 Exchanger type			Gasketed ()	Semi-welded		()	Welde	d	()
29 Plates			Ohuad (<u>,</u>	Net also al		()			
30 Gasket fixing			Glued ()	Not glued		()			
22 Cover fixed/moveble					1					
33 Tie bolts/puts					/					
34 Connection design			Studded ()	Flanged nozzle		()			
35 Nozzle_pipes/flanges)			()			
36 Corrosion allow on connections	(in)								
37 Stud bolts/nuts		,								
38 Shroud			None ()	Sprav		()	Fire		()
39 Drip tray			Yes ()	No		()	By oth	ers	()
40 Painting specification			Mfg. std. ()	Purchaser spec.		()	,		. /
41 Insulation			Yes ()	No		()	By oth	ers	()
42										
43 LOADING										
44 Connection loads/moments			Standard ()	Severe duty		()	Purcha	aser spec.	()
45 Wind loading										
46 Explosion blast pressure										
47 Earthquake loading										
48 Transport loading at sea										
49										
50 TESTING AND INSPECTION										
51 Specific drying procedure						Yes	()		No	()
52 Dried by blowing air						Yes	()		No	()
53 Non-destructive testing in addition to	the pr	ess	ure design code							
54 Inspection required					Purch	aser	()		Third party	()

Company	PLATE-AND-FRAME HEAT EXCHANGER DATA SHEET (US CUSTOMARY UNITS) PROCESS	Engineering contractor
PO No.:	Doc. No.:	Page 3 of

			PHYSICAL	PROPERTIES				
		(IN	CLUDING W		INT)			
CASE	Temperatu	re (°F)						
	Pressure	(psia)						
	Heat releas	ed (BTU/h)						
	Mass fraction	on vapour						
	Mass fraction	on H ₂ O in liquid						
	Density	(lb/ft ³)						
LIQUID	Specific he	at capacity (BTU/lb·°R)						
PHASE	Viscosity	(cP)						
	Thermal co	nductivity (BTU/h·ft·°R)						
	Surface ten	ision (dyn/cm)						
	Vapour pre	ssure (psia)						
	Density	(lb/ft ³)						
VAPOUR	Specific he	at capacity (BTU/lb·°R)						
PHASE	Viscosity	(cP)						
	Thermal co	nductivity (BTU/h·ft·°R)						
	Vapour pre	ssure (psia)						
	Relative mo	blecular mass (lb/lb·mol)						
	Latent heat	(BTU/lb)						
	Critical pres	ssure (psia)						
	Critical tem	perature (°F)						
NOTES:								
Rev. No.		Revision	Date		Prepared by	Reviewe	ed by	

Bibliography

- [1] EN 13445¹⁾ (all parts), Unfired pressure vessels
- [2] ASME Section VIII²⁾, ASME Boiler and Pressure Vessel Code, Section VIII, Rules for construction of pressure vessels
- [3] ASME Section VIII Div. 2, ASME Boiler and Pressure Vessel Code, Section VIII, Rules for construction of pressure vessels, Division 2, Alternative Rules

¹⁾ Comité Européen de Normalisation, 36, rue de Stassart, B-1050 Brussels, Belgium.

²⁾ American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016-5990, USA.

API Standard 662, Part 1/ISO 15547-1

API Standard 662, Part 1/ISO 15547-1 API 662 Part 1/ISO 15547-1

Additional copies are available through Global Engineering Documents at (800) 854-7179 or (303) 397-7956

Information about API Publications, Programs and Services is available on the World Wide Web at http://www.api.org

American Petroleum Institute

1220 L Street, Northwest Washington, D.C. 20005-4070 202-682-8000