Addendum 1 May 2001

EFFECTIVE DATE: NOVEMBER 2001

Specification for Drilling and Production Hoisting Equipment

API SPECIFICATION 8A THIRTEENTH EDITION, DECEMBER 1997

EFFECTIVE DATE: MAY 1998

Helping You Get The Job Done Right.™

Addendum 1 to Specification for Drilling and Production **Hoisting Equiment**

Page 5, Table 1A

In column 4, Taper Shoulder-Elevator Bore, the metric dimension for NC40 (4FH) Tool Joints should read "108.74" not "101.86".

Page 6, Table 1B

Replace entire Table.

Table 1B—Casing Elevator Bores

Casing		Elevator Bores				
"D" Casing Dia.		"T Top 1	"T _B " Top Bore ¹		"B _B " Bottom Bore ²	
in.	mm	in.	mm	in.	mm	
4 ¹ / ₂	114.30	4.594	116.69	4.594	116.69	
$4^{3}/_{4}$	120.65	4.844	123.04	4.844	123.04	
5	127.00	5.125	130.18	5.125	130.18	
5 ¹ / ₂	139.70	5.625	142.88	5.625	142.88	
$5^{3}/_{4}$	146.05	5.875	149.23	5.875	149.23	
6	152.40	6.125	155.58	6.125	155.58	
6 ⁵ / ₈	168.28	6.750	171.45	6.750	171.45	
7	177.80	7.125	180.98	7.125	180.98	
$7^{5}/_{8}$	193.68	7.781	197.64	7.781	197.64	
$7^{3}/_{4}$	196.85	7.906	200.81	7.908	200.81	
8 ⁵ / ₈	219.08	8.781	223.04	8.781	223.04	
9	228.60	9.156	232.56	9.156	232.56	
9 ⁵ / ₈	244.48	9.781	248.44	9.781	248.44	
9 ⁷ / ₈	250.83	10.031	254.79	10.031	254.79	
$10^{3}/_{4}$	273.05	10.938	277.83	10.938	277.83	
$11^{3}/_{4}$	298.45	11.938	303.23	11.938	303.23	
$12^{7}/_{8}$	327.03	13.063	331.80	13.063	331.80	
$13^{3}/_{8}$	339.73	13.563	344.50	13.563	344.50	
$13^{5}/_{8}$	346.08	13.813	350.85	13.813	350.85	
14	355.60	14.203	360.76	14.203	360.76	
16	406.40	16.219	411.96	16.219	411.96	
$18^{5}/_{8}$	473.08	18.875	479.43	18.875	479.43	
20	508.00	20.281	515.14	20.281	515.14	
$21^{1}/_{2}$	546.10	21.781	553.24	21.781	553.24	
22	558.80	22.281	565.94	22.281	565.94	
24	609.60	24.313	617.55	24.313	617.55	
$24^{1}/_{2}$	622.30	24.813	630.25	24.813	630.25	
26	660.40	26.344	669.14	26.344	669.14	
27	685.80	27.344	694.54	27.344	694.54	
28	711.20	28.359	720.32	28.359	720.32	
30	762.00	30.375	771.53	30.375	771.53	
32	812.80	32.391	822.73	32.391	822.73	
36	914.40	36.438	925.53	36.438	925.53	

Note 1: Bottom bore "B_B" is optional; some elevator designs do not have a bottom bore.

For bores greater than 10 in., but less than or equal to 20 in.: $+^{1}/16$, $-^{1}/64$ (+1.59, -0.40)

For bores greater than 20 in.: $+^{1}/_{16}$, $-^{1}/_{32}$ (+1.59, -0.79)

Note 2: Bore sizes take in account a casing tolerance of +1 percent, -0.5 percent on casing outside diameter. If casing diameter including the circumferential weld is within the standard tolerance, these bores can be used.

Note 3: Longitudinal, circumferential, or spiral welds should be considered for grinding flush in the area of possible slip or elevator contact if one or more slips can be set on the weld seam.

¹ For bores less than or equal to 10 in.: \pm ¹/64 (\pm 0.40)

For bores greater than 10 in., but less than or equal to 20 in.: $+^{1}/_{32}$, $-^{1}/_{64}$ (+0.79, -0.40)

For bores greater than 20 in.: $+^{1}/_{16}$, $-^{1}/_{32}$ (+1.59, -0.79) ² For bores less than or equal to 10 in.: $+^{1}/_{32}$, $-^{1}/_{64}$ (+0.79, -0.40)

Page 7, Table 1C

Change Top Bore Tolerance from " ± 1.64 " to " $\pm 1/64$ " for both Non-Upset and External Upset Tubing.

For 1.050 in. O.D. Tubing, External Upset: Change dimension of "W", Collar Dia. From "1.680" to "1.660".

For 4 in O.D. Tubing, External Upset: Change "110.74" to "110.72" for both top and bottom bore metric dimensions.

Page 11, Figure 3:

Detail A: "1.33d Max" should read "1.33d Min" Detail B: "1.75d Max" should read "1.75d Min"

Page 13, Figure 5:

Replace entire figure.

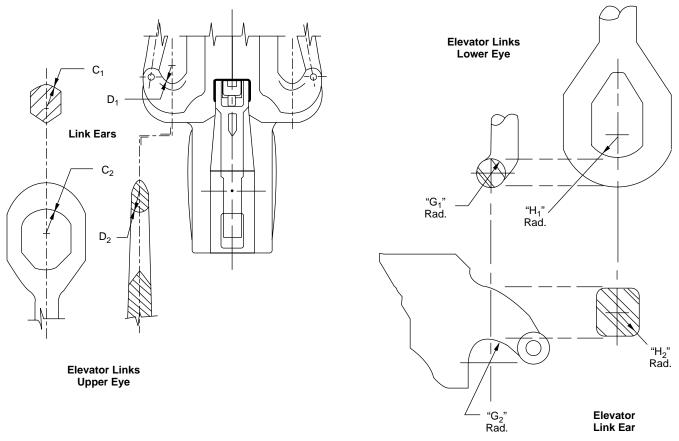


Figure 5—Elevator Link and Link Ear Contact Surfice Radii (See Tables 3A and 3B)

Page 15:

Add section 12.9 S9 - Stress relief features of swivel stem box connections, as follows:

12.9 S9—BOREBACK STRESS-RELIEF FEATURE

When requested by the purchaser, the boreback box stress-relief feature shall be a supplementary requirement for paragraph 7.3—Rotary Swivel Sub Connection. The connection shall conform to the applicable requirements as specified in API Specification 7 for the drill collar boreback box stress-relief feature.

Additional copies are available through Global Engineering Documents at (800) 854-7179 or (303) 397-7956

Information about API Publications, Programs and Services is available on the World Wide Web at: http://www.api.org

