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Executive Summary

This report reviews the available environmental fate literature for two compounds, ethylene dibromide
(EDB) and 1,2,-dichloroethane (1,2-DCA). The purpose of this report is to serve as a reference for
environmental professionals evaluating potential risks at former leaded gasoline fueling sites where EDB
or 1,2-DCA is detected in groundwater.

EDB was previously used as a soil fumigant and as a leaded gasoline additive while 1,2-DCA is currently
produced in large quantities as a commercial chemical. 1,2-DCA was also used as a leaded gasoline
additive. EDB and 1,2-DCA were added to the lead mix in order to prevent the build-up of solid lead
oxides on spark plugs and exhaust values in piston engines. The sale of leaded fuel for use in on-road
vehicles was banned in 1996, although fuel containing lead can still be used for off-road uses including in
aircraft, racing cars, farm equipment, and marine engines.

The current presence of 1,2-DCA in air, surface water, and groundwater samples can be attributed mainly
to its high production volume. EDB is not typically found in recent air or surface water samples since its
use as a soil fumigant is no longer permitted and because of limited use of leaded fuels. However, EDB
and 1,2-DCA have been reported in groundwater and soil samples at some sites where leaded gasoline
was previously dispensed.

The physical/chemical similarities of the two compounds indicate that they will behave similarly in the
environment. Both compounds are volatile, have relatively high water solubilities, and are soluble in
organic solvents. Transport data show that they readily volatilize from water and soil surfaces as pure
compounds and have low Koc values. This indicates that they have the potential to leach through soil to
groundwater, although studies also indicate that a residual amount remains trapped in soil by absorption
or in residual NAPL. Hydrolysis half-lives are slow, on the order of 1 to 10 years for EDB and tenfold
longer for 1,2-DCA.

Biotic degradation is reported for both compounds under aerobic and anaerobic conditions in laboratory
studies. Based on these data, 1,2-DCA appears to be more resistant to biodegradation than EDB.
Evidence for the anaerobic biodegradation of 1,2-DCA in the field includes the presence of
biodegradation products in groundwater and changes in 13C/12C ratios of 1,2-DCA as the groundwater
moves downgradient from the source area. More limited field data exist for EDB. The field study data
collected for 1,2-DCA and EDB are typically reported as disappearance rate constants, particularly for
aquifer studies. The use of these values as biodegradation half-lives is not appropriate, as loss due to
other processes (both transport and abiotic degradation processes) is included in this rate constant.

Fuel hydrocarbons present at leaded fuel release sites may also slow the biodegradation of 1,2-DCA
and/or EDB in the environment. Laboratory studies for both EDB and 1,2-DCA were nearly always run
using a single compound. Reported biodegradation rates are slower for these compounds in the presence
of fuel-contaminated groundwater.
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I. Introduction

The following document reviews the available environmental fate literature for two compounds, ethylene
dibromide (EDB) and 1,2-dichloroethane (1,2-DCA). While these particular names suggest that these two

compounds have different structures, EDB and 1,2-DCA are structurally similar (Table 1). Neither
compound contains a double bond despite the common names of ethylene dibromide and ethylene
dichloride. The two structures differ only with the presence of either bromine or chlorine substituents.

Table 1. A comparison of structure and nomenclature for the lead scavengers ethylene

dibromide and 1,2-DCA

Chemical name used in report EDB 1,2-DCA
Chemical structure Br Br Cl Cl
H%—é H H %—é H
H H H H
CAS registry number 106-93-4 107-06-2
Molecular formula C,H,Br, C,H,Cl,
SMILES notation BrCCBr CICCCI
CAS-9CI name Ethane, 1,2-dibromo- Ethane, 1,2-dichloro-
Synonyms Ethylene dibromide Ethylene dichloride
1,2-Dibromoethane 1,2-Dichloroethane
1,2-Ethylene dibromide 1,2-Ethylene dichloride
DBE EDC

EDB was previously used as a soil fumigant and as a leaded gasoline additive while 1,2-DCA is currently
produced in large quantities as a commercial chemical (nearly 8.2 billion kilograms in the mid-1990s)
with most of this, >96%, used as a chemical intermediate. 1,2-DCA was also used as a leaded gasoline
additive. The current presence of 1,2-DCA in air, surface water, and groundwater samples can be
attributed mainly to its high production volume. EDB is not typically found in recent air or surface water
samples since its use as a soil fumigant and leaded gasoline additive are no longer permitted by the U.S.
EPA. However, it has been reported in groundwater and soil samples affected by historical uses.

The following sections provide a review of environmental fate data for both compounds as well as
monitoring data from sites where direct release occurred and from larger monitoring studies where
concentrations cannot be attributed to a single release. Section II briefly describes the literature search
process. Section III contains all available environmental information for EDB while Section IV contains
the available information for 1,2-DCA. Within Sections III and IV, transport processes are considered
initially, followed by abiotic and biotic transformation processes, and then monitoring data. While EDB
and 1,2-DCA are considered separately, the environmental processes relevant for each compound are
expected to be similar. For example, the physical trapping of pure EDB by soil samples was well studied
because of its use as a soil fumigant. Similar studies were not conducted for 1,2-DCA; however, based on
the mechanism reported for EDB and the structural similarity of the two compounds, it is likely to be
important for 1,2-DCA as well. In such cases, the reader is referred back to the relevant section of the
report where the original data are reported.




II. Technical Approach

The literature search began with an electronic search of two files in SRCs Environmental Fate Data Base
(EFDB), DATALOG, and BIOLOG, as sources of information on abiotic and biotic transformation
processes, environmental transport, physical/chemical properties, and environmental concentrations. In
particular, DATALOG contains a citation index catalogued by environmental process (e.g., adsorption,
biodegradation, hydrolysis, photooxidation) as well as field and ecosystem studies, physical/chemical
properties (e.g., Henry’s Law constant, vapor pressure, water solubility), and environmental
concentrations in multiple media (e.g., air, water, soil, sediment). Because DATALOG only catalogues
mixed culture studies, BIOLOG was also queried as a source of information on pure culture or
defined/enrichment culture biodegradation studies. Both EDB and 1,2-DCA were well-represented in the
available literature. A Chemical Abstracts search was also conducted using a combination of degradation
and media keywords for citations published during and after year 2000.

In addition to the in-house literature searches and the references cited in the Request for Proposal (RFP),
SRC searched the reference section of every identified paper for additional relevant articles. This was
particularly effective in identifying recent papers from less well known sources, such as those from
conference proceedings. Online searches using GOOGLE were used to identify field study data and
recent monitoring data that may not have been published. Recent articles such as those by Falta and
Bulsara (2004), Burton (2005b) and Miner (2005) published online by LUSTLine were also located using
this approach. Relevant presentations from the Annual Clemson University Hydrogeology Symposium,
as well as government sites for ATSDR Health assessments, and Record of Decision documents for
Superfund sites were also located from online sources.

III. Ethylene Dibromide (EDB)

A. Historical and Current Use Patterns

EDB was first produced in 1923 (Scheibe and Lettenmaier, 1989). The major historical uses of EDB
were as a soil fumigant and as an additive to leaded gasoline and aviation fuel. Small amounts of EDB
were used as an intermediate in the synthesis of dyes and pharmaceuticals and as a solvent for resins,
gums, and waxes (Fishbein, 1979; U.S. EPA, 1977). EDB is currently used as a chemical intermediate
particularly for manufacturing vinyl bromide (a flame retardant used in modacrylic fibers), as a
nonflammable solvent for resins, gums, and waxes (U.S. DHHS, 2005), in the treatment of felled logs for
bark beetles and control of wax moths in bechives (ATSDR, 1992), and as a lead scavenger in leaded
fuels for off-road uses such as in aircraft, racing cars and marine engines (Burton, 2005b; U.S. EPA,
1996). Monitoring data indicating the presence of very low concentrations of EDB in ocean water and
ocean air suggest that EDB also may be formed naturally in ocean environments due to growth of macro
algae (Class and Ballschmiter, 1988; Laturnus, 1995).

The total annual U.S. production of EDB peaked in 1974 at 150.9 million kilograms and by 1983,
production was only 70.5 million kilograms (U.S. ITC, 1970-1984) (Figure 1). This decrease can be
attributed to two events: the cancellation of EDBs registration for use as a pesticide in 1983/1984 and
more importantly, the widespread installation of catalytic converters on passenger cars and light trucks for
U.S. distribution in model year 1975 due to tightened emission standards (U.S. EPA, 1996) and the
subsequent phase-out of leaded gasoline beginning in 1978. TUR (Inventory Update Reporting) CUS
production volumes for EDB are available for the following years: 1986, >45.5M to 227M (millions of
kilograms); 1990, >22.7M to 45.5M; 1994, >4.5M to 22.7M, 1998 and 2004 both >0.45M to 4.5M (U.S.
EPA, 2007).
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Figure 1. Annual U.S. production of EDB from 1969 to 1983 (U.S. ITC, 1970-1984)

EDB was registered as a pesticide, mainly for the control of soil nematodes, in 1948 and was typically
sold as a liquid mixture with petroleum solvents. EDB was also used in spot fumigations of grain milling
machinery and flour mills, post-harvest fumigation of grain, and in the control and prevention of
infestations in fruits and vegetables (Alexeeff et al., 1990). Minor uses included the control of mountain
pine bark beetles, moths in vault-stored furniture and clothing, termites, Japanese beetles, and wax moths
(Alexeeff et al., 1990; U.S. EPA, 1977). The discovery of EDB in stored grain and in well water in 1983
resulted in an EPA ban on agricultural uses (U.S. EPA, 1977). In the 1983 Federal Register notice
cancelling EDBs registration for use as a soil fumigant, it is noted that based on the “geographic range of
contaminated groundwater sites and reports of leaching of EDB through the soil column in the west and
southwest... that EDB will leach wherever it is applied” (U.S. EPA, 1983). In 1984, the registration of
EDB for use as a fumigant on grains and grain milling machinery was cancelled.

In 1975, approximately 3—4% of the total 1975 EDB production was used as a pesticide (U.S. EPA,
1977). By 1983, nearly 10 million kg EDB active ingredient was applied to ~400,000 ha of a variety of
crops in the U.S. (11% of the total EDB production for that year) (Pignatello and Cohen, 1990). In
contrast, in 1983, an estimated 111 million kg/yr EDB was used as a lead scavenger in leaded gasoline
and aviation fuel (Pignatello and Cohen, 1990).

The commercial sale of leaded gasoline began in 1923 (Burton, 2005a). EDB was added to leaded motor
fuel as of 1925 (Burton, 2005a). EDB and 1,2-DCA were added to the lead mix in order to prevent the
build-up of solid lead oxides on spark plugs and exhaust values in the piston engine (Burton, 2005b). The
volatile lead bromide and lead chloride formed during the engine combustion process were then released
to the air. The amount of EDB added to leaded gasoline is dependent on the concentration of lead.
Leaded fuels from 1942 to present day contain 1.0 mole 1,2-DCA and 0.5 mole of EDB per mole of alkyl



lead (Falta, 2005; U.S. EPA, 1984). Prior to 1942, varying molar ratios of EDB to 1,2-DCA were used
(Falta, 2005). Aviation fuel which contains only EDB (at 1.0 mole EDB per mole of alkyl lead) has twice
as much EDB as leaded gasoline.

Lead concentrations in gasoline have varied considerably since lead was shown to reduce spark knock in
engines in the early 1920’s. Initially, a maximum limit of 3.17 g lead/gallon was recommended by the
federal government in 1926. This was increased in 1959 to 4.23 g lead/gallon due to increased
compression ratios and octane requirements of engines at this time (Gibbs, 1990). Lead concentrations
actually reached historic average highs of only 3.0 g lead/gallon and 2.5 g lead/gallon for premium and
regular gasolines, respectively, in the late 1960s (Gibbs, 1990). By the 1970s, improvements were made
in refining processes resulting in higher octane base gasoline (Gibbs, 1990) and the U.S. EPA enacted
regulations that systematically limited lead concentrations in the U.S. gasoline pool. These regulations
are covered by Gibbs (1990) in some detail. By 1979, the average lead content for large refiners
(producing >50,000 barrels daily) was set at 0.8 g lead/gallon and 2.65 g lead/gallon for small refiners
(for leaded and unleaded gasoline together). After several further changes, a maximum limit of 0.5 g
lead/gallon was set across all leaded gasoline manufactured by each refinery in 1985. By 1988, an
average of 0.1 g lead/gallon was reached for all U.S. leaded gasoline.

In 1995, leaded fuel made up only 0.6% of total gasoline sales in the U.S. (U.S. EPA, 1996). The sale of
leaded fuel for use in on-road vehicles was banned in 1996, although fuel containing lead can still be used
for off-road uses including in aircraft, racing cars, farm equipment, and marine engines (U.S. EPA, 1996).
For example, EDB is still found in several leaded aviation gasoline products: Avgas 80, Avgas 100, and
Avgas 100LL (low lead) (Burton, 2005b). Avgas 100LL is the most commonly used aviation fuel for
spark-ignition internal combustion engines (e.g., single piston airplanes) (Florida Department of
Environmental Protection, 2006). The typical composition of the TEL-CB tetraethyl lead package
currently produced by Ethyl Corporation for use in leaded fuels (61.49% tetraethyllead, 17.86% EDB,
18.81% 1,2-DCA) is similar to the classic formulation of ethyl fluid. A second package, TEL-B, contains
61.49% tetraecthyllead and 35.73% EDB which is similar to the formulation used for Avgas (Burton,
2005Db).

B. Physical Properties

Physical/chemical properties for EDB are presented in Table 2. EDB has relatively high vapor pressure
and water solubility values. Based on its vapor pressure, EDB is expected to volatilize in dry soils which
is the basis of its use as a soil fumigant. Its Henry’s Law constant indicates that EDB will volatilize
readily from water surfaces.

EDB is miscible in many organic solvents. If released to the environment in a fuel mixture, it will move
with the light non-aqueous phase liquid (LNAPL) by gravity through the vadose zone potentially to
groundwater. The dissolution of a single compound from a mixture such as gasoline in contact with water
is different than its dissolution as a pure compound. For the release of a pure compound such as EDB,
water-phase concentrations at the NAPL-water interface are at the solubility limit in water. However, for
a compound in a gasoline mixture at the NAPL-water interface, the maximum concentration in the water
phase is estimated as the effective solubility. This can be presented as a retardation coefficient (total
concentration/fraction in mobile-water phase) in a saturated soil matrix.



In soil the retardation coefficient, R;, is:
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Eq. (1)

With an immobile residual oil phase (gasoline) present, based on presumed ideal Raoult’s law partitioning
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Equivalently, for a measured gasoline to water partition coefficient
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Eq. (3)

With 0,, (cm’-water/cm’-soil) volumetric moisture fraction in soil matrix, equal to the total soil porosity in
saturated soil; p, (g-soil/cm’-soil) is the soil dry bulk density; f,. (g-oc/g-soil) is the mass fraction of
organic carbon in soil; and K, ; (cm’-water/g-oc) is the chemical-specific organic carbon-water partition
coefficient. MW, is the molecular weight of the chemical, S; is the pure chemical aqueous solubility limit.
With the chemical of interest as a small fraction of the total residual phase, values of 0, (cm’-oil/cm’-
soil), p, (g-oil/cm’-oil), and MW, (which is a function of oil mixture composition) will be relatively
constant and the factor R; will be independent of the total oil mixture concentration in soil.

The gasoline to water partition coefficient can be estimated from the octanol to water partition coefficient
as:

MW,
K, =K, = et Eq. 4

EDBs gasoline-water partition coefficient (Table 2) indicates that once in contact with groundwater, it
will dissolve more rapidly out of the LNAPL in the groundwater than will benzene (benzene has a
gasoline:water partition coefficient of 350) (Cline et al., 1991; Falta, 2004b). Based on EDBs
gasoline:water partition coefficient, Pignatello and Cohen (1990) reported that groundwater in contact
with gasoline LNAPL at lead levels present in 1990, will contain approximately 80 ug/L EDB. Falta
(2004b), however, reported a potential maximum concentration of 1900 pg/L for EDB near a residual or
LNAPL gasoline source determined from EDBs gasoline:water partition coefficient. If EDB is released
alone or as a spill of grain bin fumigant (e.g., mixtures of EDB with carbon tetrachloride and/or
1,2-DCA), the EDB would be expected to move through the vadose zone potentially to the groundwater
as a dense non-aqueous phase liquid (DNAPL) based on its density compared to water. Once EDB is
dissolved in groundwater, it is not expected to markedly change the water density; therefore, EDB will
move with the bulk of the groundwater flow (Pignatello and Cohen, 1990).



Table 2. Physical/chemical properties for EDB

Property Ethylene dibromide Reference
CAS Registry Number 106-93-4
Structure

CHZBr—CHZBr

Physical description

Colorless, heavy non-flammable
liquid

U.S. EPA (1977)

Molecular weight 187.86 g/mol

Melting point (°C) 9.97 SRC (2007)

Boiling point (°C) 131.6 SRC (2007)

Solubility Water: 3910 mg/L at 25 °C Horvath et al. (1999)
Octanol: miscible Johns (1976)

Organic solvents: miscible

Alexeeff et al. (1990)

Vapor pressure

11.2 mm Hg at 25 °C

Daubert and Danner (1985)

Octanol-water partition coefficient

91.2

Hansch et al. (1995)

Henry’s Law constant

6.5x10™* atm-m*/mol at 25 °C
0.029 (dimensionless)

Rathbun (1998)
Falta and Bulsara (2004)

Gasoline-water partition coefficient
(dimensionless)

152

Pignatello and Cohen (1990)

Specific gravity (liquid)

2.179 at 25 °C

Alexeeff et al. (1990)

Specific gravity (vapor)

6.5 at 25 °C

Alexeeff et al. (1990)

Equilibrium aqueous concentration

1900 pg/L

Henderson (2005)

Diffusion coefficient in dry air

0.0813 cm?/sec (20 °C)
0.0708 cm?*/sec (0 °C)

Pignatello and Cohen (1990)

Diffusion coefficient in water

1.0x10™ cm?/sec (25 °C, estimated)

Pignatello and Cohen (1990)

Density

2.701 at 25 °C

van Agteren et al. (1998)

Vapor density relative to air

6.1; density of EDB saturated air is
1.08 (air=1)

U.S. EPA (1977)

Heat of vaporization

+53 cal/gm at 25 °C

U.S. EPA (1977)

Percent in saturated air

At saturation, the concentration of
EDB is 1.3% by volume at 25 °C

U.S. EPA (1977)

Conversion factors

1 ppm = 7.68 mg/m’ in air

1 mg/m’*=0.13 ppm in air

1 mg/L = 130 ppm at 25 °C/760 mm
Hg

U.S. EPA (1977)

C. Transport Processes

1. Transport from Water Surfaces

The release of EDB to water results in rapid volatilization. Overall mass transfer coefficients for the
volatilization of EDB from water are dependent on wind speed (Rathbun and Tai, 1987). Both gas-film
and liquid film coefficients are important in determining EDBs resistance to volatilization from water
(Rathbun and Tai, 1986). Lyman et al. (1982) estimated liquid- and gas-phase exchange coefficients of
16 and 1400 cm/hr, respectively, and a mass transfer coefficient of 11.4 cm/hr. Based on these values, a
volatilization half-life of 4 hours can be estimated using a wind speed of 3 m/sec and a water speed of

1 m/sec (Lyman et al., 1982). Rathbun and Tai (1987) measured gas-film coefficients for the
volatilization of EDB from water of 286 and 533 m/d (1192 and 2221 cm/hr, respectively) for low (0.1
m/sec) and high (2.0 m/sec) windspeeds, respectively, at 25 °C (Rathbun and Tai, 1987). Hsieh et al.
(1993) measured mass-transfer coefficients of EDB at varying impeller speeds (150 to 500 rpm). Mass
transfer coefficients of 0.14, 0.53, 1.05, and 1.30 hr™' were reported for 150, 200, 400, and 500 rpm,



respectively. Gas film constants of 0.68 and 0.410 are reported by Hsieh et al. (1993) and Rathbun and
Tai (1987), respectively. A water-film reference substance parameter of 0.633 indicates that the water-
film mass-transfer coefficient for the volatilization of EDB will be 63.3% that of the reaeration coefficient
for the absorption of oxygen by a stream (Rathbun, 1998). An air-film reference-substance parameter of
0.393 indicates that the air-film mass-transfer coefficient for the volatilization of EDB from a stream will
be 39.3% that of the mass transfer coefficient for the evaporation of water (Rathbun, 1998).

Mackay and Yeun (1983) measured volatilization rates of EDB in a 6 m long, 0.61 m deep, and 0.60 m
wide wind-wave tank. Overall mass transfer coefficients of 23.6, 45.3, 54.7, and 77.2 x10°® m/sec were
measured for windspeeds of 5.96, 8.57, 10.31, and 77.2 m/s, respectively. Based on their results, a water
evaporation half-life of 4.26 hours can be calculated (windspeed of 8.57 m/sec, 0.61 m depth) (Mackay
and Yeun, 1983). The authors state, however, that laboratory-derived mass transfer coefficients are
generally expected to be higher than those that would be measured in the environment at the same
windspeed. An evaporation half-life in water of 6.4 minutes was reported by Chiou et al. (1980) at
23.1°C, an initial concentration of 0.1 ppm, 1.6 cm depth, and stirring speed of 100 rpm. In still air, the
evaporation rate of EDB from water is 1.24x10™ g/cm*-sec (Chiou et al., 1980). Volatilization data from
spill sites for 1,2-DCA (Section IV, C.1) confirm that volatilization of these small molecules from water
surfaces is rapid.

2. Transport in Soil

The movement of a chemical in the vadose zone is dependent on both transport and adsorption processes.
Based on different release scenarios, EDB in the vadose zone can be found dissolved in solution, as a
vapor, as pure compound adsorbed to soil, as free NAPL, or as residual NAPL. Dissolved EDB will
move with the infiltrating water to the water table via advection while vapor-phase EDB will move by
diffusion through the soil (Pignatello and Cohen, 1990). EDB present in an LNAPL (such as a mixture of
leaded gasoline) or DNAPL (such as a grain fumigant spill) will move mainly downward with the NAPL
through the pores of the soil due to gravitational and capillary forces. If only a small quantity of NAPL is
released, it may be contained in the vadose zone by the soil. However, if the amount of NAPL is
sufficiently large, the bulk of the NAPL can move through the vadose zone to the groundwater table. An
LNAPL will accumulate at the groundwater table, while a DNAPL will continue to migrate downward
until it encounters a sufficient confining stratum. The NAPL’s movement in the soil is determined by
many factors including soil porosity, soil permeability, and capillary pressure. During movement
downwards, NAPL can become “trapped” within the soil matrix due to capillary forces leaving residual
NAPL behind in the soil (Rixey, 1996). This residual saturation may represent a long-term source of
soluble NAPL components to the environment (Garg and Rixey, 1999; Rixey, 1996).

Sorption of vapor-phase EDB to soil has been studied by Thomason and McKenry (1974) and Sawhney
and Gent (1990). In soil chamber studies, EDB was injected into dry soil (montmorillonite silty clay
loam soil, 13:62:25% sand:silt:clay, 1.1% organic matter, 7.7% w/w water) at a depth of 30.5 cm and at
an application rate of 47 L/ha commercial product (Thomason and McKenry, 1974). EDB diffused
radially outwards from the point of injection. A vapor-phase concentration of 4.5x10” moles/L (0.05
ppm) at 90 cm depth was reached within 7 days. Loss of EDB to the atmosphere was measured in a
sandy loam soil (68:22:15% sand:silt:clay, 0.6% organic matter). Injection was at a depth of 30.5 cm and
air was passed over the soil surface at 0.80 km/hr. After 14 days, approximately 1% of the total was lost
to the atmosphere. Under field conditions, it was anticipated that this value would be greater (Thomason
and McKenry, 1974). The results from Thomason and McKenry (1974) differ from volatilization half-
lives of 0.4 and 3.4 days at 1 and 10 cm depths, respectively, estimated by Jury et al. (1984).

The sorptive capacity of vapor-phase EDB to two different soils, the sandy loam and the silty clay loam
described above was measured under different conditions of temperature and soil moisture (Thomason



and McKenry, 1974). At moisture tensions >15 bars, the sorptive capacity was greatly increased in both
soils. The sorptive capacity was greater for the sandy loam soil than the silty clay loam and for soil
incubated at 15 °C over soil at 25 °C. A mass balance in soil at 15 °C found approximately 24, 24, 50,
and 2% of the initially-added EDB in the soil water phase, unaccounted for, in the soil particle phase and
in the soil vapor phase, respectively, by day 7 post-treatment. Mass balance measurements on day 15
post-treament found 20, 40, 38, 1, and 1% of the initially-added EDB in the soil water phase, unaccounted
for, in the soil particle phase, in the soil vapor phase, and lost naturally to the atmosphere, respectively
(Thomason and McKenry, 1974). Sawhney and Gent (1990) measured the vapor-phase sorption of EDB
to a series of clay minerals. The rate of EDB sorption was high initially but slowed considerably over the
remaining study period; 3, 5, 6, and 9% EDB by weight was sorbed to columns filled with pyrophyllite,
kaolinite, illite, and smectite, respectively. Sorption was not correlated with BET (Brunauer, Emmett,
Teller) surface areas. EDB desorption from the columns was also initially rapid but again became slower
as the study proceeded.

Results from early studies show linear sorption isotherms for aqueous-phase EDB (Call, 1957; Phillips,
1964). Phillips (1964) reported that EDB sorption to a sand loam (34.2: 45.5: 7.7: 7.4% coarse sand, fine
sand, silt, and clay, respectively, 4.15% organic matter), a silt loam (0.5: 68.7: 10.0: 10.9% coarse sand,
fine sand, silt, and clay, respectively, 3.28% organic matter), and a peaty soil (6.4: 9.5: 7.8: 30.9% coarse
sand, fine sand, silt, and clay, respectively, 30.6% organic matter) was linear for each soil. The moisture
content of soils affects the sorption of EDB with drier soils showing greater adsorption. The transition
point for this observation is reported to be between 5 and 20% water/dry weight soil (Pignatello and
Cohen, 1990).

Recent studies have suggested that the sorption of EDB may also be affected by the presence of other
compounds (Pignatello, 1990a). The sorption of EDB to granular activated carbon was measured as a
single solute and as a mixture with five other compounds (chloroform, chlorodibromomethane,
bromoform, trichloroethene, tetrachloroethene) at varying concentrations (Crittenden et al., 1985). Asa
single solute, EDB had a K, value of 0.4808 over a concentration range of 32 to 1750 pg/L. In the
presence of other compounds, the sorption of EDB decreased significantly over the entire concentration
range due to competitive interactions. The K, of EDB decreased by a factor of 3.1 (from 0.77 to 0.25)
when sorbed trichloroethene (TCE) concentrations of 0 to 120 mg/kg, respectively, were present
(Pignatello, 1990a). In the presence of o-dichlorobenzene, the K, of EDB decreased by a factor of 1.4
(from 0.77 to 0.55) at sorbed o-dichlorobenzene concentrations of 0 to 240 mg/kg, respectively
(Pignatello, 1990a). Using a peat (BET surface area of 1.4 m*/g, organic-carbon content of 49.3%) and a
mineral soil (BET surface area of 11.2 m?/g, organic-carbon content of 1.26%), Chiou and Kile (1998)
measured the sorption of EDB in both single-solute and binary-solute systems. In single-solute systems,
EDB showed non-linearity at low relative concentrations of EDB in water but the sorption isotherm
became linear at medium to high relative concentrations of EDB for both soils. The apparent non-linear
capacity of EDB on the peat and mineral soils is 0.18 mg/g and <0.008 mg/g, respectively, with apparent
saturation when the ratio of solute concentration to solute solubility is approximately 0.010 to 0.015
(Chiou and Kile, 1998). This non-linearity was attributed to the presence of “high surface area
carbonaceous material” (HSACM) which becomes saturated at higher relative concentrations of EDB
(Chiou and Kile, 1998; Chiou et al., 2000). In preparations of a humic acid fraction free of HSACM and
a fraction enriched in HSACM, the non-linear behavior of EDB was enhanced in the enriched fraction
over the HSACM free fraction (Chiou et al., 2000). Log K, values for the linear portions of the EDB
isotherms are 1.28 and 1.23 for the peat and mineral soils, respectively. The presence of TCE (at 370
mg/L), 3,5-dichlorophenol (at 1400 mg/L), or phenol (at 5900 mg/L) suppresses the non-linearity reported
for EDB on both soils (Chiou and Kile, 1998).



Soil-water partition coefficients (K, values) for EDB in the solution phase range from 12 to 160

(Table 3) but average about 50 to 65. The available K, values indicate that EDB is not significantly
adsorbed to soil. Based on EDBs K, values and its relatively high water solubility, EDB can and, based
on available monitoring data, does leach through the vadose zone to groundwater. Aquifer environments
typically have low concentrations of organic carbon. After 24 hours, there was no detectable sorption of
EDB to unconsolidated aquifer fines (0.1% organic carbon) with a limit of determination of 0.1 L/kg
(Pignatello et al., 1990). With a K,, of 0.1 L/kg, a retardation factor of 2 can be estimated (Pignatello and
Cohen, 1990). This value has not been independently verified for EDB in the field however.
Groundwater retardation factors of 1.17 and 2.65 were estimated for an aquifer with an f,. of 0.001 and an
fo. 0f 0.01, respectively (Falta et al., 2005a).
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The adsorption studies above measure the partitioning of EDB between the solid and solution phases in
soil or sediment. In these studies, sorption to soil is based on weak chemical bonds (van der Waals) that
are formed and broken between the soil and EDB (Pignatello, 1990c). The K,./K,, values reported in
Table 3 and the sorption isotherm experiments typically use study protocols where equilibrium is
assumed to have been reached within 24 hours. While EDB added to soil is expected to adsorb/desorb in
a rapidly reversible process based on this premise, it has been shown that a portion of the added EDB
behaves in a “non-equilibrium” manner during the desorption phase. This has been attributed to the
physical “trapping” of EDB within the soil matrix. This process is considered separately from the
“trapping” of residual NAPL as discussed earlier in this section.

Similar to other small, low molecular weight halocarbons, EDB can become physically trapped within the
soil matrix possibly due to tortuosity or constriction in pore structure and that release is determined by
diffusion processes characterized by very slow kinetics and a large temperature dependence (Pignatello,
1990a, 1990b; Steinberg et al., 1987). Pulverization of EDB-residual soil results in the complete release
of the trapped EDB (Steinberg et al., 1987). Studies specifically investigating the entrapment of EDB in
soil are provided below.

K, values from three soils (soil 1, 1.11% organic carbon; soil 2, 1.61% organic carbon; soil 3, 1.65%
organic carbon) fumigated up to 20 years previously (170, 230, 300 mL/g) were two orders of magnitude
greater than K, values determined from 24-hour equilibration periods (1.49, 1.70, 2.08 mL/g) (Steinberg
et al., 1987). This indicates that the desorption of residual, trapped EDB is extremely slow with an
estimated 50% equilibrium reached in 23-31 years at 25 °C, assuming a diffusion rate law (in a 1:2 soil-
water suspension with mild agitation) (Pignatello et al., 1987).

EDB was added to Cheshire soil at a concentration of 100 uM (18.8 mg/kg) in aqueous solution
(Pignatello, 1990c). After a sorption period of 1.8 and 7 days and a desorption phase using adsorbent
beads in the soil suspension, 0.564 and 0.921 mg/kg (3 and 4.9 uM), respectively, remained as a slow-
desorbing residual fraction (quantified using a hot solvent extraction procedure) (Pignatello, 1990c). The
structural characteristics of the soil matrix involved in this non-equilibrium sorption were further studied
(Pignatello, 1990c). Overall, the amount of EDB residual was reported to be greater with increasing
concentrations of organic carbon, although not linearly (Pignatello, 1990c). The EDB residual
concentration for each particle size fraction of an Agawam soil (36:8% silt:clay, 2.57% organic carbon)
was measured. The majority of residual EDB was found in the silt and coarse sand fractions following a
7-day sorption phase (34.2, 19.1, 41.5, and 5.3% of residual in the medium to very coarse sand, very fine
to fine sand, silt, and clay fractions, respectively) (Pignatello, 1990c). On an organic carbon basis, 9.94,
59.0, 23.8, and 3.49 mg/kg EDB was found in the medium to very coarse sand, very fine to fine sand, silt,
and clay fractions, respectively (Pignatello, 1990c). From these results, the authors attributed non-
equlibrium desorption of EDB to the slow diffusion of EDB from “remote sites in the soil organic matter
matrix”. The distribution of EDB between different soil size fractions in two different soils was reported
by Steinberg et al. (1987). EDB concentrations of 69, 142, 111, and 21 pg/kg were reported for diameter
ranges of 106-250, 53—-106, 253, and 0—2 pum, respectively, for one soil. EDB concentrations of 104,
164, 66, and 34 ng/kg were reported for the second soil, respectively. Concentrations were highest for the
very fine sand fraction (53—106 um) and lowest in the clay fraction (<2 pum) (Steinberg et al., 1987).
Steinberg et al. (1987) cited “extremely tortuous or sterically hindered diffusion paths through
microporous structures” as the reason for diffusion-limited desorption of EDB.

The entrapment of EDB, reported in soil, has been shown to occur in aquifer sediments as well
(Pignatello and Cohen, 1990). A residual of 18 ug/kg reported in aquifer sediment following incubation
for 4 days with a solution of 10 mg/L EDB was attributed to the trapping of EDB in the soil/aquifer
material pore structure (Pignatello et al., 1990). In addition, Pignatello et al. (1990) reported higher EDB
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concentrations in soil cores from a contaminated aquifer than would have been predicted based on K, and
EDB concentrations in the water.

This trapped residual may represent a potential low-level, slow-release source to these environments
(Pignatello and Cohen, 1990) or a mechanism for plume retardation over decades or longer. Mayer et al.
(1991) studied the effects of temperature and precipitation on EDB groundwater concentrations from an
11-meter deep domestic well located in Whatcom county, Washington, an area that historically used EDB
as a soil fumigant. The initial concentration of EDB was 1.69 pg/L although the concentration varied
over the next 27 months from a low of 0.94 to a high of 2.29 ng/L. Concentrations were negatively
correlated with precipitation. The authors suggest that the infiltration of water from precipitation initially
dilutes the EDB in the aquifer followed by slow EDB infiltration from overlying soils working to
reestablish the EDB concentrations prior to the precipitation event (1 to 3 months were required to
reestablish EDB levels).

D. Transformations
1. Abiotic Transformations
a. Hydrolysis
EDB is slowly hydrolyzed with published half-lives ranging from approximately 1 to 15 years (Table 4).
The attack of EDB by H,O can occur at the carbon atom giving the substitution product 2-bromoethanol
and then further to ethylene glycol via ethylene oxide or at the a-hydrogen leading to the elimination

product vinyl bromide (Pignatello and Cohen, 1990).

1. S\2 (substitution) hydrolysis reaction of EDB in water:

[l T
(0]
H ] H H I I H ~ N\ — = HOCH;—CH,OH
Br Br Br OH
EDB 2-Bromoethanol Ethylene oxide Ethylene glycol

2. E, (elimination) reaction of EDB in water:

HoH H H

H H —_— >—
Br Br H Br
EDB Vinyl bromide

The hydrolysis of EDB is primarily Sx2 with conversion to ethylene glycol based on results from several
studies (Table 4). Vogel and Reinhard (1986) are the only authors reporting vinyl bromide as a major
reaction product during nucleophilic attack. Their data suggest that the elimination reaction and not Sy2
substitution may be the most important reaction mechanism in some cases. This study was criticized by
others because the product identification method may not have been able to identify ethylene glycol, and
buffer effects were not addressed (Pignatello and Cohen, 1990). In addition, it was suggested that the
EDB concentration used by Vogel and Reinhard (1986), 100 ppm, was not typical of groundwater
contamination by EDB. Moye and Weintraub (1988) suggest that at lower concentrations, as might be
found in groundwater (10-100 pg/L), ethylene glycol and bromide ions account for nearly complete
degradation of EDB. However, as the rates of both elimination and substitution processes are first order
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with respect to organic reactant, the product distribution is not expected to change with different initial
concentrations of EDB. Given an initial concentration of 100 pg/L EDB, 30 pg/L ethylene glycol is
expected via hydrolysis and 6 pg/L vinyl bromide via elimination (Reinhard and Vogel, 1988). The
elimination reaction is reportedly 9 to 12 times slower than the substitution reaction (Barbash and
Reinhard, 1989; Reinhard and Vogel, 1988). Pseudo first-order rate constants for EDB for Sy2 and E,
reactions between EDB and H,O at 25 °C are 3.7x10 day™ and 3.1x10” day™', respectively (Barbash and
Reinhard, 1989).

The hydrolysis of EDB is independent of pH in the environmental pH range of 5 to 9 (Jeffers and Wolfe,
1996; Roberts et al., 1993). Jeffers and Wolfe (1996) studied the neutral and alkaline hydrolysis of EDB
in distilled water. The hydrolysis of EDB is dominated by neutral hydrolysis. The reaction at pH 9 is
responsible for only 10% of the total observed hydrolysis (K, of 2.5x10™' M min™).

Haag and Mill (1988) studied the effect of aquifer materials on the hydrolysis rate of several haloalkanes
(isopropyl bromide, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane). The sediment was collected from
Lula, Oklahoma at a depth of 5.4 to 6.4 meters and had a total organic carbon content of 0.02%, a total
surface area of 11 m*/g, a cation-exchange capacity of 2.5 meq NH, /g, a porosity of 0.36, and a bulk
mass density of 1.59 g/mL. Based on both product and kinetic analysis, the authors state that there was
no significant difference in the hydrolysis rate of these compounds in distilled water versus in the
presence of aquifer materials. The hydrolysis of EDB in Florida groundwater was studied by Weintraub
et al. (1986). Groundwater from shallow wells in Florida was fortified with 10 or 100 ppb EDB and
incubated at temperatures ranging from 40 to 80 °C. Extrapolated half-lives of 259 and 435 days for Polk
county groundwater (10 and 100 ppb EDB, respectively), 772 and 308 days for Highlands county
groundwater (10 and 100 ppb, respectively), and 659 and 369 days for Jackson county groundwater (10
and 100 ppb, respectively). A half-life of 323 days was reported in deionized water at 10 and 100 ppb at
22 °C. Reaction products included bromide ion and ethylene glycol supporting an Sx2 mechanism.
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b. Reaction with Sulfur Nucleophiles

Data for the reaction of EDB with sulfur nucleophiles are given in Table 5. H,S and HS" are typically
found in anaerobic groundwater and in wetland/estuarine environments due to the microbial reduction of
sulfate (Pignatello and Cohen, 1990). Typical concentrations in a salt marsh are 0.07 mM polysulfides,
0.2 mM sulfite, 0.5 mM thiosulfate, and 5 mM HS™ (Barbash and Reinhard, 1989). HS' is the dominant
sulfur nucleophile at pH values above 7 (>50% dissociation of H,S based on a pK, of H,S of 7.01) while
at lower pH values, sulfite may be more important. Total sulfide concentrations in a SO4~ reducing
groundwater (typical pH values of 6 to 8) range from 10 to 10° M (Barbash and Reinhard, 1989).

HS’ can react with primary bromoalkanes forming various thiols and thioethers (Schwarzenbach et al.,
1985). This reaction is considerably faster than the hydrolysis of EDB in water alone (Barbash and
Reinhard, 1987). They reported the disappearance of EDB in the presence and absence of HS™ (at 0.060
mM) at 25 °C. First-order rate constants were 3.6 times greater when HS™ was present [8.6x10~ day™
(kio) versus 6x10° M 'sec (kps.)] (Barbash and Reinhard, 1987). Rate constants for the Sx2 and E,
reactions of EDB and HS™ at 25 °C are 23 M'day'and 9.6 M"'day™, respectively (Barbash and Reinhard,
1989). The half-life for the reaction of EDB with H,S-containing water was only slightly affected by pH
changes between 6.5 and 8.5 (Weintraub and Moye, 1987).

The reaction of EDB with HS results in the formation of 1,2-ethanedithiol and a second minor peak that
is thought to be vinyl bromide. Barbash and Reinhard (1989) proposed a reaction pathway of EDB to
2-bromoethanethiol, followed by intramolecular displacement forming cyclic thiirane, and finally attack
by another HS™ to open the ring.

i S
HS /A HS-
BRCH;—CH,Br ——— HSCH;,—CH,Br —> H,C—CH, — = HS-CH;—CH,SH

In the presence of 0.05 M phosphate buffer and 067 mM Na,S, <5% vinyl bromide was measured over a
temperature range of 37.5 to 87.5 °C (Barbash and Reinhard, 1989). While in laboratory studies, half-
lives indicate that reaction with sulfur nucleophiles may be an important process in sulfate-reducing or
even possibly FeS-containing groundwaters (Wilson et al., 2007), the significance of this process has not
been verified in the field.
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c. Photolysis

EDB is not susceptible to direct photolysis (Jaber et al., 1984; Ollis, 1985). It can indirectly photolyze in
the presence of OH radicals in the atmosphere. Several rate constants for this reaction are available in the
literature: 2.50x10" cm®/molecule-sec, at 23 °C (Howard and Evenson, 1976), 2.25x10™"* em*/molecule-
sec at 24 °C, and 1.86x10"° cm’/molecule-sec at 22 °C (Atkinson, 1994). Using the rate constant of
Howard and Evenson (1976), an atmospheric half-life of 43 days can be estimated based on an OH radical
concentration of 1.5x10"® OH radicals/cm’ and a 12-hour day. Products of this reaction include formyl
bromide, CHOCH,Br, CBr(O)CH,Br (Kao, 1994), formaldehyde, bromoethanol, and hydrogen bromide
(Spicer et al., 1993). The bromide ion released during EDBs photochemical oxidation can react with
ozone thereby contributing to the greenhouse effect (van Agteren et al., 1998).

2. Biotic Transformations

The biodegradation of EDB can occur in the environment via anaerobic dehalogenation, aerobic
catabolism, and aerobic co-metabolism (Hoyle and Arthur, 2000; Stensel and Bielefeldt, 2000). Reaction
mechanisms for the biodegradation of EDB include the elimination of hydrogen bromide or the
substitution of the bromide groups to H (reductive pathway), OH (hydrolytic pathway), or to thio groups
(Neilson, 1990). Because oxygen is not necessary in the elimination pathway, both aerobic and anaerobic
microorganisms can potentially use this pathway (Neilson, 1990).

a. Pure Culture Studies

Based on the reaction pathway information from the pure culture studies summarized in Table 6, the
aerobic and anaerobic biodegradation of EDB has been reported to proceed via several pathways.

1. An aerobic cometabolic pathway of degradation for EDB is given in van Agteren et al. (1998). EDB is
debrominated to 2-bromoethanol via a haloalkane dehalogenase which then yields either glycol (via a
second, different haloalkane dehalogenase) or bromoacetaldehyde via an alcohol dehydrogenase.
Bromoacetaldehyde is then degraded further to 2-bromoacetic acid and then glycolic acid (van Agteren et
al., 1998). A purified dehalogenase isolated from Arthrobacter strain HA1 (chlorohexane
halidohydrolase) converted EDB to 2-bromoethanol which was then slowly dehalogenated to glycol
(Hanson and Brusseau, 1994; Scholtz et al., 1987). An ammonium monooxygenase enzyme has been
reported to mediate the cometabolic biodegradation of EDB by Nitrosomonas europaea although
products of this reaction were not identified (Vannelli et al., 1990).

H H
HO%—FOH

H H
/ Glycol
\

Br Br OH

I—I
I—I
@
I—I
I—I

H
o 0 o o Ho o
Ethylene dibromide 2-Bromoethanol Br —_— Brg‘—< HOM
H H by H gy OH
Bromoacetaldehyde 2-Bromoacetic acid Glycolic acid

2. A second aerobic biodegradation pathway was proposed based on work by Poelarends et al. (1999). A
pure culture of Mycobacterium sp. Strain GP1, able to use EDB as its sole carbon and energy source,
degraded EDB to 2-bromoethanol using a hydrolytic haloalkane dehalogenase. A haloalcohol
dehalogenase then mediated the degradation of 2-bromoethanol to ethylene oxide. Ethylene oxide can be
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incorporated into the Kreb’s cycle via 2-hydroxy-ethyl-CoM, acetal-CoM, and finally acetyl CoA
(Henderson, 2005).

H H H H o
A — e

Br Br Br OH

EDB 2-Bromoethanol Ethylene oxide

3. The aerobic microbial reductive elimination of EDB to ethene was reported by Castro et al. (1989) for
Pseudomonas putida PpG-780. The enzyme responsible for this reaction was a P-450 cam heme protein.
This pathway does not necessarily mirror the dihaloelimination reaction seen for anaerobic pure culture
studies.

HoH H H
Br Br H H
EDB Ethene

Two pathways for the anaerobic biodegradation of EDB have been proposed.

1. Belay and Daniels (1987) reported the anaerobic biodegradation of EDB via vicinal reduction (i.e.,
dihaloelimination) resulting in the formation of ethene for a set of methanogens. If ethene concentrations
reach 1 to 5%, inhibition of methanogenesis can occur (Belay and Daniels, 1987). Ethene can also be
potentially formed through a combination of reduction and elimination steps and not necessarily via
vicinal reduction (Kuhn and Suflita, 1989). No pure culture data were available to support this pathway
under nitrate-, iron-, or sulfate-reducing conditions.

H H

H H
e o=
Br Br H H
EDB Ethene

2. A second, more complex pathway was proposed by Henderson (2005). Here EDB can be degraded to
bromoethene, then ethene, and ethane. Other options include EDB to ethene and then ethane or EDB to
bromoethane and then to ethane.

BrCH;—CH,Br CHBr=CH,
BrCH;—CH, H,C=CH,
H,C—CH,
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b. Enrichment Culture, Defined Culture, and Sewage Studies

Freitas dos Santos et al. (1996, 1997) isolated an enrichment culture that was able to completely degrade
EDB at quantities of up to 1 g/L to CO,, bromide and biomass under aerobic conditions. This culture also
rapidly degraded bromoethanol, bromoacetate, and bromoethane. Based on this result, the authors
suggested a degradation pathway from EDB to bromoethanol, bromoacetaldehyde and then bromoacetate.
Under aerobic conditions, EDB was degraded by a sludge inoculum to a highly water-soluble, non-
volatile product (i.e., not ethene) within days (Jex et al., 1983; Weintraub et al., 1986). However, in
aerobic batch culture experiments by Bouwer (1983), EDB was not biodegraded. Details of the test
conditions for this experiment were not available for comparison with the preceding studies.

Cometabolic aerobic biodegradation of EDB by methylotrophs has been explored in experiments by
Leeson and Bouwer (1989) and Hartzell et al. (2001). In a series of batch reactor studies, EDB, at an
initial concentration of 150 pg/L, was transformed by an enrichment culture of methanotrophs (Leeson
and Bouwer, 1989). Methane was present as a carbon donor. A rate constant of 7.5 L/g-day was
provided and a half-life of 9.2 days based on a cell density of 10”7 cells/mL. Reaction products were
followed by '*C-radiolabel and included CO, and several unidentified compounds. Hartzell et al. (2001)
isolated bacterial consortia from soil using propane, methane, or natural gas to selectively enrich for
methylotrophic populations. These consortia were then used to inoculate batch reactors to study the
degradation of EDB. In batch reactors containing additional propane, EDB at an initial concentration of
200 pg/L was completely degraded (<0.029 pg/L) within 4 days (primary biodegradation) via
cometabolic degradation. In methane batch reactors, EDB was completely degraded (>99%) after 6 days
incubation and in natural gas batch reactors, >99% loss of EDB was reported after 6 days.

Tandol et al. (1994) studied the anaerobic biodegradation of EDB by an enrichment culture capable of
dechlorinating high concentrations of tetrachloroethylene (PCE). This culture, in the presence of
methanol as a carbon donor, rapidly degraded EDB at an initial concentration of 50 pmoles/100 mL to
100% ethene within 7 hours via dihaloelimination. In a second study, EDB was converted almost
completely to ethene, again by dihaloelimination, over a 2-month period using a mixed microbial culture
enriched for DBCP degraders (mainly Pseudomonas and Flavobacteria species) (Castro and Belser,
1968). 0.5% glycerol was added to the culture. The redox conditions present during this study are not
clear. Although the authors did not flush the study bottles with N,, saturated soils left unagitated over the
2-month study period could form anaerobic pockets.

Studies using a sewage inoculum suggest that EDB is biodegraded under methanogenic and sulfate-
reducing conditions but is resistant to biodegradation under nitrate-reducing conditions. '“C-EDB (at 25—
90 pg/L) in methanogenic batch cultures was nearly completely degraded in 2 weeks (Bouwer and
McCarty, 1985). At2, 4, 14, and 17 weeks, '*C-hydrocarbons (described as highly volatile and non-
halogenated, believed to be ethene) represented 41, 27, 31, and 19% of the total radioactivity,
respectively, while an unidentified fraction (described as non-volatile, hydrophilic, cited as possibly
bromoethanol by the authors) represented 59, 73, 69, and 81% of the total radioactivity at the same
timepoints, respectively. Complete oxidation to CO, was not seen over the study period. In nitrate-
reducing batch transformation studies in the presence of added ethanol and a sewage inoculum, low
concentrations of EDB (10-30 pg/L) were not biodegraded over an 8-week period as monitored by GC
results and '*C activity (Bouwer and McCarty, 1983).

EDB was degraded in continuous-flow biofilm columns with added acetate as the primary substrate
(Bouwer and Wright, 1986; Bouwer and Wright, 1988). The detention time of the columns was 2.5 days.
Under methanogenic conditions, >99% EDB removal (20 pg/L influent) was reported following a 2-week
acclimation period while 63% removal of EDB (19 ug/L influent) with an acclimation period of <2 weeks
was observed under sulfate-reducing conditions. Under nitrate-reducing conditions up to 23% EDB
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removal (30 pg/L influent) was reported (Bouwer and Wright, 1986). The authors concluded that the
nitrate-reducing data were inconclusive and that loss may have been due to sorption or volatilization
losses. In a series of short-term experiments (1.0 hour detention time) using the same columns,
"C-radiolabeled EDB was added to identify the transformation products of EDB. In the methanogenic
column, <1, 100, 13, and <2% of the radiolabel was found as EDB, *C-volatile products, C0,, and
unknown products, respectively, as reported by the authors. In the sulfate-reducing column, 42, 24, 21,
and 13% of the radiolabel was found as EDB, "*C-volatile products, C0,, and unknown, respectively.
The authors suggest that the volatile product reported in the methanogenic and sulfate-reducing column
experiments is most likely ethene. 100% of the '*C-radiolabel was recovered as EDB following passage
through the nitrate-reducing column (Bouwer and Wright, 1988).

"*C-Radiolabel experiments by Weintraub et al. (1986) indicate that EDB degrades readily in
methanogenic sewage sludge suspensions. Nearly complete degradation was observed in 60 days at
initial concentrations of 1 to 2 ppm EDB. Ethene was the only radioactive product. Similar results were
noted for a sewage sludge inoculum known to contain a rich population of facultative microorganisms.

¢. Microcosm Studies

Aerobic and anaerobic microcosm studies for EDB are summarized below in Tables 7 and 8, respectively.
The data from these studies indicate that under environmentally-relevant laboratory conditions, EDB is
biodegradable under oxygenated and reducing environments. The rate of biodegradation is typically
lower in anaerobic studies when compared to studies run under aerobic conditions. Primary
biodegradation of aerobic samples showed half-lives from days to weeks with mineralization studies
showing somewhat longer half-lives (typically several months). Available anaerobic studies measured
primary biodegradation only and half-lives were typically weeks to months in length. In most cases,
specific redox conditions were not reported for the anaerobic studies. Therefore, a comparison of EDB
biodegradation under nitrate-reducing, iron-reducing, sulfate-reducing, or methanogenic conditions
cannot be made.

Reaction products were monitored in several studies. In radiolabel experiments using aerobic soil, 41—
45% of the radiolabel was incorporated into CO,, 6—17% remained as EDB, 6.9—4.1% was found as
unextractable '*C in culture filtrate, and 23-33% was unextractable "*C bound to solids after 13 days
(Pignatello, 1986a). The presence of nearly equal amounts of '*CO, and unextractable '*C solids data
indicate that EDB is a substrate for both growth and energy under aerobic conditions (Pignatello, 1986b).
Under anaerobic conditions, ethene is reported as a product of biodegradation by Jafvert and Wolfe
(1987).

Concentration effects have been reported by Pignatello (1986a, 1986b) in acrobic and anaerobic soil
studies. At low concentrations (6 to 8 ng/L), EDB rapidly degraded in two different soils but at
concentrations of 15 to 18 mg/L, biodegradation proceeded more slowly. LCs, values for microbial
toxicity of 100 and 50 mg/L for EDB in soil indicate that the effects seen at higher EDB concentrations
were not due to toxic effects (Pignatello, 1986a). A second study showed that EDB concentrations up to
1000 pg/kg had no effect on the CO, production of two different soils over a 6-day period (Walton et al.,
1989). Aeclion et al. (1989) reported that the rate of EDB mineralization was not affected by varying
concentrations from 1 to 139 ug/L. Using the same soils as Pignatello (1986a), Pignatello (1986b)
measured the biodegradation of EDB under anaerobic conditions. Biodegradation was rapid in both sand
and muddy soils at EDB concentrations of 6—8 pg/L (complete degradation in <1 week) but at initial
concentrations of 15-18 mg/L, EDB was only slowly degraded with an initial lag phase of weeks and
slow loss once the concentration dropped to hundreds of pg/L.
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Several studies have shown that physically trapped residues of EDB are not bioavailable to microbial
populations. '*C-EDB was added to soil from a former soil fumigation site in Connecticut in a 1:1 ratio
with water (Pignatello, 1987b). Freshly-added EDB was rapidly degraded with complete degradation in
weeks (for 2 soils) while the field residue EDB was not degraded at all over the 24 to 38 day period. The
freshly added EDB was converted to CO, (45%) and unextractable '“C associated with solids (thought to
be cell material, 55%). The field residue EDB did not chemically exchange with the '*C-EDB but
pulverization of the soil enhanced its release to both aqueous and vapor phases with release following
diffusion kinetics (Pignatello, 1987b). Biodegradation of freshly-added '*C-radiolabeled EDB in surface
soils from the Simsbury, Connecticut site (historic application of EDB fumigant) occurred rapidly with
nearly complete degradation within 22 days (Pignatello et al., 1990). Major products were CO, and
'C-unextractable residues. Two topsoil samples containing historic EDB at concentrations of 32 and 21
ng/kg were shaken with water over 20 days. No detectable residues of EDB were released over this time
indicating that the EDB in these soils is not available for leaching or biodegradation (Pignatello et al.,
1990).

Very limited data exist in the literature measuring the biodegradation of EDB in the presence of fuel
hydrocarbons (Tables 7 and 8) (Henderson et al., 2007; Reiss, 2000). Groundwater and soil samples from
the Clemson Tiger Mart, a site contaminated with leaded gasoline due to leaking tanks, were incubated
for 284 to 380 days in closed bottles without shaking (Henderson et al., 2007). At initial concentrations
of ~200-300 pg/L, a concentration theoretically similar to the source area of a contamination plume, a lag
period of ~80 days was reported with a final EDB concentration of approximately 50 pug/L by day 380.
After day 120, very little further biodegradation of EDB was observed through day 380. At an initial
concentration of 10 pg/L, a concentration similar to what might be found mid-gradient in a contaminant
plume, a lag period of approximately 60 days was noted with a final EDB concentration of approximately
0.25 ug/L by day 380. Half-lives are reported in Table 8. The redox condition for this study was not
available but is assumed to be mainly anaerobic since the bottles were filled and left to sit for many
months.

22



134

(v9861)
o[oreudig

‘(soyeorjdar 7) L Aep Aq poureurar

%S’[ pue 9 A[uQ -Suromdn 1ojempunoild
Jo ea1R UR WOIJ [10S Appnu YoLI-u0qIed
orue310 Jo pasodwod 10§ (/31 11 03 1°0)
I10jmnbe pajeure)u0d-g Y Ue SII[IOA0 IS

8¢0

33

1/31 89

1108

(®9861)
o[oreusiq

yroq

Aq (sAep 1) yurod own 311y £q ssof 9391dwo))
‘sojeordar 7 "(3ySrom £q uoqres oruesio
1210} % 7°0) Pq WeANS B WO} UM e) PUuBS
Aqurew yo pasodwod (10§ (/31 11 03 1°0)
JIojbe pojeuruIe)u0d-g @y UR SAI[ISA0 NS

>

¥8°0

7/31 89

1108

(6861)
‘Te 19 uoI_y

"1 Kep uo uonesodiodur

IETN[[99 %9 YIM 9% QT SI paIrdsor WNWIXBIA
‘3/8u Q1 pue 9 je [ [HHE d[dues

I10J Te[ruis sajel uoneperdaporg ‘1006
ojdwres 1oymbe e -93IS pajEUIIEIUOIUN)

‘0D

13

1T

3331 gy

JuowIIpas Ioyinby

(6861)
‘Te 10 uorj_y

(1006
pue [THHG) 9¥S dwes o) woij sojdwes

IoyImbe 19730 7 10J u0as sajel im paredwod
usyMm 9jel uoneperdaporq Mo (/31 6€1)
0TI Aep Aq paxtdsar %¢1 pue (7/31 1) 01

Kep £q 24,91 st paardsor wnwixeN 336
ordwres 1opmbe e "03IS pajeUIILIUOOUN

‘00

0S¢

0S1

3/31 1

QWIS JoJInby

(L861)
‘Te 19 uoI_y

‘pourad s1yy
10yJe 3Jo Sul[oA9] ‘sAep ()§—G 1SI1J Y} JOAO
uoneaidsar Jo oyer pider A[jeniuy ‘0,07 sem

uonendsar WNWIXE 9IS PAIEUIUBIUOIU )

‘00

L Kep %€6°0

001

3y/81 991

JUSWIPIS 1oJINby

(L861)
‘Te 19 uoI_y

‘pourad s1y)

I0Je JJO SuIdAd] ‘SABp ()¢—GT 1SI1J Y] I9A0
uoneaidsar yo ayer pider A[reniuy ‘0,67 sem
uonelrdsal WnwWIXej "9}IS PojeullB}uodu)

‘0D

Aep %111

001

381 p1

W

JuowIIpas Ioyinby

AUIIRJIY

SIURUWUIOI [E.IIUIN)

sjonpoad
"3aporg

(skep) 717,

(,Aep)
JuBISUOD
JjeyY

(sAep)
porad

Apms

“udU0d
[eniuy

A/

3dA) opdureg

7 10J SAIPN)S WS0I0.IIIW UOHBPLIZIPOI(] IQO.Y °/ JqeL




14

(eL861)
oforeudig

‘(uonenUIOUOd

rentur 3y/31 ¢ ) A[oanoadsar ‘skep 08¢

PUe ‘00T ‘0O%’1 ‘001 0§ ‘0 1oye Sururewor
%S “S€ ‘0¥ ‘09 ‘SL ‘001 Arewxorddy
‘so[dwres 1) ‘S)00T JOSPUIA|

*ddd 1/31 11 03 dn Sururejuos ojempunoild
Kq pay weoans pue 9y1s 1oymbe Suidde) spopm

SL

£600°0

08¢

8y/31 o°g
pue g0

I10S

(aLse1)
o[oreudig

‘pozuoA[nd sem [10s o) Ss9[un papeI3ap
10U 9JOM [10S ULIEJ O} WO} SONPISAT

PIoY 4 2ANEN "ddd Yim pajeurureiuod
o)Is we, 1)) ‘JUI0g 9SNOYSIB A\

¥01°0

14

3y/31 68

1108

(aL8e1)
o[oreudig

"paziroAnd sem [10s oy

SSO[UMN [[€ J& POPBISIP JOU AIOM [10S ULIBJ U}
woJJ sonpisal piaty gdH 2A1eU Q®>®>>OI
"9[qe) Ul USAIS QJI]-§[eY] YA papeIsop
Aipidex sem gaq-D,, POPPE A[ysard "dad
A PRIBUTIIRIUOD 2JIS We] ") ‘UdpWweH

13!

43\

9¢

3y/81 08

110§

(v9861)
o[oreudig

"(shep §'g pue /°G 1a)Je %¢¢ pue 07) skep
€1 19Y® CQD Se punoy [9Qe[OIpel JO %S pue
It ‘soreordar ¢ -Surjomdn 1ojempunoid

Jo ea1E UR WOIJ [10S Appnu YoLI-Uu0qIed
orue310 Jo pasodwod 10§ (/31 11 03 1°0)
Iojmbe pojeuruejuod-gqy Ue SOIIOA0 NS

‘00

Sl

9%0°0

€l

1/31 69

1108

(®9861)
ofereudid

‘(Jonuod ayp ur
paurewar %,0¢) 801 Aep £q paurewar gqd
% "sareorjdar 4 “Surjomdn 1ojempunoid

JO ®BOIE UB WOIJ [10S APpnul YoLI-uoqIed
oruedio Jo pasodwoo 10§ (/81 1103 1°0)
Ioyinbe pojeunueIU0d-g O U SOI[I9A0 IS

¥6

¥L00°0

801

/80

00081
—000°S1

1108

(v9861)
oforeudig

*(Jo1U0d 9y} Ul paurewol

%06) 66 Aep Aq paurewar gad %89
‘sojeordar  *(3ySrom Aq uoqied oruedio
18303 9% 1Z°(0) POq WeaI)s & WOIJ UdMe) pues
Aqurew yo pasodwoo 10§ (/31 1103 1°0)
1o5ibe pajeunuBIUOI-g (7 UR SOI[I9A0 IS

LyC

8200°0

66

71/8d
000°81
—000°S1

d

1108

AUIIRJIY

SIURUWUIOI [E.IIUIN)

sjonpoad
"3aporg

(skep) 717,

(,Aep)
JuBISUOD
JjeyY

(sAep)
porad

Apms

“udU0d
[eniuy

A/

3dA) opdureg

7 10J SAIPN)S WS0I0.IIIW UOHBPLIZIPOI(] IQO.Y °/ JqeL




Y4

‘Jutodpus ay) st paImsedt sem (JN) UOHLZI[eIdUIL JO () UolepeI3opolq Arewtid |

'G Aep Aq pajiodar uonezijerauru 9,7 |

=01 "1 Aep £Q %L1—+1 ST QD Sk Pa12A0daI
WNWIXe ‘I9jem oy ul st judsaid uagAxo

(8861) AluQ -ooedspedy ou ‘paf[y S[EIA "TINING
‘[e 30 jopuimg | ddures sopnbe g[nT 3)is pajeuruEIuodu) ‘0D 1S-1¥ | L10°0—+10°0 11 | 33381 801 N | uowpas 15nby
"UOIBZI[RIOUT
9SBIIOUI JOU SQOP SPIOE OUIWE 10
“9s00n[3 10 (J ‘N) S}[es druediour Jo UonIppy
‘11 Aep £q 28 —€1 SI QD SB PAISA0IAI
WNWIXe "I9jem oy} ur ST juasald udagAxo
(8861) AluQ -ooedspeay ou ‘pIY S[BIA “E[(6 810°0
‘Te 30 [opuimg | d]dures sopmbe [T 3)Is pajeulwEBIuOOU) ‘0D $6-5°8¢ ~LT10°0 11 | 33/81 801 N | uawipas 15mby
‘S[1eIap Apmys 1oyIng oN
"soIpm3s J0j0eal yojeq Areurwrfaid ‘oyine
(0007) ss1oy Aq UQAIS ofT]-J[eH "9)S PojeurluRIuodu ) L8 01T d Toymby
‘S[1eIop Apys IoUHNJ ON ‘SIIpMIs
1030831 yojeq Areurwrold ‘royine £q UdAIS
OJi[JIeH "PaIe[dwod uoneIpawl ‘YO A-T 1
(0007) sstoy pue g(d YIM pajeurtiejuod A[snoiadld 6€ 011 d Ioymby
(0661) T “Suturewal gQd %€ A[uo ‘skep 7z ut (0D 3y/am
12 ooreusiq Se 9,0$ "¢ [1osdo], "oyis wiey [ Amqswis ‘00 14 91°0 C L'T1-¢€6 d 1108
(0661) T “Buturewal gQd %€ A[uo ‘skep 7z ut (0D 3y/am
10 o[oyeusid se %61 g [1osdo], -oys uey [ Anqswig ‘00 4 91°0 C L'T1-¢€6 d [10S
(0661) T “Bururewa1 gQqd %S ATuo “skep 7z ur <o) /3
10 o[oyeusid se 9%¢p [ [1osdo], -oys uey [ Amnqsuig ‘00 S 9¢1°0 C L'T1-¢€6 d [10S
.m%mﬁ €¢l 1_ye QE
AqNJos 13jem se 9% 9] pue nQE punoq prIjos
SB 94L1 COD Se [9qe] D, AU JO %pe “(T/Sw
1 : SUONRIpuOd pajernjes-Iy .moﬁmamm
1D ‘Amqgswg “(g@d Jo ssof 1o /31 g jo
(eL861) | suonenuaouod) £961 ur gqd jo uoneordde
o[[oyeudig [EINY[NOLITE ISE] ()1 ULIE] 090BQO) JOULIO ] ‘0D €8 £€800°0 €1 | /L0 d [10S
ERTIEREYER | SJUWIO0) [RUWID) | sponpoad | (s€ep) V1], (,Aep) | (skep) wuod | | d/IN 3dA) opdureg
‘3aporg jue)suod | porrd [enmug
ey | ApmS

7 10J SAIPN)S WS0I0.IIIW UOHBPLIZIPOI(] IQO.Y °/ JqeL




9¢

(v9861)
o[[oreudig

‘(1/31 11 03 1°0) Jojinbe pajeurtuejuod

-gH Ue SAA[IIA0 IS "SINOY MIJ B Ul

JIWI UOT)OJOP Y} MO[dq 0} papeIdap sem g
pue Surjjomdn 10jempunoiIs Jo BAIR UB WOIJ
[1os Appnu yoLI-uogies oruesio Jo pasoduwod
Sem ¢S [10S "SABD / UI JIWI] UOI}O0p Y}
MO[2q 03 papeI3ap (JySrom £q uoqies druedio
1810} %7°0) Pq WeANs © WO} Ud¥e) pues
AJurewr Jo pasodwioo sem S [I0S "S[I0S OM],

L> 1>

7/31 89

1108

(L007) e
19 UOSIOPUSH

‘skep

09 Jo pouad SeT "sapoq g ul 9] doedspeay
[rews ‘porrad Apmys SuLmp udyeys JOU ‘PIjeIS JoU
ysnoyj[e d1qororue pawnsald ‘(DS ‘MeA 1231,
UOSWA[)) JAWLIO]) 9IS [S[] "UONE]S duI[0oses
JOULIOJ B WO} PIJOS[[09 JUdWIPIs 1Jinby
‘Juasald suoqIeooIpAy [on UONBIIUIIUOD

O] ‘UonB[NWIS SUOZ JUIIPLIS-PIA

L

8¢10°0

¥8¢

1/31 01

Ioymby

(L00D) 'Te
19 QOm(GﬁQoE

‘sAep

08 Jo pouad e "sa[noq g ul JI] doedspeay
[rews ‘porrad Apnjs SuLmp uayeys jou ‘pajels jou
y3noyjye orqordeue pawnsald ‘(DS ‘Me 1931,
UOSWO[)) JOWIO) 9IS [S[] "UOne]s duljosesd
JOWLIO} B WO} PAJOS[[0J JOJeMPUNOI3AUSWIPIS
Ioymby uasard suoqiesoIpAy [ong
"UONBNUIIU0D Y3IIY ‘UOHB[NWIS dUOZ I0INOS

8¢C

<¥00°0

08¢

71/31 052

Joyinby

(L861) J10M
pue 110AJe[

'$59001d SSO|

Jofew oy} S PajedIpul sI uoNeuISO[BYIP [BUIDIA
BIA UONONPOY "sioyine oY) Aq pojrodar Jueisuod
oJe1 pue oJI[-J[eH “uawIpas puod wopnoq

JO wd ¢/ 0} ('S WOIJ PAO[0d d1am sajdwieg

ouoyyg

4

0€0

1/31 €796

d

JUSWIPAS puog

AUIIRJIY

SV UWWLOI Je.IIUIN)

sjonpoud
“Saporg

(sfep) 71,

(Kep aa2d)
JUEISU0d
ey

S
(s£ep)
porad
Apms

‘udU0d
[enruy

/N

ad) ojduwreg

g™ 10J SAIPN)S WS0I0IIIW UONBPLIZIPOI( JIqoIdeuy ‘8 d[qe L




LT

‘Jutodpuod oty sk panseawr sem (JA]) uonezijeIouIus 1o (J) uonepeisoporq Arewd |

(9861)
‘Te 39 UOS[IAM

"UOT}00)3P JO W] AU} MO[9q 9IoM
SUOIENUSOUO0d g ‘S09Mm 9] Aq pue poureuIal
ddad %L7 AJuo ‘uoneqnour syom / Ag

‘AW OG- Yd ‘e’ Hd -suonipuoos oruaJoueyion

1C

£€0°0

41!

/31 61

Rymby

(9861) 'Te
1 n_swbﬁog

"QUIYId FunsaAZ3NS Q[IIe[0A 219M Ss1onpoid
uonoeay -poonpoid sem {Q) ON "uoneqnoul
syjuow / 19yje payrodar sem uonepeI3apolq o0

QU
Ajqissod

¢8¢

¥200°0

01¢

1/31 00%

110§

(vL861)
o[[oreusig

'SAep ¢¢1 Ioye ), |

3[qnJOs IoYeMm SB 9%, [T PUB °), | punoq prjos se
%L1 ““0D Se 12qe] O, o1 JO %81 (/3w 1°0)
SUONIPUOd ¢ MOT "L96] Ul gOH Jo uonesrjdde
[eIMNOLISE ISB[ YIIM ULIR] 0008q0} JOULIO]

‘0D

(o8ue1 Kep
0S€-5¢) 711

2900°0

eel

381 L0

1108

(v9861)
o[[oreusig

"(1/8n 11 01 1°0) Joyinbe

PpareuIweIuOd-g(Jq U SOI[JOAO S "pajsisiod
qdd g1~ oy M0[2q [eAOWAI [B10} Inq poLrad
Se[ oyy poonpar Sunidsay syoam Auew I9AO
pauI[oap A[mo[s A3 a1aym a3uer qdd parpuny
[BISAQS Q) 0} PAONPAI AIOM SUOIBIUIOU0D g(OT
pue aseyd Se| e £q papaoaid sem uonepei3oq
‘Suromdn 191eMpPUNOIS JO BOIE UB WOLJ

[10s Appnu yoL1-uoqied oruedio Jo pasoduwod
sem S [10S pue (ySom £q uoqgres oruesio
1830} %$Z°0) POq WeaI)s & WOIJ udde) pues
Aurew Jo pasodwod sem S [I0S "S[IOS OM ],

/3"

00081
—000°S1

d

1108

AUIIRJIY

SV UWWLOI Je.IIUIN)

sjonpoud
“Saporg

(sfep) 71,

(Kep aa2d)
JUEISU0d
ey

(s£ep)
porad

Apms

‘udU0d
[enruy

/N

ad) ojduwreg

g™ 10J SAIPN)S WS0I0IIIW UONBPLIZIPOI( JIqoIdeuy ‘8 d[qe L




d. Field Studies

Despite the evidence in Tables 7 and 8 that this compound is biodegradable under both aerobic and
anaerobic conditions in environmentally-relevant laboratory studies, data from field sites suggest
otherwise. For example, sites where EDB was applied as a soil fumigant decades ago still contain
residual EDB in topsoils and plumes of EDB are found in the underlying aquifers. Nearly 50% of UST
sites in South Carolina (Falta et al., 2005a) and a 17-state area survey (Wilson et al., 2007) had EDB
concentrations above the maximum contaminant level (MCL) in groundwater samples despite the fact
that most of these releases occurred decades earlier.

Only 2 field studies have been published reporting the loss of EDB in the environment (Table 9). One is
a soil fumigation study (Frink and Bugbee, 1989) and the other is a study of a former gasoline site
(Mayer, 2005). The authors report their data as disappearance rate constants. These are based on
measuring the concentration of a chemical at a specific location over time. The disappearance rate
constant does not remove the effect of other processes such as advective loss and adsorption separately so
it is not the same as a degradation rate constant (Washington and Cameron, 2001). Loss in the
environment, especially in groundwater, may be due not only to degradation processes (abiotic and biotic)
but also to transport processes such as dilution, dispersion, sorption, and advection.

Below, the release of EDB to the environment is considered separately for a soil fumigation site and a
leaded gasoline spill site. While EDB was also used in grain bin fumigants, insufficient data were
available to support a more detailed account of their loss in the environment from this source. Grain bin
sites are discussed in the following monitoring data section. Brookhaven National Laboratory is an
example of low-level EDB contamination from historic soil fumigation practices and the well-studied
Massachusetts Military Reservation is an example of a spill of aviation fuel complete with an LNAPL
phase at one site.
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1. Soil Fumigant Use

Frink and Bugbee (1989) studied the loss of EDB following its field application as a soil fumigant
(Table 9). They noted that EDB does not follow first order decay except during the initial period of loss.
Half-lives of 36 and 26 days were reported for the first year of the field studies in 1986 and 1987,
respectively, while in the second year after fumigation the apparent half-life decreased to 115 to 200 days.
These study results support the conclusions of Steinberg et al. (1987), Pignatello (1987b), and Pignatello
et al. (1990); when EDB is physically trapped within the soil matrix, bioavailability correspondingly
decreases. A field study in Whatcom county, Washington followed concentrations of EDB in
groundwater from a private well for over 18 years. From 1980 to 1986, concentrations of approximately
6 ng/L were reported. In 1987 to 1989 and 1991 to 1994, concentrations of 3 to 3.5 ug/L and
approximately 2 ng/L were measured, respectively, with final concentrations of <0.5 pg/L reported as of
1998 (Dufft, 2000).

EDB was used to fumigate the “Biology Fields” at Brookhaven National Laboratories (BNL) during the
late 1960-1970s. EDB leached through the soil to the groundwater and is now found as a separate plume
~457 m in length south/southeast of the fields at a depth of 27.4-39.6 meters below ground surface (bgs).
Sediments found beneath Brookhaven National Laboratory consist of unconsolidated sediments [Upper
Glacial aquifer, 39.6-60 m thick, mainly unconfined, sandy, gravelly permeable glacial outwash deposits,
the water table is about 5 m or less bgs] (ATSDR, 2005b), followed by the Gardiner’s clay confining unit
(0.61 to 4.6 m thick, permeability of approximately 12.2 liters/day/m?) (Paquette et al., 2002) that
separates the upper aquifer from the underlying Magothy aquifer. The clay deposits may not be
continuous and may lead to direct hydraulic connection between the Upper Glacial and the Magothy
aquifers. The Magothy aquifer is about 244 to 271 m thick composed mainly of coarse sand and gravel
with estimated flow velocities of 0.91 to 4.3 cm/day. The Magothy aquifer is mainly confined where the
Gardiner’s clay overlies it and semi-confined/unconfined where it is absent (Paquette et al., 2002).
Groundwater preferentially flows through the more permeable Upper Glacial aquifer (measured porosity
of 0.18 to 0.36, average of 0.25) (ATSDR, 2005b). Groundwater flow velocity was estimated as 23
cm/day (but as high as 44 cm/day) (Paquette et al., 2002). Based on modeling results, including time for
vertical transport, EDB has been moving southward at 100 to 125 m/year (ATSDR, 2005b). EDB was
first detected in groundwater samples in 1986 as a set of 7 underground pools. EDB is currently moving
as a “pocket” of contaminated groundwater. Initial pump and treat efforts to remove EDB were
unsuccessful. By 1995, 5 EDB plumes were shown to be moving off of the southern boundary of the
biology fields. Phytoremediation was attempted and was considered unsuccessful because most plants
did not take up the EDB through their root systems (Swenson, 1999). Pump and treat remediation at the
site from 1997 through 2004 (75,700,000 liters water treated) and in 2005 (596,770,000 liters water
treated) is estimated to have removed less than 0.45 kilogram of EDB for each period (Dorsch et al.,
2007). Soil sampling at the Biology Fields area was undertaken from 1994-1995. EDB was not detected
in any sample. Groundwater samples prior to 1993 were collected from on-site wells and a maximum
concentration of 0.21 pg/L was reported. As of 1993, a monitoring well network was established to
determine the vertical and horizontal extent of the EDB plume (ATSDR, 2005b). EDB detected near the
source area is found at shallow depths (6 to 13.7 m bgs) while EDB concentrations further from the
source area at the BNL site boundary are found at greater depths (15.2 to 44.2 m bgs). Concentrations
measured in on-site groundwater from 1994—1995 ranged from 0.04 to 0.78 ug/L (at depths of 4.6 to 21 m
bgs). Concentrations of EDB were reported as a maximum of 1.2-3.5 ug/L at a depth of 27.4 t0 39.6 m
bgs in off-site wells in 1993 to 1995 (ATSDR, 2005b). Maximum EDB concentrations of 6 and 3.6 pg/L
were measured in 1998 and 1999, respectively (Brookhaven National Laboratory, 2000). Projections in
2000 estimated that it would require a period of 40 years for natural attenuation to return groundwater
concentrations to the drinking water standard (Brookhaven National Laboratory, 2000).
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2. Leaded Fuel Release Sites

The available field site data for EDB at gasoline spill sites indicate that this compound can persist in
groundwater environments with disappearance half-lives ranging from several months to more than a
year, depending on the site. Falta (2004a) estimated disappearance rate constants for 65 wells in South
Carolina that were impacted by the release of leaded gasoline. Their data indicate that while a reduction
in concentration may be seen at a given site, frequently an increase in concentration is seen with time
(Table 10). Increasing concentrations may be due to the LNAPL source still containing EDB or to water
table fluctuations (Falta et al., 2005b).

Table 10. 1* Order disappearance rate constants for EDB for 65 wells at LUST sites in SC

(Falta, 2004a)

1* order disappearance T, days) k value (per day) Number of wells

<-0.01 6

-0.0081 to -0.01 0

-0.0061 to -0.008 3

-0.0041 to -0.0060 5

-0.0021 to -0.0040 5

-0.0001 to -0.0020 13

>347 0t0 0.0020 8

173-347 0.0021 to 0.0040 6

116-173 0.0041 to 0.0060 2

87-116 0.0061 to 0.0080 2

69-86 0.0081 to 0.0100 0

<69 >0.0100 5

Disappearance rate constants and half-lives for EDB and 1,2-DCA were estimated by Mayer (2005) for a
gasoline service station (Speedway #60) in Gaston county, North Carolina operated between 1964 and
1992 (Table 9). Clayey soils at this site are found near the surface and are underlain by sandy silts and
silty sands. The groundwater velocity ranges between 2.1 to 6.4 m/year. Redox conditions at this site
were not reported, however, monitoring data were available for EDB, 1,2-DCA, benzene, and MTBE over
a number of years. The current plume extent of EDB and 1,2-DCA at this site is estimated to be ~76.2
and ~87 m, respectively. Samples were collected from 2 wells (MW-1, approximately 3 to 6 meters from
the source area, and MW-7, approximately 45 to 55 meters downgradient from the source area) between
1993 and 2004 and samples from a third well (MW-10, located approximately 60 to 70 meters
downgradient from the source area) were collected from 1996 to 2004. Benzene concentrations at MW-1,
MW-7, and MW-10 were 29,000, 10,000, and 4200 pg/L, respectively, in 1993/1996 and 100, 110, and
3.9 ug/L, respectively, in 2004. Disappearance rate constants of 0.695, 0.426, and 0.843 per year were
reported from these concentrations (MW-1, MW-7, and MW-10) corresponding to half-lives of 1.0, 1.63,
and 0.82 years, respectively. 1,2-DCA concentrations at MW-1, MW-7, and MW-10 were 3800, 1700,
and 860 ug/L, respectively, in 1993/1996 and 9.3, 65, and 220 ug/L, respectively, in 2004. Based on
these concentrations, disappearance rate constants of 0.577/yr, 0.233/yr, and 0.128/yr and half-lives of
1.20, 2.97, and 5.41 years can be estimated for MW1, MW7, and MW 10, respectively. Concentrations of
EDB were reported for MW-1 and MW-7 only. EDB concentrations at MW-1 and MW-7 were 3400 and
280 ug/L, respectively, in 1993 and 6.3 and 3.3 ug/L, respectively, in 2004. Based on these
concentrations, disappearance rate constants of 0.549/yr and 0.338/yr and half-lives of 1.26 and 2.05
years can be estimated for MW-1 and MW-7, respectively. From these data, the author concluded that
EDB is as mobile as benzene and more resistant to degradation while 1,2-DCA is the most resistant to
degradation and is more mobile than both benzene and EDB.
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Based on information from the EPA Superfund Record of Decision (U.S. EPA, 2006), the Massachusetts
Military Reservation (Camp Edwards and Otis Airfield) (MMR) first opened in 1911. Most onsite
activity occurred between 1940 to 1946 and 1955 to 1970. The site geology consists of “stratified
outwash sand underlain by silty glaciolacustrine sediment”. There is a single, primarily unconfined
aquifer, approximately 64 m thick, with a mainly horizontal flow gradient of 0.00025 to 0.0006 m/m
(Kavanaugh et al., 1999). The water table elevation is approximately 20.4 m msl (mean sea level) +0.3 to
1.2 m annual fluctuation. In 1972, a pipeline break spilled an estimated 265,000 liters of aviation
gasoline. The plume from this spill was first detected in 1990 and is currently designated as FS-12. A
remedial investigation in 1992 found NAPL above the water table, identified as a diesel-like fuel that
contained BTEX but not EDB. The plume was approximately 1463 m long, 609.6 m wide, and 18.3 to
39.6 m thick and was defined by any contaminant exceeding its MCL. Groundwater samples collected
during the investigation contained high concentrations of EDB and benzene (maximum concentrations of
597 and 1600 pg/L, respectively). Groundwater contamination was reported 1524 m downgradient from
the source as of 1992. Remedial action was undertaken in 1995 with a combination of air sparging and
soil vapor extraction. By 1998, 11% of the residual hydrocarbons had been removed by this action and it
was stopped. Further remedial action consisting of extraction at the leading edge of the plume began in
1997. As of 2005, the plume was 670 m long, 427 m wide, and up to 38 m thick. The maximum EDB
concentration in the plume in 2003 and 2005 was 27 and 12.8 ug/L, respectively (U.S. EPA, 2006).
1,2-DCA is also present in FS-12 with maximum concentrations of 1.7 and 0.115 pg/L. on off-base and
on-base locations, respectively (U.S. EPA, 2006). Falta (2004b) has estimated a rough half-life of
approximately 18 years based on the removal of 38% of the originally released EDB during remediation
procedures in 1997 (i.e., after 25 years, 38% of the originally spilled EDB was still present). Two other
EDB-contaminated plumes, FS-1 and FS-28 are located on the Massachusetts Military Reservation. The
sources of both are believed to be fuel spills. FS-28 was first discovered in 1992. The plume was
described as 3200 m long, with a maximum width of 305 m and thickness of up to 30.5 m (AFCEE, 1998,
2003). The maximum concentration of EDB in the FS-28 plume was 16 pg/L (AFCEE, 1998).
Remediation began in 1997. The source of FS-1 was an aircraft fuel dump area from 1955-1970 (Falta,
2004b). The plume was described as 1990 m long, 366 m wide and up to 55 m thick (AFCEE, 2003).
EDB was not detected at the source area, although toluene was still present, but was measured in
cranberry bogs one mile away at 1.4 pg/L (Falta, 2004b). This detached plume was delineated with wells
in 1998 and a maximum EDB concentration of 10 pug/L was reported (Falta, 2004b). Remediation of this
site began in 1999. A fourth plume (2400 m long, 360 m wide and 30 m thick) was detected in
1997/1998 with concentrations up to 10 pug/L and was found to discharge directly into the Quashnet River
(Falta, 2004b). Three of the 4 plumes at the MMR site have detached from both the source area and from
the BTEX contaminant plume, however, it is not known if this is typically seen at other locations (Falta et
al., 2005b).

E. Monitoring Data

Because of EDBs direct release to the environment as a soil fumigant, emissions from its use as an
additive to motor fuels, or spills of EDB-containing leaded motor and aviation fuels, it has been detected
widely in ambient air, groundwater, and soil. The available monitoring data has been divided into sites
contaminated by EDB purposefully (as a fumigant) or due to a spill and those studies where broader
baseline-type sampling has been undertaken.

1. Release Site Data
Monitoring data in this section have been separated into sites affected by the release of leaded fuels, soil

fumigation sites, and sites affected by grain bin fumigants (Table 11). Many of these sites have
undergone remediation efforts to prevent movement of the contaminant plume to nearby residences that
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may use groundwater as a water source and the data reported over time cannot be used to determine
natural attenuation rates.

The presence of EDB at UST (underground storage tank) sites has come under more intense scrutiny in
recent years (Falta, 2004a, 2004b, 2005; Falta and Bulsara, 2004; Falta et al., 2005a; Wilson et al., 2007).
The South Carolina Department of Health and Environmental Control maintains a database of the
approximately 7200 documented petroleum release sites in that state. 1100 UST sites have been tested
for EDB from the early 1990s on with 537 of these sites reporting concentrations above the MCL
(approximately 50% of sites). The median EDB concentration is about 5 pg/L but concentrations of 50
pg/L or more are found at more than 20% of these sites and concentrations >200 pg/L occur at 10% of
these sites (Falta et al., 2005a). At 47, 71, 84, 52, and 14 sites positive for EDB (268 sites total),
maximum concentrations of 0.05 to 0.5, 0.5 to 5, 5 to 50, and 500 to 5000 pg/L were reported,
respectively (Falta and Bulsara, 2004). One site had an EDB concentration of 6550 pg/L (Miner, 2005).
Concentrations of EDB ranged from not detected to 8200 pg/L at 7 LUST sites in Kansas, 0.013 to 1140
pg/L (4% of these were above the MCL) for 31 sites in South Carolina, and from 0.084 to 65 pg/L for 8
sites in Santa Barbara county, California (Burton, 2005a). A recent study by Wilson et al. (2007) reported
similar results to those published by Falta and Bulsara (2004) and Falta et al. (2005a). 54% of 79 UST
sites in 17 states, had detectable concentrations of EDB and 43% of the total sites had concentrations of
EDB greater than the MCL (132 positive detections out of 736 samples; 11% of the EDB detections had
concentrations greater than the MCL). The distribution, based on maximum concentration reported at
each site was similar to that reported by Falta and Bulsara (2004) in South Carolina.

As a follow-up to the work by Falta and Bulsara (2004) in South Carolina, 104 sites in this state,
representing 14 counties with 9 of these counties in the coastal plane (composed mainly of sediments) and
5 counties in the piedmont province (metamorphic rock and saprolite) were analyzed further to determine
whether geological/surficial features affected the behavior of EDB at these sites (Miner, 2005). Not all
sites contained LNAPL. Benzene and EDB concentrations did not appear to be correlated with each
other. EDB plume lengths were <30.5, 30.5-76.2, 76.3—152.4, 152.5-243.8, and >243.8 (up to 853.4 m)
m at 64, 25, 6, 4, and 1 site, respectively. In comparison with the BTEX plume at each site,
approximately 50% were similar in length, 44% BTEX plumes were longer than the EDB plume, and
only 6% of EDB plumes were longer than the BTEX plume. Yet EDB has a higher gasoline:water
partition coefficient when compared to benzene (i.e., it will partition more easily into water than
benzene), has low retardation, and is slowly degraded, particularly under anaerobic conditions. Miner
(2005) suggests that monitoring limitations may be responsible for the results seen in South Carolina.
Longer EDB plumes are described as “very narrow, cigar-shaped features .... that commonly dive with
increasing distance from the source” (Miner, 2005). These features can make it difficult to locate an EDB
plume, particularly when only a shallow well network is installed. In addition, some UST site results may
be complicated by multiple releases of both leaded and unleaded gasoline at different times.

While field study data implicating cometabolic degradation of EDB were not located, several pure culture
studies for EDB specifically, and enriched culture, and microcosm studies for the structurally-similar 1,2-
DCA (see section IV, D2a-c) indicate that cometabolism by methanotrophs may occur in the
environment. The release of residual gasoline to soil and groundwater will provide a large hydrocarbon
source that is likely to result in a localized area of highly reduced, methanogenic conditions in the residual
source area. Methanogens in the anaerobic source area will produce methane during the anaerobic
biodegradation of gasoline components which may encourage the growth of methanotroph populations in
the surrounding aerobic soil zone. Potentially, this may result in the cometabolic biodegradation of EDB
present in a leaded gasoline mixture. While data specific to gasoline releases are not available,
cometabolic biodegradation of other compounds has been reported in the field. An increase in the
methanotroph population and corresponding cometabolic biodegradation of trichloroethylene was
reported in the presence of methane and nutrients during a groundwater biostimulation demonstration in
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the field (Brigmon, 2001). In addition, the biodegradation of VOCs, including several chlorinated
ethanes, by methanotrophs has been reported in soil microcosms incubated under methane/air conditions
similar to that of a landfill soil cover (Scheutz et al., 2004). In this study, biodegradation occurred in
parallel with methane oxidation suggesting that the VOCs were degraded via cometabolic processes.

34



g¢

Ul UOHEIUIIUO))

'C861
UrsLSv
‘Kep/wo '] | pooejdor azom
Yol —€' :KIAIONPUOD ey s1SN
pue pues [)m pa[[y onneIpAy -odefIns g Ul PoIO)S
SeM [ ‘pOAOWIAI puUB] MO[oq W | 9IOM dUI[OSET
(0002) [10S pajeurueIu0d T C1~ 03 Aejo pue uoneIAR | DN ‘WIe [ong
[EUOTIEUIOIU] | PUB POJBABOXD 9IOM (6661/9661) 9IS ‘pues JO S19Ae| pue g-dr | 3100mS [joqdwe)
ueIpey SIS S USAIS /31 ¢'¢ = xe\ PlenUAIdJIpUN) oS AIRIIA ouanfo7 dwre)
‘[swr w
07~ SI UOLIBAQ[D
J[qe) I0Je A
(8661) "W/ 9000 0 0
6661 Ul uegaq 18101 = xe $2000°0 Jo JudIperd
UONBIPAWAIL : [-S ] ‘1-Sd MO[J [eJUOZLIOY
Aurewr o1y} w
"L661 Ul uegaq (z661) 9 Ajorewrxoxdde
UOTIJBIPOWAI :87-S,] 131 91 = Xe]\ ‘195mbe pourjuooun
:87-SA Aqurewtid
(ar002) "L661 ‘o[3uIs & s
eied (00T ur uegaq owmnyd | /31 69°1 = Xe]y (5002) oIy,  JUSWIPIS
‘8661) AV | Y1 Jo a3pa Surped] (sroAry | 1/8M §°TT = XeN ULNSNOR[OIOP[3
(9007) vdd ay) e uonoeNXy louysen) pue (€007) As
‘SN (6661) ‘uonoenxs Jodea 1J9SSOWRUO00))) /31 17 = xe]N Aq urepopun pues AN
‘[& 19 ySneueaey] [1os pue Sui3ieds Iojempunoid (z661) [SeMINO payIyens,, ‘s[ds UOTBAIISY
“(1007) | IreJo uoneuIqUIOd Aq parodpje /31 L6S = XeN JO s1S1Su0d [onJ papea] KxeymN
oorg pue erX | ‘86615661 :T1-SA Iojem 9defIng Z1-S4 £301093 a1g NS ATRI[IN S1OSNYOESSEIA
ISEBI[I JUI[0SES pPaped|
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdures jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




9¢

($00T ‘2002)

‘wSAS AH
ue JO UOIONISU0d
‘[10S pojeUIRIUO0D
‘SwnIp Jo [BAOUIX

(#00T

09s/Wd | 01X0°C

0} ..0TX(Q ¢ Wwoly
sa3uel A)ATIONPUOD
oIneIpAy °'s3q w
[°9 01 ("¢ Ioqe aIe
S[9AJ] J9)EMPUNOID)
‘SIS Apues

‘sourjodid
[BI9ASS se
[[om se syue)}
o3e103s punoi3
-Iopun ¢
WOIJ SOsea[al
pue syyids

[ong uonjeIA®

-ou] ‘dnoin Surpnjour 6861 (007 oanisod | ‘oanisod sojdures pue spues AJ[Is “0S61-0v61)
SureourSuyg ur ue3aq 9IS SIy) sordwes 9/) /31 | $€1/5) 8/81 L1 | 10 [0 [e1oR]S Jo310 IS Arejrjrua MV ‘Aeg pion
sqooef | Je Aj1Anoe dnues) 01-S¢'1=923uey | —60¢ (0 =0o3uey Se PIqLIOSIP S[10S ouioq ‘Trepuey 104
‘[eyuoZLIoy JY} JO
x0T/1 A1AINPU0D
OIMBIPAY [BOTIA
‘Kep/w 6'171-1°8€
= A)IARONpuUO0d
oIneIpAY
[eIuoZLIOY
‘Kep/wo Gy
=G"0€ Jo Ad0[aA
Ieour] o3eIoAe
S8qW 9'p-€ =
o1qe) 199eMm 0} 3dap
‘19§be pauryuodun ‘sourjodid
‘ozIs [[ews | ‘eore uronjar
K[9ATJR[21 JO SOSUQ] ‘sqids
[10S JoUly pue [ong pape9| DA%
(r661-6861) 1/31 JI9SIBO0D JO QIMIXIW | PIIUSWNO0PUN) QI LmuIe pp
(6661) Vdd 'S'N 9%'0-20'0 = 23uey SN0sUZ0IRH s ATeIA Hoq
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UONRIPIWRY PYPO J9)eMpuno.s uone.UIIU0)

Ul UOHEIUIIUO))

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




LE

€Ll

ur pojedruuny

‘K1oAnoodsar ‘8/3 jse[ [10S

S'91 pue ‘1'91 woly uonern

(8861) (so861) 3y/3n ‘I°11 JO 3u9au0d -U0U00 MO

‘Te 32 Asuymes SHZI ‘68 ‘0OF uoqJed o1uedIQ "SULIR) 991y, INOI}O9UUO))

“19)eMpunoI3
03 ypdop

MO[[BYS A[OATIB[I
e ym Kjoedeo
Surpjoy 101EM

MO[ © 9ABY S[I0S
ISON "UD{/W 8¢
juoIpeId oIneIpAy
“09s/1930tM ()G |
—001 A11AnoNpUOd
oIneIpAY

‘9oeJIns )

9002 ‘SOUN MO[aq Wd ZOI-1§
pue vasn (9661 ‘oanisod [erroyewr AJjoAeI3 asn
2007 ‘MHAI s[rom 601) 1/91 9SI1B0D PUE S[I0S uoneduny | ] ‘UOLIBAIISIY
‘500T YASLY 91-20°0 = o3uey Awreoy oy Apues [10S | ueIpuj J[eH Mo
asn juegunj [10S
WL G~ NS JJo
g4 Jo 1usueAow
'L861 Ul yonur JoN 1K/
poAoWRI pue 161 1'9—6'1 :K1100[9A
ur doe[d ur syue} I0)eMpUNOID)
MIN "£00T Ul w9 (L861
paAou_Ipue 1/61 —9'p stpdop o[qer | —€561) uoness
ul pauopueqe €561 (6661) Iojem ‘sjfIs pue ourjose3
(97002) ®eq | woxy syue) [euISLIO /31 681 = Xe]N sAe[o Aq ure[ropun lowog | DS ‘Singaguein
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

Ul UOHEIUIIUO))

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




8¢

(TOW

oaoqe sojdwres
$61/S “oamisod
sojdures ¢61/€9

‘100Z-+861) "sajdures VA “Auno)
18 7T = xeN [[oMm I9em uojsmyJ,
(1002) /8 supjuu esn | IIR[D 1S Ae]
‘Te 10 S10g ¥€°0 = 98e10AY jue3uny 10§ ‘oyeT uosmed
(1661-9861
‘aAnisod s[om
(1661) LO1/81) 1/31 LT'9 "osn SM “Auno)
‘Te 30 JoARIN —70°0> = o3ury jue3uny 10§ WOdRYA
‘paurjuooun
st (100
“Ie 10 310g) Aep/w
€87 JO A1TAIONPU0D
oINeIpAY 93eIoAL
ue sey pue (0007
JnQ) s3q w ¢ uey)
SS9 9[qe) I91BM )
(TOW [Im oIyl W gz 0
oaoqe sordwres dn so3uer ysemino
/86 eanisod [eroe[3 [oARIS pue
sodwes $4/9Z1 pues o[qeaurad
'6661-+861) Jo pesodwoos
/31 19 = Xe]\ s1 1ojinbe osn VM ‘Auno)
(0002) Ing 71/31 ¢ = 98e1oAy oure[g-sewng oY, | JueSIUNy [I0g | WOdRYM YHON
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

Ul UOHEIUIIUO))

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




6¢

(L002) aad 181 6'¢
JUSWIUOIIAUL pue "D /3
pue yesHq 016 paurejuod
Jo yusunredoq [[oMm 9)1S-U0 QY ‘oS
sesuey| (z661) 18 6'C “9)IS UIq UTRID) | UIQ UTRIS UONTH
9IS JuedIuny ulq ureso
“10JInbe yo01paq
oy 103 A[oAnoadsar
1K/ g¢ pue
10 ‘W 01Xy
2K/ LTE-6HT
pue 135mbe mojeys
o 10} A[9Anoadsax
‘1K 001 pue
0€°0 W/ 01X$'T
“IK/W 0625661
918 AJIO0[IA Idjem
PoIE[NO[Ed pue
‘Ayso1od pajewunso
9uorpeid oIneIpAy
‘AATIONPUOD
oImeIpAy
(50861 ‘saamisod | ‘W ¢'H-8'[ 18 3qe)
(L861) 85) 8y/3n Toyem oIy w 'L961
e 12 ofjereusig 'S =UBN CCI—1°9 WwoLpars ur pajesiung
‘(9861) a1s01(Q (sog61) 1/31 3y/3n pue ‘[oAeI3 ‘pues ise[ ‘osn
pue ULIe[ T 01700 =o3uey 7€—1 =28uey | Jo susodop [eroe[n | juedrung 10§ INONOIUU0))
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

Ul UOHEIUIIUO))

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




014

Ul UOHEIUIIUO))

-ownyd
JUBUTWIRIUOD
ur punoj
(L002) os[e VOd-T'1
JUOWIUOIIAUY “Kyroey
pue yesy ‘JuoIpesd Sunemnuioy
Jo juounredoq -UMOp 9[IWI | juedruuny Sy ‘eures
sesuey| 10J Spu)Xd awnjg ureln) | oUJ ‘SAIBYSOIN
ownyd
ul punoj
WI0JOIO[YO
(L00?2) pue
JUSUIUOHIATH 10D €961 Ut
pue yesy "9uIn} I9AO0 J[qEIS jueStwng ureid QY ‘eurfes
Jo juounredoq ‘Surddins 1re ypm K[9ATIR[OI QI G'() SION] 00€T ‘9)IS 10JBAS[H
sesuey[ jeon pue dung I0J SPUQ)Xd dwn|g —0¥11 Jo ds IB[NO9S
“us
o) wotj Suraow
owmnid 191eMpuUNOI3
gdyd pue
100 oW d[pury
01 /661 9outs doeld
Ul ud3q sey jeaxn
pue dung /31 "(zoot
9100°0 210M [10S 1dag 01 0007 1das) “Kep/wod aad
Ul SUOTIBIIUAIU0D 1/31 02T 01 09¢€ L'SP—S19q 01 91qe10939p
qaad ‘(Teak PojeWI}SI Ik SAjel urejuod jou
‘s1e9A ¢'7 I9)jE pue I 10J papuadsns MO[J I9)eMPUNOID) S90p 9IS ST
POppE Sem WIISAS wo)SAS 18a1) 's3qu | jojuorpeiddn
AAS 1Y ® °L661 Ul pue dund) 6661 989 01 9°9¢ NOQe |  I9)EMPUNOID)
‘[1os woxy g pue 3dog) 1/3M oL Jo ypdop & woyy "SIBOA ()¢
Y100 J0 (3 Sp6<) (L661 SuIpudIX? syrun | I9AO JOj ureid
Sq[ 00T < pPaAOwWal 1dag) 1/31 09y~ [9A®IS pue IS ps[puey pue
(€002 Apms gAS (L861-5861) 1/31 (9861) 83/ ‘pues JO SISISUOD | Palols IS 0D
‘8861) Vdd 'S'N jorid e ‘0661 Ul 8'9—(N = d5uey 0071 =xeJN | 1oymbe saddn oy “AVIN-IV AN ‘sSunsey
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




It

‘pordures
9)Is palynuapl
Jo snipex
o[- B U
(359301 nodn S[[oM 9JeALI] LINOSSIIA
oAne3au) aanisod 109foxd uiq | ‘emof ‘eyseIqoN
(L007) PIoLd SANIS 678 JO | urels yasn ‘sesuey|
(L002) JUSIPEISUMOp
JUSWIUOIIAUY so[Iwt
pue yIedy G0 Ajorewnrxordde -ownyd Sy ‘rowne
Jo yuaunredo(q 10J SpPUAIX? ‘s10§inbe suojsowry JUBUTWIRIUOD ‘Kyqroey
sesuey| ownid (8661) pue spieynbe oreys ul punoj SIOIAIRS
“(2002) ¥ASLV 131 0'vT+T0 Jo uoissaoons y | gdd Pue 10D -USY Jowne]
AUAIJNY $110JJ9 | suopenuaduo) | (Surpdues jo dep) [10S uI £30[09301pAH K10ISTH uoned0] IS
UOHBIPIWY nYO J19)eMpuUno.Isd UonELIUIIU0)

Ul UOHEIUIIUO))

SI)IS SB[ 10} B)ep SuLIoyIuowW i ‘11 dIqeL




2. Non-site Based Environmental Monitoring

Monitoring data are presented below for surface water (Table 12), groundwater (Table 13), outdoor air
(Table 14), and indoor air (Table 15). While soil concentrations were measured in a few soil fumigant
studies, EDB concentrations in soil are given in the section above on transport in soil and are not reported
here. EDBs use as a soil fumigant (up to the 1980s) and as a component of leaded fuel has led to its
environmental release and the resulting detection of EDB in outdoor air samples from the 1970s—1980s
and in groundwater surveys up to the present day. Because of its high Henry’s Law constant, EDB is
rapidly volatilized from surface waters. The few studies from the 1970s and 1980s where EDB was
measured in surface waters indicate that EDB was found either at very low concentrations or was below
the detection limit (Table 12). EDB is reported in groundwater at low concentrations (typically less than
1 ug/L). A survey of 2110 community water systems from 12 northeastern and mid-Atlantic states (from
1993-1998) found that 1.7% of the water systems (36 community systems) had detectable levels of EDB
in their finished drinking water (Grady and Casey, 2001). Water from 27% of the positive systems also
contained 1,2-DCA suggesting that the source of EDB to those water systems may be from leaded
gasoline (Falta, 2004b).

EDB was reported in outdoor air samples from studies in the 1970s and 1980s at concentrations typically
less than 1 pg/m’. More recent studies from the 1990s report that EDB is not detected or report its
presence at average concentrations <0.1 pg/m’. Indoor and outdoor air concentrations were monitored for
35 residences in the Kanawha Valley of West Virginia in the mid-1980s. While 29% of indoor air
samples collected from these residences contained detectable concentrations of EDB [limit of detection
(LOD) of 8.5 pg/m’], none of the outdoor air samples had measurable concentrations of EDB (Cohen et
al., 1989). A second study measured indoor and outdoor air concentrations of EDB at 75 residences in
Ottawa, Canada during the winter of 2002 and 2003 (Zhu et al., 2005). EDB was not detected in 75
indoor and 74 outdoor air samples based on a detection limit of 0.01 pg/m’ (Zhu et al., 2005).
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F. Fugacity Estimates

The EPIWIN Level III fugacity model was used to model the environmental fate and persistence of EDB
under different release scenarios (Tables 16 and 17) (U.S. EPA, 2007b). This is a diffuse model and does
not contain a groundwater component. The Level III fugacity model assumes that EDB is being
continually released to the environment and that steady state conditions are reached. EDB can be
removed from this system by either advection (the movement of undegraded chemical out of the
geographical boundaries of the model) or degradation within the compartments (air, water, soil, and
sediment) of the model environmental media (based on a user-supplied degradation half-life).
Equilibrium between environmental media is not assumed in the Level III fugacity model. Input data to
the model included relevant physical/chemical properties reported in Table 2, an acrobic biodegradation
half-life in water and soil of either 7 (results reported in Table 16) or 70 (results reported in Table 17)
days based on aerobic microcosm biodegradation data (Table 7) and an atmospheric half-life of 43 days
as reported in the photolysis section for EDB in this report. Emission scenarios were varied as given
below in Tables 16 and 17 as this can affect the distribution and persistence of a compound in the
environment. The model was also run with advection on and with advection turned off. With advection
off, EDB cannot be removed from the model environment undegraded, giving a “global” perspective of
the environmental fate of EDB where loss due to degradation becomes most important in determining the
persistence of EDB in the environment.

For highly volatile chemicals such as EDB, the overall persistence time may be very short when
advection is considered since the advection lifetime in air is very short. This does not necessarily mean
that the chemical has low persistence, however; in many cases it simply means the chemical has been
removed from the model environment undegraded and exists in some other location beyond the
boundaries of the model. This is exemplified by comparing the overall persistence time for EDB with
advection on and with advection off. The first two columns of Table 16 illustrate the results of the model
run where EDB is emitted solely to the air compartment. With advection on, the overall persistence time
of EDB in the model environment is only 89.3 hours; however, almost 90% of the loss is through
advection processes. When advection is not considered, the overall persistence time of the chemical is
706 hours and all the loss is through degradation processes. Comparable results are observed for each
emission scenario. Tables 16 and 17 also indicate that when advection is considered, almost all the
advective loss of mass occurs through the air compartment.

A similar pattern is also observed using the longer half-lives (70 days in water and soil and 280 days in
sediment) (Table 17). Comparing the results of Tables 16 and 17 for each emission scenario: (1) a higher
percentage of chemical is advected when longer half-lives are considered (assuming advection is on); (2)
a higher percentage of chemical is reacted in air when longer half-lives are considered (assuming
advection is off). (3) the overall persistence time increases when longer half-lives are considered
irregardless of whether or not advective processes are used in the model; (4) similar distributions of EDB
between the environmental media are observed.
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IV. 1,2-Dichloroethane (1,2-DCA)

A. Historical and Current Use Patterns

1,2-DCA was first manufactured commercially in the U.S. in 1922 (U.S. DHHS, 2005). It is currently
produced at approximately 15.5 billion kg/yr (SRI, 2005, 2006). Unlike EDB, 1,2-DCA has numerous
current economic uses and the source of this compound to the environment is not as clearly determined.
1,2-DCA is used as a chemical intermediate principally in the production of vinyl chloride, but also
vinylidene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, aziridines, and ethylene
diamines (ATSDR, 2007, 1,2-DCA profile). In addition, 1,2-DCA was used in paints, coatings, and
adhesives, as a solvent and as a dispersant, as a grain, household, and soil fumigant, in varnish and finish
removers, in soaps and scouring compounds, in metal degreasers, in ore flotation, in textile and PVC
cleaning, and in organic synthesis for extraction and cleaning purposes (Fishbein, 1979; U.S. DHHS,
2005; U.S. EPA, 1984). The annual use of 1,2-DCA in grain fumigants was approximately 870 to 1570
Mg from 1976 to 1979 (U.S. EPA, 1984). In these formulations, 1,2-DCA at up to 70% was typically
mixed with carbon tetrachloride and/or EDB (U.S. EPA, 1984). 1,2-DCA does not have any known
natural sources.

In 1979, 85, 3.2, 2.6, 2.3, 1.7, and 1.6% of produced 1,2-DCA was used as an intermediate for vinyl
chloride, ethylene amines, tetrachloroethylene, vinylidene chloride, trichloroethylene and used as a lead
scavenger, respectively (Letkiewicz et al., 1982). By 1989, 90, 7, and 3% of total 1,2-DCA production
was used in vinyl chloride monomer, exports, and miscellaneous (including chlorinated solvents and
ethyleneamines), respectively (ICIS Chemical Business Americas, 1974-2006). As of 2005, 1,2-DCA is
nearly completely used as a chemical intermediate, predominately for the production of vinyl chloride
monomer (96%), but also for the production of ethyleneamines (2%), C, chlorinated solvents (1%), and
for miscellaneous uses (1%) (ICIS Chemical Business Americas, 1974-2006).

The amount of 1,2-dichloroethane used as a lead scavenger for leaded gasoline was never greater than 1—
3% of its total production (ICIS Chemical Business Americas, 1974-2006). As of 1971, 1977, 1980, 3, 3,
and <2% of total 1,2-DCA production was used as a lead scavenger, respectively (ICIS Chemical
Business Americas, 1974-2006). In 1979, 85% of the total production of 1,2-DCA was used in the
production of vinyl chloride (Letkiewicz et al., 1982). Only 1.6% of the total production in 1979 was
used as a lead scavenger (Letkiewicz et al., 1982). While this is only a small percent of the total
production, it is comparable to the amount of EDB used as a lead scavenger because the annual
production value of 1,2-DCA is so high. In 1978, 0.36 million metric tons/yr (363 million kg) was used
for lead scavenging purposes (Singh et al., 1981a).
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Figure 2. Annual U.S. Production of 1,2-DCA from the years 1952 to 1994 (U.S. ITC,
1953-1995)

The commercial sale of leaded gasoline began in 1923 (Burton, 2005a). While EDB was added to leaded
motor fuel as of 1925, 1,2-DCA was added to the lead/EDB mixture used for motor fuel in the 1940s
(Burton, 2005a). These compounds were added to the lead mix in order to prevent the build-up of solid
lead oxides on spark plugs and exhaust values in the piston engine (Burton, 2005b). The volatile lead
bromide and lead chloride formed during the engine combustion process were then released to the air.
The amount of 1,2-DCA added to leaded gasoline is dependent on the concentration of lead. Leaded fuels
from 1942 to present day contain 1.0 mole 1,2-DCA and 0.5 mole of EDB per mole of alkyl lead (Falta,
2005; U.S. EPA, 1984). Unlike EDB, 1,2-DCA was not used in aviation fuel.

Lead concentrations in gasoline have varied considerably since lead was shown to reduce spark knock in
engines in the early 1920’s. Initially, a maximum limit of 3.17 g lead/gallon was recommended by the
federal government in 1926. This was increased in 1959 to 4.23 g lead/gallon due to increased
compression ratios and octane requirements of engines at this time (Gibbs, 1990). Lead concentrations
actually reached average highs of only 3.0 g lead/gallon and 2.5 g lead/gallon for premium and regular
gasolines, respectively, in the late 1960s (Gibbs, 1990). In the 1970s, improvements were made in
refining processes resulting in higher octane base gasoline (Gibbs, 1990). In addition, the U.S. EPA
enacted regulations to systematically limit lead concentrations in the U.S. gasoline pool. These
regulations are covered by Gibbs (1990) in some detail. By 1979, the average lead content for large
refiners (producing >50,000 barrels daily) was set at 0.8 g lead/gallon and 2.65 g lead/gallon for small
refiners (for leaded and unleaded gasoline together). After several further changes, a maximum limit of
0.5 g lead/gallon was set across all leaded gasoline manufactured by each refinery in 1985. By 1988, an
average of 0.1 g lead/gallon was reached for all U.S. leaded gasoline.
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In 1995, leaded fuel made up only 0.6% of total gasoline sales in the U.S. (U.S. EPA, 1996). The sale of
leaded fuel for use in on-road vehicles was banned in 1996, although fuel containing lead can still be used
for off-road uses including in aircraft, racing cars, farm equipment, and marine engines (U.S. EPA, 1996).
The typical composition of the TEL-CB tetracthyl lead package currently produced by Ethyl Corporation
for use in leaded fuels (61.49% tetracthyllead, 17.86% EDB, 18.81% 1,2-DCA) is similar to the classic
formulation of ethyl fluid (Burton, 2005b).

B. Physical Properties

Physical/chemical properties for 1,2-DCA are presented in Table 18. Like EDB, 1,2-DCA has relatively
high vapor pressure and water solubility values. Based on its vapor pressure, 1,2-DCA is expected to
volatilize in dry soils. Its Henry’s Law constant indicates that 1,2-DCA will readily volatilize from water
surfaces.

1,2-DCA is miscible in many organic solvents. If released to the environment in a fuel mixture, it will
move with the light non-aqueous phase liquid (LNAPL) by gravity through the vadose zone, potentially
to groundwater. The dissolution of a single compound from a mixture such as gasoline in contact with
water is different than its dissolution as a pure compound. For the release of a pure compound such as
EDB, water-phase concentrations at the NAPL-water interface are at the solubility limit in water.
However, for a compound in a gasoline mixture at the NAPL-water interface, the maximum concentration
in the water phase is estimated as the effective solubility. This can be presented as a retardation
coefficient (total concentration/fraction in mobile-water phase) in a saturated soil matrix.

In soil the retardation coefficient, R, is:

Rl — [ w pS f;)C ()C,l] — 1 + pS fOC oc,l
o o

w w

Eq. (5)

With an immobile residual oil phase (gasoline) present, based on presumed ideal Raoult’s law partitioning

(oppot ety o
Ri — i 0 :1+ ps oc oc,i + i 0 Eq (6)
6, 6, 6,

Equivalently, for a measured gasoline to water partition coefficient

0 +p -f K _+0 -p K, f K . 0-p-K,.
Ri:( w ps foc oec,z o 100 gw,z):1+ps f;c oc,,+ 0 p; aw,i

w w w

Eq. (7)

With 8,, (cm’-water/cm’-soil) volumetric moisture fraction in soil matrix, equal to the total soil porosity in
saturated soil; p, (g-soil/cm’-soil) is the soil dry bulk density; f,. (g-oc/g-soil) is the mass fraction of
organic carbon in soil; and K,,.; (cm’-water/g-oc) is the chemical-specific organic carbon-water partition
coefficient. MW; is the molecular weight of the chemical, S; is the pure chemical aqueous solubility limit.
With the chemical of interest as a small fraction of the total residual phase, values of 0, (cm’-oil/cm’-
soil), p, (g-oil/cm’-oil), and MW, (which is a function of oil mixture composition) will be relatively
constant and the factor R; will be independent of the total oil mixture concentration in soil.
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The gasoline to water partition coefficient can be estimated from the octanol to water partition coefficient

as:

MW,

octanol

MW,

o

aw ow

Eq. (8)

1,2-DCAs gasoline-water partition coefficient indicates that once in contact with groundwater, it will
dissolve more rapidly out of the LNAPL in the groundwater than will benzene (benzene has a
gasoline:water partition coefficient of 350) (Cline et al., 1991; Falta, 2004b). Based on 1,2-DCAs
gasoline:water partition coefficient, Falta (2004b) reported a potential maximum concentration of 3700
ng/L for 1,2-DCA near a residual or LNAPL gasoline source. When 1,2-DCA is released alone or as a
spill of grain bin fumigant (e.g., typically mixtures of 1,2-DCA with carbon tetrachloride and/or EDB), it
will move through the vadose zone potentially to the groundwater as a DNAPL based on its density
compared to water. Based on its similar physical/chemical characteristics to EDB, dissolved 1,2-DCA is
not expected to change the water density much, therefore, 1,2-DCA is also expected to move with the
bulk of the groundwater flow.

Table 18. Physical/chemical properties for 1,2-DCA

Property 1,2-Dichloroethane Reference
CAS Registry Number 107-06-2
Structure
CH,CI—CH,CI
Physical description Colorless liquid Verschueren (2001)
Molecular weight 98.96 g/mol
Melting point (°C) -35.5 SRC (2007)
Boiling point (°C) 83.5 SRC (2007)
Solubility Water: 8600 mg/L at 25 °C Horvath et al. (1999)
Ethanol, chloroform, diethyl ether, most IARC (1999)

organic solvents: miscible

Vapor pressure

78.9 mm Hg at 25 °C

Daubert and Danner (1985)

Octanol-water partition
coefficient

31

Hansch et al. (1995)

Henry’s Law constant

1.18x10” atm-m*/mol at 25 °C

Leighton and Calo (1981)

0.050 (dimensionless) Falta and Bulsara (2004)
Gasoline-water partition 1,2-DCA = 84 Falta (2004b)
coefficient (dimensionless)
Specific gravity (liquid) 1.25 Verschueren (2001)
Specific gravity (vapor) NA'
Equilibrium aqueous 3700 pg/L Henderson (2005)
concentration
Diffusion coefficient in NA'
dry air
Diffusion coefficient in NA'
water
Density 1.25 at 20 °C van Agteren et al. (1998)
Vapor density relative to 342 van Agteren et al. (1998)
air
Heat of vaporization NA'

Percent in saturated air

11.5% at 25.5 °C

Christain and Moorehead (1985)
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Table 18. Physical/chemical properties for 1,2-DCA

Property 1,2-Dichloroethane Reference

Conversion factors 1 ppm = 4.43 mg/m’ in air Verschueren (2001)
1 mg/m’= 0.24 ppm in air

'NA = No data available.
C. Transport Processes
1. Transport from Water Surfaces

The release of 1,2-DCA to water results in rapid volatilization. Lyman et al. (1982) estimated liquid- and
gas-phase exchange coefficients of 22 and 1900 cm/hr, respectively, and a mass transfer coefficient of
17.1 cm/hr. Based on these values, a volatilization half-life of 6.1 hours can be estimated using a wind
speed of 3 m/sec and a water speed of 1 m/sec (Lyman et al., 1982). A water-film reference substance
parameter of 0.643 indicates that the water-film mass-transfer coefficient for the volatilization of 1,2-
DCA will be 64.3% that of the reaeration coefficient for the absorption of oxygen by a stream (Rathbun,
1998). An air-film reference-substance parameter of 0.529 indicates that the air-film mass-transfer
coefficient for the volatilization of 1,2-DCA from a stream will be 52.9% that of the mass transfer
coefficient for the evaporation of water (Rathbun, 1998). Goss (1997) measured a gas-phase adsorption
coefficient for 1,2-DCA of 1.01x10° M for a water surface at 20 °C.

Several laboratory studies have measured evaporation half-lives in water for 1,2-DCA. Scherb (1978)
measured an evaporation half-life in flowing water of 1 to 4 hours. Experimental evaporation half-lives
of 28.4, 28.2, and 27.5 minutes were reported by Dilling (1977) using a 1 ppm aqueous solution at a depth
of 6.5 cm with stirring at 200 rpm. An evaporation half-life in water of 5.3 minutes was reported by
Chiou et al. (1980) at 23.1°C, an initial concentration of 0.1 ppm, 1.6 cm depth, and stirring at 100 rpm.
In still air, the evaporation rate of 1,2-DCA from water is 5.20x107 g/cmz—sec (Chiou et al., 1980).

Field data for 1,2-DCA confirm that volatilization occurs very rapidly and is the major fate process for
this compound in surface waters. In March 1982, a spill of 628,720 liters of 1,2-DCA (0.79 million
kilograms), and 223,230 liters ethylene glycol occurred due to a train derailment near the Thompson
River in British Columbia, Canada (Christian and Moorehead, 1985). At the time of the spill, the water
temperature was 4 °C, air temperature was 10 °C, wind speed was 4 m/sec, the flow of the river was
approximately 25.2 m*/sec with an average depth of 1.5 m and a velocity of 0.3 m/sec (Neely and Lutz,
1985). In addition, up to 50% of the river surface was covered with ice. Concentrations of 1,2-DCA at
the site decreased over the following days from 22, 7, 3.6, and 3.2 mg/L on days 7, 8, 9, and 14 post-
derailment, respectively. At 38 km from the spill site, concentrations of 1,2-DCA in river water were 3.9,
3, 2 mg/L, and not detected on days 6, 8, 9, and 14 post-derailment, respectively. At 51 km from the spill
site, 1,2-DCA concentrations were 3, 2, 1.7 mg/L, and not detected on days 6, 8, 9, and 14 post-
derailment, respectively (Neely and Lutz, 1985). At 135 miles downstream from the spill site, 1,2-DCA
concentrations were not detected until day 8 post-derailment; on days 8, 9, 10, 13, 15, and 20,
concentrations were 1.3, 1.3, 0.85, 0.110, 0.090, 0.011 ppm (w/w), respectively (Christian and
Moorehead, 1985). Initial reductions in concentration were due to dilution and dispersion, the major fate
process important in the removal of 1,2-DCA from the river was volatilization although, based on
modeling results it was considered possible that pools of 1,2-DCA (up to 80-85% of the initial material)
formed on the bottom of the water column and were protected by the flow of the river. The 1,2-DCA was
then solubilized over a few days post-spill and resulted in a residual tail that contributed 1,2-DCA to the
river flow even after the initial 1,2-DCA front had moved downstream. Using this scenario and
comparing it to measured concentrations downstream, the authors estimated a half-life of 57 hours for
1,2-DCA under these winter conditions. If the water temperature is increased to 20 °C, as might be
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normal under summer conditions, the half-life for the loss of 1,2-DCA is estimated to be 41 hours (Neely
and Lutz, 1985).

In June 1986, 10,000 kg of 1,2-DCA was accidentally released into the Rhine River, Germany
(Bruggemann et al., 1991). Again, because the flow time from Basel to the North Sea is only 10 days,
and because 1,2-DCA is not rapidly degraded or adsorbed onto particulates, volatilization was considered
to be the main fate process. As the 1,2-DCA front moved downstream, concentrations of 1,2-DCA were
~73 pg/L on day 2 (~210 km downstream from the spill site), 30-35 pg/L (~250 km from the spill site) on
day 2.5 to 3, and <10 pg/L (~450 km from the spill site) on day 3.5 to 4.

2. Transport in Soil

The movement of a chemical in the vadose zone is dependent on both transport and adsorption processes.
Based on different release scenarios, 1,2-DCA in the vadose zone can be found dissolved in solution, as a
vapor, as pure compound adsorbed to soil, as free NAPL, or as residual NAPL. Dissolved 1,2-DCA will
move with the infiltrating water to the water table via advection while vapor-phase 1,2-DCA will move
by diffusion through the soil (Pignatello and Cohen, 1990). 1,2-DCA present in an LNAPL (such as a
mixture of leaded gasoline) or DNAPL (such as a pure compound spill) will move mainly downward with
the NAPL through the pores of the soil due to gravitational and capillary forces. If only a small quantity
of NAPL is released, it may be contained in the vadose zone by the soil. However, if the amount of
NAPL is sufficiently large, the bulk of the NAPL can move through the vadose zone to the groundwater
table. An LNAPL will accumulate at the groundwater table, while a DNAPL will continue to migrate
downward until it encounters a sufficient confining stratum. The LNAPL’s movement in the soil is
determined by many factors including soil porosity, soil permeability, and capillary pressure. During
movement downwards, NAPL can become “trapped” within the soil matrix due to capillary forces leaving
residual NAPL behind in the soil. This residual saturation may represent a long-term source of soluble
NAPL components to the environment (Garg and Rixey, 1999; Rixey, 1996).

Sorption of vapor-phase 1,2-DCA to soil has been studied by Raihala et al. (1999) and Cabbar et al.
(1994). Raihala et al. (1999) studied the vapor-phase sorption of 1,2-DCA on dry Yolo silt loam soil
[EGME surface area 80.6 m*/g, 1.73% organic carbon, pH 7.3, 21.1 CEC (meq/100 g), 34:51:15%
sand:silt:clay]. Following a desorption step, 9.7% of the 1,2-DCA remained adsorbed on the soil and was
resistant to further desorption. If toluene, a compound with higher adsorption affinity when compared
with 1,2-DCA, was then added to the column, much of the adsorbed 1,2-DCA was then desorbed (8.3%
leaving 1.4% still adsorbed to the soil). Using dry soil pellets, Cabbar et al. (1994) measured an
absorption rate constant of 4.9 cm®/g-sec for vapor-phase 1,2-DCA in soil using pulse-response
measurements (soil description: total porosity = 4.9 cm’/cm’, solid density = 2.97 g/cm’, surface area =
23.9 m’/g). 1,2-DCA has 2 stable forms, trans- and gauche- forms and the trans-form is 3 times more
abundant in the vapor phase. In liquid phase, the gauche-form is slightly greater (1.3 times more common
than the trans-form). The most stable form in the adsorbed state is the gauche configuration (Cabbar et
al., 1994). Effective diffusion coefficients of 0.022 and 0.034 were reported for this soil using two
different approaches.

Soil-water partition coefficients (K, values) for 1,2-DCA in the solution phase range from 14 to 164
(Table 19) but average about 45 to 60. The available K, values indicate that 1,2-DCA is not significantly
adsorbed to soil. Based on 1,2-DCAs K, values and its relatively high water solubility, it can and does,
based on monitoring data, leach through the vadose zone to groundwater. An adsorption isotherm for
1,2-DCA using a Willamette silt loam (1.6% organic matter, 26% clay, 3.3% sand, and 69% silt, pH 6.8)
was linear (Chiou et al., 1979). The K,/K,, values reported in Table 19 and the sorption isotherm
experiment reported by Chiou et al. (1979) are typically based on study protocols where equilibrium is
assumed to have been reached within 24 hours. While the majority of 1,2-DCA added to soil is expected
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to adsorb/desorb in a rapidly reversible process, it is expected that a portion of the added 1,2-DCA will
behave in a “non-equilibrium” manner during the desorption phase as was seen for vapor-phase 1,2-DCA
(Raihala et al., 1999). Similar to other small, low molecular weight halocarbons such as EDB, it is
expected that pure 1,2-DCA can become trapped within the soil pores due to tortuosity or constriction in
pore structure and release is determined by diffusion processes (Pignatello, 1989) (See Section III.C.2 for
information on this process for EDB).

A soil retardation factor of <1.5 was measured for 1,2-DCA in a Lincoln fine sand (sand:silt:clay ratio of
92:5.9:2.1% respectively, organic carbon content of 0.087%) soil column experiment (Wilson et al.,
1981). Several studies report higher values based on studies using aquifer sediments. Retardation factors
of 5.2, 7.2, and 5.8 (average of 6.1) were measured in column studies using aquifer material from beneath
the Gloucester landfill at velocities of 10, 45, and 90 cm/day, respectively (benzene had an average
retardation factor of 12.2 in this study) (Priddle and Jackson, 1991). In a field study at the Gloucester
landfill aquifer (composed of poorly sorted gravels, sands, and silts; f,. range of 0.0035 to 0.01, average
hydraulic conductivity of 1.1x10* m/sec and a groundwater velocity of 5 cm/day), the plume length was
used to calculate a retardation factor of 7.6 (based on a comparison of the contaminant plume length with
the chloride plume length) (Patterson et al., 1985). Benzene had a retardation factor of 8.8 in this study.
Retardation factors for dichloroethane (1,1-DCA and 1,2-DCA combined) ranged from 1.1 to 1.3 at an
aquifer underlying the KL Avenue Landfill, Kalamazoo, MI (Ravi et al., 1998a, 1998b). An aquifer
beneath a former chemical manufacture site had a calculated retardation factor of 1.08 (Cox et al., 1998),
Groundwater retardation factors of 1.05 and 1.53 were estimated for an aquifer with an f,. of 0.001 and an
foc 0 0.01, respectively (Falta et al., 2005a).
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D. Transformations
1. Abiotic Transformations
a. Hydrolysis
1,2-DCA is slowly hydrolyzed with published neutral half-lives ranging from approximately 70 to 44,000
years (Table 20). The attack of 1,2-DCA by H,O or OH" can occur at the carbon atom giving the
substitution product 2-chloroethanol and then further to ethylene glycol via ethylene oxide or at the
a-hydrogen leading to the elimination product vinyl chloride as was seen for EDB (Pignatello and Cohen,

1990) (See Section I1I.D.1.a for information on this process for EDB).

1. S\2 (substitution) hydrolysis reaction of 1,2-DCA in water

T T H H
o
H—] H H i i H "\ — = HOCH;—CH,OH
Cl ClI Cl OH
1,2-DCA 2-Chloroethanol Ethylene oxide Ethylene glycol

2. E, (elimination) reaction of 1,2-DCA in water

H H H H
H H —  »=(
Cl Cl H Cl
1,2-DCA Vinyl chloride

The neutral hydrolysis of 1,2-DCA was shown to be mainly Sy2 with conversion to ethylene glycol based
on results from Jeffers et al. (1989) (Table 20). Barbash and Reinhard (1989) report that vinyl chloride,
produced via elimination, is a minor product.

The hydrolysis of 1,2-DCA is pH independent below pH 9 (the alkaline reaction at pH 9 is just 10% of
the total observed hydrolysis) (Jeffers and Wolfe, 1996). Vinyl chloride was reported as a product from
the alkaline hydrolysis of 1,2-DCA. In the presence of 50 mM phosphate buffer, 1.3% vinyl chloride was
formed from the hydrolysis of 1,2-DCA. The amount of vinyl chloride appears to be reduced as the
concentration of phosphate buffer is reduced (by a factor of 0.78 for phosphate buffer concentrations from
50 to 5 mM at 50 °C) (Barbash and Reinhard, 1989).
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b. Reaction with Sulfur Nucleophiles

H,S and HS" are typically found in anaerobic groundwaters and in wetland/estuarine environments due to
the microbial reduction of sulfate (Pignatello and Cohen, 1990). Typical concentrations in a salt marsh
are 0.07 mM polysulfides, 0.2 mM sulfite, 0.5 mM thiosulfate, and 5 mM HS™ (Barbash and Reinhard,
1989). HS'is the dominant sulfur nucleophile at pH values above 7 (>50% dissociation of H,S based on a
pK. of H,S of 7.01) while at lower pH values, sulfite may be more important. Total sulfide
concentrations in a SO, reducing groundwater (pH range of 6 to 8) range from 10 to 10~ M (Barbash
and Reinhard, 1989).

HS has been reported to react with primary bromo- and chloroalkanes forming various thiols and
thioethers (Schwarzenbach et al., 1985). This reaction is considerably faster than the hydrolysis of
1,2-DCA in water alone (Barbash and Reinhard, 1987) (Table 21). They reported the disappearance of
1,2-DCA in the presence and absence of HS (at 0.060 mM) at 25 °C with first-order rate constants of
3.0x10” day™ (kino) and 0.51 M 'sec™ (kys.), respectively (Barbash and Reinhard, 1987).
1,2-Ethanedithiol is the main product of the reaction between HS and 1,2-DCA with yields of 79%
(Barbash and Reinhard, 1989). The reaction of 1,2-DCA in the presence of 0.05 M phosphate buffer and
0.67 mM Na,S produced 1.3% vinyl chloride over a temperature range of 37.5 to 87.5 °C (Barbash and
Reinhard, 1989).

Table 21. Half-lives for the reaction of 1,2-DCA with sulfur nucleophiles

T1/2 Temp.

(years) | (°C) Comments Reaction products Reference

6.1 25 1,2-DCA with sulfur (0.005 M 1,2-Ethanedithiol is reported as Barbash and
phosphate buffer + 0.758 mM the major product of this reaction | Reinhard (1987)
Na,S), pH 6.9. (79%).

c. Photolysis

1,2-DCA is not susceptible to direct photolysis (Lyman et al., 1982). Several similar rate constants for
the reaction of 1,2-DCA with atmospheric OH radicals are available in the literature: 2.20x10™"
cm’/molecule-sec, at 23 °C (Howard and Evenson, 1976), 2.64x10™"* cm®/molecule-sec at 24 °C (Arnts et
al., 1987), 2.48x10™" cm®/molecule-sec at 19 °C, 2.09x10™"* cm*/molecule-sec at 19 °C and 2.14x107"
cm’/molecule-sec at 22 °C (Atkinson, 1994). Using the rate constant of Howard and Evenson (1976), an
atmospheric half-life of 49 days can be estimated based on an OH radical concentration of 1.5x10™ OH
radicals/cm’ and a 12-hour day. Products of this reaction include CIHCHO, H,CCICOCI, H,CO,
H,CCICHO (Cupitt, 1980), formyl chloride (Kao, 1994), formyl chloride, chloroacetyl chloride, hydrogen
chloride, and chloroethanol (Spicer et al., 1993). In a study by Spence and Hanst (1978), 1,2-DCA was
exposed to black lights (maximum intensity near 3650 angstroms) and sun lamps (maximum intensity of
3100 angstroms) in dry air in a glass reaction cell at 22.5 °C. Chlorine atoms were used to initiate the
oxidation of 1,2-DCA in order to simulate hydroxyl radical attack in the atmosphere. After 4 minutes of
irradiation, 3.5 ppm formyl chloride (40% of degraded 1,2-DCA) and 0.5 ppm chloroacetyl chloride were
reported.

Wallington et al. (1996) studied the atmospheric fate of 1,2-DCA in detail. Based on their results,
1,2-DCA reacts with OH radicals giving CH,CICHCI radicals that then react very quickly with O, to form
the corresponding peroxy radicals (CH,CICHCIO,). These radicals react with NO forming NO, and
CH,CICHCIO radicals (half-life of 7 minutes). In 1 atmosphere of air and 23 °C, 89% of the
CH,CICHCIO radicals then decompose via HCI elimination giving HC(O)CI while the remaining 11% of
the radicals react with O, giving CH,CIC(O)CL.
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2. Biotic Transformations

The biodegradation of 1,2-DCA can occur in the environment via anaerobic dehalogenation, aerobic
catabolism, and aerobic co-metabolism (Hoyle and Arthur, 2000; Stensel and Bielefeldt, 2000). Reaction
mechanisms for the biodegradation of 1,2-DCA include the elimination of hydrogen chloride or the
substitution of the chloride groups to H (reductive pathway), OH (hydrolytic pathway), or to thio groups
(Neilson, 1990). Because oxygen is not necessary in the elimination pathway, both aerobic and anaerobic
microorganisms can potentially use this pathway (Neilson, 1990).

a. Pure Culture Studies

Based on the reaction pathway information from the pure culture studies summarized in Table 22, the
aerobic and anaerobic biodegradation of 1,2-DCA can proceed via several pathways.

Under aerobic conditions, pure cultures of Xanthobacter autotrophicus GJ10 and Ancylobacter aquaricus
initially degrade 1,2-DCA to 2-chloroethanol which is oxidized to chloroacetaldehyde, then chloroacetate
and finally glycolate (Janssen et al., 1995; Pries et al., 1994). These strains are reported to use 1,2-DCA
as a sole carbon source in the following reaction pathway:

CH,CI—CH,ClI

CH,CI—CH,OH CH,CI—CHO —> CH,CI—COOH CH,0H—COOH

1,2-DCA 2-Chloroethanol Chloroacetaldehyde Chloroacetate Glycolate

The first step is mediated by a haloalkane dehalogenase, the second step by an alcohol dehydrogenase, the
third step by an aldehyde dehydrogenase, and the fourth step via a haloacetate dehydrogenase (Janssen et
al., 1995). Oxidation of the aldehyde during this reaction process is believed to be the critical step in the
degradation of 1,2-DCA (Janssen et al., 1995).

This pathway was verified using the technique of carbon isotope fractionation using a pure culture of X.
autotrophicus GJ10 (Hunkeler and Aravena, 2000). As a compound is biodegraded, the precursor
typically becomes enriched in the heavier "*C isotope over the lighter °C isotope. While non-degradative
pathways such as adsorption and volatilization do not change the ratio of °C to '*C, degradative pathways
will because light isotopic bonds will react more quickly than heavier isotopic bonds (based on reaction
rates and activation energies associated with breaking the bond). 1,2-DCA, at an initial concentration of
120 mg/L, was enriched by 10.6% in "*C while inorganic carbon and biomass carbon were depleted in "*C
by -47.4 and -18.3%, respectively (overall carbon -30.9%), by 36 hours. The difference in the depletion
of *C between inorganic carbon and biomass was explained by the reaction pathway. 1,2-DCA is
degraded by this pure culture to 2-chloroethanol, 2-chloroaldehyde, chloroacetate, and glycolate.
Glycolate is oxidized to glyoxylate and then to acetyl coenzyme A. There are two decarboxylation steps
between glyoxylate and acetyl coenzyme A with the CO, coming from the carboxyl end of the glycolate.
The carboxyl carbon is expected to be ~60% depleted in >C compared with the initial 1,2-DCA while the
hydroxyl carbon has a °C content similar to the concurrent substrate. According to the authors, the
strong enrichment of "°C in the remaining 1,2-DCA occurs because the first step in the biodegradation of
1,2-DCA is an S\2 nucleophilic substitution reaction.

A second aerobic biodegradation pathway was proposed based on work by Hage and Hartmans (1999). A
pure culture of Pseudomonas sp. Strain DCAL1, able to use 1,2-DCA as its sole carbon and energy source,
oxidized 1,2-DCA to the unstable 1,2-dichloroethanol which spontaneously decomposed to give

chloroacetaldehyde and then chloroacetic acid. This reaction was mediated by a monooxygenase enzyme.

63



OH
I

1,2-DCA 1,2-Dichloroethanol  Chloroacetaldehyde Chloroacetate Glycolate

Yokota et al. (1986) reported the cometabolic oxidative degradation of 1,2-DCA to 2-chloroacetic acid by
obligate methylotrophic bacteria strains H-2 and 66-1. Using '*0,, the authors were able to show that the
molecular oxygen was the source of oxygen for this reaction.

Anaerobic biodegradation data for sulfate-reducing and methanogenic conditions indicate that
biodegradation can proceed by dehalogenation via vinyl chloride and chloroethane and then further to
ethene and ethane (Belay and Daniels, 1987; Egli et al., 1987). A second reaction pathway including the
direct formation of ethene via dehaloelimination and two hydrogenolysis reactions forming chloroethane
and ethane was reported by Holliger et al. (1990) in methanogenic bacteria.

o H,C=CH,
CH,CI—CH,CI Ethene

1,2-DCA
CH,CI-CH, — = H,C—CH,

Chloroethane Ethane
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b. Enrichment Culture, Defined Culture, and Sewage Studies

Bioreactors were inoculated with a mixture of two pure cultures (strain GJ10 and DE1 (both are capable
of mineralizing 1,2-DCA to HCI and CO,) and fed with low conductivity medium representative of
groundwater (700-1200 uS/cm) under aerobic conditions (Stucki et al., 1992). Initial concentrations of
20-25 mg/L 1,2-DCA were used and biodegradation at temperatures of 10 to 25 °C were studied. Up to
90% removal of 1,2-DCA was reported at all temperatures. These data do not agree with an aerobic batch
culture study where 1,2-DCA was not biodegraded (Bouwer, 1983). Sun et al. (1992) examined the
competition between biodegradation and volatilization processes in a model wastewater system using
1,2-DCA. Bench-scale activated sludge units were set up and provided with varying levels of air/oxygen
(500 mL/min air and 75 mL/min of air for units 1 and 2, respectively). '*C-1,2-DCA was added to each
of the units and the radioactivity tracked over the study period. CO, production was measured as an
indicator of biodegradation. Less than 0.5 mg/day '*CO, was produced in unit 1 while unit 2 produced up
to 1.7 mg/d "*CO, over the 70-day period. The overall loss of 1,2-DCA in unit 1 was predominately due
to volatilization with fractions of removal of 0.13 and 0.57 due to biodegradation in units 1 and 2,
respectively. In two full-scale activated sludge units, however, biodegradation loss of 1,2-DCA was not
significant when compared to loss due to air stripping. These results were similar to those reported by
Stover and Kincannon (1983) in another bench-scale activated sludge treatment study.

Several studies where inocula have been enriched for methylotrophs report the cometabolic degradation
of 1,2-DCA. A methane-grown enrichment culture was able to nearly completely degrade 1,2-DCA
within 20 days; methane was required for growth of the consortium. Acetylene added to the enrichment
culture inhibited the biodegradation of several halocarbons suggesting that methanotrophs are major
components of this culture (Henson et al., 1989). 1,2-DCA in a mixture with 6 other chloroaliphatic
compounds was added to 2 soil samples, one which was enriched for methanotrophs (previously exposed
to methane over a 6-week period) and one which was not (Henson et al., 1988). The soil was incubated
aerobically in the presence of added methane and after 6 days, 41 and 78% of the initially-added 1,2-DCA
was removed from the non-enriched and enriched soil samples, respectively. Kim et al. (2000) studied
the biodegradation of 1,2-DCA by a butane grown-enrichment culture. After 30 hours of incubation, 60%
dechlorination of 1,2-DCA was reported. 1,2-DCA was degraded aerobically in a propane-fed bioreactor
seeded with a TCE-degrading enrichment culture (<5 pg/L remaining after 21 days); controls showed no
degradation over the same time period (Phelps et al., 1991).

An anaerobic sewage sludge enrichment culture degraded 1,2-DCA to chloroethane (20%; reductive
dechlorination pathway) and ethene (10%; dichloroelimination pathway). There was an initial lag phase
of 12 days with 40% loss reported by day 30 (initial rapid decline of 25% between days 12 to 14,
followed by a much slower rate of loss). Chloroethane was first noted in the media on day 14 (Chen et
al., 1996). An anaerobic enrichment culture obtained from creek sediment transformed 1,2-DCA to
ethane with complete transformation reported within 2 weeks (initial 1,2-DCA concentration of 2 umol)
(Loffler et al., 1997). 1,2-DCA was biodegraded by an anaerobic enrichment culture that was reported to
dechlorinate high concentrations of tetrachloroethene (PCE). Within 1011 hours, 1,2-DCA at an initial
concentration of 46 pmoles/100 mL was converted to 100% ethene via dihaloelimination (Tandol et al.,
1994). An acetogenic enrichment culture grown with glucose and trichloroethene was able to
dechlorinate 1,2-DCA to ethene (Wild et al., 1995). 1,2-DCA was not biodegraded during passage
through an acetate-supported methanogenic biofilm column (2-day detention time, initial concentration of
22 ug/L) even after 4 months (Bouwer and McCarty, 1983). However, Bouwer and McCarty (1983)
report that in a methanogenic batch culture study, '*C-radiolabeled 1,2-DCA was degraded by 63% after
25 weeks. The main degradation product from this reaction was CO,. Methane was not produced
indicating that 1,2-DCA had been biooxidized.
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¢. Microcosm Studies

Aerobic and anaerobic microcosm studies for 1,2-DCA are summarized below in Tables 23 and 24,
respectively. The data from these studies indicate that under environmentally-relevant laboratory
conditions, 1,2-DCA can degrade under both aerobic and anaerobic environments. Aerobic half-lives
vary widely from half-lives of less than a week to not biodegradable over a period of several months. For
example, 1,2-DCA in one of 2 soils studied in a batch reactor system was not biodegraded over the 110-
day study period (Reiss, 2000). The second soil degraded 1,2-DCA with a half-life of 96 days. Cox et al.
(1998) reported half-lives of <1 day to 9 days using aquifer material from a contaminated site suggesting
that acclimation of the microbial population had occurred. At another spill site, however, a half-life of
several years was reported (Klecka et al., 1998). The concentration of 1,2-DCA in these studies is not
expected to be toxic to aerobic microbial populations. ICs, microbial toxicity values of 700, 29, 25, and
470 mg/L were reported for 1,2-DCA for the Microtox assay, populations of Nitrosomonas, methanogens
(anaerobic bacteria), and aerobic heterotrophs, respectively (Blum and Speece, 1991). Under anaerobic
conditions, 1,2-DCA concentrations of 500, 100, 50, 10, 5, and 0.5 mg/L caused 97/96, 30/88, 25/44,
20/18, 15/10, and 13/6% inhibition of acetoclastic/hydrogenophilic populations in granular sludge,
respectively (Colleran et al., 1992).

Hirschorn et al. (2004) were able to show that 1,2-DCA is degraded by two different enzymatic pathways
in aerobic microcosm experiments from two different sites using stable isotopic analysis ('*C/"*C ratio).
Microcosms were constructed from aquifer sediment and groundwater from two 1,2-DCA-contaminated
sites in Louisiana (East and West Louisiana). East and West Louisiana microcosms had mean enrichment
factors of -4.8+0.5% and -25.7+0.5%, respectively, indicating that the West Louisiana sample had a much
stronger enrichment in "°C in the remaining 1,2-DCA. Enrichment cultures from the East Louisiana site
initially had a mean enrichment factor of -3.4+0.5%. However, after a one-year incubation period in the
presence of 1,2-DCA, the mean enrichment factor was reported as -23 £1.5% suggesting that during this
time, the dominant mechanism for degradation had changed. Pure cultures isolated from the East
Louisiana enrichment cultures after the 1-year enrichment period had a mean enrichment factor of -31.4
+0.8%. The authors also report enrichment factors of -32.3+1.8% and -32.141.7% for X. autotrophicus
GJ10 and 4. aquaticus AD20 (initial step in degradation pathway is via a hydrolytic dehalogenase, Sn2
reaction) and -3.020.2% for Pseudomonas sp. Strain DCA1 (initial degradation step is via a
monooxygenase enzyme, oxidation reaction). The authors propose that the bimodal distribution of
enrichment factors indicates that different degradation mechanisms are controlling the transformation of
1,2-DCA in these experiments and that the enrichment culture data suggest that the dominant degradation
pathway may change with time.

The cometabolic biotransformation of 1,2-DCA was reported in several studies. The aerobic
biodegradation of 1,2-DCA was measured in three different soils (Speitel and Closmann, 1991). Each
soil had been enriched for methanotrophs over a 4-16 week period using a 1% methane in air mixture.
Biodegradation was reported in each soil although the rate varied. 1,2-DCA at an initial concentration of
80 ug/L, was biodegraded in an aerobic aquifer column study in the presence of methane at 1.5 mg/L and
a nutrient supplement with a half-life of over 300 days (Lanzarone and McCarty, 1990).

Anaerobic biodegradation half-life data, like the aerobic data for 1,2-DCA, vary widely (Table 24). A
few studies report half-lives of approximately 2 weeks (Bosma et al., 1998; Hunkeler et al., 2002) while
the remainder report half-lives from 50 to 600 days. The degradation of 1,2-DCA under redox conditions
other than sulfate-reducing or methanogenic has not been reported. Based on data for EDB, it is likely
that biodegradation rates are be slower under these less-reducing conditions. 1,2-DCA was biodegraded
in soil and groundwater samples from two manufacturing sites known to be contaminated with 1,2-DCA
(Plaquemine, Lousiana and Freeport, Texas ) and from one site reported to be uncontaminated (Lula,
Oklahoma) under both methanogenic and sulfate-reducing conditions (Klecka et al., 1995). Lag phases of
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7 to 8 weeks were observed for material collected at the Oklahoma and Texas sites suggesting that
microbial adaptation was occurring. No lag phase was observed in degradation of 1,2-DCA in the
Louisiana samples that received 500 ppm sodium acetate. Degradation of 1,2-DCA in Louisiana
microcosms that were incubated with 7 different organic chemicals (acetate, butyrate, lactate, ethanol,
propylene glycol, glycerol, glucose) in addition to 1,2-DCA ranged from 50.6 to 71.3% loss versus only
4.8% loss in 14 weeks when only 1,2-DCA was present as a carbon source. Under anaerobic conditions,
degradation was via reductive dehaloelimination (in a single step) resulting in the formation of ethene as
the sole degradation product.

Hunkeler et al. (2002) studied degradation pathways in anaerobic microcosms constructed from aquifer
materials collected at a former waste disposal site using stable isotope analysis. Vinyl chloride appeared
at low concentrations for a short time during the degradation process; no ethane was detected during the
study period. The major transformation product was ethene via dichloroelimination with a carbon
isotopic enrichment factor for this reaction of -32.1%. Abiotic 1,2-DCA transformation over the study
period was minimal.

Very limited data exist in the literature measuring the biodegradation of 1,2-DCA in the presence of fuel
hydrocarbons in laboratory studies (Tables 23 and 24) (Henderson et al., 2007; Reiss, 2000).
Groundwater and soil samples from the Clemson Tiger Mart, a site contaminated with leaded gasoline
due to leaking tanks, were incubated for 284 to 380 days in closed bottles without shaking (Henderson et
al., 2007). No biodegradation of 1,2-DCA was observed over the course of the experiment either at initial
concentrations of ~200-300 pg/L, a concentration theoretically similar to the source area of a
contamination plume, or at an initial concentration of 10 pg/L, a concentration similar to what might be
found mid-gradient in a contaminant plume. The redox condition for this study was not available but is
assumed to be mainly anaerobic since the bottles were filled and left to sit for many months.
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d. Field Studies

1,2-DCA has been observed to biodegrade under both aerobic and anaerobic conditions in the laboratory
(Tables 23 and 24) although a considerable number of studies also report that this compound does not
biodegrade over the study period. Similar results are seen in field studies (Table 25) (details on the site
history, hydrogeological conditions, and remedial actions associated with these field studies are given in
Table 26). In some studies, 1,2-DCA has been shown to degrade fairly readily (Cox et al., 1998; Lee et
al., 1999). Other studies, such as Mayer (2005) and Ravi et al. (1998b) indicate that 1,2-DCA is very
slow to degrade or even recalcitrant to biodegradation.

Loss in the available field studies is typically reported in terms of natural attenuation or disappearance
rate constants. These are based on measuring the concentration of a chemical at a specific location over
time. The disappearance rate constant does not remove the effect of other processes such as advective
loss and adsorption separately so it is not the same as a degradation rate constant (Washington and
Cameron, 2001). Loss in the environment, especially in groundwater, may be due not only to degradation
processes (abiotic and biotic) but also to transport processes such as dilution, dispersion, sorption, and
advection. Ravi et al. (1998b) were the only authors to correct their rate constants for these effects.

Three studies report degradation data for 1,2-DCA at field sites and in laboratory microcosm studies
constructed using aquifer material from the field site (Bosma et al., 1998; Cox et al., 1998; Lee et al.,
1999). The difference in laboratory and field half-lives can be quite large. Microcosm data from Bosma
et al. (1998) indicate that 1,2-DCA will biodegrade under anaerobic conditions with a half-life of a few
weeks, while estimated disappearance half-lives calculated from 1,2-DCA concentrations at the field site
range from 336-2263 days. However, Cox et al. (1998) reported an anaerobic half-life of 58 days for a
microcosm study using sediment from the lower aquifer with conversion of 1,2-DCA mainly to ethane
and methane. At the field site, disappearance half-lives of 80 to 340 days were calculated for the lower
aquifer.

The majority of the collected field data is from anaerobic sites. Degradation products of ethene and
ethane are reported most frequently indicating reductive dechlorination and dihaloelimination reaction
processes. Cox et al. (1998) and Lee et al. (1999) also report the presence of 2-chloroethanol. In several
other studies, however, 2-chloroethanol was not detected. Hunkeler and Aravena (2000) have noted that
aerobic biodegradation in a field site is harder to observe than anaerobic biodegradation because the end
products of aerobic biodegradation (CI and CQO,) are frequently present at high background
concentrations while the anaerobic biodegradation products (ethene, ethane, etc.) are not and can be more
easily followed. Lee et al. (1999) has provided a summary of the biodegradation pathways for 1,2-DCA.
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In a field study at a former waste disposal site, degradation pathways of 1,2-DCA were studied using
stable isotope analysis (Hunkeler et al., 2005). Hydrogeological conditions at the field site were generally
anaerobic, with varying sulfate and high dissolved iron and manganese concentrations and the presence of
methane. Source wells at the field site were used to monitor whether natural attenuation was occurring.
Three separate aquifers are found below the waste site, separated by sandy clay and clay layers. Aquifer
II is unconfined to semi-confined while aquifers III and IV are confined. 1,2-DCA concentrations at
source wells in aquifer II and aquifer 1 were 490/2500 mg/L and 1500/2800 mg/L, respectively.
Enrichment factors of -21.1/-22.2 and -21.9/-22.7 were also reported at the aquifer II and aquifer I1I
source wells, respectively. Two wells 183 and 206 m downgradient from the aquifer II source wells had
1,2-DCA enrichment factors of -20.6 and -17.9% showing that enrichment of the heavier '°C isotope was
occurring (indicative of biodegradation processes). Wells downgradient from the aquifer III source wells
(up to 457 m downgradient) had isotope ratios similar to the source wells suggesting that significant
biodegradation was not occurring in this aquifer. Enrichment of °C in 1,2-DCA along with the detection
of ethene depleted in °C in aquifer IV suggests that dichloroelimination of 1,2-DCA may be occurring at
this location.

Sequential anaerobic and aerobic biodegradation of 1,2-DCA has been reported at one field site (Cox et
al., 1998). The main contaminants at this site are chloroform and 1,2-DCA. The groundwater entering
the site is mainly aerobic (dissolved O, of 7.3 mg/L) and oxidizing but becomes anaerobic (dissolved O,
of 0.0 to 0.3 mg/L) and reducing at the source area. Downgradient from the source area the groundwater
becomes aerobic again (320 m downgradient, dissolved O, of >4 mg/L). At the source area, high ethene
concentrations (4978 and 5520 ug/L) are associated with high concentrations of 1,2-DCA (11,000 to
22,000 pg/L) and indicate that 1,2-DCA is undergoing biodegradation via dihaloelimination. The
1,2-DCA is not completely degraded in the source area, however, and concentrations of 2-chloroethanol
in downgradient wells indicate aerobic transformation of the remaining 1,2-DCA.

Lee et al. (1999) studied the biodegradation of 1,2-DCA in the field following a pipeline spill in 1994. In
this case, 1,2-DCA was essentially confined to upper surface layers and the 12 m sand layer beneath.
Conditions at the site were predominately anaerobic (mainly methanogenic although sulfide and iron
concentrations indicate their potential use as terminal electron acceptors). Recovery efforts focused on
shallow NAPL removal and pump and treat of the groundwater over the next 3 years. Maximum
concentrations of 1,2-DCA in wells in the surface layer and the sand layer were 8000 and 9200 mg/L,
respectively, one year after the spill and 7700 and 7800 mg/L, respectively, 3 years after the spill. The
detection limit for 1,2-DCA used in the investigation was 5 pug/L. Based on data collected from a series
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of wells on site in 1995 and in 1997, first-order degradation half-lives were calculated for each well. A
half-life of 3.3 years is reported for a well in the surface layer. Half-lives range from 0.21 to 4.2 years in
the 12 m sand layer and from 0.22 to 0.93 years in the lower interbedded and Upper Chicot aquifer layers.
Half-lives are considerably higher in those wells with high concentrations of 1,2-DCA as was reported by
Bosma et al. (1997b) at another site. These half-lives do not consider the movement of 1,2-DCA in
groundwater and assume that dilution is limited due to the slow groundwater flow rate. Highly
contaminated wells in the surface layer and 12 m sand layer contain high concentrations of
2-chloroethanol (an aerobic degradation product) up to 130 and 160 mg/L, respectively, as well as ethene
(7.7 and 44 mg/L, respectively) and ethane (0.79 and <0.74 mg/L, respectively [anaerobic products]).
Ethanol was reported in 3 wells at concentrations of 5.0 to 7.6 mg/L. Chloroethane, chloroacetaldehyde,
chloroacetic acid, and glycolate were not detected in groundwater at the site. Based on microcosm data
from this site and data from the field study, the authors conclude that the main anaerobic degradation
pathway at this site proceeds from 1,2-DCA to ethene and then ethane and that anaerobic degradation
from 1,2-DCA to chloroethane, then ethane and methane and CO, plays only a minor role in the
degradation of 1,2-DCA at this site. Aerobic degradation through 2-chloroethanol and ethanol is also
important in the upper layers of the site.

The field study data reported by Kelley et al. (1998) and Mayer (2005) are for leaded gasoline release
sites. The natural attenuation of 1,2-DCA in a fuel hydrocarbon mixture was reported by Kelley et al.
(1998). The contaminant source for the predominately methanogenic groundwater was an LNAPL
release that existed solely in the vadose zone. No DNAPL was found at the site. The 1,2-DCA
contaminant plume was shown to be much smaller than expected and degradation products (ethene and
ethane) were measured in areas where 1,2-DCA was present. Disappearance rate constants and half-lives
for EDB, 1,2-DCA and benzene were estimated by Mayer (2005) for a gasoline service station (Speedway
#60) in Gaston county, North Carolina that operated between 1964 and 1992. Clayey soils at this site are
found near the surface and are underlain by sandy silts and silty sands. V, ranges between 2.1 to 6.4
meters/year. The redox conditions at this site were not reported; however, monitoring data were available
for EDB, 1,2-DCA, benzene, and MTBE over a number of years. The current plume extent of EDB and
1,2-DCA at this site is estimated to be ~76 and ~87 meters, respectively. Samples were collected from 2
wells (MW-1, approximately 3 to 6 meters from the source area, and MW-7, approximately 45 to 55
meters downgradient from the source area) between 1993 and 2004 and samples from a third well (MW-
10, located approximately 60 to 70 meters downgradient from the source area) were collected from 1996
to 2004. Benzene concentrations at MW-1, MW-7, and MW-10 were 29,000, 10,000, and 4200 ng/L,
respectively, in 1993/1996 and 100, 110, and 3.9 ug/L, respectively, in 2004. Disappearance rate
constants of 0.695, 0.426, and 0.843 per year were reported from these concentrations (MW-1, MW-7,
and MW-10) corresponding to half-lives of 1.0, 1.63, and 0.82 years, respectively. 1,2-DCA
concentrations at MW-1, MW-7, and MW-10 were 3800, 1700, and 860 ug/L, respectively, in 1993/1996
and 9.3, 65, and 220 pg/L, respectively, in 2004. Based on these concentrations, disappearance rate
constants of 0.577/yr, 0.233/yr, and 0.128/yr and half-lives of 1.20, 2.97, and 5.41 years can be estimated
for MW1, MW7, and MW 10, respectively. Concentrations of EDB were reported for MW-1 and MW-7
only. EDB concentrations at MW-1 and MW-7 were 3400 and 280 pg/L, respectively, in 1993 and 6.3
and 3.3 ug/L, respectively, in 2004. Based on these concentrations, disappearance rate constants of
0.549/yr and 0.338/yr and half-lives of 1.26 and 2.05 years can be estimated for MW-1 and MW-7,
respectively. Based on these data, the author concluded that 1,2-DCA is more mobile and more resistant
to biodegradation than either EDB or benzene.

While field study data implicating cometabolic degradation of 1,2-DCA were not located, several pure
culture, enriched culture, and microcosm studies indicate that cometabolism of 1,2-DCA by
methanotrophs may occur in the environment. The release of residual gasoline to soil and groundwater
will provide a large hydrocarbon source that is likely to result in a localized area of highly reduced,
methanogenic conditions in the residual source area. Methanogens in the anaerobic source area will
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produce methane during the anaerobic biodegradation of gasoline components which may encourage the
growth of methanotroph populations in the surrounding aerobic soil zone. Potentially, this may result in
the cometabolic biodegradation of 1,2-DCA present in the gasoline mixture. While data specific to
gasoline releases are not available, cometabolic biodegradation of other compounds has been reported in
similar circumstances. An increase in the methanotroph population and corresponding cometabolic
biodegradation of trichloroethylene was reported in the presence of methane and nutrients during a
groundwater biostimulation demonstration in the field (Brigmon, 2001). In addition, Edwards and Cox
(1997) reported that methane generated at a waste site from other materials was stimulating the
cometabolic biodegradation of trichloroethylene also present at the site.
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E. Monitoring Data

The available monitoring data for 1,2-DCA have been divided into sites contaminated by 1,2-DCA
because of industrial spills, leaking storage tanks, leaching from landfills, etc. (point source
contamination) and those studies where broader baseline-type sampling has been undertaken.

1. Release Site Data

Monitoring data in this section have been separated into sites affected by the release of leaded fuels,
chemical spill sites, and “other” sites affected by the release of 1,2-DCA (Table 27). 1,2-DCA has been
reported in groundwater beneath numerous waste disposal and CERCLA sites. In data reviews by Plumb
(1987, 1992), 1,2-DCA was found in groundwater at detectable concentrations at 14.2% of 178 CERCLA
sites and at 82 of 500 disposal site investigations in the U.S. A literature review conducted by Roy
(1994), found concentrations of 1,2-DCA ranged from below the detection limit to 11 mg/L in municipal
landfill leachate. Spill sites reported above in the field study section report concentrations of 1,2-DCA at
10-100 mg/L levels.

The presence of EDB and 1,2-DCA at LUST sites has come under more intense scrutiny in recent years
(Falta, 2004a, 2004b, 2005; Falta and Bulsara, 2004; Falta et al., 2005a; Wilson et al., 2007). While the
South Carolina Department of Health and Environmental Control maintains a database of the
approximately 7200 documented petroleum release sites in that state and testing has been conducted for
EDB, measurement of 1,2-DCA concentrations at these sites has only begun since 2005 (Falta et al.,
2005b). Based on field data from several UST sites in North Carolina, Falta et al. (2005b) report that
1,2-DCA concentrations are similar, if not higher, than those reported for EDB and that 1,2-DCA has
traveled further from the source area than EDB. Wilson et al. (2007) recently surveyed the presence of
1,2-DCA in 12 states. 23% of 39 UST sites had detectable concentrations of 1,2-DCA. 15% of the total
sites had concentrations of 1,2-DCA greater than the MCL (18 positive detections out of 293 samples; 3%
of the 1,2-DCA detections had concentrations >MCL). In contrast, 54% of 79 UST sites in 17 states, had
detectable concentrations of EDB and 43% of the total sites had concentrations of EDB greater than the
MCL (132 positive detections out of 736 samples; 11% of the EDB detections had concentrations >MCL)
(Wilson et al., 2007).
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2. Non-site Based Environmental Monitoring

Monitoring data are presented below for surface water (Table 28), groundwater (Table 29), outdoor air
(Table 30), and indoor air (Table 31). 1,2-DCA is reported in surface (Table 28) and groundwater (Table
29) samples at low concentrations. In the U.S. STORET database (years 1975-1982), 7% of 7909 water
samples (both surface water and groundwater) had detectable 1,2-DCA concentrations at a median value
of <0.100 pg/L (Staples et al., 1985). A survey of 2110 community water systems from 12 northeastern
and mid-Atlantic states (from 1993—1998) found that 1.9% of the water systems (36 community systems)
had detectable levels of 1,2-DCA in their finished drinking water (Grady and Casey, 2001). Water from
27% of the positive systems also contained EDB suggesting that the source of 1,2-DCA to the water
system in these cases may be from leaded gasoline (Falta, 2004b).

Mean concentrations of 1,2-DCA in outdoor (Table 30) and indoor (Table 31) air samples are low,
typically less than 1 ug/m’. Several studies are available that have measured both indoor and outdoor air
concentrations of 1,2-DCA at residences during the 1980s. Indoor and outdoor air concentrations were
monitored for 35 residences in the Kanawha Valley of West Virginia in the mid-1980s. Sixty-three
percent of the samples contained detectable concentrations of 1,2-DCA, while only 29% of the outdoor
air samples were positive detects for 1,2-DCA (Cohen et al., 1989). Indoor and corresponding outdoor air
samples were collected from 20 residences in Greensboro, North Carolina (in 1980), 27 residences in
Baton Rouge/Geismar, Louisana (1981), and 11 residences in Houston, Texas (1981) (Hartwell et al.,
1984). 36.8, 100, and 40% of outdoor air samples (collected from the backyard of residences) in
Greensboro, Baton Rouge, and Houston contained detectable concentrations of 1,2-DCA (median values
of 0.025, 2.20, and 0.045 pg/m’, respectively). Thirty, 88.9, and 18.2% of indoor samples from the same
locations were positive for 1,2-DCA (median values of 0.025, 3.60, and 0.04 pg/m’, respectively)
(Hartwell et al., 1984). Indoor and corresponding outdoor air samples were collected from 25 residences
in the Los Angeles community (winter 1984 and summer 1984), and from 10 residences in Antioch/W.
Pittsburg, California (summer 1984) (Pellizzari et al., 1986). Fifty-four, 0, and 0% of outdoor air samples
(collected from the backyard of residences) in winter Los Angeles, summer Los Angeles, and Antioch/W.
Pittsburg contained detectable concentrations of 1,2-DCA (median values of 0.21, 0.02, and 0.03 pg/m3,
respectively). Sixty-four, 4.3, and 20% of indoor samples from the same locations were positive for
1,2-DCA (median values of 0.22, 0.03, and 0.12 pg/m’, respectively (Pellizzari et al., 1986). 1987 TEAM
study results show 1,2-DCA in 2.17, 82.4, 82.4, and 52.5% of breath, personal air, kitchen, and outdoor
(backyard of residence) air samples. No concentrations are given (method quantifiable limit of 0.13 and
0.18 pg/m’ for two different MS instruments) (Hartwell et al., 1992).
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F. Fugacity Estimates

The EPIWIN Level III fugacity model was used to model the environmental fate and persistence of
1,2-DCA under different release scenarios (Tables 32 and 33) (U.S. EPA, 2007b). This is a diffuse model
and does not contain a groundwater component. The Level III model assumes that 1,2-DCA is being
continually released to the environment and that steady state conditions are reached. 1,2-DCA can be
removed from this system by either advection (the movement of undegraded chemical out of the
geographical boundaries of the model) or degradation within the compartments (air, water, soil, and
sediment) of the model environmental media (based on a user-supplied degradation half-life).
Equilibrium between environmental media is not assumed in the Level III fugacity model. Input data to
the model included relevant physical/chemical properties reported in Table 18, an aerobic biodegradation
half-life in water and soil of either 90 (results reported in Table 32) or 330 (results reported in Table 33)
days based on aerobic microcosm biodegradation data (Table 23) and an atmospheric half-life of 49 days
as reported in the photolysis section for 1,2-DCA in this report. Emission scenarios were varied as given
below in Tables 32 and 33 as this can affect the distribution and persistence of a compound in the
environment. The model was also run with advection on and with advection turned off. With advection
off, 1,2-DCA is not able to be removed from the model environment undegraded, giving a “global”
perspective of the environmental fate of 1,2-DCA where loss due to degradation becomes most important
in determining the persistence of 1,2-DCA in the environment.

For highly volatile chemicals such as 1,2-DCA, the overall persistence time may be very short when
advection is considered since the advection lifetime in air is very short. This does not necessarily mean
that the chemical has low persistence, however; in many cases it simply means the chemical has been
removed from the model environment undegraded and exists in some other location beyond the
boundaries of the model. This is exemplified by comparing the overall persistence time for 1,2-DCA with
advection on and with advection off. The first two columns of Table 32 illustrate the results of the model
run where 1,2-DCA is emitted solely to the air compartment. With advection on, the overall persistence
time of 1,2-DCA in the model environment is only 91.7 hours; however, almost 90% of the loss is
through advection processes. When advection is not considered, the overall persistence time of the
chemical is 874 hours and all the loss is through degradation processes. Comparable results are observed
for each emission scenario. Tables 32 and 33 also indicate that when advection is considered, almost all
the advective loss of mass occurs through the air compartment.

A similar pattern is also observed using the longer half-lives (330 days in water and soil and 1320 days in
sediment) (Table 33). Comparing the results of Tables 32 and 33 for each emission scenario: (1) a higher
percentage of chemical is advected when longer half-lives are considered (assuming advection is on); (2)
a higher percentage of chemical is reacted in air when longer half-lives are considered (assuming
advection is off); (3) the overall persistence time increases when longer half-lives are considered
irregardless of whether or not advective processes are used in the model; (4) similar distributions of
1,2-DCA between the environmental media are observed.
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V. Conclusions/Recommendations for Further Study

The available environmental fate and monitoring data for EDB and 1,2-DCA are summarized in this
report. This information will be useful when assessing the potential risks associated with EDB and
1,2-DCA at petroleum hydrocarbon sites.

A. Properties

The physical/chemical similarities of the two compounds indicate that they will behave similarly in the
environment. Both compounds are volatile, have relatively high water solubilities, and are soluble in
organic solvents. Transport data show that they readily volatilize from water and soil surfaces as pure
compounds and have low Koc values indicating that they have the potential to leach through soil to
groundwater, although studies also indicate that a residual amount remains trapped in soil by absorption
or in residual NAPL. Hydrolysis half-lives are slow, on the order of 1 to 10 years for EDB and tenfold
longer for 1,2-DCA. However, in the presence of sulfur nucleophiles, abiotic half-lives potentially of
weeks to months are reported for EDB and on the order of several years for 1,2-DCA. This process has
not been either studied or observed in the field.

B. Biodegradation

Biotic degradation is reported for both compounds under aerobic and anaerobic conditions in laboratory
studies. Based on these data, 1,2-DCA appears to be more resistant to biodegradation than EDB.
Evidence for the anaerobic biodegradation of 1,2-DCA in the field includes the presence of
biodegradation products in groundwater and changes in 13C/12C ratios of 1,2-DCA as the groundwater
moves downgradient from the source area. More limited field data exist for EDB. The field study data
collected for 1,2-DCA and EDB are typically reported as disappearance rate constants, particularly for
aquifer studies. The use of these values as biodegradation half-lives is not appropriate, as loss due to
other processes (both transport and abiotic degradation processes) is included in this rate constant.

The field study results and monitoring data for contaminated sites do indicate, in some instances, that
biodegradation rates reported in laboratory studies may not be in good agreement with what is actually
seen in the field. The best documented example of this is data from several groundwater plumes at the
Massachusetts Military Reservation. The FS12 plume at this site resulted from a 1972 spill of 265,000
liters of aviation gasoline. When it was first detected in 1990, nearly 20 years later, concentrations of
EDB up to 597 g/L were reported in the groundwater. One rough estimate of EDB’s halflife at this site,
based on the mass of EDB recovered during remediation procedures in the 1990s, was 18 years (Falta,
2004b). However, EDB disappearance half-lives calculated for 65 wells in South Carolina were clustered
around values of 6 months to >1 year (Falta, 2004a), values that are in better agreement with laboratory
studies.

High concentrations of fuel hydrocarbons present at leaded fuel release sites may also slow the
biodegradation of 1,2-DCA and/or EDB in the environment. Laboratory studies for both EDB and
1,2-DCA were nearly always run using a single compound. A recent laboratory study by Henderson et al.
(2007) suggests that biodegradation rates are slower for these compounds in the presence of fuel-
contaminated groundwater.

C. Occurrence and Persistence at Field Sites

Information about the occurrence and persistence of EDB and 1,2-DCA at petroleum hydrocarbon release
sites is emerging. Wilson et al. (2007) surveyed the presence of EDB in 17 states. 54% of 79 UST sites
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had detectable concentrations. 43% of the total sites had concentrations of EDB greater than the MCL
(132 positive detections out of 736 samples; 11% of the EDB detections had concentrations >MCL). In
contrast, 23% of 39 UST sites in 12 states had detectable concentrations of 1,2-DCA. 15% of the total
sites had concentrations of 1,2-DCA greater than the MCL (18 positive detections out of 293 samples; 3%
of the 1,2-DCA detections had concentrations >MCL). One should be careful when drawing conclusions
about the relative frequency of occurrence between EDB and 1,2-DCA. The MCLs for EDB and
1,2-DCA are 0.05 pg/L and 5ug/L, respectively. Detection limits for EDB (Method 8011) and 1,2-DCA
(Method 8260) are 0.01 pg/L and approximately 0.1 ug/L, respectively. Comparisons of occurrence
between EDB and 1,2-DCA should consider the differences in their MCLs, detection limits and reporting
limits.

When evaluating the environmental significance of EDB and 1,2-DCA at a given site, it is important to
evaluate their risk relative to other compounds of concern at the site. For example, Wilson et al. (2007)
compared the relative risk associated with EDB and benzene in samples by dividing the measured
concentration of EDB or benzene by their respective MCL. At only approximately 25% of the sites with
the highest EDB concentrations, is the relative risk of EDB higher than benzene.

Recent papers have begun to explore plume morphology at different sites and to look at geological and
surface features that may affect the behavior of EDB in the environment (Miner, 2005). Similar studies
are not available for 1,2-DCA. While 1,2-DCA and EDB have been reported to react with sulfur
nucleophiles, no studies are available examining whether this occurs in sulfate-reducing groundwater or
whether it is possible to observe this degradation pathway in the field sites. In addition, very little
information is available on the effect of different electron acceptors on the rate of anaerobic
biodegradation for these two compounds.

Additional fieldwork is needed to confirm the factors which cause EDB to form relatively long plumes in
some sites and not at others. One hypothesis is that there are significant residual NAPL source areas at
sites with persistent plumes. Soil type may also play a role. Relative to coarser grained soils, EDB flux
from fine-grained soils would be lower and it would take a longer time before levels would fall below its
very low MCL. Groundwater bypassing of significant amounts of residual NAPL (Rixey, 1996) could
also contribute to plume longevity at some sites.
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