HEALTH AND ENVIRONMENTAL SCIENCES DEPARTMENT

API Publication Number 4615

JANUARY 1995

Emission Factors for Oil and Gas Production Operations

One of the most significant long-term trends affecting the future vitality of the petroleum industry is the public's concerns about the environment. Recognizing this trend, API member companies have developed a positive, forward looking strategy called STEP: Strategies for Today's Environmental Partnership. This program aims to address public concerns by improving our industry's environmental, health and safety performance; documenting performance improvements; and communicating them to the public. The foundation of STEP is the API Environmental Mission and Guiding Environmental Principles.

API ENVIRONMENTAL MISSION AND GUIDING ENVIRONMENTAL PRINCIPLES

The members of the American Petroleum Institute are dedicated to continuous efforts to improve the compatibility of our operations with the environment while economically developing energy resources and supplying high quality products and services to consumers. The members recognize the importance of efficiently meeting society's needs and our responsibility to work with the public, the government, and others to develop and to use natural resources in an environmentally sound manner while protecting the health and safety of our employees and the public. To meet these responsibilities, API members pledge to manage our businesses according to these principles:

- > To recognize and to respond to community concerns about our raw materials, products and operations.
- > To operate our plants and facilities, and to handle our raw materials and products in a manner that protects the environment, and the safety and health of our employees and the public.
- To make safety, health and environmental considerations a priority in our planning, and our development of new products and processes.
- To advise promptly, appropriate officials, employees, customers and the public of information on significant industry-related safety, health and environmental hazards, and to recommend protective measures.
- To counsel customers, transporters and others in the safe use, transportation and disposal of our raw materials, products and waste materials.
- > To economically develop and produce natural resources and to conserve those resources by using energy efficiently.
- To extend knowledge by conducting or supporting research on the safety, health and environmental effects of our raw materials, products, processes and waste materials.
- > To commit to reduce overall emission and waste generation.
- > To work with others to resolve problems created by handling and disposal of hazardous substances from our operations.
- To participate with government and others in creating responsible laws, regulations and standards to safeguard the community, workplace and environment.
- To promote these principles and practices by sharing experiences and offering assistance to others who produce, handle, use, transport or dispose of similar raw materials, petroleum products and wastes.

API PUBL*4615 95 **=** 0732290 0544604 966 **=**

Emission Factors for Oil and Gas Operations

Health and Environmental Sciences Departments

API PUBLICATION NUMBER 4615

PREPARED UNDER CONTRACT BY: STAR ENVIRONMENTAL P.O. BOX 13425 TORRANCE, CA 90503

DECEMBER 1994

API PUBL*4615 95 ■ 0732290 0544605 8T2 ■

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENT OF LETTERS PATENT.

Copyright © 1995 American Petroleum Institute

API PUBL*4615 95 **■ 0732290** 0544606 739 **■**

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT

Paul Martino, Ph.D., Health and Environmental Sciences Department

MEMBERS OF THE EXPLORATION & PRODUCTION CLEAN AIR ISSUES GROUP

Charles Tixier, Shell Oil Company, Chairperson
Tom Baker, Vastar Resources
Kerry Mire, Texaco Exploration & Production, Inc.
Vick Newsom, Amoco
C. Mark Pike, Exxon Corporation
Raghavan Ramanan, Ph.D., Mobil Exploration & Production U.S. Inc.
N.D. Shah, Ph.D., Conoco Inc.
Jim Strong, Unocal
Jenny C. Yang, Ph.D., Marathon Oil Company

API PUBL*4635 95 ■ 0732290 0544607 675 ■

PREFACE

This report presents final results of an API study entitled, *Emission Factors for Oil and Gas Production Operations*. The report supplements API Publication Number 4589, published in December 1993, entitled, *Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations*. Although API Publication Number 4589 contains correlation equations for several types of Exploration and Production (E&P) facilities and emission factors for those facilities, it does not contain emission factors for gas plants. This supplemental report contains emission factors for gas plants (as well as other E&P facilities) based upon the correlation equations recently published on the EPA electronic bulletin board. Emission factors for each component type were calculated by substituting screening values into the appropriate EPA correlation equation.

API PUBL*4615 95 🖿 0732290 0544608 501 📟

ABSTRACT

In 1980, the American Petroleum Institute (API) published emission factors for fugitive hydrocarbon emissions from onshore and offshore petroleum production sites. In 1993, API published the results of a joint study with the Gas Research Institute (GRI) at 20 oil and gas production sites, including light crude, heavy crude, gas production and offshore oil and gas facilities. The current report combines the 1993 API/GRI data with data from four additional gas processing plant sites. Emission factors contained in the current report replace the existing 1980 and 1993 API factors. More than 200,000 components were screened during the two recent studies using EPA Method 21 guidelines. Mass emission rates from nearly one thousand leaks were quantified. Approximately three-fourths of the quantified leaks were speciated to determine emission rates of total hydrocarbon, volatile organic compounds, and individual air toxics (i.e., benzene, toluene, ethyl benzene, and xylenes).

Recently published EPA correlation equations were used in combination with the 200,000 instrument screening values to produce new average and Leak/no-leak emission factors for oil and gas production operations. The new factors allow operators to more accurately quantify actual emissions from their sites. This greatly improves assessment of control technologies and selection of equipment to lower fugitive hydrocarbon emissions. As the new leak definition imposed by the Clean Air Act of 1990 becomes effective, results of this study will be indispensable to operators.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

TABLE OF CONTENTS

<u>PAGE</u>
EXECUTIVE SUMMARY ES-1
INTRODUCTION 1
API Report No. 4589
EPA August 1994 Correlation Equations
Current Study
COMBINED DATABASE 2
EPA CORRELATION EQUATIONS, DEFAULT ZERO FACTORS, AND PEGGED SOURCE FACTORS
CALCULATION OF EMISSION FACTORS 6
Contribution from Non-emitters 6
Contribution from Emitters from 10 to 9,999 ppmv
Contribution from Emitters That Pegged Instrument at 10,000 ppmv 8
Average Emission Factors for Each Site and Each Type of Component 8
Leak/No-leak Emission Factors for Each Type of Facility 16
ANALYSIS OF EMISSION FACTORS
Site to Site Comparison of Average Emission Factors
Comparison of Leak/No-leak Emission Factors
Comparison to API 1993 E&P Emission Factors
Sensitivity of Average Emission Factors to Screening Values 22
SPECIATION OF EMISSIONS
SUMMARY AND CONCLUSIONS
REFERENCES 24
LIST OF APPENDICES
APPENDIX A Field Inventory Sheet Data
APPENDIX B Emitter Data B-1

API PUBL*4615 95 🖿 0732290 0544610 16T 🖿

LIST OF TABLES

<u>TABLE</u>	<u> </u>	PAC	<u>涯</u>
1	Sites Used to Develop New E&P Emission Factors		3
2	August 1994 EPA Correlation Equations and Factors		4
3	Intersection of Default Zeros and Correlation Equations		6
4	Emission Rates Used for "Non-emitters"		7
5	Assumptions for Dividing API Connections by Type		7
6	Average Emission Factors by Site (lb/component-day))	.	9
7	Average Emission Factors by Site (kg/component-hr)		9
8	Average Emission Factors by Facility Type (lb/component-day)		10
9	Average Emission Factors by Facility Type (kg/component-hr)		10
10	Leak/No-leak Emission Factors by Facility Type (lb/component-day)		16
11	Leak/No-leak Emission Factors by Facility Type (kg/component-hr)		16
12	Average API 1993 THC Emissions Factors [lb/component-day]		17
13	Average API 1993 THC Emissions Factors [kg/component-hr]		18
14	Comparison of Average Emission Factors		18
15	Contribution of Each Screening Range to Average Emission Factors		22
16	Speciated Fugitive Emission Factors		23

API PUBL*4615 95 🖿 0732290 0544611 076 🖿

LIST OF FIGURES

<u>FIGUF</u>	<u>RE</u>	<u>AGE</u>
1	Relationship of Default Zero, Correlation Equation, and Pegged Factors (Connection and Flange)	5
2	Relationship of Default Zero, Correlation Equation, and Pegged Factors (Valve and Open End Line)	5
3	Relationship of Default Zero, Correlation Equation, and Pegged Factors (Pumps and Others)	6
4	Average Emission Factors for Light Crude Production Facilities	. 11
5	Average Emission Factors for Heavy Crude Production Facilities	. 12
6	Average Emission Factors for Gas Production Facilities	. 13
7	Average Emission Factors for Gas Plants	. 14
8	Average Emission Factors for Offshore Production Facilities	. 15
9	Connection Emission Factors	. 19
10	Flange Emission Factors	. 19
11	Open End Line Emission Factors	. 20
12	Light Liquid Pump Emission Factors	. 20
13	Gas Valve Emission Factors	. 21

EXECUTIVE SUMMARY

In December 1993, the American Petroleum Institute (API) published API Publication Number 4589, Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations (Star Environmental, 1993) which contains correlation equations and emission factors developed from the screening of 184,035 components at 20 sites. In August 1994, the US EPA published new correlation equations for the petroleum industry (see Table ES-3), based in part on the data contained in the API report.

This report contains new emission factors developed from the 1993 API data using the new EPA correlation equations. The new emission factors are generally higher than the 1993 API factors, but they are lower than the SOCMI factors, refinery factors, and gas plant factors published by the EPA in *Protocol for Equipment Leak Emission Estimate* (EPA, 1993). The new emission factors are highly dependent on the EPA pegged source emission factors. This report also contains emission factors for gas plants based on the data contained in the 1993 API report appendices and data collected at four additional gas plants as a part of this study.

Average emission factors, calculated for use with component inventories, are shown in Table ES-1. These factors can be used to predict total hydrocarbon emissions when screening data is not available and only the number of components installed at a site is known.

Table ES-1. Average Emission Factors by Facility Type (lb/component-day)

	Connection	Flange	Open End	Pump	Valve	Others
Light Crude	8.66E-03	4.07E-03	6.38E-02	1.68E-02	7.00E-02	3.97E-01
Heavy Crude	4.22E-04	1.16E-03	8.18E-03	no data	6.86E-04	3.70E-03
Gas Production	1.70E-02	6.23E-03	3.63E-02	1.03E-02	1.39E-01	4.86E-01
Gas Plants	1.45E-02	2.32E-02	5.46E-02	6.09E-01	2.04E-01	2.57E-01
Offshore	5.70E-03	1.04E-02	5.37E-02	1.03E-02	2.72E-02	3.67E-01

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Emission factors for connections and flanges are typically an order of magnitude lower than valve emission factors. Emission factors for onshore light crude production and onshore gas

production are similar and lower than emission factors for onshore gas plants. Emission factors for onshore heavy crude production are significantly lower than the other onshore emission factors. Offshore emission factors are lower than those for onshore light crude production or onshore gas production.

Leak/no-leak factors, calculated with a leak definition of 10,000 ppmv, are shown in Table ES-2. These factors can be used with leak/no-leak screening data to predict total hydrocarbon emissions.

Table ES-2. Leak/no-leak Emission Factors by Facility Type (lb/component-day)

	Connection	Flange	Open End	Pump	Valve	Others			
LEAK	LEAK (>10,000 ppmv)								
All Facilities	1.497	4.490	1.600	3.905	3.381	3.846			
NO-LEAK	(<10,000 ppmv)								
Light Crude	5.25E-04	1.24E-03	1.50E-03	1.68E-02	1.11E-03	9.01E-03			
Heavy Crude	4.41E-04	1.19E-03	8.86E-04	no data	6.95E-04	3.67E-03			
Gas Production	6.33E-04	1.30E-03	1.26E-03	1.03E-02	1.63E-03	7.92E-03			
Gas Plants	5.76E-04	1.44E-03	1.62E-03	4.30E-02	1.81E-03	9.09E-03			
Offshore	5.11E-04	1.33E-03	9.40E-04	1.03E-02	8.50E-04	3.76E-03			

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Total hydrocarbon emissions can also be calculated using component screening data and the new EPA correlation equations and factors shown in Table ES-3.

Table ES-3. August 1994 EPA Correlation Equations and Factors (lb/component-day)

Component	Default Zero	Correlation Equation	Pegged at 10,000 ppmv	Pegged at 100,000 ppmv
Connection	0.000441	THC = 7.97E-05(SV) ^{0.735}	1.497	1.570
Flange	0.000528	THC = 2.34E-04(SV) ^{0.703}	4.490	4.456
Open End	0.000671	THC = 1.14E-04(SV) ^{0 704}	1.600	4.177
Pump Seal	0.001621	THC = $2.54E-03(SV)^{0.610}$	3.905	8.448
Valve	0.000644	THC = 1.20E-04(SV) ^{0.746}	3.381	7.415
Other	0.000209	THC = 6.97E-04(SV) ^{0.589}	3.846	5.808

EPA's "other" category includes instruments, loading arms, pressure relief valves, stuffing boxes, and vents.

Speciated hydrocarbon emission rates can be calculated using total hydrocarbon emission rates obtained from either Table ES-1, ES-2, or ES-3 and the speciation factors contained in Table ES-4.

Table ES-4. Speciated Fugitive Emission Factors (Weight Fraction of THC emissions in each category)

	Methane	NMHC	voc	C6+	Benzene	Toluene	Ethyl- Benzene	Xylenes
Onshore Light Crude	0.613	0.387	0.292	0.02430	0.00027	0.00075	0.00017	0.00036
Onshore Heavy Crude	0.942	0.058	0.030	0.00752	0.00935	0.00344	0.00051	0.00372
Onshore Gas Production	0.920	0.080	0.035	0.00338	0.00023	0.00039	0.00002	0.00010
Onshore Gas Plants	0.564	0.436	0.253	0.00923	0.00123	0.00032	0.00001	0.00004
Offshore Oil & Gas	0.791	0.210	0.110	0.00673	0.00133	0.00089	0.00016	0.00027

NOTES: 1. Emission factor = Speciated Emissions/Total Emissions

- 2. NMHC = Non-methane hydrocarbon
- 3. VOC = Propane and heavier hydrocarbon

API PUBL*4615 95 ■ 0732290 0544615 741 ■

INTRODUCTION

API_Report No. 4589

The American Petroleum Institute (API) and the Gas Research Institute (GRI) conducted a field study of fugitive hydrocarbon emissions from 184,035 equipment components at 20 petroleum production facilities. A total of 4,796 components were found to be emitting hydrocarbons. Seven hundred and five (705) of the emitters were quantified and speciated into C1 through C6+ fractions. Approximately 25 percent of the samples were also analyzed for air toxics. Results of the study were published in *Fugitive Hydrocarbon Emissions for Oil and Gas Production Operations*, API Publication No. 4589 (Star Environmental, 1993).

The report contains emission correlation equations that relate instrument screening values to mass emission rates for four component types (connection, valve, open end line, others) at five types of production operations: 1) light crude production, 2) heavy crude production, 3) gas production, 4) gas processing, and 5) Gulf of Mexico (Gulf) offshore production. "Default zero" emission rates were defined for components with instrument screening values below 10 ppmv. Emission factors were derived for four of the five types of facilities using the emissions correlation equations and component screening values. Emission factors included average facility factors, component specific factors, "Leak/No-leak" factors, and stratified factors.

The study also developed profiles of speciated hydrocarbon emissions including air toxics, assessed regional differences in fugitive emissions, and assessed control of efficiency of Inspection and Maintenance programs.

The report contains a workbook with instructions on using emission factors and correlation equations. Inventory data, screening data, and leak quantification data for all 20 sites are contained in appendices published with the report.

EPA August 1994 Correlation Equations

In August 1994, the U.S. EPA published a single set of emissions correlation equations for the entire petroleum industry. The EPA equations were calculated by combining data from three reports: API Publication No. 4589 on exploration and production operations (Star Environmental, 1993), API Publication Nos. 4612 and 4613 on refineries (Radian, 1994), and

API Publication Nos. 4588 and 48881 on marketing terminals (Radian, 1993). The EPA equations, which yield higher emission rates than the equations used by API in Publication No. 4589, divide the components into six types (flange, other connection, valve, open end line, pump seal, other components) but combine all facility types including production facilities, refineries, and marketing facilities. The publication of these new EPA correlation equations created the need to revise the API emission factors given in API Publication No. 4589.

Current Study

This report contains a recalculation of API emission factors based on the new EPA correlation equations. The factors were developed using the component counts and screening data contained in API Publication No. 4589 and additional data collected at four gas plants. This report also contains emission factors for gas plants which were developed from data collected at the four gas plants monitored as a part of API's 1993 study and four additional gas plants monitored as part of this study. The new emission factors are slightly higher than the previous ones published by API, but are lower than the Synthetic Organic Chemical Manufacturing Industry (SOCMI) factors, refinery factors, and gas plant factors published by the EPA in *Protocol for Equipment Leak Emission Estimates* (EPA, 1993). Many of the EPA factors were based on 1970-1980 data and are not representative of current petroleum industry practices.

COMBINED DATABASE

Table 1 shows general screening data for 20 sites included in Publication No. 4589 (Sites 1 through 20) and four additional sites monitored as a part of the current effort (Sites 21 through 24). The table lists the sites by type and identification number, and includes: the number of components screened; the number components classified as non-emitters (instrument screening values less than 10 parts-per-million, by volume, methane equivalence [ppmv]); the number of components with screening values from 10 through 9,999 ppmv, and the number with screening values of 10,000 ppmv or more. Detailed screening data for Sites 1 through 20 are included in Publication No. 4589; detailed screening data for Sites 21 through 24 are contained in Appendix A of this report.

Information recorded for each emitter includes component type (flange, other connector, open end line, pump seal, valve, others), component size in inches, and instrument screening

value. Emitter data for Sites 1 through 20 are appended to Publication No. 4589; emitter data for Sites 21 through 24 are contained in Appendix B of this report. Mass emission rates from a total of 945 leaks were quantified. Emission rates for 705 leaks quantified at sites 1 through 20 are appended to Publication No. 4589; emission rates for 240 leaks quantified at sites 21 through 24 are included in Appendix C of this report.

Table 1. Sites Used to Develop New E&P Emission Factors

	Site	Components	Non-	Emitters	Emitters
Facility Type	No.	Screened	Emitters	10 to 9,999 ppmv	>10,000 ppmv
Light Crude	1	27,155	26,633	275	247
Light Crude	2	14,620	14,330	182	108
Light Crude	3	4,095	4,011	57	27
Light Crude	4	2,782	2,687	60	35
Heavy Crude	5	6,362	6,343	19	0
Heavy Crude	6	2,799	2,778	19	2
Heavy Crude	7	2,696	2,688	8	0
Heavy Crude	8	1,899	1,885	14	0
Gas Production	9	14,066	13,742	198	126
Gas Production	10	9,374	9,058	200	116
Gas Production	11	9,094	8,466	310	318
Gas Production	12	7,644	7,399	157	88
Gas Plant	13	11,235	10,819	250	166
Gas Plant	14	10,673	10,057	330	286
Gas Plant	15	7,786	7,483	143	160
Gas Plant	16	6,070	5,790	114	166
Offshore Platform	17	15,734	15,516	141	77
Offshore Platform	18	10,967	10,822	75	70
Offshore Platform	19	10,271	10,178	68	25
Offshore Platform	20	8,713	8,554	88	71
Gas Plant	21	6,106	5,941	109	56
Gas Plant	22	4,412	4,396	10	6
Gas Plant	23	8,047	7,832	30	185
Gas Plant	24	2,797	2,686	5	106
Totals		205,397	200,094	2,862	2,441

EPA CORRELATION EQUATIONS, DEFAULT ZERO FACTORS, AND PEGGED SOURCE FACTORS

Table 2 gives the August 1994 EPA correlation equations, default zero factors, factors for sources pegged at 10,000 ppmv, and factors for sources pegged at 100,000 ppmv as published on EPA's electronic bulletin board. Default zero factors are used for components that do not give significant instrument screening values (zero instrument reading). Pegged

factors are used for components that give instrument screening values equal to or greater than 10,000 ppmv or 100,000 ppmv, respectively. Correlation equations are used to calculate emissions for components with instrument screening values between the default zero levels and pegged values. Compressor seals and dump lever arms were inadvertently left out of the "others" category when the factors and equations were published on EPA's electronic bulletin board.

Table 2. August 1994 EPA Correlation Equations and Factors (lb/component-day)

Component	Default Zero	Correlation Equation	Pegged at 10,000 ppmv	Pegged at 100,000 ppmv
Connection	0.000441	THC = $7.97E-05(SV)^{0.735}$	1.497	1.570
Flange	0.000528	THC = $2.34E-04(SV)^{0.703}$	4.490	4.456
Open End	0.000671	THC = 1.14E-04(SV) ^{0.704}	1.600	4.177
Pump Seal	0.001621	THC = $2.54E-03(SV)^{0.610}$	3.905	8.448
Valve	0.000644	THC = $1.20E-04(SV)^{0.746}$	3.381	7.415
Other	0.000209	THC = $6.97E-04(SV)^{0.589}$	3.846	5.808

EPA's "other" category includes instruments, loading arms, pressure relief valves, stuffing boxes, and vents.

For this report, average emission factors were calculated using pegged source values of 10,000 ppmv rather than 100,000 ppmv for the following reasons:

Some monitoring instruments do not give direct measurements above 10,000 ppmv;

Some agency regulations contain 10,000 ppmv as the definition of a leak; and,

"Leak/No-leak" emission factors published by EPA for other industries have 10,000 ppmv as the division point between "leaking" and "non-leaking" components.

Total emissions calculated using 10,000 ppmv pegged factors are generally more conservative (higher) than those calculated using 100,000 ppmv pegged factors

Figures 1 through 3 show relationships between the EPA default zeros, correlation equations, and 10,000 ppmv pegged factors. The intersection of the default zero factor and the correlation equation is different for each type of component. Table 3 lists the intersections of the default zeros and the correlation equations.

Figure 1. Relationship of Default Zero, Correlation Equation, and Pegged Factor (Connection and Flange)

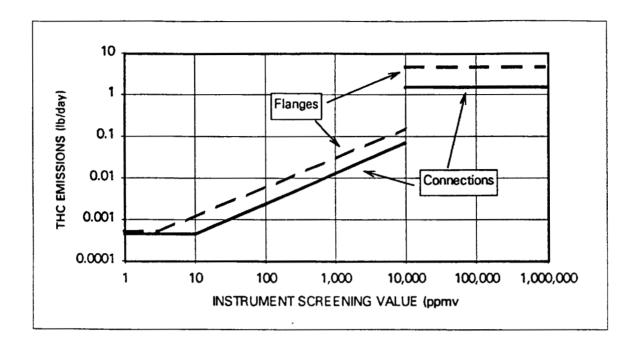


Figure 2. Relationship of Default Zero, Correlation Equation, and Pegged Factor (Valve and Open End Line)

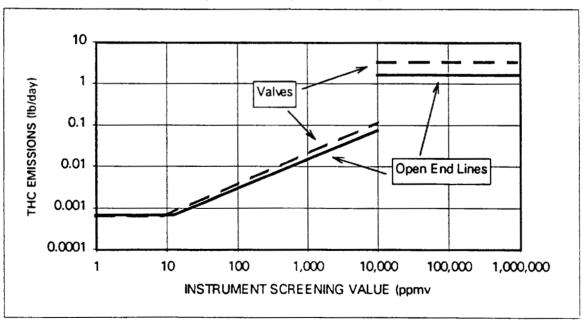


Figure 3. Relationship of Default Zero, Correlation Equation, and Pegged Factor (Pumps and Others)

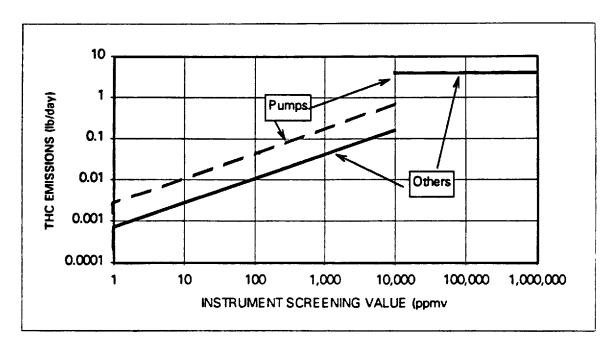


Table 3. Intersection of Default Zeros and Correlation Equations (lb/component-day)

r=====================================		<u></u>
	EPA Default Zero	Equivalent Equation (ppmv)
Connection	0.000441	10.25
Flange	0.000528	3.18
Open End	0.000671	12.40
Pump	0.001621	0.48
Valve	0.000644	9.50
Others	0.000209	0.13

CALCULATION OF EMISSION FACTORS

Emission factors were calculated by adding the contributions of three screening ranges to total emissions: non-emitters, emitters from 10 to 9,999 ppmv, and emitters pegged at 10,000 ppmv (see Table 4).

Contribution from Non-emitters

Adjustment for Minimum Instrument Screening Values. The API database contains 200,094 instrument screening values of less than 10 ppmv (uncorrected for background). It is not

possible in all cases to determine whether the corrected screening values were zero or some number between 1 and 9 ppmv. To be conservative, they were assumed to have screening values of 10 ppmv above background. Emissions from connections and open end lines in this group were calculated using the appropriate EPA default zeros; emission rates for flanges, pumps, valves, and other components in this category were calculated at a screening value of 10 ppmv. Table 4 shows the emission rates used to calculate the emissions of these components.

Table 4.	Emission	Rates	Used for	"Non-Emitters"	(lb/component-day)
----------	----------	-------	----------	----------------	--------------------

	EPA Default Zero	Equivalent Equation ppmv	Non-Emitter ppmv used	Non-Emitter Emission Rate used
Connection	0.000441	10.25	10.25	0.000441
Flange	0.000528	3.18	10.00	0.001183
Open End	0.000671	12.40	12.40	0.000671
Pump	0.001621	0.48	10.00	0.010348
Valve	0.000644	9.50	10.00	0.000671
Others	0.000209	0.13	10.00	0.002703

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Adjustment for Flange and Other Connector Designations. The API 1993 database separates components as connection, valve, open-ended line, pump seal, compressor seal, pressure relief valve, instrument, hatch, polished rod stuffing box, dump lever arm, vent, meter, and drain. The database does not differentiate between non-emitting connections and non-emitting flanges; both types of components are included in a single category. Calculations in this report are based on a division of the connections into two categories: flange and other connections. Table 5 shows the assumptions used for assigning components to each category. These assumptions were based on component counts at sites 21 through 24 and additional inventory work at two light crude production sites. The sensitivity of the emission factors to these assumptions is discussed later in this report.

Table 5. Assumptions for Dividing API Connections by Type

Type of Site	Connection	Flange
Onshore Light Crude Production	71%	29%
Onshore Heavy Crude Production	71%	29%
Onshore Gas Production	86%	14%
Onshore Gas Plants	70%	30%
Offshore Oil and Gas Production	79%	21%

API PUBL*4615 95 **=** 0732290 0544622 981 **=**

Contribution of Emitters from 10 to 9,999 ppmv

EPA correlation equations shown in Table 2 were used to calculate emission rates for components with screening values from 10 to 9,999 ppmv. The API 1993 database differentiates between emitting connections and emitting flanges, therefore no assumptions were necessary for this category of emitters.

Contribution from Emitters That Pegged Instrument at 10,000 ppmv

EPA 10,000 ppmv pegged emission factors shown in Table 2 were used for components with screening values of 10,000 ppmv or more. The API 1993 database differentiates between pegged connections and pegged flanges, therefore no assumptions were necessary for this category of emitters.

Average Emission Factors for Each Site and Each Type of Component

Table 6 contains individual component emission factors (in lb/component-day) for each of the 24 sites except the heavy crude production sites which have been combined. These factors are average factors obtained by combining emissions for each type of component from all three screening ranges (non-emitters; emitters from 10 to 9,999 ppmv; and emitters pegged at 10,000 ppmv) and dividing by the total number of components of that type. Table 7 contains the same factors expressed in kg/component-hour.

Table 8 contains emission factors calculated after the data were grouped by type of site: onshore light crude production (Sites 1 through 4), onshore heavy crude production (Sites 5 through 8), onshore gas production (Sites 9 through 12), onshore gas plants (Sites 13 through 16 and Sites 21 through 24), and offshore oil and gas production (Sites 17 through 20). Table 9 contains the same data expressed in kg/component-hr. These factors can be used to predict total hydrocarbon emissions when screening data is not available and only the number of components installed at a site is known.

Table 6. Average Emission Factors by Site (lb/component-day)

	Connection	Flange	Open End	Pump	Valve	Others
Site 1	1.14E-02	3.48E-03	1.36E-01	1.03E-02	6.11E-02	5.58E-01
Site 2	5.23E-03	5.07E-03	3.93E-02	3.50E-02	1.04E-01	1.72E-01
Site 3	3.38E-03	6.28E-03	3.80E-02	1.03E-02	4.04E-02	4.01E-01
Site 4	9.29E-03	1.21E-03	7.71E-02	1.03E-02	9.21E-02	1.55E+00
Sites 5-8	4.22E-04	1.16E-03	8.18E-03	no data	6.86E-04	3.70E-03
Site 9	1.08E-02	1.20E-02	4.60E-02	1.03E-02	8.15E-02	3.09E-01
Site 10	7.13E-03	1.37E-03	1.97E-02	no data	1.01E-01	1.27E+00
Site 11	4.61E-02	5.60E-03	3.06E-02	1.03E-02	2.78E-01	3.01E-01
Site 12	5.76E-03	1.16E-03	5.92E-02	no data	1.37E-01	3.24E-01
Site 13	9.66E-03	1.72E-02	4.13E-02	2.17E-01	1.47E-01	7.71E-01
Site 14	2.18E-02	2.76E-02	5.12E-02	7.96E-01	2.68E-01	2.42E-01
Site 15	1.22E-02	4.69E-02	6.90E-02	1.22E+00	2.49E-01	4.92E-02
Site 16	2.20E-02	2.63E-02	1.32E-01	1.31E+00	2.84E-01	2.61E-01
Site 17	6.65E-03	9.66E-03	4.40E-02	1.03E-02	2.42E-02	2.10E-01
Site 18	1.90E-03	1.73E-02	7.31E-02	1.03E-02	3.46E-02	1.16E+00
Site 19	3.64E-03	4.22E-03	1.65E-02	1.03E-02	1.33E-02	2.69E-03
Site 20	1.05E-02	1.03E-02	6.41E-02	1.03E-02	4.69E-02	3.00E-01
Site 21	8.08E-03	2.09E-02	7.13E-03	1.03E-02	7.29E-02	4.37E-01
Site 22	8.98E-04	1.54E-02	5.32E-02	1.03E-02	9.03E-03	2.69E-03
Site 23	2.19E-02	1.16E-03	6.86E-04	1.03E-02	2.36E-01	2.69E-03
Site 24	8.18E-03	1.30E-02	6.86E-04	no data	3.84E-01	2.69E-03

"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Table 7. Average Emission Factors by Site (kg/component-hr)

			1.13. 0	Jinponone	,	
	Connection	Flange	Open End	Pump	Valve	Others
Site 1	2.16E-04	6.60E-05	2.58E-03	1.96E-04	1.16E-03	1.06E-02
Site 2	9.90E-05	9.60E-05	7.44E-04	6.63E-04	1.97E-03	3.27E-03
Site 3	6.40E-05	1.19E-04	7.20E-04	1.96E-04	7.65E-04	7.60E-03
Site 4	1.76E-04	2.30E-05	1.46E-03	1.96E-04	1.75E-03	2.94E-02
Sites 5-8	8.00E-06	2.20E-05	1.55E-04	no data	1.30E-05	7.00E-05
Site 9	2.04E-04	2.28E-04	8.72E-04	1.96E-04	1.54E-03	5.84E-03
Site 10	1.35E-04	2.60E-05	3.73E-04	no data	1.92E-03	2.40E-02
Site 11	8.73E-04	1.06E-04	5.79E-04	1.96E-04	5.26E-03	5.69E-03
Site 12	1.09E-04	2.20E-05	1.12E-03	no data	2.60E-03	6.14E-03
Site 13	1.83E-04	3.25E-04	7.82E-04	4.12E-03	2.78E-03	1.46E-02
Site 14	4.12E-04	5.23E-04	9.69E-04	1.51E-02	5.08E-03	4.58E-03
Site 15	2.31E-04	8.88E-04	1.31E-03	2.31E-02	4.72E-03	9.31E-04
Site 16	4.16E-04	4.98E-04	2.50E-03	2.49E-02	5.38E-03	4.95E-03
Site 17	1.26E-04	1.83E-04	8.34E-04	1.96E-04	4.58E-04	3.97E-03
Site 18	3.60E-05	3.28E-04	1.39E-03	1.96E-04	6.56E-04	2.19E-02
Site 19	6.90E-05	8.00E-05	3.13E-04	1.96E-04	2.51E-04	5.10E-05
Site 20	1.99E-04	1.95E-04	1.21E-03	1.96E-04	8.89E-04	5.69E-03
Site 21	1.53E-04	3.95E-04	1.35E-04	1.96E-04	1.38E-03	8.28E-03
Site 22	1.70E-05	2.91E-04	1.01E-03	1.96E-04	1.71E-04	5.10E-05
Site 23	4.14E-04	2.20E-05	1.30E-05	1.96E-04	4.48E-03	5.10E-05
Site 24	1.55E-04	2.47E-04	1.30E-05	no data	7.27E-03	5.10E-05

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

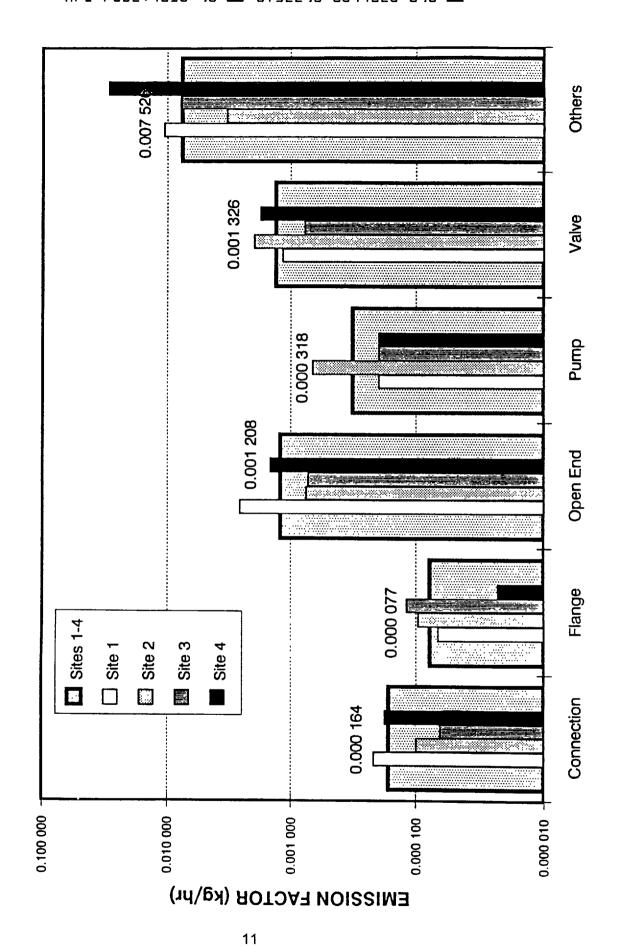
API PUBL*4615 95 ■ 0732290 0544624 754 ■

Table 8. Average Emission Factors by Facility Type (lb/component-day)

	Connection	Flange	Open End	Pump	Valve	Others
Light Crude	8.66E-03	4.07E-03	6.38E-02	1.68E-02	7.00E-02	3.97E-01
Heavy Crude	4.22E-04	1.16E-03	8.18E-03	no data	6.86E-04	3.70E-03
Gas Production	1.70E-02	6.23E-03	3.63E-02	1.03E-02	1.39E-01	4.86E-01
Gas Plants	1.45E-02	2.32E-02	5.46E-02	6.09E-01	2.04E-01	2.57E-01
Offshore	5.70E-03	1.04E-02	5.37E-02	1.03E-02	2.72E-02	3.67E-01

"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Table 9. Average Emission Factors by Facility Type (kg/component-hr)


	Connection	Flange	Open End	Pumps	Valve	Others
Light Crude	1.64E-04	7.70E-05	1.21E-03	3.18E-04	1.33E-03	7.53E-03
Heavy Crude	8.00E-06	2.20E-05	1.55E-04	no data	1.30E-05	7.00E - 05
Gas Production	3.22E-04	1.18E-04	6.87E-04	1.96E-04	2.63E-03	9.20E-03
Gas Plants	2.74E-04	4.39E-04	1.04E-03	1.15E-02	3.87E-03	4.87E-03
Offshore	1.08E-04	1.97E-04	1.02E-03	1.96E-04	5.16E-04	6.95E-03

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

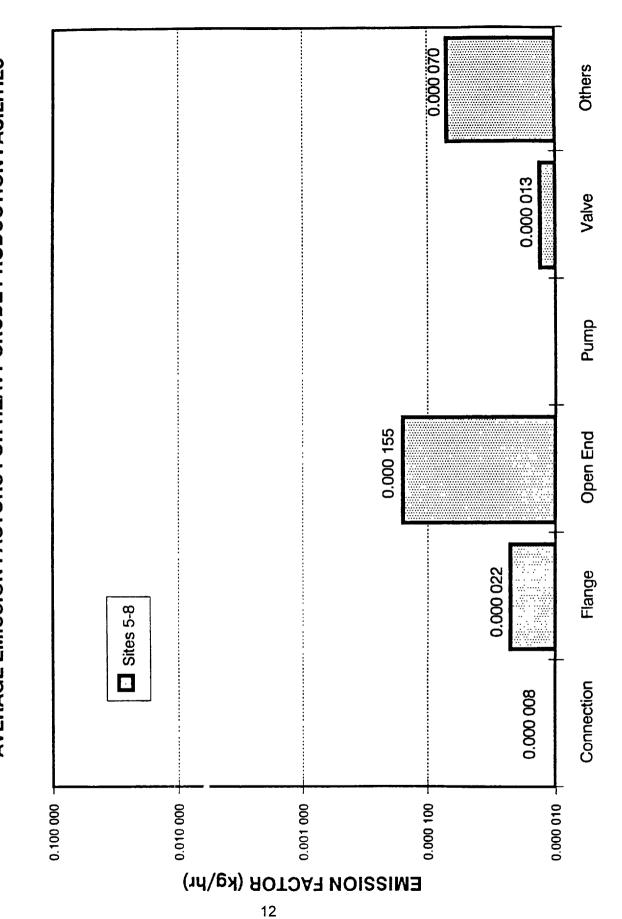

On the following pages, Figures 4-8 compare the individual and group emission factors. The group emission factors are shown as shaded columns behind the narrow columns representing individual emission factors.

Figure 4

AVERAGE EMISSION FACTORS FOR LIGHT CRUDE PRODUCTION FACILITIES

AVERAGE EMISSION FACTORS FOR HEAVY CRUDE PRODUCTION FACILITIES Figure 5

AVERAGE EMISSION FACTORS FOR GAS PRODUCTION FACILITIES Figure 6

Others 0.009 204 0.002 629 Valve 0.000 196 Pump Open End 0.000 687 Flange 0.000 118 B Sites 9-12 Site 10 Site 11 Site 12 Site 9 = Connection 0.000 322 0.100 000 0.010 000 0.001 000 0.000 100 0.000 010 EMISSION FACTOR (kg/ht)

AVERAGE EMISSION FACTORS FOR GAS PLANTS

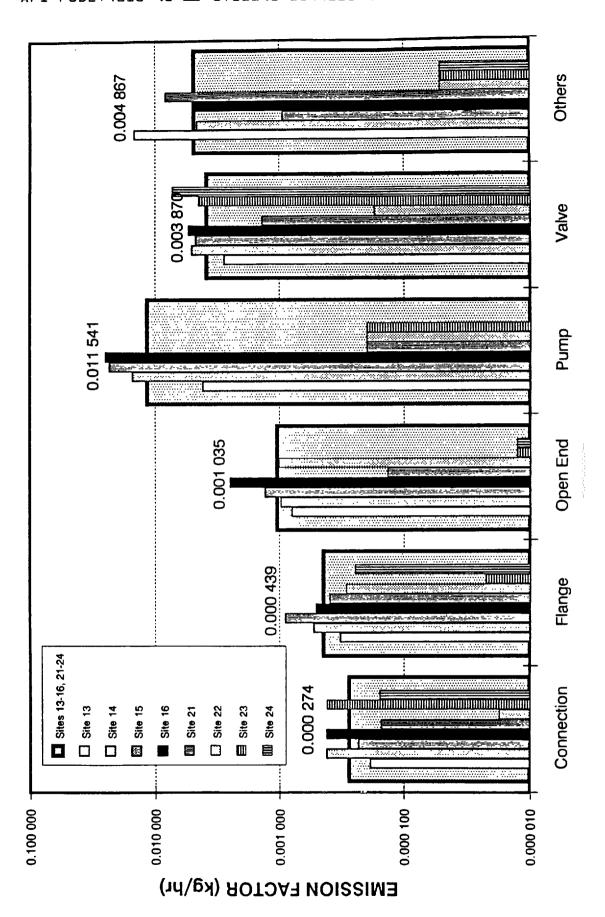
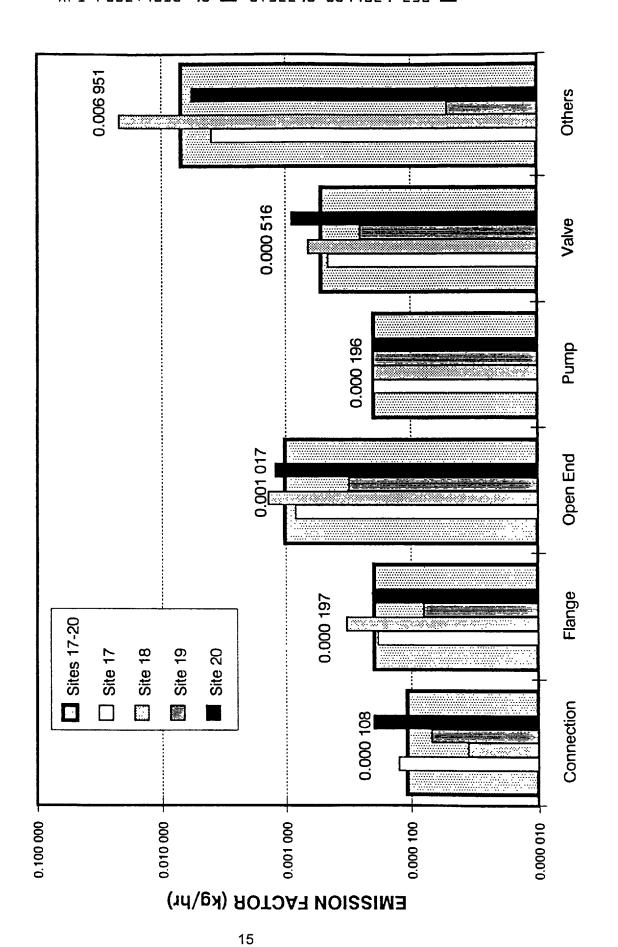



Figure 8

AVERAGE EMISSION FACTORS FOR OFFSHORE PRODUCTION FACILITIES

Leak/No-leak Emission Factors for Each Type of Facility

Leak/no-leak emission factors were calculated for each type of facility (onshore light crude production; onshore heavy crude production; onshore gas production; onshore gas plants; and offshore production) using a leak definition of 10,000 ppmv. The Leak factors for all sites and component types are the EPA 10,000 ppmv pegged source values. The No-leak factors were calculated by adding the emissions from all components with screening values of 9,999 ppmv or less (including default zero components) and dividing by the total number of components. Table 10 gives the Leak/No-leak emission factors in lb/component-day; Table 11 gives the factors in kg/component-hr.

Table 10. Leak/no-leak Emission Factors by Facility Type (lb/component-day)

					<u> </u>	101110 010037		
	Connection	Flange	Open End	Pump	Valve	Others		
≥10,000 ppmv								
All Facilities	1.497	4.490	1.600	3.905	3.381	3.846		
<10,000	ppmv							
Light Crude	5.25E-04	1.24E-03	1.50E-03	1.68E-02	1.11E-03	9.01E-03		
Heavy Crude	4.41E-04	1.19E-03	8.86E-04	no data	6.95E-04	3.67E-03		
Gas Production	6.33E-04	1.30E-03	1.26E-03	1.03E-02	1.63E-03	7.92E-03		
Gas Plants	5.76E-04	1.44E-03	1.62E-03	4.30E-02	1.81E-03	9.09E-03		
Offshore	5.11E-04	1.33E-03	9.40E-04	1.03E02	8.50E-04	3.76E-03		

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Table 11. Leak/no-leak Emission Factors by Facility Type (kg/component-hr)

	Connection	Flange	Open End	Pump	Valve	Others		
≥10,000 ppmv								
All Facilities	0.02836	0.08504	0.03031	0.07395	0.06403	0.07285		
<10,000	ppmv							
Light Crude	9.94E-06	2.35E-05	2.85E-05	3.18E-04	2.10E-05	1.71E-04		
Heavy Crude	8.35E-06	2.25E-05	1.68E-05	no data	1.32E-05	6.96E-05		
Gas Production	1.20E-05	2.47E-05	2.39E-05	1.96E-04	3.08E-05	1.50E-04		
Gas Plants	1.09E-05	2.73E-05	3.06E-05	8.14E-04	3.42E-05	1.72E-04		
Offshore	9.67E-06	2.51E-05	1.78E-05	1.96E-04	1.61E-05	7.12E-05		

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

ANALYSIS OF EMISSION FACTORS

Site to Site Comparison of Average Emission Factors

Individual emission factors for onshore light crude production sites vary slightly from one site to another. The variation is random; none of the sites has emissions factors that are consistently higher or lower than the average emission factors for the four sites. The same is generally true of emission factors for onshore gas production sites. Emission factors for Site 10 are lower than the average in most cases, but the difference is only slight for valves and open end lines.

Individual emission factors for onshore gas plants are fairly consistent for the three main categories: connection, flange, and valve. Individual emission factors for Sites 21 and 22 are lower than 5 of the 6 average factors. These sites processed natural gas with a hydrogen sulfide content of 2 percent and greater, consequently, equipment inspection and maintenance activities were at a relatively high level.

Individual emission factors for offshore oil and gas production platforms vary from site to site. Individual emission factors for Site 19 are slightly lower than the average emission factor for the four sites.

Comparison of Leak/no-leak Emission Factors

No-leak factors are all extremely small compared to Leak factors, the largest (for pumps) still being no more than 4% of the Leak factors.

Comparison to API 1993 E&P Emission Factors

Table 12 shows emission factors given in the 1993 API report; the units are pounds of hydrocarbon emissions per component-day. Table 13 shows the same emission factors converted to kilograms per component-hour. The API report did not contain emission factors for gas plants.

Table 12. Average API 1993 THC Emission Factors (lb/component-day)

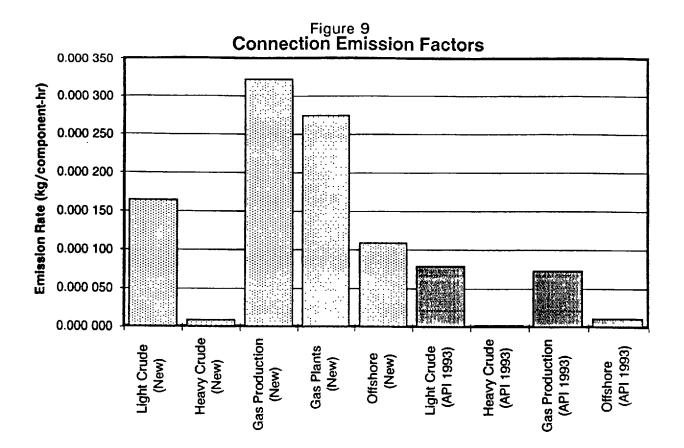
	Connection	Valve	Open End	Others
Onshore Light Crude	4.10E-03	1.97E-02	3.51E-02	9.91E-02
Onshore Heavy Crude	1.00E-04	2.00E-04	1.00E-03	7.00E-04
Onshore Gas Production	3.80E-03	1.06E-01	1.07E-02	2.87E-01
Offshore Oil and Gas	6.00E-04	2.17E-02	9.90E-03	1.04E-01

[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

API PUBL*4615 95 ■ 0732290 0544632 820 ■

Table 13. Average API 1993 THC Emission Factors (kg/component-hr)

	Connection	Valve	Open End	Others
Onshore Light Crude	7.77E-05	3.73E-04	6.65E-04	1.88E-03
Onshore Heavy Crude	1.89E-06	3.79E-06	1.89E-05	1.33E-05
Onshore Gas Production	7.20E-05	2.01E-03	2.03E-04	5.44E-03
Offshore Oil and Gas	1.14E-05	4.11E-04	1.88E-04	1.96E-03


[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

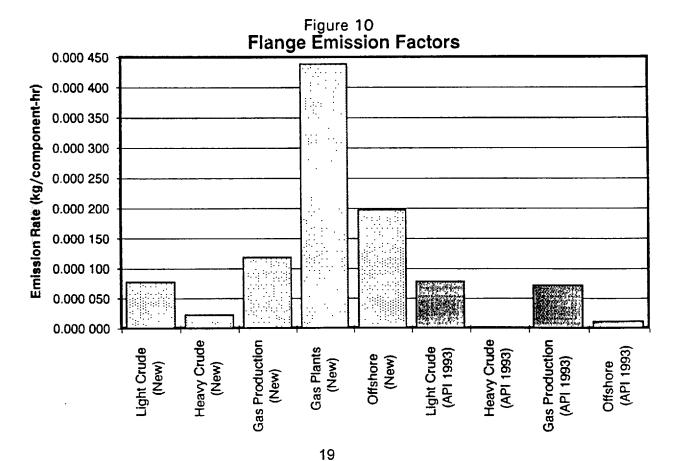
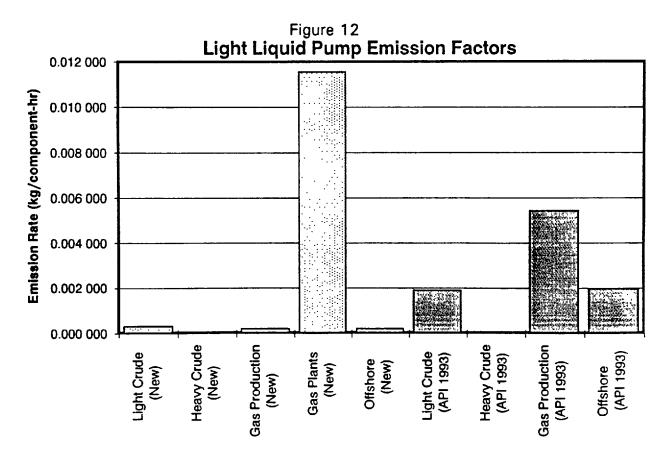
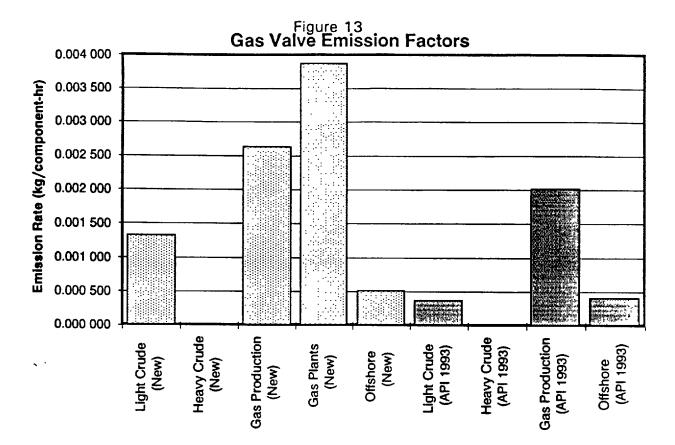

Table 14 compares the emission factors developed in this report to the 1993 API factors. Figures 9 through 13 compare the factors graphically.


Table 14. Comparison of Average Emission Factors (kg/component-hr)


	Connection	Flange	Open End	Pump (Lt Liq)	Valve (Gas)	Others
Light Crude (New)	1.64E-04	7.70E-05	1.21E-03	3.18E-04	1.33E-03	7.53E-03
Light Crude (API 1993)	7.80E-05	7.80E-05	6.65E-04	1.88E-03	3.73E-04	1.88E-03
Heavy Crude (New)	8.00E-06	2.20E-05	1.55E-04	no data	1.30E-05	7.00E-05
Heavy Crude (API 1993)	2.00E-06	2.00E-06	1.90E-05	1.30E-05	4.00E-06	1.30E-05
Gas Production (New)	3.22E-04	1.18E-04	6.87E-04	1.96E-04	2.63E-03	9.20E-03
Gas Production (API 1993)	7.20E-05	7.20E-05	2.03E-04	5.44E-03	2.01E-03	5.44E-03
Offshore (New)	1.08E-04	1.97E-04	1.02E-03	1.96E-04	5.16E-04	6.95E-03
Offshore (API 1993)	1.10E-05	1.10E-05	1.88E-04	1.96E-03	4.11E-04	1.96E-03
Gas Plants (New)	2.74E-04	4.39E-04	1.04E-03	1.15E-02	3.87E-03	4.87E-03


[&]quot;Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

Sensitivity of Average Emission Factors to Screening Values

Table 15 shows the contribution of each screening range to the average emission factors.

Table 15. Contribution of Each Screening Range to Average Emission Factors

			Contr	ibution by Screening	Range
	Emission Factor (lb/day)	Emission Factor (kg/hr)	Non-emitter	10 to 9,999 ppmv ≥	: 10,000 ppmv
Light Crude					
Connection	8.66E-03	1.64E-04	5%	1%	94%
Flange	4.07E-03	7.70E-05	29%	1%	70%
Open End	6.38E-02	1.21E-03	1%	1%	98%
Pump	1.68E-02	3.18E-04	59%	41%	0%
Valve	7.00E-02	1.33E-03	1%	1%	98%
Others	3.97E-01	7.53E-03	0%	2%	98%
Heavy Crud	e				
Connection	4.22E-04	8.00E-06	100%	0%	0%
Flange	1.16E-03	2.20E-05	100%	0%	0%
Open End	8.18E-03	1.55E-04	8%	3%	89%
Pump	no data	no data	no data	no data	no data
Valve	6.86E-04	1.30E-05	96%	4%	0%
Others	3.70E-03	7.00E-05	63%	37%	0%
Gas Prod.					
Connection	1.70E-02	3.22E-04	3%	1%	96%
Flange	6.23E-03	1.18E-04	19%	2%	79%
Open End	3.63E-02	6.87E-04	2%	2%	97%
Pump	1.03E-02	1.96E-04	100%	0%	0%
Valve	1.39E-01	2.63E-03	0%	1%	99%
Others	4.86E-01	9.20E-03	0%	1%	99%
Gas Plant		,			
Connection	1.45E-02	2.74E-04	3%	1%	96%
Flange	2.32E-02	4.39E-04	5%	1%	94%
Open End	5.46E-02	1.04E-03	1%	2%	97%
Pump	6.09E-01	1.15E-02	1%	5%	94%
Valve	2.04E-01	3.87E-03	0%	1%	99%
Others	2.57E-01	4.87E-03	1%	2%	97%
Offshore					
Connection	5.70E-03	1.08E-04	8%	1%	91%
Flange	1.04E-02	1.97E-04	11%	2%	87%
Open End	5.37E-02	1.02E-03	1%	1%	98%
Pump	1.03E-02	1.96E-04	100%	0%	0%
Valve	2.72E-02	5.16E-04	2%	1%	97%
Others	3.67E-01	6.95E-03	1%	0%	99%

"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

In most cases, over 90% of the average emission factor comes from pegged sources. The exceptions are heavy crude emission factors, some pump emission factors, and some flange emission factors. The contribution of components with screening values between 10 and 9,999 ppmv seldom exceeds 2%. The contribution of non-emitters is generally less than 10%.

SPECIATION OF EMISSIONS

Recalculation of the emission factors did not change the speciation factors presented in API Publication No. 4589. The factors are shown in Table 16. Emission rates for individual hydrocarbon species can be calculated by multiplying total hydrocarbon emissions obtained using emission factors by the weight fractions given in Table 16.

Table 16. Speciated Fugitive Emission Factors (Weight Fraction of THC emissions in each category)

	Methane	NMHC	voc	C6+	Benzene	Toluene	E-Benzene	Xylenes
Onshore Light Crude	0.613	0.387	0.292	0.02430	0.00027	0.00075	0.00017	0.00036
Onshore Heavy Crude	0.942	0.058	0.030	0.00752	0.00935	0.00344	0.00051	0.00372
Onshore Gas Production	0.920	0.080	0.035	0.00338	0.00023	0.00039	0.00002	0.00010
Onshore Gas Plants	0.564	0.436	0.253	0.00923	0.00123	0.00032	0.00001	0.00004
Offshore Oil & Gas	0.791	0.210	0.110	0.00673	0.00133	0.00089	0.00016	0.00027

- NOTES: 1. Emission factor = Speciated Emissions/Total Emissions
 - 2. NMHC = Non-methane hydrocarbon
 - 3. VOC = Propane and heavier hydrocarbon

SUMMARY AND CONCLUSIONS

Emission factors were developed from instrument screening data gathered at 24 sites and the August 1994 EPA correlation equations. Emission factors for connections and flanges are typically an order of magnitude lower than valve emission factors. Emission factors for onshore light crude production and onshore gas production are similar and lower than emission factors for onshore gas plants. Emission factors for onshore heavy crude production are significantly lower than the other onshore emission factors. Offshore emission factors are lower than those for onshore light crude production or onshore gas production.

API PUBL*4615 95 ■ 0732290 0544638 249 ■

REFERENCES

EPA Bulletin Board Announcement, August 4, 1994, Emission Correlation Equations

Environmental Protection Agency, 1993. *Protocol for Equipment Leak Emission Estimates*. U.S. EPA Office of Air Quality Planning and Standards. Research Triangle Park, NC.

Radian Corporation, 1993. Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals. Volume I: Text. API Publication No. 4588. American Petroleum Institute. Washington, D.C.

Radian Corporation, 1993. Development of Fugitive Emission Factors and Emission Profiles for Petroleum Marketing Terminals. Volume II: Appendices. API Publication No. 45881. American Petroleum Institute. Washington, D.C.

Radian Corporation, 1994. Study of Refinery Fugitive Emissions from Equipment Leaks. API Publication No. 4612. American Petroleum Institute. Washington, D.C.

Radian Corporation, 1994. Study of Refinery Fugitive Emissions from Equipment Leaks: Appendices. API Publication No. 4613. American Petroleum Institute. Washington, D.C.

Star Environmental, 1993. Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations. API Publication No. 4589. American Petroleum Institute. Washington, D.C.

API PUBL*4615 95 = 0732290 0544639 185 =

APPENDIX A FIELD INVENTORY SHEET DATA

																			-27			. = 1	-2.1	T		
mv)		ALL			4	3	2	2	4	3	8	4		3	7				16	6	3	15	8	38	24	165
ANGE (pp	10,000+		0	0	-	-	0		0	0	4	-	0	0		0	က	0	2	2	=		7	8	12	26
EMITTERS BY SCREENING RANGE (ppmv)	1000 to	666'6	0	0	2	-	=	0	-	-	0	-	0	7	-	0	4	ਲ		7	=	^	8	6	8	48
BY SCRE	100 to	666	-	0	-	-	=	=	0	2	0	2	0	0	0	-	4	0	6	7	-	-	ಣ	=	4	54
EMITTERS	10 to	66	0	-	0	0	0	0	က	0	-	0	0	-	0	0	0	0	F	0	٥	0	0	٥	0	7
	<u> </u>	ALL	271	215	437	358	83	557	276	136	06	65	104	231	244	119	468	448	449	263	8	291	277	280	368	2,024
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
Pressure	Relief	Valve	0	0	0	0	0	0	0	0	3	10	0	0	0	0	0	0	0	0	0	1	0	0	12	13
	Pump	Seal	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	11
	Comp.	Seal	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	Open	End	0	0	0	-	0	2	4	0	0	0		0	_	0	0	0	0	0	0	0	7	0	0	3 7
		Valve	63	65	126	102	20	_	82	49	22			99	83	42	28	28	54	62	33	61	63		114	483
		Connection Valve	82	8	99	4	0	231	31	0	28	0	13	39	14	0	315	294	283	53	16	112	102	54	58	1,803
		Flande	١					2						_			125		104	131	47	117	8	1	184	
		AREA	-	2	3	4	5	9	_	8	6	9	11	12	13	14	15	16	17	18	19	20	21	22	23	
		SITE	21	21	21	21	21	21	21	21	21	2	2	21	21	2	2	21	21	21	21	21	21	21	21	

	-		T	ıΤΑ	17	<u> </u>	ıτ	n =	112	17-	.T.~			π'=			T =			π=	π¥	T:-	1
pmv)		ALL													,								16
ANGE (p	10,000+		0	0	0	0	0	0	1	C	6	0		0	0	-	°	0	0	0	6	0	2
EENING F	1000 to	6666	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	C	0	0	-	0	6
EMITTERS BY SCREENING RANGE (ppmv)	100 to	666	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	<u>ا</u>	-	4
EMITTER	10 to	8	0	0	0	0	0	0	-	0	0	0	0	0	0	10	0	0	0	0	0	0	-
		ALL	152	26	198	266	129	212	195	311	361	88	4	217	5	8	8	411	126	383	437	724	1.650
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0	Ī	0	0	0	0	0	0	0
Pressure	Relief	Valve	0	0	0	0	0	0	0	-	0	0	0	-	0		F	7	0	0	0	0	0
		Seal	0	0	0	0	0	0	0	0	0	0	0	0	0		0	9	0	0	0	0	0
	Comp. Pump	Seal	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
	Open	End	0	0	2	3	2	3	4	4	9	0	0	4	0		0	13	4	5	4	7	20
		Valve	27	18	43	49	23	48	43	79	74	26	11	42	3	4	10	70	27	59	82	75	243
		Connection Valve	118	31	139	194	100	146	135	201	270	54	25	155	9	46	48	278	84	264	305	909	3,205
	1	Flange	~	7	14	20	4	15	13	26	11	8	5	15	4		3	37	=	35	46	98	128
		SITE AREA	-	2	က	4	5	9	_	8	O)	10	=	12	13	14	15	16	17	18	19	8	
	į	SITE	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	

				-					-	r	-						-74					_			_	
omv)		ALL	7		18	0	0	0	3	4	2	2	13	3	1	0	9	18	3	31	0	66	7	0	0	215
ANGE (pr	10,000+		က	0	10	0	0	0	2	က	2	-	11	-	1	0	4	15	3	23	0	66	7	0	0	185
ENING R	1000 to	6666	-	-	က	0	0	0	0	0	0	0	2	-	0	0	1	2	0	8	0	0	0	0	0	19
EMITTERS BY SCREENING RANGE (ppmv)	100 to	666	0	0	2	0	0	0	-	0	0	0	0	-	0	0	1	1	0	0	0	0	0	0	0	6
EMITTER	10 to	86	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
		ALL	203	378	525	84	405	360	153	119	109	163	159	375	209	303	252	313	133	259	437	1,793	251	128	939	3,807
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pressure	Relief	Valve	0	4	0	1	1	2	0	1	1	0	0	2	0	2	0	0	0	2	1	0	0	0	12	15
	Pump	Seal	0	0	4	0	2	3	0	0	0	2	0	0	2	9	4	0	0	0	0	0	0	0	0	0
	Comp.	Seal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Open	End	0	8	0	3	2	3	0	1	1	0	0	0	3	0	1	3	1	4	0	0	0	0	0	4
		Valve	52	119	155	34	111	104	48	39	34	63	44	95	57	107	79	93	36	84	72	0	52	37	151	396
		Connection Valve	65	135	300	14	192	167	82	99	53	94	69	163	113	167	114	146	78	97	272	1,606	144	36	670	4,843
		Flange	98	112	ဗေ	32	26	81	23	12	20	4	9 7	115	34	21	54	71	18	72	92	187	55	55	106	267
		AREA	_	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
		SITE	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	

	_		Α Λ1		60 1	<u>an</u>	ر ال	स्र	থ		_	ه	മ	ळा		<u>റ</u>	
imv)		ALL		+		19	12	7)	21	19	J,				11
ANGE (pp	10,000+		င	-	က	19	11	4	2	0	20	19	6	2	0	0	106
EMITTERS BY SCREENING RANGE (ppmv)	1000 to	666'6	0	0	0	0	1	0	0	0	+	0	0	3	0	0	5
S BY SCRI	100 to	666	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EMITTER	10 to	8	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0
		ALL	88	101	188	170	223	343	9/	30	438	289	253	345	253	1,578	
		Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Pressure	Relief	Valve	0	0	0	0	1	0	0	0	2	0	1	0	0	3	
		Seal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Comp. Pump	Seal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Open	End	0	0	1	3	3	2	0	0	3	0	1	0	0	4	
		Valve	24	39	52	99	93	112	0	15	175	55	0/	87	78	465	
		Connection Valve	42	38	105	73	92	202	99	10	210	178	153	232	141	1,545	
		Flange	22	24	30	38	34	24	9	5	48	99	28	26	34	192	
		AREA	-	2	3	4	5	9	7	8	6	10	11	12	13		
		SITE	24	24	24	24	24	24	24	24	24	24	24	24	24		

API PUBL*4615 95 ■ 0732290 0544644 542 ■

APPENDIX B EMITTER DATA

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

		•				1	FFMV	ה ה	Silejirre	L L
Threaded	FlameOut	21	Flange	10,000	21	Flange	20	21	Valve	8,000
Threaded	10,000	21	Flange	10,000	21	Flange	20	2	Valve	4,000
Threaded	10,000	21	Flange	10,000	21	Valve	FlameOut	21	Valve	4,000
Threaded	10,000	21	Flange	10,000	21	Valve	FlameOut	21	Valve	3,000
Threaded	5,000	21	Flange	10,000	21	Valve	FlameOut	21	Valve	3,000
Threaded	4,000	2	Flange	10,000	21	Valve	FlameOut	21	Valve	2,000
Threaded	3,000	2	Flange	10,000	21	Valve	FlameOut	21	Valve	2,000
Threaded	1,600	2	Flange	10,000	21	Valve	FlameOut	21	Valve	2,000
Threaded	1,000	2	Flange	5,000	21	Vaive	FlameOut	21	Valve	2,000
Threaded	1,000	2	Flange	2,000	21	Valve	FlameOut	21	Valve	2,000
Threaded	1,000	2	Flange	1,500	21	Valve	FlameOut	21	Valve	2,000
Threaded	1,000	2	Flange	1,500	21	Valve	FlameOut	21	Valve	2,000
Threaded	200	2	Flange	1,000	21	Valve	FlameOut	21	Valve	2,000
Threaded	200	21	Flange	1,000	21	Valve	FlameOut	21	Valve	1,800
Threaded	400	2	Flange	1,000	21	Valve	FlameOut	21	Valve	1,800
Threaded	300	21	Flange	1,000	21	Valve	10,000	21	Valve	1,500
Threaded	300	2	Flange	200	21	Valve	10,000	21	Valve	1,500
Threaded	300	2	Flange	200	21	Valve	10,000	21	Valve	1,500
Threaded	300	21	Flange	200	21	Valve	10,000	21	Valve	1,400
Threaded	200	21	Flange	400	21	Valve	10,000	2	Valve	1,250
Threaded	150	2	Flange	400	21	Valve	10,000	21	Valve	1,200
Threaded	150	2	Flange	300	21	Valve	10,000	21	Valve	1,200
Threaded	20	2	Flange	300	21	Valve	10,000	21	Valve	1,000
Tubing	FlameOut	21	Flange	250	21	Valve	10,000	2	Valve	1,000
Tubing	FlameOut	21	Flange	200	21	Valve	10,000	2	Valve	006
Tubing	10,000	21	Flange	200	21	Valve	10,000	2	Valve	006
Tubing	10,000	21	Flange	200	21	Valve	10,000	2	Valve	700
Tubing	10,000	21	Flange	200	21	Valve	10,000	7	Valve	700
Tubing	3,000	2	Flange	200	21	Valve	10,000	2	Valve	700
Tubing	250	2	Flange	200	21	Valve	10,000	₽	Valve	700
Tubing	100	2	Flange	100	21	Valve	10,000	2	Valve	009
Flange	FlameOut	2	Flange	100	21	Valve	10,000	2	Valve	900
Flange	10,000	21	Flange	100	2	Valve	10,000	2	Valve	009
Flange	10,000	21	Flange	100	21	Valve	000'6	2	Valve	200
Flange	10,000	21	Flange	20	21	Valve	000'6	2	Valve	200

Valve																										
PPMV SITE TYPE PPMV PPMV SITE TYPE PPMV PPMV SITE TYPE PPMV PP	PPMV																									
PPMV SITE TYPE PPMV SITE TYPE	SITE TYPE																									
PPMV SITE TYPE PPMV S10	PPMV																									
PPMV SITE TYPE	SITE TYPE																									
PPMV SITE TYP SOURCE S	PPMV																									
End End End End End End End End End End	TYP																									
21 Valve 21 Vent 21 Vent	PPMV	500	350	300	300	200	200	150	100	100	100	100	20	20	20	000'9	5,000	300	200	FlameOut	5,000	FlameOut	FlameOut	FlameOut	5,000	1,200
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YPE	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	/alve	alve)penEnd)penEnd	DenEnd	DenEnd	ressureRelief	ressureRelief	/ent	ent	/ent	ent	/ent
	SITET		ſ		\Box		Г				T				T	_			_	_	_					21 \

PPMV					_										
SITE TYPE															
PPMV															
SITE TYPE															
PPMV															
SITE TYPE															
PPMV SITE	FlameOut	4,000	1,000	200	200	200	100	10,000	500 1000 10,000 50	500 10,000 50 10,000	500 10,000 10,000 10,000	500 10,000 10,000 10,000 4,000	500 10,000 10,000 10,000 4,000 900	500 10,000 10,000 4,000 FlameOut	500 10,000 10,000 10,000 4,000 FlameOut
TYPE	Threaded	Threaded	Threaded	Threaded	Threaded	Tubing	Tubing Tubing	Tubing Tubing Flange	Tubing Tubing Flange Flange	22 Tubing 22 Tubing 22 Flange 22 Flange 22 Valve	22 Tubing 22 Tubing 22 Flange 22 Flange 22 Valve 22 Valve	Tubing Tubing Flange Flange Valve Valve	Tubing Tubing Flange Flange Valve Valve Valve	Tubing Tubing Flange Flange Valve Valve Valve Valve Valve	Tubing Tubing Flange Flange Valve Valve Valve Valve Valve OpenEnd
SITE TYPE	22	22	22	22	22										

TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	1,200	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	800	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	200	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	200	23	Valve	FlameOut
Threaded	FlameOut	23	Threaded	10,000	23	Tubing	200	23	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Tubing	200	23	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Tubing	200	23	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	23	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	83	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	23	Valve	FlameOut
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	10,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	8,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	8,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	7,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	6,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	5,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	2,500	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	1,500	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	1,300	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	1,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Threaded	800	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Tubing	FlameOut	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut	23	Valve	10,000
Threaded	10,000	23	Tubing	10,000	23	Valve	FlameOut	23	Valve	10,000

SITE TYPE	PPMV	SITE	TYPE	PPMV	SITE	SITE TYPE	PPMV	SITE	TYPE	PPMV
23 Valve	10,000	23	Valve	10,000	23	Valve	1,000			
	10,000	23		10,000	23	Valve	800			
23 Valve	10,000	23	Valve	10,000	23	Valve	800			
23 Valve	10,000	23	Valve	10,000	23	Valve	80			
23 Valve	10,000	23	Va	10,000	23	Valve	20			
	10,000	23		10,000						
	10,000	23	Va	10,000						
Valve	10,000	23	Va	10,000						
Valve	10,000	23		10,000						
Valve	10,000	23		10,000						
23 Valve	10,000	23	Val	10,000						
Valve	10,000	23	Va	10,000						
Valve	10,000	23	Va	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23		10,000						
Valve	10,000	23		10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	R	Valve	10,000						
Valve	10,000	83	Valve	10,000						
Valve	10,000	R	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	೫	Valve	10,000						
Valve	10,000	23	Valve	10,000						
Valve	10,000	23	Valve	8,000						
Valve	10,000	23	Valve	5,000						
Valve	10,000	23	Valve	3,000						
Valve	10,000	ន	Valve	2,800						
Valve	10,000	8	Valve	2,500						
Valve	10,000	ន		2,000				ŀ		
Valve	10,000	ន	Valve	1,700						
23 Valve	10,000	23	Valve	1,000						

PPMV FlameOut	SITE TYPE 24 Valve	PPMV FlameOut	SITE 24	TYPE Valve	PPMV FlameOut	SITE 24	SITE TYPE 24 Valve	10,000
24 Val		FlameOut	24	Valve	FlameOut	24	Valve	6,000
24 Valve	<u>L</u>	FlameOut	24		FlameOut	24		5,000
24 Valve		FlameOut	24	Valve	FlameOut	24	Valve	5,000
FlameOut 24 Valve FlameOut FlameOut FlameOut	Fla	FlameOut	2 2	Valve	FlameOut	24	Valve	4,000
24 Valve	Fa	FlameOut	24	Vaive	FlameOut			
Valve	Fla	FlameOut	24	Valve	FlameOut			
FlameOut 24 Valve Fla	Fla	FlameOut	24	Valve	FlameOut			
FlameOut 24 Valve Fla	Fla	FlameOut	24	Valve	FlameOut			
Valve	Flar	FlameOut	24	Valve	FlameOut			
FlameOut 24 Valve Flan	Flan	FlameOut	24	Valve	FlameOut			
FlameOut 24 Valve Flam	Flan	FlameOut	24	Valve	FlameOut			
Valve	Flan	FlameOut	24	Valve	FlameOut			
Valve	Flan	FlameOut	24	Valve	FlameOut			
Valve	Flam	FlameOut	24	Valve	FlameOut			
24 Valve	Flam	FlameOut	24	Valve	FlameOut			
24 Valve	Flam	FlameOut	24	Valve	FlameOut			
24 Valve	Flam	FlameOut	24	Valve	FlameOut			
/e	Flam	FlameOut	24	Valve	FlameOut			
Valve	Flan	FlameOut	24	Valve	FlameOut			
24 Valve	Flan	FlameOut	24	Valve	10,000			
24 Valve	Flam	FlameOut	24	Valve	10,000			
FlameOut 24 Valve FlameOut	Flam	3Out	24	Valve	10,000			
_	Flame	Öut	24	Valve	10,000			
24	Flame	ğ	24	Valve	10,000			
FlameOut 24 Valve FlameOut	Flame	Out Ti	24	Valve	10,000			
FlameOut 24 Valve FlameOut	Flame	3Out	24	Valve	10,000			
Valve	Flam	FlameOut	24	Valve	10,000			
FlameOut 24 Valve FlameOut	Flam	eOut	24	Valve	10,000			
Valve	Flan	FlameOut	24	Valve	10,000			
24 Valve	Flan	FlameOut	24	Valve	10,000			
24 Valve	Flar	FlameOut	24	Valve	10,000			
24 Valve	Flar	FlameOut	24	Valve	10,000			
FlameOut 24 Valve Fla	Fla	FlameOut	24	24 Valve	10,000			

API PUBL*4615 95 **=** 0732290 0544651 782 **=**

APPENDIX C LEAK RATES

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

SITE	TYPE	PPMV	CC/MIN
21	Valve	Flame	706
21	Valve	10,000	17
21	Valve	Flame	713
21	Valve	9,000	58
21			1
	Open End Valve	5,000	14
21	FL	10,000	
21		Flame	1,553
21	Valve	Flame	56
21	Valve	Flame	69
21	Valve	10,000	16
21	Valve	10,000	5
21	Valve	Flame	29
21	Valve	10,000	45
21	Valve	10,000	52
21	Vent	Flame	8,075
21	Vent	Flame	8,713
21	Flange	10,000	6
21	Flange	10,000	18
21	Thread	10,000	42
21	Valve	Flame	227
21	Flange	10,000	15
21	Valve	10,000	10
21	Thread	10,000	65
21	Valve	Flame	106
21	Valve	10,000	57
21	PRV	Flame	3,229
21	Valve	Flame	2,644
21	Valve	Flame	751
21	Valve	10,000	8
21	Valve	Flame	
21	Valve	10,000	
		10,000	
21	Flange Valve	10,000	27
21	Tube	10,000	
21	Valve		
21	Valve	10,000 Flamo	
		Flame	
21	Flange	10,000	8
21	Tube	10,000	
21	Valve	10,000	
21	Flange	10,000	192
21	Tube	10,000	
21	Valve	10,000	
21	Valve	10,000	
21	Valve	10,000	
21	Flange	10,000	
21	Thread	10,000	153

SITE	TYPE	PPMV	CC/MIN
22	Open End	Flame	34
22	Open End	10,000	10
22	Valve	10,000	44
22	Thread	10,000	265
22	Flange	10,000	39

SITE	TYPE	PPMV	CC/MIN
23	Thread	10,000	40
23	Valve	Flame	360
23	Thread	8,000	259
23	Thread	10,000	342
23	Thread	10,000	11
23	Valve	Flame	1,424
23	Valve	Flame	20,895
23	Thread	10,000	55
23	Valve	10,000	29
23	Valve	10,000	66
23	Valve	Flame	252
23	Valve	10,000	22
23	Valve	10,000	169
23	Valve	10,000	72
23	Valve	Flame	715
23	Valve	Flame	2,306
23	Valve	Flame	790
23	Valve	Flame	49
23	Valve	Flame	56
23	Valve	Flame	341
23	Valve	Flame	1,128
23	Valve	Flame	72
23	Valve	10,000	3
23	Thread	Flame	1,747
23	Valve	10,000	43
23	Valve	Flame	59
23	Valve	Flame	364
23	Valve	10,000	38
23	Thread	10,000	244
23	Thread	Flame	3,224
23	Valve	10,000	3
23	Thread	Flame	68
23	Valve	10,000	16
23	Thread	Flame	113
23	Thread	10,000	11
23	Valve	Flame	127
23	Thread	10,000	447
23	Thread	10,000	2,010
23	Valve	Flame	763
23	Thread	10,000	110
23	Thread	Flame	16,038
23	Valve	Flame	2,821
23	Valve	10,000	42
23	Thread	10,000	12
23	Thread	10,000	70
23	Thread	10,000	220

SITE	TYPE	PPMV	CC/MIN
23	Valve	Flame	
23	Valve	10,000	1,361 72
23	Tube	10,000	156
23	Thread	10,000	55
23	Valve	Flame	281
23	Valve	Flame	7,076
23	Valve	10,000	197
23	Thread	10,000	13
23	Valve	10,000	41
23	Thread	Flame	24
23	Valve	Flame	225
23	Valve	Flame	1,039
23	Valve	Flame	146
23	Valve	Flame	320
23	Valve	Flame	35
23	Valve	Flame	12
23	Thread	Flame	51
23	Valve	10,000	46
23	Valve	Flame	1,595
23	Valve	Flame	
$\overline{}$		Flame	6,604
23	Valve		1,020
23	Valve	Flame	539
23	Valve	Flame	780
23	Valve	Flame	139
23	Valve	Flame	351
23	Valve	10,000	132
23	Valve	10,000	31
23	Valve	10,000	16
 			
 			
 			
 			
\vdash			

C-2

			_
SITE	TYPE	PPMV	CC/MIN
24	Valve	Flame	3,420
24	Valve	Flame	814
24	Valve	6,000	12
24	Thread	10,000	21
24	Valve	10,000	78
24	Tube	Flame	551
24	Tube	Flame	306
24	Valve	Flame	328
24	Valve	Flame	1,518
24	Valve	Flame	1,198
24	Valve	Flame	1,714
24	Valve	10,000	60
24	Valve	10,000	17
24	Valve	Flame	117
24	Valve	Flame	18,454
24	Valve	Flame	2,722
24	Valve	Flame	1,791
24	Valve	Flame	3,250
24	Valve	Flame	57,574
24	Valve	Flame	1,026
24	Valve	Flame	1,087
24	Valve	Flame	20,914
24	Valve	Flame	6,341
24	Valve	Flame	2,212
24	Valve	Flame	784
24	Valve	Flame	85
24	Dia	1,000	0
24	Dia	Flame	52,825
24	Valve	10,000	9
24	Dia	Flame	1,099
24	Thread	10,000	66
24	Valve	Flame	398
24	Valve	Flame	2,066
24	Valve	2,000	2
24	Valve	Flame	176
24	Valve	5,000	4
24	Valve	10,000	5
24_	Valve	10,000	19
24	Valve	10,000	18
24	Valve	Flame	1,665
24	Valve	Flame	3,407
24	Valve	Flame	220
24	Valve	Flame	92
24	Valve	Flame	101
24	Valve	Flame	805
24	Valve	10,000	26
24	Valve	10,000	30

SITE	TYPE	PPMV	CC/MIN
24	Valve	10,000	11
24	Valve	Flame	112
24	Thread	Flame	192
24	Valve	Flame	1,648
24	Valve	Flame	1,322
24	Valve	Flame	677
24	Valve	Flame	2,203
24	Valve	Flame	4,993
24	Valve	Flame	1,122
24	Valve	Flame	1,823
24	Valve	Flame	2,213
24	Valve	Flame	6,469
24	Valve	Flame	140
24	Thread	Flame	780
24	Valve		750
		Flame	/5
24	PRV	2,000	455
24	Thread	Flame	155
24	Dia	Flame	1,015
24	Dia	Flame	16,625
24	Flange	Flame	500
24	Valve	Flame	5,745
24	Valve	Flame	393
24	Valve	Flame	517
24	Flange	Flame	459
24	Valve	10,000	321
24	Valve	Flame	406
24	Valve	Flame	627
24	Valve	10,000	26
24	Valve	Flame	452
24	Valve	10,000	11
24	Valve	Flame	1,113
24	Valve	Flame	1,289
24	Compress	Flame	4,102
24	Valve	1,000	1
24	Valve	Flame	119
24	Valve	10,000	14
24	Thread	10,000	31
24	Valve	10,000	21
24	Valve	Flame	1,254
24	Valve	10,000	39
24	Valve	10,000	38
24	Valve	10,000	52
24	Valve	Flame	482
24	Valve	10,000	16
24	Valve	6,000	5
24	Valve	10,000	8
24	Thread	Flame	99

SITE	TYPE	PPMV	CC/MIN
24	Valve	10,000	51
24	Valve	Flame	443
24	Valve	10,000	43
24	Valve	Flame	162
24	Valve	Flame	146
24	Valve	Flame	394
24	Valve	Flame	750
24	Valve	Flame	393
24	Thread	Flame	293
24	Valve	Flame	294
24	Valve	10,000	16
24	Valve	Flame	111
24	Valve	Flame	252
24	Valve	Flame	7,740
24	Valve	Flame	204
24	Valve	Flame	221
24	Valve	Flame	199
24	Valve	Flame	987
24	Valve	Flame	590
24	Valve	Flame	3,776
24	Valve	Flame	5,620
		<u> </u>	
			· · · · · · · · · · · · · · · · · · ·
-+			
-			
$\overline{}$			
		+	
			<u>.</u>
-+			
-+			
			
			<u></u>
- 1		į.	

T			T
SITE	TYPE	PPMV	CC/MIN
		-	
			L
			<u></u>
			
ļi			<u> </u>
 		<u> </u>	ļ
L			
			
			
			ļ
			<u> </u>
		}	}
			
			<u> </u>
	-		
لـــــا			

1204 C-4

56pp

01952C1P

API PUBL*4615 95 ■ 0732290 0544657 1T0 ■

RELATED API PUBLICATIONS...

Publ. 4589 Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations, December 1993

To order, call API Publications Department (202) 682-8375

1220 L Street, Northwest Washington, D.C. 20005

Order No. 841-46150