

VLET SEPARATOR

A Methodology for Estimating Incremental Benzene Exposures and Risks Associated With Glycol Dehydrators

Health and Environmental Sciences Department

API PUBLICATION NUMBER 4644

PREPARED UNDER CONTRACT BY:

TED JOHNSON TRJ ENVIRONMENTAL, INC. 713 Shadylawn Road Chapel Hill, North Carolina 27514

FEBRUARY 1997

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564318 504 🛲

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFAC-TURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

Copyright © 1997 American Petroleum Institute

STD.API/PETRO PUBL 4644-ENGL 1997 🎫 0732290 0564319 440 📰

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT

Paul Martino, Health and Environmental Sciences Department

MEMBERS OF THE E&P MACT PROJECT GROUP

Miriam Lev-On, Arco Mike Milliet, Texaco E&P Dan Van Der Zanden, Chevron

TRJ Environmental would also like to thank Mark Weaver, who assisted in the statistical analyses and Mike Mccoy, who ran the screen model analyses. TRJ Environmental acknowledges the following two independent contractors assisting in this project: Mark Smith, who reformatted data received from the U.S. Environmental Protection Agency (EPA) to facilitate statistical analyses; and Joan Abernathy, who provided word processing. We also thank Mr. Mike Dusetzina of EPA's Risk and Exposure Assessment Group for providing dispersion modeling data for the analyses described in this report.

TABLE OF CONTENTS

Section	on Page
	EXECUTIVE SUMMARY ES-1
1.	INTRODUCTION
2.	SCREENING ANALYSIS 2-1
3.	AN EPA TEST RUN OF ISC2 USING 45 SELECTED METEOROLOGICAL STATIONS
4.	INITIAL MODEL DEVELOPMENT 4-1
5.	ESTIMATING INCREMENTAL BENZENE EXPOSURES AND ASSOCIATED CANCER RISKS
	SIMRISK
	DEFAULT DISTRIBUTIONS FOR EXPOSURE FACTORS 5-2
	CALCULATION OF LIFETIME RISK
6.	A SIMPLIFIED METHOD FOR ESTIMATING 50th AND 95th PERCENTILE VALUES OF LIFETIME RISK
7.	DISCUSSION
8.	REFERENCES
Appe	endix A
INITI EXP	AL MONTE CARLO ANALYSES BY EPA'S RISK AND OSURE ASSESSMENT GROUP
Appe	endix B
348 MOE	METEOROLOGICAL STATIONS USED IN DISPERSION DEL RUNS
Appe DES CON DISF	endix C SCRIPTIVE STATISTICS FOR AMBIENT BENZENE NCENTRATIONS ESTIMATED BY APPLICATION OF ISC2 PERSION MODEL TO 348 METEOROLOGICAL STATIONS

LIST OF FIGURES

Figure	Page
4-1.	Estimated Relationships Between 95th Percentile of Outdoor Benzene Concentration (μ g/m ³) and Distance (Meters) From Glycol Dehydrator for Specified Emission Conditions (Benzene Emission Rate = 1 ton/year, Vent Velocity = 2.93 ft/sec, Vent Diameter = 2 inches) 4-11
4-2 .	Log-Log Plots Showing Estimated Relationships Between 95th Percentile of Outdoor Benzene Concentration (μ g/m ³) and Distance (Meters) From Glycol Dehydrator for Specified Emission Conditions (Benzene Emission Rate = 1 ton/year, Vent Velocity = 2.93 ft/sec, Vent Diameter = 2 inches)
5-1.	Estimated Frequency of Lifetime Risk When Distance to Glycol Dehydrator Equals 300 Meters (Benzene Emission Rate = 1 ton/year, Vent Velocity = 2.93 ft/sec, Vent Diameter = 2 inches, and Land Use = Urban)
5-2.	Estimate of the 50th Percentile of Lifetime Risk Versus Distance From Glycol Dehydrator (Benzene Emission Rate = 1 ton/year, Vent Velocity = 2.93 ft/sec, Vent Diameter = 2 inches, and Land Use = Urban)
6-1.	Estimate of the 50th Percentile of Lifetime Risk Versus Distance (Meters) for Indicated Benzene Emission Rate (tons/year) and Urban Land Use (2 inches \leq Vent Diameter \leq 4 inches, 3.21 ft/sec \leq Vent Velocity \leq 20.3 ft/sec)
6-2.	Estimate of the 50th Percentile of Lifetime Risk Versus Distance (Meters) for Indicated Benzene Emission Rate (tons/year) and Rural Land Use (2 inches < Vent Diameter < 4 inches, 3.21 ft/sec < Vent Velocity < 20.3 ft/sec)
6-3.	Estimate of the 95th Percentile of Lifetime Risk Versus Distance (Meters) for Indicated Benzene Emission Rate (tons/year) and Urban Land Use (2 inches \leq Vent Diameter \leq 4 inches, 3.21 ft/sec \leq Vent Velocity \leq 20.3 ft/sec)

LIST OF FIGURES (Continued)

Figure	Page
6-4.	Estimate of the 95th Percentile of Lifetime Risk Versus Distance (Meters) for Indicated Benzene Emission Rate (tons/year) and Rural Land Use (2 inches < Vent Diameter < 4 inches, 3.21 ft/sec < Vent Velocity < 20.3 ft/sec)
6-5.	Estimate of the Distance (Meters) Associated With the Indicated 50th Percentile Lifetime Risk Versus Benzene Emission Rate (tons/year) for Urban Land Use (2 inches < Vent Diameter < 4 inches, 3.21 ft/sec < Vent Velocity < 20.3 ft/sec)
6-6.	Estimate of the Distance (Meters) Associated With the Indicated 50th Percentile Lifetime Risk Versus Benzene Emission Rate (tons/year) for Rural Land Use (2 inches < Vent Diameter < 4 inches, 3.21 ft/sec < Vent Velocity < 20.3 ft/sec)
6-7.	Estimate of the Distance (Meters) Associated With the Indicated 95th Percentile Lifetime Risk Versus Benzene Emission Rate (tons/year) for Urban Land Use (2 inches < Vent Diameter < 4 inches, 3.21 ft/sec < Vent Velocity < 20.3 ft/sec)
6-8.	Estimate of the Distance (Meters) Associated With the Indicated 95th Percentile Lifetime Risk Versus Benzene Emission Rate (tons/year) for Rural Land Use (2 inches \leq Vent Diameter \leq 4 inches, 3.21 ft/sec \leq Vent Velocity \leq 20.3 ft/sec)

LIST OF TABLES

<u>Table</u>	Page
2-1.	American Petroleum Institute Specifications for SCREEN3 2-2
2-2.	Benzene Concentration Estimates (µg/m ³) From Dispersion Model Runs Which Applied SCREEN3 to Generic Glycol Reboiler Vents
3-1.	Meteorological Stations Representing 45 Geographical Areas Where Glycol Dehydrators Are Likely to be Located
3-2.	Specifications for the Test Run of ISC2 Applied to 45 Meteorological Stations
3-3.	Descriptive Statistics for Estimated Benzene Concentrations (µg/m ³) at Specified Distances From 45 Hypothetical Emission Sources
4-1.	Dispersion Model Output Files Received From the Risk and Exposure Assessment Group (Jan. 26 and Feb. 1, 1996)
4-2.	Results of Stepwise Linear Regression Analysis Performed on the LNRATIO Parameter of a Lognormal Distribution Fitting Benzene Concentrations Estimated by Applying the ISC2 Dispersion Model to 348 Meteorological Stations
4-3.	Regression Equations for Estimating the Geometric Standard Deviation (GSD) of a Lognormal Distribution Fitting Benzene Concentrations Estimated by Applying the ISC2 Dispersion Model to 348 Meteorological Stations (Distance ≥ 30 Meters) 4-7
4-4.	Equations for Estimating LNRATIO and GSD Based on the Regression Results Presented in Tables 4-2 and 4-3
4-5.	Procedure for Estimating Random Values of Outdoor Benzene Concentrations According to User-Specified Emission Conditions
5-1.	Default Assumptions for the Exposure Factors Used in SimRisk Runs

EXECUTIVE SUMMARY

The U.S. Environmental Protection Agency (EPA) is currently evaluating potential applicability criteria for glycol dehydrator air emission controls. To assist this evaluation, the American Petroleum Institute (API) commissioned TRJ Environmental, Inc. (TRJ) to develop a methodology to estimate benzene exposures and associated risks under representative emission conditions.

The EPA assisted in this research effort by performing a series of dispersion model runs using emission parameters suggested by API and meteorological data representing 348 weather stations in the United States. TRJ performed a series of statistical analyses on the results of these runs which indicated that the distribution of ambient (outdoor) benzene concentrations produced by an operating glycol dehydrator unit could be estimated as a function of benzene emission rate, vent velocity, vent diameter, land use (urban or rural), and source-to-receptor distance. Equations based on the statistical analyses were incorporated into a spreadsheet model capable of plotting "outdoor concentration vs. distance" for specified emission scenarios and concentration percentiles.

In addition to the spreadsheet model, a Monte Carlo routine for estimating lifetime cancer risk as a function of the estimated benzene concentration distribution was also developed. The entire process (spreadsheet program and Monte Carlo routine) was incorporated into a PC-based model called SimRisk. SimRisk generates a lifetime risk distribution that accounts for four factors that affect benzene exposure (residential occupancy period, time spent indoors and outdoors at the home location, indoor/outdoor ratio for benzene concentration, and breathing rate). The lifetime risk distribution is specific to benzene emission rate, vent velocity, vent diameter, land use (urban or rural), and source-to-receptor distance.

ES-1

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS A simplified version of SimRisk was developed that can be used to estimate the 50th and 95th percentile values of lifetime risk solely as a function of benzene emission rate, source-to-receptor distance, and land use. This simplified risk model could be incorporated into control applicability criteria for glycol dehydrator vent emissions. To determine the applicability of controls to a specific unit, the analyst would use a simple graph or lookup table obtained from the model to determine the minimum source-to-residence distance associated with a specified lifetime cancer risk. If the actual distance from the glycol dehydrator unit to the nearest residence exceeds this minimum distance, the analyst could assume that the glycol dehydrator unit requires no further emission controls. If, however, the actual distance from the glycol dehydrator unit to the nearest from the glycol dehydrator unit to the nearest residence from the glycol dehydrator unit to the nearest residence from the glycol dehydrator unit to the nearest residence from the glycol dehydrator unit to the nearest from the glycol dehydrator unit to the nearest residence from the glycol dehydrator unit to the nearest residence is equal to or less than this minimum distance, then the source may be subject to additional controls.

This model is applicable only to glycol dehydrators operating under a specific set of conditions and should not be used outside of the following ranges:

30 meters \leq distance \leq meters 2000 meters

2 inches \leq vent diameter \leq 4 inches

1 ton/year \leq emission rate \leq 7 tons/year

3.2 feet/sec \leq vent velocity \leq 20.3 feet/sec.

Section 1 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is currently evaluating potential applicability criteria for glycol dehydrator air emission controls. To assist this evaluation, the American Petroleum Institute (API) commissioned TRJ Environmental to develop a methodology to estimate benzene exposures and associated risks under representative emission conditions.

This report is divided into seven sections. Section 2 describes preliminary risk assessment analyses performed by EPA prior to the startup of this project. The analyses included dispersion model runs using 348 meteorological stations and the application of Monte Carlo modeling techniques to the dispersion model results. Section 2 also summarizes a series of exploratory analyses in which the SCREEN3 dispersion model was applied to eight emission scenarios identified as representative of typical operating conditions. The model produced an estimate of the maximum benzene concentration at each of 10 distances considered in the earlier EPA dispersion model runs.

Section 3 presents the results of a special analysis in which Version 2 of the Industrial Source Complex dispersion model (ISC2) was applied to 45 meteorological stations selected by API as representative of areas where glycol dehydrators were likely to be located. After completion of the special analysis, API and EPA jointly developed a set of 24 emission scenarios to be used in subsequent dispersion modeling runs. Section 4 describes the 24 emission scenarios and presents the results of applying the ISC2 model to 348 meteorological stations under each scenario. Researchers statistically analyzed these results and developed a spreadsheet model for estimating outdoor benzene concentrations as a function of

1-1

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

e from IHS

source-to-receptor distance and emission scenario. Section 4 describes the model and provides sample outputs.

Section 5 describes development of a PC-based model incorporating the spreadsheet and a Monte Carlo routine combining the outdoor benzene concentrations with randomly generated exposure factors to determine lifetime risk distributions. Section 6 presents a simplified method for estimating the 50th and 95th percentiles of these lifetime risk distributions. Section 7 discusses the limitations of the proposed modeling approach and provides recommendations for further research. Section 7 also describes a method by which model estimates can be used to determine whether or not a specific glycol dehydrator should be subject to controls for reducing benzene emissions.

1-2

Section 2 SCREENING ANALYSIS

The work in this report extends research conducted in 1995 by the Risk and Exposure Assessment Group (REAG) of EPA (Appendix A). Briefly, REAG acquired meteorological data for the 348 U.S. sites listed in Appendix B from the National Climatic Center in Asheville, North Carolina. The sites included all U.S. meteorological stations for which data were available at the time of the REAG analysis. REAG applied the ISC2-LT (long-term) dispersion model to each of the 348 sites and produced estimates of ambient (outdoor) benzene concentration at each of 160 points on a receptor grid surrounding a hypothetical glycol dehydrator unit. The receptor grid was laid out in a polar pattern with ten concentric rings at distances of 10, 20, 30, 50, 100, 200, 300, 500, 1000, and 2000 meters. These rings were intercepted by 16 equally spaced radial arms extending from the emission source to produce the 160 receptor points. The emission scenarios were defined according to the assumptions listed in Table A-1.

REAG applied Monte Carlo modeling techniques to the dispersion model estimates to determine lifetime cancer risk probabilities for people residing at various distances from the hypothetical glycol dehydrator unit. The modeling approach explicitly accounted for variability in breathing rate, time spent away from home, residential occupancy period, and indoor/outdoor ratio. REAG provided API with an informal summary of the input assumptions for the Monte Carlo analysis and examples of the model's output (personal communication, Mike Dusetzina, REAG, March 7, 1996). API reviewed these materials and directed TRJ to perform a series of screening analyses to determine the possible effects of varying the modeling assumptions concerning benzene emission rates, vent flow rates, and land use characteristics.

EPA's SCREEN3 dispersion model was applied to eight emission scenarios identified by API as representative of typical operating conditions. The model produced an

2-1

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS estimate of the <u>maximum</u> benzene concentration at each of 10 distances considered in the earlier EPA dispersion model runs. Table 2-1 lists the assumptions common to all runs. Table 2-2 presents the conditions specific to each run and lists the estimated concentrations at six selected distances.

Model specification	Value		
Source type	Point		
Stack height	10 feet		
Stack diameter	2 inches		
Stack gas exit temperature	225 degrees F.		
Air temperature	293 degrees K. (default)		
Receptor height	2 meters		
Building downwash calculation?	No		
Terrain	Flat		
Fumigation calculation?	No		
Modeled meteorological conditions	All stabilities and wind speeds		

Table 2-1. American Petroleum Institute specifications for SCREEN3.

The results in Table 2-2 are grouped in pairs by benzene, toluene, ethylbenzene, and xylene (BTEX) concentration in natural gas and land use. Within each pair, the runs differ with respect to benzene emission rate and total gas exit velocity from the vent. When the values associated with a benzene emission rate of 7 tons/year are divided by the paired values associated with the 1 ton/year runs, the resulting ratios increase with distance. For example, the ratio under the assumption of BTEX concentration = 550 ppmv in the natural gas and land use = urban is 4.90 for the 10 m distance and 6.94 for the 2 km distance. These results suggest that the dispersion model estimates for maximum benzene concentration are not proportional to emission rate when distances are relatively small.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitte

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564330 001 🖿

The results listed in Table 2-2 also show that dispersion model estimates for rural locations tend to be higher over longer distances than corresponding estimates for urban locations. Consider, for example, the results associated with BTEX concentration = 550 ppmv in natural gas and benzene emission rate = 7 tons/year. Under these conditions, the maximum concentrations at 100 m and 500 m are 493 and 40.84 μ g/m³, respectively, for urban locations and 1204 and 289.5 μ g/m³, respectively, for rural locations. This example demonstrates a projected 12-fold concentration decrease between 100 m and 500 m for urban locations with only a 4-fold decrease between 100 m and 500 m for rural locations. This difference in the "concentration vs. distance" patterns for urban and rural sites can be explained by the higher turbulence caused by the urban "heat island" effect. This turbulence tends to disperse airborne pollutants closer to the emission point, causing a more rapid decrease in concentration with distance.

In summary, results of the screening analyses suggest that (1) dispersion model estimates of maximum outdoor benzene concentration are not proportional to emission rate when distances are relatively small and (2) the dispersion model concentration estimates for rural locations tend to be higher over longer distances than corresponding estimates for urban locations.

Benzene concentration estimates (μg/m³) from dispersion model runs which applied SCREEN3 to generic glycol reboiler vents.^a Table 2-2.

ВТЕХ		Benzene	Exit			Distanc	e, m		
concentration ^b , ppmv	Land use	emission rate, tons/yr	velocity ^c , ft/sec	10	100	200	500	1000	2000
550	Urban	-	1.59	1573	88.45	28.76	5.98	1.95	0.70
		7	10.83	7715	493	186.5	40.84	13.45	4.86
	Rural	-	1.59	1957	204.5	140.3	49.72	18.06	6.49
		7	10.83	5644	1204	547.0	289.5	117.1	43.71
250	Urban	-	2.93	1490	84.14	28.33	5.96	1.95	0.70
		7	20.27	5209	435.4	179.4	40.49	13.41	4.85
	Rural	-	2.93	1589	183.3	122.6	47.78	17.79	6.45
		7	20.27	3124	1129	423.7	262.1	112.7	43.00

*Stack parameters common to all runs can be found in Table 2-1.

^bBTEX concentration (ppmv) of inlet natural gas to glycol dehydrator with an operating pressure of 855 psig, operating temperature of 100 degrees F, and glycol circulation rate of 3 gallons TEG per pound of water removed. ^cExit velocity is based on total volumetric flow rate of vent gas calculated using the GRI-Glycalc model.

Section 3

AN EPA TEST RUN OF ISC2 USING 45 SELECTED METEOROLOGICAL STATIONS

As discussed in Section 2, REAG applied the ISC2 dispersion model to data from 348 meteorological stations in an initial analysis of risks associated with benzene emitted by glycol dehydrators. These sites were selected to represent all areas of the United States. A second application of ISC2 was performed using a subset of 45 meteorological stations (Table 3-1) selected to represent areas where glycol dehydrators operating in oil and gas production fields were likely to be located. These stations are located in 17 states known to have operating glycol dehydrator units.

REAG assisted API by performing a test run of ISC2 based on the conditions listed in Table 3-2. The run assumed that the exit velocity was 1.59 ft/sec, the benzene emission rate was 1 ton/year, and the land use was rural. The remaining conditions were identical to those used in the SCREEN3 runs described in Section 2.

Table 3-3 provides descriptive statistics for the benzene concentration estimates according to distance from source. The statistics for each distance are based on 720 individual benzene concentration estimates, one for each combination of meteorological station (45 possibilities) and compass direction (16 possibilities). As expected, the value for each statistic decreases as distance increases. The distributions are positively skewed with relatively long upper tails. Plots on semi-log paper suggest that the empirical distribution of benzene concentrations at each distance can be well fit by a lognormal distribution. This finding is consistent with the results of subsequent analyses described in Section 4.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table 3-1.	Meteorological stations representing 45 geographical areas where glycol
	dehydrators are likely to be located.

State	Location	Site ID*
AK	Barter Island Airport	27401
AK	Barrow/W Post-W Rodgers	27502
AL	Mobile/WSO Airport	13894
CA	Fresno Air Terminal	93193
CA	Long Beach/WSO Airport	23129
CA	Los Angeles International Airport	23174
CA	Santa Barbara Airport	23190
CA	Redding/Aaf	24257
IL	Springfield/Capital Airport	93822
IN	Evansville Regional Airport	93817
KS	Wichita/Mid-Continent Airport	03928
KS	Concordia/Blosser Mun. Airport	13984
KY	Paducah/WSO Airport	03816
KY	Jackson/Julian Carroll Airport	03889
LA	Lake Charles/Municipal	03937
LA	New Orleans Int'l Airport	12916
LA	Shreveport/Regional Airport	13957
LA	Baton Rouge/Ryan Airport	13970
MS	Meriden/Key Field	13865
MO	Kansas City/Int'l Airport	03947
MO	Kansas City Airport	13988
MT	Cut Bank Airport	24137
ND	Williston/Sloulin Int'l Airport	94014
NM	Roswell	23009
ОН	Toledo/Express Airport	94830
ОК	Oklahoma City/Will Rodgers	13967
ОК	Tulsa/International Airport	13968
PA	Pittsburgh/Macon Airport	94823
ТХ	Stephenville	03969
ТХ	Victoria/WSO Airport	12912
ТХ	Port Arthur/Jefferson City	12917
ТХ	Brownsville/International Airport	12919
ТХ	San Antonio	12921
ТХ	Corpus Christie/Int'l Airport	12924

(continued)

State	Location	Site ID*
ТХ	Houston Intercontinental	12960
ТХ	Abilene/Municipal Airport	13962
ТХ	Wichita Falls/Municipal Airport	13966
ТХ	Midland/Regional Airport	23023
ТХ	San Angelo/WSO Airport	23034
ТХ	Lubbock/Regional Airport	23042
WV	Huntington/Tri-State Airport	03860
WV	Beckley/Raleigh Co. Memorial	03872
WV	Charleston/Kenawba Airport	13866
WY	Lander/Hunt Field	24021
WY	Rock Springs Airport	24027

Table 3-1 (Continued)

*Site ID refers to the meteorological station STAR Site number (see complete listing of sites in Appendix B).

Table 3-2.	Specifications for the Test Run of ISC2 applied to 45 meteorological	ļ
	stations.	

Parameter	Specification
Number of meteorological stations	45 (selected by API)
Exit velocity	1.59 feet/sec
Benzene emission rate	1 ton/year
Land use	Rural
Source type	Point
Stack height	10 feet
Stack diameter	2 inches
Stack gas exit temperature	225 degrees F.
Air temperature	293 degrees K. (default)
Receptor height	2 meters
Building downwash calculation?	No
Terrain	Flat
Fumigation calculation?	No
Modeled meteorological conditions	All stabilities and wind speeds

3-3

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

				Benzene concentration, μg/m ³					
Ring	Distance, meters	n	Arith. mean	Arith. S. D.	Mini- mum	25%	50%	75%	Maxi- mum_
1	10	720	19.68	11.97	1.75	11.75	16.73	24.33	92.44
2	20	720	11.27	6.76	1.03	6.76	9.62	13.97	52.39
3	30	720	7.43	4.35	0.82	4.51	6.40	9.16	33.64
4	50	720	4.12	2.44	0.44	2.49	3.55	5.09	18.91
5	100	720	1.66	1.01	0.17	0.98	1.41	2.07	7.92
6	200	720	0.60	0.38	0.05	0.35	0.51	0.75	2.99
7	300	720	0.32	0.21	0.03	0.18	0.27	0.41	1.63
8	500	720	0.140	0.091	0.011	0.078	0.112	0.179	0.724
9	1000	720	0.046	0.030	0.003	0.025	0.038	0.058	0.242
10	2000	720	0.015	0.010	0.001	0.008	0.013	0.019	0.080

Table 3-3. Descriptive statistics for estimated benzene concentrations (μg/m³) at specified distances from 45 hypothetical emission sources.^a

^aThese data were obtained from an ISC2 dispersion model run performed by the Risk and Exposure Assessment Group, U.S. Environmental Protection Agency. Table 3-1 lists the 45 meteorological stations used in the runs. Emission conditions are described in Table 3-2. Each of the 45 sites produced 16 concentration values for each of the 10 rings listed in the table above (45 sites x 16 values/ring = 720 values/ring for all sites).

Following the completion of the test run, API conferred with EPA concerning the use of the 45 stations in an analysis to estimate lifetime cancer risks associated with benzene emitted by glycol dehydrators. EPA recommended using the complete set of 348 meteorological stations that were used in the initial EPA risk assessment (Appendix A). These stations were considered to provide a more complete range of potential exposure conditions. Section 4 describes model development using the 348 meteorological stations.

Section 4 INITIAL MODEL DEVELOPMENT

After completion of the test run described in Section 3, API and EPA jointly developed a set of 24 emission scenarios to be used in subsequent dispersion modeling runs. These scenarios are listed in Table 4-1. Each scenario specifies benzene emission rate (1 or 7 tons/year), vent velocity (3.21, 10.9, or 20.3 feet/sec), vent diameter (2 or 4 inches), and a land use (urban or rural). Conditions common to all scenarios are listed below:

> release height = 12 feet release temperature = 225 degrees F

For each scenario, EPA ran the ISC2 dispersion model for each of the 348 meteorological stations. The far-left column in Table 4-1 lists the names of the 24 data files produced by these runs. Each data file contained 55,680 values of annual average outdoor benzene concentration: one for each combination of meteorological station (348 possibilities), distance from source (10 possibilities), and compass direction (16 possibilities).

Each of the EPA data files was reformatted into a new file suitable for statistical analyses. Tables C-1 through C-12 in Appendix C provide descriptive statistics calculated from these files. Each table provides results for one combination of vent velocity, vent diameter, and land use. The results within each table are further stratified by distance and emission rate. The statistics in each table row are based on 5,568 outdoor benzene concentrations (348 stations times 16 compass points). Each set of 5,568 values was referred to as a "scenario-distance data set" (SDDS).

REAG file name	Benzene emission rate, tons/year	Vent diameter, inches	Vent velocity, ft/sec	Land use
723.21r	7	2	3.21	rural
723.21u	7	2	3.21	urban
7210.9r	7	2	10.9	rural
7210.9u	7	2	10.9	urban
7220.3r	7	2	20.3	rural
7220.3u	7	2	20.3	urban
743.21r	7	4	3.21	rural
743.21u	7	4	3.21	urban
7410.9r	7	4	10.9	rural
7410.9u	7	4	10.9	urban
7420.3r	7	4	20.3	rural
7420.3u	7	4	20.3	urban
123.21r	1	2	3.21	rural
123.21u	1	2	3.21	urban
1210.9r	1	2	10.9	rural
1210.9u	1	2	10.9	urban
1220.3r	1	2	20.3	rural
1220.3u	1	2	20.3	urban
143.21r	1	4	3.21	rural
143.21u	1	4	3.21	urban
1410.9r	1	4	10.9	rural
1410.9u	1	4	10.9	urban
1420.3r	1	4	20.3	rural
1420.3u	1	4	20.3	urban

Table 4-1. Dispersion model output files received from the Risk and Exposure Assessment Group (Jan. 26 and Feb. 1, 1996).^a

^aAll runs used 348 meteorological stations. Stack height = 12 feet. Release temperature = 225 degrees F.

Analyses of the SDDS revealed that the lognormal distribution usually provided a good fit to the data. A lognormal distribution can be completely specified by its geometric mean (GM) and geometric standard deviation (GSD). If data are well fit by a lognormal distribution, the GM will closely match the median (i.e., the 50th percentile value). Each pair of GM and median values listed in Appendix C match within 2 percent.

The GM and GSD values listed for a particular SDDS can be used to estimate any percentile in the distribution of outdoor benzene concentrations associated with the SDDS. To estimate the benzene concentration corresponding to the P percentile $[C_{out}(P)]$, calculate the quantity

$$C_{out}(P) = (GM)(GSD)^{z}$$
(1)

where the area under the unit normal curve from zero to z is equal to P expressed as a fraction. Values of z for selected percentiles are listed below:

percentile	<u>z value</u>
5	-1.645
10	-1.282
25	-0.6745
50	0
75	0.6745
90	1.282
95	1.645
99	2.326

For example, the GM and GSD of the first SDDS listed in Table C-1 of Appendix C are 10.1 μ g/m³ and 1.768, respectively. The 95th percentile can be estimated by the expression

$$C_{out}(95\%) = (10.1)(1.768)^{1.645} = 25.8 \ \mu g/m^3.$$
 (2)

The actual 95th percentile is 26.0 μ g/m³, a difference of less than 1 percent.

A series of exploratory stepwise linear regression (SLR) analyses was performed to determine whether the geometric means and geometric standard deviations listed in

4-3

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS Appendix C could be estimated directly from the parameters defining the scenario (emission rate, vent velocity, vent diameter, and land use). The SLR analyses indicated that the geometric means could be estimated well at all distances between 10 and 2000 meters, whereas the geometric standard deviations could be estimated well for distances between 30 and 2000 meters.

The geometric means in Appendix C were found to be proportional to emission rate when other parameters were held constant. Researchers subsequently performed a series of followup SLR analyses on the quantity

LNRATIO = In[(geometric mean benzene conc.)/(benzene emission rate)] (3)

and found that LNRATIO could be estimated well at all distances between 10 and 2000 meters. Regression results based on separate analyses of the urban and rural data are included in Table 4-2.

The geometric standard deviation (a dimensionless quantity) was found to be independent of benzene emission rate. Regression results for geometric standard deviation based on separate analyses of the urban and rural data are included in Table 4-3. Note that these regression analyses omitted dispersion modeling results for distances of 10 and 20 meters. TRJ did not find a regression equation that could provide a good fit to dispersion model estimates for all distances when these two distances were included. Consequently, the regression analyses were applied to data for distances of 30 to 2000 meters. TRJ found that the following equations could be used to estimate the geometric standard deviations for 10 and 20 meters as a function of the geometric standard deviation estimated for 30 meters:

Urban:	GSD(10 meters) = (1.020)[GSD(30 meters)]	(4)
	GSD(20 meters) = (1.014)[GSD(30 meters)]	(5)
Rural:	GSD(10 meters) = (1.008)[GSD(30 meters)]	(6)
	GSD(20 meters) = (1.004)[GSD(30 meters)]	(7)

4-4

Table 4-2. Results of stepwise linear regression analyses performed on the LNRATIO parameter of a lognormal distribution fitting benzene concentrations estimated by applying the ISC2 dispersion model to 348 meteorological stations.^{a,b}

Land use	Predictor variable	Regression coefficient ^c	Cumulative R ² value ^d
urban	constant	9.79478	0.0000
	In(distance)	-2.08838	0.9805
	1/(distance)	-30.6184	0.9993
	distance	2.693E-4	0.9996
	velocity	-0.00447	0.9997
	1/(distance) ²	51.4401	0.9998
	diameter/distance	-0.48561	0.9998
rural	constant	8.19990	0.0000
	In(distance)	-1.63484	0.9765
	1/(distance)	-26.4672	0.9989
	velocity/distance	-0.11091	0.9993
	1/(distance) ²	65.2323	0.9996
	In(diameter)	-0.08316	0.9997
	velocity	-0.00294	0.9998

*LNRATIO = In[(geometric mean benzene conc.)/(benzene emission rate, tons/year)]

^bUnits: geometric benzene concentration (µg/m³), benzene emission rate (tons/year), distance (meters), velocity (feet/sec), diameter (inches).

"The p value for each regression coefficient is less than 0.0001.

^dCoefficient of determination indicating fraction of total variance in LNRATIO explained by predictor variables.

The regression results in Tables 4-2 and 4-3 are stated as equations for estimating LNRATIO and GSD in Table 4-4. These equations provide a means for determining the percentiles of the benzene distribution expected to occur under a specific emission scenario such that (1) the common set of conditions apply and (2) the distance, vent diameter, emission rate, and vent velocity fall within the following ranges:

30 meters ≤ distance ≤ 2000 meters

2 inches \leq vent diameter \leq 4 inches

1 ton/year \leq emission rate \leq 7 tons/year

3.21 feet/sec \leq vent velocity \leq 20.3 feet/sec.

Equations 4 through 7 can be used to produce estimates of GSD for 10 and 20 meters. Table 4-5 presents the entire estimation procedure as a series of six steps.

4-5

Table 4-3. Regression equations for estimating the geometric standard deviation (GSD) of a lognormal distribution fitting benzene concentrations estimated by applying the ISC2 dispersion model to 348 meteorological stations (distance \geq 30 meters).^a

Land use	Predictor variable	Regression coefficient ^b	Cumulative R ² value ^c
urban	constant	1.57788	0.0000
	In(distance)	0.03743	0.8919
	1/[(distance)(velocity]	-6.83247	0.9695
	In(velocity)	0.01573	0.9840
	In(diameter)	0.01292	0.9885
	distance/velocity	3.169E-5	0.9901
rural	constant	1.52967	0.0000
	In(distance)	0.05567	0.9613
	1/(distance) ²	-47.8347	0.9740
	distance	-1.933E-5	0.9814
	diameter	-0.00355	0.9856
	1/[(distance)(velocity)]	-1.41478	0.9874

^aUnits: geometric standard deviation (dimensionless), distance (meters), velocity (feet/sec), diameter (inches). ^bThe p value for each regression coefficient is less than 0.0005.

*Coefficient of determination indicating fraction of total variance in GSD explained by predictor variables.

Table 4-4. Equations for estimating LNRATIO and GSD based on the regression results presented in Tables 4-2 and 4-3.

Urban land use:			
LNRATIO = 9.79478 - (2.08838)[ln(D)] - (30.6184)(1/D) + (2.693E-4)(D) - (0.00447)(V) + (51.4401)(1/D²) - (0.48561)(d/D)			
GSD = 1.57788 + (0.03743)[ln(D)] - (6.83247)[1/(D)(V)] + (0.01573)[ln(V)] + (0.01292)[ln(d)] + (3.169E-5)(D/V)			
Rural land use:			
LNRATIO = 8.1999 - (1.63484)[ln(D)] - (26.4672)(1/D) - (0.11091)(V/D) + (65.2323)(1/D ²) - (0.08316)[ln(d)] - (0.00294)(V)			
GSD = 1.52967 + (0.05567)[ln(D)] - (47.8347)(1/D²) - (1.933E-5)(D) - (0.00355)(d) - (1.41478)[1/(D)(V)			
The variables are defined as follows:			
LNRATIO = In[(geometric mean benzene conc.)/(benzene emission rate)]			
GSD = geometric standard deviation (dimensionless)			
D = distance from source (meters)			
V = vent velocity (ft/sec)			
d = diameter of vent (inches).			
Units for LNRATIO: geometric mean benzene concentration (μg/m ³), benzene emission rate (tons/year).			

Table 4-5. Procedure for estimating random values of outdoor benzene concentrations according to user-specified emission conditions.

Step	Explanation		
1	Specify land use, distance from source, benzene emission rate, vent velocity, and vent diameter.		
2	Use appropriate regression equation from Table 4-4 to estimate LNRATIO for land use, distance, vent velocity, and vent diameter specified in Step 1.		
	LNRATIO is defined by the expression		
	LNRATIO = In[(geom. mean benzene conc.)/(benzene emiss. rate)].		
3	Estimate geometric mean by the equation:		
	geometric mean = (e ^{lNRATIO})(benzene emission rate)		
	where the benzene emission rate is the value specified in Step 1.		
4	If distance is between 30 and 2000 meters, use the appropriate equation from Table 4-4 to estimate geometric standard deviation for land use, vent velocity, and vent diameter specified in Step 1. If distance = 10 or 20 meters, calculate geometric standard deviation for 30 meters using Table 4-4 equation and then apply one of the		
	following conversion equations:		
	Urban land use		
	GSD(10 meters) = (1.020)[GSD(30 meters)]		
	GSD(20 meters) = (1.014)[GSD(30 meters)].		
	Rural land use		
	GSD(10 meters) = (1.008)[GSD(30 meters)]		
	GSD(20 meters) = (1.004)[GSD(30 meters)].		
5	Randomly select z value from unit normal distribution (i.e., mean = 0, standard deviation = 1).		
6	Calculate benzene concentration for random z value using equation:		
	$C_{out} = (GM)(GSD)^{z}.$		
	where GM is the geometric mean determined in Step 3, GSD is the geometric standard deviation determined in Step 4, and z is the value of the normal variate determined in Step 5.		

The procedure presented in Table 4-5 was incorporated into a spreadsheet model that (1) calculates the distribution of outdoor benzene concentrations at 24 distances from 10 m to 2000 m and (2) plots the results for user-specified percentiles. Figure 4-1 presents sample graphs of outdoor benzene concentration (95th percentile) versus distance produced by the program. The specified conditions were benzene emission rate = 1 ton/year, vent velocity = 2.93 ft/sec, and vent diameter = 2 inches. Separate

4-7

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564343 76T 🖿

graphs are provided for urban and rural land use. Figure 4-2 shows the same data plotted on a log-log scale.

The reader should note that this model is based on the implicit assumption that the dispersion modeling results for the specified set of 348 meteorological stations provide an unbiased representation of the distribution of benzene concentration in the vicinity of a randomly selected glycol dehydrator unit. The reader should also note that the benzene concentration estimated by the model represents the <u>incremental</u> contribution of the glycol dehydrator to the total benzene concentration in the outdoor air. Section 5 provides a methodology for using outputs of the model to estimate incremental benzene exposures from glycol dehydrators and associated incremental cancer risks.

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564344 6T6

Not for Resale

4-9

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

4-10

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564345 532 🛤

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Section 5

ESTIMATING INCREMENTAL BENZENE EXPOSURES AND ASSOCIATED CANCER RISKS

SIMRISK

The model described in Section 4 provides the parameters of a lognormal distribution for a specified distance and set of emission conditions. As previously noted, this distribution represents the <u>incremental</u> contribution of the glycol dehydrator unit to the total benzene concentration in the outdoor air.

TRJ developed a Monte Carlo procedure that can be applied to the lognormal distribution to estimate the lifetime risk of cancer associated with exposure to benzene emitted by the glycol dehydrator unit. The entire process has been incorporated into a PC-based model called SimRisk. SimRisk consists of two basic modules:

Outdoor concentration:	provides distributions of outdoor benzene concentrations at specified distances for a particular emission scenario (i.e., benzene emission rate, vent velocity, vent diameter, and land use).
Lifetime risk:	provides distributions of lifetime cancer risks at specified distances based on the distribution of outdoor benzene concentrations and exposure factors.

The outdoor concentration module determines the parameters of a lognormal distribution for each of 24 distances between 10 m and 2000 m. The parameters are estimated using regression equations (Table 4-4) fit to dispersion modeling results for selected emission scenarios applied to 348 meteorological stations.

The lifetime risk module operates on the lognormal distributions provided by the outdoor concentration module. The module randomly generates an outdoor benzene concentration and an exposure pattern for each of n simulated persons, where n is a number (typically 1000+) selected by the model user. Each exposure pattern is defined by five exposure factors:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

- 1. Residential occupancy period;
- 2. Number of hours per day spent at the residential location;
- 3. Number of hours per day spent outdoors at the residential location;
- 4. Indoor/outdoor ratio for residence; and
- 5. Ventilation ratio.

The model randomly selects a value for each factor from a distribution specified by the user. The following subsection provides recommendations for these distributions.

DEFAULT DISTRIBUTIONS FOR EXPOSURE FACTORS

<u>Residential occupancy period</u> (Y_{ROP}) is defined as the number of years between the date that a person moves into a new residence and the date that a person moves out of the residence or dies. SimRisk assigns a value of Y_{ROP} to each simulated person. The Y_{ROP} value determines the total number of years that the person has the potential for exposure to benzene emitted by the glycol dehydrator. Under default assumptions, the Y_{ROP} value is randomly selected from a distribution considered to be representative of the general U.S. population (Table 5-1). This distribution was generated by applying Monte Carlo techniques to recent data on mobility and mortality for the general U.S. population. The procedure is described in a report by Johnson and Capel (1992).

SimRisk also assigns a value to each simulated person for the <u>number of hours per</u> <u>day spent at the residential location</u> (H_{res}). The model assumes that all exposure to benzene emitted by glycol dehydrators occurs at a person's residential location. Under default assumptions, the H_{res} value is randomly selected from a triangular distribution with a lower limit of 8 hours, a peak probability at 16.37 hours, and an upper limit of 24 hours. The lower and upper limits are based on the assumption that a person will spend at least 8 hours at home each day and no more than 24 hours. The peak probability value (16.37 hours) was obtained from a recent national survey of time/activity patterns (Robinson, 1996). The value is the sum of the average time durations for 16 home-based activities identified by Robinson.

5-2

*Parameter	Distribution	Value	Cumulative percentage
H _{res}	triangular	minimum = 8 h peak = 16.37 h maximum = 24 h	0 52.3 100
H _{out}	point estimate	1 h	
R _{i/o}	triangular	minimum = 0.72 maximum = 1.00	0 100
R _{vent}	lognormal	GM = 0.9384 GSD = 1.4391	50 not applicable
Y _{rop}	histogram	0 years 2 years 4 years 9 years 16 years 26 years 33 years 41 years 47 years 51 years 55 years 59 years 87 years	0 10 25 50 75 90 95 98 99 99.5 99.8 99.9 100

Table 5-1. Default assumptions for the exposure factors used in SimRisk runs.

*H_{res} = number of hours per day spent at the residential location.

Hout = number of hour per day spent outdoors at the residential location.

R_{1/0} = ratio of indoor to outdoor benzene concentration for homes free of indoor benzene sources.

R_{vent} = ratio of daily average ventilation rate (m3/day) of a particular person to average daily ventilation rate of all people.

 Y_{ROP} = number of years between the date that a person moves into a new residence and the date that a person moves out of the residence.

The time spent at home (H_{res}) is divided into indoor and outdoor periods by assigning each person a value for <u>number of hours per day spent outdoors at the residential</u> <u>location</u> (H_{out}). Data provided by Robinson (1996) suggest that the average person spends only 43 minutes per day outdoors in the vicinity of his or her residence. SimRisk uses a conservative point estimate of 1 hour per day as the default value of H_{out} .

<u>Indoor/outdoor benzene ratio</u> is defined as the long-term average ratio of indoor benzene concentration to outdoor benzene concentration for homes that are free of indoor benzene sources. Data for estimating this quantity are relatively scarce; past

5-3

studies have usually measured indoor/outdoor ratios in residences with known or suspected indoor benzene sources. In such cases, the calculated indoor/outdoor ratio usually exceeds 1.00.

In preliminary EPA risk assessments, REAG represented the distribution of indoor/outdoor ratio by a triangular distribution with a lower limit of 0.38, an upper limit of 1.00, and a most probable value of 0.90. The lower limit (0.38) is based on statistical analyses of data collected by EPA in the Baltimore TEAM study (Johnson *et al.*, 1993). This value is questionable, as it requires that a highly effective benzene removal mechanism be present within the residence. No such removal mechanism has been positively identified to date. The upper limit (1.00) is the maximum possible value for the indoor/outdoor ratio and corresponds to the complete absence of removal mechanisms. REAG has characterized the estimate of the most probable value (0.90) as an informed guess.

Ms. Jill Mozier of IT Air Quality Services recently completed a survey of the scientific literature relating to indoor/outdoor ratios for benzene (Johnson *et al.*, 1996). The survey identified only seven studies in which researchers measured indoor/outdoor ratios in homes considered to be free of benzene sources, two of which were conducted in Japan. Based on the limited data available from these studies, Ms. Mozier suggests that the indoor/outdoor ratio should fall between 0.72 and 1.00 with the most probable value being 1.00 (personal communication, March 6, 1996). These estimates are the basis of the default indoor/outdoor ($R_{I/O}$) distribution presented in Table 5-1. The distribution is a triangular distribution with a lower limit of 0.72, an upper limit of 1.00, and a most probable value of 1.00.

According to the Integrated Risk Information System (IRIS), the inhalation unit risk estimate (URE) for benzene is $8.3 \times 10^{-6} (\mu g/m^3)^{-1}$. Although the value is based on occupational health studies of adult workers, EPA applies it to other population groups based on the assumption that cancer risk is independent of body size under average

5-4

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564350 9TT 📟

ventilation conditions. According to Robert McCaughy of EPA (personal communication, March 8, 1996), it is reasonable to adjust the URE to account for variations in people's activities. To perform this adjustment, SimRisk multiplies the URE by <u>ventilation ratio</u> (R_{vent}). This parameter is defined as the ratio of the daily ventilation rate (m³/day) of a particular person to the average daily ventilation rate of all people, after all ventilation rates have been adjusted for body size. By definition, the ratio is greater than 1 for active people and less than 1 for inactive people.

There have been few studies which have measured the ventilation rates of ordinary people for extended periods of time as they pursue typical daily activities. Four such studies have been conducted by a team directed by Dr. Jack Hackney. Each study used experimental subjects representing one of the following groups: elementary school students, high school students, outdoor workers, and construction workers. The pulse rate of each subject was monitored over a 16 to 24 hour period as the subject completed an activity diary. The minute-average pulse rates were converted to corresponding estimates of minute-average ventilation rate using a calibration curve specific to each subject. The calibration curve was developed by measuring pulse rate and ventilation rate simultaneously as the subject completed a graduated series of exercise tests. The ventilation rates were subsequently converted to equivalent ventilation rate (EVR) by dividing each ventilation rate value by the estimated body surface area of the subject.

In earlier work, Ted Johnson analyzed the EVR data from the four Hackney studies to identify factors that could be used to predict EVR values in Monte Carlo simulations (Johnson and McCoy, 1995). As part of the current study, Ted Johnson compiled daily average EVR values for the 74 subjects who participated in the four Hackney studies. These daily average EVR values were converted to "normalized" EVR values by dividing each individual value by the group mean (11.396 liters min⁻¹ m⁻²). The resulting empirical distribution had an arithmetic mean of 1.0000 and an arithmetic standard deviation of 0.3577. The empirical distribution was found to be well fit by a

5-5

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS lognormal distribution with a geometric mean of 0.9384 and a geometric standard deviation of 1.4391. This lognormal distribution is proposed as the default distribution for R_{vent} . The proposal is based on the assumption that the conversion of ventilation rate to normalized EVR removed all variability attributable to differences in body size. The remaining variability in the distribution of normalized EVR is assumed to represent person-to-person differences in activity levels.

CALCULATION OF LIFETIME RISK

As previously discussed, SimRisk constructs an exposure pattern for each simulated person. The exposure pattern can be used to estimate the total mass of benzene respired over the person's lifetime using the following equation:

$$M_{\text{lifetime}} = (365 \text{ days/yr})(C_{\text{out}})[(H_{\text{res}} - H_{\text{out}})(R_{\text{I/O}}) + H_{\text{out}}](V_{\text{avo}})(R_{\text{vent}})(Y_{\text{ROP}})/(24 \text{ hrs}).$$
(8)

The variables are defined as follows:

 $M_{\text{lifetime}} = \text{total mass of benzene respired over the person's lifetime (µg)}$ $C_{\text{out}} = \text{outdoor benzene conc. at residential location (µg/m³)}$ $H_{\text{res}} = \text{time per day spent at residential location (hours)}$ $H_{\text{out}} = \text{time per day spent outdoors at residential location (hours)}$ $R_{\text{I/O}} = \text{indoor/outdoor benzene ratio}$ $V_{\text{avg}} = \text{average daily ventilation rate (m³/day)}$ $R_{\text{vent}} = \text{ratio of individual ventilation rate to average ventilation rate}$ $Y_{\text{ROP}} = \text{residential occupancy period (years)}$

Note that the variables C_{out} and M_{lifetime} apply only to benzene emitted by the glycol dehydrator unit.

The M_{lifetime} value can be converted to a corresponding cancer risk probability by the equation:

$$I_{lifetime} = (M_{lifetime})(URE)/(N_{lifetime})$$
(9)

5-6
in which

 $I_{lifetime}$ = lifetime risk of cancer URE = unit risk estimate = 8.3 x 10⁻⁶ (µg/m³)⁻¹

 $N_{lifetime}$ = unit lifetime mass estimate (µg)

The unit lifetime mass estimate ($N_{lifetime}$) is defined here as "the respired benzene mass that produces a risk probability of 8.3 x 10⁻⁶ in the average person." EPA estimates that the continual exposure of an average person to a benzene concentration of 1 µg/m³ for 70 years will produce a risk probability of 8.3 x 10^{-6.} Consequently, the value of N_{lifetime} can be calculated by the expression

$$N_{\text{lifetime}} = (70 \text{ years})(365 \text{ days/year})(V_{\text{avo}})(1 \ \mu\text{g/m}^3)$$
(10)

in which

opyright American Petroleum Institute rovided by IHS under license with API

No reproduction or networking permitted without license from IHS

 V_{avg} = average daily ventilation rate (m³/day).

Making the appropriate substitutions, Equation 9 can be expressed as

$$I_{\text{lifetime}} = (C_{\text{out}})[(H_{\text{res}} - H_{\text{out}})(R_{\text{I/O}}) + H_{\text{out}}](R_{\text{vent}})(Y_{\text{BOP}})(8.3 \times 10^{-6})/[(24 \text{ hrs})(70 \text{ yrs})(1 \ \mu\text{g/m}^3)].$$
(11)

SimRisk uses this equation to estimate the cancer risk of each simulated person. The residence of the simulated person is assumed to be located at a specified distance (10 to 2000 meters) from the glycol dehydrator unit. The value of C_{out} is determined by randomly selecting a value from the lognormal distribution determined by the procedure described in Section 4. Table 4-4 outlines the selection procedure. Note that the parameters of the lognormal distribution are functions of the specified distance, land use, and benzene emission conditions (benzene emission rate, vent velocity, and vent diameter).

SimRisk determines the value for each of the remaining variables in Equation 11 by either (1) randomly sampling a distribution specified for the variable or (2) using a specified point estimate. Table 5-1 provides defaults for these distributions and point estimates.

A value of I_{lifetime} is determined for each of n simulated persons residing at a given distance. SimRisk performs the calculations for 24 distances between 10 and 2000 meters. The following example shows how SimRisk calculated the cancer risk for one simulated person in one run of the program:

Example Sim	Risk Calculation
1.	The user specified the following emission conditions:
	benzene emission rate = 1 ton/year
	vent velocity = 2.93 feet/sec
	vent diameter = 2 inches
1	land use = urban
	distance to emission source = 300 m .
2.	Following Steps 1 through 4 in Table 4-4, the outdoor concentration module calculated the following parameter values for the lognormal distribution of C_{out} at distance = 300 meters (urban land use).
	Geometric mean = 0.116 μg/m ³
	Geometric standard deviation = 1.813 (dimensionless).
3.	Following Steps 5 and 6 in Table 4-4, the SimRisk program randomly selected the value $z = -0.970$ to yield the value $C_{out} = 0.065 \ \mu g/m^3$.
4.	The SimRisk program randomly selected the following values from the distributions listed in Table 5-1.
	H _{res} = 13.54 hours
	H _{out} = 1 hour
	R _{VO} = 0.936
	$R_{vent} = 0.874$
	$Y_{ROP} = 37.45$ years
5.	SimRisk used Equation 11 to calculate the following estimate of lifetime risk for one simulated person at distance = 300 m:
	$I_{\text{lifetime}} = 1.34 \times 10^{-7}$.

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564354 545 📟

SimRisk performs Steps 3 through 5 for each of n iterations to produce a simulated population of n persons residing at distance = 300 m. The risks assigned to these n persons provide a risk distribution for the specified distance (Figure 5-1). The entire process is repeated for each of 24 distances between 10 m and 2000 m. SimRisk plots these results as distribution percentiles versus distance.

The graph in Figures 5-1 presents the results of a complete SimRisk run for the same emission scenario (i.e., benzene emission rate = 1 ton/year, vent velocity = 2.93 ft/sec, vent diameter = 2 inches, and land use = urban). The SimRisk run produced 1000 lifetime risk estimates for each of the 24 distances. Figure 5-2 plots the 50th percentile of the risk estimates at each distance. (Note that the distance scale is not linear for distances greater than 100 m.)

Figure 5-1. Estimated frequency of lifetime risk when distance to glycol dehydrator equals 300 meters (benzene emission rate = 1 ton/year, vent velocity = 2.93 ft/sec, vent diameter = 2 inches, and land use = urban).

Figure 5-2. Estimate of the 50th percentile of lifetime risk versus distance from glycol dehydrator (benzene emission rate = 1 ton/year, vent velocity = 2.93 ft/sec, vent diameter = 2 inches, and land use = urban).

ot for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted wit

out license from IHS

Section 6

A SIMPLIFIED METHOD FOR ESTIMATING 50TH AND 95TH PERCENTILE VALUES OF LIFETIME RISK

The risk distributions produced by multiple runs of SimRisk were analyzed with the goal of developing a method for predicting the output of the model given only the input conditions. Such methods are designated "repro models" as they reproduce the results of a complex model without requiring that the complex model be run by the user. With respect to the SimRisk model, researchers desired a repro model that would estimate the 50th and 95th percentiles of the lifetime risk distribution at each distance without having to perform the Monte Carlo simulation.

A review of SimRisk outputs indicated that the 50th and 95th percentile values for lifetime risk at each distance were highly correlated with GM, the geometric mean value of the outdoor benzene concentration determined for the distance. In addition, the relationships were relatively constant for distances from 10 m to 2000 m. The following equations were developed to represent these relationships:

50th percentile lifetime risk (I _{lifetime-50})	
Urban: I _{lifetime-50} = (5.733 x 10 ⁻⁷)(GM)	(12)
Rural: $I_{\text{lifetime-50}} = (5.724 \times 10^{-7})(\text{GM})$	(13)

|--|--|

- Urban: $I_{\text{lifetime-95}} = (3.505 \times 10^{-6})(\text{GM})$ (14)
- Rural: $I_{\text{lifetime-95}} = (3.533 \times 10^{-6})(\text{GM})$ (15)

In the full SimRisk model, GM is estimated by the equation

$$GM = (e^{LNRATIO})(BER)$$
(16)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

where BER is the benzene emission rate of the glycol dehydrator and LNRATIO is estimated by the regression equations listed in Table 4-4. TRJ found the following alternative set of regression equations could be used to estimate LNRATIO:

Urban: LNRATIO =
$$7.84825 - (1.76785)[ln(D)]$$
(17)Rural: LNRATIO = $6.84611 - (1.45381)[ln(D)]$ (18)

Note that distance (D) is the only independent variable in each equation. Researchers found that vent velocity and vent diameter could be omitted from the regression equations with a negligible reduction in R² value. (The R² values for equations 17 and 18 each exceeded 0.995.) However, it should also be noted that the regression analyses omitted distances of 10 m and 20 m, as the relationship between LNRATIO and In(D) was found to be non-linear when these values were included. Consequently, Equations 17 and 18 are not recommended for use with distances less than 30 m.

Using the relationship in Equation 16, one can derive the following equations from Equations 17 and 18, respectively:

Urban:
$$GM = (2561)(BER)(D^{-1.76785})$$
 (19)

Rural: $GM = (940.2)(BER)(D^{-1.45381})$ (20)

With appropriate substitutions, Equations 12 through 15 can be expressed as follows:

50th percentile lifetime risk (I _{lifetime-50})	
Urban: I _{lifetime-50} = (1.468 x 10 ⁻³)(BER)(D ^{-1.76785})	(21)

Rural:
$$I_{\text{lifetime-50}} = (5.382 \times 10^{-4})(\text{BER})(D^{-1.45381})$$
 (22)

95th percentile lifetime risk (I_{lifetime-95})

Urban:
$$I_{\text{lifetime-95}} = (8.977 \times 10^{-3})(\text{BER})(D^{-1.76785})$$
 (23)

Rural:
$$I_{\text{lifetime-95}} = (3.322 \times 10^{-3})(\text{BER})(D^{-1.45381})$$
 (24)

These equations provide a means for estimating the 50th and 95th percentile values of lifetime risk as a simple function of land use, emission rate, and distance. The graph in Figure 6-1 plots Equation 21 (50th percentile, urban land use) when BER = 1, 3, 5, and 7 tons/year. Figures 6-2, 6-3, and 6-4 plot similar graphs for Equations 22, 23, and 24, respectively.

Solving Equations 21 through 24 for distance (D) yields the following equations:

Distance associated with 50th percentile lifetime risk (D_{50})

Urban: $D_{50} = \{(I_{\text{lifetime-50}})/[(1.468 \times 10^{-3})(\text{BER})]\}^{-0.56566}$ (25)

Rural:
$$D_{50} = \{(I_{\text{lifetime-50}})/[(5.382 \times 10^{-4})(\text{BER})]\}^{-0.68785}$$
 (26)

Distance associated with 95th percentile lifetime risk (D₉₅)

Urban:
$$D_{95} = \{(I_{\text{lifetime-95}})/[(8.977 \times 10^{-3})(\text{BER})]\}^{-0.56566}$$
 (27)

Rural:
$$D_{95} = \{(I_{lifetime-95})/[(3.322 \times 10^{-3})(BER)]\}^{-0.68785}$$
 (28)

The graph in Figure 6-5 plots Equation 25 when $l_{iifetime-95} = 10^{-4}$, 10^{-5} , and 10^{-6} . Equations 26, 27, and 28 are plotted in Figures 6-6, 6-7, and 6-8, respectively.

6-4

Not for Resale

Estimate of the 50th percentile of lifetime risk versus distance (meters) for indicated benzene emission rate

Figure 6-1.

(tons/year) and urban land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3 ft/sec).

50th Percentile Lifetime Risk by Benzene Emission Rate (TPY)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Estimate of the 50th percentile of lifetime risk versus distance (meters) for indicated benzene emission rate (tons/year) and rural land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3 ft/sec) Figure 6-2.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

6-5

Figure 6-3. Estimate of the 95th percentile of lifetime risk versus distance (meters) for indicated benzene emission rate (tons/year) and urban land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3 ft/sec)

STD-API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564361 785 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Estimate of the 95th percentile of lifetime risk versus distance (meters) for indicated benzene emission rate

(tons/year) and rural land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3 ft/sec)

Figure 6-4.

95th Percentile Lifetime Risk by Benzene Emission Rate (TPY)

. Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

STD.API/PETRO PUBL 4644-ENGL 1997 🔳 0732290 0564362 611 🔳

emission rate (tons/year) for urban land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3

ft/sec).

6-8

6-10

Not for Resale

emission rate (tons/year) for urban land use (2 inches \leq vent diameter \leq 4 inches, 3.21 ft/sec \leq vent velocity \leq 20.3

ft/sec).

Distance Associated with Indicated 95th Percentile Lifetime Risk

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564365 320 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 6-11

Section 7 DISCUSSION

Section 5 presented a model incorporating Monte Carlo procedures (SimRisk) for determining the distribution of excess lifetime cancer risks associated with benzene emissions from glycol dehydrators. The model provides risk estimates that are specific to source-to-receptor distance, benzene emission rate, vent velocity, vent diameter, and land use. The model is based on the results of statistical analyses performed on a database containing 1.3 million simulated outdoor benzene concentrations. This database was produced by dispersion model runs which applied 24 emission scenarios to 348 meteorological stations.

The SimRisk model is based on dispersion modeling data which represent the following ranges of distances and emission conditions:

10 m ≤ distance ≤ 2000 m
2 inches ≤ vent diameter ≤ 4 inches
1 ton/year ≤ emission rate ≤ 7 tons/year
3.21 feet/sec ≤ vent velocity ≤ 20.3 feet/sec.

The user should note that the model may not perform well outside of these ranges. In particular, the user is cautioned against using SimRisk (Section 5) for distances less than 10 m. The simplified method described in Section 6 should not be used for distances less than 30 m.

The simplified method for estimating risk described in Section 6 could be used to develop applicability criteria for glycol dehydrator emission controls. The analyst would use Equation 25 or 26, depending on land use, to determine the source-to-receptor distance associated with a specified risk. This distance would be designated the "minimum-permitted separation distance" (MPSD). The MPSD would be compared to the actual distance separating the unit from the nearest residence, designated the "nearest-residence separation distance" (NRSD). If the NRSD exceeds the MPSD, the

7-1

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

glycol dehydrator unit is assumed to require no further controls. If the NRSD is equal to or less than the MPSD, the unit may be subject to additional controls.

The following example illustrates the application of this method. A glycol dehydrator unit has an estimated benzene emission rate of 7 tons/year. The actual distance from the glycol dehydrator unit to the nearest dwelling in an urban area is known to be approximately 75 meters; i.e., NRSD = 75 meters. If regulators have determined that a risk level of 1 x 10^{-5} (50th percentile) is an acceptable control applicability criterion, then Equation 25 can be used to determine a value for MPSD as shown below:

 $MPSD = D_{50} = \{(I_{lifetime-50})/[(1.468 \times 10^{-3})(BER)]\}^{-0.56566}$ $MPSD = \{(1 \times 10^{-5})/[(1.468 \times 10^{-3})(7)]\}^{-0.56566}$ MPSD = 50.5 meters.

Because the NRSD value (75 meters) exceeds the MPSD value (50.5 meters), no controls are necessary.

Copyright American Petroleum Institute Provided by IHS under license with AP

roduction or networking permitted without license from IHS

Section 8

REFERENCES

Johnson, Ted and J. Capel. 1992. A Monte Carlo Approach to Simulating Residential Occupancy Periods and Its Application to the General U.S. Population, EPA-450/3-92-011, U.S. Environmental Protection Agency, Research Triangle Park, N.C.

Johnson, Ted and M. McCoy. 1995. A Monte Carlo Approach to Generating Equivalent Ventilation Rates in Population Exposure Assessments, API Publication No. 4617, American Petroleum Institute, Washington, DC.

Johnson, Ted, M. McCoy, J. Capel, M. Alberts, and B. Morrison. 1993. Estimation of Incremental Benzene Exposures and Associated Cancer Risks Attributable to a Petroleum Refinery Waste Stream Using the Hazardous Air Pollutant Exposure Model (HAPEM), Paper No. 93-RP-116B.01, 86th Annual Meeting of the Air and Waste Management Association.

Johnson, Ted, J. Warnasch, M. McCoy, J. Capel, and M. Riley. 1996. Developmental Research for the Hazardous Air Pollutant Exposure Model (HAPEM) as Applied to Mobile Source Pollutants, IT Corporation, Durham, North Carolina.

Robinson, John. 1996. *The National Micro-Environmental Activity Pattern Survey (MAPS)*, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, draft report.

Technical Reference Manual for GRI-ClyCALC[™]: A Program for Estimating Emissions from Glycol Dehydration of Natural Gas, Version 2.0, Gas Research Institute, July 1994.

U.S. EPA. 1992. User's Guide for the Industrial Source Complex (ISC2) Dispersion Models, Volume I - User Instructions, EPA-450/4-92-008a, U.S. Environmental Protection Agency, March 1992.

Appendix A

INITIAL MONTE CARLO ANALYSES BY EPA'S RISK AND EXPOSURE ASSESSMENT GROUP

INITIAL MONTE CARLO ANALYSES BY EPA'S RISK AND EXPOSURE ASSESSMENT GROUP

The work described in this report extends research conducted in 1995 by the Risk and Exposure Assessment Group (REAG) of EPA. REAG acquired meteorological data for the 348 U.S. sites listed in Appendix B from the National Climatic Center in Asheville, North Carolina. The sites included all U.S. meteorological stations for which data were available at the time of the analysis. REAG applied the ISC2-LT dispersion model to each of the 348 sites for four selected benzene emission rates (1, 2, 5, and 9 tons per year). In these runs, the ISC2-LT model was configured to produce estimates of ambient (outdoor) benzene concentration at each of 160 points on a receptor grid surrounding a hypothetical glycol dehydrator unit. The receptor grid was laid out in a polar pattern with ten concentric rings at distances of 10, 20, 30, 50, 100, 200, 300, 500, 1000, and 2000 meters. These rings were intercepted by 16 equally-spaced radial arms extending from the emission source to produce the 160 receptor points. The emission scenarios were defined according to assumptions listed in Table A-1.

REAG created a file listing the maximum benzene concentration from the ISC2-LT run for each meteorological station. In addition, one meteorological station was selected at random to provide a file of benzene concentrations by distance and wind direction. A truncated normal distribution was fit to the benzene concentrations at each of the 10 distances. These truncated normal distributions were adjusted according to the maximum concentrations determined for each distance by applying ISC2-LT to the 348 sites. A separate set of 10 truncated normal distributions were obtained for each of the four emission rates. By applying a Monte Carlo modeling program to these truncated normal distributions, REAG generated a distribution of outdoor benzene concentrations at each distance for each emission rate.

A-1

Table A-1. Specifications for ISC2 dispersion model runs performed in 1995 by the Risk and Exposure Assessment Group (U.S. Environmental Protection Agency) using 348 meteorological stations.

Model specification	Value
Release height, feet	12
Release temp., degrees F	225
Stack gas exit flow rate, scf/hr	291
Vent diameter, inches	6 ^a
Stack gas exit velocity, ft/sec	0.13°
Benzene emission rate, tons/year	1, 2, 5, and 9
Receptor height, meters	0

*REAG is not certain these values are representative.

The Monte Carlo modeling program was then used to determine the lifetime cancer risks associated with these outdoor benzene concentrations. The modeling approach explicitly accounted for variability in breathing rate, time spent away from home, residential occupancy period, and indoor/outdoor ratio. Each of these factors was represented by a distribution obtained from the Exposure Factors Handbook or from the scientific literature. The Monte Carlo analysis produced distributions of benzene exposure and associated lifetime risks for hypothetical persons located at each of the 10 distances. It should be noted that high lifetime risks were characterized through the use of upper percentile values (e.g., 95th percentile) rather than as the risk associated with a hypothetical "maximum exposed individual."

A-2

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564373 4T7 🖿

Appendix B

348 METEOROLOGICAL STATIONS USED IN DISPERSION MODEL RUNS

	222222222222 2222222222222222222222222	2222222222222 222222222222222222222222	22222222 222222 2222222222222222222222	22222222 19161 Egi 2222222222	22222222 uipment c 222222222	22222: 0 t por a 1 22222:	22222222 110n - 7 n 22222222	22222222 X/VNS Vei 2222222222	22222222 rsion V5. 2222222222	22222222 3-1 22	22222222	22222222222222222222222222222222222222	122222 FF	
					⁶ 0000 ³	WWWWWW 99 99 99 99 99 99 99 99 99		0 ⁰⁰⁰⁰⁰ 0						
A MM MM MM MM MM MM MM MM MM MM MM MM MM	MM EEEEEEE MM EEEEEEE MMM EEEEEEE MMM EEEEEEE MM EEEEEEE MM EE MM EE MM EE MM EE MM EE MM EE								\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	88 89 80 80 80 80 80 80 80 80 80 80 80 80 80				ដាល សាល
							22222222222222222222222222222222222222	ດ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ດີ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ່ ທີ						
File MUTUAL\$(UIC (PAB,GMD]. Job NET BY CIT Printer_MUTUA	UB10:[USER1.GJ The records Y (197) queuec L\$TXB7: on 21-	MD.VAXTMI]ME are stream 1 to SYS\$PRI -SEP-1992 09	T BY SIT Wīth imp MT on 21 :56 from	E.LIS;1 (lied (CR) -SEP-1992 queue SY	5771,3,0) cartiage 09:55 by S\$PRIMT.	, last contr user	revised ol. The JND, UIC	on 18-5E longest [PAB,GMD	P-1992 1 record is], under	7:09, is s 0 byte account	a 79 blo s. PAB at p	ck sequentia. riority 100,	l file own: started or	yd by
	2222222222222 222222222222222222222222	22222222222222222222222222222222222222	22222222 222 Dig	222222222 ital Equi 2222222222	222222222 pment Cor 22222222222	222222 porati 222222	22222222 28 - VAX/ 2222222222	22222222 VMS Vers 22222222	22222222 ion V5.3- 22222222	2222222	22222222 22222222222222222222222222222	22222222222222222222222222222222222222	222 FFF 222 FFFF	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B-1

X	~ :	×	M	×	~ >	< ×		×	×	×	*	~ :	× 1	4 >	< >	. ×	×	×	×	×	×	;	~ >	< >	< >	< >	• ×	×	×	×	**	< >	×	×	×	× 1	× >	< ≻	. >	×	×	×	M	×	~ >	4 >	< >4	i M	×	MI	M M
54	ing of		1 97	ti 1	a 1 م 1 م	מינ		1	, n			<u>ب</u>	1				1	10	54	n		17 1	×1 6	<i>a</i> •	מו ה	מע ה		1		10	17 0	A 17		5		10	ŭ 4	1.0		20			× 1		ים מ		מא ה	1. 103	5		N N
Year	Year	Year	Tear	Tear	Year	Year	Year	Tear	Year	Year	Year	Year	YOUN	Yeer Teer	Year	Year	Year	Year	Year	Теаг	X B B F	Vear		Vaar	Year	Tear Tear	Year	Year.	Year	Year			Year	Year	Year	Year		Year	Year	Tear	Year	Tear	X 0 0 L	Year		Teer	Teer	Year	Year	Year	Year
Data	Data	Data	Data	Data	Data Data	Data	Data	Data	Data	Data	Data	Data		Data	Data	Data	Data	Data	Data	Data					Data	Data	Data	Data	Data	Data	Data Data	Data	Data	Data	Data	Data		Data	Data	Data	Data	Data	Data			Data	Data	Data	Data	Data	Data
For	101 101	Tor Tor	For	For	707	For	For	For	For	For	FOF				For	For	For	Por	For	TOL					For	For	For	For	For	FOT	101	For	For	For	For	701		For	FOL	For	FOL	Por	101			Por	FOF	For	For	For	For
116.0170	82.5500	88.7670	81.9670	81.2000	86./670 87 5500	82.2170	81.1170	87.2500	83.3170	97.0330	97.4330	0/ 77 . 56	00010 00	94.7170	98.1830	75.9830	78.6330	73.1000	66.0000	81.3170	0/07.70		01.0000 18		80.3000	82.5330	80.4170	80.1170	96.9170	0007.06	0/ TO . 46	98.4670	97.5000	95.3500	99.1670	70 0500	76.2000	75.2500	77.3330	79.9670	77.0330	77.9000	0009.07	0108.300 88 7500	81.6000	83.3170	84.4330	86.7500	82.4000	80.0330	85.2000
pnol	Long	Long	Long	fong	Fong	Long	Long	Long	Long	Long	Long	Long Long	6uon	Long	Long	Long	Long	Long	Long	Fuor	buor	5uo1		frion 1	Long	Lond	Long	Long	Long	5007	Long	Long	Long	Long	Long	5uor	Long	Long	Long	Long	Long	Fong	Fond	buch	Lond	Lond	Long	Long	Fond	Long	Long
36.6170	0002 CE	37.0670	33.3670	32.1330	38.3670	34.9000	37.7830	32.9000	37.6000	0006.25	37.6500		38.8170	39.3170	32.2170	42.2170	41.8000	40.7830	18.4330	0069.97	0000.63	0581.00	26.5830	24.5500	25.8000	27.9670	27.6500	26.6830	28.8500	00000000	25.9000	29.5330	27.7670	29.9670	29.3500	0/00.05	36.9000	39.8830	37.5000	37.3170	38.8500	0/97.45	0/00/01	0125.45	38.3670	33.9500	33.6500	33.5670	36.4830	32.9000	35.0330
Lat		Lat t	Lat	Lat.	Lat	Lat	Lat	Lat.	Lat		Lat Lat			Lat	Lat	Lat	Lat	Lat	La.	Lar					Lat	Lat	Lat	Lat			Lat	Lat	Lat	Lat	L'A		Lat.	Lat	Lat	Lat	Lat.	141			Lat	Lat	Lat	Lat	Lat	Lar Tat	Eat (
AN		S M	g	es:	33	ŝ	M	2	2	X	KS	55	Ş	Q.	XT	ΝN	PA	Å.	H		1.5	1		I.I.	11	14	ΓĽ	11	X:	12	X	XF	XI	XH	X		AN N	PA	٨Ŋ	K N	R N			C V	}	ga	GA	¥	N L		NF
Desert Rock	ASAGVILLO/KOGIDAAL AFDT Maron/Louis R Wilson Arnt	Paducah/WSO Airport	Augusta/Bush Field	Savannan/Municipal Arpt	huntsviile/maqison county Jet Huntington/Tri-State Arnt	Greenv'l-Spartanbrg Ap	Beckley/Raleigh Co Memorial A	Centreville/Wsmo	Jackson/Julian Carroll Arpt	Uallas/Fort Worth/Regional Ar	WICHITA/MId-Continent Arpt Tabo Charles Wind and Stot	Jarve cmailes/municipal Arpc Tarvesn /Thrmnesn Biald	Columbia/Regional Arnt	Kansas Citv/Int'l Arpt	Stephenville	Binghamton/Edwin A Link Field	Bradford/Faa Airport	Islip	San Juan/Isia Verde Int'L Arp	Crimoruille/Winisimal Nimert	Analachicola/Municipal Arrive	Davtona Beach/Regional Arnt	Fort Mvers/Pace Field	Kev West/Int'l Arbt	Miami/Int'l Arpt	Tampa/Int'l Arpt	Vero Beach/Municipal Airport	West Palm Beach/Int'l Arpt	Victoria/WSO Airport New Orleans/Trif/1 area	Port Arthur/Jaffargon County	Brownsville/Int'l Arpt	San Antonio/Wsfo	Corpus Christi/Int'l Arpt	Houston/Intercontinental Arpt	Hondo/Wsmo Alrport Beleich/Beleich Buchen Sunt	Greensbord High Point ANING	Norfolk/Int'l Arpt	Philadelphia/Int'l Arpt	Richmond/R E Byrd Int'l Arpt	Roanoke Woodrum Arpt	Wasnington DC/National Arpt	Wilmington/New namovet tounity Wilmington/Greater Wilmington	Waveross/Wsmo	Meridian/Kev Field	Charleston/Kanawha Arpt	Athens/Municipal Arpt	Atlanta/Atlna-Hartsfield Int'	Birmingham/Municipal Arpt	BEISTOL/TEL CITY ALFPORT	Charlotte/Douglas Int'l Arpt	Chattanooga/Lovell Field
03160	21020	03816	03820	13820	03860	03870	03872	03881	28820	17570	02920		03945	03947	03969	04725	04751	04781	14041	21071	12832	12834	12835	12836	12839	12842	12843	12844	12916	12917	12919	12921	12924	12960	7967T	13723	13737	13739	13740	13741	64/51	13781	13861	13865	13866	13873	13874	13876	1 2 8 8 0	13881	13882
site		Site	Site	SILE	Site	site	Site	Site	0112				Site	Site	Site	site	Site	Site	5110	9 - F - F - F - F - F - F - F - F - F -		Site	Site	Site	Site	Site	Site	Site	5110 6110	Site	Site	site	site	Site			site	site	Site	Site	SILCO		Site	Site	Site	site	Site	Site		site	site
STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	AAT'S	ARIS	AALS	STAR	STAR	STAR	STAR	STAR	STAR	ALAK	aves	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	HVIS	STAR	STAR	STAR	STAR	STAR	STAR	4445	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR

thout license from IHS

-	
-	

Tears Tears Tears Tears Tears Tears	Tears Tears Tears Tears Tears	Years Years Years	Years Years Years	Tears Tears	Years Years	Tears Tears	Years	Years Years	Tears	Years		Tears	Tears Tears	Years	Tears	Tears	Tears	Tears	Tears Tears	Tears	Tears Tears	Tears	Tears	Tears	Tears			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Data Data Data Data	Data Data Data Data Data	Data Data Data	Data	Data Data ta	Data Data	Data Data	Data Data	Data	Data	Data Data	Data	Data Data	Data Data	Data	Dara	Data tata	Data	Data Data	Data	Data	Data	Data Data	Data	Data	Data		8
1. 1. 1. 1. 1. 1. 0 0 0 0 0 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		1 1 1 1 1 0 0 0 0 1 1 1 1 1	101 101 101	For	701 701	For For	101	1 1 1 0 1	FOF FOF			101 101	For	FOT		For	104	For	LOL LOL	For	FOL	FOL	For	For	For			
11170000 20000 20000 20000 20000 20000	2000 2000 2000 2000 2000 2000 2000 200	2170 6830 2330 3670	4830 5000 9000	1330 6500	6000 6000	8330	9000	7330 L670	0008	0000	1200	2200	8170 1330	5670	0220	1670	8830	2200	0000	1330	0000	830	1170	01830	0/9/0	330		>>>>
88880888 4449088	0 10 10 00 00 0 10 10 00 0 10 10 10 0 10 10 0 10 0 0 00 00000000	2000 2000 2000	8000	91.6	666	5 7 5	800	84	13.8			76.6	11.4	12.6	5	81.8	82.8		2 4 0 7 4 0 7 4 0	50	86.2	89.68 9.68	86.3	58	80.6	81.9	1.79 0.79 0.79	
Long Long Long Long Long Long Long Long	5uod 5uod 5uod 5uod	Long Long Long	Long Long Long	Long	Long	Long	Long	Long	Long	Long	Fong	голд Голд	Long Long	Long	Fong	5uo1	Long	Fong	Long	Long	Long	fong	Long	Fond	Long	fong.	Long Long	5007
	170 170 170	170 330 330	000	005	170	330	000	0000	500	670	670	170	330	170	000	170	000	670	670	330	500 670	670	000	330	500	170		>>>>
20.55.0 20.5	1.00 0.00 0.00 0.00	34746 34746	2.5.9 2.5.9	39.5		2.0	44.8	42.9	42.7	42.3	444	40.2	43.6	43.1	11.3	41.4	40.0	42.9	41.0	43.1	42.9	40.6	40.4	44.7	41.2	6.04	4 6 6	
1111111 999999 1111111	Latt.		ra ra t t t	Lat t	La la La la	Lat t	L at	Lat	Lat	E.	Lat Lat	Lat	Lat Lat	Lat	Lat	ra t	Lat tat	E.	Lat Lat	Lat	Lat Lat	Lat	Lat	Lat	Lat	Lat	Lat Lat	La L
AL TH SC	16535	* * * * *	X X X	<u>1</u> 2	N N S		NX NX	XN CN	XN	۲ Ξ Ι	55	en PA	Äï	λΝ Λ	A	A NO	HO	보	N H	Ş	H	1	I NI	W	HO F A	: e		Š
Columbia/Metro Arpt Jacksonville/Int'l Arpt Knoxville/Mc Ghee Tyson Arpt Memphis/Int'l Arpt Mobile/WSO Airport Montdomerv/WSO Arpt	Nonlygomery move and Nashville/Metro Arpt Pensacola/Regional Arpt Shreveport/Regional Arpt Austin/Municipal Arpt	Waco/Madison-Cooper Arpt Abilene/Municipal Arpt Little Rock/Adams Field Fort Smith/Municipal Arpt	Wichita Falls/Municipal Arpt Oklahoma City/Will Rogers Wor Tulsa/Int'l Arpt	Baton Rouge/Ryan Arpt Concordia/Blosser Municipal A	Dodge City/Municipal Arpt Kansas City/Faa Airport	SC Louis/Lampert int'i Arpt Springfield/Regional Arpt Toneka/Municipal Arpt	Baroor/Faa Airport Baw York/Laguardia Arbt	Buffalo/Greater Buffalo Int'l Nevark/Int'l Arbt	Albany/County Arpt	Boston/Logan Int'l Arpt	Harrrord/Bradley Inc't Arpu Burlington/Int'l Arpt	Concord/Municipal Arpt Harrisburg/Capital City Arpt	<pre>portland/Int'l Jetport providence/T F Green State Ar</pre>	Rochester/Rochester-Monroe Co	Wilkes-Barre/Wb-Scranton WSO	Williamsport-Lycoming /councy Cleveland/Hopkins Int'l Arpt	Columbus/Port Columbus Int'l Detroit/City Birnort	Flint/Bishop Arpt	Fort Wayne/Baer Fleid Lansing/Capital City Arbt	Madison/Dane Co Regional Arpt	Milwaukee/General Mitchell Fi Muskegon/County Arpt	Peoria/Greater Peoria Arpt	Sault Ste Marie/NWSO South Bend/Michiana Regional	Traverse City/Faa Airport	Youngstown/Municipal Arpt Eria/Int/l Arnt	Akron/Akron-Canton Regional	Green Bay/Austin Scraubel Fle Duluth/Int'l Arpt	Rargo/Hecroi riata
88888888888888888888888888888888888888	1 - 0 - 0 0 - 0 - 0	9629 9629 9634	966 967 968	1984	3985	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1606	1733	1735	1739	140	1751	1764 1765	771	177	1820	1821	1826	4827	4837	4839	4842	184 /	850	852	568	1913	314
		2222	222							í Á							-i -	-		-	è è	÷.		-	4 4		H H F	4
S S S S S S S S S S S S S S S S S S S	Site 136 Site 136 Site 136 Site 136	site 13 Site 13 Site 13 Site 13	Site 13 Site 13 Site 13	Site 13 Site 13	Site Site	Site 1	site 1	site 1	Site 14	Site 1	Site 1	Site 14 Site 14	Site 14 Site 14	Site 14	Site 1	Site 14	Site 1	site 1	Site 1	site 1	Site 1	Site 1	Site 14 Site 14	Site 14	Site 14	Site 14	Site 14	STLG T

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	AAAAAA Vaavaaa	777777 777777	AAAAAA	APARAA A	XXXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	XXXXXX	XXXXXX		XXX	*****	XXXXXX	XX	M	XXXXXX	XXXXXX	XX	XXXXXXXXX	XXXXXX	XXXXXX	XXXXXX	XXX	XXXXXX	XXXXXX	XXXXXX	YTYYY	TTTTT	XXXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXXXXX		AAA XXXXX	XXXXXXX	NY XYX
	Years	Years	Years	Years	Years	10012 V	10012	I BRIS			YOURS	Years	Years	Years	Years	YOALS	fears	(ears	(ears	fears	(ears			PATS PATS		ears	BALS	BALS	ears	84 L S	ORIS		ears	BAES	9 a l'S	9ars	Gars	ears	0 A [S	8 1 1 1			BALS	8 2 53	BALS	9415	0 2 L S			9 A C S	DALS	DA ES	265 265
	Data	Data	1978		1919					ata .	ata	ata .	ata	ata	ata	ata	ata	ata	ata	ata				ata	ata	ata	ata	ata Y	ata Y	ata Y		ata - V	ata Y	sta Y	ata Y	ata Y	TCA V	ta Y	ta Y	ta Y		ta Y	Ita Y	ta Y	ta Y	ta Y			ta Y	taY	ta Ye	ta Y	ta Y
	For	FOF		101					- L - L - L - L - L - L - L - L - L - L	For	Por I	For I	For D	For D	For D	For D	For D	For							Por D	Tor D	TOT D	OL D	Å No No				Ŭ Lo Lo	or D	or Da			10	or Da			or Da	or Da	or Da	or Da	01 01 01 01 01 01			or Da	or Da	or Da	or Da	or Da
	93.3830	0007.16	00 17.55		000000000000000000000000000000000000000	03.6500	98 2170	98.2170	96.7500	93.3330	97.4330	95.9000	96.3830	96.7330	91.4830	155.0670	157.9170	0005.401	101 1010	100 5000	101 8170	106.4000	101.7000	106.6170	104.8670	106.9170	101.7000 1	108.5330	108.7830 F	117 0830 11	14.8500	10.9330	116.7830 F	115.1670 F	18.3830 F	12 4330 F	19.7830 F	17.1670 F	19.8330 F	T 0005.12	00.7500	01.2830 F	04.8170 F	08.7330 F	00.5830 F	1 02 02 00 00 00 00 00 00 00 00 00 00 00	03.6000 F	06.9670 F	08.5330 F	09.4500 F	05.8670 F	00.46/U F	15.7830 F
	5uo1				Lond	Long	Long	Long	Long	Long	Long	Long	Long	Long	fong	5uo1	rong	5uor	5uor	51101	Long	Lond	Long	Fong	Long	Long	fong	Бuoj.	המסק		5 u og	buo	- buoj	6uo	5uo	6uo	buo	f buo	l prov		buo	ong 1	i buo	pro pro	t pro	i buo	ong 1	ong 1	ong	ong 1	I buo		500
023 84	43.8670	44.8830	41.4500	43.9170	45.4500	41.5330	40.9670	44.3830	40.8500	43.1500	41.9830	41.3000	12.4000	97.00.55	94.3070	0/1/.71	00000 10		31.9500	31.3670	33.6500	31.8000	35.2330	35.0500	39.7670	39.6500	39.3670	20.11.02	1111111	38.0670	39.2830	32.1330	34.8670	36.0830	1 0558.55 FF	34.6500 1	39.5000	32.7330	1 0554.45 1 0713 85	37.6170	46.7670 I	48.2670 I	41.1500 I	1 0/10.25	1 0281.11	41.6000 L	41.8670 L	44.7670 L	45.8000 I	47.0670 L	46.433U L	44.0500 L	40.8330 L
	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat.	LAT			1 1	1 1	Lat.	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	1 4 4	Lat	Lat	Lat	Lat	Lat	Lar	Lat	Lat	Lat	Lat tat	Lat t	Lat	Lat	Lat	L ar	1 a c t a c	Lat	Lat	Lat	Lat	Lat L	2		E I	a t
NW	IM	MM	1	NW	SD	I.A	NE	SD	NE	IA	NE	ZE	A C	35			H	MN	XI	ТX	XL	ТX	ТX	MN	ខូ	8	200		5	NN	NV	AZ	51		YZ A	AZ	NN	50	55	5	QN		13	NE	SD	λM	NE	λM	Ęļ	Ęţ	1	S.	NN I
<pre>3 International Falls/Int'l Ar</pre>	La Crosse/Municipal Arpt	Minneapolis-St Paul/Int'l Ar	Moline/Quad-City Arpt	Rochester/Municipal Arpt	Aberdeen/Regional Arpt	Des Moines/Int'l Arpt	Grand Island/Arpt	Huron/Regional Arpt	Marco City and Arpt	Norfold VELL CLAR ALTPORT	COMANA/FUNIAL SCOTAR MOM AFPC Omana/Funiar Siveiald	Sioux City/Winicial Land	Sioux Falls/Foss Field	Eau Claire/Faa Airmort	Hilo/General Lyman Field	Honolulu/Int'l Arnt	Lihue/Arpt	Roswell/Industrial Air Park	Midland/Regional Air Terminal	San Angelo/WSO Airport	Lubbock/Regional Arpt	El Paso/Int'l Arpt	Amacillo/inc'l Arpt	Denver/Starlater Tarit	Earle/Fra Airnort	Goodland/Renner riald	Grand Junction Walker Field	Gallup/Faa Airport	Long Beach/WSO Airport	Tonopah/Faa Airport	LIV/Yelland Field	Lucson/Inc'l Arpt Dagnaett/Fiss Nirnort	Las Vedas/Morarian Tatil Arei.	Los Angeles/Int'l Arpt	Phoenix/Sky Harbor Int'l Arpt	Prescott/Municipal	Reno/Cannon Int'l Arpt San Picco/Ti-Jhh -:	Santa Barbara/Faa Airnort	Sacramento/Executive Arpt	San Francisco/Int'l Arpt	bismarck/Municipal Arpt Minch/Fre Nicetor	Chevenne/Municinal Arnt	Lander/Hunt Field	North Platte/Lee Bird Fld	Pierre/Faa Airport	Rock Springs/Faa Airport	Scortsblutt/County Airport Sharidan/County 1	Billing/rown refiler	Lewistown/Fas Arnt	Miles City/Municipal Arnt	Casper/Natrona Co Int'l Arpt	Rapid City/Regional Arpt	Elko∕Municipal Arpt
14918	14920	14922	14923	14925	6768T	14025		14030		14941	14942	14943	14944	14991	21504	22521	22536	23009	23023	23034	23042	2 2 0 2 4 4 2 2 0 4 4 2 2 0 4 4 2 2 0 4 4 2 2 0 4 4 2 4 0 4 1 4 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	1 2020	23062	23063	23065	23066	23081	23129	23153	401C7	23161	23169	23174	23183	23184	88182	23190	23232	3234	11011	4018	4021	4023	4025	1205	40.29	4033	4036	4037	4089	4090	ナフナも
Site	Site	SILB	9109	6 J I S			91 C 8			Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	SILCO	5119			Site	Site	Site	Site	Site	Site	Site		Site	Site	Site	Site	Site	Site .	lite	Site	Site .	ite .	ite 2	iite 2	itte 2	ite	110 110	ite 2	ite 2	ite 2	ite 2	ite 2	ite z ite z	166 4
STAR	STAR	STAR S		ALL O		DATA	DAT2	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	ALL'S	AATS		STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR :	STAR S	STAR S	STAR 5	STAR 5	STAR S	STAR S	STAP 6	STAR S	STAR S	STAR S	STAR S	STAR S	STAR S	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B-4

XXXXXX	XXXX	X	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	X	xx	XXXXXX	XXXXXX	XXXXXX	XXXXX	XXXXXX	XXXXXX	XXX	XXXXXX	XXXXXX	X	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX YYY Y	XXXXXX	XXXXXX		XXXXXX	XXXXXX	XXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	XXXXXX	XXXXX	XXXXXX	XXXXXX	*****	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX
X⊕⊒ IS	Tears Tears	Tears	Years Vears	Tears	Tears	Tears Veare	Tears	Tears	Years	Years		Tears	Tears		Tears Years	Years	Tears	Xears Vointe	Leels Verk	Tears	Years	Tears	Tears			fears		(ears (ears	(ears	Tears			lears				ears	51.4 0	• • • • • • • • • • •	00100 1110			BALS	GALS	6ars		
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data		Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data		Data	Data	Data		Data	Data 1	Data	Data	Data Data Data		Data	Data	Data 1	Data Y		Data 1
For		For	For For	701	For	101	For	For	FOL	For	For	For	For		FOL	For	For	101	TOT	For	For	For	Por	For	FOL	FOL	For		POL	For	FOL	For	For	For	101	For	For	For	ы і О і Б. б	101		For	For	For	For	101	101
1.9500	6.2170	2.3670	2.0000	4.2670	4.0830	0003.5	7.5330	3.5500	2.2500	5.2170 8810	0006.3	2.6000	11500		.5330	.3000	1.1000	00233	5830	.6670	.5000	. 6500	.5000	.2170	.8670	.3500	0110.	0001.	.5170	. 8000	0250.	.6330	.7830	.7170	0212	.6670	.5500	.5670	2226.	. 35 /0	2000	5330	.2670	6000	7330	00050	7170
11: 5	11 7 7	11.6	55		іі Б	11 5		9 11	9 12:			12	121	 -		122	124		1961	139	1 152	1156	151	170	147	146	150	150	151	161	707	143	156	104	119	76	75	4!		1 ⁴ 1 0 00	. 4	6	86.	60 (60 (ເດ ເດັດ		80
Lon	50	Lon	Lon	Lon		Lon Lon	Lon	Lon	цол П	Lon		Lon	Lon			Lon	Lon		Lon	Long	Long	5uor	buol		Long	Fong	pro1	Fond	Fong	Long	buor	Fond	Long	Long	Long	Long	Long	Long	Puor.	Long	Long	Long	Long	Long	Long	Long	Long
40.7830 40 9000	43.5670	48.6000	46.6000	48.3000	45.9170	42.9170	47.6330	40.0670	40.1500	42.383D	46.9670	45.6000	44.2670	0/76.25	46.5670	40.5000	40.9830		58.3670	59.5170	57.7500	58.6830	55 2000	57.1500	64.8170	61.1330	0/91.10	62.3000	66.9170	60.7830	0002.00	70.1330	71.3000	38.8170	36.7670	39.1830	35.2670	39.4500		10.050.05	39.9000	38.0500	05E7.6E	38.0330	38.1830 30 8500	32.5170	34.2500
Lat	Lat	Lat	Lat	Lat	Lat	Lat.	Lat	Lat	La tt	Lat	Lat	Lat			Lat	Lat	Lat	Lat	Lat	Lat	Lat	La.	Lat	Lat.	Lat	Lat	Lat		Lat	Lat Lat		Lat	Lat	Lat Lat	t i	Lat	Lat	Lat	1 1 1 1 1	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat
L N	8	£ §	ŧ	턴	Ē	58	MM	AN N	58	50	WA	OR	őő		WA	đ	58	ÄK	AK	AK	AK	¥K	A A A	Ă	AK	ÄX	A A	X	AK	AK AK	AX	AK	AK	8 E	5	QW	U Z	CN .	5	XX	Но	II	NI	Ŋ.	ΥΥ ΓΓ	B	Sh
/ Salt Lake City/Int'l Arpt Winnemucca/WSO Airport	Boise/Air Terminal	Cut Bank/Faa Airport Great Falle/Int/l Arnt	Helena/Arpt	Kalispell/Glacier Pk Int'l A	Pendleton/Municipal Arbt	Pocatello/Municipal Arpt	Spokane/Int'l Arpt	Lovelock/Faa Airport	Rucers/Manicipal Arpt Fucers/Mahlon Sucot aret	Medford/Jackson County Arpt	olympia/Arpt	Portland/Int'l Arpt	Kedmond/Faa Airport Salem/Mcnarv Piald	Seattle/Seattle-Tacoma Int'l	Yakima/Air Terminal	Redding/Aaf	Arcara/Arpt North Bend/Faa Airmort	Annette/WSO Airport	Juneau/Int'l Arpt	Yakutat/State Arpt	Kodiak/U S C G Base	King Salmon/Arpt Homer/Arnt	Cold Bav/Arpt	St Paul Island/Arpt	Fairbanks/Int'l Arpt	Valdez/WSO Anchorada Ademo Nirnort	MC Grath/Arbt	Talkeetna/State Arpt	Bettles/Bettles Field	Bethel/WSO Alrport Kotzebua/Palnh Wein Memorial	Nome/Municipal Arpt	Barter Island/WSO Airport	Barrow/W Post-W Rogers Arpt	totofado springs∕Municipal Ar Cedar Citv∕Faa Airnort	Fresno/Air Terminal	Baltimore/Blt-Washngtn Int'l	Cape Hatteras/WSO	Mashington Dr/Dulles Intel ar	Tallahassee/Municipal Arnt	Covington/Greater Cincinnati	Dayton/Int'l Arpt	Evansville/Dress Regional Arp	Indianapolis/Int'l Arpt	Lexington/Bluegrass Fleid Toutanille/Standiford mich	Louisville/Jangital Arbt Springfield/Capital Arbt	Columbus/Metropolitan Arpt	Tupelo
24127 24128	24131	24143	24144	24146	24155	24156	24157	2/182	101242	24225	24227	24229	24232	24233	24243	10767	24284	25308	25309	25339	25501	20002	25624	25713	26411	26442	26510	26528	26533	26616	26617	27401	27502	13129	13193	33721	67/54		3805	3814	3815	3817	3819	3820	3822	3842	3862
Site Site	Site	site	Site	Site	Site	Site	Site	5118		site	Site	Site	site Site	Site	Site	0110	site	Site	Site	Site	Site	5	21 11 12	site	Sit.		site	Site	Site		Site	3ite	Site	i te	site S	Site	6116 111		ite 5	itte 9	lite S	site 9	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7 0 0 4 1 1 7	ite 9	ite 9	ite 9
STAR STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	STAK CTAR	STAR	STAR	STAR	STAR	STAR	STAR	STAR	ALAK	STAR	STAR	STAR	STAR	STAR	HAT'S	STAR	STAR	STAR	STAR	STAR	STAR :	STAR	STAR	STAR	STAR 5	STAR	STAR S	STAR 5	STAR S	ALAR	STAR S	STAR S	STAR S	STAR S	STAR S	STAR S	STAR U	STAR S	STAR S	STAR S

-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Tears	Years	Years	Tears	Tears	Years	Years	Years	Years	Years	Years	Years	Years	Years	Years	Years	Years
Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Date
For	For	For	For	For	For	For	For	For	For	For	For	Por	For	For	For	Por
94.7500	98.81/0	106.6170	103.6330	123.8830	124.5500	74.8500	73.7830	89.1000	80.2170	83.8000	87.9000	83.3330	83.5670	85.5170	92.4000	96.0170
Long	5uo7	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long	Long
31.2330	0/00.00	48.41/0	48.1830	46.1500	47.9500	44.9330	40.6500	42.2000	40.5000	41.6000	41.9830	42.2330	45.0670	42.8830	42.5500	41.3670
Lat		T'a L	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat
XL	25		QN N	OR I	MA	ΝY	λN	11	ΡA	НО	11	¥	H	H	IA	NE
Lufkin/Faa Airport Russell/Faa Airport	Glasgow/Int'l brut		1dJV T. 1UT UTTNOTE UNDEFFER	Astutia/Liatsop county Arpt	LIOGITE OCM/BINGTTTNA	Massena/raa Alrport	New IOLK/J F Kennedy Int'l Ar	NUCKIOFQ/GFEATEF ROCKFORD AFP	Firsburgh/Wscom 2 Airport	rotedo/Express Arpt	Culcage/O'nare int'l Arpt	Vetrolt/Metropolitan Arpt	Alpena/Preips Collins Ap	Witten Kaplus/Kent Co Int'l Ar	Morth Coche Ministral Arpt	NUL LU UMAUA/NWELO ALPL
93987	94008	94014	FECTO .							01010				01010		OTCEC
site Site	Site	4 i 4							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
STAR STAR	STAR	STAP	STAP	STAP	STAP	ATAD A	DATA D			AATA	CT AD				STAP	í

B-6

.

Years Years	Tears	Years	Years	Years	Years	Tears	Tears	Years	Tears
Data	Data	Data	Data	Data	Data	Data	ata	Data	a ta
FOL	For	FOU	FOL	For I	For	For	For	For I	For
0000.	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
Long Long	Long	Long	Long	Long	Long	Long	Long	Long	Long
0000.	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
Lat Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat	Lat
2 2	4	ŝ	9	1	7	ñ	4	ŝ	9
Speed 2 Speed 3	Speed 4	Speed 5	Speed 6	Speed 1	Speed 2	Speed 3	Speed 4	Speed 5	Speed 6
F, Speed 2 F, Speed 3	F, Speed 4	F, Speed 5	F, Speed 6	E+F, Speed 1	E+F, Speed 2	E+F, Speed 3	E+F, Speed 4	E+F, Speed 5	E+F, Speed 6
Stab F, Speed 2 Stab F, Speed 3	Stab F, Speed 4	Stab F, Speed 5	Stab F, Speed 6	Stab E+F, Speed 1	Stab E+F, Speed 2	Stab E+F, Speed 3	Stab E+F, Speed 4	Stab E+F, Speed 5	Stab E+F, Speed 6
Mind, Stab F, Speed 2 1 Wind, Stab F, Speed 3	Wind, Stab F, Speed 4	Wind, Stab F, Speed 5	Wind, Stab F, Speed 6	Wind, Stab E+F, Speed 1	Wind, Stab E+F, Speed 2	Wind, Stab E+F, Speed 3	Wind, Stab E+F, Speed 4	Wind, Stab E+F, Speed 5	Wind, Stab E+F, Speed 6
2 N Wind, Stab F, Speed 2 3 N Wind, Stab F, Speed 3	4 N Wind, Stab F, Speed 4	5 N Wind, Stab F, Speed 5	6 N Wind, Stab F, Speed 6	1 N Wind, Stab E+F, Speed 1	2 N Wind, Stab E+F, Speed 2	3 N Wind, Stab E+F, Speed 3	4 N Wind, Stab E+F, Speed 4	5 N Wind, Stab E+F, Speed 5	6 N Wind, Stab E+F, Speed 6
00082 N Wind, Stab F, Speed 2 00083 N Wind, Stab F, Speed 3	00084 N Wind, Stab F, Speed 4	00085 N Wind, Stab F, Speed 5	00086 N Wind, Stab F, Speed 6	00091 N Wind, Stab E+F, Speed 1	00092 N Wind, Stab E+F, Speed 2	00093 N Wind, Stab E+F, Speed 3	00094 N Wind, Stab E+F, Speed 4	00095 N Wind, Stab E+F, Speed 5	00096 N Wind, Stab E+F, Speed 6
site 00082 N Wind, Stab F, Speed 2 Site 00083 N Wind, Stab F, Speed 3	Site 00084 N Wind, Stab F, Speed 4	Site 00085 N Wind, Stab F, Speed 5	Site 00086 N Wind, Stab F, Speed 6	Site 00091 N Wind, Stab E+F, Speed 1	Site 00092 N Wind, Stab E+F, Speed 2	Site 00093 N Wind, Stab E+F, Speed 3	Site 00094 N Wind, Stab E+F, Speed 4	Site 00095 N Wind, Stab E+F, Speed 5	site 00096 N Wind, Stab E+F, Speed 6

B-7

Not for Resale

STD.API/PETRO PUBL 4644-ENGL 1997 🎟 0732290 0564380 637 📟

Appendix C

DESCRIPTIVE STATISTICS FOR AMBIENT BENZENE CONCENTRATIONS ESTIMATED BY APPLICATION OF ISC2 DISPERSION MODEL TO 348 METEOROLOGICAL STATIONS

Table C-1. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (μg/m³) based on vent velocity = 3.21 ft/sec, vent diameter = 2 inches, and land use = rural.

, Maximum,	μg/m³		64.3	64.3 450	64.3 450 43.8	64.3 450 43.8 306	64.3 450 43.8 306 31.1	64.3 450 450 306 31.1 218	64.3 450 306 31.1 218 218	64.3 450 306 31.1 218 18.8 18.8	64.3 450 450 306 31.1 218 18.8 18.8 132 8.06	64.3 450 450 306 31.1 218 18.8 18.8 18.8 18.8 132 132 132 56.4	64.3 450 450 306 31.1 31.1 218 18.8 18.8 18.8 18.8 132 132 56.4 56.4	64.3 450 450 306 31.1 31.1 218 132 132 132 132 132 323 323 22.6	64.3 450 450 306 31.1 31.1 218 18.8 18.8 132 132 132 56.4 56.4 56.4 132 132 132 132 132 132 132 132 132 132	64.3 450 450 306 31.1 31.1 218 18.8 18.8 132 132 132 132 56.4 3.23 3.23 3.23 1.8 18.8 132 132 132 132 132 132 132 132 132 132	64.3 450 450 306 31.1 31.1 31.1 31.1 306 31.1 306 31.1 306 31.1 31.1 328 323 323 323 323 323 112.6 12.6 0.821 0.821	64.3 450 450 306 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.	64.3 450 450 306 31.1 31.1 31.1 218 18.8 18.8 18.8 132 132 132 56.4 56.4 56.4 132 132 132 132 132 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4	64.3 450 450 306 31.1 31.1 31.1 31.1 31.1 326 43.8 31.1 31.1 31.1 31.1 326 4 326 4 323 323 323 132 132 132 12.6 0.821 0.821 0.821 1.81 1.81 1.81 1.81 1.81 1.81 1.12 5.75 5.75 1.196	64.3 450 450 306 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.
95th percentile,	hg/m³		26.0	26.0	26.0 182 18.9	26.0 182 18.9 133	26.0 182 18.9 133 14.0	26.0 182 18.9 133 14.0 98.1	26.0 182 18.9 133 14.0 98.1 8.43	26.0 182 18.9 133 133 14.0 98.1 8.43 8.43	26.0 182 18.9 133 133 14.0 98.1 98.1 8.43 8.43 8.43 3.63	26.0 182 18.9 133 133 14.0 98.1 98.1 8.43 8.43 59.0 59.0 55.4	26.0 182 18.9 133 133 14.0 98.1 98.1 8.43 8.43 59.0 59.0 59.0 59.0 1.39	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 3.63 3.63 3.63 3.63 3.53 3.53 9.75 9.75	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 9.75 9.75 9.75 0.759	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 53.0 5.3 1.39 9.75 9.75 5.31	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 98.1 25.4 1.39 9.75 9.75 9.75 0.759 0.759 0.336	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 98.1 98.1 9.75 25.4 1.39 9.75 9.75 0.759 0.336 0.336 0.336	26.0 182 18.9 133 133 14.0 98.1 98.1 98.1 98.1 98.1 98.1 25.4 1.39 5.31 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759	26.0 182 18.9 18.9 133 14.0 98.1 98.1 98.1 98.1 98.1 98.1 9.13 5.31 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759	26.0 182 18.9 18.9 133 14.0 14.0 98.1 98.1 98.1 98.1 9.13 25.4 1.39 9.75 9.75 9.75 9.75 0.336 0.759
50th percentile,	μg/m ³	10.2		71.2	71.2 7.52	71.2 7.52 52.7	71.2 7.52 52.7 5.64	71.2 7.52 52.7 5.64 39.5	71.2 7.52 5.64 5.64 39.5 3.39	71.2 7.52 52.7 5.64 39.5 3.39 23.7	71.2 7.52 5.64 5.64 39.5 3.39 3.39 1.41	71.2 7.52 5.64 5.64 39.5 3.39 3.39 3.39 3.39 3.39 3.39 3.39	71.2 7.52 5.64 5.64 39.5 3.39 3.39 3.39 3.39 3.39 9.88 9.88 9.88	71.2 7.52 5.64 5.64 39.5 3.39 3.39 9.88 9.88 9.88 9.88 3.64	71.2 7.52 52.7 5.64 5.64 39.5 339 3.39 3.39 3.39 9.88 9.88 9.88 9.88	71.2 7.52 5.64 5.64 39.5 3.39 3.39 3.39 3.39 9.88 9.88 9.88 9.88	71.2 7.52 5.64 5.64 39.5 3.39 3.39 3.39 3.39 9.88 9.88 9.88 9.88	71.2 7.52 5.64 5.64 39.5 3.39 3.39 3.39 3.39 3.64 9.88 9.88 9.88 9.88 9.88 0.52 1.95 1.95 0.122 0.853	71.2 7.52 5.64 5.64 5.64 39.5 3.39 3.39 3.39 3.39 3.39 3.64 1.41 1.41 1.41 1.41 0.52 0.279 0.122 0.122 0.0395	71.2 7.52 5.64 5.64 5.64 39.5 3.39 3.39 3.39 3.64 1.41 1.41 1.41 1.41 1.41 0.52 0.279 0.0395 0.0395 0.0395	71.2 7.52 5.64 5.64 5.64 39.5 39.5 39.5 3.39 3.39 3.64 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1
Geometric	n std. dev.	1.768	•	1.768	1.755	1.768 1.755 1.755	1.768 1.755 1.755 1.740	1.768 1.755 1.755 1.740 1.740	1.768 1.755 1.755 1.740 1.740 1.743	1.768 1.755 1.755 1.740 1.740 1.743 1.743	1.768 1.755 1.755 1.740 1.740 1.743 1.743 1.774	1.768 1.755 1.755 1.740 1.740 1.743 1.743 1.774 1.774	1.768 1.755 1.755 1.740 1.740 1.743 1.743 1.774 1.774 1.774 1.774	1.768 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813	1.768 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.834	1.768 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.834 1.834	1.768 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.813 1.834 1.834 1.857	1.768 1.755 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.813 1.834 1.834 1.857 1.857	1.768 1.755 1.755 1.755 1.755 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.834 1.834 1.857 1.857 1.887	1.768 1.755 1.755 1.755 1.755 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.834 1.834 1.834 1.857 1.867 1.887 1.887 1.887	1.768 1.755 1.755 1.755 1.755 1.740 1.740 1.740 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.743 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.813 1.887 1.887 1.903
. Geometric	пеап, µg/m	10.1		71.0	71.0 7.50	71.0 7.50 52.5	71.0 7.50 52.5 5.63	71.0 7.50 52.5 5.63 39.4	71.0 7.50 52.5 5.63 39.4 3.38	71.0 7.50 52.5 5.63 39.4 3.38 3.38 23.6	71.0 7.50 52.5 5.63 39.4 33.8 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.63 9.86 9.86 9.86 0.518 3.63 3.63 0.278 1.95 0.278 0.849 0.849	71.0 7.50 52.5 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.38 3.63 9.86 0.518 9.86 0.518 3.63 0.518 0.278 1.95 0.278 0.278 0.393	71.0 7.50 52.5 5.63 39.4 39.4 3.38 3.38 3.38 3.38 3.63 9.86 9.86 0.518 3.63 0.518 0.278 1.95 0.278 0.0393 0.0393 0.0129
Arithmetic std.	non 'ran	7.22	50.6		5.24	5.24 36.7	5.24 36.7 3.85	5.24 36.7 3.85 26.9	5.24 36.7 3.85 26.9 2.32	5.24 36.7 3.85 26.9 2.32 16.2	5.24 36.7 3.85 3.85 26.9 2.32 16.2 1.01	5.24 36.7 3.85 3.85 26.9 2.32 16.2 1.01 7.07	5.24 36.7 3.85 3.85 26.9 26.9 16.2 1.01 1.01 7.07 0.393	5.24 36.7 3.85 3.85 26.9 26.9 1.01 1.01 1.01 7.07 7.07 2.75	5.24 36.7 3.85 3.85 26.9 26.9 2.32 16.2 1.01 1.01 7.07 7.07 0.393 0.393 0.393	5.24 36.7 3.85 3.85 26.9 26.9 26.9 1.01 1.01 1.01 7.07 7.07 7.07 7.07 7.07	5.24 36.7 36.7 3.85 26.9 26.9 26.9 2.32 1.01 1.01 1.01 1.01 7.07 0.393 2.75 0.393 1.52 1.52 0.0974	5.24 36.7 36.7 3.85 26.9 26.9 26.9 2.32 16.2 1.01 1.01 1.01 1.01 1.01 1.52 0.393 0.393 0.393 0.393 0.393 0.393 0.393	5.24 36.7 36.7 3.85 26.9 26.9 26.9 26.9 2.32 16.2 1.01 1.01 1.01 1.01 1.01 1.52 0.393 0.393 0.393 0.393 0.393 0.393 0.0974 0.0974 0.0328	5.24 36.7 36.7 3.85 26.9 26.9 26.9 2.32 16.2 1.01 1.01 1.01 1.01 1.01 1.52 0.393 2.75 0.393 2.75 0.393 0.0974 0.0974 0.0328 0.0328	5.24 36.7 36.7 3.85 26.9 26.9 26.9 2.32 16.2 1.01 1.01 1.01 1.52 0.0328 0.0328 0.0328 0.0328 0.0109
Arithmetic mean. uo/m ³		11.9	83.3		8.76	8.76 61.3	8.76 61.3 6.55	8.76 61.3 6.55 45.8	8.76 61.3 6.55 45.8 3.93	8.76 61.3 6.55 45.8 3.93 3.93 27.5	8.76 61.3 6.55 45.8 3.93 3.93 27.5 1.66	8.76 61.3 6.55 45.8 3.93 3.93 3.93 27.5 1.66 11.6	8.76 61.3 6.55 45.8 45.8 3.93 3.93 3.93 27.5 1.66 1.66 11.6	8.76 61.3 6.55 45.8 45.8 3.93 3.93 3.93 3.93 27.5 11.6 11.6 11.6 11.6 4.32	8.76 61.3 6.55 45.8 45.8 3.93 3.93 3.93 3.93 1.66 11.6 11.6 11.6 11.6 27.5 27.5 27.5 27.5 27.5 27.5 1.66 1.33 3.033	8.76 61.3 6.55 45.8 45.8 3.93 3.93 3.93 3.93 1.66 11.6 11.6 11.6 11.6 11.6 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	8.76 61.3 6.55 45.8 45.8 3.93 3.93 27.5 11.6 11.6 11.6 11.6 11.6 11.6 0.617 0.333 0.333 0.333 0.333	8.76 61.3 6.55 45.8 45.8 3.93 3.93 27.5 1.66 11.6 11.6 11.6 0.617 0.333 2.33 0.333 2.33 0.333 0.146 0.146	8.76 61.3 6.55 45.8 3.93 3.93 3.93 27.5 1.66 11.6 11.6 11.6 11.6 0.617 0.333 2.33 0.333 2.33 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.0479	8.76 61.3 6.55 45.8 45.8 3.93 3.93 27.5 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.	8.76 61.3 6.55 6.55 45.8 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.
rate, tons/year		-	2			2	F -														
Distance,		0		20			8	93	30	20 30	100 50 30 100	100 50 30 100	30 100 50 30 200	30 200 100 50 30 200 100 100 100 100 100 100 100 100 100	300 200 50 30 300 200 50 30	30 300 200 50 30 300 200 30	30 300 300 200 50 30 500 300 50 30	30 500 300 200 50 30 500 300 50 30	30 50 50 100 50 100 100 100 100	30 200 100 50 1000 1000 1000 1000 1000 1000 1000 10	30 2000 200 100 50 2000 200 200 200 200 200 200 200 200 2

	vern velocity :	= 0.21 IVSEC, 1		= 2 III01169, dI		- uiuaii.		
				Outdoor	benzene conce	entration		
ance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m³	Arithmetic std. dev., μg/m³	Geometric mean, µg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, μg/m³	Maximum , μg/m³
10		12.0	7.27	10.3	1.765	10.3	26.2	67.6
	2	84.1	50.9	71.8	1.765	72.0	183	473
20	-	8.60	5.01	7.41	1.733	7.42	18.3	40.7
	7	60.2	35.1	51.9	1.733	52.0	128	285
30	-	6.25	3.32	5.50	1.669	5.54	12.7	25.6
	7	43.8	23.2	38.5	1.669	38.7	88.8	179
50	-	3.47	1.89	3.04	1.691	3.06	7.13	14.7
	2	24.3	13.2	21.2	1.691	21.4	49.9	103
100	-	1.06	0.626	0.912	1.748	0.919	2.28	4.98
	7	7.44	4.38	6.38	1.748	6.44	16.0	34.9
200	-	0.292	0.182	0.247	1.793	0.249	0.651	1.49
	2	2.05	1.27	1.73	1.793	1.74	4.56	10.4
300	-	0.136	0.0869	0.114	1.816	0.115	0.307	0.715
	7	0.951	0.608	0.798	1.817	0.802	2.15	5.01
500	-	0.0523	0.0344	0.0435	1.845	0.0437	0.120	0.286
	7	0.366	0.241	0.304	1.845	0.306	0.842	2.00
000	-	0.0149	0.0101	0.0122	1.880	0.0123	0.0347	0.0846
	7	0.104	0.0710	0.0856	1.880	0.0862	0.243	0.592
000	-	0.00448	0.00313	0.00365	1.910	0.0369	0.0107	0.0263
	7	0.0313	0.0219	0.0255	1.910	0.0258	0.0746	0.184

Table C-2. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (µg/m³) based on

Table C-3. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (µg/m³) based on vent velocity = 10.9 ft/sec, vent diameter = 2 inches, and land use = rural

		kimum, a/m³	0		0	o,	LC.				84		, u	2	2	0	-	0		R d		935
		May	- ¹ 9	420		335	35	249	20.	141		24	6	b cc	j +) o		ה 	ö ö
		95th percentile, µg/m ³	24.5	121	18.6	130	14.0	98.3	8.35	58.5	3.50	24.5	1.36	9 54	0.750	5.05	0.334	toop o	0.0507	1000.0	+07.0	1/20.0
- I di di .	entration	50th percentile, µg/m ³	9.62	67.3	7.31	51.2	5.55	38.9	3.29	23.0	1.36	9.55	0.509	3.56	0.276	1.93	0.121	0.847	0.0394	0.276	0.0130	200
	or benzene conce	Geometric std. dev.	1.767	1.767	1.765	1.765	1.758	1.758	1.762	1.762	1.784	1.784	1.819	1.819	1.838	1.838	1.860	1.860	1.888	1.888	1.904	
	Outdoo	Geometric mean, μg/m³	9.57	67.0	7.28	51.0	5.54	38.8	3.28	23.0	1.36	9.52	0.506	3.54	0.274	1.92	0.120	0.843	0.0392	0.274	0.0128	
		Arithmetic std. dev., μg/m³	6.79	47.5	5.16	36.1	3.88	27.2	2.31	16.2	0.986	6.90	0.385	2.70	0.214	1.50	0.0969	0.678	0.0327	0.229	0.0109	
		Arithmetic mean, μg/m³	11.2	78.6	8.54	59.8	6.48	45.3	3.84	26.9	1.60	11.2	0.603	4.22	0.329	2.30	0.145	1.02	0.0478	0.334	0.0157	
		Benzene emis. rate, tons/year	-	7	-	2	-	2	-	2	-	7	-	7	-	7	-	7		7	-	7
		Distance, m	10		20		30		20		100		200		300		500		1000		2000	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C-3

Table C-4. Descriptive statistics for dispersion model estimates of outdoor benzene concentration ($\mu g/m^3$) based on vent velocity = 10.9 ft/sec, vent diameter = 2 inches, and land use = urban.

				Outdool	r benzene conc	entration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m ³	Arithmetic std. dev., μg/m³	Geometric mean, μg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, μg/m³	Maximum, μg/m³
10	-	11.7	7.00	96.6	1.758	9.97	25.2	70.3
	2	81.6	49.0	69.7	1.758	69.8	176	492
20	-	8.71	5.18	7.47	1.748	7.48	18.8	48.7
	2	60.9	36.3	52.3	1.748	52.4	131	341
30	-	6.26	3.57	5.42	1.718	5.43	13.1	31.0
	2	43.8	25.0	37.9	1.718	38.0	92.0	217
20	-	3.23	1.90	2.78	1.746	2.79	6.93	15.4
	2	22.6	13.3	19.4	1.746	19.5	48.5	108
100	-	1.00	0.621	0.852	1.788	0.858	2.22	5.10
	7	7.03	4.35	5.96	1.788	6.01	15.6	35.7
200	-	0.282	0.181	0.236	1.823	0.238	0.638	1.51
	2	1.97	1.27	1.65	1.823	1.66	4.46	10.5
300	-	0.132	0.0866	0.110	1.840	0.111	0.301	0.722
	2	0.926	0.606	0.771	1.840	0.776	2.11	5.06
500	-	0.0514	0.0343	0.0425	1.861	0.0428	0.118	0.287
	2	0.360	0.240	0.298	1.861	0.300	0.827	2.01
1000	-	0.0148	0.0101	0.0121	1.889	0.0122	0.0346	0.0848
	7	0.103	0.0707	0.0847	1.889	0.0854	0.242	0.594
2000		0.00446	0.00312	0.00363	1.915	0.00367	0.0106	0.0263
	7	0.0312	0.0219	0.0254	1.915	0.0257	0.0744	0.184

STD.API/PETRO PUBL 4644-ENGL 1997 📰 0732290 0564385 119 🖿

Not for Resale

C-4

Table C-5. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (μg/m³) based on vent velocity = 20.3 ft/sec. vent diameter = 2 inches, and land use = rural.

				Outdoo	r benzene conce	entration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m³	Arithmetic std. dev., μg/m³	Geometric mean, μg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, μg/m³	Maximum, μg/m³
10	-	10.3	6.22	8.83	1.765	8.83	22.5	54.8
	7	72.4	43.5	61.8	1.765	61.8	158	383
20	-	8.20	4.94	7.00	1.765	7.02	17.9	45.8
	7	57.4	34.6	49.0	1.765	49.2	125	320
30	-	6.33	3.82	5.40	1.763	5.42	13.8	35.2
	7	44.3	26.7	37.8	1.763	38.0	96.4	246
50	-	3.75	2.27	3.20	1.766	3.21	8.18	19.8
	7	26.3	15.9	22.4	1.766	22.5	57.2	139
100	-	1.55	0.950	1.31	1.782	1.32	3.40	7.56
	7	10.8	6.65	9.20	1.782	9.23	23.8	52.9
200	-	0.589	0.375	0.495	1.816	0.496	1.32	3.03
	7	4.12	2.63	3.46	1.816	3.47	9.27	21.2
300	-	0.324	0.211	0.270	1.836	0.272	0.739	1.74
	7	2.27	1.47	1.89	1.836	1.91	5.17	12.2
500	t	0.144	0.0961	0.120	1.859	0.120	0.331	0.807
	7	1.01	0.673	0.837	1.859	0.841	2.32	5.65
1000	-	0.0476	0.0325	0.0390	1.888	0.0393	0.111	0.278
	7	0.333	0.228	0.273	1.888	0.275	0.780	1.94
2000	-	0.0157	0.0109	0.0128	1.903	0.0129	0.0370	0.0932
	7	0.110	0.0761	0.0896	1.904	0.0905	0.259	0.653

C-5

Table C-6. Descriptive statistics for dispersion model estimates of outdoor benzene concentration ($\mu g/m^3$) based on vent velocity = 20.3 ft/sec, vent diameter = 2 inches, and land use = urban.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

				Outdoo	r benzene conce	Intration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m ³	Arithmetic std. dev., μg/m³	Geometric mean, μg/m³	Geometric std. dev.	50th percentile, μg/m ³	95th percentile, μg/m³	Maximum, μg/m³
10	-	11.0	6.53	9.38	1.753	9.40	23.5	66.6
	7	76.7	45.7	65.7	1.752	65.8	165	466
20	-	8.60	5.15	7.36	1.755	7.37	18.6	48.8
	7	60.2	36.1	51.5	1.755	51.6	130	342
30	-	6.13	3.63	5.26	1.748	5.27	13.2	31.5
	7	42.9	25.4	36.8	1.748	36.9	92.3	220
50	-	3.13	1.91	2.66	1.777	2.67	6.88	15.3
	7	21.9	13.4	18.6	1.777	18.7	48.2	107
100	-	0.978	0.620	0.822	1.811	0.827	2.21	5.06
	7	6.84	4.34	5.75	1.811	5.79	15.5	35.4
200	-	0.277	0.181	0.231	1.839	0.232	0.634	1.51
	7	1.94	1.27	1.62	1.839	1.62	4.44	10.5
300	-	0.131	0.0867	0.109	1.852	0.109	0.299	0.723
	7	0.917	0.607	0.760	1.853	0.763	2.09	5.06
500	-	0.0511	0.0344	0.0422	1.869	0.0425	0.118	0.288
	7	0.358	0.241	0.295	1.869	0.297	0.827	2.01
1000	-	0.0147	0.0101	0.0120	1.893	0.0122	0.0346	0.0849
	7	0.103	0.0708	0.0843	1.893	0.0851	0.242	0.594
2000	-	0.00445	0.00313	0.00362	1.917	0.00367	0.0106	0.0263
	7	0.0312	0.0219	0.0253	1.917	0.0257	0.0743	0.184

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564387 T91 🔳
Table C-7. Descriptive statistics for dispersion model estimates of outdoor benzene concentration ($\mu g/m^3$) based on vent velocity = 3.21 ft/sec. vent diameter = 4 inches. and land use = rural.

				Outdoo	r benzene conce	entration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m³	Arithmetic std. dev., μg/m³	Geometric mean, µg/m³	Geometric std. dev.	50th percentile, μg/m ³	95th percentile, μg/m³	Maximum, μg/m³
10	-	11.7	7.10	9.99	1.768	10.0	25.6	64.3
	7	82.0	49.7	69.9	1.768	70.2	179	450
20	-	6.68	5.23	7.42	1.760	7.45	18.8	47.3
	7	60.8	36.6	51.9	1.760	52.1	132	331
30	-	6.51	3.86	5.58	1.747	5.60	14.0	34.3
	7	45.6	27.0	39.1	1.747	39.2	98.0	240
50	-	3.86	2.29	3.31	1.750	3.32	8.35	19.6
	7	27.0	16.0	23.2	1.750	23.3	58.4	137
100	-	1.60	0.976	1.36	1.774	1.37	3.49	7.71
	7	11.2	6.83	9.54	1.774	9.58	24.4	54.0
200	-	0.601	0.382	0.505	1.812	0.507	1.35	3.11
	7	4.21	2.67	3.54	1.812	3.55	9.46	21.8
300	-	0.327	0.213	0.273	1.834	0.275	0.746	1.76
	7	2.29	1.49	1.91	1.834	1.92	5.22	12.3
500	-	0.145	0.0963	0.120	1.857	0.121	0.332	0.809
	7	1.01	0.674	0.841	1.857	0.844	2.32	5.67
1000	-	0.0477	0.0326	0.0391	1.887	0.0394	0.112	0.278
	7	0.334	0.228	0.274	1.887	0.276	0.782	1.95
2000	-	0.0157	0.0109	0.0128	1.903	0.0129	0.0371	0.0934
	7	0.110	0.0762	0.0898	1.903	0.906	0.260	0.654

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table C-8. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (μg/m³) based on vent velocity = 3.21ft/sec, vent diameter = 4 inches. and land use = urban.

				Outdoo	r benzene conc	entration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m³	Arithmetic std. dev., μg/m ³	Geometric mean, µg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, μg/m³	Maximum, µg/m³
10	-	12.0	7.23	10.2	1.763	10.2	26.0	71.0
	7	83.9	50.6	71.6	1.763	7.17	182	497
20	-	8.65	1.81	7.44	1.740	7.47	18.6	46.7
	7	60.6	35.7	52.1	1.740	52.3	130	327
30	-	6.25	3.42	5.47	1.688	5.50	12.9	29.4
	7	43.8	24.0	38.3	1.688	38.5	90.2	206
50	-	3.34	1.87	2.90	1.708	2.91	6.92	14.8
	7	23.4	13.1	20.3	1.708	20.4	48.4	104
100	-	1.03	0.616	0.880	1.760	0.886	2.24	4.98
	7	7.20	4.31	6.16	1.760	6.20	15.7	34.9
200	-	0.286	0.180	0.241	1.803	0.243	0.643	1.49
	7	2.00	1.26	1.69	1.803	1.70	4.50	10.4
300	-	0.134	0.0864	0.112	1.825	0.113	0.304	0.717
	7	0.938	0.605	0.785	1.825	0.789	2.13	5.02
500	-	0.0518	0.0343	0.0430	1.851	0.0432	0.119	0.286
	2	0.363	0.240	0.301	1.851	0.302	0.836	2.00
1000	-	0.0148	0.0101	0.0122	1.883	0.0123	0.0347	0.0847
	7	0.104	0.0707	0.0851	1.883	0.0858	0.243	0.593
2000	-	0.00447	0.00312	0.00364	1.912	0.00368	0.0106	0.0263
	7	0.0313	0.0219	0.0255	1.912	0.0258	0.0745	0.184

C-8

Table C-9. Descriptive statistics for dispersion model estimates of outdoor benzene concentration ($\mu g/m^3$) based on vent velocity = 10.9 ft/sec, vent diameter = 4 inches, and land use = rural.

ļ 1

				Outdo	or benzene co	Icentration		
Distance, m	Benzene emis. rate, tons/year	Arithmetic mean, μg/m³	Arithmeticstd. dev., μg/m ³	Geometric mean, μg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, µg/m³	Maximum, ua/m ³
10	-	10.2	6.12	8.70	1.764	8.73	22.1	53.5
	7	71.3	42.8	60.9	1.764	61.1	155	374
20	-	8.06	4.84	6.88	1.762	6.89	17.6	44.8
	7	56.4	33.9	48.2	1.762	48.2	123	313
30	-	6.20	3.72	5.30	1.759	5.31	13.5	34.3
	7	43.4	26.0	37.1	1.759	37.2	94.7	240
50	-	3.62	2.17	3.10	1.759	3.10	7.83	19.0
	2	25.4	15.2	21.7	1.759	21.7	54.8	133
100	-	1.45	0.879	1.24	1.770	1.24	3.15	6.97
	7	10.2	6.15	8.67	1.770	8.68	22.1	48.8
200	-	0.557	0.350	0.470	1.805	0.471	1.24	2.75
	2	3.90	2.45	3.29	1.805	3.30	8.68	19.2
300		0.311	0.200	0.260	1.828	0.262	0.708	1.62
	7	2.18	1.40	1.82	1.828	1.83	4.96	11.4
500	-	0.141	0.0934	0.117	1.854	0.118	0.323	0.777
	7	0.988	0.654	0.820	1.854	0.824	2.26	5.44
1000		0.0470	0.0321	0.0386	1.885	0.0389	0.110	0.273
	7	0.329	0.225	0.270	1.885	0.272	0.773	1.91
2000	-	0.0156	0.0108	0.0127	1.902	0.0129	0.0368	0.0925
	7	0.109	0.0756	0.0892	1.902	0.0901	0.258	0.647

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C-9

Table C-10. Descriptive statistics for dispersion model estimates of outdoor benzene concentration (µg/m³) based on vent velocity = 10.9 ft/sec, vent diameter = 4 inches, and land use = urban.

ſ								
				Outdoo	r benzene conc	entration		
	Benzene emis. ate, tons/year	Arithmetic mean, μg/m³	Arithmetic std. dev., μg/m³	Geometric mean, μg/m³	Geometric std. dev.	50th percentile, μg/m³	95th percentile, μg/m³	Maximum, μg/m³
	-	10.8	6.44	9.28	1.751	9.29	23.3	65.8
I	7	75.8	45.1	65.0	1.751	65.1	163	460
	-	8.48	5.06	7.27	1.752	7.26	18.3	48.0
1	7	59.4	35.4	50.9	1.752	50.8	128	336
1	-	6.00	3.53	5.16	1.744	5.16	12.8	30.6
	7	42.0	24.7	36.1	1.744	36.1	89.9	214
	-	3.05	1.85	2.60	1.771	2.60	6.64	14.7
	7	21.4	12.9	18.2	1.771	18.2	46.5	103
1	-	0.953	0.600	0.804	1.805	0.808	2.14	4.82
1	7	6.67	4.20	5.62	1.805	5.65	15.0	33.7
	-	0.274	0.179	0.229	1.837	0.230	0.627	1.48
	7	1.92	1.25	1.60	1.837	1.61	4.39	10.4
	-	0.130	0.0861	0.108	1.851	0.108	0.297	0.717
1	7	0.911	0.603	0.756	1.851	0.759	2.08	5.02
	-	0.0510	0.0343	0.0421	1.868	0.424	0.118	0.287
1	7	0.357	0.240	0.294	1.868	0.297	0.826	2.01
1	-	0.0147	0.0101	0.0120	1.893	0.0121	0.0345	0.0848
	7	0.103	0.0707	0.0842	1.893	0.0850	0.242	0.593
	-	0.00445	0.00312	0.00362	1.917	0.00367	0.0106	0.0263
11	7	0.0312	0.0219	0.0253	1.917	0.0257	0.0743	0.184

1 100 Table C-11. Descriptive statistics for dispersion model

ł

5	5
hased	המספת
(110/m ³)	/
concentration	
enzene	
outdoor b	on hand he
ites of	hes ar
estime	= 4 inc
on model	diameter :
lispersi	c, vent (
SS TOT C	3 ft/sec
statistic	/ = 20.
suprive :	velocity
nesc	vent
-	

			T	T	1		_				-	_										
		Maximum, μg/m³	41.1	288	38.9	272	31.0	217	17.1	120	6.42	44.9	2.43	17.0	1.44	10.1	0.732	5.12	0.265	1.86	0.0913	0.639
		95th percentile, μg/m³	17.5	123	15.1	106	12.1	84.6	7.10	49.7	2.80	19.6	1.11	7.78	0.649	4.54	0.312	2.18	0.108	0.758	0.0364	0.255
	entration	50th percentile, μg/m³	7.11	49.7	6.13	42.9	4.87	34.1	2.87	20.1	1.12	7.86	0.432	3.03	0.246	1.72	0.114	0.801	0.0383	0.268	0.0128	0.0895
	r benzene conce	Geometric std. dev.	1.765	1.765	1.753	1.753	1.749	1.749	1.748	1.748	1.757	1.757	1.787	1.787	1.813	1.813	1.846	1.846	1.881	1.881	1.900	1.900
	Outdoor	Geometric mean, μg/m³	7.04	49.3	6.10	42.7	4.87	34.1	2.86	20.1	1.12	7.87	0.431	3.02	0.245	1.72	0.114	0.795	0.0380	0.266	0.0126	0.0885
		Arithmetic std. dev., μg/m³	4.91	34.4	4.22	29.5	3.36	23.5	1.97	13.8	0.783	5.48	0.313	2.19	0.185	1.29	0.0894	0.626	0.0314	0.220	0.0107	0.0749
		Arithmetic mean, μg/m³	8.24	57.7	7.12	49.8	5.68	39.7	3.34	23.4	1.31	9.19	0.508	3.56	0.292	2.04	0.136	0.955	0.0462	0.324	0.0155	0.108
		Benzene emis. rate, tons/year	-	7	-	7	-	2	-	7	-	7		7	-	7	-	7	-	7	-	7
		Distance, m	10		20		30		50		100		200		300		500		1000		2000	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C-11

Table C-12. Descriptive statistics for dispersion model estimates of outdoor benzene concentration ($\mu g/m^3$) based on vent velocity = 20.3 ft/sec, vent diameter = 4 inches, and land use = urban.

		T	T	T	T	T	<u> </u>	<u> </u>	T	<u> </u>	1		T	1	T			T		1	—
	Maximum, µg/m³	57.1	399	44.2	309	28.0	196	13.9	97.5	4.52	31.6	1.45	10.1	0.711	4.98	0.286	2.00	0.0847	0.593	0.0263	0 101
	95th percentile, μg/m³	19.6	137	16.8	118	11.8	82.6	6.23	43.6	2.02	14.2	0.618	4.33	0.295	2.06	0.117	0.822	0.0345	0.242	0.0106	0.0749
antro tion	50th percentile, µg/m ³	7.96	55.7	6.78	47.5	4.73	33.1	2.42	17.0	0.765	5.35	0.225	1.57	0.107	0.749	0.0422	0.295	0.0121	0.0849	0.00366	0 ODER
henzene cone	Geometric std. dev.	1.741	1.741	1.743	1.743	1.756	1.756	1.783	1.783	1.812	1.812	1.844	1.844	1.857	1.857	1.873	1.873	1.895	1.895	1.918	1 918
Outdoor	Geometric mean, μg/m³	7.95	55.6	6.80	47.6	4.73	33.1	2.42	16.9	0.762	5.33	0.224	1.56	0.107	0.746	0.0418	0.293	0.0120	0.0840	0.00361	0.0253
	Arithmetic std. dev., μg/m³	5.41	37.9	4.66	32.6	3.30	23.1	1.75	12.2	0.574	4.02	0.176	1.23	0.0856	0.599	0.0342	0.240	0.0101	0.0707	0.00312	0.0219
	Arithmetic mean, μg/m³	9.23	64.6	7.91	55.3	5.53	38.7	2.85	19.9	0.906	6.34	0.269	1.88	0.129	0.901	0.0507	0.355	0.0147	0.103	0.00445	0.0311
	Benzene emis. rate, tons/year	-	7	-	7	-	7	-	7	-	7	-	7	-	2	-	7	-	7	-	7
	Distance, m	10		20		30		50		100		200		300		500		1000		2000	

C-12

STD.API/PETRO PUBL 4644-ENGL 1997 🖿 0732290 0564662 364 🖿

--- - - -

1

STD.API/PETRO PUBL 4644-ENGL 1997 🔳 0732290 0564663 2TO 🔳

1220 L Street, Northwest Washington, D.C. 20005 202-682-8000 http://www.api.org

RELATED API PUBLICATIONS...

Publ. DR220 Potential BTEX Emissions From the Nations Triethylene Glycol Units in Oil and Natural Gas Facilities, November 1995

Publ. DR110 Estimation of Aromatic Hydrocarbon Emissions from Glycol Dehydration Units Using a Process Simulation Model, August 1993

To order, call API Publications Department (202) 682-8375