STD.API/PETRO PUBL 4683-ENGL 1998

| 0732290 0615306 038 |

CORRELATION EQUATIONS TO PREDICT REID VAPOR PRESSURE AND PROPERTIES OF GASEOUS EMISSIONS FOR EXPLORATION AND PRODUCTION FACILITIES

HEALTH AND ENVIRONMENTAL SCIENCES DEPARTMEN PUBLICATION NUMBER 4683 NOVEMBER 1998

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Res

American Petroleum Institute Environmental, Health, and Safety Mission and Guiding Principles

MISSION

The members of the American Petroleum Institute are dedicated to continuous efforts to improve the compatibility of our operations with the environment while economically developing energy resources and supplying high quality products and services to consumers. We recognize our responsibility to work with the public, the government, and others to develop and to use natural resources in an environmentally sound manner while protecting the health and safety of our employees and the public. To meet these responsibilities, API members pledge to manage our businesses according to the following principles using sound science to prioritize risks and to implement cost-effective management practices:

PRINCIPLES

- To recognize and to respond to community concerns about our raw materials, products and operations.
- To operate our plants and facilities, and to handle our raw materials and products in a manner that protects the environment, and the safety and health of our employees and the public.
- To make safety, health and environmental considerations a priority in our planning, and our development of new products and processes.
- To advise promptly, appropriate officials, employees, customers and the public of information on significant industry-related safety, health and environmental hazards, and to recommend protective measures.
- To counsel customers, transporters and others in the safe use, transportation and disposal of our raw materials, products and waste materials.
- To economically develop and produce natural resources and to conserve those resources by using energy efficiently.
- To extend knowledge by conducting or supporting research on the safety, health and environmental effects of our raw materials, products, processes and waste materials.
- To commit to reduce overall emission and waste generation.
- To work with others to resolve problems created by handling and disposal of hazardous substances from our operations.
- To participate with government and others in creating responsible laws, regulations and standards to safeguard the community, workplace and environment.
- To promote these principles and practices by sharing experiences and offering assistance to others who produce, handle, use, transport or dispose of similar raw materials, petroleum products and wastes.

Correlation Equations to Predict Reid Vapor Pressure and Properties of Gaseous Emissions for Exploration and Production Facilities

Health and Environmental Sciences Department

API PUBLICATION NUMBER 4683

PREPARED UNDER CONTRACT BY:

PAT RYAN DANA L. COE LYLE R. CHINKIN SONOMA TECHNOLOGY, INC. PETALUMA, CALIFORNIA

NOVEMBER 1998

American Petroleum Institute

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFAC-TURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 1998 American Petroleum Institute

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT

Paul Martino, Health and Environmental Sciences Department

MEMBERS OF THE EXPLORATION AND PRODUCTION EMISSION CALCULATION PROJECT GROUP

Jim Collins, Arco

William Fishback, Mobil Exploration & Production

Michael Milliet, Texaco Exploration & Production

Vick Newsom, Amoco

N.D. Shah, Conoco

Pradeep Shetty, Fina Oil & Chemical Company

Mike Tarrillion, Vastar Resources

Stewart Wittenbach, Kerr-McGee

Jenny Yang, Marathon Oil Company

ABSTRACT

Operators of petroleum storage tanks often need to prepare site-specific emission inventories to meet environmental regulations. Emission inventories can be quite complicated to prepare, and often necessitate laboratory analyses of oil and gas samples in order to quantify key variables such as Reid Vapor Pressure (RVP), gas molecular weights, hazardous air pollutant species (HAPs) distributions, and specific gravity of the separator gas. This report establishes simple techniques to estimate these variables in the absence of laboratory data. Analyses were performed of emissions measurements, oil and gas sampling results, and emissions modeling results for more than 100 crude oil exploration and production (E&P) storage tanks. In conclusion, correlation equations or statistical averages are recommended in order to estimate RVP, vented flash gas molecular weight, vented working and standing gas molecular weight, hydrocarbon speciation (including HAPs), and separator gas specific gravity.

TABLE OF CONTENTS

<u>Section</u> <u>Pa</u>	ige
EXECUTIVE SUMMARYES	5-1
1. INTRODUCTION1	1-1
OVERVIEW OF THE VARIABLES AND THEORETICAL CONTEXT 1	1-2
APPROACH1	1-4
2. REVIEW OF THE DATA	2-1
3. ANALYSIS OF REID VAPOR PRESSURE	3-1
UNDERLYING THEORY	3-1
EXPECTED EMPIRICAL RELATIONSHIPS	3-2
DESCRIPTIVE STATISTICS	3-2
REGRESSION ANALYSIS	3-4
4. ANALYSES OF GAS MOLECULAR WEIGHTS	4-1
UNDERLYING THEORY AND EXPECTED PREDICTORS	4-1
DESCRIPTIVE STATISTICS	4-2
REGRESSION ANALYSIS	4-4
5. ANALYSES OF MOLE FRACTIONAL CONTRIBUTIONS OF HAZARDOUS AIR POLLUTANTS TO HYDROCARBON EMISSIONS	5-1
SUMMARY OF RESULTS	5-1
6. ANALYSIS OF SEPARATOR GAS SPECIFIC GRAVITY	6-1
DESCRIPTIVE STATISTICS	6-1
REGRESSION ANALYSIS	6-2
7. COMPARATIVE EVALUATION OF ALTERNATIVE MODELS AND INPUTS	7-1
COMPARISON OF FLASH EMISSION ESTIMATES	7-3
COMPARISON OF W&S EMISSION ESTIMATES	7-5
COMPARISON OF TOTAL EMISSION ESTIMATES	7-6
8. CONCLUSIONS	. 8-1
REFERENCES	. R-1
Appendix A	
QUALITY-REVIEWED DATA SET FOR 94 TANKS	A-1

LIST OF FIGURES

Figure	Page
1-1.	Illustration of crude oil extraction and storage processes at an exploration and production storage tank
2-1.	Frequency distributions of
	selected parameters for the 94-tank data set2-3
2-2.	Scatter plot matrix of selected
	data set2-4
3-1.	The relationship between RVP
	94 E&P storage tanks
3-2.	Illustration of a single-parameter
	(°API) and sales oil RVP (psia)
4-1.	Relationships between the mole
	molecular weights
4-2.	Performance of the recommended
	weight (MWT _{ws})
4-3.	Performance of the recommended
	weight (MWT _F)
4-4.	Improved performance in the error
4-5	Improved performance in the error
	of the estimate for MWT_F
6-1.	Performance of the recommended
	separator gas specific gravity. ln(SG _{co})

LIST OF FIGURES (Concluded)

Figure	Page
6-2.	Improved performance in the error of the estimate for ln(SG _{sG})
7-1.	Comparison of the Vasquez-Beggs correlation equation and E&P TANK results
7-2.	Comparison of the Vasquez-Beggs correlation equation and E&P TANK - 95 percent confidence bounds on the agreement between estimated flash emissions
7-3.	Comparison of AP-42 W&S emissions estimated from default and correlated RVPs with AP-42 emissions estimated from measured RVPs
7-4.	Comparison of modeled (E&P TANK) and correlated emissions with measured total THC emissions for seven storage tanks

LIST OF TABLES

<u>Table</u>		<u>Page</u>
ES-1.	Average speciation profiles, mole percent	ES-2
2-1.	Results of an initial examination of E&P TANK model output for 103 E&P storage tanks	2-1
3-1.	Descriptive statistics of variables used to predict RVP	
3-2.	Single-parameter correlation coefficients for RVP	
4-1.	Descriptive statistics of variables used to predict gas molecular weights	
4-2.	Single-parameter correlation coefficients for gas molecular weights	4-4
5-1.	Flash gas analysis: correlations to predict molar contributions of HAPs to THC emissions	
5-2.	W&S gas analysis: correlations to predict molar contributions of HAPs to THC emissions	5-3
5-3.	Average speciation profiles modeled for the 94-tank data set, mole percent	5-5
5-4.	Comparison of average speciation profiles to the EPA SPECIATE database, as weight percent	
6-1.	Descriptive statistics of variables used to predict specific gravity of the separator gas	6-1
6-2.	Single-parameter correlation coefficients for gas molecular weights	6-2
8-1.	Average speciation profiles, mole percent	8-2

EXECUTIVE SUMMARY

It is necessary to estimate certain physico-chemical properties of oil and emitted gases in order to construct an emission inventory for a crude oil storage tank. These properties include (1) the Reid Vapor Pressure (RVP) of sales oil, (2) the molecular weights of gases emitted from flash processes and storage tanks, (3) the mole fractional contributions of hydrocarbons and hazardous air pollutants (HAPs) to gaseous emissions, and (4) the specific gravity of the separator gas. Laboratory analyses of oil and gas samples are necessary in order to determine the RVP and gas properties accurately. However, laboratory analyses are often costly or difficult to obtain. This report establishes simple techniques, such as correlation equations or statistical averages, to estimate these variables in the absence of laboratory data.

In this analysis, physico-chemical data and operational parameters for 103 crude oil exploration and production (E&P) storage tanks were examined. (American Petroleum Institute [API] provided data for the 103 tanks.) Linear regression analyses were performed in order to explore correlations of RVP and gas properties with easily measured or judged parameters, such as separator pressure (SP), separator temperature (ST), sales oil API gravity (APIG), and the fractional contribution of non-hydrocarbons to total emissions (%nonHC_{tot}) (e.g., percent CO₂ plus H₂S by volume). Emission estimates based on these simple correlations were compared to estimates that were calculated with (1) the E&P TANK software package, (2) laboratory analyses of oil and gas samples, and (3) analyses of vent gases and directly measured flow rates. In conclusion, several correlation equations and statistical averages were recommended for use as explained below.

Reid Vapor Pressure (RVP).

If only the API gravity (APIG) of the sales oil is known:

RVP = -1.699 + 0.179 APIG

(Equation ES-1)

If the APIG and the bubble point (BP) of the sales oil are both known:

RVP = -2.596 + 0.417 BP + 0.119 APIG

(Equation ES-2)

ES-1

Molecular Weight of W&S Gas. An average value of 50 lb/lb-mole that was established by earlier research is recommended for continued use.

Molecular Weight of Flash Gas (MWT_F).

 $MWT_{F} = -0.351 - 0.013 \text{ SP} + 0.193 \text{ ST} + 0.453 \text{ APIG} + 0.360 \text{ \%nonHC}_{TOT}$ (Equation ES-3)

<u>Mole Fractional Contributions of Hydrocarbons and HAPs</u>. Since many of the correlations developed for HAP speciation were weak or uncertain, the average speciation profiles are recommended for use (see Table ES-1).

	Flash Gas –	W&S Gas –
	Mean Mole	Mean Mole
Species	Percent	Percent
	Contribution	Contribution
	Percent of THC	Percent of THC
CH ₄	41.00	22.36
C_2H_6	16.87	20.49
C_3H_8	18.35	28.00
i-C ₄ H ₁₀	5.21	6.83
$n-C_4H_{10}$	8.67	10.92
i-C ₅ H ₁₂	3.27	3.72
$n-C_{5}H_{12}$	2.77	3.17
Hexanes	1.15	1.30
Heptanes	1.07	1.26
Octanes	0.45	0.54
Nonanes	0.10	0.13
Benzene	0.14	0.18
Toluene	0.11	0.15
Ethylbenzene	0.00	0.01
Xylenes	0.03	0.04
n-Hexane	0.78	0.90
Pentanes+	0.00	0.00

Table ES-1. Average speciation profiles, mole percent.

ES-2

Specific Gravity of the Separator Gas. The following equation is recommended to predict the specific gravity of the separator gas when laboratory results are unavailable.

 $\ln(SG_{SG}) = -0.476 - 0.102 \ln(SP) + 0.003 ST + 0.008 APIG + 0.011 \%nonHC_{TOT}$

(Equation ES-4)

Section 1 INTRODUCTION

Exploration and production (E&P) storage tanks are industrial sites constructed for the extraction and temporary storage of petroleum. Figure 1-1 illustrates operations and equipment at a typical E&P storage tank. Freshly extracted crude oil first enters a separator that removes water from the oil stream. Within the separator (1), volatile organic gases escape from the crude oil. Normally, a combustion device disposes of the separator gas. A pressure drop occurs across the flash valve (2) resulting in flash emissions. At some storage tanks, a blanket gas (3) joins the crude oil stream as it enters the storage tank. A temporary storage tank (4) contains the crude oil until sale and transfer.

Figure 1-1. Illustration of crude oil extraction and storage processes at an exploration and production storage tank (American Petroleum Institute, 1997a).

The hydrocarbon emission inventory for an E&P storage tank includes working and standing (W&S) losses and flashing losses. W&S emissions arise from changes in the storage tank liquid level, in the atmospheric temperature, or in the barometric pressure that force gases out of the tank vapor space. Flash emissions result when a large pressure drop occurs and dissolved gases escape from the liquid oil stream, similar to the way that carbon dioxide escapes from an opened can of soda pop.

It is necessary to estimate certain physico-chemical properties of oil and emitted gases in order to construct an emission inventory for an E&P storage tank. These properties include (1) the Reid Vapor Pressure (RVP) of sales oil, (2) the molecular weights of gases emitted from flash processes and storage tanks, (3) the mole fractional contributions of hazardous air pollutants (HAPs) to gaseous emissions, and (4) the specific gravity of the separator gas. Laboratory analyses of oil and gas samples are necessary in order to determine the RVP and gas properties accurately. However, when laboratory results are unavailable, the use of default values allows rough estimation of emissions. These default values are constant, although the variables they represent are known to differ among storage tanks. The purpose of this analysis is to replace the default values with simple correlations that only require easily measured inputs. These correlations are intended to increase the accuracy of emission inventories for E&P storage tanks.

OVERVIEW OF THE VARIABLES AND THEORETICAL CONTEXT

The Reid Vapor Pressure (RVP) is a measure of the volatility of a petroleum product. Sales oil RVP is a key parameter needed to estimate W&S emissions from crude oil storage tanks because it is related to the quantity of hydrocarbon vapors present in the vapor headspace of the storage tank. When laboratory tests are unavailable, current practice calls for the use of a default value (RVP = 5 psia) in order to estimate W&S losses from crude oil storage tanks. Section 3 presents an analysis of RVP and an equation that may be used instead of the default value to predict RVP.

The average molecular weights of the hydrocarbon fractions of the W&S gas (MWT_{wS}) and of the flash gases (MWT_F) must be estimated in order to calculate W&S losses and flashing losses. In both cases, default values of 50 lb/lb-mol are currently used in the absence of laboratory analyses. The default value for MWT_{wS} was established by the American Petroleum Institute (API) through a significant research effort (American Petroleum Institute, 1991). The analysis described in this report addresses MWT_{wS} (Section 4) in order to compare results with API's previous research. A favorable comparison (1) confirms that the group of storage tanks analyzed in the report is similar and representative of API's previous research, and (2) enhances API's past research (American Petroleum Institute, 1991).

1-2

Not for Rosa

Due to a lack of available information, the current default value for MWT_F was selected somewhat arbitrarily. Given a basic understanding of E&P operations, it was recognized that the flash gases should consist of lighter compounds than the W&S gases. Therefore, the default value for MWT_{ws} (50 lb/lb-mol) was expected to represent an upper limit to MWT_F . The use of this default value for MWT_F tends to produce conservatively high estimates of flash emissions. Section 4 of this report presents an analysis of MWT_F and a correlation equation intended to replace the default value.

In order to estimate emissions of hazardous air pollutants from an E&P storage tank, it is necessary to estimate their contributions to the inventory as fractions of total hydrocarbon (THC) emissions. The U.S. EPA has established speciation profiles derived from source tests at E&P storage tanks (U.S. Environmental Protection Agency, 1990). The goal of this analysis is to provide an alternative means to estimate HAP mole fractions for emissions at E&P storage tanks (Section 5). The HAPs that are included in this discussion are benzene, ethylbenzene, hexane, toluene, and xylenes.

The RVP of sales oil and the compositions of gaseous emissions from an E&P storage tank depend upon the composition of the fresh crude extract and the storage tank's operational parameters. These relationships are highly complex. Freshly extracted crude petroleum is a multicomponent mixture containing inorganic compounds (H_2S and CO_2) and organic compounds (methane, ethane, and many hydrocarbons). Below, Treybal (1980) comments on the complexities involved with predicting the behaviors of multicomponent mixtures.

Many of the multicomponent systems of industrial importance can be considered nearly ideal... This is particularly true for hydrocarbon mixtures of the same homologous series... In such cases, Raoult's law, or its equivalent in terms of fugacities, can be applied and the gas phase equilibria calculated from the properties of the pure components. But it is generally unsafe to predict detailed behavior of a multicomponent system from consideration of the pure components alone, or even from a knowledge of the simple binary systems that may be formed from the components.

1-3

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

In essence, Treybal's remarks indicate that it is difficult to successfully apply simple physical theories in order to predict the behavior of a multicomponent mixture (such as petroleum), even when the exact chemical composition of the mixture is known. An empirical approach is an alternative to theoretical predictions. For example, this analysis statistically investigates simple correlations among RVP, gaseous emissions, and parameters that are easily measurable at E&P storage tanks. Predictions that are based on such correlations are empirical in nature, rather than theoretical. A few assumptions are necessary in order to apply this empirical analysis, which covers a small data set, to a wider population. These assumptions include (1) that most fresh crude extracts are relatively similar in composition, and (2) that differences in their volatilities can be predicted by a few easily measured parameters (e.g., the API Gravity of the sales oil, the operating temperature and pressure of the separator, or others).

APPROACH

In this analysis, physico-chemical data and operational parameters for 103 E&P storage tanks were examined (Section 2). (Data for the 103 tanks were provided by the API.) Linear regression analyses were performed in order to explore correlations of RVP and gas properties (Sections 3 through 6) with other storage tank parameters. Emission estimates based on these simple correlations were compared to estimates that were calculated with (1) the E&P TANK software package, and (2) laboratory analyses of oil and gas samples (Section 7). In conclusion, correlation equations were recommended for use in the future (Section 8).

1-4

Section 2

REVIEW OF THE DATA

Initially, E&P TANK was used to model emissions and some physico-chemical parameters for all 103 E&P storage tanks. Upon review of the model output, the results were found to be unusual for 16 of the tanks (Table 2-1). Eight of these were excluded from the analysis because E&P TANK could not resolve some of the output parameters intended for use in this analysis (such as the flash gas or the W&S gas molecular weights). One appeared to be duplicated in the data set; only one of the repeated cases was retained. Ninety-four storage tanks remained in the data set for analysis.

Table 2-1.	Results of an initial	examination of E&P	TANK model	output for	103 E&P	storage
	tanks.					

		De	fining Tank Para	ameters	
				Sales	Sales
		Separator	Separator	Oil	Oil
Reason that results		Pressure	Temperature	APIG	RVP
were unusual	Problem Resolution	(psig)	(°F)	(°API)	(psia)
Model diverged.	Excluded.	8	154	23	0.2
Separator oil specific	Re-ran E&P TANK	42	110	39	5.4
gravity was	with AP-42 option and	66	83	40	3
unrealistically low.	replaced the unusual	60	60	44	10.1
	specific gravity data.	41	72	45	5.2
		40	76	47	10.6
		870	78	57	13.1
		110	72	59	10
No flash emissions.	Excluded.	17	106	20	3.3
No W&S emissions.	Excluded.	15	120	19	4.8
		280	106	30	4.8
		40	110	34	3.2
		95	118	42	8.1
		50	125	49	8.9
		170	75	68	12.5
Duplicate case.	Excluded repeated data.	60	58	39	6.8

Figure 2-1 illustrates the general properties of the data set encompassing the remaining 94 storage tanks. It is apparent that the data for the separator pressure (SP), specific gravity of the separator gas (SG_{SG}), gas-to-oil ratio (GOR), and mole fraction of non-hydrocarbons in the vent gas (%nonHC_{TOT}) are skewed and are probably best modeled with lognormal distributions. The rest of the parameters generally appear to follow a normal distribution, or "bell curve".

Figure 2-2 is a scatter plot matrix of the same parameters illustrated in Figure 2-1. A scatter plot matrix is a visual tool that helps identify correlations among large numbers of variables. In Figure 2-2, several correlations are apparent (for example, sales oil RVP vs. APIG; ln(GOR) vs. sales oil APIG).

APIG = Sales oil APIG (°API) RVP = Sales oil RVP (psia) BP = Sales oil bubble point (psia) SG_{SG} = Specific gravity of the separator gas

gas (%); total vent gas = W&S gas + flash gas WSGMWT = W&S gas total molecular weight (lb/lb-mol)

MWT_{ws} = Molecular weight of the THC fraction of the W&S gas (lb/lb-mol)

Figure 2-2. Scatter plot matrix of selected parameters for the 94-tank data set. Each cell of the matrix is a scatter plot (x vs. y). y-Axis variables are on the left side of the matrix; x-axis variables are below. A scatter plot matrix is a visual aid to identify correlations; units of measure are unnecessary for this purpose.

Section 3

ANALYSIS OF REID VAPOR PRESSURE

The purpose of this section is to establish a correlation equation that predicts the sales oil RVP. Several measured parameters are discussed, including sales oil RVP, sales oil APIG, sales oil bubble point, separator temperature, and separator pressure.

UNDERLYING THEORY

RVP is a composite value of the vapor pressures exerted by individual components in a gas phase that is in equilibrium with a liquid mixture. For a simpler scenario, that of a pure liquid, the Antoine equation correlates pure substance vapor pressure (p*) with temperature (Felder and Rousseau, 1978).

 $\log_{10} p^* = A - B/(T+C)$

(Equation 3-1)

A, B, and C are constants determined from a least squares fit of measured data. The RVP of a mixture may be estimated by combining the contributions of individual species to the total vapor pressure. This requires an assumption that species' individual contributions may be predicted from their behaviors as pure substances. This assumption often introduces a large degree of error.

$$RVP = \Sigma y_i \ 10^{[A - B/(T + C)]}$$

(Equation 3-2)

where y_i is the mole fraction of component *i* in the gas phase. A, B, and C are constants that are species dependent. Protocol calls for measurements of RVP to be reported at a constant temperature of 560° Rankine (°R); therefore, Equation 3-2 may be simplified as

$$RVP = \Sigma y_i a_i$$
 (Equation 3-3)

where a_i is a species-specific constant defined by $10^{[A - B/(560^{\circ}R + C)]}$. Equation 3-3 indicates that RVP is related to the mole fractions and species-specific constants of each gas phase component. Although Treybal (1980) cautions against models that treat mixtures as though they were analogous to pure substances, this equation (3-3) represents the best simplified theory currently available.

EXPECTED EMPIRICAL RELATIONSHIPS

Predictors of sales oil RVP are expected to directly relate to the volatility of the sales oil or the conditions of the storage tank (such as sales oil APIG and bubble point). (Measurements of separator pressure and temperature are collected in a vessel external to the sales oil tank, and therefore, are not expected to correlate well with the RVP of the sales oil.)

The bubble point pressure is defined as the pressure at which the first bubble of vapor will form in a liquid that is held in a closed container at a constant temperature. The bubble point pressure of the sales oil is very likely to correlate well with the RVP since (1) both variables represent a pressure measurement of the gas phase in equilibrium with the sales oil, and (2) the bubble point pressure represents the theoretical upper limit to RVP. Figure 3-1 illustrates the relationship between sales oil bubble point and RVP for 94 E&P storage tanks. The fact that none of the data points exceeds the 1:1 line (which would represent perfect agreement) illustrates that the bubble point is the upper limit for the RVP. The bubble point, however, was not considered to be a parameter that could be measured easily at an E&P storage tank. Therefore, it is recommended for use only as an optional input variable.

DESCRIPTIVE STATISTICS

Table 3-1 summarizes key descriptive statistics for the sales oil RVP, separator pressure and temperature, and sales oil APIG associated with the 94 E&P storage tanks considered in this analysis. (Note that the RVP and APIG data were measured at a fixed temperature of 100°F, even though the tank temperatures or ambient temperatures probably varied significantly.) Currently, API employs a default value (RVP = 5 psia) in order to estimate working and standing (W&S) losses from crude oil storage tanks. The goal of this analysis is to improve upon the default assumption.

Figure 3-1. The relationship between RVP and bubble point observed at 94 E&P storage tanks. The bubble point is the upper limit to RVP.

Table 3-1. Descriptive statistics of variables used to predict RVP.

	RVP	SP*		ST	APIG
Statistic	(psia @ 100°F)	(psig)	ln(SP)**	(°F)	(°API @ 100°F)
Minimum	0.60	4.0	1.39	40	15.0
Maximum	13.1	870	6.77	180	66.0
Mean	5.6	122	3.90	87	40.6
Standard Deviation	2.96	221	1.16	26	13.1

* Mean =
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

** Mean = $\frac{1}{n} \sum_{i=1}^{n} \ln(x_i)$ Note : $\frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \neq \ln\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)$

RVP = Reid Vapor Pressure (psia) ST = Separator Temperature (°F)

SP = Separator Pressure (psia) APIG = API Gravity (°API)

3-3

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS Table 3-2 summarizes Pearson correlation coefficients (r) calculated for the sales oil RVP relative to the other variables. Better correlations are indicated as $|\mathbf{r}|$ approaches 1. Table 3-2 shows that sales oil APIG is the best predictor of RVP. (Note that the sales oil bubble point is an equally good predictor, $\mathbf{r} = 0.78$.)

	Pearson Correlation
Variable	With RVP
SP	0.52
ln(SP)	0.51
ST	-0.37
APIG	0.79

Table 3-2. Single-parameter correlation coefficients for RVP.

REGRESSION ANALYSIS

A multivariate linear regression was developed, represented by the equation shown below.

 $RVP = 0.003 + 0.075 \ln(SP) - 0.016 ST + 0.165 APIG$

(Equation 3-4)

The correlation coefficient for Equation 3-4 (r = 0.80) is not significantly better than the singleparameter coefficient for sales oil APIG shown in Table 3-2. Therefore, the single-parameter fit based on sales oil APIG is recommended for use (see Figure 3-2).

RVP = -1.699 + 0.179 APIG

(Equation 3-5)

The error of the estimate (E) is one measure of the performance of a model or assumption, where the error equals the observed value (Obs) less the estimated value (Est), E = Obs - Est. In Figure 3-2, it is obvious that the error associated with the regression line is much less than the error associated with the default assumption, RVP = 5 psia.

Figure 3-2. Illustration of a single-parameter regression between sales oil APIG (°API) and sales oil RVP (psia). The regression line is bounded by a 95 percent confidence interval. This regression represents a marked improvement over the default value of RVP = 5 psia.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

For comparative purposes, a second multivariate linear regression was developed that considered the sales oil bubble point.

RVP= -2.596+0.417 BP +0.119 APIG

(Equation 3-6)

The correlation coefficient for Equation 3-6 (r = 0.90) is significantly better than the single-parameter fit based on sales oil APIG. Therefore, the bubble point is a worthwhile parameter to measure in the field.

.

Section 4

ANALYSES OF GAS MOLECULAR WEIGHTS

The purpose of this section is to summarize an analysis performed to estimate the THC molecular weight during flashing emissions and W&S emissions. It is very important to note that the gaseous THC molecular weights analyzed in this section were not measured, but were modeled from the E&P TANK model, which is a complex thermodynamic model. Thus, the goal of this analysis was to produce a simpler model that estimates THC molecular weights and compares favorably with the E&P TANK model.

UNDERLYING THEORY AND EXPECTED PREDICTORS

For components closely similar in molecular structure (such as hydrocarbons) and at equilibrium, the compositions of the gas and liquid phases are related according to Raoult's Law (Equation 4-1).

$$y_a P \propto x_a p_a^*(T)$$

(Equation 4-1)

where y_a and x_a are the mole fractions of A in the gas and liquid phases, respectively. P is the pressure and $p_a^*(T)$ is the vapor pressure, which is a function of temperature, T. From Equation 4-1, the molecular weight of total hydrocarbons in the gas phase may be defined as shown in Equation 4-2.

$$MWT_{THC} = \sum y_i MWT_i / \sum y_i \propto (1/P) \sum x_i p_i^*(T) MW_i / \sum y_i$$

(Equation 4-2)

Equation 4-2 suggests two possible models to estimate the molecular weight of the total hydrocarbon (THC) fraction of the gas phase.

 $MWT_{THC} \propto (1/P) \Sigma x_i p_i^*(T) MW_i / \Sigma y_i \propto a + b f(T)/P$

(Equation 4-3a)

$$MWT_{THC} = \sum y_i MWT_i / \sum y_i \propto \sum (a_i + b_i y_{methane}) / \sum y_i \propto a + b y_{methane}$$

(Equation 4-3b)

where a and b are constants determined from the best fit to the data; the symbol, ∞ , denotes a modeling approximation.

4-1

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Equation 4-3a approximates the molecular weight of hydrocarbons as the ratio of a temperature function to pressure. This model indicates that the separator temperature and pressure may be predictors of the THC molecular weight.

In Equation 4-3b, the mole fraction of methane $(y_{methane})$ was selected as a surrogate species to describe changes in the THC molecular weight. Methane is similar in molecular structure and flash point to other light-end hydrocarbons (such as ethane and propane), which comprise the bulk of the flash gas stream (on a molar basis). Thus, the amount of methane in fresh crude extract is expected to be a good predictor of the quantities of light-end hydrocarbons. Additionally, E&P site operators tend to be more familiar with methane contents of gas streams than other light-end hydrocarbons. Therefore, the mole fraction of methane $(y_{methane})$ was selected as the surrogate species best suited to predict the THC molecular weight.

As shown in Figure 4-1, the mole fraction (percent) of methane acts as a good linear predictor of THC molecular weights, and a weak linear predictor of the non-methane HC molecular weights predicted by E&P TANK. (Note that in Figure 4-1, the mole percent of methane represents a percentage of the entire flash gas phase, and not just the THC portion.)

DESCRIPTIVE STATISTICS

Table 4-1 lists the key descriptive statistics for the parameters discussed in this analysis. Note that the average molecular weights of THC in the flash gas and W&S gas are 37 lb/lb-mole and 42 lb/lb-mole, which are 25 percent and 15 percent less than the default values (50 lb/lb-mole for both). This finding suggests that the default value for the flash gas should at least be altered. The average molecular weight of the W&S gas agrees reasonably well with API's past research, but still suggests some difference. It is interesting to note that the average fractional contribution of non-hydrocarbons to the total vented gas is 10 percent (not 0 percent), and was modeled to be as high as 95 percent.

Figure 4-1. Relationships between the mole fraction of methane and flash gas molecular weights. (a) Average molecular weight of total hydrocarbons. (b) Average molecular weight of non-methane hydrocarbons.

Table 4-1. Descriptive statistics of variables used to predict gas molecular weights.

Statistic	MWT _{ws} (lb/lb-mole)	MWT _F (lb/lb-mole)	SP* (psig)	ln(SP)**	ST (ºF)	APIG (°API @ 100°F)	%nonHC _{tot} (%)	ln(%nonHC _{TOT})**
Min	19.0	19.1	4.0	1.39	40	15.0	0.0	-1.9
Max	72.4	63.9	870	6.77	180	66.0	95.3	4.6
Mean	42.2	36.8	122	3.90	87	40.6	9.8	1.0
SD	10.5	9.7	221	1.16	26	13.1	18.2	1.6

 $Mean = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

** Mean =
$$\frac{1}{n} \sum_{i=1}^{n} \ln(x_i)$$
 Note : $\frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \neq \ln\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)$

RVP = Reid Vapor Pressure (psia) ST = Separator Temperature (°F) SP = Separator Pressure (psia) APIG = API Gravity (°API) %nonHC _{TOT} = mole fraction of non-HC in total vented gas Single-parameter correlation coefficients between the gas molecular weights (hydrocarbon) and separator pressure, temperature, API Gravity and mole percent non-hydrocarbons are summarized in Table 4-2. In both cases, the best predictors were the separator temperature (ST) and the mole fraction of non-hydrocarbons in the total¹ vented gas (%nonHC_{TOT}). Separator pressure and sales oil APIG do not correlate well with the gas molecular weights.

Variable	Pearson Correlation with MWT _{ws}	Pearson Correlation with MWT _F
SP	0.044	-0.12
ln(SP)	0.019	-0.17
ST	0.29	0.45
APIG	0.12	-0.028
%nonHC _{TOT}	0.41	0.54
ln(%nonHC _{tot})	0.17	0.33

Table 4-2. Single-parameter correlation coefficients for gas molecular weights.

REGRESSION ANALYSIS

Several linear regressions were performed using only two or three of the variables listed in Table 4-1. However, the use of all four independent variables resulted in the best correlations. The following multivariate linear regressions (Equations 4-4 and 4-5), illustrated in Figures 4-2 and 4-3, are recommended for use.

 $MWT_{WS} = 7.737 - 0.007 \text{ SP} + 0.149 \text{ ST} + 0.468 \text{ APIG} + 0.338 \text{ %nonHC}_{TOT}$

(Equation 4-4)

 $MWT_F = -0.351 - 0.013 \text{ SP} + 0.193 \text{ ST} + 0.453 \text{ APIG} + 0.360 \text{ \(monHC_{TOT})}$

(Equation 4-5)

The correlation coefficients for Equations 4-4 and 4-5 are 0.64 and 0.79, which are better than any of the single-parameter correlation coefficients listed in Table 4-2. For the W&S gas, the standard error of the prediction is 8 lb/lb-mol, which is somewhat smaller than the standard deviation about the mean W&S gas molecular weight, 10.5 lb/lb-mol. Figure 4-4 illustrates the potential improvement over the original default assumption of 50 lb/lb-mol (a bias reduction of 8 lb/lb-mol and lesser variability about the observed value). For the flash gas, the standard error

¹ Total = W&S + Flash

of the prediction is 6.1 lb/lb-mol, which is smaller than the standard deviation about the mean flash gas molecular weight of 9.7 lb/lb-mol. Therefore, this method represents a superior way to predict flash gas molecular weight than a simple default assumption of 37 lb/lb-mol. Figure 4-5 illustrates the improvements gained over the original default assumption of 50 lb/lb-mol (a bias reduction of 13 lb/lb-mol and lesser variability about the observed value).

80

70

60 Estimated (lb/lb-mol) 8 50 0 40 30 20 10⊦ 10 20 30 40 50 60 70 80 Observed (lb/lb-mol)

Figure 4-2. Performance of the recommended equation to predict W&S gas molecular weight (MWT_{ws}).

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Figure 4-4. Improved performance in the error of the estimate for MWT_{ws}.
(a) Error associated with the recommended correlation equation.
(b) Error associated with a default assumption of 50 lb/lb-mol.

Figure 4-5. Improved performance in the error of the estimate for MWT_F . (a) Error associated with the recommended correlation equation.

(b) Error associated with a default assumption of 50 lb/lb-mol.

Section 5

ANALYSES OF MOLE FRACTIONAL CONTRIBUTIONS OF HAZARDOUS AIR POLLUTANTS TO HYDROCARBON EMISSIONS

This section summarizes the results of analyses undertaken to predict the mole fractional contributions of HAPs to hydrocarbon emissions from E&P storage tanks. Similar to the previous section, it is important to note that the HAP mole fractions were modeled using the E&P TANK model. The goal of this analysis is to produce correlation equations and an average speciation profile that compare well with the model output.

The HAP mole fractions that were included in the original database of E&P TANK model output were normalized to reflect contributions to the THC fractions of the gas streams, as illustrated by the equation below.

- - -

%HAP_{as fraction of HC} = %HAP_{as fraction of total gas stream} ×
$$\frac{100}{(100 - \text{%nonHC})}$$

(Equation 5-1)

where %nonHC represents the sum contribution of non-hydrocarbons to the gas stream (flash or W&S), including carbon dioxide (CO₂), hydrogen sulfide (H₂S), and nitrogen (N₂).

SUMMARY OF RESULTS

Tables 5-1 and 5-2 list the results of the correlation analyses, including the best single- and multiple-parameter correlation equations for each HAP. The data were stratified according to separator pressure in order to improve the correlations. Note that the group of high pressure storage tanks ($SP \ge 200$ psig) numbered only 12, which is a fairly small sample size. Therefore, the correlations for the high pressure tanks are associated with a greater degree of uncertainty. Additionally, it should be noted that many of the reported correlations are weak and have small correlation coefficients. Predictions based on weaker correlations are also associated with a greater degree of uncertainty. In general, analyses of the flash gas resulted in stronger correlations.

5-1

Table 5-1. Flash gas analysis: correlations to predict molar contributions of HAPs to THC emissions.

	Set of storage		
	tanks	Best single-parameter model(s)	
Compound	Modeled	and correlation coefficient(s)	Best multi-parameter model and correlation coefficient
Benzene	SP ≤ 200 psig ; n = 83	ln(%Benz) = - 8.44 + 1.60 ln(APIG) ; r = 0.39	$\ln(\%Benz) = -64 + 8.59 \ln(ST+460) + 2.04 \ln(APIG);$ r = 0.49
	SP > 200 psig :	$\ln(\%\text{Benz}) = -81.7 + 12.6 \ln(\text{ST}+460)$:	$\ln(\%\text{Benz}) = -134 + 0.92 \%\text{non-HC} + 19 3 \ln(\text{ST}+460) + 2 3 \ln(\text{A PIG})$
	n = 12	r = 0.33	- 0.0025 SP;
			r = 0.67
Ethylbenzene	SP ≤ 200 psig ;	$\ln(\%EBnz) = -70.1 + 10.2 \ln(ST+460);$	ln(%EBnz) = - 90.6 + 0.025 %non-HC + 12.5 ln(ST+460) + 1.64 ln(APIG) ;
	n = 83	r = 0.47	r = 0.67
	SP > 200 psig ;	In(%EBnz) = 0.0022 - 0.0013 %non-HC;	ln(%EBnz) = 0.0117 - 0.0013 %non-HC - 1.74×10 ⁻⁵ ST ;
	n = 12	r = 0.83	r = 0.87
Hexane	SP ≤ 200 psig ;	%Hexane = - 13.9 + 0.028 (ST+460);	%Hexane = - 16.2 + 0.040 %non-HC + 0.029 (ST+460) + 0.037 APIG ;
	n = 83	r = 0.65	r = 0.89
		%Hexane =0.92 + 0.036 %non-HC;	
		r = 0.61	
	SP > 200 psig ;	%Hexane = 2.07 - 0.0018 SP ;	%Hexane = - 4.71 - 0.00194 SP + 0.0127 (ST+460);
	n = 12	r = 0.69	r = 0.77
Toluene	SP ≤ 200 psig ;	$\ln(\%Tol) = -62.4 + 9.45 \ln(ST+460);$	ln(%Tol) = - 103 + 0.019 %non-HC + 14.4 ln(ST+460) + 2.63 ln(APIG);
	n = 83	r = 0.35	r = 0.64
	SP > 200 psig ;	ln(%Tol) = 19.1 - 5.32 ln(APIG) ;	ln(%Tol) = - 22.7 + 0.84 %non-HC + 5.4 ln(ST+460) - 3.27 ln(APIG) - 0.0022
	n = 12	r = 0.41	SP;
			r = 0.55
Xylenes	SP ≤ 200 psig;	$\ln(\%Xyl) = -88.9 + 13.5 \ln(ST+460);$	http://www.action.environ.
	n = 83	r = 0.60	r = 0.78
	SP > 200 psig ;	$\ln(\%Xyl) = -0.80 - 0.37$ %non-HC;	ht(%Xyl) = 5.91 - 1.25 %non-HC - 2.38 ht(APIG);
	n = 12	r = 0.65	r = 0.69

ST = Separator Temperature (°F)SP = Separator Pressure (psia) APIG = API Gravity (°API)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table 5-2. W&S gas analysis: correlations to predict molar contributions of HAPs to THC emissions.

	Set of storage		
	tanks	Best single-parameter model(s)	
Compound	Modeled	and correlation coefficient(s)	Best multi-parameter model and correlation coefficient
Benzene	SP ≤ 200 psig ;	$\ln(\%Benz) = -9.2 + 1.8 \ln(APIG);$	lin(%Benz) = - 63.5 + 0.014 %non-HC + 8.1 ln(ST+460) + 2.67 ln(APIG) ;
	n = 83	r = 0.42	r = 0.52
	SP > 200 psig ;	$\ln(\%Benz) = -56.7 + 8.6 \ln(ST+460);$	$\ln(\%Benz) = -63.2 - 0.0006 SP + 9.2 \ln(ST+460);$
	n = 12	r = 0.25	r = 0.29
Ethylbenzene	SP ≤ 200 psig ;	$\ln(\% EBnz) = -62.0 + 9.96 \ln(ST+460);$	ln(%EBnz) = - 92.2 + 0.034 %non-HC + 12.4 ln(ST+460) + 2.01 ln(APIG)
•	n = 83	r = 0.38	+ 0.23 ln(APIG);
			r = 0.67
	SP > 200 psig ;	%EBnz = 0.0203 - 3.51×10 ⁻⁵ (ST+460);	%EBnz = 0.034 - 0.001 $%$ non-HC - 5.27×10 ⁻⁵ (ST+460)) - 8.54×10 ⁻⁵ APIG
	n = 12	r = 0.29	+ 1.89×10 ⁻⁶ SP ;
			r = 0.40
Hexane	SP ≤ 200 psig ;	%Hexane = - 12.2 + 0.025 (ST+460);	%Hexane = - 15.8 + 0.050 %non-HC + 0.027 (ST+460) + 0.053 APIG ;
	n = 83	r = 0.51	r = 0.79
		%Hexane = 1.05 + 0.040 %non-HC;	
		r = 0.54	
	SP > 200 psig ;	%Hexane = 2.11 - 0.0015 SP;	%Hexane = 5.8 - 0.0012 SP - 0.58 %non-HC - 0.044 APIG ;
	n = 12	r = 0.54	r = 0.69
Toluene	SP ≤ 200 psig ;	$\ln(\%Tol) = -8.4 + 1.59 \ln(APIG);$	ln(%Tol) = - 100 + 0.024 %non-HC + 13.7 ln(ST+460) + 3.00 ln(APIG);
	n = 83	r = 0.37	r = 0.63
	SP > 200 psig ;	$\ln(\% Tol) = 15.8 - 4.43 \ln(APIG);$	$\ln(\%Tol) = 8.85 + 0.45\% non-HC - 2.81 \ln(APIG);$
	n = 12	r = 0.37	r = 0.40
Xylenes	SP ≤ 200 psig ;	$\ln(\%Xyl) = -80.0 + 12.1 \ln(ST+460);$	$\ln(\%XyI) = -116 + 0.0266\%$ non-HC + 16.3 $\ln(ST+460) + 2.50 \ln(APIG);$
	n = 83	r = 0.50	r = 0.74
	SP > 200 psig ;	$\ln(\%Xyl) = 42.3 - 7.47 \ln(ST + 460);$	ln(%Xyl) = 62.5 - 0.44 %non-HC - 9.66 ln(ST+460) - 1.51 ln(APIG);
	N = 12	r = 0.22	r = 0.30

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

5-3
It was noted that the results of the correlation analyses were related to the compounds' chemical structures. For example, hexane was the only straight chain hydrocarbon species included in the analysis, and its correlation equations are unique. The other four HAPs are structurally similar (each containing a benzene ring), and correlate similarly with separator temperature, APIG, and/or mole percent non-hydrocarbons. Of the ringed species, ethylbenzene and xylenes are the largest (8 carbon atoms each), followed by toluene (7 carbon atoms), and benzene (6 carbon atoms).

- For high separator pressures, the molar contribution of hexane (%Hex) was uniquely related to the separator pressure.
- Correlations of benzene and toluene, the lightest of the benzene-ringed HAPs, were similar because both species were best correlated with separator temperature and API Gravity.
- Correlations of ethylbenzene and xylenes, the heaviest of the benzene-ringed HAPs, were also similar because both species correlated best with mole percent non-hydrocarbons and separator temperature.

Since many of the correlation equations shown in Tables 5-1 and 5-2 were weak and highly uncertain, the average speciation profiles are recommended for use (Table 5-3). These average profiles are quite different from those in the EPA SPECIATE database (U.S. Environmental Protection Agency, 1990). Mole percents were converted to weight percents for comparison to the SPECIATE database (Table 5-4). Note that the SPECIATE database is based on references that are 10-20 years old, and/or engineering judgement. Also note that the SPECIATE profile, "Oil and Gas Production – Average" was used for comparison to the average flash gas data because no directly corresponding flash gas profile was available in the SPECIATE database.

	Flash Gas – Mea	n Mole Percent	W&S Gas – Mea	n Mole Percent
	Contrib	oution	Contrib	oution
	Percent of total gas		Percent of total gas	
	stream		stream	
Species	(Std. Deviation)	Percent of THC	(Std. Deviation)	Percent of THC
H ₂ S	0.89 (2.58)	na	1.33 (3.63)	na
CO ₂	8.16 (18.18)	na	7.31 (15.93)	na
N ₂	1.33 (3.78)	na	0.34 (1.94)	na
CH_4	36.75 (22.56)	41.00	20.36 (23.30)	22.36
C ₂ H ₆	15.12 (6.12)	16.87	18.65 (9.76)	20.49 ·
C ₃ H ₈	16.45 (7.72)	18.35	25.48 (13.58)	28.00
$i-C_4H_{10}$	4.67 (2.94)	5.21	6.22 (4.07)	6.83
$n-C_4H_{10}$	7.77 (4.41)	8.67	9.94 (6.51)	10.92
i-C ₅ H ₁₂	2.93 (1.73)	3.27	3.39 (2.02)	3.72
$n-C_5H_{12}$	2.49 (1.61)	2.77	2.88 (1.99)	3.17
Hexanes	1.03 (0.75)	1.15	1.18 (0.84)	1.30
Heptanes	0.96 (0.78)	1.07	1.14 (0.98)	1.26
Octanes	0.40 (0.38)	0.45	0.49 (0.47)	0.54
Nonanes	0.09 (0.10)	0.10	0.12 (0.13)	0.13
Benzene	0.12 (0.17)	0.14	0.16 (0.30)	0.18
Toluene	0.10 (0.12)	0.11	0.14 (0.23)	0.15
Ethylbenzene	0.00 (0.00)	0.00	0.01 (0.01)	0.01
Xylenes	0.03 (0.04)	0.03	0.04 (0.06)	0.04
n-Hexane	0.70 (0.58)	0.78	0.82 (0.69)	0.90
Pentanes+	0.00 (0.00)	0.00	0.00 (0.00)	0.00

Table 5-3. Average speciation profiles modeled for the 94-tank data set, mole percent.

as weight	percent.	_		
	Flash (Gas – Mean	W&S (Gas – Mean
	Weig	ht Percent	Weig	ht Percent
	Con	tribution	Con	tribution
Species	Average	SPECIATE ^a	Average	SPECIATE ^b
CH ₄	18.4	53.8	10.0	6.2
C_2H_6	14.2	7.4	17.2	5.6
C ₃ H ₈	22.6	8.2	34.5	17.6
i-C ₄ H ₁₀	8.5	0.3	11.1	1.5
$n-C_4H_{10}$	14.1	5.2	17.7	27.1
i-C ₅ H ₁₂	6.6	3.2	7.5	1.5
$n-C_{5}H_{12}$	5.6		6.4	14.6
Hexanes	2.8	6.6	3.1	7.9
Heptanes	3.0	7.8	3.5	9.2
Octanes	1.4	5.8	1.7	6.9
Nonanes	0.4		0.5	
Benzene	0.3	0.1	0.4	0.1
Toluene	0.3		0.4	
Ethylbenzene	0.0		0.0	
Xylenes	0.1		0.1	
n-Hexane	1.9		2.2	
Pentanes+	0.0		0.0	
C ₇ -Cycloparaffins		1.1		1.3
C ₈ -Cycloparaffins		0.4		0.5

Table 5-4.Comparison of average modeled speciation profiles to the EPA
SPECIATE database (U.S. Environmental Protection Agency, 1990),
as weight percent.

Profile Number 9015, "Oil and Gas Production – Average." (Profile Data Quality : E)
 Profile Number 0296, "Fixed Roof Tank - Crude Oil Production." (Profile Data Quality : C)

ļ

Section 6

ANALYSIS OF SEPARATOR GAS SPECIFIC GRAVITY

The purpose of this section is to generate a correlation equation that predicts the specific gravity of the separator gas, which was measured via gas analysis. This analysis considers separator operating conditions (temperature and pressure), the API gravity of the sales oil, and the mole percent of non-hydrocarbons present in the total vent gas (which was a modeled value).

DESCRIPTIVE STATISTICS

Table 6-1 summarizes key descriptive statistics for the separator gas specific gravity, separator temperature, sales oil API gravity, and mole percent non-hydrocarbons in the total vent gas.

Table 6-1.	Descriptive	statistics of	variables used	to predict	specific g	ravity o	of the ser	parator gas.
							~ ~ ~ ~ ~ ~ ~ ~	A A A A A A A A A A A A A A A A A A A

Statistic	SG _{sG} *	ln(SG _{SG})**	SP* (psig)	ln(SP)**	ST (°F)	APIG (°API @ 100°F)	%nonHC _{tot} * (%)	ln(%nonHC _{TOT})**
Min	0.6	-0.58	4.0	1.39	40	15.0	0.0	-1.9
Max	1.8	0.59	870	6.77	180	66.0	95.3	4.6
Mean	0.9	-0.17	122	3.90	87	40.6	9.8	1.0
SD	0.3	0.27	221	1.16	26	13.1	18.2	1.6

* Mean =
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

* Mean = $\frac{1}{n} \sum_{i=1}^{n} \ln(x_i)$ Note : $\frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \neq \ln\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)$

SG_{SG} = Separator Gas Specific Gravity
 ST = Separator Temperature (°F)
 SP = Separator Pressure (psia)
 APIG = API Gravity (°API)
 %nonHC _{TOT} = mole fraction of non-HC in total vented gas

Single-parameter correlation coefficients between the separator gas specific gravity and separator pressure, temperature, API gravity and mole percent non-hydrocarbons are summarized Table 6-2. The best predictor is the mole fraction of non-hydrocarbons in the total vented gas (%nonHC_{TOT}). Separator pressure, separator temperature, and sales oil APIG do not correlate well with the gas molecular weights.

	Pearson Correlation	Pearson Correlation
Variable	with SG _{sG}	with ln(SG _{sG})
SP	-0.252	-0.255
ln(SP)	-0.352	-0.368
ST	0.351	0.352
APIG	-0.296	-0.276
%nonHC _{tot}	0.654	0.634
ln(%nonHC _{TOT})	0.563	0.563

Table 6-2. Single-parameter correlation coefficients for gas molecular weights.

REGRESSION ANALYSIS

Since the specific gravity of the separator gas appears to be lognormally distributed (see Figure 2-1), it was modeled as such. Several linear regressions were performed using only two or three of the variables listed in Table 6-1. However, the use of all four independent variables resulted in the best correlation. The following multivariate linear regression (Equation 6-1), illustrated in Figure 6-1, is recommended for use.

 $\ln(SG_{SG}) = -0.476 - 0.102 \ln(SP) + 0.003 ST + 0.008 APIG + 0.011 \% nonHC_{TOT}$

(Equation 6-1)

The correlation coefficient for Equation 6-1 is 0.76, which is somewhat better than the singleparameter correlation coefficient for $\text{%nonHC}_{\text{TOT}}$ shown in Table 6-1. The standard error of the prediction is 0.18, which is somewhat smaller than the standard deviation about the mean of ln(SG_{sG}), 0.27. Figure 6-2 illustrates the potential improvement over the average value (lesser variability about the observed value).

Figure 6-1. Performance of the recommended equation to predict the logarithm of separator gas specific gravity, ln(SG_{sG}).

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

(b) Error associated with the average value.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 6-4

Section 7

COMPARATIVE EVALUATION OF ALTERNATIVE MODELS AND INPUTS

The correlation equations for RVP, MWT_F, and MWT_{ws} that were developed in Sections 2 through 6 were used to estimate flash and W&S emissions. These estimates were compared to E&P TANK model results and to emission measurements from seven tank sites. Measured emissions were available for seven E&P storage tanks (American Petroleum Institute, 1997b), and E&P TANK results (based on oil sample compositions) were available for the 94 storage tanks discussed throughout the earlier sections of this report.

Flashing losses were estimated according to the Vasquez-Beggs equation (Vasquez and Beggs, 1980).

$$L_{f} = GOR \times Q \times \chi \times MWT_{F} \times \frac{P_{a}}{RT} \times \frac{ton}{2000lb}$$

(Equation 7-1)

where:

Flashing losses (tons/year) L =

GOR = Gas-to-oil ratio (scf/bbl), calculated according to the Vasquez-Beggs methodology (Vasquez and Beggs, 1980)

Annual throughput (bbl/yr) Q =

Concentration of total hydrocarbons (THC) in the vented gas (mole fraction, χ = a number between 0.0 and 1.0)

 MWT_{F} = Molecular weight of THC in the vented gas (lb/lb mole), Equation 4-5

R = Ideal gas constant (10.731 psia
$$ft^3/lb \mod R$$
)

Т Temperature of vented tank gas (°R)

According to the Vasquez-Beggs equation, GOR may be calculated according to the following equation.

$$GOR = C_1 \times CSG \times UP^{C_2} \times exp\left(\frac{C_3 \times APIG}{T + 460}\right)$$

(Equation 7-2)

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

where:

GOR	=	Gas-to-oil ratio (scf/bbl)
$C_1, C_2, and C_3$	=	Correlation coefficients
CSG	=	Corrected specific gravity of the gas (for pure air, $CSG = 1.0$)
UP	=	Separator pressure (psia)
APIG	=	API gravity of the oil (°API)
Т	=	Separator fluid temperature (°F)

W&S emissions were calculated according to methods published in the U.S. EPA's *AP-42* document (U.S. Environmental Protection Agency, 1996; American Petroleum Institute, 1991), which employs Equations 7-3 and 7-4 and fully describes how each of the variables may be quantified.

$$L_{s} = 365 \times V_{v} \times W_{v} \times K_{E} \times K_{S} \times \frac{ton}{2000lb}$$

(Equation 7-3)

where:

Ls = Standing losses (tons/year)

 V_v = Tank vapor space volume (ft³)

 W_v = Stock vapor density (lb/ft³), dependent on MWT_{ws}

 K_E = Calculated vapor space expansion factor (unitless), dependent on RVP

 K_s = Calculated vented vapor saturation factor (unitless), dependent on RVP

$$L_{w} = 0.0010 \times MWT_{WS} \times P_{VA} \times Q \times K_{N} \times K_{P} \times \frac{ton}{2000lb}$$

(Equation 7-4)

where:

L _w	=	Working losses (tons/year)
MWT _{ws}	=	Stock vapor molecular weight (lb/lb-mol), Equation 4-4

 P_{VA} Stock vapor pressure at the average daily liquid surface temperature (psia), = dependent on RVP

Q Annual stock net throughput (bbl/yr)

Kы Working loss turnover factor (unitless)

K_ Working loss product factor (unitless)

The correlation equations for MWT_{ws} , MWT_{F} , and RVP were employed as needed to estimate emissions according to Equations 7-1 through 7-4. Emissions were also calculated with API's current default values (MWT_{ws} = 50 lb/lb-mol, MWT_F = 50 lb/lb-mol, RVP = 5 psia), and with measured values of RVP.

COMPARISON OF FLASH EMISSION ESTIMATES

Figure 7-1 displays a comparison of flash emissions estimated with the Vasquez-Beggs correlation equation and E&P TANK for 94 storage tanks. Two linear regressions are plotted, representing the default assumption (MWT_F = 50 lb/lb-mol) and the use of correlated values for MWT_r. When estimated emissions are high, the default assumption appears to yield slightly better agreement, however the difference is not statistically significant. Figure 7-2 better illustrates this point. Figure 7-2 plots the 95 percent confidence bounds on the regression lines shown in Figure 7-1. The 1:1 line, which represents perfect agreement between Vasquez-Beggs and E&P TANK, deviates from the 95 percent confidence ranges whether default values or correlated values are used for MWT_F.

Figure 7-1. Comparison of the Vasquez-Beggs correlation equation and E&P TANK results (flash THC emissions for 94 E&P storage tanks).

Figure 7-2. Comparison of the Vasquez-Beggs correlation equation and E&P TANK -95 percent confidence bounds on the agreement between estimated flash emissions. Note the 1:1 lines (perfect agreement). (a) Agreement when correlated values of MWT_F are input to Vasquez-Beggs. (b) Agreement when a default value of MWT_F is input to Vasquez-Beggs.

COMPARISON OF W&S EMISSION ESTIMATES

It was not possible to use AP-42 methods to estimate the W&S emissions for the 94 storage tanks discussed above. (Some necessary data, such as storage tank dimensions and geographic locations were not available.) Data for a group of seven storage tanks were input to the EPEC model (American Petroleum Institute et al., 1997c) to compare estimated W&S emissions. Figure 7-3 compares AP-42 emissions that were estimated with default and correlated values of RVP to AP-42 estimates based on RVP measurements. The use of correlated values of RVP improves agreement over the use of default values. (Note that data are plotted on a linear scale in Figure 7-3. Figures 7-1 and 7-2 are plotted with logarithmic scales.)

AP-42 W&S Emissions (tpy) with Measured RVP

Figure 7-3. Comparison of AP-42 W&S emissions estimated from default and correlated RVPs with AP-42 emissions estimated from measured RVPs. (Estimates were calculated with correlated values of MWT_{ws}.)

COMPARISON OF TOTAL EMISSION ESTIMATES

This section evaluates the accuracy of emission estimates based on AP-42, Vasquez-Beggs, and E&P TANK. Measurements of W&S and flash emissions were conducted at seven storage tanks (American Petroleum Institute, 1997b). The results of these measurements are compared to three alternatives to estimate emissions: (1) AP-42 and Vasquez-Beggs equations with default inputs, (2) AP-42 and Vasquez-Beggs equations with correlated inputs, and (3) E&P TANK.

Total measured emissions were compared to total emissions estimated with the various models (Figure 7-4). It appears that the correlation equations are able to predict total emissions equally as well as the E&P TANK model. For this set of seven storage tanks, emission measurements were reported as total emissions; therefore, the W&S and flash losses could not be compared separately. However, the flash losses probably overwhelm the total emissions.

Figure 7-4. Comparison of modeled (E&P TANK) and correlated emissions with measured total THC emissions for seven storage tanks.

Section 8

CONCLUSIONS

In some cases, the use of correlation equations instead of default values to predict RVP, MWT_F , and/or MWT_{ws} improved agreement between modeled emissions, emission estimates based on measured values, and/or measured emissions. Therefore, the following correlation equations are recommended in order to estimate THC emissions from E&P storage tanks when laboratory results are unavailable.

<u>Reid Vapor Pressure</u>. When the *AP-42* method is used to calculate W&S emissions, the use of a correlation equation to predict RVP (instead of a default value) improves the results. *AP-42* results based on the correlated RVP more closely match results based on RVP measurements.

If only the APIG of the sales oil is known:

RVP = -1.699 + 0.179 APIG

(Equation 3-5)

If the APIG and the bubble point of the sales oil are both known:

RVP = -2.596 + 0.417 BP + 0.119 APIG

(Equation 3-6)

Molecular Weight of W&S Gas. The default value of 50 lb/lb-mole that was established by API's earlier research (American Petroleum Institute, 1991) is recommended for continued use.

<u>Molecular Weight of Flash Gas</u>. The following equation is recommended to predict MWT_F when laboratory results are unavailable.

 $MWT_{F} = -0.351 - 0.013 \text{ SP} + 0.193 \text{ ST} + 0.453 \text{ APIG} + 0.360 \text{ $\%$ nonHC}_{TOT}$

(Equation 4-5)

<u>Mole Fractional Contributions of HAPs</u>. Since many of the correlations developed for HAP speciation were weak or uncertain, the average speciation profiles are recommended for use (Table 8-1).

	Flash Gas –	W&S Gas -
	Mean Mole	Mean Mole
Species	Percent	Percent
-	Contribution	Contribution
	Percent of THC	Percent of THC
CH ₄	41.00	22.36
C_2H_6	16.87	20.49
C_3H_8	18.35	28.00
i-C₄H ₁₀	5.21	6.83
$n-C_4H_{10}$	8.67	10.92
i-C ₅ H ₁₂	3.27	3.72
$n-C_{5}H_{12}$	2.77	3.17
Hexanes	1.15	1.30
Heptanes	1.07	1.26
Octanes	0.45	0.54
Nonanes	0.10	0.13
Benzene	0.14	0.18
Toluene	0.11	0.15
Ethylbenzene	0.00	0.01
Xylenes	0.03	0.04
n-Hexane	0.78	0.90
Pentanes +	0.00	0.00

Table 8-1. Average speciation profiles, mole percent.

<u>Specific Gravity of the Separator Gas</u>. The following equation is recommended to predict the specific gravity of the separator gas when laboratory results are unavailable.

 $\ln(SG_{SG}) = -0.476 - 0.102 \ln(SP) + 0.003 ST + 0.008 APIG + 0.011 \%nonHC_{TOT}$

(Equation 6-1)

REFERENCES

- American Petroleum Institute. 1997a. E&P TANK: Production Tank Emissions Model, Version 1.0. API Publication No. 4660. Developed by D.B. Robinson for the American Petroleum Institute and the Gas Research Institute. Washington, D.C.
- American Petroleum Institute. 1997b. Evaluation of a Petroleum Production Tank Emission Model. API Publication No. 4662. Developed by Radian International LLC for the American Petroleum Institute, Washington, D.C., Gas Research Institute, and Canadian Association of Petroleum Producers. Washington, D.C.
- American Petroleum Institute. 1997c. Exploration and Production Emission Calculator (EPEC). API Publication No. 4661. Developed by Sonoma Technology, Inc. for the American Petroleum Institute. Washington, DC.
- American Petroleum Institute. 1991. Manual of Petroleum Measurement Standards. Chapter 19.1: Evaporative Loss from Fixed Roof Tanks, 2nd Edition. API Publication No. 2518. Washington, D.C.
- Felder, R.M. and Rousseau, R.W. 1978. *Elementary Principles of Chemical Processes*. John Wiley & Sons, Inc., New York, NY.
- Treybal, R.E. 1980. Mass-Transfer Operations, 3rd Edition. McGraw-Hill Book Company, New York, NY.
- U.S. Environmental Protection Agency. 1996. Compilation of Air Pollutant Emission Factors.
 Vol. 1: Stationary Point and Area Emission Units. Section 7, AP-42, 5th Edition (January 1996); Supplements A and B (November 1996). Report prepared by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC.
- U.S. Environmental Protection Agency. 1990. Air Emission Species Manual. Vol. 1: Volatile Organic Compound Species Profiles, 2nd ed. EPA-450/2-90-001a. Research Triangle Park, NC.
- Vasquez, M. and Beggs, H.D. 1980. Correlations for Fluid Physical Property Prediction. Journal of Petroleum Technology, June. 32(6):98-970.

Appendix A

QUALITY-REVIEWED DATA SET FOR 94 TANKS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

i

Acronyms and Abbreviations

224 TriMe – 2,2,4-Trimethylpentane APIG - API Gravity (°API) BENZ - Benzene BubPt - Bubble Point (psia) C1 to C10+ - Hydrocarbon Gas (with 1 to 10 or more carbon atoms) E-BENZ - Ethylbenzene ems - Emissions (lb/hr) FG - Flash Gas FlsOil - Flash Tank Oil GOR - Gas to Oil Ratio (scf/bbl) Grav - Specific Gravity H2S - Hydrogen Sulfide Gas HEXS - Hexanes **HEPTS** – Heptanes i--Isomers of Hydrocarbon Molecules (branched chain molecules) mol% - Mole Fraction (percent) Mol Frac - Mole Fraction (as a fraction) MWt-Molecular Weight (lb/lb-mol) n--Straight-chain Hydrocarbon Molecules N2 - Nitrogen Gas NONS - Nonanes O2 - Oxygen Gas OCTS - Octanes prod rate - Production Rate (bbl/day) RVP-Reid Vapor Pressure (psia) Sep Oil - Separator Oil Sep Pres – Separator Pressure (psia) Sep Temp – Separator Temperature (°F) SG - Specific Gravity SlsOil - Sales Oil Tank ID – Tank Identification Number (assigned specifically for this project) THC - Total Hydrocarbon TOL – Toluene TotG - Total Gas (WSG+FG) VOC - Volatile Organic Carbon WSG - Working & Standing Gas XYL - Xylenes

A-3

														:	ľ
	۷	8	v	۵	ш	ш	5	± 4			X CIT				O O
-	Tank ID	Sep Pres	Sep Temp	Sisol APIG	SISOII RVP	GOR	Sep Oil MW			Sep UI Sec	PISOI MVV	LISON DUDAL			1907 2004
2	-	45	106	15	0.8	8.8873	386.7508	36.8463	5.6383	0.7644	393.4735	14.08/1	2.2411	0./042	1905 2904
3	2	22	155	17	8	9.6033	360.3739	28.4693	5.8926	0.7486	367.9278	9.2545	3.0381	0./488	369.269
4	6	20	160	18	0.6	6.4454	417.3879	24.0558	3.5434	0.7025	421.8316	9.8277	2.0089	0.7024	426.5238
· v	4	1 53	101	19	2.3	17.7758	321.974	82.5867	10.1789	0.7785	333.2543	14.6566	3.8346	0.7795	336.5525
) c	9	23	- 79	20	1.2	4.9875	332.1324	59.6152	5.3462	0.7911	335.7019	16.0379	1.8664	0.7916	336.7173
2		18	76	20	3.8	3.94	321.1654	52.9892	6.6365	0.7722	323.8687	17.2375	4.3808	0.7724	324.2103
- («		54	126	21	. .	13.8965	308.5478	74.2207	8.0013	0.7873	315.6836	12.7487	2.7171	0.7884	319.3936
• •	10	35	76	23	1.8	8.5264	265.3335	77.5599	8.1615	0.8536	269.6992	16.41	2.6896	0.8547	270.2265
, F	12	30	66	23	4	15.4103	289.2338	59.6658	10.3025	0.767	295.0625	19.5599	6.3482	0.7677	299.2691
2	Ę	20	122	24	0.6	4.6002	299.4488	47.5581	3.2839	0.7931	301.859	13.5591	1.838	0.7934	303.0588
			88	24	3.9	19.1103	283.8749	57.2852	11.4572	0.7661	291.1285	16.5494	6.4631	0.7668	295.6764
2	- 4	20	98	24	4.6	13.7343	299.315	41.367	10.0353	0.7427	305.3546	16.8743	6.352	0.743	308.6442
2				24	4.8	17,8387	283.2271	42.403	11.3071	0.7227	288.409	20.3303	8.0857	0.723	293.9877
<u>+</u> ;		107	123	25	4	3.4871	272.2935	19.0887	5.7435	0.7994	274.0192	11.0455	4.5294	0.7998	274.1862
<u>₽</u>		00		26	4 9	16.662	280.5031	68.382	11.7272	0.7595	286.5598	20.6403	7.3651	0.7606	290.8026
<u></u> !		20	178	22	5.5	6 7533	335.8695	30.838	5.7945	0.6808	340.3619	10.9186	3.9786	0.681	341.8173
2		276	12	16 	5.2	18.4682	247.6823	81.8646	13.1875	0.7915	252.4981	20.0647	8.0737	0.7925	256.3684
<u>"</u>	77		101		34	6.3657	250.8289	47.5423	6.5844	0.7719	253.6374	16.6608	3.8675	0.7726	254.03
£.	5	3	00	00	8 4	20 4413	216.0331	33,3501	11.0683	0.8058	218.6088	17.0202	8.4498	0.8068	223.0516
2	22			00		11 5044	279 9469	13 3897	7.4449	0.7932	230.4339	11.7357	7.1633	0.7934	234.1811
5	23	20		R C	o C	7390 10	72A 5027	A1 7705	14 0038	0 7864	231,833	15.2732	7.6486	0.7886	233.6235
22	24	4 22	22	RT	0.4	1007.42	3040 010	40 1.1	BEAR A	0 7651	271 783R	16 4309	3 2822	0.7653	272.2403
23	26	4	80	8	910	2.345	210.0423	20.10		7967 0	241 3755	6 RESR	3 4509	0 7978	242 0531
24	27	7 25	180	90	2.1	CC/.11	cinc. 162	1420.0241	PD-0	0.1001	0070-117	1 7405	4 0464	0 7171	303 606
25	28	9 64	70	8	2.8	18.7812	289.932	11/.2333	1800.21	0.110	301.2040	47 4575	1.0101	0.7630	735.667
26	29	80	77	33	2.2	32.7847	221.9064	119.0589	10.0400	10/.0	201.2000	11.4020	1020.0	0.7046	200.005
27	8	20	116	33	3.1	8.9682	232.4277	37.8575	2.085	0.7805	235.0693	13.220	4,4400	010/0	1020.002
8	31	60	78	34	N	12.593	285.167	96.8157	9.865	0.7125	293.3098	16.434	2.9696	0.713/	294.3184
2	32	18	70	34	2.2	6.2016	236,997	45.8224	6.0253	0.7715	239.1704	17.2292	3.4387	0.7721	239.9932
3	24		80	35	4.7	24.3594	194.5784	40.266	12.3363	0.7509	197.3778	17.9682	8.7113	0.752	201.5484
3	20.24		108	35	4.5	18.782	206.795	36.0958	11.0245	0.7812	210.5973	13.7321	6.8624	0.7824	212.7895
5	2 4		100	36	4.9	17.6196	210.5629	36.6732	10.8408	0.7705	214.072	14.8214	7.0355	0.7717	216.5587
š	P	02	125	36	2.5	5.0253	236.1106	36.2333	5.6956	0.7547	238.2616	12.8143	2.9287	0.7553	238.4162
3 5	20		89	36	3.8	14.0122	243.7807	85.0761	10.3933	0.6973	249.9626	17.9084	4.5764	0.6986	251.0035
5 4	5 5	5	80	36	3.9	15.5162	212.9906	66.9672	11.2108	0.7564	217.3672	17.0254	5.6634	0.7578	218.834
S a	S	75	2	36	4.1	27.8439	210.5349	118.0427	16.9277	0.7617	219.4885	17.0345	5.8662	0.7647	220.9459
S F		280	60	36	3.8	22.0411	193.0086	63.1345	13.3092	0.774	196.5066	20.208	7.6167	0.7755	199.6478
5			96	36	7.2	23.673	193.7409	30.4235	13.4904	0.7756	197.5668	15.8399	9.6483	0.777	200.1667
8	4		98	37	3.9	10.0223	211.6696	44.9266	8.7342	0.7651	214.4081	14.9514	5.1814	0.7661	215.3372
ŝ		190	202	37		53.7473	209.308	253.2932	29.9103	0.7496	229.3644	18.0964	5.0732	0.7559	231.0886
;		20	50	37	4.9	67.2169	189.8661	57.1542	21.3827	0.7201	195.947	26.3698	14.2646	0.722	208.8721
;	24	24	68	38	3.6	15.4607	184.7762	51.283	10.6455	0.7861	187.0382	18.5121	6.463	0.7873	189.0685
;			22	38	4.5	17.433	235.9418	94.3705	12.7665	0.7087	243.736	17.8751	5.2677	0.7104	244.0874
2 R		30	149	38	e	5.8273	203.285	24.3398	5.6189	0.7699	204.7858	10.3149	3.7272	0.7705	205.1644
F 4			80	38	52	37.5989	192.8927	65.0965	19.5754	0.7478	201.0835	18.4746	8.3898	0.7481	203.3277
ç q		13	113	38	5.7	13.5927	207.0225	14.7016	8.9693	0.7516	208.0146	12.6959	8.1689	0.752	211.2388
2	3 5	28	45	38	7.4	28.2424	182.8103	60.9715	18.8233	0.7671	187.2083	25.8505	11.6092	0.7681	189.8935
ę	52	32	114	38	3.1	45.812	215.2793	46.3622	11.7194	0.7056	220.8066	12.8653	7.5027	0.7069	231.6073

STD.API/PETRO PUBL 4683-ENGL 1998 🗰 0732290 0615361 T20 📖

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

-	•	~	c	2	u	1	ļ	:							
	Tank ID	Sep Pres	Sep Temp	SIACH APIG	SIeOil BV/D		Sen Oil Mink	H G	-	-	×		¥	z	0
4 9	63	99	68	39	37	30.0740	JOEP OIL MAN	Hana IIO dao	Sep Oil HVP	Sep OII SG	FISOI MW	FIsOII BubPt	FISOII RVP	FIsOII SG	SISOII MWt
50	54	60	8	39	2.6	23.3671	178 2175	92.4084	16.5156	0.7524	195.0056	16.1898	6.1276	0.7551	197.2922
51	6 5	60	58	39	6.8	43 1452	107 8115	30.231	10.000	0.7736	181.607	17.3169	6.6556	0.7766	182.0023
52	57	33	60	39	6.4	36.0314	173 4779	52 52 42	10/8:22	0.7267	208.2514	22.0599	9.8751	0.7303	211.8192
53	68	42	110	39	5.4	26.6095	181 9529	58 4600	13.2021	0./6/4	1/8.1336	22.9183	11.4307	0.7683	181.4015
5	69	66	83	40	ſ	25.9649	191.3346	64 4855	16.22100	0022.0	90/9./81	13.655	6.8944	0.7557	189.3302
55	99	99	80	40	4	30.3258	162.7215	100 0506	18 5824	B011.0	121.0350	1/.0034	4.9511	0.7701	198.9804
56	61	13	110	40	4.8	12.2983	188 9155	7540 90	1200.01	0.1.42	108.3811	16.0191	5.8793	0.7777	169.2265
57	62	64	74	40	3.9	19.5795	209.364	07 5616	12 20010	0.741	190.5659	13.4456	6.7975	0.7417	192.2095
58	63	28	78	42	4.2	19.6852	190.6577	55 0000	10.001	0.7239	215.6986	17.575	5.3396	0.7258	216.8113
59	65	29	99	4	5.7	32 4522	170.001	2000.00	10.84/5	0./331	192.6785	17.6174	7.5785	0.7336	196.2622
00	88	1	7	44	-	18 0210	C101-11	03.020	1/.4516	0.7557	175.7934	21.6395	10.631	0.758	179.3976
61	67	60	80	4	101	A1 30610	210.303	00.33/5	12.8348	0.6575	218.6952	19.1577	8.2084	0.6585	220.3379
62	89	41	22	t A	2	17 6649	103.0307	105.2248	25.1265	0.7474	171.2679	22.3417	11.495	0.7519	172.3515
ŝ	69	, C			7.0 0	CI CO. / I	108.8644	71.746	13.2686	0.7281	173.5393	18.1016	6.6555	0.7299	174 461
3	22	2	8 8	₽ .	0.1	30.8081	146.4585	47.5069	17.0432	0.7541	148.838	20.9123	12 0992	0 7658	161 107
5	2 7	3 2	8	46	4.7	43.2607	172.7178	48.818	14.6283	0.7118	176.4867	17.4003	9 592	0.7123	101.101
8	5	47	411	46	2	26.2927	160.0748	34.1731	11.3747	0.7317	162 7R56	12 0438	7 26 46	00010	Q17C.201
8	2	23	108	4	5.3	24.2757	179.1085	48.3453	13.2196	0 7675	183 4552	12 0213	7 2040	0.7332	164.9142
67	73	45	140	47	9	78.804	148.5125	59.5218	18 8478	1010	150 0450	CI 70'CI	1.3003	0.7698	185.1624
68	74	40	76	47	10.6	41.319	159 RR4	128 4957	1000 00	1047.0	2046.001	10.156	7.1989	0.7507	160.1663
69	75	31	76	49	S	24.479	166 440A	1001-071 57 0771	420.024	0./133	166.6092	19.95	12.5476	0.716	168.7883
20	11	700	100	60	74	491 9060	00 E70B	1110.10	7040.01	0.6865	169.7873	18.1738	7.9712	0.688	172.009
1	78	20	48	E0	40	58 4487	140 2001	20/1.180	15/.1524	0.7181	125.0592	21.0253	11.0881	0.7776	126.3273
72	162	86	40	E.	11.0	130 1603	1000.011	0710.00	8/07.02	0.7681	119.0863	26.115	15.9631	0.7718	121.7843
73	8	115	2 2	2	2.11	CR01-071	124.3335	150.5425	44.1245	0.7154	133.4947	31.9558	20.2204	0.7242	139,4293
74	5		2 4	5	0.0	9966.10	121.6321	136.6961	28.3261	0.7292	127.2625	18.5389	7.7965	0.7353	127 982
Ĭ	5	3	8		4.0	68.32//	114.9974	52.6946	22.7376	0.7368	119.658	16.1285	11.6739	0 7431	120 620
2	7 6		8	4	10.3	47.1258	124.4413	34.5414	18.7716	0.7202	127.102	18.3863	13 6277	00000	120 1100
2	3		3	66	7.8	578.206	86.6827	664.2274	157.5247	0.6826	121 7339	23 3133	13 70.00	0 7405	101 0000
5	5	60	99	67	5.7	25.454	114.787	67.5156	16.8006	0.7239	116 8603	10 1645	0000	10010	124.0092
<u>و</u>	8	82	36	67	9.6	57.3834	145.1156	42.0138	18.9432	0.6112	151 12RG	16 9207	10100	2077.0	111.0341
6)	8	99	8	67	4.8	61.258	105.0226	18.9109	12 1053	07220	105 0050	10,0001	12.1401	1210.0	153.6421
ຂ	8	54	99	67	13.1	97.006	118.4242	87 8055	35 3078	0 0007	6000.001	10.2134	11.9803	0.723	108.6564
8	88	870	78	67	13.1	578.2002	87,664	853 7997	181 050	10000	220.021	26.6415	18.3763	0.7068	128.1335
82	89	600	70	57	7.5	396.2332	89,202	625 324	101.302	00000	130.3022	27.2382	14.6709	0.7111	130.9637
83	90	780	70	89	8	436.9841	83 886	780 3505	10000 001	18800'0	114.2/12	25.6081	13.9692	0.7319	117.0662
84	91	60	56	68	80	79.5471	105.4775	140 7465	2000.001	1810.0	2//8/111	24.5135	12.184	0.7306	113.0229
85	92	600	84	89	9.1	323.8754	91 7224	520 6820	110 0000	0.122	111.1256	23.1616	12.3855	0.7304	112.3857
86	93	300	80	68	10.6	287.108	100 9508	200.020	70.9070	0.742	113./2/6	22.1497	12.0645	0.7399	114.4793
87	8	110	72	69	10	79 9004	103 5503	7007.770	B100'R1	0.6/17	120.3487	24.5715	15.9151	0.6951	123.4617
88	19	760	G	Ga	20	320.4740	000.001	140.28/1	37.6723	0.7192	109.5508	20.4886	11.3535	0.7284	109.9364
68	96	85		84		320.47 10	92.569	182.3722	64.9305	0.6912	106.4613	23.5934	17.2254	0.7152	110,4881
6	67	29	6	5	1 11	0100 10	111.0406	97.7429	24.4748	0.7057	115.6032	17.2771	8.5272	0.7107	116 0447
5	8	5	36		4.01	04.20/2	106.3649	72.6126	28.106	0.6987	110.9727	20.079	14.0643	0 7049	112 5952
5	00	730	00	200		36.5627	109.7447	87.9349	21.8547	0.6974	112.9104	17.722	8.4248	0 7014	112 2546
10		001	81	20	11.9	321.6246	90.6078	178.2398	67.7678	0.68	104.0326	27.155	20.0638	0 7034	107 8645
8 8	2	000		64	6.4	309.6429	85.1237	583.6786	123.0081	0.6629	104.6757	21.1611	10 1428	0.6073	101.0040
1	12	151	80	64	=	924.9587	68.399	649.2551	188.761	0.626	93.6528	37 8902	25 9541	0.001 0	100.000
ŝ	1701	807	96	99	11.8	804.5404	72.2599	641.5309	184.8571	0.6222	104.154	30.3521	10 53	0.031	100.201

. •

						ľ	ľ	6						ļ	-
Ť.		B B	Son Tomp		SIE Di BuhPt	SleOil RVP	SIsOil SG	FG mol% H2S	FG mol% O2	FG mol% CO2	FG mol% N2	FG mol% C1	FG mol% C2	FG mol% C3	FG mol% i-C4
-1.		an ries	106	16	1.4414	0.7706	0.764	1.8951	0	93.397	0	0.4301	0.2663	0.2705	0.3367
ا	ſ	22	155	1	5.3435	2.3788	0.7489	0	0	40.4382	0	5.5102	10.7454	13.1749	5.6285
Ţ	•	50	160	18	0.6285	0.5286	0.7023	1.0834	0	75.1353	2.2535	1.9196	1.5597	4.6582	1.845
- uc	4	63	101	19	3.3402	2.2681	0.7798	6.5628	0	24.1706	0.2558	36.6216	9.3697	8.5241	2.8639
6	9	23	1 79	20	4.9036	1.2912	0.7917	0.1604	0	2.8065	7.1382	80.0646	5.9179	0.9439	0.4582
	80	18	1 75	20	12.8963	4.0448	0.7725	0	0	10.6712	19.8835	38.6625	9.9755	8.4816	2.3215
l ac	G	54	125	21	1.2524	1.0816	0.789	0	0	o	0.3829	63.028	13.2314	7.401	2.1929
Ja	10	35	1 76	23	9.1808	1.9512	0.8549	0	0	1.9413	0.5356	82.494	7.4314	4.1765	1.1696
١s	12	30	99	23	5.6118	3.9805	0.7682	5.5335	0	17.0641	0.4229	39.7025	11.1943	12.6577	2.7434
2 5	13	20	122	24	0.6066	0.5825	0.7936	ō	0	6.3779	10.0293	75.679	1.9883	1.2493	0.5141
2	14	20	88	24	5.7397	4.098	0.7673	6.9986	0	22.9436	3.9512	14.7021	12.8476	17.6882	3.7214
12	15	22	86	24	7,4533	4.6507	0.7432	6.5169	o	31.7766	0.8206	13.1184	11.0214	16.8053	3.782
213	16	20	68	24	6.7673	5.0463	0.7234	0	0	38.9934	0.8851	10.3686	12.9526	17.2599	4.2515
r l v	17	5	133	26	10.2685	4.5244	0.7998	ō	0	2.9448	0	22.4899	21.3923	22.9279	5.8068
2 9	- T	30	60	25	6.9634	4.9726	0.7613	0	0	1.5077	1.5921	47.2638	16.5434	17.3082	4.047
2 1	2 4	26	136	27	6.3825	3.2959	0.6811	8.4826	0	8.7197	5.9738	16.5207	12.9256	17.7794	4.955
Ì	2 8	34	64	27	6.9253	5.3507	0.7933	3.4661	0	5.6076	12.7629	32.1791	11.1491	15.3798	4.4211
σ	21	23	19	29	12.3783	3.5248	0.7727	0	0	3.4475	0	66.799	14.7789	7.7858	2.1543
	22	17	86	29	6.1558	4.9123	0.8084	5.1057	0	2.9368	0	23.6613	19.1799	23.8199	5.0308
t <u>-</u>	23	20	120	29	6.3657	5.1363	0.7946	0	0	2.2824	0	12.1023	9.9283	24.2899	8.7505
1	24	22	86	29	10.2902	6.1532	0.789	13.9478	0	2.1881	0	9.3921	28.3743	22.0872	6.0832
i e	26	4	80	30	11.7192	3.0827	0.7654	0	0	1.1278	0	70.6025	14.6658	6.8565	2.2916
1	27	26	180	30	4.5651	2.8784	0.798	0.745	0	9.3125	0	10.4575	14.3468	15.7954	4.3879
1.0	28	64	02	30	3.8429	2.6419	0.7174	0	0	3.0311	0.4683	67.9774	10.4782	8.4284	3.3373
5	29	80	11	33	2.6522	2.2789	0.7652	0	0	0.4996	0.4193	57.1059	15.6833	13.5988	4.3018
٦T,	30	20	115	33	4.6868	3.3635	0.7818	0	0	1.2546	0	49.0767	11.9423	14.0367	- 7.4373
100	31	60	78	34	6.6898	2.2674	0.7139	0	0	1.1285	0	80.6	5.7208	5.733	2.0585
j.	32	18	20	34	6.5241	2.4622	0.7724	0	0	2.8058	0	79.0107	6.7819	5.1171	1.8544
,ta	2	18	80	36	5.8193	4.8273	0.7535	0.1719	0	1.9108	0.5277	28.8701	24.7486	22.0205	3.6323
╗	5	15	108	35	6.3004	4.7548	0.7831	0.9225	0	17.8418	2.0542	9.6191	18.6043	21.6802	5.3269
10	36	11	100	35	6.4116	4.8521	0.7726	0	0	2.8019	0.4635	21.7073	27.3689	21,1453	4.6695
de.	37	30	125	36	11.1404	2.984	0.7553	0	0	1.4565	0	63.7774	11.7149	9.7085	3.241
4	38	50	68	36	6.9005	3.5199	0.6988	0	0	0.6985	0.3439	74.2786	8.1978	6.7201	1.9933
- Luc	39	57	80	36	5.4838	3.9842	0.7583	0	0	1.6195	0.4048	57.1054	15.2445	10.851	3.4538
ιœ	4	75	81	36	5.7343	4.186	0.7652	0	0	2.3102	0.2057	56.1464	13.5074	11.7647	4.1843
Ŀ	41	28	60	36	4.7907	3.8194	0.7767	2.8445	0	1.6267	0.4489	51.7547	18.826	14.0027	1.5068
G	42	18	96	36	9.8833	7.2643	0.778	14.2763	0	3.1971	0.7522	6.4393	14.591	27.3004	5.9964
0	43	18	80	37	5.9611	3.9644	0.7664	0	0	1.8415	0	53.929	11.7798	12.2699	6.7806
10	4	190	70	37	4.877	3.0119	0.7564	0	0	2.7528	0.3	60.649	17.94	11.212	1.7698
t-	45	22	50	37	5.5377	4.9433	0.7258	1.3462	0	9.3343	0	12.6216	31.9054	24.9982	4.9745
~	46	24	68	38	4.4948	3.599	0.7884	0	0	0.687	•	60.7044	14.3873	12.0394	3.7325
10	47	60	72	38	14,4906	4.9457	0.7105	0	0	0.9816	0	62.1851	13.8503	10.9655	3.7152
14	48	32	149	38	6.7988	3.2851	0.7706	0	0	0.5548	0	39.8506	18.4865	12.1346	5.7163
- Lo	49	62	80	38	6.9085	5.4293	0.7482	0	0	61.2834	0.3634	0.8591	4.1001	10.9282	3.3334
6	50	13	113	38	7.8776	6.0134	0.7531	0	0	0.5695	•	2.8423	17.599	38.092	8.5332
1	2	28	45	38	9.9775	7.5217	0.7686	0	0	41.4896	0	15.0654	16.3081	12.4316	3.6453
	62	22	114	38	3.4629	3.1288	0.7091	0	0	0.9182	5.9167	11.454	10.9995	23.9967	6.8345

STD.API/PETRO PUBL 4683-ENGL 1998 🗰 0732290 0615363 8T3 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-'/

Ľ		6	0		٩	0	R	S			>	3	×	\	~
ŀ	Tank ID	Sep Pres	Sep Temp	SISOII APIG	SIsOII BubPt	SISOII RVP	SISOII SG	FG mol% H2S	FG mol% O2 I	FG mol% CO2	FG mol% N2	FG mol% C1	FG mol% C2	FG mol% C3	FG mol% i-C4
49	63	99	68	39	4.3294	3.6609	0.756	0	0	3.4079	0	50.8367	13.4442	13.1548	4.6883
50	54	60	80	39	11.7238	5.9678	0.7768	0	0	1.0162	0.27	57.7746	12.0476	10.2157	3.7159
51	55	60	68	39	8.7243	6.6257	0.7315	0	0	0.3954	0.1636	41.2851	19.4089	21.7402	5.4488
52	57	33	60	39	8.2038	6.6515	0.7692	1.2838	0	47.1099	0	4.0202	11.8069	18.6132	2.8347
53	58	42	110	38	7.7742	5.3608	0.7564	0	0	0.1942	0	24.5258	25.1503	21.4172	4.6914
54	26	99	83	40	8.7179	2.9531	0.77	0	0	91.1161	0	0.2165	0.6202	1.7261	1.2292
55	60	99	06	40	6.2278	4.183	0.7781	0	0	5.029	0.2354	49.7633	19.0351	11.7766	3.2647
56	61	13	110	40	6.3835	5.0292	0.7424	0	0	0	0	30.4395	15.3971	22.0211	4.0376
57	62	64	2	8	5.4308	4.0835	0.7261	0	0	1.6599	0.5689	68.844	6.5606	7.6468	3.8236
58	63	28	78	42	4.9163	4.2293	0.735	0	0	1.4644	21.3798	22.4264	16.8135	17.7377	3.9981
59	99	29	60	44	7.6703	6.0531	0.7599	0	0	0.2234	0.6711	33.9063	24.655	25.1337	1.4932
09	99	4	7	44	10.0859	6.8306	0.6589	0	0	0.4799	0.3594	40.9379	18.9428	19.0301	4.1229
61	67	60	60	44	16.0774	10.1741	0.7525	0	0	0.6955	0	38.4516	18.2457	23.5566	3.9508
62	68	41	72	45	9.4588	5.2742	0.7304	0	0	1.0134	0.383	62.2728	11.7659	10.7397	3.323
63	69	20	68	45	9.6088	8.1633	0.7575	•	0	8.3929	0.8633	25.8114	18.4166	21.534	5.8629
64	70	23	86	46	5.2384	4.7495	0.7156	0.7561	0	5.7542	0.3392	28.6643	12.4898	19.6349	4.793
65	11	24	114	46	5.7733	5.0209	0.7343	1.3134	0	4.9447	0	22.4727	11.9841	19.9346	5.9772
99	72	62	108	47	6.8474	5.4861	0.7707	0	0	•	0	27.7344	15.2638	22.2383	8.982
67	73	45	140	47	7.0469	6.015	0.7515	0	0	0.3632	0	11.5462	6.48	19.7545	20.1714
68	74	40	76	47	12.7042	10.5944	0.717	0	0	0.5738	14.7944	12.9539	9.1042	23.7698	7.02
69	76	31	76	49	5.7636	4.9738	0.6888	0	0	2.0338	0.3832	47.1818	18.6078	11.4481	3.9695
70	11	700	100	60	9.0727	7.5333	0.7792	0	0	1.0877	0.1856	40.4112	22.6752	18.4317	4.1328
71	78	20	48	60	10.9331	9.5093	0.7758	0	0	0.2068	0.3123	31.8131	24.4857	24.1179	5.7332
72	19	86	40	61	12.5002	11.2506	0.7292	0	0	0.0884	0.4203	32.4066	22.0275	24.8938	3.8363
73	80	115	73	64	7.1712	5.5928	0.736	0	0	1.2606	0.512	57.2995	16.6319	11.6395	2.0982
74	81	30	100	64	11.453	9.6021	0.7444	0	0	1.4346	0.3027	10.262	17.4592	32.178	9.1405
75	82	15	86	2	12.0256	10.3587	0.7249	0	0	0.424	0.2849	8.558	18.0623	30.7298	14.131
76	83	770	100	22	8.5988	7.7896	0.744	0	0	1.3217	0.0738	39.4772	16.7501	20.0018	6.2093
11	84	39	66	67	7.0189	5.5386	0.7273	0	0	1.8168	0	60.4915	16.372	9.8269	3.0112
78	85	38	96	67	11.4256	9.76	0.6132	0	0	0.5428	0	10.6855	12.6702	24.9757	11.0312
62	86	99	80	67	4.9957	4.7737	0.729	0	0	0.6859	0	26.378	19.3544	23.6891	6.7469
80	87	64	60	67	15.7792	13.3924	0.7092	0	0	0.7942	0	16.5367	24.5955	32.3628	5.9506
81	88	870	78	67	20.2294	13.1747	0.7116	0	0	0.9522	0.186	48.9802	18.2703	16.1517	3.223
82	89	600	20	29	8.1576	7.476	0.7357	0	0	1.8432	0.0662	52.4974	12.5173	16.6668	4.4487
ខ្ល	6	780	2	28	9.1113	7.941	0.7322	0	0	0.7805	0.0599	60.239	14.3534	12.7024	2.1748
2	91	99	56	28	9.6619	8.1036	0.7321	0	0	0.9216	0.1391	44.7416	23.0491	18.4971	2.9092
85	92	500	84	89	11.307	9.4228	0.7409	•	0	0.8085	0.2195	46.9887	19.4296	12.6019	3.9444
86	93	300	80	68	11.4718	10.5731	0.698	0	0	0.1194	0.3763	34.7691	15.8939	17.1306	9.8124
87	94	110	72	00	15.3757	10.0036	0.729	0	0	0.8591	0.1249	40.5154	22.2749	20.0409	3.4514
88	96	760	06	09	10.0999	9.3954	0.7213	o	0	1.4601	0.0904	16.7106	19.3169	28.8859	9.9043
88	96	85	88	61	8.9391	6.9481	0.7112	0	0	0.6517	0.4033	49.1093	15.2488	15,1602	3.1869
8	97	57	82	62	11.7924	10.3852	0.7069	0	0	0.9722	0.1432	19.0674	18,1513	27.95	8.4071
91	98	72	80	63	10.3616	7.0248	0.7018	o	0	0.7594	0.7442	53.3915	14.6196	14.3826	2.3274
8	66	730	80	63	12.9541	11.8876	0.7091	0	0	1.3727	0.0908	15.555	22.1793	30.1745	9.2269
3 3	100	580	1	64	6.9712	6.32	0.6986	0	0	0.2608	0.2727	62.9091	12.8278	9.7517	3.054
\$	101	730	80	64	11.527	11.0007	0.7032	Ð	0	1.2841	0.0709	39.6811	18.9431	21.0329	6.0159
95	102	807	96	99	13.0403	11.7637	0.6909	0	0	0.4691	0.1744	35.2427	24.2257	20.5459	5.7377

		4	c	C	AA	AB	AC	AD	AE	AF	AG	AH	A
•	Tank ID	San Pres	Sen Temn	SISOIL APIG	FG mol% n-C4	FG mol% i-C5	FG mol% n-C5	FG mol% HEXS	FG mol% HEPTS	FG mol% OCTS	FG mol% NONS	FG mol% BENZ	FG mol% TOL
~		45	106	15	0.908	0.6924	0.752	0.2979	0.3172	0.1419	0.046	0.0034	0.0064
6	2	22	155	17	10.1487	3.5156	4.0848	2.3386	1.7386	0.8716	0.3274	0.0422	0.0279
4	6	20	160	18	4.2866	1.8858	2.3283	0.776	0.8611	0.4614	0.2243	0.0097	0.0217
S	4	1 53	101	-19	5.2454	2.2331	2.0105	0.7898	0.6007	0.2041	0.0773	0.003	0.0094
9	9	23	19	20	0.6526	0.5639	0.4722	0.2947	0.2229	0.0924	0.0285	0.0037	0.0058
ŀ	80	18	76	20	5.0292	1.7332	1.6844	0.6041	0.3685	0.151	0.0341	0.017	0.0091
•	9	54	125	21	5.5659	2.7446	2.1432	1.2007	0.8467	0.393	0.1512	0.0145	0.0228
٥	9	36	76	23	1.1144	0.6941	0.2501	0.0678	0.0545	0.0149	0.0026	0.0175	0.0054
۽ اد	12	30	99	23	5.4101	2.011	1.8498	0.5592	0.3488	0.1117	0.028	0.0069	0.0042
2	1	20	122	24	0.6384	0.6644	0.4958	0.6121	0.7297	0.407	0.1681	0.0091	0.0315
:	14	2	88	24	9.1597	2.7703	2.7126	0.8851	0.6356	0.2203	0.0608	0.0093	0.0075
¥ Ę	4	22	86	24	8.788	2.5765	2.4165	0.8531	0.6222	0.2263	0.0619	0.0091	0.0175
4	16	20	68	24	8.3382	2.3222	2.5256	0.8422	0.3995	0.2468	0.0502	0.0122	0.0198
15	4	19	133	26	11.5422	4.6193	3.6532	1 6441	1.1597	0.5577	0.2327	0.0166	0.0284
2 4	18	30	60	26	6.8068	2.061	1.695	0.399	0.3293	0.0823	0.0255	0.0036	0.0094
2	19	26	136	27	9.8521	4.903	3.7954	2.1741	1.222	0.6612	0.2318	0.2921	0.4651
÷ e	20	3.	64	27	8.4588	2.9718	1.9333	0.732	0.3741	0.1103	0.0246	0.0038	0.0041
2 F	3	23	62	29	2.1544	0.8547	0.4581	0.2335	0.4537	0.2728	0.0628	0.1875	0.1483
2	22	17	86	29	10.1836	4.0356	2.5853	1.1438	0.9501	0.2776	0.0974	0.2529	0.1708
1	23	20	120	29	23.8599	5.7876	6.474	1.6565	1.8049	0.6694	0.1763	0.4975	0.3317
5	24	22	86	29	7.7959	4.9905	1.8332	1.2708	1.0384	0.3969	0.1131	0.0411	0.0513
12	26	4	80	30	2.2778	0.6649	0.4657	0.2824	0.4152	0.1531	0.0461	0.0176	0.0062
24	27	26	180	30	11.7061	6.815	9.0199	4.6117	5.0959	2.5012	0.7632	0.0239	0.0422
25	28	64	20	30	3.1185	1.1742	0.8422	0.3517	0.3375	0.1404	0.0344	0.0535	0.0183
۲ ۲	29	80	11	33	3.4304	1.8504	1.1412	0.6201	0.5422	0.2544	0.0641	0.0692	0.0555
32	90	20	115	33	7.3318	3.2454	2.276	1.0807	1.0406	0.4471	0.1208	0.0679	0.044
ŝ	34	09	78	34	2.3765	0.9266	0.6549	0.2968	0.2198	0.0891	0.0204	0.0231	0.0091
ŝ	32	18	2	34	1.9777	0.9195	0.594	0.2905	0.2693	0.1294	0.0304	0.0213	0.0291
ŝ	34	18	80	35	8.6664	2.6345	2.8985	1.0014	1.0919	0.3487	0.0914	0.3153	0.2409
5	36	16	108	36	11.2813	4.6596	3.6141	1.5936	1.1689	0.4514	0.1317	0.017	0.0292
5	36	17	100	36	10.2951	3.9542	3.7423	1.4491	0.9514	0.3732	0.1237	0.0206	0.0236
5	37	30	125	36	3.641	1.7913	1.2352	0.7488	0.9187	0.5841	0.1756	0.277	0.2663
5	38	20	68	36	3.1472	1.3933	1.2468	0.5382	0.5449	0.2292	0.0445	0.1381	0.0944
35	39	57	80	36	5.2134	1.9832	1.6349	0.7311	0.6894	0.3038	0.0566	0.0974	0.0847
ဗ္ဂ	\$	75	61	36	5.7525	2.1935	1.7777	0.6223	0.6075	0.2582	0.0605	0.1011	0.0625
37	4	28	69	36	4.7387	1.1054	1.4436	0.43	0.5322	0.1806	0.0343	0.0725	0.0557
8	42	18	96	36	14.7897	4.9003	3.6249	1.4238	1.2467	0.334	0.1037	0.1202	0.1162
ę	2	18	98	37	5.6765	2.9857	1.7577	0.8789	0.7907	0.3988	0.0914	0.1429	0.1043
9	4	190	02	37	2.9303	0.8982	0.5823	0.3038	0.2932	0.1621	0.0228	0.029	0.0135
4	45	22	20	37	9.1761	2.2992	1.7194	0.3997	0.5379	0.1535	0.0221	0.2447	0.0253
\$	46	24	68	38	4.0446	1.7243	1.0892	0.4991	0.46	0.1927	0.0446	0.0425	0.0565
5	14	60	72	38	3.8467	1.5955	1.1351	0.5011	0.4378	0.1907	0.0486	0.1512	0.0754
44	48	32	149	38	5.2845	5.1038	3.4799	2.6649	2.8683	1.5151	0.263	0.2402	0.2452
45	49	62	80	38	9.6044	3.7156	2.5699	1.2884	0.938	0.3558	0.0679	0.0057	0.0131
46	20	13	113	38	17.0901	4.6062	5.2782	1.3011	1.6371	0.6343	0.1913	0.0788	0.1258
47	51	28	45	38	6.67	1.8891	1.3367	0.3166	0.4233	0.1195	0.0211	0.085	0.0136
48	52	22	114	38	19.8302	6.1208	7.1482	1.9607	2.1946	0.7609	0.133	0.0469	0.0431

A- Q Not for Resale

1	<		Ö		¥	AB	AC	Q	AE	AF	AG	AH	R
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	FG mol% n-C4	FG mol% FC5	FG mol% n-C5	FG mol% HEXS	FG MOI% HEPIS	FG mol% OCTS	FG mol% NONS	FG mol% BENZ	FG mol% TOL
49	63	99	68	39	5.4511	2.9922	2.0567	1.1611	1.0378	0.4425	0.0744	0.3901	0.188
50	54	60	80	39	5.5747	2.9449	3.0346	1.1198	0.9556	0.3608	0.067	0.055	0.0542
51	55	90	68	39	6.826	2.0492	1.2806	0.4503	0.427	0.1866	0.0252	0.0451	0.0047
52	57	33	1 60	60	7.8623	2.2266	2.1003	0.6495	0.5894	0.1951	0.0337	0.1414	0.103
53	58	42	110	66	9.8131	3.2318	3.8738	1.3439	1.8876	0.6184	0.1579	0.9845	0.6066
54	69	99	83	\$	1.5675	1.0384	0.7639	0.4507	0.4809	0.2232	0.0586	0.115	0.1254
55	60	99	66	9	3.695	1.7694	1.2613	0.7005	0.8398	0.3935	0.1002	1.1114	0.5257
56	61	13	110	9	12.5961	3.7193	4.6539	2.0248	2.0985	0.875	0.1881	0.2154	0.2361
57	62	29	2	9	4.2089	2.3417	1.8542	0.8498	0.6557	0.2537	0.0595	0.0774	0.0559
88	63	28	1 78	42	7.6413	2.909	2.6874	0.7356	0.9834	0.3384	0.0632	0.0133	0.0147
6 9	65	29	60	1	9.4312	0.6195	2.6303	0.1654	0.3068	0.0913	0.0233	0.0185	0.0114
80	66	4	1 71	1	8.7288	2.4947	2.3687	0.7115	0.735	0.2817	0.0529	0.0686	0.08
6	67	99	09	1	8.2858	2.5622	2.4143	0.6121	0.4197	0.2224	0.0256	0.0273	0.0404
62	68	4	1 72	45	4.1849	1.893	1.4696	0.7967	0.8297	0.3087	0.0659	0.2549	0.1739
63	69	20	68	45	9.3439	3.5852	2.7687	1.0761	0.8276	0.3883	0.0645	0.0406	0.0546
64	20	23	1 85	46	14.4812	3.9945	4.937	1.2549	1.0815	0.3716	0.0678	0.0136	0.0139
65	11	24	114	46	14.2431	4.9773	5.4098	2.4532	1.8698	1.411	0.2595	0.2092	0.2517
99	72	62	108	47	9.3858	6.5298	4.3553	1.6261	1.6943	0.7816	0.1495	0.1013	0.1713
67	73	45	140	47	12.5764	9.1937	5.953	3.906	4.3385	1.8828	0.4082	0.3904	0.3882
89	74	40	1 76	47	17.3444	5.2107	5.8645	0.9939	0.9211	0.3038	0.0545	0.0246	0.0188
69	76	31	1 76	49	6.6716	2.9607	2.7062	1.1883	0.9694	0.338	0.0885	0.2701	0.1275
2	17	700	100	20	6.4671	2.2039	1.689	0.8312	0.7849	0.258	0.0366	0.1347	0.2159
7	78	20	1 48	20	7.8278	2.5599	1.2831	0.5555	0.342	0.1393	0.0196	0.2124	0.1192
72	19	36	40	51	10.3894	2.0977	2.3639	0.5158	0.4115	0.0891	0.0086	0.0204	0.0146
73	80	116	5 73	20	4.4886	1.5451	1.4184	0.5584	1.1659	0.614	0.1047	0.0365	0.0089
74	81	30	100	54	13.1693	5.3015	3.944	1.9625	1.8134	0.9133	0.1237	0.3022	0.4255
75	82	2	86	54	13.5633	5.2008	3.4687	1.8092	1.6226	0.5996	0.0746	0.2154	0.1559
76	83	770	100	29	8.348	2.826	2.3466	0.8905	0.6813	0.2111	0.0241	0.0889	0.0965
77	84	36	99 68	67	3.127	1.197	0.9121	0.8154	0.9552	0.4812	0.0945	0.1932	0.1601
78	85	36	36	67	18.4645	7.9995	6.0692	2.6682	1.7047	0.5422	0.1302	0.3835	0.1983
62	86	66	80	57	9.5903	4.4433	3.0491	1.8563	1.8344	0.6239	0.0785	0.2168	0.2768
80	87	2	69	67	11.7939	3.0002	2.6903	0.738	0.6216	0.2024	0.0269	0.0604	0.0663
81	88	876	78	67	6.8177	2.0079	1.8428	0.5197	0.4239	0.131	0.0165	0.0422	0.0444
82	88	600	70	57	6.2916	2.1677	1.7408	0.5755	0.4653	0.1443	0.0167	0.0765	0.0719
83	6	780	0/	58	5.055	1.4914	1.3509	0.5666	0.5206	0.1951	0.029	0.0171	0.0301
84	91	39	66	58	5.0365	1.4966	1.1396	0.5613	0.6169	0.3079	0.0493	0.038	0.0926
85	92	500	3 84	68	6.3764	3.8031	2.3695	1.279	0.9113	0.2533	0.0341	0.1526	0.1963
86	63	300	80	68	9.4102	6.3777	2.6955	12.1	0.6869	0.1882	0.0352	0.0496	0.0351
87	94	110	0 72	69	6.1775	1.957	1.5257	0.7955	0.9224	0.4855	0.0817	0.0547	0.1413
88	96	760	06 C	60	11.5039	4.4499	3.6978	1.3629	0.9506	0.2874	0.031	0.1633	0.1554
89	96	8	285	61	6.2697	2.29	2.3569	1.0553	2.0197	0.9216	0.1783	0.059	0.0279
60	87	19	7 82	62	13.1598	4.0629	2.953	1.6605	1.5371	0.5169	0.072	0.0978	0.1631
91	98	7.	2 80	63	5.3614	1.6753	2.0121	0.9424	1.6345	0.8315	0.1697	0.0297	0.1053
92	66	730	80	63	11.6835	3.8489	3.006	0.9838	0.6783	0.1999	0.0199	0.1483	0.1236
83	100	68(1	6	4.2779	1.8576	1.458	0.7559	1.1695	0.3786	0.0293	0.1624	0.2173
8	<u>5</u>	73	80	64	8.0306	2.2163	1.6368	0.4724	0.2092	0.0506	0.0042	0.0513	0.0327
95	102	80	7 96		8.1979	2.5132	1.6591	0.5034	0.27	0.148	0.0226	0.0386	0.0078

A 10 Not for Resale

											40			4
ŀ	<		0 - T		EG mol% E-REN7	EG mol% XYI	EG mol% n-C6	FG mol% 224TriMe	FG mol% C10+	FG Mol Frac	FG MWH	FG MWA THC	FG MWI VOC	FG Grav
- ‹		OUP LIES	106	15	0.0031	0.0079	0.2281	0	0	0.0193	44.7726	63.86987803	68.67850402	1.5455
4 6	- [60	165	17	0.0077	0.0429	1.3568	0	0	0.0237	48.6786	51.70217986	55.33739534	1.6803
· ₹	1 (*	20	160	18	0.0015	0.0246	0.6643	0	0	0.0118	46.4059	57.11401467	61.1347774	1.6019
	4	23	101	19	0.0054	0.0152	0.4376	0	0	0.0378	35.15	32.13191166	50.32321269	1.2133
» د	6	23	19	20	0.0004	0.0042	0.1692	0	0	0.0113	20.4833	19.11440071	44.12996167	0.7071
7		18	1 75	20	0.003	0.0065	0.3641	0	0	0.0092	31.3671	30.35811221	48.33756911	1.0827
•	6	54	125	21	0.0019	0.0251	0.6542	0	0	0.0249	28.5743	28.53399311	50.05084685	0.9863
, o	9	35	10	23	0.0002	0.0007	0.0296	0	0	0.0175	20.4986	19.98663393	41.63304905	0.7076
, ç	12	30	1 66	23	0.0018	0.0069	0.3433	0	0	0.0223	33.6368	31.31405909	47.57875913	1.1611
2	17	20	122	24	0.0017	0.0157	0.3886	0	0	0.0086	22.6834	20.3731109	61.7815952	0.783
÷	14	20	88	24	0.0047	0.0131	0.6683	0	0	0.029	41.3425	41.93443217	49.33958978	1.4271
ŧ۴	÷	22	86	24	6000'0	0.0117	0.5752	ō	0	0.023	42.3532	42.51674246	49.78723271	1.462
2	; 4	2	68	24	0.0005	0.0034	0.5282	0	0	0.0211	43.3115	43.05038765	48.67877916	1.495
Ę	2		133	25	0.003	0.0119	0.9694	0	0	0.0074	41.8015	41.67469194	49.40555587	1.4429
2 4		200	60	26	0.0022	0.0057	0.3178	0	0	0.0237	31.3889	31.23084404	45.69271523	1.0835
<u>•</u>	2	5	136	27	0.0225	0.1019	0.9219	0	0	0.0151	43.2752	45.31470497	53.33399841	1.4938
÷	2		64	27	6000.0	0.0051	0.4155	0	0	0.0221	35.0484	35.57339863	49.24046871	1.2098
2	2	23	52	29	0.0043	0.0408	0.1634	0	0	0.0123	25.051	24.3503262	43.00094152	0.8647
2		÷	86	29	0.0037	0.0222	0.5424	0	0	0.0144	39.8801	40.01865072	48.32504353	1.3766
3	3 6		120	82	0.0086	0.041	1.3392	0	0	0.0027	50.447	50.50499037	55.3764251	1.7414
2 8	3		BO	20	0.0012	0.0184	0.3764	0	0	0.0385	41.564	42.68357531	46.04337426	1.4347
3				2	0000	0.0134	0.113	0	0	0.0038	23.7264	23.4740091	42.03267154	0.819
3	ŝ			2	0.000	0 1013	4 2639	C	0.0003	0.0215	54,4723	55.44074369	60.62413558	1.8803
24	17	8		2		0.008	0.2011		C	0.0412	25 5064	24 89560484	45 99341505	0 8804
32	87	9	2	3	0.000	10000	0.9250			10.0463	28 6086	28 50688620	45 67604196	0 agre
26	73	28		~	0.004	10000	2020.0		2000	0.0104	23 0400	22 7600000E	E1 28428630	1 1710
27	30	20	115	33	0.0043	0.016/	1/6.0		0,000	0.013	00.453	33./ 0320220	CC074071C	00022.0
28	31	99	78	34	0.0006	0.0035	0.1386			0.03	22.1314	21.8/040244	41.0/040224	0./035
29	32	18	102	34	0.0025	0.0143	0.1522	0	0	0.01	22.4044	21.76684971	46.63804461	0.7734
ဗ္ဂ	34	18	80	35	0.0046	0.0409	0.7834	0	0	0.0175	37.5635	37.43867525	46.45355837	1.2966
5	35	15	108	35	0.002	0.0207	0.9816	0	0.0001	0.023	45.1085	45.85434473	49.97666233	1.5571
:	36	17	100	36	0.0042	0.016	0.8904	0	0	0.0202	40.1839	40.08228981	47.03746581	1.3871
:	37	30	125	36	0.0084	0.0374	0.4176	0	0.0002	0.0102	28.1156	27.83385888	49.46384682	0.9705
2	38	60	68	36	0.0043	0.0348	0.352	0	0	0.0274	24.471	24.29315402	49.12438262	0.8447
Ĩ	39	57	08	36	0.0045	0.0346	0.4877	0	0	0.0233	29.3101	29.03755567	47.19399932	1.0117
8	9	76	81	36	0.0043	0.0292	0.412	0	0	0.0472	29.9726	29.61289872	48.04403935	1.0346
2	41	28	60	36	0.002	0.0118	0.383	0	0	0.0209	28.9917	28.5593034	43.51082185	1.0007
; e	42		96	36	0.0065	0.0338	0.7472	0	0	0.0252	45.966	48.20684298	50.95606126	1.5867
3	43	18	86	37	0.0056	0.0472	0.5195	0	0	0.015	31.8499	31.58149495	50.52757153	1.0994
ŝ		190	70	37	0.0026	0.0077	0.131	0	0	0.0987	26.0707	25.54023585	41.40873228	0.8999
2	45	22	60	37	0.0029	0.0034	0.2356	0	0	0.0389	39.8127	39.43035988	43.27904284	1.3743
ŝ	46	24	68	38	0.0022	0.019	0.2745	0	0.0001	0.0142	27.7054	27.5694965	45.69263627	0.9563
1	47	60	72	38	0.002	0.0117	0.3067	0	0	0.036	27.3573	27.17031164	45.95638258	0.9443
2	48	32	149	38	0.0164	0.1464	1.4273	0	0.0022	0.0091	38.9826	38.80839757	54.03150088	1.3456
45	67	62	80	38	0.0055	0.0155	0.5524	0	0	0.0536	48.3029	65.23212427	56.13006226	1.6673
4	209	13	113	38	6600.0	0.0482	1.363	0	0	0.0063	49.8551	49.8062347	50.79978507	1.7209
47	51	28	45	38	0.002	0.0023	0.1808	0	0	0.03	40.4598	37,90631869	45.48785031	1.3966
a	52	22	114	38	0.0021	0.0358	1.6041	0	0	0.0322	49.1437	50.41846833	55.23711126	1.6964

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A- 1 Not for Resale

63 66 89 33 0.6051 0.0512 0.6179 0.6179 0
64 600 80 339 0.0001 0.0275 0.7010 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0013 0.0011 0.0013
64 60 80 39 0.0051 0.0276 0.7669 0
65 60 68 33 0.0023 0.015 0.2494 0 0 0 67 33 60 58 33 0.0023 0.0143 0.4135 0 0 0 68 42 110 33 0.0034 0.0132 0.4135 0 0 0 0 69 66 83 40 0.0127 0.0132 0.4462 0 0<
57 33 60 39 0.002 0.0144 0.4135 0 0 68 42 110 39 0.0024 0.0518 1.4432 0 0 0 69 66 90 40 0.0127 0.0732 0.2515 0 0 0 0 61 13 110 40 0.0127 0.0735 1.4113 0
68 42 110 39 0.0084 0.0518 1.432 0 0 69 66 83 40 0.0034 0.0132 0.2515 0 0 61 13 110 40 0.0127 0.0132 0.2515 0 0 61 13 110 40 0.0127 0.0131 0.2514 0 0 62 64 74 0 0.0177 0.0131 0.5244 0 0 63 28 78 42 0.0007 0.0017 0.0187 0.7844 0 0 66 44 0.0007 0.00351 0.0566 0
59 66 83 40 0.0034 0.0132 0.2515 60 66 90 40 0.0108 0.0421 0.462 61 13 110 40 0.0127 0.0735 1.4113 62 64 74 40 0.017 0.0131 0.544 63 28 78 42 0.0017 0.0131 0.544 65 29 60 44 0.0017 0.0131 0.544 66 48 71 44 0.0037 0.0566 0.7844 67 60 44 0.0033 0.0551 0.6167 0.6167 68 41 72 45 0.0033 0.0564 0.471 69 20 68 46 0.0033 0.0504 0.9457 70 23 85 46 0.0168 0.0133 1.3377
60 66 90 40 0.0108 0.0421 0.4462 61 13 110 40 0.0127 0.0421 0.4462 62 64 74 40 0.0127 0.0735 1.4113 63 28 78 42 0.0017 0.0131 0.5244 65 29 60 44 0.0007 0.0017 0.7844 66 44 0.0007 0.0021 0.0167 0.7646 67 60 44 0.0036 0.0167 0.4617 67 60 60 44 0.0036 0.4167 0.4617 68 20 68 45 0.0033 0.0244 0.4677 69 23 85 46 0.0033 0.0204 0.9437
61 13 110 40 0.0127 0.0735 62 64 74 40 0.0017 0.0131 63 28 78 42 0.0004 0.0057 65 29 60 44 0.0007 0.0021 66 44 0.0006 0.0051 0.0051 67 60 44 0.0033 0.0166 68 41 71 44 0.0033 0.0166 61 62 44 0.0033 0.0166 66 63 21 46 0.0033 0.0544 70 23 85 46 0.0016 0.0234
62 64 74 40 0.0017 63 28 78 42 0.0014 65 29 60 44 0.0004 66 44 71 44 0.0005 67 60 44 0.0046 60 67 60 44 0.0046 60 61 71 44 0.0035 66 63 20 68 45 0.0033 70 23 85 46 0.0155
65 23 60 44 00 65 44 71 44 00 67 60 60 44 00 68 41 71 44 00 67 60 60 44 00 68 41 72 45 00 69 20 68 45 00 70 23 85 46 00
60 44 7 44 67 60 61 44 68 21 72 45 70 23 85 46
68 41 72 68 69 20 68 70 23 85
69 20 70 23
22 23

STD.API/PETRO PUBL 4683-ENGL 1998 🗰 0732290 0615368 385 🗰

[4	T AT		4//	AW	ΔY	۸۸	47	AA I	BB
ŀ	<	8 2			MISC molec H2S	WSG mol% O2	WSG mol% CO2	WSG mol% N2	WSG mol% C1	WSG mol% C2	WSG mol% C3	WSG mol% i-C4	WSG mol% n-C4
-[•		Sep ries	100 ton	15	2.4011	0	93.0086	0	0.1602	0.3529	0.3119	0.3452	0.9192
4 9	- ~	22	165	17	0	0	41.572	0	3.6976	11.1996	13.3291	5.6503	10.1758
∽ ₹		2	160	18	2.173	0	52.8803	0.2704	0.5917	1.7474	12.6961	6.7392	13.6745
t u	7		101	19	14.2562	0	25.4645	0.0299	13.4643	15.437	15.6791	3.3932	5.7807
) «	9	23	62	20	0.1615	0	3.0184	2.873	83.9378	6.0895	0.9476	0.4587	0.6532
-	0	18	76	20	0	0	10.7529	18.3147	40.0958	10.0152	8.4905	2.3225	5.0307
- 0	5	54	125	21	0	0	0	0.0366	17.711	15.9971	24.3926	10.0545	21.0353
• •	, ,	35	76	23	0	0	1.9542	0.2871	82.7098	7.4495	4.1777	1.1697	1.1145
۽ ا	; ;	30	99	23	13.5021	0	16.2818	0.036	11.6451	17.7076	26.0901	3.3203	6.0219
2	15	202	122	24	0	0	14.8555	3.128	66.8019	6.8605	3.371	0.6776	0.7412
;		0	88	24	12.5579	0	16.6212	0.2994	3.5878	15.1792	29.2369	4.339	10.0354
14		22	88	24	8.221	0	32.5304	0.0952	4.829	15,0254	19.0318	3.9	8.959
2	5 4		89	24	0	0	27.0135	0.0585	2.3092	15.4204	33.6109	5.1671	9.3115
ţ		10	133	25	0	0	2.9448	0	22.4624	21.3914	22.9268	5.8064	11.5418
24	q		9	26	0	0	1.4619	0.1338	13.8201	26.988	39.6301	5.1043	7.7714
₽!;			136	27	9.2219	0	11.0175	2.0038	13.871	15.3774	18.6421	5.0418	9.9765
		2 6	44	27	8 1812	0	4.8279	0.9781	8.3073	16.2574	38.543	5.986	10.0609
₽ (3 2	5	5	29	0	0	3.4519	•	66.7855	14.7845	7.7859	2.1542	2.1543
2	1	47		29	7.2705	0	1.5207	0	4.0031	16.8987	41.7859	6.3627	11.7272
312	1 8		120	29	0	0	1.1423	0	2.2764	8.085	32.9095	10.1011	26.2533
7	3 2		8	29	15.0099	0	2.229	0	4.2025	31.5067	22.8754	6.1576	7.8613
ž	1 4		S	8	0	0	1.1298	0	70.5894	14.674	6.8568	2.2915	2.2778
ŝ	D7 CC	20	180	8	0.7722	0	10.0293	0	8.3265	15.2617	16.0989	4.4213	11.7707
1	i e			08	0	0	5.2445	0.085	39.0025	28.5767	16.6636	3.8451	3.373
ŝ	9		2 -	22		C	0.3166	0.0268	11.7702	17.2092	44.7596	12.8899	7.3911
R,	87		446	8			2.017	0	31.3441	23.9057	18.1049	7.9575	7.6531
2	B			22			1 1756		80.464	5.8007	5.7399	2.059	2.3769
8	5						2 972		78,6999	6.915	5.1255	1.855	1.9781
8	32	2		26	0.2532		1 0118	0.0289	5.127	23.3099	44.865	4.9771	10.5027
8	34		007	25	1.31		15 1055	0.2174	3.0217	23.4351	26.7222	5.6599	11.7248
5	50	1		35	0	0	2.3343	0.0459	6.5246	35.4209	28.0491	5.0689	10.8436
36	27	: 02	125	36	0	0	1.4565	0	63.77	11.7147	9.7082	3.2408	3.6409
3 5	5		g	36	0	0	0.776	0.1273	74.1003	8.4898	9.7395	1.9945	3.1485
5 4	300	8 62	808	36	0	0	2.7367	0.0751	33.7557	34.1198	14.069	3.6627	5.4059
2	S	75	81	36	0	0	3.9416	0.0382	33.255	30.6945	15.4479	4.4497	5.974
3 5	P P	28	09	36	6.7647	0	1.3611	0.0328	13.0529	27.7377	38.6411	2.1391	5.7873
5	61	1	95	36	16.665	0	2.2833	0.0613	1.658	15.2863	30.0123	6.1848	15.0998
ŝ	12		8	37	0	0	3.1861	0	45.3921	17.8593	13.1581	6.9054	5.7446
ŝ	2		2	37	0	0	4.6592	0.0523	34.3573	39.2818	14.2799	1.8669	3.0287
2		66	y y	37	1.1225	0	2.1388	o	0.8793	13.7102	39.195	13.5843	21.8804
÷		74	89	38	0	0	0.7746	0	21.0838	27.8609	35.3861	5.2923	4.9446
ž	14		72	38	0	0	0.9821	0	62.1801	13.852	10.9654	3.7151	3.8467
2	4	3	149	38	0	0	0.5631	0	39.6984	18.6017	12.1478	5.7183	5.2858
Ĭ	2	5	80	38	0	0	58.7854	0.0377	0.2874	5.758	12.4271	3.4106	9.7294
Ŷ	2	19	113	38	0	0	0.3156	0	0.6085	15.2425	42.0792	8.854	17.5169
;	2	86	45	38	0	0	41.5926	0	4.4466	24.7395	14.2613	3.7465	6.7853
48	52	22	114	38	0	0	0.1729	0.1572	0.8482	3.5747	22.6252	12.0151	36.3163

STD.API/PETRO PUBL 4683-ENGL 1998 🗰 0732290 0615369 211 🗰

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-] 3 Not for Resale

		4		4	74								
ŀ	2	0.00			1011 101- 1011			AW	¥	AY	¥	BA	88
- 19							VU36 1101% CU2	WSG MOP NZ	WSG mol% C1	WSG mol% C2	WSG mol% C3	WSG mol% I-C4	WSG mol% n-C4
							2.00/		15.8046	20.9694	36.6726	7.0224	6.9499
8	6			RC C		0	1.0245	0.1369	57.8641	12.077	10.2179	3.7158	5.5747
5	8			50		0	0.3267	0.0125	10.6582	28.2465	41.6343	6.5448	7.6448
5	6	2	20	38	2.3346	0	32.3867	0	0.8424	14.5046	31.4769	3.2507	8.5296
ន	30	4	110	39	•	0	0.07	0	0.4503	17.6528	26.6113	7.2445	16.189
2	59	9	83	8	•	0	71.4407	0	0.0393	0.6795	3.2518	3.0836	4.3504
22	99	9	90	40	0	0	8.2852	0.0483	34.3925	30.0459	12.8679	3.3482	3.7587
ຮູ	5	-	110	4	0	0	0	0	11.9545	23.9118	30.4015	4.4652	13 465
57	62	9	74	4	0	0	3.6298	0.1528	58.3558	14.2613	8.6879	3.9185	4 2725
58	63	3	8 78	42	•	0	0.8944	1.4082	4.6605	18.2854	47 626	6 9817	10 8508
59	99	5	6	4	0	0	0.1434	0.0369	6.5622	27.3766	48 4649	1.96.7	10.0050
60	99	4	14 71	4	0	0	0.7446	0.0756	25.8234	31,4515	21 2761	A 2528	8 0120
61	6)	8	09	4	0	0	0.5464	0	13.8999	18.141	32 6694	6 3068	0.0100
62	68	4	1 72	45	0	0	0.9207	0.0057	19.4789	14.2777	20.2721	7 9675	10.0101
63	69	S C	0 68	45	0	0	5.8443	0.0546	5,8789	23 9154	36 5807	C 100.1	10.323/
6	20	6	38	46	0.6363	0	1 757	0.012	3 1075	6 8801	2600.00	10.040	10.43
85	2	2	114	96	1 922		3 00.5		E 2622	10,000	101000	100/01	0600.17
99	72		108	47			0,000		0.0000	12./30	0912.25	1.3806	16.3878
									9.0010	22.1088	31.3/68	10.0337	10.0954
2	3	4		14		0	0.2956	0	4.0134	7.8264	23.4819	21.5936	13.202
8	×.	4	0 16	47	0	0	0.0175	0	0.0043	2.3435	28.1176	10.8623	28.7441
8	76	n	1 76	49	0	0	1.825	0.0385	14.9196	30.4129	29.0111	5.4168	8.0822
ຊ	11	2	100	29	0	0	1.1647	0.0155	13.4283	41.0748	25.9346	4.5608	6.9253
7	78	8	48	20	0	0	0.1079	0.011	4.7431	24.8463	47.0298	7.4958	9.4798
2	62	6	8	51	0	0	0.0296	0.0104	3.1472	15.2631	53.4722	6.1391	14 549
73	8	5	5 73	54	0	0	2.2609	0.0949	39.1625	32.3908	13.1435	2 1737	4 6036
4	8	3	100	54	0	0	1.2373	0.0294	3.4735	21.0304	35.0201	9.4403	13 4899
75	82	-	6 86	54	0	0	0.2294	0.0164	1.6914	17.6647	36.4706	15 0751	14 2191
76	83	11	0 100	55	0	0	0.6038	0.0027	5.628	15.1664	47,469	10 0287	11 6636
11	84	6	99	67	0	0	3.3002	0	40.6233	33 128	11 1489	1020.01 7 174R	9 212
78	85	0	36	57	0	0	0.3115	0	2 4932	12 7223	30 7571	11 0205	0.210 40 EE 40
62	86	9	80	67	0	0	0.1439	G	1 9897	B AN 2B	34 COEE	11.000	100000
80	87	Ó	4 60	57	0	0	0.4555	0	3.0821	27 0738	41 7961	6 5203	12 6638
81	88	1 87	9/ 28	22	0	0	0.8696	0.0197	22 342R	20 9418	24 BA71	5 7047	10.7505
82	88	60	0 70	67	0	0	0.9126	0.0024	7.7192	12.7926	51.274	9 0546	10 4815
ຮ	8	18/	0/	28	0	0	1,0156	0.0056	23.8326	37 3795	24 1834	0 6202	E BUBA
84	9	9	0 66	68	0	0	0.9513	0.0112	14.7931	44.5441	25.9811	3.2374	5 4608
85	92	20	0 84	28	0	Ö	1.2918	0.0305	25.9023	37 6592	14 4707	A 1344	8 8117
86	93	30	0 80	68	0	0	0.0496	0.0145	4.8646	13 8313	37 7108	15 2521	13 0080
87	94	11	0 72	29	0	0	0.7384	0.0121	18 9097	5100 50	27 760B	2000	10.000
88	96	10/2	06 0	09	0	0	0.3497	0.0019	1 3489	9 7048	44 1308	14 525	10.0100
8	96	60	5 85	61	0	0	0.9651	0.11	45 9666	17 058	15 4774	7900 6	0160.01
8	87		7 82	62	0	0	0.5723	0 0085	4 0700	7989.00	CU87 75	00770	14000
6	86	ĸ	2 80	69	0	0	0 8083	0.2620	53 584	14 0422	31.1002	8044.R	14.3002
28	66	731	0 80	63	0		0.3746	0.001	1 2000	1100 01	14.4040	27.22	1.000.0
ទ	100	581	0 77	64	0		0.3341	17000	B060 LC	1422.21	41.0062	12.234/	14.5294
2	<u>1</u>	73	08	64		0	0.2289	0.000	0010-12	7 0402	201.22	1040.0	0.0/40 00 0000
95	102	80	36	88	0		0.2060	0.000	1 0405	0040.1	000000	10.100	8070'7Z
1		-						1002/2	10010.1		17000 88		

_

	•	4	ķ				12	14			i	
ŀ	< !		اد ا	01-01					5AG	HB	B	B
-		Sep Pres	dmai dac	SISUI APIG		57-11 % IOUI 5574	VV3G MOI% HEXS	WSG MOI% HEP IS	WSG mol% OCIS	WSG MOW NONS	WSG mol% BENZ	WSG mol% TOL
2	•	45	106	15	0.6936	0.7527	0.2979	0.3172	0.142	0.0484	0.0034	0.0064
3	7	53	166	17	3.5191	4.0881	2.3392	1.7389	0.8717	0.3408	0.0423	0.0279
4		20	160	18	2.9244	3.1755	0.8116	0.8721	0.4644	0.2344	0.01	0.0219
5	4	63	101	19	2.2892	2.0465	0.7947	0.6038	0.2054	0.0821	0.003	0.0095
9	9	23	79	20	0.5642	0.4724	0.2948	0.223	0.0924	0.0302	0.0037	0.0058
2	8	18	75	20	1.7334	1.6846	0.6042	0.3685	0.1511	0.0362	0.017	0.0091
œ	6	64	125	21	4.3698	2.9351	1.2725	0.8734	0.4049	0.1641	0.0151	0.0234
6	40	35	76	23	0.6941	0.2501	0.0678	0.0545	0.0149	0.0028	0.0175	0.0054
10	12	8	99	23	2.0701	1.891	0.567	0.3543	0.114	0.0305	0.007	0.0042
=	13	20	122	24	0.6816	0.504	0.6142	0.7315	0.4081	0.1769	0.0091	0.0315
13	14	20	88	24	2.8441	2.7663	0.8936	0.6416	0.2229	0.0653	0.0093	0.0076
13	16	22	86	24	2.5927	2.4281	0.8552	0.6237	0.227	0.0657	0.0092	0.0175
4	16	20	68	24	2.3902	2.5815	0.8537	0.4055	0.2515	0.0546	0.0124	0.0201
15	11	19	133	26	4.6191	3.6531	1.6441	1.1597	0.5577	0.2435	0.0166	0.0284
16	18	30	60	26	2.1403	1.7456	0.4074	0.3375	0.0849	0.0282	0.0037	0 0096
1	19	26	136	27	4.9276	3.8104	2.1773	1.2233	0.6619	0.2419	0.2924	0.4656
ă.	20	31	64	27	3 1247	2 0105	0.7527	0.3862	0 1148	0.0275	0.0030	0.0043
2 9	2 2	23	79	1 00	0.8547	0.4581	0.235	0.4537	0.7728	0.120.0	0.0000	
2		2				0010	0.000		07170	0000.0	C /01 'D	0, 1403
ຊ	22	11	86	67	4.2148	2.6736	1.16/6	0.8704	0.2847	0.1063	0.2584	0.1751
21	23	20	120	29	5.9861	6.6438	1.6757	1.8218	0.6763	0.1873	0.5027	0.335
22	24	22	88	29	5.0069	1.838	1.2726	1.0399	0.3976	0.1196	0.0412	0.0514
23	26	4	80	30	0.6649	0.4657	0.2824	0.4152	0.1531	0.0489	0.0176	0.0062
24	27	26	180	30	6.831	9.037	4.615	5.0979	2.502	0.7916	0.0239	0.0422
25	28	64	70	30	1.1974	0.8547	0.3547	0.3408	0.1421	0.0371	0.0539	0.0185
26	29	80	77	33	2.2312	1.2992	0.6595	0.5774	0.2742	0.0743	0.0736	0.0595
27	30	20	115	33	3.2934	2.302	1.0863	1.0453	0.4494	0.1277	0.0682	0.0442
38	31	60	78	34	0.9267	0.6549	0.2968	0.2198	0.0891	0.0216	0.0231	0.0091
29	32	18	70	34	0.9195	0.594	0.2905	0.2693	0.1294	0.0323	0.0213	0.0291
ŝ	34	18	80	36	2.8013	3.0456	1.0376	1.1344	0.3649	0.1021	0.3272	0.2515
3	36	15	108	35	4.723	3.6526	1.6026	1.1751	0.4541	0.1396	0.0171	0.0294
33	36	17	100	35	4.0262	3.7959	1.4608	0.9589	0.3767	0.1319	0.0207	0.0238
33	37	30	126	36	1.7913	1.2351	0.7488	0.9187	0.5841	0.1838	0.277	0.2663
34	38	60	68	36	1.3935	1.247	0.5383	0.545	0.2292	0.0472	0.1381	0.0944
35	39	57	80	36	2.0092	1.6523	0.7366	0.695	0.3068	0.0606	0.0981	0.0854
36	4	75	81	36	2.223	1.797	0.627	0.6125	0.2608	0.0648	0.1019	0.0631
37	41	28	60	36	1.1755	1.5191	0.4489	0.559	0.1916	0.0392	0.0759	0.059
38	42	18	96	36	4.9415	3.6499	1.4303	1.2525	0.3358	0.1103	0.1208	0.1168
39	43	18	86	37	2.9992	1.7641	0.8808	0.7924	0.3998	0.0967	0.1432	0.1045
40	4	190	70	37	0.9093	0.5883	0.3063	0.2959	0.164	0.0246	0.0293	0.0136
41	45	22	60	37	3.1969	2.2463	0.4941	0.6808	0.202	0.0322	0.3033	0.0325
42	46	24	68	38	1.8376	1.1481	0.521	0.4826	0.204	0.0507	0.0445	0.0597
43	47	60	72	38	1.5955	1.1351	0.5011	0.4378	0.1907	0.0515	0.1513	0.0754
44	48	32	149	38	5.1043	3.4801	2.665	2.8683	1.5152	0.2741	0.2403	0.2452
45	49	62	80	38	3.7308	2.5785	1.2916	0.9405	0.3569	0.0723	0.0057	0.0132
46	60	13	113	38	4.6482	5.3164	1.306	1.6426	0.6368	0.2018	0.0791	0.1262
47	61	28	45	38	1.9046	1.347	0.3192	0.4274	0.1209	0.0229	0.0858	0.0137
48	62	22	114	38	8.1426	8.8373	2.1268	2.3459	0.8181	0.1515	0.0504	0.046

· ----

A-5

Ľ	A	ď	c	6	C C C	G	ц	1 1 1 1	BC I	на	ā	
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	WSG mol% i-C5	WSG mol% n-C5	WSG mol% HEXS	WSG mol% HEPTS	WSG mol% OCTS	WSG mol% NONS	WSG mol% RFN7	WSG mol% TOI
49	53	99	58	39	3.2132	2.1748	1.2034	1 1.077	0.4622	0.0828	0.4045	0.1959
50	54	60	80	39	2.9447	3.0345	1.1197	0.9555	0.3608	0.071	0.055	0.0542
51	56	60	68	39	2.141	1.3304	0.4663	9 0.4448	0.1962	0.0284	0.0468	0.0049
52	57	33	09	39	2.3008	2.1626	0.6676	3 0.6083	0.2025	0.0375	0.1458	0.1068
53	58	42	110	39	6.1191	7.6992	3.0831	4.9161	1.8335	0.5289	2.3264	1.6508
54	69	99 9	83	4	3.6078	2.895	2.242	3.0354	1.8019	0.5979	0.606	0.8629
55	99	99	06	9	1.783	1.2697	0.7041	0.8445	0.3961	0.1069	1.1178	0.5291
56	61	13	110	4	3.8159	4.7516	2.0501	1 2.1235	0.8869	0.2008	0.2181	0.2392
57	62	64	74	40	2.3544	1.8626	0.8527	0.6583	0.2549	0.0634	0.0777	0.0561
58	63	28	78	42	3.2359	2.9258	0.7812	1.0492	0.3654	0.0731	0.0142	0.0158
59	65	29	09	44	0.6554	2.7656	0.1735	5 0.3241	0.0974	0.0268	0.0195	0.0121
8	66	44	71	4	2.517	2.3868	0.7156	3 0.7401	0.2841	0.0565	0.069	0.0806
6	67	60	60	44	4.8868	4.8135	1.3835	1.069	0.6411	0.083	0.0633	0.1069
62	68	4	72	46	5.9954	5.0267	3.4186	3 4.4181	2.0573	0.5436	1.1409	0.9916
63	69	20	68	46	3.7919	2.9155	1.1306	3 0.8753	0.4147	0.0739	0.0429	0.0582
64	20	23	82	46	5.0553	5.9553	1.4226	3 1.2319	0.4317	0.0849	0.0153	0.016
65	1	24	114	46	5.2541	5.6562	2.5253	1.9231	1.4564	0.2825	0.2153	0.2595
99	72	62	108	47	6.7173	4.4566	1.6495	5 1.718	0.7942	0.1603	0.1028	0.174
67	73	45	140	47	9.395	6.0613	3.9495	5 4.3821	1.9034	0.4323	0.3947	0.3925
68	74	4	76	47	9.912	11.6974	2.2635	3 2.3745	0.889	0.1796	0.0571	0.0502
69	75	31	76	49	3.1696	2.8684	1.2463	3 1.0216	0.3595	0.1005	0.2836	0.1348
70	11	200	100	60	2.2955	1.7564	0.8654	1 0.8218	0.2722	0.0416	0.1409	0.2277
71	78	20	48	60	2.902	1.4531	0.6355	5 0.3991	0.1665	0.0257	0.2471	0.1422
72	79	86	40	61	2.589	2.9108	0.6472	2 0.5349	0.1209	0.013	0.026	0.0194
73	80	115	73	64	1.5681	1.4386	0.5662	3 1.1845	0.6255	0.1138	0.0371	0.0091
74	81	8	100	5 4	5.3765	3.996	1.986	3 1.8374	0.9272	0.133	0.3063	0.4321
75	82	15	86	64	5.3442	3.5582	1.8535	1.6668	0.6186	0.0818	0.2211	0.1606
76	83	770	100	9 9	3.4051	2.805	1.0685	5 0.8376	0.268	0.0337	0.1083	0.1214
77	84	39	99	67	1.2178	0.9276	0.8295	5 0.9742	0.4924	0.1033	0.1971	0.1639
78	85	38	96	67	8.2348	6.2297	2.7281	1 1.7461	0.5576	0.1412	0.3921	0.2033
79	86	99	80	67	6.6397	4.3639	2.5195	2.5382	0.8992	0.125	0.2973	0.3934
8	87	54	60	67	3.1542	2.8277	0.778	3 0.6615	0.2176	0.0312	0.064	0.071
81	88	870	78	67	4.2039	4.0506	1.2936	1.2042	0.4271	0.0613	0.108	0.1315
82	88	600	20	67	2.9396	2.3438	0.7866	3 0.6642	0.2174	0.0284	0.1073	0.1066
83	6	780	20	89	1.6473	1.4933	0.6316	3 0.59	0.2255	0.0367	0.0193	0.0347
8	91	60	9 9	89	1.5864	1.2083	0.5974	1 0.6628	0.3346	0.0579	0.0407	0.1005
85	92	600	84	89	3.9022	2.4309	1.3140	3 0.9404	0.2628	0.038	0.1574	0.2035
86	93	300	80	89	7.7795	3.2686	2.0852	2 0.8605	0.2442	0.0503	0.061	0.0448
87	94	110	72	69	3.4857	2.8281	1.6135	5 2.0735	1.214	0.2261	0.1149	0.333
88	96	750	8	9	5.3247	4.3985	1.6225	9 1.1564	0.3598	0.0424	0.1966	0.1925
88	96	35	88	61	2.297	2.3641	1.058	3 2.0262	0.9251	0.1897	0.0593	0.028
8	16	29	82	62	4.3032	3.1223	1.755£	1.6367	0.5558	0.083	0.1038	0.1749
91	86	72	8	63	1.6754	2.0125	0.9425	5 1.6348	0.8317	0.1799	0.0297	0.1055
8	66	730	8	63	4.4886	3.5039	1.1567	7 0.8157	0.2472	0.027	0.1763	0.1512
6	-10 -	680	17	64	2.071	1.6224	0.8434	1.3246	0.4371	0.0367	0.1828	0.2494
2	101	730	88	64	4.7927	3.5497	1.0735	9 0.5316	0.1468	0.0149	0.1215	0.0887
95	102	807	96	99	3.149	2.0868	0.646	9 0.3605	0.2065	0.0353	0.0505	0.0107

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-16 Not for Resale

L	ŀ	4		ľ								
ŀ			,		RK	BL	BM	BN	BO	BP	BO	RR
- •		Sep Pres	dwal das	SISUI APIG	WSG mol% E-BENZ	WSG mol% XYL	WSG mol% n-C6	WSG mol% 224TriMe	WSG mol% C10+	WSG Mol Frac	WSG MW	WISC MINH
2		45	106	15	0.0031	0.0079	0.2281	0		0.0106	1112 11	TATE OF
3	7	22	155	1	0.0077	0.043	1.3571	0		0000	101.44	44.7/50347
4		20	160	18	0.0015	0.0247	0.6869	0		0,000	49.1423	49.0000108
ŝ	4	63	101	19	0.0054	0.0153	0.4402			0.0123	49.5535	49.50980287
ဖ	9	23	79	20	0.0004	0.0042	0.1602			0.0107	40.2444	40.21417538
~	80	18	75	20	0.003	0.0065	0.3641			0.0032	20.0601	20.04861828
æ	6	64	125	21	0.0019	0.0259	22020			0.0012	31.2139	31.19307584
0	10	35	76	23	0.0002	0.0007	90000			0.0132	44.9816	44.93782671
₽	12	30	99	23	0 0019	200.0	02700			0.0021	20.4757	20.47297129
=	13	20	122	24	0.0017	0.0158	0.040			0.0159	40.0653	40.04753621
12	14	20	88	24	0.0048	0.0120	0.0000			0.0043	25.6475	25.61043871
13	15	22	86	24	6000 0	0.0132	0.0/44		0	0.0176	44.4289	44.39675521
4	16	20	68	24	0.000	0.0025	00/070	5	0	0.0122	44.1164	44.08526429
15	17	19	133	26	0.003	0.0440	0.0004		•	0.022	45.6871	45.66691664
4	18	30	e u	2 K	0.000	0.000	0.204	0	•	0.0007	41.812	41.75410572
P F	÷ †	35	126	10	90000	SCOD.D	0.3248	0	0	0.0165	39.8756	39.85855684
Ę	20	1	22	14	0770.0	201.0	0.9231	0	0	0.0048	44.2891	44.22778887
2 9	3 2			7	6000.0	0.0053	0.4275	0	0	0.0177	42.9865	42.96712421
2	5	3 1	R	87	0.0043	0.0408	0.1634	0	0	0.0017	25.0569	25.03414986
3	3	2	92	58	0.0038	0.0229	0.5537	0	0	0.0247	46.0188	45 9703522
5	3	2	120	29	0.0086	0.0415	1.3537	0	0	0.0208	54 1312	54 04021463
ž	24	22	86	29	0.0012	0.0185	0.3769	0	0	0000	42 E074	47 45E44040
53	26	4	8	30	0.0004	0.0134	0.113	0	C	0.0018	100.21	04010007-00
7	21	25	180	8	0.0103	0.1014	4.2667	0	0.0003	0.00.0	54 089	23.1 103/040
ĸ	28	64	2	8	0.0008	0.0069	0.2029	0	0	0.0085	21 2000	10000000
8	39	8	11	33	0.0058	0.0361	0.3458	C		0.0000	01.4002	1061000100
27	30	20	115	33	0.0044	0.0168	0.5799	0	0.0001	0.000	0147.04	10100017.04
28	31	60	78	34	0.0006	0.0035	0.1386	5 c		20000	37.3978	37.34550535
29	32	18	20	34	0.0025	0.0143	0 1522			0.0030	22.1594	22.14829792
R	34	18	80	35	0.0048	0.0431	0.1042	-	0	0.0037	22.4744	22.46087656
31	35	15	108	20	0 00 0	anco o	00000		0	0.0262	45.1122	45.05551581
32	36	17	100	98	0.043	0.0200	0.909	0	0.0001	0.0129	46.6956	16.63669624
33	37	30	125	a c	20000	0.002	C/2010	5	0	0.0141	43.5703	13.52244225
2	5	202	83	200	40000	0.00/4	0.41/6	0	0.0002	0.0007	28.1241	28.07792424
5	96	27	8	2		0.040	1700'0	0	0	0.0045	24.5176	24.49016322
36	4	76	81	a c	0.000	30000	0.4314	•	ö	0.0077	33.3465	3.31160628
37	41	28	60	a a c	0,000	0.0490	70140	5	0	0.0074	34.103	4.07232865
8	42	18	24	35 Se	0000	07074	0.4004	-	•	0.0191	38.5936	8.56569393
2	4	2 4	ao	210	00000	1400.0	anc/.n	0	0	0.0166	47.185 4	7.12234591
4	AA	100	2	10	2000.0	0.04/4	1026.0	0	0	0.005	33.4309 3	3.39125798
2	1	2	2 5	5	0.0021	0.0078	0.1321	0	0	0.0077	30.5292 3	0.51441914
=	?	3 2	200	5	0.0039	0.0046	0.2931	0	0	0.0778	49.2798 4	9.24582488
1	₽ 1	47	201	8	0.0023	0.0203	0.287	0	0.0001	0.0132	37.3654 3	7.34134964
2	4	2	21	8	0.002	0.0117	0.3067	0	0	0.0016	27,3608	27 339082
1 ;	8	2	149	88	0.0164	0.1464	1.4274	0	0.0022	0.0023	39.0187 3	8 87338833
÷	48	62	80	38	0.0055	0.0156	0.5538	0	0	0.0137	48.3278 4	8 28080472
ŧ	20	13	113	38	0.01	0.0484	1.368	0	0	0.02	50 9572 6	D R7624764
÷	21	28	45	38	0.0021	0.0024	0.1824	0	•	0.0176	42 3003 4	0 07011807
\$	52	22	114	38	0.0022	0.0387	1.7307	0	0	0.0604	58.4247 5	30707075

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

ł

A-17

	×	8	υ	۵	BK	BL	BM	BN	Oa	ВР	BQ	BR
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	WSG mol% E-BENZ	WSG mol% XYL	WSG mol% n-C6	WSG mol% 224TriMe	WSG mol% C10+	WSG Mol Frac	WSG MW	NSG MWI
49	63	99	68	39	0.0053	0.0538	0.6405	0	0	0.0141	42.153	42.09913346
50	64	60	80	39	0.0051	0.0275	0.7609	0	0	0.0025	30.7624	30.71441687
51	9 9	69	22	39	0.0025	0.0122	0.2587	0	0	0.0196	40.818	40.79582976
52	67	33	60	39	0.0021	0.015	0.4256	0	0	0.0232	45.5125	45.48207018
53	68	42	110	39	0.0258	0.162	3.4367	0	0.0003	0.005	57.2807	57.03450539
54	69	99	83	40	0.0292	0.1185	1.3432	0	0.0151	0.0052	52.2794	52.11753461
55	60	66	06	40	0.0108	0.0425	0.4486	0	0.0002	0.006	34.0059	33.96358795
56	61	13	110	40	0.0129	0.0747	1.4285	0	0	0.0111	45.8455	45.73951204
57	62	64	74	94	0.0017	0.0132	0.5263	0	0	0.0057	29.229	29.1898762
58	63	28	78	42	0.0004	0.0095	0.8335	0	0	0.0235	45.7641	45.7113909
59	65	29	60	4	0:0002	0.0022	0.6481	0	0.0002	0.0254	41.764	41.74762207
60	66	4	71	4	0.0046	0.0354	0.5691	0	0	0.0087	36.8893	36.85226923
61	67	60	60	4	0.0089	0.0484	1.1041	0	0	0.0073	45.4394	45.38579991
62	68	41	72	46	0.0231	0.3959	2.1363	0	0.0004	0.0046	49.9018	49.68061421
63	69	20	68	46	0.0057	0.022	0.9936	0	0	0.0217	45.1286	45.0847447
64	20	23	85	46	0.0019	0.0156	1.5178	0	0	0.0453	52.9092	52.84763187
65	11	24	114	46	0.0093	0.1114	2.2349	0	0	0.0183	51.4328	51.33638518
99	72	52	108	47	0.0084	0.0964	0.8962	0	0.0001	0.012	47.0518	46.96588515
67	73	45	140	47	0.0152	0.2136	2.4476	0	0.0001	0.0108	58.0936	57.87454591
88	74	9	76	47	0.0132	0.0447	2.4292	0	0	0.0078	59.3826	59.26391073
69	76	31	76	49	0.0031	0.0683	1.0382	0	0	0.0166	41.2251	41.17397444
2	11	700	100	20	0.0005	0.0054	0.4658	0	0.0026	0.009	38.6681	38.62660285
71	78	20	48	50	0.0039	0.0195	0.2904	0	0.0013	0.0335	43.7694	43.74936095
72	19	98	4	51	0.0002	0.0019	0.5261	0	0	0.0578	46.3895	46.36274525
73	8	116	73	54	0.0093	0.034	0.5832	0	0.0005	0.0071	31.9947	31.93530404
74	81	30	100	54	0.0069	0.1172	1.1597	0	0.0003	0.0129	49.3798	49.28766593
75	82	16	86	54	0.0046	0.0535	1.0704	0	0	0.0247	50.487	50.40370152
76	83	770	100	55	0.0003	0.0062	0.7828	0	0.0007	0.0224	46.6798	46.63757792
1	8	39	66	57	0.0078	0.0346	0.5114	0	0.0024	0.0076	31.1895	31.1404655
78	85	38	96	57	0.0133	0.0992	1.8668	0	0	0.0236	53.6728	53.58558908
79	86	66	80	57	0.0123	0.1144	1.4823	0	0.0101	0.0662	54.4616	54.33469406
80	87	54	60	57	0.0021	0.0113	0.5799	0	0	0.0288	44.9438	44.91070255
81	88	870	78	57	0.0042	0.0226	0.9919	0	0	0.0038	41.8166	41.75657395
82	89	600	70	57	0.0003	0.0047	0.5622	0	0.002	0.0273	45.5215	45.48811564
83	6	1 780	70	68	0.0017	0.0119	0.473	0	0.0007	0.0098	35.2063	35.17665006
84	91	60	56	58	0.0042	0.0429	0.3844	0	0.0009	0.0155	36.8132	36.77986719
85	92	500	84	68	0.0002	0.0052	0.6446	0	0.0001	0.007	36.4797	36.43275159
86	93	300	80	68	0.0022	0.0152	0.8566	0	0	0.0322	49.7573	49.71421306
87	94	110	72	69	0.016	0.1666	1.0867	0	0.0147	0.0045	42.8885	42.78538401
88	96	5 760	06	60	0.0005	0.0086	1.2258	0	0.0001	0.0532	51.4967	51.43891451
89	96	85	86	61	0.0053	0.0224	1.0366	0	0.0004	0.0051	34.0561	33.9548513
90	67	. 67	82	62	0.0047	0.0532	1.094	0	0	0.0234	48.0686	47.98675141
91	38	1 72	60	63	0.0045	0.0402	0.9682	0	0.0008	0.004	31.4949	31.41305122
92	66	1 730	80	3	0.0002	0.0054	0.8337	0	0	0.0512	49.4466	49.40570973
93	1 9	580	17	49	0.0024	0.0234	0.6674	0	0.0003	0.01	35.8508	35.78464646
94	-1 <u>0</u>	730	80	64	0.0001	0.0029	0.6279	0	0.0001	0.0784	51.558	51.53132865
95	102	807	96	99	0.0015	0.0093	0.3064	0	0.0013	0.0254	44.2795	44.2614502

	<		4		S B C	BT	I H	P. P	RW	RX	BY	BZ	CA CA
-	Tank ID	San Pres	Sep Temp	SIROII APIG	WSG MWI THC	WSG MWF VOC	WSG Grav	TotG mol% H2S	TotG mol% O2	TotG mol% CO2	TotG mol% N2	TotG mol% C1	otG mol% C2
•	1	45	106	15	65.87392994	67.67590167	1.5461	2.0751	0	93.2588	0	0.3341	0.2971
"		22	165	17	52.64543332	55.11830319	1.6963	0	0	40.636	0	5.1939	10.8246
4	3	20	160	18	56,90041332	57.44879828	1.7105	1.6386	0	63.7941	1.2429	1.2429	1.6553
5	4	1 63	101	19	40.06833963	46.98260037	1.3892	8.2599	0	24.456	0.206	31.5132	10.7081
9	9	23	6/	20	19.01149445	43.90523263	0.6924	0.1607	0	2.8528	6.2053	80.9118	5.9554
~	80	18	75	20	30.0745619	48.31933271	1.0775	0	0	10.6802	19.7092	38.8217	9.9799
∞	G	54	126	21	44.94402823	51.16714282	1.5527	0	0	0	0.2629	47.3212	14.19
9	10	35	76	23	19.98035967	41.620362	0.7068	0	0	1.9426	0.5093	82.5168	7.4333
ę	12	30	99	23	40.28330029	45.10572655	1.383	8.8466	0	16.7388	0.262	28.037	13.9024
Ę	13	20	122	24	22.18662484	49.16109751	0.8853	0	0	9.1909	7.7394	72.7334	3.6049
1	14	20	88	24	46.39535899	48.02231512	1.5336	9.0947	0	20.5598	2.5743	10.5116	13.7267
13	15	22	86	24	45.54360577	48.16597114	1.5228	7.1066	0	32.0374	0.5696	10.25	12.4069
2	16	20	68	24	46.29483229	47.28405231	1.5771	0	0	32.8853	0.4637	6.2594	14.2109
÷	17	19	133	26	41.68565851	49.41647331	1.4433	0	0	2.9448	0	22.4892	21.3922
9	18	30	60	25	39.8130068	43.69675661	1.3764	0	0	1.4889	0.994	33.5458	20.8276
2	19	25	136	27	45.88083419	52.3592785	1.5288	8.6612	0	9.2749	5.0146	15.8805	13.518
ę	20	31	64	27	43.92447602	46.90521465	1.4838	5.563	0	5.2609	7.522	21.563	13.4208
2 P	21	23	6/	29	24.35570319	43.00891355	0.8649	0	0	3.448	0	66.7973	14.7796
ŝ	22	17	86	29	46.9511676	48.36997951	1.5885	6.4735	0	2.042	0	11.2401	17.7385
3 2	23	20	120	29	54.15611368	55.05443139	1.8685	0	0	1.2738	0	3.4096	8.2976
5	24	22	86	29	43.93290899	45.42476656	1.4673	14.1491	0	2.1947	0	8.4085	28.968
Ĩ	26	4	80	30	23.47841058	42.03733294	0.8192	0	0	1.1284	0	70.5982	14.6685
24	27	25	180	30	56.11714776	60.24314182	1.8981	0.7491	0	9.4201	0	10.1375	14.4842
ŝ	28	64	20	30	30.56011658	40.73119941	1.0797	0	0	3.4099	0.4027	63.0188	13.5754
28	29	80	11	33	43.22024015	46.85995633	1.4928	0	0	0.4412	0.2942	42.655	16.1697
2	30	20	115	33	37.20831537	47.16357815	1.2909	0	0	1.4996	0	43.3781	15.7869
80	31	60	78	34	21.88823445	47.50483019	0.7649	0	0	1.1336	0	80.5854	5.7293
ő	32	18	02	34	21.80081972	46.52459557	0.7758	0	0	2.851	0	78.9262	6.8181
18	26	18	80	36	45.09939122	46.69132914	1.5572	0.2206	0	1.3721	0.2288	14.642	23.8865
3 2	35	15	108	35	47.358608	48.53635275	1.6119	1.0618	0	16.8581	1.3939	7.2474	20.3409
58	36	47	1001	36	43.51808221	45.48595671	1.504	0	0	2.6097	0.2918	15.4665	30.6786
5	37	30	126	36	27.84244379	49.48106315	0.9708	0	0	1.4565	0	63.777	11.7149
, S	38	60	68	36	24.3327998	48.90740462	0.8463	0	0	0.7094	0.3136	74.2536	8.2388
35	39	57	80	36	33.01445712	42.04584347	1.1511	0	0	1.8979	0.3226	51.2871	19.9479
g	4	76	81	36	33.66680603	43.00445922	1.1772	0	0	2.532	0.1829	53.0349	15.8436
37	41	28	60	36	38.81947645	42.59285797	1.3322	4.7171	0	1.4998	0.2501	33.2678	23.0829
8	42	18	96	36	49.90904623	50.61682646	1.6288	15.229	0	2.835	0.4784	4.5446	14.8666
39	43	18	98	37	33.04180016	48.04732772	1.154	0	Ō	2.1792	ō	51.7849	13.3067
Ş	4	190	70	37	29.85592303	37.64462144	1.0538	0	0	2.8916	0.2819	58.7343	19.4942
4	45	22	60	37	49.53760584	49.84484547	1.7011	1.1971	0	4.5385	0	4.7953	19.7783
Ş	46	24	68	38	37.28929103	43.02186563	1.2898	0	0	0.7292	0	41.6202	20.8772
43	47	60	72	38	27.17373302	45.96177389	0.9445	0	0	0.9816	•	62.1849	13.8503
4	84	32	149	38	38.84430027	53.99659132	1.3469	0	0	0.5564	0	39.8202	18.5095
5	49	62	80	38	54.39650429	54.66607954	1.6682	0	0	60.7749	0.2971	0.7427	4.4376
46	50	13	113	38	50.89698296	51.11104762	1.759	0	0	0.3762	0	1.1421	15.8053
2 5	5	28	45	38	41.04653693	43.10693498	1.4601	0	0	41.5278	0	11.1298	19.4331
48	62	22	114	38	58.37987543	58.74325855	2.0167	0	0	0.4322	2.1608	4.5378	6.1576

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

t	ſ	4		4	00	ł			100	24		1	
Ţ.					TUC ANA TUC	TAILO LANK VOO						10 Int 01	CA EV CA
- Q	E3	yy yy	68	39	42 03865862	47 10290901	1 4551			3 3191		41 6028	1000 1101 00
2	3 3				20 EDODEDTE	E4 4000480	0100 1			10100		10201 11	1004-01
3	3	3		82	30.38038052	R84RRADI.IC	1.0019			1.016/	0.2612	57.7805	12.0495
ŝ	22	29	28	62	40.78689825	43.75001861	1.409	0	•	0.3784	0.1262	33.7005	21.5975
52	29	33	09	39	46.62032977	47.02007871	1.571	1.7032	0	41.2331	0	2.7518	12.8837
53	68	42	110	39	57.04362893	57.22922039	1.9772	0	0	0.1804	0	21.8455	24.3156
54	69	99	83	40	72.39842202	72.47607868	1.8046	0	0	88.9304	0	0.1968	0.6268
55	60	99	06	40	33.05869367	43.27645817	1.1738	0	0	5.4421	0.2117	47.8131	20.4321
56	61	13	110	40	45.73951204	49.77159719	1.5825	0	0	0	0	21.1853	19.6598
57	62	64	74	40	28.63267686	48.03705133	1.0087	0	0	1.9469	0.5083	67.3161	7.6825
8	63	28	78	42	45.98225691	47.48200493	1.5797	0	0	1.0969	8.5035	10.9722	17.7625
8	65	29	60	44	41.74945399	43.55832612	1.4416	0	0	0.1856	0.3714	20.9856	25.941
80	99	4	71	4	36.80527968	44.11415324	1.2734	0	0	0.5464	0.2881	37.1399	22.086
61	67	60	60	4	45.39335858	50.16190803	1.5685	0	0	0.6784	0	35.6295	18.2337
62	68	41	72	45	49.73455909	57.97976274	1.7225	0	0	0.9969	0.3238	55.5532	12.1603
63	69	20	68	46	45.16140648	47.10178203	1.5578	0	0	7.1224	0.4602	15.8754	21 1576
8	2	23	85	46	53.13217888	54.35196975	1.8263	0.6819	0	3.2808	0.1367	12.8502	9.0186
65	7	24	114	46	51.91668949	54.06134287	1.7754	1.5818	0	4.0881	0	14 9261	12 3422
8	22	52	108	47	46.96588515	50.23138914	1.6242	0		0	0	22.6484	17 1953
67	23	46	140	47	57.91585101	59.67184227	2.0053	G		0.3567		10.8216	R RADE
ġ	74	9	76	47	59 26658063	5926843965	2 0498			0.5054	12 0743	11.02.10	10000
8	7	2	78	49	41 12640245	45 62349777	1 423			1 0404	0.2430	34 1476	72 270
8	1	200	100	2	38 56482030	42 10650499	1 3748			10801	0.6730	30 7705	20.013
2					43 75081387	45.10000100 45.12018548	1 5100			0200.1	0.1010	08/1/20	20.103
- F		3			10010001001	47 36407444	1 6043			0000	10010	11.11	CC/0.47
۶				0	40.00000240	444/0101444	1001			0.066	0.2639	21.2465	19.4474
2	08	911	2	40	31.05968680	42.11/22033	1.1044		D	1.3/05	0.4662	55.3079	18.3624
\$	8	8	100	24	49.36014313	50.57500078	1.7045	•	•	1.4019	0.2574	9.1372	18.0509
75	82	\$	86	54	50.42208807	51.01506308	1.7427	0	0	0.3416	0.1713	5.652	17.8941
76	83	770	100	55	46.65404633	48.49138489	1.6113	0	0	1.2842	0.07	37.71	16.6675
17	84	39	66	57	30.70125014	41.3200743	1.0766	0	0	2.1824	0	55.5948	20.5016
78	85	38	36	57	53.61551025	54.57929947	1.8527	0	0	0.4774	0	8.3702	12.6849
64	86	99	80	57	54.3495727	55.12837511	1.8799	•	0	0.1495	0	2.2427	8.5174
80	87	64	60	57	44.91482402	45.8373166	1.5514	0	0	0.708	0	13.11	25.2267
81	88	870	78	67	41.73953669	49.21834723	1.4434	0	0	0.9515	0.1845	48.7485	18.2935
82	89	600	70	57	45.50215308	47.99106134	1.5713	0	0	1.7659	0.0609	48.7752	12.5402
83	90	780	70	58	35.08641901	41.12603495	1.2153	0	0	0.7872	0.0583	59.1966	15.0127
84	91	60	56	58	36.71141139	40.34073128	1.2707	0	0	0.927	0.1161	39.3538	26.916
85	92	500	84	58	36.3361635	43.55892846	1.2592	0	0	0.8206	0.2148	46.4595	19.8871
86	93	300	80	68	49.72019475	51.44338652	1.7175	0	0	0.1111	0.3332	31.2062	15.6481
87	84	110	72	69	42.77807562	49.07075073	1.4804	0	0	0.8526	0.1188	39.3509	22.365
88	96	760	06	09	51.465432	51.95151096	1.7776	0	0	1.2438	0.0732	13.7188	17.4449
89	9 6	86	86	61	33.86337595	49.33105699	1.1756	0	0	0.6818	0.3751	48.8072	15.5093
90	97	67	82	62	48.01135211	49.37624236	1.6593	0	0	0.8702	0.1089	15.2428	18.8443
91	86	72	80	63	31.31919763	49.35640379	1.0872	0	0	0.764	0.6988	53.4077	14.6407
92	66	730	80	63	49.4264497	49.89913529	1.7068	0	0	1.1836	0.074	12.8716	20.4392
66	100	680	11	64	35.75940906	43.11811662	1.2375	0	0	0.2635	0.2636	61.5657	13.6237
94	101	730	80	64	51.54877329	52.28642671	1.7797	0	0	1.1188	0.0599	33.783	17.2208
95	102	807	96	66	44.26294933	45.72636791	1.5285	0	0	0.4553	0.1656	33.6517	24.2214

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

L		4		4	2	ر ر ر	5	2	30	e.	- HO	2
-	Tank D	San Pres	Sen Temp	SISOIL APIG	TotG mol% C3	TotG mol% i-C4	TotG mol% n-C4	I TotG mol% i-C5	TotG mol% n-C5	TotG mol% HEXS	TotG mol% HEPTS	TotG mol% OCTS
<u>^</u>		45	106	15	0.2852	0.3397	0.912	2 0.6928	0.7522	0.2979	0.3172	0.142
5	2	22	165	17	13.2018	5.6323	10.1535	3.5162	4.0854	2.3387	1.7386	0.8716
	10	20	160	18	8.7543	4.3391	6.0707	2.4151	2.76	0.7941	0.8667	0.4629
ŝ	4	63	101	19	10.1024	2.9806	5.3635	2.2455	2.0184	0.7909	0.6013	0.2044
ω	9	23	19	20	0.9447	0.4583	0.6527	0.564	0.4722	0.2947	0.2229	0.0924
2	80	18	76	20	8.4826	2.3216	5.0294	1.7332	1.6844	0.6041	0.3685	0.151
∞	6	54	125	21	13.2902	4.9177	10.9276	3.3079	2.4177	1.2256	0.856	0.3971
6	9	35	76	23	4.1766	1.1696	1.1144	1 0.6941	0.2501	0.0678	0.0545	0.0149
9	12	30	66	23	18.2425	2.9833	5.6645	2.0356	1.8669	0.5624	0.3511	0.1127
F	13	20	122	24	1.9533	0.5684	0.6725	0.6701	0.4985	0.6128	0.7303	0.4074
2	14	20	88	24	22.0425	3.9543	9.4895	1 2.7981	2.7329	0.8883	0.6379	0.2213
33	15	22	86	24	17.5757	3.8228	8.8472	2.5821	2.4205	0.8538	0.6227	0.2265
4	16	20	68	24	25.5967	4.7183	8.8345	2.3568	2.5541	0.8481	0.4026	0.2492
15	11	19	133	26	22.9278	5.8067	11.5422	4.6193	3.6532	1.6441	1.1597	0.5577
9	18	30	60	26	26.4643	4.4807	7.2025	2.0935	1.7158	0.4025	0.3327	0.0834
₽ ₽	19	26	136	27	17.9879	4.976	9.8822	4.9089	3.799	2.1749	1.2223	0.6614
ę	20	3	64	27	25.6808	5.117	9.1713	3.0398	1.9676	0.7412	0.3794	0.1123
5	24	23	79	29	7.7858	2.1543	2.1544	0.8547	0.4581	0.2335	0.4537	0.2728
2	22	17	86	29	35.1719	5.8723	11.1589	4.1488	2.6411	1.1588	0.9629	0.2821
ŝ	23	20	120	29	31.9154	9.9453	25.9773	5.9632	6.6242	1.6735	1.8198	0.6755
3	24	22	98	29	22.2366	6.0973	7.8083	4.9936	1.8341	1.2711	1.0387	0.397
Ĩ	36	7	80	30	6.8566	2.2915	2.2778	0.6649	0.4657	0.2824	0.4152	0.1531
32	27	25	180	30	15.841	4.3929	11.7158	6.8174	9.0225	4.6122	5.0962	2.5013
1	28	64	70	30	9.8377	3.4242	3.162	1.1782	0.8444	0.3522	0.3381	0.1407
3 8	3 0	80	24	33	23.5314	7.0393	4.6929	1.9718	1.1916	0.6327	0.5534	0.2607
2	202	20	115	33	15.3441	7.6044	7.435	3.2608	2.2844	1.0825	1.0421	0.4478
Ň	21	20	78	34	5.7338	2.0586	2.3766	0.9266	0.6549	0.2968	0.2198	0.0891
38	30	18	70	34	5.1194	1.8545	1.9778	0.9195	0.594	0.2905	0.2693	0.1294
2	3	18	80	36	35.7101	4.4382	9.7668	2.7344	2.9866	1.0231	1.1174	0.3584
3	35	1	108	35	23.4927	5.4466	11.4407	4.6824	3.6279	1.5968	1.1712	0.4524
5	36	4	100	36	23.983	4.8337	10.5206	3.9838	3.7643	1.4539	0.9545	0.3746
1	37	30	126	36	9.7085	3.241	3.641	1.7913	1.2352	0.7488	0.9187	0.5841
8	38	50	89	36	6.7228	1.9935	3.1474	1.3933	1.2468	0.5382	0.5449	0.2292
35	39	67	80	36	11.6529	3.5059	5.2613	1.9897	1.6392	0.7324	0.6908	0.3045
i B	40	75	81	36	12.2653	4.2204	5.7826	2.1975	1.7803	0.623	0.6082	0.2586
37	41	28	09	36	25.7718	1.8088	5.2396	1.1389	1.4797	0.439	0.545	0.1859
8	42	18	96	36	28.3751	6.0711	14.9126	4.9167	3.6348	1.4264	1.249	0.3347
8	43	18	86	37	12.493	6.812	5.6936	2.9891	1.7593	0.8793	0.7911	0.399
9	4	190	70	37	11.4354	1.7769	2.9374	0.899	0.5828	0.304	0.2934	0.1623
ł	45	22	60	37	34.4604	10.7129	17.6436	2.8975	2.0706	0.4626	0.6332	0.1858
4	46	24	89	38	23.2849	4.4838	4.4781	1.7789	1.1176	0.5097	0.4709	0.1981
43	47	60	72	38	10.9655	3.7152	3.8467	1.5955	1.1351	0.5011	0.4378	0.1907
4	48	32	149	38	12.1372	5.7167	5.2847	5,1039	3.4799	2.6649	2.8683	1.5151
45	49	62	80	38	11.2333	3.3491	9.6298	3.7187	2.5717	1.2891	0.9385	0.356
46	50	13	113	38	41.1269	8.7773	17.415	4.6382	5.3073	1.3048	1.6413	0.6362
47	51	28	45	38	13.1097	3.6828	6.7127	1.8949	1.3405	0.3176	0.4248	0.12
\$	62	22	114	38	23.1024	10.2128	30.5811	7.4393	8.2497	2.069	2.2933	0.7982

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-2:1 Not for Resale
Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS

.

E	<	8	0	0	CB	8	8	CE	СF	ce	B	3
-	ank ID	Sep Pres	Sep Temp	SISOII APIG	TotG mol% C3	TotG mol% I-C4	TotG mol% n-C4	TotG mol% i-C5	TotG mol% n-C5	TotG mot% HEXS	TotG mol% HEPTS	TotG mol% OCTS
49	53	99	68	39	19.2933	5.2976	5.8423	3.0499	2.0875	1.1722	1.048	0.4476
20	54	60	80	39	10.2159	3.7155	5.5747	2.9449	3.0346	1.1198	0.9556	0.3608
51	55	60	58	39	26.6669	5.7202	7.0288	2.072	1.2929	0.4543	0.4314	0.189
52	67	33	99	39	23.7478	3.0008	8.1287	2.2562	2.1252	0.6567	0.5969	0.198
53	58	42	110	39	21.9955	4.9756	10.5229	3.5533	4.2997	1.5376	2.2248	0.7537
2	69	99	83	4	1.8956	1.4352	1.8766	1.3238	1.0006	0.6497	0.7646	0.3985
55	60	99	8	4	11.915	3.2753	3.7031	1.7711	1.2624	0.701	0.8404	0.3938
9 9	6	13	10	8	26.2166	4.2517	13.0311	3.7677	4.7028	2.0375	2.111	0.881
57	62	64	74	4	7.7985	3.8374	4.2182	2.3436	1.8554	0.8502	0.6561	0.2538
58	63	28	78	42	37.0076	5.9088	9.7164	3.1198	2.8411	0.765	1.0258	0.3558
59	65	29	60	4	36.1582	1.6683	10.0906	0.6365	2.6943	0.1692	0.3149	0.0942
09	66	44	7	4	19.5945	4.1556	8.776	2.5003	2.3733	0.7126	0.7363	0.2823
61	67	60	60	44	24.604	4.232	8.9584	2.8294	2.6901	0.7008	0.4943	0.2705
62	68	41	72	45	12.2365	4.0523	5.244	2.5372	2.0281	1.2084	1.3931	0.5833
63	69	20	68	46	29.0387	6.4013	9.8953	3.6883	2.8419	1.1034	0.8514	0.4015
64	70	23	86	46	28.1747	8.4872	22.6359	4.6509	5.5671	1.3588	1.1746	0.4088
65	71	24	114	46	25.7943	6.5962	15.1891	5.0994	5.5185	2.485	1.8933	1.431
99	72	62	108	47	24.7945	9.2762	9.5843	6.5823	4.3836	1.6327	1.7009	0.7851
67	73	45	16	4	20.1131	20.3082	12.6366	9.2131	5.9634	3.9102	4.3427	1.8847
68	74	40	76	4	24.3047	7.4927	18.7468	5.7891	6.5821	1.1502	1.0999	0.3758
69	76	3	76	5	18.5464	4.5544	7.2417	3.0451	2.7717	1.2118	0.9905	0.3467
20	7	700	100	20	18.6073	4.1429	6.4778	2.2061	1.6906	0.832	0.7858	0.2584
2	78	20	48	8	36.0511	6.6512	8.6882	2.738	1.3716	0.5972	0.3717	0.1535
2	79	98	4	61	35.7941	4.7147	11.9759	2.2851	2.5725	0.5659	0.4585	0.1012
2	8	115	73	64	11.8047	2.1065	4.5012	1.5476	1.4206	0.5593	1.1679	0.6152
7	81	30	5	22	32.6489	9.1901	13.2224	5.3139	3.9526	1.9665	1.8174	0.9156
22	82	16	98	64	33.1593	14.5305	13.8408	5.2614	3.5066	1.8279	1.6413	0.6077
26	83	770	100	65	21.4359	6.4087	8.5211	2.8562	2.3705	0.8998	0.6895	0.2141
1	84	39	99	29	10.1527	3.0392	3.1482	1.2021	0.9159	0.8189	0.9599	0.484
8/	86	38	96	67	26.6096	11.2879	18.7753	8.066	6.1146	2.6851	1.7164	0.5466
62	86	66	8	57	34.5814	15.2802	19.8941	6.6169	4.3503	2.5126	2.5309	0.8964
8	87	54	9	57	34.7653	6.098	12.0155	3.0394	2.7253	0.7484	0.6317	0.2062
5	88	870	78	67	16.2273	3.2447	6.8694	2.027	1.862	0.5265	0.4307	0.1336
82	68 8	600	2	67	19.5435	4.8316	6.6399	2.2318	1.7909	0.5931	0.4819	0.1504
ខ្ល	6	780	20	68	13.0305	2.1878	5.0766	1.4959	1.355	0.5685	0.5226	0.196
8	2	60	56	28	19.8435	2.9682	5.1129	1.5127	1.152	0.5678	0.6252	0.3127
85	92	500	8	28	12.6488	3.9491	6.3823	3.8056	2.371	1.2799	0.9121	0.2535
86	93	300	80	20	19.5826	10.4605	9.8389	6.5447	2.7638	1.7547	0.7075	0.1949
87	\$	110	72		20.457	3.5555	6.3877	2.0394	1.5959	0.8396	0.9844	0.5247
88	96	760	06	60	31.8567	10.8061	12.261	4.6203	3.8343	1.4135	0.9907	0.3015
68	96	85	85	61	15.1907	3.185	6.2728	2.2907	2.3576	1.0555	2.0203	0.922
60	67	67	82	62	30.457	8.6715	13.468	4.1242	2.9962	1.6848	1.5625	0.5269
91	98	72	80	63	14.3847	2.3275	5.3616	1.6753	2.0121	0.9424	1.6345	0.8315
92	66	730	80	63	33.375	9.7968	12.2227	3.9701	3.1004	1.0166	0.7044	0.2089
ន	10	580	1	64	10.2136	3.0856	4.3077	1.8656	1.4641	0.7591	1.1753	0.3808
\$	101	730	8	64	23.7948	7.9172	10.2227	2.6199	1.9365	0.5667	0.2597	0.0657
95	102	807	8	66	21.8057	5.8732	8.344	2.5466	1.6815	0.5109	0.2748	0.151

A.-??

STD.API/PETRO PUBL 4683-ENGL 1998 📰 0732290 0615378 224 📰

Ľ			c	C		ž	2	CM	CN	03	CP	g
-	Tank ID	Sen Pres	Sep Temp	SISOI APIG	TotG mol% NONS	S TotG mol% BENZ	TotG mol% TOL	TotG mol% E-BENZ	TotG mol% XYL	TotG mol% n-C6	TotG mol% 224TriMe	TotG mol% C10+
- ^	1	45	106	16	0.0465	9 0.0034	0.0064	0.0031	0.0079	0.2281	0	0
1 (6)	~	22	165	17	0.3297	7 0.0422	0.0279	0.0077	0.0429	1.3568	0	0
	5	20	160	18	0.2295	0.0099	0.0218	0.0015	0.0247	0.6758	0	0
ŝ	4	1 63	101	19	0.0783	3 0.003	0.0094	0.0054	0.0153	0.4382	0	0
ဖ	9	1 23	79	20	0.0285	0.0037	0.0058	0.0004	0.0042	0.1692	0	0
F	~	1 18	75	20	0.0343	3 0.017	0.0091	0.003	0.0065	0.3641	0	0
ø	6	64	125	21	0.1557	0.0147	0.023	0.0019	0.0254	0.6654	0	0
5	9	35	76	23	0.0027	0.0175	0.0054	0.0002	0.0007	0.0296	0	0
ļ	12	30	66	23	0.0291	0.007	0.0042	0.0018	0.0069	0.3452	0	0
E	13	1 20	122	24	0.171	1 0.0091	0.0315	0.0017	0.0157	0.389	0	0
9	14	1 20	88	24	0.0625	5 0.0033	0.0076	0.0048	0.0131	0.6706	o	0
1	16	22	86	24	0.0632	2 0.0092	0.0175	6000.0	0.0117	0.5756	0	0
2	16	20	68	24	0.0524	1 0.0123	0.0199	0.0006	0.0035	0.5319	0	0
5	47	19	133	25	0.2336	0.0166	0.0284	0.003	0.0119	0.9694	0	0
:[«	18	30	60	25	0.0266	0.0037	0.0095	0.0023	0.0058	0.3207	0	0
:	6	26	136	27	0.2342	0.2922	0.4652	0.0226	0.1019	0.9222	0	0
<u>۹</u>	2 v	31	64	27	0.0259	0.0038	0.0042	0.000	0.0052	0.4208	0	0
2	2 2	23	62	29	0.0633	3 0.1875	0.1483	0.0043	0.0408	0.1634	0	0
ŝ	22	17	86	29	0.103	0.2563	0.1735	0.0038	0.0227	0.5496	0	0
3	12	20	120	29	0.186	0.5021	0.3346	0.0086	0.0414	1.352	0	0
16	24	22	86	29	0.1143	0.0412	0.0513	0.0012	0.0184	0.3765	0	0
:	26	4	80	30	0.047	0.0176	0.0062	0.0004	0.0134	0.113	0	0
2	27	26	180	30	0.7675	0.0239	0.0422	0.0103	0.1014	4.2643	0	0.0003
25	28	64	20	30	0.0349	0.0535	0.0183	0.0008	0.0068	0.2014	0	0
26	29	80	11	33	0.0674	0.0706	0.0568	0.0055	0.0341	0.3318	0	•
5	8	20	115	33	0.123	0.068	0.0441	0.0044	0.0168	0.5779	0	0.0001
28	31	60	78	34	0.0206	0.0231	0.0091	0.006	0.0035	0.1386	0	•
29	32	18	20	34	0:0308	0.0213	0.0291	0.0025	0.0143	0.1522	0	0
g	34	18	80	36	0.0979	0.3225	0.2472	0.0047	0.0422	0.8006	0	0
Б Б	36	15	108	36	0.1345	0.0171	0.0293	0.002	0.0207	0.9835	0	0.0001
8	36	17	100	36	0.1271	0.0206	0.0237	0.0042	0.0161	0.8933	0	0
ŝ	37	30	125	36	0.1762	0.277	0.2663	0.0084	0.0374	0.4176	0	0.0002
34	38	50	68	36	0.0449	0.1381	0.0944	0.0043	0.0348	0.352	0	0
35	60	67	80	36	0.0576	0.0976	0.0849	0.0045	0.0347	0.4886	0	0
99	4	1 75	81	36	0.061	0.1012	0.0626	0.0043	0.0292	0.4125	0	0
37	41	28	60	36	0.0367	0.0741	0.0573	0.0021	0.0122	0.3913	0	0
ę	42	18	36	36	0.1063	0.1204	0.1165	0.0066	0.0339	0.7485	0	0
<u>چ</u>	43	18	98	37	0.0927	0.143	0.1043	0.0056	0.0472	0.5198	0	0
Ş	44	190	20	37	0.023	0.0291	0.0135	0.0026	0.0077	0.1311	0	0
	45	22	20	37	0.0289	0.2837	0.0301	0.0035	0.0042	0.2739	0	0
\$	46	24	68	38	0.0475	0.0435	0.058	0.0023	0.0196	0.2805	0	0.0001
15	47	09	72	38	0.0487	0.1512	0.0754	0.002	0.0117	0.3067	0	ō
4	48	32	149	38	0.2652	0.2402	0.2452	0.0164	0.1464	1.4273	0	0.0022
45	49	62	80	38	0.0688	0.0057	0.0131	0.0055	0.0155	0.5527	0	0
4	99	13	113	38	0.1993	0.079	0.1261	0.0099	0.0483	1.3668	0	0
47	61	28	45	38	0.0217	0.0853	0.0136	0.0021	0.0023	0.1814	0	0
48	62	22	114	38	0.1451	0.0492	0.045	0.0022	0.0377	1.6867	0	0

.

Γ		8	0		5	ð	ъ	CM	CN	8	СÞ	3
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	TotG mol% NONS	TotG mol% BENZ	TotG mol% TOL	TotG mot% E-BENZ	TotG mol% XYL	TotG mol% n-C6	TotG mol% 224TriMe	TotG mol% C10+
49	63	9	89	39	0.0766	0.3938	0.1901	0.0051	0.0519	0.6238	0	0
8	54	9	0 80	39	0.0672	0.055	0.0542	0.0051	0.0275	0.7609	0	0
51	5 5	19	0 58	39	0.026	0.0455	0.0048	0.0024	0.0117	0.2517	0	0
52	67	Ř	3 60	39	0.0352	0.1432	0.1046	0.0021	0.0146	0.4183	0	0
53	58	4:	2 110	39	0.1992	1.1339	0.7228	0.0103	0.064	1.6652	0	0.0001
54	59	ē	6 83	40	0.1185	0.1696	0.2074	0.0062	0.0249	0.3728	0	0.0019
55	60	9	90	40	0.101	1.1122	0.5261	0.0108	0.0422	0.4465	0	0.0002
56	61	4	3 110	40	0.1945	0.2168	0.2376	0.0128	0.0741	1.4199	0	0
57	62	ġ	4 74	1	0.0601	0.0774	0.0556	0.0017	0.0131	0.5247	0	0
58	63	2	8 78	42	0.0696	0.0139	0.0154	0.0004	0.0092	0.8161	0	0
59	66	8	6	44	0.0249	0.019	0.0117	0.0007	0.0022	0.6315	0	0.0001
60	99	4	4 71	4	0.0538	0.0687	0.0802	0.0046	0.0351	0.5665	0	0
61	67	ē	0 60	44	0.0322	0.0315	0.045	0.0037	0.0197	0.5438	0	0
62	68	4	1 72	45	0.1409	0.394	0.3023	0.0064	0.108	0.7292	0	0.0001
63	69	2	0 68	45	0.0692	0.0418	0.0564	0.0055	0.0212	0.9685	0	0
64	70	Ň	3 85	146	0.0784	0.0147	0.0152	0.0018	0.0147	1.4491	0	0
6 5	71	5	4 114	1 46	0.2696	0.2119	0.2551	0.002	0.1092	2.1998	0	0
99	72	6	2 108	47	0.1525	0.1017	0.1721	0.0083	0.0951	0.8871	0	0.0001
67	73	4	140	47	0.4105	0.3908	0.3886	0.015	0.2112	2.424	0	0.0001
88	74	4	0 76	1 47	0.0699	0.0286	0.0227	0.0055	0.0183	1.2009	0	0
69	76	é	1 76	1 49	0.0933	0.2756	0.1304	0.003	0.0657	1.0088	•	0
20	11	02	100	9 60	0.0368	0.1348	0.2161	0.0004	0.005	0.4471	0	0.0023
71	78	8	0 48	3 50	0.0228	0.2305	0.1312	0.0036	0.0177	0.2721	0	0.0011
72	79	6	8	51	0.0103	0.0225	0.0164	1 0.002	0.0016	0.4573	0	Ö
73	80	11	6 73	54	0.1057	0.0365	0.0085	0.002	0.0333	0.5758	0	0.0005
74	81	ŝ	100	54	0.1252	0.3029	0.4266	0.0068	0.1155	1.1478	0	0.0003
75	82	Ŧ	5 86	54	0.0776	0.2178	0.1575	0.0046	0.0524	1.0551	0	0
76	83	1	0 100	55	0.0246	50'0	3760.0	0.0003	0.0048	0.6546	•	0.0005
77	84	3	9 66	57	0.0967	0.1941	0.161	0.0077	0.0339	0.5046	0	0.0024
78	85	ñ	8 96	5 67	0.1333	0.3859	0.1997	0.0131	0.0971	1.8369	0	0
79	86	Ø	6 80	57	0.1245	0.2965	0.3922	0.0122	0.114	1.4782	0	0.0101
80	87	ف	4	57	0.028	0.0613	0.0675	0.00	0.0106	0.5562	0	0
81	. 88	87	0 78	3 57	0.0169	0.0426	0.0451	0.0013	0.0067	0.3881	0	0
82	89	09	0 70	57	0.0177	0.0791	0.0746	30005	0.0031	0.4187	0	0.001
83	06	78	0 70	58	0.0292	0.0171	0.030	0.0014	0.0102	0.4236	0	0.0006
84	91	ģ	0 56	58	0.0508	0.0385	0.094	0.0035	0.0397	0.3645	0	0.0008
85	92	00	0 84	1 58	0.0342	0.1527	0.196	0.002	0.0049	0.6269	0	0.0001
86	63	30	0 80	58	0.037	0.0505	0.0363	0.0017	0.0119	0.716	0	0
87	94	4	0	69	0.0895	0.056	0.1517	0.0067	0.0686	0.5496	0	0.0046
88	96	76	06	60	0.0332	0.1696	0.162(0.0004	1 0.0071	1.0622	0	0.0001
89	96	80	5 86	61	0.1794	1 0.055	0.0275	0.0052	0.0222	1.0338	0	0.0004
90	97	b	7	2 62	0.0748	0.0993	0.166	0.0044	0.0501	1.0482	0	0
91	86		2 80	63	0.1706	0.0297	0.105	3 0.0045	0.0401	0.968	0	0.0008
92	66	2	80	63	0.0212	0.1536	0.128	0.0002	0.0045	0.7287	0	0
93	ę	58	2	64	0.0296	0.1631	0.218	0.002	0.02	0.5981	0	0.0002
94	<u>ð</u>	73	8	0 64	0.0059	0.062	0.041	2	0.0012	0.3233	0	0
95	102	8	7 96	99 99	1 0.0233	0.0392	0.0071	9 0.0011	0.0066	0.2394	0	0.000

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A 71 Not for Resale

L	A	8	0	٥	CR	cs	ст	cu	ς
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	TotG Mol Frac	TotG MWt	TotG Grav	prod rate	THC ems
~	-	45	106	15	0.0299	44.7792	1.5457	480	1.4205
e	2	22	165	17	0.0287	48.7595	1.6831	3228	105.225
4	3	20	160	18	0.0241	48.0099	1.6572	230	3.1011
ŝ	4	63	101	19	0.0485	36.2738	1.2521	3663	162.0545
9	9	23	79	20	0.0145	20.3907	0.7039	405	3.8512
7	8	18	75	20	0.0104	31.3501	1.0822	3650	33.4051
œ	6	54	125	21	0.038	34.261	1.1826	35	1.8281
6	10	35	76	23	0.0196	20.4962	0.7075	871	15,9198
9	12	30	99	23	0.0382	36.3096	1.2534	360	15.769
7	13	20	122	24	0.0129	23.6669	0.8169	1550	13.6821
12	14	20	88	24	0.0466	42.5062	1.4672	975	60.7106
13	16	22	86	24	0.0351	42.9633	1.483	1350	53.5742
14	16	20	68	24	0.0431	44.5227	1.5369	763	44.7712
15	11	19	133	25	0.0081	41.8024	1.443	1131	17.563
16	18	30	60	26	0.0402	34.87	1.2037	25	1.5541
1	19	26	136	27	0.0199	43.5202	1.5023	1872	48.7592
18	20	31	64	27	0.0399	38.5785	1.3317	105	6.8776
19	21	23	62	29	0.014	25.0517	0.8647	655	10.7879
20	22	17	86	29	0.0391	43.7589	1.5105	1250	114.202
21	23	20	120	29	0.0235	53.7063	1.8539	160000	10754.7562
22	24	22	98	29	0.0475	41.7428	1.4409	1000	95.9194
23	26	4	80	30	0.0056	23.7279	0.8191	7300	43.7217
24	27	25	180	30	0.0253	54.5497	1.883	646	41.8662
25	28	64	70	30	0.0497	26.4945	0.9145	1000	51.3736
26	29	80	11	33	0.068	33.3361	1.1507	1696	202.0897
27	30	20	115	33	0.0194	35.0579	1.2101	1410	47.8196
28	31	60	78	34	0.0336	22.1344	0.764	231	6.9192
29	32	18	70	34	0.0138	22.4234	0.774	150	2.1649
30	34	18	80	35	0.0437	42.0871	1.4528	120	13.2865
31	35	15	108	35	0.0359	45.679	1.5768	476	36.8652
32	36	17	100	35	0.0343	41.5758	1.4351	345	26.9625
33	37	30	126	36	0.011	28.1162	0.9705	820	12.4471
34	38	60	68	36	0.0319	24.4775	0.8449	995	36.9054
35	39	57	80	36	0.031	30.3159	1.0465	1050	52.6414
36	40	75	81	36	0.0547	30.534	1.054	2700	242.7301
37	41	28	60	36	0.04	33.5783	1.1591	110	8.3272
38	42	18	96	36	0.0418	46.449	1.6033	850	88.2221
39	43	18	98	37	0.02	32.247	1.1131	340	11.7213
40	4	190	70	37	0.1064	26.3954	0.9111	40	5.9193
41	45	22	60	37	0.1168	46.1225	1.5921	006	290.7519
42	46	24	68	38	0.0274	32.3584	1.117	124	6.7524
43	47	09	72	38	0.0376	27.3575	0.9443	20	3.6123
44	8 4	32	149	38	0.0113	38.9898	1.3459	1700	42.1971
45	49	62	80	38	0.0673	48.308	1.6675	2438	216,4445
46	60	13	113	38	0.0263	50.694	1.7499	2819	212.8561
47	61	28	45	38	0.0476	41.142	1.4202	400	28.3984
48	62	22	114	38	0.0926	55.1961	1.9053	48	13.1515

STD.API/PETRO	PUBL	4683-ENGL	1998	073229

0732290 0615381 819 📖

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-25 Not for Resale

\Box	۷	8	ပ	_	CR	SS	СТ	cu	S
-	Tank ID	Sep Pres	Sep Temp	SISOII APIG	TotG Mol Frac	TotG MWt	TotG Grav	prod rate	THC ems
6	23	99	68	39	0.0542	35.1454	1.2132	550	61.2558
3	54	99	80	39	0.0383	30.7668	1.062	2657	206.4514
2	22	99	58	39	0.0792	35.0137	1.2086	22	3,6327
52	57	33	60	39	0.0581	45.125	1.5576	1650	172.5381
ន	58	42	110	39	0.0454	42.8664	1.4797	30	3 7551
2	69	99	83	40	0.0471	46.3542	1.6001	62	1 2771
55	9	99	06	40	0.0472	31.5282	1.0883	52	5 0404
56	5	13	110	40	0.0222	43.7085	1.5088	100	5,9096
57	62	64	74	9	0.0393	27.5458	0.9508	1000	57 1426
58	63	28	78	42	0.0365	42.5251	1.4679	40	3 4332
59	99	29	09	4	0.0538	37.6916	1.3011	140	18 7336
60	99	44	71	4	0.0347	34.9441	1 2062	2600	167 4696
61	67	60	60	\$	0.0632	35.9666	1.2415	006	145 776
62	68	41	72	45	0.0292	31.7161	1.0948	530	32 0743
63	69	20	89	46	0.0435	42.3925	1.4633	233	30 8705
64	70	23	85	46	0.0732	48.4972	1.6741	71	15 7075
65	71	24	114	46	0.0415	48,4081	1671	312	41 5487
88	72	52	108	47	0.0428	43.8049	1.5121	270	31 5653
67	73	45	140	47	0.1118	55,9353	1 9308		482 2405
68	74	40	76	47	0.063	46.7016	16121	115	27 2848
69	76	31	76	49	0.041	36.4215	1 2572	1100	105 0764
20	11	200	100	60	0.3854	33.5429	1 1578	3 5	10 6303
71	78	20	48	60	0.0644	39.7721	1 3729	: ;	000001
72	64	96	40	61	0.1516	39,8233	1 3746	2 q	10 0744
73	80	115	73	54	0.0644	29.3108	1 0118	2 60	3 7007
74	81	30	100	54	0.0777	48.0273	1.6578	160	56 8956
75	82	15	86	54	0.0584	49.1078	1,6951	353	89 449
76	83	770	100	55	0.4283	35.9713	1.2417	ę	22 4045
77	84	39	99	67	0.0309	28.7041	0.9908	200	15 574
78	85	38	96	67	0.0836	51.6831	1 784	200	162 3623
79	86	66	80	57	0.0669	54.325	1.8752	346	126 4333
ຂ	87	54	60	57	0.1129	42.126	1.4541	210	93 647
5	88	870	78	67	0.4331	31.0794	1.0728	210	408.5969
2	88	600	20	67	0.3284	32.2295	1.1125	5	6.8468
2	6	780	2	58	0.3429	28.0569	0.9685	42	55.8794
5	5	99	26	89	0.0861	32.1891	1.111	42	11.6613
8	28	600	*	89	0.2794	33.0238	1.1399	6	10.4477
8	EB .	300	8	68	0.2701	40.1311	1.3853	45	56.7998
2	84	110	72	23	0.0834	33.9685	1.1725	35	10.3178
	36	760	6	60	0.2733	45.2996	1.5637	10	15.7599
8	8	86	85	61	0.0533	33.534	1.1575	-	0.164
8	67	67	82	62	0.0918	44.7612	1.5451	370	151.905
5	88	72	80	63	0.0429	31.4889	1.0869	85	10.5771
8	66	730	80	63	0.2704	44.0368	1.5201	25	38.4485
ន	9	580	2	64	0.2656	28.4718	0.9828	4	3.8511
8	ē	230	80	64	0.5005	36.6062	1.2636	25	91.7663
95	102	807	36	99	0.4832	35.0045	1.2083	3341	10271 2944

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

A-26 Not for Resale

STD.API/PETRO PUBL 4683-ENGL 1998 🗰 0732290 0615382 755 🗰

-

0732290 0615383 691 📖

1220 L Street, Northwest Washington, D.C. 20005 202-682-8000 http://www.api.org

· Order No. I46830