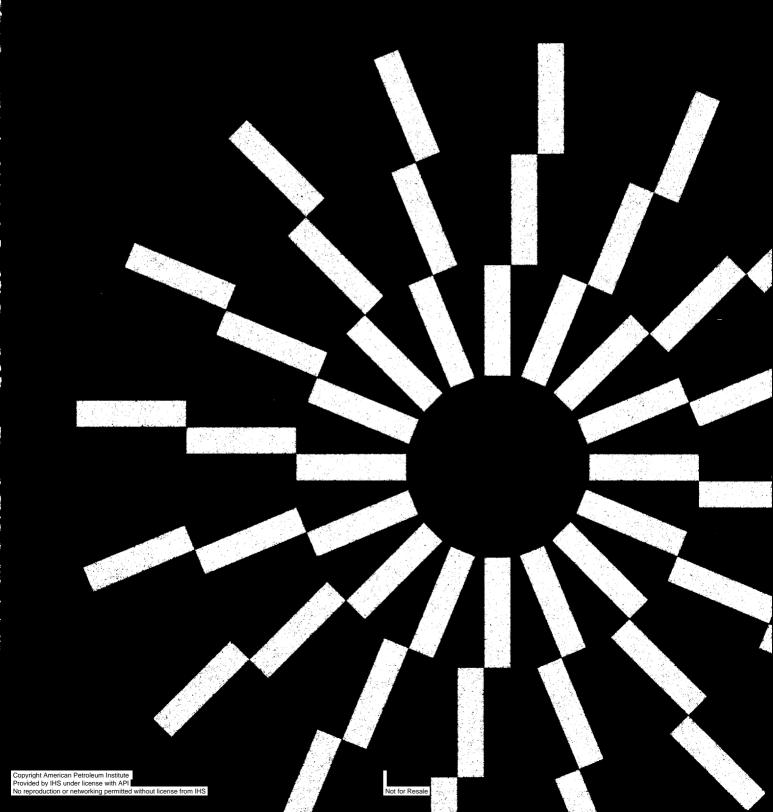
April 1994



'Air Toxics Multi-Year Study

Study of Refinery Fugitive Emissions from Equipment Leaks

Appendices

Publication 4613

API PUBL*4613 94 🗰 0732290 0533383 754 🖿

1993 Study of Refinery Fugitive Emissions from Equipment Leaks

Volume III: Appendices

Prepared for:
American Petroleum Institute
Health and Environmental Sciences Department
and
Western States Petroleum Association
API PUBLICATION NUMBER 4613

PREPARED UNDER CONTRACT BY: RADIAN CORPORATION SACRAMENTO, CALIFORNIA

APRIL 1994

American Petroleum Institute

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENT OF LETTERS PATENT.

NOTE: This is to advise the reader that these studies are now under review by the U.S. Environmental Protection Agency. The Agency's review may be complete by summer 1994.

Copyright © 1994 American Petroleum Institute

API PUBL*4613 94 ■ 0732290 0533385 527 ■

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACTS:

Karin Ritter, Health and Environmental Affairs Department Paul Wakim, Statistics Department

MEMBERS OF THE AIR TOXICS MULTIYEAR STUDY WORKGROUP:

Julian Blomley, UNOCAL

Miriam Lev-On, ARCO Products Company

Richard Russell, API Consultant

Hal Taback, API Consultant

Daniel VanDerZanden, Chevron Research and Technology Company

This study was co-funded by the Western States Petroleum Association (WSPA). The following members of the WSPA Fugitive Emissions Project Steering Committee are recognized for their contributions of time and expertise:

Frank Giles, Ultramar

Matt Marusich, Tosco Refining Company

Julian Blomley, UNOCAL

Miriam Lev-On, ARCO Products Company

Daniel Van Der Zanden, Chevron Research and Technology Company

In addition the U.S. EPA Office of Air Quality Planning and Standards, Emission Inventory Branch, Research Triangle Park, North Carolina; South Coast Air Quality Management District; Bay Area Air Quality Management District; and, California Air Resources Board are gratefully recognized for providing oversight, additional review of draft reports and concurrent QA/QC of final measurements during this study.

API PUBL*4613 94 **= 0732290 0533386 463 =**

LIST OF APPENDICES

Append	<u>dix</u>	age
1	Introduction	1-1
Α	Raw Data from Field and Emissions Calculations	A- 1
	A.1 WSPA Emission Rate Calculation Spreadsheet	A- 1
	A.2 Emission Correlation Equations Data A-	123
	A.3 Zero Component Emissions Data	130
	A.4 Pegged Component Emissions Data A-	134
В	Comparison of Vapor Leak Composition to Liquid Stream Composition Data and Calculations	B-1
C	Statistical Evaluations and Correlation Details	C-1
D	Development of Emission Correlation Equations Using the Measurement Error Method (MEM) Statistical Analysis Method	D-1
E	Independent Audit Results	E-1
F	Response to Regulatory Agency Comments on the Final Draft of the 1993 Refinery Study	F-1

∠API PUBL*4613 94 ■ 0732290 0533387 3TT ■

INTRODUCTION

This volume, Volume III of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks, contains the appendices related to the data calculations and independent audit results. Specifically:

- Appendix A contains raw data from field and emissions calculations;
- Appendix B documents the comparison of vapor leak composition to liquid stream composition data and calculations;
- Appendix C contains statistical evaluations and correlation details;
- Appendix D discusses the development of emission correlation equations using the Measurement Error Method (MEM) statistical analysis method;
- Appendix E contains independent audit results; and
- Appendix F reprints the Response to Regulatory Agency Comments on the Final Draft of the 1993 Refinery Study.

API PUBL*4613 94 ■ 0732290 0533388 236 ■

APPENDIX A

RAW DATA FROM FIELD AND EMISSIONS CALCULATIONS

API PUBL*4613 94 = 0732290 0533389 172 =

A.1

WSPA EMISSION RATE CALCULATION SPREADSHEET

-- ..- - ---

			KEY
CODES:			
A	CCY	=	Accuracy check
A	UDTC	_	Audit gas directly to canister
A	UDTD	=	Audit duplicate
A	TTQU	=	Audit gas through tent
В	BL	=	Blank sample
٥	VAIC	=	Determined to be invalid after review
D	DUP	=	Sample duplicate
٥)Z	=	Default zero
11	NV	=	Invalid
L	-	=	Liquid sample
N	N2-#	=	Nitrogen flow test
P	PEG	=	Pegged source
P	PEGF	=	Final screening value pegged but not initial
P	PEGI	=	Initial screening value pegged but not final
P	PGAC	=	Pure gas accuracy check
s	SINV	=	Screening values invalid (ie, initial and final screening values varied by more than a factor of 2)
*	DRIP	=	Component dripping; liquids collected and liquid concentration added to emission rates
ACTUATION	l :		
	0	=	Control
N	М	=	Manual
SERVICE:			
ŀ	HL	=	Heavy liquid
Ĺ	LL	=	Light liquid
UNIT:			
	SRU	=	Sulfur recovery unit
\	VRU	=	Vapor recovery unit
COMPONE	NT CATEGORY:		
	С	=	Connector
	OEL	=	Open-ended line
	PRV	=	Pressure relief valve
*Note: in the	calculation of emission	rates	for dripping components a density of .75 * lbs/g (0.0022) was assumed.

	•	KEY
COMPONENT TYPE:		
BTFY	=	Butterfly valve
С	=	Connector
CENT	=	Centrifugal
COUP	=	Coupler
DIA	=	Diaphram valve
FL	=	Flange
НС	=	Horizontal centrifugal
MC	=	Motor control
NEDL	=	Needle
OEL	=	Open-ended line
PRV	=	Pressure relief valve
тн	=	Threaded connector
U	=	Union connector
VC	=	Vertical centrifugal
VERT	=	Vertical
PRODUCT:		· ·
DB	=	Debutinized bottoms
нсо	=	Heavy cycle oil
нтдо	=	Hydrotreated gas oil
LCO	=	Light cycle oil
LPG	=	Liquified petroleum gas
LVGO	=	Light vacuum gas oil
OVHG gas	=	Overhead gas
Ра В	=	Pa bottoms
R Diesel	=	Recycled diesel
Reg UL	=	Regular unleaded gasoline
LABORATORY DATA:		
NA	=	Not analyzed

D	SAMPLE CONTROL	AMBIENT CONDITIONS	CONDI	TIONS		COMPONENT DATA	NT DATA			STREAM	STREAM CHARACTERISTICS
Nature Code Code			ſemp.	Barometric	Category	Size	Туре	Valve	Load		
SINV 2.5 72 33.50 VALVE 0.50		- 1		Pressure ("Hg)		(Inches)		Actuation	Z/X	Service	d d
SINV 7.5 82 33.50 VALVE 1.50 1	CCY	2.5	$\overline{}$		VALVE	0.50	GATE		>	H20	John M.
NALVE 1.50		2.5	8	33.50	VALVE	4.00	GATE		>	2 -	Dutan
NATION 7.5 80 33.50 VALVE 3.00 NATURE 1.00 1.00 NATURE 1.00 NATURE 1.00 1.00 NATURE 1.00		2.5	82	33.50	VALVE	1.50	GLORF		->	1=	Dutane
INV 2.5 73 30.24 PUMP 1.00	NNIS	7.5	85	33.50	VALVE	3 00	GATE		- >	<u> </u>	GUTANO
INV 2.5 73 30.24 VALVE 1.00		7.5	8	33.50	VALVE	4 00	GATE	-	- >	4 =	Butane
NA	N.	2.5	73	30.24	PUMP	3	1 CH		- >	1 =	Butane
SiNV 2.5 86 30.24 VALVE 1.00	N	2.5	7	30.24	VALVE	00	2			1	Gutane
SiNV 2.5 86 30.24 VALVE 1.00 PEG 2.5 85 30.24 VALVE 3.00 PEG 2.5 85 30.24 VALVE 3.00 PEG 2.5 85 30.16 VALVE 0.75 PEG 2.5 84 30.15 VALVE 0.75 PEG 2.5 84 30.10 VALVE 0.75 PEG 2.5 85 30.10 VALVE 0.70 PEG 2.5 85 30.10 VALVE 0.70 PEG 2.5 85 30.10 VALVE 0.70 PEG 2.5 71 30.25 VALVE 0.75 PEG 2.5 71 30.24 VALVE 0.75 PEG 2.5 72 30.24 VALVE 0.75 PEG 2.5 80 30.20 C 1.00 PEG 2.5 80 80 30.20 C 1.00 PEG 2.5 80 80 30.20 C 1.00 PEG 2.5 80 80 3		2.5	76	30.24	VALVE	8	N C		>	=	0
SiNV 2.5 85 30.24 VALVE 4.00 PEG 2.5 75 30.16 VALVE 3.00 PEG 2.5 75 30.16 VALVE 1.00 NV 2.5 75 30.16 VALVE 1.00 NV 2.5 75 30.16 VALVE 2.00 NA 2.5 75 30.10 VALVE 2.00 NA 2.5 85 30.10 VALVE 2.00 NA 2.5 85 30.10 VALVE 1.00 NA 2.5 85 30.10 VALVE 2.00 NA 2.5 85 30.10 VALVE 2.00 NA 2.5 85 30.10 VALVE 2.00 NA 2.5 71 30.24 VALVE 2.00 NA 2.5 71 30.24 VALVE 2.00 NA 2.5 71 30.24 VALVE 1.00 NA 2.5 80 30.00 CE 1.00		2.5	8	30.24	VALVE	8.	¥		>	d =	Dutane
SINV 2.5 85 30.24 VALVE 3.00 PEG 2.5 84 30.24 VALVE 0.50 PEG 2.5 75 30.16 VALVE 0.75 INV 2.5 79 30.16 VALVE 2.00 2.5 79 30.16 VALVE 2.00 2.5 84 30.16 VALVE 2.00 2.5 84 30.16 VALVE 2.00 2.5 84 30.10 VALVE 2.00 2.5 84 30.10 VALVE 2.00 2.5 84 30.10 VALVE 1.00 2.5 84 30.10 VALVE 1.00 2.5 85 30.10 VALVE 1.00 2.5 85 30.10 VALVE 2.00 2.5 88 30.25 C 1.00 2.5 71 30.24 VALVE 1.00 2.5 8		2.5	82	30.24	VALVE	90.4	NO.		- >	1 -	Dutane
PEG 2.5 84 30.24 OEL 0.50 PEG 2.5 85 30.24 VALVE 0.75 PEG 2.5 75 30.16 VALVE 0.75 INV 2.5 79 VALVE 2.00 2.5 84 30.15 VALVE 2.00 2.5 84 30.15 OEL 0.50 DUP 7.5 85 30.10 VALVE 2.00 SINV 7.5 85 30.10 VALVE 1.00 2.5 86 30.25 C 1.00 2.5 87 30.25 C 1.00 2.5 71 30.24 VALVE 1.00 2.5 80 30.02 C	NNS	2.5	82	30.24	VALVE	3.00	GATE		>	1 -	n Naptna
PEG)EG	2.5	84	30.24	OEL	0.50	OEL		>	GAG	Buldavi L
PEG 2.5 75 30.16 VALVE 1.00 2.5 75 30.16 VALVE 1.00 2.5 79 30.16 VALVE 2.00 2.5 84 30.16 VALVE 2.00 2.5 84 30.10 VALVE 2.00 2.5 84 30.10 VALVE 0.50 7.5 85 30.10 VALVE 1.00 SINV 7.5 85 30.10 VALVE 1.00 A.5 86 30.25 VALVE 2.00 A.5 7.5 89 30.25 VALVE 1.00 A.5 7.5 80 30.25 VALVE 1.00 A.5 80 30.26 C <		2.5	82	30.24	VALVE	0.75	GATE		>	3 =	Total Case
NA 2.5 75 30.16 VALVE 0.75	2EG	2.5	75	30.16	VALVE	1.8	¥C		>	=	A HOLD IN THE STATE OF THE STAT
NALVE 2.5 79 VALVE 2.00 2.5 84 30.15 VALVE 2.00 2.5 84 30.15 OEL 0.50 2.5 84 30.15 OEL 0.50 7.5 85 30.10 VALVE 1.00 2.5 70 30.24 VALVE 1.00 2.5 71 30.24 VALVE 1.00 2.5 71 30.24 VALVE 1.00 2.5 80 30.20 OEL 1.00 3.0 2.5 80 30.02 OEL 1.00 3.0 3.0 3.0 OEL 1.00 3.0 3.0 0.5 OEL 1.00 3.0 3.0 0.5 OEL 1.00 3.0 0.5 OE		2.5	75	30.16	VALVE	0.75	GATE		>		Beformete
2.5 82 30.15 VALVE 2.00 2.5 84 30.15 OEL 0.50 2.5 84 30.10 OEL 0.50 7.5 85 30.10 VALVE 1.00 7.5 85 30.10 VALVE 1.00 8.0 30.10 VALVE 1.00 7.5 85 30.10 VALVE 1.00 7.5 68 30.25 VALVE 1.00 7.5 69 30.25 VALVE 0.50 7.5 69 30.25 VALVE 0.75 8.0 30.24 VALVE 1.00 9.0 2.5 71 30.24 VALVE 1.00 PEQ 2.5 73 30.24 VALVE 1.00 8.0 2.5 78 30.24 VALVE 1.00 9.0 2.5 80 30.24 VALVE 1.00 1.0 2.5 80 3	N .	2.5	79		VALVE	2.00	GATE		>		Butana
DUP 2.5 84 30.15 OEL 0.50 2.5 84 30.10 OEL 0.50 7.5 85 30.10 VALVE 1.00 7.5 85 30.10 VALVE 1.00 2.5 85 30.10 VALVE 1.00 2.5 68 30.25 C 1.00 7.5 69 30.25 C 1.00 7.5 69 30.25 C 1.00 ADINV 2.5 71 30.24 VALVE 1.00 PEQ 2.5 71 30.24 VALVE 1.00 PEQ 2.5 73 30.24 VALVE 1.00 ADINV 2.5 80 30.20 C 1.00 A 2.5 80 30.20 C 1.00 A 2.5 80 30.20 C 1.00 A 2.5 80 30.20 C 1.00		2.5	85	30.15	VALVE	2.00	GATE		>	1	Butana
DUP 7.5 84 30.10 VALVE 0.50 SINV 7.5 85 30.10 VALVE 1.00 SINV 7.5 85 30.10 VALVE 1.00 2.5 85 30.10 VALVE 1.00 2.5 68 30.25 C 1.00 2.5 70 30.25 VALVE 2.00 2.5 71 30.24 VALVE 2.00 DINV 2.5 73 30.24 VALVE 1.00 DINV 2.5 73 30.24 VALVE 1.00 DINV 2.5 80 30.24 VALVE 1.00 2.5 80 30.20 C 1.00 2.5 80 30.02 C 1.00 <		2.5	2	30.15	OEL	0.50	OEL		z	וו	Reformate
DUP 7.5 85 30.10 VALVE 1.00 SiNV 7.5 85 30.10 VALVE 1.00 2.5 85 30.10 VALVE 1.00 2.5 85 30.10 PRV 1.00 2.5 86 30.25 VALVE 0.50 2.5 70 30.25 VALVE 2.00 2.5 71 30.24 VALVE 2.00 DINV 2.5 73 30.24 VALVE 1.00 DINV 2.5 80 30.24 VALVE 1.00 DINV 2.5 80 30.24 VALVE 1.00 2.5 80 30.24 VALVE 1.00 2.5 80 30.24 VALVE 1.00 2.5 80 30.20 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5		2.5	8	30.10	OEL	0.50	OEL		z	1	Reformate
SiNV 7.5 85 30.10 VALVE 1.00 SiNV 7.5 85 30.10 PRV 1.00 2.5 85 30.10 PRV 1.00 2.5 68 30.25 VALVE 0.50 7.5 69 30.25 VALVE 2.00 2.5 71 30.24 VALVE 2.00 DINV 2.5 73 30.24 VALVE 1.00 DINV 2.5 78 30.24 VALVE 1.00 DINV 2.5 80 30.24 VALVE 1.00 2.5 80 30.24 VALVE 1.00 2.5 80 30.24 VALVE 1.00 2.5 80 30.20 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5		7.5	82	30.10	VALVE	1.00	GATE		z	GAS	H2
SiNV 7.5 85 30.10 PRV 1.00 2.5 85 30.10 OEL 0.50 2.5 68 30.25 VALVE 4.00 7.5 69 30.25 VALVE 0.75 2.5 71 30.24 VALVE 2.00 DINV 2.5 78 30.24 VALVE 0.75 DINV 2.5 80 30.20 C 1.00 DINV 2.5 80 30.20 C 1.00 2.5 80 30.20 C 1.00 2.5 80 30.20 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.04 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.04		7.5	82	30.10	VALVE	4.00	GATE		z	GAS	2
2.5 85 30.10 OEL 0.50 2.6 68 30.25 VALVE 4.00 7.5 69 30.25 C 1.00 2.5 70 30.25 VALVE 2.00 2.5 71 30.24 VALVE 2.00 DINV 2.5 78 30.24 VALVE 1.00 DINV 2.5 80 30.23 VALVE 1.00 DINV 2.5 80 30.20 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.04 C 1.00 2.5 80 30.04 C 1.50 2.5 80 30.04 C	AN	7.5	82	30.10	PRV	1.8	PRV		z	1	
2.5 68 30.25 VALVE 4.00 7.5 69 30.25 C 1.00 2.5 72 30.25 VALVE 2.0 2.5 71 30.24 VALVE 2.0 A PEQ 2.5 78 30.24 VALVE 1.50 A DINV 2.5 80 30.23 VALVE 1.00 A DINV 2.5 80 30.20 C 1.00 A DINV 2.5 80 30.02 C 1.00 A DINV 2.5 80 30.02 C 1.00 A S S S S S S S S S S S S S S S S S S S		2.5	82	30.10	OEL	0.50	OEL		z	GAS	42
7.5 69 30.25 C 1.00 2.5 70 30.25 VALVE 0.75 2.5 71 30.24 VALVE 2.00 DINV 2.5 73 30.24 VALVE 1.50 PEG 2.5 78 30.24 VALVE 1.50 DINV 2.5 80 30.22 VALVE 1.00 2.5 80 30.22 C 1.00 2.5 80 30.02 C 1.00 2.5 87 30.04 C 1.50 2.5 87 30.04 C 1.50		2.5	88	30.25	VALVE	4.00	MC		z	GAS	Butane
2.5 70 30.25 VALVE 0.75 2.5 72 30.15 VALVE 2.00 DINV 2.5 73 30.24 VALVE 2.00 PEG 2.5 78 30.24 VALVE 1.50 DINV 2.5 80 30.23 VALVE 1.00 7.5 80 30.22 C 1.00 7.5 80 30.02 C 1.50 7.5 80 30.02 C 1.50		7.5	69	30.25	O	1.00	Ŧ		>	GAS	H2
DINV 2.5 72 30.15 VALVE 2.00 DINV 2.5 71 30.24 VALVE 2.00 PEG 2.5 78 30.24 VALVE 1.50 PEG 2.5 80 30.24 VALVE 1.50 DINV 2.5 80 30.20 C 1.00 7.5 82 30.02 C 1.00 7.5 82 30.02 C 1.00 C 1.00 C 1.50 C 1.50 C 1.50 C 1.50 C 1.50 C 1.50 C 1.50 C 1.50 C 1.50 C 1.		2.5	2	30.25	VALVE	0.75	GLOBE		z	GAS	Fuel Gas
DINV 2.5 71 30.24 VALVE 2.00 PEG 2.5 73 30.24 VALVE 1.50 DINV 2.5 80 30.23 VALVE 1.50 7.5 82 30.02 C 1.00 7.5 80 30.02 C 1.00 7.5 80 30.02 C 1.00 7.5 80 30.02 C 1.50 7.5 80 30.02 C 1.50 7.5 80 30.02 C 1.50 7.5 80 30.04 VALVE 0.75		2.5	72	30.15	VALVE	2.00	GATE		>	GAS	Fuel Gas
DINV 2.5 73 30.24 VALVE 1.50 PEG 2.5 78 30.24 VALVE 0.75 DINV 2.5 80 30.20 C 1.00 7.5 82 30.02 C 1.00 2.5 80 30.02 C 1.50 C 1.50 C 1.50	1114	2.5	7	30.24	VALVE	2.00	GATE		z	GAS	Fuel Gas
PEG 2.5 78 30.24 VALVE 0.75 DINV 2.5 80 30.20 OEL 1.00 7.5 82 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 80 30.02 C 1.00 2.5 87 30.04 C 1.50 7.5 87 30.04 C 1.50	ANI	2.0	2	30.24	VALVE	1.50	GATE		>	GAS	Fuel Gas
DINV 2.5 80 30.02 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.00 C 1.50		0.0	8	30.24	VALVE	0.75	GATE		z	GAS	H2
DINV 2.5 80 30.02 C 1.00 7.5 82 30.04 C 1.00 7.5 80 30.02 C 1.00 7.5 80 30.02 C 1.00 7.5 80 30.02 C 1.50 7.5 87 30.04 VALVE 0.75	2	K.3	8 8	30.23	VALVE	- 8	Q W		z	GAS	H2
7.5 82 30.04 C 1.00 2.5 80 30.02 C 1.50 2.5 87 30.04 VALVE 0.75	2	0.0	8 8	90.20	ij (8 5	OEL		>	GAS	H2
2.5 87 30.04 C 1.00 2.5 87 30.04 VALVE 0.75		7 1	8 8	30.08	3	8	E		>	GAS	H2 Purge
2.5 87 30.04 VALVE 0.75		6.0	20	90.04	0	1.00	D		>	GAS	H2 Purge
30.04 VALVE 0.75		6.3	3 5	30.05	ပ	1.50	7		>	GAS	오
		6.3	/0	30.04	VALVE	0.75	GATE		>	GAS	42

	#					SCREENING DATA	DATA					
	& ™	Initial	East	South	West	Finat	East	South	West	Ava	Bkarad	Corrected
<u>Q</u>	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(maa)	(maa)	, E	Pare,	Telloo
V-1 ACCY		8				9		7	/dat	in day	נווולתו	(mdd)
N-2	200	2,000				4.000				2		
V-3	1,000	1,200				1 500				200,0		2,892
V-4 SINV	2.000	200				- 0				000.		1,348
V-5	200	8,000				300				1,350		1,345
NN 0	000	000				000				8,500	10	8,490
		2001				200'x				2,000	9	1,998
V-8	300	282				8						
6-7	3.000	4.000				3 5				800	4	296
V-10	10,050	6.700				200,				000,	4	3,996
V-11 SINV	3,000	584				00,00				6,700	10	069'9
V-12 PEG	100,000	89.000				000				1,022	18	1,004
V-13	S	2,000				000,60				000'68	2	88,995
V-14 PEG	100.000	67.000				3,000				2,500	4	2,496
V-15	\$	5				33,5				67,000	12	66,988
V-16 INV	2	2				0.21				110	10	100
	5	200				D				75	7	99
-12 -12	3	200				8				180	7	173
V-19		38.				1,500				1,500	7	1,493
V-20	500	3				300				250	ဇ	247
V-21	3 8	8 2				8				70	4	99
	3	3 5				8				20	4	99
		2 4				4				7	က	4
V24	5	0								23	2	20
V-05	3	200				8,000				8,000	~	7,998
V-26	5	3 2				320				275	4	271
V-27	3 5	3				006,1				1,500	ĸ	1,495
V-28	3 8	8 8				8				70	2	69
V-29	3 2	3 8				82				725	-	724
	3 8	3 8				9				009	9	598
V-31	300	200				80/				750	15	735
	3 5	200				120,000				120,000	4	119,996
V33	3	33.5				40,000				45,000	2	44,998
		34				200				200	6	197
V-35	+	0 00				15				15	2	13
V-36	500	38				8				ξ	٢	20
_			-			-				3	3	'n

SAME	SAMPLE CONTROL	BAG	BAG CONCENTRA	NTRATION		NITROG	NITROBEN FLOW		Xo	OXYGEN CONCENTRATION	CENTRATION	N.
		Initial	Final	Avg	Initial	Final	Average	N2	Initial	Final	Average	σ
₽	Code	(mdd)	(mdd)	ppm	ml/min	ml/min	ml/min	l/min	%	*	ж	m3/hr
۷-1	ACCY	1,140	1,080	1,110	926	925	941	0.94	3.20	4.10	3.65	0.07
V-2		2,475	2,475	2,475	2,818	2,818	2,818	2.82	4.80	5.20	5.00	0.22
V-3		750	200	625	2,563	2,563	2,563	2.56	3.50	2.90	3.20	0.18
4-4	SINV	945	945	945	2,891	3,279	3,085	3.09	4.00	1.50	2.75	0.21
V-5		1,575	1,680	1,628	3,028	3,091	3,060	3.06	4.50	2.50	3.50	0.22
9->	N	4,150	4,150	4,150	8,384	8,384	8,384	8.38	7.50	7.50	7.50	0.78
٧7	Ş											
8		828	818	822	5,243	5,243	5,243	5.24	3.00	8.4	3.50	0.38
6->		2,010	2,680	2,345	3,139	3,193	3,166	3.17	0.20	0.50	0.35	0.19
V-10		1,943	6,700	4,322	2,959	2,917	2,938	2.94	2.30	4.50	3.40	0.21
V-11	NNIS	1,533	2,336	1,935	3,057	3,095	3,076	3.08	4 .00	2.30	3.15	0.22
V-12	PEG	000'68	000'68	89,000	1,153	850	1,002	1.80	1.50	2.40	1.95	0.07
V-13		623	064	222	2,525	2,501	2,513	2.51	1.30	0.30	0.80	0.16
V-14	PEG	92,000	67,000	67,000	2,146	2,113	2,130	2.13	0.50	0.40	0.45	0.13
V-15		\$	450	425	2,071	2,071	2,071	2.07	09.0	0.20	0.40	0.13
V-16	<u>N</u>	2		94	2,875		2,875	2.88	4.00		4.00	0.21
V-17		120	120	120	3,657	3,657	3,657	3.66	1.30	2.40	1.85	0.24
V-18		243	320	282	942	812	877	0.88	1.50	2.00	1.75	90.0
V-19		166	149	158	868	869	698	0.87	1.70	3.80	2.75	90.0
V-20		117	117	117	2,266	2,252	2,259	2.26	0.30	0.20	0.25	0.14
V21	DUP	117	117	117	2,266	2,252	2,259	2.26	0.30	0.20	0.25	0.14
V-22	SINV	22	18	8	2,194	2,206	2,200	2.20	2.80	2.00	2.40	0.15
V-23		8	24	22	978	983	196	0.98	1.50	1.50	1.50	90.0
V-24		6,400	6,400	6,400	2,858	2,873	2,866	2.87	3.00	3.20	3.10	0.20
V25		1,296	792	1,044	877	879	878	0.88	4.00	4.00	4.00	0.07
V-26		715	910	813	2,402	2,398	2,400	2.40	1.80	0.20	09.0	0.15
V-27		23	25	24	2,222	2,269	2,246	2.25	1.80	0.30	1.05	0.14
V-28		909	9	009	2,291	2,308	2,300	2.30	2.80	96.1	2.35	0.16
V29	NIQ.	427	732	280	2,100	2,078	2,089	2.09	4.60	5.20	4.90	0.16
8X		1,950	5,200	3,575	1,929	1,931	1,930	1.93	0.20	0.20	0.20	0.12
V-31	PEG	120,000	120,000	120,000	2,349	2,330	2,340	2.34	09.0	0.40	0.50	0.14
V-32		17,000	17,000	17,000	996	1,004	982	0.99	0.10	01.0	0.10	90.0
V-33	DINA	113	450	281	638	629	634	0.63	5.00	5.40	5.20	0.05
V-34		58	25	27	802	808	807	0.81	3.60	3.60	3.60	90.0
V-35		89	228	148	733	1,134	934	0.93	1.20	0.40	08'0	90:0
V-36		267	696	318	2,357	2,385	2,371	2.37	08.0	0,40	09.0	0.15

SAMP	SAMPLE CONTROL	50	BAG TEMPERATURE	PERATU	Ħ		8 Y	LABORATORY DATA			
		Initial	Final	Avg.	Temp	Ž	NMOC	METHANE	<u>m</u>	F	ſ
₽	Code	9	<u>(</u>	(F)	deg R	ppmv (as C3H8)	ppmv (as C3H8) ppmw (as C3H8)	ppmv (as CH4)	DDmw (as CH4)	· (SHE) · Amad	, or () or ()
V1	ACCY	76	79	_				1,200,00	7	6	PPINE (48 COLIO)
2-2		83	8	82	544	AN	2,492.50	10.01	5.68	•	0.400.40
V-3		83	85	84	544	AN AN	1.046.71	4 60	0.00		2,498.10
4->	SINV	83	82	83	542	AN	1 172 41	2	10.2		1,049.32
V-5		82	91	82	541	AN	1 872 40	0.10	2.90		1,175.31
9-A	<u> </u>	103	109	2	266	ΔN	A 4 BO 24	0.10	9.60		1,878.02
V-7	N				3		17.801 '+	9.90	9.03	2	4,198.23
8-7		87	83	85	545	AN	1 000 50	4.40			
6-7		84	8	8	FAB	V V	0.080,0	01.4	2.33		1,095.82
V-10		56	8	8	ARR.	V	200007	0.6	2.91		2,200.56
V-11	SINV	3 5	1 2	8 5	000	42	7,809.24	0.00	0.0		7,809.24
V-12	PEG	28	2 2	2 2	ĝ	¥2	10,924.34	00.0	0.00		10,924.34
V=13	3	5 6	5 6	8 8	1	¥2:	0.00	140,000.00	78,155.64	35,000.00	53,854.12
V-14	PEG	12	100	S	000	₹Z.	190.44	300.00	171.09	230.00	361.53
V-15	2	2 8	0 9	=	8	ž	84,951,25	200.00	387.02	26,000.00	85.338.27
2 4	INIV	8 8	3	3	800	¥	440.36	0.00	0.00	280.00	440.36
7.	A	3		3	543	¥2	40.01	26.00	14.76	35.00	54.77
07 /		/0	8	/8	246	Ψ¥	26.62	2.20	1.25		61 22
01-7		200	\$ 1	2 3	243	¥	486.61	00:00	00.0		486.61
2 6		\$ 0	C C	2	244	¥	119.14	00.0	0:00	76.00	119.14
7 24	2	88	8	8	246	¥	94.96	00.0	00.0		84.96
191	100	8	8	3	25 25 26	¥	81.81	0.00	00'0		8181
75.0	ANIO	8 8	3	28	545	¥	6.27	00.0	00.00		627
20 /		8 8	\$;	S	243	¥:	10.84	0.00	00.00		10.84
1-25		2 8		5 8	3	¥.	5,413.93	380.00	215.59	3,600.00	5,629,53
20-7		5 6	2 5	20	542	¥.	2,656.30	2.80	1.59	1,700.00	2.657.89
V-27		2 5	7/	2 5	232	¥.	00.0	380.00	216.79		172.97
1-28		7,4	2 6	2 6	3	¥.	23.74	19.00	10.83	22.00	34.57
02-7	VINIC	- 6	2 6	2/2	20 5	¥.	0.0	340.00	193.49	90.69	108.23
67-7		70	3 6	3 8	2	Y :	8.0 0.0	230.00	130.42	41.00	64.08
36-7	DEC	3 3	8 0	3	850	¥.	1,547.12	320.00	182.56	1,100.00	1,729.68
V-32	201	6 8	3 8	5 6	9	¥Z:	91,026.81	35,000.00	19,168.58	73,000.00	110,195.39
V_33	VIAIC	P CO	3 8	3 8	200	¥2	10,513.60	4,100.00	2,329.88	8,200.00	12,843.48
20-7		3 3	3 8	2 4	200	ď.	00.0	13.00	7.37	1.80	2.81
V-35		5 8	8 8	8 2	6	YZ :	7.67	0.0	0.00	4.90	79.7
38-70		8 8	300	200	6	Y.	53.45	00.0	0.00		53.45
3		70	8	S	၁၁၁	¥Z	155.35	86.00	49.06	130 00	17 700

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMP	SAMPLE CONTROL	MOLECL	MOLECULAR WEIGHT	F DETERMINATION	NATION				EMISSION PATE	RATE		
		MW fraction	MW fraction	% fraction	MW fraction	×	N N	ç	Made		ì	
٥	Code	05	СЗНВ	N2	N2	Bac	(1)/4)	7	Memene		OHI .	
V-1	ACCY	1.2	0.0124	96.3	27.0	28 17	O COLLADO	SO COL	(u)(a)	uk/gi)	(Ip/hr)	(lb/yd
V-2		1.6	0.0706	94.8	26.6	28 24	1 305	200.0	1	0.00=+00	0.00E+00	0.00E+00
V~3		1.0	0.0296	8	27.4	20 4 00	100	1.225 +01	1	2.76E-02	1.39E-03	1.22E+01
V4	SINV	60	0.0331	07.0	010	20.10	4.700-04	4.17E+00	4	1.04E-02	4.77E-04	4.18E+00
V-5		-	0.0529	4.90	2.72	20.14	6.27E-04	5.49E+00	_	1.36E-02	6.28E-04	5.50E+00
9-7	N	24	0 1101	1.00	0.72	28.18	1.04E-03	9.10E+00		2.23E-02	1.04E-03	9.13€+00
٧٧	<u>>N</u>			95.5	R.C.7	28.36	7.95E-03	6.96E+01	1.71E-05	1.50E-01	7.97E-03	6.98E+01
8A		=	0.0309	4 98	0.70	28 17	700	2000				
6-A		0.1	0.0818	90 5	0.70	20.00	50-150-1	8.04E+00	2.20E-06	1.93E-02	1.03E03	9.06E+00
V-10		-	0.2208	8 2	6.72	20.00	100	9.25E+00	1.40E-06	1.22E02	1.06E-03	9.26E+00
V-11	SINV	10	0.3088	38	200	42.02	4.04E-03	3.54E+01	0.00E+00	0.00E+00	4.04E-03	3.54E+01
V-12	PEG	90	1 5430	90.6	6.03	20.20	5.70=03	4.99E+01	0.00E+00	0.00E+00	5.70E-03	4.99E+01
V-13		0.3	10100	000	20.0	20.00	0.00=+00	0.00E+00	1.32E-02	1.16E+02	9.09E-03	7.97E+01
V-14	PEG	10	2 4702	040	0.72	20.00	7.305-05	6.40E01	6.56E-05	5.75E01	1.39E-04	1.21E+00
V-15		0.1	0.0124	900	070	20.94	2.90=-02	2.54E+02	1.32E-04	1.16E+00	2.91E-02	2.55E+02
V-16	<u>N</u>	13	0 0015	8	6.72	20.04	1.36E-04	1.196+00	0.00E+00	0.00E+00	1.36E-04	1.196+00
V-17		90	71000	200	20.9	20.00	Z.14E-05	1.88E-01	7.90E-06	6.92E-02	2.93E-05	2.57E01
V-18		0.6	0.0137	8	27.0	20.03	3.595-05	3.14E-01	7.50E07	6.57E-03	3.66E-05	3.21E-01
V-19		0.0	0.0034	97.2	27.0	28 43	0.93E - U3	6.12E-01	0.00E+00	0.00E+00	6.99E~05	6.12E-01
V-20		0.1	0.0024	2 66	27.0	20.00	2000	10-10-0	0.00E+00	0.00E+00	1.79E~05	1.56E-01
V-21	DUP	0.1	0.0023	7 66	27.0	28.03	2.30E-03	Z.04E-01	0.00=+00	0.00E+00	2.90E-05	2.54E-01
V-22	SINV	0.8	0.0002	97.6	97.9	20.03	CO-361-2	Z.44E-01	0.00=+00	0.00E+00	2.79E-05	2.44E-01
V-23		0.5	0.0003	98.5	27.6	28.08	1 745	2.04E-02	0.00+00	0.00E+00	2.33E06	2.04E-02
V-24		1.0	0.1588	36.5	27.1	28.20	2 815-03	2 48E + 04	0.000+00	0.00	1.71E-06	1.50E-02
V-25		1.3	0.0750	95.8	26.9	28.21	4 35E-04	3 815+00	2 605-07	9.00E-01	2.925-03	2.56E+01
V-26		0.2	0.0049	99.4	27.8	28.05	0.00E+00	0.00F+00	8 19F-05	7 175 01	4.30E - 04	3.82E+00
V-27		0.3	0.0010	98.9	27.7	28.06	8.58F-06	7.51F-02	3 91F - 06	3 425	0.0351-00	5.725-01
V-28		0.8	0.0030	97.6	27.4	28.11	0.00F+00	000 t	7 605-05	20.130	20-307-1	1.09E-01
V-29	DINA	9.1	0.0018	95.1	26.6	28.22	0.00F+00	000 H	5 37F - 05	4 705 04	4.30E-05	3.77E01
V30		0.1	0.0485	89.7	27.9	28.05	4.55E-04	3.99F+00	5.37F_05	4 705	Z.04E-U3	2.31E-01
15-V	PEG	0.2	3.2200	92.2	25.8	29.21	3.42E-02	3.00E+02	7.21E-03	6.32F+01	4 14E 02	4.46E+00
V-32		0.0	0.3617	99.1	27.8	28.16	1.58E-03	1.38E+01	3.49E-04	3.06F+00	1 93E-03	1 605 104
25-7	DIN	1.7	0.0001	8.48	26.6	28.23	0.00E+00	0.00E+00	9.42E-07	8.25E-03	3.59F-07	3 156-03
V-35		7.0	0.0002	8 8	27.0	28.16	1.12E-06	9.82E-03	0.00E+00	0.00E+00	1.12E-06	9.82E-03
V-36		200	0.00.0	88.5	27.8	28.05	7.67E-06	6.72E-02	0.00E+00	0.00E+00	7.67E-06	6.72E-02
			2000	†. D	8.72	28.05	5.56E05	4.87E-01	1.76E-05	1.54E-01	7.32E-05	6.41E-01

Page 1e

WSPA EMISSION RATE CALCULATION SPREADSHEET

NYS	SAMPLE CONTROL	COMMENTS
9	Code	Commetts
V-1	ACCY	
√- 2		SV varied by a factor of 2. High O2.
K-3		
V4	SINV	SV varied by a factor of 2.9.
V5		
9-7	N/	Oz too high (7.5%).
V-7	<u>N</u>	Resampled.
8-7		
6->		
V-10		
V-11	SINV	SV varied by a factor of 2.5.
V-12	PEG	
V-13		
V-14	PEG	
V-15		
V-16	2	Unstable O2 concentration
V-17		
V-18		
V-19		
V-20		
V-21	PUP	Duplicate of V020.
V-22	SINV	SV varied by a factor of 2.9.
V-23		SV varied by a factor of 2.
V-24		
V-25		
N-26		
V-27		
V-28		
V-29	O O N	Final O2 concentration is greater than 5% (5.2%).
V-30		
V-31	PEG	
V-32		
V-33	>NIO	O2 too high (5.2%). Variable bagged THC.
V-34		Liquid sample VQ40 taken.
V-35		Variable bagged THC and O2 concentration.
V-36		Liquid sample V041 taken.
The state of the s		

Page 1f

SAM	SAMPLE CONTROL	AMBIENT CONDITIONS	COND	ITIONS		COMPONENT DATA	T DATA			STREAM	STREAM CHARACTERISTICS
±4×		þ	Temp.	Barometric	Category	Size	Туре	Valve	Load		
₽	Code	(mph)	Ē	Pressure		(Inches)		Actuation	Z >	Service	Product
V-37		7.5	84	30.00	PUMP	12.00	오		z	=	LT Naptha
V-38		2.0	98		O	1.00	כ		>	1	LT Naptha
V-39	_	2.0	86						>		
V-40	, , , , , , , , , , , , , , , , , , ,								>		
V-41	_								>		
V-42		5.0	85	30.00	O	1.00	Ŧ		\	ΓΓ	LT Naptha
V-43		15.0	85		o	4.00	Z		>	ור	LT Naptha
V-44	And the second s	12.5	87	29.90	VALVE	1.00	GATE		>	71	H Naptha
V-45	DUP	12.5	87	29.90	VALVE	1.00	GATE		>	7	H Naptha
V-46	<u>N</u>	10.0	65		VALVE	1.00	GATE		>	Ⅎ	Naptha
V-47	SINV	10.0	64	30.24	VALVE	3.00	GATE		>	Ⅎ	H Naptha
V-48		10.0	65	30.24	ပ	1.00	TH		>	11	H Naptha
V49	SINV	2.0	99	30.24	VALVE	2.00	GATE		>	רי	H Naptha
V-50	_	10.0	65	30.24					>		
V-51	_	2.0	99						>		
V-52	DINV	2.5	77	30.24	VALVE	10.00	GATE		>	1	Naptha Feed
V-53		2.5	71		VALVE	2.00	GATE		>	- I	Naptha Feed
V-54	BL.										
V-55	DINV	2.5	67	30.44	VALVE	10.00	GATE		>	רך	Naptha Feed
V-56		15.0	9		VALVE	3.00	GATE		>	GAS	H2 Isobutane
V-57	L/INV	2.5	67	30.44					>		
V-58	PEG	2.5	29		OEL	0.75	OEL		>	GAS	Fuel Gas
V-59	PEG	7.5	63	30.49	VALVE	0.50	GATE		>	GAS	Fuel Gas
09-7	PEG	7.5	62		VALVE	3.00	MC		>	GAS	
V-61		2.5	62		VALVE	1.00	GATE		>	GAS	Fuel Gas
V-62	PEG	7.5	62		၁	1.00	Ŧ		>	GAS	Fuel Gas
V-63		7.5	9		OEL	0.50	OEL		>	로	Kerosene
V-64	OIN	7.5	58		၁	0.75	TH		>	土	Kerosene
V-65		7.5	61		VALVE	0.75	GLOBE		>	로	Кегозепе
99-7	PEG/DRIP	7.5	64	30,40	ပ	1.00	Ŧ		>	Ŧ	Kerosene
19− 0	2	2.5		30.40	O	0.75	Ŧ		>	Ŧ	
N-68	_	7.5	9	30.40							
69-A	_	7.5	61								
V-70	_	7.5	59	30.00							
V-71		7.5	65		O	0.75	Ŧ		>	Ή	
V-72		7.5	59	30.00	PUMP		НС		>	로	
V-73		2,5	65	30.25	VALVE	3.00	GLOBE		>	Ŧ	Kerosene

WSPA EMISSION RATE CALCULATION SPREADSHEET

_							***************************************			***************************************		***************************************	
SAME	SAMPLE CONTROL						SCREENING DATA	DATA					
-		∑	Initial	East	South	West	Final	East	South	West	Avg.	Bkgrnd	Corrected
9	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(Euda)	(maa)	(waa)	(maa)	(maa)
V-37		200	15				20				18	2	
V-38			20				20				20	0	
V-39	_											4	
V-40													
V-41													
V-42			40				40				40	6	96
V-43			1,500				1.500				1 500		
V-44		200	4,000				3,000				3 500		
V-45	PUP	200	4.000				3 000				2500	,	
V-46	2	100,000	20,000				000 8				14 000		
V-47	SIN	20	22				150				110		400
V-48			3.000				4.200				3 600		~
V-49	SINV	200	200				1 700				4 0	2	
V-50							201-				702,	*	2
V-51													
V-52	OIN	30	ß				8				7	-	g
V-53		0	4,000				000'9				5.000	8	4 998
V-54	Bl.												
V55	OIN	200	2,000				2,000				2,000	-	1,999
V-56		20	15				15				15	2	13
V-57	ZINA ZINA												
V-58	PEG	100,000	100,000				100,000				100,000	9	866'66
V-59	PEG	1,000	100,000				100,000				100,000		66'66
09-7	PEG	100,000	109,000				109,000				109,000		108,999
V-61		20	09				100				98	2	78
V-62	PEG		91,000				91,000				91,000	ဇ	866'06
_63 ∨–63			200				210				205	10	195
V-64	N O		450				480				465	5	
V-65			120				230				175	8	
99-7	PEG/DRIP		1,700				1,200				1,450	16	1,434
79-7	<u>N</u>		75				0				38	5	33
N-68	7												
69-7													
V-70	٦												
V-71			75				09				89	თ	59
V-72			350				320				335	12	
V-73			180				200				190	7	18.

Page 2b

SAMPL	SAMPLE CONTROL	BAG (BAG CONCENTRA	NTFATION		NITROC	NITROGEN FLOW		λxο	GEN CON	OXYGEN CONCENTRATION	N C
	-	initial	Final	Avg	Initial	Final	Average	ZZ Z	Initial	Final	Average	G
<u>o</u>	Code	(mdd)	(mdd)	ррш	ml/min	ml/min	ml/min	l/min	*	%	፠	m3/hr
V-37		1,656	1,840		3,456	3,470	3,463	3.46	0.40	0.40	0.40	0.21
V-38		28	32	30	865	872	698	0.87	1.20	2.60	1.90	90.0
V-39		-										
V-40	7			_								
V-41												
V-42		51	34	43	893	908	106	06.0	0.50	1.40	0.95	90.0
V-43		73,600	78,200	75,900	2,353	2,385	2,369	2.37	0.50	0.20	0.35	0.14
V-44		1,638	1,911	1,775	2,104	2,072		5.09	09.0	0.20	0.40	0.13
V-45	DUP	1,638	1,911	1,775	2,104	2,072	2,088	2.09	09.0	0.20	0.40	0.13
V-46	N	8,000	8,000		1,974	1,960			0.20	0.30		
V-47	SINV	135	66	117	4'004	4,004	4,004	4.00	3.50	1.50	2.50	0.27
V-48		3,486	3,486	3,486	828	875	298	0.87	0.60	0.50	0.55	0.05
V-49	SINV	325	360	343	3,800	3,762	3,781	3.78	2.00	1.8	1.50	0.24
V-50												
V-51												
V-52	OINV	14	12	13	6,056	6,056	6,056	90.9	5.00	6.50	5.75	0.50
V-53		7,280	7,280	7,280	3,888	3,155	3,522	3.52	3.50	1.50	2.50	0.24
V-54	ВГ											
V55	N O IN	383	340	362	6,324	6,382	6,353	6.35	4.20	5.60	4.90	0.50
N-56		47	16	16	3,555	5,262	4,409	4.41	2.20	1.00	1.60	0.29
V-57	L/INV											
V-58	PEG	10,000	7,500	8,750	732	702	717	0.72	2.00	2.00	2.00	0.05
V-59	PEG	12,000	19,000	15,500	2,931	2,927	2,929	2.93	3.00	1.40	2.20	0.20
N-60	PEG	17,440	19,620	18,530	1,561	1,572	1,567	1.57	0.40	0.70	0.55	0.10
V-61		189	258	224	1,134	1,140	1,137	1.14	09.0	0.70	0.65	0.07
V-62	PEG	91,000	91,000	91,000	740	741	741	0.74	0.40	0.40	0.40	0.05
∠ -63		221	221	221	563	564	564	0.56	0.40	0.40	0.40	0.03
V-64	DINV	192	178	185	916	910	913	0.91	2.00	5.20	5.10	0.07
V-65		91	117	104	2,013	1,654	1,834	1.83	0.40	0.30	0.35	0.11
99-7	PEG/DRIP	1,235	845	1,040	1,360	2,667	2,014	2.01	1.00	0.40	0.70	0.12
۸67	N/	131	109	120	811	6,458	3,635	3.63	2.00	0.20	1.10	0.23
V68												
69-7												
V-70	Ļ											
V-71		218	153	186	1,163	1,177	1,170	1.17	1.00	0.80	06.0	0.07
V-72		436	436	436	8,847	8,847	8,847	8.85	5.10	5.10	5.10	0.70
V-73		275	220	248	3,464	3,418	3,441	3.44	3.90	1,10	2.50	0.23

WSPA EMISSION RATE CALCULATION SPREADSHEET

PACK LICENSE		1									
SAMPLE CONTROL	<u> </u>	••	BAG TEMPERATUR	PERAT	LA CA		LAB	LABORATORY DATA			
9		Initial	Final	Avg.	Temp	Ž	NMOC	METHANE	LL Z	Çî.	
-	 	(F)	(E)	(E)	deg R	C3H8)	ppmw (as C3H8)	ppmv (as CH4)	DDMW (88 CH4)) \old \old	
V38	T	8	90	200	547	¥	2,196.47	6.90	_	1 400 00	ppinw (as C3H8)
V-39	<u> </u>	3	ò	8	24/	Y Y	10.83	000			4,000,4
V-40	 									0.60	10.83
		\dagger									
V-42	$\frac{\perp}{\Gamma}$	90	18	1							
V-43		0	82	8	545	Ϋ́	5.03	000	8		
24 >		88	88	88	548	Ą	23.356.51	00.00	0.00		5.03
		87	88	88	547	AN	4 860 45	00.00	38.48		23,394.99
		87	88	88	547	NA	24.000,1	6.40	3.65	1,000.00	1,572.08
V-46 INV		82	63				1,558.54	6.20	3.54		1.572.08
		20	70	70	530	VIA		15.00		2,800.00	
V-48		67	99	2 8	200	¥ .	188.18	0.00	0.00	120.00	188 1
V-49 SINV		2	74	3 2	070	AN.	4,239.58	00.00	00.0	2 700 00	4 220 50
V~50		!		2	200	¥Z	376.88	00.0	00'0	240 00	4,203.00
V-51			+		1					20.014	9/0/0
V-52 DINV	<u> </u>	70	0	3							
	T	2.5	3	8	233	۸A	4.06	00'0	000	0.00	
-54 BI	T	2	4/	4/	534	AA	1,171.12	8.10	4.61	750.00	30.4
V-55 DINV	1	70	1.6	ş		- 3		0.00		20.00	1,1/5./3
	I	2 2	\$ 1	2	533	56,00	40.64	00.00	000	200	
V-57	<u> </u>	ō	9	20	521	47.00	73.80	0.00	00.0	¥ ×	40.64
	$\frac{1}{I}$	-							200	C.	/3.80
	1	2	68	67	526	900.00	1.412.48	1 000 00	10000		
5017	1	64	63	64	523	4,200.00	6 589 69	00.000	78.180,1	AA.	2,494.34
ארב ארב		69	69	69	529	7,500,00	11 794 85	00.000,4	2,276.97	ΑN	8,866.65
+		2	64	64	524	4.50	20.7	00.00	4,108.14	AA	15,902.99
V-62 PEG		83	62	63	522	65.00	00.7	22:00	12,55	Ϋ́	19.63
		69	65	29	527	12.00	102.24	41,000.00	23,398,55	NA	23,500,80
Pin Din		92	104	5	550	20.40	99.88	27.00	15.41	Ϋ́	34 28
V-65		9/	06	83	543	0.00	8.91	8.0	00.00	¥	16
V-66 PEG/DRIP	0	2	67	3 8		370.00	582.04	0.00	0.00	¥	582 04
V—67		6	00	2 6	546	1,400.00	2,201.24	40.00	22.82	AN	0 00 V
V-68	<u> </u> 	3	8	ò	0 40	70.00	110.00	2.80	1.60	AM	111 20
69		-	-								8
V-70	<u> </u> 			+	+						
V-71		06	103	0,	222						
V-72		135	130	133	000	00.4	7.07	00'0	0.00	AN	707
V-73	I	77	200	2 6	280	/20.00	1,125.04	3.10	1.76	NA	1 126 90
		-	3	2			*****				0.02

Page 2d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

		1						***************************************				
SAMPL	SAMPLE CONTROL	MOLECL	MOLECULAR WEIGHT	T DETERMINATION	NATION			-	EMISSION RATE	WTE		
		MW fraction	MW fraction	% fraction	MW fraction	WW	NMOC	ပ္	Methane	ên.	THC	
٥	Code	05	СЗНВ	N2	Z Z	Вад	(Ib/hŋ)	(Ib/yı)	(Ib/hr)	(lb/yı)	(lp/hr)	(lb/yr)
V-37		0.1	0.0618	99.5	27.9	28.06	1.15E-03	1.01E+01	2.07E-06	1.81E-02	1.16E-03	1.01E+01
V-38		9.0	0.0003	98.1	27.5	28.10	1.54E-06	1.35E02	0.00E+00	0.00E+00	1.54E-06	1.35E-02
V-39												
V40	ب											
<u>+</u>												
V-42		0.3	0.0001	0.66	27.8	28.06	7.08E-07	6.21E-03	0.00E+00	0.00E+00	7.08E-07	6.21E-03
V-43		0.1	0.6617	98.2	27.5	28.28	8.43E-03	7.38E+01	1.39E-05	1.22E-01	8.44E-03	7.40E+01
V-44		0.1	0.0441	99.5	27.9	28.05	4.97E-04	4.35E+00	1.16E-06	1.01E-02	4.98E-04	4.36E+00
V-45	DUP	0.1	0.0441	99.5	27.9	28.05	4.97E-04	4.35E+00	1.12E-06	9.81E-03	4.98E-04	4.36E+00
V-46	N											
V47	SINV	0.8	0.0053	97.5	27.3	28.12	1.32E-04	1.15E+00	0.00E+00	0.00E+00	1.32E04	1.15E+00
V48		0.2	0.1191	99.2	27.8	28.09	5.83E-04	5,11E+00	0.00E+00	0.00E+00	5.83E04	5.11E+00
V-49	SINV	0.5	0,0106	98.5		28.08	2.35E-04	2.06E+00	0.00E+00	0.00E+00	2.35E-04	2.06E+00
V-50	1											
V-51	٦											
V-52	DINA	1.8	0.0001	94.2	26.4	28.25	5.15E-06	4.51E-02	0.00E+00	0.00E+00	5.15E06	4.51E-02
V-53		0.8	0.0331	97.4	27.3	28.13	7.16E-04	6.27E+00	2.82E-06	2.47E-02	7.19E-04	6.30E+00
V-54	BL											
V-55	OIN	1.6	0.0000	95.1	56.6	28.22	5.18E-05	4.53E01	0.00E+00	0.00E+00	5.18E-05	4.53E-01
V-56		0.5	0.0000	98.4	27.6	28.08	5.51E-05	4.83E-01	0.00E+00	0.00E+00	5.51E-05	4.83E-01
V-57	L/INV											
V-58	PEG	9.0	0.0000	98.0	27.5	28.10	1.73E-04	1.52E+00	1.33E-04	1.16E+00	3.06E-04	2.68E+00
N-59	PEG	0.7	0.0000	97.8	27.4	28.11	3.36E-03	2.94E+01	1.16E-03	1.02E+01	4.52E-03	3.96E+01
09-A	PEG	0.5	0.0000	99.5	27.9	28.04	2.92E-03	2.56E+01	1.02E-03	8.91E+00	3.94E-03	3.45E+01
V-61		0.5	0.0000	99.4	27.8	28.05	1.29€06	1.13€~02	2.29E-06	2.00E-02	3.58E-06	3.13E-02
V-62	PEG	0.1	0.0000	9.66	27.9	28.04	1.20E05	1.05E01	2.75E-03	2.41E+01	2.76E-03	2.42E+01
√-63		0.1	0.000	9.66	27.9	28.04	1.67E-06	1.47E-02	1.37E-06	1.20E-02	3.04E-06	2.66E-02
V-64	OIN<	1.6	0.0000	94.9	56.6	28.22	1.57E-06	1.38E-02	0.00E+00	0.00€+00	1.57E-06	1.38E-02
V-65		0.1	0.0000	2.66	27.9	28.03	1.63E04	1.43E+00	0.00E+00	0.00E+00	1.63E04	1.43E+00
N-66	PEG/DRIP	0.2	00000	99.3	27.8	28.05	7.54E-04	6.61E+00	7.31E-06	6.40E-02	7.07E-02	6.19E+02
\ \—67	N	4.0	0.0000	6.86	27.7	28.06	6.29E05	5.51E-01	9.13E-07	8.00E-03	6.38E-05	5.59E-01
N−68												
N−69	٦											
V-70												
V-71		6.0	0.0000	1.66	27.8	28.06	1.27E-06	1.11E-02	0.00E+00	0.00E+00	1.27E-06	1.11E-02
V-72		1.6	00000	94.9	26.6	28.22	1.82E-03	1.59E+01	2.84E-06	2.49E-02	1.82E-03	1.60E+01
V-73		0.8	0.0000	97.5	27.3	28.12	5.00E-04	4.38E+00	0.00E+00	0.00E+00	5.00E-04	4.38E+00

Page 2e

A-13

SAMP	SAMPLE CONTROL	COMMENTS
<u>Q</u>	Code	
V-37		RITRITION
V-38		Liquid sample V039 taken.
V-39		
V-40	٦	
V-41		Reported With sample V036.
٧-42		
V-43		
V-44		
V-45	PUP	Duplicate of VQ44.
V-46	<u>N</u>	
V-47	SINV	SV varied by a factor of 2.1. Liquid sample V050 taken.
V-48		en.
V-49	SINV	SV varied by a factor of 2.4. Liquid sample V051 taken.
V-50		Reported with samples V047 and V048
V51		Reported with sample VQ49
V-52	ANIO	O2 too high (5.75%).
V-53		
V54	BL	
V-55	NIO	Final O2 concentration is greater than 5% (5.6%). Liquid sample V057 taken.
V-56		
V-57	L/INV	Reported with sample V055.
V-58	PEG	
V-59	PEG	
09-A	PEG	
V-61		
V-62	PEG	
V-63		Liguid sample V068 taken.
V-64	OIN	Final O2 concentration is greater than 5% (5.2%). Liquid sample V068 taken.
V-65		
N-66	PEG/DRIP	Varying N2 flow. Dripping. Drip rate = 12ml/16min. Liquid sample V068 teken
∠9−V	N	Large change in N2 flow
N-68		Reported with samples V063, V064 and V066.
69-7	_	Reported with samples V065 and V071.
V-70	اد	Reported with sample V072.
V71		
V-72		Oz concentration high (5.1). Liquid sample V070 taken.
V-73		Liquid sample V079 taken.

SAMP	SAMPLE CONTROL	AMBIEN	AMBIENT CONDIT	TIONS		COMPONENT DATA	VT DATA			STREAM	STREAM CHARACTERISTICS
į		pe	ف	Barometric	Category	Size	Type	Valve	Load		
2 ;	Code	(mph)	- 1	Pressure ("Hg)		(luches)		Actuation	Z/X	Service	Product
4//		2.5	99	30.25	VALVE	4.00	GLOBE		>	Ħ	Karosana
V-75	PUP	2.5	99	30.25	VALVE	4.00	GLOBE		>	Ī	ellosolox A
V-76	20	2.5	99	30.25	VALVE	1 00	GI ORF		- >	1 5	Nerosene
-77	PEG/DRIP	2.5	99	30.25	OEL	0.50	I II C		- >	1 =	Nerosene
V-78	PEG	2.5	29	30.24	VALVE	300	GATE		- >	7 P	Kerosene
-79		2.5	65	30.25		200	1100	-	- >	040	Fuel Gas
V80		2.5	99	30.25					- >		
-81	PEG	2.5	71	30.24	OEL	0.75	OF		>	240	First One
V-82	PEG	2.5	72	30.24	OEL	0.75	OF		- >	200	ruei Gas
-83		2.5	2	30.24	OEL	1.00	OFI		- >	SAS	ruel Gas
V-84		2.5	2	30.21	VALVE	4.00	GATE		- >	246	ruel Gas
V-85	DZ	2.5	73	30.21	VALVE	2.00	GLOBE		>	GAS	24
V-86	Bľ.								-	2	
-87		7.5	9	30.20	VALVE	3.00	GATE		>	245	200 000
V-88	N.	2.5	70	30.20	PUMP		오		>	3 =	Luel Gas
V-89	DZ	2.5	20	30.20	VALVE	2.00	GATE		>	=======================================	P Diesel
06-7	PEG	2.5	72	30.21	VALVE	2.00	GLOBE		>	GAS	Comp Gassas
6-7	2112	2.5	2	30.21	VALVE	2.00	GLOBE		>	GAS	Comp Gasses
76-0	010	2.5	-	30.21	O	1.00	TH		>	1	Diesel
3	2	C.S	29	30.28	O	24.00	댇		>	GAS	Comp Gasses
V-94	0.00	2.5	28	30.28	VALVE	1.00	GATE		>	1	H2
60	PEG	7.5	28	30.28	ပ	4.00	7		>	GAS	Propage
N-96	DZ/DINV	7.5	23	30.28	O	4.00	1		>	GAS	2000
/6-A		2.5	9	30.30	VALVE	2.00	GATE		>	1	H2 Naotha
06-7	בובי	2.5	8	30.30	VALVE	2.00	GATE		>		H2 Naotha
88-2	INV	2.5	62	30.28	VALVE	1.00	GATE		>	11	
7-100	7.0	0.1	26	30.28	O	1.00	Ξ		>	GAS	Comp. Gasses
V-102	20	0.7	5 [30.28	O	1.00	Ŧ		>	GAS	Comp. Gasses
V-103	3 2	0.2.0	20	30.28	PRV	3.00	PRV		>	GAS	Butane/Propane
V-104	70	2,0	3 5	30.30	PHV	1.50	PRV		>	GAS	Butane/Propane
V-105	200	7.0	70	30.30	PRV	1.50	PRV		>	GAS	Butane/Propane
V_106	DEG	0.7	8 8	30.30	VALVE	00.9	GATE		z	GAS	
V-107	0 10	0.7	200	30.30	VALVE	3.00	GLOBE		>	GAS	H2
V-108	פנים	C.7	8 6	30.30	VALVE	4.00	WC		>	GAS	H2
V-109		6.5	0,0	30.30	VALVE	4.00	WC		>	GAS	7
V-110		7 5.3	38	30.26	OEL	1.00	OEL		z	1	Propane
2		9	3	30.24	VALVE	9.00	GLOBE		>	1	Propane

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMPLE CONTROL						SCHEENING DATA	DATA					
	≥	Initial	East	South	West	Final	East	South	West	Ava	Bkarn	7000
Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(2000)	, (a)		palpallon,
		230				390	, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, LE E	310	20) Doc
JOE S		230				390				310	2 8	290
70		15				7				=	-	
PEG/DRIP		700				700				2002		203
PEG	100,000	67,000				100,000				83 500	7,5	090 77 A 44
اد										33,123	3	24,00
PEG		110,000				110,000				110.000	ç	100 000
PEG	300.0	119,000				119,000				149,000	2 8	109,990
		13,400				16,750				20,00	200	000
	300	700				1 000				0,0,0		13,068
DZ		20				5				OCE	8	830
BL.						7				9	16	٥
	2,000	200				000						
N-						000				250	10	240
ZQ		4										
PEG	100.000	77.000				77.000				4	4	٥
PEG	100,000	80.000				000,75				27,000	9	76,994
		1.200				00,000				80,000	က	79,996
PEG	100,000	86.000				000,98				1,350	15	1,335
		7				00,00				96,000	13	85,987
PEG	10.050	86.000				21				10	4	9
DZ/DINV		5				200,000				86,000	2	85,990
		80.000				000 08				٥	9	0
DUP		80,000				000,00				80,000	m	79,997
<u>N</u>		7				8				80,000	E	79,997
		48.000				0000				64	7	
ZQ		4				200/01				44,000	2	43,995
ZQ		4				2 <				4	4	0
DZ		0				•				4	4	0
ZO		10				7				2	2	0
D2		1 +				ν.				N	2	0
PEG	30,000	100 001								-	-	0
PEG	10,050	71 400				000'001				100,000	S	366'66
ם מ	10,000	70,000				71,400				71,400	င	71,397
-	20,5	000,07				78,000				78,000	4	77,996
V-110		006,1				1,600				1,450	2	1,448
_												

Page 3b

SAMPL	SAMPLE CONTROL	BAG	BAG CONCENTRA	TRATION		NITROG	NITROGEN FLOW		,xo	OXYGEN CONCENTRATION	CENTRATION	NO
		Initial	Final	Avg	Initial	Final	Average	Z N S	Initial	Final	Average	G
Ω	Code	(mdd)	(mdd)	ррш	ml/min	mt/min	ml/min	l/min	*	*	*	m3/hr
V-74		138	110	124	3,340	3,356	3,348	3.35	2.50		1.65	0.22
V-75	DOP	138	110	124	3,340	3,356	3,348	3.35	2.50		1.65	0.22
V-76	DZ	82	82	85	1,960	1,980	1,970	1.97	0.50		0.45	0.12
V77	PEG/DRIP	1,875	1,000	1,438	1,164	1,168	1,166	1.17	2.00		2.00	0.08
V-78	PEG	3,850	3,620	3,735	399'8	3,671	3,668	3.67	3.20	2.30	2.75	0.25
V-79	7										i	
V-80	7											
V-81	PEG	49,500	49,500	49,500	710	703	707	0.71	1.30	2.00	1.65	0.05
V-82	PEG	95,200	119,000	107,100	718	713	716	0.72	0.20	0.60	0.40	0.04
V-83		5,360	2,680	4,020	750	768	759	0.76	2.40	1.40	1.90	0.05
V-84		635	265	614	3,418	3,452	3,435	3.44	2.50	1.20	1.85	0.23
V-85	DZ	133	78	105	3,351	3,345	3,348	3.35	5.00	1.20	3.10	0.24
V-86	19											
V-87		278	760	519	3,630	3,610	3,620	3.62	2.80	0.80	1.80	0.24
V-88	N.											
68-7	ZO	45	32	37	3,286	3,261	3,274	3.27	4.00	0.40	2.20	0.22
06-7	PEG	15,400	15,400	15,400	3,430	3,452	3,441	3.44	0.40	0.40	0.40	0.21
V-91	PEG	13,600	15,200	14,400	3,600	3,820	3,710	3.71	5.00	3.80	4.40	0.28
V-92		200	200	200	754	756	755	0.76	2.00	2.20	2.10	0.05
V-93	PEG	2,580	241	1,411	8,246	8,246	8,246	8.25	4.00	4.00	4.00	0.61
V94		44	29	52	1,552	1,576	1,564	1.56	1.20	09.0	0.90	0.10
V-95	PEG	86,000	86,000	86,000	1,295	1,310	1,303	1.30	09'0	0.30	0.45	0.08
96-7	DZ/DINV	23	31	27	1,486	1,502	1,494	1.49	0.20	0.20	0.20	0.09
76-7		000'9	2,000	5,500	3,870	3,904	3,887	3.89	3.20	0.70	1.95	0.26
86-7	DUP	000'9	2,000	5,500	3,870	3,904	3,887	3.89	3.20	0.70	1.95	0.26
66-7	N	26	35		1,806	1,832			2.10	1.40		
V-100		20,000	17,600	18,800	1,090	1,111	1,101	1.10	1.00	0.80	06.0	0.07
V-101	DZ	29	20	22	708	726	717	0.72	0.40	0.40	0.40	0.04
V-102	70	14	36	38	2,187	2,206	2,197	2.20	0.30	0.20	0.25	0.13
V-103	70	92	56	56	1,557	1,598	1,578	1.58	0.20	0.10	0.15	0.10
V-104	70	=	7	o	1,390	1,395	1,393	1.39	0.40	0.20	0.30	0.08
V-105	DZ	20	20	20	4,220	4,170	4,195	4.20	4.00	2.00	3.00	0.29
V-106	PEG	000'09	000'06	75,000	2,274	2,365	2,320	2:32	2.80	2.20	2.50	0.16
V-107	PEG	71,400	71,400	71,400	2,410	2,341	2,376	2.38	0.20	0.20	0.20	0.14
V-108	PEG	24,960	26,520	25,740	2,415	2,427	2,421	2.42	1.50	0.80	1.15	0.15
V-109		137	137	137	1,800	1,790	1,795	1.80	2.00	1.00	1.50	0.12
V-110		99	57	62	4,116	4,102	4,109	4.11	3.50	3.20	3.35	0.29

SAMPLE	SAMPLE CONTROL		BAG TEMPERATURE	PERATI	JRE		8 Y)	LABORATORY DATA			
		leitin Leitin	Final	Ą							
0	Code		<u> </u>		d a	≤	NMOC	METHANE	ш	THC	O
V-74		7.3	- 1	77	L GBD	-	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	DDmw (as C3HR)
V-75	DUP	2 22	8	77	920	640.00	1,004.93	0.00	00:00	AN	1.004.93
V-76	DZ	9	200	200	000	380.00	296.67		0.00	AN	506 67
	PEG/DRIP	3	200	8	/202	AA A	204.46		00'0		204 46
-	010	200	0 0	2	928	970.00	1,522,33	0.00	00.0	AN	4 500 00
2 2	ם -	2	9/	75	534	5,000.00	7,838.76	3,500,00	1 990 80	VA	1,322.33
N-80										VA.	8,629.56
V-81	PEG	7.6	ì	i							
82	010	4/	4	74	534	29,000.00	92,641.55	30,000.00	17.090.57	AM	100 720 40
V_83	בוב	2 4	2	73	533	29,000.00	45,616,48	13,000,00	7,419.05	AN	109,732.12
V_84		7,5	2	7	531	360.00	565.07	260.00	148.07	S A	55,035.53
, a	27	4/	င္ဆ	8	539	490.00	769.18	5.30	3.02	42	110.14
28-X	70	080	8	8	540	Ϋ́Α	57.98	00'0	000	27.00	172.20
200	10					A A		000		3.5	86.70
00		64	88	99	526	9.20	14.44	38.00	21 64	30.10 A14	
00- 1	N								5	¥.	36.09
00-7	70	\	7	7	231	NA NA	58.05	0.00	000	37.00	100
2 2	מום ב	*	90	79	538	7,600.00	11,954.66	3,900.00	2 225 72	S. S.	00.00
V-42	מטנ	200	7.9	&	539	5,800.00	9,071.78	3,100.00	1.759.17	AN AN	14,180,38
200	0,10	9	9	9/	536	12.00	18.83	8.90	5.07	NIA	00.000,01
2 2	ביים	109	120	115	574	18.00	28.17	160.00	20.00	S S S	23.90
7 OF		28	8	29	519	08.9	10.69	00.0	800		20.81
1	בויים בייים	28	27	28	517	20,000.00	31,457.41	14.000.00	7 989 18	42	59.01
08-7	OZ/DINV	29	23	23	519	¥.	87.73	42.00	23.00	V.	39,446.59
/6-A		65	62	64	523	2,400.00	3,766.87	1.200.00	683 33	NA L	11.77
90 /	בֿב	65	85	64	523	2,400.00	3,766.87	1.200.00	683 33	2 2	4,450.20
V-100	2	5 !	F			6.10		00'0		5	4,450.20
7-101		/6	26	27	516	17,000.00	26,721.73	110.00	62.73	AN	26 704 46
V-102	200	0/2	<u>ة</u> ا	82	538	NA	72.36	0.00	00.0	46.00	20,407,02
V-103	200	000	2	20	516	ΨV	20.0	0.00	00.00	000	0.07
V-104	7 2	6	40	ဂ္ဂ	514	AN.	0.07	0.00	0.00	0.05	700
V_105	12	3 5	8	8	220	NA	0.07	00.0	00.0	200	200
7-40e	250	8	3	22	514	NA	0.08	00'0	00.0	20.0	0.0
V-107	010	8/5	85	8	540	25,000.00	39,207.67	36,000.00	20.484.01		E0 604 67
100	ם ב	/6	96	97	929	67,000.00	105,419.73	93,000.00	53.089.84	AN A	150,5091,07
001-7	ב	93	96	92	554	13,000.00	20,427.02	17,000.00	9 691 52	C V	100,000,00
V-103		83	62	64	524	8.00	12.56	13.00	7.41	V.	40.01
2		9	02	69	a C	00 00	,017,				70.00

Page 3d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAMP	SAMPLE CONTROL	MOLECL	MOLECULAR WEIGHT	F DETERMINATION	VATION			_	EMISSION RATE	WTE		
		MW fraction	MW fraction	% fraction	MW fraction	×w	NWOC	S	Methane	9	THC	
0	Code	05	СЗНВ	N2	N2	Bag	(Ib/hg	(lb/yr)	(Ib/hr)	(lb/yr)	(lp/hr)	(lb/yn)
V-74		0.5	0.0000	98.4	27.6	28.09	5.55E-04	4.86E+00	0.00E+00	0.00E+00	5.55E-04	4.86E+00
V-75	DUP	0.5	0.0000	98.4	27.6	28.09	3.30E-04	2.89E+00	0.00E+00	0.00E+00	3.30E-04	2.89E+00
N-76	ZG	0.1	0.0057	99.5	27.9	28.04	6.35E-05	5.56E-01	0.00E+00	0.00E+00	6.35E-05	5.56E-01
V-77	PEG/DRIP	9.0		0'86	27.5	28.10	1.03E-02	9.03E+01	0.00E+00	0.00E+00	1.03E-02	9.03E+01
V-78	PEG	6.0		6'26	27.2	28.13	5.06E-03	4.43E+01	1.28E-03	1.12E+01	6.34E-03	5.55E+01
V-79	_											
V-80	J											
V-81	PEG	0.5	0.0000	98.4	27.6	28.09	1.08E-02	9.50E+01	2.00E-03	1.75E+01	1.28E-02	1.13E+02
V-82	PEG	0.1	0.0000	9.66	27.9	28.04	5.08E-03	4.45E+01	8.26E-04	7.24E+00	5.91E-03	5.18E+01
V-83		9.0		98.1	27.5	28.10	7.24E-05	6.35E-01	1.90E-05	1.66E-01	9.14E-05	8.01E-01
V-84		9.0		38'5	27.5	28.09	4.38E-04	3.84E+00	1.72E-06	1.51E-02	4.40E-04	3.85E+00
V-85	ZO	1.0	0.0016	6'96	27.2	28.14	3.45E-05	3.02E-01	0.00E+00	0.00E+00	3.45E-05	3.02E-01
V-86	Bľ.		0.0027									
∠8-A		9.0	00000	98.2	27.5	28.09	8.87E-06	7.77E-02	1.33E-05	1,16E-01	2.22E-05	1.94E01
88-A	N.											
6 8 -7	70	0.7	0.0016	8'26	27.4	28.11	3.26E-05	2.86E-01	0.00E+00	0.00E+00	3.26E-05	2.86E-01
06-A	PEG	0.1	000000	9.66	27.9	28.04	6.34E-03	5.55E+01	1.18E-03	1.03E+01	7.52E-03	6.59E+01
V-91	PEG	1.4		92.6	26.8	28.20	6.46E-03	5.66E+01	1.25E-03	1.10E+01	7.71E-03	6.76E+01
V-92		2.0	00000	6'26	27.4	28.10	2.40E-06	2.11E-02	6.47E-07	5.67E-03	3.05E-06	2.67E-02
V-93	PEG	1.3		0.96	56.9	28.18	4.09E-05	3.58E-01	1.32E-04	1.15E+00	1.73E-04	1.51E+00
V-94		0.3		99.1	27.8	28.06	2.74E-06	2.40E-02	0.00E+00	0.00E+00	2.74E-06	2.40E-02
V-95	PEG	0.1	0.0000	9.66	27.9	28.04	6.59E-03	5.77E+01	1.67E-03	1.47E+01	8.26E-03	7.24E+01
96A	DZ/DINV	0.1		8.66	28.0	28.03	2.08E-05	1.82E-01	5.67E-06	4.97E-02	2.64E-05	2.31E-01
V-97		9.0	00000	98.1	27.5	28.10	2.52E-03	2.20E+01	4.56E-04	4.00E+00	2.97E03	2.60E+01
V-98	DUP	9.0		98.1	27.5	28.10	2.52E-03	2.20E+01	4.56E-04	4.00E+00	2.97E-03	2.60E+01
N-99	2											
V-18		0.3		99.1	27.8	28.06	4.85E-03	4.24E+01	1.14E-05	9.96E-02	4.86E-03	4.25E+01
V-101	20	0.1	0.0020	9.66	27.9	28.04	8.00E06	7.01E-02	0.00E+00	0.00E+00	8.00E-06	7.01E-02
V-102	DZ	0.1	0.0000	7.66	27.9	28.03	2.48E-08	2.17E04	0.00E+00	0.00E+00	2.48E-08	2.17E-04
V-103	ZO	0.0	0.0000	99.8	28.0	28.03	1.78E-08	1.56E-04	0.00E+00	0.00E+00	1.78E08	1.56E-04
V-104	DZ	0.1	0.0000	2.66	27.9	28.03	1.57E-08	1.37E-04	0.00E+00	0.00E+00	1.57E-08	1.37E-04
V-105	ZO	1.0	00000	97.0	27.2	28.14	6.09E-08	5.33E-04	0.00E+00	0.00E+00	6.09E-08	5.33E-04
V-106	PEG	0.8		97.5	27.3	28.12	1.56E-02	1.37E+02	8.15E-03	7.14E+01	2.38E-02	2.08E+02
V-107	PEG	0.1	00000	8'66	28.0	28.03	3.70E-02	3.24E+02	1.86E-02	1.63E+02	5.56E-02	4.87E+02
V-108	PEG	0.4	0.0000	6.86	27.7	28.07	7.69E-03	6.73E+01	3.65E-03	3.20E+01	1.13E-02	9.93E+01
V-109		0.5	0.000	98.5	27.6	28.08	3.78E-06	3.31E-02	2.23E~06	1.95E-02	6.01E-06	5.26E-02
V-110			0.0000	96.7	27.1	28.15	1.11E-04	9.75E-01	0.00E+00	0.00E+00	1.11E-04	9.75E-01

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAME	SAMPLE CONTROL	COMMENTS
2	,	
V-74	9000	United asserts VIOTO active
V-75	DUP	
V-76	DZ	
V-77	PEG/DRIP	Dripping. Liquid sample V080 taken from baq. Drip rate = 10.2ml/18min.
V-78	PEG	
V-79	د	Reported with samples V073, V074 and V075.
V80	_	Reported with sample V077.
V-81	PEG	
V-82	PEG	Variable bagged THC and O2 concentration.
V-83		
V-84		
V-85	ZQ	
V-86	BL BL	
V-87		Variable bagged THC and O2 concentration.
V~88	N	Unable to get adequate seal.
V-89	ZO	O2 concentration varied by a factor of 10.
06-A	PEG	
V-91	PEG	
V-92		
V-93	PEG	Bagged THC varies by a factor of 11.
V-94		1
V-95	PEG	
96-7	DZ/DINV	Possible contamination in field; followed a pegged source.
V97		
N-98	DUP	Duplicate of V097.
66-7	N.	Unstable THC reading.
V-100		
V-101	DZ	
V-102	DZ	
V-103	ZQ	
V-104	ZQ	
V-105	ZO	
V-106	PEG	
V-107	PEG	
V-108	PEG	
V-109		
V-110		

Page 31

;	SAMPLE CONTROL	AMBIENT CONDITION	CONDI	TIONS	***************************************	COMPONENT DATA	NT DATA		····	STREAM	STREAM CHARACTERISTICS
0	Code	Windspeed (mph)	Temp.	Barometric Pressure ('Ho)	Category	Size	Туре	Valve	Load		
V-111		7.5	65	30.24	VAIVE	(incrites)	CATE	Actuation	Z;	Service	Product
V-112	16					8	מאנו		-	GAS	H2 - Propane
¥-1	ACCY	0.0	62	Total State of the	OEL	3 00	OEI				
N-2	N	2.5	89		VALVE	3 6	7000			7	Water
W-3	SINV	2.5	2		VALVE	200	GLOBE	Σ		GAS	VRU
N-4	PEG	2.5	74		1	000	S F)		GAS	VRU
W-5		2.5	77		0	900				GAS	SRU
9-×		1.5	2		VALVE	8 6	- 2	(≓:	Sour water
Z-N	PEG	1.5	63		VALVE	6,00	2	٥		700	
φ.		0.0	92		VALVE	60	ARC IS	2		040	ruel gas
9	PEG	0.0	2		O	100	בוכור	Σ		CAS	VRU
W-10	PEG	0.0	29		VALVE	1.50	Did	2		040	
W-11	2	0.0	72		0	100	5 7	Ξ		SAS O	Fuel gas
W-12		2.5	72		OEL	0.375	E G			240	Fuel gas
W-13	DZ	2.5	73		OEL	0.50	120			240	UHA
W-14	DZ	1.5	72		O	8	-	T		GAG	VRU
W-15	ВГ					2				GAS	
W-16	DZ	0.0	62		O	0.50	ū			040	
W-17			63							CAD	OHA
81-M		0.0	63		OEL	1.00	OEL			GAG	
81-M		0.0	63		VALVE	1.00	GATE	2		2 =	C
W-20	PEG	0.0	29		OEL	0.50	OEL			3 =	Propane
17-M		5.	80		PUMP	4.00	Ϋ́		2	1 =	Propage (100)
77-M	ann a	<u>د</u>	8		PUMP	4.00	ΛC		z		Property (LPG)
3 6		2.5	8		ပ	3.00	Z			GAS	Propose (1 DO)
W-25	20	6.5	79		O	2.00	I			GAS	Propage (LPG)
1-26	NIS	0.4	2 2		O	1.00	Ŧ			GAS	Propane (LPG)
W-27	20	2 4	1 5		0	1.00	교			GAS	Fuel das
280	CINIV	0.0	8		O	1.00	FL			GAS	Fuel das
W-29	ANIO	0.0	2 8		PUMP	4.00	웃			11	Crude
W-30	I ANIV	Ç.4	2 1		VALVE	4.00	GLOBE	Σ		Ī	Critical
W_31	T/IIIA		2								
32	J		2 6								
W-33	CINIV		82								
W-34	PEG	0.0	202		VALVE	3.00	GLOBE	Σ		Ŧ	Crude
W-35	3	2 6	: !		3	1.00	TH			GAS	Fuel gas
		2.0	70		VALVE	2.00	GATE	Σ		<u></u>	ac

WSPA EMISSION RATE CALCULATION SPREADSHEET

0	
유	
ч	
0	
age	

Code														
1	1	LE CONTROL						SCREENING	DATA					
Code (ppm) (pp			& 	Initial	East	South	West	Final	East	South	West	Ava	Bkgrag	
1 10 150 1	Ω	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mad)	(maa)	(maa)	(muu)	(200)	in the co	ייים אין	perseus?
NA 100 20 20 20 20 20 20 2	V-111		20	150				250	7	, , L	1	מטט	(IIIdd	(mdd)
ACCY ACCY ACCY S ACCY	V-112	Я										2002		198
NA 8,000 2,000 100	W-1	ACCY		3				r.						
FEG 10,000 2,000 100,000 100,000 4 100,000	W-2	N	100	25				200				0 10		0
PEG 100,000 100,000 100,000 100,000 6 PEG 10,000 100,000	W-3	SINV	8,000	2.000				200				52		8
PEG 10,000 100,000 100,000 100,000 4 100,000 4 100,000 100,000 4 100,000	¥ ¥	PEG	100.000	100 000				200				1,200		1,195
PEG 10,000 100	N-5		000	200,0				100,000				100,000		966'66
PEG 10,000 100,000 100,000 100,000 100,000 5 6 <	9-2		200	200,0				000'6				000'6		8,994
FEG 10,000 100,000 100,000 100,000 5 1	V-7	010	000	00000				09				55		2
PEG 100,000 100,000 100,000 100,000 100,000 100,000 5 INV 2,500 5,000 4,000 6,000 <td< td=""><td>9</td><td></td><td>000</td><td>000,000</td><td></td><td></td><td></td><td>100,000</td><td></td><td></td><td></td><td>100,000</td><td></td><td>99.991</td></td<>	9		000	000,000				100,000				100,000		99.991
Name	9 9	0.00	000	97				30				29		23
NA 2,500 5,000 4,000	0	פוני	100,000	100,000				100,000				100.000	· LC	90 00
Name	2 :	בונים	10,000	100,000				100,000				100.000	ıc	99 995
DZ 60 70 4		2	2,500	2,000				4,000				4.500	4	4 406
DZ 4	71-15	1		09				02				59	·	1,130
DZ A 4	21-	70		4				4				4	0 4	5
BL BL 6 000	4 1	מל		4				4				4	V	
DLX 6,000 6,000 10,000 8,000 24,000 6,000 5,000 24,000 6,500 6,500 6,000 6,000 6,000 6,500 <t< td=""><td>2 5</td><td>9 E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2 5	9 E												
PEG 6,000 24,000 10,000 5,000 24,000 6,000 5,000 5,000 5,000 6,500 <t< td=""><td>-16</td><td>ZO</td><td></td><td>9</td><td></td><td></td><td></td><td>9</td><td></td><td></td><td></td><td>9</td><td>ď</td><td></td></t<>	-16	ZO		9				9				9	ď	
PEG 80,000 6,000 10,000 5,000 24,000 6,000 5,000 6,000 <t< td=""><td>/-/</td><td>.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>•</td><td></td></t<>	/-/	.										5	•	
PEG 80,000 24,000 6,500 <th< td=""><td>91-</td><td></td><td></td><td>9,000</td><td></td><td></td><td></td><td>10,000</td><td></td><td></td><td></td><td>000</td><td>u</td><td>7 005</td></th<>	91-			9,000				10,000				000	u	7 005
PEG 5,000 100,000 100,000 6,500 <	-19		80,000	24,000				24,000				24,000	0 4	300 60
DUP 5,000 5,000 6,000 6,500 5 5,000 5,000 8,000 6,500 4 5,000 5,000 80 6,500 4 DZ 8 8 4 5,000 8 4 SINV 200 80 20 80 7	-50	PEG		100,000				100,000				1000	2 4	20,000
DUP 5,000 5,000 6,500 5 5,000 5,000 6,500 4 5,000 5,000 4 5,000 4 80 80 85,000 8 5 4 SINV 200 80 50 6 6 7	7		5,000	5,000				8,000				000,000	0 4	C86-88
DZ 5,000 5,000 6,000 6,000 6,000 4 DZ 400 500 600 600 600 600 600 7	-22	DUP	5,000	5,000				8,000				0000	0 4	0.4.0
DZ 80 90 90 4 SINV 400 500 500 6 7 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	-23		2,000	5,000				5.000				200	2	0,480
DZ 400 500 500 600 600 7 8 8 8 8 8 8 9 8 9 <t< td=""><td>-24</td><td></td><td></td><td>80</td><td></td><td></td><td></td><td>06</td><td></td><td></td><td></td><td>2000</td><td>*</td><td>086,4</td></t<>	-24			80				06				2000	*	086,4
SINV 400 500 500 60 60 60 60 60 7	-25	DZ		S.				2				3 4	7 4	ō
DZ 8 5 50 7	92-	SINV	400	200				200				250	0 4	0 1
SiNV 200 80 190 7 L/INV 150 600 500 100 L L 500 550 10 L L 550 10 SINV 250 475 11 PEG 10,000 100,000 50 40 40 45 100,000	-27	ZQ		80				ıc				3	0 1	040
LAINV L L L L L L L L L L L L L L L L L L L	-28	SINV	200	80				300				, ,	,	0
L L SINV 250 10,000 100,000 100,000 5 100,000	-29		150	009				200				080	7	184
L SINV 250 700 100,000	-30	C/INV						3				000	10	540
L SINV 250 700 40 10,000 100,000 5 1	W-31													
SINV 250 700 475 11 PEG 10,000 100,000 100,000 5 40 40 45 5	W-32												+	
PEG 10,000 100,000 100,000 5	-33	SINV		250				700				347	;	
40	-34	PEG	10,000	100,000				100 000				100 000	- 4	404
	35			40				AF				30,50	?	286,88

D	(ppm) 27 27 1,100 1,100 50 50 100,000 7,600 7,600 7,600 7,600 7,600 100,000 37,500 80 80 80 80 80	Final (ppm)		-			_				
	(ppm) 27 1,100 50 50 420 100,000 7,600 7,600 20,800 76 100,000 37,500 80 80 81	t t	AVA	Initial	Final	Average	Z.	Initial	Final	Average	o
	1,100 1,100 50 80 1,000 1,600 7,600 1,600		mdd	ml/min	ml/min	ml/min	l/min	*	*	3 8	m3/hr
	1,100 50 420 100,000 7,600 7,600 7,600 7,600 100,000 37,500 80 80 80 80 80 80 80 80 80	The state of the s	27	13,090	13,090	13,090	13.09	5.00	4.00	4.50	1.00
	1,100 50 420 100,000 7,600 7,600 7,600 100,000 37,500 80 80 80 80 80										
	20,800 100,000 7,600 7,600 76 100,000 37,500 80 80 80	1,100	1,100	1,036	1,004	1,020	1.02	2.50	2.70	2.60	0.07
	100,000 7,600 80 20,800 100,000 37,500 80 80 80	20	20	1,961	1,911	1,936	1.94	1.0	1.00	1.00	0.12
	100,000 7,600 49 20,800 76 100,000 37,500 80 80 80	350	385	1,989	1,955	1,972	1.97	0.80	09.0	0.70	0.12
	7,600 49 20,800 76 100,000 37,500 80 80 80	100,000	100,000	1,217	1,165	1,191	1.19	0.50	0.10	0.30	0.07
	20,800 76 100,000 37,500 80 80 80	6,650	7,125	1,250	1,237	1,244	1.24	0.20	0.20	0.20	0.08
	20,800 76 100,000 37,500 50 80 80 33	26	73	1,221	1,206	1,214	1.21	2.40	1.30	1.85	0.08
	76 100,000 37,500 50 80 80 33	19,200	20,000	1,429	1,390	1,410	1.41	1.60	0.40	1.00	0.09
	100,000 37,500 50 80 80	64	70	1,350	1,257	1,304	1.30	0.50	09.0	0.55	0.08
	37,500 50 80 83 33	100,000	100,000	467	370	419	0.42	4.00	4.20	4.10	0.03
	33 80	36,000	36,750	1,296	1,276	1,286	1.29	1.80	0.40	1.10	0.08
	33 33	20	50	1,047	1,030	1,039	1.04	3.40	2.40	2.90	0.07
	33	06	85	1,245	1,252	1,249	1.25	0.20	0.10	0.15	0.08
	33	33	33	1,232	1,263	1,248	1.25	1.50	1.50	1,50	0.08
		33	33	1,035	1,035	1,035	1.04	3.60	3.50	3.55	0.07
	46	46	46	1,126	1,125	1,126	1.13	1.80	1.60	1.70	0.07
	2,500	2,100	2,300	1,534	1,512	1,523	1.52	0.10	0.10	0.10	60.0
	2,000	3,500	2,750	1,514	1,482	1,498	1.50	0.30	0.20	0.25	60.0
	8,800	8,800	8,800	1,463	1,354	1,409	1.41	0.10	0.10	0.10	0.08
	78,000	78,000	78,000	2,620	2,627	2,624	2.62	4.50	2.30	3.40	0.19
	78,000	78,000	78,000	2,620	2,627	2,624	2.62	4.50	2.30	3.40	0.19
	100,000	100,000	100,000	1,411	1,332	1,372	1.37	0.50	09'0	0.55	0.08
	930	630	630	1,350	1,375	1,363	1.36	2.00	1.50	1.75	0.09
	34	34	34	1,164	1,165	1,165	1.16	2.80	2.00	2.40	90.0
	09	75	89	1,225	1,222	1,224	1.22	2.50	1.50	2.00	0.08
	19	61	61	1,173	1,175	1,174	1.17	2.60	1.50	2.05	0.08
	1,540	1,540	1,540	4,088	4,088	4,088	4.09	4.50	4.50	4.50	0.31
	825	880	853	2,995	2,937	2,966	2.97	1.00	0.10	0.55	0.18
W-31 L											
W-32 L											
W-33 SINV	720	720	720	2,935	2,850	2,893	2.89	1.20	1 60	1.40	0.19
	70,000	63,000	66,500	1,313	1,361	1,337	1.34	01.0	0.10	0.10	0.08
W-35	88	94	91	1,645	1,600	1,623	1.62	0.30	0.20	0.25	0.10

	•					_					
SAMPI	SAMPLE CONTROL		BAG TEMPERATUR	PERATI	끮		3	LABORATORY DATA			
!		Initiat	Final	Avg.	Temp	Ž	NMOC	METHANE	ш	Ė	CH
ا ⊆	Code	(F)	Œ	£	deg R	ppmv (as C3H8)	ppmw (as C3H8)	DDMV (88 CH4)	Domw (98 CH4)	Ommy (se Calls)	Samuel (oc. Calle)
V-111	ā	155	164	160	619		92.27	╙	_		
711-	20					ΑN		9.70			
L-M	ACCY	64	8	67	526	¥	0.00	26	147 92	38.00	
W-2	2	7.	2	2	530	¥N.	00.0			8,00	
W-3	SINV	70	71	2	530	AN	44.75	-		40.0	
¥ ¥	PEG	18	91	81	541	00 003 0	44 045 45	100,	68.40	72.00	
W-S		72	7.1	72	234	9,000,00	C4.C48.4-	400,000.00	228,310.99	ΑA	243,256.44
9-7		72	72	7 5	200	onone'e	8,653.86	4,6	2,62	NA	11,279.81
V-7	DED	27	2 8	7/	2	7.80	11.93			AN	20.47
9	-	60	8 8	200	928	1,100.00	1,728.81	7,300.00	4,162.54	AN	5.891.35
	Cid	201	8	88	528	16.00	25.16	80.00		AN	70 R1
P 3	בו פו	0	2	75	534	270,000.00	422,486.04	470,000,00	266,825.82	NA	689 311 85
01-44	בות ביים	5	29	69	229	6,400.00	10,057.09	6,200.00	3,534.81	Y.	13 591 90
	ANI	9	84	82	542	12.00	18.81	09'9	3.75	NA NA	20.56
21-M		74	75	74	234	13.00	20.46		00.0	NA	20.46
EL-M	70	77	73	75	535	ΑN	0.07	00.0		0.0475	20.40
₩-14	DZ	78	82	8	540	AN	0.07	00'0		0.0475	20.0
QL-/	B.					A N	0.00	00'0	000	00000	500
W-16	ZO	99	99	99	526	¥	0.07	000	000	0.0000	0.00
/1-M	7									2100	3
W-18		99	65	99	525	1,400.00	2.203.11	13.00	CF L	NA.	7 4 6 7 6 6
W-19		6	62	62	521	3,600.00	5,663,94	00.0	20.0	¥ 2	2,210.54
W-20	PEG	99	99	99	526	5,500,00	8.655.09	000	800	<u> </u>	900000
1-21		86	8	88	548	30,000.00	46.989.34	8 50	2000	Y Y	8,655.09
W-22	OUP	98	8	88	548	26,000.00	40.724.10	3.50	50.00	44	46,993.04
W-23		88	8	68	548	18,000,00	28,307,65	00 01	1.00	YY V	40,726.09
W24		87	88	88	547	240.00	376.79	000	000	VI VI	20,513,35
1-25	02	78	78	78	538	AN AN	0.28	000	000	1	9/0/6
7-26	SINV	77	82	80	539	9.20	14.44	00.0	000	NA O.10	0.28
W-27	DZ	69	76	73	532	AN A	0.08	00'0	000	70.0	47.4
W-28	SINV	112	112	112	572	2,900.00	4,535.25	18.00	10.21	NA AM	0.00
W-29		213	231	222	682	1 200.00	1 887 18	000	17.0	414	04.040,4
W-30	L/INV						21:1001:	20.0	0.00	Y.Y	1,887.18
W-31	٦										
W-32	7										
W-33	SINV	163	180	172	631	1,000.00	1,570.75	0.00	00.0	AN	1 570 75
W-34	PEG	82	83	83	545	1,200.00	1,888.38	35,000.00	19,982.89	NA.	21 871 27
?		50	//	2							

SAMPL	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	T DETERMINATION	INATION		······································	_	EMISSION PATE	RATE		
!		MW fraction	MW fraction	% fraction	MW fraction	WW	NMOC	ပ္က	Methane	апе	THC	
2 ;	Code	02	C3H8	22	2	Вад	(Ib/hr)	(lb/yr)	(Ib/hd)	(lb/yt)	(Ib/hr)	(lb/yr)
V-111		4.	0.0000	95.5	56.8	28.20	2.03E-04	1.78E+00	8.87E-06	7.77E-02	2.12E-04	1.86E+00
V-112	В											
W-1	ACCY	0.8	0.0015	97.4	27.3	28.12	0.00E+00	0.00E+00	2.67E-05	2.34E-01	9.91E-06	8.68E-02
W-2	.	0.3	0.0000	0.66	27.7	28.06	0.00E+00	0.00E+00	6.77E-07	5.93E-03	3.14E-07	2.75E-03
W-3	SINV	0.2	0.0032	99.3	27.8	28.05	1.40E-05	1.23E-01	2.14E-05	1.88E-01	3.55E-05	3.11F-01
₹ \$	PEG	0.1	0.0000	99.7		28.03	2.72E-03	2.38E+01	4 15F-02	3.64F+02	4 42F-02	3 A7F+02
ج ک		0.1	0.0000	8.66		28.03	1.66E-03	1.46E+01	5.05F-04	4 42F+00	2 17F-03	1 905+01
9-%		9.0	0.0000	98.2	27.5	28.09	2.44E-06	2.13E-02	1.74F-06	1 53F-02	4 18F-06	3 66F - 02
W-7	PEG	0.3	0.0000	99.0		28.06	3.94E-04	3.46F+00	9.50F-04	8 32F+00	1 34F-03	1 18F±01
8-8		0.2	0.0000			28.04	5.19E-06	4.55E-02	9.42F-06	8 25F-02	1 46F-05	1 28F
6-M	PEG	1.3	0.0000			28.18	3.36E-02	2.94E+02	2.12E-02	1.86E+02	5 48F-02	4 ROF + 02
W-10	PEG	9.0	0.0000			28.06	2.10E-03	1.84E+01	7.39E-04	6.47F+00	2 84F-03	2 495 +01
W-11	2	6.0	0.0000	97.1	27.2	28.14	3.42E-06	2.99E-02	6.82F-07	5 97F-03	4 10F-06	3 59F - 02
W-12		0.0	0.0000	6.66		28.03	3.92E-06	3.43E-02	0.00E+00	0.00F+00	3 92F - 06	3 43F-02
W-13	70	0.5	0.0000	98.5		28.08	1.53E-08	1.34E-04	0.00E+00	0.00E+00	1.53E-08	1.34F-04
W-14	DZ	-	0.0000	4.96		28.16	1.40E-08	1.23E-04	0.00E+00	0.00E+00	1.40E-08	1.23E-04
W-15	BL	0.0	0.0000	100.0		28.02						
W-16	DZ	0.5	0.0000	98.3	27.5	28.09	1.42E-08	1.24E-04	0.00E+00	0.00E+00	1.42E-08	1.24E-04
W-17	٦,											
W-18		0.0	0.0000	6.66		28.02	5.22E-04	4.57E+00	1.76E-06	1.54E-02	5.24E-04	4.59E+00
W-19		0.1	0.0000	8.66	6.72	28.03	1.34E-03	1.17E+01	0.00E+00	0.00E+00	1.34E-03	1.17E+01
W-20	PEG	0.0	0.0000	6.66		28.02	1.89E-03	1.66E+01	0.00E+00	0.00E+00	1.89€-03	1.66E+01
W-21		1.1	0.0000	9.96		28.16	2.19E-02	1.92E+02	1.72E-06	1.51E-02	2.19E-02	1.92E+02
W-22	DUP	- -	0.0000	9.96		28.16	1.90E-02	1.67E+02	9.29€−07	8.14E-03	1.90E-02	1.67E+02
W-23		0.2	0.0000	99.5	27.9	28.04	5.92E-03	5.18E+01	1.19E-06	1.04E-02	5.92E-03	5.18E+01
W-24		9.0	0.0000	98.3		28.09	8.34E-05	7.31E-01	0.00E+00	0.00E+00	8.34E-05	7.31E-01
-25	DZ	0.8	0.0000	9.76	27.3	28.12	5.63E-08	4.93E-04	0.00E+00	00+300'0	5.63E-08	4.93E-04
W-26	SIN	9.0	0.0000	98.0		28.10	2.95E-06	2.59E-02	0.00E+00	0.00E+00	2.95E-06	2.59E~02
W-27	DZ	0.7	0.0000	6.76	27.4	28.10	1.56E-08	1.37E-04	0.00E+00	0.00E+00	1.56E-08	1.37E-04
W-28	SINV	4.1	0.0000	95.5		28.20	3.38E-03	2.96E+01	7.61E-06	6.66E-02	3.38E-03	2.97E+01
-29		0.5	0.000	99.5	27.9	28.04	6.86E-04	6.01E+00	0.00E+00	0.00E+00	6.86E-04	6.01E+00
W-30	C N											
W-31	_											
W-32												
W-33	SiNV	0.4	0.0000	986	27.6	28.08	6.28E-04	5.50E+00	0.00E+00	0.00E+00	6.28E-04	5.50E+00
W-34	PEG	0.0	0.0000	6.66	28.0	28.02	3.80E-04	3.33E+00	4.03E-03	3.53E+01	4.41E-03	3.86E+01
-35		0.1	0.0000	8.66	27.9	28.03	3.47E-06	3.04E-02	0.00E+00	0.00F+00	2 A7E AB	S DAE

Response factor = 1.0 and gas constant = 4.836E-05 for emission rate calculation.

Page 4f

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMP	SAMPLE CONTROL	COMMENTS
٥	Code	
V-111		CONTINUE
V-112	BL	
W-1	ACCY	Leaking canister.
W-2	N.	Probable canister leak
W-3	SINV	Screening concentration not steady. SV varied by a factor of R
X	PEG	
W-5		
9-8		
V-7	PEG	
φ >		
6-M	PEG	
W-10	PEG	
W-11	<u>></u>	Appears canister leaked.
W-12		Final screening value fluctuating.
W-13	DZ	
W-14	DZ	
W-15	ВГ	
W-16	ZQ	
W-17	اد	Reported with sample WO18.
W-18		Liquid sample W017 taken.
W-19		
W-20	PEG	
W-21		SV 2 inches away from seal.
W-22	DUP	Duplicate of W021.
W-23		
W-24		
W-25	DZ	Plug.
W-26	SINV	SV varied by a factor of 2.5.
W-27	DZ	
W-28	SINV	SV varied by a factor of 3.75. Liquid sample W030 taken.
W-29		1
W-30	C/IN	Reported with sample W028.
W-31	_	Reported with sample WO29,
W-32		Reported with sample WO33.
W-33	SINV	SV varied by a factor of 2.8. Liquid sample W032 taken.
W-34	PEG	
W-35		Liquid sample W037 taken.

WSPA EMISSION RATE CALCULATION SPREADSHEET

	c		
7	C		
ì	¢	D	١
	ζ	J	١
•	¢	Q	
ſ	1		
Τ			

SAMPLE	SAMPLE CONTROL	AMBIENT CONDITIONS		OITIONS	*********	COMPONENT DATA	AT DATA			STREAM	STREAM CHARACTERISTICS
!		þ	Temp.	Barometric	Category	Size	Туре	Valve	Load		
Ω	Code	(mph)	Œ	Pressure ("Hg)		(Inches)		Actuation	X	Service	Product
W-36	02	0.0	67		VALVE	0.50	GATE	Σ		1	
W-37			29								
W-38		t.	71		VALVE	2.00	GATE	Σ		=======================================	90
W-39			71								
W-40	DZ	S,	71		VALVE	10.00	GATE	Σ		-	
W.41	SINV	5,5	20		VALVE	10.00	GATE	Σ			
-42		0.0	16		PUMP	3.00	오			Ŧ	
W-43	ZC	0.0	76		VALVE	0.50	GATE	Σ		물	
W-44		0.0	70		VALVE	0.50	GATE	Σ		11	Crude naptha
W-45	20	0.0	71		OEL	0.50	OEL			₹	
9 - -W	3		20								
W-47	٦		68								
W-48		1.5	99		VALVE	3.00	GATE	Σ		1	Crude naptha
W-49	DZ	2.5	7		VALVE	1.00	GATE	Σ		로	
W-50	DZ/DUP	2.5	71		VALVE	6.0	GATE	Σ		로	
W-51	DZ	4.5	70		PUMP	4.00	VERT			로	Gas oil
W-52		2.5	74		VALVE	8.00	GATE	Σ		GAS	Sour gas
W-53		2.5	71		VALVE	8.00	MC	ပ		GAS	Sour gas
W-54	20	1.5	65		VALVE	0.75	GATE	Σ		1	
W-55		2.5	68		VALVE	8.00	WC	ပ		f	
W-56			68								
W-57		1.5	70		VALVE	8.00	GATE	Σ		Ŧ	
W-58	L/INV		70								
W-59	_		70								
W−60	DZ	2.5	75		VALVE	0.75	GATE	Σ		f	Diesel
W-61	ZO	2.5	71		VALVE	0.75	GATE	Σ		_ 로	Diesel
W-62		0.0	62		VALVE	4.00	GATE	Σ		로	Diesel
W-63		1.5	71		VALVE	0.75	GATE	2		f	Diesel
W-64	DINV	1,5	71		OEL	0.50	OEL			ī	Diesel
W-65			62								
99-			71								
W-67	7		71								
W-68	SINV	0.0	71		PUMP	4.00	오			ī	Jet fuel
69−W	7		71								
W-70		0.0	71		VALVE	8.00	GATE	V		רר	Reg UL
	_		71								The state of the s
W-72	PEGF/SINV	1.5	74		ပ	8.00	Ŧ			3	Rec Li

WSPA EMISSION RATE CALCULATION SPREADSHEET

H. A.S. L. D. C.	SAMP	SAMPLE CONTROL						SCREENING DATA	DATA					
Code Code Coppur Code	!		∑	Initial	East	South	West	Final	East	South	West	Ava	קייניום	
DE	٥	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(muu)	(maa)	, (A)	DING.	
Color Colo	9	DZ		6					16.5	hudal	וווממו			(bbm)
C C C C C C C C C C	١	_										9	D	
DECORPTION 1	နှ			90				40				i		
DECORPTION 10 10 10 10 10 10 10 1	ල දි	ب						7				35	6	56
SiNW 10 10 10 10 10 10 10 1	9	20		œ										
DZ 13 16 16 16 16 6 </td <td>7</td> <td>NNIS</td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td>C</td> <td></td> <td></td> <td></td> <td>9</td> <td>ဖ</td> <td></td>	7	NNIS		100				C				9	ဖ	
DZ 8 16 16 15 6 6 11 15 15 15 15 15 15 15 15 11 15 11 15 11 15 11 15 15 11 15 15 11 15 15 15 11 15 <td>42</td> <td></td> <td></td> <td>2 5</td> <td></td> <td></td> <td></td> <td>ဓ</td> <td></td> <td></td> <td></td> <td>20</td> <td>0</td> <td></td>	42			2 5				ဓ				20	0	
C C C C C C C C C C	100	2		13				16				7.	LC.	
DZ 14 65 65 11 L 1 14 15 <td>2:</td> <td>70</td> <td></td> <td>80</td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>2 4</td> <td>2 4</td> <td></td>	2:	70		80				6				2 4	2 4	
DZ 14 15<	44			20				es.				2	0	
LUINV DZ DZO DZ	5	20		14				3 4				R	=	1
L 90 90 10 10 DZ/OUP 7	46							2				15	15	
DZ 90 90 90 10<	47													
DZ 7	84			S				6						
DZ/DUP 7 <td>64</td> <td>20</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>06</td> <td>10</td> <td></td>	64	20		2				3				06	10	
DZ 300 7	25	07/0/10		~ r				7				7	7	
DZ 300 4,000 4,000 7 8 7 7 8 8 7 8 8 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <t< td=""><td>2 4</td><td>20,00</td><td></td><td></td><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td>7</td><td>7</td><td></td></t<>	2 4	20,00						7				7	7	
DZ 3000 4,000 4,000 7 L 200 25 36 7 L/INV 300 40 7 30 7 L/INV 1 300 40 8 7 L/INV L 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22	70						7				7	7	
DZ 3,000 4,000 4,000 7 C 200 25 9 9 B 30 40 30 7 L/INV 1 30 40 30 7 L L 6 7 7 7 7 7 7 7 7 7 7 7 7 7<	3 5			တ္ထ				20				40	1	
L/INV	3 3			3,000				4,000				3 500		2 40
L 200 26 36 7 7 300 40 30 40 30 7 L L 6 7 <td< td=""><td>5 3</td><td>70</td><td></td><td>6</td><td></td><td></td><td></td><td>80</td><td></td><td></td><td></td><td>0</td><td>-</td><td>4,0</td></td<>	5 3	70		6				80				0	-	4,0
LUINV LUINV LUINV LUINV L L L L L L L L L L L L L L L L L L L	22		200	25				35				2	ומ	
LINV LINV LINV L DZ DZ DZ DZ C C C C C C C C C C C C C C	99	_						3				S	,	
L/INV SE C <td>-23</td> <td></td> <td>300</td> <td>40</td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-23		300	40				6						
L C C C C C C C C C C C C C C C C C C C	-28	L/INV						3				35	7	
DZ 6 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	-59													
DZ 6 7 8 8 9 8 9 8 9	90	ZO		9				ď						
DINV 40 40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 9 8 30 8 30 8 8 8 8 8 8 8 8 8 9 8 9<	61	70		9				0				9	9	
DINV	62			40				0 9				9	9	
DINV 110 100 8 100 105 6 6 10 105 6 10 10 10 10 10 10 10	63			25				5 1				40	6	-
L L SINV 130 45000 10 255.500 10 FEGF/SINV 48.000 10 FEGF/SINV 48.000 10 FEGF/SINV 1500 10 FEGF/SINV 15000 1	64	ANIO		110				S				30	8	2
L L SINV 130 450 290 9	65			2				8				105	ဖ	55
L SINV 130 450 290 9	99	_												
SINV 130 450 9 L 17,000 34,000 10 PEGF/SINV 48,000 10	29	1												
L 17,000 34,000 280 9	88	SINV		130				047						
17,000 28,500 10	69			3				004				290	6	281
PEGF/SINV 48,000 10	-70			17,000				24 000						
PEGF/SINV 48,000	-71							24,000				25,500	2	25,49
	-72	PEGF/SINV		48.000				000						

Page 5b

SAM	SAMPLE CONTROL	BAG	BAG CONCENTRATION	ATION		NITROG	NITROGEN FLOW		λχο	OXYGEN CONCENTRATION	CENTRATI	NO
		Initial	Final	Avg	Initial	Final	Average	NS	Initial	Finaf	Average	σ
۵	Code	(mdd)	(mdd)		ml/min	ml/min	ml/min	l/min	፠	%	*	m3/hr
%-36 ₩-36	DZ	80	80	80	1,980	1,983	1,982	1.98	0.50	0.20	0.35	0.12
W-37	_											
W-38		8	80	82	2,009	2,034	2,022	2.02	0.50	0.20	0.35	0.12
W~39	_											
W-40	ZO	92	65	65	3,535	3,550	3,543	3.54	4.00	3.80	3.90	0.26
W-41	SINV	45	20	48	3,574	3,539	3,557	3.56	3.60	2.10	2.85	0.25
W-42		100	140	120	4,245	4,245	4,245	4.25	4.40	4.80	4.60	0.33
W-43	ZQ	33	24	53	1,527	1,519	1,523	1.52	2.50	2.30	2.40	0.10
V-44		272	306	289	2,026	2,016	2,021	2.02	0.50	0.20	0.35	0.12
W-45	DZ	140	160	150	975	972	974	0.97	2.30	2.10	2.20	0.07
W-46												
W-47	_											
W-48		63	144	104	2,973	3,002	2,988	2.99	2.70	1.10	1.90	0.20
8 4 8	DZ	126	126	126	2,041	2,033	2,037	2.04	0.30	0.20	0.25	0.12
W-50	DZ/DUP	126	126	126	2,041	2,033	2,037	2.04	0.30	0.20	0.25	0.12
W-51	20	114	114	114	4,085	4,088	4,087	4.09	5.00	4.00	4.50	0.31
W-52		108	108	108	3,704	3,687	3,696	3.70	4.80	1.10	2.95	0.26
W-53		4,000	4,000	4,000	2,409	2,402	2,406	2.41	4.70	0.50	2.60	0.16
W-54	DZ	09	09	9	853	867	860	98.0	0.80	0.80	0.80	0.05
W-65		2	20	50	3,070	3,070	3,070	3.07	4.20	1.20	2.70	0.21
W-56												
W-57		8	09	75	3,050	3,170	3,110	3.11	4.20	1.60	2.90	0.22
W-58	L/INV											
W-59	_											
0 9 −M	DZ	52	99	61	1,178	1,189	1,184	1.18	1.30	0.30	0.80	0.07
×-61	DZ	82	78	78	1,215	1,231	1,223	1.22	0.50	0.20	0.35	0.07
W-62		2	20	70	2,211	2,218	2,215	2.21	1.20	0.10	0.65	0.14
W-63		91	16	91	947	946	947	0.95	3.00	3.70	3.35	0.07
W-64	DIN	150	150	150	947	626	943	0.94	4.00	3.80	3.90	0.07
W-65												
99-M												
W-68	SINV	160	144	152	2,407	2,407	2,407	2.41	0.40	0.30	0.35	0.15
69-M												
W-70		27,200	40,800	34,000	3,820	3,830	3,825	3.83	4.60	2.00	3.30	0.27
W-71												
W-72	PEGF/SINV	1,680	1,960	1,820	2,009	1,985	1,997	2.00	1.10	0.30	0.70	0.12

Codd	SAMP	SAMPLE CONTROL		BAG TEMPERATUR	IPERATU	H		87	LABORATORY DATA			
Code (F) (F) <th>!</th> <th></th> <th>Initial</th> <th>Final</th> <th>Avg</th> <th>Temp</th> <th>Z</th> <th>Moc</th> <th>METHA</th> <th>W.Z</th> <th>Ĭ</th> <th>c</th>	!		Initial	Final	Avg	Temp	Z	Moc	METHA	W.Z	Ĭ	c
National Color	2	Code	Ē	_ 1		deg R	ppmv (as C3H8)	ppmw (as C3H8)	DDMV (88 CH4)	DDMW (88 CH4)	-	(1) (C) (C) (C)
The color of the	V-36	DZ	20	20	2	230	¥	0.08	000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	JO CO CO AIIINA	Pprine (88 CSH8)
L	V-37											0.0
NA NA NA NA NA NA NA NA	V-38		74	74	74	534	01.6		000			
Sink Column Col	ر-39	ب							0.0			14.3
NA	₩-40	ZO	72	71	72	531	AM	20.0	00.0			
DZ 115 116	141	SINV	74	76	75	Rak			0.00		- 1	0.0
DZ TA TA<	42		1.0	115	115	27.4	4.70		0.00		NA	7.3
Table Tabl	-43	20	70	2 2	2 6	200	04.40		00.0		¥	6.8
DZ 66 83 74 234 NA 0.00 0.00 0.00 NA 0.05 0.00 NA 0.05 NA 0.00 0.00 0.00 0.00 NA 0.05 NA 0.00 0.00 0.00 NA 0.05 NA 0.05 0.00 0.	44		27	7.7	2 7	300	13.00		0.00	00.0	Α×	20.3
Column C	4	70	* 6	*	4/	934	J		0.00	00.0	¥	47
L 70 74 72 532 14.00 21.97 0.00 <td>P S</td> <td>70</td> <td>8</td> <td>3</td> <td>8</td> <td>549</td> <td>YY.</td> <td>0.08</td> <td>00.0</td> <td></td> <td>1</td> <td>C</td>	P S	70	8	3	8	549	YY.	0.08	00.0		1	C
DZ 70 74 72 532 NA 14.00 21.97 0.00 <td>2 5</td> <td></td>	2 5											
DZ/DUP 77 78 582 14.00 21.97 0.07 0.00	9	4	1	i								
DZÜÜLP 77 78 78 537 NA 0.07 0.09 0.00 </td <td>2 9</td> <td></td> <td>5</td> <td>74</td> <td>72</td> <td>532</td> <td>- 1</td> <td></td> <td>00'0</td> <td></td> <td>AN</td> <td>91 0</td>	2 9		5	74	72	532	- 1		00'0		AN	91 0
DZ 120 126 128 137 597 137 597 137 137 597 137 137 597 137 137 597 137 137 597 137	2 0	70	11	78	82	537	AN	0.07	00'0		ļ	5.13
DZ 120 124 154 154 154 154 154 154 154 157 1570 1207 0.00	0	JOD/20	//	78	78	237	Y.	0.08	000		200	200
137 137	Į.	ZO	120	128	124	584	NA	0.08	000	00.0	20.0	0.0
DZ 64 91 86 547 2,100.00 3,282.58 540.00 307.22 NA 3,6 L 78 69 68 528 NA 11.00 17.25 0.00 0.00 NA 0.05 L 79 80 80 539 9.30 15.52 0.00 0.00 NA 0.05 L L 81 82 841 NA 0.08 0.00 0.00 0.00 0.05 DZ 81 82 84 83 643 NA 0.08 0.00 0.00 0.05	25		137	137	137	262	Į	12 07		000		Ď,
DZ 67 69 68 528 NA 17.25 0.00 0.00 0.00 0.00 NA 0.05 0.00 0.00 NA 0.05 NA 0.00 NA 0.05 NA 0.00 NA 0.00 NA 0.00 NA 0.00 NA 0.00 NA 0.00 NA 0.05 NA 0.00	23		84	91	88	547	2.100.00	3 292 98	540.00	00.00	4 2	12.0
L L L L L L L L L L	\$	ZQ	29	69	89	528	AN	200	00.01	22.100		3,600.1
L 79 80 80 539 15.52 0.00 0.00 NA L/INV L/INV B1 82 84 83 543 NA 0.08 0.00	55		78	81	80	539	ł	17.05	0.00	0.00	- 1	0.0
L/INV 79 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 9.90 15.52 0.00	-56	7					20.	67.71	0.00	00.00	Ϋ́Α	17.2
LINNV B B E <td>-67</td> <td></td> <td>79</td> <td>80</td> <td>S</td> <td>530</td> <td>00 0</td> <td>04 4</td> <td></td> <td></td> <td></td> <td></td>	-67		79	80	S	530	00 0	04 4				
L B B S S F F NA 0.08 0.00	89	L/INV		3	3	3	9.90	7C.CI	0.00	0.00	ΑA	15.52
DZ 81 82 541 NA 0.08 0.00 0.00 0.05 DZ 82 84 83 543 NA 0.08 0.00	69											
DZ 82 84 83 543 NA 1.57 0.00 0.00 0.05 74 73 74 533 NA 1.57 0.00 0.00 0.00 0.05 DINV 81 81 81 84 83 NA 1.57 0.00 0.00 0.00 0.01 L L L A 75 76 75 534 3.40 5.35 0.00 0.00 NA 0.00 NA 0.00 0.00 0.00 NA 0.00 0.00 0.00 NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ဓ	ZQ	81	82	8	541	AM	000	000			
TA TA TA CA TA TA<	-61	DZ	82	84	833	543	VIV	900	0.00	00.0	0.05	0.08
Tild	29		74	73	77	200	V.	80.0	0.00	0.0	0.05	90.0
DINV 61 51 61 0.00 0.00 0.00 0.01 0.00 0.01<	63		78	2 0	70	200	Y.	/6.1	0.00	0.0	1.00	1.57
L L L L L L L L L L	94	ANIC	2 2	2 4	2 4	3		96.0	00.0	0.00	0.61	96.0
L 73 76 75 534 3.40 5.35 0.00 0.00 NA 5.48 SINV 73 76 75 534 3.40 5.35 0.00 0.00 NA 54,8 L 72 74 73 533 35,000.00 54,828.65 0.00 0.00 NA 54,8 PEGF/SINV 82 83 63 542 7402.47 3.50 5.42 NA 7.4	65		5	5	5	1	06.0	10.80	00.00	0.00	NA	10.80
L 72 74 73 534 3.40 5.35 0.00 0.00 NA L 72 74 73 533 35,000.00 54,828.65 0.00 0.00 NA 54,82 PEGF/SINV 82 83 542 2,800.00 4,402.47 9.50 5.42 NA 4,402	99				+							
SINV 73 76 75 53 3.40 5.35 0.00 0.00 NA L 72 74 73 53 35,000.00 54,828.65 0.00 0.00 NA 54,82 PEGF/SINV 82 83 83 542 2,800.00 4,402.47 9.50 5.42 NA 1,402.47	29											
L 72 74 73 533 35,000.00 54,828.65 0.00 0.00 NA 54,82 PEGF/SINV 82 83 83 542 2,800.00 4,402.47 9.50 5.42 NA 4.40	88	SINV	73	92	75	534	3.40	30 3	000			
L 72 74 73 533 35,000.00 54,828.65 0.00 0.00 NA PEGF/SINV 82 83 84 542 2,800.00 4,402.47 9.50 5.42 NA	69				!	\$	OF.	0.00	0.00	00:00	NA	5.35
L L C	-70		72	74	73	533	35,000,00	54 828 65	00 0	000	AIA	
PEGF/SINV 82 83 83 542 2,800.00 4,402.47 9.50 5.42 NA	-71					-		20,220,12	0.00	0.00	¥.	54,828.65
	-72	PEGF/SINV	82	83	83	545	2,800.00	4,402.47	9.50	5.42	MA	0 407 b

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAMP	SAMPLE CONTROL	MOLECL	MOLECULAR WEIGHT	T DETERMINATION	NATION			-	EMISSION RATE	RATE		*****
		MW fraction	MW fraction	% fraction	MW fraction	WW	NWOC	S	Methane	ane	FE	
٥	Code	05	C3H8	NS	N2	Bag	(Ib/hr)	(Ib/yı)	(Ib/hr)	(Ib/yr)	(lp/hr)	(Ib/yr)
W-36	ZQ	0.1	0.0000	9.66	27.9	28.03	2.43E-08	2.13E-04	00+300'0	0.00E+00	2.43E-08	2.13E-04
W-37												
W-38		0.1	0.0000	2'66	27.9	28.03	4.49E-06	3.93E-02	0.00E+00	0.00E+00	4.49E-06	3.93E-02
6€-W												
V-40	20	1.2	0.0000	96.1	26.9	28.18	4.72E-08	4.13E-04	0.00E+00	0.00E+00	4.72E-08	4.13E-04
¥ ¥	SINV	6.0		97.2		28.13	4.63E-06	4.05E-02	0.00E+00	0.00E+00	4.63E-06	4.05E-02
W-42		1.5				28.20	5.33E-06	4.67E-02	0.00E+00	0.00E+00	5.33E-06	4.67E-02
W-43	20	9.0		97.6		28.12	5.31E-06	4.65E-02	0.00E+00	0.00E+00	5.31E-06	4.65E-02
W-44		0.1	0.0000	2.66	27.9	28.03	1.48E-06	1.30E-02	0.00E+00	0.00E+00	1.48E-06	1.30E-02
W-45	20	0.7	0.0000	8.78	27.4	28.11	1.27E08	1.11E-04	0.00E+00	0.00E+00	1.27E-08	1.11E-04
W-46												
W-47												
W-48		9.0	0.0000	98.1	27.5	28.10	1,11E-05	9.70E-02	0.00E+00	0.00E+00	1,11E-05	9.70E-02
W-49	ZO	0.1	0.0000	99.7	27.9	28.03	2.33E-08	2.04E-04	0.00E+00	0.00E+00	2.33E-08	2.04E04
W-50	DZ/DUP	0.1	0.0000	7.66		28.03	2.46E-08	2.15E-04	0.00E+00	0.00E+00	2.46E-08	2.15E04
X-51	20	1.4	0.0000	95.5	26.8	28.20	5.70E-08	4.99E-04	0.00E+00	0.00E+00	5.70E-08	4.99E-04
W-52		6.0				28.14	7.10E-06	6.22E-02	0.00E+00	0.00E+00	7.10E-06	6.22E-02
W-53		0.8				28.12	1.35E03	1.18E+01	1.26E-04	1.10E+00	1.47E-03	1.29E+01
W-54	DZ	0.3	0.0000	99.5		28.05	1.03E-08	9.02E-05	0.00E+00	0.00E+00	1.03E-08	9.02E05
W-55		6.0	0.0000	97.3	27.3	28.13	9.20E-06	8.06E-02	0.00E+00	0.00E+00	9.20E-06	8.06E-02
W-56												
W-57		6.0	0.0000	97.1	27.2	28.14	8.48E-06	7.43E-02	0.00E+00	0.00E+00	8.48E-06	7.43E-02
W-58	NI/I											
W-59	٦											
09-M	DZ	0.3				28.05	1.45E-08	1.27E-04	0.00E+00	0.00E+00	1.45E-08	1.27E-04
W-61	ZO	0.1	0.0000	93.6		28.03	1.47E-08	1.28E-04	0.00E+00	0.00E+00	1.47E-08	1.28E-04
W-62		0.2				28.05	5.48E-07	4.80E-03	0.00E+00	0.00E+00	5.48E-07	4.80E03
W-63		1.1				28.15	1.63E-07	1.43E-03		0.00E+00	1.63E-07	1.43E-03
W-64	DINV	1.2	0.0000	96.1	56.9	28.18	1.89€-06	1.66E-02	0.00E+00	0.00E+00	1.89E-06	1.66E-02
W-65												
99-M												
W-67	_1											
89-M	SINV	0.1	0.0000	99.7	27.9	28.03	1.99E-06	1.75E-02	0.00E+00	0.00E+00	1.99E-06	1.75E-02
69-M	_											
W-70			0.0000	2.96	27.1	28.15	3.82E-02	3.34E+02	0.00E+00	0.00E+00	3.82E-02	3.34E+02
W-71												
W-72	PEGF/SINV	0.2	0.0000	99.3	27.8	28.05	1.37E-03	1,20E+01	1.68E-06	1.47E-02	1.37E-03	1.20E+01

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

Page 5e

WSPA EMISSION RATE CALCULATION SPREADSHEET

Changed product half way through bag. Diesel running through during bag sample (1204 - 1205). Liquid samples W058 and W059 taken. Liquid sample W067 taken. COMMENTS Comments Variable bagged THC and O2 concentration. Liquid sample W047 taken. Appears Nitrogen flow is preventing THC emissions. Liquic Reported with sample WO62.

Reported with sample WO63.

Reported with sample WO64.

SV varied by a factor of 3.5. Liquid sample W069 taken.

Reported with sample WO68. Not enough liquid to fill.

SV varied by a factor of 2. Liquid sample W071 taken.

Reported with sample WO70. Not enough liquid to fill vial. Reported with sample W057 Reported with sample WO57. O2 went from 1.2% to 0.1%. Liquid sample W065 taken. Reported with sample WO35. Liquid sample W039 taken. Reported with sample W038. Reported with sample WO44. Reported with sample WO48. Liquid sample W056 taken. Reported with sample WO55. SV varied by a factor of 3.2. Liquid sample W066 taken. Liquid sample W046 taken. SV varied by a factor of 3. Duplicate of W049. SAMPLE CONTROL PEGF/SINV DZ/DUP Ş N N D SINV 22 2 그 2 2 20 20 70 W-58 ₩ 36 W 37 W-38 W-39 W-40 V-41 W-42 W-43 W-44 W 45 W 47 W 47 W 49 W-51 W-52 W-54 W-55 W-55 W-67 W-59 W 60 W-62 W-63 W-64 W-65 99-M 89-M 69- M W-67

Page 5f

SAMPLE CONTROL	AMBIENT CONDITIO	COND	TIONS		COMPONENT DATA	AT DATA			STREAM	STREAM CHARACTERISTICS
	þ	Temp.	Barometric	Category	Size	Туре	Valve	Load		
ID Code	(mph)	(F)	Pressure ("Hg)		(Inches)		Actuation	2	Service	Product
2	14	1		OVE TO	000	TODA			-	
W -/4	0.0	0 5		L C	200.7	רטא דיין			<u> </u>	00//24/000/80
	t.			اد	3	<u> </u>			ا د	D D/Gasoline/LOO
W-76	5.5	72		PUMP	2.00	VERT		z	4	D B/LCO
W-77	12.5	65		PUMP	00.9	오			- T	Naptha
W-78 DZ	12.5	69		VALVE	3.00	GATE	Σ		1	Butane
-79 DZ	12.5	29		OEL	0.50	OEL			=======================================	Butane
W-80	12.5	29		VALVE	3.00	GATE	Σ		=======================================	Butane
W-81 DZ	12.5	69		OEL	0.75	OEL			f	
	1.5	28		VALVE	8.00	GATE	Σ		1	Naptha
W-83 DUP	5:	28		VALVE	8.00	GATE	Σ		1	Naptha
W-84 AUDTD	1.5	28		VALVE	8.00	GATE	Σ		-	Naptha
W-85 L	10.	28							1	Naptha
W-86	3.5	22		VALVE	6.00	GATE	Σ		H	Naptha
W-87 L	3.5	22							-	Naptha
W-88	5.5	61		VALVE	4.00	GATE	Σ		17	Naptha
N-89										
ANIS 06-	5,5	63		OEL	0.75	OEL			T.	Platformate
W-91	5.5	64		OEL	0.50	OEL			1	Platformate
W-92	5.5	64							LL	Platformate
93	3.5	64		ပ	0.50	HT			- LL	HC
94	5.5	67		VALVE	0.75	GATE	Σ		GAS	OVHD gas
W-95 DZ	0.0	99		VALVE	4.00	MC	ပ		GAS	Fuel gas
96	1.5	28		VALVE	4.00	MC	ပ		H	Jet fuel
W-97	1.5	64		VALVE	1.00	MC	၁		LL	Naptha
W-98	5.5	64		VALVE	3.00	MC	ပ		GAS	Fuel gas
	5.5	64		VALVE	3.00	MC	ပ		GAS	Fuel gas
W-100 DZ	5.5	63		VALVE	3.00	MC	ပ		GAS	Fuel gas
W-101	4.5	99		PUMP	1.50	VERT			1	Naptha
W-102	4.5	64		OEL	0.50	OEL			1	Naptha
W-103	4.5	99							1	Naptha
W-104	4.5	64							1	Naptha
W-105 BL										
	5.1	59		VALVE	3.00	MC	O		GAS	Treated fuel gas
	0.0	64		VALVE	9.00	GATE	Σ		GAS	Treated fuel gas
W-108 DZ	0.0	92		OEL	0.50	OEL			GAS	Treated fuel gas
		0								: : : :

SAME	SAMPLE CONTROL						SCREENING DATA	DATA					
ģ		∑	Initial	East	South	West	Finat	East	South	West	ΔVA	Diagra	
2 6	Code	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(mua)	(muu)	(mad.)	a i	DING.	Corrected
W-/3								, , ,	hindal	(midd)	(mad)	(mad)	(mdd)
#/- 2			6,000				5.500				4		
W-75	DZ		80				2000				09/'0	2	5,746
W-76			120				0 9				9	9	0
W-77			G.				040				130	4	126
W-78	DZ		S LC				26				70	4	99
6∕-W	DZ		9 4				4				S	2	0
W-80			10000				4				4	4	
×-81	20		300,24				28,000				35,000	4	34 997
5 6	70		4				4				1	,	186'40
200			3,000	700	300	350	2.500	1 000	000	000	4 0	4	0
20	2		3,000	700	300	350	2.500	1 000	200	8	2,730	14	2,736
W-84	AUDTD		3,000	700	300	350	2 500	200	200,	000	2,750	14	2,736
W-85	_						200,1	30,1	200,	200	2,750	44	2,736
98−W			700	140	30	30	707						
W-87					3	CZ	3.1	90	160	20	006	9	894
W-88			50	o	u		1						
W-89				,	2	2	8	2	7	12	65	5	9
06−W	SINV		150				00						
W-91	SINV		2.000				00				105	S	100
W-92						-	DUC,4				3,250	7	3,243
693			49.700	31.500	17.500	24 700	000	000					
W-94			14	œ	α	3	200,00	20,000	38,500	42,000	52,850	7	52,843
W-95	ZO		4	7	0 8	*	2	20	4	20	17	9	=
96-M			650	400	200	* 000	4	4	4	4	4	4	0
76-W			202	200	000	300	400	400	300	400	525	8	505
₩-98			110	2 2	007	002	008	100	120	100	650	4	646
66-M	AUDTD		2	3 5	8	6	200	04	35	35	105	S	100
W-100	DZ		2 4	3	00	CS.	100	\$	35	35	105	ß	100
W-101			ra	2 (4	4	က	က	ဂ	က	က	6	C
W-102			0 00	0	4	80	7	9	က	7	80	6	5
W-103			200				450				525	က	523
W-104													
W-105	B												
W-106	PEGI		80.000	32 000	000	000							
W-107	ZO		4		000'6	097'1	48,000	8,000	16,000	400	64,000	ı	63,996
W-108	20		. 6.	- 0	r (0	* 0	4	4	4	4	4	4	0
W-109	PEG		100,000	000	20000	2 60	77				က	က	0
			Tanian:	50,000	1000,000	000,00	100,000	000'09	000'06	20,000	100,001	ဇ	99,997

	SAMPLE CONTROL BAG	BAG CONCENTR	TRATION		NITROE	NITROGEN FLOW		Š	OXYGEN CONCENTRATION	CENTRATI	Z O
	Initial	Final	Avg	Initial	Final	Average	N2 N2	Initial	Final	Average	Ø
ID Code	(mdd)	(mdd)	mdd	ml/mln	ml/min	ml/min	l/min	8	*	*	m3/hr
W-73 L											
	8,400	G	9,100	3,635	3,603	3,619	3.62	4.50	2.30	3.40	0.26
W-75 DZ	84			1,047	1,043	1,045	1.05	2.80		2.90	0.07
W-76	144		132	3,969	4,082	4,026	4.03	3.10		2.15	0.27
	1,200		1,200	4,256	4,241	4,249	4.25	0.80		0.55	0.26
	20			3,176	3,145	3,161	3.16	3.60		1.95	0.21
M-79 DZ	9		35	832	826	829	0.83	4.00		4.20	0.06
	1,000	•	1,000	3,464	3,450	3,457	3.46	2.10		1.25	0.22
W-81 DZ	35			1,297	1,297	1,297	1.30	0.40		0.25	0.08
W-82	306	324	60	6,192	6,192	6,192	6.19	2.30	0.80	1.55	0.40
W-83 DUP	306			6,192	6,192	6,192	6.19	2.30	0.80	1.55	0.40
W-84 AUDTD	306		315	6,192	6,192	6,192	6.19	2.30	0.80	1.55	0.40
W-85 L											
M-86	230	270	250	4,901	4,829	4,865	4.87	3.90	1.60	2.75	0.34
W-87 L											
W-88	06	54	72	4,763	4,694	4,729	4.73	1.40	0.30	0.85	0.30
	20		52	886	983	986	66.0	09.0	09'0	0.60	0.06
W-91 SINV	675	ý	662	1,131	1,131	1,131	1.13	0.30	0.20	0.25	0.07
W-92											
W-93	8,000	13,6	10,800	1,124	1,126	1,125	1.13	0.20	0.20	0.20	0.07
W-94	64		54	1,156	1,130	1,143	1.14	0.50	0.30	0.40	0.07
-95 DZ	98		36	3,859	3,851	3,855	3.86	1.30	0.20	0.75	0.24
96-M	504		473	2,069	2,051	2,060	2.06	1.30	0.30	0.80	0.13
W-97	126		135	1,502	1,498	1,500	1.50	06.0	0.80	0.85	0.09
	72		72	2,373	2,373	2,373	2.37	1.30	0.30	0.80	0.15
₹	72		72	2,373	2,373	2,373	2.37	1.30	0.30	0.80	0.15
W-100 DZ	53		28	2,373	2,368	2,371	2.37	0.30	0.20	0.25	0.14
W-101	45		43	4,926	4,951	4,939	4.94	3.40	1.80	2.60	0.34
W-102	63	49	56	1,001	1,015	1,008	1.01	09.0	0.30	0.45	90.0
W-103											
_											
	7,200		7,200	2,276	2,270	2,273	2.27	1.60	0.30	0.95	0.14
	32		28	4,601	4,625	4,613	4.61	1.40	0.30	0.85	0.29
W-108 DZ	27	27	27	305	912	206	0.91	4.60	4.70	4.65	0.07
W-109 PEG	24,000		25,000	1,166	1,166	1,166	1.17	09'0	0.40	0.50	0.07

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMPLE CONTROL	ONTROL		BAG TEMPERATU	IPERAT L	H		LAB	LABORATORY DATA			
		Initial	Final	Avg.	Temp	Ž	NMOC	METHANE	ЦZ	ř	C
	Code	Ð	Œ	Ē	deg R	ppmv (as C3H8)	DDMW (as C3H8)	(ALC) 66) vmcc	(4) (A) (A)		2
W-73							(Ol IOO on) minda	ALLO GO AIIIA	ppimw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
W-74		94	94	94	554	15,000,00	23 404 67		0		
	ZQ	78	62	79	538	NA	10,151,03	0.00	0.00	¥	23,4
9 <i>Z</i> -M		72	72	75	133	20.40		0.00	0.00		56.43
W-77		107	107	107	567	00 00 7		0.00	0.0		131.80
	02	9	88	200	3	00.004	2,2	5.50		ΑN	2,204.84
	20	3	9 5	8	228	¥Z.	2.20	0.00		1.40	2.20
	3	B	5	200	529	¥Ν	0.07	0.00			
00 %		89	69	69	528	870.00	1,366.85	16.00	9 12	AM	.0
	ZO	69	69	69	529	AN AN	1.07	000	3 0	5	78'C7C'1
		87	88	88	547	AN	580 03	800	8.0		
	PUP	87	88	88	547	AM	00.000	0.00	0.00		
	AUDTD	87	88	æ	547	VIV	00000	0.00	00'0	400.00	
	_		3	3	Š	2	580.93	00.00	00'0		580.93
W-86		63	73	10	000						
W-87		3	5	5	263	ΨZ.	423.23	00:0	0.00	270.00	423,23
W-88		73	7.4	1.6	000						
W-89		2		*	222	¥.	31.44	0.00	00.00	20.00	31.44
	VINIO	32	P	i							
W-01	NIN	0,0		7	930	¥.	11.32	0.00	00.0	7.20	11.32
-		5	ţ	\$	524	¥	990.83	0.00	00.0	00.069	G
70 14											
26-M		99	68	29	527	ΑN	41,834.15	00.00	00.0	00 000 76	3+ VC0 +V
		68	99	68	528	A A	58.20	500	000	200,00	61.400,14
	20	69	69	69	529	N A	000	00.0	0.00	37.00	
96-M		90	88	84	544	AN	20 000	800	3 6	04.1	
76−W		65	99	99	525	ΨN	267.04	0.00	0.00	140.00	
86-₩		99	99	88	526	NIA	171.70	20.0	0.00	170.00	
	AUDTD	99	99	8	526	S V	44.00	23.00	13.12	100.00	157.20
W-100	70	64	63	84	503	V	40.70	00.62	14.26	35.00	55.02
		78	18	2	200		22.60	0.00	0.00	44.00	69.22
W-102		99	A.R.	3 4	300	414	09.90	0.00	0.00	100.00	156.80
W-103			3	3	27	2	188./3	0.00	0.00	120.00	188.73
W-104											
	BL				T						
W-106 PE	EGI	55	57	56	212	VIA	07 100 0				
W-107	DZ	73	74	74	2 22	V V V	0,080.10	3,400.00	1,935.30	3,200.00	5,020.40
W-108	72	70	99	9	000	47	LL.0	0.00	0.00	70.0	0.11
	DEG	20	3	3 8	070	£ .	17.20	0.00	0.00	11.00	17.20
-		000	=	000	2	42	30 624 GB	~			

Page 6d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

AMW Incident WOLECULIAN WEIGHT DETERMINATION NN Bag Inh						***************************************							
Code Code NZ Radio NN	SAMP	LE CONTROL	MOLECU	ILAR WEIGH		NATION			_	EMISSION	RATE		
Code OZ C3416 NZ Rag (Ibhy) <	· · · · · · · · · · · · · · · · · · ·		MW fraction	MW fraction	% fraction	MW fraction	WW	NW.	Ö	Metha	ane	TH.	
L L L L L L L L L L	_	Code	05	СЗНВ	NS	NS	Вад	(lb/hr)	(lb/yı)	(lp/hr)	(lb/yt)	(lp/hr)	(lb/yr)
DEC. 11 0.00000 96.6 27.1 28.11 1.04E-02 0.00E+00 0.00E+00 1.05E-01 1.04E-02 0.00E+00 0.00E+00 1.05E-01 0.00E+00 1.04E-01 0.00E+00 0.00E+00	W-73	_											
DZ 0.0	W-74		-:	0.0000	9.96	27.1	28.16	1.50E-02	1.31E+02	0.00E+00	0.00E+00	1.50E-02	1.31E+02
DZ 0.0000 97.9 27.4 28.11 9.07E-09 1.00E-00 9.000 97.9 27.4 28.01 1.38E-03 1.01E-0 0.00E+00 0.00E+00 1.18E-0 1.38E-03 1.00E+0 0.00E+00 1.00E+00 1.18E-0 1.10E-0 1.00E+00 0.00E+00 1.10E-0 1.10E-0 1.00E+00 0.00E+00 1.10E-0 1.10E-0 <td>W-75</td> <td>ZO</td> <td>6.0</td> <td>0.0016</td> <td>97.1</td> <td>27.2</td> <td>28.14</td> <td>1.04E05</td> <td>9.09E-02</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>1.04E-05</td> <td>9.09E-02</td>	W-75	ZO	6.0	0.0016	97.1	27.2	28.14	1.04E05	9.09E-02	0.00E+00	0.00E+00	1.04E-05	9.09E-02
DZ 0.0 0.0 0.0000 98.5 27.9 28.04 1.38E-08 1.38E-09 1.38E-09 <t< td=""><td>W-76</td><td></td><td>0.7</td><td>0.0000</td><td>6.76</td><td>27.4</td><td>28.11</td><td>9.07E-05</td><td>7.94E-01</td><td>0.00E+00</td><td>0.00E+00</td><td>9.07E-05</td><td>7.94E-01</td></t<>	W-76		0.7	0.0000	6.76	27.4	28.11	9.07E-05	7.94E-01	0.00E+00	0.00E+00	9.07E-05	7.94E-01
DZ 0.6 0.0001 98.0 27.5 28.10 1.18E-06 1.04E-04 0.000E+00 0.000E+00 1.18E-06 0.000E+00 0.000E+00 1.18E-06 0.000E+00 0.000	W-77		0.2	00000	99.5	27.9	28.04	1.38E-03	1.21E+01	1.97E06	1.72E-02	1.38E-03	1.21E+01
Columb	W-78	ZO	9.0	0.0001	0.86	27.5	28.10	1.18E-06	1.04E02	0.00E+00	0.00E+00	1.18E-06	1.04E-02
Differential Column Differential Column	W-79	20	1.3	0.0000	95.8	26.8	28.19	1.19E-08	1.04E-04	0.00E+00	0.00E+00	1.19E-08	1.04E-04
DUP 0.00 98.7 27.9 28.03 2.16E-04 0.00E+00	W-80		0.4	0.0000	98.8	27.7	28.07	7.75E-04	6.79E+00	5.17E-06	4.53E-02	7.80E-04	6.83E+00
DUP 0.5 0.0163 98.4 27.6 28.09 5.28E-04 5.07E+00 0.00E+00	W-81	ZQ	0.1	0.0000	2.66	27.9	28.03	2.16E-07	1.89E-03	0.00E+00	0.00E+00	2.16E-07	1.89E-03
DUP 0.0 <td>W-82</td> <td></td> <td>0.5</td> <td>0.0163</td> <td>98.4</td> <td>27.6</td> <td>28.09</td> <td>5.78E04</td> <td>5.07E+00</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>5.78E-04</td> <td>5.07E+00</td>	W-82		0.5	0.0163	98.4	27.6	28.09	5.78E04	5.07E+00	0.00E+00	0.00E+00	5.78E-04	5.07E+00
AUDITO 0.6 0.0163 98.4 27.6 28.09 5.78E-04 5.07E+00 0.00E+00 0.00E+00 5.78E-04 L 0.9 0.0119 97.2 27.2 28.13 3.76E-04 3.24E+00 0.00E+00 0.00E+00 5.78E-04 L 0.9 0.0119 97.2 27.8 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 3.70E-04 SINV 0.1 0.0278 99.4 27.8 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 1.76E-04 SINV 0.1 0.0278 99.7 27.9 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 1.74E-06 SINV 0.1 0.0278 99.2 27.9 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 1.74E-06 DZ 0.1 0.0019 99.2 27.9 28.04 1.05E-02 0.00E+00 0.00E+00 1.74E-06 DZ 0.2 0.0019 99.2	W-83	DUP	0.5	0.0176	98.4	27.6	28.09	6.25E-04	5.48E+00	0.00E+00	0.00E+00	6.25E-04	5.48E+00
L C C C C C C C C C C C C C C C C C C C	W-84	AUDTD	0.5	0.0163	98.4	27.6	28.09	5.78E-04	5.07E+00	0.00E+00	0.00E+00	5.78E-04	5.07E+00
L	W-85	1											
Columb	9 8− M		6.0	0.0119	97.2	27.2	28.13	3.70E-04	3.24E+00	0.00E+00	0.00E+00	3.70E-04	3.24E+00
Columb	W-87	ب											
L 0.0003 99.4 27.9 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 1.74E-06 SINV 0.1 0.0278 99.4 27.9 28.04 1.76E-04 1.58E-02 0.00E+00 0.00E+00 1.74E-06 SINV 0.1 0.0278 99.7 27.9 28.04 1.76E-04 1.54E+00 0.00E+00 0.00E+00 1.74E-06 L 0.1 1.1910 97.1 27.2 28.04 1.76E-03 6.53E+01 0.00E+00 0.00E+00 1.74E-06 DZ 0.2 0.0016 99.2 27.8 28.04 1.0E-05 0.00E+00 0.00E+00 1.74E-06 AUDTD 0.3 0.0075 99.1 27.8 28.05 6.48E-05 5.67E-01 0.00E+00 0.00E+00 1.74E-06 AUDTD 0.3 0.0016 99.2 27.8 28.05 5.56E-05 3.56E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.1 0.0019 99.7 27.	W-88		0.3	6000.0	99.1	27.8	28.05	2.37E-05	2.07E-01	0.00E+00	0.00E+00	2.37E-05	2.07E-01
SINV 0.2 0.0003 99.4 27.9 28.04 1.74E-06 1.58E-02 0.00E+00 0.00E+00 1.74E-04 SINV 0.1 0.0278 99.7 27.9 28.04 1.74E-04 1.58E-02 0.00E+00 0.00E+00 1.74E-04 L 0.1 1.1910 97.1 27.2 28.04 1.75E-03 6.53E+01 0.00E+00 0.00E+00 1.74E-03 DZ 0.1 0.016 99.2 27.8 28.04 1.05E-05 0.00E+00 0.00E+00 1.76E-03 DZ 0.2 0.001 99.2 27.8 28.05 1.05E-05 0.00E+00 0.00E+00 1.05E-05 AUDTO 0.3 0.0044 99.2 27.8 28.05 5.0E-05 1.05E-01 0.00E+00 0.00E+00 1.05E-05 AUDTO 0.3 0.0044 99.2 27.3 28.05 5.0E-05 1.17E+00 0.00E+00 0.00E+00 1.05E-05 L L 0.01 0.0044 97.4 <	68−W												
SINV 0.01 0.0278 99.7 27.9 28.04 1.78E-04 1.58E-04 0.00E+00 0.00E+00 1.76E-04 L 0.1 1.1910 97.1 27.2 28.04 1.74E-03 6.53E+01 0.00E+00 0.00E+00 1.05E-05 DZ 0.0016 99.6 27.9 28.04 1.05E-05 9.16E-02 0.00E+00 0.00E+00 1.05E-05 DZ 0.0071 99.2 27.8 28.05 1.35E-06 1.19E-02 0.00E+00 0.00E+00 1.05E-05 AUDTD 0.3 0.0044 99.1 27.8 28.05 1.36E-05 1.36E-01 0.00E+00 0.00E+00 1.05E-05 AUDTD 0.3 0.0044 99.2 27.8 28.06 1.36E-01 5.0E-06 4.77E-02 0.00E+00 0	0 6 − 	SINV	0.2	0.0003	99.4	27.9	28.04	1.74E-06	1.53E-02	0.00E+00	0.00E+00	1.74E-06	1.53E-02
L C C C C C C C C C C C C C C C C C C C	₩ -9 1	SINV	0.1	0.0278	266	27.9	28.04	1.76E-04	1.54E+00	0.00E+00	0.00€+00	1.76E-04	1.54E+00
ALUTD 0.1 1.1910 97.1 27.2 28.46 7.45E-03 6.53E+01 0.00E+00 0.00E+00 7.45E-03 DZ 0.01 0.0016 99.2 27.9 28.05 1.05E-05 1.19E-02 0.00E+00 0.00E+00 1.05E-06 DZ 0.007 99.2 27.8 28.05 7.05E-06 1.19E-02 0.00E+00 0.00E+00 1.05E-06 ALUTD 0.3 0.0074 99.2 27.8 28.05 5.67E-01 0.00E+00 0.00E+00 1.05E-06 ALUTD 0.3 0.0074 99.2 27.8 28.06 5.67E-01 0.00E+00 0.00E+00 1.05E-05 ALUTD 0.3 0.0074 99.2 27.8 28.05 5.67E-01 0.00E+00 0	W-92	_											
DZ 0.016 99.6 27.9 28.04 1.05E-05 9.16E-02 0.00E+00 0.00E+00 1.05E-05 DZ 0.0276 99.2 27.8 28.05 1.35E-06 1.19E-02 0.00E+00 0.00E+00 1.05E-05 AUDTD 0.3 0.0044 99.2 27.8 28.05 5.50E-05 4.62E-01 5.01E-06 4.39E-05 6.48E-05 AUDTD 0.3 0.0044 99.2 27.8 28.05 5.50E-05 4.62E-01 5.01E-06 4.39E-02 6.01E-05 DZ 0.1 0.0044 99.2 27.8 28.03 2.58E-05 1.36E-01 5.01E-06 4.77E-02 2.10E-05 DZ 0.1 0.0044 99.2 27.9 28.03 2.58E-05 1.36E-01 5.01E-06 4.77E-02 2.10E-05 L 0.0 0.0044 97.4 27.3 28.13 1.34E-04 1.17E+00 0.00E+00 0.00E+00 1.00E+00 1.34E-04 L L L 27.9	W-93		0.1	1.1910	97.1	27.2	28.46	7.45E-03	6.53E+01	0.00E+00	0.00E+00	7.45E-03	6.53E+01
DZ 0.02 0.0001 99.2 27.8 28.05 1.35E-06 1.19E-02 0.00E+00	¥-94		0.1	0.0016	9.66	27.9	28.04	1.05E-05	9.16E-02	0.00E+00	0.00E+00	1.05E-05	9.16E-02
AUDTD 0.3 0.0062 99.2 27.8 28.05 6.48E-05 6.18E-01 0.00E+00 0.00E+00 7.06E-05 AUDTD 0.3 0.0075 99.1 27.8 28.05 6.48E-05 5.67E-01 0.00E+00	W-95	ZQ	0.2	0.0001	99.5	27.8	28.05	1.35E-06	1.19€-02	0.00E+00	0.00E+00	1.35E-06	1.19E-02
AUOTD 0.3 0.0075 99.1 27.8 28.06 6.48E-05 5.67E-01 0.00E+00 0.00E+00 6.48E-05 AUOTD 0.3 0.0044 99.2 27.8 28.05 5.50E-05 4.82E-01 5.01E-06 4.39E-02 6.01E-05 AUOTD 0.3 0.0015 99.2 27.8 28.05 1.56E-05 1.36E-01 5.01E-06 4.77E-02 2.10E-05 DZ 0.1 0.0019 99.7 27.3 28.03 1.36E-04 1.77E+00 0.00E+00 0.00E+00 2.18E-05 L L L 1.34E-04 1.77E+00 0.00E+00 0	9 6 -M		0.3	0.0062	99.5	27.8	28.05	7.06E-05	6.18E-01	0.00E+00	0.00E+00	7.06E-05	6.18E-01
AUDTD 0.3 0.0044 99.2 27.8 28.05 5.0E-05 4.82E-01 5.01E-06 4.39E-02 6.01E-05 7.01E-05	₩-97		0.3	0.0075	99.1	27.8	28.06	6.48E-05	5.67E-01	0.00E+00	0.00E+00	6.48E-05	5.67E-01
AUDTD 0.03 0.0015 99.2 27.8 28.05 1.56E-05 1.36E-01 5.45E-06 4.77E-02 2.10E-05 DZ 0.1 0.0019 99.7 27.9 28.03 2.58E-05 2.26E-01 0.00E+00 0.00E+00 2.58E-05 L 0.0 0.0044 97.4 27.3 28.03 1.34E-04 1.17E+00 0.00E+00 0.00E+00 1.34E-04 L L L L 27.9 28.03 3.01E-05 2.64E-01 0.00E+00 0.00E+00 1.34E-04 BL L L L 3.01E-05 2.64E-01 0.00E+00 0.00E+00 1.3E-05 BL L L L 3.01E-05 2.64E-01 0.00E+00 0.00E+00 3.01E-05 BL D 0.0041 99.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.08E-08 1.89E-05 DZ 0.0000 99.1 27.8 28.05 2.72E-02 0.00E+00 0.00E+00	86-∧		0.3	0.0044	99.5	27.8	28.05	5.50E05	4.82E-01	5.01E06	4.39E-02	6.01E-05	5.26E-01
DZ 0.01 0.0019 99.7 27.9 28.03 2.58E-05 2.26E-01 0.00E+00 0.00E+00 0.00E+00 2.58E-05 0.08 0.0044 97.4 27.3 28.13 1.34E-04 1.17E+00 0.00E+00 0.00E+00 1.34E-04 L 0.1 0.0053 99.5 27.9 28.04 3.01E-05 2.64E-01 0.00E+00 0.00E+00 1.34E-04 L L L C 27.9 28.04 3.01E-05 2.64E-01 0.00E+00 0.00E+00 1.34E-04 BL L C C 27.9 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.0000 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 1.89E-03 DZ 0.0 0.0 99.1 27.8 28.05 3.11E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00<	6 6 -8	AUDTD	0.3	0.0015	99.5	27.8	28.05	1.56E-05	1.36E-01	5.45E-06	4.77E-02	2.10E-05	1.84E-01
C 0.0 0.0044 97.4 27.3 28.13 1.34E-04 1.17E+00 0.00E+00 0.00E+00 1.34E-04 L 0.1 0.0053 99.5 27.9 28.04 3.01E-05 2.64E-01 0.00E+00 0.00E+00 1.34E-04 L L C C 28.04 3.01E-05 2.64E-01 0.00E+00 0.00E+00 3.01E-05 BL D C <t< td=""><td>W-100</td><td>ZQ</td><td>0.1</td><td>0.0019</td><td>2.66</td><td>27.9</td><td>28.03</td><td>2.58E05</td><td>2.26E-01</td><td>0.00E+00</td><td>0.00E+00</td><td>2.58E-05</td><td>2.26E-01</td></t<>	W-100	ZQ	0.1	0.0019	2.66	27.9	28.03	2.58E05	2.26E-01	0.00E+00	0.00E+00	2.58E-05	2.26E-01
L BL 0.1 0.0053 99.5 27.9 28.04 3.01E-05 2.64E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.01E-05 L BL 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.0000 99.1 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.0000 99.1 27.7 28.11 1.16E-03 7.08E-04 0.00E+00 0.00E+00 1.89E-03 DZ 0.0005 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 0.00E+00 DZ 0.0 0.0 95.3 26.7 28.31 6.08E-03 5.32E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00	W-101		8.0	0.0044	97.4	27.3	28.13	1.34E-04	1.17E+00	0.00E+00	0.00E+00	1.34E-04	1.17E+00
L BL 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 BL 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.3 0.0000 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 8.08E-08 DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 8.08E-08 PEG 0.0 0.0 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 0.00E+00 6.08E-08	W-102		0.1	0.0053	99.2		28.04	3.01E-05	2.64E-01	0.00E+00	0.00E+00	3.01E-05	2.64E-01
L BL 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 PEGI 0.3 0.0000 99.1 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.0005 99.1 27.8 28.01 8.08E-08 7.08E-04 0.00E+00 0.00E+00 8.08E-08 DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 3.11E-06 PEG 0.0 0.0 97.4 27.3 28.35 6.08E-03 5.32E+01 0.00E+00 0.00E+00 6.08E-03	W-103	7											
BL 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 PEGI 0.3 0.0000 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 1.89E-03 DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 3.11E-06 PEG 0.2 0.00E+00 97.4 27.3 28.35 6.08E-03 5.3E+01 0.00E+00 0.00E+00 6.08E-03	W-104	٦											
PEGI 0.3 0.1412 98.7 27.7 28.11 1.16E-03 1.02E+01 7.29E-04 6.38E+00 1.89E-03 DZ 0.3 0.0000 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 8.08E-08 DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 3.11E-06 PEG 0.2 0.02 97.4 27.3 28.38 6.08E-03 5.33E+01 0.00E+00 0.00E+00 6.08E-03	W-105	B.											
DZ 0.0000 99.1 27.8 28.05 8.08E-08 7.08E-04 0.00E+00 0.00E+00 0.00E+00 8.08E-08 DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 3.11E-06 PEG 0.2 0.02 0.00E+00 97.4 27.3 28.38 6.08E-03 5.33E+01 0.00E+00 0.00E+00 6.08E-03	W-106	PEGI	6.0	0.1412	7.86	27.7	28.11	1.16E-03	1.02E+01	7.29E-04	6.38E+00	1.89E-03	1.66E+01
DZ 1.5 0.0005 95.3 26.7 28.21 3.11E-06 2.72E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.11E-06 PEG 0.2 0.02 0.02 0.02 0.00 <t< td=""><td>W-107</td><td>Z0</td><td>6.0</td><td>0.0000</td><td>1.66</td><td>27.8</td><td>28.05</td><td>8.08E-08</td><td>7.08E-04</td><td>0.00E+00</td><td>0.00E+00</td><td>8.08E-08</td><td>7.08E-04</td></t<>	W-107	Z 0	6.0	0.0000	1.66	27.8	28.05	8.08E-08	7.08E-04	0.00E+00	0.00E+00	8.08E-08	7.08E-04
PEG 0.2 0.9263 97.4 27.3 28.38 6.08E-03 5.33E+01 0.00E+00 0.00E+00 6.08E-03	W-108	ZO	1.5	0.0005	95.3	26.7	28.21	3.11E-06	2.72E-02	0.00E+00	0.00E+00	3.11E-06	2.72E-02
	W-109	PEG	0.5	0.9263	4.76	27.3	28.38	6.08E-03	5.33E+01	0.00E+00	0.00E+00	6.08E-03	5.33E+01

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

Page 6e

WSPA EMISSION RATE CALCULATION SPREADSHEET

COMMENTS Comments Initial screening value fluctuating. Final screening is intermittent emitter SV varied by a factor of 2.25 Intermittent emitter. Liquid sample W087 taken. Liquid sample W104 taken. Final QC 1000ppm. Reported with sample W101. Initial screening response time very slow - HL Liquid sample W085 taken. Duplicate of W082. Sample to RTI. Duplicate of W082. Sample to RTI. Duplicate of W098. High O2 variability (factor of 12) Restart bag due to emergency. Reported with sample WO72. Reported with sample W086. Liquid sample W089 taken. Reported with sample W088. Reported with sample W102. Reported with sample W082 Liquid sample W092 taken. Reported with sample W091 Liquid sample W103 taken. SV varied by a factor of 2.5. Intermittent emitter. Plug. SAMPLE CONTROL AUDTD AUDTD S SINV PEGI DZ PEG Code 20 20 DZ 2 ᅴᆱ 20 W-97 W-98 W-99 W-100 W-102 W-103 W-104 W-105 W-106 W-101 W-107 W-108 W~109 W-76 W-77 W-78 W-79 W-82 W-83 W-85 W-88 W-95 W-74 W-81 W-86 W-87 68-W 06 ₩ W-91 W-92 W-93 W-94 96-W

Valve Load Actuation ✓ M M M	SAMP	SAMPLE CONTROL	AMBIEN	AMBIENT CONDIT	TIONS		COMPONENT DATA	VT DATA			STREAM	STREAM CHARACTERISTICS
Code (mph) (F) Pressure (Hg) C (Inohes) Actuation VM Service 1.15 62 VALVE 8.00 GATE M LL ALUDIO 1.15 62 VALVE 8.00 GATE M LL ALUDIO 1.15 62 VALVE 8.00 GATE M LL ALUDIO 1.15 62 VALVE 8.00 GATE M LL L 1.15 62 VALVE 8.00 GATE M LL SINV 1.15 65 VALVE 8.00 GATE M LL DDA 1.15 65 VALVE 8.00 GATE M LL DDA 1.15 65 VALVE 3.00 GATE M HL DDA 1.15 65 CO VALVE 3.00 GATE M LL DDA 1.15 65 CO VALVE 3.00 <			Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
15 66 C C C C C C C C	Ω:	Code			Pressure ("Hg)		(luches)	•	Actuation	X	Service	Product
DUP 15 62 VALVE 8.00 GATE M LL	110		r.	99		ပ	1.00	Ŧ			1	- FG
ALDER 1.5 662			rö	62		VALVE	8.00	GATE	Σ		7	- Ba
FEGISINV 1.5 6.2	-112	a D	S.	62		VALVE	8.00	GATE	Σ			000
PEGISINV 15 65	113	AUDTD	.	62		VALVE	8.00	GATE	Σ		=	000
1.5 65 VALVE 8.00 GATE M LL	-114	PEGI/SINV	1.5	53		VALVE	8.00	GATE	Σ			Gasolina
L 1.5 65 WALVE 8.00 GATE M LL	-115		1.5	92		VALVE	8.00	GATE	Σ			Geedine
L 1.5 65 WALVE 8.00 GATE M LL	-116	J	L 13	65		VALVE	8.00	GATE	Σ		=	ediloses.
SINV 15	-117	اد	1.5	92		VALVE	8.00	GATE	Σ		3 =	orillosse.
1.5	118	NIS	1.5	33		PUMP	4.00	오		z		Coker nenthe
DINV 1.5 57 VALVE 3.00 MC C HL DZ 1.5 62 VALVE 3.00 GATE M HL DZ 1.5 67 7 VALVE 3.00 GATE M HL DINV 1.5 65 7 VALVE 3.00 GATE M HL AUDTO 1.5 65 C C HL HL HL PEGF/SINV 9.0 54 VALVE 3.00 OEL 1.00 OEL HL DZ 9.0 56 C VALVE 2.00 VERT N LL SINV 5.5 60 VALVE 2.00 GATE M LL SINV 2.5 55 60 VALVE 0.50 BALL M LL SINV 2.5 56 VALVE 0.50 BALL M LL SINV 3.5 6.0	119		1.5	54		VALVE	1.50	WC	O		ī	Coker nenthe
DINV 1.5 62 VALVE 1.50 MC C HL DZ 0.0 71 VALVE 3.00 GATE M HL DDX 0.0 71 PUMP 4.00 HC HL AUDTD 1.5 65 0.0 PUMP 6.00 OEL 1.00 OEL HL AUDTD 1.5 65 0.0 VALVE 3.00 MC C HL DZ 9.0 56 0.0 VALVE 3.00 WERT N 1.1 DZ 9.0 56 0.0 VALVE 0.0 VERT N 1.1 DZ 1.5 65 0.0 VALVE 2.00 VERT N 1.1 SINV 2.5 60 VALVE 0.05 BALL M 1.1 DUP 3.5 6.0 VALVE 0.0 C 1.1 SINV 3.5 6.0 VALV	22		1.5	25		VALVE	3.00	MC	O		Ħ	OT slop
DZ 1.5 67 VALVE 3.00 GATE M HL DINV 1.5 70 PUMP 4.00 HC HL AUDTD 1.5 65 OEL 1.00 OEL HL AUDTD 1.5 65 OEL 1.00 OEL HL AUDTD 9.0 56 OEL 1.00 OEL HL DZ 9.0 56 PUMP 6.00 VERT N LL DZ 5.5 60 VALVE 2.00 GATE M LL SINV 5.5 60 VALVE 2.00 GATE M LL SINV 5.5 60 VALVE 3.00 MC C IL SINV 2.5 60 VALVE 3.00 MC C IL SINV 2.5 60 VALVE 3.00 MC C IL SINV 3.5 63	121-	ANO	5	82		VALVE	1.50	MC	O		f	
DLX 0.0 71 VALVE 3.00 GATE M HL AUDTD 1.5 65 OEL 1.00 OEL HC HL AUDTD 1.5 65 OEL 1.00 OEL HC HL DZ 9.0 54 VALVE 3.00 MC C VAL DZ 9.0 56 PUMP 6.00 VERT N LL DZ 5.5 60 VALVE 3.00 MC C Y LL DZ 5.5 60 VALVE 6.00 VERT M LL SINV 5.5 60 VALVE 3.00 GATE M LL SINV 3.5 63 VALVE 0.50 OEL LL LL SINV 3.5 63 VALVE 0.50 GATE M LL BL 1.5 5.2 VALVE 0.50 GATE M	-122	70	1.5	29		VALVE	3.00	GATE	Σ		£	
LINAV 1.5 65 PUMP 4.00 HC HL AUDTD 1.5 65 CEL 1.00 OEL HL AUDTD 1.5 65 CEL 1.00 OEL HL DZ 9.0 54 VALVE 3.00 MG C MG DZ 9.0 56 PUMP 6.00 VERT N LL DZ 5.5 60 PUMP 6.00 VERT N LL SINV 5.5 60 VALVE 1.50 GATE M LL SINV 2.5 54 VALVE 1.50 GATE M LL SINV 2.5 55 VALVE 0.50 BALL M LL DUP 3.5 56 VALVE 0.50 BALL M LL SINV 3.5 56 VALVE 0.50 BALL M LL SINV 3.5 <td>-123</td> <td>DZ</td> <td>0.0</td> <td>7</td> <td></td> <td>VALVE</td> <td>3.00</td> <td>GATE</td> <td>Σ</td> <td></td> <td>Ŧ</td> <td></td>	-123	DZ	0.0	7		VALVE	3.00	GATE	Σ		Ŧ	
AUDTD 1.5 65 OEL 1.00 OEL HL PEGFSINV 9.0 54 OEL 1.00 OEL LL DZ 9.0 54 VALVE 1.00 OCL C QR DZ 9.0 56 PUMP 6.00 VERT N LL DZ 5.5 60 VALVE 2.00 OEL N.7 LL SINV 5.5 60 VALVE 2.00 GATE M LL DUP 3.5 60 VALVE 2.00 GATE M LL SINV 2.5 60 VALVE 0.50 GATE M LL DUP 3.5 63 VALVE 0.50 BALL M LL BL 3.5 63 VALVE 0.50 BALL M LL BL 3.5 63 VALVE 0.50 BALL M LL BL	67.	CINV	t.	20		PUMP	4.00	오			로	Heavy vag. oil
PEGIFISINV 9.0 65 OEL 1.00 III III III <th< td=""><td>02</td><td></td><td>5.</td><td>65</td><td></td><td>OEL</td><td>1.00</td><td>OEL</td><td></td><td></td><td>로</td><td>Coker naptha</td></th<>	02		5.	65		OEL	1.00	OEL			로	Coker naptha
DZ 9.0 54 VALVE 3.00 MC C QAS DZ 9.0 56 PUMP 6.00 VERT N LL DZ 5.5 57 OEL 0.75 OEL N LL DZ 1.5 5.6 60 VALVE 2.00 GATE M LL DZ 1.5 5.6 60 VALVE 2.00 GATE M LL SINV 2.5 60 VALVE 3.00 MC C LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL SINV 3.5 63 VALVE 0.50 GATE M LL SINV 3.5 64 OEL 0.75 OEL	07	ACCION	0.0	65		OEL	1.00	OEL			1	Coker naptha
DZ 9.0 56 PUMP 6.00 VERT Y LL DZ 5.5 60 VALVE 4.075 GATE M LL SINV 5.5 60 VALVE 2.00 GATE M LL DZ 1.5 5.5 60 VALVE 2.00 GATE M LL SINV 2.5 60 VALVE 0.50 GATE M LL LL SINV 3.5 63 VALVE 0.50 BALL M LL LL PEGI 3.5 63 VALVE 0.50 BALL M LL LL BL 1.5 63 VALVE 0.50 BALL M LL LL BL 1.5 63 VALVE 0.50 VERT M LL SINV 3.5 58 VALVE 0.50 VERT M LL SINV 3.5 64	/2/	VEGT/SINV	9.0	25		VALVE	3.00	MC MC	ပ		GAS	Propane das
DZ S.G S.G PUMP 6.00 VERT N LL SINV 5.5 60 VALVE 2.00 GATE M LL SINV 5.5 60 VALVE 2.00 GATE M LL SINV 2.5 65 VALVE 0.50 GATE M LL SINV 3.5 63 VALVE 0.50 BALL M LL DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL BL 1.5 63 VALVE 0.50 BALL M LL BL 1.5 63 VALVE 0.50 BALL M LL BL 1.5 52 PUMP 0.50 VERT N LL SINV 3.5 64 0.6 0.75 0.6 N LL	200	70	0.0	8		PUMP	6 .00	VERT		>	H	LPG
SINV 5.5 60 VALVE 4.00 GATE M LL DZ 1.5 5.5 60 VALVE 2.00 GATE M LL SINV 2.5 5.5 60 VALVE 3.00 MC C LL SINV 3.5 6.3 VALVE 0.50 BALL M LL PEGI 3.5 6.3 VALVE 0.50 BALL M LL BL 1.5 5.2 PUMP 2.00 VERT M LL SINV 3.5 6.4 OEL 0.75 OEL LL DZ 5.5 6.4 OEL 0.75 OEL <	130	72	2	8		PUMP	6 .00	VERT		z	1	LPG
DZ 5.5 60 VALVE 2.00 GATE M LL DZ 1.5 52 VALVE 2.00 GATE M LL SINV 2.5 54 OEL 0.50 OEL C LL SINV 2.5 55 VALVE 0.50 BALL M LL DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.00 TH LL LL BL 1.5 52 PUMP 2.00 VERT M LL SINV 3.5 64 OEL 0.75 OEL LL DZ 5.5 64 OEL 0.75 OEL LL S.5 64 OEL 0.75 OEL LL A.5 65 PUMP <t< td=""><td>3 5</td><td>CINIV</td><td>0.0</td><td>20</td><td></td><td>OEL</td><td>0.75</td><td>OEL</td><td></td><td></td><td>-</td><td>Butane</td></t<>	3 5	CINIV	0.0	20		OEL	0.75	OEL			-	Butane
DZ 3.5 52 VALVE 1.50 GATE M LL SINV 2.5 54 OEL 0.50 OEL LL SINV 2.5 55 OEL 0.50 GATE M LL DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.0 TH M LL BL 1.5 52 PUMP 2.00 VERT M LL SINV 3.5 64 OEL 0.75 OEL LL LL DZ 5.5 64 OEL 0.75 OEL LL LL SINV 3.5 64 OEL 0.75 OEL LL LL A 5 65 PUMP 3.00 VERT Y LL B 5 64	130	A	0 4	2 8		VALVE	4.00	GATE	Σ		3	Butane
Sinv 1.5 54 OEL 0.50 GATE M LL Sinv 2.5 55 VALVE 3.00 MC C LL DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.00 TH LL LL BL 1.5 52 VALVE 6.00 GATE M LL SINV 3.5 64 OEL 0.75 OEL N LL DZ 5.5 64 OEL 0.75 OEL LL LL SINV 3.5 64 OEL 0.75 OEL LL LL DZ 6.0 OEL 0.75 OEL LL LL PUMP 3.00 VERT Y LL PUMP COEL COEL <t< td=""><td>133</td><td>20</td><td>2</td><td>2</td><td></td><td>VALVE</td><td>2.00</td><td>GATE</td><td>Σ</td><td></td><td>1</td><td>Butane (LPG)</td></t<>	133	20	2	2		VALVE	2.00	GATE	Σ		1	Butane (LPG)
SINV 2.5 55 VALVE 3.00 MC C LL DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.00 TH LL LL BL 1.5 58 VALVE 6.00 GATE M LL SINV 3.5 60 OEL 0.75 OEL N LL DZ 5.5 64 OEL 0.75 OEL L LL DZ 6.0 OEL 0.75 OEL L LL LL SINV 3.5 64 OEL 0.75 OEL L LL DZ 4.5 65 WALVE 4.00 QATE M LL R 4.5 65 WALVE 4.00 QATE M LL <td>134</td> <td>4</td> <td>0 4</td> <td>20</td> <td></td> <td>VALVE</td> <td>1.50</td> <td>GATE</td> <td>Σ</td> <td></td> <td>크</td> <td>Naptha</td>	134	4	0 4	20		VALVE	1.50	GATE	Σ		크	Naptha
DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.00 TH LL BL 1.5 58 VALVE 6.00 GATE M LL SINV 3.5 64 OEL 0.75 OEL N LL DZ 5.5 64 OEL 0.75 OEL LL LL BL 4.5 65 WALVE 6.05 VERT N LL PUMP 3.00 VERT N LL LL PUMP 3.00 VERT Y LL PUMP 4.00 GATE M GAS	135	ANIS	5.0	2 4		OEL VALVE	0.50	JE CEL	,		1	Naptha
DUP 3.5 63 VALVE 0.50 BALL M LL PEGI 3.5 57 C 1.00 TH LL BL 1.5 58 VALVE 6.00 GATE M LL SINV 3.5 64 OEL 0.75 OEL LL DZ 5.5 64 OEL 0.75 OEL LL DZ 64 OEL 0.75 OEL LL PUMP 3.00 VERT Y LL PUMP 3.00 VERT Y LL A.5 65 64 VALVE 4.00 GATE Y LL	136		6	3 8		VALVE	3.00	2 3	3		3	Naptha
PEGI 3.5 57 CT 1.00 TH M LL BL 1.5 58 VALVE 6.00 GATE M LL SINV 3.5 64 OEL 0.75 OEL LL DZ 5.5 64 OEL 0.75 OEL LL PUMP 3.00 VERT N LL LL PUMP 3.00 VERT Y LL PUMP 4.5 65 VALVE 4.00 GATE M GAS	137	DUP	3.5	83		VALVE	00.00	DALL	2		1	Naptha
PEGI 3.5 58 VALVE 6.00 GATE M LL BL 1.5 52 PUMP 2.00 VERT N LL SINV 3.5 64 OEL 0.75 OEL LL DZ 5.5 64 OEL 0.75 OEL LL PUMP 3.00 VERT Y LL PUMP 3.00 VERT Y LL A.5 65 VALVE 4.00 GATE M GAS	138		25.	57		1	3 5	DALL	2		4	Naptha
BL CALL CA	139	PEGI	3.5	286		NAI VE	9	DI VO			1	Platformate
SINV 3.5 64 OEL 0.75 OEL N LL DZ 5.5 64 OEL 0.75 OEL LL PUMP 3.00 VERT Y LL PUMP 3.00 VERT Y LL VALVE 4.5 64 VALVE 4.00 GATE M GAS	140	BL				1,100	3	מאוני	Σ		SAS	HC & H2
SiNV 3.5 60 OEL 0.75 OEL LL	141		1.5	25		PUMP	2.00	VERT		z		Newthe
Sinv 3.5 64 OEL 0.75 OEL LL	142		3.5	8		OEL	0.75	OEL				Platformata
DZ 5.5 64 OEL 0.75 OEL LL 4.5 65 PUMP 3.00 VERT Y LL 3.5 64 VALVE 4.00 GATE M GAS	143	SINV	3.5	94		OEL	0.75	OEL				Platformate
4.5 65 PUMP 3.00 VERT Y LL 3.5 64 VALVE 4.00 GATE M GAS	144	DZ	5.5	64		OEL	0.75	OEL			=======================================	Platformate
3.5 64 VALVE 4.00 GATE M GAS	0		4.5	65		PUMP	3.00	VERT		>	1	Propane
	40		3.5	64		VALVE	4.00	GATE	Σ		GAS	HC & H2

Maria Lamin Lami	SAMPLE CONTROL	ONTROL					w	SCREENING DATA	DATA					
Code (Ppm)			& ⊗ ≥	Initial	East	South	West	Final	East	South,	West	Avg.	Bkarnd	Corrected
Dup Box Box		Code	(bbm)	(mdd)		(mdd)	(mdd)	(mad)	(Haa)	(maa)	(maa)	(E)) we'c	para)
Maintain	W-110			000'06		200	80,000	90,000	909	1,000	20,000	90.000		89 997
ALUDID 10,000 250 80 25 110 140 35 30 10 10 10 10 10 10 10		!!		250	80	25	110	140	35	30	20	195	67	192
AUDITO A		PUP		250	80	25	110	140	35	30	20	195	0 6	100
PEGI/SINV B0,000 55 60 900 32,000 910 100		NUDTD		250	80	25	110	140	35	30	2	105	0	200
Column		GI/SINV		80,000	55	09	006	32.000	2	100	8	26.000	2 4	192
Color	W-115			21	16	12	7	20	3 4	3 5	300	000,00	0	966,00
Sinv Lange Lange	W-116]						N N	2	2	4	2	4	17
SiNV	W-117													
DINA Color 10,000 4,000 2,400 6,000 16,000 1,1200		SINV		2,000	30	40	110	800	30	02	Ca	1 400	9	700 7
DINV 25 20 14 20 24 20 13 31 13 31 3	W-119			10,000	4,000		6,000	16,000	000.6	10	000	13.00	0 0	1,094
DINV 26 22 22 12 40 36 31 DDZ 4 <				22	20	4	20	24	20	+3	2	36	0 4	16,991
DZ 4		OIN<		26	22	22	12	40	35	31	27	33	2	000
DZ 4	N-122	DZ		4	4	4	4	m	6		i	3 6	1	9
ALUDTO PEGF/SINV DZ 50 6 6 8 6		DZ		4	4	4	4	4	4	9 4	0 4	2	2 7	
AUDTD 50 50 90 90 90 PEGF/SINV 50 6,000 5,000 3,000 80,000 64,000 40,000 DZ 3 3 3 3 3 3 3 3 DZ 3		DIN/		12	8	9	80	60	. (C		-	7	• •	1 0
AUDTD 50 6,000 5,000 6,				20				06			1	2 5	2 4	7 2
PEGIFISINV 16,000 6,000 5,000 3,000 60,000 64,000 40,000 DZ 3 <td></td> <td>UDTD</td> <td></td> <td>20</td> <td></td> <td></td> <td></td> <td>06</td> <td></td> <td></td> <td></td> <td>2 5</td> <td>7</td> <td>0 0</td>		UDTD		20				06				2 5	7	0 0
DZ 2,000 500 160 500 1,400 50 60 60 60 60 60 1,400 50 60 1,000 90 1,000 90 100 35 3 4 4 4 4		GF/SINV		16,000		5,000	3,000	80,000	64.000	40.000	500	48 000	r 🔻	47 997
DZ 3	V-128			2,000	200	160	200	1,400	50	20	350	1 700		1 607
DZ 3		D2		3	က	9	ო	3	6	6	6	6	0 6	20.
SiNV 5,000 4 30 200 300 10 35 DZ 600 120 500 500 500 100 300 100 SINV 12,000 21,700 5,600 21,000 27,300 24,500 8,400 DUP 24,500 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 1,200 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 1,200 21,700 5,600 21,000 24,500 8,400 BL 1,200 1,600 8,400 1,500 1,500 1,400 SINV 14,000 1,600 90 1,800 27,000 1,300 140 DZ 4 3.5 3.5 4 3.5 14 1,000 1,000 140 BL 4 3.5 3.5 4 4 4 4 4 4 4 4		DZ		3	က	က	6	3	8	8	6	9 6	2 6	
DZ 600 120 500 500 1,000 900 100 SINV 12,000 6 6 6 6 6 4 6 1500		SINV		5,000	4	30	200	300	10	35	150	2 650) ע	2 848
DZ 6 6 6 6 6 6 6 4 6	V-132			009	120	200	20	1,000	006	100	1 000	800	2	797
SINV 610 50 20 90 200 50 16 DUP 24,500 21,700 5,600 21,000 27,300 24,500 8400 PEGI 24,500 21,700 5,600 21,000 27,300 24,500 8400 PEGI 1,200 30 180 800 1,500 8400 120 BL 70,000 105 14,000 8,400 24,500 80 120 BL 40,500 1,600 90 1,800 27,000 1,40 SINV 80 1,600 90 1,800 27,000 1,300 DZ 4 3.5 3.5 4 1,000 1,000 DZ 4 3.5 3.5 4 1,000 275 18	V-133	DZ		9	9	9	9	4	4	4	4	3	r uc	S. C.
SiNV 610 50 20 90 200 50 16 DUP 24,500 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 24,500 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 70,000 105 14,000 800 1,500 800 120 BL 40,500 1,600 90 1,800 27,000 1,300 140 SINV 80 4 3.5 3.5 3.5 4 4 DZ 4 3.5 3.5 3.5 4 4 1,000 BD 1,000 1,000 275 1,000 275 18				12,000				13,000				12 500	7	12 494
DUP 24,500 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 1,200 30 180 800 1,500 80 1,200 8,400 BL 70,000 105 14,000 8,400 27,300 24,500 8,400 120 BL 70,000 105 14,000 8,400 63,000 5600 120 SINV 40,500 1,600 90 1,800 27,000 1,300 140 DZ 4 3.5 3.5 3.5 4 1,000 140 DZ 1,500 1,000 1,000 275 1,000 275 18		SINV		610		20	8	200	20	16	12	405	10.	401
DUP 24,500 21,700 5,600 21,000 27,300 24,500 8,400 PEGI 1,200 30 180 800 1,500 80 120 BL 70,000 105 14,000 8,400 63,000 560 9,800 BL 40,500 1,600 90 1,800 27,000 1,300 140 SINV 80 3.5 3.5 3.5 4 1,000 140 DZ 150 80 9 20 130 25 18 1,000 1,000 120 100 275 16 18				24,500		5,600	21,000	27,300	24,500	8,400	26,600	25,900	150	25 896
PEGI 70,000 105 14,000 8,400 63,000 560 9,800 BL 40,500 1,600 90 1,800 27,000 1,300 140 SINV 80 150 1,000 1,000 1,000 1,000 1,000 DZ 150 80 3.5 4 25 18 1,000 1,000 120 120 130 25 18 1,000 1,000 120 120 1,000 275 225		DUP		24,500		5,600	21,000	27,300	24,500	8,400	26,600	25,900	3	25.896
PEGI 70,000 105 14,000 8,400 63,000 560 9,800 BL 40,500 1,600 90 1,800 27,000 1,300 140 SINV 80 3.5 3.5 4 3.5 4 1,000 DZ 150 80 9 20 130 18 18 150 80 9 20 130 25 18 1,000 120 600 750 1,000 275 225	-			1,200	30	180	800	1,500	80	120	450	1,350	3	1.346
BL 40,500 1,600 90 1,800 27,000 1,300 140 SINV 80 3.5 3.5 4 4 3.5 3.5 4 4 DZ 1500 80 9 20 130 1 1 NZ 150 80 9 20 130 25 18 NZ 1,000 120 600 750 1,000 275 225		ם ב		70,000	105	14,000	8,400	63,000	260	9,800	840	66,500	3	66,496
SiNV 40,500 1,600 90 1,800 27,000 1,300 140 DZ 4 3.5 3.5 3.5 4 4 4 DZ 1500 80 90 20 130 14 14 DZ 150 80 90 20 130 25 18 1500 1500 120 120 100 100 275 225	041-1	4												
SiNV 14,000 12,000 DZ 4 3.5 3.5 4 20 1,000 1000 750 1,000 25 18	V-141			40,500	1,600	06	1,800	27,000	1,300	140	2,000	33,750	9	33.745
Sinv 80 1,000 DZ 4 3.5 3.5 4 4 150 80 9 20 130 25 18 1,000 120 600 750 1,000 275 225				14,000				12,000				13,000	10	12,990
UZ 4 3.5 3.5 3.5 4 4 150 80 9 20 130 25 18 1,000 120 600 750 1,000 275 225		ANIO		80				1,000				540	ß	535
150 80 9 20 130 25 18 1,000 120 600 750 1,000 275 225	V-144	70		4	3.5	3.5	3.5	4				4	4	0
1,000 120 600 750 1,000 275 225	V-145			150	80	6	50	130	25	18	52	140	4	136
	041-1			1,000	120	900	750	1,000	275	225	009	1,000	4	966

Page 7b

SAMF	SAMPLE CONTROL	BAG COI	BAG CONCENTRATION	NOIL		NITROG	NITROGEN FLOW		OXV	GEN CON	OXYGEN CONCENTRATION	×
		Initial	Final	Avg	Initial	Final	Average	ZZ Z	Initial	Final	Average	C
٥	Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	/min	*	*	, y	m3/hr
W-110		12,000	12,000	12,000	1,171	1,161	1,166	1.17	0.10	0.10	0.10	0.07
111-W		184	176	180	4,739	4,730	4,735	4.73	1.60	0.30	0.95	0.30
W-1.12	PUG	184	176	180	4,739	4,730	4,735	4.73	1.60	0.30	0.95	0.30
W-113	AUDTD	184	176	180	4,739	4,730	4.735	4.73	1.60	030	0 05	030
W-114	PEGI/SINV	280	280	280	4,647	4,689	4,668	4.67	160	0.30	0.93	00.00
W-115		40	9	4	4,647	4.705	4.676	4 68	2 50	0.00	44.4	0.00
W-116	_							3	3	2	2	0.30
W-117	.							Ī			,	
W-118	SINV	1,760	1,720	1,740	4,541	4,541	4.541	4.54	4 60	5.40	60	96.0
W-119		1,600	2,080	1,840	1,935	1,913	1,924	1.92	1 80	030	20.0	0.30
W-120		88	88	88	1,920	1,920	1.920	1 92	2 60	00.4	300	7.70
W-121	DINV	36	36	98	2,944	2.944	2.944	2 94	000	200	0.00	1 0
W-122	ZQ	14	32	36	3.004	3.006	3 005	200	0.00	300	0.0	9 0
W-123	ZG	32	24	28	2.474	2.483	2 479	2 48	0000	0.50	0.23	0.0
W-124	OIN	48	48	48	6 944	6 944	6 044	200	0.0	0 0	0.50	0.13
W-125		270	270	270	1.029	1.017	1 023	100	0000	00.7	00.7	0.00
W-126	AUDTD	270	270	270	1,029	1.017	1.023	20	0.00	0000	200	900
W-127	PEGF/SINV	80,000	90,000	80,000	2.015	1.959	1 987	00	8	100	4 75	9 6
W-128		2,480	2,400	2,440	5,770	5.770	5.770	5 77	4 60	200.00	0.70	2 6
W-129	ZO	23	23	23	5,750	5.750	5.750	5 75	4 50	200	00.0	0.42
W-130	DZ	23	23	23	006	903	206	6	0.00	20.00	0.00	0.41
W-131	SINV	315	396	356	2,327	2,333	2.330	2.33	1.50	200	0.50	0.00
W-132		855	855	855	2,053	2.036	2.045	2.04	0.50	040	0.00 AF	0 0
W-133	20	32	28	90	1,886	1,848	1.867	1.87	0.50	010	2 6	2 :
W-134		2,000	000'9	6,500	1,043	1,025	1,034	1.03	0.30	0.50	0.05	5 0
W-135	SINV	201	225	213	1,716	1,722	1,719	1.72	1.70	0.60	1.15	0.00
W-136		21,000	17,500	19,250	1,934	1,932	1,933	1.93	0.40	0.10	0.25	0.10
W-137	DUP	21,000	17,500	19,250	1,934	1,932	1,933	1.93	0.40	0.10	0.25	0 10
85 L- M		154		137	1,319	1,315	1,317	1.32	0.20	0.10	0.15	80.0
W-139	PEGI	17,500	14,700	16,100	4,857	4,810	4,834	4.83	1.00	0.40	0.70	0000
W-140	Я										2	2
W-141		1,200	1,120	1,160	4,233	4,126	4.180	4.18	2.50	06.0	1 70	70.0
W-142		5,400	4,950	5,175	1,064	1.006	1.035	1.04	0.40	0 40	2.0	20.0
W-143	SINV	400	640	520	1,036	965	1.001	1.00	0.40	0.30	25.0	90.0
W-144	DZ	32	28	30	1.012	972	666	56.0	0.50	000	000	900
W-145		352	352	352	5.436	5.436	5 436	5 44	4 00	200	0.60	0.00
W-146		840	840	840	3 700	3 648	20.00	2.5.0	2 2	3.6	7.30	0.37
					133.13	2,2,2	1,0,0	10.0	Z.30	0.40	54.	0.24

Page 7c

SAMPL	SAMPLE CONTROL	&	BAG TEMPERATUR	PERATU	吊		BY1	LABORATORY DATA			
		Initial	Final .	Avg.	Temp	z	NMOC	METHANE	¥	자	0
٥	Code	(F)	(F)		deg R	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
W-110		29	99	29	526	AN	10,034.50	00.0	0.00	6,400.00	10,034.50
W-111		65	64	65	524	NA	251.46	0.00	0.00		251.46
W-112	DG.	65	64	65	524	AN	235.74	0.00	0.00	150.00	235.74
W-113	AUDTD	65	64	65	524	AN	267.17				267.17
W-114	PEGI/SINV	29	69	89	528	AN	267.17	00'0			267.17
W-115		120	122	121	581	WA	36.12	0.00	00.0		36.12
W-116	_										
W-117	_										
W-118	SINV	55	53	54	514	AN	2,808.19	3.40	1.93	1.800.00	2.810.11
W-119		26	55	28	515	NA	2,979.30	5.90	3.36		2,982.66
W-120		9	63	62	521	NA NA	36.03	00.0	0.00	23.00	36.03
W-121	DINV	9	62	61	521	NA	90.0		0.00		0.08
W-122	ZQ	78	8	79	539	NA	0.08		00.0		0.08
W-123	DZ	18	85	82	541	NA	0.08	0.00	0.00		0.08
W-124	DINV	169	163	166	626	ΑN	45.14		0.00		45.14
W-125		99	63	65	524	ΑN	456.15	0.00	00.0		456.15
W-126	AUDTD	99	63	65	524	NA	723.48	00:00	00.0		723.48
W-127	PEGF/SINV	54	53	54	513	AN	85,183.76	4.00	2.21	T.C	85,185.97
W-128		81	84	8	542	NA	3,752.67	0.00	00'0	2,400.00	3,752.67
W-129	DZ	22	22	22	517	AA	1.10		0.00		1.10
W-130	DZ	29	61	8	220	NA	0.08		00'0		90.08
W-131	SINV	64	89	99	226	NA	455.80	0.00	00'0		455.80
W-132		61	61	61	521	NA	1,018.50				1,021.98
W-133	ZO	94	64	64	524	NA	0.07	00.0	00.0	0.05	0.07
W-134		22	88	28	517	NA	7,531.17		00.0	4	7,531.17
W-135	SINV	122	130	126	286	WA	377.06		00'0	240.00	377.06
W-136		99	2	69	529	NA	43,356.03	00:00	00.0		43,356.03
W-137	DUP	89	2	69	529	ΝA	49,438.02	0.00	0.00	32,0	49,438.02
W-138		61	62	62	521	¥.	130.60		00.0		130.60
W-139	PEGI	29	28	29	518	NA A	17,265.71	2,60	1,473.04	12,00	18,738.75
W-140	В					NA	7.40	0.00	00.0	4.70	7.40
W-141		28	8	29	519	NA	2,657.44	16.00	9.11	1,700.00	2,666.55
W-142		29	9	8	519	NA AA	12,210.43	7.30	4.15		12,214.58
W-143	. NIS	63	62	63	522	AA	1,886.41		0.00	1,20	1,886.41
W-144	DZ	64	8	49	524	ΝA	10.86		0.00		10.86
W-145		75	77	92	536	NA	795.96		3.64		799.60
W-146		75	75	75	535	NA	962.54	460.00	262.01	780.00	1,224.55

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

1.60E+01 1.70E+00 1.59E+00 1.80E+00 1.77E+00 2.34E+01 8.37E+00 5.74E-01 6.44E-01 1.02E+00 2.65E+02 3.47E+01 1.04E - 02 9.86E - 05 1.50E + 00 2.92E + 00 1.48E-02 6.59E+00 6.45E+00 1.13E-01 3.28E-04 3.16E-04 2.60E-04 1.93E-04 .16E+02 1.33E+02 1.09E+01 1.78E+01 2.62E+00 8.35E-01 1.67E+01 1.94E-04 1.82E-04 2.06E-04 2.02E-04 2.67E-03 9.56E-04 1.29E-05 3.74E-08 6.55E-05 7.35E-05 1.82E-03 1.52E-02 2.70E-05 7.52E-04 7.37E-04 3.61E-08 2.97E-08 1.17E-04 3.03E-02 3.96E-03 1.18E-06 1.13E-08 1.71E-04 3.34E-04 2.20E-08 1.24E-03 1.33E--02 9.54E-05 92 1.91E-03 2.03E-03 1.69E-06 2.99E-04 (lp/hr) 1.48E-0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.95E-03 0.00E+00 0.00E+00 5.71E-02 6.03E-03 0.00E+00 0.00E+00 3.00E-02 1.38E+00 0.00E+00 0.00E+00 1.02E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.87E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 EMISSION RATE Methane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.08E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.42E-06 1.58E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.84E-07 1.14E-06 0.00E+00 0.00E+00 6.51E-06 6.89E--07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.70E+00 1.59E+00 1.80E+00 1.77E+00 3.16E-04 2.60E-04 5.74E-01 1.02E+00 2.65E+02 3.47E+01 1.04E-02 9.86E-05 1.50E+00 1.48E-02 6.56E+00 5.07E+00 1.60E+01 2.23E-01 8.36E+00 1.13E-01 3.28E-04 6.44E-01 2.91E+00 1.93E-04 1.09E+01 .16E+02 33E+02 1.67E+01 2.62E+00 2.34E+01 8.35E-01 2.37E-01 .20E+02 1.78E+01 1.94E-04 1.82E-04 2.06E-04 2.02E-04 2.55E-05 6.55E-05 7.35E-05 1.17E-04 3.03E-02 1.82E-03 3.61E-08 2.97E-08 3.96E-03 1.18E-06 1.24E-03 9.54E-05 2.03E-03 2.99E-04 1.69E-06 7.48E-04 5.79E-04 1.135-08 1.71E-04 3.33E-04 2.20E-08 1.33E-02 1.52E-02 2.70E-05 1.37E-02 1.90E-03 28.06 28.06 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.05 28.07 28.48 28.54 28.03 28.24 28.12 28.16 28.05 <u>က</u> 8 27.8 27.7 27.7 27.7 27.7 27.6 MW fraction MOLECULAR WEIGHT DETERMINATION ž 99.0 99.0 99.0 99.3 92.2 92.7 96.1 99.7 99.1 99.5 99.7 99.3 98.8 9.96 99.7 9.66 0.00 98.8 99.5 93.8 98.1 98.1 97.4 % fraction 0.2823 0.0071 0.0066 0.0075 0.0075 0.0000 0.000.0 0.0000 0.0013 0.0203 2.4702 0.1059 0.0000 0.0128 0.0128 0.0000 0.2117 0.0106 0.5293 0.0002 0.0037 0.0529 0.0003 MW fraction 1.2351 1.4115 0.3441 0.0750 0.0 0.1 0.1 1.2 0.1 0.3 MW fraction 0.1 -4.0 0.1 0.1 0.0 0.0 ٠. <u>.</u> SAMPLE CONTROL AUDTD PEGF/SINV PEGI/SINV AUDTD NO ZO NO SINV DZ ON SIN B PEGI SINV J 2 ㅁ 70 W-115 W-116 W-117 W-119 W-120 W-118 W-113 W-114 W-121 W-122 W-123 W-124 W-125 W-126 W-127 W-128 W-129 W-130 W-131 W-132 W-133 W-135 W-139 W-145 ₽ W-112 W-134 W-136 W-140 W-143 W-144 W-137 W-141 W-138 W-142

Response factor = 1.0 and gas constant = 4.836E - 05 for emission rate calculation.

Page 7f

WSPA EMISSION RATE CALCULATION SPREADSHEET

COMMENTS Comments SV varied by a factor of 2.5 Liquid sample W116 taken. SV varied by more than a factor of 2. Tried equilibrium O2 several times (<5%). Average O2 = 7.8%. Non-detect THC value for non-default zero. Statistical outlier Seal came loose at 1142 - redid. SV varied by a factor of 3.1. Intermittent emitter. SV varied by a factor of 12.5. Oil/air mist supply hose running into pump seal. intermittent emitter. SV varied by a factor of 5. Sample to RTI. Duplicate of W125. Duplicate of W111. Sample to RTI. Duplicate of W111 Plug. Final QC at 1412 = 1100ppm. Final QC at 1426 = 1000ppm. Final QC at 1415 = 1100ppm. Reported with sample W115. Reported with sample W114 SV varied by a factor 16.7. Duplicate of W136. Plug SAMPLE CONTROL AUDTD PEGI/SINV PEGF/SINV AUDTD Code <u>P</u> NIO. DZ NIO NIS SIN SINV ZO ANIS S PEG SINV 20 BL W-115 W-114 W-119 W-120 W-121 W-122 W-113 W-116 W-117 W-118 W-123 W-124 W-125 W-126 W-127 W-129 W-130 W-131 W-132 W-133 W-134 W-135 W-136 W-137 W-138 W-111 W-112 W-128 W-139 W-140 W-142 W-143 W-144 W-141 ₽

SAM	SAMPLE CONTROL	AMBIENT CONDITIONS	COND	ITIONS		COMPONENT DATA	AT DATA			STREAM	STREAM CHARACTERISTICS
!		Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
₽	Code	(mph)	Ē	Pressure ('Hg)		(Inches)		Actuation	×	Service	Product
W-147		2.5	62		VALVE	0.50	GATE	\$		GAS	HC & H2
W-148	AUDTC	3.5	62							GAS	Fuel gas
W-149	AUDTC										
W-150	DZ	5.5	62		VALVE	1.00	GATE	Σ		11	Naptha
W-151	AUDTT	5.5	62		VALVE	1.00	GATE	Σ		7	Naotha
W-152	AUDTT	5.5	62		VALVE	1.00	GATE	Σ		1	Naotha
/-153	AUDTT	5.5	62		VALVE	1.00	GATE	Σ		-	Naotha
W-154	DZ	3.5	65		VALVE	10.00	GATE	Σ			Light naptha
W-155		2.5	64		PUMP	4.00	VERT		>	-	Light naptha
W-156		2.5	69		PUMP	4.00	VERT		z	1	Light naptha
W-157	DZ	2.5	63		VALVE	8.00	GATE	Σ		1	Light naptha
X-1	ACCY	2.5	72		VALVE	2.50		Σ		HZO	Water
X2	DRIP/INV		75	30.22	NALVE	2.00		O		-1	Reformate
X-3		2.5	80		OEL	0.75				77	
×	PEGI/DRIP/INV	7.5	78		OEL	0.50	OEL		>	11	Stripper overhead
X-5	PEG/DRIP	7.5	82	30.20	PUMP	0.50	CENT			1	Stripper overhead
φ ×	N.	7.5	78	30.20	VALVE	4.00	GATE	၁		יו	
X7	S S										
φ ×		2.5	68	30.25	VALVE	4.00	GATE	၁		717	Fuel Gas
GP	PEG/DRIP	2.2	69	30.25	VALVE	3.00	GATE	ပ		וו	Reformate
X-10	PEG/DRIP	2.5	99	30.25	OEL	0.50	OEL			11	
×-1-	<u>N</u>	5.0	68	30.20	VALVE	3.00	GATE	Σ			
X-12	PEG	2.5	68	30.20	VALVE	3.00	GATE	ပ		11	LPG
X-13		7.5	70	30.25	VALVE	00.9	GATE	Σ		רר	Naptha feed
4											
X-15		2.5	69	30.20	ပ	1.00	Ŧ			GAS	Fuel gas
-16		2.5	70	30.20	VALVE	00.9	GATE	Σ		TI-	Hydro bate
X-17	PEG/DRIP	2.5	72	30.20	VALVE	00.9	GATE	×		T	Hydro bate
X-18		2.5	2	30.20	VALVE	4.00	GATE	Σ		TT	Lt. Gasoline
X-19	PEG	7.5	65	30.20	VALVE	6.00	GATE	Σ		17	Naptha feed
ဂ္ဂ	<u>\</u>	7.5	99	30.25	ပ	6.00	13			1	
7		7.5	73	30.25	ပ	6.00	FL			1	Gasoline
X-22		12.5	64	30.20	၀	4.00	급			11	Gasoline
-53	PEG	4.0	9	30.25	VALVE	00.9	GATE	Σ		7	Lt. Gasoline
X-24		10.0	28	30.25	VALVE	10.00	GATE	Σ		1	Naptha feed
X-25		7.5	61	30.25	ပ	1.00	표			1	Naptha Feed
-26	SINV	2.5	64	30.25	VALVE	4.00	GATE	Σ		굼	Naptha Feed

SAMI	SAMPLE CONTROL					Ø	SCREENING DATA	DATA					
		&	Initial	East	South	West	Final	표 호	South	West	Ą	Rkgrod	Corrected
⊙	Code	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(maa)	(maa)	(maa)	(maa)	, E		person,
W-147			1,300	550	700	650	1,500	500	700	1 000	1 400	e model	1 307
W-148	AUDTC		36,000	24,000	5,200	5,600					000 81	2	400,4
W-149	AUDTC										200	•	066'/
W-150	ZO		ໝ	w	5	10	ıc	ď	ď	Ľ	u	u	C
W-151	AUDTT)	•	>)	0	C	0	3
W-152	AUDTT											C	
W-153	AUDTT						4				1	5	
W-154	20			Ī	•		0				2	2	0
W-155	3		\$ 8	4 60%	4 000	4 (6	က	က	9	၉	9	0
W-156			3 5	3	3	020	1,000	120	250	400	950	၉	947
W-457	20		200	4 (30	32	2	22	တ္တ	100	110	က	107
\c\-\	70		9	၅	၈	ဇ	က	ဇ	က	က	က	8	0
Y-1	ACCY		2				5				5	150	C
X-2	DRIP/INV		2,000				12,600				8 800	10	8 788
၈ ×			200				200				500	1 0	700
× 4	PEGI/DRIP/INV		47,000				5				2000	2	500
X-5	PEG/DRIP		77,000				47 000				000'02	Σ,	
φ×	2		COR				200				000,20	72	61,988
X-7	ANS		3				3				9009	80	
φ-×		10	6 160				0100						
6-X	PEG/DRIP	11 998	20,00				3,000				5,005	2	5,000
X-10	PEG/DBID	2	2000				000'07				70,000	10	066'69
× -4 2	NA NA		20,000				73,000				73,000	13	72,987
- C	ANI	0	000'07	1							35,000		35,000
7	ם ב	805,2	000'07				70,000				20,000	2	266'69
×-13		5	000,11				11,000				11,000	6	10,997
± 4 ×											-		
2 4			000'8				7,500				7,750	5	7,745
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		280	2,000				2,500				2,250	10	2,240
/1-V	1110/5017	866'66	87,500				87,500				87,500	c)	87,495
0 7		OS	006				700				800	9	794
61-X	PEG	10,000	70,000				70,000				70,000	S	69.995
X-20	2		009								300	10	295
X-21			009				750				675	4	671
X-22			52				22				24	4	
X-23	PEG	100,000	39,000				39,000				39 000		38 908
X-24		318	006				006				CO	7	000
X25			1,100				1.700				1 400	, ,	1 303
X~26	SINV	20,098	80				200						2001
					-		EVV				2	4	136

Page 8b

		2,933 1,578 1,361 1,361 1,361 1,240 5,009 5,009 5,009 5,009 1,547 1,547 1,547 1,547 1,547 1,547 1,788 1,374 2,265 2,305 883	25,200 2,933 1,455 1,578 1,578 1,578 2,930 2,930 2,930 2,930 2,930 2,930 2,940 2,340 1,575 1,450 2,340 1,374 46,500 7,000 2,305 2,305
	0 0 0 0 0 N N 0 - 0 N N 0 0 0 0 0 0		34 156 156 392 29 29 2,300 50 15,750 14,450 46,500 810 810
			156 156 156 392 29 2,300 50 50 1,450 46,500 810 810 810 810 810
			156 392 292 290 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10
			392 29 29 2,300 50 18 900 15,750 46,500 810 810 810
			29 2,300 50 18 18 900 15,750 46,500 810 810 810
			2,300 50 18 900 15,750 1,450 46,500 810 616
	0 V V O - 8 4 10 10 10 10		50 18 18 18 15,750 1,450 46,500 810 810 616
			18 900 15,750 385 1,450 46,500 810 616 70,000
			900 15,750 385 1,450 46,500 810 616 70,000
			15,750 385 1,450 46,500 810 616 70,000
2,330 2,335	- 2 4 10 10 10 10		385 1,450 46,500 810 616 70,000
1,839	2 4 10 10 10 m		1,450 46,500 810 616 70,000
	* W W W B		616 610 616 70,000
			616
2,320 2,293	10 10 m		616
1.785	10 80		70,000
2,290	m		
980			73,000
	_	000 4,120	20,000
3,420 3,415	c		
		332 5,577	1,332
	ν,		1,463
	ا و		999
			41,563
	1 0		517
5,100 5,060	_		14,000 10,150 5,020
	_		175
2,307 2,288	60	503 2,268	2,503
	_		84
	0	500 4,790	6,500
5,170 5,180	_	600 5,190	
VC7 7		300 1,510	
0,4,1	_		

11										
BAG	Ø¥.	TEN	BAG TEMPERATUR	뿐		[AB	LABORATORY DATA			
-es	Final		Avg.	Temp	Ž	NMOC	METHANE	¥,	THC	U
Ē	1			deg R	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	DDMW (as CH4)	pomy (as C3H8)	DDMW (as C3H8)
99		99	99	526		873.42	150.00	L		958 98
64		6	49	524	¥.	290.30	15.00	8.56		298.86
3		,			ΨN					
50		89	69	528	ΑN	20.0	00.00	00'0	0.05	0.07
99		67	67	226	NA	259.06			1.	267.04
99		67	67	228	AN.	273.63	16.00	9.12		282.75
29		88	88	527	ΝΑ	1,084.16		0.00		1.084.16
74		22	75	534	Ϋ́	20.0	00:0	00'0		0.07
93	Ì	8	95	224	NA A	5,629.92	0.00	00.00	3.6	5 629 92
99		8	67	527	AN	62.78		00.0		62 78
72		22	72	532	NA	0.02	0.00	00:00	0.05	200
87		8	82	545	5.80	60.6	00.099	375.41	AN	384 50
72		22	72	532						20.100
82		8	83	545	20.00	31.47	0.00	00.00	AN	31 47
83		83	83	543						1
81	j	78	80	539	220,000.00	345,786.08	100.00	57.03	AN	345 843 10
78		78	78	538						
	ļ									
89	1	68	99	528	00:009	943.66	00.0	00.0	AN	943 66
89	ļ	20	69	529	100,000.00	156,919,51	290.00	335,90		157 255 41
89		89	89	528	44,000.00	69,186.66	240.00	136,92		69 323 5R
2		7	71	530						20,020,00
71		2	71	530	460,000.00	722,187.71	2,200.00	1,253.13	AN	723 440 84
7		2	7	230	1,800.00	2,830.97	17.00	9.70	NA	2,840.67
9		2	**	664	00 000	1				
24		7,5	77	200	00,000,0	5,501.53	1,700.00	969.50	¥2	6,471.03
7.4		7.0	27	200	00.000	00.700,1	00.4	/6'/	¥	1,075.56
102	Ì	2 0	7 7	200	00.000.00	31,383.90	190.00	108.17	Y Y	31,492.07
2,007		2	4/	2	820.00	1,336.18	0.00	0.00	NA	1,336.18
200		26	9 1	226	4,300.00	6,733.71	3,100.00	1,761.28	AN	8,494.99
*)	237						
77		9	77	536	1,200.00	1,888.11	00:0	0.00	AN AN	1.888.11
65		92	65	525	9.40	14.79	00:0	0.00	¥	14 79
73		72	73	532	49,000.00	77,081.59	00.0	00.0	¥	77.081.59
77		73	75	535	790.00	1,242.57	00.00	00.0	ΨN	1.242.57
63		2	67	526	15.00	23,59	00'0	00.0	AN	23.59
64	- 1	92	65	524	09.9	10.35	00.0	00.0	¥	10.35

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAM	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	T DETERMINATION	NATION				EMISSION PATE	¥Æ		
		MW fraction	MW fraction	% fraction	MW fraction	××××××××××××××××××××××××××××××××××××××	NMOC	õ	Methane	ıne	THC	
₽	Code	05	СЗНВ	N2	N N	Вад	(lp/hr)	(Ib/yr)	(lb/hr)	(Ib/yı)	(Ib/hr)	(lb/yr)
W-147		0.2	0.0269	4.66	27.8	28.05	2.01E-04	1.76E+00	1.97E-05	1.72E-01	2.21E-04	1.93E+00
W-148	AUDTC	0.1	0.0084	9'66	6.72	28.04	1.35E-04	1.18E+00	3.97E-06	3.47E-02	1.38E-04	1.21E+00
W-149	AUDTC		0.0318		0.0	0.03						
W-150	DZ	0.1	0.000	9.66	27.9	28.04	1.84E-08	1.61E-04	00+300'0	0.00€+00	1.84E-08	1.61E-04
W-151	AUDTT	0.4	0.0075	98.7	27.7	28.07	6.09E-05	5.33E-01	1.87E-06	1.64E-02	6.27E-05	5.50E-01
W-152	AUDTT	4.0	0.0079	98.7	27.7	28.07	6.43E-05	5.63E-01	2.14E-06	1.88E-02	6.64E-05	5.82E01
W-153	AUDTT	0.3	0.0304	0.66	27.7	28.07	2.10E-04	1.84E+00	0.00E+00	0.00E+00	2.10E-04	1.84E+00
W-154	ZQ	4.0	00000	98.6	27.6	28.07	4.83E08	4.23E-04	0.00E+00	0.00E+00	4.83E-08	4.23E-04
W-155		1.0	0.1588	9.96	27.1	28.20	4.85E-03	4,25E+01	0.00E+00	0.00E+00	4.85E-03	4.25E+01
W-156		9.0	0.0018	98.0	27.5	28.10	5.41E-05	4.74E-01	0.00E+00	0.00E+00	5.41E-05	4.74E-01
W-157	DZ	4.0	0.0000	98.8	27.7	28.07	4.42E-08	3.87E-04	0.00E+00	0.00E+00	4.42E-08	3.87E-04
X-1	ACCY	6.0	0.0000	97.3	27.2	28.13	2.43E-06	2.13E-02	1.00E~04	8.78E-01	1.03E04	8.99E-01
X-2	DRIP/INV	1.6	00000	95.0	56.6	28.22	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
х–3		0.1	0.0000	93.8	28.0	28.03	8.75E-06	7.66E-02	0.00E+00	0.00E+00	8.75E-06	7.66E-02
×4	PEGI/DRIP/INV	0.4	0.0000	986	27.6	28.08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
X5	PEG/DRIP	0.3	0.0000	1.66	27.8	28.06	8.54E-02	7.48E+02	1.24E-05	1.09E-01	8.55E-02	7.49E+02
9-X	NNI	0.1	0.0000	2.66	27.9	28.03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
X-7	L/INV											
8-X		0.2	0.0000	99.5	27.9	28.04	2.66E-04	2.33E+00	0.00E+00	0.00E+00	2.66E-04	2.33E+00
6-X	PEG/DRIP	2'0	00000	6.76	27.4	28.10	6.63E-02	5.81E+02	1.32E-04	1.16E+00	6.64E-02	5.82E+02
X-10	PEG/DRIP	0.2	0.0000	99.4	27.8	28.05	2.98E-02	2.61E+02	1.93E-05	1.69E-01	2.98E-02	2.61E+02
X-11	N.	1.0	0.0000	6.96	27.2	28.14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
X-12	PEG	9.0	0.0000	98.3	27.5	28.09	4.14E-01	3.62E+03	7.18E-04	6.29E+00	4.14E-01	3.63E+03
X-13		0.2	0.0000	99.5	27.9	28.04	2.49E-03	2.18E+01	8,53E-06	7.48E-02	2.50E-03	2.19E+01
X-14	٦											
X-15		0.3	0.0000	99.1	27.8	28.06	7.47E-04	6.54E+00	1.32E-04	1.15E+00	8.79E04	7.70E+00
X-16		9.0	0.0000	98.3	27.5	28.09	7.87E-04	6.90E+00	5.88E-06	5.15E-02	7.93E-04	6.95E+00
X-17	PEG/DRIP	0.7	0.0000	6'26	27.4	28.10	5.34E-02	4.68E+02	8.08E-05	7.08E-01	5.35E02	4.69E+02
X18		0.3	0.0000	39.5	27.8	28.05	6.60E-04	5.78E+00	0.00E+00	0.00€+00	6.60E-04	5.78E+00
X-19	PEG		0.0000	96.5	27.0	28.16	6.03E-03	5.28E+01	1.58E-03	1.38E+01	7.61E-03	6.66E+01
X20	N.	2.5	00000	92.3	25.9	28.33	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
X-21		0.1	0.0000	8.66	28.0	28.03	6.61E-04	5.79E+00	0.00E+00	0.00E+00	6.61E-04	5.79E+00
X22		1.0	0.0000	8.66	28.0	28.03	4.54E-06	3.98E-02	0.00E+00	0.00E+00	4.54E-06	3.98E-02
X-23	PEG	0.1	0.0000	2.66	27.9	28.03	5.70E-02	5.00E+02	0.00E+00	0.00E+00	5.70E-02	5.00E+02
X-24		0.1	0.0000	9.66	27.9	28.04	1.00E-03	8.77E+00	0.00E+00	0.00E+00	1.00E-03	8.77E+00
X-25		0.2	0.0000	3.66	27.9	28.04	5.57E-06	4.88E-02	0.00E+00	0.00E+00	5.57E-06	4.88E-02
X-26	SINV	0.8	0.0000	97.4	27.3	28.12	8.85E-06	7.75E-02	0.00E+00	0.00E+00	8.85E-06	7.75E-02

Page 8e

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAM	SAMPLE CONTROL	COMMENTS
<u> </u>	Code	Commants
W-147		
W-148	AUDTC	Dead battery at final screening. RTI audit.
W-149	AUDTC	
W-150	DZ	
W-151	AUDTT	EPA audit.
W-152	AUDTT	EPA audit
W-153	AUDTT	EPA audit
W-154	ZO	
W-155		
W-156		
W-157	ZQ	Final QC at 1311 850ppm.
X-1	ACCY	
X-2	DRIP/INV	Screening value difference too large. Dripping.
£-3		Liquid sample X007 taken.
†	PEGI/DRIP/INV	
9-X	PEG/DRIP	Orlpping. Drip rate = 1ml/15min. Liquid sample Xoo7 taken.
9×	2	i i
X-7	L/INV	Reported with samples X003 and X005. Failed QC check.
8-X		Liquid sample X014 taken.
6-X	PEG/DRIP	Dripping. Liquid sample X014 taken. Drip rate = 2m/44min.
X-10	PEG/DRIP	Dripping. Drip rate = 2.5m/16min
X-11	<u>N</u>	
X-12	PEG	
X-13		SV over 10,000 ppm without dilution probe.
X-14		Reported with samples X008 and X009.
X-15		Bagged THC concentration varied by a factor of 3.75.
X-16		Variable oxygen readings. May not be at equilibrium (3.2%/0.3%).
X-17	PEG/DRIP	Dripping. Drip rate = 14ml/40min.
X-18		
X-19	PEG	
X-20	<u>N</u>	Change in oxygen concentration too large.
X-21		Not dripping.
X-22		Reformate 100 octane gasoline.
X-23	PEG	Leak at stem (1.25 in. shaft) shows marks of wrench tightening recently. Liquid sample X029 taken.
X-24		Liquid sample X028 taken.
X-25		Liquid sample X030 taken.
X-26	SINV	SV varied by a factor of 2.5. Liquid sample X028 taken.

3age 8f

SAMPLE CONTROL	AMBIENT CONDITIO	COND	ITIONS		COMPONENT DATA	NT DATA		•••••	STREAM C	STREAM CHARACTERISTICS
Code	Windspeed T	Temp. (F)	Barometric Pressure ('Ha)	Category	Size (inches)	Туре	Valve	Load	Service	Q. Confidence
	10.0	99	30.27	PUMP	,	오		z	וו	Hvdro bate
ب										
PEG	2.5	70	30.28	VALVE	9.00	GATE	Σ		1	Naptha feed
PEG/DRIP/INV	7.5	20	30.40	VALVE	6.00	GATE	Σ		11	Reformate
PEG/DRIP/DUP	7.5	20	30.40	VALVE	9.00	GATE	Σ		1	Reformate
PEG	2.5	26	30.40	ပ	1.00	E			1	Hydrocarbons
	2.5	65	30.40	ပ	4.00	7			3	S/C Penhex
	2.5	69	30.38	PUMP		CENT		>	1	
	10.0	99	30.38	VALVE	2.00	GATE	Σ		GAS	LPG
PEG	2.5	72	30.32	VALVE	2.00	GATE	Σ		GAS	
PEG	2.5	65	30.19	VALVE	2.00	GATE	Σ		1	LPG
PEG	2.5	65	30.19	VALVE	2.00	GATE	O		=======================================	LPG
	2.5	29	30.19	PUMP	2.00	오		z	11	LPG
PEGI/SINV	2.5	20	30.19	VALVE	1.00	GATE	Σ		1	LPG
DZ/DINV	2.5	65	30.28	VALVE	0.75	GATE	Σ		3	Polymer
SINV	2.5	61	30.28	VALVE	1.50	GATE	Σ		-	Polymer
DUP/SINV	2.5	61	30.28	VALVE	1.50	GATE	Σ		4	Polymer
DZ	2.5	64	30.28	ပ	2.00	7			-1	Diese
OINV	5.0	73	30.28	VALVE	3.00	GATE	Σ		1	Diesel
DZ	2.5	79	30.25	VALVE	4.00	GLOBE	Σ		1	Polymer
	2.0	72	30.25	PUMP		오		>	1	
DZ	2.5	65	30.25	VALVE	3.00	GATE	Σ		l l	Propane
	7.5	65	30.25	OEL	0.25	OEL			1	
DZ	5.0	65	30.25	ပ	2.00	4			1	
SINV	5.0	62	30.26	ပ	1.00	王			GAS	
PEGI	2.0	26	30.25	VALVE	4.00	GATE	Σ		GAS	Reactor feed
	7.5	26	30.25	ပ	1.00	E			GAS	
ZO	2.5	26	30.25	O	2.00	급			GAS	
PEG	7.5	58	30.23	ပ	1.00	F			GAS	
	0.9	29	30.23	PUMP		오		>	1	
PEG		64	30.25	O	1.00	F			1	LPG
	7.5	62	30.25	ပ	4.00	1			-	LPG
PEG		55	30.20	ပ	0.75	Ŧ			GAS	Propane

X-27 X-28 X-29 X-30							SCREENING DATA	DATA					
2, 28 2.7 30 2, 28 2.7 □		∑	Initial	East	South	West	Final	East	South	West	Avg.	Bkgrnd	Corrected
30 53 52	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(maa)	(maa)
\$ 83 PP		28	1,800				1,800				1,800	_	1.780
62 09													
90													
,													
X-31	_												
X-32	PEG	14.000	70.000				2000				000		
X-33	PEG/DRIP/INV	2.309	10,000				200,00				00,000		69,993
X-34	PEG/DRIP/DLIP	200	000				000,0				000'01	7	9,993
X-35	PEG	100	47,000				10,000				10,000		6,993
X_36	3	2	200,				97,74				47,000	-	46,990
200			3				200				900	_	593
ر ز			004				400				400		395
X-38			200				190				145	9	142
X-39	PEG		28,000				58,000				58.000		57 990
0 7	PEG		58,000				28,000				58.000		57 990
X-41	PEG		140,000				140,000				140 000		139 993
×-42			35,000				21,000				28.000	4	966 22
X-43	PEGI/SINV		70,000				35,000				52.500	-	52 490
×-44	DZ/DINV	0	4				4				4		0
X-45	NIS	0	58				80				54	e	51
9 ! Y	DUP/SINV	0	28				80				54		51
/ + ×	70		က				3				က		0
X-48	DIN		Q				45				43	6	40
X-49	70	0	ဇ				က				က		0
×-50			900				029				625		621
ν-×	DZ	0	က				3				ო	၉	0
X-52			2,000				2,000				2,000	4	1.996
X-53	70		ဇ								က	8	0
X-54	SINV		12,500				29,000				20,750		20.740
X-55	PEGI	0	58,000				32'000				46,500		46.495
X-56			11,000				11,000				11,000		10.995
X-57	70		0				2				2		C
X-58	PEG		55,000				22,000				55,000		54.996
66-X			006				1,100				1,000		966
7-60 x-60	PEG		000'99				000'99				000'99		65,996
γ-61 ×-61	L		13,200				006'6				11,550		11,547
70-Y	בונפ		100,000				100,000	100,000	10,000	10,000	100,000	8	866'66
V-03	AND OIN	1,1/0	10				10				10	4	မ

SAM	SAMPLE CONTROL	BAG	BAG CONCENTR	PATION		NITROG	NITROGEN FLOW		λχο	GEN CON	OXYGEN CONCENTRATION	NO
		Initial	Final	Avg	fnitial	Final	Average	N2	Initial	Final	Average	G
٥	Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	æ	æ	æ	m3/hr
X27		1,250	006	1,075	3,510	3,520	3,515	3.52	3.50	3.20	3.35	0.25
X-28											-	
X-29												
X-30												
X-31												
X-32	PEG	12,500	12,500	12,500	5,870	5,800	5,835	5.84	0.30	0.20	0.25	0.35
X-33	PEG/DRIP/INV	1,150	2,000	1,575	6,670	6,700	6,685	69.9	1.60	2.00	1.80	0.44
X-34	PEG/DRIP/DUP	1,150	2,000	1,575	6,670	6,700	6,685	69'9	1.60	2.00	1.80	0.44
X-35	PEG	4,300	4,730	4,515	1,552	1,555	1,554	1.55	0.20	0.20	0.20	0.09
96−X		330	440	385	1,780	1,745	1,763	1.76	0.20	0.20	0.20	0.11
X-37		2,360	2,065	2,213	15,800	15,800	15,800	15.80	3.50	3.60	3.55	1.14
X-38		1,541	1,943	1,742	2,222	2,208	2,215	2.25	0.20	0.20	0.20	0.13
65X	PEG	58,000	58,000	58,000	5,808	5,836	5,822	5.82	2.40	0.30	1.35	0.37
육	PEG	5,800	6,670	6,235	2,520	2,500	2,510	2.51	0:30	0.30	0.30	0.15
X 4	PEG	31,860	31,860	31,860	5,118	5,120	5,119	5.12	0.30	0.30	0.30	0.31
X-42		200	200	200	3,420	3,367	3,394	3.39	0.70	1.10	06.0	0.21
X-43	PEGI/SINV	1,675	1,876	1,776	3,200	3,215	3,208	3.21	0.10	0.10	0.10	0.19
×-44	DZ/DINV	7	7	7	1,525	1,500	1,513	1.51	1.90	0.20	1.05	0.10
X-45	SINV	21	28	25	1,340	1,340	1,340	1.34	0.20	0.20	0.20	0.08
X-46	DUP/SINV	21	28	22	1,340	1,340	1,340	1.34	0.20	0.20	0.20	0.08
X-47	20	0	80	4	1,660	1,634	1,647	1.65	0.30	0.20	0.25	0.10
× 48	OIN	198	198	198	1,750	1,700	1,725	1.73	0.50	0.30	0.40	0.11
X-49	DZ	13	10	11	3,360	3,350	3,355	3.36	0.40	0.20	0.30	0.20
X50		8,400	10,500	9,450	2,000	1,970	1,985	1.99	1.60	1.40	1.50	0.13
X-51	DZ	6 0	8	œ	1,600	1,600	1,600	1.60	0.50	0.35	0.43	0.10
X-52		5,880	3,360	4,620	1,140	1,160	1,150	1.15	1.70	1.40	1.55	0.07
X-53	DZ	16	16	16	1,090	1,210	1,150	1.15	0.20	0.30	0.25	0.07
X-54	SINV	000'09	000'09	000'09	2,080	2,100	2,090	2.09	0.30	06.0	0:30	0.13
X-55	PEG	16,800	2,600	11,200	3,470	3,450	3,460	3.46	1.40	1.50	1.45	0.22
X-56		1,290	840	1,065	3,050	3,025	3,038	3.04	0.30	0.30	0:30	0.18
X-57	20	3	0	-	2,410	2,565	2,488	2.49	0.30	0.70	0.50	0.15
X-58	PEG	25,000	55,000	55,000	3,740	3,510	3,625	3,63	0.30	0.30	0:30	0.22
X-59		11,000	11,000	11,000	3,240	3,410	3,325	3.33	1.40	1.50	1.45	0.21
09-X	PEG	000'99	000'99	000'99	2,320	2,330	2,325	2.33	0.20	0.20	0.20	0.14
×		000'99	000'99	000'99	2,760	2,760	2,760	2.76	0.30	0.50	0.40	0.17
79-X	PEG	100,000	100,000	100,000	1,182	1,155	1,169	1.17	0.20	0.20	0.20	0.07
×-63	OINV	09	40	20	2,681	2,683	2,682	2.68	0.20	0.20	0.20	0.16

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMPLE CONTROL		BAG TEMPERATU	PERATU	벁		Ž	LABORATORY DATA			*****
	Initial	Final	÷	Temp	N N	NMOC	METHANE	97	THC	<u></u>
Code	(F)	(F)		deg R	ppmv (as C3H8) ppmw (as C3H8)	ppmw (as C3H8)	DDMV (88 CH4)	DDMW (88 CH4)	DDMV (As C3H8)	John Coo, marco
-	98	49	29	526	1,300.00	2,036.35	00:0	L		2.036.35
١.										
_										
PEG	105	105	105	565	6.700.00	10.541.22	4 600 00	2 ACA C	VIA.	20000
PEG/DRIP/INV	26	53	55	514	AN		AN AN	2,023,10		13,166.99
PEG/DRIP/DUP	56	53	55	514	2.400.00	3.767.67	000	8		101010
PEG	54	54	20	514	16.000.00	25.174.86	38.00	20.00		3,767.67
	262	243	253	712	870.00	1 368 88	00.00	80.12		25,196.55
	79	83	6	541	2.400.00	3 758 35	800	8.6		1,368.88
	89	69	69	528	810.00	1 274 AB	900	8.0		3,758.35
PEG	79	92	78	537	1 200 00	4 005 04	0.00	00.00		1,274.48
PEG	72	89	2 2	530	14 000 00	1,000.04	90.000	37,615.24		39,500.27
PEG	49	99	, R	200	200.00	07.000,71	08.9	3.88		17,309.14
	67	24	3 2	507	24,000.00	37,756.93	00.00	0.00	A A	37,756.93
DEGIVEINIV	5 6	3	S F	170	2,100.00	3,300.92	0.00	0.0		3,300.92
חביים מומיב	- 2	S G	5 8	020	1,300.00	2,045.75	0.00	0.00		2,045.75
VIII)	5 4	000	20 20	222	AN	15.40	0.00	0.00	9.80	15.40
VIIID/GIIIV	5 4	8	3 8	323	00.30	10.23	0.00	0.0	Y V	10,23
70	97	20	3 5	223	AN .	2.83	0.0	00'0		2.83
NIC	7 0	700	2 5	000	- 1	- 88	0.00	00.00	1.20	1.89
200	193	000	200	C .	94.00	147.86	00.00	00.00	ΑΝ	147.86
3	100	96	6	700	Y.	13.84	0.00	0.00		13.84
70	0 0	0 8	> 2	2	2,300.00	8,323.81	9.0	00.0	ΑN	8,323.81
3	200	8 6	200	228	Y.	20.45	0.00	00.00	13.00	20.45
20	20	000	8 3	970	2,600.00	4,083.09	0.00	00.00	AN	4,083.09
CINIC	6 6	38	\$ 6	924	Ψ¥	2.67	0.00	00:00	1.70	2.67
DEG	200	79	5	250	150,000.00	235,980.81	0.00	00.0	ΥN	235,980.81
בוב	8	20	20	2	10,000.00	15,706,41	00.00	0.00	ΑN	15,706,41
7	36	20	23	513	2,700.00	4,247.65	00.00	00.0	ΑΝ	4.247.65
70.0	/6	25	22	217	WA	4.40	00.0	00.0	2.80	4.40
פטער)°	23	22	515	130,000.00	204,516.70	00.0	00.0	¥	204.516.70
Ci		78	78	237	7,800.00	12,251.00	00.0	00:0	AN	12.251.00
PEG	62	29	62	522	110,000.00	173,077.17	10.00	5.71	¥	173,082.88
CHG	29	61	62	521	11,000.00	17,302.80	00.00	00.0	ΑN	17,302.80
ם ביינים	6	52	25	211	NA	355,961.38	00.00	0.00	260,000,00	355,961.38
ON	99	22	28	518	ΑΝ	1,258.17	00.0	0.00	800.00	1.258.17

Page 9d

Response factor = 1.0 and gas constant = 4.836E-05 for emission rate calculation.

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAN	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	T DETERMINATION	NATION				EMISSION RATE	RATE		
		MW fraction	MW fraction	% fraction	MW fraction	×	OOWN	Ö	Methono	<u> </u>	Î	
₽	Code	05	C3H8	N N	N ₂	Вас	(lh/hn	(IPAN)	WOILE ALAL	arie Alt ()) - - - -	
X-27		1.1	00000	296.7	27.1	28 15	1 32F - 03	1 165 - 01	(III/OII)	(lo/yn	(ID/hr)	(lb/yı)
X-28	۰						20	2	3.00 T	200-400	1.325-03	1.16E+01
X-29												
X-30												
X-31	_											
X-32	PEG	0.1	0.0000	8 66	97.0	20 00	0 075 00	100.				
X-33	PEG/DRIP/INV	9.0	0.0000	982	27.5	20.02	6.97E03	7.835+01	2.23E-03	1.96E+01	1.12E-02	9.81E+01
X-34	PEG/DRIP/DUP	9.0	0.000	080	27.2	20.03	0.8351-03	6.0/E+01	0.00E+00	0.00E+00	6.93E-03	6.07E+01
X-35	PEG	0.1	0.0000	8 00 8	280	20.03	4.37E-U3	3.835+01	0.00E+00	0.00E+00	4.37E-03	3.83E+01
96—X		0.1	0000	8 00	0.00	20.02	0.435-03	5.48E+01	5.39€-06	4.72E-02	6.26E-03	5.48E+01
X-37		-	0.0000	20.00	0.02	20.03	Z./8E-04	2.44E+00	0.00E+00	0.00E+00	2.78E-04	2.44E+00
86-X		-	0000	200	0.72	20.10	1.08E-02	9.46E+01	0 00E+00	0.00E+00	1.08E-02	9.46E+01
66-X	PEG	40	9000	0.00	0.00	28.03	4.39E-04	3.84E+00	0.00E+00	0.00E+00	4.39E−04	3.84E+00
X 40	PEG		300	90.7	27.0	28.07	1.78E-03	1.56E+01	3.55E-02	3.11E+02	3.73€-02	3.26E+02
× 4.	PEG	5	3000	98.7	6.72	28.03	6.77E-03	5.93E+01	1.52E-06	1.33E-02	6.77E-03	5.93E+01
X-42		6	3000	7.00	6.72	28.03	3.04E-02	2.66E+02	0.00E+00	0.00E+00	3.04E-02	2.66E+02
X-43	PEGI/SINV	200	2000	- 66	8.12	28.06	1.81E-03	1.58E+01	0.00E+00	0.00E+00	1.81E-03	1,58E+01
× 44.	DZ/DINV	0 0	2000	20.00	28.0	28.02	1.01E-03	8.87E+00	0.00E+00	0.00E+00	1.01E-03	8.87E+00
X-45	NIS	200	5000	90.00	1.12	28.06	3.83E-06	3.35E-02	0.00E+00	0.00E+00	3.83E-06	3.35E-02
X_46	DUP/SINV	0.1	0.000	0.00	7000	28.03	2.15E-06	1.89E-02	0.00E+00	0.00E+00	2.15E-06	1.89E-02
×47	ZO	0	0000	93.0	20.0	28.03	5.96E-07	5.22E-03	0.00E+00	0.00E+00	5.96E-07	5.22E-03
×-48	DINV	0.1	0000	99.00	67.0	28.03	4.83E07	4.23E-03	0.00E+00	0.00E+00	4.83E-07	4.23E-03
6₩ ¥	ZQ	10	0.000	99.0	8/12	28.04	3.28E-05	2.87E-01	0.00E+00	0.00E+00	3.28E-05	2.87E-01
X-50		0.5	0.0000	100 O	97.0	20.03	0.385-06	6.03E-02	0.00E+00	0.00E+00	6.88E-06	6.03E-02
X-51	ZO	0.1	90000	9 66	07.0	20.00	Z.70E-03	2.3/E+01	0.00E+00	0.00E+00	2.70E ÷ 03	2.37E+01
X-52		0.5	0.0000	2 80	27.6	20.04	04n -00	4.51E-02	0.00=+00	0.00E+00	5.14E-06	4.51E-02
X-53	20	0.1	10000	7 00	0.70	20.00	1.000 TOO	0.88E+00	0.000	0.00E+00	7.86E-04	6.88E+00
X-54	NIS	0.1	0.0000	7 99 7	27.0	20.02	4.03E-U/	4.24E-03	0.00E+00	0.00E+00	4.83E-07	4.24E-03
X-55	PEGI	0.55	0.0000	986	27.6	20.02	7.02E-02	6.85E+02	0.00=+00	0.00E+00	7.82E02	6.85E+02
X-56		0.1	0.0000	7 99 7	27.0	20.00	9.20E-03	8.00E+01	0.00=+00	0.00E+00	9.20E-03	8.06E+01
X-57	70	0.2	0.0001	90 8	27.0	20.03	2.00E-03	1.82E+01	0.00E+00	0.00E+00	2.08E-03	1.82E+01
X58	PEG	0.1	00000	7 00	0.70	20.04	0) - II / I	1.55=-02	0.00E+00	0.00E+00	1.77E-06	1.55E-02
X-59		0.5	00000	90	6,12	20.03	1.196-01	1.04E+03	0.00E+00	0.00E+00	1.19E-01	1.04E+03
09-X	PEG	0.1	00000	2.00	0.12	20.00	6.64E-03	5.81E+01	0.00E+00	0.00E+00	6.64E-03	5.81E+01
X-61		0.1	0.000	9 00	27.0	20.03	0.33E-0Z	3.55E+02	2.09E 06	1.83E-02	6.33E02	5.55E+02
X-62	PEG	0.1	11.4686	73.8	7 00	20.04	7.605 -03	6.66E+01	0.00E+00	0.00E+00	7.60E-03	6.66E+01
X-63	>Nio	0.1	0.0353	2 66	07.02	36.61	7.08E-02	6.73E+02	0.00E+00	0.00€+00	7.68E-02	6.73E+02
				200	6.13	Z0.04	3.32E-04	4.69E+00	0.00E+00.0	0.00E+00	5.35F - 04	4 ROFLOO

A-55

Page 9e

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAM	SAMPLE CONTROL	COMMENTS
0	epo O	Comments
X-27		Liquid sample X031 taken.
X-28	,	Reported with sample X024 and X026.
X-29		
X-30	7	Reported with sample X025.
X-31		Reported with sample X027.
X-32	PEG	
X-33	PEG/DRIP/INV	Drip rate = .7ml/100min. I
× -34	PEG/DRIP/DUP	Dripping. Drip rate = .7ml/100min. Duplicate of X033.
X-35	PEG	
9E-X		
X-37		
X-38		
66-X	PEG	
X-40	PEG	
X_41	DEG	
2		Diline serviced distances
7		Ditute l'epailed duning l'est.
X-43	PEGI/SINV	Screening value varied by a factor of more than 2. Pegged initially, but not at end.
X 44	DZ/DINV	Final background = 3 ppm. Possible contamination in field; followed a pegged source.
X-45	SINV	Screening value varied by a factor of 2.9.
X-46	DUP/SINV	Screening value varied by a factor of 2.9. Duplicate of X045.
X-47	20	
X-48	NIO	Falled QC check.
×49	DZ	
X-50		
X51	20	
X-52		Bagged concentration varied by a factor of 1.75.
X-53	DZ	
X-54	SINV	Raining, SV varied by a factor of 2.3.
X-55	PEGI	Raining.
X-56		Raining. SV over 10,000 ppm without dilution probe.
X-57	02	
X-58	PEG	
X-59		
09-X	PEG	
X-61		
X-62	PEG	
X-63	DINA	Bagged THC readings at near background levels. Possible contamination in field; followed a pegged source.

Page 9f

SAMPLE CONTROL	AMBIENT CONDITIO	T CONE	OITIONS		COMPONENT DATA	NT DATA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		STREAM C	STREAM CHARACTERISTICS
	Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
Code	(mph)	9	Pressure		(Inches)		Actuation	×	Service	Product
PEG/INV	2.5	53		ပ	1.00	Ŧ			GAS	Propage
	2.5	65		VALVE	3.00	GATE	Σ		Ħ	MEK/Toluene
	2.5	65	30.15	OEL	0.25	OEL			Ī	MEKATolinano
	2.5	63	30.15	PUMP		VERT		>	1 3	MEKTALISE
DZ	2.5	58		VALVE	4.00	GATE	2		==	MIENVI OIUBIIB
ZO	2.5	58		VALVE	4.00	GATE	2		4 -	Napina
ZQ	2.5	99		VALVE	100	GATE	2		d =	Napina Napina
DZ/AUDTD	2.5	99		VALVE	1.00	GATE	2		4 -	Nichtia
ZO	2.5	62	30.22	VALVE	0.75	GATE	2		1 5	BUCBA
	2.5	9		PUMP		i ci	E	2	-	
N								:	!	
	2.5	61	30.10	VALVE	4.00	GATE	2		Ē	
	2.5	57	30.10	VALVE	0.75	GATE	2		=======================================	
	2.5	9		VALVE	4.00	GATE	2		4 -	- Cilorof
20	2.5	29		VALVE	2.00	GATE	C		1 =	Augonia
	2.5	61		PUMP		2	•	>	<u> </u>	
DZ/DINV	5.0	64	30.10	OEL	0.75	OEL			=======================================	
BL									!	
	2.0	53	30.15	VALVE	0.75	GATE	Σ		GAS	Deliet
ANIQ/ZQ	5.0	52	30.15	VALVE	0.75	BTFLY	Σ		GAS	Fire des
DZ/DINV	2.0	64	30.15	VALVE	0.75	BTFLY	Σ		GAS	Fire Cas
AUDTT	2.0	67	30.15	VALVE	0.75	BALL	Σ		GAS	Filel des
AUDTT	2.0	29	30.15	VALVE	0.75	BALL	Σ		GAS	File Cas
AUDTT	2.0	45	30.04	VALVE	2.50	GLOBE	Σ		H20	Water
AUDTC										
AUDTC										
PEGF/SINV	10.0	41	30.04	VALVE	2.00	GLOBE	Σ		GAS	
PEG	10.0	39	30.04	VALVE	3.00	ORBIT	Σ		GAS	and the state of t
PEG	2.0	20	29.84	PUMP	3.00	CENT				
	2.0	49	29.84	PUMP	3.00	Ş		z		
	2.0	23	29.84	PUMP	3.00	ΛC		z		
PEG	10.0	22	29.84	VALVE	8.00	ORBIT	Σ			- PG
PEG/N21	2.0	54	30.48	VALVE	2.00	ORBIT	Σ		11	Propane
PEG/AUDTD	2.0	24	30.48	VALVE	2.00	ORBIT	Σ		1	Propane
PEG/N2-1	2.0	52	30.48	VALVE	2.00	ORBIT	Σ		1	Propana
PEG/N2-1	8.0	23	30.48	VALVE	2.00	ORBIT	2			Property
							:			LICHARIC

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMPL	SAMPLE CONTROL					Ø	SCREENING DATA	DATA					
		¥ -	Initial	East	South	West	Final	East tast	South	West	Ava	Bkgrod	Corrected
0	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mad)	(maa)	(E)	(maa)	(maa)
x-64	PEG/INV	0	106,000				106,000	2	7	2	L.	4	105 996
x-65		970	920				026	200	300		1	4	957
99-X			15,000				16,000				15,500		15.497
79-X			11,000	000'6	10,000	2,000	8,000				9,500		9.497
X-68	ZO		4				2				4		0
69-X	ZO		2				2				0		0
0/-X	ZO		7	•			2				2	2	0
X-77	DZ/AUDTD		2				2				2		0
V 72	70		2				-				-		0
N-73	INIX		32				65				50	5	46
V 75	>		00	1									
6/-Y			8 8	20	80	20	100				95	3	92
V-70			200	9	30	30	9				45	E	42
,			000'9	000,9	000'9	000'9	000'6				7,500	3	7,497
A-70	70		0.				ଛ				15	15	0
6/-V	21/0/10		250				310				280	8	277
7 - 9 X	DZ/DINV BI		,				8				8	80	0
X-82		0	3,800	1 500	3 200	1 200	000	004	•	000			
X-83	DZ/DINV	0	-		2010	2041	- T	201	000'	2,200	96,5	7	3,898
X-84	DZ/DINV	10,000	2				- 10				- -	-	0
X-85	AUDTT		2				ıc				+ =	•	
98−X	AUDTT		2				S				1	•	
X-87	AUDTT		-				-				-	-	
X-88	AUDTC										•	-	
X-89	AUDTC												
06-X	PEGF/SINV	10,000	20,000	200	10,000	15,000	100,000	100,000	100.000	500	75.000	-	74 999
-91	PEG	10,000	100,000	100,000	4	200	100,000	200	100	2,000		4	266.66
X-92	PEG										┺		
X-93			140	120	120	100	250	120	80	20	195	n	192
X-94			09	0	10	40	75	20		20		-	67
X-95	PEG		100,000	100,000	100,000	-	100,000	10,000	100,000	10,000	100,000	-	66,66
-	PEG/N2-1	10,000	100,000	ဇ	ဇ	2,000	100,000	100,000	က	2,000	<u> </u>	က	99,997
1	PEG/AUDID	10,000	100,000	က	ဇ	2,000	100,000	100,000	3	2,000	100,000	3	766,66
26-X	PEG/NZ-1	10,000	100,000	က	က	2,000	100,000	100,000	ဇ	2,000		က	766,66
86-X	PEG/NZ-1	000'01	100,000	က	က	2,000	100,000	100,000	က	2,000		က	766,66
V-100	PEG/NZ-1	10,000	100,000	9	ဇ	2,000	100,000	100,000	3	2,000		ဇ	26,997

Page 10b

		_	0.12	0.22	600	0 70	000	2 12	10	10	I (*)	, K	T	80	: =	g	9	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>	<u> </u>	0	1 6	-	g	0	Ņ			=	®	1.	4	+ r		2 0	2 0	0 0	1 1
NO	σ	m3/hr	O	0	c	C	6	0.37	c	0.12	0.13	0.25		0.28	0.11	0.29	0.16	0.27	0.08	5	0.12	1 0	2 5	000	60 0	0.22			0.41	0.3		41.0	0.14	2 6	00.0	0.00	0.0	1 47
CENTRATI	Average	*	0.20	0.20	0.60	0.10	0.40	1 05	0.35	0.35	0.35	0.30		0.35	0.25	0.20	0.90	0.20	0.55		0.30	0 00	0.20	0.20	0.20	0.45			0.30	0.30		C 20	245	200	000	0.00	0000	0.15
OXYGEN CONCENTRATION	Final	*	0.20	0.20	0.60	0.10	0.30	0.30	0.20	0.20	0.30	0.40		0.20	0.20	0.20	06.0	0.20	09.0		0.30	0.20	0.20	0.20	0.20	0.60			0.30	0.30		2 6	8 6	0000	000	02.0	0.00	0.15
OXYG	Initial	*	0.20	0.20	09.0	0.10	0.50	1.80	0.50	0.50	0.40	0.20		0.50	0.30	0.20	06.0	0.20	0.50		0.30	0.20	0.20	0.20	0.20	0.30			0.30	0.30	000	0.60	08.0	0 00	0.20	02.0	0.20	0.15
	N2	l/min	46.1	3.56	1.48	13.10	4.74	5.82	1.95	1.95	2.12	4.03		4.53	1.75	4.81	2.62	4.52	1.34		1.89	2.11	1.84	1.52	1.52	3.51			6.71	6.19	600	2 24	7 70	4 97	4 97	2 93	10.30	24.30
NITROGEN FLOW	Average	ml/min	1,939	3,555	1,483	13,100	4,735	5,816	1,947	1,947	2,121	4,034		4,530	1,748	4,814	2,622	4,518	1,336		1,890	2,112	1.844	1,516	1,516	3,512			6,715	6,190	0000	2 240	7.695	4.968	4.968	2,935	10,300	24,300
NITROGE	Final	ml/mln	1,962	3,570	1,485	13,100	4,720	5,830	1,950	1,950	2,140	4,027		4,530	1,745	4,807	2,628	4,522	1,341		1,886	2,110	1,805	1,354	1,354	3,600		-	6,829	6,230	990.0	2 242	7.681	4.975	4.975	2.944	10,300	24,300
	Initial	ml/min	1,915	3,540	1,480	13,100	4,750	5,802	1,944	1,944	2,101	4,040		4,530	1,750	4,820	2,615	4,513	1,330		1,894	2,113	1,882	1,678	1,678	3,424		000	000'0	061,9	2 2 RB	2 237	7.709	4,960	4.960	2,925	10,300	24,300
NOI	Avg	ppm	45	1,550	1,550	15,500	40	52	22	22	19	320		105	140	1,650	28	3,300	650		1,866	34	17	320	320	128		000	2000	3,000	800	274	45,000	22,500	22,500	39,000	8,400	3,450
BAG CONCENTRATION	Final	(mdd)	40	1,600	1,700	15,000	35	22	23	23	16	320		8	200	1,700	70	3,500	009		1,911	32	32	320	320	128		000	000'8	3,000	208	274	45,000	21,000	21,000	44,000	8,800	3,500
BAG	Initial	(mdd)	20	1,500	1,400	16,000	45	25	20	20	2	350		120	80	1,600	45	3,100	28		1,820	36	2	320	320	128		94	200	000'6	208	274	45,000	24,000	24,000	34,000	8,000	3,400
SAMPLE CONTROL	•	Code	PEG/INV				ZQ	DZ	DZ	DZ/AUDTD	ZO		<u>N</u>				70		DZ/DINV	ᆸ		DZ/DINV	DZ/DINV	AUDTT	AUDTT	AUDTT	AUDTC	AUDIC	מיים לפונים	DEG.	3		PEG	PEG/N2-1	PEG/AUDTD	PEG/N2-1	PEG/N2-1	PEG/N2-1
SAMPLI		Ω	X-64	X-65	99-X	X-67	89-X	69-X	X-70	X-71	X-72	X-73	X-74	X-75	X-76	X-77	X-78	X-79	08-X	X-81	X-82	X-83	X84	X-85	×-86	X-87	88-X	69-X	+	26-X	X-93	X-94	X-95	96-X	Y-97			X-100

X-64 Code (P) (P)<	SAMP	SAMPLE CONTROL	4	BAG TEMPERATU	IPERATU	H.		3	LABORATORY DATA			
COLOR (F) (F) </th <th>!</th> <th>,</th> <th>Initial</th> <th>Final</th> <th>Avg.</th> <th>Temp</th> <th>Ž</th> <th>MOC</th> <th>METHA</th> <th>ш</th> <th>1</th> <th>۷</th>	!	,	Initial	Final	Avg.	Temp	Ž	MOC	METHA	ш	1	۷
Technival 120 128 64 65 65 65 65 65 65 65	2 2	Code	<u>E</u>	- 1		deg R	ppmv (as C3H8)		ppmv (88 CH4)	DDmw (as CH4)	nn (as C3H8)	(a) (a) (a)
The color of the	404 X 98	PEG/INV	52	99	5	250	NA	0.11	0.00		000	PPIIIW (88 CSTO)
130 143 143 144 145	99 ×		120	128	124	584	Y'A	1,886.81	0.00		1 20	1 886 91
DZ 150 143 137 586 NA 15,491,10 0.00 0.	× 67		99	9	92	525	NA	1,728.70	0.00			07 967 1
NA 1572 0.00 0.	/0-V		130	143	137	296	A A	15,491.10	000			1,720.70
DZ TO 55 NA 15,72 0.00 </td <td>89 2</td> <td>ZO</td> <td>62</td> <td>62</td> <td>62</td> <td>522</td> <td>۸×</td> <td>48.76</td> <td></td> <td></td> <td>n'n</td> <td>15,491.10</td>	89 2	ZO	62	62	62	522	۸×	48.76			n'n	15,491.10
NA 1,000 0.00 0	60-Y	70	28	63	61	520	AN	15.72				40.70
DZ/ALDITO 73 8 67 70 550 NA 10.70 0.00	x-70	DZ	73	29	2	530	¥2	0.07				15.72
NA 15 15 15 15 15 15 15 1	X-71	DZ/AUDTD	73	29	2	530	A'A	10.70	800			0.07
134 160 147 607 NA 1,318,77 2,00 0,00 0,00 1,14 940,00 1,00 0,00 0,00 1,14 940,00 1,00 0,00	X-72	DZ	78	92	92	545	AX	0.07	800		08.90	10.70
NA 10 10 10 10 10 10 10 1	X-73		134	160	147	209	NA	1 319 71	3.0		0.05	0.02
Columb	X-74	N					AN	1.000	2.00		840.00	1,320.86
DZ 65 76 72 531 NA 392734 0.00 0.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 240.00 36.00 240.00 36.00 240.00 36.00 240.00 36.	X-75		84	93	68	548	MA	70007	0.00		00.0	
DZ 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 250000 3 BL 69 69 60 60 60 60 0.00 0.00 0.00 125000 125	92-X		65	78	2	534	44	400.34	0.00	00.00	260.00	408.94
DZ 69 70 70 529 NA 3,927,34 0.00 0.00 2,500.00 3 DZ/DINV 66 105 105 105 105 105 105 105 105 105 100 0.00 120.00 9 DZ/DINV 60 61 61 62 81 81 81 81 81 81 81 81 81 80 0.00 0.	X-77		09	2 6	: 8	200	2	377.54	0.00		240.00	377.54
DZ/DINV 69 68 68 586 NA 9,720,66 0,00 0,00 0,00 1,00 0	(-78	70	69	202	3 5	520	¥ 4	3,927.93	00.00		2,500.00	3,927.93
DZ/DINV 68 68 528 NA 8/720.66 0.00 <th< td=""><td>6/-)</td><td></td><td>105</td><td>105</td><td>101</td><td>Ker</td><td>¥ .</td><td>188.61</td><td>00.0</td><td></td><td>120.00</td><td>188.61</td></th<>	6/-)		105	105	101	Ker	¥ .	188.61	00.0		120.00	188.61
BL. 61	08->	DZ/DINV	9	9	3	3	¥ .	9,720.66	00.0		6,200.00	9,720,66
DZ/DINV 60 61 <t< td=""><td>(-81</td><td>B.</td><td>3</td><td>3</td><td>3</td><td>030</td><td>42</td><td>2,670.89</td><td>00.0</td><td></td><td>1,700.00</td><td>2,670.89</td></t<>	(-81	B.	3	3	3	030	42	2,670.89	00.0		1,700.00	2,670.89
DZ/DINV 60 61 61 61 61 61 61 61 61 61 61 61 62 NA 1,516,34 1,200,00 684.38 1,400,00 200 DZ/DINV 79 84 82 541 NA 471,95 0.00 0.00 0.00 760,00 1 AUDTT 46 49 46 543 NA 1,053,79 0.00 0.00 760,00 1 AUDTC 4UOTT 46 49 46 50 NA 26,484,12 0.00 0.00 670,00 1 AUDTC AUDTC NA 26,484,12 0.00 0.00 50,00 50,00 20,00 20,00 1 AUDTC AUDTC NA 26,484,12 3.40 1,92 17,00 9,71 170,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00 20,00	(-82		81	ě	à	544	Y V		0.00		00.00	
AUDIT 85 84 82 541 NA 471,9528 0.00 0.00 200 0.00 200 0.00 0.00 200 0.00 </td <td>(-83</td> <td>DZ/DINV</td> <td>90</td> <td></td> <td>5 6</td> <td>200</td> <td>¥ .</td> <td>1,516,34</td> <td>1,200.00</td> <td>684.38</td> <td>1,400.00</td> <td>2,200.72</td>	(-83	DZ/DINV	90		5 6	200	¥ .	1,516,34	1,200.00	684.38	1,400.00	2,200.72
AUDTT 85 81 83 543 NA 1,195.28 0.00 0.00 760.00 1 AUDTT 85 81 83 543 NA 1,195.28 0.00 0.00 760.00 1 AUDTT 46 49 46 507 NA 257.83 15.00 8.56 200.00 1 AUDTC AUDTC NA 257.83 17.00 0.00 670.00 670.00 1 AUDTC AUDTC NA 256.484.12 0.00 0.00 9.71 170.00 PEGINS 41 40 41 500 NA 256.484.12 3.40 1.92 17,000.00 PEG 49 51 50 51 NA 256.484.12 3.40 1.92 17,000.00 PEG 53 54 54 54 54 50 50 50 50 50 50 50 50 50 50 50 50	∠-84	DZ/DINV	62	84	8	244	¥ ×	314.65	0.00	0.00	200.00	314.65
AUDIT 85 81 83 543 NA 1,195.26 0.00 0.00 760.00 1 AUDIT 46 49 48 507 NA 267.83 15.00 8.56 200.00 670.00 170.00	(-85	AUDTT	85	2	2 2	F43	V	C8. 1.4	00.0	00.0	300.00	471.95
AUDIT 46 49 48 507 NA 1,053.79 0,00 0,00 670.00 1 AUDIC AUDIC AUDIC NA 257.83 15.00 8.56 200.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 260.00 170.00 260.00 2	98-)	AUDTT	55	ā	3 6	2 2	¥2.	1,195.28	0.00	0.00	760.00	1,195.28
AUDTC AUDTC NA 255.83 15.00 8.56 200.00 AUDTC AUDTC NA 257.83 17.00 9.71 170.00 PEGF/SINV 41 40 41 500 NA 26,484.12 3.40 1.92 17,000.00 26 PEG 39 38 498 NA 26,484.12 3.40 1.92 17,000.00 26 PEG 39 49 NA 26,484.12 3.40 1.92 17,000.00 26 PEG 49 51 50 510 NA 251.74 0.00 0.00 0.00 220.00 220.00 PEG/N2-1 56 58 518 NA 32,636.97 0.00 0.00 21,000.00 22,000.00 PEG/N2-1 58 58 518 NA 41,834.15 0.00 0.00 0.00 27,000.00 26,000 PEG/N2-1 56 55 56 510 NA 41,834.13	(-87	AUDIT	46	40	3 8	201	4 V	1,053.79	00'0	00.00	670.00	1,053.79
AUDTC ALDTC NA \$29.237 \$17.00 9.71 \$17.00	(-88	AUDTC		2	2	3		302.98	15.00	8.56	200.00	314.54
PEGF/SINV 41 40 41 500 NA 26,484.12 bits 0.00 0.00 590.00 26 PEG 39 38 39 498 NA 26,484.12 bits 0.00 0.00 1.92 bits 17,000.00 bits 26 PEG 49 51 50 NA 251.74 bits 0.00 0.00 2,000 <t< td=""><td>68-)</td><td>AUDTC</td><td></td><td></td><td></td><td></td><td>Y VI</td><td>257.83</td><td>17.00</td><td>9.71</td><td>170.00</td><td>267.53</td></t<>	68-)	AUDTC					Y VI	257.83	17.00	9.71	170.00	267.53
PEG 39 38 39 498 NA 20,484.12 3.40 1.92 17,000.00 26 PEG 49 51 50 510 NA 251.74 0.00 0.00 0.00 160.00 2200.00 PEG/NZ-1 58 58 518 518 NA 28,032.06 0.00 0.00 21,000.00 28,000 PEG/NZ-1 58 58 518 NA 28,032.06 0.00 0.00 21,000.00 28,000 PEG/NZ-1 58 55 57 516 NA 41,834.15 0.00 0.00 0.00 27,000.00 41 PEG/NZ-1 56 55 57 516 NA 41,834.15 0.00 0.00 0.00 41 PEG/NZ-1 56 55 56 516 NA 41,834.15 0.00 0.00 0.00 9,100.00 41 PEG/NZ-1 56 55 56 510 NA 41,834.15<	06-X	PEGF/SINV	14	40	44	200	V V V	926.27	0.00	00.00	290.00	928.27
PEG 49 51 50 510 NA 251.74 0.00 0.00 0.00 2,200.00 3 PEG/N2-1 58 58 58 518 NA 28,032.06 0.00 0.00 0.00 27,000.00 32 PEG/N2-1 58 58 518 NA 28,032.06 0.00 0.00 18,000.00 22,000.00 PEG/N2-1 58 55 57 516 NA 41,834.15 0.00 0.00 0.00 27,000.00 41 PEG/N2-1 57 64 61 520 NA 41,834.15 0.00 0.00 0.00 9,100.00 41 PEG/N2-1 56 55 56 515 NA 41,834.15 0.00 0.00 0.00 9,100.00 14 PEG/N2-1 56 55 56 515 NA 41,834.15 0.00 0.00 0.00 9,100.00 14 PEG/N2-1 56 55 56<	X-91	PEG	39	8	30	3 8	V.	20,484.12	3.40	1.92	17,000.00	26,486.05
PEG 53 54 51 NA 251.74 0.00 0.00 160.00 PEG/N2-1 58 54 54 513 NA 32,636.97 0.00 0.00 200.00 200.00 200.00 220,000 200 200.00 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 220,000 41 PEG/N2-1 56 55 57 516 NA 41,834.15 0.00 0.00 0.00 9,100.00 14 PEG/N2-1 56 55 56 515 NA 41,834.15 0.00 0.00 0.00 9,100.00 14 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 0.00 9,100.00 14	X-92	PEG			3	3		9,400,09	0.00	00.0	2,200.00	3,456.69
PEG 53 54 54 513 NA 314.58 0.00 0.00 160.00 PEG/N2-1 58 58 58 518 NA 32,636.37 0.00 0.00 21,000.00 32 PEG/N2-1 58 58 518 NA 28,032.06 0.00 0.00 18,000.00 28,000.00 28,032.06 0.00 0.00 18,000.00 28,000.00 41 PEG/N2-1 58 55 57 516 NA 41,834.15 0.00 0.00 0.00 9,100.00 41 PEG/N2-1 56 55 56 515 NA 41,834.15 0.00 0.00 0.00 9,100.00 14 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 0.00 0.00 9,100.00 14	(93		49	51	20	510	AN	251 74	000	000		
PEG 50 49 50 509 NA 32,636.397 0.00 0.00 21,000.00 32 PEG/N2-1 58 58 518 NA 28,032.06 0.00 0.00 21,000.00 28,032.06 PEG/N2-1 58 55 57 516 NA 41,834.15 0.00 0.00 0.00 41 PEG/N2-1 56 55 56 516 NA 41,834.15 0.00 0.00 0.00 9100.00 14 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 0.00 0.00 0.00 9,100.00 14	(-9 4		53	54	5	513	NA	314 5R	800	0.00	160.00	251.74
PEG/N2-1 58 58 58 518 NA 28,032.06 0.00 0.00 18,000.00 PEG/N2-1 58 58 518 NA 41,834.15 0.00 0.00 27,000.00 PEG/N2-1 57 64 61 520 NA 41,243.79 0.00 0.00 9,100.00 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 0.00 9,100.00	(-95	PEG	20	49	20	209	¥	32 636 97	0.00	0.00	200.00	314.58
PEG/N2-1 58 58 58 518 NA 41,834,15 0.00 0.00 27,000,00 PEG/N2-1 57 64 61 520 NA 41,243,79 0.00 0.00 27,000,00 PEG/N2-1 56 55 56 515 NA 4,085,11 0.00 0.00 0.00 9,000 0.00	96-)	PEG/N21	28	28	58	518	NA NA	28 032 06	000	000	21,000.00	32,636.97
PEG/N2-1 58 55 57 516 NA 41,834.15 0.00 0.00 27,000.00 PEG/N2-1 57 64 61 520 NA 14,243.79 0.00 0.00 9,100.00 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 <	(-9)	PEG/AUDTD	28	28	28	518			200	00.0	18,000,00	28,032,06
PEG/N2-1 57 64 61 520 NA 14,243.79 0.00 0.00 9,100.00 PEG/N2-1 56 55 56 515 NA 4,085.11 0.00 <td< td=""><td>86-</td><td>PEG/N2-1</td><td>58</td><td>22</td><td>57</td><td>516</td><td>NA A</td><td>41,834.15</td><td>00.00</td><td>000</td><td>00 000 26</td><td>44.0044</td></td<>	86-	PEG/N2-1	58	22	57	516	NA A	41,834.15	00.00	000	00 000 26	44.0044
PEG/N2-1 56 55 56 515 NA 4,085,11 0.00 0.00 0.00 2,100,00	66-	PEG/N2-1	22	64	9	220	AN	14,243.79	00.0	000	0 100 00	41,034.13
	001-3	PEG/N2-1	99	55	56	515	AA	4.085.11	000		00.00	67.042,4

												1
SAMPL	SAMPLE CONTROL	MOLECI	MOLECULAR WEIGHT	T DETERMINATION	VATION		******		EMISSION F	RATE		
÷		MW fraction	MW fraction	% fraction	MW fraction	× ×	NWOO	×	Methane	903	托	
0	Code	05	СЗНВ	N2	N2	Bag	(Ib/hŋ	(Ib/yr)	(Ib/hr)	(Ib/yr)	(Ib/hr)	(lb/yr)
X-64	PEG/INV	0.1	0.0000	8'66	28.0	28.03	3.37E-08	2.95E-04	0.00E+00	0.00E+00	3.37E-08	2.95E-04
X-65		0.1		7.66	27.9	28.05	9.44E-04	8.27E+00	00+300'0	0.00E+00	9.44E-04	8.27E+00
X-66		0.5		99.3	27.8	28.06	4.09E-04	3.59E+00	0.00E+00	0.00E+00	4.09E-04	3.59E+00
∠9-×		0.0		98.9	27.7	28.18	2.80E-02	2.45E+02	0.00E+00	0.00E+00	2.80E-02	2.45E+02
X-68	Z Q	0.1	0.0014	9.66	27.9	28.04	3.67E-05	3.22E-01	0.00E+00	0.00E+00	3.67E-05	3.22E-01
69-X	DZ	0.3	0.0004	98.9	27.7	28.06	1.51E-05	1.32E-01	0.00E+00	0.00E+00	1.51E-05	1.32E-01
X-70	ZO	0.1	00000	9'66	27.9	28.03	2.15E-08	1.89E-04	0.00E+00	0.00E+00	2.15E-08	1.89E-04
X-71	DZ/AUDTD	0.1	0.0003	9.66	27.9	28.03	3.25E-06	2.85E-02	0.00E+00	0.00E+00	3.25E-06	2.85E-02
X-72	ZQ	0.1	0.0000	9.66	27.9	28.03	2.28E-08	2.00E-04	0.00E+00	0.00E+00	2.28E-08	2.00E-04
X-73		0.1	0.0371	9.66	27.9	28.05	7.24E-04	6.35E+00	6.26E-07	5.49E-03	7.25E-04	6.35E+00
X-74	N<											
X75		0.1	0.0115	93.6	27.9	28.04	2.80E-04	2.45E+00	0.00E+00	0.00E+00	2.80E-04	2.45E+00
92-X		0.1	0.0106	2.66	27.9	28.03	1.02E-04	8.96E-01	0.00E+00	0.00E+00	1.02E-04	8.96E-01
X-77		0.1	0.1103	9.66	27.9	28.07	2.99€-03	2.62E+01	0.00E+00	0.00E+00	2.99E-03	2.62E+01
X-78	ZO	0.3	0.0053	1.66	27.8	28.06	7.95E-05	6.96E-01	0.00E+00	0.00E+00	7.95E-05	6.96E-01
67-X		0.1	0.2735	39.5	27.8	28.13	6.41E-03	5.61E+01	0.00E+00	0.00E+00	6.41E-03	5.61E+01
X-80	DZ/DINV	0.5	0.0750	6.66	27.8	28.07	5.65E-04	4.95E+00	0.00E+00	0.00E+00	5.65E-04	4.95E+00
X-81	9.											
X-82		0.1	0.0618	9.66	27.9	28.05	4.38E-04	3.83E+00	1.98E-04	1.73E+00	6.35E-04	5.57E+00
X-83	DZ/DINV	0.1	0.0088	83.8	28.0	28.03	1.05E-04	9.19E-01	0.00E+00	0.00E+00	1.05E04	9.19E-01
X-84	DZ/DINV	0.1	0.0132	93.8	28.0	28.03	1.32E-04	1.16E+00	0.00E+00	0.00E+00	1.32E-04	1,16E+00
X-85	AUDTT	0.1	0.0335	2.66	27.9	28.04	2.74E-04	2.40E+00	0.00E+00	0.00E+00	2.74E-04	2.40E+00
X-86	AUDTT	0.1	0.0296	2.66	27.9	28.04	2.42E-04	2.12E+00	0.00E+00	0.00E+00	2.42E-04	2.12E+00
X-87	AUDTT	0.1	0.0088	99.5	27.9	28.04	1.76E-04	1.54E+00	4.93E-06	4.32E-02	1.81E-04	1.59E+00
X-88	AUDTC	0.0	0.0075	100.0	28.0	28.02						
68-X	AUDTC	0.0	0.0260	6.66	28.0	28.03						
06-X	PEGF/SINV	0.1	0.7499	0.86	27.5	28.31	2.96E-02	2.60E+02	2.15E-06	1.88E-02	2.96E-02	2.60E+02
X-91	PEG	0.1	0.0970	99.5	27.9	28.07	3,55E-03	3.11E+01	0.00E+00	0.00E+00	3.55E-03	3.11E+01
X-92	PEG											
X-93		0.0	0.0071	9.66	28.0	28.03	9.26E-05	8.11E-01	0.00E+00	0.00E+00	9.26E-05	8.11E-01
X-94		0.1	0.0088	9.66	27.9	28.04	1.14E-04	9.95E-01	0.00E+00	0.00E+00	1.14E-04	9.95E-01
X-95	PEG	0.1	0.9263	97.5	27.3	28.38	4.15E-02	3.64E+02	0.00E+00	0.00E+00	4.15E-02	3.64E+02
96-X	PEG/N2-1	0.1	0.7940	0.86	27.5	28.32	2.23E-02	1.95E+02	0.00E+00	0.00E+00	2.23E-02	1.95E+02
X-97	PEG/AUDTD	0.1	0000'0	8.66	28.0	28.03						
86-X	PEG/N2-1	0.1	1.1910	97.1	27.2	28,46	1.98E-02	1.74E+02	0.00E+00	0.00E+00	1.98E-02	1.74E+02
66-X	PEG/N2-1	0.1	0.4014	6'86	27.7	28.17	2.33E-02	2.04E+02	0.00E+00	0.00E+00	2.33E-02	2.04E+02
X-100	PEG/N2-1	0.0	0.1147	9.66	27.9	28.07	1.58E-02	1.38E+02	0.00E+00	0.00E+00	1.58E-02	1.38E+02

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMI	SAMPLE CONTROL	COMMENTS
9	Code	
X-64	PEG/INV	Plug. Appears Nitrogen flow is preventing THC emissions
× 65		
99-X		
X-67		
X-68	ZO	
69-X	ZO	
X-70	02	
X-71	DZ/AUDTD	Sample went to RTI. Duplicate of X070.
X-73	3	
X-74	N.	
X-75		Raining.
X-76		Raining. SV varied by a factor of 2.
X-77		
X-78	70	
K-79		Raining.
×-80	DZ/DINV	Bagged THC much greater than lab concentration. Statistical outlier.
×-	뮴	
X-82		
χ-83	DZ/DINV	Sample thought to be contaminated. Laboratory concentration much greater than bag THC Concentration.
X-84	DZ/DINV	Sample thought to be contaminated. Laboratory concentration much greater than bag THC Concentration.
X-85	AUDTT	
Q !	AUDIT	
\ P = X	AUDII	RTI audit - direct to canister.
68 X	AUDTC	Sample to RTI
06-X	PEGF/SINV	Infermitient emitter (initial SV North) SV varied hy more than a factor of 2
X-91	PEG	
X-92	PEG	
X-93		
X-94		
X-95	PEG	Orbit valve.
96-X	PEG/N2-1	Nitrogen flow test #1.
X-97	PEG/AUDTD	Sample to RTI. Duplicate of X096.
86-X	PEG/N2-1	Nitrogen flow test #1.
66-X	PEG/N21	Nitrogen flow test #1.
x-100	PEG/N2-1	Nitrogen flow test #1.

SAMPL	SAMPLE CONTROL	AMBIENT CONDITIO	T CON	MITIONS		COMPONENT DATA	NT DATA			STREAM C	STREAM CHARACTERISTICS
	-	þ	Temp.	Barometric	Category	Size	Type	Valve	Load		
<u></u>	Code	(mph)	Ē	Pressure		(luches)		Actuation	X	Service	Product
X-101	PEG/N2-1	8.0	25		VALVE	2.00	ORBIT	Σ			Propane
X-102	N2-2	8.0	54		ပ	3.00	궅			3	
-103	N2-2	8.0	54		O	3.00	근				
-104	N2-2	8.0	55		O	3.00	교			=	
X-105	N2-2	8.0	54		O	3.00				1 =	
X-106	N2-2	8.0	55		O	3.00				1 =	
-107		10.0	52		VALVE	3.00	ORBIT	Σ		1=	<u> </u>
X-108	BL										j j
X-109	PEG/N2-3	3.0	20	30.16	VALVE	2.00	ORBIT	2			Propaga
X-110	PEG/N2-3	5.0	49		VALVE	2.00	ORBIT	Σ		٤	Propane
X-111	PEG/N2-3	10.0	49	30.16	VALVE	2.00	ORBIT	Σ		1	Propane
X-112	PEG/N2-3	10.0	51		VALVE	2.00	ORBIT	Σ		17	Propane
X-113	PEG/N2-3	10.0	51	30.16	VALVE	2.00	ORBIT	Σ		1	Propane
X-114		5.0	23		ပ	8.00	ď			11	
X-115	N24	3.0	5		0	4.00	급			1	
X-116	N24	5.0	25	30.16	ပ	4.00	ď			11	
X-117	N24	2.0	20		၁	4.00	7			7	
118	N2-4	2.0	ය		ပ	4.00	£			7	
119	N2-4	2.0	49		၁	4.00	ፈ			13	
X-120		2.0	64		VALVE	8.00	ORBIT	Σ		1	Propane
X-121	PEG	10.0	48		VALVE	4.00	GATE	Σ		-1	Butane
X-122	PEGF	10.0	48		VALVE	8.00	BTF	2		=======================================	Propane
X-123	DZ	2.0	54	30.32	VALVE	3.00	ORBIT	Σ		1	Propane
1−1	ACCY	2.5	73		VALVE	2.00	GATE	Σ		HZO	Steam
Y2		.	28		VALVE	3.00	GATE	Σ		GAS	Waste gas
2	ZQ	1.5	62		ပ	2.00	교			GAS	Waste gas
۲-۲-۲	20	2,5	99		PUMP	4.00	HC			רר	Strip reflux
Y5		1.5	72		VALVE	6.00	GATE	ပ		GAS	Strip gas
9-	PEG	5:	75		VALVE	1.00	GATE	ပ		GAS	H2 & HC Mix
	DZ/DINV	0.0			OEL	0.25	OEL			H	Lube oil
8P .		0.0	74		OEL	0.75	OEL			GAS	Desulf gas
6-A		1.5	29		VALVE	3.00	GATE	Σ		GAS	Waste gas
V-10		4.5	9		VALVE	4.00	GATE	Σ		GAS	Waste gas
Y-11		4.5	61		ပ	1.00	TH.			1	Reflux
Y-12		4.5	61		င	1.00	Ŧ			1	Reflux
Y13		2.5	62		ပ	0.25	TH			7	Reflux
Y-14		2.5	62		ပ	0.25	I			_	9.0

	Bkgrnd Corrected	(mdd) (mdd)	က		2.5 3,998				1 72,924	0			2 99,999	2 99,999		5 34,996	5.5 3,245		5.5 3,245		5.5 3,245	5 21,495			2 0	0	5 23	4	4	4 497	7 89,994	0 9	6 17	7 2,993	4 26	4 27		4
	Avg. Bk	d) (mdd)	8	4,000	4,000	4,000	4,000	4,000	72,925	0	100,000	100,000	100,000	100,000	100,000	35,000	3,250	3,250	3,250	3,250	3,250	21,500	100,000	77,500	2	4	28	4	4	200	000'06	9	23	3,000	30	30		4
	West	(mdd)	2,000						254		2,000	2,000	2,000	2,000	2,000	S.	1,500	1,500	1,500	1,500	1,500	1,000	3	5,000	2	4	ស	4	4	200	90,000	52		1,000	50	7		~
	South	(mdd)	9						-		100,000	100,000	100,000	100,000	100,000	200	200	200	700	200	200	2,000	15,000	7,000	2	4	5	4	4	200	10,000	2		200	10	2		1
ATA	East	(mdd)	100,000						6,350		3,500	3,500	3,500	3,500	3,500	200	1,000	1,000	1,000	1,000	1,000	200	ဇ	20,000	2	4	5	4	4	100	000'06	S		200	30	10		C
SCREENING DATA	Final	(mdd)	100,000	5,000	5,000	2,000	5,000	2,000	69,850		100,000	100,000	100,000	100,000	100,000	40,000	3,000	3,000	3,000	3,000	3,000	18,000	100,000	100,000	2	4	25	4	4	200	90,000	2	22	3,000	30	30		2
3	West	(mdd)	2,000	70	70	20	20	70	15,200		2,000	2,000	2,000	2,000	7,000	2	100	18	18	5	100	2,000	က	12,000		4	10	2	ဌ	20	000'06	6.5		12	8	50		a C
	South	(mdd)	3	50	20	20	20	20	1,480		200	200	200	200	200	2,000	1,000	1,000	1,000	1,000 1	1,000	2,000	10,000	1,000		4	သ	သ	2	1 00	90,000	6.5		20	9	S.		a v
	East	(mdd)	3	20	20	20	20	50	2,000		80	80	8	80	80	2	100	5	5	5	9	500	1,000	20,000		4	Ω	သ	2	80	81,000	6.5		200	16	10		ç
	Initial	(mdd)	100,000	3,000	3,000	3,000	3,000	3,000	26,000		100,000	100,000	100,000	100,000	100,000	30,000	3,500	3,500	3,500	3,500	3,500	25,000	100,000	55,000	7	4	30	ω	2	200	90,000	7	8	3,000	30	30		C C
	¥ ~	(mdd)	10,000								100,000	100,000	100,000	100,000	100,000							10,000	10,000	1,000	0						100,000			2,000				_
SAMPLE CONTROL		Code	PEG/N2-1	N22	N2-2	N2-2	N2-2	N2-2		ВГ	PEG/N2-3	PEG/N2-3	PEG/N2-3	PEG/N23	PEG/N2-3		N2-4	N2-4	N24	N2-4	N2-4		PEG	PEGF	02	ACCY		ZO	20		PEG	DZ/DINV						_
SAMPI		₽	X-101	X-102	X-103	X104	X-105	X-106	X-107	X-108	X-109	X-110	X-111	X-112	X113	X-114	X-115	X-116	X-117	X-118	X-119	X-120	X-121	X-122	X-123	Y-1	٧-2	۲-3	44	Y-5	9	Y7	٨-8	γ-9	Y-10	۲11	Y-12	ر ا ا

SAMPI	SAMPLE CONTROL	BAG	BAG CONCENTRA	TRATION		NITROG	NITROGEN FLOW		λXO	OXYGEN CONCENTRATION	CENTRATION	N O
		Initial	Final	Avg	Initial	Final	Average	SZ Z	Initial	Final	Average	σ
₽	Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	*	ж	Ж	m3/hr
X-101	PEG/N2-1	19,000	19,000	19,000	5,047	5,056	5,052	5.05	0.20	0.15	0.18	0.31
X-102	N2-2	2,220	2,405	2,313	2,169	2,193	2,181	2,18	0.20	0.20	0.20	0.13
X-103	N2-2	1,258	1,332	1,295	4,883	4,881	4,882	4.88	0.18	0.19	0.19	0.30
X-104	N2-2	404	392	400	10,300	068'6	10,095	10.10	0.15	0.15	0.15	0.61
X-105	N2-2	133	130	132	24,300	24,300	24,300	24.30	0.15	0.15	0.15	1.47
X-106	N2-2	2,035	2,220	2,128	2,123	2,133	2,128	2.13	0.20	0.20	0.20	0.13
X-107		29,000	100,000	64,500	4,038	4,049	4,044	4.04	0.20	0.20	0.20	0.24
X-108	BL			0								
X-109	PEG/N2-3	9,135	10,005	9,570	4,729	4,750	4,740	4.74	0.20	0.20	0.20	0.29
X-110	PEG/N2-3	23,925	23,925	23,925	2,047	2,066	2,057	2.06	0.20	0.15	0.18	0.12
X-111	PEG/N2-3	3,480	3,480	3,480	068'6	068'6	068'6	68.6	0.15	0.15	0.15	0.60
X-112	PEG/N2-3	1,305	1,305	1,305	24,300	24,300	24,300	24.30	0.12	0.15	0.14	1.47
X-113	PEG/N2-3	7,830	096'9	7,395	4,665	4,600	4,633	4.63	0.20	0.20	0.20	0.28
X-114		2,407	2,241	2,324	4,927	5,070	4,999	2.00	0.15	0.15	0.15	0.30
X-115	N2-4	581	581	581	1,955	1,998	1,977	1.98	0.20	0.20	0.20	0.12
X-116	N24	2,490	1,909	2,200	1,118	1,133	1,126	1.13	0.20	0.20	0.20	0.07
X-117	N24	108	108	108	4,545	4,634	4,590	4.59	0.20	0.20	0.20	0.28
X-118	N2-4	42	39	41	006'6	10,500	10,200	10.20	0.20	0.20	0.20	0.62
X-119	N2-4	979	966	988	1,962	1,954	1,958	- - - - - - -	0.20	0.20	0.20	0.12
X-120		2,600	2,700	2,650	7,000	2,000	2,000	2.00	0.25	0.25	0.25	0.43
X-121	PEG	47,000	49,000	48,000	4,864	4,864	4,864	4.86	0.20	0.20	0.20	0.29
X-122	PEGF	23,000	24,500	23,750	3,829	3,821	3,825	3.83	0.20	0.20	0.20	0.23
X-123	DZ	8	ιΩ	ဇ	1,800	1,875	1,838	1.84	0.15	0.20	0.18	0.11
۲-	ACCY	1,000	1,200	1,100	4,956	4,862	4,909	4.91	2.70	2.30	2.50	0.33
Y-2		330	099	495	2,006	1,910	1,958	1.96	3.00	0.30	1.65	0.13
Υ –3	DZ	35	32	32	1,990	1,981	1,986	1.99	0.10	0.10	0.10	0.12
4	DZ	45	35	40	2,000	1,935	1,968	1.97	0.40	0.10	0.25	0.12
Y-5		250	250	250	2,475	2,395	2,435	2.44	0.40	0.10	0.25	0.15
9->	PEG	45,000	40,500	42,750	2,053	2,030	2,042	2.04	3.80	4.00	3.90	0.15
۲۷	DZ/DINV	52	20	53	1,944	1,982	1,963	1.96	0.10	0.10	0.10	0.12
8 γ		72	72	72	1,908	1,913	1,911	1.91	0.10	0.10	0.10	0.12
6-≻		58,500	54,000	56,250	3,013	2,982	2,998	3.00	1.60	0.30	0.95	0.19
٧-10		45	45	45	2,976	2,925	2,951	2.95	3.20	0.40	1.80	0.19
Y-11		49	42	46	931	913	922	0.92	1.20	1.00	1.10	90.0
Y-12	ارد											
Y-13		30	30	90	1,270	1,270	1,270	1.27	0.20	0.20	0.20	0.08
Y14	7											

					-					
SAMPLE CONTROL		BAG TEMPERATUR	PERATU	뿐		EAB	LABORATORY DATA			
	Initial	Final	Avg.	Temp	Ž	NMOC	METHANE	<u> </u>	CHE	
	Œ	Œ	Ð	degR	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	Domw (as CH4)	(SHE) se/ vanda	10H2C) 40/ MIMAG
PEG/NZ-1	22	52	55	515	NA	23,400.76	0.00	00.0	15,000,00	23 400 78
T	55	54	55	514	Y V	10,657.71	00.0	00.00		10 657 74
T	92	52	26	515	NA	1,399.67	00.0	00.0	00 068	1 300 67
	22	22	55	515	ΝA	613.54	00'0	000	390.00	PA 040
Ī	22	22	55	515	NA	157.35	0.00	00.0	100 001	167.04
	54	54	54	514	A A	6,435.91	00.0	00.0	4 100 00	107.33
	53	51	52	512	Ą	67.525.24	00.0	800	44 000 00	0,400.91
					¥	00'0	00.0	800	2000	42.020,10
9	ည	49	20	503	ΑN	17,199.11	000	800	4	0.00
PEG/N2-3	20	20	22	510	ΑN	29.573.63	000	38	00000	11.89.71
PEG/N2-3	20	51	5	510	AN	3 928 21	86	8.5	00.000,81	29,5/3,63
PEG/N2-3	25	51	25	511	AN AN	1 462 64	8 6	8.5	00.006,2	3,928.21
3	51	53	25	512	AN	9 564 42	000	800	930,00	1,462.64
	52	52	52	512	NA A	3.457.42	000	86	00.00.00	9,554.42
	54	55	55	514	Αχ.	1.729.68	50.0	8 6	2,200.00	3,45/.42
	54	53	54	513	AN	4,084.82	80.0	35	00.00	1,729.68
	53	52	53	512	AN	597.77	000	8	00.000,1	70,400,4
	25	51	25	511	NA	113,28	00.0	800	20000	77.780
Ì	2	49	သူ	510	NA	2,986.26	0.00	00'0	1 90 00	2 086 26
	48	6	64	208	NA	2,986.05	00:0	8.0	1.900.00	2 986 05
T	6	ଥ	အ	209	AA	69,011.80	17.00	9.46	45,000.00	69 021 26
Ť	20	23	25	511	AN A	32,648,41	00:0	00.00	21,000,00	32 648 41
T	8	<u></u>	23	519	Ϋ́	14.63	00:0	00:00	9.30	14.63
T	5 6	4/	4	533	٧×	99.52	900.00	511.99	390.00	611,50
T	201	2	9	264	ΑN	289.96	180.00	102.53	250.00	392.49
	60	2 3	8	613	¥.	99.0	0.00	00:00	0.42	0.66
T	0 0	8 8	5	020	Y.	0.47	0.00	0.00	0.30	0.47
T	5 8	3 8	20.0	242	AN .	336.20	100.00	57.07	250.00	393.27
T	8 8	5 6	2 3	000	¥.	47,027.72	12,000.00	96.089'9	35,000.00	53,708.68
Ť	5 3	5 6	5	221	Ψ¥	43.66	20.00	11.42	35.00	55.08
Ì	10	3	5	240	ΑN	27.16	4.80	2.74	19.00	29.90
1	106	5	105	565	AA	47,523.80	25,000.00	13,936,60	40.000.00	61 460 40
1	88	86	97	226	AN	65.39	20.00	11.39	47.00	73.78
	62	8	62	522	NA	20.43	00.0	00.0	13.00	20.43
										20.12
	64	65	65	524	ΥZ	0.35	000	000	000	
-));	3		

SAMI	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	r Determination	NATION			_	EMISSION RATE	W TE		
		MW fraction	MW fraction	% fraction	MW fraction	WW	NMOC	Q	Methane	911	THC	••••
0	Code	05	СЗНВ	N2	NS NS	Вад	(lþ/hr)	(lb/yr)	(lþ/hr)	(lb/yr)	(Ib/hr)	(lb/yr)
X-101	PEG/N2-1	0.1	0.6617	98.3	27.6	28.27	1.90E-02	1.66E+02	0.00E+00	0.00E+00	1.90E02	1.66E+02
X-102	N2-2	0.1	0.2999	1.66	27.8	28.14	3.73E-03	3.26E+01	0.00E+00	0.00E+00	3.73E-03	3.26E+01
X-103	N2-2	0.1	0.0393	99.7	27.9	28.04	1.09E-03	9.54E+00	0.00E+00	0.00E+00	1.09E-03	9.54E+00
X-104	N2-2	0.0	0.0172	93.8	28.0	28.03	9.86E-04	8.64E+00	0.00E+00	0.00E+00	9.86E-04	8.64E+00
X-105	N22	0.0	0.0044	8.66	28.0	28.03	6.09E-04	5.33E+00	0.00E+00	0.00E+00	6.09E-04	5.33E+00
X-106	N2-2	0.1	0.1809	99.4	27.8	28.09	2.19€-03	1.92E+01	0.00E+00	0.00E+00	2.19E-03	1.92E+01
X-107		0.1	1.9408	95.4	26.7	28.74	4.49E-02	3.94E+02	0.00E+00	0.00E+00	4.49E-02	3.94E+02
X-108	BL	0.0	00000	100.0	28.0	28.02						
X-109	PEG/N2-3	0.1	0.4852	98.7	27.72	28.20	1.32E-02	1.16E+02	0.00E+00	0.00E+00	1.32E-02	1.16E+02
X-110	PEG/N2-3	0.1	0.8381	97.9	27.4	28.33	9.89E-03	8.67E+01	0.00E+00	0.00E+00	9.89E-03	8.67E+01
X-111	PEG/N2-3	0.0	0.1103	9.66	27.9	28.07	6.25E~03	5.47E+01	0.00E+00	0.00E+00	6.25E-03	5.47E+01
X-112	PEG/N2-3	0.0	0.0410	8.66	28.0	28.04	5.69E-03	4.99E+01	0.00E+00	0.00E+00	5.69E-03	4.99E+01
X-113	PEG/N2-3	0.1	0.2691	99.2	27.8	28.13	7.13E-03	6.25E+01	0.00E+00	0.00E+00	7.13E-03	6.25E+01
X-114		0.0	0/60'0	9.66	27.9	28.06	2.77E-03	2.43E+01	0.00E+00	0.00E+00	2.77E-03	2.43E+01
X-115	N24	0.1	0.0485	7.66	27.9	28.05	5.46E-04	4.79E+00	0.00E+00	0.00E+00	5.46E-04	4.79E+00
X-116	N24	0.1	0.1147	99.5	27.9	28.07	7.37E-04	6.45E+00	0.00E+00	0.00E+00	7.37E-04	6.45E+00
X-117	N2-4	0.1	0.0168	99.8	28.0	28.03	4.40E-04	3.85E+00	0.00E+00	0.00E+00	4.40E-04	3.85E+00
X-118	N2-4	0.1	0.0032	9.66	28.0	28.03	1.86E-04	1.63E+00	0.00E+00	0.00E+00	1.86E-04	1.63E+00
X-119	N2-4	0.1	8680'0	9.66	27.9	28.06	9.43E04	8.26E+00	0.00E+00	0.00E+00	9.43E-04	8.26E+00
X-120		0.1	0.0838	9.66	27.9	28.06	3.39E-03	2.97E+01	0.00E+00	0.00E+00	3.39E-03	2.97E+01
X-121	PEG	0.1	1.9850	95.3	26.7	28.75	5.55E-02	4.86E+02	7.61E-06	6.67E-02	5.55E02	4.86E+02
X-122	PEGF	0.1	0.9263	97.7	27.4	28.37	2.03E-02	1.78E+02	0.00E+00	0.00E+00	2.03E-02	1.78E+02
X-123	20	0.1	0.0004	8.66	28.0	28.03	4.25E-06	3.72E-02	0.00E+00	0.00E+00	4.25E-06	3.72E-02
۲-1	. ACC√	0.8		97.5	27.3	28.13	8.49E-05	7.44E-01	4.37E-04	3.83E+00	5.22E-04	4.57E+00
χ2		0.5		98.3	27.6	28.09	8.90E~05	7.80E-01	3.15E-05	2.76E-01	1.20E-04	1.06E+00
۳	DZ	0.0	0,000	6.66	28.0	28.02	1.74E-07	1.53E-03	0.00E+00	0.00E+00	1.74E-07	1.53E-03
4 7	DZ	0.1	0.000	2.66	27.9	28.03	1.47E-07	1.29E-03	0.00E+00	0.00E+00	1.47E-07	1.29E-03
Y-5		0.1	0.0110	99.7	27.9	28.03	1.24E-04	1.09E+00	2.11E05	1.85E-01	1.46E-04	1.27E+00
√ -6	PEG	1.2	1.5439	92.6	25.9	28.74	1.77E-02	1.55E+02	2.51E-03	2.20E+01	2.02E-02	1.77E+02
۲-7	DZ/DINV	0.0	0.0015	6.66	28.0	28.02	1.27E-05	1,11E-01	3.33€06	2.91E-02	1.60E-05	1.41E-01
8		0.0	0.0008	6.66	28.0	28.02	7.85E-06	6.88E-02	7.92E-07	6.94E-03	8.64E-06	7.57E-02
۲-9		0.3	1.7644	95.1	26.6	28.70	2.20E-02	1.93E+02	6.45E-03	5.65E+01	2.85E-02	2.49E+02
Y-10		9.0	0.0021	98.2	27.5	28.09	2.95E05	2.58E-01	5.39E-06	4.72E-02	3.49€-05	3.06E-01
Y11		0.4	9000:0	6.86	27.7	28.06	3.10E-06	2.72E-02	0.00E+00	0.00E+00	3.10E-06	2.72E-02
Y-12												
Y-13		0.1	0.0000	8.66	28.0	28.03	6.89E−08	6.03E-04	0.00E+00	0.00E+00	6.89E-08	6.03E-04
Y-14												

Response factor = 1.0 and gas constant = 4.836E - 05 for emission rate calculation.

SAMP	SAMPLE CONTROL	COMMENTS
	Code	Commente
X-101	PEG/N21	Nitrogen flow test #1,
X-102	N2-2	
X-103	N2-2	Nitrogen flow teet #2.
X-104	N2-2	Nitrogen flow test #2.
X-105	N2-2	Nitrogen flow test #2.
X-106	N2-2	Nitrogen flow test #2.
X-107		
X-108	BL	Field blank. Shot 0 air through gauge and T to Insure no contamination.
X-109	PEG/N2-3	Nitrogen flow test #3.
X-110	PEG/N2-3	Nitrogen flow test #3.
X-111	PEG/N2-3	Nitrogen flow test #3.
X-112	PEG/N2-3	Nitrogen flow test #3.
X-113	PEG/N2-3	Nitrogen flow test #3.
X-114		
X-115	N2-4	Nitrogen flow test #4.
X-116	N2-4	Nitrogen flow test #4.
X-117	N2-4	Nitrogen flow test #4.
X-118	N2-4	
X-119	N2-4	Nitrogen flow test #4.
X-120		Intermittent emitter.
X-121	PEG	
X-122	PEGF	
X-123	DZ	
Y-1	ACCY	
Y2		Intermittent emitter.
Υ <u>-3</u>	DZ	
¥	DZ	- 1
Υ−5		Final QC at 1132; 1000 ppm.
9->	PEG	
Y-7	DZ/DINV	Possible contamination in field; followed a pegged source.
۲-8		Final QC at 1440; 900 ppm.
۲-9		Intermittent emitter. Statistical Outlier.
Y-10		
۲-11		Plug. Liquid sample Y012 taken.
Y-12		Reported with sample Y011.
Y-13		Plug. Liquid sample Y014 taken.
Y-14	_	Reported with sample Y013.

SAMPLE CONTROL	AMBIENT CONDITIONS	r condi	TIONS		COMPONENT DATA	T DATA			STREAM	STREAM CHARACTERISTICS
	Windspeed	Temp.	Barometric	Category	Size	Type	Valve	Load		
ID Code	(mph)	- 1	Pressure ("Hg)		(luches)		Actuation	Z >	Service	Product
Y-15 SINV	2.5	64		VALVE	1.50	GATE	ပ		-1	Sour water
Y-16 DZ	2.5	63		VALVE	3.00	GATE	Σ		-1	Reflux
Y-17 DZ	2.5	63		VALVE	1.8	GATE	Σ			Reflux
Y18 BL										
Y-19	0.0	09		VALVE	8.00	GATE	Σ		GAS	Butane
Y-20 SINV	0.0	63		VALVE	9.00	GATE	Σ		1	DIB Reflux
ZO	0.0	62		O	8.5	E			GAS	Butane/propane
Y-22	0.0	64		VALVE	2.00	GATE	Σ		GAS	Butane
Y-23	4.5	63		VALVE	6.5	GATE	ပ		1	Butane/propane
Y-24 DUP	4.5	83		VALVE	÷.8	GATE	O		1	Butane/propane
Y-25 DZ	2.5	83		VALVE	2.00	GATE	Σ		GAS	Butane alkylate
¥	2.5	63		VALVE	2.00	GATE	Σ		GAS	Butane alkylate
	2.5	83		VALVE	2.00	GATE	Σ		GAS	Butane alkylate
Y-28 AUDIT	2.5	63		VALVE	2.00	GATE	Σ		GAS	Butane alkylate
	2.5	မှ		VALVE	2.00	GATE	Σ		GAS	Butane alkylate
AUDTC										
Y-32 AUDTC										
AUDTC										
Y-35	1.5	28		VALVE	4.00	GATE	Σ		1	BTMS (raw gasoline)
Y-36 L	1.5	88		VALVE	4.00	GATE	Σ		רר	BTMS (raw gasoline)
	£.	28		VALVE	4 .8	GATE	Σ		וו	BTMS
Y-38 L	1.5	82		VALVE	4.00	GATE	Σ		77	BTMS
Y-39	5.1	9		O	1.00	Ŧ			רר	BTMS
Y-40	5.	61		ပ	9.1	Ŧ			77	BTMS
Y-41	5.	59		ပ	8.	王			1	BTMS
Y-42 L	<u>۔</u>	29		ပ	1.00	Ŧ			71	BTMS
Y-43 SINV	5.	62		VALVE	00.9	GATE	ပ		LL	Splitter
Y-44	2.5	19		ပ	0.25	TH			רר	Pentane
Y-45	5.	7		VALVE	3.00	GATE	ပ		GAS	Butane/pentane
Y-46 L	2.5	-6		O	0.25	H			77	Pentane
Y-47 DZ	5.1	65		VALVE	1.50	GATE	Σ		GAS	Fuel gas
Y-48 DZ	0.0	6		PUMP	2.00	오		>	_	Butane
Y-49 AUDTD	0.0	9		PUMP	2.00	HC		٨	77	Butane
Y-50	5:	65		PUMP	4.00	오		Υ	ור	Hexane

SAME	SAMPLE CONTROL												
	1000					₩	SCREENING DATA	DATA					*********
-		<u>م</u> ∞	Initial	East	South	West	Final	Tast tast	d d	Most	¥		
Ω:	Code	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(DDM)	linos (maa)	19944	. B (bkgra	Corrected
Y-15	SINV		14	7	7	7	40	12	46	(mdd)	(mdd)	(mdd)	(mdd)
Y-16	DZ		3	က	6	6.		1 0	2 0	0	77	4	24
Y-17	D2		6	67	6) (2 0	200	2	9	m	က	0
Y-18	99.			,		2	2	9	m	က	ဇ	ဇ	0
Y-19			20	Œ	ď	8	00						
Y-20	NIS		25	u u	ש	07	8	က္က	20	20	55	ວ	50
Y-21	DZ		2	2 16	0 4	2 '	9	40	က	50	53	5	48
X-22			2 2	0 00	D	n	2	S	S	2	ß	ı	C
Y-23			3 6	200	100	250	450	300	80	300	425	S	420
×-24	9		3	120	120	120	160	120	20	120	180	4	176
V_25	700		200	120	120	120	160	120	92	120	180	4	176
22.7	70		2	S	ĸ	2	0	7	7	7	2	7	0
۲-26 ۲-26	AUDTT												0
Y-27	AUDTT												
Y-28	AUDTT												
Y-29	AUDTT												
۸ <u>-</u> 30	AUDTC												
۲31	AUDTC												
Y-32	AUDTC												
<u></u> Κ–33	AUDTC												
Y-34	AUDTC												
Y-35			120	8	100	00	+ 30	6	4				
Y-36						2	3	00	וא	30	125	9	120
Y-37			6	4	4	4	Ç	-					
Y-38						F	2	*	4	4	0	4	9
Y-39			80	9	4	4	6	-	1				
Y-40	7					-	1	•	*	4	0	4	7
۲ ۰			8	4	4	30	001	ď	4	C			
Y-42	_						3	2	0	OS.	S	4	6
Y-43	SINV		10,000	3,000	3.000	3.000	24 000	2 500	2 500	000	1000	•	
Y-44			5,000	3,000	4.000	2,000	000	2007	0000	000	000'71	9	16,995
Y-45			180	120	160	160	2000	000	200,0	3,000	6,500	60	6,493
Y-46					3	3	722	202	220	220	200	S)	196
Y-47	ZQ		4	4	4	4	P		+	1	1		
Y-48	ZQ			. 14:	יע	F 14	ŧ u	4 1	4 1	4	4	4	0
Y-49	AUDTD		100) 10	טע	n u	O I	וֹמ	2	S	S.	32	0
Y-50			18.000	5.000	3000	3 000	0 7 7 4	2000	0	2	S.	2	0
Y-51	ANIO		500	300	2,000	000,0	17,400	000'/	3,500	2,600	17,700	9	17,695
		-	7	727	400	COU	200	200	400	450	009	4	596

SAMPLE CONTROL	CONTROL	BAG	BAG CONCENTRA	TRATION		NITROG	NITROGEN FLOW		ΟXΑ	GEN CON	OXYGEN CONCENTRATION	Z
		Initial	Final	Avg	Initial	Final	Average	Z Z	initial	Final	Average	σ
<u>Q</u>	Code	(mdd)	(mdd)	Edd	ml/min	ml/min	ml/min	l/min	%	*	*	m3/hr
Y-15	NNIS	1	LD		2,040	2,004	2,022	2.02	3.00	0.20	1.60	0.13
Y-16	ZO	77	77	77	2,050	2,053	2,052	2.05	1.60	0.50	1.05	0.13
Y-17	DZ	77	69	73	1,200	1,190	1,195	1.20	0.30	0.20	0.25	0.07
Y-18	8											
Y-19		72	78	75	4,001	3,899	3,950	3.95	4.40	0.30	2.35	0.27
-20	NIS	85	85	85	3,896	3,826	3,861	3.86	3.50	1.10	2.30	0.26
Y-21	DZ	88	88	88	828	842	850	0.85	06.0	0.15	0.23	0.05
Y-22		260	352	456	1,878	1,852	1,865	1.87	1.90	0.20	1.05	0.12
′-23		120	135	128	1,900	1,891	1,896	1.90	2.40	1.70	2.05	0.13
Y24	DUP	120	135	128	1,900	1,891	1,896	1.90	2.40	1.70	2.05	0.13
-25	DZ	72	80	92	1,940	1,954	1,947	1.95	0.20	0.20	0.20	0.12
,—26	AUDTT	144	128	136	1,955	1,989	1,972	1.97	0.30	0.20		0.12
	AUDTT	144	128	136	1,955	1,989	1,972	1.97	0.30	0.20		0.12
Y-28	AUDTT	400	288	344	2,014	2,025	2,020	2.02	0.15	0.10		0.12
	AUDTT	904	288	344	2,014	2,025	2,020	2.02	0.15	0.10	0.13	0.12
,—30	AUDTC											
Y-31	AUDTC											
	AUDTC											
	AUDTC											
	AUDTC											
Y-35		42	42	42	3,220	3,245	3,233	3.23	1.30	0.20	0.75	0.20
۲-36												
Y-37		21	21	21	2,145	2,126	2,136	2.14	0.70	0.20	0.45	0.13
Y-38												
γ_39		40	40	40	996	965	996	0.97	0.50	0.50	0.50	0.06
/-40											,	
Y-41		54	126	06	1,484	1,477	1,481	1.48	0.20	0.20	0.20	0.09
Y-42	- I								0	0		0
(-43	SINV	840	1,120	086	811.4	4, 10g	4,111	•	0.90	2.20		0.63
Y-44		14,000	9,100	11,550	1,085	1,085	1,085	1.09	0.40	0 20		0.07
Y-45		350	382	368	2,241	2,251	2,246	2.25	3.40	06.0	2.15	0.15
Y-46												
Y-47	ZO	26	32	46	1,844	1,839	1,842	1.84	0.50	0.30		0.11
Y48	DZ	52	52	52	5,353	5,353	5,353	5.35	4.40	4.60		1.0
7−49	AUDTD	52	52	52	5,353	5,353	5,353	5.35	4.40	***************************************	:	0.41
Y-50		54,000	54,000	54,000	4,888	4,848	4,868	4.87	2.20			0.33
/ 64		000	000 1	0000	1000	100 2	1000	90 1	04 07	000	40	•

WSPA EMISSION RATE CALCULATION SPREADSHEET

NAMPLE CONTROL COOK MACT ANTICLE CARDITAME												
Code	SAMP	LE CONTROL		MG TEN	IPERATU			3	IORATORY DATA			
Code			Initial	Final	Avg.	Temp	Ž	Aoc	METHA	Ш Z	Ť	THC
SINV	٥	Code	Ð		(F)	deg R	ppmv (as C3H8)	ppmw (as C3H8)	DDMV (as CH4)	pomw (as CH4)	bomy (as C3H8)	nnmw (es C3HR)
DECORPTION DEC	Y-15	SINA	64	99	65	525	AN	15.07		L	<u> </u>	_
BL BL BL BL BL BL BL BL	Y-16	DZ	64	63	64	523	NA	0.08				
SINV 65 66 68 64 64 62 62 NA 18 82 0.00	Y-17	DZ	69	69	69	529	AN	0.08				
SINV 65 66 66 68 68 68 68 68	Y-18	ద							0.00			
SINV 68 64 64 524 NA C0.00 C0.00	Y-19		69	72	7	230	AN	18.82		00.00		18.82
DZ 65 64 524 NA 546.93 0.00 DUP 65 66 64 623 NA 219.69 0.00 DD 63 64 62 64 623 NA 219.69 0.00 AUDTT 65 66 65 524 NA 234.69 0.00 AUDTT 65 66 65 524 NA 234.42 15.00 AUDTT 65 64 65 524 NA 237.42 15.00 AUDTC 65 64 65 524 NA 231.48 13.00 AUDTC AUDTC 65 64 65 524 NA 231.48 13.00 AUDTC AUDTC 65 64 65 524 NA 1.178.69 0.00 AUDTC 61 64 65 524 NA 1.178.69 0.00 AUDTC 61 64 63 62 </td <td>Y-20</td> <td>SINA</td> <td>82</td> <td>8</td> <td>88</td> <td>547</td> <td>ΥN</td> <td>62.75</td> <td></td> <td></td> <td></td> <td></td>	Y-20	SINA	82	8	88	547	ΥN	62.75				
DUP 65 66 625 NA 54983 0.00 DUP 63 64 64 523 NA 219.69 0.00 AUDIT 63 64 64 524 NA 219.69 0.00 AUDIT 65 66 65 524 NA 234 15.00 AUDIT 65 64 65 524 NA 231.69 0.00 AUDIT 65 64 65 524 NA 227.42 15.00 AUDIT AUDIT 65 64 65 524 NA 1779.94 0.00 AUDIT AUDIT 65 64 65 524 NA 15.00 0.00 AUDIT AUDIT 65 64 65 524 NA 15.00 0.00 AUDIT AUDIT 61 63 62 522 NA 37.73 0.00 L 61 63 64	Y-21	DZ	63	65	64	524	ΑN	0.08				
DUP 63 64 64 523 NA 219.69 0.00 ALIDIT 63 64 64 523 NA 219.69 0.00 ALIDIT 65 65 65 524 NA 227.42 15.00 ALIDIT 65 64 65 524 NA 227.42 15.00 ALIDIT 65 64 65 524 NA 227.42 15.00 ALIDIT 65 64 65 524 NA 1,179.69 0.00 ALUDIT 65 64 65 524 NA 1,179.69 0.00 ALUDIT ALUDIT 65 64 65 524 NA 1,179.69 0.00 ALUDIT ALUDIT 65 64 65 62 62 82 NA 1,179.69 0.00 ALUDIT 61 63 62 62 82 NA 1,179.69 0.00 ALUDIT<	Y-22		65	99	99	525	AN	549.93			ě	ŭ
DUP AUDIT AUD	Y-23		63	64	64	523	AN	219.69				
AUDIT 65 64 524 NA 2.36 0.00 AUDIT 65 65 65 526 NA 227.42 15.00 AUDIT 65 64 65 524 NA 227.42 15.00 AUDIC 65 64 65 524 NA 707.94 0.00 AUDIC AUDIC 64 65 524 NA 1,179.69 0.00 AUDIC AUDIC 61 63 62 522 NA 1,179.69 0.00 AUDIC AUDIC 61 63 62 522 NA 1,179.69 0.00 AUDIC AUDIC 61 63 62 522 NA 1,179.69 0.00 AUDIC AUDIC 61 63 62 622 NA 1,273 0.00 AUDIC 61 64 63 62 622 NA 37.73 0.00 C 61	Y-24	DUP	63	49	64	523	NA	219.69		00.0		
AUDIT 65 65 65 528 NA 227.42 16.00 AUDIT 65 64 65 524 NA 1,179.69 0.00 AUDIT 65 64 65 524 NA 1,179.69 0.00 AUDIT AUDIT 65 64 65 524 NA 1,179.69 0.00 AUDIT AUDIT 61 63 62 522 NA 1,179.69 0.00 AUDIT AUDIT 61 63 62 622 NA 37.73 0.00 AUDIT 61 63 62 522 NA 37.73 0.00 AUDIT 61 64 63 622 NA 37.73 0.00 L 61 64 63 622 NA 37.61 0.00 L 61 63 64 64 623 NA 34.61 0.00 L 61 62	Y-25	70	63	99	8	524	NA	2.36				
AUDIT AUDIT AUDIT AUDIT AUDIT AUDIC A	Y-26	AUDTT	65	92	92	525	NA	227.42		8.56	15	23
AUDIT AUDIT AUDIC A	17-2/	AUDII	65	92	92	525	¥	291.48		7.42		
AUDIT AUDIC 65 64 65 524 NA 1,179.69 0.00 AUDIC AU	Y-28	AUDIT	92	94	92	524	۸A	707.94		00.00		707.94
AUDIC AUDIC AUDIC 4.00 IC AUDTC AUDTC 15.00 AUDTC 61 63 62 522 NA 97.73 0.00 AUDTC 61 64 63 62 62 NA 6.29 0.00 L 63 64 63 62 62 NA 6.29 0.00 L 63 64 63 64 62 0.00 0.00 L 61 64 62 62 0.00 0.00 L 63 64 64 523 NA 2,035.70 0.00 L 61 62 62 62 NA 2,035.70 0.00 L 61 64 62 62 NA 2,035.70 0.00 L 63 64 64 523 NA 11,592.48 0.00 L 71 79 75 536 NA 157	Y-29	AUDIT	65	94	8	524	A'A	1,179.69	00:00			-
AUDIC AUDIC 61 62 622 62 622 NA 37.73 0.00 AUDIC 61 63 62 622 NA 37.73 0.00 L 61 64 63 62 62 NA 37.73 0.00 L 61 64 63 62 NA 0.00 0.00 L 61 64 63 64 64 63 0.00 0.00 L 61 62 62 610 NA 34.61 0.00 L 61 62 62 62 0.00 0.00 L 61 62 62 62 NA 2,035,70 0.00 L 61 62 62 62 NA 0.00 0.00 L 61 62 62 62 NA 0.00 0.00 L 71 79 75 63 NA 1	200	AUDIC							9.10		210.00	
AUDIC AUDIC ALORIC ALORIC <td>Y-31</td> <td>AUDIC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15.00</td> <td></td> <td>160.00</td> <td></td>	Y-31	AUDIC							15.00		160.00	
AUDIC 61 63 62 522 NA 37.73 0.00 L 61 64 63 522 NA 6.29 0.00 L 61 64 63 523 NA 6.29 0.00 L 63 64 64 523 NA 5.66 0.00 L 61 62 62 NA 34.61 0.00 L 61 62 62 NA 0.00 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L 71 79 75 535 NA 1,52 0.00 DZ 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 117 576 NA 4,019.17 4.70	Y-32	AUDTC							4.20		97.00	
AUDIC 61 63 62 522 NA 37.73 0.00 L 61 64 63 62 622 NA 6.29 0.00 L 63 64 64 623 NA 6.29 0.00 L 61 62 62 521 NA 5.66 0.00 SINV 61 62 62 521 NA 2,035.70 0.00 SINV 153 147 150 610 NA 11,592.48 0.00 L 63 64 64 523 NA 11,592.48 0.00 L 71 79 70 529 NA 11,592.48 0.00 DZ 63 70 70 529 NA 46.92 0.00 DZ 116 117 117 576 NA 57.86 0.00 DZ 116 121 117 70 70 70	¥-33	AUDIC							00:00		720.00	
L 61 63 62 NA 37.73 0.00 L 61 64 63 62 NA 6.29 0.00 L 61 64 63 62 NA 6.29 0.00 L 61 62 62 521 NA 34.61 0.00 L 61 62 62 521 NA 34.61 0.00 L 61 62 62 521 NA 34.61 0.00 L 61 64 64 523 NA 2,035.70 0.00 L DZ 69 70 70 529 NA 2,98.09 0.00 L DZ NA 11, 592.46 0.00 0.00 L 69 70 70 529 NA 46.92 0.00 L 116 117 117 576 NA 46.92 0.00 AUDTD 116 <td>¥-34</td> <td>AUDIC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00:0</td> <td></td> <td>490.00</td> <td></td>	¥-34	AUDIC							00:0		490.00	
L 61 64 63 522 NA 6.29 0.00 L 61 64 62 62 NA 6.29 0.00 L 61 62 62 62 62 NA 5.66 0.00 L 61 62 62 62 62 62 60 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L SINV 63 64 64 523 NA 11,592.48 0.00 L 51 73 75 535 NA 2,035.70 0.00 L 63 64 64 523 NA 1,592.48 0.00 L 63 70 70 526 NA 46.92 0.00 L 116 117 117 576 NA 46.92 0.00 DZ 116 117 117 576 NA </td <td>Y-35</td> <td></td> <td>61</td> <td>B</td> <td>62</td> <td>522</td> <td>NA</td> <td>37.73</td> <td></td> <td>00.0</td> <td></td> <td>37.73</td>	Y-35		61	B	62	522	NA	37.73		00.0		37.73
L 61 64 63 522 NA 6.29 0.00 L 63 64 63 523 NA 5.66 0.00 L 61 62 62 521 NA 5.66 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L 63 64 64 523 NA 11,592.48 0.00 L DZ 63 64 64 523 NA 11,592.48 0.00 L 63 70 70 529 NA 11,592.48 0.00 L 63 70 70 529 NA 11,592.48 0.00 L 63 70 70 529 NA 46.92 0.00 L 116 117 117 576 NA 46.92 0.00 AUDTO 116 121 119 578 NA 46.92	¥-36	_										
L 61 62 62 521 NA 5.66 0.00 L 61 62 62 521 NA 2,035.70 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L SINV 63 64 64 523 NA 11,592.48 0.00 L DZ 63 70 70 529 NA 11,592.48 0.00 DZ 63 70 70 529 NA 157 0.00 AUDTD 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 46.92 0.00 AUDTD 116 121 119 578 NA 46.92 0.00 AUDTD 116 121 119 124	Y-37		6	64	63	522	NA	6.29		00.0	4.00	6.29
L 61 62 62 521 NA 5.66 0.00 L 61 62 62 521 NA 2,035.70 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L C 63 64 523 NA 11,592.48 0.00 L DZ 71 73 75 535 NA 11,592.48 0.00 AUDTD 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 57.86 0.00 AUDTD 116 121 119 578 NA 46.92 0.00 AUDTD 116 121 119 NA 46.92 0.00 AUDTD 146 157 0.00 0.00 0.00	Y-38											
L 61 62 62 521	۲–39		63	64	64	523	NA	5.66		00:00	3.60	5.66
L 61 62 62 521 NA 34.61 0.00 SINV 153 147 150 610 NA 2,035.70 0.00 L C 63 64 62 523 NA 11,592.48 0.00 L C 71 79 75 535 NA 11,592.48 0.00 DZ H 75 535 NA 157 0.00 AUDTD 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 57.86 0.00 AUDTD 116 121 119 578 NA 46.92 0.00 AUDTD 116 121 119 578 NA 46.92 0.00 AUDTD 148 85 85 544 NA	7-40											
SINV 153 147 150 610 NA 2,035.70 0.00 L 63 64 64 523 NA 11,592.46 0.00 L 63 64 64 523 NA 298.09 0.00 L 63 70 70 529 NA 1.57 0.00 DZ 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 578 NA 57.86 0.00 NA 84 85 85 544 NA 4,019.17 4.70	× 41	-	61	62	62	521	¥.	34.61	00.0	00'0	22.00	34.61
SINV 153 147 150 610 NA 2,035.70 0.00	7-42	7		!		-						
L G3 64 64 523 NA 11,592.48 0.00 L L 73 75 535 NA 298.09 0.00 DZ 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 576 NA 46.92 0.00 BINV 84 85 85 544 NA 4,019.17 4.70	? ?	ANIO	20	14/	061	019	AN.	2,035.70	0.00		1,300.00	2,035.70
L 69 70 70 536 NA 298.09 0.00 DZ 69 70 70 529 NA 1.57 0.00 AUDTD 116 117 117 576 NA 46.92 0.00 AUDTD 116 121 119 578 NA 57.86 0.00 BINV 84 85 85 544 NA 4,019.17 4.70	7-44		63	64	94	523	¥	11,592.48			7	_
L 69 70 70 529 NA 1.57 0.00 DZ 116 117 117 576 NA 46.92 0.00 AUDTD 116 117 117 576 NA 57.86 0.00 Inflex 121 119 578 NA 95,261.77 260.00 DINV 84 85 85 544 NA 4,7019.17 4,70	٠ ا		1	6/	72	535	Y A	298.09				
DZ 116 117 117 576 NA 46.92 0.00 AUDTD 116 117 117 576 NA 46.92 0.00 AUDTD 116 117 117 576 NA 57.86 0.00 DINV 84 85 85 544 NA 4,7019.17 4,70	7-46	72	8		i							
AUDTD 116 117 376 NA 46.92 0.00 AUDTD 116 117 117 576 NA 57.86 0.00 DINV 84 85 85 544 NA 95,261.77 260.00	7 7	700	20	2	2	229	AN.	1.57		00.00	1.00	1.57
AUCH DINV 116 121 117 576 NA 57.86 0.00 BINV 84 85 85 544 NA 95,261.77 260.00	0 0	70	911			9/9	AA.	46.92			30.00	46.92
DINV 84 85 8	D CU	AUDID	91.		117	929	ΨV	57.86				57.86
UINV 84 85 544 NA 4,019.17 4.70	1-30	70410	116	121	119	278	¥.	95,261.77	260.00	142.85	9	95,404.62
	10-1	חוש	42	62	82	244	NA	4,019.17	4.70	2.64	2,600.00	4,021.81

Page 12d

2.31E-04 1.28E-04 1.96E+00 3.26E+00 3.98E-03 3.98E-01 4.90E-01 6.64E+02 6.88E+01 1.13E-01 3.55E-01 1.75E+01 9.97E-01 9.20E-05 1.47E+00 6.31E-03 6.40E-01 7.63E-03 6.30E-01 6.30E-01 8.10E-01 1.87E-02 7.07E-02 1.15E+01 1.73E-01 2.64E-08 1.46E-08 7.19E-05 7.19E-05 7.20E-07 1.31E-03 1.99E-03 1.14E-04 5.12E-06 2.23E-04 3.72E-04 4.54E-07 4.54E-05 5.60E-05 7.58E-02 7.85E-03 1.29E-05 4.06E-05 1.05E-08 1.67E-04 7.30E-05 9.25E-05 2.14E-06 1.97E-05 8.71E-07 8.07E-06 (IP/hr) (lb/yr) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.32E-02 2.01E-02 0.00E+00 0.00E+00 9.94E-01 4.51E-02 0.00E+00 EMISSION PATE Methane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.65E-06 2.30E-06 0.00E+00 5.15E-06 0.00E+00 (lb/hd) 2.31E-04 1.28E-04 9.20E-05 1.47E+00 6.30E-01 1.96E+00 3.26E+00 6.63E+02 6.87E+01 6.31E-03 7.07E-02 4.49E-02 1.13E-01 3.55E-01 6.16E-01 7.90E-01 1.73E-01 1.87E-02 7.63E-03 1.15E+01 3.98E-03 1.75E+01 9.97E-01 4.90E-01 3.98E-01 (lb/yt) 2.64E-08 1.46E-08 1.05E - 08 1.67E - 04 7.19E - 05 7.20E - 07 7.04E - 05 9.02E - 05 1.99E-03 5.60E-05 7.57E-02 5.12E-06 1.29E-05 4.06E-05 1.97E-05 2.14E-06 4.54E-05 2.23E-04 9 8.71E-07 8.07E-06 1,31E-03 4.54E-07 7.84E--03 (lb/hr) Bag 28.08 28.06 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.05 28.16 28.15 28.11 28.20 28.20 28.20 29.12 28.51 28.04 28.04 28.03 ≩ 27.6 27.4 28.0 27.7 27.4 27.4 27.9 27.9 28.0 28.0 27.9 26.8 26.8 25.6 27.8 27.9 28.0 27.9 27.1 27.7 27.4 MW fraction MOLECULAR WEIGHT DETERMINATION 98.9 97.9 98.4 97.6 99.8 98.9 97.9 93.8 99.6 95.5 95.5 91.5 99.7 99.8 99.8 99.2 99.5 96.8 99.0 97.8 97.7 99.8 % fraction 99. 0.0000 0.0004 0.0005 0.0062 0.0066 0.0084 0.0198 0.0331 0.0000 0.0062 0.0002 0.0010 0.0573 0.0013 0.0016 2.7789 0.0001 0.0011 0.0002 0.3264 0.0000 0.1147 0.0084 MW fraction S318 0.3 1000 0.7 0 0.1 0.7 0 0.5 1.4 MW fraction 0.1 <u>.</u> 0. 9 8 SAMPLE CONTROL AUDTC AUDTC AUDTC AUDTC AUDTT AUDIT AUDTC AUDTT AUDTT AUDTD SINV NO ON O SIN NIS SIN DZ 02 2 202 흳 Y-15 **Y-16** Y-45 Y-17. **Y-18** Y-19 Y - 22 Y - 24 Y - 26 Y - 26 Y - 29 Y - 30 Y - 31 Y - 31 Y - 35 Y - 36 Y × 45 443 Y--20 7 Y-46 7-44 ¥-47 Y-21 Y--51

Response factor = 1.0 and gas constant = 4.836E-05 for emission rate calculation.

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMP	SAMPLE CONTROL	COMMENTS
0	Code	
Y-15	SINV	SV varied by a factor of 2.9.
Y-16	ZQ	
Y-17	ZO	
Y-18	귬	
Y-19		
Y-20	SINV	SV varied by a factor of 3.2. Intermittent am Itter
Y-21	DZ	Plug.
Y-22		
Y-23		
Y-24	DUP	Duplicate of Y023
Y-25	ZQ	
Y-26	AUDTT	Sample to BT.
Y-27	AUDTT	Sample to RT. Duo of Y026.
Y-28	AUDTT	
Y-29	AUDTT	Sample to BTT Dun of V028
٧-30	AUDTC	
Y-31	AUDTC	Dup of Y030
Y-32	AUDTC	Dup of Y030.
Y-33	AUDTC	Sample to RTI.
Y-34	AUDTC	Dup of Y033.
Y-35		Liquid sample Y036 taken.
Y-36	_	
Y37		
Y-38	_	Reported with sample Y037.
Y-39		Liguid sample Y040 taken.
Y-40		Reported with sample Y039.
Y-41		Plug. Liquid sample Y042 taken.
Y-42		Reported with sample Y041.
Y-43	SINV	SV varied by a factor of 2.4.
Y-44		Plug. Liquid sample 7046 taken.
Y-45		
Y-46		Reported with sample Y044.
Y-47	DZ	Final QC at 1404; 950 ppm.
Y-48	DZ	
Y-49	AUDTD	To RTI. Duplicate of Y048.
Y-50		
۲۶	N O	Pump very oily, seal not tight. Tried several times to lower O2. Average O2 = 16.25%.

Page 12f

SAMPLE CONTROL	AMBIEN	T COND	AMBIENT CONDITIONS		COMPONENT DATA	NT DATA		····	STREAM	STREAM CHARACTERISTICS
	Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
Code	(mph)	(F)	Pressure ("Hg)		(Inches)		Actuation	χ	Service	Product
	2.5	63		VALVE	2.00	GATE	O		רר	Butane/pentane
חל	0.0	67		VALVE	8.00	GATE	≨		GAS	Butane/pentane
	c.	0		VALVE	5.00	ORBIT	Σ		GAS	Butane/pentane
DZ	r.	64		ပ	1 .8	Ŧ			GAS	Butane/pentane
	0.0	64		PUMP	6.00	오		>	11	Debut reflux
	5.	99		PUMP	6.00	오		>	11	Deproprediux
PEG	0.0	65		ပ	1.00	H			11	Deproprie
	0.0	75		VALVE	3.00	GATE	O		1	Deprop
	0.0	71		VALVE	8.00	GATE	Σ		17	Propana
DUP	0.0	71		VALVE	8.00	GATE	Σ		1	Propane
	0.0	71		ပ	1.00	표			GAS	Deprop
SINV	0.0	74		OEL	1.00	OEL			_	Sour water
	0.0	92		VALVE	1.00	GATE	O		1	Sourwater
_										
ر										
	0.0	90		VALVE	9	GATE	Σ		로	Lean oil
	1.5	62		OEL	1.00	OEL			1	Sourwater
DZ	1.5	63		ပ	1.00	E			11	Sour water
DZ	1.5	8		PUMP	2.00	<u>ب</u>			Ŧ	Recycle oil
	0.0	8		VALVE	1.50	GATE	ပ		GAS	Surge pressure to fuel
	0.0	85		PUMP	4.00	유			1	
	2.5	5		VALVE	4.00	GATE	ပ		로	Olefin
SINV	t.	52		VALVE	6.00	GATE	₹		로	Olefin
	4.5	53		O	4.00	FL			¥	Olefin
	8.4	25		PUMP	3.00	오		>	11	Deprop reflux
70	5	26		ပ	1.50	Ξ			1	MTBE DEB REF
70	5.	22		၀	1.50	Ŧ			T	MTBE DEB REF
70	1.5	94		PUMP	6.00	오		z	1	Isobutane
70	J. D	82		PUMP	6 .00	오		>	1	Isobutane
PEGI/SINV	1.5	83		PUMP	3.00	오		z	1	Propane
	2.5	4		VALVE	2.00	GATE	ပ		GAS	Sour fuel
	1.5	29		VALVE	0.50	NEDL	Σ		יי	Вепzеле
DUP		62		VALVE	0.50	NEDL	Σ		1	Benzene
	2.5	63		VALVE	8.00	GATE	ပ		1	Desorp
	5.5	64		ပ	0.50	TH			GAS	Purge gas
DZ	1.5	63		VALVE	0.75	GATE	Σ		GAS	Purge das
DZ	u								•	

	SAMPLE CONTROL	 				•		24.4					
Code (Ppm) (Ppm)		 				73		۲ ۲					
Code Cippm Cippm		₩ %	Initial	East	South	West	Final	East	South	West	Ava	Bkarnd	Corrected
PEG 16,000 4,500		(mdd)	(mdd)		(mdd)	(mdd)	(mad)	(maa)	(maa)	(maa)	(mou)	(muu)	(mad)
DATE			16,000		006	4,500	32,000	4,500	5,400	4.500	24.000	1	23 996
PEG 18,000 2,000 40,000 2,000 40,000 24,000 24,000 24,000 40,000 24,000 24,000 40,000 24,000 24,000 40,000 24,000 40,000 24,000 40,000 24,000 40,000 24,000 40,000 24,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000 40,000 80,000			5	D.	5	ß	2	S	5	r.	LC.	. rc	000,000
PEG PEG			18,000	2,000	300	20	15,000	200	9	100	16.500) 4	16 406
PEG PEG			4		4	4	4	4	4	4	4	4	000
PEG PEG	9		26,000		16,000	40,000	28,000	24,000	24.000	24.000	42,000	r (c	41 995
PEG PEG T2,000 4,000 3,000 3,000 0,000 1,000			12,000	4,000	8,000	4,000	16,000	5.600	009.6	009 6	14 000) K	12 008
Day Day			72,000	4,000	3,000	32,000	80,000	1.000	100	80,000	76,000) a	75,990
Siny	6		13,500	200	800	1,000	10,800	36	006	000'6	12,150	ם ער	10 148
SiNV			7	4	4	4	80	4	9	9	a a	9 4	041,21
SiNV So 30 30 30 30 30 30 30 3			7	4	4	4	80	4	9	9	0 00	* <	4
SINV 12 30 30 25 4 4 10 10 4	_		1,000	006	325	400	1.400	006	001	200	1 200	•	1 107
L E E E E E E E E E E E E E E E E E E E			12				25			88	201	1	1,197
L E E E E E E E E E E E E E E E E E E E	-		20	30	30	30	09	25	40	40	2 4	•	0 2
L L C C C C C C C C					-				2	?	3	*	IC
DZ S500 230 160 120 400 400 400 400 160 160 160 120 400 400 160 160 160 120 400 <td>٦ -</td> <td></td>	٦ -												
DZ CO,000 4 </td <td></td> <td></td> <td>200</td> <td>230</td> <td>160</td> <td>120</td> <td>400</td> <td>400</td> <td>130</td> <td>16</td> <td>450</td> <td>4</td> <td>446</td>			200	230	160	120	400	400	130	16	450	4	446
DZ DZ S 3 3 3 3 3 3 3 3 3 3 3 3 4			20,000				33.600			2	26 800	r 14	705
DZ 850 750 750 650 1,000 750 800 40 4			ဧ	က	m	9	9	6	m	60	200,00	0 0	00/02
SINV SINV Fig.			4	4	4	4	4	4	4	4	4	0 4	
SINV SINV 15			820	750	750	650	1,000	750	800	400	925		000
SINV 130 20 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 26 26 3 26 26 3 26 3 26 26 3 26 26 3 4			52	10	20	20	25	20	25	20	25	2 6	226
SINV 16 3 10 12 50 26 3 25 33 3 DZ 30 15 3 20 4			130	50	120	120	120	120	06	06	125		123
DZ DZ DZ QZ QZ<			16	е	10	12	20	25	3	25	33	6	31
DZ DZ 18 6 12 30 20 20 20 12 20 20 20 12 24 3 4			30	5	ဇ	က	20	4	4	10	25	6	23
DZ 4			48	18	9	12	30	20	20	12	24	က	22
DZ 4	-		, a	8	9	က	က	ဇ	ဧ	က	ဗ	က	0
DZ 3 3 3 4			4 (4 (4	4	4	4	4	4	4	4	0
PEGI/SINV 90,000 4,000 250 35 450 400 45,225 4 <th< td=""><td></td><td></td><td>2</td><td>9</td><td>ρ.</td><td>8</td><td>4</td><td>4</td><td>4</td><td>4</td><td>ဗ</td><td>က</td><td>0</td></th<>			2	9	ρ.	8	4	4	4	4	ဗ	က	0
DUP 5,000 49,500 1,000 200 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 22,500 1,000 20,250 20,250 20,250 20,250 20,250 20,250 4 <t< td=""><td>-</td><td></td><td>4 000</td><td>4 000</td><td>4 (10)</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td><td>0</td></t<>	-		4 000	4 000	4 (10)	4	4	4	4	4	4	4	0
DUP 5,000 49,500 1,000 1,000 1,000 1,000 1,000 1,000 4,000 31,500 18,000 12,600 42,750 5 DUP 5,000 49,500 10,800 3,000 1,800 31,500 18,000 12,600 42,750 5 S,000 18,000 1,000 4,000 22,500 2,000 1,000 22,500 4,000 22,500 20,500 4,000 22,500 20,500 4,000 20,250 20,000 1,000 4,000 20,000 1,000 20,250 20,250 20,250 20,250 20,250 20,250 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 7 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-		000,08	000,4	002	35	450	30	22	9	45,225	4	45,222
DUP 5,000 49,500 10,800 3,000 1,800 36,000 31,500 18,000 42,750 5 10,000 49,500 10,800 1,800 36,000 31,500 18,000 42,750 5 10,000 1,000 4,000 22,500 1,000 22,500 1,000 22,500 4 10,000 30 90 250 120 50 140 275 8 10,000 4,000 22,500 1,000 22,500 1,000 20,250 4 4 4 10,000 10,000 30 90 250 140 275 8 10,000 20,000 1,000 22,500 10 20,250		900		002	000	1,000	1,000	400	800	900	1,000	4	966
DZ 49,500 10,600 1,800 36,000 31,500 12,600 42,750 5 DZ 18,000 1,000 4,000 22,500 1,000 22,500 1,000 20,250 4 DZ 4		000,0		008'01	3,000	1,800	36,000	31,500	18,000	12,600	42,750		42,746
DZ 4 4 4 4 6 22,500 22,500 1,000 22,500 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 5 5 5 5 5 5 5 6 4		000'6		10,800	3,000	1,800	36,000	31,500	18,000	12,600	42,750	S	42,746
DZ 300 100 30 250 120 50 140 275 8 DZ 5 5 5 5 3 3 3 4 4 4 4 4 7 7 7 7 7 7 5 5 5 5 5 5 5 6 4			18,000	1,000	1,000	4,000	22,500	2,000	1,000	22,500	20,250	4	20,247
DZ 4 4 4 4 7 7 7 7 7 7 7 7 7 7 8 6 8 8 8 8 8 8 8 8 9 8 9			300	100	30	06	250	120	20	140	275	80	267
02 5 5 5 3 3 3 4 4			4	4	4	4	7	7	7	7	2	2	0
			2	5	သ	2	9	9	3	6	4	4	0

SAMPLE CONTROL	BAG	BAG CONCENTRA	PATION		NITROG	NITHOGEN FLOW		OXA	GEN CON	OXYGEN CONCENTRATION	Z.
	Initial	Final	Avg	Initial	Final	Average	Z Z	Initial	Final	Average	ø
Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	æ	*	*	m3/hr
	1,530	3,150	2,340	1,444	1,427	1,436	1.44	0.50	0.20	0.35	0.09
ZO	32	32	32	4,144	4,116	4,130	4.13	3.20	0.50	1.85	0.27
	1,470	1,575	1,523	3,143	3,123	3,133	3.13	0.40	0.20	0.30	0.19
20	98	32	34	979	971	975	0.98	0.40	09.0	0.50	90.0
	80,000	80,000	80,000	3,502	3,483	3,493	3.49	0.40	0.70	0.55	0.22
	28,800	24,800	26,800	3,521	3,512	3,517	3.52	3.50	4.20	3.85	0.26
PEG	19,200	14,400	16,800	1,133	1,133	1,133	1.13	0.20	0.20	0.20	0.07
	2,250	1,440	1,845	2,068	2,060	2,064	5.06	4.20	2.40	3.30	0.15
	32	28	8	5,171	5,255	5,213	5.21	4.20	06:0	2.55	0.36
DOP	32	28	န	5,171	5,255	5,213	5.21	4.20	06.0	2.55	0.36
	320	84	360	949	944	947	0.95	0.40	3.70	2.05	90.0
SINV	49	32	မ္တ	943	933	938	0.94	0.40	0.30	0.35	90.0
	28	9/	99	1,167	1,178	1,173	1.17	2.60	1.00	1.80	90.08
7											
	480	220	515	4,071	3,874	3,973	3.97	1.60	0.40	1.00	0.25
	44,000	28,000	36,000	1,189	1,173	1,181	1.18	0.50	0.35	0.43	0.07
DZ	\$	32	98	1,340	1,345	1,343	1.34	09.0	0.50	0.55	0.08
ZO	28	32	30	3,767	3,707	3,737	3.74	2.50	2.70	2.60	0.26
	440	240	340	2,030	2,030	2,030	2.03	1.10	1.90	1.50	0.13
	280	280	280	4,085	4,075	4,080	4.08	0.20	2.90	1.55	0.26
	80	72	9/	3,021	2,935	2,978	2.98	2.80	2.80	2.80	0.21
NIS	24	24	24	4,102	4,031	4,067	4.07	1.00	0.30	0.65	0.25
	98	36	36	1,174	1,155	1,165	1.16	0.80	0.50	0.65	0.07
	252	270	261	5,436	5,436	5,436	5.44	3.50	5.00	4.25	0.41
20	24	24	24	1,402	1,391	1,397	1.40	0.20	0.20	0.20	90.0
Z0	23	23	23	1,400	1,386	1,393	1.39	0.10	0.10	0.10	0.08
ZO	24	24	24	4,390	4,359	4,375	4.37	09.0	09'0	09.0	0.27
ZO	36	36	36	4,872	4,901	4,887	4.89	2.60	1.70	2.15	0.33
PEGI/SINV	96	4,500	2,268	6,027	6,027	6,027	6.03	1.50	1.60	1.55	0.39
	315	315	315	3,289	3,289	3,289	3.29	4.20	3.00	3.60	0.24
	3,600	4,725	4,163	1,235	1,235	1,235	1,24	0,10	0.20	0.15	0.07
PUP	3,600	4,725	4,163	1,235	1,235	1,235	1.24	0.10	0.20	0.15	0.07
	495	495	495	5,394	5,394	5,394	5.39	3,80	3.00	3.40	0.39
	160	200	180	1,562	1,663	1,613	1.61	0.20	0.20	0.20	0.10
20	20	63	26	1,380	1,395	1,388	1.39	0.30	0.30	0.30	0.08
20	C	-									

SAMPLE	SAMPLE CONTROL	æ	AG TEM	BAG TEMPERATUF	监		BY1	LABORATORY DATA	_		
		Initial	Final	Avg.	Temp	Ź	NMOC	METHANE	NE	THC	0
۵	Code	Ð	Ð		deg R	ppmv (as C3H8)	ppmv (8s C3H8) ppmw (8s C3H8)	ppmv (88 CH4)	ppmw (as CH4)	ppmv (as C3H8)	DDMW (as C3H8)
Y-52		67	74	71	530	NA	1,352.19	0.00	┖	1	1.352.19
Y-53	20	2	2	2	530	AN	. 28.26		00.00	18.00	28.26
Y-54		63	2	67	256	NA	1,728.24	2.10		1,100.00	1.729.43
Y-55	DZ	99	65	99	525	NA	5.50			3.50	5.50
Y-56		83	84	84	543	NA	38,760.18	0.00		25,000.00	38.760.18
Y57		133	135	<u>\$</u>	594	AN	35,535.48	0.00		23,000.00	35,535,48
Y-58	PEG	29	65	98	.526	AN	14,555.18	0.0		9,300.00	14,555,18
Y-59		79	76	78	537	AN	1,534.34	0.00	00.0	980.00	1,534.34
Y-60		11	73	75	535	NA	29.80			19.00	29.80
Y-61	DOP	77	73	75	535	AN	29.80			19.00	29.80
Y-62		73	74	74	533	NA	06.606			280.00	909.90
Y-63	SINV	74	75	75	534	NA	40.90	0.00	0.00	26.00	40.90
Y-64		75	9/	9/	535	¥	87.92			60.00	94 19
Y-65	_										
Y-66	٦										
Y-67		64	99	65	525	ΨX	1,382.35	0.00	0.00	880.00	1.382.35
Y68		64	62	63	523	Ϋ́	100,024.55	0.0		66,000.00	100,024.55
69−.k	DZ	65	64	65	524	AN	0.08	0.00		0.05	0.08
Y-70	DZ	61	62	62	521	NA	0.07	00.00	00.0	0.0475	0.07
Y-71		83	8	64	523	AN	580.97	00.0	00:00	370.00	580.97
Y-72		108	110	5	269	AN	502.44	00.00		320.00	502.44
Y-73		25	25	25	512	NA	145.78	0.00	0.00	93.00	145.78
Y-74	SINV	09	61	61	250	AN	17.30		00.0	11.00	17.30
Y-75		53	25	23	512	۷V	67.61			43.00	67.61
Y-76		83	8	84	543	Ϋ́	406.69	00'0	00:0	260.00	406.69
77-Y	20	99	67	67	526	AN	0.02			0.0475	20.0
Y-78	ZQ	62	2	63	523	AN	90'0			0.05	0.08
6∕-79	70	64	16	63	522	AN	80.0			0.05	0.08
08-X	70	120	125	123	285	ZA A	0.08			0.05	0.08
Y-81	PEGI/SINV	98	67	88	527	NA	42.40	0.00		27.00	42.40
Y-82		64	88	5	521	ΑA	327.41	30.00		220.00	344.45
Y83		64	8	61	521	AN	5,026.10	0.00	0.00	3,200.00	5,026.10
Y-84	and	64	88	5	521	AA	5,026.10	0.00		3,200.00	5,026.10
Y-85		79	8	84	544	ΑΝ	1,038.80	18.00	10.23	00.029	1,049.03
, √-86		65	99	99	525	AN	409.03	00.00		260.00	409.03
Y-87	ZO	67	88	89	527	AN	0.08	00.0	0.00	0.05	0.08
Y-88	DZ	65	64	65	524	NA	0.08			0.05	0.08

Page 13e

SAMP OI	SAMPLE CONTROL					_	~~~			DATE		
٥		MOLECI	MOLECULAR WEIGHT	T DETERMINATION	ATION				EMISSION PATE	1		
2		MW fraction	MW fraction	% fraction	MW fraction	₩	NMOC	g	Methane	95	THC	
	Code	05	СЗНВ	N2	NS	Вад	(lb/hr)	(lb/vr)	(lb/hh	(lb/vd	(lb/hr	(1)/41
Y-52		0.1		9.66	27.9	28.05	3.03E-04	2.65E+00	0.00E+00	0.00E+00	3.03E-04	2.65F+00
Y-53	DZ	9.0		98.1	27.5	28.09	1.97E-05	1.73E-01	0.00E+00	0.00E+00	1.97E-05	1.73E-01
Y-54		0.1		9.66	27.9	28.05	8.50E-04	7.44E+00	5.89E-07	5.16E-03	8.50E-04	7.45F±00
Y-55	20	0.5		99.5	27.9	28.04	8.52E-07	7.46E-03	0.00E+00	0.00E+00	8.52E-07	7.46F-03
Y-56		0.5	1.1028	0.76	27.2	28.44	2.11E-02	1.85E+02	0.00E+00	0.00E+00	2.11E-02	1 85F±02
Y-57		1.2	1.0145	93.9	26.3	28.54	2.13E-02	1.87E+02	0.00E+00	0.00F+00	2 13F-02	1 R7E+02
Y-58	PEG	0.1	0.4102	98.9	27.7	28.18	2.59€-03	2.27E+01	0.00=+00	0.00F+00	2 59F-03	2 27E+01
Y-59		1.1	0.0432	9.96	27.1	28.17	5.72E-04	5.01E+00	0.00E+00	0.00E+00	5.72E-04	5.01F+00
09-X		0.8	0.0008	97.4	27.3	28.12	2.70E-05	2.36E-01	0.00E+00	0.00E+00	2.70E-05	2.36F-01
X-61	DUP	9.0	0.0008	97.4	27.3	28.12	2.70E-05	2.36E-01	0.00E+00	0.00E+00	2.70E-05	2.36F_01
Y-62		0.7	0.0256	6.76	27.4	28.11	1.46E-04	1.28E+00	0.00E+00	0.00E+00	1.46E-04	1.28E+00
Y-63	SINV	0.1	0.0011	9.66	27.9	28.03	5.94E-06	5.20E-02	0.00E+00	0.00E+00	5.94E-06	5.20F-02
Y-64		9.0	0.0026	98.2	27.5	28.09	1.72E-05	1.50E-01	1.22E-06	1.07E-02	1.84E-05	1.61E-01
4-65	-											
Y-66	_											
∠9-A		0.3	0.0388	98.9	27.72	28.07	8.95E-04	7.84E+00	0.00E+00	0.00E+00	8.95E-04	7.84E+00
X-68]	0.1	2.9113	93.0	26.1	29.10	1.95E-02	1.71E+02	0.00E+00	0.00E+00	1.95E-02	1.71E+02
K-69	DZ	0.5	0.000	4.66	27.9	28.04	1.68E-08	1.47E-04	0.00E+00	0.00E+00	1.68E-08	1.47E-04
Y-70	20	0.8	0.0000	97.4	27.3	28.12	4.97E-08	4.36E04	0.00E+00	0.00E+00	4.97E-08	4.36E-04
Y-71		0.5	0.0163	98.5	27.6	28.09	1.98E04	1.73E+00	0.00E+00	0.00E+00	1.98E-04	1.73E+00
Y-72		0.5	0.0141	98.4	27.6	28.09	3.17E-04	2.78E+00	0.00E+00	0.00E+00	3.17E-04	2.78E+00
Y-73		6.0	0.0041	97.2	27.2	28.13	7.99E-05	7.00E-01	0.00E+00	0.00E+00	7.99E-05	7.00E-01
Y-/4	SIN	0.2	0.0005	99.3	27.8	28.05	1.14E-05	9.95E-02	0.00E+00	0.00E+00	1.14E-05	9.95E-02
Y-/5		0.2	0.0019	99.3	27.8	28.05	1.29E-05	1.13E-01	0.00E+00	0.00E+00	1.29E-05	1.13E-01
1-70 V 77	20	1.4	0.0115	95.7	26.8	28.19	4.17E-04	3.66E+00	0.00E+00	0.00E+00	4.17E-04	3.66E+00
×_78	2 6	- 0	0,000	8.66	28.0	28.03	1.63E-08	1.43E-04	0.00E+00	0.00E+00	1.63E-08	1.43E-04
67-X	2,0	200	988.0	5.00	28.0	28.02	1.71E-08	1.50E-04	0.00E+00	0.00E+00	1.71E-08	1.50E-04
- X	22	7.0	988	0.00	8.12	40.00	3.32E - 08	4.835-04	0.000	0.000-	5.52E08	4.83E-04
× - 8.1	DEGIVEINIV	300	0.000	0.70	4.72	28.11	5.985-08	5.24E-04	0.00=+00	0.00E+00	5.98E-08	5.24E-04
- 2	L Cal Olive	2.5	0.0012	4.00	27.6	28.08	4.26E-05	3.74E-01	0.00E+00	0.00E+00	4.26E-05	3.74E-01
20 >		7. 0	2000	4.0	27.0	28.17	2.04E-04	1.795+00	1.06E-05	9.30E-02	2.15E-04	1.88E+00
200		0.0	0.1412	99.5	27.9	28.08	9,78E-04	8.57E+00	0.00E+00	0.00E+00	9.78E-04	8.57E+00
400	3	0.0	0.1412	99.5	27.9	28.08	9.78E-04	8.57E+00	0.00E+00	0.00E+00	9.78E-04	8.57E+00
χ ρ λ			0.0296	96.5	27.0	28.17	1.01E-03	8.80E+00	9.89E-06	8.67E-02	1.01E-03	8.89E+00
7-86		0.1	0.0115	8.66	28.0	28.03	1.03E-04	9.03E-01	0.00E+00	0.00E+00	1.03E04	9.03E-01
Y-87	20	0.1	0.0000	2.66		28.03	1.71E-08	1.50E-04	0.00E+00	0.00E+00	1.71E-08	1.50E-04
X-98	70	0.1	0.0000	99.7	27.9	28.03	1.91E-08	1.67E-04	0.00E+00	0.00E+00	1.91E-08	1.67E-04

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

SAMP	SAMPLE CONTROL	COMMENTS
9	Code	Comments
Y-52		Intermittent emitter. SV varied by a factor of 2.
Y-53	ZO	
Y-54		
Y55	ZO	Plug. Final QC at 1440; 1250 ppm.
Y-56		SV varied by a factor of 2.
Y-57		
Υ-58	PEG	Plug. Intermittent emitter.
×-59		Intermittent emitter.
×-61	9.10	Durilinete of VAED
Y-62		Plug.
Y-63	SINV	Liquid sample Y065 taken. SV varied by a factor of 2
Y-64		
Y-65		Reported with sample Y063.
X−66	ر	Reported with sample Y064.
√9-¥		
۲–68		
√-69-	ZQ	Plug.
Y-70	DZ	
Y-71		
Y-72		Final QC at 1452; 950 ppm.
Y-73		
Y-74	SINV	Intermittent emitter. SV varied by a factor of 3.125.
√-/3		
Y-76		
Y77	20	Plug.
0/-1	70	Plug.
6/->	70	Plug. Battery died during log; re-tested.
6 6	70	
ξ	PEGI/SINV	
20 2		Tinal QC at 1435, 1130 ppm.
× ×		- 1
¥-84	DUP	Dupicate of Y083.
Y-85		
X-86		Plug.
Y-87	ZO	
Y-88	DZ	

Page 13f

SAMP	SAMPLE CONTROL	AMBIENT CONDITIONS	T COND	SNOIL	-	COMPONE	COMPONENT DATA			STREAM	STREAM CHARACTERISTICS
<u> </u>	Code	Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
Y-89		25	RE	(Bu) amegai	L77.147.	(luches)		Actuation	X X	Service	Product
√-90		200	8		אראם	00.0	NEDL	Σ		GAS	Purge gas
Y-91			3		٥	4.00	-			L	Велхеле
Y-92	BL		5		اد	3.00	-			-	Isohexane
Y-93	SINV	1.5	65		07110	90,					
-94	PEG	100	99			0.6	2		>	-1	Naptha
Y-95		15.	99		T C	3.00	S I		z	1	Stab reflux
96-	AUDTD	1.5	99		ی د	00.4	-			-1	Gasoline
-97	20		99		24174	00.4	7.	,		1	Gasoline
¥−98		1.5	92		איניי	00.0	GAIE	O		GAS	Fuel gas
Y−99		2.5	9		3	000				1	Naptha
Y-100	DZ	100	9		7/14/	3 6	1			-	Reflux
Y-101	DZ/DINV	, r.	3 2		VALVE	200	PLUG	Σ		נר	Reflux
Y-102	SINV	25	3 2		ב ביי	4.00	2		z	1	Reflux
Y-103	PGAC/SINV	200	2		VALVE	00.1	GATE	Σ		GAS	Recycle gas
Y-104		, -	200		VALVE	1.00	GATE	Σ		GAS	Recycle gas
Y-105	20		200		VALVE	1.50	GATE	O		GAS	Propane
Y-106	PEG	2 4	2 4		VALVE	1.00	GATE	O		GAS	Propane
Y-107	VNIS	2.6	3		اد	0.30	Ξ				Propane
Y-108	SINV/DI ID	2 4	00		VALVE	4.00	GATE	Σ		1	Reformate
V_100	CINIVALIDAD	0 0	00		VALVE	4.00	GATE	Σ			Reformate
V-110	2000	0.0	8		VALVE	4.00	GATE	Σ			Reformate
2117	707	0.0	2 1		VALVE	4.00	GATE	Σ		-	Reformete
V-112	2	0.0	2		O	0.75	ቿ			-	Reformate
V_113	70	0,	8/2		VALVE	3.00	PLUG			GAS	Fuel das
V-114	DZ/INV	0.4	5		O	0.50	COUP			1	Reformate
Y-115	N	2 4	5 6		VALVE	3.00	PLUG	Σ		GAS	Fuel gas
Y-116		5 4	22		PUMP (2.00	오		z	٦,	Reflux
Y-117			2 2		PUMP	4.00	오		>	Ŧ	Reflux (heavy)
Y-118		0.0	* 0		PUMP	4.00	오		z	Ŧ	Light gas oil
V-119	AIIDTD	2.3	2 6		T T	3.00	오		z	로	Slop oil
Y-120	270	200	200		A COMP	3.00	오		z	ᅻ	Slop oil
Y-121	SINV	2 4	2 6		TWO I	4.00	오		z	Ŧ	Blowdown oil
Y-122	PGAC/SINV	5 4	202		OEL	0.50	OEL			GAS	Purge gas
Y-123	18	2	2		1	0.50	OEL			GAS	Purge gas
Y-124		0.0	63		07410	000		-			
Y-125	DZ	-	67		LINOL OF	00.00	2		z	_	Butane
			5		1207	8.00	오		z	_	MTRE Transfer

SAMPLE CONTROL	HOL					u	SCHEENING DATA	DATA					
		∑	Initial	East	South	West	Final	East	South	West	Ava	ָ מ	7
ID Code		(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(maa)	(maa)	(maa)	ė (מוופער)	Corrected
γ_89				170	120	130	400	250	300	300	310	A Mind	(mdd)
۸-90			65	20	9	7	8	30	7	15	73		35
			18,000	20	20	200	22,500	700	04	2.000	20.2	4	20 246
											L		19123
			40	18	35	35	220	70	08	120	130	Ľ	101
Y-94 PEG			76,500	1,600	8,500	160	90.000	000 6	1 200	40 500	20.00	2	171
			250	5	30	50	200	120	100 AC	35,51	00,200	2 (83,248
Y-96 AUDTD	٥		250	180	30	50	200	2	2 20	8 8	222	20	223
Y-97 DZ			6	6	6	3 6	2 6	221	60	3	222	9	223
Y-98			13 200		>	>	200	2	2	20	က	3	0
66-Y			20,40	4	•	,	16,500				14,850	4	14,846
V-100			- 4	١	9	9	-	4	4	4	11	9	S
2			0	5	2	ည	4	4	4	4	2	3	0
1	≱.		4	4	4	4	4	4	4	4	4	4	C
1			20,000	4,000	2,500	2,500	2,000	1,500	2,000	2.000	11 000	4	10 996
Y-103 PGAC/SINV	N.		20,000	4,000	2,500	2,500	2,000	1.500	2.000	2,000	11 000	0.4	40 000
			22,500	22,500	1,800	000'6	22,500	18,000	2.700	7.200	22 500	2	22 405
			4	4	4	4	6	6	67		2001) (55,43
			90,000	000'06	90,000	000'06	90,000	90,000	90.000	000 08	000	2 6	700 00
			800	20	5	400	350	170	5	000	878	7 (166,60
	a a		008	20	5	400	350	170	5	200	37.3	- 1	000
SIN	DTD		800	70	18	400	350	170	8 8	3	272	- 1	200
			9	9	œ	ď	4	2	2	3	0/0	1	900
			700	20	16	120	2007	40	r 4	1	0	n	2
Y-112 DZ			4	4	4	4	4	5 4	2 8	3	3,	١٩	694
Y-113			16,500	1,200	13.200	13 200	27 500	000	000	0000	2 000	7	0
Y-114 DZ/INV	>		9	9	9	9	900	2007	900,0	000'01	22,000	dr (21,996
Y-115 INV			10,000	3,000	20	20	10.000	1 200	2	9 4	000	0 ;	0000
Y-116			14	10	7	7	-	10	9	2	13	- ~	000
Y-117			6	æ	80	7	13	10	10	101	1	2	2 6
			1,400	140	450	250	006	120	170	250	1 150		1 146
¥			1,400	140	450	250	006	120	170	250	1 1 20) W	244
4			5	ນ	ທ	D.	4	4	4	4	4	2 4	21.1
1			009				2,000				1 300		1 295
PGA	2		009				2,000				1,300	0	1 205
Y-123 BL													201
			21,000	10,000	20,000	11,000	25,000	3,000	8,000	000'6	23,000	C)	22.995
V-125 02			80	8	8	80	2	2	S	ß	7	7	
											1	-	,

		_	60.0	60 0	9	2	92.0	0.29	0.07	0.07	0.11	0.07	0.07	0.07	0.54	90.0	90.0	5 6	8	0.13	0.13	0.13	0.24	0.13	0.19	0.07	0.16	0.32	0.29	0.60	8 8	0.05	600	60 0		90
NO	σ	ε)							,				
ENTRAT	Average	· %	0.20	0.20	1.10		0.20	0.23	0.45	0.45	1.30	0.25	0.25	0.70	6.10	0.30	0.30	0.00	0.00	0.50	0.50	0.50	0.10	0.80	0.10	0.75	0.25	0.20	0.00	0.50	5 5	0.15	0.15	0.15		0.25
OXYGEN CONCENTRATION	Final	*	0.10	0.20	1.80		0.20	0.15	0.30	0.30	0.70	0.20	0.20	1.20	09.9	0.20	0.20	0.50	0.20	0.20	0.20	0.20	0.10	0.80	0.10	0.80	0.20	2 6	0,00	0 10	0.0	0.10	0.10	0.10		0.30
OXYG	Initial	%	0.30	0.20	0.40		0.20	0.30	0.60	09.0	1.90	0:30	0.30	0.20	5.60	0.40	0.40	0.00	0.20	0.80	0.80	08.0	0.10	0.80	0.10	0.70	0.00	0.30	0.50	02.0	0.20	0,20	0.20	0.20		0.20
	N N	l/min	1.53	1.55	1.57		4.77	4.81	-	1:1	1.70	1.07	1.13	1.10	6.40	96.0	4.73	1 82	1 28	2.18	2.18	2.18	4.00	2.01	3.22	1.16	2.30	3.6	4 24	4 96	4.96	4.11	1.46	1.46		4.24
NITROGEN FLOW	Average	ml/min	1,534	1,550	1,573		4,775	4,809	1,114	1,114	1,695	1,071	1,130	1,103	6,398	965	1 703	1 822	1.278	2,179	2,179	2,179	3,997	2,011	3,220	1,163	2,303	0,207	4 239	4.956	4,956	4,109	1,464	1,464		4.239
NITROGE	Final	mt/min	1,532	1,579	1,561		4,772	4,800	1,112	1,112	1,696	1,072	1,128	1,101	6,398	3 6	4 725	1,907	1,279	2,192	2,192	2,192	3,988	2,038	3,205	1,163	5.007	4 805	4 237	4.956	4,956	4,123	1,464	1,464		4,241
	Initial	ml/min	1,535	1,520	1,585		4,777	4,817	1,116	1,116	1,694	1,070	1,132	1,105	6,398	196	1 720	1.737	1,277	2,165	2,165	2,165	4,005	1,983	3,235	1,162	5 210	4 833	4.241	4,956	4,956	4,095	1,464	1,464		4,237
NOE NOE	Avg	тдд	104	131	12,600		1,960	1,320	1,320	1,320	24	630	26	04	80 00	2,900	800	98	90,000	675	675	675	09	205	600	202	860	176	45	1,225	1,225	38	825	825		1,800
BAG CONCENTRATION	Final	(mdd)	66	135	12,600		576	2,000	1,280	1,280	24	630	26	40	2,40	2,400	1,800	36	90,000	200	700	200	08	200	000	990	999	216	35	1,200	1,200	40	1,250	1,250		1,800
BAG	initial	(шаа)	108	126	12,600		009	1,920	1,360	1,360	24	630	99	5 6	0000	2,500	1.800	36	90,000	650	650	650	40	210	350	270	099	136	55	1,250	1,250	35	400	400		1,800
SAMPLE CONTROL		Code				BL BL	SINV	PEG		AUDTD	70			70770	SINIV	PGAC/SINV		DZ	PEG	SINV	SINV/DUP	SINVAUDID	70	20	70	DZ//NV	NA.				AUDTD	20	SINV	PGAC/SINV	BL	
SAMP	٩	Ω	68	×-90	Y-91	Y92	Υ-93	¥-94	Y-95	V-96) }	86 2	66-2	3 5	100	X-103	Y-104	Y-105	Y-106	Y-107	Y108	4-109	V-110	1-1-1	V_113	V-114	Y-115	Y-116	Y-117	Y-118	Y-119	Y-120	Y-121	Y-122	Y-123	Y-124

SAM	SAMPLE CONTROL		BAG TEMPERATUR	PERMITU	8		EY1	LABORATORY DATA			
		Initial	Final	Avg.	Temp	z	NMOC	METHANE	ш	THC	
Q	Code	(F)	Ð	(F)	deg R	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
_89 ∀–89		68	29	68	527	AA	144.75	0.00	00.0	92.00	144.75
V-90		75	77	76	536	NA	314.65	00.00	0.00		314.65
Y-91		65	29	99	526	ΑN	8,147.10	0.00	00'0	5,200.00	8,147.10
Y-92	BL					AN	00.0	0.00	0.00	0.00	0.00
Y-93	SINV	75	78	77	536	¥Z	1,462.51	00.00	0.00	930.00	1,462.51
¥-94	PEG	20	02	2	530	AN	3,140.17	5.20	2.96	2,000.00	3,143.14
Y-95		65	63	64	524	NA A	877.98	280.00	159.72	960.00	1,037.70
√-96	AUDTD	92	63	64	524	AN					
Y-97	DZ	68	72	70	530	AN	0.07	00.00	0.00		0.07
Y-98		67	68	68	527	AN	1,273.79	00.00	0.00	810.00	1,273.79
γ-99		61	62	62	521	AN	10.38	00.0	00.0	9:90	10.38
Y-100	DZ	61	69	9	520	NA	0.08	00.00	00.0		0.08
Y-101	DZ/DINV	9	59	9	519	N.A	171.63	0.00	00.00	110.00	171.63
Y-102	SINV	62	9	61	521	AN	3,427.04	52.00	29.64	2,200.00	3,456.69
Y-103	PGAC/SINV	62	09	61	521	Ϋ́	578,041.80	140,000.00	61,269.75	230,000.00	639,311.55
Y-104		63		64	523	A'A	2,822.37	9.60	5.47	1,800.00	2,827.84
Y-105	20	29		89	528	AN	0.08	00.00	0.00		0.08
Y-106	PEG	99		67	526	AN	76,476.30	00.00	0.00	20,000.00	76,476.30
Y-107	SINV	76		78	537	AN	1,493.31	00.00	0.00		1,493.31
Y108	SINV/DUP	76		78	537	AA	1,509.02	00:00	0.00	00'096	1,509.02
Y-109	SINV/AUDTD	76		78	537	Ϋ́	00.00		0.00		00.0
Y-110	DZ	69	70	2	529	AN	1.73	00.0	0.00	1.10	1.73
Y-111	N	6		87	547	AZ	00.00	AA	0.00	¥	0.00
Y-112	DZ	83		84	543	٧A	1.49	00.0	0.00		1.49
Y-113		82		82	545	Ϋ́	770.16	00.0	0.00	490.00	770.16
Y-114	DZ/INV	82		84	543	AN	0.00	AA	00.00		0.00
Y-115	NI.	83		83	543	AN	00.00	ΑN	0.00	NA VA	0.00
Y-116		83		82	541	AN	204.53	00.0	00.0	18	204.53
Y-117		70		20	530	A A	15.10	00.00	0.00	09.6	15.10
Y118		91		68	549	A'A	2,670.47	3.40	1.94	1,7	2,672.41
Y-119	AUDTD	9	87	88	549	AA	00.0		00.00		00.0
Y-120	DZ	79	79	79	539	NA	3.15	00:00	0.00		3.15
Y-121	SINV	81	18	18	541	NA	321.84	15.00	8.56	210.00	330.40
Y-122	PGAC/SINV	81	81	81	541	AN	131,444.86	3,300.00	1,792.38	89,000.00	133,237.24
Y-123						Y.		00.0			
Y-124		61	62	62	521	AN	3,927.66	00.0	0.00	2,50	3,927.66
Y-125	DZ	67	64	99	525	AA	4.88	00.0	0.00	3.10	4.88

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAMPLE	SAMPLE CONTROL	MOLECL	MOLECULAR WEIGHT	T DEFERMINATION	NOILY				EMISSION	RATE		
-		MW fraction	MW fraction	% fraction	MW fraction	× ×	NMOC	ပ္	Methane	ED#	THC	
٥	Code	8	СЗНВ	N2	N2	Вад	(ib/hr)	(lb/yr)	(lb/hr)	(lb/yı)	(Ib/hr)	(lb/yr)
∀ –89		0.1	0.0041	8.66	28.0	28.03	3.46E-05	3.03E-01	0.00E+00	0.00E+00	3.46E-05	3.03E-01
λ-90		0.1	0.0088	8'66	28.0	28.03	7.47E-05	6.55E-01	0.00E+00	0.00E+00	7.47E-05	6.55E-01
Y-91		4.0	0.2294	98.4	27.6	28.15	2.10E-03	1.84E+01	0.00E+00	0.00E+00	2.10E-03	1.84E+01
Y-92	BL	0.0	0.0000	100.0	28.0	28.02						
Y-93	SINV	0.1	0.0410	28.7	27.9	28.04	1.07E-03	9.37E+00	0.00E+00	0.00E+00	1.07E-03	9.37E+00
Y-94	PEG	0.1	0.0882	9.66	27.9	28.06	2.35E-03	2.06E+01	2.22E-06	1.94E-02	2.35E-03	2.06E+01
Y-95		0.1	0.0291	99.5	27.9	28.05	1.55E-04	1.36E+00	2.83E-05	2.48E-01	1.84E-04	1.61E+00
- 8 8	AUDTD	1.0	0.000	9.66	27.9	28.04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Y-97	DZ	4.0	0.0000	98.7	27.7	28.07	2.07E-08	1.82E-04	0.00E+00	0.00E+00	2.07E-08	1.82E-04
Y-98		0.1	0.0357	2.66	27.9	28.04	2.13E-04	1.87E+00	0.00E+00	0.00E+00	2.13E-04	1.87E+00
χ-99		0.1	0.0003	2.66	27.9	28.03	1.85E-06	1.62E-02	0.00E+00	0.00E+00	1.85E06	1.62E-02
	DZ	0.2	0.0000	99.3	27.8	28.05	1.40E-08	1.23E04	0.00E+00	0.00E+00	1.40E08	1.23E-04
	DZ/DINV	2.0	0.0049	93.9	26.3	28.26	2.44E04	2.14E+00	0.00E+00	0.00E+00	2.44E-04	2.14E+00
	SINV	0.1	0.0970	99.5	27.9	28.07	5.25E-04	4.59E+00	4.54E-06	3.97E-02	5.29E-04	4.63E+00
	PGAC/SINV	0.1	23.3783	46.7	13.1	36.56	1.15E-01	1.01E+03	1.22E-02	1.07E+02	1.27E-01	1.12E+03
Y-104		0.5	0.0794	99.3	27.8	28.07	7.77E-04	6.81E+00	1.51E-06	1.32E-02	7.79E-04	6.82E+00
Y105	DZ	0.1	0.0000	9.66	27.9	28.03	2.25E-08	1.97E-04	0.00E+00	0.00E+00	2.25E-08	1.97E-04
Y-106	PEG	0.1	2.2055	94.8	56.6	28.83	1.57E-02	1.37E+02	0.00E+00	0.00E+00	1.57E-02	1.37E+02
	SIN	0.2	0.0419	99.4	27.9	28.06	5.05E-04	4.42E+00	0.00E+00	0.00E+00	5.05E-04	4.42E+00
1	SINV/DUP	0.2	0.0423	4.66	27.9	28.06	5.10E04	4.47E+00	0.00E+00	0.00E+00	5.10E-04	4.47E+00
4	SINV/AUDTD	0.2	0.0000	99.5	27.9	28.04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Y-110	DZ	0.0	0.0000	6.66	28.0	28.05	1.07E-06	9.36E03	0.00E+00	0.00E+00	1.07E06	9.36E-03
Y-111	<u>N</u>	0.3	0.0000	99.5	27.8	28.05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Y-112	DZ	0.0	0.0000	6.66	28.0	28.02	7.24E-07	6.34E-03	0.00E+00	0.00E+00	7.24E-07	6.34E-03
Y-113		0.2	0.0216	39.5	27.8	28.06	1.40E-04	1.22E+00	0.00E+00	0.00E+00	1.40E-04	1.22E+00
Y-114	DZ/INV	0.1	0.0000	8.66	27.9	28.03						
Y-115	<u>~</u>	0.1	0.0000	8.66	28.0	28.03						-
Y-116		0	0.0057	99.8	28.0	28.03	1.50E-04	1.31E+00	0.00E+00	0.00E+00	1.50E-04	1.31E+00
Y-117		0.1	0.0004	8.66	28.0	28.03	9.93E06	8.69E02	0.00E+00	0.00E+00	9.93E-06	8.69E-02
Y-118		0.0	0.0750	2.66	27.9	28.02	1.98E-03	1.73E+01	1.44E-06	1.26E-02	1.98E03	1.73E+01
Y-119	AUDTD	0.0	0.000	6.66	28.0	28.03					•	
Y120	DZ	0.0	0.0001	8.66	28.0	28.03	1.97E-06	1.72E-02	0.00E+00	0.00E+00	1.97E-06	1.72E02
4	SINV	0.0	0.0093	8.66	28.0	28.03	7.14E-05	6.25E-01	1.90E-06	1.66E-02	7.33E~05	6.42E-01
_	PGAC/SINV	0.0	3.9258	91.0	25.5	29.46	3.06E-02	2.68E+02	4.18E-04	3.66E+00	3.11E-02	2.72E+02
Y-123	BL											
Y-124		0.1	0.1103	99.5	27.9	28.07	2.63E-03	2.31E+01	0.00E+00	0.00E+00	2.63E-03	2.31E+01
Y-125	DZ	0.1	0.0001	99.5	27.9	28.04	4.12E-06	3.61E-02	0.00E+00	0.00E+00	4.12E-06	3.61E-02

A-85

Page 14e

Page 14f

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMPLE CONTROL	AMBIENT CONDITIO	T COND	ITIONS		COMPONENT DATA	AT DATA		***************************************	STREAM	STREAM CHARACTERISTICS
	9	Temp.	Barometric	Category	Size	Type	Valve	Load		
Code	(mph)	Œ	Pressure (*Hg)		(luches)		Actuation	×	Service	Product
	1.5	73		VALVE	8.00	GATE	Σ		11	Reformate
	<u>۔</u> ئ	82		VALVE	4.00	GATE	Σ		로	Jet fuel
	0.0	7		PUMP	3.00	오		z	로	Jet fuel
	- -	75		VALVE	3.00	GLOBE	Σ		GAS	Butane
DOP	5.5	75		VALVE	3.00	GLOBE	Σ		GAS	Butana
AUDTD	5.	75		VALVE	3.00	GLOBE	Σ		GAS	Butane
ZO	1.5	28		PUMP	3.00	오		z	Ī	Coker
	1.5	64		VALVE	9	GATE	ပ		GAS	Fuel das
	1.5	89		PUMP	3,00	오		>	ī	Blowdown oil
ZO	7.1	92		PUMP	2.00	오		Z	1 =	In thomas
	<u>۔</u> ئ	2		VALVE	1,50	GATE	C		SAG	TO CON TOTAL
	1.5	74		VALVE	3.00	GATE	C		SAG	opp ion i
20	2.5	26		VALVE	4.00	GATE	C		0 40	ruel gas
ZQ	2.5	22		VALVE	3.00	GATE	C		O V O	SECTION L
PEG/DINV	5.	65		OEL	0.50	OF)		O V	CI e CI
ZO	0.0	62		VALVE	8.00	GATE	C		2 -	ED BTMS
ACCY	3.0	65		VALVE	1.8	GATE	Σ		 =	Weter
<u>N</u>	3.0	29		VALVE	4.00	GATE	Σ		=	Maio
	3.0	29	30.26	VALVE	3.00	GATE	Σ		1	
	£.5	29	30.26	VALVE	6.4	GATE	Σ			
SINV	4.5	23	30.20	VALVE	3.00	GATE	Σ		1	
SIN	3.0	64	30.20	VALVE	2.00	GATE	Σ		1	
	7.5	26	29.82	VALVE	4.00	GATE	Σ			Naotha
	7.5	53	29.80	VALVE	10.00	GATE	Σ		1	Naptha
	7.5	26	29.82						11	Naptha
-1	7.5	53	29.80						=======================================	Naptha
	7.5	29	29.62	VALVE	2.00	GATE	Σ			Naptha to heater 601
	7.5	28	29.82	ပ	1.00	Ŧ			1	Naptha
	7.5	25	29.80	VALVE	0.50	BALL	Σ		GAS	Propane
	7.5	23		VALVE	0.50	NEDL	Σ		GAS	Propane
PEG	2.5	54	29.90	VALVE	0.50	NEDL	Σ		GAS	Propane
PEG		26	30.00	OEL	0.50	OEL			GAS	Propene
PEG	2.5	22	30.00	OEL	0.25	OEL			GAS	Propene
	7.5	23	30.00	VALVE	2.00	GATE	Σ		GAS	Propane
N	7.5	8	30.20	JEO	0.50	OEL			ב	Water & propane das
		65	30.20	VALVE	2.00	GATE	Σ		GAS	Propose
_	ď	1	• •					_)	2500

SAMPL	SAMPLE CONTROL					W	SCREENING DATA	DATA					
		<u>8</u>	Initial	East	South	West	Final	East	South	West	Avg.	Bkgrnd	Corrected
٥	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)
Y-126			800	350	180	160	800	200	160	160	800	7	793
Y-127			3,000	800	200	1,400	3,000	800	1,000	2,500	3,000	7	2,993
Y-128			20	20	16	16	8	8	12	25	25	7	18
Y-129			200	140	16	20	220	120	20	30	525	2	515
Y-130	DUP		200	140	16	8	220	120	8	30	525	10	515
Y-131	AUDTD		200	140	16	20	550	120	8	30	525	9	515
Y-132	20		S.	S	rc.	3	ß	3	2	ß	2	S	0
Y-133			1,000	20	30	250	1,100	900	2	84	1,050	5	1.045
Y-134			18	10	0	10	90	25	14	25	24	2	19
Y-135	DZ		ıc	3	2	2	ις.	2	2	S	2	5	0
Y-136			110	180	18	95	110	100	100	6	110	2	105
Y-137			25	25	52	205	8	30	25	20	28	4	24
Y-138	DZ		က	က	က	ဇ	က	8	က	8	က	8	0
Y-139	DZ		က	8	9	6	8	n	6	9	8	3	0
Y-140	PEG/DINV		100,000				100,000				100,000	4	766,66
Y-141	DZ		5	5	2	2	4	4	4	4	4	4	0
7-7	ACCY						80				9	9	0
Z-2	<u>></u>	20	40				300				170	7	163
Z-3		20					52				28	-	27
Z-4		5					200				375	8	373
2-2	SINV	0	2,000				10,000				6,000	-	5,999
9-Z	SINV	20	S.				40,000				22,500	-	22,499
Z-7		20					150				163	8	160
8-Z			1,000				1,000				1,000	3	995
53	ر												
2-10	٦												
Z-11		0	2				3,000				2,500	2	2,498
Z-12							800				650	-	649
Z-13		10,000	æ				8,000				8,000	IC)	7,996
2-14		10,000					200				150	0	150
Z-15	PEG	10,000					100,000				100,000	1	666'66
2-16	PEG		140,000				140,000				140,000	0	140,000
Z-17	PEG		140,000				140,000				140,000	0	140,000
2-18		0	250				320				300	3	297
Z-19	N						200				150	2	148
Z-20		75					3,500				4,250	4	4,246
Z21		0	1,000				1,180				1,050	9	1,044

SAMPLE CONTROL		BAG CONCE	ONCENTRATION	NOI		NITROG	NITROGEN FLOW		OX	OXYGEN CONCENTRATION	CENTRATI	NO
	Initial	ब	Final	Avg	Initial	Final	Average	Ş	Initial	Final	Average	σ
ID Code	(mdd) el	Ê	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	*	ж	%	m3/hr
Y-126		140	130	135	5,522	5,454	5,488	5.49	0.40	0.20	0.30	0.33
Y-127		650	620	635	4,187	4,234	4,211	4.21	0.30	0.10	0.20	0.26
Y-128		55	75	65	4,843	4,882	4,863	4.86	0.20	0.10	0.15	0.29
Y-129		500	500	200	3,616	3,629	3,623	3.62	0.20	0.20	0.20	0.22
Y-130 DUP	<u> </u>	200	200	200	3,616	3,629	3,623	3.62	0.20	0.20	0.20	0.22
Y-131 AUDTD	10	88	200	200	3,616	3,629	3,623	3.62	0.20	0.20	0.20	0.22
Y-132 DZ		20	S	20	4,309	4,324	4,317	4.32	0.10	0.20	0.15	0.26
Y-133		310	320	315	2,951	2,918	2,935	2.93	0.20	0.20	0.20	0.18
Y134		75	75	75	5,365	5,388	5,377	5.38	0.10	0.10	0.10	0.32
Y-135 DZ	2	20	22	ß	3,643	3,673	3,658	3.66	0.20	0.20	0.20	0.22
Y-136		65	65	65	3,970	3,978	3,974	3.97	0.10	0.10	0.10	0.24
Y-137		45	45	45	1,906	1,964	1,935	1.94	1.20	2.60	1.90	0.13
Y-138 DZ	2	ස	တ္ထ	၉	1,843	1,831	1,837	1.84	0.20	0.10	0.15	0.11
Y-139 DZ	2	30	30	30	2,660	2,653	2,657	2.66	0.10	0.10	0.10	0.16
Y-140 PEG/DINV	NIC.	450	200	475	1,260	1,265	1,263	1.26	0.10	0.10	0.10	0.08
Y-141 DZ	7	30	30	30	4,335	4,335	4,335	4.34	4.40	4.20	4.30	0.33
4		875	1,042	959	1,029	1,060	1,045	1.04	2.10	2.10	2.10	0.07
Z-Z INV		1,577	1,162	1,370	2,404	2,439	2,422	2.42	3.00	4.00	3.50	0.17
2-3		145	130	138	2,429	2,512	2,471	2.47	4.50	3.00	3.75	0.18
		375	400	388	2,524	2,621	2,573	2.57	4.00	09.0	2.30	0.17
Z-5 SINV		8	1,750	1,325	2,587	2,614	2,601	2.60	3.50	1.00	2.25	0.17
	N.	7,500	000'6	8,250	2,379	2,421	2,400	2.40	4.00	08.0	2.40	0.16
<i>L</i> -Z		400	550	475	2,887	2,924	2,906	2.91	2.50	0.40	1.45	0.19
2-8		350	320	335	4,911	4,857	4,884	4.88	2.50	2.50	2.50	0.33
7 6-Z												
Z-10 L												
Z-11		9,000	13,000	10,500	2,132	2,104	2,118	2.12	4.50	4.50	4 .50	0.16
Z-12		8	32	28	975	1,040	1,008	1.01	0.00	0.70	0.80	0.06
Z-13		720	750	150	1,112	1,136	1,124	1.12	0.20	0.20	0.20	0.07
2-14		50	20	20	557	536	547	0.55	3.20	3.00	3.10	0.04
		100,000	100,000	100,000	264	568	266	0.57	0.30	0.40	0.35	0.03
Z-16 PEG		63,000	98,000	80,500	1,107	1,096	1,102	1.10	0.30	0.20	0.25	0.07
Z-17 PE		130,000	130,000	130,000	096	954	957	96.0	0.50	0.20	0.35	0.06
		400	400	400	2,525	2,533	2,529	2.53	4.00	2.00	3.00	0.18
Z-19 INV	>	150	220	185	807	837	822	0.85	0.40	0.70	0.55	0.05
2-20		900	950	925	2,187	2,212	2,200	2.20	2.50	0.20	1.35	0.14
2-21		1,500	1,400	1,450	2,280	2,303	2,292	2.29	3.00	2.50	2.75	0.16

WSPA EMISSION RATE CALCULATION SPREADSHEET

3					1						
SAMPL	SAMPLE CONTROL	6 2	BAG TEMPERATU	PERATU	뿔		RY1	LABORATORY DATA			
		Initial	Final	Avg.	Temp	Ž	NMOC	METHANE	ш	THC	
Ω.	Code	Ð	Œ	Œ	deg R	ppmv (as C3H8)	C3H8) ppmw (as C3H8)	ppmv (as CH4)	pmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
Y-126		78	8	8	239	NA	157.31	0.00	Q	_	157.31
Y-127		98	8	88	547	NA NA	1,729.68	0.00	00.0	1,100,00	1.729.68
Y-128		72	75	74	533	NA	77.10		00.0	49.00	77.10
Y-129		83	87	82	545	AN	251.73		0.00	160.00	251.73
Y-130	age.	83	87	82	545	NA	220.26		00.0	140.00	220.28
Y-131	AUDTD	83	87	92	545	NA	00.0		0.00		000
Y-132	DZ	58	28	28	518	NA	20'0	0.00	0.00	0.0475	20.0
Y-133		65	89	29	526	AA	246.66	•	36.53	180.00	283.19
Y134	1	82	8	8	546	AN	29,90		0.00	19.00	29.90
Y-135	ZO	74	74	74	534	ΑΝ	0.08	00'0	0.00	0.02	0.08
Y-136		72	22	22	293	¥	30.62	00'2	4.00	22.00	34.62
Y-137		74	92	25	535	AN	20.27	3.00	1.71	14.00	21.97
Y-138	70	26	22	26	515	Ϋ́	20.0	00.0	00.0	0.0475	0.07
Y-139	ZO	28	29	29	518	AN	20.0	00:0	00.0	0.0475	0.07
Y-140	PEG/DINV	74	74	74	534	W	260.53	150.00	85.63	220.00	346.16
Y-141	DZ	76	<u>8</u>	79	538	Y.	0.07	00:0	0.0	0.0475	0.07
1-7	ACCY	69	62	99	525	¥	267.69	770.00	438.27	450.00	705.96
2-7	<u>N</u>	140	152	146	909	Ϋ́	626.29	00:00	0.00	400.00	626.29
ا 7		8	112	107	267	AA	438.28	00:00	0.00	280.00	438.28
7-7		-11	23	=	211	AA	1,567.85	00.00	0.0	1,000.00	1,567.85
ç-7	SINV	120	153	137	286	Y.	3,134.14	00.0	0.00	2,000.00	3,134.14
9-7	SINV	132	43	138	297	AA	29,481.48	00.00	00:0	19,000.00	29,481.48
/-7		75	83	8	244	NA V	2,353.94	00.0	0.00	1,500.00	2,353.94
2 7		98	28	22	517	AA A	1,722.52	2.70	1.54	1,100.00	1,724.05
Z-10	ن ا										
Z-11		89	75	72	531	NA NA	24.790.08	10.00	5.62	16,000,00	24 705 74
2-12		ည	හු	63	523	NA	208.10	21.00	11.98	140.00	220.07
Z-13		55	23	54	514	NA	4,084.82	00:00	0.00	2,600.00	4.084.82
Z-14		26	54	22	515	NA A	23.50	00.00	0.00	15.00	23.50
G1-7	PEG	26	22	26	515	Ϋ́	111,666.24	00:00	0.0	74,000.00	111,666.24
91-7	PEG	63	22	9	250	Ϋ́	141,735.88	00.00	00:00	95,000.00	141,735.88
71-7	PEG	29	9	9	519	Ϋ́	256,642.96	00.00	00.0	180,000.00	256,642.96
81-7		09	0.	9	220	٧¥	1,065.28	0.00	00.0	00.089	1,065.28
61-7	2	64	40	9	524	NA	0.08	0.00	00.0	0,05	0.08
02-7		73	75	74	534	NA	1,365.97	0.00	00:00	870.00	1,365.97
12-7		4	4	74	534	Ϋ́	846.32	0.00	0.00	540.00	846.32

Page 15d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

SAMPLE CONTROL MOLEC ID Code O.1 Y-126 O.1 O.1 Y-128 O.1 O.1 Y-129 D.1 O.1 Y-130 DUP O.1 Y-131 AUDTD O.1 Y-132 DZ O.1 Y-134 DZ O.1 Y-135 DZ O.1 Y-136 DZ O.1 Y-137 DZ O.1 Y-139 DZ O.1 Y-139 DZ O.1 Y-136 DZ O.1 Y-137 DZ O.1 Y-138 DZ O.1 Y-139 DZ O.1 Y-140 PEG/DINV O.1 Y-141 DZ I.2 Y-141 DZ I.2 Z-4 SINV O.2 Z-5 SINV O.2 Z-6 SINV O.2 Z-7 O.2 <th>MW fi</th> <th>WEIGHT I</th> <th>DETERMINATION fraction MW frac</th> <th>MW fraction</th> <th></th> <th></th> <th>_</th> <th>EMISSION F</th> <th>RATE</th> <th></th> <th></th>	MW fi	WEIGHT I	DETERMINATION fraction MW frac	MW fraction			_	EMISSION F	RATE		
Code DUP AUDTD DZ DZ DZ DZ ACCY INV SINV SINV	WW fg			MW fraction	44147						
DUP AUDTD DZ	8				ΔW	NMOC	ō	Methane	au.	돤	
		28	N2	N2	Вад	(IP/hr)	(lb/yr)	(Ib/hŋ	(lb/yr)	(Ib/hr)	(lb/yr)
		0.0044	7.66	27.9	28.03	1.32E-04	1.16E+00	0.00E+00	0.00E+00	1.32E04	1.16E+00
		0.0485	2.66	27.9	28.05	1.09E-03	9.58E+00	0.00E+00	0.00E+00	1.09E-03	9.58E+00
		0.0022	8.66	28.0	28.03	5.76E-05	5.05E-01	0.00E+00	0.00E+00	5.76E-05	5.05E-01
		0.0071	8.66	28.0	28.03	1.37E-04	1.20E+00	0.00E+00	0.00E+00	1.37E-04	1.20E+00
		0.0062	8.66	28.0	28.03	1.20E-04	1.05E+00	0.00E+00	0.00E+00	1.20E-04	1.05E+00
		0.0000	8.66	28.0	28.03						
	L	0.0000	8.66	28.0	28.03	5.10E08	4.47E-04	0.00E+00	0.00E+00	5.10E-08	4.47E-04
	-	0.0079	8.66	28.0	28.03	1.13E-04	9.90E01	1.67E-05	1.47E-01	1.30E-04	1.14E+00
	0.0	0.0008	6.66	28.0	28.02	2.41E-05	2.11E-01	0.00E+00	0.00E+00	2.41E-05	2.11E-01
	0.1	0.0000	8.66	28.0	28.03	4.43E08	3.88E-04	0.00E+00	0.00E+00	4.43E-08	3.88E-04
	0.0	0.0010	6.66	28.0	28.02	1.87E-05	1.64E-01	2.44E-06	2.14E-02	2.11E-05	1.85E-01
		90000	98.1	27.5	28.10	6.57E-06	5.76E-02	5.54E-07	4.85E-03	7.13E-06	6.24E-02
90 0 -	0.0	0.0000	8.66	28.0	28.03	2.18E-08	1.91E-04	0.00E+00	0.00E+00	2.18E-08	1.91E-04
9.5		0.000	6'66	28.0	28.02	3.13E-08	2.74E-04	0.00E+00	0.00E+00	3.13E-08	2.74E-04
=		0.0097	6.66	28.0	28.03	5.04E-05	4.41E-01	1.66E-05	1.45E-01	6.69E05	5.86E-01
	1.4	0.0000	95.7	26.8	28.19	6.16E-08	5.39E-04	0.00E+00	0.00E+00	6.16E-08	5.39E-04
		0.0198	97.9	27.4	28.11	4.83E05	4.23E-01	7.90E-05	6.92E-01	1.27E-04	1.116+00
		0.0176	96.5	27.0	28.17	2.46E-04	2.15E+00	0.00E+00	0.00E+00	2.46E-04	2.15E+00
		0.0124	3.96	27.0	28.17	1.90E04	1.67E+00	0.00E+00	0.00E+00	1.90E-04	1.67E+00
		0.0441	97.6	27.3	28.13	6.41E-04	5.62E+00	0.00E+00	0.00E+00	6.41E04	5.62E+00
	0.7	0.0882	97.6	27.3	28.14	1,25E-03	1.10E+01	0.00E+00	0.00E+00	1.25E-03	1.10E+01
7-2		0.8381	95.7	26.8	28.42	1.10E-02	9.66E+01	0.00E+00	0.00E+00	1.10E-02	9.66E+01
	0.5	0.0662	98.4	27.6	28.10	1.10E-03	9.65E+00	0.00E+00	0.00E+00	1.10E-03	9.65E+00
-		0.0485	97.4	27.3	28.14	1.51E-03	1.32E+01	1.35E-06	1.18E-02	1.51E-03	1.32E+01
7 - A											
Z-10 L											
2-11		0.7058	93.9	26.3	28.46	1.04E-02	9.10E+01	2.36E-06	2.06E-02	1.04E-02	9.10E+01
Z-12		0.0062	99.2	27.8	28.05	3.39E-05	2.97E-01	1.95E-06	1.71E-02	3.59E-05	3.14E-01
Z-13		0.1147	99.5	27.9	28.07	7.35E-04	6.44E+00	0.00E+00	0.00E+00	7.35E-04	6.44E+00
		0.0007	6.96	27.2	28.14	2.39€06	2.09E-02	0.00E+00	0.00E+00	2.39E-06	2.09E-02
Z-15 PEG	0.1	3.2641	92.3	25.8	29.22	1.06E-02	9.27E+01	0.00E+00	0.00E+00	1.06E-02	9.27E+01
Z-16 PEG		4.1905	90.3	25.3	29.56	2.61E-02	2.28E+02	0.00E+00	0.00E+00	2.61E-02	2.28E+02
Z-17 PEG	0.1	7.9398	81.7	22.9	30.93	4.32E-02	3.78E+02	0.00E+00	0.00E+00	4.32E-02	3.78E+02
Z-18		0.0300	6.96	27.2	28.15	4.94E-04	4.32E+00	0.00E+00	0.00E+00	4.94E-04	4.32E+00
VNI 61-Z	0.5	0.0000	99.4	27.9	28.04	1.03E-08	9.03E-05	0.00E+00	0.00E+00	1.03E-08	9.03E-05
Z-20	4	0.0384	98.6	27.6	28.09	4.90E04	4.30E+00	0.00E+00	0.00E+00	4.90E-04	4.30E+00
Z-21	6.0	0.0238	97.2	27.2	28.14	3.41E-04	2.99E+00	0.00E+00	0.00E+00	3.41E-04	2.99E+00

Page 15f

SAMP	SAMPLE CONTROL	AMBIEN	AMBIENT CONDITI	ITIONS		COMPONENT DATA	NT DATA			STREAM	STREAM CHARACTERISTICS
		Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
₽	Code	(mph)	Ē	Pressure (*Hg)		(Inches)	•	Actuation	X	Service	Product
2-55	PEGI	2.5	65	30.00	PUMP	2.00	오		z	3	Propane
Z-23		7.5	53	29.80	PUMP	4.00	오		>	1	Propane
-24	DUP	7.5	53	29.80	PUMP	4.00	오		>		Propana
2-25	SINV	2.5	53	29.92	VALVE	8.5	GATE	Σ			Nantha
-56	PEG	3.0	\$	29.96	ပ	8	F				Nembho
Z27	PEG	3.0	8	29.92	O	1.8	E			d =	Nexten
-58										1	INGPIN
Z-29	٦										
Z-30											
31		3.0	88	29.92	VALVE	4.00	GATE	2		=	Months
32		7.5	59	29.92	O	4	ū			d =	Billiday
Z-33		2.5	55		VALVE	00 4	GATE	Z		1	NA DOUB
Z-34	DUP	2.5	55		VAIVE	8	GATE	2		1 =	
Z-35		2.5	55			2	1	>		4 =	
2-36		7.5	19		c	5	ū	-		1:	17
Z-37	PEG	2.0	88		OEL	0.50	OF			- - - - -	Naptha - DO
Z-38		4.0	57		VALVE	12.00	GATE	Σ		<u> </u>	North
Z-39		10.0	26		O	8.	ŧ			3 =	Newthe
2-40		7.5	26	30.00	VALVE	3.00	GATE	Σ			Hthana
Z-41	DZ	12.5	55	30.00	VALVE	0.75	GATE	2		=	Newthe
Z-42	DZ/AUDTT	12.5	55	30.00	VALVE	0.75	GATE	2			Neothe
Z-43	DZ/AUDTT	12.5	22	30.00	VALVE	0.75	GATE	2			Newspaper
Z-44	DZ/AUDTT	12.5	54	30.00	VALVE	0.75	GATE	2		 -	Nontha
5	DZ/AUDTT	12.5	54	30.00	VALVE	0.75	GATE	2		=	Nonth
Z-46	AUDTC	-								1	DE LA COLOR
Z-47	AUDTC										
Z-48	DZ	2.5	59		O	3.00	교				C1 - C5 Predom butene
Z-49	DZ	2.5	22		ပ	3.00	11				C1 - C5 Predom butane
7-50	DZ	2.5	26		ပ	3.00	ď			1	C1 - C5 Predom butene
Z-51	PEGF	7.5	52	30.20	VALVE	3.00	GATE	Σ		3	C1-C5 Predom butane
Z-25	SINV	2.5	62		VALVE	0.50	BALL	2		ī	Jase J.
Z53		7.5	63		VALVE	0.50	BALL	Σ		Ī	lose C
Z-54		7.5	83		OEL	1.00	OEL.			로	Tose L
Z-55	AUDTD	7.5	63		OEL	1.00	OEL			로	lesel
Z-56		7.5	29	30.10	VALVE	4.00	GATE	Σ			Hasty napths
Z-57		7.5	64	30.10	O	300	Œ			=	Diodomor
•										1	

Page 16a

	Corrected	(man)	(mdd)	103,040	888.	666'/	129	116,995	116,996			134	966	74	74		296	139,998	1,243	19,304	34	0	0	0	0	0		0	0	0	138,699	1,996	11,494	1,098	1,098	595	4 FAB
	Bkarnd		ייים	2 -		-	4	2	4			4	4	-	-		ı,	2	7	-	2	-	-	-	-	-		-	-	-	1	4	9	ဇ	က	5	0
	Ava	(E 44)	103 550	200	300	3	133	117,000	117,000			138	2.000	75	75		009	140,000	1,250	18,305	co,		-		- -	-		-	-	1	138,700	2,000	11,500	1,100	1,100	900	1 550
	West	(maa)	7											8	ଷ		CL					N	2	N	7 0	3		-	-	-							
	South	(maa)	-											20	90		2				•	N	N C	7 0	40	7		-	-	-							
ATA	East	(maa)												22	25	600	300				,	N C	N C	V C	2 0	4		1	-	-							_
SCHEENING DATA	Final	(maa)	8	8.000	000	190	447 000	200,711	2000,			125	2,000	8	86	001	200	200	17 550	200,7	3 6	7 0	7	7 0	10	•		-	-	-	146,000	3,000	12,000	1,200	1,200	750	7
Ö	West	(mdd)		-												-		50	2 4	200	3																-
	South	(mdd)						-										150	3 5	100	,																_
	East	(mdd)																150	3,000	20												-					_
	Initial	(mdd)	109,000	8,000	8,000	75	117,000	117,000	200			150	2,000	09	2	200	140.000	1 000	21.060	04	-	-	-	-	-			-	-	1007 707	004,4	3 5	200	000,	03,1	004	- 220
	™	(mdd)	0	30	30	75						0		20	06			100		09	0	0	0	0	0					4	2						_
SAMPLE CONTROL		Code	PEGI		DOP	SINV	PEG	PEG		اد				9	- B		PEG				ZQ	DZ/AUDTT	DZ/AUDTT	DZ/AUDTT	DZ/AUDTT	AUDTC	AUDTC	77 6	70	0505	NIN NIN			ALINTO	2000		-
SAMPLI	!	Ω :	Z22	Z-23	-24	Z-25	2-26	-27	Z28	Z-29	စ္က	Z-31	700	2-33	7-35	Z-36	Z-37	Z-38	39	Z-40	4	Z-42		L		Z-46	47	05-7	64-7	7-51	7-52	7-53	7-54	7.55	7-56	7-57	-

SAMPLE CONTROL	NTROL.	BAG	BAG CONCENTRATION	NOTA		NITRO	NITROBEN FLOW		ŏ	OXYGEN CONCENTRATION	CENTRATI	NO.
		Initial	Final	Avg	Initial	Final	Average	ZZ Z	Initial	Final	Average	Œ
	Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	*	*) }	m3/hr
	PEGI	2,000	2,800	2,400	3,997	4,007	4,002	8.4	2.00		1.75	0.26
Z-23		1,200	1,200	1,200	13,100	13,100	13,100	13.10	4.50		4 25	8
	DUP	1,200	1,200	1,200	13,100	13,100	13.100	13.10	4 50		4 25	600
	SINV	250	180	215	2.673	2.651	2.662	2 66	090	000	040	0.00
	PEG	100,000	100,000	100,000	695	200	698	0.70	0.50		0,00	0.70
	PEG	100,000	100.000	100,000	779	282	785	97.0	2000	300	5.0	0.0
			200	200,001	R	3	20/	0.78	0.90		0.40	0.05
	1											
Z-30												
Z-31		120	110	115	4,007	4.057	4.032	4 03	2 50	5	27.6	00.0
Z-32		1,400	1,400	1.400	1.988	2.056	2 022	200	20.0		00.0	0.50
Z-33		02	02	202	4.670	4.828	4.749	4 75	1 40		03.0	0.16
	DUP	8	80	8	4.670	4 R2R	4 749	4 75	04.1		80.0	00.0
Z-35							2	2	?		S S	00.00
		20	12	16	4,309	4,359	4.334	4.33	020	0.20	00.0	90.0
	PEG	45,000	50,000	47,500	4,095	4,095	4,095	4.10	0.20		0.20	0.05
Z-38		8	006	820	8,658	8,658	8,658	9.66	3.50		3.50	0.62
Z-39		2	S.	8	1,839	1,835	1,837	1.84	0.20		0.20	0.11
Z-40	Ī	21	23	22	2,466	2,494	2,480	2.48	2.60	0.50	1.55	0.16
-	70	13	12	13	2,263	2,236	2,250	2.25	2.50		3.25	0.16
+	Ligh	8	120	110	2,232	2,308	2,270	2.27	1.50	3.00	2.25	0.15
Z-43 DZ/AUDTT	ПОП	8	120	110	2,232	2,308	2,270	2.27	1.50		2.25	0.15
	TION	380	420	400	2,217	2,241	2,229	2.23	2.00		2.75	0.15
		380	420	8	2,217	2,241	2,229	2.23	2.00	3.50	2.75	0.15
2-47 AU	AUDIC											
	ZQ	22	20	21	1.926	1.911	1 919	1 92	0 40	000	00.0	0 + 0
	DZ	16	16	16	1,915	1,933	1.924	1.92	0.20		0000	0 0
	DZ	19	19	19	3,220	2,255	2,738	2.74	0.80		0.60	0.17
-	PEGF	10,000	11,000	10,500	4,010	4,004	4,007	4.01	2.00	0.20	1.10	0.25
-	>	110,000	110,000	110,000	1,675	1,619	1,647	1.65	0.20	0.20	0.20	0.10
Z-53		2,000	12,000	9,500	1,741	1,718	1,730	1.73	0.20	0.20	0.20	0.10
-		009	700	650	1,557	1,535	1,546	1.55	1.50	1.30	1.40	0.10
2-55 AUDID	010	009	200	650	1,557	1,535	1,546	1.55	1.50	1.30	1.40	0.10
26-7		270	260	265	3,050	3,007	3,029	3.03	3.20	1.00	2.10	0.20
70-		000	320	320	2,038	1,538	1,788	1.79	0.40	0.40	0.40	0.11
90-		90	06	82	3,466	3,505	3,486	3.49	2.80	09.0	1.70	0.23

SAMPLE CONTROL	4	BAG TEMPERATURE	APERATI	H		EX	LABORATORY DATA			
	Initial	Final	Avg.	Temp	Z	NMOC	METHANE	¥	THC	0
	Œ	(F)	(F)	des	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
Z-22 PEGI	68	68					00.0		2,200.00	3,449.59
	81	71	92	536	AN	32.85	00.0			32.85
	8	71			Ϋ́	250.29	00'0			250.29
	74	89			¥	34.61	00'0			34.61
PEG	22	57			Ą	23,393.35				23,393,35
	9	59			Ϋ́	52,457.79		0.00	34,000.00	52,457.79
Z-29 L										
Z-31	29	99		526	NA	2,036.56	00'0	0.00	1,300.00	2,036.56
	74	77	9/	535	¥	563.63	4.70			566.32
	101	96	66	228	¥	298.66	00'0	0.00		298.66
DUP	5	107	104	564	¥	308.06	11.00	6.27		314,34
Z-35 L										
	191	201	196	929	¥	42.48	0.00	0.00	27.00	42.48
Z-37 PEG	64	64		524	N N	138,153.85	1,400.00	758.70)'66	138,912.55
	09	64		522	Ϋ́	4,220.17	3.10	1.76	2,700.00	4,221.93
Z-39	99	55		515	AN	141.60	00'0	00.0	90.06	141.60
	29	09		519	NA	13.03	0.00	00'0		13.03
	26	54		515	AN	0.39	00'0	00'0	0.25	0.39
Z-42 DZ/AUDTT	22	53		514	AA	310.72	5.30	3.02	ă	313.74
DZ/AUDTT	52	53			NA	282.37	00'0	00:00		282.37
	53	51		512	NA	1,143.98	00'0	00.0	730.00	1,143.98
	53	51			Y.	1,090.16	12.00			1,096.99
Z-46 AUDTC					NA AA	358.97	9.20		230.00	361.94
Z-47 AUDTC		_			A A	314.74	00.0		200.00	314.74
	89	99		528	Ϋ́	3.46	00.00		2.20	3.46
Z-49 DZ	7	69	2	230	A A	0.02	00.00			20.0
	58	54			¥ ¥	0.94	00.00		09.0	0.94
Z-51 PEGF	26	26	56		NA	21,745.52	140.00	7	14,000.00	21,824.71
SINV	78	8			ΑĀ	85,367.62	00.00		26,000.00	85,367.62
Z-53	82	86	84	544	¥ Y	18,751.97	00.0		12,000.00	18,751.97
	65	65			ΨV	957.82				957.82
Z-55 AUDTD	65	65		525	NA	832.25	00.0	00'0	530.00	832.25
2-56	75	75		535	NA	486.36	00.00		310,00	486.36
	75	70		532	NA	1,336.38		00.00	850.00	1,336.38
	ď	A	Y	UCU		C1 207	40.0			

Page 16e

2.04E+01 7.22E-01 5.50E+00 1.24E-01 2.31E+01 5.87E+01 1.88E+00 2.02E-01 8.23E+02 4.80E-02 1.45E-03 1.11E+00 9.99E-01 4.10E+00 3.93E+00 1.54E+00 6.03E+01 3.63E-01 9.10E-03 1.85E-04 3.68E-03 1.29E+02 1.28E+01 1.88E+00 2.19E+00 3.26E+00 5.43E-01 1.94E+02 2.16E+00 4.32E+01 (lb/hr) 2.33E-03 8.24E-05 6.28E-04 1.41E-05 2.64E-03 6.70E-03 2.15E-04 2.25E-04 2.31E-05 9.40E-02 6.88E-03 4.15E-05 5.48E-06 1.47E-03 4.68E-04 4.49E-04 1.47E-02 2.21E-02 3.73E-04 6.20E-05 1.65E-07 1.27E-04 1.14E-04 2.11E-08 4.20E-07 4.93E-03 2.46E-04 2.14E-04 2.50E-04 SORTED BY CATEGORY AND CORRECTED SCREENING VALUE 0.00E+00 0.00E+00 0.00E+00 7.29E-03 0.00E+00 3.94E-02 0.00E+00 0.00E+00 0.00E+00 4.50E+00 2.51E-02 0.00E+00 0.00E+00 1.07E-02 0.00E+00 0.00E+00 0.00E+00 2.45E-02 0.00E+00 4.67E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 EMISSION PATE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.32E-07 0.00E+00 4.50E-06 0.00E+00 2.87E-06 0.00E+00 0.00E+00 1.22E-06 0.00E+00 0.00E+00 0.00E+00 2.79E-06 5.33E-05 0.00E+00 0.00E+00 0.00E+00 5.13E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 (lb/yr) 2.04E+01 7.22E-01 1.24E-01 2.31E+01 5.87E+01 1.88E+00 1.28E+01 1.53E+00 5.50E+00 2.02E-01 8.19E+02 6.03E+01 3.63E-01 4.80E-02 1.45E-03 1.10E+00 8.99E-01 4.10E+00 9.10E-03 1.85E-04 3.68E-03 1.28E+02 1.94E+02 1.88E+00 2.19E+00 3.26E+00 5.43E-01 3.91E+00 2.16E+00 4.32E+01 8.24E-05 6.28E-04 1.41E-05 2.64E-03 6.70E-03 2.33E-03 1.47E-03 1.75E-04 2.15E-04 2.21E-04 2.31E-05 9.34E-02 6.88E-03 4.15E-05 5.48E-06 1.65E-07 1.14E-04 1.04E-06 2.11E-08 1.46E-02 2.21E-02 4.68E-04 3.73E-04 6.20E-05 4.46E-04 4.20E-07 4.93E-03 2.14E-04 2,46E-04 2.50E-04 28.13 28.19 28.19 28.28 28.28 28.03 28.03 28.05 28.06 28.03 28.20 28.20 28.03 28.08 28.11 28.11 28.02 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 WSPA EMISSION RATE CALCULATION SPREADSHEET 27.5 26.8 26.8 27.9 27.5 27.2 28.0 27.8 27.8 MW fraction DETERMINATION 98.0 95.7 99.6 98.1 99.8 99.2 % fraction 90.5 96.5 98.4 97.7 97 MOLECULAR WEIGHT 0.0970 0.0009 0.0071 0.0010 0.6617 0.0573 0.0159 1.4997 0.0004 MW fraction 0.0084 0.0040 0.0322 0.0000 0.0012 0.1191 0.0101 0.0001 0.0000 0.6175 2.4702 0.5293 0.0137 0.0375 0.0269 0.0234 9.0 4 4. MW fraction 0.3 0.1 0.7 0.9 0.9 0.0 0.0 0 0 0 6.0 0 0 0.1 0.1 4.0 0.7 SAMPLE CONTROL DZ/AUDTT DZ/AUDTT DZ/AUDT DZ/AUDTT AUDTC 20 SIN PEG PEG AUDTC PP AUDTD PEG PEGF 2 70 20 ₽
 12-23

 12-24

 12-24

 12-24

 12-26

 12-26

 12-26

 12-26

 12-27

 12-29

 12-29

 12-29

 12-29

 12-31

 12-31

 12-31

 12-31

 12-31

 12-31

 12-31

 12-31

 12-31

 12-31

 12-32

 12-44

 12-45

 12-51

 12-52

 12-53

 12-54

 12-53

 12-54

 12-54

 12-54

 12-54

 12-54

 12-54
 Z-55 Z-56 2-57

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

0.00E+00

	SAMPLE CONTROL	AMBIEN	AMBIENT CONDITIONS	ITIONS		COMPONE	COMPONENT DATA			STREAM	STREAM CHARACTERISTICS
٥	,	pe	Temp.	Barometric	Category	Size	Туре	Valve	Load		
	Code	(mph)	<u>(</u>	Pressure (*Hg)		(Inches)		Actuation	X	Service	Property
	OIIN	12.5	99	30.00	ပ	4.00	Ŧ			Ī	Strip btme to etc
7 64		6/	98	30.00	ပ	1.50	כ			GAS	Bis of Superior
		7.5	20	30.00	OEL		OEL			040	Lopane
	SINV	12.5	29	30.00	PRV	8	VAG			200	Propane
9		7.5	28	29.90	VALVE	5	Jac le			CWO	Propane
4	_	7.5	20	30 10		3	GLODE	Σ		GAS	Propane
2-65	_	7.5	97	30.00						GAS	Propane
	PEG	3.0	57	20.00						GAS	Propane
	PEG/DUP	30	27	00.00		2	0			GAS	Propane
	PEG/AUDTD	0	2	29.30	٥	00.	0			GAS	Propane
		2 4	2	28.88	٥	1.50	D			GAS	Propane
		2,5	8	30.00	VALVE	8.8	GATE	Σ		1	Naptha
	VAIN	0.7	8 1		ပ	- 8	프			1	Naptha
		0.	6	30.00	VALVE	3.00	GATE	Σ		=======================================	Nantha
7-73	CIAIV	0	25	30.00	PUMP	6.00	유		>		Propaga (hutene
+	ANIC	12.5	24	29.95	VALVE	8.00	GATE	Σ			Newtho
		12.5	22	29.98	VALVE	3.00	GATE	Σ			Nootha
		7.5	28							!=	Maprila
	_	7.5	55	30.00						4 -	Naptha
	_	12.5	22	29.95						1 -	Naptha
2-78	ВГ							Ī		1	Naptha
	PEG	5.0	9	30.33	VAIVE	5	200.00			0.0	
Z-80	PEG	2.0	65	30.33	VALVE	3	OF COL	Σ :		GAS	Fuel stream
	PEG	7.5	26	30.33	VALVE	80.0	al Const	Σ.		GAS	Fuel stream
	PEG/AUDTD	7.5	56	30.33	VALVE	300	GLOBE GLOBE	Σ:		GAS	Fuel stream
Z-83	DZ	7.5	54	30.50	VALVE	3.00	GLOBE GLOBE	2		GAS	Fuel stream
	DZ	7.5	2	30.12	VALVE	00.5	GLOBE	Σ		GAS	Fuel gas
		7.5	53	20.15	VALVE	20.0	GAIE	Σ		GAS	Fuel gas
Z-86		7 2	3 6	20.16	VALVE	9.00	GATE	Σ		GAS	Fuel gas
Z-87		7 2	ğ	2000	VALVE	9.00	GATE	Σ		GAS	
2-88		7.0	9 8	30.12	VALVE	8.00	GATE	Σ		GAS	Fuel gas
-	20	0.0	8	30.12	VALVE	3.00	GATE	Σ		로	Platformate to storage
	120	2 1	8	30.08	VALVE	6.00	GATE	Σ		GAS	Fire cas
-	3	0.	23	30.08	VALVE	6.00	GATE	Σ	-	GAS	0 C C C C C C C C C C C C C C C C C C C
		6.7	40	30.08	VALVE	00.9	GATE	Σ		GAS	
76-7	ביינו פיינו	7.5	26		VALVE	4.00	GATE	Σ		11	Dronand gas
	70	7.5	54	30.02	VALVE	8.00	GATE	2		Ī	Dimotol 1
	77	7.5	26	30.02	VALVE	8.00	GATE	2	>	1 3	das oll
										č	: (: (: : : : : : : : : : : : : : : :

WSPA EMISSION PATE CALCULATION SPREADSHEET

		:		SCREENING DATA	DATA					
(ppm) (ppm) (ppm)		South (ppm)	West (nom)	Final (nom)	East (nom)	South	West	Avg.	Bkgrnd	Corrected
76,650	Ш		7	21,900	hind all	n del	(midd)	49.275	(ppm)	(mdd) 49 272
400	-			200				450		446
800	4			1,000				006		893
1,200	+			4,000				2,600	5	2,595
00/'69	+			65,700				65,700	-	62,699
	+									
100,000	1			100,000				400 000	5	000
100,000				100.000				10000	2 5	000'00
1	Ц			100,000				100,000		000000
30 1,400				2,000				1.700		1 695
20,000	_			35,000				27,500		27.493
	\dashv			20,000				50,000		49,995
	4			2,000				5,000	က	4.997
60 50	\downarrow			180				115	9	105
	1			30,000				40,000	4	39,997
	\perp									
	L									
	-									
	\sqcup			100,000				100.000	10	066 66
		4,000	1,000	100,000	200	1,000	1,000	_	2	066'66
100,000 50,000		250	7,500	100,000	20,000	200	100,000		၉	99,997
000'00 000'001	_	250	7,500	100,000	20,000	200	100,000	100,000	3	99,997
	\downarrow	-	- -	- -	- -	- ,		-	-	0
1,900		700	- 800	0000	1 000	- 002	- 000	- 000	- -	0
	L	400	75	400	100	400	300			D 00
350 200		300	150	320	202	160	275		7	700
2,000	<u> </u>	400	200	2,200	300	400	200	C	1 0	2000
	L	-	-	7	3	7	3		9	2,098
	1	-		-	-	-	- +	-	-	0
2.500	Ļ	006	1001	- 000 0	1 800	- 000	- 000	- 020		0 0
100		100.000	100 000	100,000	2001	2002	200	2,350	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2,343
	-	1		777	+			20,20	0	38,995
	_	-	-		-	 	-	- -	- -	0
	+		- -	-	- -	- -	-	= ,	-	0
	İ	-	7		-	-		_	1	0

Page 17b

SAM	SAMPLE CONTROL	BAG	BAG CONCENTRA	NTRATION		NITROG	NITROGEN FLOW		νχο	OXYGEN CONCENTRATION	CENTRATE	NO
!		Initial	Final	Avg	Initial	Final	Average	Š	Initia	Final	Average	C
2	Code	(mdd)	(mdd)	ррш	ml/min	ml/min	ml/min	/win	8	74	8	, de
Z-29	>NIS	16,000	19,000	17,500	2,360	2,311	2,336	2.34	0.30	0.30	08.0	101
09-7		200	450	475	1,830	1,854	1,842	1.84	0.20	020	08.0	5 0
7-61		180	160	170	1,420	1.490	1.455	1.46	0.00	0000	200	- 6
Z-62	SINV	35	24	90	3.964	3 983	3 974	2 0 7	000	000	0.50	80.0
Z-63		3,000	2.700	2.850	3 133	3 208	3 474	0.0	00.0	0.60	0.40	0.24
Z-64				2001	31.5	0040	2,1,0	2.5	0.50	0.30	0.40	0.19
Z-65												
99-Z	PEG	3,500	3,500	3.500	2.135	2 105	2 120	0,0	0	000		
Z-67	PEG/DUP	3,500	3,500	3.500	2 135	2 105	2 120	2 12	0.20	0.20	0.20	0.13
2-68	PEG/AUDTD	3,500	3,500	3.500	2 135	2 105	2 120	2 12	0.20	0.20	0.20	0.13
69-Z		2,450	2.350	2.400	2 353	2 325	2 230	2.12	0.20	0.20	0.20	0.13
2-70		58,100	50.000	54 050	1 241	1 267	4 254	4.04	0.00	0.30	0.30	0.14
122	SINV	11,800	11 000	11 400	4 440	7007	1000	67.1	20.0	1.30	1.15	0.08
2-72		4 000	4 000	800	200	1000	000	04.40	2.60	0.60	1.60	0.29
Z-73	SINV	480	450	AGE.	31.5	13,100	3,100	13.10	4.00	2.00	3.00	0.92
7-74		2	200	202	4 4	4,183	4,165	4.17	2.00	- 90	1.95	0.28
2-75		30.	000'1	3,	4,3/0	4,410	4,390	4.39	2.40	0.40	1.40	0.28
9 <i>Z</i> -Z				T								
2-77								Ī				
2-78	186											
-79	PEG	100.000	100 000	100 001	5 334	6 270	2000	00 4				
2-80	PEG	34,000	34,000	34 000	0000	2000	2,502	0.00	0.20	0.20	0.20	0.32
2-81	PEG	100,000	100,000	000,001	000,00	10,000	300	20.00	0.20	0.20	0.20	0.61
Z-82	PEG/AUDTD	100,000	100,000	100,001	20,000	10,000	2000	00.00	0.13	0.15	0.15	1.21
83	DZ	-	-	7	20,00	086.61	C 200	20.00	0.13	0.15	0.15	1.21
Z-84	50		-		2,104	2,000	180,2	2.08	0.20	0.20	0.20	0.13
Z-85		2 800	2 800	- 000 0	10,300	000	001,01	10.10	0.15	0.15	0.15	0.61
2-86		21000	2000	2,000	001,100	12,700	006,11	1.90	0.20	0.15	0.18	0.72
2-87		178	+07	203	006'6	006'6	006'6	06.6	0.20	0.20	0.20	0.60
7_88		0/1	081	/8/2	006,8	9,900	006'6	06.6	0.20	0.20	0.20	09'0
7 80	20	074	000	382	006'/	7,900	2,900	7.90	0.15	0.15	0.15	0.48
2-90	3 2	- 0	-		8,300	8,300	8,300	8.30	0.10	0.10	0.10	0.50
7-01	70	00.3	6/.	7	7,336	7,336	7,336	7.34	0.15	0.15	0.15	0.44
7 00	000	056,1	184	1,157	8,300	8,300	8,300	8.30	0.15	0.15	0.15	0.50
7-03	7.0	0,0,4	5/2/4	14,9/3	13,100	5,100	9,100	9.10	0.15	0.15	0.15	0,55
200	27) - 0	2 1		086'6	10,500	10,240	10.24	0.15	0.15	0.15	0.62
7-95	200	2 2 2	4.06	2)	006,6	11,300	10,600	10.60	0.20	0.15	0.18	0.64
3]	4.60	67:4	4	9,800	9,800	9,800	9.80	0.15	0.15	0.15	0.59

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAMP	SAMPLE CONTROL	65	AG TEM	RAG TEMPERATUR	Ä		EVS	LABORATORY DATA			
		Initial	Final	Avg	Temp	Ž	NMOC	METHANE	in the second	THC	
٥	Code	<u>(i</u>	Ē	, Œ	deg R	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (88 C3H8) p	ppmw (as C3H8)
Z-59	SINV	63		65	525		79,435.73	\vdash	00.0	52,000.00	79,435.73
2 -6 0		69	29	99	528	A'A	320.49	_		240.00	377.57
Z-61		89	54	61	521	AN A	99.03	47.00	26.83	80.00	125.86
Z-62	SINV	64	64	64	524	AN	6.45		00'0	4.10	6.45
Z-63		29	69	89	528	AN A	2,397.80	480.00	273.67	1,700.00	2,671.46
Z-64	ب										
2-65											
99-Z	PEG	19	61	61	521	Ā	894.50	720.00	410.82	830.00	1,305.32
2-67	PEG/DUP	6	61	61	521	NA A	1,014.56			910.00	1,431.07
Z-68	PEG/AUDTD	19	61	61	521	A'N	758.06	+	798.75	00.066	1,556.81
69-Z		160	153	157	616	AN	6,903.41	2.20	1.25	4,400.00	6,904.67
2-70		56	8	82	518	NA	203,638.92		0.00	140,000.00	203,638.92
Z-71	SINV	61	99	64	523	NA A	24,845.88	U,	50.81	16,000.00	24,896.69
Z-72		69	99	99	527	NA	7,013.31	37.00	20.98	4,500.00	7,034.29
Z-73	SINV	5	104	102	299	AN	988.45			00'069	988.45
Z-74		51	58	55	514	NA	2,815.90	15.00	8.54	1,800.00	2,824.44
Z75											
2-76											
Z-77	7										
2-78	94					AN	10.01	00.00	00.00	6.40	10.07
Z-79	PEG	62	63	63	522	ΑN	62,849.32	240,000.00	127,491.48	130,000.00	190,340.79
Z-80	PEG	99	92	99	525	ΑN	1,988.39	_	10,229.65	7,800.00	12,218.04
2-81	PEG	28	56	25	517	NA A	264.42	5,600.00	3,193.00	2,200.00	3,457.42
Z-82	PEG/AUDTD	28	56	25	517		0.00		00.00		00.0
Z-83	DZ	53	51	52	512	AN	5.51			3.50	5.51
Z-84	DZ	54	54	54	514	NA	2.99			1.90	2.99
Z-85		54	55	22	514	NA	133.81	9	8	310.00	487.69
2-86		28	25	28	517	NA	12.85			43.00	99'29
Z-87		28	28	28	518	NA	12.73	-	•		75.52
Z-88		63	63	63	523	NA	849.45	00:00		240.00	849.45
Z-89	DZ	26	22	22	516	Ϋ́	0.07				20.0
2-90	DZ	54	54	54	514	NA	0.07		00'0		0.07
2-91		22	52	55	515	NA	40.67	480.00	274.00	200.00	314.67
Z-92	PEG	56	55	26	515	ΑN	31,113.56			20,000.00	31,113.56
Z-93	DZ	55	54	55	514	AN	0.07				0.07
Z-94	DZ	58	58	58	518	AN	20.0			0.045	0.07
Z-95	DZ	25	25	25	217	AN AN	0.07	0.00	0.00	0.045	0.07

Page 17d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

0
_
Ф
ag
ĭ

_	-					_						1
SAMPI	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	DETERMINATION	MATION				EMISSION PATE	RATE		
		MW fraction	MW fraction	% fraction	MW fraction	Š	NMOC	႙	Methane	eut.	1H	
Q	Code	05	СЗНВ	N2	N2	Bag	(Ib/hr)	(Ib/yr)	(Ib/hr)	(lb/yr)	(Ib/hr)	(Ib/yr)
Z-59	SINV	0.1	2,2937	94.5	26.5	28.87	3.00E-02	2.63E+02	0.00E+00	0.00E+00	3.00E-02	2.63E+02
09-Z		0.1	0.0106	8.66	28.0	28.03	9.19E05	8.05E-01	1.64E-05	1.43E01	1.08E-04	9.48E-01
Z-61		0.1	0.0035	7.66	27.9	28.03	2.28E-05	2.00E-01	6.17E-06	5.41E-02	2.90E-05	2.54E-01
Z-62	SINV	0.1	0.0002	9.66	27.9	28.04	4.06E-06	3.55E-02	0.00E+00	0.00E+00	4.06E-06	3.55E-02
Z-63		0.1	0.0750	99.4	27.9	28.06	1.20E03	1.05E+01	1.36E-04	1.20E+00	1.33E-03	1.17E+01
Z-64]											
Z-65	ب											
2-66	PEG	0.1	9960'0	2.66	27.9	28.04	2.99E-04	2.62E+00	1.37E-04	1.20E+00	4.37E-04	3.82E+00
Z-67	PEG/DUP	0.1	0.0401	2.66	27.9	28.04	3.39E-04	2.97E+00	1.39E-04	1.22E+00	4.79E-04	4.19E+00
Z-68	PEG/AUDTD	0.1	0.0437	2'66	27.9	28.04	2.54E-04		2.67E-04	2.34E+00	5.21E-04	4.56E+00
69-Z		0.1	0.1941	8.66	27.8	28.10	2.17E03	1.90E+01	3.93E07	3.45E-03	2.17E03	1.90E+01
Z-70		0.4	6.1754	84.9	23.8	30.32	4.59E-02	4.02E+02	0.00E+00	0.00E+00	4.59E-02	4.02E+02
Z-71	SINV	0.5	0.7058	8.96	27.1	28.34	1.86E-02	1.63E+02	3.80E-05	3.33E-01	1.86E-02	1.63E+02
Z-72		1.0	0.1985	9.96	27.1	28.21	1.66E-02	1.46E+02	4.98E05	4.36E-01	1.67E-02	1.46E+02
Z-73	SINV	9.0	0.0278	98.0	27.5	28.11	6.59E-04	5.77E+00	0.00E+00	0.00E+00	6.59E-04	5.77E+00
2-74		0.4	0.0794	98.4	27.6	28.10	2.10E-03	1.84E+01	6.37E-06	5.58E-02	2.11E-03	1.85E+01
Z-75												
9/-2												
Z-77	_											
Z-78	9	0.0	0.0003	100.0	28.0	28.02						
6/-7	PEG	0.1	5.7343	86.8	24.3	30.12	5.63E-02	4.93E+02	1.14E-01	1.00E+03	1.71E-01	1.49E+03
2-80	PEG	0.1	0.3441	0.66	27.7	28.15	3.15E-03	2.76E+01	1.62E-02	1.42E+02	1.94E-02	1.70E+02
Z-81	PEG	0.0	0.0970	9.66	27.9	28.06	8.39E-04	7.35E+00	1.01E-02	8.88E+01	1.10E-02	9.61E+01
Z-82	PEG/AUDTD	0.0	0.0000	6.66	28.0	28.03						
Z-83	DZ	0.1	0.0002	8.66	28.0	28.03	1.84E-06	1.61E-02	0.00E+00	0.00E+00	1.84E-06	1.61E-02
Z-84	DZ	0.0	0.0001	8.66	28.0	28.03	4.81E-06	4.22E-02	0.00E+00	0.00E+00	4.81E-06	4.22E-02
Z-85		0.1	0.0137	9.66	28.0	28.03	2.54E-04	2.23E+00	6.72E-04	5.88E+00	9.26E04	8.11E+00
2-86		0.1	0.0019	8.66	28.0	28.03	2.02E-05	1.77E-01	8.61E-05	7.55E-01	1.06E04	9.32E-01
Z-87		0.1	0.0021	8.66	28.0	28.03	2.00E-05	1.75E-01	9.86E-05	8.64E-01	1.19E-04	1.04E+00
Z-88		0.0	0.0238	8.66	28.0	28.03	1.05E-03	9.21E+00	0.00E+00	0.00E+00	1.05E-03	9.21E+00
58-Z	DZ	0.0	0.0000	6.66	28.0	28.02	9.82E-08	8.60E-04	0.00E+00	0.00E+00	9.82E-08	8.60E-04
2-90	20	0.0	0.0000	8.66	28.0	28.03	8.74E-08	7.66E-04	0.00E+00	0.00E+00	8.74E-08	7.66E-04
Z-91		0.0	0.0088	8.66	28.0	28.03	5.37E-05	4.71E-01	3.62E-04	3.17E+00	4.16E-04	3.64E+00
Z-92	PEG	0.0	0.8822	6'.26	27.4	28.35	4.55E-02	3.99E+02	0.000+00	0.00E+00	4.55E-02	3.99E+02
Z-93	DZ	0.0	0.0000	8.66	28.0	28.03	1.22E-07	1.07E-03	0.00E+00	0.00E+00	1.22E-07	1.07E-03
Z-94	DZ	0.1	0.0000	8.66	28.0	28.03	1.19E-07	1.04E-03	0.00E+00	0.00E+00	1.19E-07	1.04E-03
Z-95	20	0.0	0.0000	8.66	28.0	28.03	1.10E-07	9.64E-04	0.00E+00	0.00E+00	1.10E-07	9.64E-04

WSPA EMISSION RATE CALCULATION SPREADSHEET

SAME	SAMPLE CONTROL	AMBIENT CONDITIONS	COND	ITIONS		COMPONENT DATA	AT DATA			STREAM C	STREAM CHARACTERISTICS
		Windspeed	Temp.	Barometric	Category	Size	Туре	Valve	Load		
₽	Code	(mph)	Ð	Pressure ("Hg)		(Inches)		Actuation	×	Service	Product
96-Z	DZ	7.5	22	30.02	OEL	00.9	OEL			¥	Jet fuel
Z-97	2	7.5	9		VALVE	8.00	GATE	Σ		GAS	Gas
86-Z	AUDTD	7.5	9		VALVE	8.00	GATE	Σ		GAS	Gas
66Z	8L										
2-100	PEG	2.0	47		PUMP				z	-	
Z-101	PEG/AUDTD	2.0	47		PUMP				z		
2-102		2.5	20		PUMP	-			z		
Z-103	DUP	2.5	8		PUMP				z		
Z-104	N2-5/SINV	2.0	57		PUMP	-	CENT			=	let fuel
Z-105	N2-5/SINV	2.5	55		PUMP					Ŧ	Jet fuel
-106	N2-5/SINV	2.5	22		PUMP					로	Jet fuel
Z-107	N2-5/SINV	2.5	29		PUMP					Ŧ	Jet fuel
Z-108	N2-5/SINV	2.5	8		PUMP					f	Jet fuel
Z-109	ZQ	2.5	23		PUMP					1	Naptha
Z-110	DZ/AUDTD	2.5	53		PUMP					=======================================	Naptha
2-111	DZ	2.5	57	30.04	OEL	6.00	OEL			Ŧ	Jet fuel
-112	DZ	2.5	53	30.04	ပ	1.00	E			1	Gasoline
Z-113	DZ	2.5	28	30.04	VALVE	1.00	GATE	Σ		1	Gasoline
114	DZ	2.5	26	30.04	ပ	2.00	ပ			7	Gasoline
Z-115	PEG	2.5	8	30.04	VALVE	2.00	GATE	Σ		GAS	Gasoline
-116	PEG/AUDTD	6.0	22	30.04	VALVE	2.00	GATE	Σ		GAS	Gasoline
Z-117	20	2.5	47	30.04	ပ	2.00	픋			GAS	Fuel Gas
Z-118		2.5	53	30.05	VALVE	1.00	GATE	Σ		11	Naptha
-119		2,5	22	30.10	VALVE	8.	GATE	Σ		TI	Naptha
-120	SINV	2.5	24	30.00	VALVE	4.00	GATE	Σ		ני	Naptha
Z-121		2.5	53	30.05	VALVE	4.00	GATE	Σ		1	Naptha
Z-122		2.5	49	30.00	VALVE	4.00	GATE	Σ		1	Naptha
Z-123	N2-6	2.5	49		VALVE	0.75	GATE	Σ		GAS	
2-124	N2-6	2.5	49		VALVE	0.75	GATE	Σ		GAS	
2-125	N2-6	2.5	49		VALVE	0.75	GATE	Σ		GAS	
Z-126	N2-6	2.5	49		VALVE	0.75	GATE	Σ		GAS	
Z-127	N2-6	2.5	20		VALVE	0.75	GATE	Σ		GAS	
Z-128	N2-6	2.5	48		VALVE	0.75	GATE	Σ		GAS	
Z-129	N2-6	2.2	53		VALVE	0.75	GATE	Σ		GAS	
Z-130	N2-7	2.5	53		VALVE	0.75	GATE	Σ		GAS	
-131	N2-7	2.5	49		VALVE	0.75	GATE	Σ		GAS	
Z-132	N2-17	20.5	QV		1077 1 477				-	West and the Party of the Party	

	1000 1000 3000 1000 1000 1000 1000 1000	000		- 9 9 9 9 9 9 9 9 9 9 9	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000						000	000	000000000000000000000000000000000000000	100 100 1	100 100 1	001 100 1 100 1 1	2 100 100 100 100 1 1 2	001 100 1 2	001 100 1 2	001 100 1 2	001 100 1 1 2 2	000000000000000000000000000000000000000
	100			50 50 50 50 50 50 50 50 50 50 50 50 50 5	5 5	000000000000000000000000000000000000000						000	000	000 100 1	100 100 1	100 100 1	001 100 1 100 1 1	001 100 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	001 100 1 2	100 100 1	001 100 1 2	001 100 1 1 2 2	
	101			50 0,000 0,000 300 300 200 200 200 200 1	22	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						000	000	000 100 100 1	100 1 100 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	100 100 1	001 100 1 100 1 1 2	001 100 100 1 1 2	100 100 1	100 100 1	001 100 1 2	001 100 1 1 2 2	
		1 2 2 1 1 1 1 1 1	0000	100,000 100,000 300 300 200 200 200 200 200 200 1	5 5	100						000	000	000 100 100 1	100 100 1	100 100 1	001 100 1 100 1 1	001 100 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	001 100 1 1 2 2	001 100 1 2	000 100 1	001 100 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	
	8882222			1000						100,00	100,000,000,000,000,000,000,000,000,000	100,00	100,00	1000	1000	000	000	000	1000	1000	000	000	
	4,0										र्च वं	4 4	4,0	44	44	44	44	44	44	44	44	44	4 40,
100,	100	100	100	100	100	100	700	100	700	780	90	100	001	000	001	001	001	001	001	001	001	001	25
7,000 7,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,400	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,400	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,400 1,400 1,000 350	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,400 1,400 1,400 2,200	7,000 7,000 1,000	7,000 7,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 10,000 1,000	7,000 7,000 1,000	7,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 10,000 1,000	7,000 7,000 1,000	7,000 7,000 1,000	7,000 7,000 1,000
								10	100	101	100-	10	1001	101	101	100	100	10 10	101	101	10	9-1-1	
					70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 70 70 70 70 70																	
Au de					70 70 70 1 1 1 1 1	70 70 70 70 1 1 1 1 1 1 1 1	70 70 70 1 1 1 1 1 1 1 1	70 70 70 70 1 1 1 1	70 70 70 70 1 1 1 1 1 1 1 750 750	70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 11 11 11 11 11 11 11 11 11 11 11	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 11 11 11 11 11 11 11 10 70 70 70 70 70 70 70 70 70 70 70 70 70	70 70 70 70 70 70 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 70 70 70 70 70 70 70 70 7	00 00 00 00 00 00 00 00 00 00 00 00 00
					22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	27 27 27 1	2 2 2 2 2 1 1 1 1 1 1 1	77 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	77 77 77 77 77 77 77 77 77 77 77 77 77	27 27 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 27 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 27 27 11 11 10 10 10 10 10 10 10 10 10 10 10	77 77 75 75 75 75 75 75 75 75 75 75 75 7	77 77 77 77 75 75 75 75 75 75 77	77 77 77 77 75 75 75 75 75 75 75 75 75 7	77 76 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 75 77 77	77 77 77 76 76 76 76 76 76 76	77 76 78 78 78 78 78 78 78 78 78 78 78 78 78	77 75 75 75 75 75 75 75 75 75 75 75 75 7	77 75 75 75 75 75 75 75 75 75 75 75 75 7	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27	222222
					007 007 1 1 1 1	000000000000000000000000000000000000000	00000	70 70 70 70 70 71 1 1 1 1 1 1 1 1 1 1 1	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	707 70 70 70 70 70 70 70 70 70 70 70 70	70 70 70 70 70 70 70 75 75 75 75 75 75 75 75 75 75 75 75 75	70 70 70 70 70 70 70 75 75 75 75 75 75 75 75 75 75 75 75 75	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 75 75 75 75 75 75 75 75 75 75 75 75 75	70 70 70 70 70 750 750 750 750 750 750 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 750 750 750 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7	00000
	And the state of t				20 00 00	70 70 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	
70 70 70	70 70 70 70	70 70 70 1	70 70 70 1	70 70 70 1 1 1				10	1001	0101	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000	101	100	100	101	10	101	101	9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	9-9-	
70 1,000 70 1,000 70 1,000	70 1,000 70 1,000 70 1,000 70 1,000	70 1,000 70 1,000 70 1,000 70 1,000	70 1,000 70 1,000 70 1,000 70 1,000	70 1,000 7 7 1,000 7 7 1,000 1 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000	1,000	1,000	1,000	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 100,000	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1,000 1,000 1,400	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1,000	1,000 1,000 1,000 1,000 100,000 100,000 1,400 1,000 1,000 2,200	1,000 1,000 1,000 1,000 100,000 100,000 100,000 1,400 1,000 1,000 350 2,200 1	1,000 1,000 1,000 1,000 100,000 100,000 1,400 1,000 350 850 850	1,000 1,000 1,000 1,000 1,000 100,000 1,400 1,000 1,000 1,000 350 850 850	1,000 1,000 1,000 1,000 1,000 100,000 100,000 1,000 1,000 350 850 850 850	1,000 1,000 1,000 1,000 1,000 100,000 1,00	1,000 1,000 1,000 1,000 1,000 100,000 1,00	1,000 1,000 1,000 1,000 1,000 100,000 1,00	1,000 1,000 1,000 1,000 100,000 1,000 1,000 350 850 850 850 850 850 850 850
70 1,000	70 1,000 70 1,000 70 1,000	70 1,000 70 1,000 70 1,000	70 1,000 70 1,000 70 1,000 1 1 1	70 1,000 70 1,000 70 1,000 1 1 1	1,000	1,000	1,000	1,000 1 1,000 1 1,000 1 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1 1 1 1 1 1 1 1 1 00,000	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1,000 1 1 1 1 100,000 100,000 1,400 1,000	1,000 1,000 1,000 1,000 1 1 1 1 100,000 100,000 1,000 1,000 1,000 350 2,200 1	1,000 1,000 1,000 1,000 1 1 1 100,000 100,000 1,400 1,000 1,	1,000 1,000 1,000 1,000 1 1 1 100,000 100,000 1,400 1,400 1,000 1,400 1,000 1,000 2,200 850 850	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1,000 1,400 1,000 1,400 1,400 1,400 1,000 1,400 1,000 1,600 1,600 1,850 850 850 850	1,000 1,000 1,000 1,000 1 1 1 1 1 1,000 1,	1,000 1,000 1,000 1,000 1 1 1 1 1 1,000 1,	1,000 1,000 1,000 1,000 1 1 1 1 1,000 1,000 1,400 1,400 1,400 1,400 1,400 1,400 1,60	1,000 1,000 1,000 1,000 1 1 1 1 1 1 1 1
1,000	70 1,000 70 1,000	70 1,000 70 1,000 1 1	70 1,000 70 1,000 1 1	70 1,000 70 1,000 1 1 1	1,000	1,000	1,000	1,000 1,000 1 1 1 1 1 1 1 1 1 00,000	1,000 1,000 1 1 1 1 1 1 1 100,000	1,000 1,000 1 1 1 1 1 1 1 100,000 1	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 00,000 1 1 3 0 0	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1,000 1,000 1 1 1 1 100,000 100,000 1,400 1,400 1,000 1,000 350 2,200 850	1,000 1,000 1,000 1 1 1 1 100,000 100,000 100,000 1,400 1,400 1,000 1,000 2,200 850 850	1,000 1,000 1 1 1 1 1 1 100,000 100,00	1,000 1,000 1 1 1 1 1 1 100,000 100,000 1,400 1,400 1,400 1,400 1,000 350 2,200 1,000 850 850 850 850	1,000 1,000 1 1 1 1 1 1 1 100,000 1 1,400 1,400 1,000 350 2,200 1,000 350 850 850 850 850 850	1,000 1,000 1 1 1 1 1 1 1 100,000 1 1,000	1,000 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1,000	70 1,000	70 1,000	70 1,000	1,000	1,000	1,000	1,000	1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000	1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1 1 1 1 1 1 1 1 1 1 1 00,000 1 1 00,000 1,00,000 1,400 1,400	1,000 1 1 1 1 1 1 1 100,000 100,000 1,400 1,400 1,000	1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 1 1 1 1 1 1 1 1 1 1 1 1 1,000 1,400 1,000	1,000 1 1 1 1 1 1 100,000 100,000 1,400 1,400 1,000 1,000 350 2,200 1	1,000 1 1 1 1 1 100,000 1,400 1,400 1,000 1,000 1,000 2,200 850	1,000 1 1 1 1 1 100,000 100,000 100,000 1,400 1,400 1,000 1,000 2,200 850 850	1,000 1 1 1 1 1 100,000 100,000 100,000 1,400 1,400 1,400 1,000 1,000 2,200 850 850 850	1,000 1 1 1 1 1 1 1,00,000 1,000 1,400 1,400 1,400 1,000 350 2,200 1,000 850 850 850 850	1,000 1 1 1 1 1 1 1,000	1,000 1 1 1 1 1 1 1,00,000 10,000 1,	1,000 250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

				_				_				_				_					~																		
×	c	, (4)	0.07	0.0	0.00	0.03	00	0.60	0.60	0.34	0.34	21.0	0.29	20.0	- C	0.12	0.00	0.0	2 0	90.0	900	4	5 5	0 13	0.00	0.18	0.62	0.62	0.64	0.12	0.65	1.16	0.07	0.04	0.30	0.12	1 18	0.62	0.08
ENTRATIC	Average) 10 10 10 10 10 10 10 10 10 10 10 10 10	0.15	9 0	0 0	2	07.0	0.40	0.40	2.25	27.70	0.20	0.70	2 0	0 0	0 0	0 4	0 0	2 4	2 4	0.15	0.15	0.15	0 15	0.15	0.15	0.19	0.15	0.20	0.17	0.10	0.10	2.40	4.20	0.20	0.38	0.15	0.15	2.90
OXYGEN CONCENTRATION	Final	34	0.15	0 15	9 4	3	04.0	0.00	0.50	200	00.0	0.60	0 0		9 6) C	9 0	9 6	0.15	0 15	0.15	0.15	0.15	0.15	0.15	0.15	0.18	0.15	0.20	0.18	0.10	0.10	5.00	3.70	0.20	0.30	0.15	0.15	3.10
OXYG	Initial	*	0.15	0.20	0.20		08.0	800	0.30	900	800	0.50	2 5	0 0	2 4	0 0	5 5	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.20	0.15	0.20	0.15	0.10	0.10	2.80	4.70	0.20	0.45	0.15	0.15	2.70
	NS	/min	1.09	10.45	10.45		08.0	3 6	9.00	4 00 A	200	4 76	080	21.45	1 97	10.70	10.70	2.05	0.98	1.28	1.07	2.48	2.48	2.12	3.26	2.99	10.25	10.25	10.50	2.01	10.70	19.25	1.09	0.53	4.90	1.96	19.25	10.30	1.10
N FLOW	Average	mt/min	1,091	10,450	10.450		9.800	0000	9000 P	989	2.034	4.759	9.800	21.450	1.969	10,700	10.700	2.049	982	1,280	1,067	2,476	2,476	2,117	3,261	2,990	10,250	10,250	10,500	2,011	10,700	19,250	1,091	533	4,896	1,956	19,250	10,300	1,099
NITROGEN FLOW	Final	ml/min	1,174	11,100	11.100		9.800	O ROO	4 988	4.988	2.064	4.881	9.800	21,000	1,893	10,300	10,300	2,097	1,241	1,288	714	1,944	1,944	2,134	3,231	3,016	10,250	10,250	10,500	2,000	10,700	19,250	1,108	532	4,886	1,947	19,250	10,300	1,100
	Initial	ml/min	1,008	008'6	9,800		9,800	08.6	4.988	4.988	2,004	4.637	9,800	21,900	2,044	11,100	11,100	2,000	723	1,272	1,420	3,007	3,007	2,099	3,290	2,964	10,250	10,250	10,500	2,022	10,700	19,250	1,074	534	4,906	1,964	19,250	10,300	1,097
NOIT	Avg	ррш	-	118	118		100,000	100.000	2.050	2,050	550	450	750	475	1,700	-	-	-	-	-	-	37,000	37,000	-	415	805	210	1,175	285	262	125	74	940	1,550	245	605	2,600	5,300	20,000
BAG CONCENTRATION	Final	(mdd)	0	129	129		100,000	100,000	2,500	2,500	550	450	900	450	1,700	-	1	-	-	-	-	35,000	35,000	-	410	800	470	006	280	000	621	73	930	1,500	260	610	2,600	5,100	20,000
BAG C	Initial	(mdd)	-	107	107		100,000	100,000	1,600	1,600	550	450	006	200	1,700	0	0.1	-	-	-	-	39,000	39,000	-	420	810	022	36,0	260	080	671	4/	006	1,600	230	009	2,600	2,500	20,000
SAMPLE CONTROL		Code	70	AN.	AUDTD	9	PEG	PEG/AUDTD		DUP	N2-5/SINV	N2-5/SINV	N2-5/SINV	N2-5/SINV	N2-5/SINV	DZ	DZ/AUDTD	DZ	ZQ	70	70.2	PEG	PEG/AUDTD	70			ANIO		9 04	9 6 6 7	0 0	0 - 2 N	0 0	NZ-P	0-24	מייא	N2-7	N2-/	NZ-/
SAMP	!	<u>a</u>	96-7	/6-7	86-7	66-2	Z-100	Z-101	Z-102	Z-103	Z-104	Z-105	Z-106	Z-107	Z-108	Z-109	Z-110	Z-111	Z-112	2-113	2 114	611-7	911-7	/11/-7	811-7	611-7	7-124	7-100	7-123	7-124	7-425	7-126	7 107	7 400	07 - 7	671-7	7 131	1007	761-7

SAME	SAMPLE CONTROL	•	BAG TEMPERATURE	PERATU	Ħ		RY.	LABORATORY DATA	_		
		Initial	Final	Avg.	Temp	z	NMOC	METHANE	¥	THC	0
<u>∩</u>	Code	Œ	Œ		deg R	ppmv (as C3H8)	ppmv (as C3H8) ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
96-Z	DZ	9	99	9	520	AN	0.07	00.0		0.0475	0.07
-97	>N	99	67	67	526	Ą	26.78		12.56	25.00	39.34
2-98	AUDTD	99	29	67	526						
2-99	9.										
2-100	PEG	46	44	45	505	¥Z	202,888.75	1,800.00	950.86	140,000.00	203,839.61
Z-101	PEG/AUDTD	46	44	45	505		0.00		0.0		0.00
Z-102		49	22	20	. 509	ΑN	2,350.65	1.10		1,500.00	2,351.27
Z-103	DUP	49	8	22	209	AN	2,350.65	1.10	0.63		2,351.27
104	N2-5/SINV	56	26	26	516	¥	89.099	0.00	0.00	420.00	89.099
2-105	N2-5/SINV	55	22	20	516	A A	440.52	0.00			440.52
106	N2-5/SINV	26	25	57	516	NA NA	755.14	0.00	0.0		755.14
Z-107	N2-5/SINV	22	28	28	517	¥	409.09	0.00	00:00		409.09
108	N2-5/SINV	58	29	59	518	A A	2,201.19	0.00		_	2,201.19
109	DZ	53	54	54	513	¥	0.07	0.00	0.00	0.045	20'0
110	DZ/AUDTD	53	54	54	513	AN					00.00
=======================================	DZ	29	9	9	519	AA A	0.07	00.0	0.00		20'0
Z-112	DZ	56	56	26	516	AN A	0.07	00.00	00.00	0.045	0.07
113	DZ	26	54	55	515	¥	0.07			J	20.0
-114	DZ	26	22	22	516	AN	20.0				0.07
Z-115	PEG	62	62	62	522	NA	24,904.96	11,000.00	6,208.60	20,000.00	31,113.56
-116	PEG/AUDTD	62	62	62	522						
-117	DZ	65	64	65	524	NA	1.57	0.00	00.0		1.57
Z-118		64	8	77	537	NA	534.90	00.00	00.0	340.00	534.90
-119		89	87	78	537	¥	1,396.20	6.20			1,399.74
Z-120	SINV	147	17	159	619	NA	928.02	00.0			928.02
-121		87	108	96	557	AN	1,572.64	0.00	00.0	-	1,572.64
Z-122		63	99	65	524	NA A	187.41	30.00		130.00	204.53
-123	N2-6	22	53	54	514	NA	101.79	180.00	102.75		204.54
Z-124	N2-6	22	54	55	514	AN	23.08	34.00			42.49
-125	N2-6	54	54	54	514	NA A	13.33	18.00	10.28	15.00	23.60
Z-126	N2-6	54	54	54	514	NA	178.63	320.00	182.08	230.00	360.71
Z-127	N2-6	55	54	55	514	AN	(2,609.10)	5,700.00	3,234.78	400.00	625.67
Z-128	N2-6	55	54	22	514	AN	45,44				86.54
-129	N2~6	55	55	55	515	AN	96.05	190.00	108.43	130.00	204.48
-130	N2-7	26	57	22	516	AN	385.64				802.27
Z-131	N2-7	23	52	53	512	AN	816.94			1,100.00	1,729.80
132	N2-7	62	52	56	515	AN	11,338.40	13,000.00	7,342,43		18.680.83

2.12E-04 9.67E-05 1.13E-04 5.61E-01 1.87E+00 2.92E+00 6.00E+00 1.06E-03 1.33E-04 1.05E--04 1.07E+02 3.11E+03 .03E+01 4.56E-03 2.33E+00 5.59E+00 2.95E+00 1.84E+01 1.84E+01 1.21E+01 2.08E+01 5.75E-01 6.33E-01 6.33E-01 5.93E-01 5.64E-01 3.33E+01 1.11E+01 6.18E-01 5.81E-01 2.15E+01 2.50E+01 2.11E-03 2.11E-03 2.14E-04 3.33E-04 1.17E-03 6.85E-04 1.21E-07 2.42E-08 1.10E-08 1.20E-08 2.66E-04 6.38E-04 3.36E-04 6.56E-05 7.06E-05 6.63E-05 1,29E-08 6.41E-05 2.45E-03 2.85E-03 1.52E-08 7.23E-05 1.39E-03 1.26E-03 2.37E-03 7.22E-05 6.77E-05 6.44E-05 3.55E-01 (Ib/hr) WSPA EMISSION PATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE 4.91E-03 0.00E+00 2.14E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.41E-02 0.00E+00 0.00E+00 1.79E-01 0.00E+00 0.00E+00 2.47E-01 2.89E-01 2.89E-01 2.76E-01 3.12E-01 3.00E+00 2.99E-01 1.12E+01 1.31E+01 2.82E-01 1.32E+01 1.45E+01 (lb/yr) **EMISSION PATE** Methane 0.00E+00 0.00E+00 0.00E+00 2.05E-05 1.65E-03 5.60E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.44E-03 0.00E+00 0.00E+00 1.61E-06 0.00E+00 0.00E+00 2.82E-05 3.30E-05 3.30E-05 3.15E-05 3.56E-05 3.43E-04 3.21E-05 1.27E-03 1.50E-03 1.49E-03 5.60E-07 0.00E+00 3.41E-05 (lb/hr) 1.13E-04 3.82E-01 1.84E+01 2.92E+00 3.09E+03 1.87E+00 1.03E+01 1.21E+01 6.00E+00 1.06E-03 2.12E-04 9.67E-05 1.33E-04 1.05E-04 4.56E-03 5.58E+00 2.70E+00 3.57E-01 -2.42E+00 2.33E+00 1.11E+01 2.08E+01 2.86E-01 3.44E-01 3.06E-01 3.11E-01 2.02E+01 8.58E+01 2.65E-01 1.03E+01 1,18E+01 (lb/yt) 2.11E-03 2.14E-04 1.52E-08 1.20E-08 1.29E--08 4.36E-05 1.17E-03 4.08E-05 -2.77E-04 3.53E-01 2.11E-03 3.33E-04 1.39E-03 6.85E-04 1.21E-07 2.42E-08 1.10E-08 9.79E-03 2.66E-04 6.37E-04 1.26E-03 2.37E-03 3.08E-04 3.27E-05 3.92E--05 3,50E-05 3.55E-05 3.02E-05 1.35E-03 2.31E-03 1.18E-03 (lp/hr) 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 28.03 30.29 28.03 28.03 28.03 28.03 28.04 28.04 28.04 28.03 28.02 28.02 28.12 28.19 28.19 28.04 28.03 28.04 28.33 Вад 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 27.4 28.0 28.0 28.0 28.0 28.0 28.0 27.9 28.0 28.0 28.0 27.3 26.8 28.0 27.9 MW fraction 88 왇 MOLECULAR WEIGHT DETERMINATION 97.6 97.6 95.8 93.8 93.8 9.8 8.66 9.8 6.66 99.9 99.7 99.8 99.9 99.8 99.8 97.9 99.8 99.8 99.8 99.8 8.66 8.66 6.66 6.66 8.66 9.66 99.8 99.7 95.9 % fraction 울 0.0000 0.0124 0.0115 0.0000 0.0000 0.0000 0.0000 0.0012 0.000 0.8822 0.0150 0.0393 0.0260 0.0057 0.0618 0.0176 0000 0.0011 0.0185 0.0212 0.0000 0.0441 0.0057 0.0007 0.0101 0.0024 0.0225 0.0485 0.0057 MW.fraction C3H8 0.0 00000000000000000 0.0 0.0 9.0 0.1 0.0 **WW fraction** 0 0.0 1.0 0.7 0.7 0. 0.1 <u>-</u> 2 0 8 SAMPLE CONTROL PEG/AUDTD N2-5/SINV N2-5/SINV N2-5/SINV N2-5/SINV PEG/AUDTD DZ/AUDTD N2-5/SINV N2-6 N2-6 AUDTD N2-6 N2-6 N2-6 N2-6 N2-7 N2-7 N2-7 DOP PEG NIS. PEG ₹ 20 Βľ 70 70 70 70 Z-110 Z-111 Z-115 Z-116 Z-103 Z-104 Z-106 Z-108 Z-109 Z-112 Z-113 Z-114 2-118 Z-119 2-120 Z-128 Z-129 Z-130 Z-99 Z-100 Z-101 Z-102 Z-105 Z-123 Z-124 Z-125 Z-126 Z-117 Z-122 Z-127 Z-107 ₽ 2-96 Z-121 86-Z Z - 131-97

WSPA EMISSION RATE CALCULATION SPREADSHEET COMMENTS Comments Repeat because of high variability of O2 in last test. SV varied by a factor of 2. Very Steady flow of Hydrocarbons from leak. Nitrogen flow test #6. Checked gauge and OVA -- No contamination -- no leaks SV varied by a factor of 2.9. Checked pressure gauge with OVA - No contamination QC=1050ppm Duplicate of Z100. Maxlum SV shifted from N. to S. for Pre and Post SV. SV varied by a factor of 3.3. Nitrogen flow test #5. SV varied by a factor of 3.3. Nitrogen flow test #5. SV varied by a factor of 3.3. Nitrogen flow test #5. SV varied by a factor of 3.3. Nitrogen flow test #5. SV varied by a factor of 3.3. Nitrogen flow test #5. Light rain, but value is dry. Nitrogen flow test #7. Raining. Nitrogen flow test #7. QC Check 998=1500ppm. QC check falled. Sample to RTI. Duplicate of 2097 Nitrogen flow test #6. Raining. Nitrogen flow test #6. Field Dup of Z102. Pump off. Raining. Nitrogen flow test #7 Nitrogen flow test #6. Nitrogen flow test #6. Nitrogen flow test #6. Nitrogen flow test #6. Duplicate of Z109 Duplicate of Z115, PEG/AUDTD DZ SAMPLE CONTROL PEG/AUDTD N2-5/SINV N2-5/SINV DZ/AUDTD N2-5/SINV N2-5/SINV N2-5/SINV AUDTD PEG DO N2-6 N2-6 N2-6 N2-6 N2-6 N2-7 N2-7 N2-7 ₹ PEG SIN 70 뭅 20 20 20 Z-119 Z-120 Z-121 2-103 Z-104 Z-105 Z-106 2-108 Z-109 Z-110 Z-111 Z-112 Z-113 Z-114 Z-115 Z-116 Z-117 Z-118 Z-100 2-105 Z-107 Z-101 Z-122 Z-123 2-124 2-125 Z-126 96-Z 86-2 2-99 Z-127 Z-128 Z-129 Z-130 2-97 ₽ Z-131

A-110

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SAMPLEC	SAMPLE CONTROL	AMBIENT CONDITION	r condi	TIONS		COMPONENT DATA	NT DATA			STREAM C	STREAM CHARACTERISTICS
9	Code	þ	Temp.	Barometric	Category	Size	Туре	Valve	Load		
9	N2-7	2.5	49	LIESSULB (Hg)	VALVE	(Inches)		Actuation	X X	Service	Product
Z-134	N27		2		47.40	0.73	EA IT	Σ		GAS	
	N2-7	200	3 8		VALVE	0.75	GATE	Σ		GAS	
	N2_7	2 4	2		VALVE	0.75	GATE	Σ		GAS	
7-137 ACC	ACCV/NO o	0.7	9		VALVE	0.75	GATE	Σ		GAS	
1	01/1/2	0.0	20		VALVE	1.00	GATE	2		H20	
2-130 ACC	ACCY/NZ-8	2.5	S		VALVE	1.00	GATE	Σ		120	
-	ACCY/N2-8	2.5	20		VALVE	00	GATE	2		200	
-	ACCY/N2-8	2.5	20		VALVE	8	GATE	E		001	
	ACCY/N2-8	2.5	20		VALVE	8	DI VO	Σ 2		OZL	
_	ACCY/N2-8	2.5	57		VALVE	3 2	1140	Σ :		0ZH	
Z-143 ACC	ACCY/N2-8	2.5	20		VAI VE	3 5	מאונו	Σ:		H20	
2-144		20	52		74175	3 5	GA IE	Σ		H20	
2-145		2 2	2		VALVE	0.75	GATE	Σ		GAS	Fuel Gas
	N2_0	2	30		VALVE	0.75	GATE	Σ		=	
	0 014	0.0	٥		ပ	1.00	Ŧ			=	
	6 9	0.6	63		ပ	1.00	Ŧ				
	NZ - 3	2.0	99		ပ	1.00	F				
641-7	NK-9	2.0	64		ပ	1.00	Ŧ				
1	6-24	2.0	63		ပ	÷.00	F			=	
	NZ-9	2.0	63		ပ	1.00	Ŧ	-		=	
	8-2N	2.0	62		O	1.00	Ŧ			! =	
	N2-10	7.0	29		VALVE	4.00	GATE	2		: <u>-</u>	
	N2-10	7.0	69		VALVE	4.00	GATE	2		d =	
	N2-10	10.0	63		VALVE	4.00	GATE	2		1 -	
Z-156 N	N2-10	10.0	62		VALVE	4 00	GATE			1 :	
	N2-10	10.0	64		VALVE	4 00	GATE			<u> </u>	
Z-158 N.	N2-11	2.0	22		C	0.75	1 1	2		3 -	
	N2-11	2.0	65		C	0.75				1	
	N2-11	1.0	9		C	0.75				3	***************************************
	N2-11	1.0	9		C	0.75		***************************************			
	N2-11	1.0	64			72.0				-1	
	N2-11	0.0	65		0	2 2				1	
	N2-11	2.0	69			2,0				-1	
	PEGF	5.0	67) <u>II</u>	90.0				1	
	DZ	5.0	89		VALVE	200	טבר.			1	
	DZ	5.0	89		74176	00.0	מאוב			7	
Z-168	BL		3		VALVE	00.	GATE			ור	
	20	00	A A		1/41/4/					11	
		2	3		VALVE	3.00	GATE			-	

SAMPLE CONTROL					Ø	SCREENING DATA	DATA					
	& - -	Initial	East	South	West	Final	East	South	West	Avg.	Bkgrnd	Corrected
Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)
N2-7		000'06	10,000	75,000	20,000	70,000	25,000	40,000	16,000		-	79,999
N2-7		000'06	10,000	75,000	50,000	20,000	25,000	40,000	16,000	80,000	-	79,999
2-7		000'06	10,000	75,000	20,000	70,000	25,000	40,000	16,000	80,000	-	666'62
N2-7		90,000	10,000	75,000	20,000	20,000	25,000	40,000	16,000	80,000	-	79,999
ACCY/N2-8		-	-	-	-	-	-	-	-	-	-	0
ACCY/N2-8		-	-	-	-	-	-	-	-	-	-	0
ACCY/N2-8		-	-	-	-	-	-	-	-	-	-	0
ACCY/N2-8		-	-	-	-	-	-	-	-	-	-	0
ACCY/N2-8		-	-	-	-	-	-	-	-	F	-	0
ACCY/N28		-	-	-	-	-	-	-	-	-	-	0
ACCY/N2-8		-	-	-	-	-	-	-	-	-	-	0
		006	700	10	09	1,200	300	200	200	1,050	-	1,049
_		006	7007	10	9							
N29		10,000	000'6	1,000	5,000	9,500	6,500	7,000	4,500	9,750	2.5	9,748
N29		10,000	000'6	1,000	2,000	9,500	6,500	7,000	4,500	9,750		9,748
N2-9		10,000	000'6	1,000	5,000	9,500	6,500	7,000	4,500			9,748
N2-9		10,000	000'6	1,000	5,000	9,500	6,500	7,000	4,500	9,750	2.5	9,748
N2-9		10,000	000'6	1,000	2,000	9,500	6,500	7,000	4,500			9,748
N2-9		10,000	000'6	1,000	2,000	9,500	6,500	7,000	4,500	9,750		9,748
N2-9		10,000		1,000	5,000	9,500	6,500	2,000	4,500	9,750	2.5	9,748
N2-10		1,100	120	300	200	2,100	800	800	200	1,600	2.0	1,598
N2-10		1,100	120	300	200	2,100	800	800	200	1,600		1,598
N2-10		1,100	120	300	200	2,100	800	800	200	1,600		1,598
N2-10		1,100	120	300	200	2,100	800	800	500	1,600		1,598
N2-10		1,100	120	300	200	2,100	800	800	500			1,598
N2-11		80,000	5,000	20,000	70,000	45,000	2,000	2,000	25,000			62,483
N2-11		80,000	5,000	20,000	70,000	45,000	5,000	5,000	25,000		17.5	62,483
N2-11		80,000	2,000	20,000	70,000	45,000	2,000	2,000	25,000		17.5	62,483
N2-11		80,000	2,000	20,000	70,000	45,000	5,000	5,000	25,000	62,500	17.5	62,483
N2-11		80,000		20,000	70,000	45,000	5,000	5,000	25,000		17.5	62,483
N2-11		80,000	2,000	20,000	20,000	45,000	2,000	2,000	25,000	62,500	17.5	62,483
N2-11		80,000	5,000	20,000	20,000	45,000	5,000	5,000	25,000	62,500	17.5	62,483
PEGF		95,000				100,000				97,500		97,496
DZ		2	2	8	2	8				5	5.0	0
DZ		1.2	1.2	1.2	1.2	1.2	-	-	1	1	1.2	0
BL.												0
DZ		_	_	_	_		_	_	•	•	•	

SAM	SAMPLE CONTROL	BAG	BAG CONCENTRA	NTRATION		NITRO	NITROGEN FLOW		λχο	OXYGEN CONCENTRATION	CENTRATI	NO
<u> </u>		Initial	Final	Avg	Initial	Final	Average	N ₂	Leitic	in in	4	C
0 2	Code	(mdd)	(mdd)	ррт	ml/min	ml/min	ml/min	l/min	8	<u> </u>	луегаде	y ;
201-7	/-Z-/	000'89	70,000	000'69	588	605	297	0 60	4 60	8	R	m3/hr
401-7	N2-7	1,000	11,000	11,000	4.748	4.710	4 729	4 73	2	3.0	08.4	0.05
2-132	N2-7	28,000	28,000	28,000	1 968	1 979	1 074	200	0.20	0.30	0.25	0.29
Z-136	N2-7	2,900	3.300	3 100	19.250	40 500	# /B'-	18.	04.0	1.60	1.50	0.13
Z-137	ACCY/N2-8	8	200	200	19,630	000,81	19,375	19.38	0.15	0.15	0.15	1.17
Z-138	ACCY/N28	180	200	3	600'-	1,847	1,868	1.87	5.80	5.90	5.85	0.16
Z-139	ACCY/N2-8	280	300	200	00/01	10,700	10,700	10.70	1.50	1.50	1.50	0.69
2-140	ACCY/N2-8	8	200	007	5,031	5,020	5,026	5.03	2.60	2.70	2.65	0.35
2-141	ACCY/N2_B	8	200	80	20,000	20,000	20,000	20.00	0.77	0.77	0.77	1 25
7-142	ACCV/ND B	200	200	800	952	935	943	0.94	8.00	800	00	000
7-143	ACCVAIN D	36	066	066	535	539	537	0.54	10.60	10.40	10.00	0.09
7 4 4 4	0-24/1000	010	400	455	2,148	2,146	2,147	2.15	4 80	8	10.00 k	0.00
7 4 45		1,200	1,050	1,125	2,059	2,017	2,038	2.04	0 15	2 4	20.4	0.10
21.10	7								2	2	5	0.12
2 -140	N2-9	6,200	6,500	6,350	2,047	2,046	2.047	2 05	0 15	4,0		
/61-7	NZ-9	2,500	2,300	2,400	10,500	10.500	10,500	20.0	2 6	0.0	61.0	0.12
841-7	N2-9	1,400	1,400	1,400	20.000	20,000	20,00	00.00	8 6	0 0	0.24	0.64
2-149	N2-9	3,500	3,300	3,400	4.904	4 934	4 010	200	0.00	80.0	60.0	1.20
Z-150	N2-9	12,000	11,500	11,750	634	469	616,	4.92	0.0	0.15	0.15	0.30
Z-151	N2-9	12,000	11,000	11.500	1 179	1 170	4 4 7 8	20.0	04.1	0.80	1.10	0.04
Z-152	N2-9	000'6	8,500	8.750	2113	0 100	2 - 2		0.35	0.42	0.39	0.07
Z-153	N2-10	1,700	1.700	1 700	5.034	200	2002	2,11	0.15	0.15	0.15	0.13
Z-154	N2-10	2,600	2.400	2500	2000	2000	2,036	5.04	0.20	0.20	0.20	0.31
Z-155	N2-10	909	900	009	2000	100,00	2,053	2.05	0.95	0.85	0.90	0.13
Z-156	N2-10	780	750	785	200	20,000	20,000	20.00	0.15	0.15	0.15	1.21
2-157	N2-10	1.100	1 050	7 078	000,00	000,01	006,01	10.50	0.10	0.10	0.10	0.63
Z-158	N2-11	3,000	3 000	000	0,021	1000	5,036	5.04	0.20	0.18	0.19	0.30
Z-159	N2-11	650	2007	675	20000	260'2	2,116	2.12	0.10	0.10	0.10	0.13
Z-160	N2-11	1.600	1,600	200	20,000	20,000	20,000	20.00	0.05	0.07	0.05	1.20
Z-161	N2-11	12.000	11.500	11 750	200	001,0	851.0	5.14	0.10	0.10	0.10	0.31
Z-162	N2-11	6.200	6200	000,4	700	200	262	0.59	0.50	09.0	0.55	0.04
Z-163	N2-11	780	800	700	201	066	1,013	1.01	0.10	0.10	0.10	90.0
Z-164	N2-11	2.500	2,600	2 550	2000	0000	000,00	10.50	0.07	0.07	20.0	0.63
Z-165	PEGF	2.500	2 400	2 450	1000	2,137	2,126	2.13	0.10	0.10	0.10	0.13
2-166	DZ	190	150	170	2,123	211,2	2,119	2.12	0.10	0.10	0.10	0.13
Z-167	ZQ	35	33	26	2,013	290'0	5,049	5.05	0.10	0.10	0.10	0.30
Z-168	B.			5	100'1	180,1	1,686	1.69	0.08	0.08	90.0	0.10
Z-169	ZO	2	1.2	0	5 120	200	00,1					
					1 22112	20212	301.0	0.10	0.30	0.25	200	5

E C D	SAMPLE CONTROL		BAG TEMPERATUR	IPERATU	w		EV.	LABORATORY DATA			
		Initial	Final	Avg.	Temp	Z	NMOC	METHANE	ш	THC	0
₽	Code	Ð	(F)	(F)	deg R	ppmv (as C3H8)	ppmw (as C3H8)	ppmv (as CH4)	ppmw (as CH4)	ppmv (as C3H8)	ppmw (as C3H8)
Z-133	N2-7	53	52	53	512	AN	16,208.78	18,000.00	10,110.74	6	26,319.51
Z-134	N2-7	53	53	53	513	AN	1,575.61	3,300.00	1,881.32	2,200.00	3,456.93
Z-135	N2-7	53	53	53	513	AN	5,401.95	8,400.00	4,768.61	6,500.00	10,170.56
Z-136	N2-7	53	53	53	513	A A	412.91	820.00	467.99	560.00	880.90
Z-137	ACCY/N28	54	56	55	515	AN	60.79	160.00	90.61		151.40
Z-138	ACCY/N2-8	22	59	58	518	ΑZ	25.89	40.00	22.79		48.69
Z-139	ACCY/N2-8	8	59	90	519	AN	35.30	73.00	41.53		76.83
Z-140	ACCY/N2-8	8	58	29	519	AN	14.89	18.00	10.27	16.00	25.15
Z-141	ACCY/N2-8	61	65	63	523	NA	93,65	220.00	124.20	140.00	217.85
Z-142	ACCY/N2-8	64	99	65	525	ΑN	121,59	280.00	157.52	180.00	279.11
Z-143	ACCY/N2-8	65	62	64	523	NA	59.72		79.39		139.11
Z-144		52	22	52	515	۸۸	206.35		171.25		377.60
Z-145		55	55	52	515	AN	346,311.03	140,000.00	67,862.54	310	414,173.58
Z-146	N2-9	99	89	67	527	NA	44,883.63	3.10	1.74		44,885.37
Z-147	N2-9	68	64	99	526	NA	6,592.13	0.0	0.00		6,592.13
Z-148	N2-9	99	29	29	526	AN	2,986.74	00:0	0.00	1,900.00	2,986.74
2-149	N29	69	29	68	528	AN	12,216,11	4.90	2.78	7,800.00	12,218.90
Z-150	N29	72	69	71	530	NA	92,613.80	6.70	3.69	61,000.00	92,617.49
Z-151	N2-9	89	69	69	528	AN	67,505.11	5.10	2.84	44,000.00	67,507.95
Z-152	N2-9	89	72	2	530	Ϋ́	52,473.71	4.20	2.35	34,000.00	52,476.06
Z-153	N210	89	89	89	528	NA	1,718.27	20.00	11.41	1,100.00	1,729.68
Z-154	N2-10	89	99	29	527	۸N	3,729.14	00.79	38.16	2	3,767.29
Z-155	N2-10	89	29	99	527	NA	464.56	13.00	7.42		471.98
Z-156	N2-10	29	99	89	527	NA	778.61	14.00	7.99		786.60
Z-157	N2-10	29	99	29	526	NA	1,158.21	92.00	37.09		1,195.30
Z-158	N2-11	64	64	8	524	AA	5,764.59		45.58	9	5,810.17
Z-159	N2-11	89	29	89	527	NA	716.32		7.42		723.75
Z-160	N2-11	65	89	29	526	NA NA	2,179.67	38.00	21.68	1,400.00	2,201.34
Z-161	N2-11	69	84	77	536	Ϋ́	31,017.12	140.00	78.97		31,096.10
Z-162	N2-11	20	89	69	529	AA	17,110.76	160.00	90.78	11	17,201.54
Z-163	N2-11	7	20	71	530	Y.	1,324.45	22.00	12.56	820.00	1,337.01
Z-164	N2-11	89	89	89	528	Y.	5,163.86	34.00	19.38	3,300.00	5,183.23
2-165	PEGF	65	64	65	524	Α¥	6,750.04	0.00	0.00	4,30	6,750.04
Z-166	DZ	29	29	29	527	¥	6.61	00:0	0.00	4.20	6.61
Z-167	DZ	74	75	75	534	NA	59.80		00.0		59.80
Z-168	BL					NA		00.0		00:00	
Z-169	20	22	58	28	517	NA	18.88	00.0	0.00	12.00	18.88

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE

SAM	SAMPLE CONTROL	MOLECU	MOLECULAR WEIGHT	T DETERMINATION	NATION				EMISSION	RATE		
٤		MW fraction	MW fraction	% fraction	MW fraction	WW	NMOC	8	Methane	ane	THC	,
7-133	Code	20	C3H8	N2	N2	Bag	(lþ/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/vt
Z-134	N2-7	0.	0.7489	93.5	26.2	28.48	2.02E-03	1.77E+01	1.26E-03	1.11E+01	3.28E-03	2.88E+01
Z-135	N2-7	0 0	0.0970	0.0	27.9	28.07	1.20E-03	1.05E+01	1.43E-03	1.25E+01	2.63E-03	2.30E+01
7-136	NO. 7	9.0	0.2007	87.8	27.4	28.18	1.83E-03	1.60E+01	1.62E-03	1.42E+01	3.45E-03	3.02E+01
7-137	ACCV/MD B	9.0	0.0247	99.8	28.0	28.03	1.28E-03	1.12E+01	1.45E-03	1.27E+01	2.73E-03	2.39F+01
7-138	ACCV/NO 8	9	0.0043	94.1	26.4	28.25	2.51E-05	2.20E-01	3.74E-05		6.24E-05	5 47F-01
7 130	ACCVAIN D	0.0	0.0014	98.5	27.6	28.08	4.70E-05	4.11E-01	4.13E-05	_	8.83E-05	7 73E-01
7 140	ACCY/NZ-6	0.0	0.0022	97.3	27.3	28.13	3.19E05	2.80E-01	3.75E-05	_	6.95E05	6 OBF-01
7-141	ACCT/NZ-0	0.2	0.0007	99.2	27.8	28.05	4.85E-05	4.25E-01	3.34E-05	2.93E-01	8.20E~05	7 18F-01
7 440	ACCT/NZ-8	2.6	0.0062	92.0	25.8	28.34	2.25E-05	1.97E-01	2.98E-05	2.61E-01	5 22E-05	A FOLLOW
241-7	ACCT/NZ-8	3.4	0.0079	89.5	25.1	28.44	2.05E-05	1.80E-01	2.66E-05	2.335-01	4 71F-05	4 1 3E 0
21.7	ACCT/NZ-8	1.6	0.0039	95.1	26.7	28.21	2.61E-05	2.29E-01	3.47E-05	3.04E-01	6 08F-05	7 32E 0
441-7		0.0	0.0106	9.66	28.0	28.03	6.69E-05	5.86E-01	5.55E-05	4 R7F_01	1 22 1 04	4 076 - 0
C+1-7	7	0.0	13.6741	0.69	19.3	33.01				2	יינינין	N-10.1
7-146	N2-9	0.0	1.2792	97.0	27.2	28.49	1.45E-02	1.27E+02	5.63E-07	4 93F-03	1 455_00	1075
141-7	NZ-9	0.1	0.1853	99.3	27.8	28.10	1.09E-02	9.51E+01	0.00F+00	200	100	1,275+02
241-7	N2-9	0.0	0.0838	2.66	27.9	28.05	9.28E-03	8.13E+01	0.00E+00	0000	9 28E 02	9.01 HO
7 - 40	6-22	0.0	0.3441	1.66	27.8	28.15	9.37E-03	8.21E+01	2.14E-06	1.87F-02	9 37F_03	20.00
7 4 64	200	0.4	2.6907	92.8	26.0	29.05	9.85E-03	8.63E+01	3.93E-07	3.44E-03	9.855-03	S 63E +01
7 450	NZ-8	0.1	1.9408	95.2	26.7	28.74	1.28E-02	1.12E+02	5.36E-07	4.70E-03	1 28E-02	1 12F + 02
7 459	8-20	0.0	1.4997	96.5	27.0	28.57	1.75E-02	1.53E+02	7.83E-07	6.86E-03	1.75F-02	1 535+02
7-154	OF CN		0.0485	99.7	27.9	28.05	1.35E-03	1.18E+01	8.95€ 06	7.84E-02	1.36E-03	1.19E+01
7-155	NOT TO	2.0	0.1038	98.9	27.7	28.09	1.24E 03	1.08E+01	1.27E-05	1.11E01	1.25E-03	1.10E+01
Z-156	N2-10	0 0	0.0132	8.66	28.0	28.03	1.44E03	1.26E+01	2.31E-05	2.02E-01	1.47E-03	1.28E+01
-157	N2-10	2	0.0221	0000	28.0	28.03	1.27E-03	1.11E+01	1.30E-05	1.14E-01	1.28E~03	1.12E+01
2-158	N2-11	500	0.0350	7.00	672	28.04	9.10E-04	7.97E+00	2.91E-05	2.55E-01	9.39E-04	8.23E+00
2-159	N2-11	9 0	0.000	0.00	6.72	28.08	1.91E-03	1.67E+01	1.51E-05	1.32E-01	1.92E-03	1.68E+01
2-160	N2-11	9	0.0503	200	0.83	28.03	2.21E-03	1.94E+01	2.29E-05	2.01E-01	2.24E-03	1.96E+01
Z-161	N2-11	000	0.00	0.00	28.0	28.05	1.74€03	1.52E+01	1.73E-05	1.52E-01	1.76E-03	1.54E+01
7-162	N2_11	9 0	0.0022	0.78	27.3	28.36	2.91E-03	2.55E+01	7.40E-06	6.48E-02	2.91E-03	2.55E+01
Z-163	N2-11	200	0.4002	80.0	27.7	28.20	2.70E-03	2.36E+01	1.43E-05	1.25E01	2.71E-03	2.37E+01
7-164	N2-11		0.007.0	0.0	28.0	28.04	2.14E-03	1.88E+01	2.03E-05	1.78E-01	2.16E-03	1.89E+01
Z-165	PEGE	9 6	0.400	0 0	27.9	28.08	1.70E-03	1.49E+01	6.39E-06	5.60E02	1.71E-03	1.50E+01
7-166	22	0 0	00000	0.00	27.9	58.09	2.23E-03	1.96E+01	0.00E+00	0.00E+00	2.23E-03	1.96E+01
7-167	2	9 6	0.0002	0.00	28.0	28.02	5.18E-06	4.53E-02	0.00E+00	0.00E+00	5.18E-06	4.53E-02
Z-168	3 6	0.0	7100.0	6.66	28.0	28.02	1.54E-05	1.35E-01	0.00E+00	0.00E+00	1.54E-05	1.35E-01
7-169								_				
					1							

Response factor ≈ 1.0 and gas constant $\approx 4.836E-05$ for emission rate calculation.

Page 19e

SAM	SAMPLE CONTROL	COMMENTS
٥	Code	Comments
2-133	N2-7	pulling 668. Raining. Nitrogen flow
Z-134	N2-7	Reining. Nitrogen flow test #7.
Z-135	N2-7	Raining. Nitrogen flow test #7.
7-136	N2-7	Light rain, but value is dry. Nitrogen flow test #7.
Z-137	ACCY/N2-8	Methane is 99.9% air; High O2 expected. Accuracy check. Nitrogen flow test #8. O2 too high (5.85%).
Z-138	ACCY/N2-8	
Z-139	ACCY/N2-8	Checked methane flow. Accuracy check. Nitrogen flow test #8
2-140	ACCY/N2-8	Checked methane flow. Accuracy check. Nitrogen flow test #8.
2-141	ACCY/N2-8	Checked methane flow. Accuracy check. Nifrogen flow test #8. Oz too high (8%)
Z-142	ACCY/N2-8	Ferrule broken on methane line. Methane flow in question. Accuracy check. Nitrogen flow test #8.02 too high (10.5%)
Z-143	ACCY/N2-8	Ferrule broken on methane line. Methane flow in question. Accuracy check. Nitrogen flow test #8.
Z-144		Closed canister at 10.0' Hg.
Z-145	_	
Z-146	N2-9	Liquid visible on connector, but not dripping. Nitrogen flow test #9.
Z-147	N2-9	Nitrogen flow test #9.
Z-148	N2-9	Nitrogen flow test #9.
Z-149	N2-9	Nitrogen flow test #9.
Z-150	N2-9	Oz pump rate exceeds N2 flow rate. Nitrogen flow test #9.
Z-151	N2-9	Nitrogen flow test #9.
Z-152	N2-9	No liquid build up in bag. Nitrogen flow test #9.
Z-153	N2-10	Large bag (15L) Nitrogen flow teet #10.
Z-154	N2-10	Nitrogen flow teet #10.
Z-155	N2-10	Nitrogen flow teet #10.
Z-156	N2-10	Nitrogen flow test #10.
Z-157	N2-10	Nitrogen flow test #10.
Z-158	N2-11	8ag size 1L. Nitrogen flow test #11.
691-7	N2-11	Nitrogen flow test #11.
091-7	N2-11	Nitrogen flow test #11.
191-7	N2-11	Nitrogen flow test #11.
Z-162	N2-11	Nitrogen flow test #11.
2-163	N2-11	Nitrogen flow test #11.
Z-164	N2-11	Nitrogen flow test #11.
Z-165	PEGF	
Z-166	DZ	
Z-167	DZ	
Z-168	9	
Z-169	DZ	

CHEET	
A SPERA	
CITA III	
RATE CAL	
NORSH	
M APA E	

SAMPLE CONTROL	AUDITIONO TABIERA	CACC	SNOIL		ATAG THEMOMORA	T Next			0.107070	
				***		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			SINEAM CE	
	Windspeed Temp.	remp.	Barometric	Category	Size	Туре	Valve	Load		
Code	(mph)	(<u>-</u>)	Pressure ("Hg)		(Inches)		Actuation	X	Y/N Service	Product
N212	5.0	59		VALVE	00.9	GATE	Σ		1	
N2-12	2.0	64		VALVE	9.00	GATE	Σ			
N2-12	2.0	29		VALVE	00.9	GATE	Σ		11	
N2-12	2.0	29		VALVE	00.9	GATE	Σ		11	
N2-12	2.0	65		VALVE	9.00	GATE	Σ		1	
N2-12	2.0	63		VALVE	9.00	GATE	Σ		1	
DZ	2.0	09		VALVE	9.00	GATE	Σ			

SAMP	SAMPLE CONTROL					. 93	SCREENING DATA	DATA					
		∑	Initial	East	South	West	Final	East	South	West	Avg.	Bkgrnd	Corrected
Q	Code	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)	(maa)	(maa)	(maa)	(maa)	(maa)
Z-170	N2-12		20,000	2,500	2,500	\$	12,000	1,000	300	8,000	16.000	10.	15,999
Z-171	N212		20,000	2,500	2,500	\$	12,000	1,000	300	8,000	16.000	1.5	15,999
Z-172	N2-12		20,000	2,500	2,500	180	12,000	1,000	300	8,000	16,000	5,	15.999
Z-173	N2-12		20,000	2,500		100	12,000	1,000	300	8,000	16,000	1.5	15,999
Z-174	N2-12		20,000	2,500		\$	12,000	1,000	300	8,000	16,000	5.5	15,999
2-175	N2-12		20,000	2,500	2,500	2	12,000	1,000	300	8,000	16,000	1.5	15,999
Z-176	DZ		-	-	-	-	-	_	-	-	-	1.0	0

SAMPLE CONTROL	NTROL	BAG	BAG CONCENTR	PATION		NITROG	NITHOGEN FLOW		OXXC	OXYGEN CONC	CONCENTRATION	ž
		Initial	Final	Avg	Initial	Final	Average	ZY.	Initial	Final	Average	C
	Code	(mdd)	(mdd)	mdd	ml/min	ml/min	ml/min	l/min	≫8	*	3	, k
	N2-12	1,300	1,250	1,275	10,700	10,700	10,700	10.70	0.05	900	0.07	0.64
	N2-12	280	9	290	24,300	24.300	24.300	24.30	900	0.10	80.0	1 46
	N2-12	700	089	069	19,600	19.600	19.600	19 60	600	2 2	8 8	0,
Z-173 N2	N2-12	2,200	2,600	2,400	4,738	4,780	4.759	4.76	0.05	800	20.0	0 00
	N212	4,500	4,500	4,500	1,962	2,016	1,989	1.99	0.50	0.50	0.50	0 12
	N2-12	1,050	1,050	1,050	10,700	10,700	10,700	10.70	0.15	0.15	0.15	0.65
Z-176	ZO	1.6	1.5	2	10,700	10,700	10,700	10.70	0.20	0.18	0.19	0.65

WSPA EMISSION RATE CALCULATION SPREADSHEET

Page 20d

WSPA EMISSION RATE CALCULATION SPREADSHEET SORTED BY CATEGORY AND CORRECTED SCREENING VALUE Page 20e

		(IP 6.4	1,701	4.136+01	4.06E+01		4.176+01	4.13E+01	4.25E+01	9 645 , 04	10+440.0
	1H	(h/h		٦,	4.63E-03	100	4./an-03	4.72E-03	4.85E-03	A 16E 03	20 10
RATE	87.0	(lb/vd		1	2.26E-01	2000		1.83E-01	1.39E-01	1 ROF 01	1
EMISSION RATE	Methane	(lb/hd	1	1	2.59E-05	2 505 05	\perp		1.586-05	207F-05	1
	NMOC	(lb/vr)		1	4.03E+01	4 14F±01			4.23E+01	3.62E+01	
	Ž	(lp/hr)	4.69F-03		4.51E-03	4.73E-03	4 70E	201	4.83E-03	4.13E-03	1 26F-07
	WW	Вад	28.05	7000	26.04	28.04	28.00	20.00	28.20	28.05	28.03
NATION	Σ	N2	27.9	000	0.02	28.0	27.9	2 6	2/.0	27.9	28.0
F DETERMINATION	%	22	8.66	9 00	000	8.08	5 99.5			29.7	9.66
VOLECULAR WEIGHT	MW fraction MW fraction	SHS	0.0794	0.0344	1	0.0441	0.1809	0.4367	0.4307	0.0706	0.000
MOLECU	MW fraction	3	0.0	00		0.0	0.0	000	2 0	0.0	0.1
SAMPLE CONTROL	6	9000	N2-12	N2-12	45	21 - 21	N2-12	N2-12	1 0	71-71	20
SAMPLI		2 1	0/1-7	Z-171	7_170	7/1/2	Z-173	Z-174	7-475	2/1/2	7-176

WSPA EMISSION RATE CALCULATION SPREADSHEET

Page 20f

API PUBL*4613 94 ■ 0732290 0533512 266 ■

A.2 EMISSION CORRELATION EQUATIONS DATA

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

------ Source*Type=C Service=FL ------

	Sample		Component		Screening Value	THC Emission Rate
Site	Iď	Phase	Category	Size	(ppm)	(lbs/hr)
Y	99	LL	FL	6.0	5.0	1.8532E-06
X	22	LL	FL	4.0	19.5	4.5427E-06
Y	75	\mathtt{HL}	${ t FL}$	4.0	22.5	1.2910E-05
Y	90	${f L}{f L}$	FL	4.0	69.5	7.4741E-05
W	24	GAS	${ t FL}$	2.0	81.0	8.3424E-05
v	35	GAS	${ t FL}$	1.5	97.0	7.6674E-06
Y	95	${f LL}$	${ t FL}$	4.0	222.5	1.8359E-04
X	36	LL	${ t FL}$	4.0	593.0	2.7816E-04
Z	36	$_{ m LL}$	\mathtt{FL}	8.0	595.5	2.3057E-05
x	21	\mathtt{LL}	${ t FL}$	6.0	671.0	6.6141E-04
V	43	LL	${ t FL}$	4.0	1495.0	8.4433E-03
Z	57	LL	${ t FL}$	3.0	1548.0	3.7253E-04
Z	32	$_{ m LL}$	FL	4.0	1996.0	1.7572E-04
X	115	$_{ m LL}$	${ t FL}$	4.0	3244.5	5.4628E-04
X	102	$_{ m LL}$	\mathtt{FL}	3.0	3997.5	3.7264E-03
W	23	GAS	${ t FL}$	3.0	4996.0	5.9189E-03
X	61	LL	${ t FL}$	4.0	11547.0	7.5989E-03
Y	91	LL	${ t FL}$	3.0	20246.0	2.1012E-03
Х	114	LL	FL	8.0	34995.5	2.7699E-03

N = 19

1

----- Source*Type=C Service=O -----

Site	Sample Id	Phase	Component Category	Sìze	Screening Value (ppm)	THC Emission Rate (lbs/hr)
Y	39	LL	TH	1.00	6.5	8.7087E-07
V	34	GAS	U	1.00	13.0	1.1205E-06
V	38	LL	Ū	1.00	18.0	1.5408E-06
Y	11	${f LL}$	TH	1.00	26.5	3.1026E-06
Y	13	LL	TH	0.25	36.5	6.8863E-08
v	42	LL	TH	1.00	38.0	7.0841E-07
v	71	\mathtt{HL}	TH	0.75	58.5	1.2656E-06
Y	41	LL	TH	1.00	91.0	8.0739E-06
Y	86	GAS	TH	0.50	267.0	1.0313E-04
v	25	GAS	TH	1.00	271.0	4.3557E-04
Z	60	GAS	Ü	1.50	446.0	1.0824E-04
Z	12	${ t LL}$	TH	1.00	649.0	3.5900E-05
Y	62	GAS	TH	1.00	1196.5	1.4601E-04
ν,	92	${ t LL}$	TH	1.00	1335.0	3.0518E-06
W	138	LL	TH	1.00	1345.5	2.7032E-05
Х	25	\mathtt{LL}	$\mathbf{T}\mathbf{H}$	1.00	1393.0	5.5679E-06
V	48	LL	TH	1.00	3595.5	5.8294E-04
Y	44	LL	TH	0.25	6492.5	1.9922E-03
X	15	GAS	TH	1.00	7745.0	8.7876E-04
W	5	$^{ m HL}$	TH	1.00	8994.0	2.1680E-03
z	146	${f L}{f L}$	TH	1.00	9747.5	1.4523E-02
X	56	GAS	TH	1.00	10995.0	2.0767E-03
Z	39	LL	TH	1.00	19304.0	4.1460E-05
Y	113	LL	COUP	0.50	21996.0	1.3955E-04
Z	70	LL	$\mathbf{T}\mathbf{H}$	1.00	27493.0	4.5910E-02
V	100	GAS	TH	1.00	43995.0	4.8570E-03
W	93	LL	TH	0.50	52843.0	7.4509E-03
Z	158	LL	TH	0.75	62482.5	1.9222E-03
W	110	${f L}{f L}$	TH	1.00	89996.5	1.8235E-03

----- Source*Type=OEL Service=All -----

						THC
	Sample		Component		Screening Value	Emission Rate
Site	Id	Phase	Category	Size	(ppm)	(lbs/hr)
		63. 6	0.77	0.750		
Y	8	GAS	OEL	0.750	16.5	8.6401E-06
V	23	GAS	OEL	0.500	20.3	1.7117E-06
W	12	GAS	OEL	0.375	60.5	3.9178E-06
W	125	LL	OEL	1.000	66.5	7.3473E-05
V	63	\mathtt{HL}	OEL	0.500	195.0	3.0420E-06
V	19	$_{ m LL}$	OEL	0.500	247.0	1.7860E-05
X	3	${f LL}$		0.750	488.0	8.7451E-06
W	102	LL	OEL	0.500	522.5	3.0118E-05
Z	61	GAS	OEL		893.0	2.8951E-05
Z	54	\mathtt{HL}	OEL	1.000	1097.5	2.4643E-04
v	109	${f L}{f L}$	OEL	1.000	1448.0	6.0067E-06
v	18	LL	OEL	0.500	1493.0	6.9870E-05
X	52	$_{ m LL}$	OEL	0.250	1996.0	7.8584E-04
W	18	GAS	OEL	1.000	7995.0	5.2377E-04
W	134	${f L}{f L}$	OEL	0.500	12493.5	1.2428E-03
W	142	LL	OEL	0.750	12990.0	2.0284E-03
Y	98	LL	OEL	0.500	14846.0	2.1311E-04
v	83	GAS	OEL	1.000	15068.0	9.1422E-05
х	66	$_{ m HL}$	OEL	0.250	15496.5	4.0942E-04
Y	68	LL	OEL	1.000	26795.0	1.9477E-02
v	32	GAS	OEL	1.000	44998.0	1.9261E-03
ž	165	LL	OEL	0.250	94995.5	2.2345E-03
2	100		222	0.250	3.333.3	2.23436-03

N = 22

Site	Sample Id	Phase	Component Category	Size	Screening Value (ppm)	THC Emission Rate (lbs/hr)
Y	117	HL	нс	4	6.75	9.9257E-06
Y	116	HL	HC	4	9.50	1.4955E-04
W	42	HL	HC	3	10.00	5.3255E-06
Y	128	\mathtt{HL}	HC	3	18.00	5.7594E-05
Y	134	\mathtt{HL}	HC	3	19.00	2.4070E-05
х	73	\mathtt{HL}	HC		45.50	7.2499E-04
X	79	\mathtt{HL}	HC		277.00	6.4081E-03
v	72	HL	HC		323.00	1.8208E-03
Y	118	\mathtt{HL}	HC	3	1145.50	1.9791E-03
x	67	\mathtt{HL}	VERT		9496.50	2.7970E-02

----- Source*Type=PUMP Service=LL -----

	Sample		Component		Screening Value	THC Emission Rate
Site	Id	Phase	Category	Size	(mqq)	(lbs/hr)
W	101	LL	VERT	1.5	4.5	1.3377E-04
V	37	LL	HC	12.0	15.5	1.1569E-03
Y	76	LL	HC	3.0	21.5	4.1744E-04
Y	72	LL	HC	4.0	22.0	3.1719E-04
W	77	LL	HC	6.0	66.0	1.3812E-03
Х	94	LL	νc	3.0	66.5	1.1358E-04
W	156	LL	VERT	4.0	107.0	5.4070E-05
W	76	${f L}{f L}$	VERT	2.0	126.0	9.0665E-05
W	145	LL	VERT	3.0	136.0	7.5175E-04
Х	93	LL	VC	3.0	192.0	9.2571E-05
Х	37	LL	CENT	•	395.0	1.0800E-02
Х	50	LL	HC		621.0	2.7014E-03
W	155	LL	VERT	4.0	947.0	4.8518E-03
x	59	LL	HC	-	996.0	6.6363E-03
W	128	$_{ m LL}$	VERT	6.0	1697.0	3.9559E-03
x	27	${f L}{f L}$	HC	•	1780.0	1.3222E-03
Z	72	LL	HC	6.0	4997.0	1.6694E-02
W	74	$_{ m LL}$	VERT	2.0	5745.5	1.4970E-02
Z	102	${f LL}$			5970.0	2.1060E-03
Z	24	$_{ m LL}$	HC	4.0	7999.0	6.2773E-04
Y	57	$_{ m LL}$	HC	6.0	13995.0	2.1346E-02
Y	50	LL	HC	4.0	17694.5	7.5818E-02
Y	124	LL	HC	3.0	22995.0	2.6333E-03
x	42	LL	HC	2.0	27996.0	1.8090E-03
W	141	${ t LL}$	VERT	2.0	33744.5	1.9073E-03
Y	56	${f L}{f L}$	HC	6.0	41995.0	2.1122E-02
Z	22	LL	HC	2.0	98090.0	2.3292E-03

------ Source*Type=VALVE Service=All ------

						THC
	Sample		Component		Screening Value	Emission Rate
Site	Id	Phase	Category	Size	(mqq)	(lbs/hr)
17	60	LL	GATE	8.00	3.5	2 60017 05
Y	60			1.00		2.6981E-05
v	94	$_{ m LL}$	GATE		5.5	2.7413E-06
Y	37	LL	GATE	4.00	5.5	2.1391E-06
W	94	GAS	GATE	0.75	11.0	1.0455E-05
V	56	GAS	GATE	3.00	13.0	5.5121E-05
W	115	LL	GATE	8.00	17.0	2.5458E-05
W	120	HL	MC	3.00	18.5	1.2864E-05
W	63	$^{ m HL}$	GATE	0.75	22.0	1.6349E-07
W	8	GAS	GLOBE	1.00	22.5	1.4612E-05
Y	2	GAS	GATE	3.00	22.5	1.2049E-04
W	55	\mathtt{HL}	MC	8.00	23.5	9.1971E-06
Y	137	GAS	GATE	3.00	23.5	7.1283E-06
W	38	${f L}{f L}$	GATE	2.00	26.0	4.4856E-06
Y	10	GAS	GATE	4.00	26.0	3.4896E-05
Z	3	${ t LL}$	GATE	3.00	26.5	1.9016E-04
W	57	$^{ m HL}$	GATE	8.00	28.0	8.4779E-06
W	62	\mathtt{HL}	GATE	4.00	31.0	5.4845E-07
W	35	LL	GATE	2.00	31.5	3.4716E-06
W	52	GAS	GATE	8.00	33.0	7.0998E-06
Z	40	$_{ m LL}$	GATE	3.00	33.5	5.4777E-06
X	76	\mathtt{HL}	GATE	0.75	42.0	1.0225E-04
W	44	LL	GATE	0.50	46.5	1.4784E-06
W	6	LL	MC	3.00	50.0	4.1787E-06
Y	19	GAS	GATE	8.00	50.0	1.2882E-05
Y	64	LL	GATE	1.00	51.0	1.8398E-05
W	88	${f L}{f L}$	GATE	4.00	60.0	2.3654E-05
V	20	GAS	GATE	1.00	66.0	2.8951E-05
v	27	GAS	GATE	2.00	68.5	1.2492E-05
Z	33	${f L}{f L}$	GATE	4.00	74.0	2.1505E-04
V	61	GAS	GATE	1.00	78.0	3.5786E-06
W	48	LL	GATE	3.00	80.0	1.1068E-05
х	75	HL	GATE	4.00	92.0	2.7960E-04
V	15	LL	GATE	0.75	100.0	1.3564E-04
W	98	GAS	MC	3.00	100.0	6.0052E-05
Y	136	GAS	GATE	1.50	105.0	2.1143E-05
Ÿ	35	LL	GATE	4.00	119.5	1.9734E-05
Z	58	HL	GATE	3.00	121.0	6.1971E-05
Y	73	HL	GATE	4.00	122.5	7.9917E-05
Ž	31	LL	GATE	4.00	133.5	1.4668E-03
X	38	GAS	GATE	2.00	142.0	4.3885E-04
Z	14	GAS	. NEDL	0.50	150.0	2.3911E-06
Z	7	LL	GATE	4.00	159.5	1.1019E-03
v	65	HL	GLOBE	0.75	167.0	1.6268E-04
v	17	LL	GATE	2.00	173.0	3.6643E-05
Y Y	23	LL	GATE	1.00	176.0	7.1928E-05
v	73	HL	GLOBE	3.00	183.0	5.0012E-04
W	111	LL	GATE	8.00	192.0	1.9369E-04
Ÿ	45	GAS	GATE	3.00	195.5	1.1378E-04
v	111	GAS	GATE	8.00	197.5	2.1201E-04
ż	118	LL	GATE	1.00	224.0	2.6622E-04
-					• •	2.00222 07

----- Source*Type=VALVE Service=All ----- (continued)

					-	THC
	Sample		Component		Screening Value	Emission Rate
Site	Id	Phase	Category	Size	(ppm)	(lbs/hr)
V	87	GAS	GATE	3.00	240.0	2.2155E-05
V	74	\mathtt{HL}	GLOBE	4.00	290.0	5.5498E-04
Z	18	GAS	GATE	2.00	297.0	4.9355E-04
V	36	GAS	GATE	0.75	297.0	7.3199E-05
Y	89	GAS	NEDL	0.50	306.0	3.4574E-05
Z	87	GAS	GATE	8.00	331.5	1.1859E-04
Z	4	\mathtt{LL}	GATE	4.00	372.5	6.4104E-04
z	86	GAS	GATE	8.00	396.5	1.0634E-04
Y	22	GAS	GATE	2.00	420.0	1.6742E-04
Y	67	\mathtt{HL}	GATE	6.00	446.0	8.9521E-04
v	110	\mathtt{LL}	GLOBE	9.00	447.5	1.1134E-04
2	121	LL	GATE	4.00	474.0	2.3710E-03
Y	5	GAS	GATE	6.00	496.5	1.4554E-04
W	96	\mathtt{HL}	MC	4.00	505.0	7.0567E-05
Y	129	GAS	GLOBE	3.00	515.0	1.3748E-04
W	29	\mathtt{HL}	GLOBE	4.00	540.0	6.8609E-04
Z	56	LL	GATE	4.00	59 5.0	2.4965E-04
W	97	$_{ m LL}$	MC	1.00	646.0	6.4753E-05
V	28	GAS	GATE	2.00	724.0	4.3039E-05
V	30	GAS	GATE	0.75	735.0	5.0869E-04
Y	126	${f L}{f L}$	GATE	8.00	793.0	1.3213E-04
Х	18	$\mathbf{L}\mathbf{L}$	GATE	4.00	794.0	6.6005E-04
V	8	LL	MC	1.00	796.0	1.0347E-03
W	132	LL	GATE	2.00	796.5	3.3375E-04
z	123	GAS	GATE	0.75	798.5	6.5641E-05
v	84	GAS	GATE	4.00	830.0	4.3977E-04
Х	24	LL	GATE	10.00	893.0	1.0008E-03
W	86	$\mathbf{L}\mathbf{L}$	GATE	6.00	894.0	3.6969E-04
Y	71	GAS	GATE	1.50	922.0	1.9784E-04
X	65	${ t HL}$	GATE	3.00	956.5	9.4425E-04
Z	8	${f L}{f L}$	GATE	10.00	995.0	1.5104E-03
W	146	GAS	GATE	4.00	996.0	7.3671E~04
Y	82	GAS	GATE	2.00	996.0	2.1462E-04
2	21	LL	GATE	4.00	1044.0	3.4141E-04
Y	133	GAS	GATE	6.00	1045.0	1.2969E-04
Z	144	GAS	GATE	0.75	1049.0	1.2248E-04
Z	38	LL	GATE	12.00	1243.0	6.8809E-03
Z	119	LL	GATE	1.00	1248.0	6.3847E-04
V	3	ĹL	GLOBE	1.50	1348.0	4.7683E-04
W	147	GAS	GATE	0.50	1397.0	2.2072E-04
V	26	GAS	GLOBE	0.75	1495.0	6.5346E-05
Z	153	LL	GATE	4.00	1598.0	1.3563E-03
Z	69	LL	GATE	4.00	1695.0	2.1682E-03
Z	85	GAS	GATE	6.00	1949.0	9.2579E-04
Z	.122	LL	GATE	4.00	2096.5	3.3643E~04
Z	88	\mathtt{HL}	GATE	3.00	2097.5	1.0519E-03
X	16	LL	GATE	6.00	2240.0	7.9310E-04
Z	91	GAS	GATE	6.00	2343.0	4.1569E-04
v	13	LL	GATE	0.75	2496.0	1.3862E-04

------ Source*Type=VALVE Service=All ----- (continued)

	Sample		Component		Screening Value	THC Emission Rate
Site	Id	Phase	Category	Size	(ppm)	(lbs/hr)
						, , ,
Z	11	${f L}{f L}$	GATE	2.00	2498.0	1.0390E-02
W	82	${f L}{f L}$	GATE	8.00	2736.0	5.7848E-04
V	2	${f L}{f L}$	GATE	4.00	2992.0	1.3916E-03
Y	9	GAS	GATE	3.00	2993.0	2.8458E-02
Y	127	\mathtt{HL}	GATE	4.00	2993.0	1.0935E-03
v	44	${f L}{f L}$	GATE	1.00	3493.0	4.9778E-04
W	53	GAS	MC	8.00	3493.0	1.4741E-03
Х	82	GAS	GATE	0.75	3898.4	6.3531E-04
V	9	LL	MC	1.00	3996.0	1.0570E-03
Z	20	GAS	GATE	2.00	4246.0	4.9035E-04
v	53	$\mathbf{L}\mathbf{L}$	GATE	2.00	4997.5	7.1885E-04
X	8	LL	GATE	4.00	5000.0	2.6605E-04
V	10	LL	MC	4.00	6690.0	4.0400E-03
X	77	${ t LL}$	GATE	4.00	7497.0	2.9916E-03
Z	13	GAS	BALL	0.50	7995.5	7.3500E-04
v	24	GAS	MC	4.00	7998.0	2.9210E-03
V	5	LL	GATE	4.00	8490.0	1.0417E-03
X	13	${f L}{f L}$	GATE	6.00	10997.0	2.4990E-03
Z	53	\mathtt{HL}	BALL	0.50	11494.0	4.9317E-03
Y	59	LL	GATE	3.00	12145.5	5.7167E-04
W	119	\mathtt{HL}	MC	1.50	12991.0	9.5579E-04
Z	170	LL	GATE	6.00	15998.5	4.7175E-03
Y	54	GAS	ORBIT	2.00	16496.0	8.5026E-04
Y	85	LL	GATE	8.00	20246.5	1.0149E-03
Х	120	LL	ORBIT	8.00	21495.0	3.3894E-03
Y	104	GAS	GATE	1.50	22495.0	7.7874E-04
W	19	LL	GATE	1.00	23994.5	1.3400E-03
Y	52	LL	GATE	2.00	23996.0	3.0301E-04
W	70	LL	GATE	8.00	25490.0	3.8156E-02
W	136	LL	BALL	0.50	25895.5	1.3258E-02
Х	55	GAS	GATE	4.00	34995.0	9 .1958E-0 3
W	80	LL	GATE	3.00	34996.5	7.7994E-04
Z	74	${f L}{f L}$	GATE	3.00	39996.5	2.1070E-03
Y	83	LL	NEDL	0.50	42745.5	9.7824E-04
W	106	GAS	MC	3.00	47995.5	1.8904E-03
X	122	LL	BTFY	8.00	54994.0	2.0301E-02
W	139	GAS	GATE	6.00	62995.5	1.4817E-02
Z	63	GAS	GLOBE	1.00	65699.0	1.3324E-03
X	107	LL	ORBIT	3.00	72924.0	4.4921E-02
V	97	LL	GATE	2.00	79997.0	2.9715E-03
Z	130	GAS	GATE	0.75	79998.8	2.4513E-03
Z	51	${f L}{f L}$	GATE	3.00	131398.6	1.4690E-02

API PUBL*4613 94 🗯 0732290 0533520 332 🖿

A.3

ZERO COMPONENT EMISSIONS DATA

Data for Zero Component Emission Factors

----- Type=C T_PHASE=FL ------

				_			
Site	Sample ID	Code	Phase	Subtype	Size	OVA -SV (ppm)	THC ER (lbs/hr)
Y	3	DZ	GAS	${ t FL}$	2.0	0	1.7443E-07
X	57	DZ	GAS	${ t FL}$	2.0	0	1.7671E-06
W	16	DZ	GAS	${ t FL}$	0.5	0	1.4160E-08
W	27	DZ	GAS	${ t FL}$	1.0	0	1.5641E-08
Х	47	DZ	${f LL}$	${ t FL}$	2.0	0	4.8322E-07
Х	53	DZ	${f L}{f L}$	FL	2.0	0	4.8347E-07
Z	48	DZ	${f L}{f L}$	\mathtt{FL}	3.0	0	1.0384E-06
Z	49	DZ	${f L}{f L}$	\mathtt{FL}	3.0	0	2.1118E-08
Z	50	DZ	LL	FL	3.0	0	4.1956E-07

N = 9

Type=C T_PHASE=O -----

	Sample					ova sv	THC ER
Site	ID	Code	Phase	Subtype	Size	(ppm)	(lbs/hr)
Y	21	DZ	GAS	тн	1.0	0	1.0497E-08
Y	55	DZ	GAS	TH	1.0	0	8.5175E-07
v	101	DZ	GAS	TH	1.0	0	8.0018E-06
Z	117	DZ	GAS	TH	2.0	0	5.2040E-07
W	14	DZ	GAS	Ū	1.0	0	1.4023E-08
W	25	DZ	GAS	TH	1.0	0	5.6322E-08
Y	69	DZ	${f L}{f L}$	\mathtt{TH}	1.0	0	1.6827E-08
Y	77	DZ	${f L}{f L}$	$\mathbf{T}\mathbf{H}$	1.5	0	1.6287E-08
Y	78	DZ	LL	TH	1.5	0	1.7133E-08
Z	112	DZ	LL	TH	1.0	0	1.1044E-08
Z	114	DZ	LL	С	2.0	0	1.1986E-08
W	75	DZ	LL	TH	1.0	0	1.0378E-05

Data for Zero Component Emission Factors

THC ER	OVA - SV					Sample	
(lbs/hr)	(mqq)	Size	Subtype	Phase	Code	ID	Site
1.5272E-08	0	0.50	OEL	GAS	DZ	13	W
3.1075E-06	0	0.50	OEL	GAS	DZ	108	W
1.2852E-08	0	6.00	OEL	\mathtt{HL}	DZ	96	Z
2.4155E-08	0	6.00	OEL	\mathtt{HL}	DZ	111	Z
1.2669E-08	0	0.50	OEL	\mathtt{HL}	DZ	45	W
2.1604E-07	0	0.75	OEL	\mathtt{HL}	DZ	81	W
1.1914E-08	0	0.50	OEL	$_{ m LL}$	DZ	79	W
1.1260E-08	0	0.75	OEL	$_{ m LL}$	DZ	130	W
1.6886E-06	0	0.75	OEL	$\mathbf{L}\mathbf{L}$	DZ	144	W
			N = 9				
		GAS	RV T_PHASE=	Type=P			
THO	AVO						
ER	sv				_	Sample	
(lbs/hr)	(ppm)	Size	Subtype	Phase	Code	ID	Site
2.4799E-08	0	3.0	PRV	GAS	DZ	102	v
1.7794E-08	0	1.5	PRV	GAS	DZ	103	V
	0	, E	PRV	GAS	DZ	104	V
1.5653E-08	U	1.5					
1.5653E-08	U	1.5	N = 3				
1.5653E-08	-		N = 3 UMP T_PHASE	Type=P			
1.5653E-08	-		•	Type=P			
			UMP T_PHASE	Type=P		 Sample	
			•	Type=P Phase	Code	Sample	 Site
THC EF	OVA SV	=HL -	UMP T_PHASE	•		•	Site
THC EF (lbs/hr)	OVA SV (ppm)	=HL - Size	UMP T_PHASE Subtype	Phase	Code	ΙĎ	
THC EF (1bs/hr) 4.9741E-08	OVA SV (ppm)	=HL Size 2	UMP T_PHASE Subtype HC	Phase HL	Code DZ	1D 70	Y
THC EF (1bs/hr) 4.9741E-08 1.9662E-06	OVA SV (ppm) 0	=HL Size 2 4	UMP T_PHASE Subtype HC HC	Phase HL HL	Code DZ DZ	1D 70 120	Y Y

Data for Zero Component Emission Factors

			Type=P	UMP T_PHASE	=LL		
Q:+-	Sample	Code	Phase	Cubtuma	Size	OVA SV	THC ER
Site	ID	Code	Fliase	Subtype	5126	(mqq)	(lbs/hr)
Y	4	DZ	LL	HC	4	0	1.4695E-07
Y	48	DZ	LL	HC	2	0	4.5392E-05
Y	79	DZ	${f L}{f L}$	HC	6	0	5.5176E-08
Y	80	DΖ	${f L}{f L}$	HC	6	0	5.9828E-08
Y	125	DZ ,	${f L}{f L}$	HC	8	0	4.1203E-06
Z	109	DZ	LL		•	0	1.2093E-07
W	129	DZ	LĻ	VERT	6	0	1.1827E-06

----- Type=VALVE T_PHASE=All -----

						OVA	THC
	Sample					sv	ER
Site	ID	Code	Phase	Subtype	Size	(ppm)	(lbs/hr)
Y	25	DZ	GAS	GATE	2.00	0	7.2050E-07
Y	47	DZ	GAS	GATE	1.50	0	4.5395E-07
Y	53	DZ	GAS	GATE	8.00	0	1.9694E-05
Y	87	DZ	GAS	GATE	0.75	0	1.7084E-08
Y	88	DZ	GAS	GATE	0.75	0	1.9079E-08
Y	97	DZ	GAS	GATE	6.00	0	2.0734E-08
Y	105	DZ	GAS	GATE	1.00	0	2.2466E-08
Y	112	DZ	GAS	PLUG	3.00	0	7.2409E-07
Y	138	DZ	GAS	GATE	4.00	0	2.1829E-08
Y	139	DZ	GAS	GATE	3.00	0	3.1310E-08
V	85	DZ	GAS	GLOBE	2.00	0	3.4459E-05
v	105	DZ	GAS	GATE	6.00	0	6.0900E-08
2	83	DZ	GAS	GLOBE	1.00	0	1.8390E-06
Z	84	DZ	GAS	GATE	6.00	0	4.8148E-06
Z	89	DZ	GAS	GATE	6.00	0	9.8204E-08
z	90	DZ	GAS	GATE	6.00	0	8.7430E-08
W	95	DZ	GAS	MC	4.00	0	1.3547E-06
W	100	DZ	GAS	MC	3.00	0	2.5818E-05
W	107	DZ	GAS	GATE	6.00	0	8.0767E-08
V	76	DZ	$^{ m HL}$	GLOBE	1.00	0	6.3525E-05
V	89	DZ	\mathtt{HL}	GATE	2.00	0	3.2623E-05
X	72	DZ	\mathtt{HL}	GATE	0.75	0	2.2798E-08
Х	78	DZ	\mathtt{HL}	GATE	2.00	0	7.9476E-05
Z	93	DZ	\mathtt{HL}	GATE	8.00	0	1.2192E-07
Z	94	DZ	$^{ m HL}$	GATE	8.00	0	1.1890E-07
Z	95	DZ	$^{ m HL}$	GATE	6.00	0	1.1001E-07
W	43	DZ	\mathtt{HL}	GATE	0.50	0	5.3101E-06
W	49	DZ	\mathtt{HL}	GATE	1.00	0	2.3327E+08
W	60	DZ	\mathtt{HL}	GATE	0.75	0	1.4546E-08
W	61	DZ	\mathtt{HL}	GATE	0.75	0	1.4663E-08
W	122	DZ	\mathtt{HL}	GATE	3.00	0	3.6122E-08
W	123	DZ	\mathtt{HL}	GATE	3.00	0	2.9655E-08
Y	16	DZ	${f L}{f L}$	GATE	3.00	0	2.6409E-08
Y	17	DZ	LL	GATE	1.00	0	1.4636E-08

	Sample					OVA SV	THC ER
Site	ID	Code	Phase	Subtype	Size	(ppm)	(lbs/hr)
Y	100	DZ	LL	PLUG	1.00	0	1.4048E-08
Y	110	DZ	LL	GATE	4.00	0	1.0681E-06
Y	141	DZ	${f L}{f L}$	GATE	8.00	0	6.1566E-08
Х	49	DZ	${ t LL}$	GLOBE	4.00	0	6.8850E-06
X	51	ÐZ	LL	GATE	3.00	0	5.1433E-06
X	68	DZ	LL	GATE	4.00	0	3.6704E-05
X	69	DZ	LL	GATE	4.00	0	1.5060E-05
X	70	DZ	LL	GATE	1.00	0	2.1525E-08
X	123	DZ	LL	ORBIT	3.00	0	4.2514E-06
Z	41	DZ	LL	GATE	0.75	0	1.6542E-07
Z	113	DZ	LL	GATE	1.00	0	1.5225E-08
Z	166	DZ	$_{ m LL}$	GATE	3.00	0	5.1763E-06
Z	167	DZ	LL	GATE	1.00	0	1.5406E-05
Z	169	DZ	LL	GATE	3.00	0	1.5348E-05
Z	176	DZ	LL	GATE	6.00	0	1.2557E-07
W	36	DZ	LL	GATE	0.50	0	2.4341E-08
W	40	DZ	LL	GATE	10.00	0	4.7162E-08
W	54	DZ	${f L}{f L}$	GATE	0.75	0	1.0298E-08
W	78	DZ	\mathtt{LL}	GATE	3.00	0	1.1817E-06
W	133	DZ	LL	GATE	1.50	0	2.1984E-08
W	150	DZ	${ t LL}$	GATE	1.00	0	1.8395E-08
W	154	DZ	LL	GATE	10.00	0	4.8301E-08
W	157	DZ	LL	GATE	8.00	0	4.4190E-08

API PUBL*4613 94 🖿 0732290 0533525 914 🖿

A.4 PEGGED COMPONENT EMISSIONS DATA

 Type=C	Phase=FI.

Site	Sample ID	Code	Phase	Subtype	Size	OVA SV (mqq)	THC ER (lbs/hr)
v	93	PEG	GAS	FL	24	85987	1.7264E-04
V	95	PEG	GAS	FL	4	85990	8.2593E-03
W	9	PEG	GAS	FL	1	99995	5.4846E-02
				N = 3			

----- Type=C Phase=O ------

						OVA	THC
	Sample					sv	ER
Site	ID	Code	Phase	Subtype	Size	(mqq)	(lbs/hr)
Y	58	PEG	LL	TH	1.00	75992.0	2.5896E-03
Y	106	PEG	${f L}{f L}$	TH	0.50	89997.0	1.5689E-02
V	62	PEG	GAS	TH	1.00	90997.5	2.7638E-03
V	66	PEG/DRIP	\mathtt{HL}	\mathtt{TH}	1.00	1434.0	7.4962E-02
x	35	PEG	LL	TH	1.00	46990.0	6.2568E-03
X	58	PEG	GAS	TH	1.00	54996.0	1.1886E-01
X	60	PEG	$_{ m LL}$	TH	1.00	65996.0	6.3338E-02
X	62	PEG	GAS	TH	0.75	99998.0	7.6784E-02
Z	26	PEG	$_{ m LL}$	TH	1.00	116995.0	2.6415E-03
Z	27	PEG	LL	TH	1.00	116996.0	6.7018E-03
2	66	PEG	GAS	U	1.50	99990.0	4.3660E-04
W	4	PEG	GAS	TH	3.00	99996.0	4.4216E-02
W	34	PEG	GAS	TH	1.00	99995.0	4.4067E-03
W	109	PEG	LL	TH	0.75	99997.0	6.0827E-03

N = 14

Type=OEL Phase=All -----

	Sample					OVA SV	THC ER
Site	ID	Code	Phase	Subtype	Size	(ppm)	(lbs/hr)
v	12	PEG	GAS	OEL	0.50	88995.0	9.0946E-03
V	58	PEG	GAS	OEL	0.75	99997.5	3.0630E-04
v	77	PEG/DRIP	$^{ m HL}$	OEL	0.50	693.0	5.6403E-02
V	81	PEG	GAS	OEL	0.75	109990.0	1.2848E-02
V	82	PEG	GAS	OEL	0.75	118980.0	5.9078E-03
x	10	PEG/DRIP	LL	OEL	0.50	72987.0	2.5249E-02
Z	16	PEG	GAS	OEL	0.50	140000.0	2.6077E-02
Z	17	PEG	GAS	OEL	0.25	140000.0	4.3177E-02
Z	37	PEG	LL	OEL	0.50	139998.2	9.3953E-02
Z	165	PEGF	$_{ m LL}$	ØEL	0.25	99995.5	2.2345E-03
W	20	PEG	${f L}{f L}$	OEL	0.50	99995.0	1.8948E-03

N = 11

Data for Pegged Component Emission Factors

Type=PUMP Phase=LL -----

Site	Sample ID	Code	Phase	Subtype	Size	OVA SV (ppm)	THC ER (lbs/hr)
Y	94	PEG	$_{ m LL}$	HC	3.0	83247.5	2.3485E-03
Х	5	PEG/DRIP	$_{ m LL}$	CENT	0.5	61988.0	8.2052E-02
Х	92	PEG	\mathtt{LL}	CENT	3.0	99955.0	2.7577E+00
Z	22	PEGI	${ t LL}$	HC	2.0	108990.0	2.3292E-03
Z	100	PEG	LL		•	99995.0	3.5463E-01

N = 5

A-135

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

Data for Pegged Component Emission Factors

 	Type=VALVE	Phase=All	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	4 4		

-1.	Sample		5 1.	_ , ,		OVA SV	THC ER
Site	ID	Code	Phase	Subtype	Size	(mqq)	(lbs/hr)
Y	6	PEG	GAS	GATE	1.0	89993.5	2.0189E-02
V	14	PEG	LL	MC	1.0	66988.0	2.9084E-02
V	31	PEG	GAS	MC	1.0	119996.0	4.1444E-02
V	59	PEG	GAS	GATE	0.5	99998.5	4.5223E-03
v	60	PEG	GAS	MC	3.0	108998.8	3.9373E-03
v	78	PEG	GAS	GATE	3.0	83475.0	6.3393E-03
v	90	PEG	GAS	GLOBE	2.0	76994.0	7.5190E-03
V	91	PEG	GAS	GLOBE	2.0	79995.5	7.7133E-03
v	106	PEG	GAS	GLOBE	3.0	99995.0	2.3761E-02
V	107	PEG	GAS	MC	4.0	71397.0	5.5589E-02
v	108	PEG	GAS	MC	4.0	77996.0	1.1336E-02
X	9	PEG/DRIP	$_{ m LL}$	GATE	3.0	69990.0	6.6420E-02
Х	12	PEG	LL	GATE	3.0	69995.0	4.1433E-01
X	17	PEG/DRIP	${f L}{f L}$	GATE	6.0	87495.0	5.8171E-02
Х	19	PEG	${f LL}$	GATE	6.0	69995.0	7.6070E-03
Х	23	PEG	LL	GATE	6.0	38998.0	5.7033E-02
Х	32	PEG	LL	GATE	6.0	69993.0	1.1199E-02
Х	39	PEG	GAS	GATE	2.0	57990.0	3.7270E-02
х	40	PEG	${f L}{f L}$	GATE	2.0	57990.0	6.7684E-03
X	41	PEG	${f L}{f L}$	GATE	2.0	139993.0	3.0397E-02
Х	55	PEGI	GAS	GATE	4.0	57995.0	9.1958E-03
Х	91	PEG	GAS	ORBIT	3.0	99996.5	3.5486E-03
X	95	PEG	${f L}{f L}$	ORBIT	8.0	99999.0	4.1500E-02
X	96	PEG	LL	ORBIT	2.0	99997.0	2.2315E-02
X	109	PEG	LL	ORBIT	2.0	99998.5	1.3228E-02
X	121	PEG	LL	GATE	4.0	99997.0	5.5536E-02
X	122	PEGF	LL	BTFY	8.0	99994.0	2.0301E-02
2	15	PEG	GAS	NEDL	0.5	99999.0	1.0580E-02
Z	51	PEGF	LL	GATE	3.0	145998.6	1.4690E-02
Z	79	PEG	GAS	GLOBE	1.0	99990.0	1.7053E-01
Z	80	PEG	GAS	GLOBE	1.0	99990.0	1.9380E-02
Z	81	PEG	GAS	GLOBE	3.0	99997.0	1.0973E-02
Z	92	PEG	LL	GATE	4.0	99995.0	4.5531E-02
Z	115	PEG	GAS	GATE	2.0	99997.5	1.2232E-02
W	7	PEG	GAS	MC	6.0	99991.0	1.3441E-03
W	10	PEG	GAS	DIA	1.5	99995.0	2.8411E-03
W	106	PEGI	GAS	MC	3.0	79995.5	1.8904E-03
W	139	PEGI	GAS	GATE	6.0	69995.5	1.4817E-02

N = 38

API PUBL*4613 94 **III** 0732290 0533529 56T **III**

APPENDIX B

COMPARISON OF VAPOR LEAK COMPOSITION TO LIQUID STREAM COMPOSITION DATA AND CALCULATIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

TABLE V-1

FUGITIVE GAS SAMPLES FROM REFINERY "V"

				_			<u>_</u>		9	Ų,	<u>.</u>	ç			ed Conn.	/alve		<u> </u>	Conn.					
			non-CH4 non-CH4 Component			·	I Connector	3/4" Valve	3" Gate Value	J Calc val	I Connector	2" Gate Valve	10" OF!		3/4" Inreaded Conn.	3/4" Globe Valve	3/4" Connector		I I hreaded Conn.	Pumn	1			
		FID	non-CH4	/ou	.A.	o		234.4			4000.8			103				2 1030	0.4707	1298.4		:	937.19	
		FID	non-CH4	, mua		•	4.7	130	120	2000	7007	240	12		7.7	370	4.5	148	3	720			518.83	
		Total	Spec.	ne/J		ç	7.0	25.3	76.2	843.0	043.9	87.5	27.5	9		0.7	35.4	3760	2,075	84.5			142.74	
		Total	Spec	, bpmv		0.05	0.00	17.1	18.61	205.80	23.60	71.30	7.30	1 48		1.00	8.81	94 40	2	19.43			35.12	
liters		Cumene		ppmv		Z		ď.	1.2	86		0.7	0.41	0.21		0.5	0.76	8.4	;	4		;	Y Z	
24.45 liters	Ethyl	Benzene		ppmv		0.008		20.0	0.61	00	0.63	0.03	0.33	0.094		·	0.64	6.7		1.0	-		1.71	
ume =	Total	Xylenes		ppmv		0.011	170	7.7	3.6	4	2,2	7.6	1.7	0.53	0.7	3	2.8	78	0	ŏ.	1		8.17	
molar volume =		Benzene Toluene Xylenes Benzene Cumene		ppmv		0.026	C	7	3.4	35	7	•	1.3	0.19	0.18	0.10	1.4	17	,	4:7	!	007	9.08	
		Benzene		ppmv		N A	7.0	;;	1.2	11	1.5		0.38	0.039	AZ		0.22	2.9	0.50	76.0		V IX	£	
	Iso	octane		ppmiv		Ϋ́	7200	;	4.4	53	2.8		C.1	0.16	0.13		1.4	15	1 3	C: T	:	V N	4	
	Propyl-	ene		ppmv		Ν	0.19		Z Z	NA	0.032		6.1	0.16	0.12	26.0	0.73	6	Z		-	Z	51	
		Hexane		ppmv		Ν	1.6		4.2	49	5.5	0.20	0.30	0.093	0.069	700	0.0	7.4	0.71	;	:	Ą Z		
		Product Hexane				H2 Purg	H2 Syst	` :	1:	T	LL	Ξ	1:	71	HL	ī	3 :	HL	Ħ	1				
	ı	Bag	Sampic	Number		V034																AVG)	MDL

"NA" indicates a non-detect. Detection limits vary sample to sample.

All bag sample results speciated using EPA Method TO-3 (GC/PID-FID)

NMHC for samples V034-VO49 is EPA Method 18 THC minus ASTM D-3416 methane.

NMHC for samples V063-V072 is ASTM D-3416 NMHC.

TABLE V-2

REFINERY "V" FUGITIVE GAS GC RESULTS in ug/l

Bag			Propyl-	lso			Total	Ethyl		Total		Percent
Sample Pr Number	Sample Product Number	Hexane ug/l	ene ug/l	octane ug/l	e Benzene 7 ug/l	Toluene ug/l	Xylenes ug/l	Benzene (Cumene ug/l	: Speciate	THC	Speciated
						В				,		
V034	H2 Purg		Y Z	Y Y	∢ Z	0.098	0.048	0.035	Ϋ́	0.18	8.84	
V036	H2 Syst		0.33	0.36	9.76	7.54	1.78	0.39	X A	25.30	234	
V047	7		Y Y	20.55	3.83	12.81	15.63	2.65	5.90	76.18	216	
V048	T	_	Y Y	247.59	35.14	131.88	173.69	34.74	48.17	843.93	4869	
V049	7		90.0	27.10	4.79	15.07	13.90	2.74	4.42	87.46	433	20%
V063	Ή		2.24	7.01	1.21	4.90	7.38	1.43	2.02	27.53	39	
V064	Ħ		0.28	0.75	0.12	0.72	2.30	0.41	1.03	5.93	10	
V065	Ή		0.21	0.61	Ϋ́	0.68	3.04	0.43	1.47	89.9	199	
V071	土		1.29	6.54	0.70	5.28	12.16	2.78	3.74	35.44	∞	•
7066	Ħ		15.49	70.07	9.76	64.06	121.58	29.09	41.29	376.93	2525	
V072	H	2.50	N A	6.07	1.66	9.04	38.65	6.95	19.66	84.54	1298	
		!		•	!	:		!	!		!	
@AVG	מ	Ν	N A	Ν	N A	22.92	35.47	7.42	NA	142.74	937.19	

Notes:

All bag sample results speciated using Method TO-3 (GC/PID-FID)

TABLE V-3

REFINERY "V" LIQUID SAMPLES

Liquid		Propyl-	lso			Total	Eihyl		-d'm	•	Total	Approx.	
Sample Product	Hexane	ene 	octane	Benzene	Toluene	Xylenes	Benzene	Cumene ma/l	Xylene	Xylene mo/l	Speciat.	Percent Special	Method
Number	111B/11	1/8	1/3111	1/g	III K	E	,A,,,	ı	9	.A			
	10000	Z	Ž	38000	130000	155000	26000	Ν	110000	45000	• •	•	
	13000	Y X	Y X	45000	150000	167000	27000	1700	120000	47000	•		8240
	7700	A V	A A	4400	15000	21200	3200	330	16000	5200			-
	7700	¥Z	¥Z	4400	15000	21200	3200	330	16000	5200			
	1000	X	X	3900	15000	24600	3500	410	19000	2600			
	Y Y	X	Y X	Ν	300	1280	AN	%	006	380			
	Y Z	X X	A A	Y Y	300	1280	Y X	8	8	380			
	Y Z	X	Y Z	9	220	1100	140	41	790	310			
	Ϋ́ Z	X	¥Z	8	220	1100	140	41	78	310			
	Z	X	A A	Y V	200	870	110	N A	620	250			
V070 HL	Ϋ́Z	Y X	N A	N A	200	870	110	Y Y	620	250	1180	0.2%	
	:	:	:		!		:			!	!		
@AVG	X	X	X	N A	29676	35955	₹ Z	N A	25965	6866	84773		

NOTES: "NA" indicates a non-detect. Detection limits vary sample to sample.

Liquid stream speciation done using SW-846 Method 8240.

TABLE V-4

FUGITIVE/STREAM COMPARISONS (MASS FRACTION)/(MASS FRACTION) BASIS

le Sample Screen Hexane ene be Number ppmv V040 13 V041 297 1.39 V050 109 6.66 V050 3596 3.46 V068 195 V068 195 V069 167 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD 2.2 ER 95% CONFID. F 7.2	Propyl- Iso		Total	Ethyl		All	Percent		Compon.
v040 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Toluene	Xylenes	Benzene	Cumene	Speciated	Speciated	Prod.	Type
V040 13 V041 297 1 V050 109 6 V050 3596 3 V051 1196 3 V068 460 V069 167 V069 167 V069 59 V070 1434 V070 323 N R R R R SER 95% CONFID. ER 95% CONFID.					_	Compounds	S		
33 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
V041 297 1 V050 109 6 V050 3596 3 V051 1196 3 V068 195 V068 460 V069 167 V069 59 V070 1434 V070 323 N N PLE STANDARD ER 95% CONFID. FR 95% CONFID.		0.1	0.03	0.11		0.14	2.0%	H2 Purge	H2 Purge 1" Connector
V050 109 6 V050 3596 3 V051 1196 3 V068 195 V068 460 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. FR 95% CONFID.		0.2	0.03	0.05		0.67	10.8%	H2 Syste	3/4" Valve
V050 3596 3 V051 1196 3 V068 195 V068 460 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. ER 95% CONFID.	3.0	3.0	2.56	2.87	61.95	16.50	35.2%	% LL 3	3" Gate Valve
V051 1196 3 V068 195 V068 195 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. FR 95% CONFID.		4.1	1.26	1.67	22.49	8.12	17.3%	TT	1" Connector
V068 195 V068 460 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. FR 95% CONFID.		1.7	0.98	1.35	18.70	7.98	20.2%	T	2" Gate Valve
V068 460 V069 167 V069 59 V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. ER 95% CONFID.		311.5	110.03		582.65	583.57	70.0%	H	1/2" OEL
V069 167 V069 59 V070 1434 V070 323 N NESTANDARD ER 95% CONFID. ER 95% CONFID.		174.1	131.19		1141	481.01	57.7%	HL	3/4" Threaded Co
V069 59 V070 1434 V070 323 N N=LE STANDARD ER 95% CONFID. ER 95% CONFID.		3.5	3.11	3.49	40.43	9.51	1.0%	H	3/4" Globe Valve
V070 1434 V070 323 N PLE STANDARD ER 95% CONFID. ER 95% CONFID. F	1624	2216	1022	1835	8422	4147	436.8%	H	3/4" Connector
E . II		95.2	41.52	78.57		180.61	14.9%	HE	1" Threaded Con
. 12		26.12	25.66	36.48		78.76	6.5%	H	Pump
. 12		257.5	121.6	217.7	1469.9	501.2			
ONFID.	725.5	657.2	302.1	6.909	3094.4	1226.5			
NFID. F	-574.5	-184.0	-81.3	-248.8	-1392	-322.7			
DATA POINTS	1226.9	0.669	324.6	684.2	4332	1325.1			
t SINIO IVIVA	5	11	11	6	7	=			
"T" STATISTIC USED 3.18	2.78	2.23	2.23	2.31	2.45	2.23			

NOTES:

- 1) All bag sample results speciated using Method TO-3 (GC/PID-FID)
- Results are erratic and of low confidence. Therefore, it is not recommended to use these mass fraction relationships to estimate specific individual species emissions. 7

Results are impacted by liquid samples #68 through #70. In these samples, the sum of all compounds quantified totaled only 0.2% of the liquid stream.

Gas bag sample #71 was also problematic in that the sum of the speciated compounds exceeds the reported NMHC by a factor of four.

3) Mass fraction ratios are computed as: (fugitive com

(fugitive compound ug/l)/(total fugitive NMHC ug/l) (liquid stream compound mg/l)/(total liquid stream ug/l)

Ref: Table V, Page 514, "Probability and Statistics for Engineers and Scientists," Ronald Walpole, 2nd Ed. 1978. Confidence intervals are computed a INTERVAL = MEAN +/-{@STDS(data)*('T' statistic)/(@SQRT(n) Where the 'T' statistic for 14 data points and a 2 sided 95% confidence interval is 2.16. 4

TABLE W-1

FUGITIVE GAS SAMPLES FROM REFINERY "W"

				non-CH4 Component	•		OEL.	OEL	Pump	Pump	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Connection	Connection		
			FID	non-CH4	ng/J		2525	2525	5229	5229	16	2 2	'	, ,	25	23	63115	63115	5049	5049	!	10852
			FID	-			1400	1400	2900	2900	8.0	9.1	60	· 60	14	14	35000	35000	2800	2800	:	6018
			Total	Spec.	\gu		1344.8	1219.2	6009	326.2	0.3	6.1	14.4	11.5	7.2	4.7	2164.5	7915.7	110.6	246.3	-	998.0
			Total	Spec	ppmv		348.20	340.80	152.90	93.00	0.08	1.55	3.70	3.14	1.86	1.30	588.70	1932.00	35.04	64.69	:	254.78
litore	111013		Cumene		ppmv		Ϋ́	NA	1.2	NA	Ν	0.005	0.018	0.017	0.006	0.0066	Y Z	Y Y	X	Y Y	-	X V
24.45	١,	Ethyl	Benzene		ppmv		2.1	4.8	4.7	N A	Y Z	0.092	0.082	0.12	0.032	0.032	1.7	32	N A	69.0	1	Y Y
ii dan	aun a	Total			ppmv	,	9.1	19	14	X A	0.03	0.4	0.22	0.36	0.073	0.11	33	170	0.54	3.7	:	Y Y
molar volume ==			Toluene Xylenes		ppmv	,	3	83	21	18	0.034	0.51	0.47	0.59	0.2	0.22	86	300	2.5	7.4		42.49
			Benzene		ppmv		26	65	=	. 18	0.015	0.2	0.22	0.35	0.1	0.15	180	220	7.3	13	-	40.81
		Iso	octane		ppmv	1	62	Υ	38	Ϋ́	Ϋ́	0.13	0.89	Ϋ́	0.45	Y Y	80	820	2	18	-	Y Y
	-	Propyl-	ene		ppmv	•	۲ Z	Ϋ́	Y Z	Y Y	Ϋ́	Ϋ́	N A	NA	Y Y	N A	Ϋ́	Ϋ́	7.7	1.9	!	ď Z
			Hexane		ppmv		120	170	63	27		0.21				_	<u>8</u>	330	15	20	:	Y Y
			Product				Not Given	Not Given	Crude	Crude	Debut BTMs	Debut BTMs	Crude Naptha	Crude Naptha	Crude Naptha	Crude Naptha	Reg UL	Reg UL	Reg UL	Reg UL		
)		1	Bag	Sample	Number	010011	. 810w	W018*	W028	W028*	W035	W038	W044	W044•	W048	W048*	W070	W070*	W072	W072*		AVG

Bag sample results flagged * are EPA Method TO-14 (GC/MS), others are EPA Method TO-3 (GC/PID-FID)

Non-CH4 hydrocarbons determined by ASTM D-3416.

TABLE W.2

REFINERY FUGITIVE GAS GC RESULTS

Bag		Propyl-	osi			Total	Ethyl		Total	CI.	Dercent
	Hexane ug/l	ene ug/l	octane ug/l	Benzene ug/l	Toluene ug/l	$\boldsymbol{\times}$	Benzene ug/l	Cumene	÷	non-CH	44
										4	
Not Given	422.97	NA	453.14	178.90	241.16	39.51	917	N.	1344 9	3636	2003
Not Given	599.21	Ϋ́	ĄZ	207.65	308 00	60 60	77.00		0.44.0	777	33%
	אסרכנ			201.03	300.70	05.20	70.84	Y Z	1219.2	2525	48%
	222.00	Z I	1//.52	35.14	79.13	60.79	20.41	5.90	6.009	5229	11%
	200.91	Ϋ́	Ϋ́	57.50	67.83	X	YZ.	V N	326.2	\$220	707
BTMs	Ν	NA	NA	0.05	0.13	0.13	N N	2	770.7	7776	0%0
Debut BTMs	0.74	NA	0.61	0.64	18	1 74	90		C. Z	٩ :	%7
Vaptha	6.34	N	4.16	0.70	1 77	80	2.0	70'0	1.0	91	31%
Vantha	\$ 99	N	VIV			2	0.30	60.0	14.4	^	266%
No.	,,,,		Y !	71.1	77.7	1.56	0.52	0.08	11.5	2	213%
Vapuna	3.52	Z	2.10	0.32	0.75	0.32	0.14	0.03	7.2	25	280%
Vaptha	2.75	Ϋ́	Ϋ́	0.48	0.83	0.48	0.14	0.03	7.7	,	200
Reg UL	669.70	Ϋ́	373.73	575 04	76025	143.20	22.43		· ·	3	19%
	137465	V	2820.60	200.00	12.70	67.64	33.43	Y :	2104.3	63115	3%
	0000		20,000	102.03	1130.43	/38.1/	138.94	Ϋ́	7915.7	63115	13%
,	27.87	13.25	9.34	23.32	9.42	2.34	AN	Z	1106	2040	2
Reg UI.	70.49	3 27	00 69	41.63	00.00		100		0.011	250	%7
		7.5	64.03	41.33	77.88	10.07	3.00	Y Y	246.3	5049	2%
	•		•	•	į	!	:		į	į	
	Ϋ́	NA	N A	130.37	160.12	N	AN	NA.	000	10050	2003
							! !	:	2.5	70001	20.70

Notes:

Bag sample results flagged * are TO-14 (GC/MS), others are TO-3 (GC/PID-FID)

TABLE W-3

REFINERY LIQUID SAMPLES

Liquid			Propyl-	os]			Total	Ethyl		-d'm	ò	Total	Approx.
Sample	Sample Product	Hexane	ene	octane	Benzene	Toluene	Xylenes	Benzene	Cumene	Xylene	Xylene	S	Percent
Number		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		Speciat.
	(
.IOM	Not Given	•	∀ Z	₹ Z	26000	28000	9400	2100	₹ Z	2000	2400	137500	18.3%
W017	Not Given	•	Y X	Y Y	26000	28000	9400	2100	Ϋ́	7000	2400	137500	18.3%
W030L	Crude	•	Ϋ́	Ϋ́	6200	16000	75000	0009	NA	14000	61000	146200	19.5%
W030L	Crude	•	٧	Ν	6200	16000	75000	0009	N	14000	61000	146200	19.5%
W037	Debut BTMs		Y Y	A N	5700	26000	40000	7200	330	29000	11000	84230	11.2%
W039	Debut BTMs		A A	N A	9009	28000	44000	7300	370	32000	12000	91070	12.1%
W046	Crude Naptha	•	Y Y	NA	4000	13000	17000	4600	760	12000	2000	58360	7.8%
W046	Crude Naptha	•	Υ	A A A	4000	13000	17000	4600	760	12000	2000	58360	7.8%
W047	Crude Naptha	19000	Ν	Y Y	3800	12000	15500	4200	750	11000	4500	55250	7.4%
W047	Crude Naptha		Ϋ́	Y Y	3800	12000	15500	4200	750	11000	4500	55250	7.4%
W071	Reg UL	7400	N A	30000	2300	15000	23800	4400	N A	17000	0089	85900	11.5%
W071	Reg UL	7400	Ϋ́	30000	2300	15000	23800	4400	N N	17000	0089	85900	11.5%
W073	Reg UL	8600	Ϋ́	36000	2700	17000	27500	4500	N A	20000	7500	99300	13.2%
W073	Reg UL	8600	Ϋ́	36000	2700	17000	27500	4500	NA	20000	7500	99300	13.2%
		İ		i	;	į	i	ļ	ļ	ļ			; ;
@AVG		24886	Ϋ́Z	Y Y	8121	18286	30029	4721	AN	15929	14100	95737	13%

NOTES:

"NA" indicates a non-detect. Detection limits vary sample to sample.

Liquid stream speciation done using SW-846 Method 8240.

REFINERY FUGITIVE/STREAM COMPARISONS (MASS FRACTION)/(MASS FRACTION) BASIS TABLE W-4

Bag	Product	Liquid	Compon	0VA		Propyl-	lso				Ethyl		All	Percent
Number		Sample Number	- 11	Screen ppmv	Hexane	ene	octane	Benzene	Toluene	Xylenes		Cumene	Benzene Cumene Speciated Speciated Compounds	Speciate Is
W018	Not Given	W017	OEL	8000	1 75			204	750	30.1	00.1			3
W018*	Not Given	W017	OEI					5 6	00.2	7	67.1		7.91	53.5%
11,000		11000	JEFF.		7.47			2.37	3.78	2.61	2.95		2.63	48.3%
W028	Crude	W030L	Pump	≅	0.74			0.81	0.71	0.12	0.49		0.59	11 50%
W028•	Crude		Pump	<u>\$</u>	0.67			1.33	0.61		:		0.33	200.9
W035	Debut BTMs	W037	Valve	32				0.39	0.23	0.15			0.17	1 00%
W038	Debut BTMs	W039	Valve	56	6.26			4.87	3.14	28	2.50	3.04	3.05	37.0%
W044	Crude Naptha	w046	Valve	47	46.29			24.36	18.89	7.79	10.73	16.14	34.15	26579
W044	Crude Naptha	W046	Valve	47	43.72			38.75	23.71	12.75	15.70	15.24	27.32	212.6%
W048	Crude Naptha		Valve	8	5.51			2.50	1.87	0.61	0.98	1.17	38	28.5%
W048*	Crude Naptha	_	Valve	8	4.30			3.75	2.05	0.92	0.98	1.29	2.53	186%
W070	Reg UL	W071	Valve	23000	1.08		0.15	1.29	0.29	0.07	000		0.30	3.4%
W070*	Reg UL	W071	Valve	23000	2.21		1.52	1.58	06:0	0.37	0.38		1.10	12 50%
W072	Reg UL	W073	Connect	74000	0.91		0.04	0.61	0.08	0.01			0.17	220%
W072*	Reg UL	W073	Connect	74000	1.22		0.35	1.08	0.24	0.00	0.10		0.37	4 9%
MEAN					9.0		0.51	6.12	4.18	2.19	3.29	737	\$ 68	2
SAMPLE	SAMPLE STANDARD DEVIATION	DEVIAT	LION		16.1		0.7	11.2	7.4	3.8	5.1	7.6	10.8	
OWER	JOWER 95% CONFID. FOR POP. M). FOR PC	OP. MEAN		-0.7		-0.6	-0.3	-0.1	-0.1	0.1	-2.1	-0.5	
UPPER	JPPER 95% CONFID. FOR POP. M	FOR PO	P. MEAN		18.7		1.6	12.6	8.5	4.5	6.7	16.9	11.9	
DATA POINTS	OINTS				13		4	14	7	13	=	5	14	
T" STA1	"T" STATISTIC USED				2.18		3 18	216	2.16	316	2 2 3	0,10		

1) Bag sample results flagged * are TO-14 (GC/MS), others are TO-3 (GC/PID-FID)

Results are erratic and of low confidence. Therefore, it is not recommended to use these mass fraction relationships to estimate specific individual species emissions. 7

the sum of the speciated components exceeded the reported NMHC. If these data were to be dropped from the data set, the Results are heavily impacted by the results from bag sample #44. These data are obviously of poor quality because leak composition /stream composition results would be in the range of 0.5 to 2.0.

3) Mass fraction ratios are computed as:

(fugitive compound ug/l)/(total fugitive NMHC ug/l) (liquid stream compound mg/l)/(total liquid stream ug/l)

INTERVAL = MEAN +/-{@STDS(data)*('T statistic)/(@SQRT(n) Where the 'T' statistic for 14 data points and a 2 sided 95% confidence interval is 2.16. 4) Confidence intervals are computed as:

Ref. Table V, Page 514, "Probability and Statistics for Engineers and Scientists," Ronald Walpole, 2nd Ed. 1978.

TABLE X-1

FUGITIVE GAS SAMPLES FROM REFINERY "X"

			ent						tor				
			Component	-		6" Valve	6" Valve	1475 10" Valve	1" Connector	4" Valve	Pump		
		FID	NMHC	ug/J	,	88360	88360	1425	27	12	2344	ļ	30088
		FID	NMHC	ppmv		49000	49000	06/	51	9.9	1300	i	16685
		Total	Spec.	ng/J							549.8	;	3434.7
			Spec.	ppmv		3655.0	4660.0	77.3	6.9	7.0	143.7	1	1425.0
liters		Cumene		ppmv		X		X	X	0.062	NA	:	N A
24.45 liters	Ethyl	Benzene		ppmv		X		1.6	0.38	0.37	3.7	ļ	A A
nme =	Total			ppmv		A A		6.4	1.3	6.0	13	!	Y V
molar volume =		Toluene Xylenes		ppmv		95	120	14	2.3	1.7	40	i	45.50
		Benzene		ppmv		640	940	14	0.98	0.38	23	:	269.73
	lso	octane		ppmv		220		8.3	0.62	2.3	24	ļ	51.04
	Propyl-	ene		ppmv		Ν		Ϋ́	ΥN	Υ	Y Y	;	N A
		Hexane		ppmv		2700	3600	33	1.3	1.3	40	ļ	1063
		Bag Product		Ţ		Lt Gasoline	Lt Gasoline	Naptha Feed	Naptha Feed	Naptha Feed	Reactor Feed		
		Bag	Sample	Number		X023	X023*	X024	X025	X026	X027		AVG

NA means not detected. Detection limits vary by sample.

Bag sample slagged with * analyzed with EPA Method TO-14 (GC/MS). All others analyzed with EPA Method TO-3 (GC/PID-FID)

Non-CH4 hydrocarbons determined by ASTM D-3416.

TABLE X-2

REFINERY FUGITIVE GAS GC RESULTS in ug/l

Bag		Propyl-	os			Total	Ethyl		Total	FID	Percent
Sample Product Number	He	xane ene g/l ug/l	octane ug/l	Benzene ug/l	Toluene ug/l	Xylenes ug/l	Benzene ug/l	Cumene ug/l	Spec	NMHC ug/l	iate NMHC Speciated
X023 Lt Gaso	l	8.8 NA	1027.75	2044.60	357.97	NA	N A	AN	12947.1	88360	15%
X023* Lt Gaso				3003.00	452.17				6768.4	88360	8%
X024 Naptha				44.73	52.75	27.79	6.95	NA	287.3	1425	20%
X025 Naptha				3.13	8.67	5.64	1.65	N A	26.6	27	%86
X026 Naptha Feed	Feed 4.6	1.6 NA	10.74	1.21	6.41	3.91	19:1	0.30	28.8	12	242%
X027 Reactor			_	73.48	150.72	56.45	16.07	N V	549.8	2344	23%
	;	:				i	ļ	1	:	8 8 8	
@AVG	2183	83 NA	238	862	171	Ϋ́	NA	NA	3435	30088	

NA means not detected. Detection limits vary by sample.

Bag sample flagged with * analyzed with Method TO-14 (GC/MS). All others analyzed with Method TO-3 (GC/PID-FID)

TABLE X-3

REFINERY LIQUID SAMPLES

Liquid Sample Product Number	Hexane mg/l	Propyl- ene mg/l	Iso octane mg/l	Benzene mg/l	Toluene mg/l	Total Xylenes mg/l	Ethyl Benzene mg/l	Cumene mg/l	m,p- Xylene mg/l	o- Xylene mg/l	Total Speciat. mg/l	Approx. Percent Speciat.
X029L Lt Gasoline X029L Lt Gasoline X028L Naptha Feed X030L Naptha Feed X028L Naptha Feed X031L Reactor Feed	91000 91000 63000 59000 63000 21000	<pre></pre>	4 4 4 4 4 4 Z Z Z Z Z Z	22000 22000 18000 17000 18000 9400	5900 5900 37000 37000 38000	NA NA 30900 29000 30900 34500	NA NA 7200 6800 7200 9000	N N N N N N N N N N N N N N N N N N N	NA NA 23000 22000 23000 26000	NA NA 7900 7000 7900 8500	118900 118900 156100 146800 156100 1111900	15.9% 15.9% 20.8% 19.6% 20.8% 14.9%
@AVG		NA	NA	17733	26467	Y Y	Y X	Y Y	NA A	N A	134783	ERR

NOTES: NA means not detected.

TABLE X-4

REFINERY FUGITIVE/STREAM COMPARISONS (MASS FRACTION)/(MASS FRACTION) BASIS

Bag	Product	Liquid	OVA		Propyl-	Iso			Total	Fihv		Ψ	Percent	" Commo
Sample Number		Sample Number	Screen ppmv	Hexane	ene	octane	octane Benzene Toluene	Toluene	Xylenes		Cumene	Benzene Cumene Speciate Speciated Compon in bag	Speciated in bag	Type
X023 11	I t Gasoline	VOZOI	30000	00.0			02.0						8	
	Casoline	7670	2200	0.07			0.79	0.51				0.92		6" Valve
	Lt Gasoline	X029L	39000	0.31			1.16	0.65			Z	0.48		6" Value
	Naptha Feed	X028L	893	0.97	Not detected	cted	1.31	0.75	0.47	0.51	detected	0.97		10" Value
	Naptha Feed	X030L	1393	2.15	in liquid	-	5.11	6.87	5.40	673	ij	505		14 Connector
	Naptha Feed	X028L	136	4.58	or gas		4.25	10.91	797	14.05	liamid	11 61	241 70%	4" Value
	Reactor Feed	X031L	1780	2.15)		2.50	1.27	0.57	0.57	nin hii	15.7	23 502	t valve
MEAN				1.8			25	3.5	36	5 5				dum y
SAMPLE	SAMPLE STD DEV.			1.5			× -	. 4	3.7	7.7		4. K		
OWER 9	LOWER 95% CONFID			0.2			9.0	7	-23	4.8		-		
JPPER 95	JPPER 95% CONFID.			3.4			4.4	~	9.5	15.7		8.0		
DATA POINTS	SLNI			9			9	٩						
T" STATI	"T" STATISTIC USED			2.57			2.57	2.57	3.18	3.18		2.57		

NOTES:

- 1) Bag sample flagged with * analyzed with Method TO-14 (GC/MS). All others analyzed with Method TO-3 (GC/PID-FID)
- Results are impacted by bag samples #26 in which the sum of all compounds quantified exceeds the reported NMHC by Results are erratic and of low confidence. Therefore, it is not recommended to use these mass fraction relationships to estimate specific individual species emissions. more than a factor of two. ন
- 3) Mass fraction ratios are computed as:

4

(fugitive compound ug/l)/(total fugitive NMHC ug/l) (liquid stream compound mg/l)/(total liquid stream ug/l)

INTERVAL = MEAN +/-[@STDS(data)*(T' statistic)/(@SQRT(n) Ref: Table V, Page 514, "Probability and Statistics for Engineers and Scientists," Ronald Walpole, 2nd Ed. 1978. Where the 'T' statistic for 14 data points and a 2 sided 95% confidence interval is 2.16. Confidence intervals are computed as:

FUGITIVE GAS SAMPLES FROM REFINERY "Z"

			Component	. l/gu vn	342.6 4" Valve	236.2 3/4" Valve			
		FID	non-CH4	l/gu	342.6	236.2	:	289	
		豆	non	Idd	190	131.0	-	161	
		Total	Spec	ng/l	79.4	1.4	i	40.42	
		Total	Spec.	ppmv	19.93	Υ V	:	NA	
liters		Cumene		ppmv	0.27	NA	•	NA	
24.45	Ethyl	Benzene		ymy ppmv ppmv ppmv	99.0	NA	:	NA	
ume	Total	Xylenes		ppmv	3.3	0.043	i	1.67	
molar volume		Toluene		ppmv	4.3	0.14	į	2.22	
1	4	Benzene Toluene Xylenes Benzene		ppmv	2	0.14	:	1.07	
	osj	octane		ppmv	4.5	Y Z		A A	
	Propyl	cne		opmv ppmv	N A	ΥN	į	Y Y	
		Hexane			4.9	0.074	;	2.49	
	-	Product	e)	Number	Z033 unknown	Fuel gas			
	ŕ	Bag	Sample	Numb	Z 033	Z144		AVG	

"NA" indicates a non-detect. Detection limits vary sample to sample.

Bag Z033 speciated using EPA Method TO-3 (GC/PID-FID). Bag Z144 speciated using EPA Method TO-14 (GC/MS).

Non-CH4 hydrocarbons determined by subtracting ASTM D-3416 methane from EPA Method 18 THC.

TABLE Z-2

REFINERY "Z" FUGITIVE GAS GC RESULTS in ug/l

Sample Numbe	bag Sample Product Number	Hexane ug/l	Fropyl ene ug/l	Lso octane ug/l	- 1	Benzene Toluene ug/l ug/l	Total Xylenes ug/l	Ethyl Benzene ug/l	Cumene ug/l	Total Speciate ug/l	FID THC ug/l	Percent Speciated
Z033	unknown	17.271	N A	21.022	6.389	16.203	14.329	2.866	1.327	79.41	343	23%
Z144	Fuel gas	0.261	N	NA	0.447	0.528	0.187	NA	N A	1.42	236	0.60%
@AVG	(5	8.77	N A	N A	3.42	8.37	7.26	N A	NA N	40.42	289.43	

"NA" indicates a non-detect. Detection limits vary sample to sample.

Bag Z033 speciated using Method TO-3 (GC/PID-FID). Bag Z144 speciated using Method TO-14 (GC/MS).

TABLE Z-3

REFINERY "Z" PRODUCT STREAM SAMPLES

Product			0												
Sample Numbe	Sample Product Number	Hexane mg∕l	ene ene mg/l	octane mg/l	Total Benzene Toluene Xylenes mg/l mg/l mg/l	Toluene mg/l	Total Xylenes mg/l	Ethyl Benzene me/l	Cumene me/l	m,p- Xylene	o- Xylene	Total Speciat.	Approx. Percent	Method	
7036	1	000/3	;							, A	1/A	ılığılı	opecial.		
CCOZ	unknown	26000	K Z	A A	16000	39000	74000	8100	1200	64000	10000	194300	25.9%	8240	
Z145	Fuel gas	257.31	NA	AN	383.36	452.17	95.53	Ϋ́	Ą Z			1188	0.30%	TO.14	#65 865
@AVG	-F	28129	NA	NA	8192	19726	37048	, V	NA	64000	10000	97744	13.1%		

NOTES:

"NA" indicates a non-detect. Detection limits vary sample to sample.

Liquid stream speciation done using SW-846 Method 8240.

TABLE Z-4

REFINERY "Z" FUGITIVE/STREAM COMPARISONS (MASS FRACTION)/(MASS FRACTION) BASIS

Вае	Prod	Product OVA		Propyl	Sol			Total	Ethyl		All Percent	Percent	Compon.
Sample Prod. Sample Screen Hexane Number ppmv	od. Samp Num	Sample Screen Number ppmv	Нехапе	ene	octane	Benzene	octane Benzene Toluene Xylenes Benzene Cumene Speciate Speciated Compon in Bag	Xylenes	Benzene	Cumene	Speciate Speciates Compou in Bag	Speciated in Bag	Type
Z033 unkno	unknown Z035	75	0.68			0.87	0.91	0.42	0.77	2.42	0.89	23.2% 4" Valve	4" Valve
Z144 Fuel gas	gas Z145	1050	2.00			2.31	2.31	3.86			2.37	%9 :0	3/4" Valv
MEAN			1.3			1.6	1.6	2.1	AN	NA	1.6		
SAMPLE STD DEV.	D DEV.		6.0			1.0	1.0	2.4	NA	NA	1.0		
LOWER 95% CONFID. FOR POP.	CONFID.	FOR POP.	-7.1			-7.5	-7.3	-19.7	NA	NA	-1.7		
UPPER 95% CONFID. FOR POP.	CONFID. 1	FOR POP.	8.6			10.7	10.5	24.0	NA	NA	11.0		
DATA POINTS	TS		2			2	2	2			7		
"T" STATISTIC USED	IC USED		12.71			12.71	12.71	12.71			12.71		

NOTES:

- 1) Bag Z033 speciated using Method TO-3 (GC/PID-FID). Bag Z144 speciated using Method TO-14 (GC/MS).
- 2) Results are erratic and of low confidence. Therefore, it is not recommended to use these mass fraction relationships to estimate specific individual species emissions.
- (liquid stream compound mg/l)/(total liquid stream ug/l)

3) Mass fraction ratios are computed as:

(fugitive compound ug/l)/(total fugitive NMHC ug/l)

Confidence intervals are computed as: INTERVAL = MEAN +/-{@STDS(data)*('T' statistic)/(@SQRT(n) Where the 'T' statistic for 14 data points and a 2 sided 95% confidence interval is 2.16. 4

Ref: Table V, Page 514, "Probability and Statistics for Engineers and Scientists," Ronald Walpole, 2nd Ed. 1978.

API PUBL*4613 94 ■ 0732290 0533546 649 ■

APPENDIX C

STATISTICAL EVALUATIONS AND CORRELATION DETAILS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C.1 LEAST SQUARES ESTIMATE OF A LINEAR REGRESSION

The fitting of a line to describe the relationship between two variables (X and Y) via the method of least squares involves estimating a Y-intercept (β_0) and a slope (β_1). The method of least squares chooses the parameter estimates for β_0 and β_1 , as those values which minimize the sum of squares of the vertical distances from the data points to the presumed regression line. In addition, these parameters are estimated so that the average residual $(r_1 = Y_1 - \beta_0 - \beta_1 X_1, i=1, \ldots, n)$ is zero.

Let

 $Y_i = Log_{10}$ (Leak Rate determined by bagging component i),

and

 $X_i = Log_{10}$ (Maximum Screening Value for component i).

So that:

$$Log_{10}$$
 (Leak Rate) = $\beta_0 + \beta_1 Log_{10}$ (Screening Value), or
$$Y_i = \beta_0 + \beta_1 X_i$$

describes the regression line.

Then the least square regression estimators can be given by:

$$\hat{\beta}_1 = \frac{(\overline{XY}) - (\overline{X})(\overline{Y})}{\overline{X}^2 - (\overline{X})^2} ,$$

and

$$\hat{\beta}_0 = \overline{Y} - \beta_1 \overline{X} \qquad ,$$

where:

$$\bar{X} = \frac{\sum X_i}{n}$$

$$\bar{Y} = \frac{\sum Y_i}{n}$$

$$\overline{XY} = \frac{\sum X_i Y_i}{n}$$

$$\bar{X}^2 = \frac{\sum X_i^2}{n}$$

n = number of parameters.

Once these have been calculated, then the Mean Squared Error (MSE) can be given by: where:

$$r_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \qquad .$$

The MSE is a measure of how well the data fit the predicted values of the least-squares regression equation.

C.2 SCALE-BIAS CORRECTION FACTOR

In order to predict the mean emission rate for a given screening value, one must first transform the results of the least-squares analysis from log-log space back to arithmetic scales. To do this, a scale bias correction factor (SBCF) is required to obtain the following predictive correlation equation:

Mean Leak Rate = SBCF
$$\times 10^{\beta_0} \times (ScreeningValue)^{\beta_1}$$

The SBCF is obtained by summing a sufficient number (generally 10-15) of terms of the infinite series given below. Specifically, the SBCF is estimated by:

API PUBL*4613 94 **III** 0732290 0533549 358 **III**

$$g(t) = 1 + \frac{(m-1)t}{m} + \frac{(m-1)^3t^2}{m^22!(m+1)} + \frac{(m-1)^5t^3}{m^33!(m+1)(m+3)} + \dots,$$

where:

$$t = \left(\frac{MSE}{2} (1n10)^2\right)$$

and

m = number of sources bagged - 1.

The SBCF given above is a generalization of the SBCF developed by Finney (1941) for log-normal averages. Finney's SBCF was developed for averages only, but was extended to regression analysis for this application, as discussed in the U.S. EPA Protocols Document (U.S. EPA, 1993). The SBCF given above may not be mathematically exact and it does not account for errors in β_0 and β_1 . However, the Finney SBCF performed well in simulations when the errors in x (the screening values) were small. If the errors in x are not negligible, then the Finney SBCF is biased high. It is noted that this SBCF is given in the U.S. EPA Protocols Document (U.S. EPA, 1993) as the recommended SBCF.

C.3 STANDARD ERROR

The standard error of an estimate is a statistical measure of the amount of variation of the actual values of the dependent variable from their predicted values, as estimated by the regression equation. Its formula may be written:

$$SE_v = \sqrt{MSE}$$

The SE_Y possesses the same units as the response variable, Y_1 (for emission rates, this is lbs/hr). The standard error is also used in developing confidence intervals around the mean predicted values.

C.4 CONFIDENCE INTERVALS

A confidence interval for a parameter Θ is an interval:

$$a < \Theta < b$$
.

where:

a and b are numbers calculated partially from sample data, within which we feel reasonably certain the unknown parameter lies. A confidence interval is derived from a probability statement that involves the unknown parameter Θ . These confidence intervals should be interpreted as follows:

When we state that the parameter falls within the computed confidence limits, we expect to be correct about $100 \times (1-\alpha)$ percent of the time.

For example, suppose a sample is drawn from some population and a 95% confidence interval $(\alpha = 0.05)$ is computed for some parameter, say the mean. If 100 samples are drawn from that population, and 100 of these confidence intervals for the mean are computed, then 95 of these intervals should contain the true population mean Θ as an interior point.

Confidence intervals for the intercept of the least-squares regression equation can be specified as:

$$\hat{\beta}_0 \pm t_{(1 - \alpha/2, n - 2)} \hat{\sigma}_{\beta_0}$$

Confidence intervals for the slope of the least-squares regression equation can be specified as:

$$\hat{\beta}_1 \pm t_{(1-\alpha/2, n-2)} \hat{\sigma}_{\beta_1}$$

C-4

where:

$$SXX = \sum (X_i - \overline{X})^2$$

$$\bar{X} = \frac{\sum X_i}{n}$$

$$MSE = \frac{\sum (Y_i - \beta_0 - \beta_1 X_i)^2}{n - 2}$$

$$\hat{\sigma}_{\beta_0} = \sqrt{MSE} \left(\frac{1}{n} + \frac{(\overline{X})^2}{SXX} \right)^{1/2}$$

$$\hat{\sigma}_{\beta_1} = \left(\frac{MSE}{SXX}\right)^{1/2}$$
,

and

$$t\left(1-\frac{\alpha}{2}, n-2\right)$$

is the 1- $\alpha/2$ probability point of the student's t distribution with (n-2) degrees of freedom.

Confidence intervals for the predicted mean value of Y for a given X_k can be specified as:

$$\hat{Y}_{K} \pm t_{(1-\alpha/2, n-2)} \hat{\sigma}_{Y_{K}}$$

API PUBL*4613 94 ■ 0732290 0533552 942 ■

where:

$$\hat{\sigma}_{Y_{K}} = SE_{Y} \left(\frac{1}{n} + \frac{\left(X_{K} - \overline{X} \right)^{2}}{\Sigma (X_{i} - \overline{X})^{2}} \right)^{1/2}$$

$$\hat{Y}_{K} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{K} ,$$

and

$$SE_{Y} = \sqrt{MSE}$$
 as given in Appendix A.1.

The confidence intervals for the predicted values are smallest when $X_k = \overline{X}$ and increase as X_k moves away from \overline{X} in either direction. That is, the greater the distance an X_k is (in either direction) from \overline{X} , the larger the expected error is when predicting the mean value of Y at X_{k+1}

C.5 CORRELATION COEFFICIENT

The sample correlation coefficient is a statistical measure of the linear relationship between two variables. The correlation between two variables, X and Y, is computed as:

$$r_{XY} = \frac{\sum (X_i - \overline{X}) \cdot (Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \cdot \sum (Y_I - \overline{Y})^2}} ,$$

and is bounded:

$$-1 \le r_{xy} \le 1$$
.

The correlation coefficient squared (r_{XY}^2) can be interpreted as the fraction of the total variation which is explained by the least-squares regression line. In other words, r_{XY} measures how well the least-squares regression line fits the sample data. If the total variation is all explained by the regression line, i.e., if $r_{XY}^2 = 1$ or $r_{XY} = \pm 1$, we say there is a perfect

API PUBL*4613 94 ■ 0732290 0533553 889 ■

linear correlation. On the other hand, if there is no linear relationship between sample values of X and Y, then r_{XY} will have a value near zero. In addition, if $r_{XY} > 0$, then the response variable (Y) increases as the independent variable (X) does. If $r_{XY} < 0$, the response decreases as the independent variable increases.

C.6 CALCULATION OF ZERO COMPONENT EMISSION FACTORS AND PEGGED COMPONENT EMISSION FACTORS AND THE 95% CONFIDENCE LIMITS

The zero component emission factor is calculated as the average emission factor for screening values that screen at background levels. The pegged component emission factor is calculated as the average emission factor for screening values that "peg" the instrument screening device (i.e., the screening value is greater than the measurable range of the instrument).

These emission factors can be calculated as an arithmetic average or a log-normal average depending on the distribution of the data. It is noted that the arithmetic average provides a statistically unbiased estimate of the mean, regardless of the underlying distribution (i.e., normal, log-normal, gamma, etc.). If the data are normally distributed then the arithmetic mean also provides a minimum-variance unbiased estimator. If the data are log-normally distributed, the log-normal mean provides the minimum-variance unbiased estimator.

The arithmetic average is calculated as follows:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

n = number of sources bagged

where: y_i = the leak rate determined by bagging component i.

The 95% confidence limits for the arithmetic average emission factors are calculated as follows:

API PUBL*4613 94 ■ 0732290 0533554 715 ■

$$\overline{y} \pm \frac{t_{(1-\alpha/2, n-1)}S_y}{\sqrt{n}}$$

where: S_y = the standard deviation of $y = \sqrt{S_y^2}$,

and
$$t_{\left(1-\frac{\alpha}{2}, n-1\right)}$$

is the $1-\alpha/2$ probability point of the student's t distribution with (n-1) degrees of freedom.

The log-normal average, μ , is calculated as follows:

$$\mu = SBCF(\overline{Y})$$
,

where:

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_{i}}{n}$$

n = number of sources bagged.

 $Y_i = Log_{10}(u_i) = Log_{10}$ (leak rate determined by bagging component i).

The SBCF is obtained by summing a sufficient number (generally 10-15) of terms of the infinite series given below as shown in A.2. Specifically, the SBCF is estimated by:

API PUBL*4613 94 **=** 0732290 0533555 651 **=**

g (t) = 1 +
$$\frac{(n-1)t}{n}$$
 + $\frac{(n-1)^3t^2}{n^22!(n+1)}$ + $\frac{(n-1)^5t^3}{n^33!(n+1)(n+3)}$ +,

where:

$$t = \left(\frac{S^2}{2}(\ln 10)^2\right)$$

$$S^{2} = \frac{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}}{n-1}.$$

and

n = number of sources bagged

Note that the value for t used in the calculation of the SBCF for the log-normal average emission factors is different than the value of t used in the calculation of the SBCF for the regression analysis. To calculate the log-normal average emission factors, the mean-squared-error (MSE) of the regression is replaced by the variance (S_y^2) of the emission rates, and the degrees of freedom are n-1 (instead of n-2).

The equation for the mean emission rate, given above, is the best, unbiased estimator and also provides an efficient estimate for the mean of a log-normal distribution [Finney (1941), Atchinson (1955)].

The 95% confidence limits for the log-normal average emission factors are calculated as follows:

SBCF
$$10^{\left(\frac{T}{Y} \pm \frac{t_{n-\alpha 2. n-1} S_{y}}{\sqrt{n}}\right)}$$

where:

$$S_Y$$
 = the standard deviation of Y = $\sqrt{S^2}$,

and

$$t_{\left(1-\frac{\alpha}{2}, n-1\right)}$$

is the 1- $\alpha/2$ probability point of the student's t distribution with (n-1) degrees of freedom.

C.7 REGRESSION ESTIMATES FOR EMISSION RATES FROM THE 1980 REFINERY STUDY (RADIAN, 1980)

Note:

TLV0=TLV screening value obtained at the surface of the component

Flanges

Equation for predicted mean emission rate is:

Emission Rate = $(1.275)(10^{-5})(TLV0)^{0.88}$

Least-Square Results (in log-log space) using TLV Screening Instrument:

 Log_{10} (Emission Rate) = -5.20 + 0.88 Log_{10} (TLV0);

Correlation Coefficient (r) = 0.77;

Number of Data Pairs = 52;

Standard Error of Estimate = 0.52;

95% Confidence Interval for Intercept (-5.9, -4.5);

95% Confidence Interval for Slope = (0.68, 1.08); and

Scale Bias Correction Factor = 2.02.

• Valves - Light Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(3.19)(10^{-5})(TLV0)^{0.80}$

Least-Square Results (in log-log space) using TLV Screening Instrument:

Log₁₀ (Emission Rate) = -4.90 + 0.80 Log₁₀ (TLV0); Correlation Coefficient (r) = 0.79; Number of Data Pairs = 119; Standard Error of Estimate = 0.60; 95% Confidence Interval for Intercept (-5.3, -4.5); 95% Confidence Interval for Slope = (0.69, 0.91); and Scale Bias Correction Factor = 2.53.

• Valves - Gas Vapor Service

Equation for predicted mean emission rate is:

Emission Rate = $(4.81)(10^{-7})(TLV0)^{1.23}$

Least-Square Results (in log-log space) using TLV Screening Instrument:

Log₁₀ (Emission Rate) = -7.00 + 1.23 Log₁₀ (TLV0); Correlation Coefficient (r) = 0.76; Number of Data Pairs = 79; Standard Error of Estimate = 0.78; 95% Confidence Interval for Intercept (-8.1, -5.9); 95% Confidence Interval for Slope = (0.99, 1.47); and Scale Bias Correction Factor = 4.81.

• Pump Seals - Light Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(1.823)(10^{-4})(TLV0)^{0.830}$

Least-Square Results (in log-log space) using TLV Screening Instrument:

Log₁₀ (Emission Rate) = -4.40 + 0.830 Log₁₀ (TLV0); Correlation Coefficient (r) = 0.68; Number of Data Pairs = 259; Standard Error of Estimate = 0.760 95% Confidence Interval for Intercept (-4.9, -3.9); 95% Confidence Interval for Slope = (0.72, 0.94); and Scale Bias Correction Factor = 4.58.

C.8 REGRESSION ESTIMATES FROM THE PETROLEUM MARKETING TERMINALS STUDY

Note:

OVA0=OVA screening value obtained at the surface of the component OVA1=OVA screening value obtained at <1 cm from component

• Connectors (Flanges and Non-Flanges) - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(4.652)(10^{-5})(OVA0)^{0.426}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -4.73 + 0.426 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.41;

Number of Data Pairs = 36;

Standard Error of Estimate = 0.604:

95% Confidence Interval for Intercept (-5.48 -3.98);

95% Confidence Interval for Slope = (0.097, 0.754); and

Scale Bias Correction Factor = 2.50.

Valves - Light Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(6.34)(10^{-6})(OVA0)^{0.708}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -5.433 + 0.708 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.845;

Number of Data Pairs = 46;

Standard Error of Estimate = 0.460;

95% Confidence Interval for Intercept (-5.81, -5.06);

95% Confidence Interval for Slope = (0.57, 0.84); and

Scale Bias Correction Factor = 1.72

Loading Arm Valves - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(8.24)(10^{-6})(OVA0)^{0.955}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -5.469 + 0.955 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.825;

Number of Data Pairs = 24;

Standard Error of Estimate = 0.601;

95% Confidence Interval for Intercept (-6.03, -4.91);

95% Confidence Interval for Slope = (0.67, 1.24); and

Scale Bias Correction Factor = 2.43

C-12

• Open-Ended Lines - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(5.69)(10^{-6})(OVA0)^{0.995}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -5.743 + 0.995 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.859;

Number of Data Pairs = 16;

Standard Error of Estimate = 0.701;

95% Confidence Interval for Intercept (-6.53, -4.95);

95% Confidence Interval for Slope = (0.65, 1.34); and

Scale Bias Correction Factor = 3.14

• Pump Seals - Light Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(6.567)(10^{-5})(OVA1)^{0.534}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -4.619 + 0.534 Log_{10} (OVA1);

Correlation Coefficient (r) = 0.757;

Number of Data Pairs = 12;

Standard Error of Estimate = 0.667;

95% Confidence Interval for Intercept (-5.43, -3.81);

95% Confidence Interval for Slope = (0.209, 0.859); and

Scale Bias Correction Factor = 2.729.

• Valves (Light Liquid Services) and Connectors (All Services), Combined

Equation for predicted mean emission rate is:

Emission Rate = $(1.255)(10^{-5})(OVA0)^{0.635}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -5.22 + 0.635 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.729;

Number of Data Pairs = 82;

Standard Error of Estimate = 0.532;

95% Confidence Interval for Intercept (-5.56, -4.88);

95% Confidence Interval for Slope = (0.502, 0.768); and

Scale Bias Correction Factor = 2.083.

<u>Loading Arm Valves (All Services)</u> and <u>Open-Ended Lines (All Services)</u>, <u>Combined</u>

Equation for predicted mean emission rate is:

Emission Rate = $(7.663)(10^{-6})(OVA0)^{0.959}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -5.55 + 0.959 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.838;

Number of Data Pairs = 40:

Standard Error of Estimate = 0.632;

95% Confidence Interval for Intercept (-5.98, -5.12);

95% Confidence Interval for Slope = (0.755, 1.164); and

Scale Bias Correction Factor = 2.743.

C.9 REGRESSION ESTIMATES FROM THE 1993 REFINERY FUGITIVE EMISSIONS STUDY

Note:

OVA0=OVA screening value obtained at the surface of the component OVA1=OVA screening value obtained at < 1 cm from component

• Connectors (Flanges) - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(1.25)(10^{-6})(OVA0)^{0.928}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -6.23 + 0.928 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.879;

Number of Data Pairs = 19;

Standard Error of Estimate = 0.557;

95% Confidence Interval for Intercept (-6.99 -5.46);

95% Confidence Interval for Slope = (0.671, 1.185); and

Scale Bias Correction Factor = 2.11.

• Connectors (Non-Flanges) - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(2.80)(10^{-7})(OVA0)^{1.035}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -7.28 + 1.035 Log_{10} (OVA0);

Correlation Coefficient (r) = 0.847;

Number of Data Pairs = 29;

Standard Error of Estimate = 0.830;

95% Confidence Interval for Intercept (-8.13, -6.42);

95% Confidence Interval for Slope = (0.779, 1.29); and

Scale Bias Correction Factor = 5.30

C-14

• Open-Ended Lines - All Services

Equation for predicted mean emission rate is:

Emission Rate = $(5.34)(10^{-7})(OVA0)^{0.841}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -6.693 + 0.841 Log_{10} (OVA0); Correlation Coefficient (r) = 0.831; Number of Data Pairs = 22; Standard Error of Estimate = 0.632; 95% Confidence Interval for Intercept (-7.58, -5.81); 95% Confidence Interval for Slope = (0.580, 1.10); and Scale Bias Correction Factor = 2.63

Pump Seals - Heavy Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(5.56)(10^{-6})(OVA1)^{1.07}$

Least-Square Results (in log-log space):

Log₁₀ (Emission Rate) = -5.57 + 1.07 Log₁₀ (OVA1) Correlation Coefficient (r) = 0.903; Number of Data Pairs = 10; Standard Error of Estimate = 0.572; 95% Confidence Interval for Intercept (-6.45, -4.69); 95% Confidence Interval for Slope = (0.664, 1.48); and Scale Bias Correction Factor = 2.06

• Pump Seals - Light Liquid Service

Equation for predicted mean emission rate is:

Emission Rate = $(2.60^{-4})(OVA1)^{0.438}$

Least-Square Results (in log-log space):

 Log_{10} (Emission Rate) = -4.09 + 0.438 Log_{10} (OVA1); Correlation Coefficient (r) = 0.646; Number of Data Pairs = 27; Standard Error of Estimate = 0.644; 95% Confidence Interval for Intercept (-4.78, -3.40); 95% Confidence Interval for Slope = (0.225, 0.651); and Scale Bias Correction Factor = 2.77.

• Valves - All Services.

Equation for predicted mean emission rate is:

Emission Rate = $(3.65)(10^{-6})(OVA0)^{0.778}$

Least-Square Results (in log-log space):

Log₁₀ (Emission Rate) = -5.85 + 0.778 Log₁₀ (OVA0); Correlation Coefficient (r) = 0.810; Number of Data Pairs = 141; Standard Error of Estimate = 0.603; 95% Confidence Interval for Intercept (-6.14, -5.56); 95% Confidence Interval for Slope = (0.683, 0.872); and Scale Bias Correction Factor = 2.59. API PUBL*4613 94 ■ 0732290 0533563 728 ■

APPENDIX D

DEVELOPMENT OF EMISSION CORRELATION EQUATIONS
USING THE MEASUREMENT ERROR METHOD (MEM)
STATISTICAL ANALYSIS METHOD

D.1 INTRODUCTION

In Appendix C certain issues pertaining to the estimation of emission rate are discussed. For components that are screened but not bagged, no direct measurement of emission rate is made. Measurements from the less elaborate screening process, however, can be used to estimate emission rate. This can only be performed, however, if there exists an equation by which emission rate can be estimated as a function of the screening value. Thus, the entire process is no better than the predictive equation. (Note: predictive equations are called emission correlation equations throughout this report.) In this appendix, statistical issues pertaining to the development and use of this equation are discussed.

Regression analysis is a reasonable method for developing the predictive equation. In conventional regression analysis, however, the assumption is that the dependent variable has an error, but the independent variable has no error. This assumption is not satisfied here, because screening value and emission rate are both measured with error. In this appendix, an approach that accounts for the errors in both variables is discussed.

In Section D.2 simulation results based on various levels of errors in the screening value and emission rate measurements are presented. Inverse regression analysis is basically conventional regression analysis, except that the roles of the dependent and independent variables are reversed in performing the regression analysis; this approach is described more explicitly in Section D.2. Both conventional and inverse regression analysis produced severe biases in some of the simulated conditions. In the new approach, here referred to as the "Measurement Error Method" (MEM), negligible or zero biases were obtained in all conditions simulated.

A literature search did not reveal any references with a complete solution of the problem addressed here. Where needed, the necessary mathematical relationships were derived for this application. Because this information is not believed to be available elsewhere in the literature, it was felt that a thorough documentation of the mathematics was needed. Section D.3 provides this documentation.

Section D.2 and a referenced report, also written for this project, provide the information necessary to understand why the new method is needed and to compare the performance of

the new method with that of other approaches. For these purposes, it is not necessary to follow the derivations given in Section D.3. Nevertheless, it is believed that Section D.3 will be of interest to some readers and that the detailed background will be useful in future developments.

D.2 SIMULATION RESULTS AND ANALYSES OF REAL DATA

The basic issues pertaining to the calibration process required to predict emission rate as a function of screening value are known to the community and are summarized in Appendix C. In that appendix, the regression of the logarithm of emission rate on the logarithm of screening value and the scale bias correction needed to obtain an unbiased estimate of emission rate when the errors in the screening values are negligible are summarized.

Simulations and analyses of real data documented in an earlier project report are summarized in Section D.2.1. These results strongly indicated the need for a method that accounted for the errors in both emission rate and screening value. New simulations involving the MEM technique are discussed in Section D.2.2.

D.2.1 Summary of Earlier Results

In a report written for this project, Williamson and Hall (1993) have shown that both conventional and inverse regression can produce biased estimates of emission rate. In conventional regression analysis, the logarithm of the emission rate is regressed on the logarithm of the screening value. In inverse regression, the roles of the two variables are reversed; the logarithm of the screening value is regressed on the logarithm of the emission rate. Inverse regression is based on the assumption that the relative errors in the emission rate measurements are small compared to those in the screening value measurements. Inverse regression analysis produces an equation that predicts the logarithm of screening value as a function of the logarithm of emission rate, but it is possible to solve for the logarithm of emission rate as a function of the logarithm of screening value.

Both regression analyses were performed in log-log space, and a scale bias correction factor was employed in both cases; again, the use of a scale bias correction factor when a regression analysis is performed in log-log space is discussed in Appendix C.

The earlier project report provides a variety of simulations in which conventional and inverse regression are compared. Conventional regression analysis performs well in the hypothetical case in which there is no error in the screening value, but this case is not realistic for the emission rate, screening value relationship. If the relative error in the screening value is much larger than the relative error in the emission rate, then inverse regression performs better than conventional regression.

In addition to the simulations, the earlier project report documents analyses based on real data. An analysis of replicate pairs of screening and bagging values is presented. The data base is not large enough to quantify the error variance accurately for all combinations of component types (connectors, pump seals, valves, and open-ended lines) and service categories (light liquid and gas) listed. The preliminary results suggest, however, that the relative error in neither type of measurement is negligible compared to the relative error in the other. This indicates that neither conventional nor inverse regression is fully adequate, and a method that accounts for the error in both variables is needed.

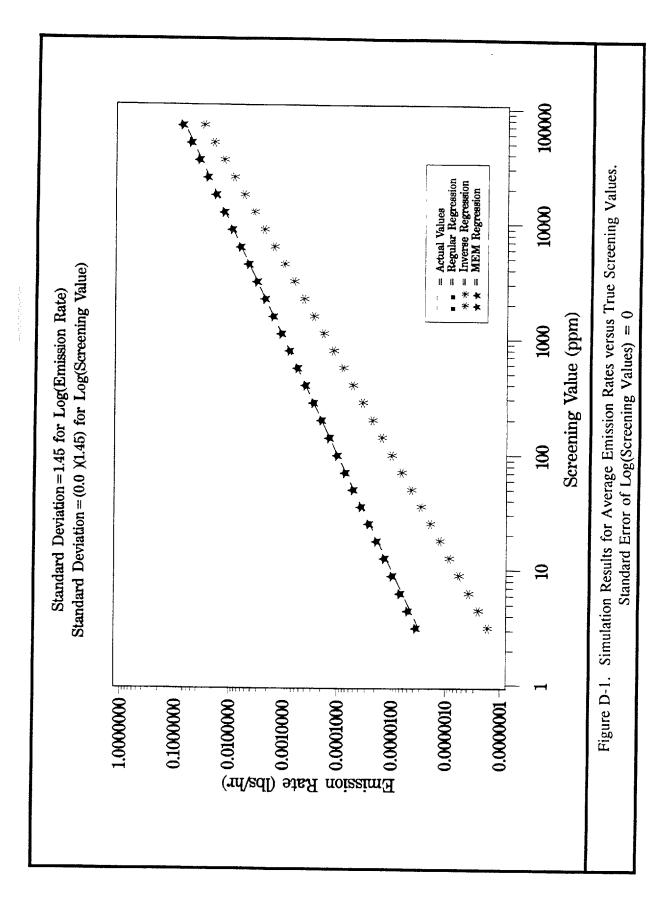
Additionally, results obtained by applying both conventional and inverse regression to real data sets were compared. Considerable differences between the two regression lines were observed. Differences of more than a factor of ten between the emission rates predicted by the two methods were observed for some screening values for all four data sets analyzed.

In the earlier project report it was recommended that a new approach based on the MEM technique be developed. That development has now been performed.

D.2.2 Simulations

Because the MEM approach had not yet been developed when the earlier report was published, that report contains no simulations demonstrating the performance of the MEM technique. This section supplements the earlier report by presenting simulations in which results produced by the MEM technique, conventional regression, and inverse regression are compared.

On the basis of Radian's experience in developing regression models to predict emission rate as a function of screening value, a standard error (or root-mean-square error) of 0.6 is real-


istic. The standard error in this context characterizes the scatter of the points about the conventional regression line when the common logarithm of emission rate is regressed on the common logarithm of screening value.

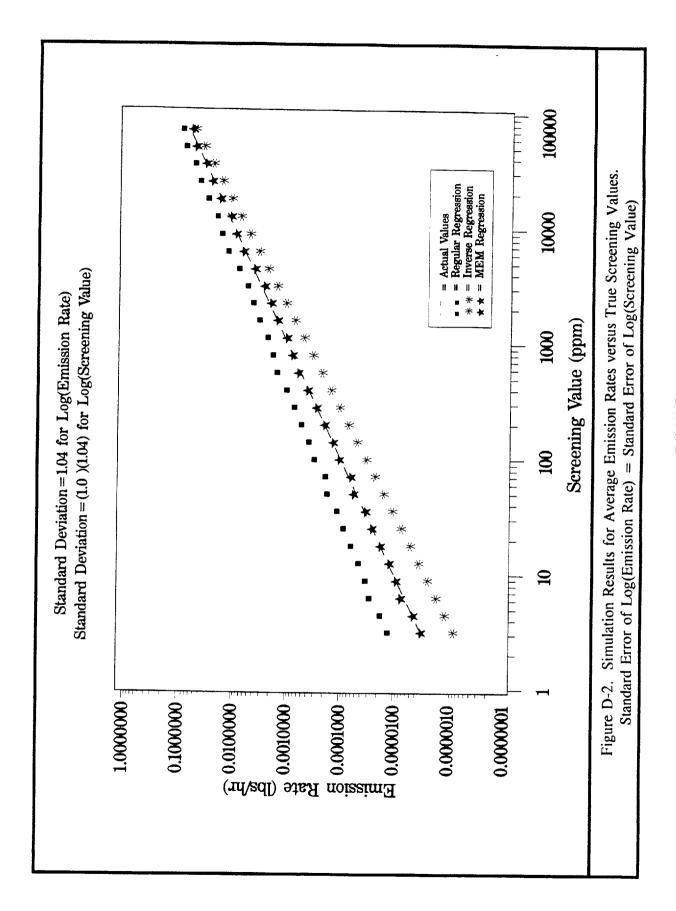
In this section, data sets with different relative errors in emission rate and screening value have been analyzed. The errors were adjusted, however, so that the conventional regression analysis described above would produce approximately a standard error of 0.6 (the actual standard errors in the cases analyzed varied only from 0.60 to 0.62). The same synthetic data sets analyzed here are also discussed in the earlier report. The actual mathematical process for synthesizing the data with errors is discussed in Section D.3.

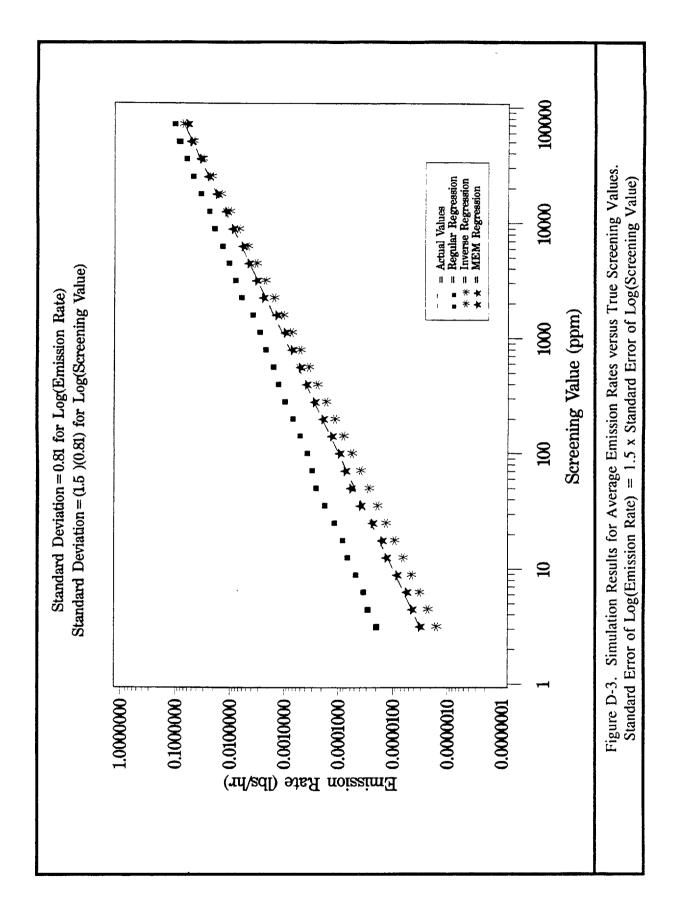
Consider, then, the analyses performed for a given standard deviation of the logarithm of emission rate and the corresponding standard deviation of the logarithm of screening value. First, a set of 30 screening values and 30 corresponding emission rates were generated. The random error in any one of these values was independent of each other error. Using these data, a predictive equation was developed using each of the three methods to be compared. Subsequently, an independent set of 30 screening values was synthetically generated. The errors in these screening values had the same statistical parameters but were statistically independent of the errors in the values used to develop the regression models. Each model was used to predict the emission rate for each screening value. The process just described constitutes one Monte Carlo trial.

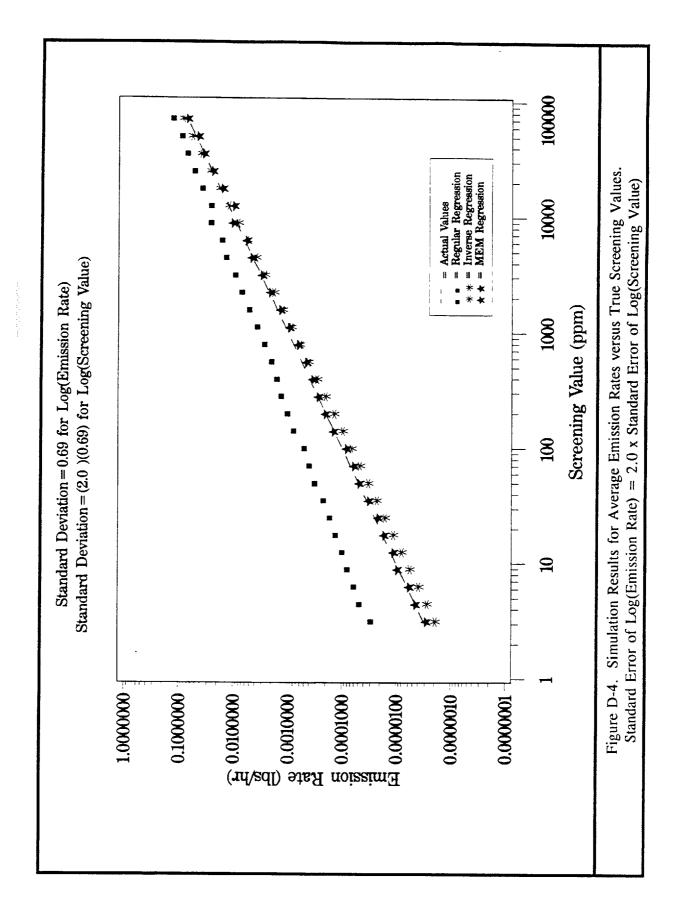
The process was performed for 1,000 Monte Carlo trials, such that the errors in any trial were statistically independent of those in any other trial. The 1,000 estimated emission rates for a given method and screening value were averaged. Each average was compared to the corresponding true emission rate to determine whether a bias existed.

Figure D-1 presents the results for the case in which there was no error in the screening value. This case is not realistic but is presented for illustration. In this instance, the assumptions associated with conventional regression were satisfied. The assumptions associated with the MEM technique were also satisfied, because this approach is designed to handle any level of errors in the dependent and independent variables.

Each symbol (asterisk, square, or star) in Figure D-1 represents the average of 1,000 estimates of emission rate for a given method and true screening value. This figure shows that both the conventional regression line and the MEM regression line fall very nearly on the dashed line indicating the true values, as expected on the basis of the comments above.


The assumptions for inverse regression would be strictly satisfied if there were no error in the emission rate. This condition is not satisfied, and Figure D-1 shows that the results of inverse regression are severely biased in this case.


Figure D-2 illustrates the case in which the logarithms of the emission rates and screening values have the same error variances. Notice that these two types of measurements have different physical units, and so their standard errors in linear space cannot be compared. The standard errors in log space (i.e., the standard deviations of the errors in their logarithms) can be compared, however.


In Figures D-2, D-3, and D-4 there are errors in the screening values. Each averaged predicted emission rate, however, is plotted with the true screening value as an abscissa; this scheme facilitates comparison of the averaged emission rates with the dashed line representing the true values.

In the case shown in Figure D-2, the assumptions for neither conventional nor inverse regression analysis are satisfied. Both of these methods produce markedly biased results, especially for smaller screening values. Again, the MEM predictions lie approximately on the dashed line indicating the true values. Even though the results from 1,000 Monte Carlo trials were averaged, a slight point-to-point random variability is seen in Figure D-2.

Figures D-3 and D-4 present the cases in which the standard error in the logarithm of screening value is 1.5 times and twice that in the logarithm of emission rate, respectively. As the error in the logarithm of screening value increases relative to the error in the logarithm of the emission rate, the performance of the conventional regression analysis should degrade, and the performance of inverse regression should improve. The figures clearly reveal that this occurred. Nevertheless, a slight bias in the results for inverse regression still appears in Figure D-4.

The predictions made by the MEM technique lie very nearly on the line indicating the true values in all four cases. These results strongly indicate that the MEM technique produces estimates of emission rate with negligible or zero bias under the conditions simulated. Moreover, a wide range of relative errors in the two variables were included in the simulations.

Williamson and Hall (1993) also discuss the fact that the relative errors in the screening values used to develop the predictive equations and the relative errors in the screening values used later to predict emission rates may be different. These conditions change the mathematical problem somewhat. The equations necessary to use the MEM technique in this situation have been developed, and the methodology is discussed in Section D.3. Simulations again confirmed that the MEM technique was the only one of the three regression approaches that produced estimates with little or no bias under all conditions tested. The results are essentially the same as those discussed above, except there was somewhat more scatter in the plotted data points because of the increased variance in the screening values used to make the predictions.

D.3 STATISTICAL METHODOLOGY

The preceding sections provide a qualitative overview of the new approach. The purpose of this section is to provide a technical discussion of the statistical details.

The fact has been recognized that conventional regression analysis produces biased results when there are errors in both the dependent and independent variables. Under these conditions, conventional regression analysis produces a slope estimate whose absolute value is low-biased (Bloch, 1978).

Regression techniques that account for the errors in both the dependent and independent variables have been employed in other applications, but the analysis presented in this report represents a new application for this statistical methodology. Moreover, a literature search did not reveal the use of this methodology in log-log space together with the necessary scale bias correction to produce unbiased estimates in linear space or quantification of the uncertainties of the estimates in linear space. Thus, aspects of the methodology were derived for this application. For these reasons, it was felt that a thorough documentation of the new

API PUBL*4613 94 📟 0732290 0533574 503 📟

methodology was needed. A step-by-step description of the statistical issues and calculations is provided in the following subsections.

D.3.1 Preliminary Description of the Problem

Suppose we have a set of emission rates, y_i , and a set of screening values, x_i , i=1 to n. The pronounced skewness of both types of variables have been consistently observed in analyses of real data. Moreover, if y is regressed on x, the residuals are skewed, and the error variance increases as x increases. Because of the inhomogeneous variance and non-normal errors, the assumptions of conventional regression analysis are not satisfied in linear space. Weighted regression analysis (Draper and Smith, 1981) can be used to address the inhomogeneous variance, but pronounced non-normality of the errors remains an issue.

It has been observed in many studies that taking the logarithm of both x and y stabilizes the error variance and removes the skewness from both the data and the regression residuals. Thus, it is felt that the regression analysis is best performed in log-log space. This approach introduces the requirement to perform an anti-log (exponential) transformation to obtain estimates of emission rate in linear space. Because of this nonlinear transformation, a scale bias correction factor is required to obtain unbiased estimates of emission rate.

The first step before performing the regression analysis is to take the logarithms of the data:

$$X_{i} = \ln (x_{i})$$

$$Y_{i} = \ln (y_{i})$$

The use of natural logarithms is the natural approach. If common logarithms are used, a correction factor of ln(10) appears at various points throughout the analysis; this needless complication is avoided by using natural logarithms.

D.3.2 Generation of Values Used in the Simulation

In the simulations, normally distributed X values were generated directly in log space such that

E
$$(X_i) = \ln(E(x_i)) - \sigma_X^2/2$$

var $(X_i) = \sigma_X^2$

API PUBL*4613 94 ■ 0732290 0533575 44T ■

where

E () denotes the expected value, and

var () denotes the variance.

Because the error variance is assumed to be homogenous in log space, the quantity σ_x^2 does not involve the subscript i.

The X_i were actually generated as follows:

$$X_i = ln(E(x_i)) - \sigma_x^2/2 + e_{x_i}$$

where e_{x_1} is normally distributed with mean zero and variance σ_{x}^2 .

It is possible to show that this method for generating the X_i values does, in fact, produce the specified mean, $E(x_i)$, in linear space. Because X_i (log space) is normally distributed, e^{x_i} (linear space) is log-normally distributed. From a known relationship between normal and log-normal random variables (Mood, Graybill, and Boes, 1974, p.117), the expected value of the log-normally distributed variable e^{x_i} equals the exponential of the following: the expected value of the normally distributed variable X_i plus half the variance of X_i . From this property the proof follows:

$$E(e^{X\hat{I}}) = e^{E(X\hat{I}) + Var(X\hat{I})/2}$$

$$= e^{in(E(X\hat{I})) - \sigma_X^2/2 + \sigma_X^2/2}$$

$$= E(X;)$$

Thus, it was possible to select a set of true screening values $E(x_i)$ for inclusion in the analysis and synthesize the corresponding values with added errors in log space. The fundamental equations indicated above regarding the relationships between mean and variances in log and linear space are fundamental to the analysis reported here. These relationships are employed at various points throughout the remainder of this appendix.

Further comments apply regarding the relationship between the emission rates and screening values in the simulations. Suppose the intercept a and slope b relating X and Y have been selected. Then

API PUBL*4613 94 📟 0732290 0533576 386 📟

$$E(Y_i) = a+b E(X_i)$$

After an error has been added, we have

$$Y_i = a+b E(X_i)+e_{Y_i}$$

where e_{Y_i} is a normally distributed error with a mean of 0 and a variance of σ_Y^2 . This equation can be used to generate the needed values of Y_i . To evaluate the accuracy of the estimation of emission rates in the simulations, we need the true emission rate $E(y_i)$ corresponding to a given Y_i . An expression for $E(y_i)$ will now be derived. We now have two equations for Y_i :

$$Y_i = a+b E(X_i)+e_{Y_i}$$

and

$$Y_1 = ln(E(y_i)) - \sigma_Y^2 / 2 + e_{Y_i}$$

where E(y_i) is the expected value of emission rate in linear space.

The last equation follows from the same known relationship between normal and log-normal random variables mentioned earlier.

It follows that

a+b E(X_i) = ln(E(y_i))-
$$\sigma_Y^2$$
 /2
ln(E(y_i))= a+b E(X_i)+ σ_Y^2 /2
= E (Y_i)+ σ_Y^2 /2

Exponentiating both sides of the equation, we obtain

$$e^{\ln(E(y_i))} = e^{E(Y_i) + \sigma_{Y_i}^2/2}$$

 $E(y_i) = e^{E(Y_i) + \sigma_{Y_i}^2/2}$

Thus, the method for generating the variables with normally distributed errors in log-log space has been demonstrated. The correct expected values in linear space have also been

derived. Having the true values of the screening values, emission rates, and regression slope and intercept allowed the simulation results to be compared to the correct values.

D.3.3 Regression Analysis with Errors in Both X and Y

The next issue pertains to the regression analysis performed in log-log space. The methodology is discussed by Mandel (1964). In conventional regression analysis, the slope and intercept, a and b, are determined so as to minimize the following:

$$S = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$$

where

$$\hat{Y}_i = \hat{a} + \hat{b} \hat{X}_i$$
,

and the "hat" notation has been used to indicate the estimate of a given quantity; e.g., â is an estimate of a.

As discussed earlier, however, this approach produces biased results when there is an error in X as well as Y. In this case, the correct approach is to determine the values of \hat{a} , \hat{b} , and \hat{X}_i , i=1 to n, that minimize the following:

$$S' = \sum_{i=1}^{n} \frac{(X_{i} - \hat{X}_{i})^{2}}{\sigma_{X}^{2}} + \sum_{i=1}^{n} \frac{(Y_{i} - \hat{Y}_{i})^{2}}{\sigma_{Y}^{2}}$$

The quantities $X_i - \bar{X}_i$ and $Y_i - \bar{Y}_i$ are estimates of the errors in X_i and Y_i , respectively. In the case of linear regression with no errors in the X_i values and normally distributed errors in the Y_i values, minimizing S produces the maximum likelihood estimates of the regression coefficients (Mood, Graybill, and Boes, 1974), assuming the errors are independent and have a homogeneous variance. It is easily shown that minimizing S' produces the maximum likelihood solution for the more general case in which there are normally distributed errors in both the X_i and Y_i , again assuming all errors are independent and assuming the X and Y error variances are both homogeneous.

We define the variable λ :

$$\lambda = \frac{\sigma_x^2}{\sigma_v^2}$$

In the development here, we assume that λ is accurately known. Further testing to obtain the data necessary to determine whether λ varies among component types and to obtain accurate estimates of λ is needed. Analyses to evaluate the sensitivity of the MEM technique to realistic errors in λ would be beneficial.

Maximizing S' is equivalent to minimizing S":

$$S'' = \sum_{i=1}^{n} [(X_{i} - \hat{X}_{i})^{2} + \lambda (Y_{i} - \hat{Y}_{i})^{2}]$$
$$= \sum_{i=1}^{n} [(X_{i} - \hat{X}_{i})^{2} + \lambda (Y_{i} - (\hat{a} + \hat{b}\hat{X}_{i}))^{2}]$$

While the \hat{X}_i values come into play in the optimization process, their values are not of primary interest here. Expressions for the estimates of the slope and intercept, which are of primary interest, are available in closed form.

Define

$$v = n \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$w = n \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

$$p = n \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

where \overline{X} is the mean of X_i , i=1 to n, and

 \overline{Y} is the mean of Y_i , i=1 to n

Then the estimates of the slope and intercept are as follows:

$$\hat{b} = \frac{\lambda w - v + \sqrt{(v - \lambda w)^2 + 4\lambda p^2}}{2\lambda p}$$

$$\hat{a} = \overline{Y} - \hat{b} \overline{X}$$

D.3.4 Estimation of Emission Rate and Scale Bias Correction

As is discussed in Appendix C, Finney's SBCF has been used as an approximation in this application. Finney's method, however, was originally derived for the purpose of estimating the mean of a log-normal distribution. In this section, an SBCF is derived specifically for the application of concern in this appendix. It can be shown that the SBCF based on Finney's method approaches the SBCF derived here as the sample size increases without bound.

The intention is to use the regression equation to estimate the emission rate for a component not involved in the original regression analysis. The regression model is used to estimate the emission rate for a component that was screened but not bagged; thus, a measured value of X but not of Y will be available. Then the log of the emission rate is estimated as follows:

$$\hat{Y} = \hat{a} + \hat{b} X$$

The next step is to consider the scale bias correction factor required to obtain an estimate of emission rate in linear space. To accomplish this, we will use the same relationships between normal and log-normal variables employed earlier. To derive an expression for the mean emission rate in linear space, we require the mean and variance in log space.

If the true values of the slope and intercept were known, then we would estimate Y as follows:

$$\hat{Y} = a + b X$$

Then

$$var(\hat{Y}) = b^2 \sigma_x^2$$

Substituting the estimated value of the slope, we obtain

$$var(\hat{Y}) \cong \hat{b}^2 \sigma_v^2$$

API PUBL*4613 94 🖿 0732290 0533580 807 🖿

Assuming Ŷ has zero or negligible bias (this is indicated by the simulations), it follows that:

$$E(\hat{Y}) = E(Y)$$

If E(y) is the expected value of emission rate in linear space, then

$$E(\hat{Y}) = E(Y) = \ln(E(y)) - \sigma_{y}^{2} / 2$$

For now we are disregarding the error variances in â and b; this point is discussed below.

It follows that

$$E(e^{\hat{Y}}) = e^{E(\hat{Y}) + var(\hat{Y})/2}$$

$$\equiv e^{\ln E(y) - \sigma_{Y}^{2}/2 + \hat{b}^{2}\sigma_{X}^{2}/2}$$

$$= E(y)e^{-\sigma_{Y}^{2}/2 + \hat{b}^{2}\sigma_{X}^{2}/2}$$

Thus, we define the scale bias connection factor as follows:

SBCF =
$$e^{(\sigma_y^2 - \hat{b}^2 \sigma_x^2)/2}$$

It follows that

E (e
$$^{\hat{Y}}SBCF) \simeq E(y)$$

Recall that E(y) is the expected value of emission rate in linear space. The estimate of emission rate, then is as follows:

$$\hat{y} = (e^{\hat{Y}})SBCF$$

A more rigorous derivation would account for the errors in \hat{a} and \hat{b} as well as the sources of random variability discussed above. Notice, however, that \hat{a} and \hat{b} are regression coefficients estimated on the basis of a sample of size n. An "error averaging" effect achieved in the regression analysis tends to reduce the error variance in \hat{a} and \hat{b} . The term "error averaging" here simply refers to the fact that the errors in a sample of size n tend to counterbalance to an extent where regression coefficients are estimated. The greater the sample size is, the more the errors tend to counterbalance and, consequently, the more accurate the regression coefficients tend to be. The variances σ_X^2 and σ_Y^2 refer to errors that are not reduced in this

API PUBL*4613 94 ■ 0732290 0533581 743 ■

manner. Thus, it is believed that any error introduced by the handling of \hat{a} and \hat{b} is likely to be small compared to the effect of the error in the individual screening value used to estimate an emission rate. Moreover, the simulations discussed earlier in the appendix indicate that the MEM technique with the scale bias correction factor described above produces results with little or no bias in a variety of cases.

In the simulation discussed here, the sample size used to estimate the regression coefficients was 30. It would be of interest to perform further simulations to investigate the role of the errors in \hat{a} and \hat{b} in cases with smaller sample sizes.

The analysis discussed here applies in the case in which the X values used in the regression analysis and X values used later for predictive purposes have the same error variances. This condition would not be satisfied if the screening measurements used to develop the model and screening measurements used later for predictive purposes produced unequal error variances in log space. This situation, which may occur in practice, is discussed in the following section.

D.3.5 Estimation of Emission Rate When In (Screening Value) has a Different Error Variance than it had in the Regression Analysis

Suppose the regression model has been developed as described in an earlier section. Given a screening measurement u, we want to estimate the emission rate. Define

$$U = \ln u$$

Now suppose

$$\sigma_{\rm U}^2 = k\sigma_{\rm X}^2$$

We want to investigate the adjustment required if $k \neq 1$. Consider, for the basis of discussion, a hypothetical screening measurement x whose expected value is the same as that of u:

$$E(x) = E(u)$$

Suppose y is an emission rate measurement whose expected value, E(y), is the true emission rate corresponding to either screening value (u or x). Further, the error variance of X = ln(x)

API PUBL*4613 94 ■ 0732290 0533582 68T ■

is the same as the corresponding variance in the regression analysis. While the value x is not actually measured, it serves as a basis for discussion.

The expected value of U is

$$E(U)=ln(E(u))-\sigma_{U}^{2}/2=ln(E(x))-\sigma_{U}^{2}/2$$

and the expected value of X is

$$E(X) = \ln(E(x)) - \sigma_x^2/2$$

The values X and Y are related by

$$Y = a + b X$$

The issue is to determine the relationship between Y and U, and how can we use the regression model to estimate emission rate as a function of U.

It is clear that, if $k \neq 1$, the expected value of U differs from that of X. To account for the mean shift, we compute

$$U'=U+(\sigma_{U}^{2}-\sigma_{X}^{2})/2$$

Then

$$E(U') = E(U) + (\sigma_{U}^{2} - \sigma_{X}^{2})/2$$

$$= \ln(E(x)) - \sigma_{U}^{2}/2 + (\sigma_{U}^{2} - \sigma_{X}^{2})/2$$

$$= \ln(E(x)) - \sigma_{X}^{2}/2$$

$$= E(X)$$

It will be shown that the emission rate can be predicted as a function of U', but an adjustment to the scale bias correction factor will be required. First consider the following predictive equation (initially, we ignore the errors in the estimates of a and b):

$$\hat{Y} = a + b U'$$

Because U' has the same mean as does X,

API PUBL*4613 94 M 0732290 0533583 516 M

$$E(\hat{Y}) = E(a+bU')$$

$$= E(a+bX)$$

$$= \ln(E(y)) - \sigma_Y^2 / 2$$

Further, we require the variance of \hat{Y} as computed as a function of U'.

$$var(\hat{Y}) = var(a+bU')$$

= $b^2 var(U')$
= $b^2 var(U)$

The last line follows from the fact that U' equals U plus a constant:

Thus,
$$E(e^{\hat{Y}}) = e^{E(\hat{Y}) + var(\hat{Y})/2}$$

= $e^{\ln(E(y)) - \sigma_y^2/2 + b^2 var(U)/2}$
= $E(y)e^{(b^2 var(U) - \sigma_y^2)/2}$

If we define

SBCF=
$$e^{(\sigma_{v}^2-b^2 \text{ var(U))/2}}$$

Then

$$E(SBCF e^{\hat{Y}})=E(y)$$

It follows that

$$\hat{y} = (SBCF)e^{\hat{Y}}$$

is the required estimator of emission rate. In practice, the estimates \hat{a} and \hat{b} can be substituted for a and b, respectively.

Again, a more rigorous derivation would account for the error variances in \hat{a} and \hat{b} . In simulations, however, the estimation process described above has produced estimations of emission rate with negligible or zero bias. In these simulations, the regression coefficients were again based on a sample size of 30. As before, the simulations showed that any error introduced by the handling of \hat{a} and \hat{b} is likely to be small compared to errors from other causes in cases with sample sizes of 30 or greater. It would be of interest to perform further simulations to investigate the effect of a smaller sample size.

D.3.6 Uncertainty of Estimated Emission Rate

In this section, we discuss the uncertainty involved in estimating the emission rate. As a first step, we need the error variance of the estimate \hat{Y} in log space:

$$\hat{Y} = \hat{a} + \hat{b}X$$

Then,

$$var(\hat{Y}) = var(\hat{a}) + var(\hat{b}X) + 2 cov(\hat{a}, \hat{b}X)$$

where cov () denotes covariance.

A rigorous error analysis that accounts for the errors in â and b as well as the error in X will require the covariance matrix of â and b. This covariance matrix can be computed by methods such as bootstrapping or jackknifing (Efron and Gong, 1983). While both are valid methods, bootstrapping depends on random number generation, and analysts working on different computers with different random number generators might calculate different covariance matrices from the same data. Thus, the authors have a slight preference for jackknifing, which does not depend on random number generation.

The limiting distribution of the errors in the regression coefficients when (1) Y is regressed on X, (2) both have normally distributed errors, and (3) the errors are independent is given by Fuller and Hidiroglou (1978). The limiting distribution is normal, and an expression for the covariance matrix is given. In the past, however, the samples used to develop predictive equations for emission rate have not always been large. Thus, while the existence of the theoretical limiting distribution is interesting, these results may not be applicable for our purposes.

The next step is to express var (\hat{Y}) in terms of known or estimable quantities. To accomplish this, we need expressions for var $(\hat{b} X)$ and cov $(\hat{a}, \hat{b} X)$.

An expression for the variance of the product of independent random variables is given by Mood, Graybill, and Boes (1974, p. 180), from which we obtain

API PUBL*4613 94 ■ 0732290 0533585 399 ■

$$var(\hat{b}X)=X^2var(\hat{b})+\hat{b}^2var(X)+var(\hat{b})var(X)$$

where b and X have been used as estimates of their respective means.

The assumption that X and \hat{b} are independent is used above, and the assumption that X and \hat{a} are independent is employed below. Here X represents the logarithm of a screening value not used in the development of the regression model. Thus, the assumption that X is independent of both \hat{a} and \hat{b} is justified.

Now we consider the term cov $(\hat{a}, \hat{b} X)$:

$$\begin{aligned} & \text{cov}(\hat{\mathbf{a}}, \hat{\mathbf{b}} \mathbf{X}) = \\ & & \text{E}[(\hat{\mathbf{a}} - \mathbf{a})(\hat{\mathbf{b}} \mathbf{X} - \mathbf{E}(\hat{\mathbf{b}} \mathbf{X}))] = \\ & \text{E}[(\hat{\mathbf{a}} - \mathbf{a})(\hat{\mathbf{b}} \mathbf{X} - \mathbf{b} \mathbf{E}(\mathbf{X}))] = \\ & \text{E}[(\hat{\mathbf{a}} - \mathbf{a})(\hat{\mathbf{b}} \mathbf{X} - \mathbf{b} \mathbf{X} + \mathbf{b} \mathbf{X} - \mathbf{b} \mathbf{E}(\mathbf{X}))] = \\ & \text{E}[(\hat{\mathbf{a}} - \mathbf{a})(\hat{\mathbf{b}} \mathbf{X} - \mathbf{b} \mathbf{X})] + \mathbf{E}[(\hat{\mathbf{a}} - \mathbf{a})\mathbf{b}(\mathbf{X} - \mathbf{E}(\mathbf{X}))] \end{aligned}$$

By the independence of \hat{a} and X, the second expectation above is zero. The substitution of bE(X) for $E(\hat{b}|X)$ in the deviation above is justified by the independence of \hat{b} and X:

$$E(\hat{b}X)=E(\hat{b})E(X)=bE(X)$$

Again, see Mood, Graybill, and Boes.

Thus,

$$cov(\hat{a}, \hat{b}X) = E [(\hat{a}-a)(\hat{b}X-bX)]$$

= $X E[(\hat{a}-a)(\hat{b}-b)]$
= $X cov(\hat{a}, \hat{b})$

The fact that

$$E[(\hat{a}-a)(\hat{b}X-bX)] = X cov(\hat{a},\hat{b}),$$

and especially the fact that X can be "factored out," may be more easily seen if we express the expectation as an integral.

API PUBL*4613 94 ■ 0732290 0533586 225 ■

E
$$[(\hat{a}-a)(\hat{b}X-bX)] =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\hat{a}-a)(\hat{b}X-bX)f(\hat{a},\hat{b})d\hat{a}d\hat{b} =$$

$$X \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\hat{a}-a)(\hat{b}-b)f(\hat{a},\hat{b})d\hat{a}d\hat{b} =$$

$$X E[(\hat{a}-a)(\hat{b}-b)] =$$

$$X \text{ cov}(\hat{a},\hat{b})$$

where f() is the joint probability density of \hat{a} and \hat{b} .

Now we are in a position to write an expression for var (\hat{Y}) in terms of known or estimable quantities.

$$var(\hat{Y}) = var(\hat{a}) + var(\hat{b}X) + 2cov(\hat{a}, \hat{b}X)$$

$$= var(\hat{a}) +$$

$$X^{2} var(\hat{b}) + \hat{b}^{2} var(X) + var(X) var(\hat{b}) +$$

$$2 Xcov(\hat{a}, \hat{b})$$

The variances and covariances involving \hat{a} and \hat{b} were estimated by using the jackknifing method discussed earlier in this section.

The next issue pertains to the calculation of a confidence interval for \hat{Y} in log space. The situation here is obviously not as simple as in the conventional case, in which the only error is in the dependent variable. The expression for \hat{Y} ,

$$\hat{Y} = \hat{a} + \hat{b}X$$

involves a nonlinear function (multiplication) of random variables, and the theory of conventional regression does not apply.

Further analysis of the sampling properties of \hat{Y} would be very beneficial in order to formulate a confidence interval for $E(\hat{Y})$. If such a confidence interval were formulated, then a scheme suggested by Patterson (1966) could be used to obtain an approximate confidence interval for emission rate in linear space. Suppose

API PUBL*4613 94 ■ 0732290 0533587 161 ■

$$P(L \le E(\hat{Y}) \le M) = 1 - \alpha$$

Then

P(SBCF e
$$^{L} \le E(y) \le SBCF e^{M}) \equiv 1-\alpha$$

where SBCF is the scale bias correction factor required to estimate emission rate given \hat{Y} .

The problem of obtaining a confidence interval in log space remains. It is evident that

$$t' = \frac{\hat{Y}}{\sqrt{\text{var}(\hat{Y})}}$$

is not a simple z- or t-statistic. It is argued earlier, however, that the error in X will typically be the dominant error in

$$\hat{\mathbf{Y}} = \hat{\mathbf{a}} + \hat{\mathbf{b}} \mathbf{X}$$

If so, the statistic t' above may have an approximate t-distribution, such that the number of degrees of freedom depends on the manner in which var(X) was estimated. Under this assumption, then, the following would be an approximate confidence interval for the emission rate in log space:

$$P\left(\hat{Y} - t\sqrt{var(\hat{Y})} \le E(Y) \le \hat{Y} + t\sqrt{var(\hat{Y})}\right) = 1 - \alpha$$

where t is the appropriate t-statistic for the confidence level $1-\alpha$; the number of degrees of freedom is the same as the number of degrees of freedom associated with the estimated error variance var(X).

According to Patterson's method, the corresponding confidence interval for the emission rate in linear space would be:

$$P\left(SBCF \exp(\hat{Y} - t \operatorname{var}(\hat{Y})) \le E(y) \le SBCF \exp(\hat{Y} + t \operatorname{var}(\hat{Y}))\right) = 1 - \alpha$$

Further investigation of this and other approaches for estimating the confidence interval for emission rate would be very beneficial.

API PUPL*4613 94 ■ 0732290 0533588 OT8 ■

REFERENCES

- 1. Bloch, Farrell E., "Measurement Error and Statistical Significance of an Independent Variable," The American Statistician, February 1978, Vol. 32, No. 1.
- 2. Draper, Norman and Harry Smith, <u>Applied Regression Analysis</u>, Second Edition, John Wiley & Sons, 1981.
- 3. Efron, Bradley and Gail Gong, "A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation," The American Statistician, February 1983, Vol. 37, No. 1.
- 4. Fuller, Wayne A. and Michael A. Hidiroglou, "Regression Estimation after Correcting for Attenuation," <u>Journal of the American Statistical Association</u>, March 1978, Vol. 73, No. 361.
- 5. Mandel, John, <u>The Statistical Analysis of Experimental Data</u>, Interscience Publishers, 1964.
- 6. Mood, Alexander M., Franklin A. Graybill, and Duane C. Boes, <u>Introduction to the Theory of Statistics</u>, Third Edition, McGraw-Hill Book Company, 1974.
- 7. Patterson, R.L., "Difficulties Involved in the Estimation of a Population Mean Using Transformed Sample Data," <u>Technometrics</u>, August 1966, Vol. 8, No. 3.
- 8. Williamson, Hugh and Mary Hall, <u>An Examination of the Effects of Screening Value Variation on the Prediction of Mass Emission Rates</u>, Radian Corporation, 8 February 1993.

API PUBL*4613 94 **10** 0732290 0533589 T34

APPENDIX E INDEPENDENT AUDIT RESULTS

PTI

RESEARCH TRIANGLE INS

(DE-T) 66 MROT JANOITHO

Center for Environmental Measurements, and Qualit

FAX TRANSMIT	TTAL FOREST 6
· Ron Ricks	For Ron Ryan
Dept Agency Rodian	Proce 919-541-4330
- 9/6-362-2312	
NSN 7540-01-317-7368 5099-101	General Befores Administration

PRELIMINARY REPORT OF THE SITE VISIT AND TECHNICAL SYSTEMS AUDIT CONDUCTED AT ARCO AND PACIFIC REFINERIES

RTI Project No.: 5500-042

From:

James B. Flanagan (919/541-6417)

FAX: (919/541-7215)

Lori L. Pearce (911)/541-7182)

Date:

December 14, 1992

- 1. a) Finding: The probes and connectors for the OVA Model 108 used at both plants were found to be leaking.
 - b) Effect on Data: Leakage will change the overall dilution of the pollutant as well as the flow characteristics at the inlet. This can result in erroneously low screening values. All data taken to date are suspect because leak checks were not routinely conducted.
 - c) Recommendation: It is recommended that frequent leak checks be conducted as described in the video tape, "VOC Fugitive Emissions Procedures and Equipment," by E.J. Richards.
 - d) <u>Urrency of Implementation</u>: This recommendation was communicated to the Radian field staff at the time of the audit. This is a critical recommendation that should be implemented immediately.
- 2. a) Finding: At both plants the gas flow rates into the probe inlet of the OVA Model 108 were not being measured and recorded. When measured directly, the actual flows into the OVA probe were a factor of 2 or 3 lower than indicated by the built-in flow indicator.

Post Office Box 12194 Telephone 919 541-6914 Research Triangle Flark, North Carolina 27709-2194

Fax: 919 541-59:/9

Preliminary Site Audit Report Date: December 14, 1992 Page 2 of 6

- b) Effect on Data: The effect of sample flow rate on OVA response is a matter of debate. The impact of sample flow rate on individual samples will vary depending on the nature of the source; i.e., whether it is diffuse or concentrated. A diffuse source will be less sensitive to variations in sample flow rate than a point source.
- c) Recommendation: It is recommended that sample flow rate at the inlet of the OVA probe be measured and recorded during calibration and before and after each battery change. These data should be added to the data case for evaluation as part of the emission rate model.
- **d**) Urgency of Implementation: This recommendation should be communicated to Hadian for implementation as soon as possible.
- 3. a) Finding: Dilution factors obtained with the OVA dilution probe varied significantly between calibration gases at two different concentrations. This was observed at both plants. For example, at the Pacific refiner, on 12/18/92, the 1000-ppm calibration standard gave a dilution factor of 10:1, whereas the 35,000-ppm standard gave a dilution factor of 18.4:1. Based on limited observations during the two audits, incons stent dilution factors appeared to be correlated with the probe leakage observed in Finding 1.
 - **b**} Effect on Data: Uncertainty in the true dilution factor will directly impact the hydrocarbon concentration, which is calculated as OVA readout times the dilution factor. In the case of very high leakers (>10,000 ppm), where the dilution probe must be used to obtain the screening value, this is a critical measurement for development of the emission rate model.
 - c) Recommendation:
 - (1) Ensure that the OVA probe assembly is free of leaks (see
 - Radian should investigate the origin of this variability and **(2)** make any necessary procedural or equipment modifications to control it.

Preliminary Site Audit Report Date: December 14, 1992 Page 3 of 6

(3) Field operators should be instructed to make sure that the dilution ratios obtained with the two different standards agree within a target goal, such as ± 20%. Corrective measures should be taken if the goal is not achieved.

TO

- d) <u>Urgency of Implementation</u>:
 - (1) Leak-checking should be implemented immediately.
 - (2) Operation of the dilution probe should be investigated.

 Modified procedures should be in place by January.
 - (3) Field operators should try to minimize the observed discrepancy, if possible, by checking for leaks, etc. This should be started as soon as possible.
- 4. a) Finding: O₂ Calibration checks at the Pacific plant often read higher than the 5% standard gas level. Calibration gas bags used for the OVA and O₂ analyzer were not thoroughly purged prior to refilling at the Pacific plant. Tedlar bags are filled from standard cylinders prior to calibration. The operator squeezes the old gas from the bag and refills it only once. Oxygen calibration checks at the 5% level read as high as 7% at the Pacific plant. Checks at the ARCO plant for the 5% O₄ standard did not exceed 5.3%.
 - b) Effect on Data: This error could mask a true malfunction of the instrument. Effect on OVA calibration is unknown.
 - c) <u>Recommendation</u>:
 - (1) Calibration bags should be purged more effectively by repeatedly emptying and refilling the bag with standard gas. This is particularly important after long periods between bagging (e.g., weekends or delays due to bad weather).
 - (2) Field personnel should not accept an O₂ calibration check unless the reading is between 4 and 6% on the 5% gas.
 - d) <u>Urgency of Implementation</u>: These recommendations should be implemented as spon as possible.

59153622318 P.84/86

Preliminary Site Audit Report Date: December 14, 1992 Page 4 of 6

- 5. a) Finding: Radian technicians at both plants are currently evaluating the multipoint OVA calibrations by fitting the OVA results to a linear regression equation and determining whether the correlation coefficient, r, is high enough (> 0.995). Calibration gas concentration is the independent (x) variable, and the OVA response is the dependent (y) variable. Calibration gases are in a geometric series of 10, 100, 1,000, and 10,000 ppm. This spacing is unequal and results in the correlation being dominated by the higher-level points. Use of a logarithmic transform of both the x and y variables prior to the linear regression would make the points more equally spaced.
 - b) Effect on Data: Using the linear scale rather than a log-log scale for evaluating linearity of the calibration curve causes a loss of information about the lower concentration points. Misleadingly high values for the correlation coefficient, r, can result. This can result in failing to detect noisy or nonlinear calibrations.
 - c) Recommendation: The linear regression/correlation should be done with log-transformed concentration values.
 - d) Urgency of Impley ientation: This procedure should be implemented as soon as possible.
- 6. a) Finding: There was air in the "TEE" joint used to monitor pressure while the canister is being filled. This was observed only at the ARCO plant. Radian alerted operators to purge the joint on 12/4/92, consequently, the operators at the Pacific refinery were using a revised procedure when audited on 12/7 and 12/8/92.
 - b) Effect on Data: The volume of the joint is small relative to the total canister volume, so dilution of the sample by air will probably make only a slightly low bias if the joint contains only ambient air. If a high concentration of hydrocarbon is present in the joint from a previous sample, however, carryover could result.
 - c) Recommendation: The joint should be cleared of gas prior to using it to fill a canister. This can be done in two alternative ways:
 - Evacuate the joint to a high vacuum prior to opening the canister valve, OR

Preliminary Site Audit Report Date: December 14, 1992 Page 5 of 6

(2) Flush the joint with gas directly from the bag before the canister value is opened. NOTE: This may require use of a pump to pull the bag gas through the joint, because there may not be sufficient pressure in the bag to force gas through the joint.

ΤÜ

- d) Urgency of Implementation: Radian has already (as of 12/4/92) told the operators to flush the TEE joint prior to sampling by connecting the joint to the ba; and opening the valve on the joint before connecting it to the canister. Because a pump is not used, however, this procedure may not be effective due to insufficient bag pressure to force gas through the joint. A modified procedure should be investigated and implemented by January.
- 7. a) Finding: The OVA used at Pacific appeared to be in poor condition.
 - (1) There were leaks in the connector between the probe and the OVA due to a missing Swagelok ferrule. It was found that the field personnel at the Pacific refinery did not have Swagelok hardware of the correct size to repair the OVA.
 - (2) Ambient hydrocarbon measurements with the Radian instrument were consistently <1 ppm, while two OVAs from the Bay Area AQMD which were on-site on 12/8/92 read about 2 ppm.
 - b) Effect on Data:
 - (1) See Finding 1 for the effect of leaks on OVA response.
 - (2) Screening data below 10 ppm may be biased low due to the low response observed at ambient levels.
 - c) Recommendations:
 - (1) Field crews at both sites should be provided with necessary supplies to repair OVA leaks. These supplies should include spare Swag-lok hardware of the appropriate size for the instrument.
 - (2) The instrument used at Pacific should be checked and serviced if necessary to improve low-end accuracy.
 - d) <u>Urgency of Implementation</u>: These recommendations should be followed prior to the next sampling session in January.

Page 6 of 6

Preliminary Site Audit Report Date: December 14, 1992

Minor Findings and Recommendations

- 1. Operator names should be recorded daily in the logbook.
- All operators should view E.J. Richards' videotape, "VOC Fugitive Emissions Procedures and Equipment." This videotape is available from 2. Kirk Foster in the Air Pollution Training Institute of OAQPS.

RADIAN

10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

209-081-07-01 January 19, 1992

Mr. Ron Ryan
EPA-OAQPS, MD-14
Emissions Factor and Methods Section
Research Triangle Park, NC 27711

Subject:

Response to Preliminary Report on the Site Visit and Technical Systems Audit

Conducted at ARCO and Pacific Refineries

Dear Ron:

Radian appreciates the opportunity to review the preliminary audit report prepared by Research Triangle Institute (RTI) on behalf of the U.S. EPA in conjunction with the WSPA/API refinery fugitives study. We would like to respond to the issues raised in this preliminary audit report. Changes have been made to address nearly all of the identified issues. This letter explains the effects that audit observations might have had on the previous data and the actions that Radian has taken to implement procedural changes in response to audit findings.

1. Audit Finding: The probes and connectors for the OVA Model 108 used at both refineries were found to be leaking.

<u>Technical Response</u>: There is no evidence to date that the data that we have collected are biased high or low based on the probe and connector leaks. Unfortunately, there is no way to verify when leaks occurred or the exact magnitude of the leaks. Previous field procedure was to check for leaks on a non-routine basis and records of these checks were not made.

Radian is planning to pursue the following actions to determine if the data collected were biased:

- Compare screening data collected by the Bay Area Air Quality
 Management District (BAAQMD) to the screening data collected by
 Radian both before and after discovery of the probe leaks. The
 BAAQMD and Radian screened many of the same components both
 before and after bagging the components.
- Compare, on a statistical basis, data collected before and after discovering and eliminating probe leaks.

RADIAN

Mr. Ron Ryan January 19, 1992 Page 2

It should be noted that the OVA was calibrated with the leaks in existence, on days when the OVA was leaking.

In addition to daily multipoint calibrations, a quality control check against a known hydrocarbon concentration was performed after taking every sample to confirm that the OVA had not drifted significantly. If concentrations varied by more than 20% from the calibrated value of the known hydrocarbon concentration, these samples were considered invalid and results from these samples will not be used in development of the emission correlation equations.

RTI has indicated that the leakage can result in erroneously low screening values. If these erroneously low screening values were correlated to mass emissions, higher mass emissions would be tied to specific screening values. The result of this would be artificially high emission correlation equations which would provide an over-estimate of actual emissions.

Action Taken: All of our OVAs are now being leak checked on a frequent basis (at least with every daily calibration). Results of these leak checks will be documented in our field notebooks.

2. Audit Finding: At both refineries the gas flow rates into the probe inlet of the OVA Model 108 were not being measured and recorded. When measured directly, the actual flows into the OVA probe were a factor of two or three lower than indicated by the built-in flow indicator.

<u>Technical Response</u>: The built-in OVA flow indicator is not a calibrated flow meter. The built-in flow indicator on the OVA is not designed to be an accurate representations of actual flow. EPA Method 21 indicates that the analyzer internal pump needs to be capable of pulling 0.1 to 3 L/min. Both of our OVAs tested well within the EPA Method 21 guidelines.

Action: Radian now records the OVA pump flow rate with every multipoint calibration and before replacing batteries (unless the battery is being replaced because of a failed quality control check).

3. Audit Finding: Dilution factors obtained with the dilution probe varied significantly between calibration gases at two different concentrations. This was observed at both refineries. For example, at Pacific Refining on 12/18/92, the 1,000-ppm calibration gave a dilution factor of 10:1, whereas the 35.000-ppm standard gave a dilution factor of 18.4:1. Based on limited

Mr. Ron Ryan January 19, 1992 Page 3

observations during the two audits, inconsistent dilution factors appeared to be correlated with the probe leakage observed in Finding 1.

<u>Technical Response</u>: A unified approach to deal with varying dilution factors based on hydrocarbon concentrations will be developed during the data analysis phase of this project.

Action: Elimination of probe leaks, which is being documented in current testing, could reduce this variability. To further address this issue, dilution probe testing will also be conducted at a hydrocarbon concentration of 10,000-ppm. This will provide a three point calibration that may be used to more accurately identify actual hydrocarbon concentrations measured in the field that fall between the calibration standard gas concentrations.

In addition, if the dilution ratio for any of the three calibration standards is less than 5 or more than 15, the dilution probe will be repaired or replaced.

4. Audit Finding: Oxygen analyzer calibration checks at 5% O₂ read as high as 7% at Pacific Refining. Calibration readings at ARCO at 5% O₂ did not exceed 5.3%. Tedlar™ calibration gas bags used for the OVA and oxygen analyzer were not thoroughly purged prior to refilling at Pacific Refining. Prior to calibration, the operator squeezed the old gas from the bag and refilled it only once from standard cylinders.

Technical Response: Calibration gases are placed in Tedlar™ bags that are dedicated to single concentrations of hydrocarbon or oxygen during all field testing. These Tedlar™ bags remain filled during the test day and maintain positive pressure that would tend to force any gases out of the Tedlar™ bags rather than allow contamination into the Tedlar™ bags. These Tedlar™ bags are emptied and refilled at least daily. Therefore, significant contamination of the Tedlar™ bags is not likely.

The previous procedure to calibrate the oxygen analyzer was to calibrate the instrument at ambient air concentrations and simply record what the instrument read against the 5% O₂ calibration standard. The instrument occasionally read higher than 5%. The purpose of the O₂ analyzer is to confirm that concentrations in the constructed sampling bag are less than 5% and that the bag is at steady state. Because the instrument, on occasion, read a true concentration of 5% as something higher, an actual reading of 5% on the instrument was certain to be 5% or below. The quality control objective of maintaining a concentration below 5% in the bag during sampling was achieved.

Mr. Ron Ryan January 19, 1992 Page 4

Action: To reduce the potential for error, each TedlarTM bag is now purged and filled at least twice before using the bag for calibration purposes.

The oxygen analyzer is now calibrated at the 5% concentration, instead of at the ambient air concentration. If the O_2 analyzer measures ambient air at greater than 24% or less than 18%, then the analyzer will be repaired.

5. Audit Finding: Radian technicians at both refineries were evaluating the multipoint OVA calibrations by fitting the OVA results to a linear regression equation and determining whether the correlation coefficient, r, is high enough (>0.995). Calibration gas concentration is the independent (x) variable, and the OVA response is the dependent (y) variable. Calibration gases are in a geometric series of 10, 100, 1,000, and 10,000 ppm. This spacing is unequal and results in the correlation being dominated by the higher-level points. Use of a logarithmic transform of both the x and y variables prior to the linear regression would make the points more equally spaced.

<u>Technical Response</u>: Radian selected the performance standard of using the linear regression correlation coefficient of r=0.995 based on experience with the OVA on other field assignments. This performance standard was reviewed and accepted by the project participants at the beginning of the study.

6. Audit Finding: There was ambient air in the vacuum gauge T-joint used to monitor pressure while the canister was being filled. This was observed only at ARCO. Radian alerted operators to purge the joint on 12/4/92, consequently, the operators at Pacific Refining were using a revised procedure when audited on 12/7 and 12/8/92.

Technical Response: There is a small amount of air in the T-joint before the canister is filled. Operators in the northern California refineries had instituted a procedure to flush this joint several weeks prior to any audit. This procedure was not being implemented in southern California prior to the audit. The exact impact of the air or any residual hydrocarbon concentrations in the joint is unknown. As pointed out by RTI, the volume of the joint is small relative to the total canister volume, so dilution of the sample by air will probably be small. Of potentially more impact is the potential for residual hydrocarbons from previous testing to artificially increase hydrocarbon concentrations, thereby artificially increasing mass emissions and emission correlation equations.

Mr. Ron Ryan January 19, 1992 Page 5

Action: To help ensure that the joint is adequately flushed of air and residual hydrocarbons, the joint is now open to sample flow throughout the testing period. The internal pumps in the O_2 analyzer and the OVA are used to flush the joint with gas from the bagged component.

- 7. Audit Finding: The OVA [Radian's] used at Pacific Refining appeared to be in poor condition.
 - A. There were leaks in the connector between the probe and the OVA ([Radian's] sidepack due to a missing SwageLockTM ferrule. [Radian] Operators at Pacific Refining did not have SwageLockTM hardware of the correct size to repair the OVA.
 - B. Ambient hydrocarbon readings with the Radian OVA were consistently < 1 ppm, while two OVAs from the BAAQMD, which were on-site on 12/8/92, read about 2 ppm.

Technical Response: At all field test sites back-up OVAs have been available on-site or within easy access. When it was determined that Radian's probe at Pacific Refining had a missing SwageLock™ ferrule, the probe was replaced with a non-leaking probe from the back-up OVA. Our response to audit finding #1 discusses the probe leak issue.

Although the Radian OVA at Pacific Refining was reading ambient concentrations at <1 ppm, the instrument read very close to the calibration gas standard at 9.5 ppm hydrocarbons. The impact of low readings of ambient concentrations is considered minimal given the reasonably accurate readings at 9.5 ppm. Few of the components selected for bagging screened at less than 9.5 ppm. Also, erroneously low screening values will cause an increase in emission correlation equations which would increase emission estimates.

Action: Two Radian OVAs, each with non-leaking probes, are currently in the field or within easy access of the field crews in both northern and southern California. The Radian OVA used at Pacific Refining was serviced in December 1992. Ambient hydrocarbon readings after service are typically above the 1 ppm level.

8. Audit Recommendations:

- A. Operator names should be recorded daily in the logbook.
- B. All operators should view E.J. Richards' videotape, "VOC Fugitive Emissions Procedures and Equipment." This videotape is available from Kirk Foster in the Air Pollution Training Institute of OAOPS.

Mr. Ron Ryan January 19, 1992 Page 6

<u>Technical Response</u>: Operator names have always been recorded on the bagging forms for every sample taken. Operator names have also always been recorded on laboratory tags submitted with all samples.

Actions: Operator names will also now be recorded daily in the logbook. All operators have now seen the recommended videotape.

If you have additional questions on these issues or the actions designed to address these issues, please give me a call at (916) 362-5332.

Sincerely,

Ronald D. Ricks

Assistant Project Director

Romand - Tick

RDR:sdm

Attachments

c: M. Luthin, WSPA

M. Lev-On, ARCO

D. Van Der Zanden, Chevron

K. Ritter, API

G. Harris, Radian

S. Peoples, Radian

South Coast AIR QUALITY MANAGEMENT DISTRICT

21865 E. Copley Drive, Diamond Bar, CA 91765-4182 (909) 396-2000

April 27, 1993

Mr. Michael D. Wang Western States Petroleum Association 505 North Brand Blvd. Suite 1400 Glendale, CA 91203

Subject: WSPA/API Refinery Fugitive Emission Study Meeting

Dear Mr. Wang:

Thank you for the opportunity to attend the meeting regarding the progress of the WSPA/API Refinery Fugitive Emission Test Program on February 16, 1993 at the WSPA office in Glendale. We found the meeting to be informative, touching on a number of important technical issues. Prior to the Glendale meeting, the District had not participated in any field observations for OVA screening and bag sampling.

Based on the U.S. EPA preliminary report dated December 14, 1992 regarding the site visit and technical systems audit conducted at ARCO and Pacific Refineries, seven major findings of various screening and testing deficiencies were reported. Radian responded immediately to the issues raised, changing screening and testing procedures as suggested in the audit recommendations.

During a field observation conducted at Pacific Refining on February 24, 1993, District staff noted continuing problems in some OVA screening procedures including use of calibration gases not within Method 21 specifications. These technical findings and procedural problems may have some impact on the quality of the data. Consequently, the accuracy of the final emission rate correlation equations derived from the collected data may be affected. While the District will review and evaluate the final project report when it becomes available, we are not committed to using the results or data generated from this study unless we find the results to be acceptable.

District staff recognize that the correlation method is the most appropriate approach for determining mass emission rates for refinery fugitive components. The District also supports WSPA's efforts to establish new correlations through a bagging program. However, the current bagging matrix does not include enough samples to be representative and reliable for the scope and objectives of the project. Additionally, this study does not address emissions from compressors, pressure relief devices, and drains which may contribute a significant portion of total facility fugitive emissions. The issues surrounding toxic fugitive emissions are also significant and should be addressed. As we discussed at the Glendale meeting, the District is developing an expanded bagging program which would include completion of an expanded bagging matrix at a minimum of three District refineries.

Mr. Michael D. Wang

2

April 27, 1993

The details of this program will be available for your review and comments in the near future.

We plan to continue to work closely with WSPA and its members to develop the best possible estimate of fugitive emissions from all facilities subject to the District's fugitive emission control rules. I will be in contact with you again to discuss the details of such work leading to a quantification method for fugitive emissions which is representative, reliable and accurate.

If you have any questions, please call Peter Tong at (909) 396-2589.

Sincerely,

Anupom Ganguli, Ph.D.

Senior Manager

Refinery/OCS Team

Stationary Source Compliance

AG:PT/MB:pl

cc:

Ron Ricks, Radian Ed Camarena Pat Leyden Chung Liu Bill Leyden

(rad427)

209-081-07-01 April 27, 1993 10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

Ms. Melinda Luthin Western States Petroleum Association 505 North Brand Avenue, Suite 1400 Glendale, CA 91203

Subject: WSPA/API Refinery Fugitive Emissions Study, Phase III - Contract No. ET 302-08 - SCAQMD Audit of Bagging Testing

Dear Melinda:

On February 24 and 25, 1993, four auditors from the South Coast Air Quality Management District (SCAQMD) visited the Pacific Refinery in Hercules, CA to audit the bagging activities associated with the WSPA/API Refinery Fugitive Emissions Study. The Radian personnel performing the bagging at this time were Richard Howell and myself (Ron Ricks). The SCAQMD personnel performing the audit were Victor Reyes, Scott Wilson, Philip Szymanski, and Mike Buckantz. Also present for most of February 24, 1993 were inspectors and source testers from the Bay Area Air Quality Management District (BAAQMD).

In general, the SCAQMD auditors appeared favorably impressed with the testing procedures and quality controls used during the audit. However, a few items were identified by the auditors as concerns or areas that could improve the study. This letter is intended to address these issues raised by the SCAQMD during and immediately after the audit.

Issue 1 - Insufficient Carbon in OVA Dilution Probe Scrubber

The SCAQMD commented that there appeared to be insufficient carbon in the OVA dilution probe scrubber.

Response to Issue 1

No exact amount of carbon in the OVA dilution probe scrubber is specified as being required in bagging or screening protocols. There needs to be sufficient carbon in the dilution probe scrubber to filter out background hydrocarbons when the dilution probe is used. The dilution probe scrubber used during the audit and throughout the testing did include carbon. The dilution probe scrubber that was observed during this audit and the carbon in the scrubber had been replaced more than once during this testing. There is no reason to believe that the carbon in this dilution probe scrubber was insufficient to filter out background hydrocarbons.

Ms. Luthin April 27, 1993 Page 2

The screening value to mass emission rate correlation equations that will be developed for this study do include screening values used with the dilution probe if the component screened greater than 10,000 ppmv (which would read 1000 ppmv with the dilution probe). Background readings while testing these high leaking components seldom exceeded 20 ppmv, and generally were less than 5 ppmv. Even with no carbon in the dilution probe scrubber the amount of impact from these background hydrocarbon readings would be slight.

Issue 2 - Inaccurate Screening Value Obtained by Radian Inspector

During testing of one of the components the Radian inspector (Ron Ricks) initially obtained a screening value of 550 ppmv. The SCAQMD inspector obtained a reading of approximately 1500 ppmv. The Radian inspector asked where the higher reading was found. At first the Radian inspector misunderstood the location mentioned by the SCAQMD inspector (the correct side of the valve was rescreened, but the Radian inspector inspected the interface between the packing gland and valve body instead of the interface between the valve stem and packing gland). The magnitude of the leak at this location was again comparable to the original value screened by the Radian inspector. The Radian inspector performed a quality control check of the OVA and checked the OVA for any leaks. The OVA did not have any leaks and the quality control check was acceptable. Finally, the Radian inspector screened in the exact location identified by the SCAQMD inspector as the highest leak. The Radian inspector measured a screening value of 1100 ppm at this location at this time. A BAAQMD inspector also measured the leak at this location at this time and obtained a screening value of approximately 1100 ppm.

Response to Issue 2

There are two possibilities for these different readings. The first possibility is that the component leak rate varied between the time that the Radian inspector screened the component and the time that the SCAQMD inspector originally screened the component. The second possibility is that the Radian inspector passed by the area of highest leak on the first screening attempt. The second possibility is more likely considering the short period of time between the Radian screening and the SCAQMD screening.

The impact of missing the highest leak on a component is that the screening value for a component would be low (compared with other components with accurate screening values) for the resulting mass emission rate. This would result in a <u>higher</u> mass emission to screening value correlation which could overstate emissions.

Screening values are taken both before and after bagging. If the initial screening value differs from the final screening value by more than a factor of two, the screening value will not be used in development of the emission correlation equations. This procedure is used to

Ms. Luthin April 27, 1993 Page 3

reduce the variability of the emission correlation equations. The final screening value for this component, as measured by Radian, was 1400 ppmv. Without the rescreening by Radian for the initial value before the bag was put in place, this screening value to mass emission rate would have varied by a factor of 2.5 and would not have been used in emission correlation equation development. The chance of missing the highest leaking point in both the initial and final screening measurements is considered remote.

Six components were screened and bagged with the SCAQMD auditors and Radian inspectors taking side-by-side screening measurements. Each component was screened both before and after taking a bag sample. The screening values that were taken by the SCAQMD, Radian, and the BAAQMD were freely shared orally after testing. Of the total of twelve screening value measurements taken by both the SCAQMD and Radian, the initial reading on this component and the final reading on one other component were the only two that differed by more than a factor of two. The second component had a very high screening value variability that was component related, not inspection related. For the other ten screening values taken, screening value differences were minor, usually within 10 - 25% of each other. The written screening values of the SCAQMD have not been transmitted to Radian to date. However, the average of the before and after bagging screening values of the Radian inspector (Ron Ricks in each case) and the BAAQMD inspector during this audit are shown below.

Component ID	BAAQMD Screening Value (ppmv)	Radian Screening Value (ppmv)
P-118	220	225
P-119	1250	1 25 0
P-120	600	675

The conclusion reached by the SCAQMD inspectors, the BAAQMD inspectors and the Radian inspectors that was communicated to Radian was that the screening value differences during the audit were within the accuracy of the OVA. The potentially missed highest leak point is considered anomalous, and even if it had not been corrected would have resulted in the data point being deleted as having a screening value variability that was too high. Even in the remote possibility that the point of highest leak could have been missed in both the before and after measurement, the impact of this would be that the resulting emission correlation equations would be too high and emissions over-estimated.

Ms. Luthin April 27, 1993 Page 4

Issue 3 - The 1000 ppmv Calibration Gas Used by Radian Was Not Within Accuracy Identified in EPA Method 21

One of the calibration gas standards used in the multi-point calibrations of the OVA was labeled at plus or minus 5% instead of the EPA Method 21 specification of plus or minus 2%. This calibration gas standard had been in use since February 1, 1993.

Response to Issue 3

EPA Method 21 (Section 3.2) specifies that the calibration gases (air, less than 10 ppmv VOC, and a second calibration gas) must by analyzed and certified by the manufacturer to be within plus or minus 2% accuracy.

The zero air standard gas and the calibration gas (100 ppmv) that was used to calibrate the OVA were certified at within the plus or minus 2% accuracy. The OVA has a calibration knob or screw to adjust the OVA reading to the calibration gas. The calibration gas used to make this adjustment was the 100 ppmv standard, not the 1000 ppmv standard. Even if the 1000 ppmv standard had been 5% off (the maximum possible) the OVA would not have been adjusted any differently because adjustments were made based on the 100 ppmv standard only.

The remaining calibration gases used in this study were used as supplemental information to that specified in EPA Method 21. They were used in this study to verify that the OVA was responding accurately over all ranges of potential screening values. The entire set of calibration gases that was used in this multi-point calibration included zero air, 10 ppmv, 100 ppmv, 1000 ppmv, and 10,000 ppmv. A 25,000 ppmv or 35,000 ppmv calibration gas was also used to calibrate the OVA dilution probe. In all cases in this study, the multi-point calibration curve yielded a correlation coefficient of greater than 0.995 (the specified acceptability standard for this study). While the 1000 ppmv calibration gas standard (certified at plus or minus 5%) was being used the correlation coefficient was never lower than 0.9998.

The 1000 ppmv calibration gas used by Radian for the months of February and early March at one of the five refineries in this study was erroneously sent to Radian by the calibration gas supplier at plus or minus 5% instead of plus or minus 2%. This error was not noticed by Radian until pointed out by the SCAQMD after the SCAQMD audit. All of the calibration gases that were in use during the audit and those that had been in use in any northern California testing prior to the audit were at the Pacific refinery and were inspected by the SCAQMD. All of the remaining calibration gases at all concentrations, including spent gas cylinders, were found to be within the required plus or minus 2% accuracy.

Ms. Luthin April 27, 1993 Page 5

The certificate of analysis from the calibration gas supplier is attached. This certification of analysis indicates that the 1000 ppm methane gas was actually 1024 ppm. This calibration gas was off by 2.4% of the requested concentration. The limited error introduced by this calibration gas would not have reduced the calculated correlation coefficient significantly. In fact, use of 1024 ppm in the multi-point calibration for the day with the worst correlation coefficient would result in a reduction of the correlation coefficient from 0.99982 to 0.99977. The revised correlation coefficient is still well above the 0.995 required for acceptability.

Issue 4 - Dilution Probe Screening Value Differences between the SCAQMD and Radian

The screening value readings of Radian's OVA with the dilution probe and the SCAQMD's OVA with the dilution probe occasionally differed widely (nearly a factor of 2).

Response to Issue 4

Radian calibrated the dilution probe used in this study at this refinery at 35,000 ppmv. The Radian dilution probe is set so that the OVA reads 0.1 times the calibration gas, or to read 3,500 ppmv with the 35,000 ppmv standard. It is not known exactly how the SCAQMD calibrated their dilution probe. For information purposes, Radian then checked the dilution probe readings at 1000 ppmv and 10,000 ppmv. The ratios generally varied at each concentration.

During the bagging conducted while the SCAQMD was performing the audit, the dilution probe was only used to determine when the gases within the bag were at equilibrium. These intermediate screening values are not used in the development of the mass emission rate to screening value correlations.

The screening values measured by Radian with the dilution probe during the audit ranged from 7.3 to 140 (approximately 73 to 1400 ppmv). None of these screening values is close to the 35,000 ppmv value for which the dilution probe was calibrated. It is not surprising that differences existed between the SCAQMD and Radian's readings with dilution probes at these low screening values. Because of the calibration at 35,000 ppmv it is unlikely that large differences would have existed at screening values > 10,000 ppmv. Only those components with screening values > 10,000 ppmv use the dilution probe in the initial and final screenings (without the bag in place) that will be used in the development of emission correlation equations or pegged component factors.

Ms. Luthin April 27, 1993 Page 6

Issue 5 - Interim Observations Were Seldom Recorded by Radian During Bagging

During bagging many of the interim observations, such as oxygen and total hydrocarbon measurements demonstrating that the bag has come to equilibrium, were not being recorded by Radian.

Response to Issue 5

In the bagging procedure, Radian takes multiple oxygen readings to verify that the oxygen content in the bag is less than 5%. This substantiates that there are minimal leaks into the bag. Multiple readings are also used to demonstrate equilibrium within the bag. Multiple total hydrocarbon (OVA readings) are also taken to demonstrate that equilibrium/steady-state has occurred in the bag. Both the final oxygen content and the final total hydrocarbon readings before taking a test sample are recorded on the bagging form. After the test sample is taken, the oxygen content and total hydrocarbon content are measured again and recorded on the bagging form. The after-sampling readings demonstrate that no new leaks occurred during sampling and give an indication of the total hydrocarbon variability during testing. Most of the interim measurements to establish that the bag was at equilibrium were not recorded by Radian.

The amount of time to establish equilibrium in the bag is recorded. From the time that the nitrogen flow rate is initiated until the time that the oxygen and total hydrocarbon readings are recorded intermediate measurements are taken. The bagging forms document the time the intermediate testing took place. The before-sample versus the after-sample oxygen and total hydrocarbon readings give additional documentation on the sample/equilibrium variability during testing.

Based on recommendations from the SCAQMD auditors, intermediate readings of oxygen and total hydrocarbon that supply additional evidence that equilibrium was obtained were recorded from the audit date until the end of the field testing. Also recorded from that date was the fact that the sampling equipment (in particular the vacuum gauge tee) was purged with nitrogen and measured with the OVA to reduce the potential for sample contamination.

Sincerely,

Ronald D. Ricks

Assistant Project Director

Rosald D. Richa

Attachments

c: K. Ritter (API)

G.E. Harris

S.H. Peoples

To: Jugitives S.C., FYI - M. Luthin 5-28-93

010325

Michael D. Wang

Manager
Operating and Environmental Issues

May 28, 1993

Mr. Anupom Gangouli South Coast AQMD 21865 Copley Drive Diamond Bar, California 91765

Dear Mr. Gangouli:

Thank you for your letter of April 27 outlining your visit to one of the refineries involved in the WSPA/API Refinery Fugitive Emissions Test Program. WSPA appreciates the cooperative input that the South Coast Air Quality Management District (SCAQMD) has given to this project.

There are a few concerns listed in your letter that WSPA would like to address.

1. Calibration Gases

The SCAQMD team found one of the standard gases used in the OVA calibration check exceeded the 2 percent error range required by Method 21. Because this gas was not used for the actual instrument calibration, the quality of the gas is not required by Method 21 to be within the 2 percent error range. In addition, Radian had the gas analyzed for our own information, and the gas concentration was within 2.4% of its listed value of 1000 ppm.

2. Testing Matrix

The SCAQMD is concerned with the testing matrix and the statistical significance of the program with respect to all refineries in California. Radian created this matrix with the input of their statistical experts and found this testing matrix to be statistically valid. Radian is currently evaluating the statistical relevance of expanding the matrix.

In addition, enclosed is a copy of a letter written by Radian regarding the technical aspects of the SCAQMD's visit to the refinery. Any additional questions will be taken at the upcoming Regulatory Advisory Committee meeting on June 3, at the WSPA office

Mr. Anupom Gangouli May 28, 1993 Pages 2

in Concord, California

It is my understanding that the SCAQMD had recorded OVA screening values in coordination with the Radian technicians for each component tested. I would like to take this opportunity to request that the SCAQMD share this information with Radian for Quality Assurance/Quality Control purposes.

Thank you again for you support of this study. We look forward to seeing you and your staff at the March 3 meeting. If you have any questions, please feel free to call Melinda Luthin at (818) 543-5333.

Sincerely,

E-22

RESEARCH TRIANGLE INSTITUTE

Center for Environmental Measurements and Quality Assurance

March 17, 1993

Mr. Darryl Von Lehmden
Principal Environmental Engineer
Midwest Research Institute
401 Harrison Oaks Boulevard
Cary, NC 27513-2412

Subject: Independent QA Audit of Refinery Fugitives Testing Project.

Dear Mr. Von Lehunden:

Due to an oversight, data for canister P034 were not reported in our letter of March 2, 1993. These days are as follows:

Sample Number	Canister Number	Initial Prossure (manHg)	Final Pressure (mmHs)	Dilution Factor	Total HC Concentration (ppmC)
P034	11897	-218	708	2.72	672

We regret any inconvenience caused by this oversight. Please transmit this information to Mr. Ron Rys# of EPA.

Sincerely,

James B. Flanagan, Ph.D.

Research Environmental Scientist Quality Assurance and Technology

Assessment Department

JBF/Ins

cc: S. Kulkarni

J. Albritton

File: 5500-042\4569

Post Office Box 12194 Research Triangle Park, North Carolina 27709-2194

Telephone: 919 541-8914 Fax: 918 541-5929

PESEARCH TRIANGLE INSTITUTE

Center for Environmental Measurements and Quality Assurance

March 2, 1993

Mr. Darryl Von Lehmden Principal Environmental Engineer Midwest Research Institute 401 Harrison Oaks Boulevard Cary, NC 27513-2412

Subject: Independent QA Aud t of Refinery Fugitives Testing Project. Report of RTI analytical results for field duplicates and confirmatory analyses for QA gas cylinders supplied by Scott Sprcialty Gases.

Dear Mr. Von Lehmden:

Enclosed you will find summary reports of RTTs analyses of the field duplicates provided by Radian for the referenced project. Because these samples are taken from actual leaking components, neither RTI nor Air Toxics, Limited (ATL) knows the true values. These data will provide the following valuable information: (1) an estimate of the interlaboratory agreement and (2) raw data sets for duplicate samples analyzed by two different laboratories that can be compared for the data audit.

EPA Method 18 (GC/FIII) was used by RTI for total hydrocarbons. For the December data, GC/FID was a so used to detect and quantify methane; however, none of the December samples were found to have a significant level of methane. For the January/February report, methane was measured using a pre-column backflush technique, which is a nore selective and accurate because it separates the methane and non-methane postions prior to analysis. The equipment to perform this method was installed at It II in January, after the first set of analyses had been completed.

Also enclosed are result: of K'l's analyses of the Scott gas cylinders used as the QA samples for this project. These cylinders were analyzed in the same timeframe as the January/Felcuary duplicates, and serve to document RTPs laboratory performance for that data set. One analysis (toluene in cylinder BLM-002842) was found to be outside our accuracy goal of ±10%; however, after the GC was checked against a benzem SRM, good agreement with Scott's certified value was obtained.

Post Office Box 12194 Research Triangle Park, North Carolina 27709-2194

Telephone: 919 541-6914 Fax: 919 541-5829

E-24

99163622318 P.04/29

Von Lehmden - March 2, 1993 Page 2

Because of variations in shipping and laboratory schedules, the time between sampling and analysis varies from less than one week to about 4 weeks. Holding times are not thought to have a significant impact on analytical results for these volatile compounds, but we will investigate any statistical correlation between holding time and consentration. Calibrations, holding times, and other supporting data for all RTI analyses are available upon request.

We have requested that Radian send the results of corresponding analyses and the cross-reference between the duplicate canister IDs directly to Ron Ryan at EPA. As always, I will be happy to answer any questions regarding these data.

Sincerely,

James B. Flanagan, Ph.D.

Research Environmental Scientist
Quality Assurance and Technology

Assessment Department

JBF/Ins Enclosure

File: 5500-042\4552

89163622319

TO

RTI Camister Analysis for WSPA Fugitive Emissions Project Field Duplicates Supplied by Radian - December 1993

Sample Number	Canister Number	Initial Pressure (mmHg)	Final Pressure (mmHg)	Dilution Factor ¹	Total HC Concentration ¹ (ppm C)
P055	12380	-206	746	2.72	1280.0
P068	12368	-204	732	2.68	2980.0
A049	12287	-232	710	2.78	49.1
ČUŽI	iżosy	-žů4	104	2.70	4.4
U084	11444	-232	708	2.78	1350.0
660N	12360	-234	724	2.82	83,4
U113	11630	-222	1517	4.23	436.0
U126	12364	-238	714	2.82	1090.0

(barometric pressure 4 initial pressure) EPA Method 18 GC/FID Dilution Factor = (barometric pressure + final pressure)

N

RTI Canister Analysis for WSPA Fugitive Emissions Project Field Duplicates Supplied by Radian - January/February 1993

RTI #14 -248 753 2.97 RTI #12 -218 2084 28.78* RTI #10 -190 963 3.032 RTI #03 -256 830 3.166 RTI #04 -262 765 3.092 RTI #02 -278 792 3.243 RTI #01 -272 816 3.252	Final Dilution Press Factor	Total Concentration Mel	Methane Concent	Concentration ⁶
RTI #12 -218 2084 28.78* RTI #10 -190 963 3.032 RTI #03 -256 830 3.166 RTI #04 -262 765 3.092 RTI #02 -278 792 3.243 RTI #01 -272 816 3.252	753 2.97		#	42.0
RTI #10 -190 963 3.032 RTI #03 -256 830 3.166 RTI #04 -262 765 3.092 RTI #02 -278 792 3.243 RTI #01 -272 816 3.252	28.78		0.0	43600
RTI #03 -256 830 3.166 RTI #04 -262 765 3.092 RTI #02 -278 792 3.243 RTI #01 -272 816 3.252	3.032		1820 56	5500
RTI #04 -262 765 3.092 RTI #02 -272 816 3.243 RTI #01 -272 816 3.252	,		95.2	965
RTI #02 -278 792 3.243 RTI #01 -272 816 3.252	3.092		0.0	3440
RII #01 -272 816 3.252	3.243		0.0	0009
	_		0.0	467
	1956 271.1 ^e 40		9.4 4090	409000

Notes:

1 mmHg gauge 2 Dilution factor = (barometric pressure + final pressure)

3 Method 18 GC/FID 4 Method 25D

(harometric pressure + initial pressure)

5 Concentration ppm C = total ppm C - ppm C methane 6 Multiple dilutions

TO

RTI Cylinder Gas Analysis for WSPA Fugitive Emissions Project Scott Gases . Analyzed January 1993 by EPA Method 18

Cylinder Number	Component	Scott Value	RTI Value ¹	Relative % Difference
BLM-002842	Isooctane	20.6	21.2	+2.9%
BLM-002842	Toluene	9'72	21.0° 24.7'	-14.6%³ +0.34 % •
BLM-002842	Cumene	8'81	18.9	+0.5%
BLM-002843	Propylene	236.0	244.0	+7.7%
BLM-002843	Hexane	121.0	115.0	4.9%
BLM-002843	Ethylbenzene	84.6	87.7	+3.7%

Notes:

Manufacturer's certified value, ppm C, rounded to 3 significant figures EPA Method 18 GC/FID, ppm C, rounded to 3 significant figures initial analysis using propane calibration standard **~ 23 23 4**

Reanalysis using benzane SRM as reference

E-28

89163522318 F.08/09

RESEARCH TRIANGLE INSTITUTE

Center for Environmental Measurements and Quality Assurance

January 12, 1993

TO

Mr. Ronald Ryan Emission Factor and Methodologies Section Emission Inventory Branch (MD-14) Office of Air Quality Planning and Standards U. S. Environmental Protection Agency Research Triangle Park, NC 2:711

Dear Mr. Ryan:

Enclosed you will find an update of the table of RTI's analyses for seven QA canisters collected during the illust two on-site audits. This table was first delivered on December 29, 1958, and has been amended as follows:

- (1) The results from corresponding samples from Air Toxics Limited (ATL) have been added to the table hused on the data telefaxed by Ron Ricks on December 29, 1992. A factor of three has been used to change the ATL units from "ppm as propane" to "ppm as curbon," so that the results from both laboratories are in a common set of units.
- (2) The "% RPD" column has been changed to "% Bias." Bias is the difference between the analytical result and the certified concentration, divided by the certified concentration. Figurate (6) provides the definition of percent bias.

For canisters filled directly from the QA cylinder, % bias represents analytical laboratory bias along; for canisters filled via a tented non-leaker, bias includes a component of error slue to sampling. The analysis results for the bagged component are generally lower than for corresponding samples prepared by filling the canisters directly. This is consistent with decrease of concentration of the hydrocarbon due to dilution from bag leaks and/or other sampling losses.

Please do not hesitate to call if you have any questions regarding this revised information.

Sincerely.

James B. Flanagan, Ph.D.

Research Environmental Scientist Quality Assurance and Technology

Assessment Department

JBF/lns Attachment

File: 5500-42/4503

Post Office Box 12194 Research Triangle Park, North Carolina 27709-2194

Telephone: 919 541-6914 Fax: 919 541-5929

E-29

Besults of Analysis of GA Samples

		\$	Bagged fo		Duplicate Sample	THE	THC Concentration *** (corrected) **	itton **	}		
Refisery	RTF C	Cylinder Cylinder	Direct of	03	sont to Radiac/AT	Cartified	LLX	Reden/AT	% Blas *	% Bles **	Remarks
ARCO	A027	-	æ	•;	ACDA	909	(304) 844	460	-1.4 (0)	11.1	And the second s
ARCO	Acte	•	æ	7	A028	3061	1960 (1968)	1350 (1356)	4.8	46.1 (34.8)	
ABCO	A080	-	Ω	,	A031,A092	993	617	162'081	44.2	-8.1,-43.6	Canisters A031 and A022 were filled at the sense time, but were sent to AT on different days.
SVEY	707	•,	E,		VOS4	19061	1970	1470	-6.8	28.5	
Pacific	P043	-	æ	2.3	P042	806	464 (621)	900	.6.8 (+3.0)	+18.6	
Pedfic	P048	а	æ	3.8	170	1900	1920 (2016)	4164)	-7.7 (+@.4)	+78.0 (+89.6)	
Pedfe	P047	1	Q		P046	909	3	690,720	46.7	+963,+42.3	Duplicate analysis of P046 by AT

,	149.2 ppen C	164.8 ppm C	172.2 ppm C	606.2 ppm C
QA gas cylinder #1 costains:	Cument	Lac-ectans	Towers	Total
<u>정</u> ()	:			

QA gas cylinder #2 contains:

Ethylbenzese 726.0 ppm C r-Henna 756.0 ppm C Propylene

Propyleno Total 2080.6 ppm C
Total 2080.6 ppm C

B = begged - filled through a beg sround a sea-bealing component

(a) Corresponding samples sent to Reddan's centract lab, Air Tenics, Ltd. (AT)

Corresponding samples sent to Reddan's centract lab, Air Tenics, Ltd. (AT)

Reported units are ppm C = ppmv(ecololmole) x swmber of centract is molecule

(b) Begged samples are corrected for dilution as follows:

7. Sias - Analytical Value Cartified Value

E-30

€

209-081-07-01 July 14, 1993 10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

Ron Ryan EPA-OAQPS, MD-14 Emissions Factor and Methods Section Research Triangle Park, NC 27711

Subject: Response to Independent Quality Assurance of Refinery Fugitives Testing by Western States Petroleum Association Draft Audit Report

Dear Ron:

Radian has reviewed the Draft Audit Report prepared by Research Triangle Institute (RTI) on behalf of the U.S. EPA in conjunction with the 1993 WSPA/API Refinery Fugitive Emissions Study. Overall, we believe that RTI's findings support Radian's contention that the data collection and analysis conducted by Radian in this investigation were of the highest quality. There were many positive findings in RTI's Draft Audit Report including: data demonstrating the accuracy of Radian's bagging technique, data supporting the stability of nitrogen flow rates, data showing that the laboratory used for this study's data analysis correctly identified all six of the unknown compounds using Method TO-14, Mini Buck® calibrator results (used for nitrogen flow rate measurements) that were "adequate and satisfactory," etc. This list is only a sample of the positive findings in RTI's Draft Audit Report. These positive findings are acknowledged and need no further mention. We would, however, like to respond to some of the issues and concerns raised in this Draft Audit Report. As with the Preliminary Audit Report, dated December 14, 1992, we believe that the impact of these other findings in the Draft Audit Report will have minimal impact on the assessment of data quality in this investigation.

Many of the issues raised in the Draft Audit Report are the same as those raised in the Preliminary Audit Report. These issues were addressed in Radian's response to the Preliminary Audit Report, dated January 19, 1993. The issues addressed in Radian's January 19, 1993 letter include:

- Potentially leaking OVA probes;
- OVA flow rates less than the apparent reading on the OVA built-in flow indicator;
- Dilution factor variability;
- Oxygen analyzer calibration methodology;

Mr. Ryan July 14, 1993 Page 2

- The linear regression equation used to determine the correlation coefficient;
- Ambient air in the gauge T-joint used to monitor pressure while the canister was being filled;
- Apparent poor condition of Radian's OVA used at the Pacific Refinery;
- Operator names not recorded daily in the logbook; and
- Recommendation to have operators view E.J. Richards' videotape, "VOC Fugitive Emissions Procedures and Equipment."

A more detailed response was determined to be useful for two of the issues raised in the Preliminary Audit Report. These two issues are:

- Potentially leaking OVA probes; and
- Dilution factor variability.

Each of these two issues is addressed at length in the 1993 Refinery Fugitive Emissions Study Draft Report. The conclusion for the issue of potentially leaking OVA probes is that no systematic bias is evident from use of data collected by these OVAs. The dilution factor variability is addressed by looking at data collected with and without the dilution probe to determine if there are statistical differences in the resulting emission correlation equations. The conclusion for the dilution probe issue is that there is no statistically significant difference between the emission correlation equations developed without the dilution probe data and the emission correlation equations developed with the dilution probe data.

There are a number of additional issues that are raised by RTI in their June 9, 1993 Draft Audit Report. The response to what Radian perceives to be the remaining potentially key issues is provided in this letter.

Issue 1 - OVA Flow Rate Continued

Audit Finding

(Page 18, 2nd paragraph). "By the second audit trip to Chevron and Ultramar, Radian operators had implemented the measuring and recording of OVA flow rates. The flow rates were recorded in the logbook only once at the beginning of the day at Chevron. At Ultramar, the flow rates were recorded twice, once at the beginning and once at the end of the day. Upon comparison between start and end flow rates, flow rates revealed a

Mr. Ryan July 14, 1993 Page 3

decreasing trend (see Appendix D). This was an indication of a battery losing its charge over a days use. Example flow rates of a new battery can be seen on 12/15/92. The flow rate increased by the end of the day from 785 mL/min to 790 mL/min. From 12/16/92 to 12/18/92, the initial and final sample flow rate resulted in a decreasing trend until the battery is completely discharged on 1/5/93. As a result, these measurements proved to be valuable indicators of a low battery and also provided an explanation for the instrument losing its calibration over the course of the day."

(Page 54, first paragraph). "..... The major factor affecting calibration was the OVA flow rate. As the battery providing power for the gas pump discharged, the OVA flow rate decreased, affecting calibration. Use of the check standard alerted field personnel to the battery status and prevented loss of calibration from becoming a factor in data usability."

Technical Response

The RTI audit at Chevron took place on 1/4-5/93. On both 1/4/93 and 1/5/93 Radian recorded the initial and final flow rates from the OVA in the field logbook at Chevron.

The change in battery flow rate from the start of the day to the end of the day was usually quite minor. The change identified by RTI for 12/15/92 at Ultramar is fairly indicative of the typical change in daily flow rate (from 785 mL/min to 790 mL/min, or +0.6%). The change in flow rate was not consistently decreasing during the day as an indication that the battery was losing its charge. Of the 43 recorded readings that included the start of day OVA flow rate and the end of day OVA flow rate, 18 showed increasing flow rate as the day progressed, 24 showed decreasing flow rate as the day progressed, and one had no change whatsoever.

The OVA batteries were always recharged over night while testing or between testing activities. The OVA batteries were not slowly losing charge over a several day period.

There is a loss of battery charge during a day's testing. This loss of charge can result in the inability of the OVA to accurately measure hydrocarbon concentrations. As indicated by RTI, the OVA was checked for accuracy after every bagging measurement to ensure that the OVA was still reading a known hydrocarbon standard within 20% of the actual value. However, based on the data collected for this study, this loss of battery charge does not appear to have significantly reduced the OVA flow rate over time.

Mr. Ryan July 14, 1993 Page 4

Issue 2 - Establishing Equilibrium by Using the Oxygen Analyzer

Audit Finding

(Page 20, last two sentences through Page 21 first sentence). "At Chevron, the oxygen concentration was monitored to very low concentrations, approximately 0.2 to 0.4 percent oxygen and a reading was measured every other minute for three minutes to get an average oxygen concentration. At other sites, oxygen was allowed to fall below 5%, then sampling commenced without waiting for equilibrium.

The leak was then screened using the OVA Model 108 with a dilution probe in order to get a reading for the total hydrocarbon concentration at equilibrium."

(Page 54, last sentence through Page 56 first paragraph). "Some of the operators took readings until the oxygen levels fell below 5%, then proceeded with sampling, while others waited until the oxygen concentration stabilized at a low value before recording the first reading......It is obvious from these figures that equilibrium had not been fully established for the tents whose oxygen concentrations continued to fall, and that leaks may have been a concern for the 6 episodes in which the oxygen never fell below 1%."

Technical Response

The primary function of the oxygen analyzer was to determine that the oxygen concentration was below 5% in the bag. It was desirable to be below 5% to reduce the impact of background hydrocarbons and to have some indication that the bag did not have substantial leakage.

Another test, by the OVA, was used to verify that the bag was at equilibrium. As indicated by RTI, the leak was screened by the OVA for total hydrocarbon concentration after completing the testing by the oxygen analyzer. Multiple measurements were taken by the OVA with the bag in place to ensure that the bag was at equilibrium. Hydrocarbon concentration measurements with the OVA had to be constant or at least not show a consistent trend up or down to determine that equilibrium had occurred. This process of using the OVA to ensure equilibrium usually took several minutes of testing, with OVA testing occurring at approximately one minute intervals. All of this testing occurred after using the oxygen analyzer. The canister sample is taken after equilibrium is established.

The northern California bagging team used the oxygen analyzer for an additional, redundant, check of the equilibrium in the bag. The southern California bagging team did not use the oxygen analyzer for this redundant check of equilibrium.

Mr. Ryan July 14, 1993 Page 5

Accuracy checks for both the northern California and the southern California bagging teams and bagging equipment established that acceptable accuracy was obtained. These accuracy checks were conducted by inserting a known concentration of a certified hydrocarbon gas standard into a typical bag arrangement. The concentration measured in the canister was then compared to the known concentration. These accuracy checks established accuracy within a relative percent difference of 32% for both total hydrocarbon and methane measurements. Additional accuracy checks were also conducted by RTI in the field by inserting a known (to RTI only) concentration of a certified hydrocarbon gas into a typical bag arrangement. These accuracy checks also showed acceptable accuracy, generally with even better results than the accuracy checks conducted with the hydrocarbon standard that Radian used in their accuracy checks. Both RTI and Air Toxics Limited laboratories verified the accuracy of the bagging procedure. These accuracy checks indicate that procedures used at every site tested were able to achieve an acceptable equilibrium.

Issue 3 - OVA Challenge

Audit Finding (A)

(Page 25, last paragraph through Page 28 end of paragraph). "Audit results from ARCO Refinery were well within the specified quality assurance objective of plus or minus 20% for the accuracy of the OVA with exception of the OVA response to the 7850 ppm audit gas. The OVA response resulted in a negative bias of 60.7% with a standard deviation from the mean OVA response of 91.0. During this audit, it was observed by auditors that the OVA connectors and probes were leaking which may have contributed to the significant variation between OVA readings. Problems establishing the 10:1 dilution ratio while calibrating the dilution probe also contributed to the large negative bias obtained while screening the 7850 ppm audit gas with the dilution probe attached to the OVA. This problem in conjunction with air-inleakage from the OVA connectors and probe may have diluted the gas from the original audit concentration, 7850 ppm, to the mean OVA response of 3082 ppm."

Technical Response to (A)

The audit gas used at the ARCO site at 9034 ppm (CH₄ in air) and at 1094 ppm (CH₄ in air) both with and without the dilution probe measured within a 9.1% bias of the audit gases. An anomaly occurred at this first audit visit at any refinery when RTI made measurements with Radian's OVA. At this time, it cannot be explained why the audit gas at 7850 ppm (C₂H₆/CH₄ in nitrogen) was measured and recorded by RTI as an OVA response of 3082 ppm. This information was not passed on to Radian at that time, or at any time until the Draft Audit Report was published. In fact, Radian's field technician present at this audit recorded in the field notebook that day that, "all instruments performed well for the audit." There is no way at this time for Radian to confirm, correct, or refute RTI's reading of the OVA. If

Mr. Ryan July 14, 1993 Page 6

this anomalous reading was performed at the same time as the audit with the other audit gases, then there appear to be inconsistencies. If, as suggested, this result is related to a potential OVA leak then it would seem reasonable that the other audit gases (9034 ppm and 1094 ppm), that responded very well to the audit, would have had inaccurate readings as well. The accuracy of the dilution probe readings for both of these other audit gases argues against a problem with establishing an acceptably accurate dilution ratio or with any problem with a potential probe leak.

Radian checked the OVA twice immediately before the audit with multi-point calibrations. The second multi-point was performed after the OVA probe was reseated in its housing. These multi-point calibrations indicate that the OVA was working well within accepted standards when the audit was performed. The results of these multi-point calibrations were as follows:

Time	0 ppm	10 ppm CH₄	100 ppm CH ₄	1,000 ppm CH ₄	9520 ppm CH ₄	R
0720	3.75	15	100	900	9,500	0.99994
0745	<1	11	100	950	10,000	0.99995

It is conceivable that some of the differences observed during testing of the 7850 ppm standard versus the other standards were caused by the 7850 ppm standard being in nitrogen versus being in air. The response of the OVA to hydrocarbons in air versus being in nitrogen may differ to some extent. It needs to be pointed out that when Radian uses the OVA to screen components for bagging purposes that the OVA is pulling in ambient air with the hydrocarbon readings. The only time that the OVA would be pulling in pure nitrogen with the hydrocarbons is when the bag is in place and equilibrium is being established. None of these hydrocarbon readings in the nearly pure nitrogen atmosphere are used for any quantification purposes for the 1993 Refinery Fugitive Emissions Study. Even the potential for the different environments, nitrogen versus air, to affect results is suspect. The response to the 7850 ppm standard in nitrogen was much closer to the other standards in air at the remaining three refineries. At Ultramar, for example, the 7850 ppm standard in nitrogen read 7496 ppm (-4.5% bias) compared with the 9034 ppm standard in air measured at 8993 ppm with the dilution probe (-0.5% bias). No significant difference by using a ethane/methane mixture in nitrogen standard versus a methane in air standard is evident at Ultramar.

The range of the average OVA response for the ethane/methane mixture in nitrogen for the eight other measurements at the three other refinery test sites audited was from -4.5% bias to +38.4% bias. The -60.7% bias at ARCO appears to be anomalous. Other concurrent

Mr. Ryan July 14, 1993 Page 7

testing suggests that there was no systematic error or bias in the OVA results and that this finding would have little, or no significance to overall data quality.

Audit Finding (B)

(Page 28 last paragraph to Page 29 end of sentence). "OVA, serial number 2254, was used at Pacific and Chevron Refineries. At Pacific, the OVA performed unsatisfactorily with bias results as large as +51.5 with the dilution probe and +61.9 without the dilution probe for the 1094 ppm audit concentration. The OVA screened as high as 1657 ppm with and 1771 ppm without the dilution probe."

Technical Response to (B)

It is unknown why RTI recorded measurements using Radian's the OVA as high as 1657 ppm with and 1771 ppm without the dilution probe. There appear to be inconsistencies in these results compared with measurements taken by Radian for the same OVA at approximately the same time that these measurements were made. According to Radian's records the OVA challenge at the Pacific Refinery took place on 12/8/92. On this date Radian checked the accuracy of the OVA, number 2254, at four separate times spread throughout the day without the dilution probe and twice with the dilution probe. The accuracy was checked against a known concentration of a 1000 ppm $\pm 2\%$ certified methane in air standard. The results of these checks are listed below:

without dilution probe:

with dilution probe:

- 1000 ppm at time of 0830;
- 800 ppm at time of 0950;
- 1000 ppm at time of 1000; and
- 1000 ppm-at time of 1130.
- 100 ppm (10:1 dilution ratio) at time 0830; and
- 100 ppm (10:1 dilution ratio) at time 1130.

On the day following the OVA challenge the 1000 ppm standard read on OVA 2254 as follows:

Mr. Ryan July 14, 1993 Page 8

without dilution probe:

- 1000 ppm at time of 0817;
- 1100 ppm at time of 0916; ·
- 1200 ppm at time of 0943;
- 1200 ppm at time of 1031;
- 1000 ppm at time of 1240;
- 1100 ppm at time of 1342;
- 1100 ppm at time of 1411; and
- 1100 ppm at time of 1447.

with dilution probe:

- 100 ppm (10:1 dilution ratio) at time 0817;
- 100 ppm (10:1 dilution ration) at time 0916;
- 100 ppm (10:1 dilution ratio) at time 0943;
- 100 ppm (10:1 dilution ration) at time 1031;
- 100 ppm (10:1 dilution ratio) at time 1342; and
- 110 ppm (9.1:1 dilution ratio) at time 1447.

These readings bracket the time that the OVA 2254 was analyzed by RTI using the 1094 ppm audit gas standard. As these data show, the OVA was responding within 20% for every test. Most of these tests were conducted as quality control checks after collecting a bag sample. The tests verify that during sampling the OVA was responding with acceptable accuracy.

One possibility for the differences between Radian's OVA reading and the audit gas value is that one of the standards used was incorrect. However, independent tests by the Bay Area Air Quality Management District (BAAQMD) substantiated the accuracy of the methane standard used by Radian during testing at this time. Furthermore, the 1094 ppm standard used by RTI was read by Radian OVAs at within $\pm 27.6\%$ bias at the other three refineries. No evidence of a faulty standard is suggested by these other tests.

Another possibility for why the audit gas standard read at +51.5% and +61.9% bias at one refinery is that the battery of the OVA had failed between the acceptable 11:30 AM reading on 12/8/92 and the afternoon challenge of the OVA by RTI. However, if the OVA battery had failed it is not known why the 7850 ppm standard was still able to read at +17.5% bias.

Issue 4 - Dilution Factor Variability Continued

Audit Finding

(Page 51, first two paragraphs). "....On this day it was discovered that the probe was not fully seated and secured in the probe holding device of the OVA. After reinserting and tightening down the probe, the dilution factors reverted to 9 for both low and high concentrations. That the dilution factor could change from 21 to 9, a 233% difference, by correcting leakage illustrates the magnitude of the error that may have occurred during early screening measurements for this project. Early screening data should therefore be carefully examined for usability.

Mr. Ryan July 14, 1993 Page 9

Figures 4-1 and 4-2 illustrate this point. Figure 4-1 shows dilution factors at ARCO and Pacific taken prior to the recommendation regarding leak checking. Figure 4-2 shows the same information for the Chevron and Ultramar sites after leak checking had been in practice. Clearly, there is less scatter with leak checking than without. In both figures, dilution factors taken during a single calibration are connected."

Technical Response

As explained in the introduction to this letter, the 1993 Refinery Fugitive Emissions Study Draft Report explains how using data from the potentially leaking OVA probes does not result in a systematic statistical bias in the development of the emission correlation equations. The 1993 Refinery Fugitive Emissions Study Draft Report also demonstrates that use of dilution probe data does not result in statistically different emission correlation equations than if these data were deleted from the analysis. The technical response for this audit finding in this letter is focused on the specific data and conclusions presented by RTI to highlight this area of concern.

The day referred to by RTI for the audit in this section of their report is December 4, 1992. It should be pointed out that no testing, other than the audit, took place on this day. Any concerns for 12/4/92 do not affect any particular data collected on that day because no samples were collected.

When sampling, the dilution ratio is determined at the start of the day and generally whenever a high leaking sample was tested (one requiring a dilution probe at screening values > 10,000 ppm). The dilution ratio was revised as needed during the day to account for variability in dilution probe readings. In addition, a known hydrocarbon standard was checked after every bag sample taken to verify that the OVA, without the dilution probe, had not changed in accuracy within plus or minus 20% of a certified standard. It is highly unlikely that a 233% difference with the dilution probe could have occurred during testing and have the certified standard quality control check within plus or minus 20%. These quality control procedures support the accuracy of all readings before and after the original audits in December, 1992.

Figures 4-1 and 4-2 illustrate differences in dilution probe readings prior to and after January, 1993. They do not illustrate solely, or possibly at all, the differences in leak checking versus not leak checking the OVA. In part as a result of the audit, and in part as a result of on-going efforts to reduce variability, both the dilution probe in northern California and in southern California were modified prior to testing in January, 1993. The dilution probe in northern California was replaced because of the variability at the different hydrocarbon concentrations. The dilution probe in southern California was not as variable and was simply repaired. It is unknown if the potential leaks contributed much, if anything, to the

Mr. Ryan July 14, 1993 Page 10

change in dilution ratios illustrated in Figures 4-1 and 4-2. It is more likely that the change in variability is more a function of the repairs/replacement of the dilution probes themselves. One indication that the potential for leaks was not the reason for the change is by looking at the variability of the dilution ratios on 12/9/92 and 12/10/92 at the Pacific Refinery. On 12/9/92 the dilution variability was 10:1 at 1000 ppm and 14.6:1 at 35,000 ppm. On 12/10/92 the dilution variability was 10:1 at 1000 ppm and 21.9 at 35,000 ppm. The variability on 12/10/92 was the highest variability observed in northern California. However, on both of these days the OVAs were checked for leakage and any leaks repaired prior to calibrations or testing. On these dates the dilution probe variability was strictly a function of the dilution probes themselves and not a function of any potential probe leaks.

The fact that the dilution probes demonstrated high variability, primarily in the early parts of the study, whether it is probe leak related or not, is a matter of concern. This fact does add an element of variability to study results. This fact motivated the repair/replacement of the dilution probes. This is a concern of use of all dilution probe data collected by refineries, not simply the data collected for this study. However, as previously explained, several efforts were made even prior to this repair/replacement to account for the variability. The dilution ratio at two different concentrations was recorded, at 1000 ppm and at 25,000 or 35,000 ppm. These two dilution ratio measurements assisted in more accurate determination of hydrocarbon concentrations for components from widely varying leak rates. A third standard was included for dilution ratio determination starting in January, 1993 to even more accurately quantify emissions in higher leak ranges. The dilution ratio was, in general, also measured prior to recording screening values for high leaking components. These component by component dilution ratios helped account for variations in dilution ratios that occurred during the day's testing. The quality control checks of plus or minus 20% confirm that the OVA itself did not change significantly during testing.

Radian has carefully examined for usability the early screening data. This examination results in the recommendation that these data be used in data analysis and in the development of the emission correlation equations, zero component emission factors, and pegged component emission factors.

Issue 5 - Difference Between Laboratory Test Results for Test with Highest Variability

Audit Finding

(Page 35, Sample Numbers P100 and P101, with write-up on Page 46, second paragraph) "An extremely large difference (a factor greater than 10) was noted between samples P100 and P101, which were supposed to be field duplicates. However, in view of the extremely high value reported by ATL (140,000 ppm), other phenomena such as condensation or unequal sampling might be involved."

Mr. Ryan July 14, 1993 Page 11

Technical Response

From the March 17, 1993 letter from RTI to Mr. Darryl Von Lehmden, RTI reported the total concentration in ppm C (defined as Concentration ppm C = total ppm C - ppm C methane) for sample P101 as 409,000. Radian converts this reading to approximately 140,000 ppmv as propane. The duplicate sample (P100) sent to Air Toxics Limited (ATL) was reported by ATL as 140,000 ppmv as propane. The RTI value, reported on Table 2-5 of the Draft Audit Report, records the concentration of sample P101 as 13,600 ppmv. It appears that a typographical error has occurred in one of the RTI reported values.

Issue 6 - Precision of Nitrogen Flow Rate Sampling

Audit Finding

(Page 57, first paragraph, and Page 58 nitrogen flow rate for sample P037)Of the 17 sampling episodes observed by the auditors in which nitrogen flowed through the tent, one flow was mismeasured or misrecorded, and 16 flows were replicated within 5% of the beginning flow rate see (Table 4-4). From this observation, it appears that stability of nitrogen flow rate during sampling is not a large factor in variability of results."

Technical Response

There are two basic criteria for determining the nitrogen flow rate into the bag (or tent) during sampling. The first criteria is the size of the bag. Larger bags require larger flow rates. The second criteria is the measured concentration of hydrocarbons with the bag in place. Occasionally, measured hydrocarbon concentrations with the bag in place are beyond the range of the OVA with the dilution probe (>100,000 ppm). In order to verify that equilibrium has occurred it is desirable to have hydrocarbon concentrations in the measurable range. This allows multiple readings to prove that the bag is at equilibrium and not just multiple readings at >100,000 ppm. Sometimes the initial nitrogen flow rate is chosen without knowing that the bagged hydrocarbon concentration will be >100,000 ppm. In these cases it is common that the nitrogen flow rate will be increased until hydrocarbon readings are in the measurable range. Sample P037 was in this category of extremely high bagged hydrocarbon concentrations. The nitrogen flow rate was deliberately increased to bring the hydrocarbon readings into the measurable range. The flow was increased from 1463 mL/min to approximately 4095 mL/min.

During the field testing the initial nitrogen reading of 1463 mL/min was appropriately crossed out in ink and the marked-out value was initialled by the field technician. However, the revised reading was not recorded prior to the test. The final reading of 4095 mL/min was recorded after the test. As RTI has demonstrated, there is only a minor difference in

Mr. Ryan July 14, 1993 Page 12

before and after readings of nitrogen during testing. Based on this fact, the final reading of 4095 mL/min was assumed to be equal to the initial, unrecorded reading. The initial reading was neither mismeasured nor misrecorded. The reading was missed, but this omission was not significant to the analysis.

Many of the areas of concern brought up by the audit address variations in OVA response to multi-concentration gas standards, both with and without the dilution probe. It should be noted that EPA Method 21 does not require multi-point linearity and dilution ratio checks. Radian added the multi-point linearity and dilution ratio checks to better define data variability for this important study. The 1993 Refinery Fugitive Emissions Study has more detailed QA/QC data associated with it than any previous fugitive emissions study. It is not unexpected to find some anomalous results when you are dealing with a set of thousands of measurements made by different inspectors, different instruments, and at different times. While the audit report appropriately highlights all of the deviations found, the hundreds of QA/QC checks that were well within data quality objectives also need to be remembered.

In this letter Radian has attempted to address key issues and concerns that were not previously addressed by Radian. The 1993 Refinery Fugitive Emissions Study Draft Report addresses some of the previously raised issues and concerns in much more depth. It is Radian's opinion that the issues and concerns raised by RTI during the audits have enhanced the understanding of the data collection and analysis activities conducted by Radian, but none of these issues or concerns support a lack of confidence in any of the data used by Radian in the development of the emission correlation equations, zero component emission factors and pegged component emission factors prepared for the 1993 Refinery Fugitive Emissions Study.

Sincerely,

Ronald D. Ricks

Assistant Project Director

Konald & Kick

Attachments

c: K. Ritter (API)

M. Luthin (WSPA)

M. Lev-On (ARCO)

G.E. Harris

S.H. Peoples

API PUBL*4613 94 🚥 0732290 0533632 T35 📼

APPENDIX F

RESPONSE TO REGULATORY AGENCY COMMENTS ON THE FINAL DRAFT OF THE 1993 REFINERY STUDY

January 17, 1994 209-081-07-01 10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

Mr. Ron Wilkniss Western States Petroleum Association 505 North Brand Avenue, Suite 1400 Glendale, CA 91203

Subject: WSPA/API Refinery Fugitive Emissions Study, Phase III - Contract No. ET 302-08 - Radian's Response to SCAQMD Comments on the 1993 Final Draft of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks

Dear Ron:

Radian is in the process of preparing the Final Report of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks (1993 Refinery Study or Final Report). We have reviewed all of the comments received from WSPA and API committee members as well as those received by regulatory agencies. The Final Report will include several revisions based on the comments received.

This letter is in response to the specific issues raised by the South Coast Air Quality Management District (SCAQMD). The section numbers in the Final Report that are referred to in this letter are expected to be the same as those that were in the Final Draft Report.

Issue 1 - Number of Bagging Samples

SCAOMD comment:

"Out of a proposed 525 samples, only 248 valid samples were used for new correlation equations and emission factors development. Additionally, many of the valid samples were those used to develop new default-zero and pegged component emission factors. Only 10 samples were used to develop the correlation for pumps in heavy liquid service and only 27 samples were used to develop the correlation for pumps in light liquid service. With such small sample sizes, we are not confident that the samples are truly representative and reliable for the scope and objectives of this study."

Final Report reference: See Volume II. Section 3.0.

Radian response:

Radian originally proposed to the Western States Petroleum Association (WSPA) and the American Petroleum Institute (API) to examine 525 samples, including field duplicates, zero components (i.e., those components that screen at background ppm levels), pegged compo-

Mr. Wilkniss January 17, 1994 Page 2

nents (i.e., those that screen above the instrument's measurement capability; generally greater than 100,000 ppm), and components that screened at between 1 and 100,000 ppm. Fortunately, Radian was able to complete the study with even more valid samples than originally proposed. Radian completed the study with 540 valid samples. Of the 540 valid samples, 248 were components that screened at between 1 and 100,000 ppm, 102 were zero components, 71 were pegged components, and the remainder were taken to ensure data quality (audit sample duplicates, nitrogen flow test duplicates, and accuracy checks). In addition, 51 samples were excluded from analysis because of high variability in screening measurements taken both before and after bagging. Later analysis indicated that including these additional 51 samples would not have had a significant effect on the development of the emission correlation equations (see Volume II, Section 3 of the Final Report). Table 1 documents all valid samples and the high screening variability samples collected and their use in the data analysis.

The United States Environmental Protection Agency (U.S. EPA) recognizes that facilities or industries may wish to redevelop emission correlation equations based on more applicable data. To assist an industry in developing new emission correlation equations they have recently (June, 1993) updated and published a document entitled *Protocol for Equipment Leak Emission Estimates* (Protocols Document). The Protocols Document gives general guidance for determining the required number of samples recommended for determining new or revised emission correlation equations. Including pegged components, the Protocols Document recommends that at least 30 samples be taken. Excluding pegged components, the Protocols Document recommends that at least 24 samples be taken.

Some of the samples collected had been excluded from the analysis because their "before and after" screening values exceeded the pre-established control limits. Those are referred to as having "high" screening variability. As can be seen from Table 1, the U.S. EPA recommendation to have at least 30 samples (including pegged components) was exceeded in four of the six categories. The U.S. EPA recommendation to have at least 24 samples (excluding pegged components) was exceeded in three of the six categories. The question of whether sufficient samples were taken to meet U.S. EPA recommendations is focused only on two or three of the component categories; heavy liquid pumps, connectors-flanges, and possibly open-ended lines (OELs). The remaining categories clearly exceed the recommendations, and valves exceed the recommendations by a factor of almost six.

We would like to address each of the questionable categories separately, beginning with OELs. Thirty-three (33) OEL samples (including pegged components) were included in pegged components emission factor or emission correlation equation development. Three more samples were collected than the U.S. EPA recommendation. Furthermore, five OEL samples were excluded from analysis simply because they had high screening variability. These samples were excluded in an effort to control one aspect of variability in the study.

Subsequent analysis indicated that these five samples could easily have been added to the analysis without any significant change to the emission correlation equation (see Figure 3-30, Volume II, Section 3 of the Final Report). Adding these five samples would have virtually no effect on the determination of the emission correlation equation and would also clearly exceed the U.S. EPA recommended number of samples. Given these considerations, it seems that the OEL category reasonably satisfies the U.S. EPA recommendations.

The remaining two categories, connectors-flanges and heavy liquid pumps, do not meet the mentioned U.S. EPA recommendations. The connectors-flanges category is close to meeting the recommendations, especially if including the high screening variability samples (total of 20). The heavy liquid pump category is not close (10-12 samples) to this U.S. EPA recommendations. The reason that additional samples were not taken is easily explained. Radian was attempting to obtain samples in all screening value ranges. A deliberate attempt was made to not skew the analysis by having a disproportionate number of samples in either low or high screening value ranges. Efforts were made by the five host refineries and Radian to find these components. Testing at these refineries was performed over approximately 20 weeks. For connectors-flanges and heavy liquid pumps, more components in the higher screening value ranges could not be located.

Prior to commencing the data analysis for the 1993 Refinery Study it was not known that the connectors category should be split into two categories, flanges and non-flanges (other). In fact, the 1980 Refinery Study did not split the connectors into two categories. If the 1993 Refinery Study connector categories were merged, 48 samples would be available to develop an emission correlation equation which far exceeds the U.S. EPA recommendation. However, statistical analysis revealed that connectors-flanges and connectors-other were two distinct categories. Splitting the connectors into two categories improves the correlation coefficient from 0.82, for the combined grouping, to 0.88 for connectors-flanges and 0.85 for connectors-other. Even though this meant that one of the U.S. EPA's recommendations for sample size would not be precisely met for one of the connector categories, it was felt that the superior applicability of the results by dividing into two categories outweighed the possible limitation of reduced sample sizes.

Similarly, if the heavy liquid pump and light liquid pump categories were merged, 37 samples would be used to develop an emission correlation equation. However, the superior applicability of the results by maintaining two categories outweighed the possible limitation of reduced sample size.

The previous version of the Protocols Document, the U.S. EPA's Protocol for Generating Unit-Specific Emission Estimates for Equipment Leaks of VOC and VHAP (1988), states that if it can be shown that the estimates are "within 50% of the mean value with 95% confidence", a smaller sample size is acceptable. The 95% confidence interval for the expected

mean <u>log</u> emission rate at the mean log screening value meets the "plus or minus 50% of the expected value" criterion for all component categories, including connectors-flanges and even heavy liquid pumps. The 95% confidence interval criteria is not met for these two component categories in <u>linear</u> space. The previous version of the Protocols Document is not clear on whether the criterion is for log or linear space.

The 1993 U.S. EPA Protocols Document states, "The above groupings and recommended number of sources are given as guidelines. They are based on experience in measuring leak rates and developing leak rate/screening value correlations. Other source selection strategies can be used if an appropriate rationale is given".

It is clear that the U.S. EPA recognizes that alternate strategies and even potentially smaller sample sizes can be considered for development of emission correlation equations. The issue really should be which emission correlation equations best represent the types of components found in today's refineries.

In comparing the 1980 Refinery Study to the 1993 Refinery Study, it is immediately evident that many of the samples taken in the 1980 Refinery Study were pegged components. When the pegged components are removed from the total number of samples taken for the 1980 Refinery Study, the results are as shown in Table 2. Note that in the 1980 Refinery Study no heavy liquid valves or open-ended lines were sampled (bagged) and that valves were split into the gas valves and light liquid valves categories. The 1993 Refinery Study actually sampled more components than the 1980 Refinery Study in the following categories: gas valves, heavy liquid valves, open-ended lines, and flanges. The number of light liquid valves sampled in both studies are nearly identical. In fact, of the component categories reexamined in the 1993 Refinery Study, only the pump categories had significantly fewer samples collected than in the 1980 Refinery Study. By number of samples alone, the 1993 Refinery Study is superior to the 1980 Refinery Study for the two categories that represent the great majority of components found at any refinery: valves and flanges.

The comparison between the 1980 Refinery Study and the 1993 Refinery Study is even more convincing for the development of zero component emission factors. The zero component emission factors ("default zeros") developed from the 1980 Refinery Study data were based on eleven (11) samples from one component category (gas/vapor valves). In the 1993 Refinery Study, zero component emission factors were developed from each component category using a total of 102 samples. Clearly, the 1993 Refinery Study is more complete than the 1980 Refinery Study for zero components which represent the greatest number of components found at a refinery.

In conclusion, there is compelling evidence that the 1993 Refinery Study provides complete and representative information for the majority of the component categories in refineries.

The development of the emission correlation equations has been consistent with U.S. EPA recommendations for sample size in four of six component categories. The remaining two categories, connectors-flanges and heavy liquid pumps, meet the statistical test on the mean log emission rate basis and could have met the sample size recommendation by having only one connectors category and one pumps category.

Issue 2 - Combining the Valve Categories into a Single Category

SCAOMD comment:

"The valve service categories (light liquid, heavy liquid, gas/vapor) should not be combined. The initial proposal for this study clearly indicated that distinct correlations would be developed for each valve service type.

In the South Coast Air Quality Management District, we have several heavy liquid refineries and a few re-refiners producing mainly diesel fuels, fuel oils, and asphalt products. Some of these facilities have several thousand valves subject to District inspection and maintenance requirements. Therefore, even a small difference in the mass rate between service types can result in a large difference in annual emissions. Small differences in correlations on a pound per hour basis for a single component are greatly magnified when applied to several thousand components over an entire year.

Because heavy liquid components tend to have a slightly smaller mass emission rate than those in light liquid or gas/vapor services, the aggregation of all service types in a single valve correlation will cause heavy refiners to over-estimate their emissions. If this correlation was further used to complete a toxic health risk assessment, an additional bias against heavy refiners might occur.

Again, a valve sample size of only 141 valid samples for valves in all services is too small to be representative of the vast valve population in any refinery. Valves are one of the most critical sources of fugitive emissions in a refinery and should be thoroughly analyzed in the study."

Final Report reference: See Volume I, Section 2.

Radian response:

Radian approached the 1993 Refinery Study data analysis without allowing previous study results to govern the results of the new study. It had been assumed, based on other studies and hypothesis, that the valve category should be split into multiple sub-categories, including categories for service type (gas/vapor, light liquid and heavy liquid) and size. Testing was

Mr. Wilkniss January 17, 1994 Page 6

based on this preliminary assumption. Samples were taken in each service type and in multiple size categories. After the data were collected, an in-depth multi-variate analysis was performed to determine if the splitting into different categories was statistically appropriate. The results of the analysis, documented thoroughly in the Final Report, indicated that there was insufficient justification to split valves into multiple categories based on the data collected for the 1993 Refinery Study. Without additional justification Radian continues to recommend that the valve category remain as a single category.

The similarity of emission correlation equations for valves in different services does not mean that there are comparable numbers or percentages of high leaking heavy liquid and light liquid valves at a refinery. In fact, the screening distribution (i.e. the percentage of components leaking within certain screening value ranges: 1-1000 ppm, 1001-10,000 ppm, > 10,000 ppm, etc.) will almost certainly be very different for heavy liquid and light liquid valves. Far lower percentages of heavy liquid components are expected to leak at > 1,000 ppm compared with light liquid components. Although a refinery with a high percentage of heavy liquid valves would use an emission correlation equation that is for all valve types, the estimated emissions from these heavy liquid valves would likely be far lower than a refinery with a higher percentage of light liquid valves because of the small number of heavy liquid valves that leak at high rates.

The question of sufficient sample size is thoroughly reviewed earlier in this letter in the response to the first issue. A total of 141 samples (non-pegged components) is far more than recommended in the U.S. EPA's 1993 Protocols Document and is more than what was used to develop the emission factors and emission correlation equations in the 1980 Refinery Study that has been the basis of almost all refinery emission factors and emission correlation equations since 1980 (including in the SCAQMD).

Issue 3 - Compressors, Pressure Relief Devices and Process Drains

SCAOMD comment:

"The study does not include compressors, pressure relief devices (PRDs) and process drains. These components are commonly recognized as having high mass emission rates as compared to other fugitive components and are therefore key contributors to the fugitive emission inventory for any refinery.

As facilities attempt to develop their fugitive emission inventories, the lack of new correlations for compressors, PRDs and drains to accompany those developed for valves, pumps and connectors is likely to cause confusion and result in errors and inconsistencies in emission calculations."

Final Report reference: See Volume I, Section 1.

Radian response:

Originally Radian proposed to test compressors and pressure relief valves as part of the 1993 Refinery Study. Unfortunately for the study's sake, there were not enough leaking compressors and pressure relief valves found in the five refineries tested to develop statistically significant emission correlation equations or pegged component emission factors. Three pressure relief valves were tested that were zero components. The SCAQMD has suggested that even 141 samples of a component type that screen at between 1 and 100,000 ppm is a sample size that may be too small. Fewer than ten leaking compressors could be found at all five refineries combined. The majority of the compressors at the five refineries either did not leak, or they had control devices applied to them to prohibit emissions (i.e., venting to flares, etc.). Fewer than ten leaking pressure relief valves could be found that were accessible or safe for the bagging crews to sample.

WSPA/API directed Radian not to test process drains. With changes being made to refinery wastewater systems, it was decided to hold-off on process drain testing at this time. There are also problems with applying the bagging test to drains that would have required development of a new method.

Issue 4 - Comparison of 1980 Refinery Study Results to 1993 Refinery Study Results

SCAOMD comment:

"The primary objective of the 1993 study was to develop new correlations for comparison with those developed as a result of the 1980 Refinery Assessment Study. According to Table ES-2, the 1980 correlations were based on TLV readings at "0 cm", with pegged components included in the correlations. These correlations were later converted to OVA readings at 1 cm. However, the 1993 correlations are based on OVA readings at "0 cm" without pegged components included in the correlations. Because so many different factors are involved, it is very confusing and difficult to verify the data and to draw meaningful conclusions on the study as a whole.

It is suggested that the final report include a comparison of 1980 correlations based on OVA readings at 1 cm without pegged components included in the correlations with the 1993 1 cm correlations.

Final Report reference: See Volume I, Section 2.

Mr. Wilkniss January 17, 1994 Page 8

Radian response:

In the 1993 Refinery Study, all of the recommended emission correlation equations are based on different basic data collection and data analysis methodologies than those in the 1980 Refinery Study. We recognize that because of these differences direct comparisons between the studies are difficult to make.

In order to address this issue Radian examined, in depth, the light liquid valve component category from 1980 and 1993. The data from both studies were put on a comparable basis [no pegged components, OVA instrument, all measurements at the surface (previously called "0 cm")]. For reference, see Figures 2-27 to 2-29 and the related discussion in the Final Report. As mentioned previously, this analysis shows that the differences between the 1980 and 1993 studies are far less than one would believe without having the data on a comparable basis. The other component categories are comparable to the light liquid valves category. All of the original 1980 Refinery Study valve, pump, and flange categories incorporated pegged components in the development of the emission correlation equations. All of the 1980 Refinery Study samples were taken with the TLV Sniffer® at the surface.

An additional analysis of the other components was not performed because of funding limitations. However, the analysis of the light liquid valve category provides guidance on how to evaluate the differences between the 1980 Refinery Study and the 1993 Refinery Study for other component categories.

Issue 5 - Variability of Screening Distance

SCAOMD comment:

"The variability in screening distance must be addressed. It is unrealistic to assume that, with a hand-held instrument like the OVA, all screenings were taken at the same distance from the source of the leak. During the District's two days of test observation, we noted variations in screening distance from component to component. Given the wide variation in the "0 cm" and 1 cm correlations, it is reasonable to assume that extremely small variations in screening distance are likely to cause large variations in the resulting correlations. Future attempts to conduct this type of study should include a fixed screening distance as a part of the test protocol.

It is suggested that an alternative to the misleading "0 cm" screening distance reference be developed, or that a definition of "0 cm" be included in the Final Report."

Final Report reference: See Volume II, Section 3.

Radian response:

In the Final Report "0 cm" will be referred to as "at the surface". The terminology of "0 cm" has been in existence at least since the 1980 Refinery Study. However, we acknowledge that this terminology could be confusing. Therefore, we will follow the SCAQMD suggestion and change the terminology. Furthermore, additional discussion of screening distance will be included in earlier sections of the Final Report.

The variability in screening distance has been addressed and continues to be evaluated. In Volume II, Section 3, of the Final Report extensive evaluations are presented that document screening variability issues. Included in this evaluation are:

- Inspector and instrument variability;
- Process variability;
- Refinery inspection/maintenance (I/M) team versus Radian screening variability;
- Bay Area Air Quality Management District (BAAQMD) versus Radian screening variability; and
- SCAQMD versus Radian screening variability.

Screening distance, or the distance away from the surface, is a factor in every one of these variability studies. Additional data collection is anticipated in 1994 to further evaluate the differences between screening at the surface and at 1 cm away.

In following U.S. EPA Method 21, Radian screened as close as possible to the surface. The SCAQMD and BAAQMD inspectors that audited Radian's testing activities also screened as close as possible to the surface. When screening as close as possible to the surface, some variation in the exact screening distance will occur based on obstructions, grease, liquids, etc. This variation is one of the causes in the variability noted in the screening variability studies mentioned previously.

Although it is acknowledged that screening distance variation is inevitable in the screening-atthe-surface methodology, this variation does not appear to have had a significant effect in the total variability of screening measurements taken by Radian and the SCAQMD inspector. The average relative percent difference between the SCAQMD and Radian measurements was only 16.1%. This average relative percent difference included screening distance variability, inspector and instrument variability and process variability. An average relative

percent difference of 16.1% is minor compared with the inherent variabilities of field testing for a fugitive emission testing program. In other words, either the SCAQMD and Radian consistently measured the same component at the same screening distance, or the differences in screening distance between Radian staff and SCAQMD inspector measurements were not a significant factor in screening variability.

The BAAQMD and Radian likewise had minimal differences in screening values when screening the same components (approximate average relative percent difference of 23%). Again, either the BAAQMD and Radian consistently measured the same component at the same screening distance, or the differences in screening distance between Radian staff and BAAQMD inspector measurements were not a significant factor in screening variability.

Given the reasonably consistent screening values for Radian, SCAQMD, BAAQMD, and refinery I/M teams, it is unlikely that small variations in screening distance, which surely existed as different inspectors screened the same components, are likely to cause large variations in the resulting emission correlation equations.

Issue 6 - Probe Leak Figures

SCAOMD comment:

"The Final Report should include graphs which display the pre-probe leak versus post-probe leak correlations for the valid samples. While the confidence interval graphs are informative, they do not provide a clear representation of the difference in the slopes of the pre and post-probe leak correlations."

Final Report reference: See Volume II, Section 3.

Radian response:

Radian feels that adding these regression lines to the figures makes these figures even more difficult to understand. Therefore, we prefer to not include these regression lines in the main body of the Final Report (Volume II). The regression lines would fall mid-way between the confidence intervals in every case. However, these figures are attached to this letter for your review. A copy of this letter will be included in one of the appendices of the Final Report.

Issue 7 - Connector Category Anomalies

SCAOMD comment:

"It appears that additional data is needed for flanges and other connectors. The correlation for flanges indicates a higher mass emission rate than the correlation for non-flange connectors. However, the default-zero and pegged-component emission factors for non-flange connectors are higher than the default-zero and pegged-component emission factors for flanges. Because these points at the lowest and highest ends of the connector correlations do not indicate the same trend as the actual correlations, we feel that additional data should be collected to determine whether this result is reproducible."

<u>Final Report reference</u>: See Volume I, Section 2.

Radian response:

The apparent anomaly that the SCAQMD has identified is what the 1993 Refinery Study results indicate. The reason for this apparent anomaly is tied to different statistical methods used to calculate the zero component emission factors, the pegged component emission factors and the emission correlation equations. The emission correlation equations are based on a least-squares method of data analysis. The zero component emission factors and the pegged component emission factors are based on an arithmetic average of the data collected for these particular categories. Furthermore, the confidence intervals for zero components and pegged components are almost always greater than those determined for the emission correlation equations. This is in part due to the different statistical treatment of the data and, in part, due to more potential for variability in the zero component and pegged component categories. For example, the pegged components can have screening values that would range from 100,000 to 1,000,000 ppm (with additions possible if liquids are leaked). Based on laboratory measurements, a zero component can have mass emissions associated with being at one-half of the detection limit (approximately 0.025 ppm) when no hydrocarbons were measured in laboratory analysis of the sample, to mass emissions associated with leaks over 10 ppm. Therefore, it is possible to have confidence intervals for the zero component emission factors vary by over two orders of magnitude. The emission correlation equations are based on screening values that are known within fairly well defined (and lower) screening variability range (on a percentage basis).

The higher emission correlation equation for flanges versus non-flange connectors does appear to make physical sense. Flanges are, in general, much larger with more areas for leaks to occur than are the non-flange connectors. The higher zero component and pegged component emission factors for non-flange connectors than flange connectors may be an anomaly based on the wide confidence limits for these categories, especially for the non-

flange connectors. The confidence limits for these categories overlap each other. For example, for zero components the confidence limits range from 4.4×10^8 to 9.4×10^7 for flanges, and 0 to 3.9×10^6 for non-flange connectors. Because of the overlap it is not unreasonable that reversals in which factors are higher than other factors would occur. In fact, it would be surprising if some reversals did not take place.

Conclusion

Radian appreciates the comments from the SCAQMD. Revisions will be made to the Final Report based on these comments. Radian believes that the 1993 Refinery Study is representative and appropriate for components in refineries in the South Coast Air Quality Management District and nationwide. Radian continues to recommend that the 1993 Refinery Study be used by refineries and regulatory agencies for the determination of refinery fugitive emissions from equipment leaks for those equipment categories where new correlations were developed.

Sincerely,

Ronald D. Ricks

Ronald D. Ricke

Project Director

Attachments

c: G.E. Harris

Table 1

High Screening Variability Bagged Samples in 1993 Refinery Study Number of Valid Bagged Samples and

	Number of Samples Used for Equations	Pegged Components	High Screening Variability Non-Pegged Components	High Screening Variability Pegged Components	Zero	QA/QC
Connectors-Flanges	19	3	-	0	0	10
Connectors-Other	29	14	3	0	12	21
OEL	22		5	_	51	CT
Pumps-Heavy liquid	01	0	2	0	, ,	r
Pumps-Light liquid	27	5	4	-	7	
Valves	141	38	30b	4	وررو	> -
TOTALS	248	7.1	45	9	102	119

OEL = open-ended lines

QA/QC = quality assurance/quality control

^{*} Includes test duplicates (20), nitrogen flow sample duplicates (60), audit samples (34), and accuracy checks (5) b Includes three pressure relief valves.

^c Includes two pressure relief valves.

Table 2

Comparison of Number of Samples in 1980 Refinery Study and 1993 Refinery Study

		Number of Samples	f Samples*
Category	Service	1980 Refinery Study	1993 Refinery Study
Valves		34	52
Valves Light liquid	liquid	74	69
	Heavy liquid	0	20
OEL All		0	22
seals	Heavy liquid	48	10
	Light liquid	127	7.7
		38	48

* Excludes pegged components for both studies and high screening variability components for the 1993 Refinery Study.

* Includes connectors-flanges and connectors-other.

OEL = open-ended lines

Figure 3 – 3 Connectors (Flanges) All Services

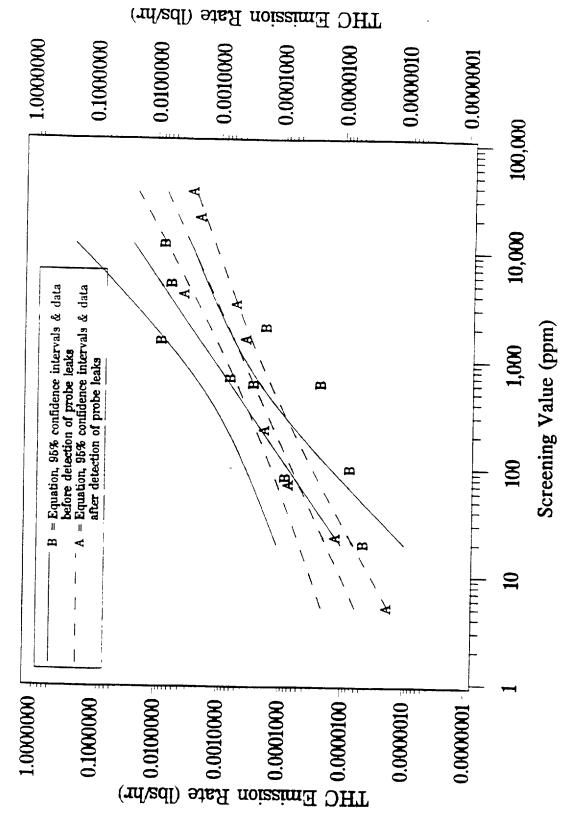


Figure 3-4 Connectors (Non – Flanges) All Services

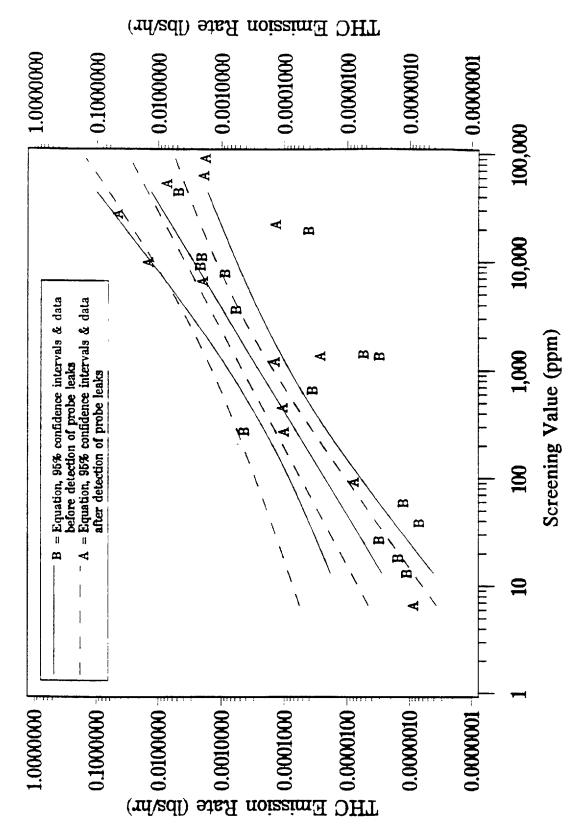
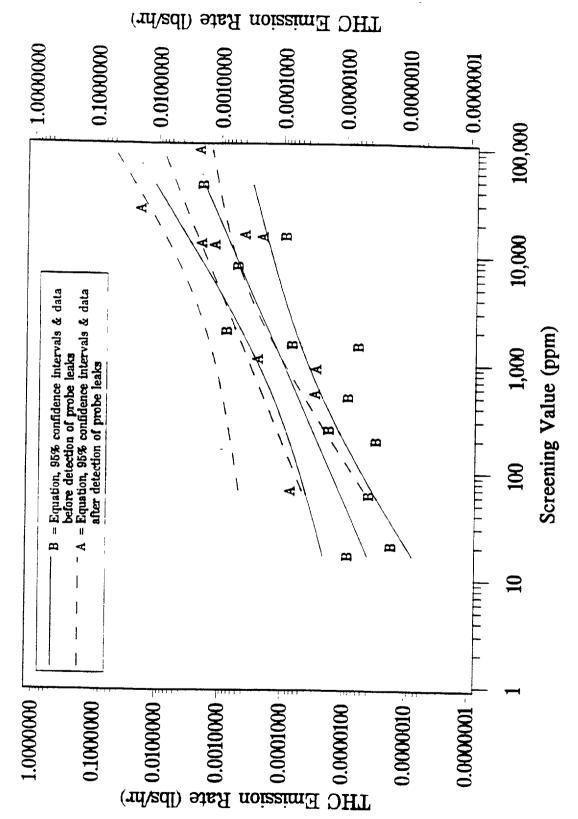
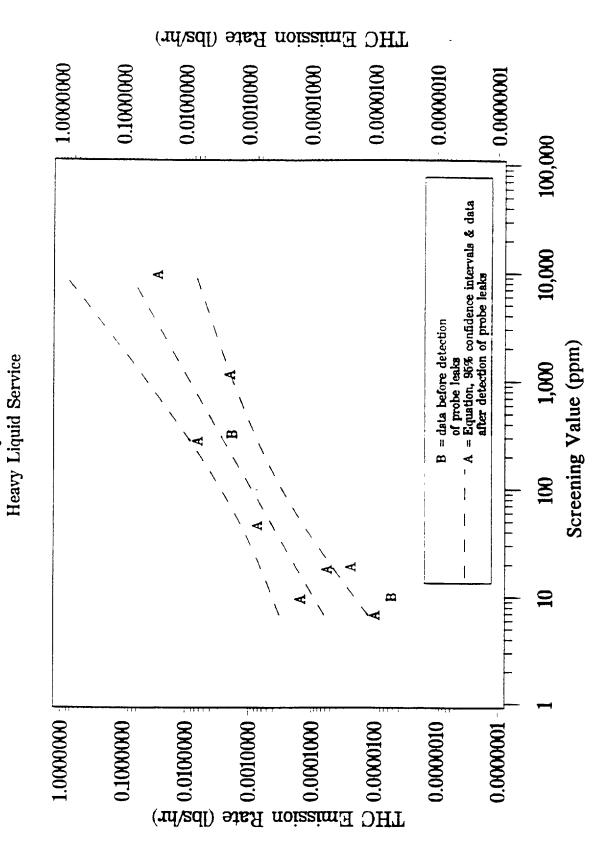




Figure 3–5 Open – Ended Lines All Services

F-18

Figure 3–6 Pump Seals THC Emission Rate

1.0000000 0.1000000 0.0100000 0.00100000.0001000 0.0000100 0.0000010 - 0.0000001 100,000 = Equation, 95% confidence intervals & data before detection of probe leaks = Equation, 96% confidence intervals & data after detection of probe leaks 4 10,000 Screening Value (ppm) Light Liquid Service Pump Seals Figure 3-74 100 /m m 10 ats. noiszim. I. 0.0010000 0.0010000 0.0010000 (lbs/hr) 0.0100000 THC 0.0000100 1.00000001 0.1000000 0.0000010 0.0000001

THC Emission Rate (lbs/hr) 1.0000000 0.0000100 0.1000000 - 0.0000001 100,000 Equation, 95% confidence intervals & data Equation, 95% confidence intervals & data Screening Value (ppm) B before detection of probe leake after detection of probe leaks 188 8 1.0000000 0.1000000

Figure 3-8 All Services

Valves

January 19, 1994 209-081-07-01 10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

Mr. Ron Wilkniss Western States Petroleum Association 505 North Brand Avenue, Suite 1400 Glendale, CA 91203

Subject:

WSPA/API Refinery Fugitive Emissions Study, Phase III - Contract No. ET 302-08 - Radian's Response to CARB Comments on the 1993 Final Draft of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks

Dear Ron:

This letter is in response to the specific issues raised by the California Air Resources Board (CARB) in their "ARB Staff Draft Comments on Radian's Draft Final Report ... August 20, 1993" letter. Some of the comments made by CARB in their letter prompted revisions to the Final Report of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks (1993 Refinery Study). All of the CARB issues in their letter are addressed in this letter.

Issue 1 - Service Type Emission Correlation

CARB comment:

"The report should provide an explanation for its finding that there is no correlation between the service type a component is in and its emission potential and why only pump seals exhibit this correlation. These findings are quite different from earlier studies from which the U.S. Environmental Protection Agency (EPA) has adopted for use in its reports. We believe that it is important to examine these findings further since it has the potential to affect emissions estimation."

Final Report reference: See Volume I, Section 2.

Radian response:

Radian approached the 1993 Refinery Study data analysis without allowing previous study results to govern the results of the new study. It had been assumed, based on other studies and hypothesis, that the valve category should be split into multiple sub-categories, including categories for service type (gas/vapor, light liquid and heavy liquid) and size. It had also been assumed that the pump seals category could be divided into light liquid and heavy liquid service types. Testing was based on those preliminary assumptions. After the data were collected, an in-depth multi-variate analysis was performed to determine if the splitting into different categories was statistically appropriate. The results of the analysis, documented

Mr. Wilkniss January 19, 1994 Page 2

thoroughly in the Final Report, indicated that there was insufficient justification to split valves into multiple categories based on the data collected for the 1993 Refinery Study. The only category that could be divided into multiple service categories was pump seals. Without additional justification Radian continues to recommend that the category divisions found in the 1993 Refinery Study remain as presented.

Issue 2 - Sample Sizes

CARB comment:

"Definitive statements about adequate sample sizes can't be made without a lot more information. The very small sample sizes from which variability of emission rate measurements were determined are particularly questionable. The representativeness of samples of one dozen to a few dozen can certainly be strongly questioned."

Final Report reference: See Volume I, Section 2 and Volume II, Section 3.

Radian response:

Radian originally proposed to the Western States Petroleum Association (WSPA) and the American Petroleum Institute (API) to examine 525 samples, including field duplicates, zero components (i.e., those components that screen at background ppm levels), pegged components (i.e., those that screen above the instrument's measurement capability; generally greater than 100,000 ppm), and components that screened at between 1 and 100,000 ppm. Fortunately, Radian was able to complete the study with even more valid samples than originally proposed. Radian completed the study with 540 valid samples. Of the 540 valid samples, 248 were components that screened at between 1 and 100,000 ppm, 102 were zero components, 71 were pegged components, and the remainder were taken to ensure data quality (audit sample duplicates, nitrogen flow test duplicates, and accuracy checks). In addition, 51 samples were excluded from analysis because of high variability in screening measurements taken both before and after bagging. Later analysis indicated that including these additional 51 samples would not have had a significant effect on the development of the emission correlation equations (see Volume II, Section 3 of the Final Report). Table 1 documents all valid samples and the high screening variability samples collected and their use in the data analysis.

After completion of the 1980 Refinery Study, the United States Environmental Protection Agency (U.S. EPA) recognized that facilities or industries may wish to redevelop emission correlation equations based on more applicable data than that collected for the 1980 Refinery Study. To assist an industry in developing new emission correlation equations they have

recently (June, 1993) updated and published a document entitled *Protocol for Equipment Leak Emission Estimates* (Protocols Document). The Protocols Document gives general guidance for determining the required number of samples recommended for determining new or revised emission correlation equations. Including pegged components, the Protocols Document recommends that at least 30 samples be taken. Excluding pegged components, the Protocols Document recommends that at least 24 samples be taken.

Some of the samples collected had been excluded from the analysis because their "before and after" screening values exceeded the pre-established control limits. Those are referred to as having "high" screening variability. As can be seen from Table 1, the U.S. EPA recommendation to have at least 30 samples (including pegged components) was exceeded in four of the six categories. The U.S. EPA recommendation to have at least 24 samples (excluding pegged components) was exceeded in three of the six categories. The question of whether sufficient samples were taken to meet U.S. EPA recommendations is focused only on two or three of the component categories; heavy liquid pumps, connectors-flanges, and possibly open-ended lines (OELs). The remaining categories clearly exceed the recommendations, and valves exceed the recommendations by a factor of almost six.

We would like to address each of the questionable categories separately, beginning with OELs. Thirty-three (33) OEL samples (including pegged components) were included in pegged components emission factor or emission correlation equation development. Three more samples were collected than the U.S. EPA recommendation. Furthermore, five OEL samples were excluded from analysis simply because they had high screening variability. These samples were excluded in an effort to control one aspect of variability in the study. Subsequent analysis indicated that these five samples could easily have been added to the analysis without any significant change to the emission correlation equation (see Figure 3-30, Volume II, Section 3 of the Final Report). Adding these five samples would have virtually no effect on the determination of the emission correlation equation and would also clearly exceed the U.S. EPA recommended number of samples. Given these considerations, it seems that the OEL category reasonably satisfies the U.S. EPA recommendations.

The remaining two categories, connectors-flanges and heavy liquid pumps, do not meet the mentioned U.S. EPA recommendations. The connectors-flanges category is close to meeting the recommendations, especially if including the high screening variability samples (total of 20). The heavy liquid pump category is not close (10–12 samples) to this U.S. EPA recommendation. The reason that additional samples were not taken is easily explained. Radian was attempting to obtain samples in all screening value ranges. A deliberate attempt was made to not skew the analysis by having a disproportionate number of samples in either low or high screening value ranges. Efforts were made by the five host refineries and Radian to find these components. Testing at these refineries was performed over approximately 20

API PUBL*4613 94 ■ 0732290 0533656 479 ■

RADIAN

Mr. Wilkniss January 19, 1994 Page 4

weeks. For connectors-flanges and heavy liquid pumps, more components in the higher screening value ranges could not be located.

Prior to commencing the data analysis for the 1993 Refinery Study it was not known that the connectors category should be split into two categories, flanges and non-flanges (other). In fact, the 1980 Refinery Study did not split the connectors into two categories. If the 1993 Refinery Study connector categories were merged, 48 samples would be available to develop an emission correlation equation which far exceeds the U.S. EPA recommendation. However, statistical analysis revealed that connectors-flanges and connectors-other were two distinct categories. Splitting the connectors into two categories improves the correlation coefficient from 0.82, for the combined grouping, to 0.88 for connectors-flanges and 0.85 for connectors-other. Even though this meant that one of the U.S. EPA's recommendations for sample size would not be precisely met for one of the connector categories, it was felt that the superior applicability of the results by dividing into two categories outweighed the possible limitation of reduced sample sizes.

Similarly, if the heavy liquid pump and light liquid pump categories were merged, 37 samples would be used to develop an emission correlation equation. However, the superior applicability of the results by maintaining two categories outweighed the possible limitation of reduced sample size.

The previous version of the Protocols Document, the U.S. EPA's Protocol for Generating Unit-Specific Emission Estimates for Equipment Leaks of VOC and VHAP (1988), states that if it can be shown that the estimates are "within 50% of the mean value with 95% confidence", a smaller sample size is acceptable. The 95% confidence interval for the expected mean log emission rate at the mean log screening value meets the "plus or minus 50% of the expected value" criterion for all component categories, including connectors-flanges and even heavy liquid pumps. The 95% confidence interval criteria is not met for these two component categories in linear space. The previous version of the Protocols Document is not clear on whether the criterion is for log or linear space.

The 1993 U.S. EPA Protocols Document states, "The above groupings and recommended number of sources are given as guidelines. They are based on experience in measuring leak rates and developing leak rate/screening value correlations. Other source selection strategies can be used if an appropriate rationale is given".

It is clear that the U.S. EPA recognizes that alternate strategies and even potentially smaller sample sizes can be considered for development of emission correlation equations. The issue really should be which emission correlation equations best represent the types of components found in today's refineries.

Mr. Wilkniss January 19, 1994 Page 5

In comparing the 1980 Refinery Study to the 1993 Refinery Study, it is immediately evident that many of the samples taken in the 1980 Refinery Study were pegged components. When the pegged components are removed from the total number of samples taken for the 1980 Refinery Study, the results are as shown in Table 2. Note that in the 1980 Refinery Study no heavy liquid valves or open-ended lines were sampled (bagged) and that valves were split into the gas valves and light liquid valves categories. The 1993 Refinery Study actually sampled more components than the 1980 Refinery Study in the following categories: gas valves, heavy liquid valves, open-ended lines, and flanges. The number of light liquid valves sampled in both studies are nearly identical. In fact, of the component categories reexamined in the 1993 Refinery Study, only the pump categories had significantly fewer samples collected than in the 1980 Refinery Study. By number of samples alone, the 1993 Refinery Study is superior to the 1980 Refinery Study for the two categories that represent the great majority of components found at any refinery: valves and flanges.

The comparison between the 1980 Refinery Study and the 1993 Refinery Study is even more convincing for the development of zero component emission factors. The zero component emission factors ("default zeros") developed from the 1980 Refinery Study data were based on eleven (11) samples from one component category (gas/vapor valves). In the 1993 Refinery Study, zero component emission factors were developed from each component category using a total of 102 samples. Clearly, the 1993 Refinery Study is more complete than the 1980 Refinery Study for zero components which represent the greatest number of components found at a refinery.

In conclusion, there is compelling evidence that the 1993 Refinery Study provides complete and representative information for the majority of the component categories in refineries. The development of the emission correlation equations has been consistent with U.S. EPA recommendations for sample size in four of six component categories. The remaining two categories, connectors-flanges and heavy liquid pumps, meet the statistical test on the mean log emission rate basis and could have met the sample size recommendation by having only one connectors category and one pumps category.

Furthermore, Radian acknowledged in both the Final Draft Report and the Final Report that the emission rate variability estimates were based on a small sample size. It is explicitly stated in the Reports that "The emission rate CVs... are not based on a very large number of duplicate pairs." In fact, a sensitivity analysis was recommended in Volume I, Section 3 in order to determine how the alternate statistical analysis method, the measurement error method (MEM) (called the generalized maximum likelihood [GML] method in the Final Draft Report) is affected by different variability estimates and uncertainty in these variability estimates.

Mr. Wilkniss January 19, 1994 Page 6

Issue 3 - The Screening Analysis - Including Connector Size and Type as Factors

CARB comment:

"The assertion on page 2-11 that including both connector size and type as factors would be redundant doesn't necessarily follow as automatically as the authors conclude it does."

Final Report reference: See Volume I, Section 2.

Radian response:

Radian continues to maintain that it is not necessary to include both connector size and type as factors. The results of a partial F-test show that when connector type is included as a factor that connector size is no longer significant. Similarly, if connector size is included as a factor then connector type is no longer significant. Type was included in the connector emission correlation equation and size was not included, because "type" produced a slightly better correlation. Including both size and type would not add any more information, but only serve to unnecessarily complicate the equation.

Issue 4 - The Screening Analysis - Including Valve Size as a Factor

CARB comment:

"The authors' reasoning justifying neglecting size of valve is questionable. Figure 2-5 is too cluttered to be very helpful. Whether or not there is a physical explanation for the size effect, isn't the main point whether or not stratifying valves into separate size classes significantly improves estimation of emission rates?"

Final Report reference: See Volume I, Section 2.

Radian response:

Radian believes that it is undesirable to include a variable in the emission correlation equation if the relationship between the variable and the emission rate has no physical basis. It is possible that such a variable (e.g., valve size) correlates with emission rate only because of a chance relationship involving it and one or more other variables. Hence, such a variable may have a statistically significant effect on mass emission rates, but there may not be a causal relationship between that variable and mass emission rates. As an example, suppose it were known that pump load had a significant effect on emission rates. Suppose further, that when collecting data it happened that pumps under load were collected during the late

Mr. Wilkniss January 19, 1994 Page 7

afternoon and pumps not under load were collected early in the morning. For the given scenario, time of day would have a significant correlation with mass emission rates due only to a chance correlation between time of day and pump load. Including a variable in the regression model that lacks physical explanation does not guarantee that the same relationship will exist in future conditions under which the regression model is to be used to estimate emission rates and could lead to spurious estimates of emissions.

Further, valve size was not omitted from the predictive equation merely because there was not a physical explanation for the relationship between valve size and emission rate. The discussion at the bottom of page 2-21 of the Final Draft Report presents additional relevant information. Specifically, multiple range tests and cluster analyses revealed an erratic relationship between emission rate and valve size. The Final Draft Report indicates that the 1.5" and 6" valve sizes were similar with respect to emission rate, as were the 1" and 9" sizes. In view of the erratic nature of the relationship between valve size and emission rate, the physical meaningfulness and repeatability of the relationship in future measurements was questioned. If a monotonic trend with reasonable consistency between valve size and emission rate had been observed, the situation would have been entirely different. Thus, valve size was omitted from the predictive equation for specific reasons beyond the mere fact that the relationship between valve size and emission rate lacked a physical explanation.

Radian believes that component size should continue to be evaluated in future studies as a variable that can potentially affect emission rates. The work performed for the current study, however, does not support including valve size as factor in the valve emission rate correlation equation.

Issue 5 - The Generalized Maximum Likelihood" Estimator - Assumption of a Known Variance Ratio

CARB comment:

"The investigators have chosen to assume that the ratio of the measurement error variances of the screening values and the emission rates is <u>known</u>. There is an exact solution for the regression equation if this assumption is made.

If this assumption is made, the analysis must obtain a credible estimate of the ratio of the measurement error variances and investigate its statistical properties. The analysis is very deficient in these respects. This is the most obvious statistical deficiency in the report."

Final Report reference: See Volume I, Section 2.

Mr. Wilkniss January 19, 1994 Page 8

Radian response:

It is true that in the measurement error technique used the ratio of the measurement error variance of the screening values and the emission rates is assumed to be known. Radian states this and also states that the estimated variance for the emission rates is based on a small number of data pairs. Thus, the limitations of the GML method (now called the MEM) were stated in the report. Additional tasks that need to be performed on the GML method were also listed in Volume I, Section 3. One of these recommended tasks was to "perform a sensitivity analysis for the GML method to determine how the GML method is affected by different variability estimates (i.e., of the emission rates and screening values.)" Additional paragraphs have been included in the Volume I, Section 3 explaining in more detail additional work that needs to be performed on the GML method (MEM). Until this work is performed Radian is not recommending that the GML (MEM) equations be used.

Radian, however, does not believe this is a "statistical deficiency in the report" because the assumptions that were made and further work that needs to be performed to investigate the GML method (MEM) are explicitly stated in the report. Radian does not believe that presenting a new idea, stating the limitations to a proposed method, and discussing additional research that needs to be performed on a method can be considered "deficient" or inadequate. On the contrary, Radian believes that important findings were made and reported regarding the use of measurement error models to estimate mass emissions from screening values. Namely, the work performed shows that the current method (i.e., the ordinary least squares methods [OLS]) for estimating emissions results in an over-estimate of emissions. It is has been shown that the GML method (MEM) provides more accurate estimates of emissions. What is not known is how estimates of the emission rate and screening value variability affect the GML (MEM) equations. In summary, Radian believes that an important contribution has been made on the estimate of fugitive emission rates from screening values and has explicitly stated in the report additional work that is recommended regarding this method.

Issue 6 - "The Generalized Maximum Likelihood" Estimator - Assumption of a Known Variance Ratio

CARB comment:

"The specific problems with the report's use of the assumption of known variance ratio are listed below:

- Emission rate variability not determined by true replicates;
- Assuming that variability of measurement error is constant and not related to the magnitude of the measurement; this assumption was not checked:
- Very inadequate sample sizes for determining emission rate variability of all components, except perhaps valves;
- Unjustified combination of variabilities (emission rate variabilities, at least) from several types of component to estimate the variance ratio;
- Unjustified assumption that the ratio determined by pooling variability is appropriate for all types of components; and
- Failure to assess the effects of variability of the estimated variance ratio of the regression relationships."

Final Report reference: See Volume I, Section 2.

Radian response:

Each of the issues above are addressed separately below.

1) "emission rate variability not determined by true replicates,"

Emission rate variability was evaluated by comparing two different types of replicates. This is discussed in the report and the results of this comparison are shown in Table 2-6 in the report. The first set of replicates were obtained during an earlier study (the Marketing Terminals Study [1993]). These duplicates were obtained by bagging the same component twice and are "true" replicates in the sense that they contain all potential sources of variability. For the 1993 Refinery Study, duplicates were obtained by extracting two samples from the same bag. It has been noted in the report that the overall variability estimate obtained from the "true" bagging duplicates (which potentially include more sources of variability) was actually smaller that the overall variability estimate obtained from the duplicate samples collected for the 1993 Refinery Study. Because the emission correlation equations were being developed for refinery data, it was decided that the refinery variability estimates would be more appropriate to use than variability estimates obtained from the Marketing Terminals Study. An additional recommendation has been added for the Final Report that states it would be beneficial to collect additional replicate emission rate data and to further evaluate the emission rate variability.

Mr. Wilkniss January 19, 1994 Page 10

2) "assuming that variability of measurement error is constant and not related to the magnitude of the measurement; this assumption was not checked."

This assumption was checked and it is explicitly stated in Volume I, Section 2, page 2-5 of the Final Draft Report and Final Report:

"One of the assumptions in performing many statistical procedures is that the errors are independent and normally distributed, and that the variances are constant for different factors or ranges. These assumptions were met by taking the natural logarithms (logs) of the emission rate and screening value measurements before performing the statistical analysis.)" Residual plots were evaluated for each of the equations developed. These residual plots showed that the errors from the log regressions were random and normally distributed for every component-specific equation developed.

3) "very inadequate sample sizes for determining emission rate variability of all components, except perhaps valves"

It is stated in the Final Draft Report and Final Report that the emission rate variability estimates were based on a small number of bagging pairs. In Volume I, Section 3, a sensitivity analysis was recommended so that the effect of errors in the emission rate variability estimates could be evaluated. An additional recommendation has been added in the Final Report that states it would also be beneficial to collect additional duplicate measurements so that the emission rate variability can be evaluated in more detail. If the sensitivity analysis shows that fluctuations in the emission rate variability estimate do not have a practical effect on the emission correlation equations, however, evaluating additional duplicate measurement data may not be necessary.

4 & 5) "unjustified combination of variabilities (emission rate variabilities, at least) from several types of components to estimate the variance ratio;

unjustified assumption that the ratio determined by pooling variabilities is appropriate for all types of components;"

Bartlett's test was performed on both the emission rate and the screening value variances to determine if the variances could be pooled over all component types. The results of Bartlett's test showed that there were not significant differences among the screening value variances for each of the component types. Thus, pooling the screening value variability over all component types is justified. Bartlett's test showed that there were differences among the emission rate variabilities for different component types. However, there were

insufficient data for any one component type to estimate the component specific emission rate variability. Therefore, at the time, pooling the emission rate variabilities over all component types provides the best estimate of emission rate variability for all component types. Until additional duplicate emission rate measurements are obtained or until the sensitivity analysis is performed, Radian believes that this provides the best estimate of the emission rate variability.

The above discussion was not included in the Final Draft Report. Because of CARB comments, the above discussion has been added to the Final Report to clarify this issue.

6) "failure to asses the effects of variability of the estimated variance ratio on the regression relationship"

The need to evaluate the effects of the variability of the estimated variance ratio on the regression equation was explicitly stated in Volume I, Section 3 as work that needs to be performed. For the current report, the GML equations are not recommended for use by refineries until this work has been performed.

Issue 7 - The "Generalized Maximum Likelihood" Estimator

CARB comment:

"The name "generalized maximum likelihood method" is an unfortunate choice, since it could denote any of an extremely wide variety of statistical models. The exposition of the method would be improved it if were stated in terms used in the literature on regression models including measurement error; this literature is very thoroughly summarized in Fuller's Measurement Error Model (Wiley, 1987)."

Final Report reference: See Volume III, Appendix D.

Radian response:

Radian agrees that the term "generalized maximum likelihood" is not sufficiently descriptive and has changed the name of the regression technique used to the "measurement error method."

Issue 8 - Log-log Plots

CARB comment:

"The report contains many log-log plots of screening value and emission rate data. Including so many plots is a very good idea, and there's no doubt that log-log plots are the best choice. However, they are difficult to read, especially when they span so many orders of magnitude.

The most important information that many of the plots are trying to convey is differences between several log-log regression relationships and differences in positions of regression relationships and data points -- i.e., ratios. As Cleveland's books on graphical representation point out, plotting differences makes graphical information about differences immensely clearer, and plotting differences would have that effect in this case.

We suggest that the information about ratios could be clearly represented by using the 1993 refinery study regression relationship in a plot as the 'basis,' and plotting ratios of other regression relationships and data points to this relationship. (In the plots of regression relationships in volume III, the true values would be the basis.)

Besides presenting the information about ratios with impressively greater clarity, plots of this type would be significantly more readable because the range of value on the y-axes would be orders of magnitude smaller.

These plots cannot be substituted for the log-log plots now in the report. Readers would not a first be able to interpret these plots of unusual type without referring to the conventional plots from which they were derived. A very careful explanation of the ratio plots with examples of their interpretation, would have to be inserted in the text."

Final Report reference: See Volume I, Volume II, and Volume III.

Radian response:

Radian does not believe that adding plots to the report will aid the typical reader of the report. It is not clear exactly which plots the comments are referring to nor is it clear exactly what the reviewer would like to see plotted. In addition, it is not clear which of Cleveland's books are being referenced. If CARB is interested in seeing a plot of the difference between the measured and predicted emission rate versus screening values, these are the same as residual plots. Radian did evaluate residual plots for all of the equations developed; however, we did not feel it was necessary to include all of the diagnostic plots in the Final Report. If CARB is interested in seeing differences between two different equations

(for example, the difference between the flange connector equation and the non-flange connector equation) versus screening value, Radian does not feel such a plot will convey any additional information than conveyed in the plots currently in the Final Report.

For the plots in Volume III (Appendix D) the reviewer does state the true values could be used as the basis for the calculated difference. Radian has plotted the true value minus the average predicted emission rate for each estimation method tested in the simulations (i.e., the GML [MEM], the conventional regression and the inverse regression). These are included as an attachment for the reviewer's examination. Again, these plots do not show any additional information, but rather show the same information from a different perspective and provide further support to Radian's conclusion that the GML method (MEM) provides a better estimate of true mass emissions. In summary, Radian believes that including an additional plot that shows differences or ratios for every log-log plot currently in the report would only serve to confuse the reader. CARB seems to agree that such plots would be difficult for the average reader to interpret and could not be substituted for the plots that are currently in the text.

Issue 9 - Comments on the Statistical Exposition

CARB comment:

"The explanation of the SBCF on page 2-30 is convoluted and unclear. We think many readers won't have sufficient background in statistics to follow it. The assumed basic distributional facts, the need to estimate arithmetic means, and the formula for the arithmetic mean of a lognormal distribution can be more clearly presented. The explanation does not contain any references to volume III."

Final Report reference: See Volume I, Section 2.

Radian response:

Radian has provided a more detailed explanation of the SBCF for the Final Report. Radian has also added a reference to Volume III. In addition, an example illustrating the need for a SBCF has been included.

Issue 10 - Comments on the Statistical Exposition

CARB comment:

"The explanation on pages 2-34 and 2-35 of the content of Figures 2-9 to 2-14 is much too brief and quite unclear. Likewise, the labeling of Figures 2-9 to 2-14 is not detailed enough. It is very likely that most readers will be confused by the figures and explanation. It's important that readers be able to make sense of these figures.

Final Report reference: See Volume I, Section 2.

Radian response:

The report provides a description of each of the lines (i.e., the regression line, the 95% confidence intervals for the mean, and the 95% confidence intervals for individual values) shown in Figures 2-9 through 2-14. The following interpretation for the confidence intervals is given in the report "the 95% confidence intervals for the mean should be interpreted as meaning that we can expect to be correct at least 95% of the time when we state that the true mean emission rate, for a given screening value, falls within the limits computed. The 95% confidence intervals for individual values should be interpreted as meaning that we can expect to be correct at least 95% of the time when we state that the individual emission rates for a given screening value fall within the limits computed." In addition, the following description of the regression lines is given: "the predicted mean values shown in Figures 2-9 through 2-14 represent the mean emission rate assuming a log-normal distribution." An explanation for why more than 50% of the data may fall below the predictive regression equations is also given. In addition, the labels in each of the figures clearly identify each of the lines and the titles state explicitly the information given in the figure. Radian believes that a thorough description of the information contained in the figures has been provided and that any additional explanation is not necessary.

Issue 11 - Appendices C and D - Verification of the Finney-Type Estimator

CARB comment:

"We think that the derivation of Section C.2 may lack verification of some of the theoretical requirements for validity of a Finney-type estimator. The derivation appears to ignore the contribution of errors in beta₀ and beta₁; this fact is not noted. Asymptotic variances of errors in the coefficients would be, apparently, all that are available."

Final Report reference: See Volume III, Appendix C.

Radian response:

Radian does not claim that the Finney SBCF is best for this regression application. In fact, Radian has derived a SBCF which they feel is more appropriate and which is given in Appendix D (along with the derivations). The SBCF given in Appendix C is one that has been historically used and which is recommended in the U.S. EPA Protocols Document. Radian felt that until a new methodology for estimating emissions has been approved and accepted by the U.S. EPA and knowledgeable reviewers, that emission correlation equations should continue to be developed using the widely used and accepted approach that is documented in the U.S. EPA Protocols Document. Finney's original SBCF was derived for univariate applications (i.e., estimating a mean from a single population). The Finney-type SBCF given in the U.S. EPA Protocols Document is a generalization of the Finney SBCF and was not mathematically derived. In fact, it is stated in Appendix C this "SBCF ... may not be mathematically exact." Further explanation has been included in the report which makes it clear that this is the SBCF given in the U.S. EPA Protocols Document and that this SBCF does not account for errors in x and y.

Issue 12 - Appendices C and D Clarity of Section D.3.2

CARB comment:

"We question whether the discussion of generation of random variables for the simulation in section D.3.2 could not be presented more simply. The notation is somewhat confusing."

Final Report reference: See Volume III, Appendix D.

Radian agrees that Section D.3.2 is not simple. Any technical discussion should be as simple as possible, without compromising technical accuracy and correctness. Further, there is a place for presentation of a layman's description of a statistical methodology, together with simulations and plots that illustrate its features; these objectives are achieved in Sections D.1 and D.2. Given the basic importance of the readability of any document and the fact that CARB indicated that Section D.3.5 was also hard to follow, a more explicit response is given here.

Section D.3.2 is included in Section D.3, titled "Statistical Methodology." As is stated in the first paragraph of that section, "The preceding sections provide a qualitative overview of the new approach. The purpose of this section is to provide a technical discussion of the statistical details." Thus, while a layman's discussion of the new methodology was provided, it was also stated that Section D.3 was intended to be a technical section. While Section D.3 is technical, virtually every step is given in the derivations; there is little or no need for the

Mr. Wilkniss January 19, 1994 Page 16

reader to "fill in" missing steps between lines. It was thought that this would facilitate reading the section.

In the Final Report, we have added some transition that we believe enhances the readability of the section to some extent. We believe, however, that the complexity of the technical issues precludes a discussion that both (1) documents the mathematical details and (2) is simple to read. Preserving the complete details of the equations was felt to be of value for two reasons. First, this is the only way reviewers can be provided the full information needed to evaluate the new method. Second, further enhancements of the method can be accomplished more efficiently if the full details of the original work, including the method for generating the random values needed for the simulations, are preserved.

In the review, CARB states that the notation in Section D.3.2 is "somewhat confusing." We believe that the underlying complexity of the problem is the reason why the section is not easy to read. We do not believe the notation is the reason.

The fact that certain variances used are error variances is stated explicitly. Certain other variables not listed above are defined explicitly.

In summary, we agree with CARB, that clarity in any discussion is important, and we have tried to explain the mathematics in Section D.3 as clearly and simply as possible, given the goal of documenting the mathematical details. The problem is not simple, however, and we believe the complexity of the problem is why the mathematical discussion cannot be simple.

Issue 13 - Appendices C and D - Uncertainty in Lambda

CARB comment:

"The account in Section D.3.3 does not adequately emphasize the central role of the assumption that the variance ratio lambda is known."

Final Report reference: Volume III, Appendix D; and Volume I, Section 3.

Radian response:

It is true that lambda is treated as known in Appendix D. It is also true that the issues pertaining to the estimation of lambda and errors in this estimation were not discussed in the Final Draft version of that appendix. Radian has incorporated CARB's suggestion in the Final Report by adding a descriptive paragraph to Volume III, Section 3.

Radian recognized the issue, however, and explicitly stated the need to perform further work regarding the role of lambda. The following was included in Volume I, Section 3 of the Final Draft Report as recommendations for future data analysis: "Perform sensitivity analysis for the GML method to determine how the GML method is affected by different variability estimates (i.e., of the emission rates and screening values)." While the parameter lambda is not explicitly stated, lambda is the ratio of the two specified error variances, and it is stated that these investigations pertain to the GML method.

Issue 14 - Appendices C and D - Variance of the Intercept on p. D-18

CARB comment:

"In section D.3.4, the expression for var(Y HAT) on p. D-18 appears to omit the contribution of the variance of the intercept."

Final Report reference: Volume III, Appendix D.

Radian response:

The development is preceded by the following text, which appears in the second paragraph on page D-18: "If the true values of the slope and intercept were known, then we would estimate Y as follows:" Further, the last sentence on p. D-18, which follows the development under question, states that the error variances of the slope and intercept are being disregarded initially and that this point is discussed later.

Issue 15 - Appendices C and D - Reason for Developing a New SBCF

CARB comment:

"An SBCF derived from Finney's result is presented in Section C.2; it isn't made clear why a theoretical development of a different type is required or appropriate here."

Final Report reference: Volume III, Appendices C and D.

Radian response:

On page C-3 in the Final Draft Report, it is stated that the SBCF traditionally used for this application is an adaptation of Finney's method for estimating the mean of a lognormally distributed random variable. It is further stated that the adaptation may not be

Mr. Wilkniss January 19, 1994 Page 18

mathematically exact. It follows from these statements that the derivation of an SBCF specifically for this application is appropriate.

In the Final Report, the discussion in Appendix C pertaining to the adaptation of Finney's method for this application is expanded somewhat. A paragraph has been added to Appendix D reiterating the fact that the SBCF based on Finney's method is an adaptation, and that Appendix D contains a derivation of an SBCF specifically for this application.

Issue 16 - Appendices C and D - Error Variances of A Hat and B Hat

CARB comment:

"The reasoning which justifies neglecting the variances of A HAT and B HAT is not convincing. We did not have time to review the report of the simulations which is stated to provide some justification."

Final Report reference: Volume III, Appendix D.

Radian response:

The simulations discussed in Section D.2 are based on the analysis in Section D.3. The assumption pertaining to the variances of A HAT and B HAT is part of this analysis. The simulations rigorously show that the analysis based on this assumption produces estimates that have little or no bias under all conditions tested. In the simulations, A HAT and B HAT were estimated on the basis of samples of size 30.

If A HAT and B HAT were estimated on the basis of a smaller sample size, however, it is possible that the error variances of these two parameters would not be negligible. Text has been added to Appendix D stating this possibility and suggesting that further simulations to investigate the role of the errors of A HAT and B HAT in cases with smaller sample sizes. It would be possible to extend the SBCF to account for the standard errors in A HAT and B HAT.

Issue 17 - Appendices C and D - Section D.3.5

CARB comment:

"We couldn't follow the derivation of Section D.3.5. There is some plausibility to the result, granting the result of D.3.4, but we could not make sense of the statement 'Suppose x is a hypothetical screening value and y is the emission rate such that E(x) = E(u)."

Mr. Wilkniss January 19, 1994 Page 19

Final Report reference: Volume III, Appendix D.

Radian response:

The methodology of Section D.3.5 has been rigorously tested through simulations, just as the methodology of Section D.3.4 has. In both cases, the new methodology was the only one of the approaches tested that consistently produced results with little or no bias. The quoted sentence has been reworded in the Final Report and hopefully is more clear now. Regarding the readability of Section D.3 in general, see the comments above pertaining to the issue, Clarity of Section D.3.2.

Conclusion

Radian appreciates the comments from the CARB. Revisions have been made to the Final Report based on these comments. Radian believes that the 1993 Refinery Study is representative and appropriate for components in refineries in California and nationwide. Radian continues to recommend that the 1993 Refinery Study be used by refineries and regulatory agencies for the determination of refinery fugitive emissions from equipment leaks.

Sincerely,

Ronald D. Ricks

Ronald I Taiks

Project Director

Attachments

c: G.E. Harris

Table 1

High Screening Variability Bagged Samples in 1993 Refinery Study Number of Valid Bagged Samples and

	Number of Samples Used for Equations	Pegged	High Screening Variability	High Screening Variability Pegged		. 04/4C
Connectors-Flanges	19	3	1	Components	Components	Components
Connectors-Other	29	14	3	0	12	51 51
OEL	22	=	5		0	
Pumps-Heavy liquid	01	0	2	0	, ,	
Pumps-Light liquid	27	5	4	_		
Valves	141	38	30b	4	V	5
TOTALS	248	11	45	9	201	110

OEL = open-ended lines

QA/QC = quality assurance/quality control

* Includes test duplicates (20), nitrogen flow sample duplicates (60), audit samples (34), and accuracy checks (5)

* Includes three pressure relief valves.

* Includes two pressure relief valves.

Table 2

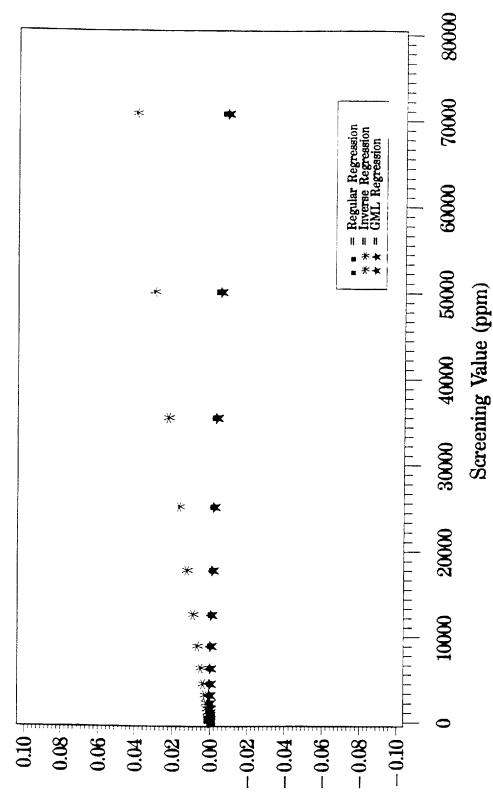
Comparison of Number of Samples in 1980 Refinery Study and 1993 Refinery Study

		Number of Samples	Samples*
Category	Service	1980 Refinery Study	1003 Define Ct. 1
Valves	Gas	34	too wentery sundy
Valves	Light liquid		32
	high:g.	14	69
Valves	Heavy liquid	0	000
OEI			70
	Ail	0	77
Pump seals	Heavy liquid	48	77
Pilmo seals			10
cmac dima	Light liquid	127	27
Flanges ^b	All	38	97
		20	

* Excludes pegged components for both studies and high acreening variability components for the 1993 Refinery Study.

* Includes connectors-flanges and connectors-other.

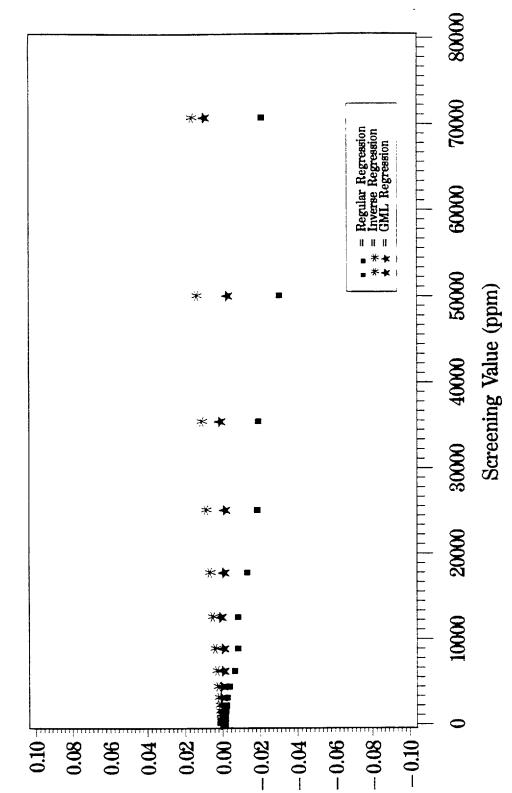
OEL = open-ended lines



Attachment A

Additional Plots of the Figures in Appendix D Showing Differences Versus the True Screening Values

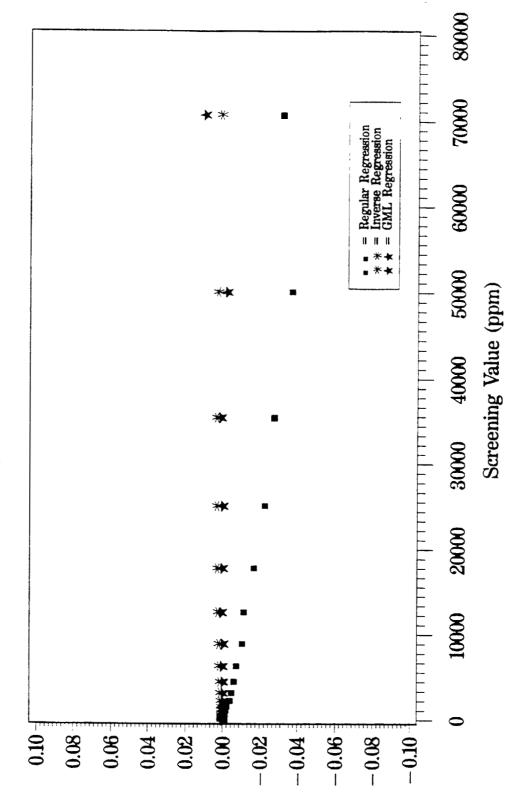
F-42


After Applying Scale Bias Correction Factors Comparison of Regression Methods Figure 1

Standard Deviation in X = (0.0)(Standard Deviation in Y) (Standard Deviation = 0.00 in X Variable) (Standard Deviation = 1.45 in Y Variable)

F-43

Figure 2
Comparison of Regression Methods
After Applying Scale Bias Correction Factors



Standard Deviation in X = (1.0)(Standard Deviation in Y)

(Standard Deviation = 1.04 in X Variable) (Standard Deviation = 1.04 in Y Variable)

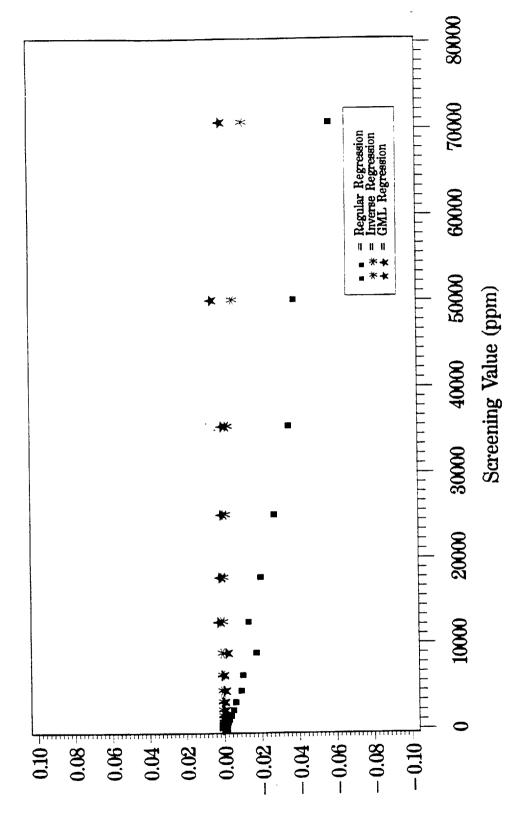

F-44

Figure 3
Comparison of Regression Methods
After Applying Scale Bias Correction Factors

Standard Deviation in X = (L6)(Standard Deviation in Y) (Standard Deviation = 121 in X Variable) (Standard Deviation = 0.81 in Y Variable)

Figure 4
Comparison of Regression Methods
After Applying Scale Bias Correction Factors

Standard Deviation in X = (2.0) (Standard Deviation in Y) (Standard Deviation = 1.38 in X Variable) (Standard Deviation = 0.69 in Y Variable)

February 7, 1994 209-081-07-01 10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

Mr. Ron Wilkniss Western States Petroleum Association 505 North Brand Avenue, Suite 1400 Glendale, CA 91203

Subject: WSPA/API Refinery Fugitive Emissions Study, Phase III - Contract No. ET 302-08 - Radian's Response to BAAQMD Comments on the 1993 Final Draft of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks

Dear Ron:

This letter is in response to specific issues raised by the Bay Area Air Quality Management District (BAAQMD) concerning the 1993 Final Draft of the 1993 Study of Refinery Fugitive Emissions from Equipment Leaks (1993 Refinery Study). The issues were raised in a phone conversation between Bob Nishimura of the BAAQMD and myself at the end of October 1993. Written comments were anticipated from the BAAQMD but have not yet been received.

Issue 1 - OVA Probe Leaks

BAAOMD comment:

The BAAQMD is concerned that potential OVA probe leaks that were identified during audits conducted by a contractor for the United States Environmental Protection Agency (U.S. EPA) could affect the results of the 1993 Refinery Study.

Final Report reference: See Volume II, Section 3.

Radian response:

The issue of the impact of potentially leaking OVA probes is reviewed extensively (20 pages of analysis) in Volume II, Section 3 of the Final Report of the 1993 Refinery Study. The conclusion in that study is that, "This analysis gives strong indication that the potentially leaking probes had a minor, if not insignificant impact on the data. Furthermore, this analysis indicates that the potentially leaking probes did not result in a systematic bias in the data analysis. There does not appear to be any reason to invalidate any data prior to the detection of potentially leaking probes." It is important to note that, if any bias were to occur from leaking probes, the bias in the emission correlation equations would be to give

Mr. Wilkniss February 7, 1994 Page 2

higher emission estimates than would emission correlation equations derived only from non-leaking probes.

Issue 2 - Sample Sizes

BAAOMD comment:

Insufficient data were collected to satisfy U.S. EPA recommendations.

Final Report reference:

See Volume II, Section 3.0.

Radian response:

Radian originally proposed to the Western States Petroleum Association (WSPA) and the American Petroleum Institute (API) to examine 525 samples, including field duplicates, zero components (i.e., those components that screen at background ppm levels), pegged components (i.e., those that screen above the instrument's measurement capability; generally greater than 100,000 ppm), and components that screened at between 1 and 100,000 ppm. Fortunately, Radian was able to complete the study with even more valid samples than originally proposed. Radian completed the study with 540 valid samples. Of the 540 valid samples, 248 were components that screened at between 1 and 100,000 ppm, 102 were zero components, 71 were pegged components, and the remainder were taken to ensure data quality (audit sample duplicates, nitrogen flow test duplicates, and accuracy checks). In addition, 51 samples were excluded from analysis because of high variability in screening measurements taken both before and after bagging. Later analysis indicated that including these additional 51 samples would not have had a significant effect on the development of the emission correlation equations (see Volume II, Section 3 of the Final Report). Table 1 documents all valid samples and the high screening variability samples collected and their use in the data analysis.

After completion of the 1980 Refinery Study, the United States Environmental Protection Agency (U.S. EPA) recognized that facilities or industries may wish to redevelop emission correlation equations based on more applicable data than that collected for the 1980 Refinery Study. To assist an industry in developing new emission correlation equations they have recently (June, 1993) updated and published a document entitled *Protocol for Equipment Leak Emission Estimates* (Protocols Document). The Protocols Document gives general guidance for determining the required number of samples recommended for determining new or revised emission correlation equations. Including pegged components, the Protocols Document recommends that at least 30 samples be taken. Excluding pegged components, the Protocols Document, recommends that at least 24 samples be taken.

Mr. Wilkniss February 7, 1994 Page 3

Some of the samples collected had been excluded from the analysis because their "before and after" screening values exceeded the pre-established control limits. Those are referred to as having "high" screening variability. As can be seen from Table 1, the U.S. EPA recommendation to have at least 30 samples (including pegged components) was exceeded in four of the six categories. The U.S. EPA recommendation to have at least 24 samples (excluding pegged components) was exceeded in three of the six categories. The question of whether sufficient samples were taken to meet U.S. EPA recommendations is focused only on two or three of the component categories; heavy liquid pumps, connectors-flanges, and possibly open-ended lines (OELs). The remaining categories clearly exceed the recommendations, and valves exceed the recommendations by a factor of almost six.

We would like to address each of the questionable categories separately, beginning with OELs. Thirty-three (33) OEL samples (including pegged components) were included in pegged components emission factor or emission correlation equation development. Three more samples were collected than the U.S. EPA recommendation. Furthermore, five OEL samples were excluded from analysis simply because they had high screening variability. These samples were excluded in an effort to control one aspect of variability in the study. Subsequent analysis indicated that these five samples could easily have been added to the analysis without any significant change to the emission correlation equation (see Figure 3-30, Volume II, Section 3 of the Final Report). Adding these five samples would have virtually no effect on the determination of the emission correlation equation and would also clearly exceed the U.S. EPA recommended number of samples. Given these considerations, it seems that the OEL category reasonably satisfies the U.S. EPA recommendations.

The remaining two categories, connectors-flanges and heavy liquid pumps, do not meet the mentioned U.S. EPA recommendations. The connectors-flanges category is close to meeting the recommendations, especially if including the high screening variability samples (total of 20). The heavy liquid pump category is not close (10-12 samples) to this U.S. EPA recommendation. The reason that additional samples were not taken is easily explained. Radian was attempting to obtain samples in all screening value ranges. A deliberate attempt was made to not skew the analysis by having a disproportionate number of samples in either low or high screening value ranges. Efforts were made by the five host refineries and Radian to find these components. Testing at these refineries was performed over approximately 20 weeks. For connectors-flanges and heavy liquid pumps, more components in the higher screening value ranges could not be located.

Prior to commencing the data analysis for the 1993 Refinery Study it was not known that the connectors category should be split into two categories, flanges and non-flanges (other). In fact, the 1980 Refinery Study did not split the connectors into two categories. If the 1993 Refinery Study connector categories were merged, 48 samples would be available to develop

Mr. Wilkniss February 7, 1994 Page 4

an emission correlation equation which far exceeds the U.S. EPA recommendation. However, statistical analysis revealed that connectors-flanges and connectors-other were two distinct categories. Splitting the connectors into two categories improves the correlation coefficient from 0.82, for the combined grouping, to 0.88 for connectors-flanges and 0.85 for connectors-other. Even though this meant that one of the U.S. EPA's recommendations for sample size would not be precisely met for one of the connector categories, it was felt that the superior applicability of the results by dividing into two categories outweighed the possible limitation of reduced sample sizes.

Similarly, if the heavy liquid pump and light liquid pump categories were merged, 37 samples would be used to develop an emission correlation equation. However, the superior applicability of the results by maintaining two categories outweighed the possible limitation of reduced sample size.

The previous version of the Protocols Document, the U.S. EPA's Protocol for Generating Unit-Specific Emission Estimates for Equipment Leaks of VOC and VHAP (1988), states that if it can be shown that the estimates are "within 50% of the mean value with 95% confidence", a smaller sample size is acceptable. The 95% confidence interval for the expected mean log emission rate at the mean log screening value meets the "plus or minus 50% of the expected value" criterion for all component categories, including connectors-flanges and even heavy liquid pumps. The 95% confidence interval criteria is not met for these two component categories in linear space. The previous version of the Protocols Document is not clear on whether the criterion is for log or linear space.

The 1993 U.S. EPA Protocols Document states, "The above groupings and recommended number of sources are given as guidelines. They are based on experience in measuring leak rates and developing leak rate/screening value correlations. Other source selection strategies can be used if an appropriate rationale is given".

It is clear that the U.S. EPA recognizes that alternate strategies and even potentially smaller sample sizes can be considered for development of emission correlation equations. The issue really should be which emission correlation equations best represent the types of components found in today's refineries.

In comparing the 1980 Refinery Study to the 1993 Refinery Study, it is immediately evident that many of the samples taken in the 1980 Refinery Study were pegged components. When the pegged components are removed from the total number of samples taken for the 1980 Refinery Study, the results are as shown in Table 2. Note that in the 1980 Refinery Study no heavy liquid valves or open-ended lines were sampled (bagged) and that valves were split into the gas valves and light liquid valves categories. The 1993 Refinery Study actually

Mr. Wilkniss February 7, 1994 Page 5

sampled more components than the 1980 Refinery Study in the following categories: gas valves, heavy liquid valves, open-ended lines, and flanges. The number of light liquid valves sampled in both studies are nearly identical. In fact, of the component categories reexamined in the 1993 Refinery Study, only the pump categories had significantly fewer samples collected than in the 1980 Refinery Study. By number of samples alone, the 1993 Refinery Study is superior to the 1980 Refinery Study for the two categories that represent the great majority of components found at any refinery: valves and flanges.

The comparison between the 1980 Refinery Study and the 1993 Refinery Study is even more convincing for the development of zero component emission factors. The zero component emission factors ("default zeros") developed from the 1980 Refinery Study data were based on eleven (11) samples from one component category (gas/vapor valves). In the 1993 Refinery Study, zero component emission factors were developed from each component category using a total of 102 samples. Clearly, the 1993 Refinery Study is more complete than the 1980 Refinery Study for zero components which represent the greatest number of components found at a refinery.

In conclusion, there is compelling evidence that the 1993 Refinery Study provides complete and representative information for the majority of the component categories in refineries. The development of the emission correlation equations has been consistent with U.S. EPA recommendations for sample size in four of six component categories. The remaining two categories, connectors-flanges and heavy liquid pumps, meet the statistical test on the mean log emission rate basis and could have met the sample size recommendation by having only one connectors category and one pumps category.

Issue 3 - Screening Distance

BAAOMD comment:

There is too much uncertainty related to developing emission correlation equations based on screening at a screening distance of 1 cm when the data were collected at the surface of the component.

Final Report reference: None

Radian response:

Most of the discussion related to screening at a 1 cm distance has been removed from the Final Report. The emission correlation equations, developed previously for a 1 cm screening distance in the earlier draft, have been removed from the Final Report.

Mr. Wilkniss February 7, 1994 Page 6

Issue 4 - Pegged Components from the 1980 Refinery Study Not Included

BAAOMD comment:

The Final Draft Report does not include pegged components from the 1980 Refinery Study to compare with the pegged components from the 1993 Refinery Study.

Final Report reference:

See Volume I, Section 2.

Radian response:

The original 1980 Refinery Study did not develop independent pegged component emission factors. However, the most recent version of the U.S. EPA's Protocol for Equipment Leak/Emission Estimates (U.S. EPA Protocols Document) (June, 1993) does include pegged component emission factors that Radian believes were developed from data collected during the 1980 Refinery Study. In response to the BAAQMD's comment, Radian has included a comparison of the 1993 Refinery Study to these 1980 Refinery Study pegged component emission factors in the Final Report.

Issue 5 - Raw Data Request

BAAOMD comment:

The BAAQMD would like to have a copy of the raw data collected as part of the 1993 Refinery Study.

Final Report reference:

See Volume III, Appendix A

Radian response:

A spreadsheet of the raw data collected during this study, the data used for development of emission correlation equations, zero component emission factors, and pegged component emission factors is included in Volume III, Appendix A. This spreadsheet also includes calculations of the mass emission rates from the raw data. An electronic copy of this spreadsheet, with a few minor revisions on coding, will be sent to the BAAQMD.

Mr. Wilkniss February 7, 1994 Page 7

Issue 6 - Comparison of Vapor Leak Composition with Liquid Stream Composition

BAAOMD comment:

The BAAQMD is disappointed that the comparison of vapor leak composition with liquid stream composition was inconclusive.

Final Report reference:

See Volume I, Section 2.

Radian response:

Radian was also disappointed that the comparison of vapor leak composition with liquid stream composition was inconclusive. Unfortunately, the data gathered in this study were too erratic to reach definitive conclusions. The scatter of the data is believed to be related to the large number of variables in the testing process. Isolating variables in a field setting has proven difficult. Additional analysis in a controlled laboratory setting is recommended.

Until additional testing in a controlled setting takes place, Radian recommends that refineries continue to estimate emissions of individual VOC species by assuming that the mass fractions in emitted VOCs are the same as the mass fractions in the process streams.

Conclusion

Radian appreciates the comments from the BAAQMD. Revisions have been made to the Final Report based on these comments. Radian believes that the 1993 Refinery Study is representative and appropriate for components in refineries in California and nationwide. Radian continues to recommend that the 1993 Refinery Study be used by refineries and regulatory agencies for the determination of refinery fugitive emissions from equipment leaks.

Sincerely,

Ronald D. Ricks

Ponds D. Rich

Project Director

Attachments

c: G.E. Harris.

Table 1

Number of Valid Bagged Samples and High Screening Variability Bagged Samples in 1993 Refinery Study

	Number of Samples Used for Equations	Pegged Components	Samples Used for Equations Plus Pegged Components	Samples Used for High Screening Equations Plus Variability Pegged Components	High Screening Variability Pegged Components	Zero Components	QA/QC Components ^a
Connectors-Flanges	61	3	22	1	0	6	10
Connectors-Other	29	14	43	3	0	12	13
OEL	22	=	33	5		6	च
Pumps-Heavy Irquid	01	0	01	2	0	5	5
Pumps-Light liquid	27	5	32	4	1	7	9
Valves	141	38	611	30b	4	₂ 09	81
TOTALS	248	7.1	319	45	9	102	611

OEL = open ended lines

QA/QC = quality assurance/quality control

* Includes test duplicates (20), nitrogen flow sample duplicates (60), audit samples (34), and accuracy checks (5) b Includes three pressure relief valves.

c Includes two pressure relief valves

Order No. 841-46130

320PP

04943C1P

