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Strategies for Today’s
Environmental Partnership

One of the most significant long-term trends affecting the future vitality of the petroleum industry is the
public's concerns about the environment. Recognizing this trend, APl member companies have developed
a positive, forward-looking strategy called STEP: Strategies for Today’s Environmental Partnership. This
program aims to address public concerns by improving our industry’s environmental, health and safety
performance; documenting performance improvements; and communicating them to the public. The
foundation of STEP is the API Environmental Mission and Guiding Environmental Principles.

APl ENVIRONMENTAL MISSION AND GUIDING ENVIRONMENTAL PRINCIPLES

The members of the American Petroleum Institute are dedicated to continuous efforts to improve the
compatibility of our operations with the environment while economically developing energy resources and
supplying high quality products and services to consumers. The members recognize the importance of
efficiently meeting society’s needs and our responsibility to work with the public, the government, and
others to develop and to use natural resources in an environmentally sound manner while protecting the
health and safety of our employees and the public. To meet these responsibilities, API members pledge to
manage our businesses according to these principles:

< To recognize and to respond to community concerns about our raw materials, products and
operations.

% To operate our plants and facilities, and to handle our raw materiais and products in a manner
that protects the environment, and the safety and health of our employees and the public.

% To make safety, health and environmental considerations a priority in our planning, and our
development of new products and processes.

<+ To advise promptly, appropriate officials, employees, customers and the public of information
on significant industry-related safety, health and environmental hazards, and to recommend
protective measures.

# To counsel customers, transporters and others in the safe use, transportation and disposal of
our raw materials, products and waste materials.

+ To economically develop and produce natural resources and to conserve those resources by
using energy efficiently.

< To extend knowledge by conducting or supporting research on the safety, health and
environmental effects of our raw materials, products, processes and waste materials.

< To commit to reduce overall emission and waste generation.

4 To work with others to resolve problems created by handling and disposal of hazardous
substances from our operations.

% To participate with government and others in creating responsible laws, regulations and
standards to safeguard the community, workplace and environment.

<+ To promote these principles and practices by sharing experiences and offering assistance to
others who produce, handle, use, transport or dispose of similar raw materials, petroleum
products and wastes.
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FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL
NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE,
AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFAC-
TURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR
EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY
RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER
LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS
GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-
FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-
ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN
THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-
ITY FOR INFRINGEMENT OF LETTERS PATENT.
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ABSTRACT

Chemicals released to the vadose zone may present an environmental risk if they
leach into groundwater. The rates of chemical leaching and migration to ground-
water are strongly controlled by the diffuse recharge that occurs over large areas of
the landscape. This report reviews important processes pertaining to diffuse
recharge and presents a review of current physical and chemical methods (applied
to the vadose zone and groundwater) to quantify diffuse recharge. Readily
available estimates of diffuse recharge are compiled and organized according to
major watersheds throughout the country.

The recommended approach to quantify recharge depends upon site-specific
conditions, project budget, time constraints, and the nature of the project. In some
cases, sufficiently accurate estimates of recharge are available in the technical
literature. In other cases, field measurements are required. The methods selected
from among the many available physical and/or chemical techniques must be
appropriate for the site conditions. Physical methods are based on hydraulic or
geophysical data collected in the soil, groundwater, or streamflow. Chemical
methods rely primarily on natural and anthropogenic tracers found in the soil or
groundwater. Mathematical models of soil and groundwater flow are also valuable
récharge quantification tools. For projects with limited budget and time available,
recharge can be determined from methods that use a one-time sampling of data,
such as collecting soil cores, analyzing chemical tracers, or obtaining existing
water-level or streamflow records. Where site-specific recharge must be known

accurately and time is no factor, large soil lysimeters are the best choice.

Regardless of the method to obtain recharge, there is an inherent uncertainty in the
estimate or calculation. Unfortunately, the degree of uncertainty is difficult to predict

a priori and depends in part on the method, conditions such as water content and

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale




API PUBLx4b43 95 EE 0732290 0559290 253 WA

site heterogeneity, as well as the skill of the analyst. When the results from two or
more different recharge analyses reasonably agree, the recharge estimate can be

applied with greater confidence.
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EXECUTIVE SUMMARY

This report reviews available resources and methods for obtaining data on diffuse
natural groundwater recharge for site-specific assessments (e.g., Tier 2 and Tier 3
Risk Based Corrective Action analyses). Diffuse groundwater recharge is important
because it affects the rate at which residual chemicals could be leached from the
soil and migrate to groundwater. Accurate recharge estimates are essential for

quantifying the risk to groundwater presented by residual chemicals in the vadose
zone.

Groundwater contaminant fate and transport models such as the U.S.
Environmental Protection Agency’s Composite Model with Transformation Products
(1995) and American Petroleum Institute’s VADSAT (1995) generate results that are
very sensitive to the input values for infiltration and recharge. These models will
overestimate receptor well concentrations when inappropriately high recharge rate

estimates (e.g., an arbitrary percentage of precipitation) are used as input.

The purpose of the study documented in this report was to determine which, if any,
of the available approaches could provide reliable, cost-effective estimates of
recharge. The specific objectives of the study were to (1) summarize the key
concepts and soil physics principles related to diffuse recharge; (2) describe,
compare, and contrast estimation techniques applicable for assessing petroleum
hydrocarbon or salt-impacted sites; (3) compile site-specific recharge estimates
from sites throughout the country; and (4) identify areas for further research.

A literature search revealed dozens of methods, both physical and chemical, to
quantify recharge in humid and dry climates. For determining site-specific recharge
estimates, techniques that rely on very local measurements are more appropriate.

Such techniques include lysimeters, chemical tracers, the Darcy flux and plane of

ES-1
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zero flux methods, one dimensional soil-water balances and soil-water models, and

soil temperature methods based on near-surface soil temperature gradients.

The most accurate (and often most costly) approach to estimating recharge in any
climate uses soil lysimeters to collect deep percolating soil water that eventually
would reach the water table. In humid climates, reasonably accurate recharge rates
can be obtained from water balance calculations in the vadose zone, provided that
the period of accounting is weekly or more frequently. Vadose zone chemical
tracers may provide more accurate estimates in dry climates for low to moderate

cost.

SUMMARY OF RECHARGE ESTIMATES

Recharge estimates were gathered from the open literature and through requests
for information from U.S. Geological Survey district offices throughout the country.
These data were compiled to (1) identify key studies and sources of information on
recharge estimates throughout the U.S., (2) understand which techniques are being
applied in various hydrogeologic and climatic settings, (3) determine the frequency
with which the various techniques are being applied, and (4) develop a database for

future statistical analysis.

The recharge estimates are tabulated for watersheds throughout the country.
Information for each recharge study area includes climatological data, site
physiography, and general soil characteristics. The recharge estimates are
organized according to major surface drainage basins within geographic regions
(Appendix A, Table A-1) and estimation technique (Appendix A, Table A-2). As
indicated in these tables, the most frequently applied methods to quantify recharge
are the soil-water balance techniques and stream flow analyses. In addition,

examination of the data reveals that within any climatic region individual studies
ES-2
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produce a wide variation in the recharge estimates. This variation may be

attributed to differences in the scales of investigations.

METHODS TO QUANTIFY DIFFUSE NATURAL RECHARGE

Physical methods described in this report include both direct and indirect methods.
The only direct method of measuring recharge is lysimetry, which is costly and
réquires lengthy data collection periods. Indirect methods described in this report
include:

¢ Soil-water balance

Darcy flux

¢ Plane of zero flux

* Soil temperature

* Electromagnetic

e Groundwater basin outflow
*  Water-level fluctuation

» Stream gauging

The soil-water balance method is one of the most widely used indirect estimation
techniques. However, the accuracy of this method depends upon the accuracy of
estimates of its component parameters (runoff, infiltration, evapotranspiration and
storage), which sometimes are poorly known or exhibit significant variability at a
site. The greatest uncertainty lies in estimating evapotranspiration. Data compiled
in this report indicate that recharge estimates using the soil-water balance method
can vary over two orders of magnitude over large areas. However, this method
may be suitable for small sites in humid or temperate regions where parameters
that rely on climatic data are known to have low variability. Several vadose zone
field test methods and equations needed to measure or calculate the component
parameters of the water balance equation are discussed.

ES-3
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The Darcy flux and plane of zero flux methods provide useful estimates when
resources are available to collect a sufficient number of field measurements. These
methods require measurements of vadose zone moisture content and hydraulic
conductivity over the seasonal range of site-specific soil moisture conditions. The
soil temperature, electromagnetic, groundwater basin outflow, water-level
fluctuation, and streamflow methods provide regionally averaged estimates of
diffuse recharge. These methods may be most useful when the regional
hydrogeology (i.e., the location of recharge areas and aquifer boundaries, storage

and outflows, etc.) is well understood.

Chemical methods for estimating diffuse recharge are subdivided into those
requiring measurements in either the vadose or saturated zones. Where project
resources permit, chemical methods may provide better estimates of long-term

recharge because they reflect recharge conditions over long periods of time.

Vadose zone chemical tracer methods track the movement of stable and radioactive
isotopes. Chemical methods described in this report include the chloride mass
balance method and those using tritium, chlorine-36, and stable isotopes as tracers.
Chemical tracer techniques in the saturated zone determine the age of ground-
water, which in tum permits calculation of groundwater travel time. Where recharge
to an aquifer occurs primarily by direct local recharge, the age of the grouridwater is
related to local recharge. Chemical tracers used in aquifers include tritium,

chlorofluorocarbons, krypton-85, carbon-14, and chlorine-36.

Mathematical models (soil-water and groundwater) are best suited to predict
recharge when the physical properties of the soil and groundwater are well
characterized. The water balance models typically require site-specific climatic data
for precipitation, temperature and solar radiation; soil characteristics data including

porosity and moisture retention characteristics; or a limited set of soil characteristics

ES-4

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx4E43 9t BN 0732290 0559300 Te2 WA

parameters, including field capacity, wilting point, saturated moisture content, and
organic matter content.

The soil-water balance model HELP (Schroeder et al., 1994) was reviewed as a
tool for estimating recharge rate. If recharge rates are low and the period of soil-
water balance accounting is too long, then HELP (and other soil-water balance
models) are likely to underestimate recharge because they only roughly
approximate the physics of unsaturated flow. However, at one arid-climate field
site, HELP-generated recharge estimates compared favorably to independent

estimates using the Darcy flux method and the chloride mass balance technique.

CHOOSING AN APPROPRIATE RECHARGE ESTIMATION TECHNIQUE

No universally acceptable methods to compute diffuse recharge can be applied to
-all sites. The method selected will depend on the site geology, soil characteristics,
depth to the water table, vegetative cover, and climatic conditions, along with
‘factors such as time constraints, available budget, and the importance of recharge
to the success of the project. Section 4 of this report provides a guide to the
appropriate selection of recharge estimation techniques based on optimal site

characteristics, cost and relative accuracy.

In most cases, a limited project budget‘ requires use of a less sophisticated
technique. In such cases, one must accept some uncertainty in a site-specific
recharge estimate and must attempt to understand the degree of that uncertainty.
However, no comprehensive uncertainty analysis exists for the techniques
described in this report.

When time and budget are limited, one can refer to estimates contained in reports
by the U.S. Geological Survey or state and local water resource or geological

surveys. Where site-specific measurements are required but resources are limited,

ES-5
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one may consider an approach using a one-time data collection such as a Darcy
flux analysis based on laboratory or field measurements of the deep vadose zone
hydraulic properties or chemical tracer sampling of the vadose zone. If resources

are available, it is desirable to use both a physical and chemical method at the site.

FUTURE RESEARCH
This study revealed several areas in which further research is needed, as outlined
below:

¢ The reliability of some of the key methods to quantify recharge, especially in
dry climates, needs to be improved. One example where considerable
improvement could be achieved is in critically evaluating assumptions in the

widely used chloride mass balance method.

o Methods are needed to rapidly address the nature of spatial variability in
recharge over large areas. In particular, methods for quantifying the
contribution of flow through macropores are needed.

¢ A better understanding of recharge method uncertainty in various
hydrogeologic and climatic settings is needed. Additional comparison studies
of the low-cost, simpler estimation techniques with more rigorous
measurement systems, under a variety of conditions, would provide useful
uncertainty data on recharge estimates used in risk-based corrective action
and other site-modeling efforts.

o A statistical analysis of the database compiled for this study may identify a
correlation between precipitation and recharge for various physiographic

provinces and climatic regions.
ES-6
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Section 1

Introduction
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Section 1
INTRODUCTION

Chemicals released into the vadose zone, from either accidental spills or wastes
managed on the land, may migrate to groundwater, depending upon the nature of
the release, design of the waste management facility, properties of the chemical,
vadose zone characteristics, and leaching potential. Typically, quantitative analyses
are required to assess whether such contaminant releases or leachate pose a
threat to human health and the environment. For example, in promulgating the
1990 Toxicity Characteristic (TC) Rule, the U.S. Environmental Protection Agency
(EPA) used a computer code called EPACML (EPA’s Composite Model for
Landfills) to estimate the potential human exposure to chemicals inappropriately
disposed of in municipal landfills. Such chemical fate and transport analyses are an
integral component of risk assessments required at sites remediated under the
Comprehensive Environmental Response, Compensation and Liability Act
(CERCLA). Similar computations are required in designing land treatment facilities
for petroleum-contaminated soils and in evaluating risk-based alternatives at sites of
fuel releases into the soil.

There are many analytical and numerical methods available to determine the mass
flux of chemicals migrating by liquid-phase advection through the vadose zone into
an aquifer. In virtually all instances, recharge is a key data need that must be
prescribed in these calculations. Unfortunately, because of the difficulty in obtaining
recharge values at a specific site, many analysts simply estimate the recharge rate
based on their professional judgment, or they use model-embedded default
parameters that are generally conservative for their purpose. A probabilistic
approach such as a Monte Carlo analysis is sometimes used in risk assessments to
address uncertainty in parameters. The probability of occurrence of a particular

outcome is developed by making dozens or hundreds of calculations, each with a

1-1
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different set of parameters chosen at random and often without a sound basis for
assessing the reasonableness of the parameters or the combinations of parameters
randomly chosen. Regardless of the computational approach selected, sensitivity
analyses of parameters commonly reveal that the mass flux of contaminants

entering the aquifer is most strongly dependent on the recharge rate.

The objective of this report is to provide analysts a sound technical basis for
selecting recharge values used in mass transport calculations, such as those
required in risk-based corrective action (RBCA) assessments. The scope of the

study is twofold:

s ldentify relevant techniques to quantify areally distributed, diffuse, natural
recharge
¢ Compile existing data on diffuse recharge throughout the United States

The approach to achieve these objectives was based on a search of existing
literature contained in the in-house library of Daniel B. Stephens & Associates, Inc.,
information from prior personal research and publications on recharge, computer
database searches followed by retrieval of selected documents from the University
of New Mexico library, and responses to requests for information from district

offices of the U.S. Geological Survey throughout the country.

Section 2 of this report summarizes the concepts and terminology associated with
the analysis of recharge. The report then presents a review of methods to quantify
recharge in Section 3 and highlights results of previous studies to quantify recharge
within subregions of the United States in Section 4. Also, included in Section 5 is a
brief discussion of considerations for selecting recharge esturation techniques.
Section 6 addresses technical issues for future research. A comprehensive

glossary of terms used in this report is also provided.
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Section 2
RECHARGE CONCEPTS AND TERMINOLOGY

RéCharge is simply the addition of water to an aquifer. Natural recharge to ground-
waiier commonly occurs as diffuse recharge, localized recharge, and recharge from
mountain fronts (Figure 2-1). These different types of groundwater recharge are
distinguished by the source of the water and by the path the water takes to enter
the saturated zones within a groundwater basin. Diffuse recharge is natural |
recharge derived from precipitation that falls on large portions of the landscape and
percolates downward through the vadose zone to the aquifer. Sometimes diffuse
recharge is called deep percolation or recharge by direct precipitation. Diffuse
recharge probably dominates in humid climates and is the topic of this report.
Localized natural recharge occurs mainly where there is prolonged ponding within a
basin, such as along a losing stream channel or a playa. In comparison to diffuse
recharge, local recharge is probably the most important source of natural recharge
in arid and semiarid lands. Mountain front recharge typically involves complex
processes of unsaturated and saturated flow in fractured rocks, as well as infiltration
along channels flowing across alluvial fans. On a large scale, mountain front
recharge through fractured bedrock is primarily a diffuse recharge process, whereas

infiltration from mountain streams is considered a local recharge process.

Diffuse, and to a lesser extent, local recharge are relatively large-scale processes
within a groundwater basin. That is, the aquifer surface area over which the
recharge occurs is usually a significant part of the basin area, perhaps on the order
of one to hundreds of square kilometers. Diffuse and local recharge are also
affected by processes that occur at much smaller scales, such as preferential flow
in macropores, unstable flow, and the effects of spatial variability in media
properties. Every process, whether at the large or small scale, ultimately involves

water movement through the vadose zone. Flow in variably saturated,

241
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Explanation
Coarse alluvium

Fine alluvium
Bedrock

Source: Stephens, 1995 (with permission)
Figure 2-1. Conceptual model of diffuse and localized recharge
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heterogeneous porous and fractured media further involves complex interacting
processes such as flow from fractures into the matrix and vapor phase transport.
To fully understand recharge processes, therefore, an appreciation for both geology
and soil physics is necessary.

SUMMARY OF SOIL PHYSICS PRINCIPLES

Before beginning the discussion of recharge, it is helpful to review some of the
important and relevant principles of soil physics. The review will highlight some of
the common terms and parameters including water content, pressure head, soil-
water characteristic curves, and hydraulic conductivity. Methods of measuring
these parameters are discussed later in the report when we describe the recharge
methods that require these data. We also will discuss the important processes of
infiltration and redistribution which lead to recharge by water migration through the
vadose zone.

Water Content

Water content is most often defined as the volume of water in a bulk volume of soil
or rock. Sometimes, water content is expressed as ratio of the mass of water per
dry mass of soil. In either case, water content is a dimensionless parameter, and is
typically expressed as a percent. However, it is essential to recognize that the
water content on a mass basis is numerically less than that on a volume basis by a
factor that is the ratio of the dry bulk density to the water density. For a typical soil,
the difference could be 50 to 70%. For hydrologic problems relevant to recharge,
the water content is assumed to be the volumetric water content, unless otherwise

indicated.

Hydraulic Head and Pressure Head

The total hydraulic head in the soil is a measure of the potential energy per unit

weight of the soil water. This parameter is important because spatial differences in
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it determine the direction water will migrate. The change in hydraulic head with
direction is called the hydraulic gradient. Hydraulic head includes two additive
components: pressure head and elevation head. All these terms have units of

length, such as centimeters, meters, or feet of water.

Pressure head reflects the energy status over a representative pore volume which
includes primarily the effects of hydraulic pressure, capillary forces and adsorptive
forces. The hydraulic pressure is attributed to saturated conditions which may
develop in the vadose zone or to fluid pressure below the water table. The
hydraulic pressure is neglected in partially saturated zones. Capillary forces occur
in partially saturated media and are caused by interfacial tension between the air
and water held with the soil pores. Adsorptive forces, applicable to unsaturated
media, are caused by the attraction of the polar water molecules for solid surfaces.
Capillary and adsorptive forces are difficult and impractical to separate, but the
former is dominant in wet or sandy soils and the latter is more important in dry or
clayey soils. Capillary and adsorbed forces are neglected if the soil is fully

saturated and the soil is under a positive hydrostatic pressure.

Pressure head is determined with respect to the energy status at the surface of a
pure water reservoir. The pressure head at this reference state is zero. Under
partially saturated conditions as well as in the tension-saturated region of the
capillary fringe above the water table, the pressure head is less than zero. In fact,
in very dry soils pressure head may be as low as negative several tens of meters.
Note that fluid gauge pressure (e.g., in units of Pascals, bars, or psi) divided by the

specific weight of water (consistent units) gives the pressure head in units of length.

The elevation head is the height above an arbitrary datum of the point where
pressure head is measured. The space derivative of the elevation head in the

vertical direction is always negative one (-1), when the vertical coordinate axis is
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positive upward. The gravitational gradient is always present and is independent of
" the water content or the pressure head.

Sometimes pressure head is expressed as a potential energy per unit volume, and
is simply called the soil-water potential or matric potential. Soil-water potential has
units of pressure, such as Pascals, bars, or psi. Because of its pressure units and

negative value relative to atmospheric pressure, soil-water potential is also referred
to as soil suction.

Soil-Water Retention Curve

There is a relationship between the soil-water content and the pressure head which
is called the soil-water retention curve. This important relationship describes the
ability of the soil to absorb and release water. At the water table, the pressure
head is zero and the water content is at its maximum, the porosity. As the soil
dries from the maximum water content, both the water content and pressure head
decrease (Figure 2-2A). The relationship between these two parameters is a
characteristic of a soil. Coarse textured soils such as sand and gravel drain readily
and hold much less water at a given pressure head than fine-textured silt and clay
soils with large surface areas which are reluctant to give up water due to the

stronger adsorptive/capillary forces.

The soil-water retention curve is slightly complicated by hysteresis, in that the curve
describing drying from a fully saturated condition differs from the curve describing
wetting from some low-water-content initial condition. This relationship is shown in
Figure 2-2B. Hysteresis is especially important to consider in modeling periodic
infiltration and exfiltration (evaporation) in uniform-textured soils. The effect of

hysteresis in predictive models is to slow the downward migration of infiltration.
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Figure 2-2. Soil-water retention: Pressure head, v, versus volumetric water content,
0, (A) for different soil textures, (B) showing the effect of hysteresis on a specific soil,
(C) illustrating index parameters, and (D) expressed as specific moisture capacity.
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On the drying curve, the pressure head at which air begins to enter the pores is
called the air-entry value (Figure 2-2C). Field capacity is an imprecisely defined
term which describes the water content remaining in the soil after a few days of
drainage following a thorough irrigation; it has been incorrectly used to describe the
water content at which water flow ceases. Field capacity is so poorly defined that
its use should be avoided if possible in most quantitative analyses. The asymptotic
water content approached as the soil dries is called the residual water content
(Figure 2-2C). On the wetting curve, as the soil approaches saturation, air may
become entrapped, so that the water content at zero pressure head may be less
than the porosity (Figure 2-2B).

In essence, the soil-water retention curve describes the water storage in the vadose
zone. For example, it is easy to see from the curves in Figures 2-2A, 2-2B, and
2-2C that incremental changes in pressure head yield changes in the water content.
The change in water content per unit change in pressure head is called the specific
water capacity, C(¥) (Figure 2-2D). Most numerical models of saturated and
unsaturated flow use specific water capacity in calculations of infiltration and
recharge.

Hydraulic Conductivity

The hydraulic conductivity describes the ease with which water may be permitted to
flow through the soil. When the pores are completely filled with water, the hydraulic
conductivity is at its maximum value, the saturated hydraulic conductivity. As the
soil drains, the largest pores begin to dewater first. During the dewatering process,
the cross-sectional area of water in the pore decreases. Additionally, because the
water in the pores occupies progressively finer pore spaCes, the path of water
transport becomes more tortuous. As a consequence of the diminishing cross-

sectional area and the increasing tortuosity, the hydraulic conductivity decreases as
the soil drains.
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When the soil re-wets, there may be air trapped in the pores that prevents the soil
from reaching full saturation. The satiated hydraulic conductivity, or maximum
hydraulic conductivity achievable in the field, refers to the condition in which the soil
is essentially flooded, but the field-measured hydraulic conductivity may be less
than the saturated hydraulic conductivity. Such conditions are important to

recognize during ponded infiltration or fluctuating water tables, for example.

Figure 2-3A illustrates the relationship between hydraulic conductivity and pressure
head for a sand and for a clay loam. Note that the hydraulic conductivity of the
sand near zero pressure head is much greater than for the clay loam. But as the
pressure head decreases and the soil drains, the hydraulic conductivity of the clay
loam decreases more gradually than that of the sand. In fact, the unsaturated
hydraulic conductivity of the clay loam may exceed that of the sand at low pressure
head; the same apparently counter-intuitive relationship is possible for any coarse

and fine soil.

Figure 2-3B illustrates the dependence of hydraulic conductivity on percent water
saturation. Note here that at all saturations, the hydraulic conductivity of the clay
loam is less than that of sand. For reference, relative hydraulic conductivity (the
ratio [dimensionless] of the unsaturated hydraulic conductivity to the saturated
hydraulic conductivity) is shown in Figures 2-3C and 2-3D in terms of pressure
head and water content, respectively. Most numerical models of saturated and
unsaturated flow require hydraulic conductivity input as shown in Figure 2-3A to

simulate infiltration and recharge.

Bear in mind the extreme variability of the hydraulic conductivity for a particular soil
over a range of water contents likely to occur in the field, from near saturation to air
dry (Figure 2-3). It would not be uncommon for a particular soil depth to exhibit a

million-fold change in hydraulic conductivity as a consequence of normal wetting
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Figure 2-3. Unsaturated hydraulic properties of two soils
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and drying in the field. Below the very dry surface layer, there is virtually always
sufficient moisture for the hydraulic conductivity to exceed zero, even though the
soil may appear to be dry. This concept, and the omnipresent gravitational
gradient, are very important in addressing recharge, especially in areas of low

precipitation.

infiltration, Bedistribution and Recharge

Infiltration is the volume of water that crosses the soil surface to enter the vadose
zone. The infiltration rate is the time rate of change of infiltration per unit cross-
sectional area of the soil. Infiltration rate is controlled by both the soil properties

and the rate of water application to the soil.

If there are ponded conditions on the soil surface, the infiltration rate is greater for a
more permeable soil, that is, for a soil with the greater saturated hydraulic
conductivity. For a particular soil texture, the infiltration rate will be greater for an
initially drier soil than for a wetter one. This is because the pressure head of the
soil is lower in the dry soil, and consequently, the hydraulic gradient across the soil

surface is greater when the initial water content is lower.

Figure 2-4 illustrates a series of infiltration rate curves. Figure 2-4A illustrates that
in many field situations, the infiltration rate, j, is controlled by the rate of water
application, A. That is, the soil may be so permeable (large saturated hydraulic
conductivity, K;) relative to the rainfall rate, R, that all the rainfall penetrates the soil
without ponding. When ponding occurs at time ¢, there is potential for surface
water runoff, depending upon the topography. After ponding occurs (Figure 2-4B,
2-4C), the infiltration rate gradually decreases to the saturated hydraulic conductivity
because the hydraulic gradient between the surface and wetting front decreases as

the wetting front penetrates deeper into the soil.
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Figure 2-4. Infiltration rate (i) dependence on rain intensity, R
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For a given soil texture, increasing the depth of ponding also generally increases
the infiltration rate. However, when the water table is very deep relative to the
depth of ponding, the infiltration rate will approach a constant value that is
independent of the ponding depth; the magnitude of this steady, ponded infiltration
rate for deep water table conditions approaches the saturated, or satiated, hydraulic
conductivity, because as the water table depth increases, the hydraulic head

gradient approaches one.

The water content profile during infiltration is shown in Figure 2-5. The depth where
the water gradient is steepest is called the wetting front. When infiltration ceases at
the soil surface, the upper part of the soil profile will dry because of evaporation or
water drainage to lower parts of the profile (Figure 2-5). Even after infiltration
ceases at the surface, water already in the profile may move deeper. The deep
migration is driven by the hydraulic gradient, that is, by the pressure head gradient
between the wet and dry soil and by the downward, and ever present, gravitational
gradient. Redistribution describes the process of simultaneous wetting and drying
of the soil profile following infiltration (Figure 2-5). When water reaches the water

table during a sustained infiltration event, or during redistribution, recharge occurs.

CONTAMINANT TRANSPORT

Contaminants in the vadose zone soils may be transported by a variety of
mechanisms, including transport of volatile chemicals in the vapor phase, transport
as a non-aqueous phase liquid (e.g., oil phase), transport of chemicals sorbed on
migrating colloids, and transport as a dissolved phase. Our primary interest here is
on chemical transport which occurs as water moves through the vadose zone to
recharge an aquifer. Percolating water in the vadose zone is therefore most

relevant to colloidal and dissolved phase treinsport.
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Little is known about colloidal transport in the vadose zone at present, except that
this mechanism probably operates on highly sorbed particles, such as
radionuclides, to transport the chemicals much farther and more rapidly than would

be expected otherwise.

Chemicals in the vadose zone soils may dissolve in percolating vadose zone water
and leach chemicals to the aquifer. The one-dimensional transport equation for
predicting the concentration of dissolved chemicals in the vadose zone or aquifers

is:

D & - vf = a_C. (Equation 2-1)
ox? ox ot

where C is concentration, D is hydrodynamic dispersion coefficient, v is mean pore

water velocity, tis time and x the space coordinate.

Equation 2-1 is called the advection-dispersion equation. In this simple form, this
equation does not include sorption or decay. However, it does allow for the
hydrodynamic dispersion of chemicals as they mix in the pore fluids. Hydrodynamic
dispersion is a consequence of the combined effects of molecular diffusion, as well
as a mechanical dispersion caused by the complex pore-scale velocity distributions
and tortuous flow paths. Dissolved contaminants are carried through porous media
in a process called advection and at an average rate equivalent to the mean pore-
water velocity. It is therefore no surprise that the most important parameter in the
advection-dispersion equation for risk assessment purposes is the mean pore-water
velocity. The mean pore-watef velocity is usually the parameter that exhibits the

greatest sensitivity in flow and transport models used for risk assessment.
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In the vadose zone, the mean pore-water velocity is calculated as the Darcy

velocity, g, divided by the effective mean water content 6

v=29 (Equation 2-2)

The effective water content may be slightly less than the measured field water
content due to immobile water in pores that do not conduct flow. The Darcy
velocity in the deep vadose zone, just above the water table, is the recharge rate.
Therefore, measurements of recharge rate, which are the subject of this report, are
highly relevant to contaminant transport. Because values for effective water content
are much less than one, contaminant migration rates in the vadose zone are likely

to be at least a few times to perhaps a few tens of times greater than the recharge
rate.

DIFFUSE RECHARGE CONCEPTS

The vadose zone includes the geologic media between the land surface and the top
of the regional water table (Figure 2-6). The process of diffuse natural recharge
begins with infiltration into the vadose zone of moisture originating at the land
surface as rainfall, snowmelt, or overland flow. The rate of water movement
through the vadose zone is dependent upon the intensity and duration of the
associated precipitation event, the hydraulic properties of the vadose zone, such as
hydraulic conductivity and specific moisture capacity, and the spatial heterogeneity
of the vadose zone. Although water moves primarily downward, significant lateral
water movement in the vadose zone may occur due to topographic effects,

heterogeneity, and anisotropy of the porous or fractured media.
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Figure 2-6. Conceptual model of the vadose zone
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The effects of capillarity in fine-grained, dry soils may induce significant lateral
movement of moisture through heterogeneous vadose zone materials. Capillarity
effects are also responsible for creating barriers that substantially impede downward
flow and slow recharge. Such capillary barriers are formed when uniform, coarse
layers underlie fine-textured layers. In this circumstance, water in the fine-textured
material cannot displace air in the pore spaces of the underlying coarse layer until

the fluid pressure above the fine/coarse interface exceeds the water-entry value of
the coarse layer.

Flow through the vadose zone during an infiltration event may occur under both
saturated and unsaturated conditions. Saturated flow is more likely in humid
climates, with moderate- to low-permeability soils and shallow water table
conditions, following a series of storms of high intensity or prolonged duration.
Unsaturated flow is expected to occur in drier climates, where soils are highly
permeable, where storms are infrequent, and where the water table is deep. Rapid
flow through the vadose zone may occur where water is ponded above fractures or
macropores that create continuous high-permeability pathways for very localized
saturated flow. Where this occurs, water and potentially contaminants would drain
rapidly from the surface in preferential flow pathways that may lead directly to the
water table. To be realistic, conceptual and quantitative models of groundwater
recharge should incorporate soil heterogeneities and locations of preferential

pathways that could affect the quantity and distribution of groundwater recharge.

The process of recharge is quite complex in that the infiltrated precipitation that falls
on the earth’s surface and is potentially available for groundwater recharge is
subject to the effects of climate, vegetation, topography, soils, and variations in
vadose zone materials. When infiltration is continuous, then recharge occurs in a
process wherein the vadose zone becomes progressively wetter with depth and

eventually the wetted soil reaches nearly a constant water content throughout. In
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most events, however, infiltration is sufficient to wet only a portion of the vadose
zone. Following such events, during the redistribution stage, the infiltration pulse
continues to move vertically downward in response to gravitational and capillary
forces. At later times and at increasing depths, the water content bulge may be
dampened such that an interval of high or increased water content is no longer
discernible. The bulge of the water content profile during redistribution also
becomes less distinct as the frequency of infiltration events increases. Where the
water content is constant with depth, the rate of flow through this part of the vadose
zone is constant. Although no transient, propagating water pulses are
distinguishable, downward flow can still be significant and can still result in a large

downward soil-water flux.

Recharge occurs when water exits the vadose zone and crosses the water table.
Upon reaching the water table, the recharge may cause the water table to rise.

The amount and rate of water table rise depends primarily upon the specific yield of
the aquifer materials and the quantity and duration of the recharge. However, if
there are sources of groundwater discharge such as pumping or evapotranspiration
by phreatophytes, discharge may exceed recharge and the net result will be a water
table decline (Figure 2-7). If recharge and discharge are equal during a time
period, then there will be no change in the water table elevation. In the absence of
other recharge sources, one must consider that the steady position of the water
table is sustained by a constant source of diffuse recharge through the vadose
zone. Where there is a slope on a water table that maintains a steady position over

time, some recharge must be occurring in order to sustain groundwater outflow.

This report focuses primarily on methods to determine the volumetric flow rate or
specific discharge through the vadose zone that becomes recharge. Specific
- discharge, also called the Darcy velocity, quantifies the magnitude and direction of

groundwater flow through a unit cross-sectional area of aquifer or soil material. It
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Figure 2-7. Water leve! decline in a well pumping at a rate D from an aquifer which
receives within the cone of depression recharge, R.
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is important to note that the recharge rates from the deep vadose zone will almost
always be less than water infiltration rates across the soil surface, in part due to
losses by evapotranspiration. It is also important to recognize that the diffuse

natural recharge rate is not the same as the mean velocity of pore-water migration,

as illustrated in Equation 2-2.

For additional information on the physics of flow through the vadose zone, refer to
the texts by Hillel (1980a, 1980b), and for further broad discussions about recharge

processes from a hydrogeological perspective, refer to the text by Stephens (1995).
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Section 3
METHODS TO QUANTIFY DIFFUSE NATURAL RECHARGE

The various physical and chemical techniques for quantifying diffuse natural
recharge require data collected from the vadose zone, the aquifer, or from gaining
streams. Most of these methods are considered to be indirect methods, in that
recharge is determined by making measurements of, or calculations derived from,
physical or chemical information that is a manifestation of the recharge process.
Such techniques include physically based methods applied to the vadose zone such
as the soil-water balance, the plane of zero flux, and other methods which reflect
soil-water content including soil temperature and electrical conductance. The
groundwater basin-outflow method and the use of streamflow data are aiso
physically based methods to calculate recharge from groundwater flux rates in
aquifers and from stream-aquifer interactions. The only direct physical method for
measuring the recharge flux is by lysimetry, or soil pore-water sampling, which
directly captures percolating water at depth and measures the volume collected
over time. Chemical methods also provide indirect means of calculating recharge
by tracking water movement through both the vadose zone and groundwater
aquifers. The most promising chemical methods involve the use of natural
environmental tracers, solute balances, stable isotopes, and applied tracers.
Numerical models simulating saturated and unsaturated flow can also be used to

indirectly calculate the recharge component of the model’s water balance.

The following sections describe each physical, chemical, and numerical method
currently used to estimate or quantify diffuse recharge. The discussions address
the physical basis for the required measurements or calculations, the interpretation

and application of the data, and the method advantages, disadvantages and
uncertainties.
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PHYSICAL METHODS FOR DETERMINING DIFFUSE RECHARGE

The following paragraphs describe physical methods to quantify diffuse recharge
and provide discussion of the conditions under which the method is best applied,
advantages, disadvantages, and uncertainties. The methods discussed include soil-
water balance, lysimeter measurements, the Darcy flux and plane of zero flux
methods, soil temperature methods, electromagnetic methods, the basin outflow

method, and methods incorporating water-level fluctuations and stream gauging.

Soil-Water Balance

A water balance is an equation of water mass conservation for a particular volume
or region. In hydrology, one can derive a water balance for a surface water body, a
watershed, an aquifer system, or a portion of the vadose zone. These regions are

- clearly linked together, as the output from one becomes the input to another.

The general equation for the soil-water balance is derived by considering the
mechanisms by which water can enter, exit, or be stored in a defined volume of the
vadose zone. For most problems, the inflow across the upper boundary of the
vadose zone is infiltration, while outflow from the upper boundary is evaporation
and transpiration, and outflow from the lower boundary is groundwater recharge.
Net inflow (inflow minus outflow) must equal the change in soil-water stored in the
vadose zone. In the soil-water balance equation, for a discrete time interval, we
add flows that contribute water to the vadose zone, subtract discharges and water
losses, and equate this value to changes in the amount of water stored in the soil
volume. The soil-water balance equation can be presented in terms of the recharge

component as:

R =1-E-T-AS (Equation 3-1)
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where R = deep percolation or recharge (L3T™")
| =infiltration (L°T"")
E = evaporation (L3T™")
T =transpiration (L3T™)

AS = the net change in soil-water storage (L°T")

Usually, evaporation and transpiration are considered together as
evapotranspiration or ET. The maximum ET, called the potential evapotranspiration
(PET), occurs when the surface is fully vegetated and there is no limit to the water
available for the vegetation.

Recharge in Equation 3-1 is typically computed for a horizontal area across which
downward flow occurs. This horizdntal area is problem-dependent, but is usually a
unit cross-sectional area in plan view. The standard approach is to divide both
Sides of the equation by the area, and express the recharge rate and other water

balance components as fluxes or specific discharges having units of LT™".

The analysis of recharge using the water balance method applied to the upper
vadose zone is usually based on the monthly variation in precipitation and the
monthly cailculated evapotranspiration. By the conventional analysis, recharge is
then predicted to occur when mean monthly precipitation exceeds actual
evapotranspiration and there is no net decrease in monthly soil-water storage.
However, Rushton and Ward (1979) concluded for a cool, humid climate that daily
periods of accounting are required; otherwise recharge would be underestimated.
From field observations at sites in England, they noted that for observed recharge
patterns to be represented adequately, they needed to allow recharge during times

when the calculated monthly water balance indicated there was a soil-water deficit.
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In dry climates, where potential evapotranspiration is calculated on a monthly or
annual basis, the potential evapotranspiration nearly always exceeds the mean
annual precipitation, yet it has been well documented that recharge occurs under
these conditions, especially in sandy and poorly vegetated soils (Stephens, 1994).
The poor predictions are often attributable to the period of water balance

accounting.

The importance of the period of water balance accounting is critical in dry climates
where significant recharge occurs very infrequently, sometimes only annually or
every several years. By averaging precipitation and evapotranspiration measured
at discrete times (e.g., daily or monthly average) and specific locations and
integrating averages over a basin or watershed, the water balance method applied
in an area of low precipitation will erroneously predict that the long-term recharge is
negligible. Actually, the recharge process in dry climates is episodic, localized and
tends to occur during wet, cool seasons when precipitation actually exceeds the
evaporative demand for at least short periods of time. Because these recharge
periods may be shorter than the period used in the water balance method, the

water balance method may underestimate recharge.

Additionally, the reliability of recharge estimates calculated as the residual of a soil-
water balance obviously depends on the accuracy with which each of the other
water balance components can be measured. Although a soil-water balance can
be a fairly accurate and practical method when applied in humid or temperate
climates (e.g., Hansen, 1991; Lyford and Cohen, 1988; Terry et al., 1979), it is
unlikely to be successful in arid and semiarid settings where measured precipitation
is nearly always equal to or less than potential evapotranspiration, and the
uncertainties in long-term calculations of both parameters are high. For example,
when precipitation and evapotranspiration values are nearly equal, Gee and Hillel

(1988) estimate that uncertainties in recharge of 200 percent or more can result
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from a mere 5 percent error in precipitation combined with a 10 percent error in
evapotranspiration.

The following subsections briefly describe each of the soil-water balance
components and present some of the methods to obtain them. A brief summary of
evaluations of selected field methods to measure ponded infiltration rate, hydraulic
conductivity, pressure head and water content are summarized in Table 3-1. For
more detailed discussions, the soil physics texts by Hillel (1980a, 1980b) and
Marshall and Holmes (1992) are excellent.

Infiltration. Infiltration is usually quantified in one of three ways: by the residual
from a surface-water balance analysis, by field measurements, or by calculation
based on soil hydraulic properties, such as unsaturated hydraulic conductivity and
hydraulic head gradient. In a surface-water balance, infiltration may be computed
by adding together measurements of precipitation, applied irrigation, and surface
run-on, and subtracting from this sum the surface runoff, interception of water on
plant canopies, direct evaporation, and increases in surface-water storage.
Methods to quantify each of these components of a surface-water balance can be
found in standard engineering hydrology texts (e.g., Linsley et al., 1992) and
ireference books (e.g., Wilson et al., 1995a). The reliability of infiltration values
calculated as the residual of a surface-water balance suffers the same drawbacks
as those associated with the soil-water balance discussed above. It is also
important to recognize that, in addition to vertical flow, lateral inflow and outflow
may occur within the region of the vadose zone where the water balance is to be
computed. These components are usually so small that they are neglected, as was
done in Equation 3-1. However, in some cases lateral water movement is
significant, especially in heterogeneous or anisotropic soils and in areas of

topographic variability.
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The most common field methods used to measure surface infiltration rates in the
vadose zone include infiltrometers and rainfall simulators. Infiltrometers measure
infiltration under ponded conditions (often artificially contrived), while a rainfall
simulator is useful to determine surface infiltration under non-ponded conditions. A
review of infiltrometer test methods is provided in the ASTM Standard Guide D
5126-90 (ASTM, 1995). Please note that infiltrometers do not explicitly measure
saturated hydraulic conductivity unless the hydraulic head gradient is also
determined or can be reasonably estimated to be unity (one) within the infiltrometer

sample.

One type of infiltrometer, called a single-ring infiltrometer, is simply a metal cylinder
pushed 5 to 10 cm into the soil. Alternatively, infiltrometers can be constructed as
infiltration basins, wherein water is ponded within a rectangular area bounded by
low berms constructed by compacting native soil or a soil-bentonite mixture. Water
is ponded in the infiltrometer, and the steady volumetric rate of water added to

maintain a constant head is measured.

Although infiltrometers can be made in many sizes, most researchers recommend
using a cylinder large enough to minimize or avoid the effects of laterally diverging
flow at the base of the cylinder. Bouwer (1995) suggests using a fairly large
cylinder of 2 m or more in diameter, or a bermed, rectangular, infiltration basin of at
least 2x2 m for infiltration tests. Large infiltrometers yield reasonably accurate

estimates for surface infiltration rates under the imposed hydraulic head.

Infiltrometers are simple and cost-effective to construct and operate, and are most
suitable for materials with field saturated hydraulic conductivities within the 1072 to
107 cm/s range. Tests can typically be completed within a few days to within an

hour, depending on the saoil.
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The lower limit of the range of permeabilities suitable for infiltrometer testing is
influenced by several factors. For low-permeability materials (e.g., silt- and clay-rich
soils) where the flow rate of water into the soil is slow and the test duration long,
evaporation of water from the infiltrometer can exceed the infiltration rate. In this
case, the open top of the infiltrometer can be covered or otherwise sealed to
minimize evaporation. This is the concept behind the ASTM sealed double ring
infiltrometer (ASTM D 3385-88). In clay-rich soils subject to swelling, the volume of
water taken up by swelling clays can be a significant portion of the total volume of
water in the infiltrometer. This can lead to conservatively high estimates for
infiltration rate. Some investigators (Chen and Yamamoto, 1986) accounted for the
effects of swelling by measuring the increase in thickness of the clay and applying a
correction factor during data reduction.

Conversely, where dispersed clay particles are disturbed and during filling of the
infiltrometer, the dislodged particles can collect within the pore spaces in the upper
surface of the soil and create a low-permeability crust. This effect can be
minimized by installing splash guards within the infiltrometer or by covering the soil
surface with coarse sand prior to infiltration. Furthermore, since the swelling and
dispersion of clays is very sensitive to the chemistry of the infiltrating water, it is
important to determine the electrolyte concentration and the sodium adsorption ratio

of the infiltrating water (see Dane and Klute, 1977, for further discussion).

A variation of a large-scale infiltrometer test can be achieved by using a rainfall
simulator, which emulates precipitation as rainfall. Rainfall simulators can quantify
infiltration over areas of from 1 to 10 m? and can provide highly accurate results
under a wide range of typical field conditions. Their primary advantage is that they
can be used to simulate actual precipitation rates and duration. Many workers have
used this approach to simulate controlled duration and intensity storms (e.g.,
Zegelin and White, 1982).
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Infiltration can also be calculated from hydraulic properties of the soil using
mathematical expressions that describe the infiltration process. The type of
equation chosen depends upon the nature of the process, such as transient or
steady infiltration and ponded or non-ponded infiltration. Perhaps the most well
known mathematical model for infiltration was developed by Philip (1957). Philip’s
equation predicts infiltration from unsaturated soil properties and the field water
content for the case in which a constant water content is maintained at the soil

surface. A simpler expression to calculate the infiltration rate is Darcy’s equation:

q = -K(e)Vh (Equation 3-2)

Here, the infiltration rate, designated as g (LT™'), is calculated from field
measurements of the hydraulic gradient, Vh (LL™"), near the soil surface and the
hydraulic conductivity, K (LT™"), at the field water content, 8, behind the wetting
front. The following discussion summarizes some of the methods for determining

the parameters in Equation 3-2.

The saturated and unsaturated hydraulic conductivity of vadose zone materials can
be measured either by field methods or by laboratory methods applied to soil core

samples:

* Field methods: Measurements of saturated hydraulic conductivity can be
made using air-entry permeameters (AEPs) and borehole permeameters
(BHPs). Unsaturated hydraulic conductivity can be determined by the
instantaneous profile or intemal drainage method and tension infiltrometers
and disc permeameters. As described in a later section, the hydraulic
gradient is computed from in situ measurements of pressure head using
tensiometers (soil-water capillary tension) and psychrometers (soil relative
humidity).

3-10
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» Laboratory methods: Saturated hydraulic conductivity can be determined
using constant-head (ASTM D 2434-68) and falling-head permeameters.
Unsaturated hydraulic conductivity relationships can be determined directly
using several laboratory methods, as summarized by Stephens (1993).
Hydraulic conductivity can also be calculated from laboratory measurements
of the moisture retention characteristic curves.

The field methods for determining hydraulic conductivity and the hydraulic gradient
are discussed in the following paragraphs; further discussion regarding laboratory

methods is included in a later segment of this section which describes recharge by
the Darcy flux method.

Field Methods for Measuring Saturated Hydraulic Conductivity. The test methods

summarized herein determine field-saturated, or satiated, hydraulic conductivity
(K;s). This value is less than saturated hydraulic conductivity (K;), owing to
entrapped air that commonly occurs during ponded infiltration. Entrapped air that
develops in a field permeameter reduces the area through which water flow occurs
and accordingly reduces the hydraulic conductivity measured in the field by as
much as a factor of two or more. The field values may be adjusted for entrapped
air by empirical methods or the soil tested can be flooded with carbon dioxide gas
to minimize entrapped air. In many cases, however, the field-saturated hydraulic

conductivity is preferred in recharge calculations.

Air-entry permeameter. As indicated by Bouwer (1978), the AEP is the simplest

and quickest technique for measuring saturated hydraulic conductivity in the
vadose zone. This method uses measured values for infiltration rate under an
imposed hydraulic gradient and air-entry pressure to determine saturated
hydraulic conductivity.

The device consists of a metal cylinder with a sealed top about 30 cm in

diameter that is connected to a graduated, overhead water supply reservoir and

3-11
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a vacuum gauge (Figure 3-1). The cylinder is driven 15 to 25 cm into the soil
and both cylinder and reservoir are filled with water. The testing is conducted in
two stages: infiltration, and drainage. During the first stage of testing, water is
allowed to infiltrate into the surface materials under positive head, and the rate
of decline in the reservoir water level is used to measure infiltration rate. At the
start of the second stage, the water supply reservoir valve is closed and the
infiltrated water is allowed to drain under tension. The tension within the
permeameter above the soil surface increases as drainage occurs. Tension

increases until the air-entry pressure of the soil is reached.

The solution equation (Figure 3-1) is based on a formulation of the Darcy
equation, wherein half the air-entry pressure head is assumed to be equivalent
to the pressure head along the wetting front, ;. The pressure head along the
wetting front, the depth of the wetting front, and the height of the water level in
the reservoir provide estimates for the hydraulic gradient, and the rate of fall of
water in the reservoir during the first stage are used to determine field-saturated

hydraulic conductivity.

The AEP method provides a good measure of vertical field-saturated hydraulic
conductivity typically in less than 4 hours with moderate costs. When applied at
the surface, the AEP provides results for the upper 2 feet or so of vadose zone
material. However, the method can also measure the hydraulic conductivity of
deeper layers by placing the device in pits or trenches excavated to depths of
up to about 8 to 10 feet. The method can be applied to a wide range of soil
types (107 < K < 10~! cm/s) including sand, silt and clay. Although AEP tests
have been successfully completed in lithified rock, they are most commonly
used for testing unconsolidated materials. AEP tests are generally not suitable
for soils with roots, worm burrows, or macropores, nor are they appropriate for

gravelly soils where emplacement of the ring is difficult.
3-12
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AEPs provide an expedient means of accurately measuring the vertical, field-
saturated hydraulic conductivity of near-surface materials. The AEP method is
the only commonly used field method that measures the hydraulic gradient, and
hence, the actual saturated hydraulic conductivity in a vertical orientation.
Several assumptions are included within the use of AEPs (ASTM D5126-90):
(1) the movement of infiltrating water is essentially one-dimensional downward,
constrained by the permeameter ring, (2) soil gas within the pore spaces does
not offer any impedance to the downward movement of water, (3) the wetting
front is distinct and easily identified, (4) dispersion of clays and subsequent
clogging of the surface layer of finer soils is insignificant, and (5) the soil is non-
swelling, or the combined effects of swelling and dispersion can be minimized
(e.g., by tightly packing coarse sand within the permeameter ring above the soil
surface). Thorough reviews of the application of an AEP can be found in
Bouwer (1995) and in the ASTM Standard Guide D 5126-90.

Borehole permeameter. A second method of measuring field-saturated hydraulic

conductivity in the vadose zone is with a BHP. The test is conducted within the
lower section of an open or screened borehole. Water is allowed to flow into the
borehole, and the flow rate is regulated and monitored so that the water level in
the borehole is maintained at a constant, known depth above the bottom of the
hole. Field-saturated hydraulic conductivity is determined from the steady-state
rate of inflow of water into the borehole, the borehole g‘eometry, and the depth
of ponding within the borehole.

Several solutions are available for different conditions and applications. Less
rigorous solutions (e.g., Glover, 1953; U.S. Bureau of Reclamation, 1978) ignore
capillary effects and are best suited for moist or coarse-grained materials where
capillary effects are minimal. The solutions which consider unsaturated flow
away from the borehole (Stephens et al., 1987; Philip, 1985) are thought to be

3-14
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most accurate and provide a good measure of K, in relatively dry or fine-grained
materials with significant capillary effects. Other solutions for BHP tests which
require more than one test within each borehole have recently been developed
(Reynolds and Elrick, 1985). These tests also consider unsaturated flow away
from the borehole, and can also provide estimates for matric flux potential and
sorptivity. For each BHP test, a constant infiltration rate can be reached in an
hour or less for sandy materials and in several hours (up to 36 to 40 hours) in

finer-textured materials for a low to moderate cost.

The method is suitable for a wide range of fine to coarse materials within the
107 < K < 107" cm/s range. BHP tests are the only currently available tests
which can measure K, at depth in the vadose zone and can be performed at

any depth or at multiple depths as the borehole is drilled to obtain a profile of
hydraulic conductivity.

Borehole permeameters provide an accurate means to measure the saturated
hydraulic conductivity of materials at virtually any depth within the vadose zone.
The more rigorous BHP tests which incorporate capillarity provide the most
accurate results. Unlike the AEP, because the flow of water from the
permeameter is not constrained, BHP tests measure an effective hydraulic
conductivity which includes horizontal as well as vertical components. A good
review of the BHP method is provided in ASTM Standard Guide D 5126-90.

Field Methods for Measuring Unsaturated Hydraulic Conductivity. The two most

frequently used test methods for measuring unsaturated hydraulic conductivity in
the field are the tension infiltrometer and the instantaneous profile test.

Tension infiltrometer/disc permeameter. The tension infiltrometer, and the very

similar disc permeameter (Figure 3-2), have recently been developed by Perroux
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and White (1988) and Ankeny et al. (1988; 1989) as methods to rapidly
determine saturated and unsaturated hydraulic conductivity and various
unsaturated hydraulic parameters. Although disc permeameters and tension

- infiltrometers differ somewhat in the approach to compute conductivity, both

infiltrometers are similar in design and operation. Both incorporate a Mariotte

~ siphon head control device and a disc-shaped membrane through which water is
allowed to infiltrate under tension into the underlying soil. Although they both
may be used to measure saturated hydraulic conductivity, their primary
application is to determine unsaturated hydraulic conductivity at low water
tensions. However, their ability to operate under both positive and negative
heads allows tension infiltrometers and disc permeameters to be used for
determination of the relative contribution of macropores to the overall saturated
hydraulic conductivity. This is an important feature of the tension infiltrometer

and disc permeameter which greatly extends their application to include soils
with macropores.

The standard solution for unsaturated hydraulic conductivity by the disc
permeameter method is based on the Wooding (1968) solution for three-
dimensional flow from a shallow circular pond or disc. This solution requires
measuring transient infiltration rate. In the analysis, another unsaturated soil
property, the sorptivity, is also obtained. This solution requires that the soils are
initially dry; consequently, the method is not applicable for soils that are initially
at or near saturation.

The solution for tension infiltrometers (Ankeny, et al., 1988) is also based on

the Wooding equation, but uses the simultaneous solution of four equations for
four unknowns in order to determine the hydraulic conductivity. Two of the four
unknowns are the hydraulic conductivities at two different tensions (the desired

values). The other two unknowns are the values for another unsaturated soil
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property, matric flux potential, at the two tensions. This solution, therefore,
requires that two tests be conducted at the same location, each at a different

tension.

Tension infiltrometers and disc permeameters provide a very rapid, reasonably
accurate way to measure saturated hydraulic conductivity and several
unsaturated parameters under many common field conditions. They are most
effective for measuring materials having saturated hydraulic conductivities in the
107% to 1072 cm/s range. However, tension infiltrometers usually are not
practical for measuring unsaturated conductivities that are much less than one
or two orders of magnitude less than the saturated hydraulic conductivity. The
equipment is extremely portable, and the testing procedures are straightforward.
Tension infiltrometer and disc permeameter tests measure an effective hydraulic
conductivity which includes horizontal as well as vertical components. In
addition to saturated and unsaturated hydraulic conductivity, tension
infitrometers and disc permeameters also measure unsaturated flow
parameters, including sorptivity, matric flux potential, and pore geometric
parameters. White et al. (1992) provide an overview of the disc permeameter

and tension infiltrometer methods.

Instantaneous Profile Test. The instantaneous profile (IP) test was first

proposed by Watson (1966) as a field method for determining the unsaturated
hydraulic conductivity. The method is based on determining the rate of drainage
and hydraulic gradient in the soil profile following a thorough wetting under
ponded conditions. The wetting is usually accomplished by berming an area
several meters in diameter. After infiltration, the surface is covered with
impermeable material to prevent evaporation. Hydraulic conductivity is

calculated from:
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f o"(ae/a t) dz

Eﬁ
dz

K(®) (Equation 3-3)

where h is hydraulic head (L), z is vertical space coordinate, D is depth, 6 is
water content, and tis time. The integral represents the rate of internal
drainage and has units of LT

‘The drainage rate is calculated from in situ measurements over time of the
water content profile. Water content is readily measured in situ by the neutron
moderation method. One or more neutron probe access tubes are installed
within the bermed area to a depth of a few meters or so. Two-inch-diameter
aluminum is the preferred material for neutron probe access tubes, but plastic
and steel casing are sometimes used. Neutron logging, a widely accepted
method for monitoring soil moisture content in situ, employs a 10- to
100-millicurie americium-beryllium neutron source and a detector within a
cylindrical probe that is moved within the access tube. Hydrogen atoms within
the water molecules in the soil water slow, or "thermalize," the neutrons. The
number of thermalized neutrons are then detected by the probe. The number of
thermalized neutrons is compared with a standard count and the ratio is used to

determine in situ moisture content.

To calculate hydraulic conductivity at field water content, K(®), the hydraulic
gradient, dh/dz, must also be quantified by in situ measurement or by
estimation. Measurements of the hydraulic gradient, using a nest of
tensiometers for example, are described separately in a subsequent section. In
lieu of measurements, however, it is sometimes reasonable to assume that the
hydraulic gradient is simply unity, inasmuch as gravity is the dominant
contributor to the gradient in this case.
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IP tests produce accurate results for vertically oriented unsaturated hydraulic
conductivity of near-surface soils. Tests can be conducted in most materials,
including sand, silt, and clays. However, the time required for low-conductivity
materials can often exceed several months. Because of the relatively large size
of the test plots, the results of IP tests represent a scale much larger than any
of the other test methods. The larger scale is important for most investigations
where large-scale unsaturated hydraulic conductivity data are required.
Inasmuch as the draining soil becomes more unsaturated with time, the
minimum unsaturated hydraulic conductivity quantified will depend on the length
of the test. Typically, tests are terminated before achieving the conductivity at

the in situ or field water content, because of the long time for complete drainage.

Calculating Unsaturated Hydraulic Conductivity. Unsaturated hydraulic conductivity

may also be calculated from the moisture retention curves. One method, developed
by Brooks and Corey (1964), is a graphical procedure that operates on moisture
content-pressure head, 6-¥, data to obtain two parameters: the pore-size
distribution index, A, and the critical pressure or bubbling pressure head, ¥,. The

Brooks-Corey (1964) soil water retention curve is described by:
;" -
0=(n-8,) [&J +8, (Equation 3-4)
A4

Once these two parameters, A and ¥,, and saturated hydraulic conductivity are
known, the unsaturated hydraulic conductivity is calculated from:
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Kiy) = K, (%)2 -3 (Equation 3-5)

A more popular method to calculate unsaturated hydraulic conductivity is based on
a statistical model of the porous medium which is characterized by the soil-water
retention curve. This is a computer-based technique which fits a two- or three-
parameter equation to measured water retention data (van Genuchten et al., 1991).
These fitting parameters (o,N,m) and measured saturated hydraulic conductivity are

applied in the following equation to compute unsaturated hydraulic conductivity.

K(y) = K, (m[ [11 +((a‘|;),::;52 2 (Equation 3-6)
+{ony

where m = 1—1

n

The calculated unsaturated hydraulic conductivity methods are regarded as good
alternatives to the more tedious field or laboratory measurement techniques. in
some cases, there is considerable uncertainty in the predictions, especially in the
dry range. Improved accuracy is obtained if one or more measurements of
unsaturated hydraulic conductivity are used as matching factors. Stephens and
Rehfeldt (1985) found that the calculation technique by van Genuchten compared
very favorably with other field and laboratory methods. The computer program
SOIL (EL-Kadi, 1985) incorporates the van Genuchten and Brooks-Corey methods

for estimating unsaturated hydraulic conductivity from moisture retention data.

In the laboratory, the soil-water retention curve is determined on core samples

using a hanging water column apparatus and pressure plate apparati (see, e.g.,

3-21

Copyright American Petroleum Institute
Provided by IHS under license with API

No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx4EY43 9b W 0732290 0559348 9TT WM

Klute, 1986). In the hanging column, the core sample is placed on the porous
ceramic plate of the Biichner funnel and saturated. The Blichner funnel is
connected to a flexible water-filled tube and burette with a stopcock. With the
stopcock closed, the burette is lowered, so that the core is under a pressure head
equal to the distance between the center of the core and the water level in the
burette. The stopcock is opened, and water flows into the burette until equilibrium
is reached. The amount of flow is measured, and the distance between the center
of the core and new water level in the burette is recorded. The water content of the
core at the applied pressure head represents one point on the water retention

curve. The process is repeated stepwise to obtain the full curve.

Pressure plate apparati consist of a rigid vessel fitted with a porous plate on the
base. Soil core samples are placed on the plate, and with the vessel lid closed,
pressure is applied. Water flows out of the sample until the pressure head of the
soil is in equilibrium with the applied pressure. The water content of the core at the
applied pressure head becomes one point on the soil-water retention curve. The
process is repeated stepwise over increasing pressures to characterize the entire

curve.

Several empirical techniques are available for estimating the water retention
characteristic curves based on particle-size distribution and other easily obtained
data such as bulk density and percentage of organic matter present. These
techniques include relationships developed by Rawls and Brakensiek (1985),
Haverkamp and Parlange (1986), and others compiled by van Genuchten et al.
(1992). Each of these methods is typically suitable for a different range of soil
types. However, the method of Rawls and Brakensiek (1985) is useful for a wide
range of soils, where sand fractions range from 5% to 70% and clay fractions range

from 5% to 60%. The Rawls and Brakensiek method uses regression equations to
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solve for the Brooks-Corey (1964), soil-water retention parameters (y,,, A, 6 )asa

function of percent sand, percent clay, and soil porosity:

v, = exp[5.340 + 0.185C - 2.484n - 0.002C*? - 0.044Sn
- 0.617Cn + 0.001582n %2 - 0.009C2n* - 0.00001S%C (Equation 3-7)
+ 0.009C 2S - 0.0007S %n + 0.000005C 2S - 0.500n°C]

A = exp[-0.784 + 0.018S ~ 1.062n - 0.0000552 - 0.003C 2
+1.111n? - 0.031Sn + 0.0003S%n? - 0.006C °n? (Equation 3-8)
— 0.000002S %C + 0.008C ?n - 0.007n%C]

8, = -0.018 + 0.0009S + 0.005C + 0.029n — 0.0002C? - 0.001Sn
- 0.0002C%n2 + 0.0003C *n - 0.002n%C (Equation 3-9)

where C = Percent clay (5<C<60)
S = Percent sand (5<S<70)
n = Porosity (volume fraction)
A = Pore-size index
y,, = Bubbling pressure (cm)

8, = Residual water content (volume fraction)

By estimating these parameters from more readily obtained particle size curves,
one can determine both the soil-water retention curve and the unsaturated hydraulic
conductivity.

In general, most of the estimation techniques produce reasonable, order-of-
magnitude results, which are useful for many purposes. However, because of the
sensitivity of Darcy-based analyses to the unsaturated flow parameters, all empirical

estimation techniques should be used with caution.
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Kool and Parker (1988) developed a hybrid field method to estimate the moisture
retention characteristics and unsaturated hydraulic conductivity relationship. Their
method uses moisture content and pressure head data obtained by neutron logging
and tensiometers during a field test. The field data are analyzed using a non-linear
least squares inverse algorithm which incorporates the van Genuchten model. This
method appears to provide good results and extends the van Genuchten model to

include hysteresis.

Determining Hydraulic Gradient. The vertical hydraulic gradient, (dh/dz in

Equation 3-3 and Vh in Equation 3-2) determines the vertical driving force under
which water is moving, in both magnitude and direction. To determine hydraulic
gradient requires measurement of the soil pressure head profile. Pressure head is

measured in situ at different depths using tensiometers or psychrometers.

The tensiometer is the most widely used instrument for measuring pressure head.
The tensiometer consists of a sealed tube filled with water, the lower end of which
is attached to a porous cup. A pressure gage is attached to the upper end. The
porous cup is kept saturated and must remain in hydraulic contact between soil
water and water in the tensiometer. The principle is that water flows out of the
porous cup (usually ceramic) in response to soil moisture conditions until the
vacuum that builds up in the tensiometer equals the soil-water pressure head.
Because the pressure head data are used for measuring hydraulic gradient, it is
important to determine the pressure head with sufficient precision and sensitivity to
allow a reasonable estimate of gradient. For increased accuracy, it is best to use a
mercury manometer or a pressure transducer, as opposed to a vacuum gauge, to
monitor the vacuum in the tensiometer. Tensiometers are useful to measure
pressure head to as low as about -800 cm H,0O, and they also measure pressure
head under fully saturated conditions. Tensiometers fail in freezing conditions,

although some success may be achieved if antifreeze is used to fill the tensiometer.
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Good reviews of this method are found in the ASTM Standard Guide D 3404-91, in
Klute (1986), and in Yeh and Guzman (1995).

Psychrometers are most frequently used to measure pressure head in dry, thick
vadose zone materials such as those found in the arid and semiarid west, since
their range of operation extends from about ~1000 to -70,000 cm H,0.
Psychrometers function by measuring the water vapor potential (relative humidity) in
the subsurface atmosphere. Assuming the water vapor is in equilibrium with the
pore liquid, the psychrometer provides a means for indirectly estimating the soil
water matric potential. Because vapor pressure is a function of ambient
temperature, the water potential measured is extremely sensitive to temperature
and care must be taken to minimize air currents and temperature fluctuations.
Good reviews of the theory and application of psychrometers are provided in
Rasmussen and Rhodes (1995) and Kiute (1986).

Determining Evaporation and Transpiration. Evaporation refers to the water lost

from the vadose zone by vapor phase transport from the soil directly to the
atmosphere. Transpiration is the water depleted from the vadose zone by plant
root uptake. For most practical problems, it is both difficult and unnecessary to
separate these two processes, so the two are combined and called
evapotranspiration. Normally, the single largest outflow component from the vadose
zone occurs through evapotranspiration. Research on evapotranspiration
‘measurement is extensive, beginning over 400 years ago (Sosebee, 1976), and
;development of new quantification methods continues today. There are two
i;differen’r approaches to determine evapotranspiration: by measurement of changes
in soil-water content and by estimation of climatic or meteorological parameters that
correlate to evapotranspiration.
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Lysimeters provide the most accurate method to directly measure changes in soil-
water content due to water losses by evapotranspiration, and in fact, most
evapotranspiration estimation methods have been verified by comparing the
predictions to lysimeter data. Unfortunately, the lysimeters used for
evapotranspiration studies are cumbersome, expensive to construct, and require
rather long periods of data collection. Natural, non-irrigated lysimeters yield
dependable values for actual evapotranspiration rates only when monitored over
Iéng periods between major rains, for example, seasonally or annually (Van Bavel,
11961). The accuracy of llysimeters is achieved only when several installation

requirements are met. These are:

o The lysimeter exposure is representative of surrounding field conditions.

o The soil profile in the lysimeter has a moisture content, moisture tension,
thermal conditions and root distribution representative of undisturbed
conditions.

¢ The moisture stored in the lysimeter soil can be accurately measured.

There are in general three types of lysimeters used in evapotranspiration
measurements: weighing, non-weighing and floating. All three types share the
same concept. A small monolith of soil with vegetation is placed in a container and
is returned to its original position in the landscape. Instrumentation is emplaced to
allow measurements of precipitation, soil-water storage, and deep drainage. From
these components one can compute evapotranspiration using the water balance

equation (Equation 3-1).

The following procedures for the three types of lysimeters are used. In a weighing
lysimeter, the lysimeter is placed on a scale (Figure 3-3) having a capacity sufficient
to determine the mass of a soil monolith with a diameter of one to a several meters

and a depth of about one meter. Large weighing lysimeters are expensive to build,
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Figure 3-3. Cross-sectional view of weighing lysimeter.
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difficult to move, and must be weighed in situ, but are considered the only accurate,
practicable method of obtaining actual evapotranspiration rates, particularly in humid
climates (Van Bavel, 1961). Precision weighing lysimeters can provide
measurements of evapotranspiration that are reliable to within less than a millimeter
of water. Bare soil evaporation can be determined using micro-lysimeters, a
technique using short soil core samples that are easily removed from the soil for
weighing over periods of 1 to 2 days (Boast and Robertson, 1982). The weighing
micro-lysimeter technique is labor-intensive and time consuming, and its
applicability to longer periods of time and varied soil conditions has not been

demonstrated.

In a non-weighing lysimeter, evapotranspiration from the soil monolith is determined
by measuring the rate of water supply to the monolith container that is necessary to
maintain a constant depth to water in the base of the container. However, this
procedure yields representative results only when duplicating shallow water table

conditions.

In a floating lysimeter, the soil monolith is placed on a liquid-filled pillow so that
watef gains and losses can be obtained by measuring fluid pressure in the piliow
through a manometer tube. This technique offers the same Iével of accuracy as
the weighing lysimeter, so long as the installation requirements described in the
previous paragraph are met and the sensitivity of the weighing apparatus is

sufficient.

The approach of estimating evapotranspiration based on climatic measurements
offers a sound alternative to lysimetric methods. Rosenberg et al. (1983) present
an excellent detailed discussion of evapotranspiration, including micrometeorological
methods to estimate this component of the soil-water balance. Micrometeorology

entails measuring climatic variables at a given field location. These climatic
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variables include incoming or net radiation, air temperature, relative humidity, and
wind speed above a bare soil surface, or above or within a crop or vegetated
surface. These data are used to provide estimates of potential evapotranspiration.
Among the climatological methods, some are based on air temperature (e.g.,
Thornthwaite, 1948; Blaney and Criddle, 1950), and others are derived from solar
radiation measurements (e.g., Jensen and Haise, 1963) or incorporate both energy
supply data and turbulent transfer of water vapor away from the surface (e.g.,
Penman, 1948). When the actual evapotranspiration rate is not limited by the
amount of soil moisture present, the rate is primarily dependent upon such
meteorological factors.

Micrometeorological measurements have been used to estimate actual
evapotranspiration to within about 10 percent of actual values (Gee and Hillel,
1988). There are two primary advantages that micrometeorology offers over
lysimetry:

¢ The climatic variables measured in micrometeorology apply over a wider
scale than the spot sampling techniques employed with lysimeters.

¢ Where average climatological data are available, micrometeorological
techniques can be used for prediction purposes.

Methods for taking micrometeorological measurements above a vegetated surface
to determine actual evapotranspiration have been developed over the past 50 years
or so. Two such methods are the Bowen ratio method (e.g., Tanner, 1960) and the
eddy-correlation method (Swinbank, 1951).

The Bowen ratio method is based upon a simplified energy-budget equation (e.g.,
Marshall and Holmes, 1992; Hanks and Ashcroft, 1980), which accounts for energy

inputs and losses at the land surface. Part of the net radiation received at the land
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surface is transformed into heat which warms the soil, plants, and atmosphere.
Most importantly, the major portion of incident radiation is absorbed as latent heat
during evaporation and transpiration. The energy-budget equation is thus

represented by:

R,-G-H-XE =0 (Equation 3-10)

where R, = the net radiation at the surface (watts/m ?)

G = the rate at which heat is stored in the soil, water and vegetation

(watts/m 2)

H = the sensible-heat flux which heats the air above the land surface
(watts/m?)

A = the latent heat of vaporization (joules/g)

E = the evapotranspiration rate (g/s-m?)

The energy-budget equation can be rearranged to:

AE = (R,-G)/(1+PB) (Equation 3-11)

where B is the Bowen ratio, H/AE, or the ratio of sensible heat to latent heat.

Further, it can be shown that the Bowen ratio may be determined by:

B = YT, -Ty) /(e - &) (Equation 3-12)

where 7y is the psychometric constant, e is the vapor pressure in air, Tis air

temperature, and the subscripts mean that the vapor pressure and temperature are
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measured at the same two elevations (Montieth and Unsworth, 1990). Therefore,
by combining Equations 3-11 and 3-12, the evapotranspiration rate can be
determined.

The data required include R, G, Tand e. A, can be conveniently measured with a
riet radiometer, and G can be obtained by installing a soil heat-flux plate just below
the soil surface. Bowen-Ratio weather stations, which measure these parameters,
are commercially available (Campbell Scientific, Logan, Utah). Measurements of
temperature and vapor pressure are typically obtained at 1 m and 3 m above the
surface, and the psychrometric constant, v, which is equal to the specific heat
capacity of air divided by the latent heat of vaporization, can be obtained from
reference book constants. Vapor pressure and temperature measurements for
calculating the Bowen ratio are usually obtained using weighted averages from
periods of one-half to two hours (Montieth and Unsworth, 1990) over a 24-hour
interval.

Application of the energy budget/Bowen ratio method is not successful for periods
of less than 24 hours because the sensible heat flux cannot be measured with
sufficient accuracy. The method is satisfactory for periods greater than or equal to
24 hours (Marshall and Holmes, 1992), and works best when applied in humid
environments (Hanks and Ashcroft, 1980). Because the value for j is less reliable
than values for R, and G, some uncertainty is introduced when B is greater than

0.1, as typically occurs in arid environments.

The eddy correlation method, another micrometeorological technique, is based on

- the principle that water vapor flux across the land surface can be measured by
correlating the vertical variations of wind speed, w, with vapor density, g, (Tanner et
al., 1985):
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E = AW X)) (Equation 3-13)

where the overbars represent time averages and the primes represent
instantaneous deviations about the time averages. The data collection
requirements include an anemometer and hygrometer which are connected to a

data logger.

The eddy correlation method can also provide measurements of sensible-heat flux,
H-:

H=C,p, WxT) (Equation 3-14)

where C, is the specific heat and p,, is the density of air. Temperature fluctuations
can be measured with a thermocouple connected to a data logger. The so-called
eddy correlation-energy budget method (e.g., Czarnecki, 1990) is used to determine
tHe actual evaporative flux when field instrumentation accounts for net radiation and
heat conduction into the ground (as in the Bowen ratio method), and when sensible-
heat-flux, H, is determined by the eddy correlation technique.

in an example of the application of the eddy correlation method, Tanner et al.
(1985) placed the micrometeorological instruments 1.1 meters above a crop canopy
to record data every 10 seconds on a data logger for computation of half-hour
average evaporative and sensible-heat fluxes over a period of about 6 days. In
another application of the eddy correlation method to evaporation from a playa lake,
Czarnecki (1990) concluded from his comparison of the many techniques applied to
compute evapotranspiration that the eddy correlation method was the most reliable

because the results were based on the most direct measurements. Although it is
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generally agreed that the technique has potential for use over dry lands and in arid
regions where the Bowen ratio is susceptible to large errors, the expense and

logistical complexity of the instrumentation currently limit its practical application.

Another approach to measure evapotranspiration is to place a canopy over the
plant and measure air flow rate and water content of the inflowing and outflowing
air. Sebenik and Thomas (1967) applied this technique by constructing a plastic
tent over a tree. Stannard (1990) developed a portable hemispherical chamber,
containing fans and a psychrometer, which fits over vegetation, such as grasses
and small shrubs, to rapidly measure evapotranspiration over a period of less than
two minutes. This technique has been successfully used to rapidly and directly
measure evapotranspiration rates in small-scale studies such as along an arroyo
system in New Mexico (Constantz et al., 1994). However, because of the obvious
logistical difficulties associated with measuring evapotranspiration over extensive

areas, estimates of evapotranspiration based on micrometeorology are usually
preferred.

While actual evapotranspiration is the quantity we seek, it is important to recognize
that the climatological methods discussed above calculate the potential
evapotranspiration, that is, the amount of evapotranspiration that would occur from
a short green crop that fully shades the ground, exerts negligible resistance to the
flow, and is not limited by water availability. Potential evapotranspiration, which
reflects the maximum evaporative demand, closely approximates evaporation from
an areally extensive, open body of water, but potential evapotranspiration cannot
exceed lake evaporation under the same meteorological conditions, primarily
because the actual availability of water from a vegetated surface is always less than
from open water. Potential evapotranspiration can be estimated from lake
evaporation data which can be calculated from the U.S. Weather Bureau, Class A

evaporation pan measurements, available for many regions (Linsley et al., 1975). It
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has been established that the potential evapotranspiration rate is approximately 0.7
times the pan evaporation rate, but this pan coefficient can vary from about 0.40 to
0.85, depending upon wind speed, fetch of green crop, and relative humidity
(McWhorter and Sunada, 1977).

Note that the actual evapotranspiration in a landscape is rarely equal to potential
evapotranspiration, except in very humid climates where the water table is within
about 1 meter of land surface, or immediately after the profile is thoroughly wetted
by an infiltration event. In fact, evapotranspiration is less than or equal to potential
evapotranspiration even when the crop is adequately watered. To compute the
actual evapotranspiration from potential evapotranspiration when the water supply is
fimited requires an additional calculation based upon plant type, water availability,

and vegetation coverage on the landscape:

ET = K, PET (Equation 3-15)

where ET is evapotranspiration, K, is a crop coefficient, and PET is potential
evapotranspiration. The crop coefficient is usually obtained by establishing an
experimental relationship between evapotranspiration (measured with lysimeters)
and potential evapotranspiration (calculated by a specific method) for some brief
period. The dependence of the crop coefficient upon available water (AW) may be
described by a formulation developed by Jensen et al. (1970):

100 AW
In +1 (Equation 3-16)
K - K AWmax
¢ ce In101

3-34

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx4b43 9L WM 0732290 0559361 333 N

where K, is the crop coefficient for a field where water is not limiting and

AW = (8 - WP)D (Equation 3-17)
AW, = (FC - WP)D (Equation 3-18)

where 0 is the field water content, FC is the water content at the so-called field
capacity, WP is the water content at the permanent wilting point, and D is the
rooting depth.

Figure 3-4 shows typical values for porosity, field water content, field capacity,
permanent wilting point, and available water for different soil textures. Equation
3-13 can be used to calculate a crop coefficient under circumstances of limited
water supply. Because of their importance in agriculture, crop coefficients have
been experimentally determined for many irrigated crops (Doorenbos and Pruitt,
1975). Values for crop coefficients vary widely from approximately 0.2 to 1.0 or
more depending upon the type of crop, the crop’s development stage, the time of
year, climatic conditions such as relative humidity and wind, and latitudinal location.
Values of plant-water use coefficients for selected native vegetation, presented in
Table 3-2 (from McWhorter and Sunada, 1977), generally vary from 0.5 to 0.9,

except for phreatophytes, which are 1.0 at all times.

Soil-Water Storage

The remaining component of the soil-water balance equation is the change in soil-
water storage. Quantification of water storage changes requires repeated
measurements of water content within the soil-water budget volume. Over a year

or several years the water content change is usually small, and for some sites and
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Figure 3-4. Relation among moisture retention parameters and soil texture class.
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Table 3-2. Estimated crop coefficients K, for native vegetation with AW,
[From McWhorter and Sunada, 1977 (with permission}]

<o

NOV
to

Vegetation MAR APR MAY JUN JUL AUG SEP OCT
Sagebrush-grass 0.50 0.60 0.80 0.80 0.80 0.71 0.53 0.50
Pinon-juniper 0.65 0.70 0.80 0.80 0.80 0.80 0.69 0.65
Mixed mountain shrub 0.60 0.67 0.81 0.85 0.82 0.74 0.65 0.60
Coniferous forest 0.70 0.71 0.80 0.80 0.80 0.79 0.75 0.71
Aspen forest 0.60 0.67 0.85 0.90 0.86 0.75 0.65 0.60
Rockiand & miscellaneous 0.50 0.60 0.65 0.65 0.65 0.60 0.50 0.50
Phreatophytes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

climatic conditions, particularly arid and semiarid environments, the long-term

change is negligible. Where calculations are made on an annual basis, this

component of the water balance is usually ignored (Allison et al., 1994).

Water storage in the vadose zone is simply the volume of water stored in the soil or

rock to a particular depth. Because it is the change in water content that is

required in the water balance, the method to measure water content is usually a

geophysical method such as neutron probe logging. The use of weighing

lysimeters, described in the previous section, also provides a means for calculating

changes in soil-water storage. Neutron probe logging, and other methods
described in the standard references mentioned previously, affords a means to
repetitively and non-destructively measure water content changes at the same
depths. Neutron logging is best applied in soils having textures of sand or finer

sizes, and in monitoring water content following infiltration into soil that has a low

initial in situ water content. When properly calibrated to laboratory measurements

of initial water content, the neutron probe has been successful in determining

relative changes in the in situ water content over time to within about 1 to 3

percent. It is important to note, however, that in uniform coarse-textured soil,
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considerable seepage can occur under conditions where the moisture content
increases by only a percent or two. |t is therefore possible that, under such
circumstances, an increase in recharge could remain undetected by the neutron

logging method.

From the discrete water content measurements obtained from neutron logging, the
rate of change in the volume of water in storage over the time period of the water

balance is calculated as:

S = _1-fD 0dz x Area (Equation 3-19)
At/

The rate of change in water storage is simply calculated by determining the
difference in total water storage at the beginning and end of the water budget
period and dividing this by the time between monitoring events. In weighing soil
lysimeters, the change in water storage within the monolith can be simply obtained

from the change in mass divided by the water density.

. Lysimeter Measurements

f Lysimeters offer the only means of directly collecting deep drainage from the

‘vadose zone. For the purpose of estimating recharge, lysimeters are used with the
premise that the volume of water percolating below the root zone or zone of
evapotranspiration can be extracted and measured over time, thereby directly
quantifying the downward infiltration flux that would eventually become recharge.
There are two basic categories of soil lysimeters useful for recharge: free-drainage
samplers and the weighing and floating lysimeters already discussed in the

evapotranspiration section.
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A free-drainage sampler consists of a passive collection reservoir or chamber
installed in the vadose zone to collect free-draining water from macropores which
are intermittently saturated because of intense rainfall or flooding at the surface.
Unsaturated flow percolating through the vadose may also be intercepted by free-
drainage samplers, but no water will be collected until a sufficient head builds up to
exceed atmospheric pressure or the suction applied by the sampler. Free-drainage
samplers utilize a variety of passive collection devices, including metal pans (pan
lysimeter), sand-filled funnels, glass blocks (glass block lysimeter), plastic troughs
made of PVC cut lengthwise {trough lysimeter), corrugated steel pipe caissons
(caisson lysimeter), or a lined, graded trench (trench lysimeter). Freely draining
water collected in these vessels, or water accumulating at the impermeable base of
the lysimeter, is then retrieved by pumping or applying a vacuum to a suction line
within a collection bottle. The volume of water accumulated at the base of the
lysimeter can be obtained by measuring water content change with a neutron
probe, by measuring the volume of water recovered by a vacuum pump or pore

liquid sampler, or by using piezometers to measure the depth of saturation.

Figure 3-5 illustrates two types of common devices to remove water from the base
of a lysimeter: a porous-cup sampler (porous-cup suction lysimeter) and a vacuum
plate sampler. The vacuum plate samplers are typically installed near the base of a
horizontal trench. Vacuum plate samplers are available in diameters up to about 11
inches. A thorough review of porous suction samplers, including selection,
installation and operation is provided in Wilson et al. (1995b).

Figure 3-6 illustrates two different soil lysimeter designs in use at arid sites in Las
Cruces, New Mexico and Hanford, Washington. The 18.5-m-deep lysimeter at the
Hanford, Washington site, possibly the deepest one anywhere in the world, has
been in place since 1972 (Gee et al., 1994).
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Figure 3-5. A. Porous-cup sampler
B. Vacuum plate sampler
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Figure 3-6. Schematic of soil lysimeters at two western desert sites
A. Las Cruces, New Mexico
B. Hanford, Washington
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The principal advantage of soil lysimeters is that they are direct and precise. Gee
and Hillel (1988) indicate that the deep drainage collected in a weighing soil
lysimeter can be determined with a precision of about 1 mm. For deep water table
conditions, one can capture the infiltrated water in a lysimeter constructed below the
effective depth of evapotranspiration and infer that this water would ultimately reach
the water table. At arid sites, the approach of using lysimeter data and direct water
balance measurement techniques is considered more reliable than other estimation

methods such as micrometeorology (Gee and Hillel, 1988; Gee et al., 1994).

Although the soil lysimeter is a direct method, this approach still produces a
recharge estimate that is subject to some uncertainty. For instance, the weighing,
pillow, trench, and caisson lysimeters contain disturbed soil. And with the other
types of lysimeters, soil disturbance during instaliation is unavoidable. It is
impossible to completely preserve the in situ water content, pore geometry,
stratification and macropore structures that can strongly influence soil-water
movement. Months, years, or even decades may be required to completely
reestablish vegetation with the same canopy and rooting characteristics as the
surrounding native soils. Furthermore, unless the lysimeters are completed below
the rdoting depth, the calculated water flux will provide only an upper bound for
actual recharge to the water table below. Additionally, the lysimeter data will
represent recharge estimates only over the period of measurement, and therefore,
depending on the prevailing precipitation and climatic conditions during this time,
the estimates may not represent long-term behavior. In addition to the uncertainty
of this method, disadvantages to consider in lysimetry include the considerable
expense for construction, the disturbance of site facilities, operations and soils, and

the long-term commitment to monitoring required to obtain representative data.
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Darcy Flux Method

Darcy flux calculations also comprise a relatively direct physical means to calculate
recharge from the vadose zone based on separate measurements of hydraulic
gradient and hydraulic conductivity (Equation 3-2). In a previous section of this
chapter, we presented an overview of some of the methods to obtain hydraulic

conductivity and hydraulic gradient; consequently, they will not be repeated here.

The method usually is based on in situ measurements of pressure head or water
content. These measurements are used to determine the hydraulic conductivity of
the field soil at the in situ pressure head or water content. Pressure head may be
njeasured with tensiometers in moist soil and with psychrometers in dry soil. Water
cbntent may be determined from core samples or neutron probe. The hydraulic
cbnductivity at the field pressure head or water content is obtained from the K-¥
curve for the soil. This curve is derived by separate field or laboratory tests, as
described previously. The frequency of monitoring should be based on local
conditions. For parts of the year, daily measurements may be required in humid

climates, whereas monthly data should suffice in dry periods in areas of low rainfall.

Tensiometers or psychrometers placed at depth intervals within the vadose zone
are also useful to compute the hydraulic gradient in Darcy’s equation. However,
below the root zone, where the pressure head is nearly constant with depth, it is a
good assumption that the hydraulic gradient is approximately unity and flow is
downward. Where this assumption is valid, measurements of hydraulic gradient are
not required. A unit gradient is most likely to occur after prolonged periods of
redistribution, or below the depth where evapotranspiration or thermal gradients
may be significant. Consequently, where this assumption is reasonable and where
vapor phase transport downward is negligible, the recharge rate is equal to the
vertical, unsaturated hydraulic conductivity at the in situ moisture content or

pressure head.
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Under a unit gradient, the precision in the recharge rate computed by Darcy velocity
calculations is comparable to that for the unsaturated hydraulic conductivity. Even
with considerable care applied in the conductivity analysis, it is possible that errors
in the recharge rate by this method could range from a factor of less than two or
three in wet soils to more than an order of magnitude in dry soils. Where a unit
gradient does not exist, the errors associated with this method could be even
greater. In these situations, it is best to directly measure the hydraulic gradient

using tensiometers or psychrometers.

Good examples of the Darcy flux method are illustrated in the field studies by
Nnyamah and Black (1977) applied at a Douglas fir stand in British Columbia, by
Sophocleous and Perry (1985) in Kansas, and by Stephens and Knowlton (1986) at
a sparsely vegetated sandy site in New Mexico. Stephens and Knowiton had good
success using the Darcy flux method to estimate recharge. Their analysis included
tensiometric measurement of the hydraulic head gradient, which was found to be
slightly greater than unity during much of the test period. However, the results
using an assumed unit gradient were acceptably close to the results that
incorporated the measured head gradient. Knowlton et al. (1992) report good
agreement between Darcy-flux-based recharge estimates and chemistry-based

estimates.

Plane of Zero Flux Method

The plane of zero flux (or zero flux plane) method relies on locating a depth in the

soil profile where the hydraulic gradient is zero. A zero flux plane develops during
redistribution of a pulse of infiltrated water and is usually present at times when
evapotranspiration exceeds rainfall. Above this plane or surface, soil-water
movement is upward, and below this piane, water moves downward. Where a zero
flux plane is present, it can be used to separate water content changes due to

evapotranspiration and drainage. Any change in water content below the plane of
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zero liquid flux reflects drainage that eventually becomes recharge. To determine
the water flux below the zero flux plane, the foliowing equation is applied to

volumetric water content profiles measured over different time periods:

q-= 1 (P oz (Eqguation 3-20)
At /Dt

Recharge is calculated by summing the water content changes over the depth
interval, D to D,, below the zero flux plane. For accurate results, the monitored soil
column should extend from the zero flux plané downward to a depth where the
moisture content does not fluctuate appreciably. Implementing the method requires
instrumentation of soil-water potential sensors such as tensiometers to locate where
the hydraulic gradient is zero. Alternatively, the zero flux plane can sometimes be
inferred from water content data collected by neutron probe, frequency domain
reflectometry probe, time domain reflectometry probes, or other in situ water
content measuring devices. The recharge flux for the time interval between
mejasurements is then represented by the integrated change in moisture content in
the monitored section of the soil profile.

The zero flux plane method was applied by Dreiss and Anderson (1985) to quantify
deep water percolation beneath a land treatment facility. The study used three
replicate sets of tensiometers and neutron probes to measure pressure head and
moisture content. Each set contained four or five tensiometers and one neutron
access tube. The study concluded that the zero flux plane method provided

. reasonable estimates of cumulative seasonal recharge when weekly measurements
of moisture content and pressure head were used. The total error for the recharge
estimate was calculated to be within 15 percent of the total moisture input (total

precipitation plus change in storage). Allison et al. (1994) point out that the zero
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flux plane method breaks down when the hydraulic gradient is downward
throughout the profile, and this occurs at times when there is significant recharge.

During these periods, the Darcy flux method can be applied.

Soil Temperature Methods

The soil temperature profile depends on the geothermal gradient, the period and
amplitude of the atmospheric temperature changes, the thermal properties of the
vadose zone, and the water flux through the vadose zone. Three different
techniques utilizing temperature gradient data have been developed to provide

estimates of the soil-water flux or recharge.

Bredehoeft and Papadopulos (1965) developed a type-curve method to compute
the flux by fitting steady-state temperature profile data from the saturated zone to
the theoretical type curves. This approach has been applied by Cartwright (1970,
1979) and by Boyle and Saleem (1979). Applications of the method have been
primarily limited to relatively deep aquifers where the temperature increases with
depth (i.e., the temperature gradient is upward). Results have shown that recharge
fluxes estimated with type curves agree well with those obtained from hydraulic

data and basin water balance calculations.

Stallman (1965) developed an analytical solution for computing the steady
downward flux from sinusoidally varying surface temperatures. Taniguchi and
Sharma (1993) built upon Stallman’s analysis and computed recharge from in situ
measured changes in temperature. After applying the method to forested sites in
western Australia, they concluded that their temperature difference method
produced reasonable results when the annual recharge rate is low (less than
approximately 200 mm/yr) and the temperature is measured at depths less than

several meters.
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A third temperature method for estimating soil-water flux was developed by
Wierenga et al. (1970) based on a steady-state soil-heat balance. When water
infiltrates to a particular depth, the mean temperature of the soil within this depth
will change. By in situ measurement of the initial and final soil temperature and the
temperature of the infiltrating water, the amount of infiltrated water is obtained.
Because infiltration-induced temperature changes are not readily detected below
about 2 meters, the method is best suited to determining soil-water flux near the
surface rather than recharge (Taniguchi and Sharma, 1993).

Although the instrumentation requirements for implementing temperature methods
are quite simple, the methods have not been widely used to date. One reason for
this may be the difficulty and uncertainty associated with determining thermal
properties of the media.

Electromagnetic Methods

In the recharge-electrical conductivity model, groundwater recharge is related to soil
texture, water content, and soil-water conductivity. In principle, electrical
conductivity generally increases as the clay fraction decreases; greater recharge is
likely in coarse soils free of clay. For a given soil texture, the maximum recharge
should occur where the water content is greatest, that is, where the electrical
conductivity is greatest. However, changes in soil salinity may influence the
electrical conductivity measurement. As salinity of a soil decreases, the electrical
conductivity decreases, and this effect on conductivity is similar to that induced by
coarsening soil texture and decreasing water content. Therefore, it is difficult to
identify areas of favorable recharge characteristics using electromagnetic methods
where soil salinity is highly variable.

There have been few attempts to determine recharge rates from electrical
conductivity measurements. Cook et al. (1992) applied frequency domain and time
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domain electromagnetic measurements, as well as the direct current resistivity
method, to delineate recharge zones at a site in southeastern Australia. By
comparing the geophysical analyses with independent estimates of recharge, they
concluded that soil texture, specifically clay content, is the principal reason for the
correlation between electrical conductivity and recharge. At this site in Australia,
the soil-texture and solute effects dominated over the eﬁect of water content,
thereby causing an inverse relationship between recharge and electrical
conductivity. Air-borne electromagnetic surveys were also conducted in this same
area to identify recharge zones (Cook and Kilty, 1992) based on this relationship.
From limited testing it appears that the electromagnetic methods are suited for
reconnaissance-level investigations to identify recharge areas where more

quantitative methods for recharge should be applied.

Groundwater Basin Outflow Method

Darcy’s equation can be applied to aquifers to compute recharge by dividing the
flow rate through an aquifer cross section by the land area contributing to recharge
(e.g., Theis, 1937). In this conceptual model, vadose zone percolation is assumed
to be the only source of recharge that is uniformly distributed over a basin having
well-defined, impermeable lateral and lower boundaries. We also assume that at
some downgradient location, the groundwater flow rate, Q, leaving this part of the
basin (i.e., underflow out of the basin) is obtained from a form of Darcy’s equation:

Q = -Tiw (Equation 3-21)

where T is the aquifer transmissivity, i is the hydraulic gradient of the aquifer (a
negative quantity when the head loss is taken in the direction of flow), and w is the
width of the aquifer where underflow is calculated (Figure 3-7). Then, the average
recharge rate for the basin would be:
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~ Q=-Tiw

Notes:
A = Basin area
R = Areal recharge
Q = Steady-state ground-water flow out of basin
T = Aquifer transmissivity
i = Hydraulic gradient
w = Aquifer width perpendicular to flow direction

Source: Stephens, 1995 (with permission)

Figure 3-7. Diagram of the relationship between recharge and groundwater basin
underflow.
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R =9.58h (Equation 3-22)

where Q is obtained from Equation 3-21, A is the upstream surface area of the
watershed where recharge could occur, Sy is the specific yield, and Ah/At is the
average head change during the time interval. The method has the potential to
work well if the basin boundaries and areas of recharge are well defined and the

transmissivity can be determined with reasonable accuracy.

Theis (1937) employed a steady-state version of Equation 3-22 to calculate
recharge to the Ogallala aquifer in eastern New Mexico and Texas. Maxey and
Eakin (1951) applied this technique to 22 groundwater basins in Nevada which they
assumed were in hydrodynamic equilibrium, such that the recharge simply equaled
the outflow or discharge from the basin. They then correlated the recharge with the
elevation and mean annual precipitation of the basin and developed relationships
that they suggested could be useful to estimate rechérge for other basins simply on
the basis of basin elevation. However, Watson et al. (1976) indicated that geology,
hydrologic characteristics of the consolidated and unconsolidated rocks, antecedent
soil moisture, and vegetation strongly affect recharge, and that unless these are
incorporated, considerable uncertainty in results from the Maxey-Eakin method
would remain. More recently, Avon and Durbin (1994) concluded that the Maxey-
Eakin method produced recharge estimates comparable to estimates obtained
independently by water balance and groundwater model methods.

Water-Level Fluctuations

In undeveloped, unconfined aquifers not subject to tidal influences, water levels

fluctuate primarily in response to recharge from precipitation, discharge by basin
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outflow, and evapotranspiration. As a consequence of diffuse recharge, the slope
of the water table and the transmissivity remain nearly constant during normal
seasonal water-level fluctuations in most aquifers, that is, except for periods of
extreme precipitation or prolonged ponding. The annual cycle of change in
saturated thickness of the aquifer due to natural recharge and discharge processes
usually has an insignificant effect on transmissivity. Throughout the year, water
levels decline during periods of little to no recharge and rise when recharge
exceeds basin outflow. On average, however, the mean water level in undeveioped

aquifers remains virtually unchanged year after year.

For this case, Theis (1937) suggested that the recharge rate could be determined
during periods of no recharge by multiplying the annual rate of water-level decline
by the specific yield, inasmuch as over the long term the annual basin outflow
equals the annual inflow. Similarly, during recharge periods, the rate of water-table
rise times the specific yield gives the recharge rate, provided that one measures the
water-table rise from an extrapolation of the preceding water-table recession curve

that represents the rate of water-level decline during the prior period of reduced or
absent recharge.

Sophocleous (1991) suggested a simple modeling approach to obtain recharge from
precipitation records, vadose zone water balance analysis, and water-level
fluctuations in wells. In this analysis, called the hybrid water-level fluctuation
method, one establishes field instrumentation for determining recharge from a soil-
water balance at one or more locations. At these same locations within the basin,
the water-level response to precipitation is determined from a monitor well
h;ydrograph. Knowing recharge from the soil-water balénce and water table
response, one can obtain the aquifer specific yield, if basin outflow during the
period is neglected. Multiple instrumented sites within a basin provide some basis

for determining a mean specific yield or its spatial variability. Recharge throughout
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the basin at sites with monitor wells, as opposed to soil-water balance
instrumentation, can be calculated simply from the water-level fluctuations and the
estimate of specific yield. Sophocleous (1992) applied the hybrid water-level
fluctuation method to the Great Bend Prairie of central Kansas to identify zones of

similar recharge within the region.

Stream Gauging
Stream gauging data can be very valuable in quantifying recharge in humid climates

where perennial streams are fed by ground water. Stream hydrographs are
generally characterized by a series of peaks followed by recessions. The peaks
usually represent surface runoff, interflow and bank storage, whereas the recession
curve represents primarily discharge from the aquifer to the river. In ground-water
basins that discharge to perennial streams, the ground-water recharge is
approximately equal to the surface-water discharge minus direct surface-water
runoff. The approach determines surface-water runoff from stream hydrographs. It
furthermore assumes that the aquifer discharge to the stream (baseflow) is caused
by diffuse recharge from rainfall over the surface-water drainage basin, and is valid
for periods between major rainfall events, where no surface runoff directly

contributes to streamflow.

There have been several approaches to quantify recharge from steamflow
measurements (e.g., Meyboom, 1961; Rorabaugh, 1964; Daniel, 1976). Figure 3-8
illustrates a recent method to compute recharge from a runoff event, based on the
upward displacement of the recession curve at some critical time, T, following a
flood peak. According to Rutledge and Daniel (1994), the critical time is calculated

from:
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T, = 0.2144K (Equation 3-23)

cr

where K, is the recession index, the time in days required for groundwater
discharge to the stream to decline by one log cycle of flow. By computing the flows
at time T, from the recession curve preceding the flood peak, Q,, and the recession

curve following the flood peak, Q,, the recharge value from the rainfall event is:

R C (Equation 3-24)
2.3026

The recharge rate is then determined by dividing the recharge volume by the
surface area of the drainage basin. This method seems to offer the greatest
potential for success where streams are not managed to control water storage and
diversions, where the streams are well-connected to the aquifer, and where there is
little recharge due to snowmelt. Rutledge and Daniel (1994) indicate that an
automated version of this method greatly reduces the labor required to evaluate
records and has been successfully applied to 15 streamflow gauging stations in the

eastern United States.

Chiew et al. (1992) developed an integrated surface-water and groundwater model
to compute recharge for a nonirrigated area in southeastemn Australia that is a
tributary to the Murry River. The surface-water component was HYDROLOG and
the aquifer component was AQUIFEM-N. The model was calibrated against heads
and streamflow, with recharge estimated as an output from the calibrated model.
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CHEMICAL METHODS FOR DETERMINING DIFFUSE RECHARGE

Chemical methods provide indirect means of calculating recharge by tracking water
movement through the vadose zone and ground water. The following paragraphs
describe the various chemical and isotopic techniques available to evaluate

recharge.

Chemical Methods in the Vadose Zone

Among the chemical methods for calculating recharge from the vadose zone, there
are stable and radioactive isotopes, including tritium, chlorine-36, oxygen-18, and
deuterium, together with chloride mass balance. One advantage of some of these
methods is that the analysis may represent an integration of hydrologic events over
decades or even tens of thousands of years. Another advantage is that the data
are derived from one-time, in situ sampling, without need for field instrumentation
for monitoring. These can be important considerations in selecting an appropriate
method, especially if quantifying long-term natural recharge is the objective. The
following discussion focuses on the chemical methods that are applied to the

vadose zone. Later, we consider chemical methods applied to aquifers.

Tritium. Tritium (3H), a radioactive isotope of hydrogen with a half-life of about 12.4
years, is well suited as a hydrologic tracer because it is part of the water molecule.
During the atmospheric nuclear testing that began in the 1950s, the tritium in the
atmosphere increased substantially over a relatively short time, culminating in the
period 1963-1964 (Phillips et al., 1988). This tritium pulse rapidly circulated
worldwide, with primary deposition in the northern hemisphere where most of the
testing occurred. After the vapor condensed and fell as precipitation, the record of
tritium has been preserved in atmospheric water that infiltrated the soil profile.
Recharge, or more precisely, net infiltration, is obtained from the depth to the center

of mass of the tritium pulse, L, with the following equation:
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R = e_L_ (Equation 3-25)

where 6 is the mean water content through depth, L, and At is the time increment.
To analyze for tritium in the unsaturated zone, soil samples are typically collected
fﬁusing a core-barrel or split-spoon sampler. Care must be taken to eliminate
:fmoisture loss during sample handling. Tritium analyses are available through
commercial or private university laboratories. The water for tritium analysis is
typically obtained using a vacuum distillation process, and the tritium content is

counted using standard liquid scintillation techniques.

Because tritium can move in the vapor as well as in the liquid phase, strong
temperature gradients may influence the tritium peak through thermally-driven,
vapor-phase migration (Knowlton et al., 1992). Also bear in mind that the quantity
calculated here appfoximates recharge only if the tritium has migrated below the
root zone; otherwise this analysis represents a soil-water flux that may exceed the
actual recharge. In fact, Tyler and Walker (1994) demonstrated that tracer methods
applied within the root zone significantly overestimate the deep soil-water flux,
because the roots induce nonconstant soil-water velocities within the root zone.
They suggest that tracers, such as tritium, can be effective when the recharge

exceeds 10 percent of the annual precipitation.

Chlorine-36. Another tracer of soil-water flux or recharge is chlorine-36 (3¢Cl). This
is a radioactive isotope with a half-life of about 300,000 years, produced as a
byproduct of thermonuclear testing near the oceans in the 1950s (Bentley et al.,
1982). Chloride is very stable in the environment and enters the hydrologic cycle
as the chloride ion dissolved in water and as a component of dust fallout. Because

it is soluble and nonvolatile, chloride is an excellent tracer for liquid-phase transport;
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however, it is also subject to the effects of anion exclusion which result in more

rapid movement of the chioride anion relative to other conservative tracers.

Recharge can be determined from the depth of the chlorine-36 peak, in the same
manner as that described above for tritium. The practical application of the
chlorine-36 method at many sites is probably limited because it requires analysis by
a tandem accelerator/mass spectrometer, which is a highly specialized instrument
commercially available only at a few research institutions. Phillips et al. (1988) first
applied the chlorine-36 method, along with the tritium technique, to study both liquid
and vapor transport and to evaluate the suitability of these tracers for quantifying
recharge in very dry desert soils. In two cases where both tracers were measured
in the same profile, the tritium pulse had penetrated approximately 1 to 2 m deeper
than the chlorine-36 peak, which was retained near the soil surface. The difference
in the relative transport rates of tritium and chlorine-36 was attributed to low water
content and fluctuating temperature gradients which enhance vapor movement of
tritiated water relative to simple advection of the chlorine-36. A comparison of the
recharge estimates calculated by the tritium peak, Darcy flux, chlorine-36, and
chloride mass balance methods, indicated good agreement between the Darcy flux
(0.70 ecm/yr) and the tritium peak (0.84 cm/yr) calculations, and an underestimation
of recharge by the chlorine-36 peak and chloride mass balance methods.

Chloride Mass Balance. The chloride mass balance method relies upon the slow

accumulation in the soil profile of natural chloride that dissolves in precipitation and
infiltrates. The concentration of chloride in precipitation typically decreases with
increasing inland distance from the coasts. The expected chloride pattern in the
soil profile, at least in areas of modest precipitation, is that chloride increases with
increasing soil depth as water is extracted by the plant roots, but below the root

zone, the chloride concentration is expected to be constant where the deep
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percolation migrates toward the water table. The chloride concentration increases

in proportion to the ratio of precipitation to recharge {(Allison and Hughes, 1978):

R = P& (Equation 3-26)
Cs

where P is the average precipitation rate, C, is the chloride concentration in
precipitation and dry fallout, and C; is the average soil chloride concentration below
the root zone. This simple, one-dimensional form of the chloride transport equation
assumes that the chloride-laden water moves as piston flow, that is, without liquid
dispersion or macropore flow. This simplification is usually appropriate because
adequate information for more comprehensive transport equations is typically not

available.

The three fundamental assumptions of the chloride mass balance method are (1) all
chloride originates from atmospheric deposition, (2) the only long-term sink for
chloride is downward advection, and (3) chloride behaves conservatively during soil-
water transport. Additionally, it is assumed that vadose zone flow is at steady-state.
Chloride patterns that depart from this model may produce a bulge in the chloride
concentration at some depth in the profile, and below this, the concentration
decreases to approach a near constant value. Based on the first assumption
mentioned, it should be noted that where chloride from other anthropogenic sources
may be present in the soil profile, such as at oil production facilities, this technique

would probably not be useful.

Phillips (1994) discussed possible explanations for the "chloride bulge" in desert soil
profiles such as preferential or bypass flow in macropores, but suggested that the

low concentration of chloride at depth most likely reflects greater recharge during a
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wetter paleoclimatic period when the indigenous plants were less efficient at
capturing the soil moisture. An alternative hypothesis only recently advanced
suggests that the chloride bulge is best explained by ultrafiltration, a process that
causes chloride anions to migrate more slowly than the water (McCord et al., 1994).
If ultrafiltration does indeed affect migration of chloride anions in the vadose zone,
many previous infiltration studies based on the chloride mass balance method may
underestimate the recharge component. Additional research is required to

investigate this phenomenon, especially in arid environments.

Stable Isotopes. An isotope is a variation of an element produced by differences in
the number of neutrons in the nucleus of the element; hence isotopes of an element
have different masses. The two stable, or non-radioactive, isotopes of hydrogen
('H and 2H or deuterium (D)) and the three stable isotopes of oxygen ('°0, 17O and
'80) form part of the water molecule, and analyses of their concentrations in natural
waters have long been used to trace movement of water in the subsurface. ltis
well established that the isotopic composition of precipitation at a particular location
will vary seasonally and with individual storms. The isotopic composition of
precipitation will also vary between locations depending upon climate and elevation.
Nevertheless, the composition of all precipitation generally falls on a straight line of
a plot of 3D versus 8°0 (where & is the relative difference of the isotopic ratios in
precipitation versus standard mean ocean water [SMOW] expressed in parts per

thousand). This line is called the meteoric water line.

The stable isotope concentration of the precipitation can be modified subsequent to
infiltration, and this signature of the soil water reveals important information about
recharge. Evaporation of soil water leads to a fractionation of the stable isotopes
deuterium and oxygen-18. When water evaporates, the heavier atoms tend to
remain behind in the liquid phase, thus leading to an enrichment in the

concentration of the heavier isotopes in the residual liquid, and lighter isotopes
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fractionate into the vapor phase. When the water vapor condenses, the condensed
liquid is more concentrated in the heavier isotopes than the residual vapor. The
isotopic enrichment and shape of the isotope profile in the soil depend upon the net
infiltration and evaporation rates, soil-water status, and diffusive properties of the
liquid and vapor. Based on these and other considerations, Barnes and Allison
(1983) developed a theoretical model to predict how the stable isotopes should be
distributed in the soil. Knowlton (1990) built on this theoretical analysis and
developed an equation for recharge based on measured deuterium isotope

concentrations:

thatDV ) d[In (that(ED * T]D)]

R(dp - 6390) = (80 +* Mp 9z

(Equation 3-27)

o AND" |abo
p jdz

where R = recharge rate (m/s)
dp = standardized isotope ratio at any depth (per mil)
35°°= standardized isotope ratio of the recharge water at depth (per mil)
h = relative humidity
N¢,: = saturated water vapor density in air (kg/m®)
DY = effective diffusivity of water vapor in air (m?/s)
p = density of liquid water (kg/m°)
gp = equilibrium enrichment factor
Np = diffusion ratio excess
z = depth below land surface (m)

D = effective self-diffusion coefficient of water (m%/s)

This method requires measurement of the distribution of deuterium or oxygen-18,

and water content with depth in order to estimate the recharge rate. The remaining
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model parameters can be easily estimated or obtained from standard reference
books. Soil samples can be collected during standard coring operations, stored in
Mason® jars, and subjected to a vacuum distillation procedure to extract the soil
water. The soil-water extraction process for stable isotope analysis is not a routine
procedure offered by commercial laboratories; thus the application of the technique
is limited. This method holds promise, but has only recently been developed and
requires additional applications in the field.

Allison et al. (1984) used another technique to assess recharge with stable isotope
measurements of pore liquids collected from the vadose zone. They assumed that
if the rainfall events are uniform throughout the year and the evaporation rate is
constant, then the isotopic enrichment increases linearly with the square root of the
time since the last rainfall. From this, they developed a relationship between
fecharge and the magnitude of enrichment or shift between meteoric line and
composition of deuterium in soil water. The method apparently has not been widely
used thus far and requires further validation for a variety of soils. Nevertheless, it

may be a useful and simple tool to estimate recharge in areas of low precipitation.

Chemical Tracers in Aquifers

Chemical tracers commonly occurring in aquifers that permit quantification of
recharge include tritium (*H), tritium/helium-3 (*H/*He), carbon-14 (**C), chlorine-36
(*Cl), and chlorofluorocarbons. In principle, these tracers determine the age of the

groundwater, which in turn permits calculation of groundwater travel time:

R=vn =L_2% (Equation 3-28)
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where v is the component of average linear velocity, n, is the effective porosity, L is
the distance along the flow path, and t, is the travel time or age of the groundwater

at the distance L.

In an unconfined aquifer analysis, the groundwater flow velocity is obtained from the
apparent tracer age gradients in the direction of flow. Flow velocity can be
determined from one date at one depth in the aquifer if the distance from the point
of recharge entry into the aquifer to the sampling location is well established. In
this analysis, which is most applicable to shallow, unconfined aquifers, the travel
time through the vadose zone is considered negligible compared to that in the
aquifer; however, where it is known, the travel time through the vadose zone can be
added to the travel time through the aquifer. Alternatively, the age of groundwater
from a sample collected at the water table would be useful to evaluate the travel
time and mean velocity through the entire vadose zone at the field water content in

order to estimate recharge.

Two or more nested wells located along the groundwater flow path can be sampled
to obtain groundwater ages and calculate the flow velocity. The effective porosity of
the aquifer is usually estimated based on the lithology of the aquifer materials, and
has commonly been assumed to be 0.3 to 0.4 for unconsolidated sediments
(Solomon et al., 1993). The hydrogeology of the site must be well understood prior
to applying this technique, because the method is based on the presumption that

the direction of flow in the aquifer is known with reasonable confidence.

The application of chemical tracers for determining groundwater ages and recharge
rates has several common approaches and difficulties. The simple models that
calculate recharge from groundwater age assume that the tracers move in a piston
displacement process which neglects liquid dispersion. In fact, however,

mechanical mixing and diffusion within the porous media serve to decrease the
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input concentrations. If hydrodynamic dispersion is not taken into account by
mathematical modeling, the calculated age will exceed the true age, but in
permeable aquifers where advective transport dominates, dispersive effects are not
significant, especially if the tracer input is relatively constant in time (Solomon and
Sudicky, 1991). Also, the true age of a groundwater sample may be over- or
under-estimated due to commingled water samples from different parts of the
aquifer where the groundwater has different ages.

The following subsections briefly summarize some of the currently used methods for
groundwater age dating.

Tritium. Tritium in aquifers is derived from both natural and anthropogenic sources.
Tritium is produced naturally when cosmic rays interact in the upper atmosphere
with nitrogen. Precipitation naturally contains approximately 5 tritium units (TU)
(Mazor, 1991); however, precipitation that entered the soil prior to 1952 would have
decayed by now to concentrations near or below the analytical detection limit. The
thermonuclear testing that began in the 1950s generated peak concentrations in
precipitation ranging from about a few hundred to about 10,000 TU. An example of
méasured tritium in precipitation for the Delmarva Peninsula on the eastern coast of

the U.S. is shown in Figure 3-9A. The apparent age, t,, of the water sample is:

t=-t,n (,_':_) (Equation 3-29)

o

where t, is the half-life in years, A is the activity of the sample at the time the
precipitation or surface runoff entered the subsurface, and A, is the measured

activity in the sample.
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Average tritium concentration in precipitation on the Delmarva

B. Atmospheric concentration of CFC-11 nd CFC-12 in parts per
trillion volume per volume air and the ratio CFC-11:CFC-12.

C. Krypton-85 specific activity (i.e., the ratio of ®Kr to stable krypton
in disintegrations per minute per cubic centimeter krypton) in the
troposphere of the northern hemisphere between 40° and 55°N as
a function of time.

D. Krypton-85 specific activity plotted on a logarithmic scale. Diagonal
lines represent radioactive decay after ground water is isolated
from the atmosphere.
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Owing to the rather short half-life of tritium, its usefuiness as a dating method will
soon expire. Even where tritium is detectable, there is considerable uncertainty in
the calculated age. The tritium distribution at the source of recharge is rarely
known, but where it has been measured, tritium varies considerably with location,
year, and season. This results in significant uncertainty in the initial tritium activity
of the water (A) when it entered the subsurface. Additionally, the groundwater flow
path taken by the tritium is almost always complex, and some samples may
represent composite paths. For these reasons, tritium, where detectable, usually
has only semiquantitative significance. That is, detectable tritium suggests that the
groundwater sample contains at least some portion of water derived from
precipitation that fell after 1952 (Mazor, 1991).

An analytical advance of the tritium method uses helium-3, the stable daughter of
tritium decay. Tritium-bearing recharge will produce dissolved helium-3 that
increases in concentration along the flow path as the tritium concentration
diminishes. Combined measurements of tritium and helium-3 allow one to
determine the age of the groundwater, provided that other sources of helium are
negligible or can be measured to quantify the tritiogenic portion of the helium-3
(e.g., Ekwurzel et al., 1994; Schlosser ef al., 1989). In most shallow groundwaters,
subsurface sources of helium-3 are insignificant.

Measuring the ratio of tritium to helium-3 in soil water offers several advantages
over using tritium data alone. First, because total tritium plus helium-3
concentrations are not affected by radioactive decay, the combined signal can be
used as a stable tracer. This enables one to distinguish between the effects of
dispersion and radioactive decay and also makes it possible to study the
penetration of the bomb tritium peak into deeper layers of the subsurface even after
complete decay of tritium to helium-3 has occurred. Additionally, the initial

concentration of tritium in the atmosphere does not need to be estimated. As
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discussed above, the tritium concentration record in the atmosphere contains many
spikes, at least prior to the conclusion of atmospheric testing, and the record is
rarely known in detail at locations where recharge is to be caiculated. Solomon and
Sudicky (1991), who evaluated the effects of hydrodynamic dispersion and the
nature of the tritium input function on the reliability of ages, concluded that the
tritium/helium-3 method can be used to accurately date shallow groundwater with

ages ranging from 0 to about 50 years.

Chlorofluorocarbons. Chlorofluorocarbons (CFCs), including CFC-11 (CCI,F) and
CFC-12 (CCI4F,), are chemically stable man-made volatile compounds that have

been manufactured since the 1940s and 1930s, respectively, for use as aerosol can
propellants, foaming agents in plastics, refrigerants, and solvents (Dunkle et al.,
1993). Their release into the atmosphere, documented worldwide, produced a
steady increase in concentration in the atmosphere (Figure 3-9b). The atmospheric
concentrations of CFCs in precipitation are governed by Henry's law. Because the
CFCs are relatively stable in the atmosphere and subsurface, the CFC
cencentration in groundwater recharge should increase over time as a result of the
inereasing atmospheric production. The age of a groundwater sample analyzed for
CFCs is determined simply by comparing the measured concentration in ground-
water with a graph of the atmospheric water concentrations over approximately the

past 50 years (e.g., Busenberg and Plummer, 1991).

A number of factors should be kept in mind when interpreting groundwater ages
from CFCs. First, the temperature of the atmosphere must be determined, because
temperature affects the CFC partitioning between the atmospheric gas and water
phases. As the dissolved CFCs migrate through the vadose zone, there is
opportunity for additional phase partitioning, depending upon the CFC patrtial
pressure and gas-phase advection of CFCs. Also in the vadose zone, the CFCs

may be sorbed by organic carbon in the soil. The same sorption processes may
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occur in the aquifer as well. Biodegradation may also reduce the CFC
concentration in the aquifer, especially under anaerobic conditions (Busenberg and
Plummer, 1992). Furthermore, contamination of the sample must always be
guarded against. This is particularly important for older waters that have
exceedingly low concentrations. Sample contamination for determining age may
occur due to improper cleaning of sampling and analytical equipment, sample
exposure to the atmosphere, or contamination of the aquifer by migration of CFCs
released from industrial facilities. In spite of these potential concerns, Ekwurzel et
al. (1994), in a field study on the mid-Atlantic coast, found that ages determined by
the CFC method, tritium/helium-3 ratios, and the krypton-85 method, all agreed
within about 2 years.

Krypton-85. Krypton-85, a radioactive noble gas with a half-life of 10.76 years, is
produced in the atmosphere by the interaction of cosmic rays with krypton-84.
However, nuclear weapons testing and reprocessing of nuclear fuel rods are by far
the greater sources (Ekwurzel et al., 1994). The atmospheric production of krypton-
85 increased steadily since about 1950. After precipitation infilirates and no longer
contacts the atmosphere, the krypton undergoes decay, but owing to its inert
characteristics, it does not interact chemically with the aquifer materials. Figure
3-9C illustrates the krypton activity in the northern atmosphere, and Figure 3-9D
shows how to graphically determine the age of the water sample based on the

sample collection date and the measured activity in groundwater.

Carbon-14. Carbon-14 ('*C) is a radioactive isotope of carbon produced in the
upper atmosphere by cosmic ray interactions with nitrogen. The carbon-14

becomes part of the carbon dioxide molecule that dissolves in the water, enters the
soil gas, and becomes part of the animal or plant tissue. When the water or soil
gas are no longer free to exchange with the atmosphere, as when the animal or

plant dies, the carbon-14 activity decreases at a rate controlled by its half-life, 5730
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years. The concentration or activity ratio of carbon-14 to carbon-12, expressed as
a percentage, is called the percent modemn carbon (pmc). Except for input from
thermonuclear testing in the 1950s and 1960s, this ratio has remained relatively
constant in the atmosphere, varying by a factor of about two, over the last 100,000
years. Inasmuch as carbon-14 is detectable to about 1 pmc, the potential
usefulness of the dating method in groundwater is about 20,000 years, based on
Equation 3-29.

Unfortunately, there are a number of sources of uncertainty in carbon-14 dating.
The most significant of these is due to the interactions of atmospheric carbon-14
with mineral carbon. Most of the carbon-14 in groundwater occurs in the
bicarbonate ion. Minerals such as calcite and dolomite contain radiologically dead
carbon that may be liberated along the groundwater flow path due to reactions such
as the reduction of sulfate. Dilution by dead carbon makes the calculated age
appear older than the true age, but methods to correct the carbon-14 activity for the
geochemical effects have produced fairly reliable results. The principal difficulty
seems to lie in the inability to reconstruct with confidence the geochemical and
hydrological processes that have influenced the carbon-14 concentration in the
sample. Another potential difficulty may arise if the sample age is post-1952,
because the same nuclear weapons testing that produced tritium also generated
carbon-14 concentrations of a few tens to about 200 pmc (Mazor, 1991).

Therefore, care must be taken to use other methods, such as tritium, in
combination with carbon-14 to assess whether the sample may be mixed with very
young water. As with tritium, owing to the uncertainty in assessing the true age,
carbon-14 is generally regarded as only a semiquantitative technique for recharge

analysis.

Chlorine-36. Based on its long half-life, chlorine-36 (*°Cl) is potentially useful to

date groundwater as old as about 2 million years. In many respects, chlorine-36 is
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an ideal tracer for dating old groundwater. Unlike carbon-14, chlorine-36 does not
interact appreciably with most aquifers, although dead chioride can be dissolved
from some salt-bearing natural formations to increase the apparent groundwater
age. In clay-rich deposits the anion exclusion process may cause chloride ions to
migrate slightly faster than the water. Chlorine-36 is readily detected in very small
concentrations by a tandem accelerator/mass spectrometer. The ratio of
chlorine-36 to stable chloride is used to determine the groundwater age from
Equation 3-29. This method has been applied to date groundwater in Canada
(Phillips et al., 1986) and Australia (Bentley et al., 1986).

MATHEMATICAL MODELS FOR ESTIMATING RECHARGE

Numerical models are best suited to predict recharge when the physical properties
of the soil or groundwater are well characterized. Recharge is predicted as the
output at the base of a model of the vadose zone, and it is calculated as the input
to a calibrated groundwater flow model.

Soil-Water Models

Numerical models that are relevant to calculating deep percolation and recharge are

water balance models and models based on Richards equation.

Water-Balance Models. The water balance models include codes such as HELP
(Schroeder et al.,, 1984), GLEAMS (Leonard et al., 1989), and PRZM-2 (Mullins et
al., 1993). Additionally, Bauer and Vaccaro (1987) developed a soil-water balance

model that has been applied to determine recharge for regional groundwater
models that cover extensive areas of the Pacific Northwest (Bauer and Vaccaro,
1990) and Kansas (Hansen, 1991).

All these vadose-zone water-balance models partition precipitation into runoff and

infiltration. Infiltration is further separated into components such as
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evapotranspiration, lateral drainage or interflow, soil-water storage, and deep
percolation by applying deterministic and empirical equations that describe each of
the processes. Potential and actual evapotranspiration are computed from historical
regional climatic data (e.g., precipitation, temperature, solar radiation), from on-site
weather measurements, or from default daily historical data for the nearest location
stored in the program library. Other factors such as the vegetation cover and
rooting characteristics aiso enter into the actual evapotranspiration analysis. Water
that cannot be held in storage or extracted by the plants becomes available for
deep percolation. Some models such as PRZM-2 take the deep percolation output
from the water balance in the root zone and also route this through the deeper
vadose zone using Richards equation for one-dimensional, unsaturated flow. For
this routing, the water balance models typically require soil hydraulic conductivity,
porosity, and moisture retention characteristics data or a limited set of soil
characteristic parameters including field capacity, wilting point, saturated moisture

content, and organic matter content.

The HELP model was developed by the U.S. Army Corps of Engineers to support
landfill design. In this context, the HELP model simulates water movement across,
into, fhrough, and out of landfills using input data on weather at the site, landfill
dimensions, and soil properties. However, in order to apply the HELP model to the
determination of natural recharge, landfill materials could be replaced by native
soils. Whether used to predict landfill seepage or natural recharge, deep
percolation through the vadose zone is simulated according to the Darcy flux
method using empirically derived values for unsaturated hydraulic conductivity
estimated from a Brooks-Corey (1964) based relationship (Equation 3-5). This
approach uses a limited set of soil properties, including total porosity and field
capacity, and does not require laboratory characterization of the entire moisture

retention characteristic curves.
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Several of the water balance models (e.g., HELP and PRZM-2) incorporate the
concept of field capacity (Figure 3-4). Field capacity for modeling purposes is
typically defined as the water content the soil can hold against gravity (e.g., Phillips
et al., 1993). Percolation below any soil layer is allowed in the models only if the
water content exceeds the field capacity. That is, if the water content is less than
field capacity, then it is assumed that either the plants will consume all the water or

the water will remain in the layer and no deep percolation can occur.

;There is significant research, however, to demonstrate that water percolation can
ziioccur under gravity at water contents much less than field capacity (Stephens,
1985, 1994). Thus, at poorly vegetated sites where water content is aimost always
less than field capacity, recharge should not occur, but Stephens and Knowlton
(1986) found that this is certainly not the case at a semiarid site in New Mexico. At
an instrumented plot in a chalk deposit in England, Wellings (1984) concluded that
the soil-water profile continuously changed over time, and no evidence supported
the validity of the field capacity and available water concepts (Figure 3-4) as they
relate to recharge. If recharge rates are low and the period of water balance
accounting is too long, then water balance models are likely to underestimate

recharge because of the approximate manner in which deep percolation is
calculated.

In spite of the concern about the use of field capacity, the HELP model has recently
been used to successfully predict deep percolation and recharge beneath a
proposed landfill in southern New Mexico (Stephens and Coons, 1994). The
simulated percolation rate compared very favorably with independent estimates of
recharge at the site using the chloride mass balance method and a Darcy flux
approach which used laboratory-determined values for unsaturated hydraulic
conductivity following the van Genuchten relationship (Equation 3-6). The close

agreement between the three approaches reported by Stephens and Coons (1994)
3-71

Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale




Copyright Ameril

API PUBLx4b43 9- B 0732290 0559398 425 WM

lends credibility to the use of the HELP model to estimate recharge, and further
supports the use of numerical models as a means of developing recharge

estimates.

The water balance model developed by Eagleson (1979) improves significantly in
the application of unsaturated flow physics and provides a probabilistic approach to
recharge (Milly, 1994). The model considers uncertainty in storm characteristics,
soil physical properties and one-dimensional vertical flow, evapotranspiration via
Penman’s equation, and groundwater flow out of the basin. Cumulative probability
density functions for recharge by this method have been developed for a sub-humid
site in Clinton, Massachusetts and for an arid site in Santa Paula, California
(Eagleson, 1978). These functions provide the return period or probability of

occurrence of recharge events of a particular magnitude.

Numerical Models Based on the Richards Equation. The Richards equation

(Richards, 1931) is the goveming equation for numerical models of unsaturated flow

within the vadose zone:

2 kw2 - oy ¥ (Equation 3-30)
0z 0z dt

where K(y) = Unsaturated hydraulic conductivity (LT™)

"} = Pressure head [L]

h = Total head (L)

C(y) = Specific moisture capacity = .g‘?_’ L1
z = Vertical coordinate

t = Time
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The left-hand side of Equation 3-30 represents the net inflow into a fixed volume of
the soil, and the right-hand side represents the net change in water storage in the
volume. For heterogenous systems, material properties are specified for each
layer. Richards equation is applicable to porous-media flow only and is not suitable
for simulations of macropore and fracture flow, unless these features are so
numerous at the scale of the model as to render the system equivalent to a

homogeneous porous medium.

There are a large number of numerical models for simulating soil-water processes,
including finite difference and finite element forms, based on one-, two-, or
three-dimensional forms of Richards equation (Table 3-3). There are many other
codes that include both flow and transport, such as VAM2D (Huyakorn et al., 1989)
and TRACRS3D (Travis, 1984). To account for infiltration and evapotranspiration in

~ these codes, in lieu of detailed meteorological information, the upper boundary of

the model and/or the root zone is usually specified as a constant or time-varying

| flux or pressure head. In contrast to the water balance models, the numerical
models allow the user to more realistically represent the physical properties of the
porous medium, including complex geology with spatially varying hydraulic
conductivity and water retention characteristics. When the lower boundary of the
model is specified as the water table, the water flux out of the base of the model
represents the groundwater recharge.

Large-scale applications of Richards equation-based numerical models to highly
heterogeneous soils with variable hydraulic properties and flow characteristics can
be extremely difficult and expénsive. Such applications require complex
discretization of the model domain and intensive determination of the hydraulic
properties to be used as input variables. Computer simulations for these situations
are prone to problems and require an enormous amount of CPU time. Because of

this, Richards equation-based numerical models are generally applied to reasonably

3-73

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBL*4b43 9 EE 0732290 0559400 903 W

Table 3-3. Available codes for single-phase (water) flow in the vadose zone

Code Name Dimensions Method Reference Code Type
2DSEEP 2 FEM OECD, 1990 Unknown
3DSEEP 3 FEM OECD, 1990 Unknown
AMOCO 3 FDM Odeh, 1981 Proprietary
ANGEL 3 FEM OECD, 1990 Unknown
BETA-II 3 FDM Odeh, 1981 Proprietary
BRUTSAERT1 2 FDM Oster, 1982 Public Domain
BRUTSAERT2 2 FDM Brutsaert, 1971 Public Domain
CMG 3 FDM Odeh, 1981 Proprietary
DELAAT 2 FEM Oster, 1982 Unknown
FEMWATER 2 FEM Yeh, 1987 Public Domain
FLUMP 2 FEM I1\l§7u1man and Witherspoon, Public Domain
GANDALF 2 FDM Morrison, 1977 Public Domain
GPSIM 3 FDM Odeh, 1981 Proprietary
GWHRT 3 FEM Carlsson et al., 1983 Unknown
MOMOLS 1 FDM Rojstocyer, 1981 Public Domain
PORES 3 FDM Oster, 1982 Unknown
REEVES- 2 FEM Reeves and Duguid, 1975 Public Domain
DUGUID
SHELL 3 FDM Odeh, 1981 Proprietary
SSC 3 FDM Odeh, 1981 Proprietary
STGWT/ 1 FDM De Smedt and van Beker, Unknown
MOG WT 1974
SUM2 2 FEM Oster, 1982 Unknown
SUPERMOCK 2 FDM Reed et al., 1976 Public Domain
TRIPM 2 FEM Gureghian, 1981 Public Domain
TRUST/TNN 3 IFDM Narasimhan, 1990 Public Domain
TS&E 3 Unknown Oster, 1982 Proprietary
UNFLOW 2 FEM Oster, 1982 Public Domain
UNSAT1 1 FEM van Genuchten, 1978b Public Domain
UNSAT1D 1 FDM Oster, 1982 Public Domain
UNSAT2 2 FEM Neuman et al., 1974 Unknown
UNSAT-H 1 FDM Fayer and Jones, 1990 Public Domain
VERGE 3 FEM Verge, 1976 Public Domain

FDM = finite difference method
FEM = finite element method
IFDM = integrated finite difference method
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simple scenarios with spatially averaged values for the soil hydraulic properties and
input parameters, often using overly-simplistic averaging schemes, which decrease
the reliability of the model results.

A number of theoretical improvements and modeling techniques have been
developed during the past several years which circumvent these limitations. The
most notable among these are the stochastic methods of Yeh et al. (1985a,b,c),
Mantoglou and Gelhar (1987a,b,c) and Mantoglou (1992). Yeh, Gelhar and Gutjahr
(1985a,b,c) first proposed a stochastic approach for incorporating "effective"
hydraulic properties and input parameters within numerical models of steady
unsaturated flow. Their work was expanded by Mantoglou and Gelhar (1987a,b,c)
to include non-steady flow and large-scale hysteresis of soil hydraulic properties.
Although these approaches were based on sound mathematical derivations and
received widespread acceptance within the scientific community, they both required
smoothly variable soil properties and flow characteristics in space and in time.
Further development by Mantoglou (1992) removed these restrictions, thereby

greatly extending the utility of stochastic modeling to include most realistic field
situations.

Subsequent model development and testing by Jensen and Mantoglou (1992)
confirmed this theoretical approach. The results of a comparison of field data with
the output of the stochastic modeling conducted by Jensen and Mantoglou (1992)
shows that their stochastic approach predicts average system behavior better than
models which use other schemes (e.g., geometric means) and provides a

“. .. rational framework for modeling large-scale, unsaturated flow and estimating

areal averages of hydrological processes in spatially variable soils."
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Groundwater Models

Groundwater flow models can also predict recharge when other hydrologic
information is known or assumed. In finite difference numerical models, for
example, a grid of cells is laid over the domain of interest, and representative
values of aquifer transmissivity and storage are assigned to the aquifer materials.
The concept here is to calibrate the model to observed water levels (hydraulic
heads) by adjusting the model parameters until model-predicted and observed
heads reach suitable agreement. The flux input to the water table necessary to
produce this agreement is then assumed to represent recharge. Examples of
modeling to compute recharge include the two-dimensional groundwater flow model
of the Ogallala aquifer in part of New Mexico (McAda, 1984) and the three-
dimensional groundwater flow model at Wright-Patterson Air Force Base in
southwestern Ohio (Dumouchelle et al., 1993), among many dozens of others.

Inasmuch as there is always some uncentainty associated with aquifer properties
and hydraulic heads, there is also uncertainty in the recharge estimate. The errors
in model input parameters, which are frequently large, will be accumulated in a
back-calibrated recharge estimate. Additionally, calibration by trial and error is quite
tedious and does not readily permit quantification of the uncertainty in the recharge.
However, automatic procedures, such as MODFLOWP (Hill, 1992), are now

available to facilitate calibration and parameter estimation.

~ Numerous groundwater model studies have focused on recharge, for example:

¢ Theis (1937) applied a steady-state analytical solution for a sloping water
table aquifer to predict recharge to the Ogallala aquifer by adjusting the
recharge in the vertical slice model until a reasonable match was achieved
between the shapes of the predicted water table and the observed water
table.

o Su (1994) developed analytical solutions for certain boundary conditions to
calculate transient recharge from precipitation, water-level hydrographs, and
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soil and aquifer properties; the analysis takes into account the sloping water
table and groundwater drainage.

¢ Lohman (1971) presented a graphical method to calculate diffuse areal

recharge where monitor wells were located in a five-spot pattern, much like a
finite difference cell.

¢ Based on the one-dimensional groundwater flow equation applied to water
table fluctuations for a project on Long Island, Jacob (1943) developed a

predictive relationship between a weighted average annual precipitation and
recharge.

¢ Simpson and Duckstein (1976) developed a discrete-state compartment, or
mixing cell, model which partitions the aquifer into cells, within which
conservation of mass is applied. Tracers are used to calibrate the model,
including carbon-14 (Campana and Simpson, 1984), tritium (Campana and
Mahin, 1985), and deuterium (Kirk and Campana, 1990).

¢  Where some information exists on recharge and its variability at certain
locations within a groundwater basin, a stochastic inverse method may be
useful to provide optimal estimates of the recharge throughout the entire
basin (Graham and Tankersley, 1994). Graham and Neff (1994), who applied
this analytical approach in conjunction with groundwater flow modeling of the
Upper Floridian Aquifer in northeast Florida, indicated that some of the
assumptions in the analytical method may need modification before the
method is widely applicable.
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Section 4
RECHARGE ESTIMATES

Because the process of infiltration is subject to complex interrelationships between
climate, vegetation, topography, surface soils, and vadose zone materials,
estimates of diffuse groundwater recharge vary significantly from region to region
across the many different environmental regimes of the United States. Estimates of
diffuse recharge for similar climatic regimes may also vary significantly because of

variability in site-specific physical conditions and the estimation technique used.

:: A compilation of estimates of diffuse annual recharge for 18 separate geographic

| regions of the United States (Figure A-1) is presented in Appendix A. The data
were compiled to (1) identify key studies and sources of information on recharge
estimates throughout the U.S., (2) determine the frequency with which techniques
are applied in various hydrogeological settings or climates, and (3) develop a
database for future statistical analysis. The estimates, based on the methodologies

discussed in Section 3, are presented by geographic region in Table A-1 and by
estimation technique in Table A-2.

In Appendix A, recharge is expressed as a percentage of mean annual

precipitation. Such an expression is often convenient and within a particular region
may provide an indication of the relative importance of recharge in the overall water
balance. However, when recharge events are infrequent, as they are in dry
climates, all the annual recharge could occur within a period of only days or weeks.
The actual recharge rate during the brief period of recharge would be significantly
greater than the annual recharge rate. On the other hand, many storms occur
during the year that do not lead to recharge. Consequently, expressing recharge as

a percentage of precipitation may be inappropriate, especially in areas of low
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precipitation. Allison et al. (1994) suggested that an empirical relationship between
precipitation and recharge would be most useful where mean annual recharge

exceeds about 50 mm.

In the following subsections, the various estimation techniques commonly applied in
recharge studies are compared on the basis of site characteristics, accuracy, cost,

and other, method-specific criteria.

COMPARISON OF METHODS FOR ESTIMATION OF DIFFUSE RECHARGE

Of the numerous techniques described in Section 3 and compiled in Table A-2,
most yield results that are problem- and scale-dependent. For example, for
determining site-specific recharge estimates, techniques that rely on very local
measurements are most appropriate. Such techniques include lysimeters, chemical
tracers, the Darcy flux and plane of zero flux methods, one-dimensional soil-water
balances and soil-water.models, and soil temperature methods based on near-
surface soil temperature gradients. These techniques will probably not provide data
representative of other similar geographic regions, or even of other sites in the
same basin or watershed, because of the spatial and temporal variability of factors
controlling the recharge process. Conversely, other techniques based on ground-
water models, regional water balances, aquifer temperature profiles, water-level
fluctuations, streamflow data, and basin outflow calculations provide recharge
estimates that are averaged over regional aquifers or basins and therefore may not
be fully representative of a specific site within the study region. Additionally,
because the recharge process differs between arid and humid environments (see
Section 2), some techniques are best suited for arid or semiarid environments (for
example, chemical methods in the vadose zone), whereas others are appropriate

only in humid environments (for example, streamflow data).
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Because of the variety of estimation techniques and conditions under which they
are optimally applied, we have attempted a comparison of the various methods
based on site conditions, relative cost and accuracy, and other method-specific
criteria. This method comparison is summarized in Table 4-1 and discussed in

more detail in the following subsections.

Soil-Water Balance

The techniques most widely used to estimate diffuse recharge are the soil-water
balance method and the use of streamflow data (discussed in the following
subsection). The soil-water balance method has been applied in a variety of
climates, from the arid and semiarid areas of the western United States to the more
humid regions of New England, the mid-Atlantic, and the Texas Gulf Coast. The
approach is used for studies varying in scale from land plots and small watersheds

to regional aquifers covering tens or hundreds of thousands of square kilometers.

From the compilation presented in Table A-2, one can see that recharge estimates
derived by applying the soil-water balance method over a large study area vary
significantly, sometimes up to two orders of magnitude. The technique is both
sensiﬁve to periods of accounting and subject to errors in averaging measurements
over large time and space domains. The accuracy of the method depends on the
accuracy of the component parameters, which are sometimes poorly known or
exhibit significant geographic and temporal variability.

The greatest uncertainty lies in estimating evapotranspiration, but other major
components of the water balance (precipitation, streamflow, runoff, changes in soil-
water storage) can also introduce substantial error and uncenrtainty. As Gee and
Hillel (1988) point out, because precipitation measurements are rarely more

accurate than 5% and evapotranspiration can be measured at best within £10%,
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recharge estimates based on precipitation énd evapotranspiration can vary by a
factor of three or more. Where calculation of the infiltration component of a water
balance relies on the measurement of unsaturated hydraulic conductivity, errors of a
factor of ten or more can be expected. The water balance method is most
applicable to humid or temperate regions and on a small scale, as for a point
release, a land plot, or a small watershed, where input parameters that rely on

climatic data have low variability.

Stream Gauging

The estimation technique that uses streamflow data is widely applied in humid
environments with stream-connected, shallow aquifers. The method relies on the
basic concepts of a basin-wide water balance and recognizes that the portion of
precipitation that infiltrates past the root zone and recharges the aquifer is then
available as baseflow to streams. This method is not appropriate for arid or
semiarid environments where ephemeral or losing streams dominate, but is
practical for application elsewhere. Some investigations (e.g., the Tennessee River
Basin [Hoos, 1990]) have applied a combined hydrologic balance and streamflow
study wherein hydrographs of stream discharge were used to solve the water
balance equation under the assumption that the aquifer was in steady state so that
discharge approximately equaled recharge. Where the steady-state assumption is
correct, this approach avoids the need to directly measure climatic parameters or
soil hydraulic properties and thus offers a simple, accurate alternative to the

conventional water balance.

Darcy Flux and Plane of Zero Flux Methods

Other physical methods commonly applied to the estimation of recharge, such as
the Darcy flux and the plane of zero flux methods, also have limitations. The Darcy

flux method relies on estimates of unsaturated hydraulic conductivity, which can

48
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vary by up to six orders of magnitude over ;the seasonal range of moisture contents
typically found in near-surface soils. It is difficult and time consuming to determine
hydraulic conductivity as a function of moisture content and pressure head, and the
difficulty and uncertainty increase with soil dryness. Measurements of unsaturated
hydraulic conductivity, and hence estimates of recharge based on that parameter,
are only considered accurate within an order of magnitude at best. Other significant
sources of uncertainty include hysteresis of the unsaturated hydraulic conductivity-
pressure head relationship, spatial variability of conductivity and moisture content,
and the occurrence of preferential flow.

The work of Stephens and Knowlton (1986) at an arid site in New Mexico
demonstrates the problems with the Darcy flux method by showing variations of
more than two orders of magnitude in recharge. In addition, this study found that
the annual recharge rate varied by more than a factor of five depending on how the
mean unsaturated hydraulic conductivity was calculated. When sufficient number of
measurements can be collected over a range of site moisture conditions (including
measurements during different seasons), this method is considered more accurate
than water balance techniques. However, errors of at least an order of magnitude
or mbre should be expected.

The plane of zero flux (or zero flux plane) method, which relies on distinguishing the
evapotranspiration and percolation components of total soil-water flux across a zero
flux plane, offers an alternative to the Darcy flux method. The zero flux plane can

f be accurately identified with inexpensive tensiometers, and water content changes

; below the zero flux plane, which constitute recharge, are also easily obtainable with
neutron logging. The overall accuracy of recharge estimates computed with this

method depends on the frequency of water content measurements and the spatial
variability of soil properties.
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A number of case studies in the United Kinédom have demonstrated that the zero
flux plane technique is a robust approach with a precision of about 20 mm/yr.
(Gardner et al.,, 1991). Dreiss and Anderson (1985) combined the zero flux plane
and water balance methods using weekly measurements at a land-plot scale to
obtain recharge estimates accurate within 15 percent or less. The main problem
with the approach is that it fails during extended periods of rainfall when soils are
close to saturation and the zero flux plane is not detectable. In such cases, Darcy
flux or soil-water balance methods, although accompanied by greater sources of
uncertainty and error, will prove more useful.

Soil-Water and Groundwater Models

A number of large-scale studies of diffuse natural recharge have relied on soil-water
models or groundwater models. Modeling tools are an extremely valuable means of
evaluating recharge (as well as other flow characteristics) and can be applied at
sites under any environmental or climatic conditions or on any scale. It is important
to keep in mind that errors in the model input parameters, which are frequently
significant, will be accentuated in the back-calibrated recharge estimate. For
example, most soil-water models rely directly or indirectly on estimates of hydraulic
conductivity and actual evapotranspiration, which as noted above can introduce

errors of an order of magnitude or more.

Lysimetry
Whereas lysimetry provides the only means of directly measuring recharge, the

accuracy of the technique depends on the validity of two important underlying
assumptions: (1) that the soil materials and conditions inside the lysimeter are
representative of in situ conditions outside the instrument, and (2) that all moisture
entering and stored in the lysimeter is accurately measured and accounted for.

Because of the nature of lysimeter construction, the first assumption is never

4-10
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completely valid, and great care must be taken to ensure the validity of the second
_assumption.

“Relative to other techniques, lysimeter measurements require complex field
instrumentation and long-term monitoring and maintenance at high cost for both
materials and labor. In humid environments, seasonal monitoring may be
adequate, but years of data are required in arid climates in order to achieve an
accurate estimate of average recharge. Additionally, the method provides very
localized estimates of recharge and cannot account for spatial variability. Because
of the practical time and cost limitations, the technique is not commonly used, but
when carefully applied, lysimetry provides estimates of recharge with a precision as
low as 1 mm/yr. (Gee and Hillel, 1988).

Other Physical Techniques

Other techniques relying on basin outflow analyses, soil temperature gradients, or
water-level fluctuations provide regionally averaged estimates of diffuse recharge.
The basin outflow method has the potential to work well if the aquifer boundaries
and recharge areas are well defined and transmissivity estimates are accurate.
Under these conditions, this method has been shown to produce recharge
estimates comparable to those obtained by soil-water balance and groundwater
modeling methods. The Bredehoeft and Papadopulos (1965) type-curve method is
the only technique relying on soil temperature gradient data that has been shown to
provide reasonable quantitative estimates of a recharge flux. Where the method
has been applied to deep aquifers with an upward temperature gradient, results
have also been shown to compare well with recharge estimates obtained from basin
water balance calculations. However, as mentioned above, these methods provide
a regionally averaged recharge estimate, and the comparative agreement with

results from water balance studies reflects a relatively low degree of accuracy

4-11
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compared with other site-specific techniqueé. The estimation method relying on
water-level fluctuations can also provide reasonable, regionally averaged recharge
values, and when combined with other site-specific point measurements, as in the
work by Sophocleous and Perry (1985), water-level fluctuations provide a clear,

quantitative depiction of the recharge process.

Chemical Methods
Chemical tracer techniques in the vadose zone are most appropriately applied in

arid or semiarid environments and can provide quantitative, reproducible, and
consistent estimates of recharge (e.g., Phillips et al., 1988; Scanlon, 1992). The
use of environmental tracers avoids many of the limitations and uncertainties
inherent in measuring physical parameters. Tracers allow direct measurement of
water and solute displacement in both the vadose zone and groundwater. Of the
variety of chemical methods available for estimating recharge, the most widely
applied techniques in the vadose zone are chloride mass balance and the bomb

tracers, chlorine-36 and tritium.

The conceptual model for movement of environmental tracers through the vadose
zone assumes piston displacement (thereby ignoring preferential flow and
dispersion). Furthermore, the application of chloride mass balance assumes a
constant input of meteoric chloride over time. Chloride concentration in precipitation
is the parameter with the greatest uncertainty in calculating a recharge flux to
groundwater when using the chloride mass balance technique. In assessing the
uncertainty in recharge estimates to the High Plains aquifer of Texas and New
Mexico, Wood and Sanford (1995) found that for every 0.1-mg/L difference in
weighted average chloride in precipitation, the calculated recharge flux was
changed by about 1.8 mm/yr.

4-12
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Aquifer Hydrochemistry

Hydrochemistry studies of aquifers, which rely on the same chemical signatures as
those used in vadose zone and other techniques, can also provide valuable
information concerning groundwater ages, sources of recharge, and aquifer flow
characteristics (e.g., Panno et al., 1994). However, these types of studies often
tend to provide more semiquantitative results and, if intended to provide quantitative
recharge estimates, require careful application with a thorough understanding of the
aquifer flow system. Although it has not received wide application due to its
relatively recent development, the technique involving co-measurement of tritium
and helium-3 is probably the most precise and definitive chemical method available
for determining groundwater ages and, hence, recharge (e.g., Ekwurzel et al., 1994;
Solomon et al., 1993).

4-13
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Section 5
CONSIDERATIONS AND RECOMMENDATIONS FOR SELECTING RECHARGE
s ESTIMATION TECHNIQUES

:In the previous sections, we have reviewed some of the concepts relevant to
groundwater recharge, identified methods to quantify it, and summarized some of
the applications of recharge analyses throughout the United States. This section
highlights things to consider when attempting to estimate site-specific recharge

rates and provides some basic recommendations for both humid and arid climates.

CONSIDERATIONS

When assessing the risk associated with contaminant migration in the vadose
zone, one should seek methods to assess the recharge that is likely to occur
in the future. The ideal approach would include methods that integrate over the
complete range of recharge events that have occurred in the past, as these are
considered a good indicator of mean recharge in the future. The usual alternative
is to establish field instrumentation at the site of interest and apply methods that
rely on the spatially distributed data or time series that are generated; however,

time and budget constraints usually do not pemmit such extensive data collection
efforts.

There are no universally acceptable methods to compute diffuse recharge that
can be applied to all sites. The method selected will depend on the site geology,
soil characteristics, depth to the water table, vegetation, and climatic conditions,
along with other factors such as time constraints, available budget, and the
importance of recharge to the success of the particular project. The comparison of
methods presented in Table 4-1 should provide a guide to the appropriate selection
of an estimation method based on optimal site characteristics, cost, and accuracy.
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Regardless of the method used, however, it is important to recognize the

uncertainty in the estimate.

Attempt to understand method uncertainty. The current state of the art is that,
except for lysimeter methods, all recharge methods are indirect techniques.
Therefore, one must recognize the uncertainty in the data required to compute
recharge and the degree to which this uncertainty translates into uncertainty in the

calculated recharge.

There can be many sources of uncertainty, including uncertainty in the conceptual
model and inherent assumptions that form the basis for each of the recharge -
methods and uncertainty in the parameters for each method. Because the sources
of uncertainty in each method differ, the results of the various methods are

expected to differ as well.

At present, there is no comprehensive analysis of uncertainty associated with each
of the recharge methods as they are applied to dry and humid climates. A site-
specific uncertainty analysis is recommended, when practical, to facilitate selecting
the appropriate recharge technique. Such analysis should quantify the precision
and accuracy that may be expected for each method applied under specific site
physical conditions. One approach to evaluate uncertainty is to apply different
techniques, including physical and chemical methods, to quantify recharge and to
then evaluate the range of values obtained by the different methods. Another
approach is to estimate the uncertainty associated with each parameter used in the
recharge calculation. Section 3 of this report provides both general and specific
information regarding parameter uncertainty where such information is available.
However, this information should be used only as a decision-making guide and not

as a substitute for a site- and method-specific uncertainty analysis.
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When time and budget are limited, one may find the local and regional
hydrogeological publications useful for estimating recharge. Excellent
resource materials are available at district offices of the U.S. Geological Survey and
state water or geological survey offices. From these sources one can compile
recharge estimates from previous investigations and evaluate their relevance to a
particular location. One should pay special attention to similarity of precipitation
ratios, soil type, and topographic features, as well as to vegetation type and density.
Where a range of possible appropriate recharge estimates are available in the
literature, use the maximum and minimum of those recharge values in the risk

assessment calculations.

iWhere site-specific measurements are required but time and resources are
still limited, one may consider an approach based on a one-time data
collection. The Darcy flux analysis based on laboratory tests of core samples or
field tests of hydraulic properties deep in the vadose zone is a reasonable
approach.

Where a unit gradient can be assumed (i.e., after prolonged periods of redistribution
or below the depth where evapotranspiration is significant), the Darcy flux analysis
requires an estimate of unsaturated hydraulic conductivity at the in situ moisture
content. Moisture content can be measured economically in the field by neutron
logging, and unsaturated hydraulic conductivity can be calculated using the Brooks-
Corey (1964) or van Genuchten (1978a) relationships (Section 3) from field or core
measurements of the moisture retention characteristic curves. Again, order of
magnitude uncertainty in the result may occur even under optimum (i.e., humid
climate) conditions.
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Where adequate resources are available, it intuitively makes good sense to
use both the chemical and physical methods for a specific site. Finally, if time
and resources are plentiful, lysimetry can be employed for direct measurement of

recharge.

RECOMMENDATIONS

Based on the discussion presented in this report, we offer some recommendations
for the most effective and appropriate methods for humid and arid climates. These
recommendations provide a general overview of the approaches that should be
considered for each setting. However, the specific physical, chemical, and climatic
conditions at each site and the data needs and objectives of each program must
also be taken into consideration when designing a site- and program-specific
recharge study. Accordingly, these recommendations may serve only as a guide to
the available methods in order to support the selection of the most suitable

approach for a given site and program.

Estimation Methods for Humid Climates

In humid climates where the water table is relatively shallow and much of the
groundwater recharge occurs by percolation of precipitation, the mean recharge
may best be derived from data collected in the upper portions of the aquifer.
Abundant recharge in relatively humid climates often produces significant water-
table fluctuations that facilitate application of a variety of physical methods to
quantify recharge using well hydrograph data. Chemical tracer techniques may
offer the best approach to obtain a time- and space-integrated estimate of recharge.
However, these techniques have not been widely used on site-specific risk
assessments. For areas where recharge is rapid and the groundwater age is less

than about 50 years, the tritum/helium-3 method may be most appropriate.
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Estimation Methods for Arid Climates

In areas of very low precipitation and scant, infrequent recharge, the long-term
mean recharge is best obtained from chemical information in the vadose zone.

This conclusion is especially true for deep water table conditions. The chloride
mass balance or chlorine-36 methods applied to soil samples are potentially useful
tracers of soil-water movement that potentially becomes recharge. Where wellis are
available for collecting groundwater samples and where recharge takes place over
thousands of years, recharge analysis by carbon-14 and chlorine-36 methods are
good choices. At some sites, such as near ephemeral streams and arroyos, rare
recharge events produce significant water-table responses that can also be applied
to recharge analyses.
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Sectiovn 6

Future Research

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale




API PUBLx4b43d 9 EE (0732290 0559425 cé63 W

Section 6
FUTURE RESEARCH

In spite of considerable research over the past 50 years into developing methods to
quantify recharge, a great deal of work remains to be completed regarding the
application of recharge data to contaminant transport problems. For these
problems, the contaminant transport rate is strongly dependent upon the recharge
rate, that is, the specific discharge below the root zone. In many soils, deep soil-
water movement is enhanced where precipitation at the surface infilirates rapidly
through the zone of evapotranspiration via macropores such as root holes, rodent
and insect burrows, and fractures. In cases where surface water ponds above a
vertically continuous macropore network, rapid contaminant migration would occur
compared to the migration rate within the adjacent porous media. Research is
needed to develop methods to determine whether macropore transport will occur at
a specific site and, if it does, over what portions of the site matrix and macropore
flow will the transport occur.

Macropores contribute to one of the sources of spatial variability in recharge;
however, there are others. For example, unstable flow, which may occur in some
layered or hydrophobic soils, leads to irregular wetting fronts and preferential
recharge through only a portion of a site. Research is needed to develop methods
for evaluating site conditions conducive to producing unstable flow. Additionally,
where preferential flow occurs, tools are needed to quantify its significance as it
relates to contaminant migration.

A better understanding of uncertainty in the estimates of recharge between different
methods and in various hydrogeologic and climatic settings is also needed. As

mentioned in Section 5, no comprehensive analysis of uncertainty associated with
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. each of the recharge methods exists as they are applied to dry and humid climates.

Additional field tests of the low cost, simpler estimation techniques compared

' against more rigorous measurement systems, under a variety of conditions, would
allow quantification of the uncertainty in recharge estimates likely used in RBCA

and other site-specific modeling efforts.

A final recommendation pertains to evaluating the existing database compiled in the
Appendix A of this report and making the information more usable. The existing
data should be statistically analyzed to identify a correlation between precipitation
and recharge for various physiographic provinces and climatic regimes. Factors
such as evapotranspiration, soil texture, water-table depth, and topography, for
example, could be incorporated into the recharge assessment through step-wise,
multiple regression methods. There may be different relationships that apply to
different areas of the country, in which case the results of the statistical correlation
could be presented graphically on a set of maps showing areas where recharge
studies have been conducted, the results of those studies, and the regressed
relationships. Such a set of maps would likely prove extremely useful to those
interested in inexpensive, approximate estimates of recharge at a given location
and setting.
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GLOSSARY
Advection: fluid migration induced by hydraulic pressure gradients.

Air-entry value: the value for matric potential at which water starts to drain from, and

air begins to enter into, the larger pores of a porous medium.

Anion exclusion: electrostatic repulsion of negatively charged molecules by

negatively charged particles within a fluid-solid system.

Anistropy: a characteristic of the transmissive properties of geologic media in which
the value of the property depends upon the direction that the property is

measured.

Available water: the difference between water content at field capacity and
permanent wilting.

Bulk density: mass of dry soil per unit volume of bulk soil; dry bulk density.

Capillary pressure: the difference in non-wetting and wetting fluid potentials; identical

to matric potential if the air, the non-wetting fluid, is at atmospheric pressure.

Capillary fringe: that part of the vadose zone immediately above a water table where
the media is satiated but the water is under tension.

- Contact angle: the angle created by the interface between a solid surface and fluid

phases in contact with that surface.
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Deep percolation: infiltration below the root zone depth, usually in the context of

irrigation.

Diffuse recharge: recharge from the vadose zone which originates as infiltration of

rain and snow melt over large portions of a watershed.

Diffusion: a transport process in which chemicals migrate in fluid due to

concentration gradients.

Dispersivity: a characteristic of the geologic medium describing tortuosity and

heterogeneity which affect mechanical mixing of chemicals during advection.

Distribution coefficient: the partitioning coefficient for a chemical, usually between

water and the solid phases.

Elevation head: gravitation (elevation) potential expressed in units of potential energy

per unit weight of fluid.

Evapotranspiration: the process of water discharge from the vadose zone by direct

evaporation of soil water and uptake by plant roots.

Field capacity: water content of a field soil two to three days following a thorough

irrigation; water content at -0.1 or -0.33 bars soil-water potential.

Field-saturated hydraulic conductivity: the term used to describe the hydraulic
conductivity of soils that are "field saturated” wherein entrapped air exists within a

portion of the pores.
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Gaining stream: a stream or reach of stream that receives water from the zone of
saturation; its channel lies below the water table.
Gravimetric water content: mass of water per unit mass of dry soil.

Gravitational potential: potential energy of soil-water due to its position above a

reference datum; identical to elevation potential.

Henry’s Law constant: the partitioning coefficient for a chemical between the gas and
liquid phases.

Hydraulic conductivity: volumetric rate of fluid flow per unit cross-sectional area under

a unit hydraulic gradient; ability of media to conduct a particular fluid.

Hydraulic gradient: fluid driving force per unit weight of fluid.

Hydrodynamic dispersion: a transport process causing chemical mixing in the
geologic media attributable to the net effects of molecular diffusion and
mechanical mixing in the advected liquid.

Hysteresis: a phenomenon describing a relationship between parameters, usually
pertaining to water transmission characteristic or storage parameters, in which the
parameter values depend on nature of the process.

Imbibition: the process of wetting a geologic median with water.

Infiltration: The entry into the soil of water made available at the ground surface and

the associated downward flow within the unsaturated zone.
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Infiltration rate: the rate of water movement into the soil per unit area due to gravity,
capillary and pressure forces, usually associated with vertical flux density across

the soil surface.

Interfacial tension: represents the potential energy associated with the surface area
'separating two immiscible fluids that is attributed to differences in cohesive forces

‘between molecules of the respective fluids.

Local recharge: recharge from the vadose zone which originates from concentrated

surface runoff in channels or seepage from impoundments.

Losing stream: a stream or reach of stream that contributes water to the zone of

saturation; its channel lies above the water table.

Macropore flow: fluid flow within macropores such as root and worm holes, animal
burrows, fractures, and large interconnected pores.

Matric potential: the component of soil-water potential relative to a reference state
due to capillary and adsorptive forces which hold water in porous or fractured

media.

Mean pore water velocity: volumetric flow rate of groundwater per unit area of
connected pore space. The mean pore water velocity varies from specific
discharge by incorporating effective porosity or effective water content to specify
the cross-sectional area of pore space across which groundwater flow actually

occurs.

Non-wetting fluid: in a mixture of phase-separated fluids, the non-wetting fluid is the

fluid which does not preferentially wet soil particles.
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Osmotic potential: the potential energy relative to a reference state attributed to

chemical concentrations in the soil water.

Partitioning: a transport process in which chemicals migrate between solid, liquid,
and gas phases.

Perched aquifer: an aquifer within the vadose zone created by a relatively low

permeable perching layer.
Permanent wilting: water content of soil at which plants become so dry that the plant
cannot survive even if the soil is rewetted; water content at -15 bars soil-water

potential.

Permeability: an intrinsic property of the porous or fractured media describing the

fluid transmissive character.
Phreatic zone: regional zone of saturation underlying the vadose zone.

Phreatophytes: water-loving plants that live with their roots below the water table and

extract their moisture requirements directly from the saturated zone.
Playa: a dry or shallow, ephemeral lake in the lowest part of an undrained arid basin.
Porosity: volume of voids per unit bulk volume of soil.

Pressure head: soil-water potential expressed in units of potential energy per unit
weight of fluid.
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Pressure potential: the potential energy relative to a reference state due to air

pressure or hydrostatic pressure.

Recharge: the entry of water into an aquifer across the water table surface,

expressed as a rate with units of velocity.

Redistribution: the simultaneous movement of soil water upward due to

evapotranspiration and downward due to infiltration.

Relative permeability: ratio of permeability at field water content to the permeability at

saturation.

Relative humidity: ratio of vapor pressure at ambient conditions to saturated vapor

pressure under the same conditions.

Relative hydraulic conductivity: ratio of hydraulic conductivity at field water content to

the saturated hydraulic conductivity.
Retardation factor: velocity of a chemical relative to the mean pore water velocity.
Satiated: maximum saturation achievable under prevailing field conditions.
Saturation percentage: volume of fluid per unit volume of void spacé.
Soil-water characteristic curve: the relationship between pressure head or soil-water

potential and water content of a porous or fractured media; the soil-water retention

curve.
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Soil-water diffusion coefficient: a mass transfer property of the medium describing the
chemical mass flux due to the concentration gradient; constant of proportionality in
Fick’s law of diffusion for soil.

Soil-water diffusivity: an unsaturated soil property which is the ratio of hydraulic
conductivity and specific water capacity; a constant of proportionality relating soil-
water flux and water content gradient.

Soil-water flux: volumetric rate of fluid flow per unit cross-sectional area
perpendicular to flow.

Soil-water potential: the potential energy of water in the vadose zone relative to a

reference state due to the sum of matric, pressure, and osmotic potential.

Soil-water retention curve: soil-water characteristic curve.

Specific discharge: volumetric flow rate of groundwater per unit surface area of
aquifer material or of porous media transmitting water. Specific discharge (“q")

has units of velocity and is proportional to hydraulic conductivity (see mean pore
water velocity).

Specific yield: volume of water released from or taken into storage per unit horizontal
area of an unconfirmed porous or fractured media per unit change in water table

elevation; storage coefficient of media under unconfined conditions.

- Specific retention: water content at which the water phase becomes virtually
discontinuous.
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Specific moisture (water) capacity: the volume of water released from or taken into
:'storage per unit horizontal area of geologic medium per unit change in pressure
head; slope of the soil-water characteristic (water content versus pressure head)
curve.

Surface Run-On: surface-water flow onto a given area.

Stochastic: of, or having to do with, processes that are controlled by random

mechanisms or events.

Thermal diffusion coefficient: constant of proportionality relating soil-water plus vapor

flux and temperature gradients.
Thermal diffusivity: the ratio of thermal conductivity to heat capacity.

Total hydraulic head: total soil-water potential expressed in units of potential energy
per unit weight of fluid.

Total soil-water potential: the sum of soil-water potential and gravitational potential.

Unsaturated media: porous or fractured media where the voids are occupied by both

water and air phases.
Vadose zone: geologic media between the land surface and the regional water table.
Void ratio: volume of voids per unit volume of solids.

Volumetric water content: volume of water per unit volume of bulk soil; also, water

content.
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Water-entry value: the value for matric potential at which water starts to enter the
finer pores of a porous medium.

Water-retention curve: soil-water retention curve; soil-water characteristic curve.

Water content: volumetric water content.

Water table: surface in a geologic medium where water pressure equals atmospheric
pressure.

Wetting fluid: in a mixture of phase-separated fluids, the wetting fluid is the fluid
which preferentially wets soil particles.
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Appendix A

Estimates of Diffuse
Annual Recharge
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