

User's Guide and Technical Resource Document: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs

HEALTH AND ENVIRONMENTAL SCIENCES DEPARTMENT
API Publication Number 4607

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

User's Guide and Technical Resource Document: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs

HEALTH AND ENVIRONMENTAL SCIENCES DEPARTMENT

API PUBLICATION NUMBER 4607

PREPARED BY:

PTI Environmental Services 15375 SE 30th Place, Suite 250 Bellvue, Washington 98007

OCTOBER 1994

American Petroleum Institute

One of the most significant long-term trends affecting the future vitality of the petroleum industry is the public's concerns about the environment. Recognizing this trend, API member companies have developed a positive, forward looking strategy called STEP: Strategies for Today's Environmental Partnership. This program aims to address public concerns by improving our industry's environmental, health and safety performance; documenting performance improvements; and communicating them to the public. The foundation of STEP is the API Environmental Mission and Guiding Environmental Principles.

API ENVIRONMENTAL MISSION AND GUIDING ENVIRONMENTAL PRINCIPLES

The members of the American Petroleum Institute are dedicated to continuous efforts to improve the compatibility of our operations with the environment while economically developing energy resources and supplying high quality products and services to consumers. The members recognize the importance of efficiently meeting society's needs and our responsibility to work with the public, the government, and others to develop and to use natural resources in an environmentally sound manner while protecting the health and safety of our employees and the public. To meet these responsibilities, API members pledge to manage our businesses according to these principles:

- To recognize and to respond to community concerns about our raw materials, products and operations.
- To operate our plants and facilities, and to handle our raw materials and products in a manner that protects the environment, and the safety and health of our employees and the public.
- To make safety, health and environmental considerations a priority in our planning, and our development of new products and processes.
- To advise promptly, appropriate officials, employees, customers and the public of information on significant industry-related safety, health and environmental hazards, and to recommend protective measures.
- > To counsel customers, transporters and others in the safe use, transportation and disposal of our raw materials, products and waste materials.
- To economically develop and produce natural resources and to conserve those resources by using energy efficiently.
- To extend knowledge by conducting or supporting research on the safety, health and environmental effects of our raw materials, products, processes and waste materials.
- > To commit to reduce overall emission and waste generation.
- > To work with others to resolve problems created by handling and disposal of hazardous substances from our operations.
- To participate with government and others in creating responsible laws, regulations and standards to safeguard the community, workplace and environment.
- To promote these principles and practices by sharing experiences and offering assistance to others who produce, handle, use, transport or dispose of similar raw materials, petroleum products and wastes.

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

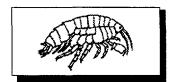
API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

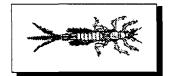
NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENT OF LETTERS PATENT.

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT


Alexis E. Steen, Health and Environmental Sciences Department


MEMBERS OF THE BIOMONITORING TASK FORCE

Philip B. Dorn, Ph.D., Shell Development Company
Jerry F. Hall, Ph.D., Texaco Research
W. Raymon Arnold, Ph.D., Exxon Biomedical Sciences, Inc.
Shiv Baloo, Amoco Oil Company
Janis M. Farmer, BP America Research & Development
William R. Gala, Ph.D., Chevron Research & Technology Company
Michael C. Harrass, Ph.D., Amoco Corporation
Michael E. Tucker, Occidental Chemical Company

Thomas C. Ginn was the Project Manager for PTI Environmental Services (PTI). Robert A. Pastorok and Jane E. Sexton of PTI coordinated technical tasks. Authors that contributed to this report were Robert A. Pastorok, Jane E. Sexton, D. Scott Becker, and Chip W. Hogue of PTI. Alexis E. Steen of API and Jerry F. Hall of Texaco Research contributed to the final authorship of the executive summary and the introduction to the report. James Meeker of PTI assisted in the literature review and compilation of information on individual toxicity methods. The API Biomonitoring Task Force provided constructive review comments on the scope of the study and on several drafts of the report.

User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs

ABSTRACT

Sediment toxicity test methods are available for marine, estuarine, and freshwater sediments and organisms. The methods can be used for a variety of purposes: for example, assessment of existing environmental conditions, monitoring changes with time, or for NPDES permit compliance. Use of inappropriate test methods or species for a given purpose can impact the toxicity results and their interpretation. This User's Guide has been prepared to assist personnel at petroleum industry facilities (refineries, marketing terminals, and production locations) in understanding sediment toxicity testing and in the selection of test methods and species which are appropriate for their needs. The general aspects of sediment toxicity testing are summarized along with technical requirements and appropriate conditions for each test type. Test methods are evaluated for their reliability, ecological relevance, exposure relevance, availability, interferences, and ability to discriminate toxicants. A companion report (Technical Resource Document) has been prepared to provide detailed technical background information on the methods.

CONTENTS

	<u>Page</u>
INTRODUCTION	1
EVALUATION OF SEDIMENT TOXICITY TESTS	2
KEY TEST CHARACTERISTICS	2
Habitat Type	2
Exposure Medium	2
Endpoint Type	3
EVALUATION CRITERIA	4
EVALUATION RESULTS	4
SITE-SPECIFIC SELECTION OF SEDIMENT TOXICITY TESTS	12
DEFINITION OF SELECTION CRITERIA	12
OVERVIEW OF TEST SELECTION PROCESS	12
Site Characteristics	12
Regulatory Requirements	12
Selection of Evaluation Tables	15
Biotic Group and Geographic Zone	15
Identify Highest Rank Tests	15
Compare Selected Test(s) with Regulatory Requirements	15
APPLICATION OF SEDIMENT TOXICITY TESTS	16
METHODS AND QUALITY ASSURANCE ISSUES	16
SAMPLING ISSUES	17
Sample Location	17
Sample Collection	17
Sample Handling	17
Sample Preservation	17
Sample Documentation	18
DATA ANALYSIS ISSUES	18
GLOSSARY	21
REFERENCES AND OTHER KEY LITERATURE	25

API PUBL*4607 94 🖿 0732290 0555231 056 🖿

LIST OF FIGURES AND TABLES

		Page
Figure 1.	Approach to selection of sediment toxicity tests for a specific site	14
Table 1.	Evaluation of sediment toxicity tests—marine lethal	5
Table 2.	Evaluation of sediment toxicity tests—marine sublethal	6
Table 3.	Evaluation of sediment toxicity tests—estuarine lethal	7
Table 4.	Evaluation of sediment toxicity tests—estuarine sublethal	8
Table 5.	Evaluation of sediment toxicity tests—freshwater lethal	9
Table 6.	Evaluation of sediment toxicity tests—freshwater sublethal	10
Table 7.	Selection of sediment toxicity tests	13

INTRODUCTION

Reliable toxicity tests are currently available for testing of marine, estuarine, and freshwater sediments as part of biomonitoring programs for wastewater discharges. Sediment toxicity tests provide an integrated measure of the effects of sediment contamination that eliminates much of the uncertainty associated with predicting toxicity from sediment chemistry alone. When combined with surveys of animals living in the sediments, sediment toxicity tests can be used to assess existing conditions, rank sites for cleanup priority, and monitor changes in contaminant effects with time (Chapman et al. 1992). However, the use of inappropriate test methods or species and the failure to consider physical and chemical factors that can affect the results of the tests may diminish the value of biological toxicity testing (Burton 1991; Hill et al. 1993).

The purpose of this User's Guide is to provide information that will enable environmental personnel at petroleum facilities to select sediment toxicity tests and test methods that are scientifically valid and appropriate for a specific site. For those readers who are unfamiliar with sediment toxicity testing, this User's Guide explains general aspects of sediment toxicity testing and how to use available technical information. This document also outlines the technical requirements and appropriate conditions for using different sediment toxicity test methods. A companion document, Evaluation of Sediment Toxicity Tests for Biomonitoring Programs (PTI, 1994) hereafter referred to as the Technical Resource Document, has been prepared to provide technical background on the test methods and the detailed rationale for the evaluations presented here. The Technical Resource Document is intended to be used as a reference tool for the test selection process and also as an information resource to support negotiations with agencies concerning the appropriateness of any recommended tests.

Sediment toxicity tests anticipated for future use in biomonitoring programs for National Pollutant Discharge Elimination System (NPDES) permit compliance are addressed in the Technical Resource Document and in this User's Guide. These documents were developed for use by petroleum industry operations (refineries, marketing terminals, and production facilities) that have discharges to surface waters. However, the Technical Resource Document and this User's Guide contain information that is applicable to other industries and could be used by any wastewater discharger.

The term sediment toxicity test, as used here, refers to any laboratory method that measures the adverse biological response of a group of organisms to a sample of test sediment. Some sediment toxicity tests measure lethal effects by determining the number of organisms that are killed during the exposure period. Other tests measure sublethal effects such as developmental abnormalities in juvenile stages, inhibition of reproduction, or reduced growth. Sediment toxicity tests are used in many biomonitoring programs because they integrate the effects of multiple chemicals and can be used in conjunction with chemical measurements and surveys of sediment-dwelling organisms to establish cause-effect relationships. Sediment toxicity tests are also the primary tool for any toxicity identification and evaluation program. Sediment toxicity tests are available for many different species and various life stages of some species. For example, they may be conducted on embryos, larvae, and juveniles of various fish species, as well as embryos and juveniles of invertebrates such as clams, oysters, and sea urchins. Sediment toxicity tests can also be conducted with microscopic algae and bacteria, submerged aquatic plants (e.g., water hyacinth), and wetland plants (e.g., marsh grass).

The next section presents an evaluation of available sediment toxicity tests, including descriptions of habitat type, sediment test systems, and biological endpoints. The following section provides a procedure for selection of tests at a specific site. Finally, brief summaries of sampling and data analysis issues are presented in a section on application of sediment toxicity tests.

Selected terms in this User's Guide are defined in the Glossary.

EVALUATION OF SEDIMENT TOXICITY TESTS

The available test methods were classified by type of habitat (marine, estuarine, and freshwater) to which each method applies and the general endpoint type (lethal or sublethal) specified for each test. This classification scheme resulted in the following six major categories of tests:

- Marine lethal
- Marine sublethal
- Estuarine lethal
- Estuarine sublethal
- Freshwater lethal
- Freshwater sublethal.

Appendix A of the Technical Resource Document presents test classification tables that contain the following information on each test: 1) organisms, including the broad biotic group, scientific name, and life stage of the species used in the test; 2) exposure medium (whole sediment, interstitial water, sediment elutriate, or sediment extract); 3) exposure duration; and 4) primary literature references for test methods. Each test was assigned a number to allow users of the Technical Resource Document to track a given test through the various evaluation tables. In many cases, several of the specified tests were actually variations of a single test method and were assigned the same test number.

KEY TEST CHARACTERISTICS

The key characteristics used to classify sediment toxicity tests are described below (see the *Test Screening Approach* section of the Technical Resource Document for details).

Habitat Type

The primary characteristic that distinguishes marine, estuarine, and freshwater habitat types is water salinity. Salinity strongly influences the distributions of most of the test organisms. In some cases, test organisms are tolerant of both marine and estuarine conditions or both estuarine and freshwater conditions. However, few test organisms tolerate both marine and freshwater conditions. For purposes of this study, habitat categories were defined as follows:

- Marine (≥28 ppt)
- Estuarine (>0.5 ppt and <28 ppt)
- Freshwater (≤ 0.5 ppt).

Because the division between habitat categories is an artificial distinction, use of a particular habitat designation for a test in this report should not necessarily preclude the application of a test to sediments in other habitats. For example, some tests that are classified as marine tests may be applied to high salinity estuarine sediments, and in some cases, adjusting the salinity of a sediment sample to allow the use of a particular test may be appropriate.

Exposure Medium

The kind of exposure medium was used to classify the various toxicity tests because each kind of exposure medium has favorable and unfavorable characteristics that can profoundly influence the toxicity test results. The four kinds of exposure media considered were as follows:

- Whole sediments
- Interstitial water
- Sediment elutriates
- Sediment extracts.

Whole Sediments—The use of whole sediments is probably the most realistic exposure scenario because it mimics the manner in which most organisms are exposed to chemicals in the

environment. Whole-sediment toxicity tests integrate multiple exposure routes, including chemical intake from dermal contact with sediment particles and interstitial water as well as ingestion of sediment particles, interstitial water, and food organisms (the food uptake route applies to at least some methods in which the test species is not fed). For most whole sediment tests, the sediments are carefully placed in the exposure chamber and the chamber is then filled with clean water. Resuspended particles are allowed to settle before initiation of exposure. In whole-sediment tests, infaunal test organisms are expected to have the highest potential for exposure to chemicals because they live within the sediments.

Interstitial Water—Interstitial water as an exposure medium is prepared by removing water from the test sediments by methods such as filtration and centrifugation. The test organisms are then introduced to the interstitial water in the absence of sediments. For infaunal organisms, interstitial water is a representative exposure medium for primarily one exposure route (i.e., dermal contact with the dissolved forms of chemicals). Interstitial water is not a representative exposure medium for epifaunal, planktonic, and nektonic organisms. The degree to which the sampling of interstitial waters or the elutriation process modifies the toxicity of the sample is usually unknown.

Sediment Elutriates — Sediment elutriates are prepared by mixing sediments and test water for a fixed period of time and then removing the sediments by methods such as filtration, centrifugation, and decanting after a settling period. The test organisms are then introduced to the test water in the absence of sediments. Elutriates are useful for representing the exposure to chemicals that can occur after sediments have been resuspended into the water column or after they have passed through the water column as part of dredged material disposal operations. Although the use of a sediment elutriate as an exposure medium is realistic for planktonic and nektonic test organisms, it is unrealistic for infaunal and epibenthic organisms. The degree to which the sampling of interstitial waters or

the elutriation process modifies the toxicity of the sample is usually unknown.

Sediment Extracts — Sediment extracts are prepared by mixing sediments with an organic solvent that is capable of removing specific kinds of chemicals from the sediments. After the extraction process is completed, the sediments are removed by methods such as filtration, centrifugation, and decanting after a settling period. The extractant and the extracted chemicals are diluted with water for testing. In some cases, the extracted chemicals are first exchanged with a less toxic carrier medium before the test concentrations are prepared. either case, the test organisms are introduced to a solvent-water mixture containing the extracted chemicals. Because the test organisms are exposed to an unnatural exposure medium (organic solvent) in the absence of sediments, an extractant-prepared exposure medium is generally considered an unrealistic exposure scenario.

Endpoint Type

The major types of endpoints for most toxicity tests include the following:

- Lethal (i.e., mortality)
- Sublethal
 - Reduced growth
 - Reproductive effects
 - Developmental abnormality
 - Histopathological abnormalities.

The determination of the lethal endpoint is unambiguous and is clearly an adverse effect. The reliability of any sublethal endpoint test depends on use of experienced laboratory personnel (for details see Endpoint Type in the section Classification of Available Test Methods, Classification Criteria in the Technical Resource Document).

EVALUATION CRITERIA

A technical rating was assigned to each sediment toxicity test based on each of the following evaluation criteria:

■ Reliability

- The endpoint can be measured accurately
- The results are repeatable
- The negative control results generally meet quality assurance criteria
- Intra- and interlaboratory variability studies indicate high precision

■ Ecological relevance

- The results of a test method are directly applicable to indigenous species under field conditions
- Test organisms are species that are of commercial or ecological importance

■ Exposure relevance

 The pathway of exposure used in a test is analogous to exposure under field conditions

Availability

- Test organisms can be easily obtained or cultured
- The method is standardized and well documented
- Commercial laboratories routinely perform the test

■ Interferences

 Test methods have a low susceptibility to confounding physical or chemical factors

■ Chemical discrimination

- Test results are useful in defining gradients of sediment toxicity in the environment
- Test methods and organisms are not overly sensitive or insensitive.

An overall technical rating was determined by summing the scores for each of the individual criteria. Because little information was available on interferences and chemical discrimination for most tests, their influence on the overall technical rating scores was moderated by use of a weighting factor (see the *Test Screening Approach*, PTI 1994, section of the Technical Resource Document).

The rating for regulatory status was based on information from regional and national EPA offices and whether a test was recommended in guidance documents for potential use in NPDES programs, cleanup assessments, baseline monitoring, and dredged material testing. The guidance documents considered as the basis for rating regulatory status included the method documents issued by the Canadian (Environment Canada 1990a-e. government 1992a-f), the dredged material testing documents issued by United States government agencies (U.S. EPA and U.S. COE 1991, 1993), and a major research and development planning document issued by EPA (U.S. EPA 1992). If a test was included in 3-4 of these document categories, it was assigned a rating of "high" for regulatory status. If a test was included in 1-2 of these document categories, it was assigned a rating of "medium." Toxicity tests that were not included in these documents and were not known to be required for use in current regulatory programs were assigned a rating of "low."

EVALUATION RESULTS

Results of the evaluation of sediment toxicity tests are presented in Tables 1 through 6. Most of the highly ranked marine and estuarine infaunal tests were based on the use of amphipods as test organisms, whereas most of the highly ranked freshwater infaunal tests were based on the use of insects (mayfly nymphs and midge larvae) as test organisms. These species groups are ecologically important, especially as key prey items for various fishes. In most cases, the highest ranking tests were the ones based on the exposure of infaunal organisms to whole sediments because: 1) exposure conditions closely mimic field conditions, 2) most of the test species are available by field collection during most of the year, and 3) many of the tests have welldeveloped methods.

Advantage								(F				450
Adults Ampelisca abolita Ampelisca abolita Adults Ampelisca abolita Ampelisca aliana Ampelisca Ampelisca aliana Ampelisca aliana Ampelisca aliana Ampelisca aliana Ampelisca aliana Ampelisca Ampelisca aliana Ampelisca aliana Ampelisca aliana Ampelisca Am	1/	94				//	EJ EJ	10.20	Soller	0	1,20	Snjer.
Adults	Sew etres	HEN HOUSE		Salvado, A			160 A	et engo	Tillde!	SOJUDIO S		S topping
Juveniles or adult females Ampelisca abditia Aduuts Angueriles or young adults Enhaptoxymius abronius Juveniles or young adults Enhaptoreia virginiana		نوي	947)	s@x	10		93	32				Comments
Adults Phepoxymius abronius O <td>Amphipod</td> <td>po</td> <td></td> <td>Ampelisca abdita</td> <td>•</td> <td>-</td> <td>D</td> <td>•</td> <td>•</td> <td></td> <td>ugi</td> <td>B,C,E</td>	Amphipod	po		Ampelisca abdita	•	-	D	•	•		ugi	B,C,E
Juveniles or young adults Echaustorius washingtonianus • • • • • • • • • • • • • • • • • • •	Amphipod	poc	Adults	Rhepoxynius abronius	•		•	•	•		High	C,E
Juveniles or young adults Amphiporela virginiana O<	Amphipod	pod	0	Eohaustorius washingtonianus	•	0	•	•	•		Med.	Ш
Juveniles or young adults Leptocheirus pinguis O <td>Amphipod</td> <td>pod</td> <td>Juveniles or young adults</td> <td>Amphiporeia virginiana</td> <td>•</td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td>Med.</td> <td>Ш</td>	Amphipod	pod	Juveniles or young adults	Amphiporeia virginiana	•		•	•			Med.	Ш
Immature Grandidisrella japonica Grandidisrella japonica Grandidiscella japonica	Amphipod	pod	Juveniles or young adults	Leptocheirus pinguis	•		•	•	_		Med.	
Juveniles Protothalus xiximeus Q	Amphipod	pod		Grandidierella japonica	•		•	•			Low	A,B
Embryos Mytilus edulis O	Amphipod	pod	ြည့	Foxiphalus xiximeus	•		•	•			Med.	Ш
Embryos Mytilus edulis O	Littlen	eck clam		Protothaca staminea			•	•	_	0	Low	
Juveniles Pandalus sp. Pandalus sp. <td>Blue</td> <td>nussel</td> <td>Embryos</td> <td>Mytilus edulis</td> <td></td> <td>•</td> <td>0</td> <td>•</td> <td>•</td> <td></td> <td>Med.</td> <td>В</td>	Blue	nussel	Embryos	Mytilus edulis		•	0	•	•		Med.	В
Juveniles Cancer sp. Q	Shrimp	d	Juveniles	Pandalus sp.				•	•		Low	
Juveniles Callinectes sapidus Q<	Cance	er crab	Juveniles	Cancer sp.		_		•	•		Low	
Post-larvae Penaeus sp.	Blue crab	rab	Juveniles	Callinectes sapidus				•	•		Low	
Juveniles Neanthes sp. 4	Shrimp	d	Post-larvae	Penaeus sp.				•	•		Low	
Juveniles Tapes japonica 4	Polyc	Polychaete	Juveniles	Neanthes sp.			•	•			Med.	В
Embryos Mytilus edulis Q	Japa	Japanese clam	Juveniles	Tapes japonica		_	•	•	•	0	Low	
Embryos Crassostrea gigas © (1) © (2) © (3) © (4) © (5) © (6) © (7) © (1) <td>Blue</td> <td>mussel</td> <td>Embryos</td> <td>Mytilus edulis</td> <td></td> <td></td> <td>•</td> <td>•</td> <td>0</td> <td>•</td> <td>Med.</td> <td>B,C</td>	Blue	mussel	Embryos	Mytilus edulis			•	•	0	•	Med.	B,C
Embryos Crassostrea virginica	Pacif	ic oyster	Embryos	Crassostrea gigas		•	0	•	•		Med.	B,D
ow 1-14 days old Cyprinodon variegatus	Easte	ern oyster	Embryos	Crassostrea virginica		0	0	•	•	•	Med.	В
Inventible Sirvania innentis	Shee	pshead minnow	1-14 days old	Cyprinodon variegatus	•	•		•		0	Med.	В,Е
Juvenines Organia migerina	Ridge	Ridge-back prawn	Juveniles	Sicyonia ingentis	•		•	•	•	0	Low	А

	widely adopted				, none
	high				wol
6	•	•	•	•	0

Elutriate ы S

Sediment

Geographically restricted or alien to United States Widely distributed and/or cultured

Potential sediment interferences

Field validated to benthos Interlaboratory comparisons available

A B O O B

_
4
Į
8
긎
쁫
E
7
3
- MARINE SUBI
/ TESTS - MARINE SUB
Ë
S
Н
F
ប
ž
T TOXICIT
F
느
回
₹
둙
Ш
S
Ų,
O
Ž
<u>_</u>
5
Š
_
EVALUATION OF SEDIMENT TOXIC
Ú
2. EVALUATION OF SEDIMENT 1
N
TABLE 2
ㅠ
4
Ľ

										eenn	lechnical Hating	Bul
							Guile	ELIZO SE	/ 8	1		SSBUR
	/	100				/	BI		*0 \	ક્ષું.	13	Snielo
/	QUITA	Noin.		Seloady			ES THE	E	· O · \	1900 P		SAOJE
KST.	ODE	OOGS	Selly	S. Kel	1/9		Way Selling	504.	. ~~O. \	ALIGICA STORY		Comments
100	S	mphip	Juveniles or	Ampelisca abdita		0	•	•	, –	•	Low	B,C
121	S	Polychaete	Juveniles	Neanthes sp.	•	•	•	•	•	•	Low	9,6
109	E	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	•	•	0	•	•	•	Med.	ш
800	S	Amphipod	Adults	Rhepoxynius abronius	•	O	•	•	•	•	Low	O
900	S	Amphipod	Immature	Grandidierella japonica	•	Ð	•	•	•	•	Low	8
710	ᆸ	Blue mussel	Embryos	Mytilus edulis	•	•	•	•	•	•	Low	B,E
E	ᆸ	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	•	•	<u>○</u>	0	•	•	Low	E
047	ᆸ	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	•	•	○	0	•	•	Med.	
102	ᆸ	Sand dollar	Gametes	Dendraster excentricus	•	•	0 0	•	•	•	Med.	ш
100	딥	Atlantic urchin	Gametes	Arbacia punctulata	•	•	0	•	•	•	Med.	ш
115	긥	Green sea urchin	Gametes	Strongylocentrotus droebachiensis	•	•	<u>○</u>	•	•	•	Med.	ш
015	S	Clam	Juveniles	Mulinia lateralis	•	•	•	0	•	•	Low	
107	긥	White sea urchin	Gametes	Lytechinus pictus	•	•	0	•	•	•	Med.	A,E
112	급	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	•	•	0	• (•	•	Low	
110	日	Pacific oyster	Embryos	Crassostrea gigas	•	•	0	0	•	•	Low	B,D,E
180	핍	Microtox	Cells	Photobacterium phosphoreum	•	•		•	•	•	Low	B,D
910	S	Blue mussel	Embryos	Mytilus edulis	•	•	•	•	0	•	Med.	B,C
600	E	Eastern oyster	Embryos	Crassostrea virginica	•	•	0	0	•	•	Low	В
080	ξ	Microtox	Cells	Photobacterium phosphoreum	•	•		•	•	•	Low	B,D
010	S	Pacific oyster	Embryos	Crassostrea gigas	•	•	0	•	0	•	Med.	B,C,D

widely adopted				none
high				low
•	•	•	•	0
	-			·

Elutriate Interstitial water Sediment ᄝᄫᄧ

Geographically restricted or alien to United States Widely distributed and/or cultured Potential sediment interferences Field validated to benthos Interfaboratory comparisons available A B C O B

긪
2
工
П
ш
Ľ
Щ
N
=
JAR
⋖
\supset
ESTL
EST
ŭi
_
ı
S
73
ESI
ùĭ
ITY TE
$\overline{\alpha}$
\equiv
×
0
F
E
Ş
2
≥
EDIME
SED
7
•
ш
\overline{o}
_
Ž
0
UATI
\preceq
7
3
~
Ш
G
ш
\equiv
面
7
\simeq

129 S Amphipod Juveniles or adult females Ampelisca abdita 131 S Amphipod Juveniles or young adults Echaustorius washingtonianus 133 S Amphipod Juveniles or young adults Echaustorius washingtonianus 134 S Amphipod Juveniles or young adults Corophium volutator 002 S Amphipod Juveniles or young adults Amphiporeia virginiana 134 S Amphipod Juveniles or young adults Corophium volutator 020 S Amphipod Juveniles or young adults Amphiporeia virginiana 134 S Amphipod Juveniles or young adults Corophium volutator 135 S Amphipod Juveniles or young adults Corophium volutator 137 S Amphipod Juveniles or young adults Corophium volutator 138 S Amphipod Juveniles Orophium volutator 139 S Blue crab Juveniles Campos Myritus edulis 151 S Grass string Post-hatch (1-4 days) Palaemonetes sp. 006 EL Eastern oyster Embryos Crassostrea aigas 007 S Blue mussel Embryos Crassostrea aigas 007 EL Pacific oyster Embryos Crassostrea aigas 007 EL Pacific oyster Embryos Crassostrea aigas 007 S Sand shrimp Juveniles Crangon sp. Crassostrea aigas 007 S S Sand shrimp Juveniles Crangon Normiles Crangon variegatus Crangon variegatus 153 EL Sheepshead minnow 1-14 days old Cryptinodon variegatus					Techi	Technical Rating	ng
S Amphipod Juveniles or adult females Ampelisca abdita S Amphipod Juveniles or adult females Ampelisca abdita S Amphipod Juveniles or young adults Eohaustorius estuarius S Amphipod Juveniles or young adults Eohaustorius estuarius S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S Amphipod Juveniles Callinectes sapidus S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue crab Juveniles Callinectes sapidus S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue mussel Embryos Crassostraa virginica EL Eastern oyster Embryos Crassostraa gigas S Sand shrimp Juveniles Canagon sp. EL Sand shrimp Juveniles Canagon sp.		California	1/3	ELL	1		1 68016
S Amphipod Juveniles or adult females Ampelisca abdita S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S EL Blue mussel Embryos Mytilus edulis EL Eastern oyster Embryos Crassostrea virginica EL Pacitic oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. Crassostrea gigas Crangon variegatus EL Sheepshead minnow 1-14 days old Cyprinodon variegatus			E RESTR	VO.\	Sugar		SAISIO
Amphipod Juveniles or adult females Ampelisca abdila Echaustorius estuarius S Amphipod Juveniles or young adults Echaustorius estuarius S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S EL Blue mussel Embryos Mytilus edulis Callinectes sapidus Callinectes sapidus Callinectes sapidus Callinectes sapidus Callinectes sapidus Cassostrea virginica EL Eastern oyster Embryos Crassostrea gigas Carassostrea gigas S Sand shrimp Juveniles Crangon sp. Crassostrea gigas Carassostrea minnow 1–14 days old Cyprinodon variegatus		11/1	IS THE	· & · \	Secretary Strategic	18 j	S NOW!
S Amphipod Juveniles or adult females Amphisca abdita S Amphipod Large juveniles and adults Echaustorius estuarius S Amphipod Juveniles or young adults Leptocheirus plumulosus S Amphipod Juveniles or young adults Leptocheirus plumulosus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles Leptocheirus plumulosus S Amphipod T-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue mussel Embryos Crassostrea gigas EL Eastern oyster Embryos Crassostrea gigas EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp 1-14 days old <td< th=""><th>\</th><th>2670</th><th>6/031 Re/10</th><th>%.∖</th><th>A SUPPLY</th><th></th><th>Comments</th></td<>	\	2670	6/031 Re/10	%.∖	A SUPPLY		Comments
S Amphipod Large juveniles and adults Echaustorius estuarius S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles or young adults Leptocheirus plumulosus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Protophium volutator S Amphipod Juveniles Protophium volutator S Amphipod Juveniles Protophium volutator S Littleneck clam Juveniles Prototheirus plumulosus S Littleneck clam Juveniles Prototheirus plumulosus S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Grass shrimp Crassostrea gigas EL Pacific oyster Embryos Cra	-	•	•	9	•		B,C,E
S Amphipod Juveniles or young adults Echaustorius washingtonianus S Amphipod Juveniles Leptocheirus plumulosus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Protothaca staminea S Amphipod 7-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea S Blue crab Juveniles Callinectes sapidus S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue mussel Embryos Crassostrea virginica EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. S Sand shrimp Juveniles Craptone or virginica <		•	•	•	•	High	O
S Amphipod Juveniles Leptocheirus plumulosus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S Amphipod T-14 days old Hyalella azteca S Amphipod T-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea EL Blue mussel Embryos Mytilus edulis S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. EL Eastern oyster Embryos Crassostrea virginica EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. EL Sheepshead minnow 1-14 days old Cyprinodon variegatus	adults	•	•)	•	Med.	Ш
S Amphipod Mixed sexes Leptocheirus plumulosus S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S Amphipod Juveniles Leptocheirus plumulosus S Amphipod 7-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea EL Blue mussel Embryos Callinectes sapidus S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. EL Eastern oyster Embryos Crassostrea gigas EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. EL Sheepshead minnow 1-14 days old Cyprinodon variegatus	Leptocheirus plumulosus	•	•	•	•	Low	В,Е
S Amphipod Juveniles or young adults Corophium volutator S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S Amphipod 7-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea EL Blue mussel Embryos Mytilus edulis S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue mussel Embryos Crassostrea virginica EL Pacific oyster Embryos Crassostrea gigas EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. EL Sheepshead minnow 1-14 days old Cyprinodon variegatus	Leptocheirus plumulosus	•	• 0	•	•	High	В
S Amphipod Juveniles or young adults Amphiporeia virginiana S Amphipod Juveniles Corophium volutator S Amphipod Juveniles Leptocheirus plumulosus S Amphipod 7-14 days old Hyalella azteca S Littleneck clam Juveniles Protothaca staminea EL Blue mussel Embryos Mytilus edulis S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. EL Eastern oyster Embryos Crassostrea virginica EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crassostrea gigas S Sand shrimp 1-14 days old Cyprinodon variegatus		•	• •	•	•	Med.	Е
S Amphipod Adults Corophium volutator S Amphipod 7-14 days old Leptocheirus plumulosus S Littleneck clam Juveniles Protothaca staminea EL Blue mussel Embryos Mytilus edulis S Grass shrimp Post-hatch (1-4 days) Palaemonetes sp. S Blue mussel Embryos Crassostrea virginica EL Eastern oyster Embryos Crassostrea gigas EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crassostrea gigas S Sand shrimp Juveniles Crassostrea gigas EL Sheepshead minnow 1-14 days old Cyprinodon variegatus		•	•	•	•	Med.	ш
SAmphipodJuvenilesLeptocheirus plumulosusSAmphipod7-14 days oldHyalella aztecaSLittleneck clamJuvenilesProtothaca stamineaELBlue musselEmbryosMytilus edulisSBlue crabJuvenilesCallinectes sapidusSGrass shrimpPost-hatch (1-4 days)Palaemonetes sp.SBlue musselEmbryosCrassostrea virginicaELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1-14 days oldCyprinodon variegatus	Corophium volutator	•	•	•	•	Low	Ш
SAmphipod7-14 days oldHyalella aztecaSLittleneck clamJuvenilesProtothaca stamineaELBlue musselEmbryosMytilus edulisSGrass shrimpPost-hatch (1-4 days)Palaemonetes sp.SBlue musselEmbryosMytilus edulisELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1-14 days oldCyprinodon variegatus	Leptocheirus plumulosus	•	•	•	•	Low	В
SLittleneck clamJuvenilesProtothaca stamineaELBlue musselEmbryosMytilus edulisSBlue crabJuvenilesCallinectes sapidusSGrass shrimpPost-hatch (1-4 days)Palaemonetes sp.SBlue musselEmbryosMytilus edulisELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1-14 days oldCyprinodon variegatus	Hyalella azteca	•	•	•	•	High	В
ELBlue musselEmbryosMytilus edulisSBlue crabJuvenilesCallinectes sapidusSGrass shrimpPost-hatch (1–4 days)Palaemonetes sp.SBlue musselEmbryosMytilus edulisELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1–14 days oldCyprinodon variegatus	Protothaca staminea	•	•	•	O	Low	
S Blue crab Juveniles Callinectes sapidus S Grass shrimp Post-hatch (1–4 days) Palaemonetes sp. S Blue mussel Embryos Mytilus edulis EL Eastern oyster Embryos Crassostrea virginica EL Pacific oyster Embryos Crassostrea gigas S Sand shrimp Juveniles Crangon sp. EL Sheepshead minnow 1–14 days old Cyprinodon variegatus	Mytilus edulis	•	○●	•	•	Med.	В
SGrass shrimpPost-hatch (1–4 days)Palaemonetes sp.SBlue musselEmbryosMytilus edulisELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1–14 days oldCyprinodon variegatus	Callinectes sapidus	•	•	0	•	Low	
SBlue musselEmbryosAytilus edulisELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1–14 days oldCyprinodon variegatus		•	•	0	•	Low	
ELEastern oysterEmbryosCrassostrea virginicaELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1–14 days oldCyprinodon variegatus	Mytilus edulis	•	•	•	•	Med.	B,C
ELPacific oysterEmbryosCrassostrea gigasSSand shrimpJuvenilesCrangon sp.ELSheepshead minnow1–14 days oldCyprinodon variegatus	Crassostrea virginica	0 0	0	0	•	Med.	В
S Sand shrimp Juveniles Crangon sp. EL Sheepshead minnow 1–14 days old Cyprinodon variegatus	Crassostrea gigas	•	○●	•	•	Med.	B,D
EL Sheepshead minnow 1–14 days old Cyprinodon variegatus	Crangon sp.	•	•	0	•	Low	
	Cyprinodon variegatus	•	○●	•	O	Low	83
010 S Pacific oyster Embryos Crassostrea gigas 6	Crassostrea gigas	•	•	•	•	Med.	B,C,D

	widely adopted				none
	high				low
Key	•	•	•	•	0

Elutriate s E

Sediment

Widely distributed and/or cultured Potential sediment interferences m O O H

Interlaboratory comparisons available Field validated to benthos

TABLE 4. EVALUATION OF SEDIMENT TOXICITY TESTS – ESTUARINE SUBLETHAL

								1		ē,		econnical sample	
	`						11.	THE		\ચ્ છ			Seliens.
/	Tequin	SUEN LO	86 ₁	\$81380			PORT OF THE PROPERTY OF THE PR	erelet el	0 / C/ '	Brolot of	Soll S	ast i	Mas ton
્રું	1,5		**	is to be	11/	ie de la	ide (3)	E ST	(%) \	ALIGIA OF THE PROPERTY OF THE	Well !	Set S	Comments
100	S	Amphipod	Juveniles or adult females	Ampelisca abdita	•	•	•	•	•	•		Low	B,C
134	S	Amphipod	Juveniles	Leptocheirus plumulosus	•	•	•	•	•	•	7	Low	В
135	လ	Amphipod	Mixed sexes	Leptocheirus plumulosus	•	•	•	•	•	•		Low	В
129	S	Amphipod	Large juveniles and adults	Eohaustorius estuarius	•	•	•	•	•	•		Low	O
128	S	Amphipod	Adults	Corophium volutator	•	•	•	•	•	•		ľo V	ш
133	S	Amphipod	Juveniles	Leptocheirus plumulosus	•	•	•	•	•			§ o	8
017	핍	Blue mussel	Embryos	Mytilus edulis	•	•	•	0	•	•		Low	B,E
011	E	Pacific oyster	Embryos	Crassostrea gigas	•	•	•	0	0	•		Low	B,D,E
010	S	Pacific oyster	Embryos	Crassostrea gigas	•	•	•	0	•	0	2	Med.	B,C,D
016	S	Blue mussel	Embryos	Mytilus edulis	•	•	•	0	•	0	_	Med.	B,C
014	ᆸ	Quahog clam	Embryos	Mercenaria mercenaria	•	•	•	0	•	•		Low	В
600	ᆸ	Eastern oyster	Embryos	Crassostrea virginica	•	•	•		•	•		Low	В
187	딥	Sheepshead minnow	Adults	Cyprinodon variegatus	•	Ð	•	0	•	•		NO.	В
176	Ä	Microtox	Cells	Photobacterium phosphoreum	•	•	•	0		•		NO.	B,D
191	Σ	Polychaete	Females	Dinophilus gyrociliatus	•	•	0	0	0	•		Low	
175	S	Microtox	Cells	Photobacterium phosphoreum	•	•	O	0	•	0	Γ_	Low	B,C
											1		

	widely adopted				none
	high				low
Key	•	•	•	•	0

Elutriate SAE

Extract Interstitial water Sediment

Widely distributed and/or cultured Potential sediment interferences Field validated to benthos Interlaboratory comparisons available **B** C C H

TABLE 5. EVALUATION OF SEDIMENT TOXICITY TESTS - FRESHWATER LETHAL

241 S Mayfly Nymphs Hexag 239 S Mayfly Young nymphs Hexag 230 S Midge 2nd instar larvae Chiron 230 S Midge 2nd instar larvae Chiron 230 S Midge 2nd instar larvae Chiron 240 S Midge 2nd instar larvae Chiron 250 S Midge 2nd instar larvae Chiron 240 S Amphipod Juvennies Hexag 250 INT Water flea Neonates Echino 250 S Oligochaete Large worms Lumbr 249 S Oligochaete Mixed-ge Lumbr 240 INT Mayfly Neonates (<24 hrs) Daphn 250 EL Water flea Neonates C24 hrs) Daphn 260 E Water flea Neonates Daphn 271 E Water flea				
S Mayfly Nymphs S Mayfly Nymphs S Mayfly Nymphs S Midge Neonates or larvae S Mayfly Nymphs INT Water flea Neonates S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) EL Water flea Neonates EL Water		901		
Mayfly Nymphs S Mayfly Young nymphs S Midge Card instar larvae S Mayfly Nymphs INT Water flea Neonates S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) EL Water flea Neonates S Oligochaete Mixed age; similar size S Oligochaete Mixed age S Oligochaete Mixed age	Salvads A	Singer Si	Ness Agent	THE T
S Mayfly Nymphs S Mayfly Young nymphs S Midge 2nd instar larvae S Midge Juveniles S Amphipod Juveniles INT Water flea Neonates or larvae S Amphipod Juveniles S Mayfly Nymphs S Oligochaete Large worms EL Water flea Neonates (<24 hrs) S Paper pondshell clam Juveniles S Oligochaete Mixed age; similar size S Oligochaete Mixed age; similar size				Comments
S Mayfly Young nymphs S Midge 2nd instar larvae S Amphipod Juveniles S Amphipod Juveniles INT Water flea Neonates INT Water flea Neonates S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) EL Water flea Neonates (<24 hrs) EL Water flea Neonates (<24 hrs) EL Water flea Neonates EL Water flea Neonates S Paper pondshell clam Juveniles S Oligochaete Mixed age; similar size S Oligochaete Mixed age; similar size	Hexagenia limbata	•	Low	B,D
S Midge Cnd instar larvae S Amphipod Juveniles S Amylty Nymphs INT Water flea Neonates S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) EL Water flea Neonates S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Hexagenia limbata	• • • • •	Low	B,D
S Amphipod Juveniles S Mayfly Nymphs INT Water flea Neonates S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) EL Water flea Neonates S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Chironomus tentans	• 0 • 0 • •	High	В,D
S Amphipod Juveniles S Mayfly Nymphs INT Water flea Neonates S Amarsh grass Seedlings S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs)	e Chironomus riparius	• • • • • • • • • • • • • • • • • • •	Med.	В
S Mayfly Nymphs INT Water flea Neonates S Marsh grass Seedlings S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs)	Hyalella azteca	• • • • • • •	High	В
INT Water flea Neonates S Marsh grass Seedlings S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs)	Hexagenia limbata	• • • • • •	Low	B,D
S Marsh grass Seedlings S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) INT Mayfly Nymphs EL Water flea Neonates S Paper pondshell clam Juveniles S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Daphnia magna	• • • • • • • • • • • • • • • • • • •	Low to Med.	B,D,E
S Oligochaete Large worms S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) INT Mayfly Nymphs EL Water flea Neonates S Paper pondshell clam Juveniles S Oligochaete Mixed age S Oligochaete Mixed age	Echinochloa crusgalli	0 • 0 • • •	Low	
S Oligochaete Mixed-age EL Water flea Neonates (<24 hrs) INT Mayfly Nymphs EL Water flea Neonates EL Water flea Neonates (<24 hrs) EL Water flea Neonates (<24 hrs) EL Water flea Neonates EL Water flea Neonates S Paper pondshell clam Juveniles S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Lumbriculus variegatus	0 0 0 0 0 0	Low	В
ELWater fleaNeonates (<24 hrs)INTMayflyNymphsELWater fleaNeonatesELWater fleaNeonates (<24 hrs)	Lumbriculus variegatus	0 0 0 0	Low	В
INTMayflyNymphsELWater fleaNeonates (<24 hrs)	s) Daphnia magna	• • • 0 • •	Med.	B,D,E
ELWater fleaNeonatesELWater fleaNeonates (<24 hrs)	Hexagenia limbata	• 0 0 0 0 •	Low	B,D
ELWater fleaNeonates (<24 hrs)ELWater fleaNeonatesELWater fleaNeonates (<24 hrs)	Ceriodaphnia dubia	• • • • • • • • • • • • • • • • • • •	Med.	В,Е
ELWater fleaNeonatesELWater fleaNeonates (<24 hrs)	s) Daphnia pulex	• • • • • •	Med.	B,E
EL Water flea Neonates (<24 hrs) S Paper pondshell clam Juveniles S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Daphnia magna		Med.	B,D,E
S Paper pondshell clam Juveniles S Oligochaete Mixed age S Oligochaete Mixed age	s) Daphnia pulex	• • • • • •	Med.	В
S Oligochaete Mixed age; similar size S Oligochaete Mixed age	Anodonta imbecillis		Low	
S Oligochaete Mixed age			Low	В
	Tubifex tubifex	$0 \bullet 0 \bullet 0 \bullet \bullet$	Low	B,D
222 EL Bluegill Approx. 4 days Lepon	Lepomis macrochirus	0 • 0 • •	Low	B,E

	widely adopted				none
	high				wol
vey	•	•	•	•	0

EL Elutriate
INT Interstitial water
S Sediment

Widely distributed and/or cultured Potential sediment interferences

вО **п**

Field validated to benthos Interlaboratory comparisons available

TABLE 6. EVALUATION OF SEDIMENT TOXICITY TESTS - FRESHWATER SUBLETHAL

	SSO	Mers ton	Comments	B,D	B,D	В,D	В	8	B,D	B,D,E		В	8	B,D,E	B,D	B,E	9,6	B,D,E	89		8	B,D	
Technical Rating		18 6		Γο	Low	Low to Med	Low	Low	Low	Low	Med.	Low	Low to Med	Low	Low	Low	Med.	Med.	Low to Med.	Low	Low	Low	
Techr	8	Seoule Sille Seoule Les	STORY.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	1/3	ねヽひヽ	(%) \	\sim	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	SEE SEE	A SOUTH STATE OF THE STATE OF T	E ST	•	•	•	•	•	•	•	0	•	•	•	•	•	0	0	0	0	0	•	(
		148	delle	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
			E SO	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•
				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		SALVAN		Chironomus tentans	Chironomus riparius	Hyalella azteca	Hexagenia limbata	Hydrilla verticillata	Echinochloa crusgalli	Hyalella azteca	Ceriodaphnia dubia	Tubifex tubifex	Chironomus tentans	Lumbriculus variegatus	Lumbriculus variegatus	Lumbriculus variegatus	Pimephales promelas	Selenastrum capricornutum	Photobacterium phosphoreum	Oncorhynchus mykiss	Selenastrum capricornutum	e Pristina leidyi	Ohotohoodominotohoodo
			S all	2nd instar larvae	Neonates or larvae	Juveniles	Nymphs	Apical shoots	Seedlings	Juveniles (<1 week)	Neonates	Adults	2nd instar larvae	Large worms	Juveniles and adults	15 mm in length	Larvae (<24 hrs old)	Cells	Cells	Egg-sac stage	Cells	Mixed age; similar size	ارمال
		ellen log		Midge	Midge	Amphipod	Mayfly	Aquatic vascular plant	Marsh grass	Amphipod	Water flea	Oligochaete	Midge	Oligochaete	Oligochaete	Oligochaete	Fathead minnow	Green algae	Microtox	Rainbow trout	Green algae	Oligochaete	Microtove
		Tequin	L.	s	ဟ	တ	S	S	လ	S	EL	S	Ξ	S	S	တ	립	ᆸ	N N	s	Ī	တ	λ'
		_				- 1	242		256	269	285				1					235		252	176

	widely adopted				none
	hgid				low
Key	•	•	•	•	0

EL Elutriate EX Extract INT Interstitial S Sediment

Extract
Interstitial water
Sediment

80 21

Widely distributed and/or cultured Field validated to benthos Interlaboratory comparisons available

Many of the lowest ranking toxicity tests involved exposure of planktonic organisms to whole sediments. The exposure relevance of these tests is relatively low because the test species are rarely exposed to sediments in the field and they may be sensitive to interference of suspended sediments with feeding mechanisms.

The species included in the highest ranking marine and estuarine tests for lethality include the following amphipods: Ampelisca abdita, Rhepoxynius abronius, Grandidierella japonica, Eohaustorius washingtonianus, Eohaustorius estuarius, Amphiporeia virginiana, Foxiphalus xiximeus, Corophium volutator, Leptocheirus pinguis, and Leptocheirus plumulosus. Reproductive endpoints are also well developed for the L. plumulosus test. Although behavioral endpoints (e.g., reburial at exposure termination) are used in many of these amphipod tests, the behavioral endpoints have generally not been field validated. The tests based on A. abdita and R. abronius are the only ones with a high regulatory status.

Taxonomic groups other than amphipods also ranked high among the marine and estuarine sublethal tests, including the polychaete (Neanthes sp.) growth test based on a 20-28 day exposure to whole sediments, the echinoderm (Strongylocentrotus purpuratus, S. droebachiensis, Dendraster excentricus, Arbacia punctulata, Lytechinis pictus) fertilization test of sediment elutriates, and the bivalve (Mytilus edulis, Crassostrea gigas, C. virginica) larval abnormality test of sediment elutriates. Although these elutriate tests have a lower exposure relevance than the whole sediment tests, they use sensitive life stages of ecologically important species, are widely available, and have well developed methods. Although these elutriate tests are generally reliable, their variability can be high and the negative controls fail quality assurance limits more frequently than those in the tests involving juveniles and adults of these or other species. Other high-ranking tests in the marine and estuarine sublethal category included the juvenile clam (Mulinia lateralis) test with whole sediments and the Microtox* (Photobacterium phosphoreum) test with sediment elutriates or interstitial water.

The highest ranking freshwater tests for lethal and sublethal endpoints were based on the exposure of infaunal insects (i.e., nymphs of the mayfly Hexagenia limbata and larvae of the midges Chironomus riparius and Chironomus tentans) and an epifaunal amphipod (Hyalella azteca) to whole sediments. Only the H. azteca and C. tentans lethal tests have high regulatory status. Whole sediment tests with vascular plants (Hydrilla verticillata Echinochloa crusgalli) were among the top six ranked tests in the freshwater lethal category. These tests ranked high primarily because of their high degrees of exposure and ecological relevance and their relatively low susceptibility to interferences. The high ecological relevance of the two plant tests is based on the importance of the plants in providing habitat for other organisms. The major drawback of these two tests is their infrequent use in regulatory programs.

There is a relative lack of information on interferences and chemical discrimination for sediment toxicity tests. Further research in these areas and more comparative studies of toxicity tests with corresponding data on the bioavailability of sediment chemicals are needed.

SITE-SPECIFIC SELECTION OF SEDIMENT TOXICITY TESTS

The selection of toxicity test methods for application at a particular site involves consideration of many factors, including physical, chemical, and biological conditions at the site; regulatory requirements at federal, state, and local levels; and specific objectives for a monitoring program. Procedures for selecting sediment toxicity tests for use in biomonitoring programs are outlined in this section. First, the factors to be considered in test selection are defined. Second, the steps for selecting a test or battery of tests for application at a given site are described.

DEFINITION OF SELECTION CRITERIA

The selection of sediment toxicity tests for use in a biomonitoring program depends on site-specific characteristics, regulatory requirements, and other factors that are important in test evaluation (Table 7). Many of the decisions based on these factors may be constrained by technical specifications of a permit or monitoring program requirements.

OVERVIEW OF TEST SELECTION PROCESS

The process for selecting the most appropriate sediment test for a given study is illustrated in the decision tree shown in Figure 1. As users progress through each decision point within the tree, the number of candidate tests is reduced until the final sediment test(s) have been selected. Habitats and endpoints desired for the biomonitoring program should be matched to one of the six tables for test selection (Tables 1 through 6). Information on biotic group and geographic range for each of the tests is found in Appendix D of the Technical Resource Document. Also included in Appendix D are important comments regarding sensitivity to

chemicals and interferences that, when combined with the known chemical and physical characteristics of the study site, provide critical information in the selection process. An overview of how to use the decision-making framework in selecting toxicity tests is provided in the following sections.

Site Characteristics

A review of available information on the characteristics of the discharge site to be monitored and the organisms living at the study site is the fundamental first step in the selection process. Available data on site-specific chemicals and physical properties of the sediments can be useful in selecting test species that are sensitive to the presence of the site-specific chemicals, yet have minimal interferences to other properties of the sediment (e.g., grain size, organic carbon, ammonia). Knowing what organisms live at the study site can help guide the selection of appropriate species. If, for example, polychaete worms and bivalves dominate the benthic community in a marine study area and echinoderms (sea urchins and sand dollars) are absent, it is likely that the most appropriate test would include either polychaetes or bivalves as receptors, Other important information that echinoderms. should be assembled includes regional water quality data, sediment characteristics, habitat types, and seasonal patterns in biological or physical/chemical characteristics.

Regulatory Requirements

An equally important step in the selection of sediment toxicity tests is a thorough understanding of the applicable regulatory requirements that are driving the testing program. Regulatory programs frequently include explicit requirements that immediately limit the field of potential toxicity tests. These confining factors can include specifications for lethal or sublethal tests, exposure duration, seasons for testing, single species vs. a battery of species for testing, and data quality objectives. Guidelines for selecting toxicity tests can also be included as part of regulatory programs. Knowledge of the regulatory requirements or guidelines

TABLE 7. SELECTION OF SEDIMENT TOXICITY TESTS

Decision Factor	Alter	rnatives					
Objectives	Single species vs. test	battery					
	Season(s) for testing						
	Site-specific chemicals,	receptors, and sediment types					
	Data quality objectives						
Regulatory Requirements	Various state and EPA	regulations					
Geographic Zone	West Coast (north or se	outh)					
	East Coast (north or so	uth)					
	Gulf Coast (east or west)						
Habitat Type	Marine						
	Estuarine						
	Freshwater						
Biotic Group	Bacteria	Polychaete					
	Eukaryotic cells	Oligochaete					
	Algae	Mollusc					
	Vascular plant	Echinoderm					
	Crustacean	Amphibian					
	Insect	Fish					
	Nematode						
Species/Life Stage	Various species						
	Gametes						
	Embryos/Larvae						
	Juveniles						
	Adults						
Exposure Duration	Acute						
	Chronic						
Endpoint	Lethal						
	Sublethal						
Habitat Group ^a	Infauna						
	Epifauna						
	Plankton/nekton						
Exposure Medium ^a	Whole sediment						
	Sediment elutriate						
	Interstitial water						
	Sediment extract						
Potential Interferences ^a	Grain size						
	Organic carbon						
	Acid-volatile sulfides						
	Ammonia						
	Mold, pathogens						

Note: EPA - U.S. Environmental Protection Agency

^a These decision factors were considered in ranking sediment toxicity tests. All other factors should be explicitly considered when selecting the sediment toxicity tests on a site-specific basis.

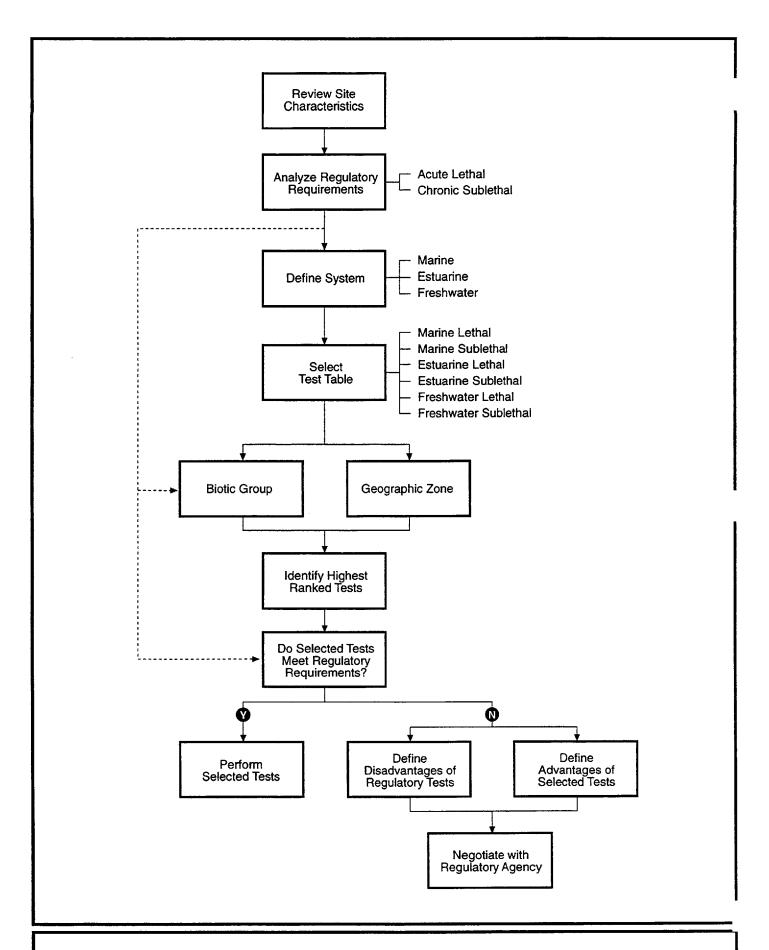


Figure 1. Approach to selection of sediment toxicity tests for a specific site.

for these or other toxicity test parameters is fundamental to the ultimate selection of the appropriate test. It is also important to have a full understanding of these regulatory requirements so that they can be evaluated in the context of the overall decision framework.

Selection of Evaluation Tables

Based on the habitat (marine, estuarine, or freshwater) and endpoint type (lethal and sublethal), one or more of the evaluation tables (Tables 1 through 6) is used to select appropriate tests. Important ancillary information relevant to each test is included in the Technical Resource Document (see especially Appendix D).

Biotic Group and Geographic Zone

A wide variety of biotic groups is represented in the listing of tests for each habitat and endpoint type. The list of candidate tests can be further reduced by deciding which organisms and which geographic zones are most relevant. The location of the study site will provide the information required to select a geographic zone. In addition, knowledge of the regulatory requirements may direct the selection of the species. If, for example, emphasis is on organisms that may be consumed by humans, then crabs, large bivalves, or fish are likely candidates for testing. If emphasis is on ecological risks, then other biotic groups such as algae, amphipods, insects, or polychaete worms become good candidate organisms.

Identify Highest Rank Tests

In the evaluation tables (Tables 1 through 6), tests are ranked from best overall candidate tests to least appropriate overall tests for each habitat/endpoint type. In most cases, the higher ranked tests may have very similar total scores. The user should select the most appropriate high-ranked test based on a consideration of site-specific factors or regulatory considerations.

Compare Selected Test(s) with Regulatory Requirements

The candidate toxicity test(s) tentatively selected should be matched with the regulatory requirements. If the test(s) meet these requirements, then the selection process is complete and the actual test(s) can be performed. If the selected toxicity test(s) do not meet the requirements of the applicable regulatory program, then low-ranked tests may need to be considered.

APPLICATION OF SEDIMENT TOXICITY TESTS

After the selected sediment toxicity tests are approved for a biomonitoring program, a sampling and analysis plan should be developed. The sampling and analysis plan specifies the study design for the field sampling program (see the *Application of Sediment Toxicity Tests* section in the Technical Resource Document), methods for implementing the toxicity tests, quality assurance procedures, and data analysis approaches. Issues related to quality assurance, sampling, and data analysis are discussed below.

METHODS AND QUALITY ASSURANCE ISSUES

The use of acceptable and well-documented laboratory methods is essential for ensuring that the results of toxicity testing are meaningful estimates of toxicity and that the tests are repeatable. Except for experimental studies, the tests that should be used for toxicity evaluations are those that have detailed, peer-reviewed methods to ensure that the testing is conducted properly and that the data will be comparable with data from other studies that use the same methods. Many of the well-standardized tests are documented in methods or guidance manuals developed by the American Society of Testing and Materials (ASTM), the U.S. Environmental Protection Agency (EPA), and Environment Canada.

It is essential that the performance of laboratory testing be monitored using quality assurance and quality control procedures to document the quality of results and determine whether the results are acceptable for their intended use (e.g., U.S. EPA 1991b; Moore et al. 1994). The major quality assurance and quality control procedures for toxicity testing are as follows:

The use of negative controls to ensure that the test organisms are suitably healthy for testing

- The use of positive controls (i.e., reference toxicants) to ensure that the test organisms are suitably sensitive to toxic chemicals
- The monitoring of key test conditions (e.g., water temperature, dissolved oxygen) to ensure that the test results are not influenced by factors other than chemical toxicity
- The evaluation of variability among replicates and possibly tests for outliers.

Certain factors intrinsic to natural sediment samples may confound the relationship between the concentrations of sediment contaminants and toxicity. The objective of sediment toxicity testing is to evaluate the response of the test species to target chemicals contained in the sediment sample. It is preferable that the species not be responsive to other sediment characteristics such as grain size or organic carbon content. If such responses occur, toxicity may be incorrectly attributed to target chemicals. Changes in the following factors can restrict the application of a particular test or have a confounding effect on test results:

- Sediment grain size
- Organic carbon content
- Oxidation-reduction conditions
- pH
- Alkalinity
- Temperature
- Turbidity
- Water hardness
- Ultraviolet light intensity
- Mold or pathogens.

Information on potential interferences in sediment toxicity tests is provided in Appendix D of the Technical Resource Document.

SAMPLING ISSUES

The collection of representative sediment samples is essential for ensuring that the results of the subsequent toxicity tests are indicative of the true conditions in the field. A representative sample is one that is collected in a relatively undisturbed state from the intended field location; one that is collected using an appropriate collection device; and one for which proper handling, preservation, and documentation procedures have been observed after collection. A deficiency in any one of the above elements can affect the integrity of the sample and thereby influence the results of the toxicity testing so that they are not indicative of the true field conditions. Each of these elements is described below.

Sample Location

Sediment samples should be collected as close to their intended locations as required to satisfy the study objectives. This usually means that accurate positioning methods should be used both to locate the station initially and to allow the station to be revisited, if necessary, for subsequent sample collection.

Sample Collection

Sediment samples should be collected using appropriate collection devices that ensure that the sediment is collected with minimal disturbance, that an adequate penetration depth is achieved, and that the sample is retrieved in a relatively undisturbed state. When the results for different samples will be compared with each other (e.g., along spatial gradients, during different time periods), it is advisable to use the same sampling device to collect all of the samples so that biases that may occur from the use of different sample collection devices can be avoided.

Sediment samples should be collected in a relatively undisturbed state. The most common means of disturbing sediments are by excessive bow wake in front of the sample collection device immediately before the device contacts the sediment and by leakage of overlying water from the sample collection

device as it is retrieved. In both cases, fine-grained surface organic material can be lost from the sample, thus biasing the grain-size characteristics of the sample toward the coarse mineral fraction.

Sample Handling

Sediment samples should be subsampled and homogenized in a controlled and noncontaminating manner. To avoid contaminating sediments, all utensils should be constructed of stainless steel and should be chemically cleaned between different samples. Sediments should be removed from the sampling device in an unbiased manner, especially if the characteristics of the sediments are heterogeneous. In general, all of the sediment collected from a station that will be evaluated for toxicity, chemical concentrations, and sediment conventional variables should be pooled and homogenized prior to being distributed to sample jars. This process ensures that the various kinds of analytical results will be related as closely as possible. Homogenization is considered complete when the sediments are visually uniform with respect to texture and color.

Sediments that will be analyzed for unstable chemicals such as volatile organic compounds and acid volatile sulfides should not be homogenized prior to distribution because the resulting sample disturbance could alter those chemicals. Therefore, sediments that are suspected to contain unstable chemicals should be transferred directly from the sampling device to the sample jar, leaving minimal or no headspace. To provide representative sediments for unstable chemicals, it is best to take several random subsamples from various parts of each sediment sample.

Chemicals in interstitial water samples are likely to be modified during the collection and preparation process. Guidance on sample collection procedures for interstitial water samples is contained in Burton (1992).

Sample Preservation

Sediment samples should be preserved in a manner that maintains their integrity during storage prior to laboratory analysis and should be analyzed within the specified maximum holding times. Proper sample preservation is essential for minimizing potential changes in the toxicity of the sediments during storage. Typically, sediments should be held unfrozen at 4°C for toxicity tests that rely on exposure to whole sediments. The maximum allowable holding time prior to testing for those sediments is generally specified as 2 weeks. However, sediment characteristics change during storage, even under controlled conditions. Therefore, it is preferable to conduct toxicity testing as soon as possible after field collection. For toxicity tests that rely on exposure to sediment extracts, sediments can sometimes be stored frozen if the test method allows.

Sample Documentation

All field collection procedures should be properly documented to verify that appropriate methods were used and that the security of samples was maintained at all times. Proper documentation generally involves the use of a field logbook to record pertinent information for each station and sediment sample and the use of chain-of-custody forms to document the transfer of samples among different parties.

DATA ANALYSIS ISSUES

Toxicity data should be analyzed using methods that are appropriate for the kinds of data available. To ensure that the data are appropriate for the planned analytical methods, it is essential that those methods be identified when the toxicity study is being designed. The study design specifications can then be tailored to provide data that are appropriate for the planned data analysis methods.

In monitoring programs and cleanup assessments, hypotheses regarding the toxicity of sediments at a specific site are usually tested using statistical methods to provide an objective analysis of the data. Statistical analysis allows quantification of the uncertainty associated with test results and typically ensures that several investigators would reach the same conclusions if each one analyzed the data

separately. Statistical analyses are especially important for determining whether the results of a sitespecific toxicity test differ significantly from the reference sediment results. For example, a statistical approach might be used to evaluate the following null hypothesis: There is no significant (P > 0.05)difference between the site and a reference area in sediment toxicity as measured by the amphipod mortality test. Rejection of the null hypothesis based on statistical comparison of the sediment toxicity test data from the site with data from the reference area generally leads to acceptance of the alternative hypothesis that the site sediments are toxic (at least as measured by a laboratory toxicity test). However, a regulatory program may require further analyses to assess the implications of the laboratory test results. A specific probability level $(P \le 0.05 \text{ in the example above})$ is associated with the statistical test to quantify the level of confidence in the result if the null hypothesis is rejected. If the null hypothesis is not rejected, acceptance of the alternative hypothesis of "significant toxicity" may be supported by a further evaluation technique known as statistical power analysis that determines the probability of detecting a specified level of toxicity.

When designing a study for which the data will be analyzed statistically, there are two major considerations that should be addressed. One consideration is whether to use parametric or nonparametric statistical methods. The parametric tests assume a normal frequency distribution for the data, whereas the nonparametric tests make no assumptions about the form of the data distribution. Typically, it is desirable to use parametric methods because they generally are more powerful than nonparametric methods. However, it is important to evaluate the assumptions of the selected statistical test for each data set. If one or more parametric assumptions are not met, the data can be transformed and the assumptions can then be evaluated for the transformed data. If the transformed data satisfy the assumptions, they can be evaluated using parametric methods. Otherwise, nonparametric methods should be used to evaluate untransformed data.

A second consideration is the specific kind of statistical test that will be used to analyze the data. The

kind of test is usually determined by the study objectives. If the objective is to compare the toxicity results between a potential problem area and a reference area, analysis of variance can be used to conduct the evaluation. If the objective is to evaluate whether a gradient of toxicity exists with distance from a potential problem area, an analysis of variance or a correlation analysis can be used. In many cases, the kinds of statistical procedures that are used to analyze toxicity test results will be specified in a permit. Other details such as sample comparisons, statistical confidence levels, and other interpretive guidelines may also be specified. For an evaluation of permit specifications or design of testing programs refer to Gad and Weil (1986).

GLOSSARY

Acute toxicity The ability of a chemical to cause a toxic response in organisms

immediately or shortly after exposure to the chemical.

Adverse effect An impairment of biological functions or description of ecologi-

cal processes that results in unfavorable changes in an ecological

system.

Amphipod A small shrimp-like member of one subgroup of the large group

of animals called Crustacea, which includes crayfish, lobsters,

shrimps, and crabs.

Aquatic Living or growing in water.

Benthic Pertaining to, or associated with, the bottom of a body of water.

Biomass The total weight of live organisms in a sampled population.

Biotic group A group of related organisms with generally similar body

structure and function.

Chronic toxicity The ability of a chemical to produce a toxic response when an

organism is exposed over a long period of time, generally corresponding to a substantial part of the organism's life cycle.

Concentration The amount of a chemical expressed relative to amount of

environmental medium (e.g., $\mu g/L$ [micrograms of chemical per liter of water] or $\mu g/g$ [micrograms of chemical per gram of

sediment]).

Control sediment A sediment essentially free of chemicals and compatible with the

biological needs of the test organisms such that it has no discernable influence on the response being measured in the test. Control sediment may be the sediment from which the test organisms are collected or a laboratory sediment, provided the organisms meet control standards. Test procedures are conducted with the control sediment in the same way as the reference sediment and test material. The purpose of the control sediment is to confirm the biological acceptability of the test conditions and to help verify the health of the organisms during the test. Excessive mortality in the control sediment indicates a problem with the test conditions or organisms and can invali-

date the results of the corresponding test.

Ecosystem An ecological community, together with its physical habitat,

considered as a unit.

Embryo A plant or animal in the very early stages of development

following fertilization of the egg.

Elutriate A liquid solution used for toxicity testing, which is prepared by

adding water to the sediment, shaking, and centrifuging to

separate the solids.

Endpoint The biological or ecological unit or variable being measured or

assessed. The number of organisms dead at the end of an

exposure is a lethal endpoint.

Epibenthic Inhabiting the sediment surface, or closely associated with the

sediment surface, rather than dwelling buried within the sedi-

ments.

Estuarine Surface water containing greater than 0.5 parts per thousand

(ppt) salinity and less than 28 ppt salinity.

Exposure Contact between an organism and a chemical in the environ-

ment.

Fresh water Surface water containing less than or equal to 0.5 ppt salinity.

Foundation species A species that provides important physical habitat for other

species in a biological community (e.g., marsh grass).

Hardness A measure of the calcium and magnesium concentrations in

water.

In the natural or original position (occurring in nature, and not

in the laboratory).

Infaunal Refers to animals living in the sediments, including such forms

as worms and clams.

Interference Physical elements or chemical compounds that cause bias in the

results of a toxicity test.

Keystone species A species that controls the species composition and relative

abundances of species in a community by its predatory (or grazing) effects (e.g., by grazing on kelp, purple urchins prevent the establishment of kelp beds and maintain open rocky

subtidal communities).

Interstitial water Water that fills the spaces between sediment particles. Often

referred to as "pore water."

Larval Relating to the juvenile form of certain invertebrate animals that

must undergo metamorphosis before assuming adult characteris-

tics.

Lethal Causing death; mortality (or survival) is the endpoint for lethal

toxicity tests.

Life stage A developmental stage of an organism (e.g., egg, larva,

embryo, juvenile, adult).

Macroinvertebrate An invertebrate (without a backbone) organism visible to the

naked eye (e.g., >1.0 mm). Often refers to animals such as

insects, worms, clams, and snails.

Marine Surface water containing 28 ppt salinity or greater.

Medium (plural: media) The substance in which a chemical may exist. Air, sediment,

and water are all media.

Midge A group of true flies (similar to mosquitos) that have aquatic

larvae and non-biting adults. They are one of the most abun-

dant groups of aquatic insects.

Monitoring Periodic testing of water and sediment quality or of biota to

verify continued compliance with the requirements of a dis-

charge permit or other authorization.

Nektonic Refers to the nekton, the group of active swimmers that are

capable of strong, independent movement in the water. Examples include many juvenile and adult fishes and large inverte-

brates (e.g., squid).

Organism An individual plant or animal.

Ovigerous Refers to females bearing eggs.

Planktonic Refers to the plankton, the group of small plants and animals

that are weak swimmers and tend to drift with the current.

Population A group of individuals of the same species interacting within a

given habitat.

Precision The ability to replicate a value; the degree to which observa-

tions or measurements of the same property, usually obtained under similar conditions, conform to themselves. Usually

expressed as standard deviation, variance, or range.

Quality assurance A system of procedures, checks, audits, and corrective actions to ensure that all research design and performance, environmen-

to ensure that all research design and performance, environmental monitoring and sampling, and other technical and reporting

activities are of the highest achievable quality.

Reference sediment A sediment, substantially free of chemicals, that is as similar as

practicable to the grain size of the test material and the sediment at the disposal site and that reflects the conditions that would exist in the vicinity of the site had no anthropogenic activity ever taken place but had all other influences on sediment

condition taken place.

Reference area An area that has similar characteristics to a site being evaluated

but that is unaffected by chemicals of potential concern. The reference area is compared to the site to assess the effects of

chemicals of potential concern.

Route The mechanism of contact between an organism and a toxic

chemical (e.g., ingestion or dermal contact).

Site-specific Of or relating to a particular area or location.

Sediments Material, such as sand, silt, or clay, suspended in or settled on

the bottom of a water body.

Sublethal Causing an endpoint other than death; growth is a sublethal

endpoint in toxicity tests.

Terrestrial Living or growing on land.

Toxicity test A test in which organisms are exposed to chemicals in a test

medium (e.g., waste, sediment, soil) to determine the effects of

exposure.

Trophic Relating to food or feeding relationships. Trophic levels consist

of producers (plants), herbivores or primary consumers, carnivores or secondary consumers, and top carnivores or tertiary

consumers.

REFERENCES AND OTHER KEY LITERATURE

ASTM. 1980. Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians. E729-80. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1984. Standard Practice for Conducting Acute Toxicity Tests on Wastewaters with Daphnia. *Annual Book of ASTM Standards*. D4229-84. American Society for Testing and Materials, Philadelphia, PA. pp. 64-76.

ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. E724-89. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1990. Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. E1367-90. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1991a. Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing. E1391-90. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1991b. Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates. E1383-90. American Society for Testing and Materials, Philadelphia, PA.

Burton, G.A., Jr. 1991. Assessing the Toxicity of Freshwater Sediments. *Environ. Toxicol. Chem.* 10:1585-1627.

Burton, G.A., Jr. 1992. Sediment Collection and Processing: Factors Affecting Realism. In: Sediment Toxicity Assessment. G.A. Burton (ed). Lewis Publishers, Inc., Ann Arbor, MI. pp. 167-182.

Chapman, P.M., R.N. Dexter, and E.R. Long. 1987. Synoptic Measures of Sediment Contamination, Toxicity, and Infaunal Community Structure (the Sediment Quality Triad) in San Francisco Bay. *Mar. Ecol. Prog. Ser.* 37:75-96.

Chapman, P.M., E.A. Powers, and G.A. Burton, Jr. 1992. Integrative Assessments in Aquatic Ecosystems. In: Sediment Toxicity Assessment. G.A. Burton (ed). Lewis Publishers, Boca Raton, FL. pp. 313-340.

Dillon, T.M. and A.B. Gibson. 1990. Review and Synthesis of Bioassessment Methodologies for Freshwater Contaminated Sediments. Final Report. Misc. Paper EL-90-2. Prepared for U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL. U.S. Army Corps of Engineers, Waterways Experiment Stations, Vicksburg, MS. 26 pp. + appendices.

Environment Canada. 1990a. Biological Test Method: Acute Lethality Test Using Daphnia spp. Report EPS 1/RM/11. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990b. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Report EPS 1/RM/9. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990c. Biological Test Method: Acute Lethality Test Using Threespine Stickleback. Report EPS 1/RM/10. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990d. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Report EPS 1/RM/14. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990e. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout. Report EPS 1/RM/13. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1992a. Biological Test Method: Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods. Report EPS 1/RM/26. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 83 pp.

Environment Canada. 1992b. Biological Test Method: Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars). Report EPS 1/RM/27. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

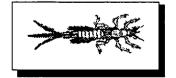
Environment Canada. 1992c. Biological Test Method: Growth Inhibition Test Using Freshwater Alga Selenastrum capricornutum. Report EPS 1/RM/25. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1992d. Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows. Report EPS 1/RM/22. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 70 pp.

Environment Canada. 1992e. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran Ceriodaphnia dubia. Report EPS 1/RM/21. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 72 pp.

Environment Canada. 1992f. Biological Test Method: Toxicity Test Using Luminescent Bacteria (Photobacterium phosphoreum). Report EPS 1/RM/24. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Gad, S.C., and C.S. Weil. 1986. Statistics and Experimental Design for Toxicologists. Telford Press, Caldwell, NV.


Giesy, J.P., and R.A. Hoke. 1990. Freshwater Sediment Quality Criteria: Toxicity Assessment. In: Sediments: Chemistry and Toxicity of In-Place Pollutants. R. Baudo, J. Giesy, and H. Muntau (eds). Lewis Publishers, Inc., Ann Arbor, MI. pp. 265-348.

Hill, I.R., P. Matthiessen, and F. Heimbach. 1993. Guidance Document on Sediment Toxicity Tests and Bioassays for Freshwater and Marine Environments. Presented at the Workshop on Sediment Toxicity Assessment, November 8-10, Slot Moermond Congrescentrum, Renesse, The Netherlands. Society of Environmental Toxicology and Chemistry, European Chapter.

- Johns, D.M., T.C. Ginn, and D.J. Reish. 1992. *Protocol for Juvenile Neanthes Sediment Bioassay*. Prepared by PTI Environmental Services, Bellevue, WA. EPA 910/9-90-011. U.S. Environmental Protection Agency, Office of Puget Sound, Puget Sound Estuary Program, Seattle, WA. 17 pp.
- Lamberson, J.O., T.H. DeWitt, and R.C. Swartz. 1992. Assessment of Sediment Toxicity to Marine Benthos. In: *Sediment Toxicity Assessment*. G.A. Burton (ed). Lewis Publishers, Ann Arbor, MI. pp. 183-211.
- McGee, B.L., C.E. Schlekat, and E. Reinharz. 1993. Assessing the Sublethal Levels of Sediment Contamination Using the Estuarine Amphipod Leptocheirus plumulosus. Environ. Toxicol. Chem. 12:577-587.
- Moore, D.W., T.M. Dillon, J.Q. Word, and J.A. Ward. 1994. Quality Assurance/quality Control (QA/QC) Guidance for Laboratory Dredged Material Bioassays. Miscellaneous Paper D-94-3. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- PTI Environmental Services. 1994. User's Guide and Technical Resource Document: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs. (published separately) API Publication No. 4607. American Petroleum Institute. Washington, D.C.
- Suedel, B.C., and J.H. Rodgers, Jr. 1994. Development of Formulated Reference Sediments for Freshwater and Estuarine Sediment Testing. *Environ. Toxicol. Chem.* 13:1163–1175.
- U.S. EPA. 1991a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA 600/4-90-027. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 293 pp.
- U.S. EPA. 1991b. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Recommended Protocols for Measuring Environmental Variables in Puget Sound. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Puget Sound Estuary Program. Seattle, WA.
- U.S. EPA. 1991c. Technical Support Document for Water Quality-based Toxics Control. EPA 505/2-90-001. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 145 pp. + appendices.
- U.S. EPA. 1992. Proceedings of the EPA Workshop on Tiered Testing Issues for Freshwater and Marine Sediments. September 16-18, 1992. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology and Office of Research and Development, Washington, D.C.
- U.S. EPA and U.S. COE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal. Testing Manual. EPA 503/8-91-001. U.S. Environmental Protection Agency, Office of Water and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA and U.S. COE. 1993. Evaluation of Dredged Material Proposed for Discharge in Inland and Near Coastal Waters—Testing Manual. Draft Report. U.S. Environmental Protection Agency, Washington, D.C.

Technical Resource Document: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs

ABSTRACT

Sediment toxicity test methods are available for marine, estuarine, and freshwater sediments and organisms. The methods can be used for a variety of purposes: for example, assessment of existing environmental conditions, monitoring changes with time, or for NPDES permit compliance. Use of inappropriate test methods or species for a given purpose can impact the toxicity results and their interpretation. This Technical Resource document has been prepared as a detailed resource for environmental support staff for petroleum industry facilities (refineries, marketing terminals, and production locations) in their selection of sediment toxicity test methods and species which are reliable, scientifically valid, and appropriate for the habitat. Test methods are evaluated for their reliability, ecological relevance, exposure relevance, availability, interferences, and ability to discriminate toxicants. The tests are categorized by habitat type (marine, estuarine, or freshwater) and test endpoint (lethal or sublethal). Species' descriptions, test protocols, and documentation of method evaluations are contained in appendices. A companion report (User's Guide) has been prepared to provide an introduction to sediment toxicity test methods and to summarize their use.

CONTENTS

	Page
EXECUTIVE SUMMARY	ES-1
INTRODUCTION	1
OBJECTIVES	1
USE OF DOCUMENT	1
USER'S GUIDE AND RELATED DOCUMENTS	2
REPORT ORGANIZATION	2
TEST SCREENING APPROACH	3
INFORMATION REVIEW	3
CLASSIFICATION OF TESTS	3
SELECTION OF TESTS FOR EVALUATION	3
EVALUATION CRITERIA AND APPROACH	4
Reliability	4
Ecological Relevance	5
Exposure Relevance	5
Availability	5
Interferences	5
Chemical Discrimination	6
Regulatory Status	6
CLASSIFICATION OF AVAILABLE TEST METHODS	7
CLASSIFICATION CRITERIA	7
Habitat Type	7
Endpoint Type	7
KEY CHARACTERISTICS	8
Exposure Medium	8
Characteristics of Test Organisms	10
Test Duration	11
EVALUATION FOR TEST SELECTION	12
MARINE LETHAL TESTS	12
MARINE SUBLETHAL TESTS	24
ESTUARINE LETHAL TESTS	25
ESTUARINE SUBLETHAL TESTS	25
FRESHWATER LETHAL TESTS	25

API PUBL*4607 94 🖿 0732290 0555261 893 🖿

	Page
FRESHWATER SUBLETHAL TESTS	26
APPLICATION OF SEDIMENT TOXICITY TESTS	27
STUDY DESIGN SPECIFICATIONS	27
GENERAL ASSESSMENT APPROACH	27
SELECTION OF TOXICITY TESTS	28
EFFECTS ASSESSMENT	28
ANCILLARY INFORMATION	29
Supplemental Sediment Variables	29
Sediment Chemical Concentrations	30
In Situ Biological Effects	30
CONCLUSIONS	32
GLOSSARY	34
REFERENCES	38
APPENDIX A - Classification of Sediment Toxicity Tests	
APPENDIX B - Species Summaries	
APPENDIX C - Overview of Test Methods	
APPENDIX D - Detailed Evaluation Tables	
APPENDIX E - User's Guide	

API PUBL*4607 94 🖿 0732290 0555262 72T 🛤

LIST OF TABLES

		Page
Table 1.	Sediment phases used in toxicity tests	9
Table 2.	Evaluation of sediment toxicity tests - marine lethal	13
Table 3.	Evaluation of sediment toxicity tests - marine sublethal	15
Table 4.	Evaluation of sediment toxicity tests - estuarine lethal	17
Table 5.	Evaluation of sediment toxicity tests - estuarine sublethal	19
Table 6.	Evaluation of sediment toxicity tests - freshwater lethal	20
Table 7.	Evaluation of sediment toxicity tests - freshwater sublethal	22

EXECUTIVE SUMMARY

Federal and state agencies are developing and implementing water quality-based approaches to regulate permitted wastewater discharges. As part of this overall approach, sediment toxicity testing may be required as part of discharge monitoring programs. Toxicity tests of sediments provide an integrated measure of sediment contamination that eliminates much of the uncertainty associated with theoretical predictions of sediment toxicity at a specific site. The value of the biological effectsbased approach can be diminished, however, by using inappropriate test methods or species or by not considering the many physical and chemical factors that can affect biological testing. To date, the selection of a sediment toxicity test(s) for a specific site has not been a straightforward process. selection process is complicated by the constant introduction of new test species and methods. There have been few objective comparisons among alternative tests and there is a general lack of recommendations for the most appropriate sediment test procedures for a given situation.

OBJECTIVES AND APPROACH

The purpose of this document is to provide a resource tool that will enable environmental staff at petroleum facilities to readily select sediment toxicity tests and test methods that are reliable, scientifically valid, and appropriate for a specific site.

The test methods and species identified during the information review were classified into six groups based on the following physical and biological test characteristics:

- Habitat type (marine, estuarine, or fresh water)
- Test endpoint (lethal or sublethal).

Each toxicity test within each of the six groups is summarized in a classification table that also contains information on the organisms, including the broad taxonomic group, common name, scientific name, and life stage of the species used in the test; exposure type (whole sediment, interstitial water, water elutriate, or solvent extract); the exposure duration; and the primary literature references. In some cases, tests differed only by the species, life stage, or exposure period used. Even so, the tests were maintained as separate entities for the evaluation because minor differences in organisms or exposure duration may significantly influence test sensitivity.

The tests in the initial screening were evaluated according to various technical criteria. An overall technical rating was based on the following evaluation criteria:

- Reliability
- Ecological relevance
- Exposure relevance
- Availability
- Interferences
- Chemical discrimination.

RECOMMENDED TESTS

This report contains a series of evaluation tables that describe the group of relevant toxicity tests for each habitat (marine, estuarine, or freshwater) and for each endpoint type (lethal and sublethal). In most cases, the highest ranking tests were the ones based on the exposure of infaunal organisms to whole sediments. These kinds of tests were ranked highly because they rely on exposure conditions that closely mimic field conditions. Many of the test species are available by field collection during most of the year. The highly ranked marine infaunal tests predominantly used amphipods as test organisms, whereas most of the highly ranked freshwater infaunal tests predominantly used insects (mayfly nymphs and midge larvae) as test organisms.

In many cases, the lowest ranking toxicity tests were those that rely on the exposure of planktonic organisms to whole sediments. Those tests have a relatively low exposure relevance because the test organisms are rarely exposed to sediments in the field. In addition, the tests are sensitive to potential interferences from sediments in the test chambers.

In some cases, a highly ranked lethal test was also a highly ranked sublethal test. The inclusion of a test in both categories is a particularly desirable characteristic when both lethal and sublethal endpoints will be evaluated in a biomonitoring program. By using the same species to evaluate both endpoints, potential interpretive problems related to interspecific differences in factors such as sensitivity to toxicity can be avoided.

USER'S GUIDE

A companion document, User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs (PTI, 1994) has been prepared to provide an introduction to sediment toxicity testing and to describe how to use this resource manual for those readers who are unfamiliar with sediment toxicity testing.

INTRODUCTION

The U.S. Environmental Protection Agency (EPA) has established a water-quality based approach to control potentially toxic substances in wastewater effluents that are discharged to inland and coastal waters (U.S. EPA 1991c). Toxicity testing of effluents and ambient water or sediments in the vicinity of wastewater discharges is a key element in predicting the potential biological effects of discharges and in monitoring existing impacts. For example, requirements for toxicity testing of whole effluents are being incorporated into many wastewater discharge permits under the National Pollutant Discharge Elimination System (NPDES). At the same time, development of sediment toxicity tests that could be used to monitor discharge sites is proceeding at a relatively rapid pace at the federal and state levels (U.S. EPA 1992).

Toxicity tests of sediments provide an integrated measure of sediment contamination that eliminates much of the uncertainty associated with theoretical predictions of sediment toxicity at a specific site. The value of the biological effects-based approach can be diminished, however, by using inappropriate test methods or species, or by not considering the many physical and chemical factors that can affect biological testing. To date, the selection of a sediment toxicity test for a specific site has not been a straightforward process.

OBJECTIVES

The purpose of this resource document is to provide information that will enable environmental staff at petroleum facilities to select sediment toxicity tests and test methods that are reliable, scientifically valid, and appropriate for a specific site. This document also summarizes the technical requirements and appropriate conditions for use of sediment toxicity test methods anticipated for future NPDES permit compliance. This document was developed specifically for use by petroleum industry operations (refineries, marketing terminals, and

production facilities) that have effluent discharges to surface waters. However, this Technical Resource Document and the User's Guide contain information that is applicable to other industries and could be used by any wastewater discharger.

USE OF DOCUMENT

The first step when using the decision framework and information in this document is a review of available information on the ecological characteristics of the discharge site. Available data on sitespecific chemicals and physical properties of the sediments can be useful in selecting test species that are sensitive to the chemicals of concern at the site. but that are minimally affected by the natural properties of the sediment (e.g., grain size, organic carbon, ammonia). An equally important step in the selection of sediment toxicity tests is a thorough understanding of the applicable regulatory requirements that are driving the testing program. Regulatory programs frequently include explicit requirements that immediately limit the field of potential toxicity tests. These confining factors can include specifications for lethal or sublethal tests, exposure duration, seasons for testing, single species vs. a battery of species for testing, and data quality objectives.

This report contains a series of evaluation tables that describe the group of relevant toxicity tests for each habitat system (marine, estuarine, or fresh water) and for each test type (lethal and sublethal). These tables summarize the key information used in selecting toxicity tests. Users enter the evaluation tables for a given system and test type (e.g., estuarine/lethal). In each evaluation table, candidate tests are ranked from best overall tests to least appropriate tests. In most cases, the higher ranked tests may have very similar overall scores. Therefore, the user should select the most appropriate high-ranked test for a particular program based on a consideration of site-specific factors and regulatory considerations. The selected test should match the site-specific requirements for the biotic group and geographic zone.

The candidate toxicity test(s) that were tentatively selected in the previous step should be compared with the regulatory requirements identified. If the test (or tests) meets these requirements, then the selection process is complete and the actual test (or tests) can be performed. If the selected toxicity test (or tests) does not meet the requirements of the applicable regulatory program, then users have the option of entering into negotiations with the regulatory agencies. The information provided in the evaluation tables and the appendices will be useful in developing the arguments for and against particular tests. Detailed guidance on test selection is provided in a companion document, User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs (PTI, 1994).

NPDES programs are then provided in a sequence of tables for each system and toxicity test type (e.g., freshwater/sublethal). The highest ranked tests are shown first. Supporting summary materials are in appendices. Appendix A classifies the available sediment toxicity tests that were considered in this evaluation. Appendix B presents profiles of the species commonly used in the tests that ranked highest in the evaluation. Appendix C provides an overview of the key test methods. Appendix D is a summary table of the rationale for the evaluation results, organized by evaluation criteria. Key technical terms used herein are defined in the Glossary.

USER'S GUIDE AND RELATED DOCUMENTS

A companion document, User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs (PTI, 1994) has been prepared to provide an introduction to sediment toxicity testing and to present how to use this resource manual for those readers who are unfamiliar with sediment toxicity testing. The User's Guide contains descriptions of habitat type, sediment test systems, and biological endpoints. Site-specific concerns are identified to aid in test selection. Lastly, brief summaries of sampling and data analysis issues are presented.

The Society of Environmental Toxicology and Chemistry has recently released a guidance document on use of sediment toxicity tests (Hill *et al.* 1993). Other useful review documents include Dillon and Gibson (1990), Burton (1991), and U.S. EPA (1992).

REPORT ORGANIZATION

The next section presents the approach used to compile and evaluate information on sediment toxicity test methods. The following sections classify available test methods using technical criteria. Technical evaluation results and guidance on application of toxicity tests in the context of

TEST SCREENING APPROACH

Toxicity test information, the classification of tests, the selection of tests for evaluation, and the development and application of evaluation criteria are described below.

INFORMATION REVIEW

The sources consulted to identify available test methods and species included Current Contents (a compilation of information contained in agricultural, biological, and environmental science journals); a bibliography of the Ecological Risk Assessment Library at PTI Environmental Services; and recent reviews of test methods, including Giesy and Hoke (1990), Burton (1991, 1992a), Burton et al. (1992), Lamberson et al. (1992), Bennett and Cubbage (1992), and the proceedings of the EPA workshop on Tiered Testing Issues for Freshwater and Marine Sediments (U.S. EPA 1992). Major documents discussing test methods and test strategies (e.g., U.S. EPA 1991b; U.S. EPA and U.S. COE 1991, 1993; Environment Canada 1990a-e, 1992a-f) were also reviewed to identify candidate tests. Finally, information from colleagues and agencies that are conducting ongoing investigations of test methods was collected and used to identify relatively new tests that show promise for testing of contaminated sediments.

CLASSIFICATION OF TESTS

The toxicity test methods and species identified during the information review were classified into six groups based on a series of physical and biological test characteristics. The objective of this step was to identify each group of test methods that have common characteristics and that, therefore, should be considered as possible alternatives for use at all facilities with similar receiving waters. The characteristics used to classify available test methods and species into the six groups are:

- Habitat type (marine, estuarine, or freshwater)
- Toxicity test endpoint (lethal or sublethal).

Habitat type is a key physical factor in narrowing the list of appropriate test species for use at a facility. For example, few marine sediment toxicity tests will be applicable at a facility that discharges to fresh water (one exception is the Microtox® test, which can be adjusted for different salinity regimes). For purposes of this study, habitat categories were defined as follows:

- Marine (≥28 ppt)
- Estuarine (>0.5 and <28 ppt)
- Freshwater (≤ 0.5 ppt)

Because the division between habitat categories is an artificial distinction, use of a particular habitat designation for a test in this report should not necessarily preclude the application of a test to sediments in other habitats. For example, some tests that are classified as marine tests may be applied to high salinity estuarine sediments, and in some cases, adjusting the salinity of a sediment sample to allow the use of a particular test may be appropriate. The test endpoint is a key biological factor in comparing and evaluating performance data among toxicity tests and satisfying regulatory requirements. Each toxicity test is summarized in a classification table that also contains information on the organisms (see Classification of Available Test Methods section and Appendix A).

SELECTION OF TESTS FOR EVALUATION

All of the individual toxicity tests identified in this review are listed in the classification tables (Appendix A). To facilitate detailed consideration of the most promising tests, tests were selected for further evaluation based on the following criteria:

■ Tests recommended in guidance documents issued recently by national agencies in the United States and Canada (e.g., Dillon and Gibson 1990; U.S. EPA and U.S. COE 1991,

1993; U.S. EPA 1991b, 1992; Environment Canada 1990a-e, 1992a-f)

- Tests recommended in recent evaluations of sediment toxicity tests (e.g., Dillon and Gibson 1990; Giesy and Hoke 1990; Bennett and Cubbage 1992)
- Tests that are under development in several laboratories and show promise for application to NPDES sediment testing for petroleum refineries (e.g., relatively new tests included in EPA research and development; U.S. EPA 1992).

Tests that were not evaluated (Appendix A, Attachment 1) included relatively old ones (>10 years old) that are generally not used now, very new ones that need substantial method development, and tests with inadequate specification of the method to classify them.

EVALUATION CRITERIA AND APPROACH

Criteria to evaluate sediment toxicity tests include repeatability, precision, dose-responsiveness, discrimination among chemicals or sites, sensitivity, ecological relevance, appropriateness of the sample phase (e.g., particulate, extract), exposure period, relationship to field effects, availability, ease of use, and stage of method development (Pastorok and Becker 1989; Giesy and Hoke 1990; Burton 1991). An overall technical rating was based on the following technical evaluation criteria:

- Reliability
- Ecological relevance
- Exposure relevance
- Availability
- Interferences
- Chemical discrimination.

Each test was rated according to each criterion using a scoring system of 0 to 4, with 4 being the most favorable score. The overall technical rating was derived by summing the scores for the individual criteria. The scores for "interferences" and "chemical discrimination" were weighted by a factor of 0.5 to reduce their influence on the overall rating. Less information was available for these two criteria and, therefore, confidence in their scores was lower than those for other criteria. Because the cost of a given sediment toxicity test varies greatly with its status for regulatory use and with the laboratory conducting the test, cost was not considered in the overall rating. Details of the scoring system used to rank the toxicity tests are presented in Appendix D.

Factors considered in evaluating the tests relative to the technical criteria listed above and relative to the regulatory status of tests are described in more detail in the following sections.

Reliability

The reliability of a test method is high when the endpoint can be measured accurately, the results are repeatable, and the negative control results generally meet quality assurance criteria. High reliability ratings were assigned to tests that have been subjected to an interlaboratory comparison and found to have an acceptable level of variability within and among laboratories (e.g., ≤50 percent coefficient of variation). However, most sediment toxicity tests have not undergone interlaboratory studies. A test method was assigned low reliability if determination of the endpoint involves a high degree of subjectivity, if the response is easily biased by laboratory artifacts (e.g., organism stress due to confinement), or if repeated tests yield highly variable results. For example, many lethal tests involve a relatively straightforward determination of whether a fish or larger invertebrate is dead or alive. Such situations have minimal potential for error or bias on the part of the observer. Alternatively, some sublethal tests have a relatively subjective endpoint such as "abnormality" of a microscopic larvae. In such cases, the potential for individual bias is much greater. Tests were also assigned a low rating for reliability if the negative controls are prone to failures (e.g., high susceptibility of test organisms to laboratory stress).

Ecological Relevance

The ecological relevance of a test method is high if the results of a test method are directly applicable to indigenous species under field conditions. A test method has low ecological relevance if there is little or no basis for associating the method to the field conditions or if the method results display no concordance with the responses of indigenous organ-Field validation studies provide the best evidence for judging ecological relevance, but most sediment toxicity tests have not undergone field validation tests. In lieu of information on field validation, any test that uses a species that is commercially harvested (e.g., oysters) or a species that provides habitat structure for other species (e.g., marsh grass) was assigned a high rating for ecological relevance.

Exposure Relevance

The exposure relevance of a test method is high when the pathway of exposure used in a test is analogous to exposure under field conditions (e.g., whole sediment exposure for chemicals that may be taken up by several routes such as pore water and ingestion of sediment particles). Other test procedures involve exposure of water column organisms to extracts of sediments or sediment interstitial water, which is not necessarily a good analog of field conditions. Exposure relevance is, therefore, low when test conditions mimic only some of the exposure pathways applicable to field conditions. The general ecological niche of the test organism was also considered in assessing exposure relevance. Thus, exposure of infaunal test organisms to whole sediment would have a higher exposure relevance than exposure of planktonic organisms to any of the test media.

Availability

The availability of a test method is high when test organisms can be easily obtained, the method is standardized and well documented, and commercial laboratories routinely perform the test. Test organisms that are easily cultured or are available from

the field throughout all seasons in a broad geographic area were assigned high ratings for this criterion. Test methods that are constrained by a limited supply of organisms (by season or geography) or a lack of experienced laboratories were assigned low scores for availability. A low rating was assigned to test methods that are still in the early stages of documentation and standardization; these methods will be difficult or costly to develop and use as quickly as routine methods.

Interferences

The interference criterion is a measure of the extent of confounding physical or chemical factors. The objective of sediment toxicity testing is to evaluate the response of the test species to target chemicals contained in the sediment sample. It is preferable that the species not be responsive to other sediment characteristics such as particle size or organic content. If such responses occur, toxicity may be incorrectly attributed to target chemicals. Changes in the following factors can restrict the application of a particular test or have a confounding effect on test results:

- Sediment grain size
- Organic carbon content
- Oxidation-reduction conditions
- pH
- Alkalinity
- Temperature
- Turbidity
- Water hardness
- Ultraviolet light intensity
- Mold or pathogens.

A high rating for interference was assigned to test methods that have a low susceptibility to interferences. A low rating for interference was assigned to test methods that exhibit a large number of interferences or a narrow range of applicable environmental conditions.

Chemical Discrimination

The chemical discrimination of a test method is high if the test results are dose-responsive over at least a moderate range of chemical concentrations. Test methods that exhibit high chemical discrimination are expected to be useful in defining gradients of sediment toxicity in the environment. Test methods that are either insensitive or always highly-sensitive to chemical contamination were assigned a low rating for chemical discrimination.

Regulatory Status

The rating for regulatory status was based on information from national and regional EPA offices and whether a test was recommended in guidance documents for potential use in NPDES programs, cleanup assessments, baseline monitoring, or dredged material testing. The guidance documents considered as the basis for rating regulatory status included the method documents issued by the Canadian government (Environment Canada 1992a-f), the dredged material testing documents issued by United States government agencies (U.S. EPA and U.S. COE 1991, 1993), and a major research and development planning document issued by EPA (U.S. EPA 1992). If a test was included in 3-4 of these document categories, it was assigned a rating of "high" for regulatory status. If a test was included in 1-2 of these document categories, it was assigned a rating of "medium." Toxicity tests that were not included in these documents and were not known to be recommended for use in current regulatory programs were assigned a rating of "low."

CLASSIFICATION OF AVAILABLE TEST METHODS

The available toxicity test methods were classified by type of habitat (marine, estuarine, and fresh water) to which each method applies and the general endpoint type (lethal or sublethal) specified for each test. This classification scheme resulted in the following six major categories of tests:

- Marine lethal
- Marine sublethal
- Estuarine lethal
- Estuarine sublethal
- Freshwater lethal
- Freshwater sublethal.

Within each category, tests are distinguished by three key characteristics: 1) the exposure medium, 2) characteristics of the test organisms, and 3) the test duration.

Using the classification criteria and key characteristics described above, 336 unique tests were identified (Appendix A). Each test was assigned a number to allow users of this document to track a given test through the various evaluation tables. In many cases, several of the specified tests were actually variations of a single test method and were assigned the same test number. For example, if the test species is tolerant of both marine and estuarine conditions and if both lethal and sublethal endpoints are possible (e.g., the amphipod test using Ampelisca abdita), then the test can be classified four different ways.

CLASSIFICATION CRITERIA

Use of general habitat type and endpoint type to classify sediment toxicity tests provides a broad classification scheme. This approach should facilitate review of evaluation results and selection of tests at specific sites.

Habitat Type

The primary characteristic that distinguishes marine, estuarine, and freshwater habitat types is water salinity. Salinity strongly influences the distributions of most of the test organisms. In some cases, test organisms are tolerant of both marine and estuarine conditions or both estuarine and freshwater conditions. However, few test organisms tolerate both marine and freshwater conditions.

Endpoint Type

The two major types of endpoints for most toxicity tests are lethal and sublethal. The lethal endpoint is based on the percentage of test organisms that die during the exposure period. The use of mortality as a test endpoint has several advantages. Mortality represents an unambiguous adverse effect (i.e., death). In addition, the ecological significance of the endpoint is relatively certain. If the test organisms cannot survive in association with the test sediments, it is likely that significant alterations of aquatic assemblages would be found in the environment. Although mortality may appear to not be an environmentally protective endpoint, tests that use a sensitive species may be protective of less-sensitive species.

Sublethal endpoints represent a wide variety of organism responses other than mortality. Some of the most commonly measured sublethal endpoints include:

- Reduced growth
- Reproductive effects
- Developmental abnormality
- Histopathological abnormalities.

The reliability of any sublethal endpoint test depends on the use of experienced laboratory personnel. Reduced growth is generally measured in juvenile organisms (i.e., when growth is generally expected to be rapid) and can be estimated directly by measuring the size of organisms (e.g., length, biomass) prior to and following exposure to test media. Growth can also be represented as an instantaneous measurement called "scope for growth," which is based on physiological variables such as feeding rate, absorption efficiency, respiration rate, and excretion. Growth itself does not require extensive expertise to measure, but scope for growth does. Both measures of growth are quantitative and objective. However, the ecological relevance of reductions in organism growth is uncertain or varies considerably among test species. If organisms can maintain their normal level of fecundity, then no reductions in population levels may be experienced. A reduction in size of adult organisms may cause organisms to be less desirable to some predators and more desirable to others, thereby influencing trophic relationships. Growth reductions may also enhance the risk of being preyed on because organisms cannot reach a size large enough to escape predation.

Reproductive effects are frequently measured in adult female organisms as number of eggs per individual, percentage of ovigerous individuals, and time to sexual maturity. These measurements can be made in a relatively quantitative and objective manner. Reproductive effects may be more ecologically relevant than growth because they imply that the local supply of recruits to adult populations may be reduced. However, adult populations could be sustained by recruitment of pelagic larvae from surrounding areas or immigration by adult organisms.

Developmental abnormalities are generally evaluated in the early life stages (e.g., embryos, larvae) of the test organisms. Bivalve molluscs and echinoderms are two groups of organisms that are frequently used to evaluate developmental abnormalities. Because the determination of abnormal development can be somewhat subjective, the abnormality endpoint can be somewhat ambiguous. Much of the potential subjectivity of the abnormality endpoint can be avoided by standardizing and clearly defining abnormalities. The ecological relevance of the abnormality endpoint is uncertain. Although the presence of

abnormalities in early life stages suggests that recruitment to adult assemblages may be curtailed, it is possible that those assemblages could be maintained by a limited level of recruitment or by immigration of adult organisms (for mobile species). Abnormality endpoints are typically selected to represent conditions that limit the successful growth or reproduction of individuals. Because larvae represent a sensitive life stage and because abnormalities may be expected to occur prior to the onset of mortality, the abnormality endpoint can generally be considered environmentally protective.

Histopathological abnormalities include measures of degeneration, necrosis, and other abnormalities in cells and tissues. The determination of these disorders requires a highly trained pathologist and frequently is subjective. The ecological relevance of histopathological disorders are uncertain because they may or may not influence an organism's life functions. For example, a malignant tumor will lead to negative consequences. With other kinds of abnormalities, the affected individual may experience no negative consequences and may eventually recover.

KEY CHARACTERISTICS

Exposure Medium

The kind of exposure medium was used to classify the various toxicity tests because each kind of exposure medium has favorable and unfavorable characteristics that can profoundly influence the toxicity test results. The four kinds of exposure media considered are whole sediments, sediment elutriates, interstitial water, and sediment extracts (Table 1). The first two media are commonly used in tests, whereas use of the latter two media is infrequent.

The use of whole sediments is probably the most realistic exposure scenario because it mimics the manner in which most organisms are exposed to chemicals in the environment. Ankley et al. (1991) and Green et al. (1993) showed that toxicity may be detected in pore water or interstitial water tests

TABLE 1. SEDIMENT PHASES USED IN TOXICITY TESTS

Phase	Strengths	Weaknesses	Routine Uses
Whole sediment	Use with all sediment types Relative realism high Holistic (whole) vs. reductionist toxicity approach (water, interstitial water, elutriate, extract) Determine sediment quality criteria Use site or reconstituted water to isolate sediment toxicity	Some physical/chemical/microbiological alteration from field collection Dose-response methods tentative Testing more difficult with some species and some sediments Few standard methods Indigenous biota may occur in sample	Rapid screen Chronic studies Initial surveys Sediment criteria
Sediment elutriate (water extractable)	Use with all sediment types Readily available fraction Mimics anoxic toxic environmental process Large variety of available assay endpoints Exposure methods relatively standardized Determine dose response	Ecosystem realism uncertain: Only one oxidizing condition used; only one solid:water ratio; exposure for extended period of one-phase condition that never occurs in situ or never occurs in equilibrium in situ Extract conditions vary with investigator Filtration affects response, sometimes used	Rapid screen Endpoints not possible with whole sediments Dredging evaluation
Interstitial water	Relevant direct route of uptake for most species Large variety of available assay endpoints Exposure methods relatively standardized Determine dose response Determine sediment quality criteria	Cannot collect interstitial water from some sediments Limited volumes can be collected efficiently Optimal collection method unknown, constituents altered by all methods Exposure phase altered chemically and physically when isolated from whole sediment Relevance for some organisms uncertain	Rapid screen Endpoints not possible with whole sediments Initial surveys Sediment criteria
Sediment extract (organic solutes)	Use with all sediment types Sequentially extract different degrees of bioavailable fractions Variety of available assay endpoints Determine dose response	Ecosystem realism uncertain: Bioavailability unknown, chemical alternation Organic solvent extracts may interact with chemicals in sediment to produce interference (toxicity)	Rapid screen Unique endpoints, so component of test battery

Source: Adapted from Burton (1991).

when whole sediments are nontoxic. The degree to which the sampling of interstitial waters or the eluviation process modifies the toxicity of the sample is often unknown. Harkey et al. (1994) concluded that the bioavailability of nonionic hydrophobic compounds cannot be accurately predicted by exposures to elutriates or interstitial water.

For most whole sediment tests, the sediments are carefully placed in the exposure chamber with minimal disturbance: the chamber is then filled with test water. The water is obtained from a source known to be uncontaminated, or in the case of seawater, is generated using commercial "artificial seawater" salts. After the whole sediments and overlying test water have equilibrated, the test organisms are introduced and the test is initiated. At the end of testing, the test organisms are sorted from the sediment and the test endpoint results are determined. Generally, infaunal test organisms are expected to have the highest potential for exposure to chemicals because they live within the sediments. By contrast, planktonic and nektonic test organisms are expected to have a relatively low exposure potential because they spend all or much of their time in the water column above the sediments. Epifaunal organisms are expected to have an intermediate exposure potential because they reside primarily at the sediment-water interface.

Sediment elutriates are prepared by mixing sediments and test water for a prescribed period of time and then removing the sediments by methods such as filtration, centrifugation, and decanting after a settling period. The test organisms are then introduced to the test water in the absence of sediments. Elutriates are useful for representing the exposure to chemicals that can occur after sediments have been resuspended into the water column or after they have passed through the water column as part of dredged material disposal operations. The use of an elutriate as an exposure medium is probably most realistic for planktonic and nektonic test organisms because those organisms would generally remain in the water column after the contaminated sediments have settled to the bottom. The use of an elutriate for testing infaunal organisms is unrealistic because those organisms would be in direct contact with the contaminated sediments after they settle.

Interstitial water as an exposure medium is prepared by removing it from sediments by methods such as filtration and centrifugation. The test organisms are then introduced to the interstitial water in the absence of sediments. The use of interstitial water as an exposure medium is representative of one exposure route that may be experienced by infaunal organisms. The use of this medium is not representative of realistic exposure scenarios for epifaunal, planktonic, and nektonic organisms.

Sediment extracts are prepared by mixing sediments with an organic solvent that is capable of removing specific kinds of chemicals from the sediments. After the extraction process is completed, the sediments are removed by methods such as filtration, centrifugation, and decanting after a settling period. The test organisms are then either introduced to the extractant or the extracted chemicals are first exchanged with a less toxic carrier medium and then the test organisms are introduced to the carrier medium. In either case, sediments are absent from the exposure medium. The use of an extractant to prepare an exposure medium is generally considered an unrealistic exposure scenario because it does not mimic events that occur in the environment. However, the use of an extractant may be useful for providing a worst-case evaluation of sediment toxicity because it may release more chemicals from the sediments than would be released under normal conditions. A potential problem with the use of extract as exposure medium is the possibility that the extractant or solvent used as a carrier for the extract is potentially toxic to the test organisms and thereby capable of interfering with the test results.

Characteristics of Test Organisms

The key characteristics of the test organisms evaluated are biotic group, species, and life stage. Whether the test organisms are infaunal, epifaunal, planktonic, or nektonic affects the representativeness of the exposure scenarios. For example, Ankley et al. (1991) concluded that upper-water-column species such as fathead minnows (Pimephales promelas) and cladocerans (Ceriodaphnia dubia) are inappropriate organisms for use in whole sediment tests focused on evaluating in situ toxicity to benthic species. Because different species and different life stages often exhibit different levels of sensitivity to toxicity, those two variables can also influence the test results. For example, crustaceans are generally considered more sensitive to toxic chemicals than are polychaetes in marine and estuarine sediment tests. Insects are considered more sensitive than oligochaetes in freshwater sediment tests. In addition, early life stages (e.g., embryos, larvae) are typically more sensitive than later life stages (e.g., juveniles, adults).

Test Duration

Test duration is an important distinguishing characteristic for the various toxicity tests because it influences the likelihood that toxic effects will occur. Tests with relatively short exposure periods that do not cover a substantial portion of the life cycle of the test organisms are referred to as acute tests, and tests with longer exposure periods that cover a substantial portion of the life cycle of the test organisms are called chronic tests. Because of their shorter exposure period, acute tests are typically less sensitive for detecting toxicity than chronic tests. However, if the test species for an acute test is particularly sensitive or the test species for a chronic test is particularly insensitive, the acute test may be more sensitive than the chronic test.

EVALUATION FOR TEST SELECTION

Several general patterns were evident from the technical evaluation of sediment toxicity tests. In most cases, the highest ranking tests were the ones based on the exposure of infaunal organisms to whole sediments because: 1) they rely on exposure conditions that closely mimic field conditions; 2) most of the test species are available by field collection during most of the year; and 3) many of the tests have well-developed methods. Most of the highly ranked marine and estuarine infaunal tests were based on the use of amphipods as test organisms, whereas most of the highly ranked freshwater infaunal tests were based on the use of insects (mayflies and midges) as test organisms. These species groups are ecologically important, especially as key prey items for various fishes. In many cases, the lowest ranking toxicity tests were those that rely on the exposure of planktonic organisms to whole sediments. Those tests have a relatively low exposure relevance because the test organisms are rarely exposed to sediments in the field. In addition, the tests are sensitive to potential interferences from sediments in the test chambers. Many planktonic organisms are filter-feeders, and resuspended sediments may interfere with feeding mechanisms. Physical contact with whole sediments may also decrease the efficiency of locomotion and feeding in planktonic organisms.

In some cases, a highly ranked lethal test was also a highly ranked sublethal test. The inclusion of a test in both categories is a particularly desirable characteristic when both lethal and sublethal endpoints will be evaluated during the same monitoring program. By using the same species to evaluate both endpoints, potential interpretive problems based on interspecific differences in factors, such as sensitivity to toxicity, can be avoided.

The detailed results of the evaluation of sediment toxicity tests are presented in Tables 2 through 7. Within each table, the tests are ordered from the

most desirable to the least desirable based on the previously discussed technical criteria (see Test Screening Approach for method used to derive ratings). Tables 2 through 7 also show the regulatory status for each toxicity test. The rating for regulatory status was determined primarily on the inclusion of a test in guidance documents for use of sediment toxicity testing in regulatory programs (Environment Canada 1990a-e, 1992a-f; U.S. EPA and U.S. COE 1991, 1993; U.S. EPA 1992). A rating of "high" for regulatory status indicates that a test was included in 3-4 of these document categories. A rating of "medium" indicates that a test was included in 1-2 of these document categories. Toxicity tests that were not included in these documents and were not known to be required for use in current regulatory programs were assigned a rating of "low."

In the remainder of this section, the highest ranking tests in each evaluation table are identified and discussed. The reasons for their high rankings are also provided. The discussion is limited to the top 5-10 tests that, in most cases, have been used extensively. Because tests based on a variety of amphipod species are primarily included among the top ranked marine lethal and estuarine lethal test categories, a greater number of tests is discussed for these categories than for others. Thus, more than one species group is discussed for each test category.

MARINE LETHAL TESTS

Seven of the eight highest ranking marine lethal tests were based on the exposure of juvenile or adult infaunal amphipods to whole sediments for a 10-day exposure period. These seven tests ranked highest largely because of: 1) a high degree of exposure relevance, 2) year-round availability of the test species by field collection (six of the seven species) or culture (*Grandidierella japonica*), and 3) well-developed methods by either the American Society for Testing and Materials (ASTM) or Environment Canada with available laboratories.

The tests based on A. abdita and Rhepoxynius abronius are the only ones with a high regulatory

TABLE 2. EVALUATION OF SEDIMENT TOXICITY TESTS-MARINE LETHAL

Test No.	Exposure Media	Common Name	Life Stage	Test Species	Tech. Rating	Reli- ability	Ecol. Rel.	Exp. / Rel. a	Avail- ability	Inter- ferences	Chem. Discrim.	Reg. Status	Comments
00	s	Amphipod	Juveniles or adult females	Ampelisca abdita	16.5	က	3	4	ဗ	ဗ	4	High	B,C,E
800	S	Amphipod	Adults	Rhepoxynius abronius	16.5	4	7	4	ო	က	4	High	C,E
003	S	Amphipod	Juveniles or young adults	Eohaustorius washingtonianus	16.5	4	7	4	ო	ო	4	Med.	ш
005	s	Amphipod	Juveniles or young adults	Amphiporeia virginiana	15.5	4	7	4	ო	ო	7	Med.	m
900	S	Amphipod	Juveniles or young adults	Leptocheirus pinguis	14.5	0	2	4	8	8	2	Med.	
002	S	Amphipod	Immature	Grandidierella japonica	14.5	ဗ	7	4	ဗ	က	2	Low	A,B
004	S	Amphipod	Juveniles or young adults	Foxiphalus xiximeus	13.5	4	7	4		က	2	Med.	ш
020	S	Littleneck clam	Juveniles	Protothaca staminea	13.5	က	ဗ	4	7	က	0	Low	
017	EL	Blue mussel	Embryos	Mytilus edulis	13	2	4	0	က	4	4	Med.	œ
033	S	Shrimp	Juveniles	Pandalus sp.	13	က	က	က	-	4	7	Low	
029	S	Cancer crab	Juveniles	Cancer sp.	13	((8	3	-	4	2	Low	
027	s	Blue crab	Juveniles	Callinectes sapidus	13	က	က	က	_	4	7	Low	
034	S	Shrimp	Post-larvae	Penaeus sp.	13	ო	က	က	-	4	7	Low	
071	S	Polychaete	Juveniles	Neanthes sp.	12.5	က	2	4		ဗ	7	Med.	æ
021	S	Japanese clam	Juveniles	Tapes japonica	12.5	9	က	4	-	3	0	Low	
016	S	Blue mussel	Embryos	Mytilus edulis	12	2	4	-	3	0	4	Med.	B,C
011	딤	Pacific oyster	Embryos	Crassostrea gigas	12	7	4	0	7	4	4	Med.	B,D
600	딤	Eastern oyster	Embryos	Crassostrea virginica	12	7	4	0	7	4	4	Med.	89
055	딤	Sheepshead minnow	1-14 days old	Cyprinodon variegatus	12	4	2	0	4	ဗ		Med.	В,Е
037	S	Ridge-back prawn	Juveniles	Sicyonia ingentis	12	8	2	3	-	4	2	Low	A
030	S	Sand shrimp	Juveniles	Crangon sp.	12	e e	2	က	-	4	2	Low	
043	S	White sea urchin	8- to 22-mm diameter	Lytechinus pictus	12	က	7	ო	,- -	4	7	Low	
015	S	Clam	Juveniles	Mulinia lateralis	12	ო	7	4	-	4	0	Low	
039	S	Sand dollar	Juveniles	Dendraster excentricus	12	က	7	က	-	4	7	Low	
023	S	Yoldia cłam	Juveniles	Yoldia limatula	11.5	e i	2	4	-	ဗ	0	Low	1
032	E	Shrimp	Embryo-larval	Pandalus sp.	11.5	က	ო	-	-	က	4	Low	
046	S	Purple sea urchin	Embryos	Strongylocentrotus purpuratus	=	7	4	_	7	0	4	Med.	ပ
045	ᆸ	Purple sea urchin	Embryos (<1 hr old)	Strongylocentrotus purpuratus	1	7	4	0	,	4	4	Med.	
010	S	Pacific oyster	Embryos	Crassostrea gigas	11	7	4		7	0	4	Low	B,C,D
014	ū	Ousbon clam	Embryos	Mercenaria mercenaria	11	0	œ	c	6	V	_	-	٥

TABLE 2. (cont.)

Comments					89					⋖] } ! !					8 8 1 1 1					O	ပ	ပ	
Reg. Status	Low	Low	Low	Low	Med.	Low	Low	Low	Low	Low	Med.	Med.	Med.	Med.	Med.	Low	Low	Low	Low	Low	Med.	Med.	Low	Low
Chem. Discrim.	4	4	7	4	0	2	2	2	7	2	4	4	4	4	7	4	4	4	4	2	2	4	4	0
Inter- ferences	4	4	က	ဗ	4	2	2	4	4	4	8	ო	4	4	4	0	0	4	4	4	0	0	0	3
Avail- ability	1	-	-	-	ო	-	-	-	-	-	 - !	_	-	_	-	-	-		-	0	2	_	_	1
Exp. Rel.	0	0	-	- -	0	-	-	0	0	0	0	0	0	0	0	-	_	0	0	0	-	_		0
Ecol. Rel.	3	က	ო	7	7	က	က	ဇ	က	က	2	7	7	2	2	2	7	7	7	ო	2	7	2	2
Refi- ability	3	က	က	က	က	က	က	က	က	က	 က 	ო	7	2	8	က	ო	ო	7	က	2	7	7	3
Tech. Rating	11	Ξ	10.5	10.5	5	5	10	10	10	5	9.5	9.5	တ	თ	6	6	თ	6	6	6	8	œ	œ	7.5
Test Species	Callinectes sapidus	Cancer sp.	Penaeus sp.	Palaemonetes sp.	Gasterosteus aculeatus	Hypomesus pretiosus	Hypomesus pretiosus	Lagodon rhomboides	Leiostomus xanthurus	Leuresthes tenuis	Mysidopsis sp.	Holmesimysis sp.	Ostrea sp.	Dendraster excentricus	Cymatogaster aggregata	Holmesimysis sp.	Mysidopsis sp.	Lytechinus pictus	Strongylocentrotus sp.	Coryphaena hippurus	Strongylocentrotus droebachiensis	Dendraster excentricus	Arbacia punctulata	Citharichthys stigmaeus
Life Stage	Embryo-larval	Embryo-larval	Post-larvae	Post-hatch	Juveniles	Larvae	Larvae	Embryo-larval	Embryo-larval	Embryo-larval	1-5 days old	1-5 days old	Embryo-larval	Embryos	Embryo-larval	1-5 days old	1-5 days old	Embryos (<1 hr old)	Embryos (<1 hr old)	Embryo-larval	Embryos	Embryos	Embryos	Juveniles
Common Name	Blue crab	Cancer crab	Shrimp	Grass shrimp	3-spine stickleback	Surf smelt	Surf smelt	Pinfish	Spot	Grunion	Mysid	Mysid	Oyster	Sand dollar	Shiner perch	Mysid	Mysid	White sea urchin	Sea urchin	Dolphinfish	Green sea urchin	Sand dollar	Atlantic urchin	Speckled sanddab
Exposure Media	ᆸ	딥	ᆸ	딤	E	S	S	ᆸ	딤	EL	급	ᆸ	딤	Е	핍	S	S	ᆿ	딤	E	S	S	S	ᇤ
No.	026	028	035	031	056	057	058	059	090	061	065	690	018	041	054	062	064	044	049	053	048	040	038	051

- elutriate ᆸᇰ Note:

- sediment

geographically restricted or alien to United States widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available

▼BOO□

TABLE 3. EVALUATION OF SEDIMENT TOXICITY TESTS - MARINE SUBLETHAL

001	Media	Name	Stage	lest Species	Rating	ability	Ref.	Rel. ability	ability	ferences	Discrim.	Status	Comments
	s	Amphipod	Juveniles or adult females	Ampelisca abdīta	14.5	-	3	4	ဗ	3	4	Low	B,C
121	S	Polychaete	Juveniles	Neanthes sp.	14.5	က	7	4	က	ო	2	Low	B,E
109	ᆸ	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	4	က	4	0	က	4	4	Med.	ш
800	S	Amphipod	Adults	Rhepoxynius abronius	13.5	-	7	4	က	က	4	Low	ပ
900	တ	Amphipod	Immature	Grandidierella japonica	13.5	-	2	4	3	3	4	Low	89
017	日	Blue mussel	Embryos	Mytilus edulis	13	2	4	0	က	4	4	Low	B,E
111	日	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	13	ო	4	0	7	4	4	Low	ш
047	딤	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	12	က	4	0	-	4	4	Med.	
102	ᆸ	Sand dollar	Gametes	Dendraster excentricus	12	ო	7	0	က	4	4	Med.	ш
100	긥	Atlantic urchin	Gametes	Arbacia punctulata	12	3	2	0	3	4	4	Med.	ш
115	В	Green sea urchin	Gametes	Strongylocentrotus droebachiensis	12	က	2	0	ဗ	4	4	Med.	ш
015	S	Clam	Juveniles	Mulinia lateralis	12	7	7	ო	-	4	4	Low	
107	긥	White sea urchin	Gametes	Lytechinus pictus	12	ო	7	0	က	4	4	Med.	A,E
112	딥	Purple sea urchin	Gametes	Strongylocentrotus purpuratus	12	7	4	0	7	4	4	Low	
011	핍	Pacific oyster	Embryos	Crassostrea gigas	12	2	4	0	2	4	4	Low	B,D,E
081	<u>П</u>	Microtox	Cells	Photobacterium phosphoreum	12	2	-	2	4	3	က	Low	B,D
910	S	Blue mussel	Embryos	Mytilus edulis	1	-	4		ဗ	0	4	Med.	B,C
600	긤	Eastern oyster	Embryos	Crassostrea virginica	=	-	4	0	7	4	4	Low	ω
080	ΙΝ	Microtox	Cells	Photobacterium phosphoreum	1	7	τ	_	4	ო	က	Low	B,D
010	S	Pacific oyster	Embryos	Crassostrea gigas	10	-	4	-	2	0	4	Med.	B,C,D
046	S	Purple sea urchin	Embryos	Strongylocentrotus purpuratus	10	-	4	-	2	0	4	Med.	ပ
045	ᆸ	Sand dollar	Gametes	Dendraster excentricus	10	က	7	0		4	4	Med.	ш
043	S	White sea urchin	8- to 22-mm diameter	Lytechinus pictus	10	7	7	ო		4	0	Low	
039	s	Sand dollar	Juveniles	Dendraster excentricus	10	7	7	ო	۳	4	0	Low	
014	岀	Quahog clam	Embryos	Mercenaria mercenaria	10	- 1	8	0	2	4	4	Low	8
860	끕	Atlantic urchin	Gametes	Arbacia punctulata	10	က	7	0		4	4	Low	ш
760	Ϊ	Atlantic urchin	Gametes	Arbacia punctulata	6	7	7	0		4	4	Low	
048	S	Green sea urchin	Embryos	Strongylocentrotus droebachiensis	80	-	7	_	7	0	4	Med.	ပ
058	S	Surf smelt	Larvae	Hypomesus pretiosus	ω	7	က	_	-	0	2	Low	
038	S	Atlantic urchin	Gametes	Arbacia punctulata	8	2	2	-	-	0	4	Low	٥

rest No.	Test Exposure No. Media	Common Name	Life Stage	Test Species	Tech. Rating	Reli- ability	Ecol. Rel.	Exp. Ref.	Avail- ability	Tech. Reli- Ecol. Exp. Avail- Inter- Rating ability Rel. Rel. ability ferences	Chem. Discrim.	Reg. Status	Tech. Reli- Ecol. Exp. Avail- Inter- Chem. Reg. Rating ability Rel. Rel. ability ferences Discrim. Status Comments
383	S	Microtox®	Cells	Photobacterium phosphoreum	7	2	1	0	2	-	က	Med.	8
084		EX Mod. Ames/HPTLC Cells	; Cells	Salmonella typhimurium	7	7	-	0	7	-	ო	Low	ω
040		S Sand dollar	Embryos	Dendraster excentricus	9	-	7	-	-	0	7	Med.	ပ

- elutriate Note: EL . EX -INT -

extract interstitial water sediment

geographically restricted or alien to United States widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available

K B O O B

TABLE 4. EVALUATION OF SEDIMENT TOXICITY TESTS—ESTUARINE LETHAL

001 S 003 S 003 S 133 S 135 S 126 S 002 S	Amphipod Amphipod Amphipod Amphipod Amphipod Amphipod Amphipod		A nlinen abalisa	18.5	,	,						
! ! [Amphipod Amphipod Amphipod Amphipod Amphipod Amphipod	young	Атрелѕса арала	0.0	ო	ກ	4	ო	3	4	High	B,C,E
! ! [Amphipod Amphipod Amphipod Amphipod Amphipod	honod	Eohaustorius estuarius	16.5	4	2	4	က	က	4	High	ပ
	Amphipod Amphipod Amphipod Amphipod		Eohaustorius washingtonianus	16.5	4	7	4	က	က	4	Med.	ш
! ! !	Amphipod Amphipod Amphipod Amphipod	1	Leptocheirus plumulosus	16	4	7	4	က	2	4	Low	B,E
	Amphipod Amphipod Amphipod		Leptocheirus plumulosus	15.5	က	2	4	3	3	4	High	a
	Amphipod Amphipod	Juveniles or young adults	Corophium volutator	15.5	4	2	က	က	8	4	Med.	ш
	Amphipod	Juveniles or young adults	Amphiporeia virginiana	15.5	4	7	4	က	က	2	Med.	ш
		Adults	Corophium volutator	15.5	4	7	ဗ	က	က	4	Low	ш
	Amphipod	Juveniles	Leptocheirus plumulosus	15.5	က	7	4	ო	က	4	Low	6 0
131 S	Amphipod	7-14 days old	Hyalella azteca	14	3	2	3	2	4	4	High	മ
020 S	Littleneck clam	Juveniles	Protothaca staminea	13.5	က	က	4	2	က	0	Low	
017 EL	Blue mussel	Embryos	Mytilus edulis	13	7	4	0	ო	4	4	Med.	8
027 S	Blue crab	Juveniles	Callinectes sapidus	13	ო	ო	ო	_	4	7	Low	
151 S	Grass shrimp	Post-hatch (1-4 days)	Palaemonetes sp.	13	က	7	က	_	4	4	Low	
016 S	Blue mussel	Embryos	Mytilus edulis	12	2	4	-	က	0	4	Med.	B,C
000 EL	Eastern oyster	Embryos	Crassostrea virginica	12	2	4	0	2	4	4	Med.	B
011 EL	Pacific oyster	Embryos	Crassostrea gigas	12	7	4	0	7	4	4	Med.	B,D
030 S	Sand shrimp	Juveniles	Crangon sp.	12	ဗ	7	ო	_	4	2	Low	
153 EL	Sheepshead minnow	1-14 days old	Cyprinodon variegatus	11.5	ဇ	7	0	4	4	-	Low	80
010 S	Pacific oyster	Embryos	Crassostrea gigas	11	2	4	-	2	0	4	Med.	B,C,D
157 EL	Silverside	ys old	Menidia sp.	11	4	2	0	3	က	1	Med.	B,E
158 EL	Silverside	1-14 days old	Menidia sp.	=	4	2	0	ო	က	-	Med.	8,€
014 EL	Quahog clam	Embryos	Mercenaria mercenaria	=	7	က	0	7	4	4	Low	B
026 EL	Blue crab	Embryo-larval	Callinectes sapidus	1	က	ო	0	_	4	4	Low	
065 EL	Mysid	1-5 days old	Mysidopsis sp.	10.5	4	2	0	+	င	4	Med.	ш
162 EL	Mysid	1-5 days old	Neomysis sp.	10.5	က	2	0	2	က	4	Med.	
161 S	Mysid	1-5 days old	Neomysis sp.	10	ო	2	_	2	0	4	Low	
056 EL	3-spine stickleback	Juveniles	Gasterosteus aculeatus	10	က	7	0	ო	4	0	Med.	æ
064 S	Mysid	1-5 days old	Mysidopsis sp.	6	က	7	_	-	0	4	Low	
156 EL	Grunion	9-14 days old	Leuresthes tenuis	တ	က	က	0	-	က		Low	∢
165 INT	Polychaete	Females (1-2 days)	Dinophilus gyrociliatus	8.5	3	-	1	1	3	2	Low	

Footnotes on following page.

Note: EL INT

elutriateinterstitial watersediment

geographically restricted or alien to United States widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available

A B O O B

TABLE 5. EVALUATION OF SEDIMENT TOXICITY TESTS—ESTUARINE SUBLETHAL

Test No.	Fest Exposure No. Media	Common	Life Stage	Test Species	Tech. Rating	Reli- ability	Ecol. Rel.	Ecol. Exp. Avail- Rel. Rel. ability		Inter- ferences	Chem. Discrim.	Reg. Status	Comments
001	S	Amphipod	Juveniles or adult females Ampelisca abdita	Ampelisca abdita	16.5	ဗ	ဗ	4	က	က	4	Low	B,C
134	ဟ	Amphipod	Juveniles	Leptocheirus plumulosus	14.5	7	7	4	ო	က	4	Low	89
135	တ	Amphipod	Mixed sexes	Leptocheirus plumulosus	14.5	7	7	4	ო	က	4	Low	æ
129	S	Amphipod	Large juveniles and adults	Eohaustorius estuarius	14.5	7	7	4	ო	က	4	Low	ပ
128	S	Amphipod	Adults	Corophium volutator	14.5	က	2	က	3	က	4	Low	ш
133	S	Amphipod	Juveniles	Leptocheirus plumulosus	14	2	2	4	က	2	4	Low	В
017	E	Blue mussel	Embryos	Mytilus edulis	13	7	4	0	ო	4	4	Low	В,Е
011	日	Pacific oyster	Embryos	Crassostrea gigas	12	7	4	0	7	4	4	Low	B,D,E
010	တ	Pacific oyster	Embryos	Crassostrea gigas	1	7	4	-	7	0	4	Med.	B,C,D
910	S	Blue mussel	Embryos	Mytilus edulis	1	-	4	-	3	0	4	Med.	B,C
014	E	Quahog clam	Embryos	Mercenaria mercenaria	-	-	4	0	7	4	4	Low	B
600	딤	Eastern oyster	Embryos	Crassostrea virginica	1	_	4	0	7	4	4	Low	8
187	딤	Sheepshead minnow	Adults	Cyprinodon variegatus	=	-	7	0	4	4	4	Low	8
176	EX	Microtox	Cells	Photobacterium phosphoreum	10	7	7	0	4	-	က	Low	B,D
191	N	Polychaete	Females	Dinophilus gyrociliatus	8.5	7	_	-	-	က	4	Low	
175	S	Microtox	Cells	Photobacterium phosphoreum	6.5	7	-	0	2	0	က	Low Low	B,C

Note:

S EX EX

elutriate
extract
interstitial water
sediment

widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available воош

TABLE 6. EVALUATION OF SEDIMENT TOXICITY TESTS—FRESHWATER LETHAL

241 S 239 S 238 S 237 S 240 S 242 S 260 INT 250 S 249 S 240 INT 206 EL 240 INT 205 EL 208 EL 214 EL 208 EL 208 EL 214 EL 215 S 252 S	Mayfly Mayfly Midge Amphipod Mayfly Water flea Marsh grass Oligochaete Oligochaete Water flea Mayfly Water flea	Nymphs Young nymphs 2nd instar larvae Neonates or larvae Juveniles Nymphs Neonates Seedlings Large worms Mixed-age Neonates (<24 hrs) Nymphs	Hexagenia limbata Hexagenia limbata Chironomus tentans Chironomus riparius Hyalella azteca Hexagenia limbata Daphnia magna Echinochloa crusgalli	16.5 16.5	3	ဗ	4	2	က	4	,000	C A
s s s s s s s s s s s s s s s s s s s	Mayfly Midge Midge Amphipod Mayfly Water flea Migochaete Oligochaete Water flea Mayfly Water flea Water flea	vae arv	Hexagenia limbata Chironomus tentans Chironomus riparius Hyalella azteca Hexagenia limbata Daphnia magna Echinochloa crusgalli	16.5				כ		۲		į
s s s s z z s s s z z z z z z z z z z z	Midge Midge Amphipod Mayfly Water flea Marsh grass Oligochaete Oligochaete Water flea Mayfly Water flea Water flea	arv	Chironomus tentans Chironomus riparius Hyalella azteca Hexagenia limbata Daphnia magna Echinochloa crusgalli	16	က	ო	4	က	က	4	Low	B,D
о о м м м м м м м м м м м м м м м м м м	Midge Amphipod Mayfly Water flea Marsh grass Oligochaete Oligochaete Water flea Water flea Water flea	arv	Chironomus riparius Hyalella azteca Hexagenia limbata Daphnia magna Echinochloa crusgalli	2	က	2	4	4	7	4	High	B,D
S S N S N H H H H H H N S S H	Amphipod Mayfly Water flea Marsh grass Oligochaete Oligochaete Water flea Mayfly Water flea	24	Hyalella azteca Hexagenia limbata Daphnia magna Echinochloa crusgalli	16	က	7	4	4	7	4	Med.	89
s F B B B B B B B B B B B B B B B B B B	Mayfly Water flea Marsh grass Oligochaete Oligochaete Mater flea Mayfly Water flea Water flea	24	Hexagenia limbata Daphnia magna Echinochloa crusgalli	15.5	8	2	က	4	8	4	High	8
S S E E E E E E E S S S E	Water flea. Marsh grass Oligochaete Oligochaete Water flea Water flea Water flea	24	Daphnia magna Echinochloa crusgalli	15.5	8	2	4	က	8	4	Low	B,D
S S S H L H H H H S S S H	Marsh grass Oligochaete Oligochaete Water flea Mayfly Water flea Water flea	24	Echinochloa crusgalli	15	4	က	0	4	4	4	Low to Med.	B,D,E
« « ч т п п п п п п п п п п п п п п п п п п	Oligochaete Oligochaete Water flea Mayfly Water flea Water flea	24		15	ო	4	4	-	4	7	Low	
S H H H H H S S S H	Oligochaete Water flea Mayfly Water flea Water flea	(<24	Lumbriculus variegatus	14.5	ო	7	4	က	ဗ	2	Low	മ
H L H H H H H H H H H H H H H H H H H H	Water flea Mayfly Water flea Water flea Water flea	(<24	Lumbriculus variegatus	14.5	3	2	4	3	3	7	Low	œ
RE TE	Mayfly Water flea Water flea Water flea	Nymphs Neonates	Daphnia magna	14	4	2	0	4	4	4	Med.	B,D,E
ᆸᆲᆲᇦᇬᇬᆲ	Water flea Water flea Water flea	Neonates	Hexagenia limbata	14	က	ო	2	က	7	4	Low	B,D
ᆸᆲᇦᇬᇬᆲ	Water flea Water flea		Ceriodaphnia dubia	13.5	4	2	0	4	က	4	Med.	В,Е
교 교	Water flea	Neonates (<24 hrs)	Daphnia pulex	13.5	4	2	0	4	က	4	Med.	В,Е
<u>ส</u>		Neonates	Daphnia magna	13.5	4	2	0	4	3	4	Med.	B,D,E
ა ა ა <u>പ</u>	Water flea	Neonates (<24 hrs)	Daphnia pulex	13	8	2	0	4	4	4	Med.	8
s s ∃	Paper pondshell clam	Juveniles	Anodonta imbecillis	13	က	7	4	2	က	-	Low	
s H	Oligochaete	Mixed age; similar size	Pristina leidyi	13	ო	2	ო	2	4	7	Low	œ
핔	Oligochaete	Mixed age	Tubifex tubifex	13	က	7	ო	2	4	7	Low	B,D
	Bluegill	Approx. 4 days	Lepomis macrochirus	13	4	3	٥	4	4	0	Low	B,E
226 EL	Fathead minnow	Larvae (<24 hrs old)	Pimephales promelas	12.5	4	2	0	4	4	-	Med.	B,E
234 EL	Rainbow trout	Fry or fingerlings	Oncorhynchus mykiss	12.5	က	က	0	4	4	-	Med.	œ
235 S	Rainbow trout	Egg-sac stage	Oncorhynchus mykiss	12.5	ဗ	က	ν-	က	-	4	Low	83
109 INT	Amphipod	Juveniles	Hyalella azteca	12.5	က	2	-	က	က	4	Low	6 0
220 EL	Channel catfish	Approx. 4 days	Ictalurus punctatus	12	3	8	0	4	4	0	Low	8
229 EL	Fathead minnow	Approximately 4 days	Pimephales promelas	11	က	2	0	4	4	0	Med.	В
207 S	Water flea	Neonates	Ceriodaphnia dubia	11	ო	7	_	ო	0	4	Low	B,C
211 S	Water flea	Neonates	Daphnia magna	11	ო	7	_	ო	0	4	Low	B,C,D
251 EL	Oligochaete	Similar size	Pristina leidyi	10.5	ဗ	7	_	7	ო	7	Low	80
232 EX	Fathead minnow	Embryo-larval	Pimephales promelas	10.5	8	2		4	2	-	Low	æ

TABLE 6. (cont.)

est No.	fest Exposure No. Media	Common	Life Stage	Test Species	Tech. Rating	Reli- ability	Ecol. Rel.	Exp. Rel.	Avail- ability	Tech. Reli- Ecol. Exp. Avail- Inter- Chem. Rating ability Rel. Rel. ability ferences Discrim.	Chem. Discrim.	Reg. Status	Comments
က	S	233 S Fathead minnow	Juveniles	Pimephales promelas	10	Э	2	-	က	2	0	Low	æ
244	ᆸ	Nematode	L1 stage juveniles	Panagrellus redivivus	6	က	-	-	7	2	2	Low	
95	EX	African clawed frog Embryos	Embryos	Xenopus laevis	6	က	0	0	က	7	4	Low	A,B

- elutriate s <u>₹</u> E Note:

extract
 interstitial water

sediment

geographically restricted or alien to United States widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available K B C C B

TABLE 7. EVALUATION OF SEDIMENT TOXICITY TESTS—FRESHWATER SUBLETHAL

No.	Media	Name	LITE Stage	lest Species	Rating	Reli- ability	Fool.	Rel.	Avail- ability	Inter- ferences	Chem. Discrim.	Reg. Status	Comments
238	s	Midge	2nd instar larvae	Chironomus tentans	15		1	4	4	2		2000	
237	တ	Midge	Neonates or farvae	Chironomus riparius	<u> </u>	۱۹	، ۱	. 4		1 0	٠ -		, ,
200	S	Amphipod	Juveniles	Hvalella azteca	14.5	, ,	1 (t (1	٠ -	۸ ۵	† <	LOW	ם מ
242	U	Movelly	Mimaha	11		1 (1)	t	n	‡	Low to Med.	מ
747	n	Mayrıy	Nympus	Hexagenia limbata	14.5	7	7	4	ო	ო	4	Low	B,D
333	s	Aquatic vascular plant	Apical shoots	Hydrilla verticillata	14	7	က	4	7	4	2	Low	
256	S	Marsh grass	Seedlings	Echinochloa crusgalli	4	2	3	4	1	4	4	Low	1
569	S	Amphipod	Juveniles (<1 week)	Hyalella azteca	4	7	7	ო	ო	4	4	Low	<u>~</u>
285	핍	Water flea	Neonates	Ceriodaphnia dubia	13.5	4	7	0	4	ო	4	Med.	л ж п
330	S	Oligochaete	Adults	Tubifex tubifex	13	2	7	ო	7	4	4	Low	B,D
304	Z	Midge	2nd instar larvae	Chironomus tentans	12.5	7	ო	7	ო	-	4	Low to Med.	B,D
250	S	Oligochaete	Large worms	Lumbriculus variegatus	12.5	2 2 2	0	 4 	3	3	4	Low	B
323	S	Oligochaete	Juveniles and adults	Lumbriculus variegatus	12.5	7	2	4	-	က	4	Low	æ
324	S	Oligochaete	15 mm in length	Lumbriculus variegatus	12.5	7	7	4	-	ဗ	4	Low	8
226	ᆸ	Fathead minnow	Larvae (<24 hrs old)	Pimephales promelas	11.5	ო	7	0	4	4	_	Med.	B,E
260	EL	Green algae	Cells	Selenastrum capricornutum	11.5	7	7	0	4	4	က	Med.	- ω
272	ΙΝ	Microtox	Cells	Photobacterium phosphoreum	11.5	2	2	0	4	4	3	Low to Med.	B,D
235	တ	Rainbow trout	Egg-sac stage	Oncorhynchus mykiss	11.5	7	ო	-	ო		4	Low	.
261	Ī	Green algae	Cells	Selenastrum capricornutum	11.5	7	7	0	4	4	ო	Low	8
252	S	Oligochaete	Mixed age; similar size	Pristina leidyi	Ξ	-	7	ო	7	4	7	Low	. 60
176	Ä	Microtox®	Cells	Photobacterium phosphoreum	10.5	7	7	0	4	2	ო	Low	B,D
211	ဟ	Water flea	Juvenile (5 days)	Daphnia magna	10	2	2	-	3	0	4	Low	B.C.D
232	Ä	Fathead minnow	Embryo-larval	Pimephales promelas	9.5	7	7	0	4	2		Low to Med.	<u> </u>
233	S	Fathead minnow	Juveniles	Pimephales promelas	9.5	7	7	-	က	2	-	Low	8
263	딤	Algae	Cells	Chlorella vulgaris	9.5	7	7	0	2	4	က	Low	89
302	S	Rainbow trout	Gonad cell (RTG-2)	Oncorhynchus mykiss	တ	2	က	_	-	0	4	Low	B,C
244	딥	Nematode	L1 stage juveniles	Panagrellus redivivus	 0 	2	2	-	2	2	2	Low	* ! ! ! ! ! ! ! ! !
262	S	Algae	Cells	Chlorella vulgaris	8.5	7	7	-	2	0	ო	Low	B,C
195	EX	African clawed frog	Embryos	Xenopus laevis	80	7	0	0	က	7	4	Low	A,B
278	S	Mutatox	Cells	Vibrio fischeri	7.5	7	-	-	2	0	ო	Low	B,C
273	ú	A. A. a. a. a. a. a.	= <	·									

TABLE 7. (cont.)

Test I No.	Test Exposure No. Media	Common Name	Life Stage	Test Species	Tech. Rating	Reli- ability	Ecol.	Exp. Rel.	Avail- ability	Tech. Reli- Ecol. Exp. Avail- Inter- Chem. Rating ability Rel. Rel. ability ferences Discrim.	Chem. Discrim.	Reg. Status	Comments
274	s	Microtox®	Cells	Photobacterium phosphoreum	7.5	2	-	_	2	0	3	Low	B,C
270	EX	Aquatic bacterium	Cells	Aeromonas hydrophila	7.5	7	-	0	2	2	က	Low	8
320	EX	Nematode	L2 stage juveniles	Panagrellus redivivus	7	7	7	-	_	0	7	Low	
279	급	Mutatox	Cells	Vibrio fischeri	6.5	7	-	0	7	0	က	Low	8
308	ᆸ	Microbial enzyme	N/A	Alkaline phosphatase (APA)	6.5	7	-	~	_	0	က	Low	æ
084	EX	Mod. Ames/HPTLC	Cells	Salmonella typhimurium	6.5	7	-	0	7	0	က	Low	8

- elutriate Note:

extract interstitial water sediment

geographically restricted or alien to United States widely distributed and/or cultured potential sediment interferences field validated to benthos interlaboratory comparisons available

status. R. abronius is known to sometimes be sensitive to interferences from fine-grained sediments; in nature, this species is restricted to medium- to coarse-grained sediment habitats. Effects of sediment grain-size composition on A. abdita and Eohaustorius washingtonianus have also been demonstrated (DeWitt et al. 1989; U.S. EPA 1992). By contrast, Amphiporeia virginiana is not influenced markedly by sediment grain size, and G. japonica is found in a wide variety of sediment types in the field. Foxiphalus xiximeus inhabits fine to medium sands. Information on the sediment grain-size preference of Leptocheirus pinguis was not available. Although G. japonica can be cultured, the test has a low regulatory status and the test species has a limited geographical distribution (i.e., San Francisco Bay to Southern California). Although A. abdita can not be consistently maintained in culture (Redmond et al. 1994), this species has the broadest geographic distribution (i.e., East Coast, Gulf of Mexico, and San Francisco Bay) among the amphipod test species. This species also has the highest ecological relevance because it is considered a foundation species (i.e., its tube mats provide habitat for other species).

The juvenile clam mortality test based on a 10-day exposure of the infaunal species Protothaca staminea to whole sediment ranked among the top eight marine lethal tests (Table 2). This test ranked high because of the relatively high scores for reliability, ecological relevance, and exposure relevance. The test is easy to perform, and at least some laboratories have experience with this test or similar tests. A relatively developed method is available, but a standardized method has not been issued by ASTM or EPA. The species is widely distributed throughout the West Coast of North America and is harvested commercially and recreationally. The only serious drawback of this test is the potentially low sensitivity of juvenile bivalves to chemicals in sediments. However, little information on the actual performance of this test is available.

MARINE SUBLETHAL TESTS

Four of the five highest ranking marine sublethal tests are based on the exposure of juvenile or adult

infaunal organisms to whole sediments. Interestingly, all four infaunal tests have a low regulatory These four infaunal tests ranked highest largely because of: 1) a high degree of exposure relevance, 2) year-round availability of the test species by field collection (A. abdita and R. abronius) or culture (G. japonica and Neanthes sp.), and 3) well developed methods by either ASTM or Environment Canada with available laboratories. Three of the four infaunal tests are based on amphipods (i.e., A. abdita, G. japonica, and R. abronius) and were among the highest ranking marine lethal tests. The primary sublethal endpoint for all three of these tests is reburial, which, as a behavioral endpoint, scored low for reliability because of the potential variability. The major attributes of the three amphipod tests are discussed in Marine Lethal Tests. The fourth infaunal test is a long-term test based on the polychaete Neanthes sp. (Test 121) and does not include a lethal endpoint (see Table 2, Test 071 for a 10-day lethality test with Neanthes sp.). The sublethal endpoint for Test 121 is growth, which is generally easier to interpret than reburial. The exposure period for the three amphipod tests is 10 days, whereas the exposure period for the polychaete sublethal test is 20-28 days.

Although the echinoderm gamete test on elutriate sediment (Test 109) based on the purple sea urchin, Strongylocentrotus purpuratus, is not an infaunal test, it was ranked high, largely because of: 1) a sensitive life stage (i.e., gametes) and a reliable endpoint (i.e., fertilization), 2) a high degree of ecological relevance, and 3) well developed methods by Environment Canada. The purple sea urchin is considered an important species because its grazing activity can influence the distribution of kelp beds. The major drawback to this echinoderm test is the low exposure relevance of the elutriate exposure scenario. In the field, it is unlikely that planktonic gametes are commonly exposed to conditions similar to a sediment elutriate.

Although the bivalve development abnormality test (Test 017) based on exposure of the blue mussel, *Mytilus edulis*, to elutriates (or potentially to interstitial water) is not an infaunal test, it was ranked high, largely because it is based on a sensitive life

stage (i.e., embryos) of a species having a relatively high ecological relevance and high overall availability. In addition, the test is not affected by physical interferences because sediment is not included in the test chambers. The test has been evaluated in an intra- and interlaboratory variability study using complex effluents and reference toxicants (Pastorok et al. 1994). The test species has a wide distribution (i.e., East and West coasts), is commercially and recreationally harvested, and is considered a foundation species because it provides habitat for other species. The test species can also be cultured and embryos are available for at least half the year. The major drawback to the bivalve test is the low exposure relevance of the elutriate exposure scenario. In the field, it is unlikely that planktonic embryos are commonly exposed to conditions similar to a sediment elutriate. For the corresponding lethal test (Table 2, Test 017), highly variable results may be obtained when imprecise pipetting procedures are used to count initial and final larval densities. This problem affects all lethal tests with bivalve embryos, but not the corresponding sublethal tests.

ESTUARINE LETHAL TESTS

The 10 highest ranking estuarine lethal tests were based on the exposure of juvenile or adult infaunal amphipods to whole sediments for a 10-day exposure period. These tests ranked highest largely because of: 1) a high degree of exposure relevance, 2) good availability of the test species by field collection (8 of the 10 species) or culture (Leptocheirus plumulosus and Hyalella azteca), and 3) well developed methods by ASTM or Environment Canada with available laboratories. Two of these tests (i.e., those based on A. abdita and E. washingtonianus) were also included among the highest ranking marine lethal tests. Three of the 10 tests use L. plumulosus as the test species, and two tests use Corophium volutator as the test species. There are well-developed methods by ASTM and Environment Canada for selected tests based on L. plumulosus and C. volutator, and both test species have relatively wide tolerances for sediment grain size. The tests based on A. abdita and Eohaustorius estuarius and one of the tests based on L. plumulosus have a high regulatory status. One of the tests based on each of the species L. plumulosus and C. volutator has a low regulatory status.

The bivalve test based on exposure of the littleneck clam, *P. staminea*, to whole sediments was the eleventh ranked test. Refer to the previous section entitled *Marine Lethal Tests* for a discussion of this test.

ESTUARINE SUBLETHAL TESTS

The six highest ranking estuarine sublethal tests are based on the exposure of juvenile or adult infaunal amphipods to whole sediments. The primary sublethal endpoint for the tests based on A. abdita, E. estuarius, and C. volutator is reburial. By contrast, the primary sublethal endpoints for the tests based on L. plumulosus are fertility, reproduction, and growth, all of which are generally easier to interpret than reburial. All six tests were also included in the nine highest ranking estuarine lethal tests, although the exposure period is increased from 10 days to 28-30 days for the three sublethal tests that use L. plumulosus as the test species. These six test ranked highly as sublethal tests for the same reasons discussed previously for the estuarine lethal tests. All six tests have a low regulatory status.

FRESHWATER LETHAL TESTS

Five of the six highest ranking freshwater lethal tests were based on the exposure of infaunal insects (i.e., the mayfly *Hexagenia limbata* and the midges *Chironomus riparius* and *Chironomus tentans*) to whole sediments. The fifth ranked test was based on the exposure of an epifaunal amphipod, *H. azteca*, to whole sediments. The exposure periods varied from 7 to 30 days. These tests ranked highest largely because of their high degree of exposure relevance and their relatively high availability. All of the test species are available by field collection during most of the year, and *C. riparius*, *C. tentans*, and *H. azteca* can be cultured.

The tests based on *C. riparius*, *C. tentans*, and *H. azteca* have well-developed methods by ASTM. The tests based on *C. tentans* and *H. azteca* have a high regulatory status, whereas all three tests based on *H. limbata* have a low regulatory status. All of the test species are distributed throughout North America, except *C. tentans*, which is limited to the mid-continental areas of the United States. *C. riparius* and *H. azteca* are tolerant of a wide range of sediment grain sizes. For *H. limbata*, large individuals often exhibit cannibalistic behavior.

FRESHWATER SUBLETHAL TESTS

Four of the six highest ranking freshwater sublethal tests were also included as the highest ranking freshwater lethal tests. They included the tests based on the amphipod H. azteca, the mayfly H. limbata, and the midges C. riparius and C. tentans. The sublethal endpoints for all four tests is growth. All of the tests have a low regulatory status, except the one based on H. azteca, which has a low to medium regulatory status. The four tests ranked high as sublethal tests for the same reasons discussed previously for the freshwater lethal tests.

The other two highest ranking freshwater sublethal tests were based on plants (Hydrilla verticillata and Echinochloa crusgalli) that are exposed to whole sediments for 14 days. These tests ranked high primarily because of their high degrees of exposure and ecological relevance and their relatively low susceptibility to interferences. The high ecological relevance of the two tests is based on the importance of the plants in providing habitat for other organisms. The major drawback of these two tests is their relatively low availability because of the small number of laboratories that have experience with them. Both tests have a low regulatory status. The sublethal endpoints for the test based on H. verticillata is growth, whereas the sublethal endpoint for the test based on E. crusgalli is seed germination.

APPLICATION OF SEDIMENT TOXICITY TESTS

In this section, a brief overview is presented of the major kinds of considerations that should be addressed when using sediment toxicity tests to evaluate the potential effects of chemicals discharged to aquatic environments. Although many of these considerations may be specified as part of NPDES permits, knowledge of some of the most important considerations may be useful for addressing items that are not specified in permits or for requesting changes in the permit specifications to enhance the scientific basis or the cost-effectiveness of the toxicity testing program. The major kinds of considerations include the following:

- Study design specifications
- Sample collection, storage, and handling methods
- Laboratory methods
- Data analysis.

Study design specifications are addressed below. Sampling, laboratory, and data analysis methods are addressed in the User's Guide (PTI 1994). For more detailed discussions of sediment collection and handling procedures, laboratory techniques, and quality assurance considerations, the user is referred to information in specific methods. ASTM (1989, 1990, 1991a,b) and 40 CFR Part 792 contain discussions that may be applicable for a variety of sediment testing procedures.

STUDY DESIGN SPECIFICATIONS

The study design specifications lay the groundwork for the success or failure of a toxicity testing program. If a study is not designed properly, the best field collection methods, laboratory methods, and data analysis techniques may not overcome a poor design to provide a reliable assessment of sediment toxicity. Perhaps the most important study design consideration is a clearly defined statement of the objectives of the study. Objectives should be the ultimate guidelines for all subsequent decisions related to a toxicity evaluation. If the objectives are too general or are stated poorly, they will provide little guidance and the usefulness of the results of the toxicity evaluation may be jeopardized.

It is essential that the study objectives be sufficiently detailed and clear to adequately guide the evaluation. For example, the selection of species for toxicity testing is influenced by study objectives. If the study objective is to assess potential effects of contaminated sediments on the ecosystem, then a variety of species and organism level endpoints could be selected as surrogates for ecosystem level effects. If the real objective of a study is to assess potential sediment toxicity to a commercially harvested clam species at a site, use of a bivalve larval development test would be more appropriate than a test with a worm species or a fish species. Thus, failure to define the specific species or ecological components to be protected could reduce the value of the results.

Additional major study design specifications that are guided by the study objectives include the general assessment approach, the kind of toxicity tests to use, the method of assessing adverse effects, and the collection of ancillary information (e.g., sediment grain size, sediment chemistry).

GENERAL ASSESSMENT APPROACH

A key consideration when developing the general approach for a toxicity evaluation is whether to conduct the evaluation in a tiered manner. Using a tiered approach, a sensitive screening evaluation precedes one or more detailed, definitive evaluations. The definitive evaluations are conducted only at stations where the screening evaluation indicates that sediments are toxic. For example, a rapid and relatively inexpensive toxicity test (e.g., Microtox®) could be used to select those stations at which additional toxicity tests or other kinds of information (e.g., sediment chemical concentrations, evaluations of benthic macroinvertebrate assemblages) should be

evaluated. The primary benefits of a tiered approach are that it focuses the evaluation effort on a subset of stations and thereby reduces the cost of the overall evaluation. Within each tier, the data analysis methods should be specified based on the study objectives and the planned uses of the data (for further discussion, see *Data Analysis Issues* in the User's Guide [PTI 1994]).

The general assessment strategy should also address the primary uses of the data, which in turn will influence the data analysis approach. For example, assessment of the potential effects of a point discharge may involve collecting data from a geographic distribution of stations along an expected gradient of suspected contamination and effects. The data would be analyzed graphically or statistically to evaluate gradual trends or gradients in toxicity in relation to chemical concentrations in sediments. In contrast, an assessment of a heterogeneous study area may need to rely on comparison of the results from each station with those from a reference site.

SELECTION OF TOXICITY TESTS

To provide an accurate evaluation of sediment toxicity, it is essential that the appropriate toxicity tests are selected for a specific discharge site. Some key considerations for selecting a test include the test species; the life stage tested; the test endpoints; the exposure period; and the reliability, ecological relevance, exposure relevance, and availability of the test. All of these considerations are addressed in other sections of this report.

EFFECTS ASSESSMENT

The method of effects assessment influences both the number and locations of sampling stations. Two of the most common methods are the reference area approach and the gradient approach. For the reference area approach, effects are evaluated by comparing the toxicity results found in a potential problem area with those from a reference area. Usually, these comparisons are made statistically and an effect is identified when the results for the potential problem area are significantly different

 $(P \le 0.05)$ from the reference results. The reference area is defined as an area that is as similar as possible to the potential problem area, except that it is not influenced by the chemicals of interest. streams, reference areas are typically located upstream from the discharge area. The application of the reference area approach is sometimes limited by difficulty in finding a suitable reference area, especially with regard to sediment characteristics. In coastal environments, many discharge sites are located in embayments with relatively fine-grained sediments (i.e., silts and fine sands). In such cases, it is especially important that the reference area also have a similar sediment grain size. For some sediment tests, there is a potential for reaching an erroneous conclusion concerning significant toxicity if a coarser sediment is used for reference tests. For example, the optimal habitat of the test species may be coarse sediments and any suboptimal survival, growth, or reproduction that was observed in the test sediments relative to the reference could be related to habitat preference. Use of formulated reference sediments in toxicity testing programs can provide a standard material for comparison with study site sediments, while avoiding some of the problems of using naturally collected reference sediments (Suedel and Rodgers 1994).

For the gradient approach to effects assessment, three or more stations are located at increasing distances from a discharge point. These stations are usually located downstream or downcurrent. Effects are evaluated by determining whether a decrease in toxicity occurs with increasing distance from a potential problem area. These comparisons can be made graphically or statistically using correlation analysis. Effects are identified when an obvious relationship or a statistically significant $(P \le 0.05)$ correlation is found between toxicity and distance from the potential problem area. The application of the gradient approach can be limited by other chemicals or conventional variables (e.g., sediment grain size, sediment organic carbon content) that vary along the spatial gradient and thereby confound the toxicity results.

ANCILLARY INFORMATION

During most toxicity evaluations, it is useful to collect various kinds of ancillary information that may assist in the interpretation of the toxicity results, in the selection of reference areas, and in the evaluation of environmental gradients. Three major kinds of ancillary information are supplemental sediment variables, sediment chemical concentrations, and in situ biological effects.

Supplemental Sediment Variables

Because the results of toxicity tests can be affected by supplemental variables, it is advisable to measure the major variables that are known to influence each kind of test. For example, an important supplemental variable for most tests that rely on exposure to whole sediments is the grain size of the sediments. Other important supplemental variables that should be considered include sediment organic content (measured as percent organic carbon) and the concentrations of ammonia and sulfides in interstitial water.

Most organisms living in or on sediments have specific preferences and/or requirements concerning the physical/chemical characteristics of those sediments. The characteristics of sediments can independently affect the response of test organisms, thus confounding the interpretation of test results. For example, water column organisms (e.g., plankton, fishes) may not encounter whole sediments but still may be adversely affected by high concentrations of suspended sediments. Although it is widely acknowledged that physical/chemical characteristics of sediments may directly affect responses, there has been little experimental work conducted in this area. For most species, there is no information available. In tests of naturally occurring reference sediments and in experimental manipulations of grain size composition, DeWitt et al. (1988, 1989) found that the amphipod R. abronius was apparently sensitive to fine-grained material or some correlated factor. Recently, Suedel and Rodgers (in press) showed that survival of the freshwater midge C. tentans was reduced in formulated reference sediments with less than 0.76-0.96 percent organic matter.

authors demonstrated that this species was tolerant of a wide range of sediment particle sizes (0-100 percent sand, 0-100 percent silt, and 0-60 percent clay). H. azteca was tolerant of a similarly wide range of particle sizes and various levels of organic matter (0.12-7.8 percent). PTI (1991) tested 21 naturally occurring reference sediments that varied greatly in percent sand/silt fraction (3.2–96 percent) and total organic carbon (0.2-2.6 percent) using R. abronius mortality, Neanthes sp. biomass, Microtox® bacteria luminescence, Crassostrea gigas larval abnormality, and Dendraster excentricus embryo abnormality tests. Only the latter two tests showed a correlation between the response and sediment parameters (i.e., sediment grain size). Even in these cases, embryo abnormality was less than 11 percent after exposure to the reference sediments.

The effects of sediment particle size on survival of the amphipod R. abronius have been evaluated in detail. DeWitt et al. (1988, 1989) concluded that elevated mortality in the R. abronius test can result solely from exposure of the organisms to sediments that have a high percentage of fine-grained material (i.e., silt/clay). Elevated mortality found in reference area sediments without apparent chemical contamination was attributed to physical characteristics of the sediments or some other natural factor that correlated with the physical characteristics. The distribution of observations compiled by DeWitt et al. (1988, 1989) suggests that adverse effects of fine-grained sediments on R. abronius are found only in some reference area sediments and that high survival in fine-grained sediments may be observed for some reference sites. In an independent study, PTI (1991) evaluated the relationship between amphipod (R. abronius) mortality and percent finegrained material in sediments by analyzing samples from 21 stations in reference areas of Puget Sound. For this data set, amphipod survival was not significantly related to percent fine-grained material in sediment.

Although the response of R. abronius to fine-grained particles is not consistent, the measured toxicity in some cases probably reflects the natural preference of this species for sandy substrates. amphipods may have broader sediment preferences

and may be better test species in extremely fine-grained sediments (e.g., >90 percent silt/clay). For example, recent studies of the East Coast amphipod *L. plumulosus* indicate that its survival is not adversely affected by sediments with silt/clay fractions of more than 90 percent and that this species commonly occurs in both muddy and sandy habitats (Schlekat *et al.* 1992). Similarly, the West Coast estuarine amphipod *E. estuarius* generally shows high survival in fine-grained sediments (DeWitt *et al.* 1989).

In summary, there is little definitive information on the effects of potentially confounding variables on sediment toxicity test results. However, it is important that such factors be considered in the selection of candidate tests. The user should consult the available information in Appendix D.

Sediment Chemical Concentrations

The evaluation of sediment chemical concentrations in conjunction with sediment toxicity is often useful for identifying the chemicals that may be causing any observed toxicity and for determining whether sediment conventional variables or other confounding factors may have influenced the results of toxicity results. The influence of confounding factors is suspected when significant toxicity results are found in the absence of elevated sediment chemical concentrations. In designing a sediment chemistry evaluation, it is important to define the chemicals of potential concern based on knowledge of sources, the level of accuracy and sensitivity (i.e., detection limits) required, and the quality assurance and quality control procedures for analytical laboratories. Some analytical requirements, such as detection limits, may be defined in guidance from a relevant regulatory agency. The level of chemical analysis should be matched to that of the toxicity test design. For example, a screening-level chemistry method would be appropriate for a reconnaissance survey of a large area to focus further investigations on specific high priority areas. Complete characterization of sediment chemicals in an area might require specialized analytical methods and considerable documentation of results, which would only be appropriate when detailed toxicity evaluations are conducted. PTI (1992) provides detailed guidance on designing chemical analyses and evaluating results. Because the costs of sediment chemical evaluations can be high, these evaluations are used most efficiently as part of a tiered assessment strategy in which they are conducted only at selected stations.

In Situ Biological Effects

The evaluation of in situ biological effects in conjunction with toxicity testing provides real world verification of the toxicity results. Because there are many uncertainties associated with extrapolating the results of laboratory evaluations to the field setting, the actual measurement of biological effects in the field is a useful method of addressing those uncertainties and confirming the presence or absence of toxicity. The group of organisms that is used most frequently for field assessments of sediment toxicity is benthic macroinvertebrates because many of these organisms are relatively stationary and therefore highly susceptible to chemical exposure from fixed sources. Because the costs of evaluations of in situ biological effects can be high, these evaluations are used most efficiently as part of a tiered assessment strategy in which they are conducted only at selected stations.

Diaz (1992) and La Point and Fairchild (1992) discuss approaches for using benthic community structure analyses in assessing contaminated sediments. La Point and Fairchild (1992) emphasize assessing benthic macroinvertebrate community structure because of the limitations in using fishes or periphyton. These authors and Diaz (1992) provide information on the advantages and limitations of various measures of community structure, including composition, diversity, evenness, multivariate resemblance indices (i.e., indicators of similarity in faunal composition and abundance between sites), biomass, and indicator species abundances. Each study should use several measures of community structure because no one measure is a reliable indicator of contaminant effects. Caution is needed to avoid confounding effects of natural factors that may obscure the potential effects of contaminants or lead to false positives. For example, comparisons of benthic community measures between potentially affected sites and reference sites should be stratified by season and by habitat features (e.g., sediment grain size and organic carbon).

Chapman et al. (1987) illustrate the use of macroinvertebrate community measures in combination with sediment toxicity tests and sediment chemistry in an integrated approach termed the sediment quality triad. Synoptic collection of all three types of data is preferred to minimize uncertainty in the combined results (Chapman et al. 1992). Although aliquots for analysis of sediment chemistry and toxicity can be taken from the same sample, separate samples are needed for analysis of benthic macroinvertebrates. Despite its relatively high cost and the high level of expertise needed for interpretation of the data, the triad approach represents one of the most scientifically defensible and relevant approaches to assessment of sediment contamination. Chapman et al. (1992) provide further details on the application of the triad approach.

CONCLUSIONS

Reliable sediment toxicity tests are currently available for testing of marine, estuarine, and freshwater sediments. Many of the well standardized tests are documented in methods or guidance manuals developed by ASTM, EPA, and Environment Canada. However, fewer than 25 percent of the sediment toxicity tests in each category (e.g., marine lethal or estuarine sublethal) have undergone intra- and inter-laboratory variability studies. Few comparative studies of multiple tests have been conducted. Also, most sediment toxicity tests have not undergone field validation tests in which the toxicity results are correlated with chemical concentrations in sediments and effects on indigenous benthic fauna.

In this study, the criteria used to evaluate sediment toxicity tests were reliability, ecological relevance, exposure relevance, availability, interferences, and chemical discrimination. Because little information was available on the latter two categories for most tests, their influence on the overall technical rating scores was moderated by use of a weighting factor.

Most of the highly ranked marine and estuarine infaunal tests were based on the use of amphipods as test organisms, whereas most of the highly ranked freshwater infaunal tests were based on the use of insects (mayfly nymphs and midge larvae) as test organisms. These species groups are ecologically important, especially as key prey items for various fishes. In most cases, the highest ranking tests were the ones based on the exposure of infaunal organisms to whole sediments because: 1) exposure conditions closely mimic field conditions; 2) most of the test species are available by field collection during most of the year; and 3) many of the tests have well-developed methods.

Many of the lowest ranking toxicity tests involve exposure of planktonic organisms to whole sediments. The exposure relevance of these tests is relatively low because the test species are rarely

exposed to sediments in the field and they may be sensitive to interference of suspended sediments with feeding mechanisms.

The species included in the highest ranking marine and estuarine tests for lethality include the following amphipods: A. abdita, R. abronius, G. japonica, E. washingtonianus, E. estuarius, A. virginiana, F. xiximeus, C. volutator, L. pinguis, and L. plumulosus. Reproductive endpoints are also well developed for the L. plumulosus test. Although behavioral endpoints (e.g., reburial at exposure termination) are used in many of these amphipod tests, the behavioral endpoints have generally not been field validated. The tests based on A. abdita and R. abronius are the only ones with a high regulatory status.

Taxonomic groups other than amphipods also ranked high among the marine and estuarine sublethal tests, including the polychaete (Neanthes sp.) growth test based on a 20-28 day exposure to whole sediments, the purple sea urchin (S. purpuratus) fertilization test of sediment elutriates, and the bivalve (M.edulis) larval abnormality test of sediment elutriates. Although these elutriate tests have a lower exposure relevance than the whole sediment tests, they use sensitive life stages of ecologically important species, are widely available, and have well developed methods. Although these elutriate tests are generally reliable, their variability can be high and the negative controls fail quality assurance limits more frequently than those in the tests involving juveniles and adults of these or other species.

The highest ranking freshwater tests for lethal and sublethal endpoints were based on the exposure of infaunal insects (i.e., nymphs of the mayfly H. limbata and larvae of the midges C. riparius and C. tentans) and an epifaunal amphipod (H. azteca) to whole sediments. Only the H. azteca and C. tentans lethal tests have high regulatory status. Whole sediment tests with vascular plants (H. verticillata and E. crusgalli) were among the top six ranked tests in the freshwater lethal category. These tests ranked high primarily because of their high degrees of exposure and ecological relevance and their relatively low susceptibility to interferences. The high ecological relevance of the two tests is based

on the importance of the plants in providing habitat for other organisms. The major drawback of these two tests is their infrequent use in regulatory programs.

There is a relative paucity of information on interferences and chemical discrimination for sediment toxicity tests. Further research in these areas and more comparative studies of toxicity tests with corresponding data on the bioavailability of sediment chemicals are needed.

GLOSSARY

Acute toxicity The ability of a chemical to cause a toxic response in organisms

immediately or shortly after exposure to the chemical.

Adverse effect An impairment of biological functions or description of ecological

processes that results in unfavorable changes in an ecological

system.

Amphipod A small shrimp-like member of one subgroup of the large group

of animals called Crustacea, which includes crayfish, lobsters,

shrimps, and crabs.

Aquatic Living or growing in water.

Benthic Pertaining to, or associated with, the bottom of a body of water.

Biomass The total weight of live organisms in a sampled population.

Biotic group A group of related organisms with generally similar body struc-

ture and function.

Chronic toxicity The ability of a chemical to produce a toxic response when an

organism is exposed over a long period of time, generally corre-

sponding to a substantial part of the organism's life cycle.

Concentration The amount of a chemical expressed relative to amount of envi-

ronmental medium (e.g., $\mu g/L$ [micrograms of chemical per liter of water] or $\mu g/g$ [micrograms of chemical per gram of sedi-

ment]).

Control sediment A sediment essentially free of chemicals and compatible with the

biological needs of the test organisms such that it has no discernable influence on the response being measured in the test. Control sediment may be the sediment from which the test organisms are collected or a laboratory sediment, provided the organisms meet control standards. Test procedures are conducted with the control sediment in the same way as the reference sediment and test material. The purpose of the control sediment is to confirm the biological acceptability of the test conditions and to help verify the health of the organisms during the test. Excessive mortality in the control sediment indicates a problem with the

test conditions or organisms and can invalidate the results of the

corresponding test.

Ecosystem An ecological community, together with its physical habitat,

considered as a unit.

Embryo A plant or animal in the very early stages of development follow-

ing fertilization of the egg.

Elutriate A liquid solution used for toxicity testing, which is prepared by

adding water to the sediment, shaking, and centrifuging to

separate the solids.

Endpoint The biological or ecological unit or variable being measured or

assessed. The number of organisms dead at the end of an expo-

sure is a lethal endpoint.

Epibenthic Inhabiting the sediment surface, or closely associated with the

sediment surface, rather than dwelling buried within the sedi-

ments.

Estuarine Surface water containing greater than 0.5 parts per thousand (ppt)

salinity and less than 28 ppt salinity.

Exposure Contact between an organism and a chemical in the environment.

Fresh water Surface water containing less than or equal to 0.5 ppt salinity.

Foundation species A species that provides important physical habitat for other

species in a biological community (e.g., marsh grass).

Hardness A measure of the calcium and magnesium concentrations in

water.

In situ In the natural or original position (occurring in nature, and not in

the laboratory).

Infaunal Refers to animals living in the sediments, including such forms

as worms and clams.

Interference Physical elements or chemical compounds that cause bias in the

results of a toxicity test.

Keystone species A species that controls the species composition and relative abun-

dances of species in a community by its predatory (or grazing) effects (e.g., by grazing on kelp, purple urchins prevent the establishment of kelp beds and maintain open rocky subtidal

communities).

Interstitial water Water that fills the spaces between sediment particles. Often ref-

erred to as "pore water."

Larval Relating to the juvenile form of certain invertebrate animals that

must undergo metamorphosis before assuming adult characteris-

tics.

Lethal Causing death; mortality (or survival) is the endpoint for lethal

toxicity tests.

A developmental stage of an organism (e.g., egg, larva, embryo, Life stage

juvenile, adult).

Macroinvertebrate An invertebrate (without a backbone) organism visible to the

naked eye (e.g., >1.0 mm). Often refers to animals such as

insects, worms, clams, and snails.

Marine Surface water containing 28 ppt salinity or greater.

Medium (plural: media) The substance in which a chemical may exist. Air, sediment, and

water are all media.

A group of true flies (similar to mosquitos) that have aquatic Midge

larvae and non-biting adults. They are one of the most abundant

groups of aquatic insects.

Monitoring Periodic testing of water and sediment quality or of biota to

verify continued compliance with the requirements of a discharge

permit or other authorization.

Nektonic Refers to the nekton, the group of active swimmers that are

> capable of strong, independent movement in the water. Examples include many juvenile and adult fishes and large invertebrates

(e.g., squid).

Organism An individual plant or animal.

Ovigerous Refers to females bearing eggs.

Planktonic Refers to the plankton, the group of small plants and animals that

are weak swimmers and tend to drift with the current.

A group of individuals of the same species interacting within a **Population**

given habitat.

The ability to replicate a value; the degree to which observations Precision

> or measurements of the same property, usually obtained under similar conditions, conform to themselves. Usually expressed as

standard deviation, variance, or range.

Quality assurance A system of procedures, checks, audits, and corrective actions to and quality control

ensure that all research design and performance, environmental

monitoring and sampling, and other technical and reporting activities are of the highest achievable quality.

Reference sediment

A sediment, substantially free of chemicals, that is as similar as practicable to the grain size of the test material and the sediment at the disposal site and that reflects the conditions that would exist in the vicinity of the site had no industrial activity ever taken place but had all other influences on sediment condition taken place.

Reference area

An area that has similar characteristics to a site being evaluated but that is unaffected by chemicals of potential concern. The reference area is compared to the site to assess the effects of chemicals of potential concern.

Route

The mechanism of contact between an organism and a toxic chemical (e.g., ingestion or dermal contact).

Site-specific

Of or relating to a particular area or location.

Sediments

Material, such as sand, silt, or clay, suspended in or settled on the bottom of a water body.

Sublethal

Causing an endpoint other than death; growth is a sublethal endpoint in toxicity tests.

Terrestrial

Living or growing on land.

Toxicity test

A test in which organisms are exposed to chemicals in a test medium (e.g., waste, sediment, soil) to determine the effects of exposure.

Trophic

Relating to food or feeding relationships. Trophic levels consist of producers (plants), herbivores or primary consumers, carnivores or secondary consumers, and top carnivores or tertiary consumers.

REFERENCES

Adams, W.J., P.S. Ziegenfuss, W.J. Renaudette, and R.G. Mosher. 1986. Comparison of Laboratory and Field Methods for Testing the Toxicity of Chemicals Sorbed to Sediments. In: *Aquatic Toxicology and Environmental Fate*. Ninth Volume, ASTM STP 921. T.M. Poston, and R. Purdy (eds). American Society for Testing and Materials, Philadelphia, PA. pp. 494-513.

Adolphson, P.C., E. Deaver, M.J. Ehret, and R.T. Turner. 1991. Evaluation of Sediment Toxicity Uusing the Sheepshead Minnow (*Cyprinodon variegatus*) Embryo-larval Test. Applied Marine Research Lab, Old Dominion University, Norfolk, VA. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.

Alden, R.W., and E. Deaver. 1991. Ambient Toxicity Testing in Chesapeake Bay Using Sediment Toxicity Tests. Applied Marine Research Lab, Old Dominion University, Norfolk, VA. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.

Alden, R.W., A.J. Butt, and R.J. Young. 1988. Toxicity Testing of Sublethal Effects of Dredged Materials. Arch. Environ. Contam. Toxicol. 17:381-389.

Anderson, S.L., and T.J. Norberg-King. 1991. Precision of Short-term Chronic Toxicity Tests in the Real World. Letter to the Editor. *Environ. Toxicol. Chem.* 10:143-145. (not seen, as cited in Environment Canada 1992d)

Anderson, S.L., M.P. Carlin, and A.L. Suer. 1991. Effluent and Ambient Toxicity Programs in the San Francisco Bay Region. In: *Proceedings of the Seventeenth Annual Toxicity Workshop*, November 5-7, 1990. P. Chapman, F. Bishay, E. Power, K. Hall, L. Harding, D. McLeay, M. Nassichuk, and W. Knapp (eds). Can. Tech. Rept. Fisheries Aquatic Sciences No. 1774. Fisheries and Oceans, Vancouver, BC. (not seen, as cited in Environment Canada 1992b) pp. 153-164.

Ankley, G.T., A. Katko, and J.W. Arthur. 1990. Identification of Ammonia as an Important Sediment-associated Toxicant in the Lower Fox River and Green Bay, Wisconsin. *Environ. Toxicol. Chem.* 9:313-322.

Ankley, G.T., M.K. Schubauer-Berigan, and J.P. Dierkes. 1991. Predicting the Toxicity of Bulk Sediments to Aquatic Organisms with Aqueous Test Fractions: Pore Water vs. Elutriate. *Environ. Toxicol. Chem.* 10:1359–1366.

Ankley, G., K. Lodge, D. Call, et al. 1992. Integrated Assessment of Contaminated Sediments in the Lower Fox River and Green Bay, Wisconsin. Ecotoxicol. Environ. Safety 23:46-63.

API. 1988. Fathead Minnow 7-Day Test: Round Robin Study. Intra- and Interlaboratory Study to Determine the Reproducibility of the 7-day Fathead Minnow Larval Survival and Growth Test. API Pub. No. 4468. American Petroleum Institute. Washington, D.C.

ASTM. 1980. Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians. E729-80. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1984. Standard Practice for Conducting Acute Toxicity Tests on Wastewaters with Daphnia. Annual Book of ASTM Standards. D4229-84. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1989. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. E724-89. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1990. Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. E1367-90. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1991a. Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing. E1391-90. American Society for Testing and Materials, Philadelphia, PA.

ASTM. 1991b. Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates. E1383-90. American Society for Testing and Materials, Philadelphia, PA.

Bailey, H.C., and D.H.W. Liu. 1980. *Lumbriculus variegatus*, A Benthic Oligochaete as a Bioassay Organism. In: *Aquatic Toxicology*. Eaton, J.C., P.R. Parrish, and A.C. Hendricks (eds.). ASTM STP 707. American Society for Testing and Materials, Philadelphia, PA. pp. 205-215.

Bay, S.M., and D.G. Greenstein. 1991. Evaluation of Chronic Sediment Toxicity Test Methods Using the Brittlestar *Amphipodia urtica*. Southern California Coastal Water Research Project, Long Beach, CA. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.

Becker, D., G. Bilyard, and T. Ginn. 1990. Comparisons Between Sediment Bioassays and Alterations of Benthic Macroinvertebrate Assemblages at a Marine Superfund Site: Commencement Bay, Washington. *Environ. Toxicol. Chem.* 9:669-685.

Bennett, J., and J. Cubbage. 1992. Evaluation of Bioassay Organisms for Freshwater Sediment Toxicity Testing. Washington Department of Ecology, Olympia, WA.

Biegger, T.J., and P.E. Ross. 1989. Development of Solid Phase Sediment Toxicity Testing with Early Life Stages of Three Fish Species. Illinois Natural History Survey, Champaign, IL. Tenth annual meeting of the Society of Environmental Toxicology and Chemistry, Toronto, Ontario.

- Birge, W.J., J.A. Black, A.G. Westerman, and P.C. Francis. 1984. Toxicity of Sediment-associated Metals to Freshwater Organisms: Biomonitoring Procedures. Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems.
- Birge, W.J., J.A. Black, and A.G. Westerman. 1985. Short-term Fish and Amphibian Embryo-Larval Tests for Determining the Effects of Toxicant Stress on Early Life Stages and Estimating Chronic Values for Single Compounds and Complex Effluents. *Environ. Toxicol. Chem.* 4:807-821.
- Blaise, C., R. Legault, N. Bermingham, R. Van Coillie, and P. Vasseur. 1986. A Simple Microplate Algal Assay Technique for Aquatic Toxicity Assessment. *Tox. Assess.: An International Quarterly* 1:261-281.
- Borgman, U., K.M. Ralph, and W.P. Norwood. 1989. Toxicity Test Procedures for Hyalella azteca, and Chronic Toxicity of Cadmium and Pentachlorophenol to H. azteca, Gammarus fasciatus, and Daphnia magna. Environ. Contam. Toxicol. 18:756-764.
- Brouwer, H., T. Murphy, and L. McArdle. 1990. A Sediment-contact Bioassay with *Photobacterium phosphoreum*. Environ. Toxicol. Chem. 9:1353-1358.
- Buikema, A.L. 1983. Variation in Static Acute Toxicity Test Results with *Daphnia magna* Exposed to Refinery Effluents and Reference Toxicants. *Oil and Petrochemical Pollution* 1(3):189-198. (not seen, as cited in Parkhurst *et al.* 1992; Rue *et al.* 1988)
- Burgess, R.M., and G.E. Morrison. 1994. A Short-exposure, Sublethal, Sediment Toxicity Test Using the Marine Bivalve *Mulinia lateralis*: Statistical Design and Comparative Sensitivity. *Environ. Toxicol. Chem.* 13(4):571-580.
- Burgess, R.M., B.A. Calise, S. Rego, and G. Morrison. 1992. A Sublethal and Short-term Toxicity Test Using the Marine Bivalve *Mulinia lateralis*. Science Applications International Corporation, Narragansett, RI; and U.S. Environmental Protection Agency, Narragansett, RI. Thirteenth annual meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH.
- Burgess, R., K. Schweitzer, R. McKinney, and D. Phelps. 1993. Contaminated Marine Sediments: Water Column and Interstitial Toxic Effects. *Environ. Toxicol. Chem.* 12:127-138.
- Burnett, L.C., P.E. Ross, G.A. Burton, et al. No date. Assessing Sediment Toxicity: A Comparison of Bioassay Response. Draft Manuscript. Illinois Natural History Survey.
- Burton, D.T., D.J. Fisher, L.T. Yonkos, S.D. Turley, and G. Ziegler. 1992. Comparative Toxicity of Chlorine and Bromine to Aquatic Organisms under Continuous and Intermittent Exposure. In: Abstracts of the Thirteenth Annual Meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH. November 8-12, 1992. Society of Environmental Toxicology and Chemistry, Pensacola, FL. pp. 245.
- Burton, G.A., Jr. 1984. Microbial Activity Tests: Factors Affecting Their Potential Use in Sediments. Ph.D. Thesis. University of Texas at Dallas, Richardson, TX.

- Burton, G.A., Jr. 1988. Stream Impact Assessments Using Sediment Microbial Activity Tests. In: Chemical and Biological Characterization of Sludges, Sediments, Dredge Spoils, and Drilling Muds. ASTM STP 976. J.J. Lichtenberg, J.A. Winter, C.I. Weber, and L. Fradkin (eds). American Society for Testing and Materials, Philadelphia, PA. pp. 300-310.
- Burton, G.A., Jr. 1991. Assessing the Toxicity of Freshwater Sediments. *Environ. Toxicol. Chem.* 10:1585-1627.
- Burton, G.A., Jr. 1992a. Freshwater Sediment Toxicity Assays: Necessary and Desirable Attributes. In: *Proceedings*, Tiered Testing Issues for Freshwater and Marine Sediments. pp. 227–256.
- Burton, G.A., Jr. 1992b. Sediment Collection and Processing: Factors Affecting Realism. In: *Sediment Toxicity Assessment*. G.A. Burton (ed). Lewis Publishers, Inc., Ann Arbor, MI. pp. 167-182.
- Burton, G.A., Jr., and C.G. Ingersoll. 1994. Evaluation of Sediment Toxicity. Chapter 6. In: *ARCS Assessment Guidance Document*. EPA 905-B94-002. U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL.
- Burton, G.A., Jr., B.L. Stemmer, and K.L. Winks. 1989. A Multitrophic Level Evaluation of Sediment Toxicity in Waukegan and Indiana Harbors. *Environ. Toxicol. Chem.* 8:1057-1066.
- Burton, G.A., Jr., L. Burnett, M. Henry, S. Klaine, P. Landrum, and M. Swift. 1990. A multi-assay comparison of sediment toxicity at three "areas of concern." Wright State University, Dayton, OH. Eleventh annual meeting of the Society of Environmental Toxicology and Chemistry, Arlington, VA.
- Carpenter, S.R., J.F. Kitchell, and J.R. Hodgson. 1985. Cascading Trophic Interactions and Lake Productivity. *BioScience* 35(10):634-647. (not seen, as cited in Environment Canada 1992e)
- Carr, R.S., J.W. Williams, and C.T.B. Frigata. 1989. Development and Evaluation of a Novel Marine Sediment Pore Water Toxicity Test with the Polychaete *Dinophilus gyrociliatus*. *Environ*. *Toxicol*. *Chem*. 8:533-543.
- Casillas, E., D. Misitano, P. Plesha, S.M. Pierce, and U. Varanasi. 1991. Sublethal Toxicity of Sediments from Selected Urban and Nonurban Sites along the U.S. West Coast. Environmental Conservation Division, National Marine Fisheries Service, NOAA, Seattle, WA. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.
- Casillas, E., D. Weber, C. Haley, and S. Sol. 1992a. Comparison of Growth and Mortality in Juvenile Sand Dollars (*Dendraster excentricus*) as Indicators of Contaminated Marine Sediments. *Environ. Toxicol. Chem.* 11:559-569.
- Casillas, E., D. Misitano, P. Plesha, D.D. Weber, C.R. Haley, S. Demuth, M.H. Schiewe, S.L. Chan, and U. Varanasi. 1992b. Sublethal and Lethal Effects in Two Marine Organisms, a Juvenile Echinoderm and a Larval Fish, Exposed to Contaminated Sediments. Oceans '92.

Chandler, G.T., and G.I. Scott. 1991. Effects of Sediment-bound Endosulfan on Survival, Reproduction and Larval Settlement of Meiobenthic Polychaetes and Copepods. Environ. Toxicol. Chem. 10:375-382.

Chapman, P.M., and R. Fink. 1984. Effects of Puget Sound Sediments and their Elutriates on the Life Cycle of Capitella capitata. Bull. Environ. Contam. Toxicol. 33:451-459.

Chapman, P.M., and J.D. Morgan. 1983. Sediment Bioassays with Oyster Larvae. Bull. Environ. Contam. Toxicol. 31:438-444.

Chapman, P.M., R.N. Dexter, R.M. Kocan, and E.R. Long. 1985. An Overview of Biological Effects Testing in Puget Sound, Washington: Methods, Results, and Implications. In: Aquatic Toxicology and Hazard Assessment: Seventh Symposium. ASTM STP 854. R.D. Cardwell, R. Purdy, and R.C. Bahner (eds). American Society for Testing and Materials, Philadelphia, PA. pp. 344-363.

Chapman, P.M., R.N. Dexter, and E.R. Long. 1987. Synoptic Measures of Sediment Contamination, Toxicity, and Infaunal Community Composition (the Sediment Quality Triad) in San Francisco Bay. Mar. Ecol. Prog. Ser. 37:75-96.

Chapman, P.M., E.A. Power, and G.A. Burton, Jr. 1992. Integrative Assessments in Aquatic Ecosystems. In: Sediment Toxicity Assessment. G.A. Burton, Jr. (ed). Lewis Publishers, Boca Raton, FL. pp. 313-340.

Coleman, R.N., and A.A. Qureshi. 1985. Microtox® and Spirillum volutans Tests for Assessing Toxicity of Environmental Samples. Bull. Environ. Contam. Toxicol. 35:443-451.

Cooper, K.R., J. Schell, T. Umbreit, and M. Gallo. 1993. Fish-embryo Toxicity Associated with Exposure to Soils and Sediments Contaminated with Varying Concentrations of Dioxins and Furans. Mar. Environ. Res. 35:177-180.

Dawson, D.A., E.F. Stebler, S.L. Burks, and J.A. Bantle. 1988. Evaluation of the Developmental Toxicity of Metal-contaminated Sediments Using Short-term Fathead Minnow and Frog Embryo-larval Assays. Environ. Toxicol. Chem. 7:27-34.

DeGraeve, G.M., J.D. Cooney, T.L. Pollock, N.G. Reichenbach, and J.H. Dean. 1988. Precision of the EPA Seven-day Fathead Minnow Larval Survival and Growth Test, Intra- and Interlaboratory Study. EA-6189. Electric Power Research Institute, Palo Alto, CA.

DeGraeve, G.M., J.D. Cooney, B.H. Marsh, T.L. Pollock, and N.G. Reichenbach. 1989. Precision of the EPA Seven-day Ceriodaphnia dubia Survival and Reproduction Test: Intra- and Interlaboratory Study. Report EPRI EN-6469. Electric Power Research Institute, Palo Alto, CA.

DeGraeve, G.M., J.D. Cooney, B.H. Marsh, T.L. Polock, and N.G. Reichenbach. 1992. Variability in the Performance of the Seven-day Ceriodaphnia dubia Survival and Reproduction Test: An Intra- and Interlaboratory Study. Environ. Toxicol. Chem. 11:851-866.

Dermott, R., and M. Munawar. 1992. A Simple and Sensitive Assay for Evaluation of Sediment Toxicity Using Lumbriculus variegatus (Muller). Hydrobiologia 235/236:407-414.

DeWitt, T.H., G.R. Ditsworth, and R.C. Swartz. 1988. Effects of Natural Sediment Features on Survival of the Phoxocephalid Amphipod *Rhepoxynius abronius*. *Marine Environ*. *Res*. 25:99–124.

DeWitt, T.H., R.C. Swartz, and J.O. Lamberson. 1989. Measuring the Toxicity of Estuarine Sediments. *Environ. Toxicol. Chem.* 8:1035-1048.

DeWitt, T.H., M.S. Redmond, J.E. Sewall, and R.C. Swartz. 1992. Development of a Chronic Sediment Toxicity Test for Marine Benthic Amphipods. Prepared by U.S. Environmental Protection Agency, Pacific Ecosystems Branch, Newport, OR. CBP/TRS 89/93. U.S. Environmental Protection Agency, Chesapeake Bay Program, MD.

DeZwart, D., and W. Sloof. 1983. The Microtox® as an Alternative Assay in the Acute Toxicity Assessment of Water Pollutants. *Aquatic Toxicol*. 4:129-138.

Diaz, R.J. 1992. Ecosystem Assessment Using Estuarine and Marine Benthic Community Structure. In: *Sediment Toxicity Assessment*. G.A. Burton, Jr. (ed). Lewis Publishers, Boca Raton, FL. pp. 67-85.

Dillon, F.S., and P.E. Ross. 1992. A Bivalve Filtering Assay for Evaluating Sediment Toxicity. Ebasco Environmental, Bellevue, WA; and the Citadel, Charleston, SC. Thirteenth annual meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH.

Dillon, T.M., and A.B. Gibson. 1990. Review and Synthesis of Bioassessment Methodologies for Freshwater Contaminated Sediments. Final Report. Misc. Paper EL-90-2. Prepared for U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL. U.S. Army Corps of Engineers, Waterways Experiment Stations, Vicksburg, MS. 26 pp. + appendices.

Dillon, T.M., D.W. Moore, and A.B. Gibson. 1993. Development of a Chronic Sublethal Bioassay for Evaluating Contaminated Sediment with the Marine Polychaete Worm *Nereis* (*Neanthes*) arenaceodentata. Environ. Toxicol. Chem. 12:589-605.

Dinnel, P.A., and Q.J. Stober. 1985. *Methodology and Analysis of Sea Urchin Embryo Bioassays*. Circular No. 85-3. University of Washington, School of Fisheries, Fisheries Research Institute, Seattle, WA. 19 pp.

Dinnel, P.A., Q.J. Stober, S.C. Crumbly, and R.E. Nakatani. 1982. Development of a Sperm Cell Toxicity Test for Marine Waters. In: Fifth Aquatic Toxicology and Hazard Assessment Conference. American Society for Testing and Materials, Philadelphia, PA. pp. 82–98.

Dinnel, P., Q. Stober, M. Letourneau, W. Roberts, S. Felton, and R. Nakatani. 1983. Methodology and Validation of a Sperm Cell Toxicity Test for Testing Toxic Substances in Marine Waters. Technical Report. University of Washington, Sea Grant Program, Seattle, WA. DiPinto, L.M., B.C. Coull, and G.T. Chandler. 1992. Lethal and Sublethal Effects of the Sediment-associated PCB Aroclor 1254 on a Meiobenthic Copepod. University of South Carolina, Columbia, SC. Thirteenth annual meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH.

Doe, K., and S. Wade. 1991. Unpublished data. Environment Canada, Atlantic Regional Laboratory, Dartmouth, Nova Scotia. (not seen, as cited in Environment Canada 1992a)

Dorn, P.B. 1984. Biological Assessments and their Applications in NPDES Permits. Presented at the International Society of Petroleum Industry Biologists, October 1984, Houston, TX. (not seen, as cited in Parkhurst *et al.* 1992; Rue *et al.* 1988)

Dutka, B.J., and G. Bitton. 1986. Toxicity Testing Using Microorganisms. CRC Press, Boca Raton, FL.

Dutka, B.J., and K.K. Kwan. 1981. Comparison of Three Microbial Toxicity Screening Tests with the Microtox® Test. Bull. Environ. Contam. Toxicol. 27:753-757.

Dutka, B.J., K. Jones, K.K. Kwan, H. Bailey, and R. McInnis. 1988. Use of Microbial and Toxicant Screening Tests for Priority Site Selection of Degraded Areas in Water Bodies. *Water Res.* 22(4)503-510.

EA. 1984. Pimephales promelas Acute Toxicity Test. EA Engineering, Science, and Technology, Inc., Sparks, MD. (not seen, as cited in Rue et al. 1988)

Ehret, M.J., P.C. Adolphson, E. Deaver, and R.W. Alden, III. 1991. The Use of the Polychaete *Streblospio benedicti* as a Sediment Bioassay Organism. Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.

Environment Canada. 1990a. Biological Test Method: Acute Lethality Test Using Daphnia spp. Report EPS 1/RM/11. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990b. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Report EPS 1/RM/9. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990c. Biological Test Method: Acute Lethality Test Using Threespine Stickleback. Report EPS 1/RM/10. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990d. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Report EPS 1/RM/14. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1990e. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout. Report EPS 1/RM/13. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1992a. Biological Test Method: Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods. Report EPS 1/RM/26. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 83 pp.

Environment Canada. 1992b. Biological Test Method: Fertilization Assay Using Echinoids (sea urchins and sand dollars). Report EPS 1/RM/27. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1992c. Biological Test Method: Growth Inhibition Test Using Freshwater Alga Selenastrum capricornutum. Report EPS 1/RM/25. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Environment Canada. 1992d. Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows. Report EPS 1/RM/22. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 70 pp.

Environment Canada. 1992e. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran Ceriodaphnia dubia. Report EPS 1/RM/21. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 72 pp.

Environment Canada. 1992f. Biological Test Method: Toxicity Test Using Luminescent Bacteria (Photobacterium phosphoreum). Report EPS 1/RM/24. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario.

Fabacher, D.L., J.M. Besser, C.J. Schmitt, P.H. Peterman, J.A. Lebo, and J.C. Harshbarger. 1991. Contaminated Sediments from Tributaries of the Great Lakes: Chemical Characterization and Carcinogenic Effects in Medaka. National Fisheries Contaminant Research Center, Columbia, MO; Smithsonian Institution Washington, D.C. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.

Flemming, C.A., and J.T. Trevors. 1989. Copper Toxicity in Freshwater Sediment and Aeromonas hydrophila Cell Suspensions Measured Using an O₂ Electrode. Tox. Assess. 4:473–485.

Francis, P.C., W.J. Birge, and J.A. Black. 1984. Effects of Cadmium-enriched Sediment on Fish and Amphibian Embryo-larval Stages. *Ecotoxicol. Environ. Safety* 8:378–387.

Fremling, C.R., and W.L. Mauck. 1980. Methods for Using Nymphs of Burrowing Mayflies (Ephemeroptera, Hexagenia) as Toxicity Test Organisms. In: *Aquatic Invertebrate Bioassays*. A.L. Buikema, Jr., and J. Cairns, Jr. (eds). ASTM STP 715. American Society for Testing and Materials, Philadelphia, PA. pp. 81-97.

Giesy, J.P., and R.A. Hoke. 1989. Freshwater Sediment Toxicity and Bioassessment: Rationale for Species Selection and Test Design. *J. Great Lakes Res.* 15(4):539-569.

Giesy, J.P., and R.A. Hoke. 1990. Freshwater Sediment Quality Criteria: Toxicity Assessment. In: Sediments: Chemistry and Toxicity of In-Place Pollutants. R. Baudo, J. Giesy, and H. Muntau (eds). Lewis Publishers, Inc., Ann Arbor, MI. pp. 265-348.

- Giesy, J.P., R.L. Graney, J.L. Newsted, C.J. Rosin, A. Benda, R.G. Kresi, Jr., and F.J. Horvath. 1988. Comparison of Three Sediment Bioassay Methods Using Detroit River Sediments. *Environ. Toxicol. Chem.* 7:483–498.
- Giesy, J.P., C.J. Rosiu, R.L. Graney, and M.G. Henry. 1990. Benthic Invertebrate Bioassays with Toxic Sediment and Pore Water. *Environ. Toxicol. Chem.* 9:233-248.
- Green, A.S., C.T. Chandler, and E.R. Blood. 1993. Aqueous-, Pore-water-, and Sediment-phase Cadmium: Toxicity Relationships for a Meiobenthic Copepod. *Environ. Toxicol. Chem.* 12:1497-1506.
- Gossiaux, D.C., P.F. Landrum, and V.N. Tsymbal. 1992. Response of the Amphipod *Diporeia* spp. to Various Stressors: Cadmium, Salinity, and Temperature. Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, MI. Twelfth annual meeting of the Society of Environmental Toxicology and Chemistry, Seattle, WA.
- Grothe, D.R., and R.A. Kimerle. 1985. Inter- and Intra-laboratory Variability in *Daphnia magna* Effluent Toxicity Test Results. *Environ. Toxicol. Chem.* 4:189–192. (not seen, as cited in Parkhurst *et al.* 1992; Rue *et al.* 1988; Warren-Hicks and Parkhurst 1992)
- Harkley, G.A., P.F. Landrum, and S.J. Klaine. 1994. Comparison of Whole-sediment, Elutriate and Pore-water Exposures for Use in Assessing Sediment-associated Organic Contaminants in Bioassays. *Environ. Toxicol. Chem.* 13(8):1315–1329.
- Hill, I.R., P. Matthiessen, and F. Heimbach. 1993. Guidance Document on Sediment Toxicity Tests and Bioassays for Freshwater and Marine Environments. Presented at the Workshop on Sediment Toxicity Assessment, November 8-10, Slot Moermond Congrescentrum, Renesse, The Netherlands. Society of Environmental Toxicology and Chemistry, European Section.
- Hoke, R.A., J.P. Giesy, and R.G. Kreis, Jr. 1992. Sediment Pore Water Toxicity Identification in the Lower Fox River and Green Bay, Wisconsin, Using the Microtox® Assay. *Ecotoxicol. Environ. Safety* 23:343–354.
- Ingersoll, C.G., and M.K. Nelson. 1990. Testing Sediment Toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera). Aquatic Toxicol. Risk Assess. 13:93–109.
- Jacobs, M., J. Delfino, and G. Bitton. 1992. The Toxicity of Sulfur to Microtox® from Acetonitrile Extracts of Contaminated Sediments. *Environ. Toxicol. Chem.* 11:1137-1143.
- Jarvis, A.S., and F.J. Reilly, Jr. 1992. Initial Development of Methods in Determining Sediment Genotoxicity. In: Environ. Effects Dredg. U.S. Army Corps of Engineers.
- Johns, D.M., J.E. Sexton, and T.C. Ginn. 1991. *Interlaboratory Comparison of Neanthes* 20-day Sediment Bioassay. Prepared for Washington Department of Ecology, Sediment Management Unit, Olympia, WA. PTI Environmental Services, Bellevue, WA. 51 pp. + appendices.

Johns, D.M., T.C. Ginn, and D.J. Reish. 1992. A Sublethal Toxicity Test Using Juvenile Neanthes sp. (Polychaeta: Nereidae). In: Aquatic Toxicology and Risk Assessment: Fourteenth Volume. ASTM STP 1124. M.A. Mayes, and M.G. Barron (eds). American Society of Testing and Materials, Philadelphia, PA. pp. 280-293.

Keilty, T.J., and P.F. Landrum. 1990. Population-specific Toxicity Responses by the Freshwater Oligochaete, *Stylodrilus heringianus*, in Natural Lake Michigan Sediments. *Environ. Toxicol. Chem.* 9:1147–1154.

Keilty, T.J., D.S. White, and P.F. Landrum. 1988. Short-term Lethality and Sediment Avoidance Assays with Endrin-contaminated Sediment and Two Oligochaetes from Lake Michigan. *Arch. Environ. Contam. Toxicol.* 17:95–101.

Kennedy et al. 1988. Abstract. Presented at the ninth annual meeting of the Society of Environmental Toxicology and Chemistry.

Klaine, S.J., and M.L. Hinman. No date. Utility of a Rooted Macrophyte Bioassay for Sediment Toxicity Evaluation. Unpublished Manuscript.

Kosalwat, P., and A.W. Knight. 1987. Acute Toxicity of Aqueous and Substrate-bound Copper to the Midge, *Chironomus decorus*. Arch. Environ. Contam. Toxicol. 16:275-282.

Kovacs, T.G., and S.M. Ferguson. 1990. An Assessment of the Ontario Ministry of the Environment Protocols for Conducting *Daphnia magna* Acute Lethal Toxicity Tests with Pulp and Paper Mill Effluents. *Environ. Toxicol. Chem.* 9:1081–1093.

Krantzberg, G. 1989. Bioassessment of Chemically Treated Sediment Using Mayfly Larvae, Juvenile Fathead Minnow, and Egg-sac Stage Rainbow Trout. Ontario Ministry of the Environment, Water Resources Branch, Toronto, Ontario. Tenth annual meeting of the Society of Environmental Toxicology and Chemistry, Toronto, Ontario, Canada.

Krantzberg, G. 1990. Sediment Bioassay Research and Development. Research Advisory Committee PDF03. Ontario Ministry of the Environment, Toronto, Ontario. (not seen, as cited in Krantzberg and Boyd 1992.)

Krantzberg, G., and D. Boyd. 1992. The Biological Significance of Contaminants in Sediment from Hamilton Harbour, Lake Ontario. *Environ. Toxicol. Chem.* 11:1527–1540.

La Point, T.W., and J.F. Fairchild. 1992. Evaluation of Sediment Contaminant Toxicity: The Use of Freshwater Community Structure. In: Sediment Toxicity Assessment. G.A. Burton, Jr. (ed). Lewis Publishers, Boca Raton, FL. pp. 87-110.

Lamberson, J.O., T.H. DeWitt, and R.C. Swartz. 1992. Assessment of Sediment Toxicity to Marine Benthos. In: *Sediment Toxicity Assessment*. G.A. Burton (ed). Lewis Publishers, Ann Arbor, MI. pp. 183-211.

Landrum, P.F., W.R. Faust, and B.J. Eadie. 1989. Bioavailability and Toxicity of a Mixture of Sediment-associated Chlorinated Hydrocarbons to the Amphipod Pontoporeia hovi. In: Aquatic Toxicology and Hazard Assessment: 12th Volume. ASTM STP 1027. U.M. Cowgill, and L.R. Williams (eds). American Society for Testing and Material, Philadelphia, PA. pp. 315-329.

Landrum, P.F., B.J. Eadie, and W.R. Faust. 1991. Toxicokinetics and Toxicity of a Mixture of Sediment-associated Polycyclic Aromatic Hydrocarbons to the Amphipod Diporeia sp. Environ. Toxicol. Chem. 10:35-46.

LeBlanc, G.A. 1984. Interspecies Relationships in Acute Toxicity of Chemicals to Aquatic Organisms. Environ. Toxicol. Chem. 3:47-60.

Long, E.R., M.F. Buchman, S.M. Bay, R.J. Breteler, R.S. Carr, P.M. Chapman, J.E. Hose, A.L. Lissner, J. Scott, and D.A. Wolfe. 1990. Comparative Evaluation of Five Toxicity Tests with Sediments from San Francisco Bay and Tomales Bay, California. Environ. Toxicol. Chem. 9:1193-1214.

Malueg, K., G. Schuytema, D. Krawczyk, and J. Gakstatter. 1984a. Laboratory Sediment Toxicity Tests, Sediment Chemistry and Distribution of Benthic Macroinvertebrates in Sediments from the Keweenaw Waterway, Michigan. Environ. Toxicol. Chem. 3:233-242.

Malueg, K., G. Schuytema, J. Gakstatter, and D. Krawczyk. 1984b. Toxicity of Sediments from Three Metal-contaminated Areas. Environ. Toxicol. Chem. 3:279-91.

Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Database for 410 Chemicals and 66 Species of Freshwater Animals. Resource Publication 160. U.S. Fish and Wildlife Service, Washington, D.C.

McGee, B.L., C.E. Schlekat, and E. Reinharz. 1993. Assessing the Sublethal Levels of Sediment Contamination Using the Estuarine Amphipod Leptocheirus plumulosus. Environ. Toxicol. Chem. 12:577-587.

Mearns, A.J., R.C. Swartz, J.M. Cummins, P.A. Dinnel, P. Plesha, and P.M. Chapman. 1986. Inter-laboratory Comparison of a Sediment Toxicity Test Using the Marine Amphipod, Rhepoxynius abronius. Mar. Environ. Res. 19:13-37.

Microbics. 1991. Microtox® Detailed Solid-phase Test Protocol. Microbics Corporation, Carlsbad, CA.

Microbics. 1992. Microtox manual: A Toxicity Testing Handbook. Volumes 1-5. 55H-550. Microbics Corporation, Carlsbad, CA.

Microbics. 1993. Mutatox Product Brief (the genotoxicity test from Microbics). Microbics Corporation, Carlsbad, CA.

Mills, E.L. 1967. The Biology of an Amphipod Crustacean Sibling Species Pair. J. Fish. Res. Board Can. 24:305-355.

Munawar, M., and I. Munawar. 1987. Phytoplankton Bioassays for Evaluating Toxicity of *In Situ* Sediment Contaminants. *Hydrobiologia* 149:87–105.

Nacci, D., E. Jackim, and R. Walsh. 1986. Comparative Evaluation of Three Rapid Marine Toxicity Tests: Sea Urchin Early Embryo Growth Test, Sea Urchin Sperm Cell Toxicity Test and Microtox. *Environ. Toxicol. Chem.* 5:521–525.

Nebeker, A.V., M.A. Cairns, J.H. Gakstatter, K.W. Malueg, G.S. Schuytema, and D.F. Krawczyk. 1984. Biological Methods for Determining Toxicity of Contaminated Freshwater Sediments to Invertebrates. *Environ. Toxicol. Chem.* 3:617–630.

Nelson, M.K., C.G. Ingersoll, and F.J. Dwyer. 1990. Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates. U.S. Fish and Wildlife Services, National Fisheries Contaminant Research Center, Columbia, MO.Oliver, D.R. 1971. Life history of the Chironomidae. *Ann. Rev. Entomol.* 16:211-230.

Nipper, M.G., D.J. Greenstein, and S.M. Bay. 1989. Short- and Long-term Sediment Toxicity Test Methods with the Amphipod *Grandidierella japonica*. *Environ*. *Toxicol*. *Chem*. 8:1191–1200.

Paine, M.D., and C.A. McPherson. 1991a. *Phase IV Studies of Ten-day Tests for Sediment Toxicity Using Marine or Estuarine Infaunal Amphipods*. Final Report. Prepared for Environment Canada, Marine Environment Division. Prepared by EVS Consultants Ltd., North Vancouver, BC. (not seen, as cited in Environment Canada 1992a)

Paine, M.D., and C.A. McPherson. 1991b. *Phase-V Studies by EC Laboratories of Ten-day Tests for Sediment Toxicity Using Marine or Estuarine Infaunal Amphipods*. Draft Report. Prepared for Environment Canada. Prepared by EVS consultants Ltd., North Vancouver, BC. (not seen, as cited in Environment Canada 1992a)

Parkhurst, B.R., W. Warren-Hicks, and L.E. Noel. 1992. Performance Characteristics of Effluent Toxicity Tests: Summarization and Evaluation of Data. *Environ. Toxicol. Chem.* 11:771-791.

Pastorok, R.A., and D.S. Becker. 1989. Comparison of Bioassays for Assessing Sediment Toxicity in Puget Sound. Prepared for the U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA. PTI Environmental Services, Bellevue, WA.

Pastorok, R.A., J.W. Anderson, M.K. Butcher, and J.E. Sexton. 1994. West Coast Marine Species Chronic Protocol Variability Study. Prepared for Washington Department of Ecology, Industrial Section, Olympia, WA. PTI Environmental Services, Bellevue, WA. 46 pp. + appendices.

Peddicord, R.K., and V.A. McFarland. 1978. Effects of Suspended Dredged Material on Aquatic Animals. WES-TR-D-78-29 (NTIS #ADA058 489/GST). U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Pennak, R.W. 1978 (revised 1989). Freshwater Invertebrates of the United States. Second and Third Editions. John Wiley & Sons, Inc., New York, NY.

- Phelps, H.L. 1990. Sediment Toxicity in the Freshwater Tidal Anacostia River. University of the District of Columbia, Washington, D.C. Eleventh annual meeting of the Society of Environmental Toxicology and Chemistry, Arlington, VA.
- Phipps, G.L., and G.T. Ankley. 1990. Test Methods to Estimate the Acute and Chronic Toxicity and Bioaccumulation of Sediment-associated Contaminants Using the Aquatic Oligochaete, Lumbriculus variegatus. Internal Report 7896A. U.S. Environmental Protection Agency, Duluth, MN. (not seen, as cited in Phipps et al. 1993)
- Phipps, G.L., G.T. Ankley, D.A. Benoit, and V.R. Mattson. 1993. Use of the Aquatic Oligochaete *Lumbriculus variegatus* for Assessing the Toxicity and Bioaccumulation of Sediment-associated Contaminants. *Environ. Toxicol. Chem.* 12:269–279.
- Prater, B.L., and M.A. Anderson. 1977. A 96-hour Sediment Bioassay of Duluth and Superior Harbor Basins (Minnesota) Using *Hexaginia limbata*, *Asellus communis*, *Daphnia magna*, and *Pimephales promelas* as Test Organisms. *Bull. Environm. Contam. & Toxicol.* 18(2):159-169.
- PTI. 1991. Reference Area Performance Standards for Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Office of Coastal Waters, Seattle, WA and Washington Department of Ecology, Olympia, WA. PTI Environmental Services, Bellevue, WA. 76 pp. + appendices.
- PTI. 1992. A Guide to Requesting and Evaluating Chemical Analyses. PTI Environmental Services, Bellevue, WA.
- PTI Environmental Services, 1994. *User's Guide: Evaluation of Sediment Toxicity Tests for Biomonitoring Programs*. API Publication No. 4608. (published separately) American Petroleum Institute. Washington, D.C.
- Redmond, M.S., K.J. Scott, R.C. Swartz, and J.K.P. Jones. 1994. Preliminary Culture and Life-cycle Experiments with the Benthic Amphipod *Ampelisca abdita*. *Environ*. *Toxicol*. *Chem*. 13(8):1355–1365.
- Reish, D.J., and J.A. Lemay. 1988. Bioassay Manual for Dredged Materials. Technical Report DACW-09-83R-005. U.S. Army Corps of Engineers, Los Angeles District, Los Angeles, CA.
- Reynoldson, T., S. Thompson, and J. Bamsey. 1991. A Sediment Bioassay Using the Tubificid Oligochaete Worm *Tubifex tubifex*. Environ. Toxicol. Chem. 10:1061-1072.
- Roper, D.S., and C.W. Hickey. 1992. A Comparison of Behavioral and Mortality Sediment Bioassays Using the Marine Bivalve *Telina iliana*. Water Quality Centre, Department of Scientific and Industrial Research, Hamilton, New Zealand. Thirteenth annual meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati, OH.
- Rosiu, C.J., J.P. Giesy, and R.G. Kreis, Jr. 1989. Toxicity of Sediments in the Trenton Channel, Detroit River, Michigan to *Chironomus tentans* (Insecta: Chironomida). *J. Great Lakes Res.* 15(4):570-580.

Rue, W.J., J.A. Fava, and D.R. Grothe. 1988. A Review of Inter- and Intralaboratory Effluent Toxicity Test Method Variability. In: Aquatic Toxicology and Hazard Assessment: 10th Volume. ASTM STP 971. W.J. Adams, G.A. Chapman, and W.G. Landis (eds). American Society for Testing and Materials, Philadelphia, PA. pp. 190-203.

Samoiloff, M.R., S. Schulz, Y. Jordan, K. Denich, and E. Arnott. 1980. A Rapid Simple Long-term Toxicity Assay for Aquatic Contaminants Using the Nematode Panagrellus redivivus. Can. J. Fish. Aquat. Sci. 37:1167-1174.

Samoiloff, M.R., J. Bell, D.A. Birkholz, G.R.B. Webster, E.G. Arnott, R. Pulak, and A. Madrid. 1983. Combined Bioassay-chemical Fractionation Scheme for the Determination and Ranking of Toxic Chemicals in Sediments. Environ. Sci. Technol. 7:6:329-334.

Sasson-Brickson, G., and G. Burton, Jr. 1991. In Situ and Laboratory Sediment Toxicity Testing with Ceriodaphia dubia. Environ. Toxicol. Chem. 10:201-207.

Schlekat, C.E., B.L. McGee, and E. Reinharz. 1992. Testing Sediment Toxicity in Chesapeake Bay with the Amphipod Leptocheirus plumulosus: An Evaluation. Environ. Toxicol. Chem. 11:225-236.

Schweinforth, R.L., and D.C. Wade. 1990. Effects from Subchronic 90-day Exposure of In Vitro-transformed Juvenile Freshwater Mussels (Anodonta imbecilis) to Manganese. Tennessee Valley Authority, Aquatic Research Laboratory, Decatur, AL. Eleventh annual meeting of the Society of Environmental Toxicology and Chemistry, Arlington, VA.

Smith, D., J. Kennedy, and K. Dickson. 1991. An Evaluation of a Naidid Oligochaete as a Toxicity Test Organism. Environ. Toxicol. Chem. 10:1459-1465.

Stemmer, B., G. Burton, Jr., and S. Leibfritz-Frederick, 1990a. Effect of Sediment Test Variables on Selenium Toxicity to Daphnia Magna. Environ. Toxicol. Chem. 9:381-389.

Stemmer, B., G. Burton, Jr., and G. Sasson-Brickson. 1990b. Effect of Sediment Spatial Variance and Collection Method on Cladoceran Toxicity and Indigenous Microbial Activity Determinations. Environ. Toxicol. Chem. 9:1035-1044.

Strawbridge, S., B.C. Coull, and G.T. Chandler. 1992. Reproductive Output of a Meiobenthic Copepod Exposed to Sediment-associated Fenvalerate. Arch. Environ. Contam. Toxicol. 23:295-300.

Suedel, B.C., and J.H. Rodgers, Jr. 1994. Development of Formulated Reference Sediments for Freshwater and Estuarine Sediment Testing. Environ. Toxicol. Chem. 13:1163-1175.

Suedel, B.C., and J.H. Rodgers, Jr. In press. Responses of Hyalella azteca and Chironomus tentans to Particle Size Distribution and Organic Matter Content of Formulated and Natural Freshwater Sediments. Environ. Toxicol. Chem.

- Swartz, R.C. 1987. Toxicological Methods for Determining the Effects of Contaminated Sediment on Marine Organisms. In: *Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems*. K.L. Dickson, A.W. Maki, and W.A. Brungs (eds). Pergamon Press, New York, NY. pp. 183–198.
- Swartz, R.C., W.A. DeBen, and F.A. Cole. 1979. A Bioassay for the Toxicity of Sediment to Marine Macrobenthos. *J. WPCF* 51:5:944–950.
- Swartz, R.C., W.A. DeBen, J.K. Jones, J.O. Lamberson, and F.A. Cole. 1985. Phoxacephalid Amphipod Bioassay for Marine Sediment Toxicity. In: Aquatic Toxicology and Hazard Assessment: Proceedings of the Seventh Annual Symposium. ASTM STP 854. R.D. Cardwell, R. Purdy, and R.C. Bahner (eds). American Society for Testing and Materials, Philadelphia, PA. pp. 284-307.
- Swartz, R.C., D.W. Schults, T.H. DeWitt, G.R. Ditsworth, and J.O. Lamberson. 1990. Toxicity of Fluoranthene in Sediment to Marine Amphipods: A Test of the Equilibrium Partitioning Approach to Sediment Quality Criteria. *Environ. Toxicol. Chem.* 9:1071–1080.
- Swartz, R.C., F.A. Cole, J.O. Lamberson, S.P. Ferraro, D.W. Schults, W.A. DeBen, H. Lee II, and R.J. Ozretich. 1994. Sediment Toxicity, Contamination and Amphipod Abundance at a DDT- and Dieldrin-contaminated Site in San Francisco Bay. *Environ. Toxicol. Chem.* 13(6):949-962.
- Swartz, R.C., et al. In preparation. Growth Bioassay Using the Amphipod Rhepoxynius abronius. U.S. Environmental Protection Agency, Hatfield Marine Science Center, Newport, OR.
- Tay, K.-L., K.G. Doe, S.J. Wade, D.A. Vaughan, R.E. Berrigan, and M.J. Moore. 1992. Sediment Bioassessment in Halifax Harbour. *Environ. Toxicol. Chem.* 11:1567-1581.
- Thomas, J.M., J.R. Skalski, J.F. Cline, M.C. McShane, J.D. Simpson, W.E. Miller, S.A. Peterson, C.A. Callahan, and J.C. Greene. 1986. Characterization of Chemical Waste Site Contamination and Determination of Its Extent Using Bioassays. *Environ. Toxicol. Chem.* 5:487-501.
- Thompson, B.E., S.M. Bay, J.W. Anderson, J.D. Laughlin, D.J. Greenstein, and D.T. Tsukada. 1989. Chronic Effects of Contaminated Sediments on the Urchin Lytechinus pictus. Environ. Toxicol. Chem. 8:629-637.
- Trevors, J.T., C.I. Mayfield, and W.E. Inniss. 1981. A Rapid Toxicity Test Using *Pseudo-monas fluorescens*. Bull. Environm. Contam. Toxicol. 26:433-439.
- U.S. EPA. 1981. Development of Bioassay Procedures for Defining Pollution of Harbor Sediments. U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN.
- U.S. EPA. 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA 600/4-85-013. U.S. Environmental Protection Agency, Cincinnati, OH.

- U.S. EPA. 1990. Protocol for Juvenile Neanthes Sediment Bioassay. Prepared by PTI Environmental Services, Bellevue, WA. EPA 910/9-90-011. U.S. Environmental Protection Agency, Office of Puget Sound, Puget Sound Estuary Program, Seattle, WA. 17 pp.
- U.S. EPA. 1991a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA 600/4-90-027. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 293 pp.
- U.S. EPA. 1991b. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Recommended Protocols for Measuring Environmental Variables in Puget Sound. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Puget Sound Estuary Program. Seattle, WA.
- U.S. EPA. 1991c. Technical Support Document for Water Quality-based Toxics Control. EPA 505/2-90-001. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 145 pp. + appendices.
- U.S. EPA. 1992. Proceedings of the EPA Workshop on Tiered Testing Issues for Freshwater and Marine Sediments. September 16-18, 1992. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology and Office of Research and Development, Washington, D.C.
- U.S. EPA and U.S. COE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal. Testing Manual. EPA 503/8-91-001. U.S. Environmental Protection Agency, Office of Water and U.S. Army Corps of Engineers, Washington, D.C.
- U.S. EPA and U.S. COE. 1993. Evaluation of Dredged Material Proposed for Discharge in Inland and Near Coastal Waters—testing Manual. Draft Report. U.S. Environmental Protection Agency, Washington, D.C.
- Walsh, G., D. Weber, T. Simon, and L. Brashers. 1991. Toxicity Tests of Effluents with Marsh Plants in Water and Sediment. *Environ. Toxicol. Chem.* 10:517-525.
- Warren-Hicks, W., and B.R. Parkhurst. 1992. Performance Characteristics of Effluent Toxicity Tests: Variability and Its Implications for Regulatory Policy. *Environ. Toxicol. Chem.* 11:793-804.
- Wentsel, R., A. McIntosh, and G. Atchison. 1977a. Sublethal Effects of Heavy Metal Contaminated Sediment on Midge Larvae (*Chironomus tentans*). *Hydrobiologia* 56(2):153-156.
- Wentsel, R., A. McIntosh, W.P. McCafferty, G. Atchison, and V. Anderson. 1977b. Avoidance Response of Midge Larvae (*Chironomus tentans*) to Sediment Containing Heavy Metals. *Hydrobiologia* 55(2):171–175.
- Wentsel, R., A. McIntosh, and W. McCafferty. 1978. Emergence of the Midge *Chironomus tentans* When Exposed to Heavy Metal Contaminated Sediment. *Hydrobiologia* 57:195–196.
- Westerman. 1988. Abstract. Presented at the ninth annual meeting of the Society of Environmental Toxicology and Chemistry.

API PUBL*4607 94 **= 0732290 0555318 5T3 =**

Wiederholm, T., and G. Dave. 1989. Toxicity of Metal Polluted Sediment to *Daphnia magna* and *Tubifex tubifex*. Hydrobiologia 176/177:411-417.

Williams, L.G., P.M. Chapman, and T.C. Ginn. 1986. A Comparative Evaluation of Marine Sediment Toxicity Using Bacterial Luminescence, Oyster Embryo, and Amphipod Sediment Bioassays. *Mar. Environ. Res.* 19:225-249.

API PUBL*4607 94 📟 0732290 0555319 43T 🖿

APPENDIX A

Classification of Sediment Toxicity Tests

CLASSIFICATION OF SEDIMENT TOXICITY TESTS

The tables contained in this appendix list the sediment toxicity tests considered in the detailed evaluation (Table A-1) and those that were eliminated early in an initial screening (Attachment 1) (see *Test Screening Approach*, *Selection of Tests for Evaluation* in the main text for the criteria for selecting tests for the detailed evaluation). The major characteristics of the tests that were used to classify them included:

- Habitat type
 - Marine
 - Estuarine
 - Freshwater
- Endpoint type
 - Lethal (i.e., mortality)
 - Sublethal (e.g., growth, reproduction, abnormality)

Within each category, the tests were distinguished by the following key characteristics:

- Exposure medium
 - Sediment
 - Sediment elutriate (water extractable)
 - Interstitial water
 - Sediment extract (solvent extractable)
- Characteristics of the test organism
 - Biotic group (e.g., infauna, planktonic)
 - Species
 - Life stage
- Test duration.

These characteristics are discussed in the main text (see Classification of Available Test Methods).

TABLE A-1. CLASSIFICATON OF SEDIMENT TOXICITY TESTS - MARINE LETHAL

Test	Exposure Blotto	e DIOIIC				
S S	Media	Group	Life Stage	Species	Duration	Reference
90	တ	Amphipod	Juv or adult females	Ampelisca abdita	10 days	ASTM (1990) (E1367-90); U.S. EPA (1991b); U.S. EPA and U.S. COE (1991, 1993); Dewilt et al. (1992)
005	Ø	Amphipod	Juv or young adults	Amphiporeia virginiana	10 days	Environment Canada (1992a)
803	တ	Amphipod	Juv or young adults	Eohaustorius washingtonianus	10 days	Environment Canada (1992a)
004	တ	Amphipod	Juv or young adults	Foxiphalus xiximeus	10 days	Environment Canada (1992a), based on ASTM (1990) (E1367-90); Swartz et al. (1985)
902	တ	Amphipod	tmmatue	Grandidierella japonica	10 days	ASTM (1990) (E1367 – 90); Reish and Lemay (1988); U.S. EPA and U.S. COE (1993)
900	တ	Amphipod	Juv or young adults	Leptocheirus pinguis	10 days	Environment Canada (1992a), based on ASTM (1990) (E1367 – 90); Swartz et al. (1985)
800	တ	Amphipod	Adults	Rhepoxynius abronius	10 days	ASTM (1990) (E1367–90); U.S. EPA (1991b); U.S. EPA and U.S. COE (1991, 1993); Environment Canada (1992a)
600	ᆏ	Bivalve	Embryos	Crassost ea virginica	48 hrs	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1991, 1993)
010	တ	Bivalve	Embryos	Crassost ea gigas	48-60 hrs	U.S. EPA (1991b)
011	핍	Bivalve	Embryos	Crassost ea gigas	48 hrs	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1993)
410	핍	Bivalve	Embryos	Mercenaria mercenaria	48 hrs	ASTM (1989) (E724-89)
015	တ	Bivalve	Juveniles	Mulinia fateralis	7 days	Burgess et al. (1992)
910	တ	Bivalve	Embryos	Mytitus edulis	48-60 hrs	U.S. EPA (1991b)
017	ᆸ	Bivalve	Embryos	Mytifus edulis	48 hrs	ASTM (1989) (E724-89); Chapman and Morgan (1983); Long et al. (1990); U.S. EPA and U.S. COE (1991, 1993)
910	ᆸ	Bivalve	Embryo~larval	Ostea sp.	48 hrs	U.S. EPA and U.S. COE (1991)
020	တ	Bivalve	Juveniles	Protothaca staminea	10 days	Swartz et al. (1979); U.S. EPA and U.S. COE (1991)
021	တ	Bivalve	Juveniles	Tapes japonica	10 days	U.S. EPA and U.S. COE (1991)
023	တ	Bivalve	Juveniles	Yoldia limatula	10 days	U.S. EPA and U.S. COE (1991)
026	ᆸ	Crustacean	Embryo-larval	Callinectes sapidus	48 hrs	U.S. EPA and U.S. COE (1991)
027	တ	Crustacean	Juveniles	Callinectes sapidus	10 days	U.S. EPA and U.S. COE (1991)
028	핍	Crustacean	Embryo-larval	Cancer sp.	48 hrs	U.S. EPA and U.S. COE (1991)
029	တ	Crustacean	Juveniles	Cancer sp.	10 days	U.S. EPA and U.S. COE (1991)
030	တ	Crustacean	Juveniles	Crangon sp.	10 days	U.S. EPA and U.S. COE (1991)
031	ᆸ	Crustacean	Post-hatch	Palaemonetes sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
035	딥	Crustacean	Embryo-larval	Pandalus sp.	48 hrs	U.S. EPA and U.S. COE (1991)
033	တ	Crustacean	Juveniles	Pandalus sp.	10 days	U.S. EPA and U.S. COE (1991)
034	တ	Crustacean	Post-larvae	Penaeus sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
035	ᆸ	Crustacean	Post-larvae	Penaeus sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
037	တ	Crustacean	Juveniles	Sicyonia ingentis	10 days	U.S. EPA and U.S. COE (1991)
038	တ	Echinoderm	Embryos	Arbacia punctulata	72-96 hrs	Lamberson et al. (1992), following Dinnel and Stober (1985); U.S. EPA (1991b)
039	Ø	Echinoderm	Juveniles	Dendraster excentricus	28 days	Casillas et al. (1992a)
040	ဟ	Echinoderm	Embryos	Dendraster excentricus	48-96 hrs	U.S. EPA (1991b)
041	ᆸ	Echinoderm	Embryos	Dendraster excentricus	48 hrs	U.S. EPA and U.S. COE (1993)
640	•					

TABLE A-1. (cont.)

Test	Test Exposure Biotic) Biotic		Test		
Š	Media	Group	Life Stage	Species	Duration	Duration Reference
044	ᆸ	Echinoderm	Echinoderm Embryos (< 1 hr old)	Lytechinus pictus	48-96 hrs	48-96 hrs. Reish and Lemay (1988); U.S. EPA and U.S. COE (1993)
045	ଘ	Echinoderm	Echinoderm Embryos (< 1 hr old)	Strongylocentrotus purpuratus	48 hrs	U.S. EPA and U.S. COE (1993); Dinnel et al. (1982)
046	ဟ	Echinoderm	Embryos	Strongylocentrotus purpuratus	48-96 hrs	U.S. EPA (1991b)
048	ဟ	Echinoderm Embryos	Embryos	Strongylocentrotus droebachiensis	48-96 hrs	48-96 hrs U.S. EPA (1991b)
049	且	Echinoderm	Embryos (< 1 hr old)	St ongylocent otus sp.	48 hrs	U.S. EPA and U.S. COE (1993)
051	ᆸ	Fish	Juveniles	Citharichthys stigmaeus	96 hrs	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
053	ᇳ	Fish	Embryo~larval	Coryphaena hippurus	48 hrs	U.S. EPA and U.S. COE (1991)
054	핍	Fish	Embryo larvał	Cymatogaster aggregata	48 hrs	U.S. EPA and U.S. COE (1991)
055	펍	Fish	1-14 days old	Cyprinodon variegatus	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
058	핍	Fish	Juveniles	Gasterosteus aculeatus	96 hrs	Environment Canada (1990c)
290	ဟ	Fish	Larvae	Hypomesus pretiosus	10 days	Chapman et al. (1985)
058	တ	Fish	Larvae	Hypomesus pretiosus	96 hrs	Casillas et al. (1992b)
690	ᆈ	Fish	Embryo~larval	Lagodonrhomboides	48 hrs	U.S. EPA and U.S. COE (1991)
090	ᆸ	Fish	Embryo – larval	Leiostomus xanthurus	48 hrs	U.S. EPA and U.S. COE (1991)
190	딥	Fish	Embryo-larval	Leuresthes tenuis	48 hrs	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991)
062	တ	Mysid	1-5 days old	Holmesimysis sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
063	ᆈ	Mysid	1-5 days old	Holmesimysis sp.	96 hrs	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
064	တ	Mysid	1-5 days old	Mysidopsis sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
065	피	Mysid	1-5 days old	Mysidopsis sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
071	Ø	Polychaete	Juveniles	Neanthes sp.	10 days	Tay et al. (1992); U.S. EPA and U.S. COE (1991, 1993); Dillon et al. (1993)

Notes: EL – elufriate
EX – extact
INT – interstitial water
S – sediment

=	
ĭ	
П	
<u>~</u>	1
=	
Ц	
2	
A	
MARINE SIIRI ETHAL	
ا	
5	•
T.	1
۲	•
E	
2	•
ŏ	;
Ē	•
Z	
Σ	
Ξ	
SE	
Ļ	
CLASSIFICATION OF SEDIMENT TOXICI	,
ō	
Ę	
$\overline{\circ}$	
4	
Ŝ	
۲	I
O	
Ņ	١
¥	
щ	-
ABLE	
≤	I

Exposure 11041		1.50 0.4		;		
Media	Group	Life Stage	Species	Duration	Reference	
ဟ	Amphipod	Juv or adult females	Ampelisca abdita	10 days	ASTM (1990) (E1367-90)	
တ	Amphipod	Immature	Grandiderella japonica	10 days	ASTM (1990) (E1367-90)	
တ	Amphipod	Adults	Rhepoxynius abronius	10 days	ASTM (1990) (E1367 – 90)	
ᆸ	Echinoderm	Gametes	Dendraster excentricus	80 min	U.S. EPA and U.S. COE (1993)	
ᆸ	Echinoderm	Gametes	Strongylocentrotus purpuratus	80 min	U.S. EPA and U.S. COE (1993): Dinnel et al. (1982)	ejetal. (1982)
볼	Bacterium	Cells	Photobacterium phosphoreum	15 min	Tay et al. (1992)	(
ᆸ	Bacterium	Cells	Photobacterium phosphoreum	15 min	Migobics (1992)	
တ	Bacterium	Cells	Photobacterium phosphoreum	5-60 min	Froironment Canada (1992)	Notes
ă	Bacterium	Cells	Salmonella tyrbimirium	<i>U/N</i>	locate and Bailly (4000)	EL - elutriate
<u> </u>	Bivalve	Fmbros	Crassostes virginics	20 Pro		EX - extract
¦ s	Bivalve	Embryos	Crassostea cicas	48 - 60 hrs	ASIM (1989) (E/24-89)	INT - Interstitial water
ᆸ	Bivalve	Embryos	Crassost ea gigas	48 hrs	ASTM (1989) (E724–89)	N/A - not applicable
ш	Bivalve	Fmhrvos	Mercenaria mercenaria	40 %	ACTA ACTA MODEL	N/S – not specified
တ	Bivalve	Juveniles	Mulina lateralie	7 days	Disconding (1909) (E724=09)	EC - Environment Canada (1990, 1992)
တ	Bivalve	Embryos	Mytilus edulis	48-60 hrs	11.5 FDA (1991b)	GB – U.S. EPA and U.S. COE (1991)
ᆸ	Bivalve	Embryos	Mytius edulis	48 hrs	ASTM (1980) (E704 – 20)	T - U.S. EPA (1992)
IN.	Echinoderm	Gametes	Arbacia punctulata	1.3 hrs	Burgess et al. (1993)	
ᆸ	Echinoderm	Gametes	Arbacia punctulata	1.3 hrs	Burgess et al. (1993)	
တ	Echinoderm	Garmetes	Arbacia punctulata	7296 hrs	Lamberson et al. (1992). following Din	Lamberson et al. (1992), following Dinnel and Stober (1985) 11.5 FPA (1991b)
핍	Echinoderm	Gametes	Arbacia pundulata	20, 40, 60 min	Environment Canada (1992b)	(1981)
တ	Echinoderm	Gametes	Arbacia punctulata	20, 40, 60 min	Environment Canada (1992b)	
ဟ	Echinoderm	Embryos	Dendraster excentricus	48-96 hrs	U.S. EPA (1991b)	
S	Echinoderm	Juveniles	Dendraster excenticus	28 days	Casillas et al. (1992a)	
핍	Echinoderm	Gametes	Dendraster excenticus	20, 40, 60 min	Environment Canada (1992b)	
ဟ	Echinoderm	Gametes	Dendraster excenticus	20, 40, 60 min	Environment Canada (1992b)	
တ	Echinoderm	8-22 mm dameter	Lytechinus pictus	60 days	Thompson et al. (1989)	
핍	Echinoderm	Gametes	Lytechinus pictus	20, 40, 60 min	Environment Canada (1992b)	
ဟ	Echinoderm	Gametes	Lytechinus pictus	20, 40, 60 min	Environment Canada (1992b)	
ᇤ	Echinoderm	Gametes	Strongylocentrotus purpuratus	80 min	Long et al. (1990)	
ᆸ	Echinoderm	Gametes	Strongylocentrotus purpuratus	48 hrs	Long et al. (1990)	
S	Echinoderm	Embryos	St ongylocent of up purpuratus	48-96 hrs	U.S. EPA (1991b)	
ᆸ	Echinoderm	Gametes	Strongylocentrotus purpuratus	20, 40, 60 min	Environment Canada (1992b)	
S	Echinoderm	Gametes	Strongylocentrotus purpuratus	20, 40, 60 min	Environment Canada (1992b)	
S	Echinoderm	Embryos	Strongylocentrotus droebachiensis	48-96 hrs	U.S. EPA (1991b)	
핍	Echinoderm	Gametes	Strongylocentrotus croebachiensis	20, 40, 60 min	Environment Canada (1992b)	
တ	Echinoderm	Gametes	Strongylocentrotus droebachlensis	20, 40, 60 min	Environment Canada (1992b)	
တ	Fish	Larvae	Hypomesus pretiosus	96 hours	Casillas et al. (1992b)	
ď	Dolychaoto	oojiaosii q	Nonthon	-		

7	
7	
F	Ì
ÍЩ	
: LETH	
Ш	
Z	
霳	l
⋖	
2	-
5	
ESTUAR	į
1	The second secon
်လ	
2	
ESTS	į
⊢	
>	
T TOXICITY	
ರ	
Ť	
റ	
\vdash	
\vdash	
Z	
三	
Σ	
ᆷ	
Ш	
S	
重	
0	ľ
Z	
ō	١
Ξ	
4	1
Ö	
LASSIFICATION OF	
둤	
ŝ	
₹	
ᆽ	
J	
_:	
က	
4	
Ш	
8	1
₹	1
\vdash	

	Group	Life Stage	Species Amoisca abdita	Duration	Reference
7 7	Amphipod	Juv or young adults	Amphiporeia virginiana	10 days	ASIM (1990) (E1307 - 90), O.S. ETA (19910), O.S. ETA and O.S. COE (1991, 1993) Environment Canada (1992a)
7	Amphipod	Juv or young adults	Corophium volutator	10 days	Environment Canada (1992a), based on ASTM (1990) (E1367-90); Swartz et al. (1985)
둗	Amphipod	Adults	Corophium volutator	10 days	Tay et al. (1992), based on Swartz et al. (1985); U.S. EPA and U.S. COE (1993); ASTM (1990) (E1367-90)
7	Amphipod	Large juv and adults	Eohaustorius estuarius	10 days	ASTM (1990) (E1367-90); U.S. EPA and U.S. COE (1993); Environment Canada (1992a)
7	Amphipod	Juv or young adults	Eohaustorius washingtonianus	10 days	Environment Canada (1992a)
ē	Amphipod	7-14 days old	Hyalella azteca	10 days	ASTM (1991b) (E1383-90); U.S. EPA and U.S. COE (1993)
ď	Amphipod	Juveniles	Leptocheirus plumulosus	10 days	Dewitt et al. (1992)
•	Amphipod	Juveniles	Leptocheirus plumulosus	10 days	McGee et al. (1993)
~	Amphipod	Mixed sexes	Leptocheirus plumulosus	10 days	Schiekat et al. (1992); U.S. EPA and U.S. COE (1993)
	Bivalve	Embryos	Crassost ea virginica	48 hrs	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1991, 1993)
	Bivalve	Embryos	Crassost ea gigas	48-60 hrs	U.S. EPA (1991b)
	Bivalve	Embryos	Crassost ea gigas	48 hrs	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1993)
	Bivalve	Embryos	Mercenaria mercenaria	48 hrs	ASTM (1989) (E724-89)
m	Bivalve	Embryos	Mytilus edulis	48-60 hrs	. U.S. EPA (1991b)
m	Bivalve	Embryos	Mytilus edulis	48 hrs	ASTM (1989) (E72489); U.S. EPA and U.S. COE (1991, 1993)
m	Bivalve	Juveniles	Protothaca staminea	10 days	Swartz et al. (1979); U.S. EPA and U.S. COE (1991)
	Crustacean	Embryo-larval	Callinectes sapidus	48 hrs	U.S. EPA and U.S. COE (1991)
	Crustacean	Juveniles	Callinectes sapidus	10 days	U.S. EPA and U.S. COE (1991)
()	Crustacean	Juveniles	Crangon sp.	10 days	U.S. EPA and U.S. COE (1991)
	Crustacean	Post-hatch (1-4 days)	Palaemonetes sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	Fish	1-14 days old	Cyprinodon variegatus	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
	Fish	Juveniles	Gasterosteus aculeatus	96 hrs	Environment Canada (1990c)
	Fish	9-14 days old	Leuresthes tenuis	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
	Fish	9-14 days old	Menidia sp.	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
	Fish	1-14 days old	Menidia sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	Mysid	1-5 days old	Mysidopsis sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	Mysid	1-5 days old	Mysidopsis sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	Mysid	1-5 days old	Neomysis sp.	10 days	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	Mysid	1-5 days old	Neomysis sp.	96 hrs	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
	O. L. Change	J (4) A			1 and 24 (4000). One at 1 (4000)

Notes: EL - elutrate
EX - extract
INT - interstitial water
S - sediment

TABLE A-4. CLASSIFICATION OF SEDIMENT TOXICITY TESTS - ESTUARINE SUBLETHAL

xposure	Exposure Biotic		Test		
- 1	Group	Life Stage	Species	Duration	Reference
	Amphipod	Juvor adult females	Ampelisca abdita	10 davs	ASTM (1990) (F1387_00)
	Amphipod	Adults	Corophium volutator	10 days	Tay of al (1999)
	Amphipod	Large juv and adults	Eohaustorius estuarius	10 days	ASTM (1990) (F1387_00)
	Amphipod	Juveniles	Leptocheirus plumulosus	28 days	Domitt of all (1902)
	Amphipod	Juveniles	Lepto cheirus plumulosus	30 days	McGee et al. (1993)
	Amphipod	Mixed sexes	Leptocheirus plumulosus	28 dave	1000 to the total (1000)
	Bacterium	Cells	Photobacterium phosphoreum	30 min	
	Bacterium	Cells	Photobacterium phosphoreum	55 min	lamboot of (1990) Misselfier (1990) 110 mm (1990)
	Bivalve	Embryos	Crassostrea virginica	48 hre	ACTA (1991b)
	Bivalve	Embryos	Crassost ea gigas	48-60 hrs	U.S. EPA (1991b)
	Bivalve	Embryos	Crassostrea gigas	48 hrs	ASTM (1989) (E727 - 90)
	Bivalve	Embryos	Mercenaria mercenaria	48 hrs	ASTM (1989) (E724-99)
	Bivalve	Embryos	Mytilus edulis	48-60 hrs	US FPA (1991b)
	Bivalve	Embryos	Mytilus edulis	48 hrs	ASTM (1989) (F724 – 89)
-	Fish	Adults	Cyprinodon variegatus	96 hrs	Alden et al. (1988)
1	Polychaete	Females (1-2 davs)	· Dinophilus avrociliatus	7 4200	

Notes: EL – elutriate
EX – extract
INT – interstitial water
S – sediment

981	Exposite			est		
ė Ž	Media	Group	Life Stage	Species	Duration	Reference
195	EX	Amphibian	Embryos	Xenopus laevis	96 hours	Dawson et al. (1988)
199	IN.	Amphipod	Juveniles	Hyalella azteca	96 hrs	Arkley et al. (1991)
200	ဟ	Amphipod	Juveniles	Hyalella azteca	10-14 days	ASTM (1991b) (E1383-90); U.S. EPA and U.S. COE (1993)
202	တ	Bivalve	Juveniles	Anodonta imbecillis	10 days	U.S. EPA and U.S. COE (1993)
205	딥	Cladoceran	Neonates	Cerio daphnia dubia	48-96hrs	Ankley et al. (1991); U.S. EPA and U.S. COE (1993); U.S. EPA (1991a); Enviro ment Canada (1992e)
207	တ	Cladoceran	Neonates	Ceriodaphnia dubia	48 hrs	Sassoon~ Brick son and Burton (1991); Stemmer et al. (1990b)
208	EL	Cladoceran	Neonates	Daphnia magna	48-96 hrs	Nebeker et al. (1984); U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
509	IN	Cladoceran	Neonates	Daphnia magna	48 hrs	Giesy et al. (1988, 1990)
211	တ	Cladoceran	Neonates	Daphnia magna	48 hrs	Nebeker et al. (1984); Stemmer et al. (1990a,b)
212	ᆸ	Cladoceran	Neonates (< 24 hrs)	Daphnia magna	48 hrs	Environment Canada (1990a,d)
213	E	Cladoceran	Neonates (< 24 hrs)	Daphnia pulex	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
214	티	Cladoceran	Neonates (< 24 hrs)	Daphnia pulex	48 hrs	Environment Canada (1990a)
220	Ē	Fish	Approx. 4 days	totalurus punctatus	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
222	딥	Fish	Approx. 4 days	Lepomis macrochirus	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
526	ᆸ	Fish	Larvae (<24 hrsold)	Pimephales promelas	7 days	Environment Canada (1992d)
229	핍	Fish	Approx. 4 days	Pimephales promelas	96 hrs	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
232	Ä	Fish	Embryo – larval	Pimephales promelas	6 days	Dawson et al. (1988)
233	Ø	Fish	Juveniles	Pimephales prometas	21 days	Krantzberg and Boyd (1992)
234	딢	Fish	Fry or fingerlings	Oncorhynchus mykiss	96 hrs	Environment Canada (1990b, e); U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
235	တ	Fish	Eggsac stage	Oncorhynchus mykiss	21 days	Birge et al. (1984); Krantzberg (1989); Krantzberg and Boyd (1992)
237	တ	Insect	Neonates or larvae	Chironomus riparius	10-30 days	ASTM (1991b) (E1383-90); U.S. EPA and U.S. COE (1993); Ingersoll and Nelson (1990); Nelson et al. (1990)
238	တ	Insect	2nd instar larvae	Chironomus tentans	10-14 days	ASTM (1991b) (E1383-90); U.S. EPA and U.S. COE (1993); Ingersoll and Nelson (1990); Nelson et al. (1990)
239	တ	Insect	Young nymphs	Hexagenia limbata	10 days	Malueg et al. (1984a,b); Nebeker et al. (1984); U.S. EPA and U.S. COE (1993)
240	Ī	Insect	Nymphs	Hexagenia limbata	168 hrs	Giesy et al. (1990)
241	ω	insect	Nymphs	Hexagenia limbata	168 hrs	Giesy et al. (1990)
242	တ	Insect	Nymphs	Hexagenia limbata	21 days	Krantzberg and Boyd (1992)
244	긥	Nematode	L1 stage juveniles	Panagrellus redivivus	96 hrs	Burnett et al. (no date); Samoiloff et al. (1980)
249	တ	Oligochaete	Mixed-age	Lumbriculus variegatus	10 days	U.S. EPA and U.S. COE (1993); Arkley et al. (1992); Bailey and Lui (1980)
250	တ	Oligochaete	Large worms	Lumbriculus variegatus	14 days	Der mott and Munawar (1992)
251	딥	Oligochaete	Similar size	Pristina leidyi	48 hrs	Smith et al. (1991)
252	တ	Oligochaete	Mixed age; similar size	Pristina leidyi	10-18 days	Smith et al. (1991); U.S. EPA and U.S. COE (1993)
255	တ	Oligochaete	Mixed age	Tubilex tubilex	10 days	U.S. EPA and U.S. COE (1993); Reynoldson et al. (1991)
256	•	1		Man		

Notes: EL – elutriate
EX – extract
INT – interstitial water
S – sediment

2	Madia	2000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lest Occasion	:	
	INACIO	doolo	LIIE STRUE	Species	Duration	Reference
260	ᆸ	Algae	Cells	Selenastrum capricornutum	48 hrs	Environment Canada (1992c)
261	Z	Algae	Cells	Selenastrum capricornutum	48 hrs	Burton et al. (1989)
262	Ø	Algae	Cells	Chlorella vulgaris	4-96 hrs	Munawer and Munawer (1987)
263	딥	Algae	Cells	Chlorella vulgaris	4-96 hrs	Munawar and Munawar (1987)
	Ճ	Amphibian	Embryos	Xenopus laevis	96 hrs	Dawson et al. (1988)
	ဟ	Amphipod	Juveniles	Hyalella azteca	10-30 days	ASTM (1991b) (F1383-90)
	တ	Amphipod	Juvenites	Hyalella azteca	8-10 wks	Rooman et al. (1080)
	ដ	Bacterium	Cells	Aeromonas hydrophila	20 hrs	Dulka and Kwan (1981): Flamming and Trayore (1980)
	Ճ	Bacterium	Cells	Photobacterium phosphoreum	15 min	Jacobs et al (1992)
	INT	Bacterium	Cells	Photobacterium phosphoreum	30 min	Hoke et al. (1992)
	ဟ	Bacterium	Cells	Photobacterium phosphoreum	20 min	Microbics (1991)
	ທ	Bacterium	Cells	Photobacterium phosphoreum	30 min	Brouwer et al. (1990)
	Ճ	Bacterium	Cells	Salmonella typhimurium	S/N	Jarvis and Reilly (1992)
	တ	Bacterium	Cells	Vibrio fischeri	16-24 hrs	Microbics (1993)
	ᆸ	Bacterium	Cells	Vibrio fischeri	16-24 hrs	Microbics (1993)
	딥	Cladoceran	Neonates	Ceriodaphnia dubia	7 ± 1 davs	Environment Canada (1992a)
	Ø	Cladoceran	Juvenile	Daphnia magna	7 days	Nebeker et al. (1984): see Ceriodenthije drible (Envisonment Canda 1000-)
	ဟ	Fish	Juveniles	Pimephales prometas	21 days	Kantzberg and Boyd (1992)
	Е	Fish	Larvae (<24 hrs old)	Pimephales prometas	7 days	Environment Canada (1992d)
	Ճ	Fish	Embryo larval	Pimephales promelas	6 days	Dawson et al. (1988)
	တ	Fish	Egg-sac stage	Oncorhynchus mykiss	21 davs	Bine et al. (1984): Krantzhern (1980): Krantzhern dan Baud (1900)
	ဟ	Fish	Gonad cell (RTG-2)	Oncorhynchus mykiss	48 hrs	Chapman et al. (1985): 11S EPA (1991b)
	တ	Insect	Neonates or larvae	Chironomus riparius	10-30 days	ASTM (1991b) (F1383—90)
	IN.	Insect	2nd instar larvae	Chironomus tentans	10 days	Glesy et al. (1990)
	Ø	Insect	2nd instar larvae	Chironomus tentans	10-25 days	ASTM (1991b) (E1383-90); Glesy et al (1990); Wentsel et al. (1977a)
	တ	Insect	Nymphs	Hexagenia limbata	21 days	Krantzberg and Bovd (1992)
	딥	Microbe	N/A	Alkaline phosphatase (APA)	40-130 min	Burton et al. (1989)
	ሿ	Nematode	L2 stage juveniles	Panagrellus redivivus	96 hrs	Samolloff et al. (1983)
	딥	Nematode	L1 stage juveniles	Panagrellus redivivus	96 hrs	Burnett et al. (no date): Samoiloff et al. (1980)
	Ø	Oligochaete	Juveniles and adults	Lumbriculus variegatus	10-28 days	Phipps et al (1993)
	တ	Oligochaete	15 mm in length	Lumbriculus variegatus	14 days	Dermott and Munawar (1992)
	v	Oligochaete	Large worms	Lumbriculus variegatus	24,48 hrs	Dermott and Munawar (1992)
	ဟ	Oligochaete	Mixed age; similar size	Pristina leidyi	18 days	Smith et al (1991)
	ဟ	Oligochaete	Adults	Tubifex tubifex	28 days	Reynoldson et al. (1991)
	Ø	Plant	Seedlings	Echinochloa crusgalli	2 weeks	Walsh et al. (1991)
	•					

Notes: EL – elutriate EX – extract INT – interstital water S – sediment

_
3
삘
2
R H
Ш
王
\supset
Y TESTS DELETED FROM FU
⋛
\approx
正
m
LETED F
-
ITY TES
>
0
T TOXICIT
9
Ä
山
$\mathbf{\Sigma}$
띴
\vdash
Z
뷯
퇘
<u>ত</u> ∥
<u> </u>

-	Exposure		Common			Test		
No. Site	Media	Group	Name	Life Stage	Recom.		Duration	Bafarances
007 M/L a,e	S	Amphipod	Amphipod	N/S		1	10 dave	Swaft at at (1070)
012 M/L a,e	တ	Bivalve	Clam	S/N		Macoma inquinata	10 days	Swort of all (1979)
013 M/L d,e	တ	Bivalve	Bent-nose clam	S/N		Macoma nasuta	96 hrs	Baish and Lonau (1909)
019 M/L d,e	တ	Bivalve	Littleneck clam	N/S		Protothaca staminea	96 hrs	Date and Committees
022 M/L e	တ	Bivalve	Bivalve	N/S		Tellina lilana	100000	Description Letting (1900)
024 M/L c,e	핍	Copepod	Copepod	S/N	ä	Acartia en	10 days	Hoper and Hickey (1992)
025 M/L b	ď	Conenad	Conenad	Adults	3	Missessell in the second	48 ms	U.S. E ² A and U.S. COE (1991)
	ى د	Criptopa	Didge had assure	Simply		Microal tridion littorale	96 hrs	DiPInto et al. (1992)
	o i	Crustacean	Hidge-back prawn	S/N		Sicyonia ingentis	96 hrs	Relsh and Lemay (1988)
_	ជ	Fish	Topsmelt	N/S		Atherinopes affinis		Reish and Lemay (1988)
052 M/L e	ဟ	Fish	Arrow goby	S/N		Clevelanda ios	96 hrs	Reish and Lemay (1988)
	တ	Polychaete	Polychaete	S/N		Abarenicola sp.	10 days	U.S. IPA and U.S. COE (1991)
067 M/L e	တ	Polychaete	Polychaete	S/N		Arenicola sp.	10 days	US FDA and US COE (1991)
068 M/L e	တ	Polychaete	Polychaete	S/N		Ctenodrilus serratus	S/N	Reich and Leman (1089)
9 J/W 690	တ	Polychaete	Polychaete	S/N		Glycera sp.	10 days	US FDA and US COE (1994)
070 M/L a,e	တ	Polychaete	Polychaete	N/S		Glycinde picta	10 davs	Swart of al (1070)
072 M/L e	တ	Polychaete	Polychaete	S/N		Nephthys sp.	10 days	
073 M/L e	တ	Polychaete	Polychaete	S/N	GB		10 days	
074 M/L e	တ	Polychaete	Polychaete	S/N		Ophrotrocha diadema	N/G	Dolot and Long. (1991)
077 M/S	တ	Amphipod	Amphipod	<48 hr old juvs.		Grandiderella ignonica	Software and	Meist and Lemay (1966)
078 M/S b	Ø	Amphipod	Amphipod	Adults		Phonoxemine obsorbine	So days	Npjref et al. (1969)
082 M/S	ū	Bacterium	Microtox	Celle	ć	Of the Late of the same of the	oo days	Swartz et al. (in prep.)
	ı	Coffe	Single cell and	Cotonioth on the	3	ribiopacierium phosphoreum	5 and 15 min	Environment Canada (1992f)
	ł v	Sign 2	Single cell gel	Eunal your cells		Eukaryotic cells	S/S	Jarvis and Reilly (1992)
) (Cells	Single cell gel	EUKaryotic celis		Eukaryotic cells	S/N	Jarvis and Relliy (1992)
2 :	י מי	Copepod	Copepod	Adults		Amphiascus tenuiremis	21 days	Strawbridge et al. (1992)
	က ်	Copepod	Copepod	Adults		Microarthridion littorale	12 days	DiPinto et al. (1992)
	တ	Echinoderm	Brittlestar	S/N		Amphiodla urtica	N/S	Bay and Greestein (1991)
	တ	Fish	Surf smelt			Hypomesus pretiosus	10 days	Chapman et al. (1985)
	T	Fish	Rainbow trout	Gonad cell (RTG-2)		Oncorhynchus mykiss	48 hrs	Chapman et al. (1985); U.S. EPA (1991b)
	တ	Polychaete	Polychaete	Juveniles		Armandia brevis	20 days	Casillas et al. (1991)
	တ	Amphipod	Amphipod	S/N		Corophium insidiosum	10 days	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991)
	တ	Amphipod	Amphipod	Mature, 5-8 mm		Corophium sp.	10 days	Reish and Lemay (1968); Swartz et al. (1990); U.S. EPA and U.S. COE (1901-1903)
	ဟ	Amphipod	Amphipod	N/S		Lepidactylus dytiscus	10, 20 days	Alden and Deaver (1991)
	တ	Bivalve	Clam	S/N		Macoma inquinata	10 days	Swartz et al. (1979)
	တ	Bivalve	Bent-nose clam	N/S		Macoma nasuta	96 hrs	Reish and Lemay (1988)
	တ	Bivalve	Littleneck clam	S/N		Protothaca staminea	96 hrs	Reish and Lemay (1988)
	တ	Copepod	Copepod	F1-2 offspring		Namopus palustris	7 days	Chandler and Scott (1991)
	တ	Copepod	Copepod	F1-2 offspring		Pseudobradya pulchella	7 days	Chandler and Scott (1991)
	တ	Fish	Sheepshead minnow	Embryos		Cyprinodon variegatus	7 days	Adolphson et al. (1991)
	တ	Polychaete	Polychaete	Larvae		Capitella capitata	35 days	Chapman and Fink (1984)
	ᇳ	Polychaete	Polychaete	Larvae		Capitella capitata	50 days	Chapman and Fink (1984)
	山	Polychaete	Polychaete	Juveniles		Streblospio benedicti	96 hrs	Ehret et al. (1991)
7 201	٠							

(cont.)
- :
EN
HW
TAC

0. Site 11 EIS bas 12 EIS bas 13 EIS bas 14 EIS bas 15 EIS bas 16 EIS bas 17 EIS bas 18 EIS ba	Life Stage Recom. N/S N/S F1-2 offspring Small strimp Small strimp Small strimp Larvae Larvae Larvae Larvae Larvae Embryo-larval Embryo-larval	Species LebidacMus divisors	Duration	References
1 E/S b-8 S Amphipod 24 E/S b-8 S Copepod 25 E/S b S Copepod 26 E/S b S Copepod 26 E/S b S Fish 27 E/S a S Polychaete 28 E/S b S Polychaete 29 E/S a S Polychaete 20 E/S a S Polychaete 3 F/L a S Amphibian 4 F/L a S Amphibian 5 F/L a S Amphibian 6 F/L a S Amphibian 7 F/L a S Fish 7 F/L a S Fish 8 F/L a S Fish 9 F/L a S Fish 10 F/L a S Fish 11 11 E/S Fish 12 F/L a S Fish 13 F/L a S Fish 14 5 5 5 15 7 5 5 15 7 6 5 5 15 7 7 6 5 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 7 15 7 7 15 7 7 7 15 7	N/S N/S F1-2 offspring F1-2 offspring Small strimp Embryos Gonad cell (ATG-2) Larvae Larvae Embryo-larval Embryo-larval	Species Lepidacivius dylisous	Duration	References
25 E/S b S Copepod 26 E/S b S Copepod 27 E/S b S Copepod 28 E/S b S Fish 28 E/S b S Fish 29 E/S a S Polychaete 30 E/S a S Polychaete 30 E/S a S Polychaete 31 E/L a S Amphibian 4 F/L a S Amphibian 4 F/L a S Amphibian 4 F/L a S Amphibian 5 F/L a S Amphibian 6 F/L a S Amphibian 6 F/L a S Amphibian 7 F/L a S Amphibian 7 F/L a S Amphibian 8 F/L a S Amphibian 9 F/L a S Fish 1 F/L a S				
25 E/S b S Copepod 26 E/S b S Copepod 27 E/S b S Fish 28 E/S b S Fish 29 E/S a S Polychaete 20 E/S a EL Polychaete 20 E/S a EL Polychaete 20 E/S a EL Polychaete 22 E/S b S Polychaete 23 F/L a S Amphibian 24 F/L a S Amphibian 25 F/L a S Amphibian 26 F/L a S Amphibian 27 F/L a S Amphibian 28 F/L a S Amphibian 29 F/L a S Fish 20 F/L a S Fish 21 F/L a S Fish 22 F/L a S Fish 23 F/L a S Fish 24 F/L a S Fish 25 F/L a S Fish 26 F/L a S Fish 27 F/L a S Fish 28 F/L b S Fish 29 F/L a S Fish 20 F/L a S Fish 20 F/L a S Fish 21 F/L a S Fish 22 F/L a S Fish 23 F/L a S Fish 24 F/L a S Fish 25 F/L a S Fish 26 F/L a S Fish 27 F/L a S Fish 28 F/L b S Fish 29 F/L a S Fish 20 F/L a S Fish 20 F/L a S Fish 21 F/L a S Fish 21 F/L a S Fish 22 F/L a S Fish 23 F/L a S Fish 24 F/L a S Fish 25 F/L a S Fish 26 F/L a S Fish 27 F/L a S Fish 28 F/L a S Fish 29 F/L a S Fish 20 F/L a			10.20 days	Arlen and Deaver (1001)
34 E/S b S Copepod 35 E/S b EL Crustacean 36 E/S b S Fish 39 E/S a S Polychaete 30 E/S a S Polychaete 32 E/S b S Polychaete 33 F/L a S Amphibian 4 F/L a S Amphibian 4 F/L a S Amphibian 4 F/L a S Amphibian 5 F/L a S Amphibian 6 F/L a S Amphibian 7 F/L a S Bisah 8 F/L			7 days	Chandler and Court (1991)
55 E/S D EL Crustacean 66 E/S B S Fish 66 E/S B S Polychaete 60 E/S a S Polychaete 62 E/S b S Polychaete 62 E/S b S Polychaete 63 F/L a S Polychaete 64 F/L a S Amphipod 7 F/L a Amphipod Amphipod 8 F/L b B Bisahe 9 F/L a S Fish 1 F/L <		holo	, deny 5	
8 E/S b S Fish 98 E/S a S Polychaete 90 E/S a S Polychaete 2 E/S b S Polychaete 2 E/S b S Polychaete 2 E/S b S Polychaete 3 F/L a S Amphibian 4 F/L a S Amphiban 6 F/L b S Amphipod 7 F/L a S Amphipod 8 F/L f S Amphipod 9 F/L a S Amphipod 1 F/L d S Amphipod 2 F/L a S Amphipod 3 F/L b S Bivalve 4 F/L d S Fish 5 F/L a S Fish 6 F/L a S Fish 7 F/L a S Fish 8 F/L a S Fish 9 F/L a S Fish 1 F/L a S Fish 1 F/L a S Fish 1 F/L a S Fish 2 F/L b S Fish 3 F/L a S Fish 4 F/L a S Fish 5 F/L b S Fish 6 F/L a S Fish			Cary's	Chandler and Scott (1991)
8 E/S b EX Fish 9 E/S a S Polychaete 2 E/S b S Amphibian 4 F/L a S Amphibian 4 F/L a S Amphipod 7 F/L a S Amphipod 7 F/L a S Amphipod 7 F/L a S Amphipod 8 F/L f Bivalve Cladoceran 9 F/L f INT Cladoceran 1 F/L a S Bivalve 2 F/L a S Fish 3 F/L a S Fish 6 F/L a S Fish 7 F/L a S Fish 8 F/L a S Fish 9 F/L a S Fish 1 F/L a S Fish 2 F/L b S Fish 3 F/L a			96 hrs	Alden et al. (1998)
FIS a S Polychaete ES a EL Polychaete FIL a S Amphibian FIL a S Fish FI		egatus	7 days	Adolphson et al. (1991)
File Polychaete Polychaet			48 hrs	Chapman et al. (1985); U.S. EPA (1991b)
2 E/S b S Polychaete 3 F/L a S Amphibian 4 F/L a S Amphibian 6 F/L b S Amphibod 7 F/L a S Amphibod 7 F/L a S Amphibod 7 F/L a S Amphibod 8 F/L b S Bivalve 1 F/L b S Bivalve 1 F/L a S Cladoceran 9 F/L a S Fish 1 F/L a S Fish 2 F/L a S Fish 2 F/L a S Fish 3 F/L a S Fish 3 F/L a S Fish 3 F/L a S Fish 4 F/L a S Fish 5 F/L a S Fish 6 F/L a S Fish 7 F/L a S Fish 8 F/L a		Capitella capitata 3	35 days	Chapman and Fink (1984)
2 E/S b S Potychaete S Amphibian 4 F/L a S Amphibian 6 F/L b S Amphibian 6 F/L b S Amphibod 7 F/L a S Amphibod 1 F/L 1 S Amphibod 1 F/L 1 S Amphibod 1 F/L a C a Bivalva 6 F/L a S Bivalva 6 F/L a S Bivalva 6 F/L a S Bivalva 7 F/L a S Bivalva 6 F/L a S Fish C F/L a S F/L a S Fish C F/L a S Oligochaete O S			50 days	
4 F/L a S Amphibian 6 F/L b S Amphibian 6 F/L a S Amphibian 7 F/L a S Amphibian 7 F/L a S Amphipod 1 F/L 1 S Amphipod 1 F/L 1 S Bivalva 2 F/L b S Bivalva 3 F/L b S Fish 6 F/L a EX Fish 7 F/L a S Fish 8 F/L a S Fish 9 F/L a S Fish 1 F/L a S Fish 2 F/L a S Fish 3 F/L a S Fish 4 F/L a S Fish 5 F/L a S Fish 6 F/L a S Fish 7 F/L a S Fish 8 F/L a S Fish 9 F/L a S Fish 1 F/L a S Fish 1 F/L a S		ficti	7 date	Chapter and First (1964)
# F/L a S Amphiban F/L a S Amphiban F/L b S Amphibod F/L a S Amphibod F/L b S Amphibod F/L b S Amphibod F/L b S Bivave S Fish C F/L a S F/L a S Fish C F/L a S S S F/L a S S F/L a S S S S S S S S S S S S S S S S S S			edys.	Chandier and Scott (1991)
6 F/L b.e S Amphipod 7 F/L a S Amphipod 8 F/L 1		carolinensis	7-8 days	Blrge et al. (1984)
7 F/L a S Amphipod B F/L i S Amphipod B F/L i S Amphipod B F/L i S Bivalva B F/L i Cladoceran B F/L i INT Cladoceran S F/L a S Fish F/L i S Gligochaete F/L i S Gligochaete F/L i S Gligochaete F/L i S Gligochaete C F/L i S F/L i	5/14		6-7 days	Blige et al. (1984); Francis et al. (1984)
F/L S Amphipod F/L S Amphipod F/L S Bivalve F/L S	: 0/2	ocreia hoyi)	3-31 days	Gosslaux et al. (1992); Landrum et al. (1989-1991)
F/L EL Amphipod F/L EL Fish F/L EL F/L F/L EL F/L F/L EL F/L	Juveniles	Gammarus lacustris 10	10 days	Nebeker et al. (1984)
7/L 1 EL Amphipod 3 F/L b S Bivalve 4 F/L a,ce INT Cladoceran 6 F/L a S Cladoceran 7 F/L a S Cladoceran 7 F/L a S Fish 7 F/L a EX Fish 7 F/L a S Gilgochaete 7 F/L a S Oligochaete 7 F/L a S Oligochaete <td>Juveniles</td> <td>Hyalella azteca 96</td> <td>96 hrs</td> <td>Ankley of al (1901)</td>	Juveniles	Hyalella azteca 96	96 hrs	Ankley of al (1901)
3 F/L b S Bivalve 4 F/L a.ce INT Cladoceran 5 F/L a S Cladoceran 5 F/L a S Cladoceran 5 F/L a S Fish 7 F/L a EX Fish 7 F/L a S Gligochaete	Juveniles	Hyalella azteca	96 hrs	Arklay at at (4004)
4 F/L a.c,e INT Cladoceran 8 F/L a S Cladoceran 9 F/L a EX Fish 5 F/L a EX Fish 6 F/L a EX Fish 7 F/L a S Fish 8 F/L a S Fish 8 F/L a S Fish 8 F/L a S	Larvae		06 hr	Carriery on al. (1991)
8 F/L f INT Cladoceran 9 F/L a S Cladoceran 5 F/L a EX Fish 7 F/L a S Fish 7 F/L f S Fish 7 F/L a S Gligochaete 7 F/L f S Oligochaete 7 F/L f S Oligochaete 7 F/L f S Oligochaete 7 F/L f	S/N	di ili		Pneps (1990)
5 F/L a S Cladoceran 5 F/L a EX Fish 7 F/L a S Fish 7 F/L a EX Fish 7 F/L a EX Fish 7 F/L a EX Fish 7 F/L a S Fish 7 F/L f S Fish 7 F/L g S Fish 8 Fish Fish 8 Fish Fish 8 Fish 9 <td>otec</td> <td></td> <td>48 hrs</td> <td>Adams et al. (1986)</td>	otec		48 hrs	Adams et al. (1986)
5 F/L a EX Fish 5 F/L a S Fish 6 F/L a S Fish 7 F/L a EX Fish 7 F/L a S Fish 7 F/L a S Fish 7 F/L f EL Fish 7 F/L f S Fish 7 F/L a S Fish 8 F/L a S Fish 8 F/L a S Fish		pia	48 hrs	Ankley et al. (1991)
F/L a S Fish F/L a S Fish F/L a EX Fish F/L a EX Fish F/L a S Fish F/L b S Fish F/L f EL Fish F/L f S Fish F/L a S Insect F/L f E Oligochaete F/L f S Oligochaete F/L f S Oligochaete F/L f S Oligochaete	Edry mid instars		96 hrs	Prater and Anderson (1977)
F/L a EX Fish F/L a S F/L a S Oligochaete F/L a S Oligochaete F/L a S Oligochaete F/L c S Oligochae	Embryos		6-8 days	Blige et al. (1985); Peddicord and MrFarland (1978): 11 S. CDA (1991)
F/L a EX Fish F/L a S F/L	Embryo - larval	Carassius auratus 6-	8-7 days	Bine et al. (1984): Francis et al. (1984)
F/L a EX Fish F/L a EX Fish F/L a S Fish F/L b S Fish F/L b S Fish F/L a S Oligochaete F/L f MT Oligochaete F/L f S Oligochaete C F/L f S Oligoch	Embryos	Cyprinus carpio 8-		Big et al. (1985) Denditions and Advisor (1994)
F/L a EX Fish F/L a S Insect F/L in M Oligochaete F/L in M Oligochaete C F/L in M Oligochaete C F/L in S Oligoc	Early life stages	Gambusia affinis N/S		Blegger and Ross (1989)
F/L a S Fish F/L b S Fish F/L b S Fish F/L b S Fish F/L a S Oligochaete F/L f S Oligochaete F/L f S Oligochaete F/L ce S Oligochaete F/L ce S Oligochaete	Embryos	ctalurus punctatus	8-8 days	Bine et al. (1995): Pertitions and McCode (1972).
F/L a S Fish Fish Filt. b S Fish Filt. b S Fish Filt. b S Fish Filt. f EL Fish Filt. a S Filt. a S Oligochaete Filt. f MT Oligochaete Filt. ce S Oligochaete C Filt. a S OLigochaete	Embryos	Sn.		line of all (1985). Onditional and McCallain (1976); U.S. E-A (1981)
F/L a S Fish F/L b S Fish F/L f EL Fish F/L f S Fish F/L a S Fish F/L f B Insect F/L f Int Oligochaete F/L f S Oligochaete F/L f S Oligochaete	ss Embryos			Dily e et al. (1903), Peddicord and McParland (1978); U.S. EPA (1981)
F/L b S Fish F/L f EL Fish F/L f S Fish F/L a S Oligochaete F/L f INT Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L ce S Oligochaete				Bilge et al. (1985); Peddicord and McFarland (1978); U.S. EPA (1961)
F/L f EL Fish F/L f S Fish F/L a S Fish F/L a S Fish F/L a S Insect F/L a S Inspod F/L f EL Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L f S Oligochaete	Embryo-larval		oays	Dinge et al. (1984); Francis et al. (1984)
F/L f S Fish F/L a S Fish F/L a S Fish F/L a S Insect F/L a S Oligochaete F/L f INT Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L f S Oligochaete				Coops er et al. (1993)
F/L 1 INT Fish F/L a 9 Insect F/L a 9 Insect F/L a 9 Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L ce 8 Oligochaete F/L ce 8 Oligochaete			96 hrs	Ankley et al. (1991)
F/L a 9 Fish F/L a 9 Insect F/L c,e 9 Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L c,e 8 Oligochaete F/L c,e 8 Oligochaete	Larvae (<24nrs old)		96 hrs /	Ankley et al. (1991)
F/L a 9 Insect F/L a 9 Insect F/L a 9 Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L f S Oligochaete F/L ce S Oligoch	_		96 hrs /	Ankley et al. (1991)
F/L a S Insect F/L a S Isopod F/L f EL Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L ce S Oligochaete		Pimephales promelas 96	96 hrs	Prater and Anderson (1977)
F/L a S Isopod F/L f EL Oligochaete F/L f INT Oligochaete F/L f S Oligochaete F/L ce S Oligochaete	4th instar larvae	Chironomus decarus 72	72 hrs +	Kosalwat and Kninht 11 og 21
F/L c,e 3 Oligochaete F/L f EL Oligochaete F/L f INT Oligochaete F/L f 9 Oligochaete F/L c,e S Oligochaete	Early-mid instars	Asellus communis 96		Prater and Antenna (1927)
F/L f EL Oligochaete F/L f INT Oligochaete F/L f 9 Oligochaete F/L c,e S Oligochaete	N/S	Limnodrilus hoffmelsteri		
F/L f INT Oligochaete F/L f 9 Oligochaete F/L c,e S Oligochaete	Mixed-age			biny or at. (1900)
F/L f S Oligochaete F/L c,e S Oligochaete	Mixed - ace			runey et al. (1991)
F/L c,e S Oligochaete	eoe-pexiW		_	AIKIBY BT al. (1991)
	(A) (A)			Ankley et al. (1991)
254 F/L c.e S Olicochaeta Olicochaeta				Keilty et al. (1988)
b.e EL Plant	2 2	ningianus	lays	Kelity and Landrum (1990)
F/L be S Plant				Burton et al. (1990)
	N/O	Lemna minor N/S		Burton et al. (1990)

_	-
_	
7	Ξ
	Ξ
C	3
•	3
-	5
_	_
•	
_	
2	_
П	ī
=	_
-	5
=	2
_	
7	ī
•	4
<	ď
	_
_	•
-	_

Test		Exposure Biotic	9 Biotic	Common		Test		
S)	Site	Media	Group	Name	Life Stage Recom.	n. Species	Duration	References
529	F/S a	핍	Algae	Green algae	Cells	Selenastrum capricornutum	4hr, 4-8 days	Blaise et al. (1986)
265	F/S b	တ	Amphibian	Leopardfrog	Embryo~larval	Rana pipiens	7-8 days	Blige et al. (1984)
266 F	F/S b	တ	Amphibian	Narrow-mouthed toad	Embryo-larval	Gast ophyrne carolinensis	78 days	Blig e et al. (1984)
267 F	F/S e	တ	Amphipod	Amphipod	N/S	Diporeia sp. (Pontoporeia hoyi)	331 days	Gosslaux et al. (1992); Landrum et al. (1989, 1991)
275 F	F/S a	Ж	Bacterium	Bacterium	Cells	Pseudomonas flourescens	20 hrs	Dulka and Kwan (1981), Trevors et al. (1981)
277 F	F/S a	ŭ	Bacterium	Aquatic bacterium	Cells	Spirillum volutans	120 min	Coleman and Qureshi (1985); Duka and Bitton (1988); Duka et al. (1988)
280	F/S b	တ	Bivalve	Mussel	8 d old juveniles	Anodonta imbecilis	90 days	Schweinforth and Wade (1990)
281	F/S b,e	S/N	Bivalve	Fingernail clam	S/N	Musculium transversum	N/S	Dillon and Ross (1992)
282 F	F/S c	တ	Cells	Single cell gell	Cells	Eukaryotic cells	N/S	Jarvis and Reilly (1992)
283 F	F/S c	핍	Cells	Single cell gell	Cells	Eukaryotic cells	S/N	Jarvis and Relliy (1992)
284 F	F/S a,e	တ	Cladoceran	Water flea	N/S	Ceriodaphnia affinis	7 days	Adams et al. (1986)
287 F	F/S a	Ճ	Fish	Goldfish	Embryos	Carassius auratus	6-8 days	Blig e et al. (1985); Peddicord and McFarland (1978); U.S. EPA (1981)
288 F	F/S a	ဟ	Fish	Goldfish	Embryo – larval	Carassius auratus	7-8 days	Blrg e et al. (1984)
289 F	F/S a	Ճ	Fish	Carp	Embryos	Cyprinus carpio	6-8 days	Blige et al. (1985); Peddicord and McFarland (1978); U.S. 67A (1981)
290 F	F/S b	တ	Fish	Mosquitofish	Early life stages	Gambusia affinis	N/S	Blegger and Ross (1989)
291	F/S a	ă	Fish	Channel catfish	Embryos	ictalurus punctatus	68 days	Birge et al. (1985); Peddtcord and McFarland (1978); U.S. BPA (1981)
292 F	F/S a	ď	Fish	Bluegill	Embryos	Lepomis macrochirus	6-8 days	Blige et al. (1985); Peddicord and McFarland (1978); U.S. BPA (1981)
293 F	F/S a	ជ	Fish	Largemouth bass	Embryos	Micropterus salmoides	6-8 days	Blige et al. (1985); Peddicord and McFarland (1978); U.S. BPA (1981)
294 F	F/S a	တ	Fish	Largemouth bass	Embryo-larvał	Micropterus salmoides	7-8 days	Birg e et al. (1984)
295 F	F/S b	တ	Fish	Medaka	Embryo-larval	Oryzias latipes	N/S	Coqp er et al. (1993)
296 F	F/S b,e	ដ	Fish	Medaka	N/S	Oryzlas latipes	N/S	Fabacher et al. (1991)
	F/S f	တ	Fish	Fathead minnow	Embryos	Pimephales promelas	6 days	Westerman (1988)
306 F	F/S a	တ	Insect	Midge	3rd instar larvae	Chir onomus tentans	5 days	Wentsel et al. (1977b)
309	F/S b	တ	Microbes	Microbial enzyme	N/A	Akaline phosphatase (APA)	40-130 min	Burton (1984); Burton et al. (1989); Stemmer et al. (1990b)
310 F	F/S b	s	Microbes	Microbial enzyme	N/A	Amylase	40-130 min	Burton (1988)
311 F	F/S b	တ	Microbes	Microbial enzyme	N/A	Arlysulfatase	40-130 min	Burton (1988)
312 F	F/S b	ᆸ	Microbes	Microbial enzyme	N/A	b - galactosidase (GAL)	40-130 min	Burton (1984); Burton et al. (1989)
313 F	F/S b	S	Microbes	Microbial enzyme	N/A	b – galactosidase (GAL)	40-130 min	Burton (1984); Burton et al. (1989)
314 F	F/S b	တ	Microbes	Microbial enzyme	N/A	b – glucosidase (GLU)	40-130 min	Burton (1984); Burton et al. (1989)
315 F	F/S b	ᆸ	Microbes	Microbial enzyme	N/A	b-glucosidase (GLU)	40-130 min	Burton (1984); Burton et al. (1989)
316 F	F/S b	တ	Microbes	Microbial enzyme	N/A	C-14 prot. hydrolysate turnover	40-130 min	Burton (1988)
317 F	F/S b	긥	Microbes	Microbial enzyme	N/A	Dehydrogenase (DHA)	40-130 min	Burton (1984); Burton et al. (1989)
318 F	F/S b	တ	Microbes	Microbial enzyme	N/A	Dehydrogenase (DHA)	40-130 min	Burton (1984); Burton et al. (1989)
319 F	F/S b	တ	Microbes	Microbial enzyme	N/A	Protease	40-130 min	Burton (1988)
322 F	F/S b,c,e	တ	Oligochaete	Oligochaete	N/S	Limnod ilus hoffmeisteri	96 hrs	Keilty et al. (1988)
327 F	F/S b,c,e.	တ	Oligochaete	Oligochaete	N/S	Stylaria lacustris	N/S	Kennedy et al. (1988)

ATTACHMENT 1. (cont.)

	References	•	Kelity and Landrum (1990)	Bennett and Cubbage (1992)	Burton et al. (1990)	Burton et al. (1990)
	Duration	96 hrs	42 days	N/S	N/S	N/S
Test	Recom. Species	Stylod llus heringianus	Stylod llus heringianus	Ostacoda	Lemna minor	Lemna minor
	Life Stage	S/N	S/N	S/N	S/N	S/N
Common	Name	Oligochaete	Oligochaete	Ostracods	Duckweed	Duckweed
	Group	Oligochaete	Oligochaete	Ostacod	Plant	Plant
ш	Media		တ	S/N	တ	딥
rest t	No. Site	328 F/S b,c,e	329 F/S b,c,e	331 F/S b,c,e	334 F/S b,e	335 F/S b,e

EC = Ervironment Canada; GB = "Greenbock" U.S. EPA and U.S. COE (1991); IN = Inland Testing Manual U.S. EPA and U.S. COE (1993); TT = Tiered Testing Proceedings (1992)

b Very new, under development, little promise, or too little information too evaluate. a Very old, little current use. Screening remarks: E/S = Estuarine Sublethal M/S = Marine Sublethal E/L = Estuarine Lethal M/L = Marine Lethal Site:

c Inadequate protocol specifications.

d Exposure duration inadequate.

F/S = Freshwater Sublethal

F/L = Freshwater Lethal

Definitive protocol not available or not specified. e Life stage of organism not specified.

N/S = Not Specified N/A = Not Apilicable

INT = Interstital Water

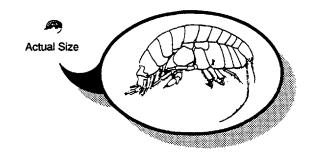
S = Sediment

EL = Elutriate EX = Extract

Type:

API PUBL*4607 94 📟 0732290 0555332 973 📟

APPENDIX B


Species Summaries

SPECIES SUMMARIES

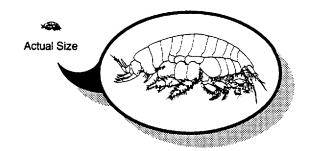
The life history and ecology of species used in various sediment toxicity tests are described in this appendix. The species were selected to provide representatives of various taxonomic groups and various habitats. Many of the species are used in the top ranked tests or in commonly used tests. The following characteristics are described for each species: major taxonomic group, life stages, geographic distribution, habitat, environmental tolerances, food, and sensitivity to contaminants. When information on a particular topic is not provided, it was not available in the references reviewed. Key references on the ecology and toxicity test protocols are also given for each species.

Ampelisca abdita

Used in Test No. 001

Ampelisca abdita is a tube-dwelling amphipod, which is a type of crustacean. Crustaceans represent a large group of invertebrates that include shrimp and crabs. Amphipods are one of the most abundant groups of crustaceans in the benthic environment. A. abdita ranges from south-central Florida to central Maine and is also found along the eastern Gulf of Mexico and in San Francisco Bay. Because amphipods are the main source of benthic prey for many fish, birds, and larger invertebrates and an important element in the diet of some marine mammals (e.g., grey whales), they are considered to be ecologically important organisms. Amphipods are characteristically absent from benthic communities that are heavily impacted by pollution. This species primarily inhabits protected areas, from the low intertidal zone to depths of 60 m. It is generally found in sediments ranging from mud and silt without shell to fine sand and is often abundant in sediments with high organic content. A. abdita also can be found in larger size sediments. It can live in areas that have a wide range of temperature $(-2 \text{ to } 27^{\circ}\text{C})$ and salinity (10 ppt to fully marine). These amphipods are scavengers and feed using a constructed tube to create a feeding current that draws in food particles from th3e overlying water and from the sediment surface. A. abdita is known to ingest algal material, sediment, and organic detritus. A. abdita may reproduce continuously throughout the year in warmer waters, but it only reproduces twice a year in colder regions. Full moon and spring tides have been correlated with intense breeding activity. After 2 weeks in a brood pouch, juveniles require 40-80 days to become mature adults. Only females (immature and mature) are recommended for toxicity testing. Desirable characteristics of A. abdita for toxicity testing include wide geographic distribution, ease of collecting, and sensitivity of growth and survival to a variety of contaminants.

SOURCES


ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04. E1367-90. American Society for Testing and Materials, Philadelphia, PA.

Bousfield, E.L. 1973. Shallow-water Gammaridean Amphipoda of New England. Cornell University Press, Ithaca, NY.

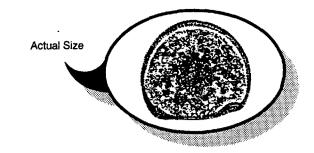
Mills, E.L. 1967. The biology of an Amphipod Crustacean sibling species pair. J. Fish. Res. Board Can. 24:305-355.

Rhepoxynius abronius

Used in Test No. 008

Rhepoxynius abronius is a free-burrowing amphipod, which is a type of crustacean. Crustaceans represent a large group of invertebrates that include shrimp and crabs. Amphipods are one of the most abundant groups of crustaceans in the benthic environment. R. abronius has a wide geographical distribution along the West Coast, extending from Puget Sound, Washington, to southern California. Because amphipods are the main source of benthic prey for many fish, birds, and larger invertebrates and an important element in the diet of some marine mammals (e.g., grey whales), they are considered to be ecologically important organisms. Amphipods are characteristically absent from benthic communities that are heavily impacted by pollution. R. abronius lives in the upper 2-6 cm of sediments. It prefers to live in unvegetated, coarsegrained environments (i.e., fine sand to silty sand). R. abronius lives in sediments where the annual temperature ranges from 8 to 16°C and the annual salinity ranges from 22 to 33 ppt. R. abronius is very sensitive to salinities below 15 ppt. This amphipod consumes very small animals living among the sediment particles and plant matter (algae and detritus) that is 0.1-1 mm in size. Mature male and female amphipods, which are used for toxicity testing, are 3-5 mm in length. Use of R. abronius as a toxicity test organism should be limited to sediment samples collected from subtidal and lower intertidal regions (to 274 m) and higher-salinity portions of estuaries. R. abronius is moderately sensitive to sediment-associated contaminants.

SOURCES


ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04. E1367-90. American Society for Testing and Materials, Philadelphia, PA.

Barnard, J.L., and C.M. Barnard. 1982. The genus *Rhepoxynius* (Crustacea: Amphipoda: Phoxocephalidae) in American Seas. Smithsonian Contributions for Zoology. No. 357. Smithsonian Institution Press, Washington, DC.

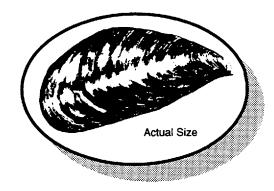
Kemp, P.F., F.A. Cole, and R.C. Swartz. 1985. Life history and production of the Phoxocephalid amphipod *Rhepoxynius abronius*. J. Crustacean Biol. 5:449–464.

Crassostrea gigas

Used in Tests No. 010 and 011

Crassostrea gigas (the Japanese or Pacific oyster) is a filter-feeding oyster and a member of the class Bivalvia (phylum Mollusca), which also includes clams, scallops, and mussels. C. gigas was introduced to the West Coast of North America from Japan in the early 1900s and is now well established in many places. This oyster is an important economic crop and is cultured and harvested for human consumption. It is a very large oyster, enclosed within a shell made up of two lateral halves. Individuals normally begin life as males, but they can change to females and then back to males several times during the course of their life cycle. These sex changes are associated with temperature changes and food supply. In general, C. gigas will spawn when the temperature is between 25 and 30°C. Females can produce and discharge 500,000 eggs in a season. Embryos and young larvae live in the open water and can passively drift for up to 2-3 weeks. Once oyster larvae settle to the bottom, they become firmly attached to mother shells (cultch) and are then called spat. C. gigas is epibenthic, inhabiting marine and estuarine bottoms in the intertidal and subtidal zones. This species is adapted to a wide range of substrates, salinities, temperatures, and dissolved oxygen concentrations. Like other oysters, C. gigas is a filter-feeder, collecting and consuming materials suspended in the water (e.g., bacteria, protozoa, small single-cell plants, larvae, detritus). Starfish, crabs, flatworms, oyster drillers, and some species of fish are predators of C. gigas. The embryos and larvae of C. gigas have been shown to be sensitive to sediment-associated contaminants. Mortality and abnormal growth in the early life stages of C. gigas serve as effective measurement endpoints in toxicity tests.

SOURCES


ASTM. 1989. Standard practice for conducting static acute toxicity tests with larvae of four species of bivalve. pp. 256-272. In: Annual Book of ASTM Standards, Vol. 11.04. E724-80. American Society for Testing and Materials, Philadelphia, PA.

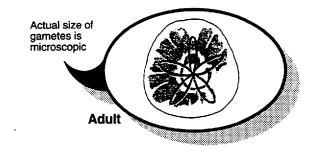
Cheney, D.P., and T.F. Mumford, Jr. 1986. Shellfish and seaweed harvests of Puget Sound. pp. 11-36. University of Washington Press, Seattle, WA.

Kozloff, E.N. 1973. Seashore life of Puget Sound, the Strait of Georgia, and the San Juan archipelago. University of Washington Press, Seattle, WA.

Mytilus edulis

Used in Tests No. 016 and 017

Mytilus edulis (the blue or bay mussel) is a filter-feeding mussel and a member of the class Bivalvia (phylum Mollusca), which also includes clams, scallops, and oysters. M. edulis is a marine/estuarine species that is widely distributed around the world in northern temperate regions. This mussel is an important economic crop and is cultured and harvested for human consumption. It is enclosed within a wedge-shaped shell made up of two lateral halves. Fullgrown mussels rarely exceed 6 cm in length. M. edulis exhibits separate sexes, and spawning of the eggs and sperm usually occurs in spring to early summer. The fertilized eggs live in the open water and develop into free-swimming planktonic larvae in about 48 hours. When larvae develop to where they can both swim and crawl (pedivelger stage), they will begin to settle out on a stable substrate (e.g., wharf pilings). Larvae can delay settlement for up to 10 weeks while they search for a suitable solid surface to settle on. Upon settling, larvae attach themselves to the substrate using a series of byssal threads. These tough, fibrous threads also enable young mussels to move and adjust their position to a more favorable environment. They live in clusters and attain sexual maturity in 1 year. M. edulis prefers to inhabit calmer waters and is abundant on wharf pilings, floats, docks, and rocks. This species is found occasionally on outer coasts. This mussel is most common below mid-tide zones, but can be found from high-tide zones to depths of 36 m. M. edulis can tolerate temperatures between 1.7-27°C, and salinities between 5 and 37 ppt. It is also able to withstand low oxygen concentrations for short periods. M. edulis feeds by separating small particles of organic matter from the current of water that passes through its gills. Birds, crabs, starfish, and humans are the principle predators of this mussel. This species has been shown to be sensitive to sediment-associated contaminants.


SOURCES

Cheney, D.P., and T.F. Mumford, Jr. 1986. Shellfish and seaweed harvests of Puget Sound. pp. 11-36. University of Washington Press, Seattle, WA.

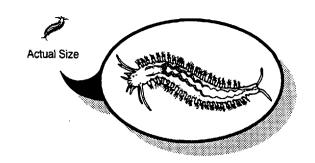
Kozloff, E.N. 1973. Seashore life of Puget Sound, the Strait of Georgia, and the San Juan archipelago. University of Washington Press, Seattle, WA.

Dendraster excentricus

Used in Tests No. 039, 040, 041, 042, 102, and 103

Dendraster excentricus (sand dollar) is a member of the phylum Echinodermata, which also includes starfish and sea urchins. This echinoderm is found on the West Coast of North America from Baja California to Alaska. Sand dollars are preyed on by starfish. D. excentricus lives along quiet water beaches with flat sandy bottoms extending from the low-tide mark to depths of 100 m. The sand dollar grows to be about 8 cm in diameter. Gametes, embryos, and juveniles (3-7 mm in diameter) are used for toxicity tests. Sand dollars have separate sexes, and release sperm and eggs into the surrounding water, relying on their chance union for reproduction. Embryos develop into free-swimming larvae, which eventually settle out onto suitable substrate and grow into adults. Young D. excentricus will selectively ingest the heaviest sand grains to gain weight, thus enabling them to secure themselves to a shifting substrate. As young D. excentricus grow, the sand grains disappear from their gut. This echinoderm is almost completely enclosed in a skeleton of calcarious plates. The sand dollar generally remains partially exposed above the sediment surface and orients itself nearly vertically and perpendicular to the current. D. excentricus is somewhat mobile, plowing or pushing itself through the sand. D. excentricus feeds on fine particles of organic matter (e.g., diatoms) removed from the sand or water by tube feet (cilia) that carry the food to its mouth. Early life stages of D. excentricus have been shown to be sensitive to sediment-associated contaminants.

SOURCES


Casillas, E., D. Weber, C. Haley, and S. Sol. 1992. Comparison of growth and mortality in juvenile sand dollars (*Dendraster excentricus*) as indicators of contaminated marine sediments. Environ. Toxicol. Chem. 11:559-569.

Kozloff, E.N. 1973. Seashore life of Puget Sound, the Strait of Georgia, and the San Juan archipelago. University of Washington Press, Seattle, WA.

Ricketts, E.F., J. Calvin, and J.W. Hedgepeth. 1968. Between Pacific tides. pp. 278-280. Stanford University Press, Stanford, CA.

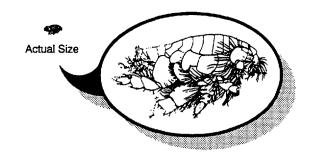
Neanthes sp.

Used in Tests No. 071 and 121

Neanthes sp. is a deposit-feeding polychaetous annelid (worm) inhabiting marine and high salinity environments throughout the world. This species belongs to the family Nereidae, which is a dominant taxon of intertidal and subtidal habitats. Because Neanthes sp. is an important element in the diet of many fish, they are considered to be ecologically important organisms. Neanthes sp. is a relatively sedentary species that has been shown to tolerate a wide range of sediment grain sizes. Interstitial and overlying water below 20 ppt salinity may adversely affect the growth and survival of Neanthes sp. This polychaete constructs and lives in tubes made of organic material within the sediment or on firm surfaces. Reproduction is sexual. Females deposit eggs within the worm tubes and then die in 2-3 days. The surviving male then cares for the eggs. After the eggs hatch, larvae feed on yolk sacs within the tubes for approximately 3 weeks. Shortly thereafter, the larvae emerge from the parental tube, construct independent tubes, and begin feeding on algae and detritus. This worm is easily cultured in laboratories. Under laboratory conditions at 20°C, Neanthes sp. takes 3-4 months to complete its life cycle. Juvenile worms weighing 0.5-1.0 mg dry weight (i.e., 2-3 weeks after emergence) are recommended for sediment toxicity tests. Desirable characteristics of Neanthes sp. include wide geographic distribution, ease of culturing, and sensitivity of growth and survival to a variety of contaminants.

SOURCES

Johns, D.M., R.A. Pastorok, and T.C. Ginn. 1992. A sublethal sediment toxicity test using juvenile *Neanthes* sp. (Polychaeta: Nereidae). pp. 280–293. In: Aquatic Toxicology and Risk Assessment. Fourteenth Volume. ASTM STP 1124. M.A. Mayes and M.G. Barron (eds). American Society for Testing and Materials, Philadelphia, PA.


Reish, D.J. 1980. Use of polychaetous annelids as test organisms for marine bioassay experiments. pp. 140-154. In: Aquatic Invertebrate Bioassays. ASTM STP 715. A.L. Buikema, Jr., and J. Cairns, Jr. (eds). American Society for Testing Materials. Philadelphia, PA.

Reish, D.J. 1985. The use of the polychaetous annelid *Neanthes arenaceodentata* as a laboratory experiment animal. Tethys. 11:335-341.

U.S. EPA. 1990. Protocol for juvenile *Neanthes* sediment bioassay. Prepared by PTI Environmental Services, Bellevue, WA. EPA 910/9-90-011. U.S. Environmental Protection Agency, Puget Sound Estuary Program, Seattle, WA.

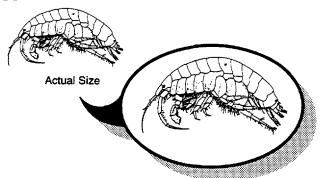
Eohaustorius estuarius

Used in Test No. 129

Echaustorius estuarius is an estuarine amphipod, which is a type of crustacean. Crustaceans represent a large group of invertebrates that include shrimp and crabs. Amphipods are one of the most abundant groups of crustaceans in the benthic environment. E. estuarius has a wide geographic distribution along the West, East, and Gulf coasts of North America. Because amphipods are the main source of benthic prey for many fish, birds, and larger invertebrates, they are considered to be ecologically important organisms. Amphipods are characteristically absent from benthic communities that are heavily impacted by pollution. E. estuarius appears to exhibit an annual life cycle. Mature male and females of the species, which are used for toxicity tests, are 3-5 mm in length. E. estuarius is a free-burrowing deposit feeder. This amphipod is generally found in the upper 10 cm of intertidal, estuarine sands, +0.15 to +0.61 m above mean low water. It occurs in maximum densities near the mouths of streams and rivers. E. estuarius tolerates temperature ranges between 0°C and 21°C, salinity ranges between near 0 to 35 ppt, and a broad range of sediment grain sizes. E. estuarius has been shown to be sensitive to sediment-associated contaminants. Desirable characteristics of E. estuarius for toxicity testing include almost constant contact with sediment particles and interstitial water, broad tolerance of natural environmental conditions, wide geographic distribution, and ease of collecting.

SOURCES

ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04. E1367-90. American Society for Testing and Materials, Philadelphia, PA.


Sameoto, D.D. 1969. Comparative ecology, life histories, and behavior of intertidal sand-burrowing amphipods (Crustacea: Haustoriidae) at Cape Cod. J. Fish. Res. Board Can. 26:361–388.

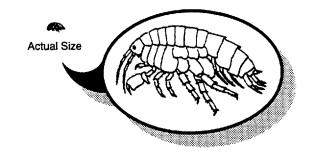
Sattery, P.N. 1985. Life histories of infaunal amphipods from subtidal sands of Monterey Bay, California. J. Crust. Biol. 5:635-649.

API PUBL*4607 94 📟 0732290 0555341 986

Leptocheirus plumulosus

Used in Tests No. 133, 134, and 135

Leptocheirus plumulosus is a deposit-feeding amphipod, which is a type of crustacean. Crustaceans represent a large group of invertebrates that include shrimp and crabs. Amphipods are one of the most abundant groups of crustaceans in the benthic environment. L. plumulosus is found along the East Coast of the United States from Massachusetts to northern Florida. Because amphipods are the main source of benthic prey for many fish, birds, and larger invertebrates, they are considered to be ecologically important organisms. Amphipods are characteristically absent from benthic communities that are heavily impacted by pollution. L. plumulosus is an annual species and produces up to two broods per year. The timing of reproduction is variable, but reproductive peaks usually occur in early to mid-spring and in the fall. L. plumulosus lives in bottom sediments that range from fine sand to very fine mud. L. plumulosus constructs U-shaped burrows within the sediment, where it feeds on organic detritus from ingested particulates. L. plumulosus tolerates a wide range of salinity (1.5-32 ppt) and sediment grain size (96.5 percent silt/clay particles to 98.1 percent sand particles). Juvenile organisms are recommended for sublethal toxicity tests. Adults of mixed sexes, ranging in size from 4 to 8 mm, are recommended for lethal toxicity tests. Adults have been shown to be sensitive to sediment-associated contaminants. Other desirable characteristics of L. plumulosus for toxicity testing are ease of collecting and sensitivity of sublethal endpoints (e.g., growth inhibition) in toxicity tests.


SOURCES

McGee, B.L., C.E. Schlekat, and E. Reinharz. 1993. Assessing the sublethal levels of sediment contamination using the estuarine amphipod *Leptocheirus plumulosus*. Environ. Toxicol. Chem. 12:577-587.

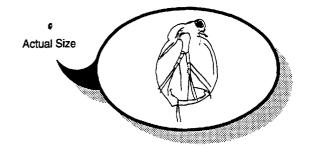
Schlekat, C.E., B.L. McGee, and E. Reinharz. 1992. Testing sediment toxicity in Chesapeake Bay with the amphipod *Leptocheirus plumulosus*: an evaluation. Environ. Toxicol. Chem. 11:225-236.

Hyalella azteca

Used in Tests No. 199, 200, 131, and 269

Hyalella azteca is a freshwater amphipod, which is a type of crustacean. Crustaceans represent a large group of invertebrates that include shrimp and crabs. Fish are the chief predators of H. azteca, but birds, predatory aquatic insects, and amphibians probably consume appreciable quantities as well. H. azteca can be found in permanent lakes, ponds, and streams throughout North America. This amphipod is usually lives in shallow waters. Amphipods are characteristically absent from benthic communities that are heavily impacted by pollution. The life cycle of H. azteca can be completed in 27 days or more. Adult H. azteca males are larger than adult females. H. azteca exhibits a wide tolerance of sediment grain size (from > 90 percent silt/clay particles to 100 percent sand particles showed no adverse effects). Reproduction is optimal at temperatures between 26° and 28°C. This amphipod will burrow into the sediment surface and is an epibenthic detritivore (general scavenger) capable of digesting bacteria and algae from ingested sediments (<65 μ m). An environmental requirement for H. azteca appears to be an abundance of dissolved oxygen. This species has been shown to be a sensitive indicator of sediment-associated contaminants. Desirable characteristics of H. azteca for toxicity testing include a short generation time and ease of collecting or culturing.

SOURCES


ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. Annual Book of ASTM Standards. E1383-90. American Society for Testing and Materials, Philadelphia, PA. 20 pp.

Pennak, R.W. 1978. Freshwater invertebrates of the United States. Second Edition. pp. 451-463. John Wiley & Sons, Inc. New York, NY.

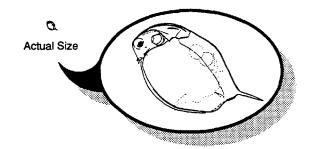
Strong, D.R. 1972. Life history variation among populations of an amphipod (*Hyalella azteca*). Ecology 53:1103-1111.

Ceriodaphnia dubia

Used in Tests No. 205, 207, and 285

Ceriodaphnia dubia is a planktonic, filter-feeding microcrustacean, commonly referred to as a water flea. C. dubia is widely distributed in freshwater locations throughout temperate North America and is most abundant in lakes and ponds, occasionally occurring in quiescent sections of streams and rivers. It represents an ecologically important component of food webs. This species forms a significant portion of the diet of many fish and other crustaceans. Adult females range in size up to 0.9 mm. C. dubia reproduces rapidly after birth and exhibits a short life cycle. Reproduction is parthenogenetic (without fertilization) and primarily produces females. Sexual reproduction can be stimulated by environmental stress, which produces "resting eggs" that can withstand conditions such as drying and freezing, thus facilitating the survival and transport of C. dubia. The species is adapted to a wide range of temperatures, but cannot survive low dissolved oxygen concentrations (i.e., <5 mg/L). C. dubia is planktonic, freely swimming among the weeds and coarse detritus. It feeds on small floating plants (phytoplankton), bacteria, and suspended detritus. C. dubia is easily cultured and has been shown to be sensitive to sediment-associated contaminants. Toxicity tests are started with C. dubia neonates that are less than 24 hours old. To control for initial (neonate) age in reproductive toxicity tests, only cultured individuals of the species should be used in the tests.

SOURCES


Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zoo. 50:1373-1403.

Environment Canada. 1992. Biological test method: test of reproduction and survival using the Cladoceran *Ceriodaphnia dubia*. Report EPS 1/RM/21. Environmental Publications, Conservation, and Protection, Environment Canada, Ottawa, Ontario, Canada.

Pennak, R.W. 1978. Freshwater invertebrates of the United States. Second Edition. John Wiley & Sons, Inc., New York, NY.

Daphnia magna

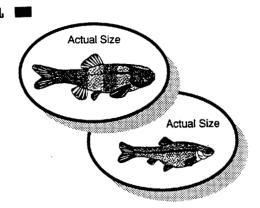
Used in Tests No. 208, 209, 211, and 212

Daphnia magna is a microcrustacean, commonly referred to as a water flea. D. magna is a freshwater organism, with a wide distribution based on suitable habitat. This water flea inhabits small lakes, ponds, and temporary pools of clean, weedy water. Adult females are larger than adult males, with females ranging in size up to 5 mm and males ranging to greater than 2 mm. Reproduction is parthenogenetic (without fertilization) and primarily produces females. D. magna are capable of producing a brood of up to 65 individuals, every other day. Sexual reproduction can be stimulated by environmental stress, which produces "resting eggs" that can withstand conditions such as drying and freezing, thus facilitating the survival and transport of D. magna. D. magna has been shown to survive for periods of 28 and 108 days at 8°C and 28°C, respectively. D. magna is primarily free-swimming and normally is not found on the sediment bottom. It lives chiefly among weeds and course detritus. D. magna is a filter feeder, ingesting suspended or settled fine particles down to $0.5 \mu m$. Their diet primarily consists of algae and protozoa, but it will consume any edible item (e.g., detritus, bacteria). Both young and adult fish are predators of D. magna, as are salamanders and aquatic insects. The species is easily collected in the field or can be cultured. D. magna has been shown to be relatively sensitive to many sediment-associated contaminants. To control for initial (neonate) age in reproductive toxicity tests, only cultured individuals of the species should be used in these tests.

SOURCES

ASTM. 1984. Standard practice for conducting acute toxicity tests on wastewaters with Daphnia. pp. 64–76. In: Annual Book of ASTM Standards. D4229-84. American Society for Testing and Materials, Philadelphia, PA.

Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zoo. 50:1373-1403.


Brooks, J.L. 1959. Cladocera. pp. 587-656. In: Freshwater Biology. Second Edition. Edmondson, W.T. (ed). John Wiley & Sons, Inc. New York, NY.

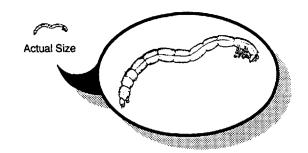
Pennak, R.W. 1978. Freshwater invertebrates of the United States. Second Edition. John Wiley & Sons, Inc., New York, NY.

API PUBL*4607 94 **=** 0732290 0555345 521 \

Pimephales promelas

Used in Tests No. 226, 229, 232, and 233

Pimephales promelas (flathead minnow) is a small freshwater fish of the minnow family that is distributed throughout most of central North America. It ranges from New Brunswick to Alberta, Canada; south to Louisiana; and into Chihuahua, Mexico. This minnow is often found in muddy ditches, ponds, lakes, and warm muddy brooks. Fish and fish-eating birds are predators of this species. P. promelas primarily spawns in the spring when water temperatures reach 16°C, but spawning may continue into August. Females deposit eggs on the underside of logs, branches, and large rocks. Eggs hatch on the average in 4.5-6 days. Newly hatched young are approximately 5 mm in length. In warmer regions, P. promelas can attain adult sizes (50-70 mm in length) and will complete spawning by July. P. promelas is a relatively shortlived species, rarely living beyond 2 years. In cooler waters, at least 2 years are probably required to reach adult size. Males grow more rapidly and attain larger sizes than females. There is a high rate of post-spawning mortality. P. promelas can withstand extremely low oxygen concentrations and tolerates salinities greater than 10 ppt. While algae is the principle food supply for this minnow, it also consumes organic detritus, bottom mud, aquatic insect larvae (mosquitoes), and zooplankton. P. promelas is suitable for culturing and has been used as a food source for pond-reared gamefish in the United States. Desirable characteristics of P. promelas for sediment toxicity tests include wide distribution, small size, highly prolific, prolonged spawning period, association with sediment, and importance in aquatic food webs.


SOURCES

Eddy, S., and J.C. Underhill. 1974. Northern fishes. Third Edition. pp. 248-249. University of Minnesota, Minneapolis, MN.

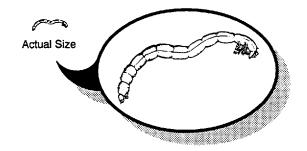
Scott, W.B., and E.J. Crossman. 1975. Freshwater fishes of Canada. pp. 480-483. Information Canada, Ottawa, Canada.

Chironomus riparius

Used in Test No. 237

Chironomus riparius is a fairly large freshwater midge belonging to the Diptera order of insects (flies, gnats, or mosquitos), which are distributed worldwide. This midge is an important dietary component of young and adult fish and dabbling ducks. The larvae of C. riparius inhabit muddy bottomed, shallow water sites and are frequently found in eutrophic lakes, ponds, and streams. The larval stages have been observed in gravel, limestone, marl, plants, and silt environments. C. riparius exhibits three distinct life stages: an aquatic burrowing larval stage. a pupal stage, and an adult (fly) stage. Larvae and pupae live in fresh water where they emerge as adults in 15-21 days (under optimal conditions at 20°C); adults are terrestrial. The larval stages tolerate a wide range of environmental conditions (e.g., sediment grain size ranging from > 90 percent silt/clay particles to 100 percent sand particles, temperatures between 0 and 33 °C. pH between 5 and 9, and dissolved oxygen concentrations as low as 1 mg/L). C. riparius larvae burrow into the sediments to construct a case and consume a variety of food materials. C. riparius has been shown to be sensitive to many sediment-associated contaminants. Desirable characteristics of C. riparius for toxicity testing include a fairly large size that facilitates handling and observation, short generation time, ease of culture, and direct contact with sediments. Successful toxicity tests have been performed with larvae that are less than 24 hours old and with larvae that are 3 days old.

SOURCES


ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. Annual Book of ASTM Standards. E1383-90. American Society for Testing and Materials, Philadelphia, PA.

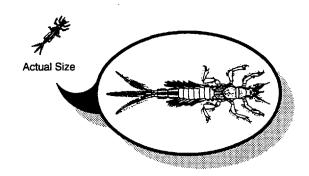
Oliver, D.R. 1971. Life history of the Chironomidae. Annual Review of Entomology 16:211-230.

Rasmussen, J.B. 1984. The life-history, distribution and production of *Chironomus riparius* and *Glyptotendipes paripes* in a prairie pond. Hydrobiologia 119:65–72.

Chironomus tentans

Used in Tests No. 238 and 304

Chironomus tentans is a fairly large freshwater midge belonging to the Diptera order of insects (flies, gnats, or mosquitos), which are distributed worldwide. C. tentans is often found in the mid-continental areas of North America. C. tentans larvae form an important dietary component of young and adult fish and dabbling ducks. C. tentans exhibits three distinct life stages: an aquatic larval stage, a pupal stage, and an adult stage. Larvae and pupae live in fresh water; adults are terrestrial. Eggs hatch in about 2-3 days after deposition in water. Larvae will develop and emerge as adults in 24-28 days (under optimal conditions at 20°C). Second to fourth larval instars range in size from approximately 0.5 to 2.5 cm, respectively. The larval stages tolerate a wide range of sediment grain-size particles (<0.15-2.0 mm), but they occur most frequently in fine sediment and detritus. The vast majority (>95 percent) of C. tentans larvae are located in the upper 10 cm of substrate, where the larvae burrow in the sediments to build a case. Larval stages tolerate a wide variety of environmental conditions (e.g., temperatures between 0 and 35°C, pH between 7 and 10, and dissolved oxygen concentrations as low as 1 mg/L). The larval stages consume primarily algae and organic detritus. This midge has been shown to be sensitive to many sediment-associated contaminants. Desirable characteristics of C. tentans for toxicity tests include fairly large size, which facilitates handling and observation; short generation time; ease of culture; and direct contact with sediments. Successful toxicity tests have been performed with second instar larvae, which are 10-14 days old.


SOURCES

ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. Annual Book of ASTM Standards. E1383-90. American Society for Testing and Materials, Philadelphia, PA.

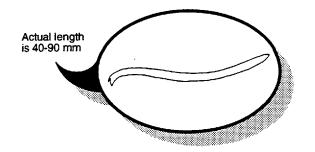
Oliver, D.R. 1971. Life history of the Chironomidae. Annual Review of Entomology. 16:211-230.

Hexagenia limbata

Used in Tests No. 239, 240, 241, and 242

Hexagenia limbata (burrowing mayfly) belongs to the class Insecta and order Ephemeroptera. This mayfly is widely distributed throughout North America and occurs in association with freshwater ecosystems (e.g. lakes, ponds, streams). Nymphs are often abundant and a typical source of food for trout. In lakes and ponds, H. limbata is believed to be an important dietary component of other fish species. Immature H. limbata (nymphs) are aquatic. The first nymphal stage of H. limbata is usually less than 1 mm in length. In colder environments, the nymphal life stages can last for up to 2 years. The adults are terrestrial and are short-lived (relative to nymphal stages). H. limbata nymphs are most characteristically found in shallow waters, but they can be found to depths of 15 m. Nymphs may occur in virtually all types of fresh water where there is suitable substrate and an abundance of oxygen (dissolved oxygen concentrations of < 5 ppm can be lethal). H. limbata nymphs are burrowers that plow through soft-bottom sediments. Because they do not construct their burrows from particulates or mucus, they require fine-textured, high organic content sediment so that their burrow will not collapse. Burrows are usually found in the top 5 cm of sediments and contain two openings. H. limbata maintain a constant current of water through their burrows, but will frequently leave their burrows to feed on surface-sediment debris. H. limbata are chiefly opportunistic feeders, ingesting sediment and digesting the organic component (e.g., phytoplankton and detritus). They will, however, also feed on living animals and have exhibited cannibalism in laboratory toxicity tests. Survival, growth, and emergence of H. limbata nymphs have been shown to be sensitive to sedimentassociated contaminants.

SOURCES


Fremling, C.R., and W.L. Mauck. 1980. Methods for using nymphs of burrowing mayflies (Ephemeroptera, Hexagenia) as toxicity test organisms. pp. 81-97. In: Aquatic Invertebrate Bioassays. A.L. Buikema, Jr., and J. Cairns, Jr. (eds). ASTM STP 715. American Society for Testing and Materials, Philadelphia, PA.

Pennak, R.W. 1978. Freshwater invertebrates of the United States. Second Edition. pp. 350-387. John Wiley & Sons, Inc., New York, NY.

Schloesser, D.W. 1988. Zonation of mayfly nymphs and caddisfly larvae in the St. Mary's River. J. Great Lakes Res. 14:227-233.

Lumbriculus variegatus

Used in Tests No. 249, 250, 323, and 324

Lumbriculus variegatus is a segmented worm and a member of the phylum Annelida and class Oligochaeta (aquatic earthworms). L. variegatus is restricted to the temperate and cold temperate zones of North America, Europe, Asia, and Africa. This species inhabits freshwater ecosysems and is commonly found in reservoirs, lakes, rivers, ponds, and marshes. L. variegatus is an epibenthic/benthic species that normally lives in silty to sandy sediments under water at depths of 2-60 m. The species ranges in size from 40 to 90 mm in length and from 1.0 to 1.5 mm in diameter. Although the potential for sexual reproduction exists, individuals containing sexual organs are rare. Reproduction is accomplished primarily by architomy, whereby new individuals are "budded" off parents. The parent will subsequently replace this lost portion with eight new segments of its own. In 10-14 days (at 20°C), populations of cultured worms can double their number through this budding process. L. variegatus usually tunnels within the aerobic zone of sediments, keeping its anterior portion buried and its posterior portion exposed to the overlying water for respiration. L. variegatus feeds by ingesting substrate materials and digesting the organic components (e.g., filamentous algae, diatoms, plant and animal detritus). This worm tolerates a wide range of natural environmental conditions (e.g., sediment grain size, temperature, dissolved oxygen content, pH). Cultured worms, which are recommended for toxicity tests, have been shown to be sensitive to some sediment-associated contaminants.

SOURCES

Bailey, H.C., and D.H.W. Liu. 1980. Lumbriculus variegatus, a benthic Oligochaete as a bio-assay organism. pp. 205-215. In: Aquatic Toxicology. Eaton, J.C., P.R. Parrish, and A.C. Hendricks (eds). ASTM STP 707. American Society for Testing and Materials, Philadelphia, PA.

Cook, D.G. 1969. Observations on the life history and ecology of some Lumbriculidae (Annelida, Oligochaeta). Hydrobiologia 34:561–574.

Pennak, R.W. 1978. Freshwater invertebrates of the United States. Second Edition. pp. 275-290. John Wiley & Sons, Inc., New York, NY.

Phipps, G.L., G.T. Ankley, D.A. Benoit, and V.R. Mattson. 1993. Use of the aquatic Oligochaete *Lumbriculus variegatus* for assessing the toxicity and bioaccumulation of sediment associated contaminants. Environ. Toxicol. Chem. 12:269–279.

API PUBL*4607 94 **■** 0732290 0555350 999 **■**

APPENDIX C

Overview of Test Protocols

OVERVIEW OF TEST PROTOCOLS

Summaries of sediment toxicity test protocols are provided in this appendix. This information is intended to familiarize the reader with the major characteristics of the protocols and is not intended to be a guide to actually performing the toxicity tests. Information is presented on endpoints, test duration, controlled environmental conditions, test solution, sources of organisms, feeding regime, sample holding, test acceptability criteria, and other protocol characteristics. The species included in this appendix are the same as those described in Appendix B. These species were selected to provide representatives of various taxonomic groups and various habitats. Many of the tests described here are among the top ranked tests or are commonly used tests.

Ampelisca abdita

Test No. 001

Test type:

Static nonrenewal

Test endpoint(s):

Survival and growth

Test duration:

10 days

Test water temperature:

 20 ± 3 °C

Test water salinity:

28–35 ppt

Photoperiod:

Continuous light

Test solution volume:

Not specified

Sediment volume and depth:

4 cm

Renewal of test solutions:

None

Test organisms:

Small juveniles of similar size

Source of test organisms:

3-4 days before test is initiated, collect approx. 1/2 more amphipods than are required for the bioassay; obtain amphipods from clean sediment by benthic grabs (e.g., van Veen, Smith-McIntyre) or small, short-haul (10 m)

dredge

Number of organisms per test

chamber:

20-30

Number of replicate chambers

per sediment type:

5

Feeding regime:

Diatom culture in excess (0.5-1.0 L of algae/gal)

Test chamber cleaning:

Before and after

Test solution aeration:

Gentle aeration with glass tipped pipette placed above

sediment surface

Positive control:

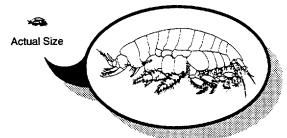
ASTM (1990) does not recommend a positive control;

however, cadmium chloride is often used

Sample holding requirements:

< 2 weeks in dark at 4 ± 3 °C, avoid freezing and

drying


Test acceptability criterion:

≥90 percent survival in controls

Source: ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04. E1367-90. American Society for Testing and Materials, Philadelphia, PA. 23 pp.

Rhepoxynius abronius

Test No. 008

Test type:

Static nonrenewal

Test endpoint(s):

Survival and reburial

Test duration:

10 days

Test water temperature:

 15 ± 3 °C

Test water salinity:

28 ppt

Photoperiod:

Continuous light

Test solution volume:

Volume to 700 mL

Sediment volume and depth:

157 cm² and 2 cm (minimum depth)

Renewal of test solutions:

None

Test organisms:

Mature 3-5 mm; mixed sexes

Source of test organisms:

3-4 days before the test is initiated, collect approx. 1/3 more amphipods than are required for the bioassay; obtain amphipods from clean sediment by benthic grabs (e.g., van Veen, Smith-McIntyre) or small, short-haul

(10 m) dredge

Number of organisms per test

chamber:

20

5

Number of replicate chambers

per sediment type:

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

Trickle-flow (<100 bubbles/minute)

Positive control:

ASTM (1990) does not recommend a specific chemical

for the positive control; however, cadmium chloride is

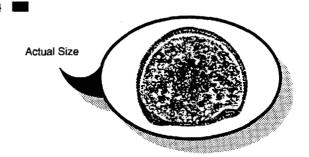
often used

Sample holding requirements:

< 2 weeks at 4 \pm 3°C

Test acceptability criterion:

≥90 percent survival in controls


Source: ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with

marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04.

E1367-90. American Society for Testing and Materials, Philadelphia, PA.

Crassostrea gigas

Test No. 011

Test type:

Static nonrenewal

Test endpoint(s):

Survival and percent abnormal larvae

Test duration:

48 hours

Test water temperature:

20°C

Test water salinity:

20-35 ppt

Photoperiod:

Not specified

Test solution volume:

Variable

Sediment volume and depth:

Not applicable (use sediment extracts at various dilutions)

Renewal of test solutions:

None

Test organisms:

< 1-hour old post-spawning embryos

Source of test organisms:

Collect fertilized eggs < 1 hour post-spawning from laboratory cultures of adult bivalves, conditioned and stimulated to spawn when test organisms are needed

Number of organisms per test

chamber:

Constant density between chambers, 15-30 embryos/mL

(15/mL for routine tests)

Number of replicate chambers

per sediment type:

5 concentrations of each sediment, conforming

to a geometric progression, and replicated 2-3 times

(3 preferably)

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

None

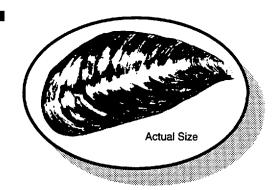
Positive control:

Not specified

Sample holding requirements:

Not specified

Test acceptability criterion:


 ± 70 percent survival and < 10 percent abnormalities in

controls

Source: ASTM. 1989. Standard practice for conducting static acute toxicity tests with larvae of four species of bivalve molluscs. ASTM E724-89. Annual Book of ASTM Standards, Vol. 11.04. American Society for Testing and Materials, Philadelphia, PA. pp. 256-272.

Mytilus edulis

Test No. 016

Test type:

Static nonrenewal

Test endpoint(s):

Survival and percent abnormal larvae

Test duration:

48-60 hours

Test water temperature:

 16 ± 1 °C

Test water salinity:

 $28 \pm 1 \text{ ppt}$

Photoperiod:

14:10 (L:D)

Test solution volume:

1 L

Sediment volume and depth:

20 g

Renewal of test solutions:

None

Test organisms:

Embryos < 2 hours old post-fertilization

Source of test organisms:

Collect fertilized eggs < 1 hour after spawning from laboratory cultures of adult bivalves, conditioned and stimulated to spawn when test organisms needed

Number of organisms per test

chamber:

Approx. 20,000-40,000; establish a concentration density

of 20-40 embryos/mL in each test chamber

Number of replicate chambers

per sediment type:

5

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

Gentle aeration if dissolved oxygen concentration falls

below 60 percent of saturation

Positive control:

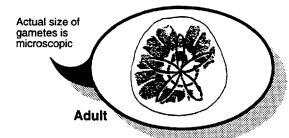
Cadmium chloride or sodium dodecyl sulfate at

5 logarithmic concentrations and a control

Sample holding requirements:

<2 weeks at 4°C in the dark

Test acceptability criterion:


≥70 percent survival and <10 percent abnormalities in

controls

Source: U.S. EPA. 1991. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Recommended Protocols for Measuring Environmental Variables in Puget Sound. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Puget Sound Estuary Program, Seattle, WA.

Dendraster excentricus

Test No. 103

Test type:

Static nonrenewal

Test endpoint(s):

Fertilization

Test duration:

20, 40, and 60 minutes

Test water temperature:

 15 ± 1 °C

Test water salinity:

28-34 ppt

Photoperiod:

Not applicable

Test solution volume:

10 mL

Sediment volume and depth:

Not applicable

Renewal of test solutions:

None

Test organisms:

Gametes

Source of test organisms:

From commercial harvesters or field collected adults;

conditioned and spawned in laboratory environment

Number of organisms per test

chamber:

0.1 mL sperm and 0.1 mL eggs per test replicate

Number of replicate chambers

per sediment type:

3

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

Gentle aeration if dissolved oxygen falls below 40 per-

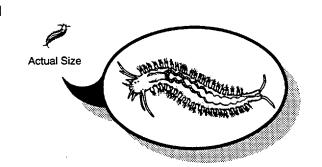
cent of saturation

Positive control:

Reagent grade copper chloride or copper sulfate

Sample holding requirements:

≤14 days, in dark at 4°C


Test acceptability criterion:

≥50 percent fertilization in controls

Source: Environment Canada. 1992. Biological test method: fertilization assay using echinoids (sea urchins and sand dollars). Report EPS 1/RM/27. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Canada.

Neanthes sp.

Test No. 121

Test type:

Static renewal

Test endpoint(s):

Survival and growth

Test duration:

10 or 20 days

Test water temperature:

 $20 \pm 1^{\circ}C$

Test water salinity:

 $28 \pm 2 \text{ ppt}$

Photoperiod:

Continuous light

Test solution volume:

750 mL

Sediment volume and depth:

250 mL minimum and 2 cm

Renewal of test solutions:

Every third day, replace 1/3 of chamber solution with fresh

seawater

Test organisms:

Juvenile worms 0.5-1.0 mg dry weight (i.e., 2-3 weeks

post-emergence)

Source of test organisms:

From laboratory cultures

Number of organisms per test

chamber:

5

Number of replicate chambers

per sediment type:

5

Feeding regime:

40 mg (i.e., 8 mg/individual) of TetraMarin every other day

Test chamber cleaning:

Before and after

Test solution aeration:

150-300 mL/minute from glass pipette suspended 3-4 mm

below water surface

Positive control:

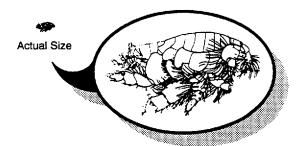
Reagent-grade cadmium chloride, 96-hr LC₅₀ exposure on

10 juveniles/chamber, no feeding

Sample holding requirements:

<2 weeks in the dark at 4°C

Test acceptability criterion:


Not specified

Source: Johns, D.M., R.A. Pastorok, and T.C. Ginn. 1992. A sublethal sediment toxicity test using juvenile *Neanthes* sp. (Polychaeta: Nereidae). pp. 280–293. In: Aquatic Toxicology and Risk Assessment. Fourteenth Volume. ASTM STP 1124. M.A. Mayes and M.G. Barron (eds). American Society for Testing and Materials, Philadelphia, PA.

U.S. EPA. 1990. Protocol for juvenile *Neanthes* sediment bioassay. Prepared by PTI Environmental Services, Bellevue, WA. EPA 910/9-90-011. U.S. Environmental Protection Agency, Puget Sound Estuary Program, Seattle, WA.

Eohaustorius estuarius

Test No. 129

Test type:

Static nonrenewal

Test endpoint(s):

Survival and reburial

Test duration:

10 days

Test water temperature:

 15 ± 3 °C

Test water salinity:

2–28 ppt

Photoperiod:

Continuous light

Test solution volume:

950 mL

Sediment volume and depth:

200 mL and 2 cm

Renewal of test solutions:

None

Test organisms:

Large immatures and adults, 3-5 mm in length; mixed

sexes

Source of test organisms:

3-4 days before test is initiated, collect approx. 1/3 more

amphipods than are required for the bioassay; collect amphipods with shovel from clean sediment at low tide

Number of organisms per test

chamber:

20

Number of replicate chambers

per sediment type:

5

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

1 mL glass pipette placed at a depth > 2 cm from

sediment surface

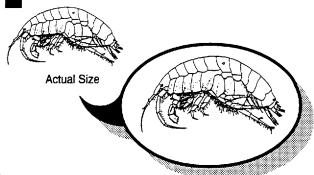
Positive control:

ASTM (1990) does not recommend a positive control;

however, cadmium chloride is often used

Sample holding requirements:

< 2 weeks in dark at 4 ± 3 °C, avoid freezing or drying


Test acceptability criterion:

≥90 percent survival in controls

Source: ASTM. 1990. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 1.04. E1367-90. American Society for Testing and Materials, Philadelphia, PA. 23 pp.

Leptocheirus plumulosus

Test No. 134

Test type:

Static renewal

Test endpoint(s):

Survival, growth, development, and reproduction

Test duration:

 \leq 10 days (short-term), \leq 30 days (long-term)

Test water temperature:

20°C

Test water salinity:

6 ppt

Photoperiod:

16:8 (L:D)

Test solution volume:

700 mL

Sediment volume and depth:

2 cm

Renewal of test solutions:

1/3 of overlying water replaced 2 times per week

Test organisms:

Juveniles, 1-2 weeks old and 1-2 mm in length

Source of test organisms:

From benthic grab in subtidal areas, followed by

transport and conditioning in laboratory for up to 4 days

before testing

Number of organisms per test

chamber:

20

Number of replicate chambers

per sediment type:

4

Feeding regime:

6 mg of TetraMin plus Tetra (1:1, w:w), 3 times per

week per test chamber between days 0-10; 12 mg as

above after day 10

Test chamber cleaning:

Before and after

Test solution aeration:

2 bubbles per second from a 1 mL pipette

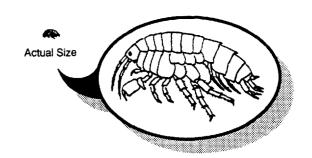
Positive control:

Cadmium chloride

Sample holding requirements:

4°C

Test acceptability criterion:


Not specified

Source: McGee, B.L., C.E. Schlekat, and E. Reinharz. 1993. Assessing the sublethal levels of sediment contamination using the estuarine amphipod *Leptocheirus plumulosus*. Environ. Toxicol. Chem. 12:577–587.

Schlekat, C.E., B.L. McGee, and E. Reinharz. 1992. Testing sediment toxicity in Chesapeake Bay with the amphipod *Leptocheirus plumulosus*: an evaluation. Environ. Toxicol. Chem. 11:225–236.

Hyalella azteca

Test No. 200

Test type:

Static nonrenewal or flow-through

Test endpoint(s):

Survival, growth, and reproductive capacity

Test duration:

 \leq 10 days (short-term), > 10-30 days (long-term)

Test water temperature:

20-25°C

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

800 mL in 1 L, or 15 cm depth in 20 L

Sediment volume and depth:

200 mL and 2 cm in 1 L, or 2-3 cm in 20 L

Renewal of test solutions:

None

Test organisms:

Juveniles 2-3 mm in length

Source of test organisms:

Obtain juveniles from a culture of wild, laboratory, or

commercial brood stock

Number of organisms per test

chamber:

20 in 1 L, or 100 in 20 L

Number of replicate chambers

per sediment type:

4 using 1 L chambers, or 2+ using 20 L chambers

Feeding regime: Static: 14 mg rabbit pellets, 3 times weekly, for

20 organisms in 1 L; 200 mg rabbit pellets, twice

weekly, for 100 organisms in 20 L chamber

Flow-through: 20 mg rabbit pellets, once prior to test,

then 3 times weekly for duration of test

Test chamber cleaning:

Before and after

Test solution aeration:

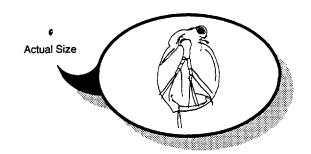
Gentle aeration to overlying water

Positive control:

Not specified

Sample holding requirements:

< 2 weeks at 4 ± 2 °C, no freezing or drying


Test acceptability criterion:

≥80 percent survival in controls

Source: ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM E1383-90. American Society for Testing and Materials, Philadelphia, PA. 20 pp.

Ceriodaphnia dubia

Test No. 285

Test type:

Three brood, static renewal, elutriate test

Test endpoint(s):

Mortality of first generation daphnids and reduction in

reproduction of survivors

Test duration:

 7 ± 1 days (when 60 percent of controls have 3 broods)

Test water temperature:

 25 ± 1 °C

Test water salinity:

≤10 ppt

Photoperiod:

16:8 (L:D)

Test solution volume:

≥15 mL

Sediment volume and depth:

Not applicable (use sediment elutriates)

Renewal of test solutions:

At least once daily

Test organisms:

Neonate larvae < 24 hours old (best if all organisms within 4 hours of same age and < 12 hours old)

Source of test organisms:

At least 3 weeks prior to tests, initiate laboratory culture of organisms obtained from a biological supply house or government laboratory; obtain test organisms from the third or subsequent broods of a single organism < 14

days old

Number of organisms per test

chamber:

1

Number of replicate chambers

per sediment type:

≥10

Feeding regime:

Daily, 0.1 mL YCT and 0.1 mL algal suspension

Test chamber cleaning:

Before and after

Test solution aeration:

None, except in special instances

Positive control:

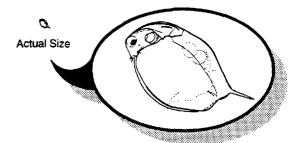
Sodium chloride, phenol, or zinc sulfate

Sample holding requirements:

< 10 days in the dark at 4 ± 2 °C (no freezing); start test

< 72 hours after preparation of elutriate

Test acceptability criterion:


>80 percent survival in controls, or average >15 live

young per surviving adult in controls

Source: Environment Canada. 1992. Biological test method: test of reproduction and survival using the Cladoceran *Ceriodaphnia dubia*. Report EPS 1/Rm/21. Environment Canada, Conservation and Protection, Environmental Protection, Ottawa, Ontario. 72 pp.

Daphnia magna

Test No. 211

Test type:

Static nonrenewal

Test endpoint(s):

Survival and biomass

Test duration:

48 hours

Test water temperature:

20°C

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

200 mL

Sediment volume and depth:

Not applicable (use sediment elutriates)

Renewal of test solutions:

None

Test organisms:

Juveniles < 24 hours old

Source of test organisms:

Laboratory cultures

Number of organisms per test

10

chamber:

Number of replicate chambers

per sediment type:

3

Feeding regime:

None

Test chamber cleaning:

None

Test solution aeration:

Gentle aeration with glass tipped pipette placed 3 cm

below water surface

Positive control:

Not specified

Sample holding requirements:

<2 weeks at 4°C

Test acceptability criterion:

Not specified

Source: Nebeker, A.V., M.A. Cairns, J.H. Gakstatter, K.W. Malueg, G.S. Schuytema, and D.F. Krawczyk. 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environ. Toxicol. Chem. 3:617-630.

Pimephales promelas

Test No. 232

Test type:

Static renewal

Test endpoint(s):

Survival and growth

Test duration:

6 days

Test water temperature:

22-24°C

Test water salinity:

Freshwater

Photoperiod:

Not specified

Test solution volume:

10 mL

Sediment volume and depth:

Not applicable (use sediment extracts from 50 g of

Actual Size

Actual Size

sediment in 1 L of modified FETAX solution)

Renewal of test solutions:

Complete renewal every 24 hours

Test organisms:

Normally developing embryos of the gastrula stage

Source of test organisms:

Laboratory culture

Number of organisms per test

10-20

2

chamber:

Number of replicate chambers

per sediment type:

Feeding regime:

None

Test chamber cleaning:

Before and after

Test solution aeration:

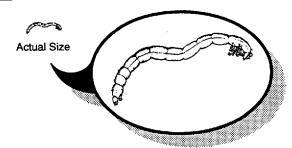
None

Positive control:

Zinc sulfate

Sample holding requirements:

Not specified


Test acceptability criterion:

Not specified

Source: Dawson, D.A., E.F. Stebler, S.L. Burks, and J.A. Bantle. 1988. Evaluation of the developmental toxicity of metal-contaminated sediments using short-term fathead minnow and frog embryo-larval assays. Environ. Toxicol. Chem. 7:27-34.

Chironomus riparius

Test No. 237

Test type:

Static nonrenewal or flow-through

Test endpoint(s):

Survival, emergence, and growth

Test duration:

10-30 days

Test water temperature:

 $20-22^{\circ}C \pm 3^{\circ}C$

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

800 mL in 1 L (static or flow-through), or 11 L in 13 L

(static)

Sediment volume and depth:

200 mL in 1 L (static or flow-through), or 2 L in 13 L

(static)

Renewal of test solutions:

None (static)

Test organisms:

First instar larvae < 24 hours old, or 3-day-old larvae

Source of test organisms:

3-6 days prior to test collect at least 3 freshly laid egg

masses from laboratory cultures, then collect larvae when

eggs hatch in approx. 3 days

Number of organisms per test

chamber:

50 in 1 L, or 130 in 13 L

Number of replicate chambers

per sediment type:

Not specified

Feeding regime:

Various combinations of ground cereal leaves, green algae, and dog treats for static and flow-through tests using 1 L, or 200 mg of fish food flakes every other day

in 13 L chamber

Test chamber cleaning:

Before and after

Test solution aeration:

Gentle aeration in static tests

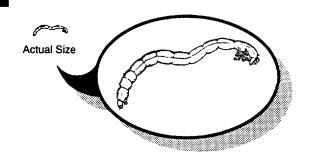
Positive control:

Not specified

Sample holding requirements:

< 2 weeks at 4 ± 2 °C, avoid freezing

Test acceptability criterion:


≥70 percent survival in controls

Source: ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM E1383-90. American Society for Testing and Materials,

Philadelphia, PA. 20 pp.

Chironomus tentans

Test No. 238

Test type:

Static nonrenewal or flow-through

Test endpoint(s):

Survival, emergence, and growth

Test duration:

10-14 days

Test water temperature:

 $20-23^{\circ}C \pm 3^{\circ}C$

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

800 mL in 1 L or 1.5 L in 2 L (static); 2 L in 3 L (static

or flow-through)

Sediment volume and depth:

200 mL in 1 L or 2 cm in 2 L (static); 100 g in 3L

(static or flow-through)

Renewal of test solutions:

None (static)

Test organisms:

Second instar juveniles approx. 0.5 cm in length

(10-14 days old)

Source of test organisms:

12-16 days before test, collect at least 3 freshly laid egg

masses from laboratory cultures, then collect larvae

10-14 days after egg hatch

Number of organisms per test

chamber:

15 using 1 L, 20 using 2 L, or 25 using 3 L

Number of replicate chambers

per sediment type:

3 using 1 L, or 2 using 3 L

Feeding regime:

50 mg of fish food flakes per day using 3 L chamber

containing 25 larvae

Test chamber cleaning:

Before and after

Test solution aeration:

Overnight prior to addition of test organisms provide

gentle aeration with glass tipped pipette placed 3 cm

below water surface

Positive control:

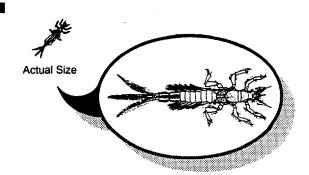
Not specified

Sample holding requirements:

invertebrates.

< 2 weeks at 4 ± 2 °C, avoid freezing

Test acceptability criterion:


≥70 percent survival in controls

Source: ASTM. 1991. Standard guide for conducting sediment toxicity tests with freshwater ASTM E1383-90. American Society for Testing and Materials,

Philadelphia, PA. 20 pp.

Hexagenia limbata

Test No. 240

Test type:

Static nonrenewal

Test endpoint(s):

Survival

Test duration:

7 days

Test water temperature:

17°C

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

50 mL (containing interstitial water from sediment)

Sediment volume and depth:

Not applicable

Renewal of test solutions:

None

Test organisms:

Nymphs 150 days old post-hatch

Source of test organisms:

Collect and culture fertilized eggs from gravid females

sampled in the field

Number of organisms per test

chamber:

1

Number of replicate chambers

per sediment type:

10

Feeding regime:

Not specified

Test chamber cleaning:

Wash in detergent and acetone, then bake in drying oven

for 24 hours

Test solution aeration:

Gentle aeration with glass tipped pipette placed below

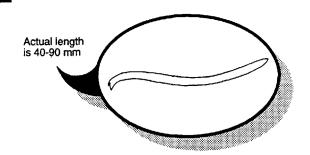
water surface

Positive control:

Not specified

Sample holding requirements:

<30 days at 4°C


Test acceptability criterion:

Not specified

Source: Giesy, J.P., C.J. Rosiu, R.L. Graney, and M.G. Henry. 1990. Benthic invertebrate bioassays with toxic sediment and pore water. Environ. Toxicol. Chem. 9:233-248.

Lumbriculus variegatus

Test No. 323

Test type:

Flow-through

Test endpoint(s):

Survival, reproduction, and dry weight

Test duration:

10-28 days

Test water temperature:

20°C

Test water salinity:

Freshwater

Photoperiod:

16:8 (L:D)

Test solution volume:

100-150 mL

Sediment volume and depth:

100 mL

Renewal of test solutions:

4-10 water volume additions daily to overlying water

Test organisms:

Animals of equal size

Source of test organisms:

From cultures of brood stock available from several

laboratories

Number of organisms per test

chamber:

10

Number of replicate chambers

per sediment type:

8

Feeding regime:

20 mg of salmon starter per 100 mL of sediment on days

0, 3, 6, and 9 of a 10-day test

Test chamber cleaning:

Before and after

Test solution aeration:

Aerate if necessary to maintain dissolved oxygen

>60 percent of saturation

Positive control:

None

Sample holding requirements:

Avoid freezing and drying

Test acceptability criterion:

Not specified

Source: Phipps, G.L., G.T. Ankley, D.A. Benoit, and V.R. Mattson. 1993. Use of the aquatic Oligochaete *Lumbriculus variegatus* for assessing the toxicity of sediment-associated contaminants. Environ. Toxicol. Chem. 12:269-279.

API PUBL*4607 94 🖿 0732290 0555368 029 🖿

APPENDIX D

Detailed Evaluation Tables

DETAILED EVALUATION TABLES

An overall technical rating for each toxicity test was based on the following major evaluation criteria:

- Reliability
- Ecological relevance
- Exposure relevance
- Availability
- Interferences
- Chemical discrimination

General factors considered in rating the tests are discussed in the main text of this report (see *Evaluation Criteria and Approach*). Each major evaluation criterion was broken down into subcriteria, and rank scores were assigned based on consideration of test characteristics. The subcriteria are as follows:

- Reliability—The determination of reliability was based on the bias, precision, and endpoint of the proposed toxicity test
- **Ecological Relevance**—Field validation and species importance were used to determine the ecological relevance of a toxicity test
- **Exposure Relevance**—Exposure relevance was determined by comparing the test medium (e.g., sediment, elutriate) with the habitat group of the test organism (e.g., epifauna, infauna, plankton)
- Availability—Seasonality, geographic coverage, culturability, and protocol development were used to determine the overall availability of an organism for testing
- Interferences—Several interferences were targeted as important: nitrates, sulfides, grain size, food (i.e., mold problems), and the overall contamination potential
- Chemical Discrimination—Overall sensitivity of a test protocol or test organism was studied to determine its suitability.

Relative ranks were assigned to sediment toxicity tests for the major evaluation criteria according to the scoring systems shown in Tables D-1 through D-8. Ranking of reliability considered scores for endpoints (Tables D-7 and D-8) and whether an interlaboratory comparison had been conducted (Table D-1). Scoring of the ecological relevance of a test was based mainly on the importance of the test species to human and ecological communities (Table D-2). Exposure relevance scores were assigned according to the realism of the exposure medium and the ecological niche of the test species (Table D-3). Whole sediment exposures were considered most

relevant, interstitial water and elutriate exposures were considered moderately relevant, and organic solvent extracts were considered least relevant. The order of exposure relevance of test species was infauna (most relevant), epibiota (moderately relevant), and plankton or nekton (least relevant), based on the degree of contact that an organism would have with sediments. Availability scores were based on consideration of temporal availability of species and life stage, species geographic distribution, the availability of laboratories to perform the test, and the degree of protocol development (Table D-4).

The potential for interferences in a sediment toxicity test was based on consideration of the tolerance of organisms for a wide range of sediment grain-size distributions, the presence or absence of sediment in the test chamber, use of solvent extracts, effects of turbidity, and potential for problems with mold, anoxia, or ammonia (Table D-5). Epibiota were considered to have a potentially wider tolerance range for sediment particle size than infauna because the latter live directly in the sediments, while the former live on the sediment surface. The presence of sediment in a chamber was assumed to be potentially stressful to plankton and nekton, while its absence was assumed to be potentially stressful to infauna and possibly stressful to epibiota. Organic solvent extracts are potentially toxic, and interaction between ambient chemicals in the sediment and the exposure to the extract is possible but rarely accounted for in tests that use such extracts. Sediment in the test chamber may be resuspended, which was assumed to represent a potential interference with filter-feeders and with any test that used light emission as an endpoint (e.g., Microtox®). Tests that require feeding of organisms were scored lower than those that do not because of the potential problems of determining the proper diet and the potential for mold problems in the test chamber.

Finally, the ability of a test to discriminate among toxic and nontoxic sediments was based mainly on consideration of the relative sensitivity of tests (Table D-6). Little direct information is available on discriminatory ability.

The evaluation of selected sediment toxicity based on technical and environmental criteria tests is provided in Tables D-9 through D-14.

TABLE D-1. OVERALL RELIABILITY OF SEDIMENT TOXICITY TESTS

Endpoint Ch	aracteristics ^a	Interlaboratory	Daliahilia
Objectivity	Accuracy	Interlaboratory Comparison ^b	Reliability Score ^c
Н	Н	Yes	4
		No	3
н	M or L	Yes	3
		No	2
M or L	Н	Yes	3
		No	2
M	М	Yes	3
		No	2
М	L	Yes	2
		No	1
L	M	Yes	2
		No	1
L	L	Yes	1
		No	0

^a See Table D-7 for scoring system for endpoints.

H - high

M - medium

L - low.

0 - least reliable.

^b Entry in this column indicates whether an interlaboratory comparison has been conducted for the sediment toxicity test of interest. Interlaboratory comparisons based on wastewater effluents or reference toxicants were considered relevant only for sediment tests using interstitial water or extracts as the exposure medium.

c 4 - most reliable

TABLE D-2. ECOLOGICAL RELEVANCE OF SEDIMENT TOXICITY TEST SPECIES

Species Characteristics	Example	Relevance Score ^a
Commercial or recreational harvest species and a foundation or keystone species ^b	Pacific oyster Purple urchin	4
Commercial or recreational harvest species \underline{or} a foundation or keystone species	Blue crab Marsh grass	3
Other fish; other invertebrates; major microalgae	Fathead minnow Sand dollar Green algae	2
Bacteria; minor microalgae	Microtox® bacteria	1
Alien species used as surrogate in toxicity testing	African clawed frog	0

^a 4 - most relevant

^{0 -} least relevant.

^b A foundation species is a species that provides important physical habitat for other species in a biological community (e.g., marsh grass). A keystone species is a species that controls the species composition and relative abundances of species in a community by its predatory (or grazing) effects (e.g., by grazing on kelp, purple urchins prevent the establishment of kelp beds and maintain open rocky subtidal communities).

TABLE D-3. EXPOSURE RELEVANCE OF SEDIMENT TOXICITY TESTS

		Ecological N	liche
Exposure Medium	Infauna	Epifauna	Plankton/Nekton
Sediment	4	3	1
Interstitial Water	2	1	0
Elutriate (water)	1	1	0
Extract (organic solvent)	0	0	0

Note: Scores assigned to test methods based on ecological relevance of exposure medium and ecological niche of test organism:

4 - most relevant

0 - least relevant.

TABLE D-4. AVAILABILITY OF SEDIMENT TOXICITY TESTS

Species Availability	Laboratory Availability	Protocol Development	Availability Score ^a
Wide distribution; cultured	Many	Standardized protocol	4
Wide distribution; not cultured but available most of the year	Many	Standardized protocol	3
Narrow distribution <u>or</u> not cultured and available only for one or two seasons	Somewhat limited	Protocol relatively developed	2
Very narrow distribution or not cultured and available for a limited portion of the year	Limited	Protocol without details	1
Very narrow distribution and not cultured and available for a very limited portion of the year	Very limited	Protocol without details	0

Note: Mixed combinations of toxicity test attributes (i.e., species availability, laboratory availability, and protocol development) were considered in addition to the combination of examples shown in the table.

^a 4 - most available

^{0 -} least available.

TABLE D-5. POTENTIAL FOR INTERFERENCES WITH SEDIMENT TOXICITY TESTS

				Plar	nkton
Media	Epibiota	Infauna	Nekton	Embryo/Larva	Juvenile/Adult
Whole sediment	4	3	2	0	1
Interstitial water	3	2	4	4	4
Elutriate (water)	3	2	4	4	4
Extract (organic solvent)	1	0	2	2	2

Note: 4 - least potential for interferences with a test's assessment of sediment toxicity

Scores were decreased by one unit for tests that required feeding of the organisms because of the potential for formation of molds and the sorption of some chemicals to organic matter.

^{0 -} highest potential for interferences.

TABLE D-6. DISCRIMINATORY ABILITY OF SEDIMENT TOXICITY TESTS

Species and Life Stage Characteristics	Example	Discrimination Score ^a
Sensitive species ^b <u>and</u> sensitive life stage ^c expected to provide good discrimination among toxic and nontoxic sediments	Amphipods Cladocerans Bivalve larvae	4
Overly sensitive test/species that may have less discriminatory power, but response has been calibrated to other tests/species	Microtox® bacteria	3
Insensitive species <u>or</u> insensitive life stage; moderate sensitivity, but not as well known as other tests	Oligochaetes	2
Insensitive species <u>or</u> insensitive life stage, with little or no information on relative sensitivity of test	Rainbow trout fry	1
Insensitive species ^d and insensitive life stage ^e	Juvenile clam Adult fathead minnow	0

Note: Relative sensitivity varies greatly among species within a biotic group, and the resulting generalized scoring scheme used here should not be solely relied upon for selecting tests. Actual test results in comparative studies should be examined for tests of interest.

Sensitivity of sublethal tests was scored separately from lethal tests and included consideration of endpoints.

^a 4 - most discriminatory ability

^{0 -} least discriminatory ability.

^b Sensitive species include crustaceans, insects, echinoderms, molluscs (larvae or earlier life stage), and amphibians.

^c Sensitive life stages include gametes, embryos, and larvae (or neonates).

^d Insensitive species include polychaetes, fish, molluscs (adults, juveniles), oligochaetes, nematodes, and plants.

^e Insensitive life stages include juveniles and adults.

TABLE D-7. RELIABILITY OF ENDPOINTS

Endpoint	Objectivity ^a	Accuracy ^b
Molecules/Celis		
Mutation	Н	M
Anaphase aberration	M	М
Enzyme production	Н	L
Organisms		
Metabolism		
Luminescence	Н	L
Carbon-14 (productivity)	Н	L
Chlorophyll ratios	Н	L
Respiration	M	L
Behavior		
Avoidance	Н	L
Reburial	Н	L
Growth/development		
Embryo abnormality	L	M
Emergence/molting	Н	M
Biomass	н	M
Structure/morphology	M	М
Reproduction		
Fecundity	Н	M
Gonad biomass	Н	M
Egg fertilization	Н	M
Egg sac stage	M	М
Survival	Н	Н
Populations and Communities		
Intrinsic rate of increase	M	L
Abundance	н	L
Ecosystems	c	

Note:

H - high

M - medium

L - low

^a Ability to determine endpoint; repeatability.

^b Lack of bias and laboratory artifacts.

 $^{^{\}rm c}$ -- - ecosystem (e.g., microcosm) tests for sediment are not developed.

TABLE D-8. ECOLOGICAL RELEVANCE OF ENDPOINTS

Endpoint	Ecological Relevance
Molecules/Cells	
Mutation	L
Anaphase aberration	L
Enzyme production	L
Organisms	
Metabolism	
Luminescence	L
Carbon-14 (productivity)	M-H
Chlorophyll ratios	M-H
Respiration	M
Behavior	
Avoidance	M
Reburial	M
Growth/development	
Embryo abnormality	Н
Emergence/molting	н
Biomass	н
Structure/morphology	M-H
Reproduction	
Fecundity	Н
Gonad biomass	M-H
Egg fertilization	Н
Egg sac stage	Н
Survival	Н
Populations and Communities	
Intrinsic rate of increase	Н
Abundance	Н
Ecosystems	a

Note: H - high M - medium

L - low.

 $^{^{\}rm a}$ -- $\,$ - ecosystem tests (e.g., microcosms) for sediment toxicity are not developed.

TABLE D-9. BASIS FOR SEDIMENT TOXICITY TEST EVALUATION - MARINE LETHAL

Test			Rhepoxynius abronius	Eohaustorius washingtonianus	Amphiporela virginiana	Leptocheirus pinguis	Grandiderella iaponica	Foxiphalus xiximeus	Protothaca staminea	Mytilus edulis	Pandalus sp.	Cancer sp.	Callinectes sapidus	Penaeus sp.	Neanthes sp.	Tapes japonica	Mytllus edulis	Crassost ea gigas	Crassostea virginica	Cyprinodon variegatus	Sicyonia ingentis	Crangon sp.	Lytechinus pictus	Mulinia lateralis	Dendraster excentricus	Yoldia Ilmatula	Pandalus sp.	Strongylocentotus purpuratus	Strongylocentrotus purpuratus	Crassost ea gigas	Mercenaria mercenaria	Callinectes expiduís	Cancer sp.	Penaeus sp.	Palaemonetes sp.	Gasterosteus aculeatus
	Recommended	GB,TT,IN	GB,TT,IN, EC	<u>n</u>	낊	E		2		GBJN					g _B			Z	GBJN	Z									<u>z</u>							EC
	Life Stage	Juv or adult females	Adults (3-5 mm)	Juv or young adults	Juv or young adults	Juv or young adults (4-10 mm)	Immature (3-6mm); no females with embryos	Juv or young adults (3-6 mm)	Juveniles	Embryos	Juveniles	Juveniles	Juveniles	Post-larvae (8-10 days)	Juveniles	Juveniles	Embryos	Embryos	Embryos	1-14 days old	Juveniles	Juveniles	8-22 mm dameter	Juveniles	Juveniles	Juveniles	Embryo-larval	Embryos	Embryos (< 1 hr old)	Embryos	Embryos	Embryo~larval	Embryo-larval	Post-larvae (8-10 days)	Post-hatch (1-4 days)	Juveniles (0.1 – 3.0 g)
Common	Name	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Littleneck clam	Blue mussel	Shrimp	Cancer crab	Blue crab	Shrimp	Polychaete	Japanese clam	Blue mussel	Pacific oyster	Eastern oyster	Sheepshead minnow	Ridge-back prawn	Sand shrimp	White sea urchin	Clam	Sand dollar	Yoldia clam	Shrimp	Purple sea urchin	Purple sea urchin	Pacific oyster	Quahog clam	Blue crab	Cancer crab	Shrimp	Grass shrimp	3-Spine stickleback
Biotic	Group	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Amphipod	Bivalve	Bivalve	Crustacean	Crustacean	Crustacean	Crustacean	Polychaete	Bivalve	Bivalve	Bivafve	Bivalve	Fish	Crustacean	Crustacean	Echinoderm	Bivalve	Echino derm	Bivalve	Crustacean	Echinoderm	Echinoderm	Bivalve	Bivalve	Crustacean	Crustacean	Crustacean	Crustacean	Fish
Exposure	Media	S	S	S	တ	တ	ဟ	တ	Ø	ᆸ	တ	တ	Ø	ဟ	Ø	တ	တ	딥	ᆸ	ᆸ	တ	တ	တ	S	တ	S	ᆸ	S	ᆸ	တ	ᆸ	ᆸ	ᆸ	ᆸ	핍	E
	Site	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L
Test	No.	001	800	003	005	900	900	004	020	017	033	029	027	034	071	021	910	011	600	055	037	030	043	015	039	023	032	046	045	010	014	026	028	035	031	056

TABLE D-9. (cont.)

	1																		
Test	Species	Hypomesus pretiosus	Hypomesus pretiosus	Lagodon rhomboides	Leuresthes tenuis		Mysiaopsis sp.	Holmesimysis sp.	Osrea sp.	Dendraster excentricus Cymatogaster aggregata		noimesmysis sp.	Mysidopsis sp.	Lytechinus pictus	or ongylocentrotus sp. Coryphaena hippurus		or ongylocentotus or oebachiensis	Denorasier excenticus	Arbada punctulata
	Daniiaiiiinosau					a C	9 0	0 0	25 4	85									
Life Stade	Larvae	Larvae	Embryo – Jaryai	Embryo - larval	Embryo-larval	1-5 days old	1-5 days old	Embryo-larval	Embryos	Embryo-larval	1-5 days old	1~5 days old	Embryos (< 1 hr old)	Embryos (< 1 hr old)	Embryo-larvai	Embryos	Embrvos	Embryos	
Common Name	Surfsmelt	Surfsmelt	Pinfish	Spot	Grunion	Mysid	Mysid	Oyster	Sand dollar	Shiner perch	Mysid	Mysid	White sea urchin	Sea urchin	Dolphinfish	Green sea urchin	Sand dollar	Atlantic urchin	
Biotic Group	Fish	Fish	Fish	Fish	Fish						Mysid	Mysid	Echinoderm	Echinoderm	Fish	Echinoderm	Echinoderm	Echinoderm	1
Exposure Media	S	Ø	日	핍	ᆸ	급	딥	చ	긥	日	တ	တ	ᆸ	핔	긥	Ø	တ	တ	ū
Site	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	M/L	1174
No.	057	028	020	090	061	90	063	018	041	054	062	064	044	049	053	048	040	038	25.

Confructs filmsy tubes of bottom sediment and debris; also a deposit feeder. Particle-feeding, tube dweller Free-burrowing, sand dweller Free-burrowing, sand dweller Exposure Relevance Lives in the sediment Tube dweller Ecorating Group Habitat Media တ တ Ø 山の တတတ 핔 ᆸᆸᇰ တ တ 피 の日の日 世 4 年 4 年 4 48-60 hrs 48-96 hrs 48-60 hrs Duration 10 days 28 days 10 days 60 days 10 days 10 days 10 days 10 days 10 days 7 days 48 hrs 48 hrs 48 hrs 48 hrs 96 hrs 48 hrs 48 hrs 48 hrs 48 hrs 96 hrs 96 hrs 30-35 +/- 10% 28 +/- 1 30-35 +/- 10% 30-35 +/- 10% 5-32 +/- 10% 23.5-32.7 Seawater 30 +/-2 Seawater Salinity 18-32 12-33 30-35 18-32 18-32 28-35 18-32 (bbt) >25 >25 88 88 28 28 Echaustorius washingtonianus St ongylocent of us purpuratus Strongylocentrotus purpuratus Amphiporeia virginiana Grandidierella japonica Gasterosteus aculeatus Dendraster excentricus Mercenaria mercenaria **Syprinodon variegatus** Rhepoxynius abronius eptocheirus pinguis Crassost ea virginica Foxiphalus xiximeus Protothaca starninea TABLE D-9. (cont.) Callinectes sapidus Callinectes sapidus Crassost ea gigas Ampelisca abdita Lytechinus pictus Crassost ea gigas Palaemonetes sp. Sicyonia ingentis Mulinia lateralis Tapes japonica Yoldia limatula Mytilus edulis Mytitus edulis Pandalus sp. Veanthes sp. Crangon sp. Pandalus sp. Penaeus sp. Penaeus sp. Cancer sp. Cancer sp. Species Test 90 005 600 055 043 015 039 023 046 045 010 026 028 035 800 003 002 8 017 033 029 910 930 032 931 90 034 5 037 071 021

ł
i

							Exposure Relevance
Test	Test	Salinity			Habitat		The second secon
No.	Species	(bbt)	Duration	Media	Group	Ecorating	Notes
250	Hypomesus pretiosus	25	10 days	S	a	-	
058	Hypomesus pretiosus	Seawater	96 hrs	တ	₾	-	
028	Lagodon rhomboides		48 hrs	핍	۵	0	
090	Leiostomus xanthurus		48 hrs	딥	a.	0	
190	Leuresthes tenuis	20-32 +/- 10%	48 hrs	ᆸ	۵	0	
990	Mysidopsis sp.	25-30 +/ 10%	96 hrs	ដ	۵	0	
063	Holmesimysis sp.	25-30 +/- 10%	96 hrs	ᆸ	۵	0	
018	Ostea sp.		48 hrs	ᆸ	۵	0	
041	Dendraster excentricus	30-32	48 hrs	ជ	۵	0	
054	Cymatogaster aggregata		48 hrs	ᆸ	۵	0	
062	Holmesimysis sp.	25-30 +/- 10%	10 days	ဟ	α .	-	
064	Mysidopsis sp.	25-30 +/- 10%	10 days	တ	a L	-	
044	Lytechinus pictus	30-32	48-96 hrs	ᆸ	۵	0	
049	Strongylocentrotus sp.		48 hrs	ᆸ	۵	0	
053	Coryphaena hippurus		48 hrs	ᆸ	۵	0	
048	Strongylocentrotus droebachiensis	28	48-96 hrs	တ	۵	-	
040	Dendraster excentricus	58	48-96 hrs	တ	۵	-	
038	Arbacia punctulata		72-96 hrs	တ	۵	-	
051	Citharichthys stigmaeus	30 +/- 2	96 hrs	ᆸ	z	0	

cont.
6 6
<u> - 1</u>
щ
_
g
∢TI
₽

			Availability	
Test	Test		Geographic	
Š.	Species	Seasonality	Coverage	Cultured
8	Ampelisca abdita	Year -round (juveniles sometimes difficult to obtain)	East coast of North America; Gulf of Mexico; San Francisco Bay	No; field collected
800	Rhepoxynius abronius	Year round	Puget Sound to southern California	No; field collected
003	Eohaustorius washingtonianus	Year round	Southeastern Alaska to Oregon	No; field collected
005	Amphiporeia virginiana	Females with eggs present April-July	Eastern Nova Scotia to North Carolina	No; field collected
900	Leptocheirus pinguis	Not available January - March	East coast of North America	No; field collected
200	Grandiderella japonica	Cultured organisms available	San Fransisco Bay; southern California	Yes; also field collected
904	Foxiphalus xiximeus		Aleutian Islands to southern California	No; field collected
050	Protothaca staminea		Aleutian Islands to Baja California	
210	Mytilus edulis	6 months; cultured organisms available	East and west coasts of North America	Yes
033	Pandalus sp.		Alaska to California	
028	Cancer sp.		West coast of North America	
027	Callinectes sapidus		East coast of North America; Gulf of Mexico	
034	Penaeus sp.		Southeastern coast of North America; Gulf of Mexico	
120	Neanthes sp.	Year -round; cultured organisms available	West coast of North America	Yes
021	Tapes japonica		West coast of North America	
016	Mytitus edulis	6 months; cultured organisms available	East and west coasts of North America	Yes
110	Crassost ea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
600	Crassost ea virginica	Limited	East and gulf coasts of North America	Yes
055	Cyprinodon variegatus	Cultured organisms available	East coast of North America	Yes
037	Sicyonia ingentis		West coast of North America (mainly California)	
030	Crangon sp.		East and west coast of North America	
043	Lytechinus pictus	Year -round	West coast of North America; southern California to South America	No; field collected
015	Mulinia lateralis		East coast of North America	No
039	Dendraster excentricus	6 months	West coast of North America	No; field collected
023	Yoldia limatula			
032	Pandalus sp.		Alaska to California	
046	Strongylocentrotus purpuratus	6 months	West coast of North America (Alaska to Mexico)	No; field collected
045	St ongylocentotus purpuratus	6 months	West coast of North America (Alaska to Mexico)	No; field collected
010	Crassost ea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
410	Mercenaria mercenaria	Limited	East coast of North America	Yes
026	Callinectes sapidus		East coast of North America; Gulf of Mexico	
028	Cancer sp.		West coast of North America	
035	Penaeus sp.		Southeastern coast of North America; Gulf of Mexico	
031	Palaemonetes sp.		Isolated occurences, species specific; east coast of North America; Gulf of Mexico	
056	Gasterosteus aculeatus	Cultured organisms available	West and east coasts of North America	Yes; also field collected

			Avelleditte	
Test	Test		Geographic	
S S	Species	Seasonality	Coverade	Cultured
057	Hypomesus pretiosus	Limited	Southeastern Alaska to nor thern California	No: field collected
058	Hypomesus pretiosus	Limited	Southeastern Alaska to northern California	No: field collected
020	Lagodon rhomboides	Limited	Southeastern coast of North America	
090	Leiostomus xanthurus	Limited	Inshore waters from southern New England to Texas	
061	Leuresthes tenuis	Limited	Southern California	
90	Mysidopsis sp.	Species~specific	East coast of North America; Gulf of Mexico	
063	Holmesimysis sp.	Species-specific	Southeastern coast of North America; Gulf of Mexico	
018	Ostrea sp.	Limited	Alaska to Baja California	
041	Dendraster excentricus	6 months	West coast of North America	No: field collected
054	Cymatogaster aggregata		Southeast Alaska to southern Claifornia	
062	Hofmesimysis sp.	Species - specific	Southeastern coast of North America; Gulf of Mexico	
064	Mysidopsis sp.	Species specific	East coast of North America; Gulf of Mexico	-
044	Lytechinus pictus	6 months	West coast of North America; southern California to South America	No. field collected
049	Strongylocentrotus sp.		West coast of North America (Alaska to Mexico)	No: field collected
053	Coryphaena hippurus		Southeastern, extreme southwestern, and gulf coasts of North America	
048	Strongylocentrotus droebachiensis		West coast of North America (Alaska to Mexico)	No; field collected
040	Dendraster excentricus	6 months	West coast of North America	No: field collected
038	Arbacia punctulata	June – August	East coast of North America; Gulf of Mexico	No; field collected
051	Citharichthys stiomaeus		Southern Alaska to southern California	

cont.
-9.
쁘
Æ

	ויווייין יי מיוויין					
		Availability			Ecological Relevance	
Test		Protocol	Overall	Field	Species	Overall
S N	Species	Development	Availability	Validation	Importance	EcoRelevance
90	Ampelisca abdita	ASTM (1990)	6		High; foundation species	e
800	Rhepoxynius abronius	ASTM (1990)	က			ο «
003	Echaustorius washingtonianus	EC (1992a)	က		Imp. prey to shorebirds and fishes	۱ ۵
005	Amphiporela virginiana	EC (1992a)	က			ı «
900	Leptochairus pinguis	EC (1992a)	ဇ			· 81
900	Grandidierella japonica	ASTM (1990)	n			c
900	Foxiphalus xiximeus	EC (1992a)	-			, 0
020	Protothaca staminea	Yes	a		Harvested	ı en
017	Mytilus edulis	ASTM (1989)	9		High; foundation species; harvested	> 4
033	Pandalus sp.	Yes	-		Harvested	- ო
029	Cancer sp.	Yes	-		Harvested	c
027	Callinectes sapidus	Yes	-		Harvested	. e
034	Penaeus sp.	Yes	-		Harvested) <u>(</u>
170	Neanthes sp.	Dillon et al. (1993)	-			
021	Tapes japonica	Yes	-		Harvested	l es
910	Mytilus edulis	U.S. EPA (1991b)	Ю		High: foringation exactor: harvested	•
011	Crassost ea gigas	ASTM (1989)	N	Field validated (calibrated) to benthos (Becker et al. 1990)	High: sensitive bivalve lifestade: harvested	t 4
600	Crassost ea virginica	ASTM (1989)	CV		High: sensitive hivalve lifestage: harvestag	•
055	Cyprinodon varlegatus	Yes	4			+ 0
037	Sicyonia ingentis	Yes	-			N (N
030	Crandon sn	Yes	-			(
3 :	ciangon ap.	0	-			rvi
043	Lytechinus pictus		,			CV
012	Mulinia lateralis		-			8
038	Dendraster excentricus	Dinnel and Stober (1985)	-			8
023	Yoldia Ilmatula	Yes	-			8
032	Pandalus sp.	Yes	-		Harvested	e
046	St ongylocentotus purpuratus	U.S. EPA (1991b)	2		High; keystone species; grazer on keto	7
045	Shongylocentotus purpuratus	Yes	-		High; keystone species; grazer on kelp	4
010	Crassost ea gigas	U.S. EPA (1991b)	8	Field validated (calibrated) to benthos (Becker et al. 1990)	High; sensitive bivalve lifestage; harvested	- 4
014	Mercenaria mercenaria	ASTM (1989)	8		Harvested	. ი
026	Callinectes sapidus	Yes	-		Harvested	æ
028	Cancer sp.	Yes	-		Harvested	, e.
035	Penaeus sp.	Yes	-		Harvested) (r.
031	Palaemonetes sp.	Yes	-			
056	Gasterosteus aculeatus	EC (1990c)	ო			ומ
						1

TAB	TABLE D-9. (cont.)					
		Availability			Ecological Relevance	
Test	Test	Protocol	Overall	Field	Species	Overall
S S	Species	Development /	Availability	Validation	Importance	EcoRelevance
057	Hypomesus pretiosus		-			8
058	Hypomesus pretiosus		-			· 69
029	Lagodon rhomboides	Yes	-) es
090	Leiostomus xanthurus	Yes	•) e
190	Leuresthes tenuis	ASTM (1980)	-			, e
990	Mysidopsis sp.	Yes	-			0
063	Holmesimysis sp.	ASTM (1980)	-			; a
018	Ostrea sp.		-			
041	Dendraster excentricus	Yes	-			
054	Cymatogaster aggregata	Yes	-			ı Qı
062	Holmesimysis sp.	Yes	-			٥
064	Mysidopsis sp.	Yes	-			1 00
044	Lytechinus pictus	Adapted	-			۰ ۵
049	Strongylocentrotus sp.	Yes	-			. ~
053	Coryphaena hippurus	Yes	0			ı eə
048	Strongylocentrotus droebachiensis	U.S. EPA (1991b)	8			٥
040	Dendraster excenticus	U.S. EPA (1991b)	-			ı o
038	Arbacia punctulata		-			8
051	Citharichthys stigmaeus	ASTM (1990)	-			° «v

					P - 11 - [1] 114	
1001	to H				Heliability	
1621	l est		:	:	Overall	
9	Species	Accuracy	Objectivity	Endpoint	Reliability	Notes
9	Ampelisca abdita	I	I	Survival	6	Interlab (U.S. EPA 1992); problem with inexpertenced lab
800	Rhepoxynius abronius	I	I	Survival	4	Interlab (Mearns et al. 1986)
003	Eohaustorius washingtonianus	I	I	Survival	4	Interlab (Paine and McPherson 1991a.b)
005	Amphiporeia virginlana	I	I	Survival	4	Interlab (Paine and McPherson 1991a)
900	Leptocheirus pinguis	I	I	Survival	9	
200	Grandidierella japonica	I	·I	Survivat	က	
900	Foxiphalus xiximeus	I	I	Survival	4	Interlab (Paine and McPherson 1991s h)
050	Protothaca staminea	I	I	Survival	. ო	(Lancated file of the off the
017	Mytifus edulis	I	I	Survival	. ~	
033	Pandalus sp.	I	I	Survival	9	
029	Cancer sp.	I	I	Survival	e	
027	Callinectes sapidus	I	I	Survival	. m	
034	Penaeus sp.	I	I	Survival	၈	
071	Neanthes sp.	I	I	Survival	· 6	
021	Tapes japonica	I	I	Survival	e	
016	Mytilus edulis	I	I	Survival	•	
011	Crassost ea gigas	I	I	Survival	۵.۱	
600	Crassost ea virginica	I	I	Survival	2 60	
055	Cyprinodon variegatus	I	I	Survival	4	Interlinta lab (IIS EPA 1991c)
037	Sicyonia ingentis	I	I	Survival	· m	
030	Crangon sp.	I	I	Survival	6	
043	Lytechinus pictus	I	I	Survival		
015	Mulinia lateralis	I	I	Survival	, e	
620	Dendraster excentricus	I	I	Survival	6	
023	Yoldia limatula	I	I	Survival		
032	Pandalus sp.	I	I	Survival	ო	
046	St ongylocent of us purpuratus	I	I	Survival	a	May be highly variable response
045	Strongylocentrotus purpuratus	I	I	Survival	87	May be highly variable response
010	Crassost ea gigas	I	I	Survival	8	
014	Mercenaria mercenaria	x	I	Survival	cv	
026	Callinectes sapidus	I	Ŧ	Survival	6	
028	Cancer sp.	I	I	Survival	၈	
035	Penaeus sp.	I	I	Survival	ဧ	
031	Palaemonetes sp.	I	I	Survival	8	
056	Gasterosteus aculeatus	I	ı	Survival	3	

No. Species 001 Ampelisca abdita 008 Rhepoxynius abronius 002 Amphiporeia virginiana 006 Grandidierella japonica 005 Grandidierella japonica 006 Grandidierella japonica 007 Mytilus edulis 008 Penaeus sp. 029 Cancer sp. 029 Cancer sp. 021 Tapes japonica 016 Mytilus edulis 030 Crangon sp. 041 Crassost ea virginica 052 Cyprinodon variegatus 053 Crangon sp. 043 Lytechinus pictus 045 Strongylocentrotus purpuratus 046 Strongylocentrotus purpuratus 047 Strongylocentrotus purpuratus 048 Strongylocentrotus purpuratus 049 Crassost ea gigas 050 Crangon sp. 041 Mercenaria mercenaria 052 Pandalus sp. 043 Lytechinus pictus 045 Strongylocentrotus purpuratus 046 Strongylocentrotus purpuratus 047 Strongylocentrotus purpuratus 048 Strongylocentrotus purpuratus 049 Crassost ea gigas 040 Crassost ea gigas 041 Mercenaria mercenaria 052 Cancer sp. 043 Strongylocentrotus purpuratus 045 Strongylocentrotus purpuratus 046 Strongylocentrotus purpuratus 047 Strongylocentrotus purpuratus 048 Strongylocentrotus purpuratus 049 Crassost ea gigas 040 Crassost ea gigas 040 Crassost ea gigas 041 Mercenaria mercenaria 052 Cancer sp. 043 Penaeus sp.	Interferences	
→		10.0.0
		Overall
	Notes	Interferences
	Inhabits fine sand-mud/silt; species tolerance range established; not fed	3
	Prefers fine, sandy sediments; silts & clays may interfere; not fed	က
	Insufficient data	ဇ
	Not influenced mark edly by sediment particle size.	e
		ဗ
	Lives in wide variety of sediment types; not fed	က
	Inhabits clean, medium to fine sand	6.
		8
	Elutriate test (N/A); not fed	4
		4
		4
		4
	Not fed	4
		ဇ
	Increased response in fine grained sediments (Chapman et al. 1987); not fed	0
	Elutriate test (N/A): not fed	4
	Elutriate test (N/A); not fed	4
	Elutriate test (N/A); fed at 48h	ო
		4
		4
		4
		4
	Not fed	4
		ဇ
	Elutriate test (N/A)	ဗ
	Not fed; potential effects for fine sediments (PTI 1991)	0
	Elutriate test (N/A); not fed	4
	Not fed; potential effects for fine sediments (PTI 1991)	0
	Elutriate test (N/A); not fed	4
	Elutriate test (N/A)	4
	Elutriate test (N/A)	4
	Elutriate test (N/A); not fed	e
	Elutriate test (N/A); not fed	m
056 Gasterosteus aculeatus	Elutriate test (N/A)	4

£)	
(cont	
D-9.	
TABLE	
7	

		Interferences	
Test	Test		Overall
o S	Species	Notes	Interferences
057	Hypomesus pretiosus		2
058	Hypomesus pretiosus		ומ
029	Lagodon rhomboides		1 4
090	Leiostomus xanthurus	Elutriate test (N/A)	• 4
061	Leuresthes tenuis	Elutriate test (N/A)	1 4
990	Mysidopsis sp.	Elutiate test (N/A); fed daily	e
063	Holmesimysis sp.	Elutriate test (N/A); fed) r
910	Ostea sp.	Elutriate test (N/A)	9
041	Dendraster excentricus	Elutriate test (N/A); not fed	• •
054	Cymatogaster aggregata	Elutiate test (N/A)	. 4
062	Holmesimysis sp.	Fed	c
064	Mysidopsis sp.	Fed daily	· c
044	Lytechinus pictus	Elutriate test (N/A), not fed	0 4
049	Strongylocentrotus sp.	Elutriate test (N/A)	* **
053	Coryphaena hippurus	Elubiate test (N/A)	. 4
048	St ongylocentrotus droebachiensis	Not fed	c
040	Dendraster excentricus	Not fed; potential effects for fine sediments (PTI 1991)	
980	Arbacia punctulata	Potential effects for fine sediments (PTI 1991)	
190	Citharichthys stigmagus	Fluit jate test (N/A): ford of 40h	•

Variable results in comparative bioassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Nacci et al. 1986). Variable results in comparative bicassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Naccl et al. 1986). Panged from 1 -- 3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Nacci et al. 1986). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Nacci et al. 1986). E. washingtonanus is the same or slightly more sensitive than R. abronius; more difficult to remove from the test sediment than R. abronius. Similar sensitivity to R. abronius and E. estuarius; the range of toler ance to salinity and temperature extremes has not been studied. Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1987) and Long et al. (1990). Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1997) and Long et al. (1990) Apparent insensitivity to some organic chemicals compared to other amphipods (Swartz et al. 1994). Variable results in comparative bioassay tests (metal and organic compounds). Variable results in comparative bioassay tests (metal and organic compounds). Sensitive to wide range of anthropogenic materials (e.g., PAH, PCB, metals) Among the most sensitive of sediment toxicity test organisms. Similar sensitivity to R. abronius. Chemical Discrimination Sensitivity 910 043 90 005 8 8 900 005 90 020 033 029 027 034 039 046 045 071 110 600 055 030 915 010 026 028 035 031 037 83

TABLE D-9. (cont.)

- 1	c	
ď	-	ī
	٠	٤
- 1	c	2
•	ũ	ŀ
		i
(•	7
	1	
	•	
ı	_	
Ć	-	1
(_	
2		
2	_	
	י י	
	·	
	7	

		Chemical Discrimination	
Test	Test	Overall	Regulatory
Š	Species	Sensitivity	Status
	Ampelisca abdita	4	High
900	Rhepoxynius abronius	4	High
003	Eohaustorius washingtonianus	4	Medium
005	Amphiporeia virginiana	α	Medium
900	Leptocheirus pinguis	α .	Medium
905	Grandidierella japonica	α.	Low
904	Foxiphalus xiximeus	2	Medium
020	Protothaca staminea	0	Low
	Mytilus edulis	4	Medium
033	Pandalus sp.	Q	Low
	Cancer sp.	α	Low
	Callinectes sapidus	8	Low
	Penaeus sp.	8	Low
	Neanthes sp.	8	Medium
	Tapes japonica	0	Low
	Mytilus edulis	4	Medium
	Crassost ea gigas	4	Medium
600	Crassost ea virginica	4	Medium
055	Cyprinodon variegatus	-	Medium
	Sicyonia ingentis	α	Low
030	Crangon sp.	Q	Low
043	Lytechinus pictus	8	Low
015	Mulinia lateralis	0	Low
039	Dendraster excentricus	8	Low
023	Yoldia limatula	0	Low
032	Pandalus sp.	4	Low
046	St ongylocent of us purpuratus	4	Medium
045	St ongylocentrotus purpuratus	4	Medium
010	Crassost ea gigas	4	Low
014	Mercenaria mercenaria	4	Low
026	Callinectes sapidus	4	Low
028	Cancer sp.	4	Low
035	Penaeus sp.	2	Low
031	Palaemonetes so	4	Low

TAB	TABLE D-9. (cont.)		
		Chemical Discrimination	
Test	Test	Overall	Regulatory
9 2	Species	Sensitivity	Status
057	Hypomesus pretiosus	2	Low
058	Hypomesus pretiosus	8	Low
029	Lagodon rhomboides	Q.	Low
090	Leiostomus xanthurus	N	Low
061	Leuresthes tenuis	8	Low
065	Mysidopsis sp.	4	Medium
063	Holmesimysis sp.	4	Medium
018	Ostrea sp.	4	Medium
041	Dendraster excenticus	4	Medium
054	Cymatogaster aggregata	8	Medium
062	Holmesimysis sp.	4	Low
064	Mysidopsis sp.	4	Low
044	Lytechinus pictus	4	Low
049	Strongylocent of us sp.	4	Low
053	Coryphaena hippurus	a	Low
048	Strongylocentotus droebachiensis	α	Medium
040	Dendraster excentricus	4	Medium
038	Arbacia punctulata	4	Low
051	Citharichthys stigmaeus	0	Low

TABLE D-9. (cont.)

General Notes

Control survivability declines in coarse sand; euryhalline; amphipods are more sensitive to confaminated sediments than other major taxa (Swartz 1987)

Sensitive to salinities <25 gkg (limits its use to test marine sediments); amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1997).

High level of availability, easy to handle, tolerant to a wide range of salinities; amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1987); most common haustoriid species.

Tolerant to wide range of salinities, however, reduced survival if salinity <20 ppt (Doe and Wade 1991).

Preliminary data indicate that R. abronius may be more sensitive.

Broad application because it's possible to conduct tests in sands, silts, or clays; amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1987).

High level of availability, easy to handle, tolerant to a wide range of salinities; sensitive to contaminated sediments (Swartz 1987); reburies/swims quickly could be difficult at test end.

Sensitivity of M. edulis and R. abronius tests appears to be similar (Chapman et al. 1987; Long et al. 1990); abnormal development if >30 embryos/mL

 Can tolerate DO of 0.5 mg/L; however, growth is reduced at DO <4.2 mg/L; abnormal development if >30 embryos/mL.

Not too difficult to isolate and obtain large numbers of embryos from individual male-female pairs

Sensitivity of M. edulis and R. abronius tests appears to be similar (Chapman et al. 1987; Long et al. 1990); abnormal development If >30 embryos/mL.

Widely used as estuarine toxicity and physiological test organism; has been proposed for use in chedged material assessments.

Echinoids have many similarities to chordate animals including basic pattern of embryonic development.

Echinoids have many similarities to chordate animals including basic pattern of embryonic development

Echinoids have many similarities to chordate animals including basic pattern of embryonic development.

Echinoids have many similarities to chardate animals including basic pattern of embryonic development.

Not too difficult to isolate and obtain large numbers of embryos from individual male-female pairs.

Abnormal development if >30 embryos/mL

056 Well documented life history; easily captured; species is euryhaline; size suitable for acute toxicity tests; recommended by EC and EPA.

=
con
_
9
Щ
FABI
TA

Test

No. General Notes 057 058	059 060	061 065	063 018	041 Echinoids have many similarities to chordate animals including basic pattern of embryonic development. 054	062	064	044 Echinoids have many similarities to chordate animals including basic pattern of embryonic development. 049 Echinoids have many similarities to chordate animals including basic pattern of embryonic development.	053	048 Echinoids have many similarities to chordate animals including basic pattern of embryonic development.	040 Echinolds have many similarities to chordate animals including basic pattern of embryonic development.	038 Echinoids have many similarities to chordate animals including basic pattern of embryonic development.	051 Adapted in part from the Menidia sp. protocot in U.S. EPA (1991a).

Test	Test Species	References
9	Ampelisca abdita	ASTM (1990) (E1367-90); U.S. EPA (1991b); U.S. EPA and U.S. COE (1991, 1993); DeWitt et al. (1992)
900	Rhepoxymius abronius	ASTM (1990) (E1367-90); U.S. EPA (1991b); U.S. EPA and U.S. COE (1991, 1993); Environment Canada (1992a)
003	Eohaustorius washingtonianus	Environment Canada (1992a)
005	Amphiporeia virginiana	Environment Canada (1992a)
900	Leptocheirus pinguis	Environment Canada (1992a), based on ASTM (1990) (E1367-90); Swartz et al. (1985)
900	Grandidierella japonica	ASTM (1990) (E1367-90); Reish and Lemay (1988); U.S. EPA and U.S. COE (1993)
004	Foxiphalus xiximeus	Environment Canada (1992a), based on ASTM (1990) (E1367-90); Swartz et al. (1985)
020	Protothaca staminea	Swartz et al. (1979); U.S. EPA and U.S. COE (1991)
017	Mytilus edulis	ASTM (1989) (E724-89); Chapman and Morgan (1983); Long et al. (1990); U.S. EPA and U.S. COE (1991, 1993)
033	Pandalus sp.	U.S. EPA and U.S. COE (1991)
029	Cancer sp.	U.S. EPA and U.S. COE (1991)
027	Callinectes sapidus	U.S. EPA and U.S. COE (1991)
034	Penaeus sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
071	Neanthes sp.	Tay et al. (1992); U.S. EPA and U.S. COE (1991, 1993); Dillon et al. (1993)
021	Tapes japonica	U.S. EPA and U.S. COE (1991)
016	Mytilus edulis	U.S. EPA (1991b)
110	Crassost ea gigas	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1993)
600	Crassost ea virginica	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1991, 1993)
055	Cyprinodon variegatus	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
037	Sicyonia ingentis	U.S. EPA and U.S. COE (1991)
030	Crangon sp.	U.S. EPA and U.S. COE (1991)
043	Lytechinus pictus	Thompson et al. (1989)
015	Mulinia lateralis	Burgess et al. (1992)
039	Dendraster excentricus	Casillas et al. (1992a)
023	Yoldia limatula	U.S. EPA and U.S. COE (1991)
032	Pandalus sp.	U.S. EPA and U.S. COE (1991)
046	St ongylocent of purpuratus	U.S. EPA (1991b)
045	Strongylocentrotus purpuratus	U.S. EPA and U.S. COE (1993); Dinnel et al. (1982)
010	Crassost ea gigas	U.S. EPA (1991b)
014	Mercenaria mercenaria	ASTM (1989) (E724-89)
026	Callinectes sapidus	U.S. EPA and U.S. COE (1991)
028	Cancer sp.	U.S. EPA and U.S. COE (1991)
035	Penaeus sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
031	Palaemonetes sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
028	Gasterosteus aculeatus	Environment Canada (1990c)

•
4
3
í
•
١
١
Ì
į
į

	2000	
Ş.	Species	Helences
290	Hypomesus pretiosus	Chapman et al. (1985)
058	Hypomesus pretiosus	Casillas et al. (1992b)
020	Lagodonrhomboides	U.S. EPA and U.S. COE (1991)
98	Leiostomus xanthurus	U.S. EPA and U.S. COE (1991)
. 190	Leuresthes tenuis	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991)
90	Mysidopsis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
063	Holmesimysis sp.	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
910	Ostea sp.	U.S. EPA and U.S. COE (1991)
14	Dendraster excentricus	U.S. EPA and U.S. COE (1993)
054	Cymatogaster aggregata	U.S. EPA and U.S. COE (1991)
062	Holmesimysis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
064	Mysidopsis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)
044	Lytechinus pictus	Reish and Lemay (1988); U.S. EPA and U.S. COE (1993)
049	Strongylocentrotus sp.	U.S. EPA and U.S. COE (1993)
053	Coryphaena hippurus	U.S. EPA and U.S. COE (1991)
048	Strongylocentrotus droebachiensis	U.S. EPA (1991b)
040	Dendraster excenticus	U.S. EPA (1991b)
980	Arbacia punctulata	Lamberson et al. (1992). following Dinnel and Stober (1995); U.S. EPA (1991b)
051	Citharichthys stigmaeus	Reish and Lemay (1988); U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)

Notes: EL – eluriate
EX – extact
INT – interstital water
S – sediment

N/A - not applicable N/S - not specified

EC – Erwir onment Canada (1990, 1992) GB – U.S. EPA and U.S. COE (1991) IN – U.S. EPA and U.S. COE (1993) TT – U.S. EPA (1992)

TABLE D-10. BASIS FOR SEDIMENT TOXICITY TEST EVALUATION - MARINE SUBLETHAL

Test	Exposure	re Biotic	Common			Test
No.	Site Media	ı Group	Name	Life Stage	Recommended	Species
100	S S/W	Amphipod	Amphipod	Juv or adult females		Ampelisca abdita
121	S S/W	Polycha ete	Polychaete	Juveniles		Neanthes sp.
109	M/S EL	Echinoderm	Purple sea urchin	Gametes	EC	Strongylocentrotus purpuratus
800	S S/W	Amphipod	Amphipod	Adults (3 –5 mm)		Rhepoxynius abronius
005	W/S S	Amphipod	Amphipod	Immature (3 -6mm); no females with embryos		Gandidierela japonica
017	M/S EL	Bivalve	Blue mussel .	Embryos		Mytilus edulis
111	M/S EL	Echinoderm	Purple sea urchin	Gametes		Strongylocentrotus purpuratus
047	M/S EL	Echinoderm	Purple sea urchin	Gametes	<u>~</u>	Strongylocentrotus purpuratus
102	M/S EL	Echinoderm	Sand dollar	Gametes	Б	Dendraster excentricus
100	M/S EL	Echinoderm	Atlantic urchin	Ga metes	EC	Arbacia punctulata
115	M/S EL	Echinoderm	Green sea urchin	Gametes	EC	Strongylocentrotus droebachiensis
015	S S/W	Bivalve	C la m	Juveniles		Mulha lateralis
	M/S EL	Echinoderm	White sea urchin	Gametes	EC	Lytechinus pictus
112	M/S EL	Echinoderm	Purple sea urchin	Gametes		Strongylocentrotus purpuratus
011	M/S EL	Bivalve	Pacific oyster	Embryos		Crassostrea gigas
	M/S EL	Bacterium	Microtox	Cells		Photobacterium phosphoreum
	S S/W	Bivalve	Blue mussel	Embryos		Mytilus edulis
	M/S EL	Bivalve	Eastern oyster	Embryos		Crassostrea virginica
	M/S INT	Bacterium	Microtox	Cells		Photobacterium phosphoreum
	W/S S	Bivalve	Pacific oyster	Embryos		Crassostrea gigas
	S S/W	Echinoderm	Purple sea urchin	Embryos		Strongylocentrotus purpuratus
	_	Echinoderm	Sand dollar	Gametes	Z	Dendraster excentricus
	S S/W	Echinoderm	White sea urchin	8 22 mm diameter		Lytechlnus pictus
	S S/W	Echinoderm	Sand dollar	Juveniles		Dendraster excentricus
	M/S EL	Bivalve	Quahog clam	Етьгуоз		Mercenarla mercenaria
_	M/S EL	Echinoderm	Atlantic urchin	Gametes		Arbacia punctulata
-	M/S INT	Echinoderm	Atlantic urchin	Gametes		Arbacia punctulata
-	S S/W	Echinoderm	Green sea urchin	Embryos		Strongylocentrotus droebachiensis
-=	S S/W	Fish	Surf smelt	Larvae		Hypomesus pretiosus
	M/S S	Echinoderm	Atlantic urchin	Gametes		Arbacia punctulata
-	M/S S	Bacterium	Microtox	Cells	EC	Photobacterium phosphoreum
084	M/S EX	Bacterium	Mod. Ames/HPTLC	Cells		Salmonella typhimurium
•						

	IABLE D- IV. (WILL)						Exposite Belayance
Test		Salinity			Habitat		ביליסטום וופוסאמויס
ò	Species	(bbt)	Duration	Media	Group	Ecorating	Notes
00	Ampelisca abdita	28-35	10 days	S	_	4	Particle-feeding tube dweller
121	Neanthes sp.	28 +/- 2	20-28 days	s	-	4	
109	Strongylocentrotus purpuratus	28 34	20, 40, 60 min	딤	۵	0	
800	Rhepoxynius abronius	28	10 days	တ	-	4	Free-burrowing, sand dweller
902	Grandidierella japonica	30 – 35	10 days	တ	_	4	Tube dweller
017	Mytiks edulis	18 – 32	48 hrs	굡	٩	0	
Ξ	Strongylocentrotus purpuratus	32	80 min	丑	۵	0	
047	Strongylocentrotus purpuratus	30-32	80 min	E	۵.	0	
102	Dendra ster excentricus	28-34	8	EL	۵	0	
9	Arbacia punctulata	28 – 34	20, 40, 60 min	ᆸ	۵	0	
115	Strongylocentrotus droebachiensis	28 – 34	20, 40, 60 min	ᆸ	۵	0	
015	Mulina lateralis		7 days	Ø	ш	e	
107	Lytechinus pictus	28 – 34	20, 40, 60 min	ם	а.	0	
112	Strongylocentrotus purpuratus	32	48 hrs	ᆸ	۵	0	
011	Crassostrea gigas	18 – 32	48 hrs	귭	۵	0	
, a	Dhotota cterium obcoobstatum		ئ تا:	Ē	c	,	
0.16	Myths edulis	80	48 – 60 hrs	ป		N T	
600	Crassostrea virginica	18 - 32	48 hrs) H	. 0.	- c	
080	Photobacterium phosphoreum	31-34	15 min	Ī	. a	, , .	
010	Crassostrea gigas	28	48-60 hrs	ø ِ	۵	-	
046	Strongylocentrotus purpuratus	28	48 – 96 hrs	w	<u>a</u> .	-	
042	Dendraster excentricus	30 +/- 2	80 min	П	۵	0	
043	Lytechinus pictus		60 days	တ	ш	ဗ	
039	Dendra ster excentricus	Seawater	28 days	ဟ	ш	ဗ	
014	Mercenaria mercenaria	1832	48 hrs	ᆸ	<u>.</u>	0	
860	Arbacia punctulata	28	1.3 hrs	ᆸ	٩	0	Modified elutrate
260	Arbacia punctulata	28	1.3 hrs	ĪNI	۵	0	
048	Strongylocentrotus droebachiensis	28	48-96 hrs	ဟ	۵	-	
058	Hypomesus pretiosus	Seawater	4 days	ဟ	۵	***	
038	Arbacia punctulata		72 – 96 hrs	တ	۵	-	
083	Photobacterium phosphoreum	75	5 days 15 min	တ	d.	0	
084	Salmonella typhimurium		N/S	ሿ	N/A	0	
940	Dendraster excentricus	28	48 – 96 hrs	S	۵	-	

-	
Q	
೨	
_:	
9	
∵	
H	
إبد	
ᆲ	
щ	
⋖.	

Test			Availability	
Š.	- 1	Seasonality	Geographic	
00	Ampelisca abdita	Year - round (juveniles sometimes difficult to obtain)	Cowerage	Cultured
121	Neanthes sp.	Year-round: cultured organisms are in the	East coast of North America; Gulf of Mexico; San Francisco Bay	No: field collected
109	Strongy locentrotus purpuratus	6 months	West coast of North America	Yes
800	Rhepoxynius abronius	Year-round	West coast of North America (Abska to Mexico)	No: field collected
900	Grandidierella japonica	Cultured organisms available	Puget Sound to southern California San Fransico Bay: southern California	No; field collected
7				Yes; also field collected
= =	Stonovlocantotic manual	6 months; cultured organisms available	West coast of North America	;
: :	on on a succession of the succ	6 months	West coast of North America (Abelia to Marriss)	Yes
047	Strongylocentrotus purpuratus	6 months	West crast of North America (Abstracto)	No; field collected
102	Dendraster excentricus	6 months	West const of Mouth America (Alaska to Mexico)	No; field collected
₽	Arbacia punctulata	June - August	East coast of North America; Gulf of Mexico	No; field collected
115	Strongylocentrotus droebachiensis	e direction of the control of the co		NO; field collected
0 15	Mulina lateralis	Cultured oppositions and in the	West coast of North America (Alaska to Mexico)	No. field collection
107	Lytechinus pictus	Controlled of garlishins available	East and Gulf coasts of North America	Ver
112	Strongylocentropie parameter	Sulfulling	West coast of North America; southern California to South America	200
. .	Crecostras aimo	o months	West coast of North America (Alaska to Mexico)	No; field collected
		o mo. (ab conditioning possible)	West coast of North America	No, reid collected Yes
081	Photobacterium phosphoreum	N/A; boratory cultures		
0 16	Mytilus edulis	6 months; cultured organisms available	INC. BUDGATORY CURURES	Yes
600	Crassostrea virginica	Limited	West coast of North America	Yes
080	Photobacterium phosphoreum	N/A: la horatory culturae	tast and gulf coasts of North America	Yes
010	Crassostrea gigas	6 mo (bb conditioning and the	N/A; aboratory cultures	Yes
		(and conditioning possible)	West coast of North America	Yes
046	Strongylocentrotus purpuratus	6 months		
042	Dendraster excentricus	6 months	West coast of North America (Abska to Mexico)	No; field collected
043	Lytechinus pictus	6 months	West coast of North America	No: field collected
039	Dendraster excentricus	4400	West coast of North America; southern California to South America	No. field collected
014	Mercenaria mercenaria	Limited	West coast of North America Fast coast of North America	No; field collected
860	Arbacia mindulata			Yes
200		June – August	East coast of North America: Gulf of Mexico	:
	Ardacia punctulata	June - August	Hat const of North American Constant	No; field collected
048	Strongylocentrotus droebachiensis		Mark construction America, duli of Mexico	No; field collected
058	Hypomesus pretiosus		West coast of North America (Alaska to Mexico)	No: field collected
038	Arbacia pundulara	to make a desire	Southeastern Alaska to northern California	
			East coast of North America; Gulf of Mexico	No; field collected
083	Photobacterium phosphoreum	N/A; la boratory cultures	N/A hhorstony cultures	
084	Salmonella typhimurium		W. Phombach	Yes
040	Dendra ster excentricus		IN/A, MUDIFACOTY CURUTES	Yes
ĺ				

	Availability	>	Ecological Belevance		
Test Test	Protocol	Overall	Field	Species	Overall
No. Species	Development	Availability	Validation	Importance	EcoRelevance
001 Ampelisca abdita	ASTM (1990)	3		High; foundation species	3
121 Neanthes sp.	U.S. EPA (1990)	e			8
109 Strongylocentrotus purpuratus	EC (1992b)	ဗ		High; leystone species; grazer on leelp	4
008 Rhepoxyníus abronius	ASTM (1990)	9			87
005 Grandidierella japonica	ASTM (1990)	ဗ			7
017 Mytilus edulis	ASTM (1989)	က		High; foundation species; havested	4
111 Strongylocentrotus purpuratus		2		High; leystone spacies; grazer on letp	4
047 Strongylocentrotus purpuratus	Yes	-		High; leystone spacies; grazer on lesto	4
102 Dendraster excentricus	EC (1992b)	က			8
100 Arbacia punctulata	EC (1992b)	3			~
115 Strongylocentrotus droebachiensis	EC (1992b)	6			N
015 Mulina lateralis	Yes	-			N
107 Lytechinus pictus	EC (1992b)	က			8
112 Strongylocentrotus purpuratus		8		High; keystone species; grazer on kelp	4
011 Crassostrea gigas	ASTM (1989)	2	Field validated (calibrated) to benthos (Becker et al. 1990)	High; sensitive blva Ne ffestage; harvested	4
081 Photobacterium phosphoreum	Yes	4	Feld validated (calibrated) to benthos (Glasy et al. 1990; Rosluet al. 1999; Williams et al. 1966).	Low	-
016 Mytilus edulis	U.S. EPA (1991b)	ဗ		High; foundation species; harvested	4
009 Crassostrea virginica	ASTM (1989)	8		High; sensitive bivalve if estage; harvested	4
		4	Feld validated (calibrated) to benthos (Glesy et al. 1990; Rosiuet al. 1989; Williams et al. 1986).	Low	-
010 Crassostrea gigas	U.S. EPA (1991b)	2	Field validated (calibrated) to benthos (Becker et al. 1990)	High; sensitive bivalve lifestage; harvested	4
046 Strongylocentrotus purpuratus	U.S. EPA (1991b)	€.		High; Mystone species; grazer on kelp	4
042 Dendraster excentricus	Yes	-			8
043 Lytechinus pictus		-			8
039 Dendraster excentricus		-			8
014 Mercenaria mercenaria	ASTM (1989)	23		Harvested	ю
098 Arbacia punctulata	Dinnel et al. (1983)	-			8
097 Arbacia punctulata	Dinnel et al. (1983)	-			8
	U.S. EPA (1991b)	7			8
		-			ဗ
038 Arbacia punctulata	Dinneland Stober (1985)	-			8
083 Photobacterium phosphoreum	EC (1992f)	2		Low	-
084 Salmonella typhimurium	Yes	2		Low	-
0.40 Dandmeter excentrions	U.S. FPA (1991b)	-			c

TAB	TABLE D-10. (cont.)					The state of the s
	1			Reliability	bility	
Test			:		Overall	
Š	Species	Accuracy	Objectivity	Endpoint	Reliability	Notes
8	Ampelisca abdita	بـ	I	Reburial (growth has also been tested/10 d)	_	Problem with inexperienced lab
121	Neanthes sp.	₹	I	Growth	က	, Inter/infra lab (Johns et al. 1991)
109	Strongylocentrotus purpuratus	Σ	I	Fertilization	က	interlab (Anderson et al. 1991)
800	Rhepoxynius abronius	_	I	Rebural	-	
900	Grandidierel t a japonica	7	I	Rebural	· -	
017	Mytilus edulis	Σ	٦	Abnormality	8	Inter/intra lab (Pastorok et al 1994)
=======================================	Strongylocentrotus purpuratus	Σ	I	Fertifization	ဗ	Inter/intra tab (Pastorok et al. 1994)
047	Strongylocentrotus purpuratus	Σ	I	Fertilization	ဗ	Inter/intra lab (Pastorok et al. 1994)
102	Dendra ster excentricus	₹	I	Fertilization	က	Inter/intra lab (Anderson et al 1991; Pastorok et al 1994)
100	Arbacia punctulata	Σ	Ξ	Fertilization	ဗ	Interab (Anderson et al. 1991)
115	Strongylocentrotus droebachiensis	Σ	I	Fertilization	က	Interab (Anderson et al. 1991)
0.15	Mulina lateralis	Σ	I	Growth	N	
107	Lytechinus pictus	Σ	I	Fertilization	ဗ	interlab (Anderson et al. 1991)
112	Strongylocentrotus purpuratus	Σ	I	Fertilization	8	
011	Crassostrea gigas	Σ	_	Abnormality	~	Inter/intra lab (Pastorok et al. 1994)
081	Photobacterium phosphoreum	_	·	Luminescence	8	
016	Mytitus edulis	Σ		Abnormality	-	
600	Crassostrea virginica	Σ	ب	Growth; abnormality	-	
080	Photobacterium phosphoreum	٦	I	Luminescence	8	
010	Crassostrea gigas	₹	_	Abnormality	-	
046	Strongylocentrotus purpuratus	Σ	<u>.</u>	Abrormality	-	
042	Dendraster excentricus	Σ	I	Fertilization	ဗ	Inter/intra lab (Pastorok et al. 1994)
043	Lytechinus pictus	Σ	I	Growth	8	
039	Dendraster excentricus	Σ	I	Growth	2	
014	Mercenaria mercenaria	Σ	ب	Abnormality	-	
860	Arbacia punctulata	Σ	I	Fertilization	8	Interlab (U.S. EPA 1991c)
260	Arbacia punctulata	Σ	I	Fertilization	N.	
048	Strongylocentrotus droebachiensis	Σ	_	Abnormality	-	
058	Hypomesus pretiosus	Σ	I	Growth	2	
038	Arbacia punctulata	Σ	I	Fertilization	~	
083	Photobacterium phosphoreum		I	Luminescence	8	
084	Salmonella typhimurium	Σ	I	Mutation	8	
040	Dendraster excentricus	Σ	7	Abnormality	-	

	Interferences	
_		Overall
1	Notes	Interferences
	Inhabits fine sand-mud/silt; species tolerance range established; not fed (growth endpoint = fed)	3
		e
	Elutrate test (N/A); not fed	4
	Prefers fine, sandy sediments; silts & clays may intenfere; not fed	67
005 Grandidierella japonica	Lives in wide variety of sediment types; not fed) n
017 Mytiks edulis	Elutriate test (N/A); not fed	•
111 Strongylocentrotus purpuratus	Elutria te test (N/A)	7 •
047 Strongylocentrotus purpuratus	Elutrate test (N/A); not led	4 4
102 Dendraster excentricus	Elutrate test (N/A); not fed	•
100 Arbacia punctulata	Elutrate test (N/A); not fed	4
115 Strongylocentrotus droebachiensis	Elutriste lest (N/A): not fed	•
015 Mulina lateralis		•
107 Lytechinus pictus	Elutrate test (NA); not fed	σ •
112 Strongylocentrotus purpuratus	Elutriate test (N/A)	.
011 Crassostrea gigas	Elutriate test (N/A); not fed	1 4
081 Photobacterium phosphoreum	Elutriste test (N/A): less sensaive to NH3 than Certain dan pirmane tes (Anthou see I sono).	•
016 Mytikus edulis	Increased response in fine grained sediments (Chapman etal. 1987); not fed	n c
009 Crassostrea virginica	Elutriate test (N/A); not fed	•
080 Photobacterium phosphoreum	Interstitial test (N/A); less sensitive to NH3 than Ceriodaphnia and Pimphales (Ankikev et al. 1990); not fed	
010 Crassostrea gigas	Not fed	0 0
046 Strongylocentrotus purpuratus	Not fed	ć
042 Dendraster excentricus	Elutriate test (N/A); not fed	> •
043 Lytechinus pictus		* *
039 Dendraster excentricus		÷ •
Merceraria mercenaria	Elutriate test (N/A); not fed	. 4
Arbacia punctulata	Elutrate test (N/A)	4
Arbacia punctulata	Intersitial test (N/A)	
Strongylocentrotus droebachiensis	Not fed	+ =
Hypomesus pretiosus		· c
Arbacia punctulata		
Photobacterium phosphoreum	Less sensitive to NH3 than Ceriodaphna and Pimephales (Ankley et al. 1990); not fed	
Salmonella typhimurium	Extract test (N/A)	- ,
	1. t. A	

(Sont.) TABLE D-10.

Chemical Discrimination

Sensitivity Š.

Sensitive to wide range of anthropogenic materials (e.g., PAH, PCB, metals)

Variable results obtained when comparing the results of several bloassay tests (mediand organic compounds). Panged from 1-3 orders of magnitude more sensitive to 1 order of magnitude lass sensitive (Naccieta). 1986) 60

Among the most sensitive of sediment toxicity test organisms

Apparent insensitivity to some organic chemicals compared to other amphipods (Swartz et al. 1994) 005 Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1997) and Long et al. (1990).

Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Panged from 1-3 orders of magnitude more sensitive, to rorder of magnitude less sensitive, (Naccietal 1996). Ξ

Variable results obtained in comparative bicassay tests (menal and organic compounds). Ranged from 1–3 orders of magnitude more sensitive to 1 order of magnitude bessensitive (Naccietal. 1996). 047

Variable results obtained when comparing the results of several bicassay tests (metal and organic compounds). Panged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Naccieta). 1986) 102

Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Panged from 1-3 orders of magnitude more sensitive for a gnitude bass sensitive (Naccietal 1986). 8

Variable results obtained when comparing the results of several bloassay bests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive for order of magnitude bass sensitive (Naccietal. 1996). 115

Variable results obtained when comparing the results of several bicassay tests (metal and organic compounds). Panged from 1-3 orders of magnitude more sensitive to 1 order of magnitude bass sensitive (Naccietal. Subbitral grown endpoint increases sensitivity of test (Burgessand Morrison 1994) 107

Variable results obtained when comparing the results of saveral bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive for a order of magnitude has sensitive (Naccietal. 1986).

High sensitivity 081

600

Highly sensitive response of M. edulis to toxic sediment was reported in Chapmanet at (1987) and Long et at. (1990). 016

High sensitivity 080

010

Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive (Naccietal. 1986). Variable results in comparative bloassay bests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude bess sensitive (Neccletal. 1986) 046 042 Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Neccietal. 1996). Variable nesults obtained when comparing the results of several bloassay tests (mataland organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude tess sensitive (Naccietal. 1996) 039 043

014

Variable results obtained when comparing the results of save at bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude bass sensitive (Naccietal 1986). Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude tess sensitive (Naccletal 1996). Panged from 1-3 orders of magnituda more sensitive to 1 order of magnitude less sensitive (Naccietal. 1986) Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). 860 048 097

058

Variable results obtained when comparing the results of several bloassay tests (metal and organic compounds). Ranged from 1-3 orders of magnitude more sensitive to 1 order of magnitude less sensitive (Naccietal. 1996)

High sensitivity

040 Variable results obtained when comparing the results of several bloossay tests (menal and organic compounds). Panged from 1-3 orders of magnitude more sensitive to 1 order of magnitude bessensitive (Naccietati 1986).

		Chemical Discrimination	
Test	Test	Overall	Regulatory
ė	Species	Sensitivity	Status
9	Ampelisca abdita	4	Low
121	Neanthes sp.	2	Low
109	Strongylocentrotus purpuratus	4	Medium
800	Rhepoxynius abronius	₹	Low
002	Grandidierella japonica	4	Low
017	Mytilus edulis	प	Low
Ξ	Strongylocentrotus purpuratus	4	Low
047	Strongylocentrotus purpuratus	4	Medium
102	Dendra ster excentricus	4	Medium
<u>\$</u>	Arbacia punctulala	4	Medium
115	Strongylocentrotus droebachiensis	4	Medium
015	Mulina lateralis	4	Low
107	Lytechinus pictus	4	Medium
112	Strongylocentrotus purpuratus	4	Low
011	Crassostrea gigas	4	Low
081	Photobacterium phosphoreum	თ	Low
016	Mytitus edulis	4	Medium
600	Crassostrea virginica	4	Low
080	Photobacterium phosphoreum	က	Low
010	Crassostrea gigas	₹	Medium
046	Strongylocentrotus purpuratus	4	Меділ
042	Dendraster excentricus	4	Medium
043	Lytechinus pictus	0	Low
039	Dendaster excentricus	0	Low
0 14	Merceraria mercenaria	4	Low
860	Arbacia punctulata	4	Low
260	Arbacia punctulata	4	Low
048	Strongylocentrotus droebachiensis	7	Medium
058	Hypomesus pretiosus	23	Low
038	Arbacia punctulata	4	Low
083	Photobacterium phosphoreum	က	Medium
084	Salmonella typhimurium	n	****

TABLE D-10. (cont.)

_	
98	
=	

No. General Notes

Control survivability declines in coarse sand; euryhaline; beding method causes exposure to overlying water enters tube); amphipods are more sensitive to contaminated sediments than other major taxa (Swertz 1987).

Echinoids have many similarities to chorda to animals including basic pattern of embryonic development. 109

Bensitive to satinities <25 g/kg (limits its use to lest marine sediments); amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1987). 800

Broad application because it's possible to conduct tests in sands, silis, or clays; amphipods are more sensitive to contaminated sedments than other major taxa (Swartz 1987).

Sensitivity of Medulis and R. abronius tests appears to be simitar (Chapman et al. 1987; Long et al. 1990; Willtams et al. 1996); abnormal development if > 30 embryos/mL 11

Echnolds have many similarities to chordate animals including basic pattern of embryonic development

Echinolds have many similarities to chordate animals including basic pattern of embryonic deve topment. 047

Echnolds have many similarities to chordate animals including basic pattern of embryonic development 102 8

Echnoids have many similarities to chordate animals including basic pattern of embryonic development.

Echnolds have many similarities to chorcate animals including basic pattern of embryonic development 115 015

Echnoids have many similarities to chordate animals including basic pattern of embryonic development. 107 112

Echnolds have many similarities to chordate animals including basic pattern of embryonic development.

Not too difficult to Isolate and obtain large numbers of embryos from individual male—fermate pairs. 011

Burton and Ingersoil (1994) reported that Microtox had equal sensitivity to Oncochyncus mykiss, Pimephals promals, Lepomis macrochirus, Cyprinidon variegatus, and Daphnia magna. 081

Sensitivity of M. eduls and R. abronius tests appears to be similar (Chapman et al. 1987; Long et al. 1990; Willams et al. 1986); abnormal development if >30 embryos/mL 600 016

Oan tobrate DO of 0.5 mg/L; however, growth is reduced at DO <4.2 mg/L; abnormal development if >30 embryos/mL

Burton and Ingersoll (1994) re ported that Microtox had equal sensitivity to Oncorhyncus mykiss, Pimephales prome as, Lepomis macrochirus, Cyprinidon varlegatus, and Daphnia magna 080

Not too difficult to isolate and obtain large numbers of embryos from individual male—female pairs. 010

Echinolds have many similarities to chordate animals including basic pattern of embryonic deve topment. 046

Echholds have many similarities to chordale animals including basic patern of embryonic development. 042

Echnolds have many similarities to chords to animals including basic pattern of embryonic deve topment.

Echholds have many similarities to chordate animals including basic pattern of embryonic devalopment. 043

Abnormal development if >30 embryos/mL

Echinoids have many similarities to chordate animals including basic pattern of embryonic development. 960

Echnoids have many similarities to chordate animals including basic pattern of embryonic development. 097

Echnoids have many similarities to chords to animals including basic pattern of embryonic development. 048 058

Echinoids have many similarities to chordate animals including basic pattern of embryonic development.

038

Burton and Ingersoll (1994) re ported that Microtox had equal sensitivity to Oncochyncus mykiss, Pimephales prome as, Lepornis macrochirus, Cyprinidon variegatus, and Daphnia magna. 083

Echinoids have many similarities to chordals animals including basic pattern of embryonic development 040

∞nt.	
_	
- (
1	
-	
-	
11	
- 1 1	
-	
ш	
===1	
8	
<	

Test	Test		
No.	Species	References	
8	Ampelisca abdita	ASTM (1990) (E1367-90)	
121	Neanthes sp.	Dillon et at (1993); U.S. EPA (1990); Johns et at (1992)	
109	Strongylocentrotus purpuratus	Environment Canada (1992b)	
800	Rhepoxynius abronius	ASTM (1990) (E1367-90)	
900	Grandidierella japonica	ASTM (1990) (E1367-90)	Notes
017	Mytilus edulis	ASTM (1989) (E724-89)	EL - elutriate
Ξ	Strongylocentrotus purpuratus	Long etal (1990)	EX - extract
047	Strongylocentrotus purpuratus	U.S. EPA and U.S. COE (1993); Dinnel et al. (1982)	
102	Dendraster excentricus	Environment Caracka (1992b)	s sediment
90	Arbacia punctulata	Environment Canada (1992b)	N/A - not applicable N/S - not specified
115	Strongylocentrotus droebachiensis	Environment Carnada (1992b)	EC - Environment Canada (1990, 1992)
0.15	Mulina lateralis	Burgess et at (1992)	GB - U.S. EPA and U.S. COE (1991)
107	Lytechinus pictus	Environment Carrada (1992b)	IN U.S. EPA and U.S. COE (1993)
112	Strongylocentrotus purpuratus	Long etal (1990)	TT - U.S. EPA (1992)
011	Crassostrea gigas	ASTM (1989) (E724-89)	
081	Photoba cterium phosphoreum	Microbics (1992)	
016	Mytitus edulis	U.S. EPA (1991b)	
600	Crassostrea virginica	ASTM (1989) (E724-89)	
080	Photobacterium phosphoreum	Tay et al. (1992)	
010	Crassostrea gigas	U.S. EPA (1991b)	
046	Strongylocentrotus purpuratus	U.S. EPA (1991b)	
042	Dendraster excentricus	U.S. EPA and U.S. COE (1993); Dinnel et al. (1982)	
043	Lytechinus pictus	Thompson etal (1989)	
039	Dendraster excentricus	Casillas et al (1992a)	
014	Mercenaria mercenaria	ASTM (1989) (E724-89)	
860	Arbacia punctulata	Burgess etal (1993)	
260	Arbacia punctulata	Burgess et al (1993)	
048	Strongylocentrotus droebachiensis	U. S. EPA (1991b)	
058	Hypomesus pretiosus	Casillas et al (1992b)	
038	Arbacia pundulata	Lamberson et al. (1992), following Dinnel and Stober (1985), U.S. EPA (1991b)	
083	Photobacterium phosphoreum	Environment Canada (19921)	
084	Salmonella typhimurium	Jarvis and Reilly (1992)	
040	Dendraster excentricus	U.S. EPA (1991b)	

TABLE D-11. BASIS FOR SEDIMENT TOXICITY TEST EVALUATION - ESTUARINE LETHAL

	П		Common	-		Test
No. S	Site Media	Group	Name	Life Stage	Recommended	Species
001 E	E/L S	Amphipod	Amphipod	Juv or adult females	GB,TT,IN	Ampelisca abdita
129 E	E/L S	Amphipod	Amphipod	Large juv and adults (3-5 mm)	GB,TT,IN, EC	Eohaustorius estuarius
003 E	E/L S	Amphipod	Amphipod	Juv or young adults	EC	Eohaustorius washingtonianus
133 E	E/L S	Amphipod	Amphipod	Juveniles (2-4 mm)		Leptocheirus plumulosus
135 E	E/L S	Amphipod	Amphipod	Mixed sexes (4-8 mm)	NĻTT	Leptocheirus plumulosus
126 E	E/L S	Amphipod	Amphipod	Juv or young adults (4-10 mm)	2	Corophium volutator
002 E	E/L S	Amphipod	Amphipod	Juv or young adults	EC	Amphiporeia virginiana
128 E	E/L S	Amphipod	Amphipod	Adults		Corophium volutator
134 E	E/L S	Amphipod	Amphipod	Juveniles		Leptocheirus plumulosus
ш	E/L S	Amphipod	Amphipod	7-14 days old	NIT	Hyalella azteca
020 E	E/L S	Bivalve	Littleneck clam	Juveniles		Protothaca staminea
ш	E/L EL	Bivalve	Blue mussel	Embryos	N/BĐ	Mytilus edulis
ш	E/L S	Crustacean	Blue crab	Juveniles		Callinectes sapidus
ш	E/L S	Crustacean	Grass shrimp	Post-hatch (1-4 days)		Palaemonetes sp.
ш	E/L S	Bivalve	Blue mussel	Embryos		Mytilus edulis
ш	E/L EL	Bivalve	Eastern oyster	Embryos	NED	Crassost ea virginica
ш	E/L EL	Bivalve	Pacific oyster	Embryos	<u>.</u>	Crassost ea gigas
Ш		Crustacean	Sand shrimp	Juveniles		Crangon sp.
ш	E/L EL	Fish	Sheepshead minnow	1-14 days old		Cyprinodon variegatus
ш	E/L S	Bivalve	Pacific oyster	Embryos		Crassost ea gigas
Ш	E/L EL	Fish	Silverside	9-14 days old	2	Menidia sp.
Ш	E/L EL	Fish	Silverside	1-14 days old	GBJN	Menidia sp.
ш		Bivalve	Quahog clam	Embryos		Mercenaria mercenaria
ш		Crustacean	Blue crab	Embryo-larval		Callinectes sapidus
ш	E/L EL	Mysid	Mysid	1-5 days old	GB	Mysidopsis sp.
Ш	E/L EL	Mysid	Mysid	1-5 days old	GB	Neomysk sp.
Ш	E/L S	Mysid	Mysid	1-5 days old		Neomysis sp.
ш	E/L EL	Fish	3-spine stick leback	Juveniles (0.1 – 3.0 g)	EC	Gasterosteus aculeatus
ш	E/L S	Mysid	Mysid	1-5 days old		Mysidopsis sp.
156 E	E/L EL	Fish	Grunion	9-14 days old		Leuresthes tenuis
165	TNI	Polychaota	Polychaete	Females (1 – 2 days)		

(cont.)	
TABLE D-11. (

	Media	Habitat		Motor
28-35 28-35 2- <28 us 12-33 us 5-25 us 2-20 >-2 to 28 20-30 >-2 to 28 20-30 -15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 2- <28 28 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 20-30 +/- 10%	Media	C		Nistan
28-35 2-<28 12-33 us 5-25 us 2-30 >2 to 28 20-30 8.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 18-32 2-<28 28 5-30+/-10% 5-32+/-10% 5-32+/-10% 20-30+/-10%	0	Group	Ecorating .	NOIGS
2-<28 12-33 us 5-25 us 2-30 >2 to 28 20-30 8.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 18-32 18-32 2-<28 28 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10% 20-30 +/- 10%	n	-	4	Particle-feeding, tube dweller
12-33 5-25 us 2-30 >2 to 28 20-30 20-30 8.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 18-32 18-32 18-32 2-<28 28 5-32 +/- 10% 5-32 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10% 20-30 +/- 10%	တ	_	4	
us 5-25 us 2-30 >2 to 28 20-30 6.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10%	တ	_	4	Free - burrowing, sand dweller
2-30 >2 to 28 20-30 6.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10%	တ	_	4	
>2 to 28 20-30 6.9-7.2 0-15 23.5-32.7 18-32 28 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 18-32 18-32 5-32 +/- 10% 5-32	တ	-	4	
6.9-7.2 0-15 23.5-32.7 18-32 2-<28 28 28 18-32 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 20-30 +/- 10%	Ø	_	က	
6.9-7.2 0-15 23.5-32.7 18-32 2-<28 28 18-32 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 20-30 +/- 10%	တ	-	4	Lives in the sediment
6.9-7.2 0-15 23.5-32.7 18-32 18-32 18-32 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10%	တ	_	က	
23.5-32.7 18-32 2-<28 28 18-32 18-32 18-32 5-30+/-10% 5-32+/-10% 5-32+/-10% 18-32 25-30+/-10% 20-30+/-10%	တ	-	4	
23.5-32.7 18-32 28-<28 28 18-32 18-32 5-30 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +	တ	m	ဇ	
2 - < 28 28 18 - 32 18 - 32 18 - 32 18 - 32 28 5 - 30 +/- 10% 5 - 32 +/- 10% 5 - 32 +/- 10% 18 - 32 25 - 30 +/- 10% 20 - 30 +/- 10% 20 - 30 +/- 10% 20 - 30 +/- 10% 20 - 30 +/- 10% 20 - 30 +/- 10% 20 - 30 +/- 10% 25 - 30 +/- 10% 25 - 30 +/- 10% 25 - 30 +/- 10% 25 - 30 +/- 10%	Ø	-	4	
2-<28 28 18-32 18-32 5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 25-30 +/- 10% 25-30 +/- 10% 25-30 +/- 10% 25-30 +/- 10% 25-30 +/- 10% 25-30 +/- 10%	ᆸ	۵	0	
2-<28 28 18-32 18-32 5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10%	တ	ш	က	
28 18-32 18-32 5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10%	Ø	ш	n	
18-32 18-32 5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	Ø	O.	-	
5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10%	ᆸ	۵	0	
5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	급	۵	0	
5-30 +/- 10% 28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	ဟ	ш	က	
28 5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	핍	z	0	
5-32 +/- 10% 5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%		۵	-	
5-32 +/- 10% 18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	ដ	z	0	
18-32 25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	ᆸ	z	0	
25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	핍	۵	0	
25-30 +/- 10% 20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	ᆸ	۵	0	
20-30 +/- 10% 20-30 +/- 10% 10-20 25-30 +/- 10%	E	۵	0	
20-30 +/- 10% 10-20 25-30 +/- 10%	E	۵	0	
10–20 25–30 +/- 10%	တ	۵	-	
	ᇳ	z	0	
	တ	۵	-	
20-32 +/- 10% 96 hrs	ᆸ	z	0	
Dinophilus gyrociliatus 7 days	INI	ш	1	

			Availability	
Tes	Fest Test		Geographic	
8	Species	Seasonality	Coverage	Cultured
8	Ampelisca abdita	Year -round (juveniles sometimes difficult to obtain)	East coast of North America; Gulf of Mexico; San Francisco Bay	No; field collected
159	Eohaustorius estuarius	Year -round	Central British Columbia to central California	No; field collected
8	Eohaustorius washingtonianus	Year -round	Southeastern Alaska to Oregon	No; field collected
133	Leptocheirus plumulosus	Year -round; cultured organisms available	East coast of North America	Yes; also field collected
135	Leptocheirus plumulosus	Year -round; cultured organisms available	East coast of North America	Yes; also field collected
126	Corophium volutator	Densities increase from June to September; low from January to May	Northeast coast of North America	
005	: Amphiporeia virginiana	Fernales with eggs present April – July	Eastern Nova Scotia to North Carolina	No: field collected
128	Corophium volutator	Densities increase from June to September; low from January to May	Northeast coast of North America	
134	Leptocheirus plumulosus	Year -round; cultured organisms available	East coast of North America	Yes; also field collected
131	Hyalella azteca	Year -round	Widely distributed throughout North America	Yes; also field collected
020	Protothaca staminea		Aleutian Islands to Baja California	
017	Mytilus edutis	6 months; cultured organisms available	East and west coasts of North America	Yes
027	Callinectes sapidus		East coast of North America; Gulf of Mexico	
151	Palaemonetes sp.		Isolated occurances, species specific; east coast of North America; Gulf of Mexico	
016	Mytilus edulis	6 months; cultured organisms available	East and west coasts of North America	Yes
600	Crassost ea virginica	Limited	East and gulf coasts of North America	Yes
<u>=</u>	Crassostea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
030	Crangon sp.		East and west coasts of North America	
153	Cyprinodon variegatus	Cultured organisms available	East coast of North America	Yes
010	Crassost ea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
157	Menidia sp.	Year -round	East coast of North America; Gulf of Mexico; Great Lakes	Yes
158	Menidia sp.	Year -round	East coast of North America; Gulf of Mexico; Great Lakes	Yes
914	Mercenaria mercenaria	Limited	East coast of North America	Yes
028	Callinectes sapidus		East coast of North America; Gulf of Mexico	
065	Mysidopsis sp.	Species-specific	East coast of North America; Gulf of Mexico	
162	Neomysis sp.		East coast of North America	
161	Neomysis sp.		East coast of North America	
056	Gasterosteus aculeatus	Cultured organisms available	West and east coasts of North America	Yes; also field collected
98	Mysidopsis sp.	Species – specific	East coast of North America; Gulf of Mexico	
156	Leuresthes tenuis	Limited	Southern California	
165	Dinophilus gyrociliatus			

ĕ	I ABLE D-11. (cont.) Availability	Į,v		Englating Delanage	
Test	Protocol	Overall	Field	Species Species	-
2	. !	Availability	Validation	The portance	Copposition
8	ASTM (1990)	3		High; foundation species	Econelevalice
129	ASTM (1990)	က	Field validated (calibrated) to benthos (Swartz et al. 1994)	Free-burrowing, sand dwaller improve to shorehirds and lishes	5 (
003	EC (1992a)	က		Figure Dirrowing sand dweller imp way to shorehinds and fishes	OJ (
133	ASTM (1990)	ო		Rerow-hilding	N
135	Modified	က		Birowbuilding	OI ·
					CV
126	EC (1992a)	ო		Species forms a major food component of migrating seahirds	•
905	EC (1992a)	က			N (
128		ဗ		Species forms a major food comnonent of migrating saabings	OV (
134	Under development	ဗ		Burrow—building	CV (
131	Yes	CV.		Detritovore that will burrow in the sediment surface; digests bacteria and algae from ingested sediment particles	N C
020		ณ		Harvested	ı
017	ASTM (1989)	ო		High: folindation energies havington	m
027	Yes	-		Harvested	4
151	Yes	-		High	o
910	U.S. EPA (1991b)	၈		High; foundation species; harvested	M 4
600	ASTM (1989)	٥		Light managhter himber lifestations to the second	•
91	ASTM (1989)	i (N	Field validated (calibrated) to benthos (Becker et al. 1990)	Figur, serisitive bivaive lilestage. Tervestag High: sensitive bivelve lilestage. Preceded	4
030	Yes	-		ייושיין שלויים טוימשים וויסטימשם, וומויים שלויים	4
153	Yes	4			0 ·
010	U.S. EPA (1991b)	N	Field validated (calibrated) to benthos (Becker et al. 1990) High; sensitive bivalve lifestage; harvested	High; sensitive bivalve lifestage; harvested	u 4
157	Yes	ღ			• (
158	Yes	ю			N 1
914	ASTM (1989)	8		Harvested	OV C
026	Yes	-		Havested	m (
990	Yes	-			ກ ເ
162	Yes	N			d (
161	Yes	cv			οι (
990	EC (1990c)	ဗ			N G
064	Yes	-			N C
	Adapted	-			N G
165		-			, .

TABLE D-11. (cont.)

					ZEI SEI SE	
Test	Test				Overall	
2	Species	Accuracy	Objectivity	Endpoint	Reliability	Notes
901	Ampelisca abdita	I	I	Survival	8	Interlab (U.S. EPA 1992); problem with inexperienced laboratory
129	Eohaustorius estuarius	I	I	Survival	4	
603	Eohaustorius washingtonianus	I	I	Survival	4	Interlab (Paine and McPherson 1991a,b)
133	Leptocheirus płumulosus	I	I	Survival	4	Interlab (DeWitt et al. 1992)
135	Leptocheirus plumulosus	I	I	Survival	၈	
126	Corophium volutator	I	I	Survival	4	Interlab (Paine and McPherson 1991a)
200	Amphiporeia virginiana	I	I	Survival	4	Interlab (Paine and McPherson 1991a)
128	Corophium volutator	I	I	Survival	4	Interlab (Paine and McPherson 1991a)
134	Leptocheirus plumulosus	I	I	Survival	င	
131	Hyaiella azteca	I	I	Survival	က	
020	Protothaca staminea	I	I	Survival	ဇ	
017	Mytiius edulis	I	I	Survival	Q	
027	Callinectes sapidus	I	I	Survival	ဇ	
151	Palaemonetes sp.	I	I	Survival	8	
016	Mytilus edulis	I	I	Survival	8	
600	Crassost ea virginica	I	I	Survival	8	
011	Crassost ea gigas	I	I	Survival	cı	
030	Crangon sp.	I	I	Survival	6	
153	Cyprinodon variegatus	I	I	Survival	6	
010	Crassost ea gigas	I	Ŧ	Survival	81	
157	Menidia sp.	I	I	Survival	4	Interlab (U.S. EPA 1991c)
158	Menidia sp.	I	I	Survival	4	Interlab (U.S. EPA 1991c)
014	Mercenaria mercenaria	I	I	Survival	CJ.	
026	Callinectes sapidus	I	I	Survival	m	
90	Mysidopsis sp.	I	I	Survival	4	Interlab (U.S. EPA 1991c)
162	Neomysis sp.	I	I	Survival	က	
161	Neomysis sp.	I	I	Survival	၈	
920	Gasterosteus aculeatus	I	I	Survival	ო	
064	Mysidopsis sp.	I	I	Survival		
156	Leuresthes tenuis	I	I	Survival	က	
165	Dinophilus gyrociliatus	I	I	Survival	6	

ot found in sulfde mud with excessive organic detritus of found in sulfde mud with excessive organic detritus rival or growth.	3	ועסרר כי יויי (ספוויי)	Interferences	
Amplificate adults Echauschule washingforians Peleta sand; and emudgilit species toterance irrage established; not led Echauschule settarius Peleta sand; and emudgilit species toterance irrage established; not led Echauschule washingforians Interflect disputation to the sand; McGee et al. 1993; not fed Lipsochiatus phrundosus Lupes forbitus phrundosus Mythus adults Potorbaca saminea Mythus adults Crassocke as vigination and and and and and and and and and an	Test	Test		Overall
Ampelisca abdita Eohausbrius estuarius Eohausbrius estuarius Eohausbrius washingtonianus Leptocheirus plumulosus Corophium volutator Amphiporeia viginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea gigas Crassost ea gigas Crassost ea gigas Crassost ea gigas Menidia sp. Menidia sp. Meridia sp. Meridia sp. Meridia sp. Mysidopsis sp. Neomysis sp. Callinectes sapidus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	Ž	Species	Notes	Interferences
Echausbrius estuarius Echausbrius washingtonianus Leptocheirus pumulosus Leptocheirus pumulosus Corophium volutator Amphiporeia virginlana Corophium volutator Amphiporeia virginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea virginica Crassost ea gigas Crassost ea gigas Crassost ea gigas Menidia sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	9	Ampelisca abdita		၈
Echausbrius washingtonianus Leptocheirus plumulosus Leptocheirus plumulosus Corophium volutator Amphiporeia virginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crangon sp. Cyprinodon variegatus Crangon sp. Cyprinodon variegatus Crangon sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	129	Eohaustorius estuarius	Prefers sand; not fed	က
Leptocheirus plumulosus Leptocheirus plumulosus Corophium volutator Amphiporeia virginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Cransost ea gigas Cransost ea gigas Cransost ea gigas Cransost ea gigas Menidia sp. Menidia sp. Meridia sp.	003	Eohaustorius washingtonianus	Insufficient data	က
Leptocheirus plumulosus Corophium volutator Amphiporeia virginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	133	Leptocheirus plumulosus	Lives in medium to fine sand; wide tolerance (silt to sand) (McGee et al. 1993); fed	8
Corophium volutator Amphiporeia viginlana Corophium volutator Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea viginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Carestres tenuis Mysidopsis sp. Leurestres tenuis Dinophilus gyrociliatus	135	Leptocheirus plumulosus	Lives in medium to line sand; wide tolerance (sit to sand) (McGee et al. 1993); not fed	၈
Amphiporeia virginlana Corophium volutator Leptocherus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crassost ea gigas Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	126	Corophium volutator	Little effect of grain size or organic content on survival rates; 37% silt or clay, mud or muddy sand; not found in sulfide mud with excessive organic detritus	ဗ
Corophium volutator Leptocherus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea viginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Reuresthes tenuis Dinophilus gyrociliatus	005	Amphiporeia virginlana	Not influenced mark edly by sediment particle size.	က
Leptocheirus plumulosus Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	128	Corophium volutator	Little effect of grain size or organic content on survival rates; 37% silt or clay, mud or muddy sand; not found in sulfide mud with excessive organic detritus	ო
Hyalella azteca Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Meridia sp. Meridia sp. Mericeraria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	134	Leptocheirus plumulosus	Lives in medium to fine sand; wide tolerance (sift to sand) (McGee et al. 1993)	က
Protothaca staminea Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea vigas Crangon sp. Cyprinodon variegatus Crangon sp. Cyprinodon variegatus Crangon sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	131	Hyalella azteca	Wide tolerance of sediment grain-size; >90% silVday to 100% sand did not reduce survival or growth.	4
Mytilus edulis Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea viginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	020	Protothaca staminea		င
Callinectes sapidus Palaemonetes sp. Mytilus edulis Crassost ea viginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Meridia sp. Mysidopsis sp. Neomysis sp. Callinectes sapidus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	017	Mytilus edulis	Elutriate test (N/A); not fed	4
Palaemonetes sp. Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Meridia sp. Mer cenaria mer cenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	027	Callinectes sapidus		4
Mytilus edulis Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Meridia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Casterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	151	Palaemonetes sp.	Not fed	4
Crassost ea virginica Crassost ea gigas Crangon sp. Cyprinodon variegatus Crangon sp. Cyprinodon variegatus Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysicopsis sp. Neomysis sp. Neomysis sp. Mysicopsis sp. Callinectes sauleatus Callinectes sapidus Mysicopsis sp. Callinectes sauleatus Callinectes s	910	Mytilus edulis	Increased response in fine grained sediments (Chapman et al. 1987); not fed	0
Crassost ea gigas Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Mer cenaria Elutriate test (N/A); fed daily Mysidopsis sp. Elutriate test (N/A); fed daily Elutriate test (N/A); fed daily Leur esthes tenuis Interstitial test (N/A); fed at 4	600	Crassost ea virginica	Elutriate test (N/A); not fed	4
Crangon sp. Cyprinodon variegatus Crassost ea gigas Menidia sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Celutriate test (N/A); fed daily Gasterosteus aculeatus Mysidopsis sp. Elutriate test (N/A); fed daily Gasterosteus aculeatus Mysidopsis sp. Elutriate test (N/A); fed daily Gasterosteus aculeatus Elutriate test (N/A); fed daily Gasterosteus aculeatus Elutriate test (N/A); fed at 44 Elutriate test (N/A); fed at 44 Dinophilus gyrociliatus Interstitial test (N/A); fed at 44	011	Crassost ea gigas	Elutriate test (N/A); not fed	4
Cyprinodon variegatus Crassost ea gigas Crassost ea gigas Menidia sp. Menidia sp. Menidia sp. Menidia sp. Mer cenaria mer cenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Mysidopsis sp. Mysidopsis sp. Elutriate test (N/A); fed daily Elutriate test (N/A); fed daily Mysidopsis sp. Fed daily Fed daily Fed daily Fed daily Fed daily Fed daily Elutriate test (N/A); fed daily Mysidopsis sp. Elutriate test (N/A); fed daily	030	Crangon sp.		4
Crassostrea gigas Menidia sp. Menidia sp. Menidia sp. Menidia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Mysidopsis sp. Elutriate test (N/A); fed daily Elutriate test (N/A); fed daily Mysidopsis sp. Fed daily	153	Cyprinodon variegatus	Elutriate test (N/A)	4
Menidia sp. Menidia sp. Meridia sp. Mercenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	010	Crassost ea gigas	Not fed; potential effects of fine sediments (PTI 1994)	0
Menidia sp. Mer cenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	157	Menidia sp.	Elutriate test (N/A); fed at 48h	e
Mer cenaria mercenaria Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	158	Menidia sp.	Elutiate test (N/A); fed at 48h	က
Callinectes sapidus Mysidopsis sp. Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	014	Mercenaria mercenaria	Elutriate test (N/A); not fed	4
Mysidopsis sp. Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	026	Callinectes sapidus	Elutriate test (N/A)	4
Neomysis sp. Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	900	Mysidopsis sp.	Elutriate test (N/A); fed daily	ო
Neomysis sp. Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	162	Neomysis sp.	Elutriate test (N/A); fed daily	ဧ
Gasterosteus aculeatus Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	161	Neomysis sp.	Fed daily	0
Mysidopsis sp. Leuresthes tenuis Dinophilus gyrociliatus	056	Gasterosteus aculeatus	Elutriate test (N/A)	4
Leuresthes tenuis Dinophilus gyrociliatus	064	Mysidopsis sp.	Fed daily	0
Dinophilus gyrociliatus	156	Leuresthes tenuis	Elutriate test (N/A); fed at 48h	က
	165	Dinophilus gyrociliatus	Interstitial test (N/A)	3

TABLE D-11. (cont.)	
Test	
- 1	
001 Sensitive to wide range of anthrop og ento materials (e.g., PAH, PCB, metals). 129 E. estuarius less sensitive to fines than R. abronius (DeWitt et al. 1989).	metals). 399).
003 E. washingtonlanus is the same or slightly more sensitive than Repoxynius; more difficult to remove from test sediment than R. abronius	oxynius; more difficult to remove from test sediment than R.abronius
133	
135	
126 High (>90%) survival rates have been noted for sediments with up to 102 g/kg total votatile residue (Palne and McPherson 1991b).	o 102 g/kg total volatile residue (Paine and McPherson 1991b).
002	
128 High (>90%) survival rates have been noted for sediments with up to 102 g/kg total volatile residue (Paine and McPherson 1991b).	o 102 g/kg total volatile residue (Paine and McPherson 1991b).
134	
131	
020	
017 Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1	d In Chapman et al. (1987) and Long et al. (1990).
027	
151	
016 Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1987) and Long et al. (1990)	d In Chapman et al. (1987) and Long et al. (1990).
600	
011	
030	
153	
010	
157	
158	
014	
026	
065	
162	
161	
056	
064	
156	
165	

֡
Ì
į

		Chemical Discrimination	
	Test	Overall	Regulatory
No.	Species	Sensitivity	Status
	Ampelisca abdita	4	High
129 E	Eohaustorius estuarius	4	High
003 E	Eohaustorius washingtonianus	4	Medium
133 L	Leptocheirus plumulosus	4	Low
135 L	Leptocheirus plumulosus	4	High
126 C	Corophium volutator	4	Medium
002 A	Amphiporela virginiana	8	Medium
128 C	Corophium volutator	4	Low
	Leptocheirus plumulosus	4	Low
131 H	Hyalella azteca	4	High
020 P	Protothaca staminea	0	Low
017 N	Mytilus edulis	4	Medium
027 C	Callinectes sapidus	8	Low
151 P	Palaemonetes sp.	4	Low
016 M	Mytilus edulis	4	Medium
O 600	rassostea virginica	4	Medium
011 C	Crassost ea gigas	4	Medium
030 C	Crangon sp.	63	Low
	Cyprinodon variegatus	-	Low
010 C	Crassos t ea gigas	4	Medium
157 M	Menidia sp.		Medium
158 M	Menidia sp.	-	Medium
014 M	Mercenaria mercenaria	4	Low
026 C	Callinectes sapidus	4	Low
065 M	Mysidopsis sp.	4	Medium
162 N	Neomysis sp.	4	Medium
161 N	Neomysis sp.	4	Low
056 G	Gasterosteus aculeatus	0	Medium
064 M	Mysidopsis sp.	4	Low
	Leuresthes tenuis	-	Low
165 D	Dinophilus gyrociliatus	2	Low

TABLE D-11. (cont.)

ė

General Notes

Control survivability declines in coarse sand; euryhaline, amphpods are more sensitive to contaminated sediments than other major taxa (Swartz 1987) 8

High level of avaitability, easy to handle, tolerant to a wide range of salinities; amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1987).

High level of availability, easy to handle, tolerant to a wide range of sallnities; amphip ods are more sensible to contaminated sediments than other major taxa (Swartz 1987); most common haustorid species in British Oplumbia. 800

The corc entration -sensitivity of L. plumulosus varied with the bioavallability of the toxicant. 133 The corcentration -sensitivity of L. plumulosus varied with the bioavallability of the toxicant.

135

This species is generally less sensitive to contaminated sediments than R. abronius, animals selective deposit feeders, feeding on diatoms, microalgae, and bacteria associated with sediment particles, found over a wide range of satinities. 126

Tolerant to wide range of salinities, however, reduced survival if salinity <20 ppt (Doe and Wade 1991); similar sensitivity to R. ab ronlus. 8 This species is generally less sensitive to contaminated sediments than R. shronlus, animals selective deposit feeders, feeding on diatoms, microalgae, and bacteria associated with sediment particles, found over a wide range of salinities.

The cord entration -sensitivity of L. plumulosus varied with the bloavailability of the toxicant. 134

128

Dominant role in many aquate ecosystems; process organic matter (detritus) and are a primary food source for benthic feeding fish (Pennak 1978, 1989) 131

017

020

027

151

Sensitivity of M. edulis and R. & ronlus tests appears to be similar (Chap man et al. 1987; Long et al. 1990; Williams et al. 1986); & normal development if >30 embryos/mt.

Can tolerate DO of 0.5 mg/L; however, growth is reduced at DO <4.2 mg/L; abnormal development if >30 embryos/mL

Not too difficult to isolate and obtain large numbers of embryos from individual male-female pairs

910

600

5

030

153 910

Widely used as estuarine toxcity and physiological test organism; has been proposed for use in dredged material assessments.

Not too difficult to isolate and obtain large numbers of embryos from Individual male-female pairs

157

Abnormal development if >30 embryos/mt. 914 158

026

965

162

161

Well documented life history, easily captured; species is euryhaline; size sultable for acute toxicity tests, recommended by EC and PPA

056

064

59

189 1	les!		
è S	Species	References	
8	Ampelisca abdita	ASTM (1990) (E1367-90); U.S. EPA (1991b); U.S. EPA and U.S. COE (1991, 1993)	
129	Eohaustorius estuarius	ASTM (1990) (E1367-90); U.S. EPA and U.S. COE (1993); Environment Canada (1992a)	
003	Eohaustorius washingtonianus	Environment Canada (1992a)	
133	Leptocheirus plumulosus	DeWitt et al. (1992)	
135	Leptocheirus plumulosus	Schlekat et al. (1992); U.S. EPA and U.S. COE (1993)	
126	Corophium volutator	Environment Canada (1992a), based on ASTM (1990) (E1367-90); Swartz et al. (1985)	
005	Amphiporeia virginiana	Environment Canada (1992a)	
128	Corophium volutator	Tay et al. (1992), based on Swartz et al. (1985); U.S. EPA and U.S. COE (1993); ASTM (1990) (E1367 – 90)	190) (E1367-90)
134	Leptocheirus plumulosus	McGee et al. (1993)	
131	Hyalella azteca	ASTM (1991b) (E1383-90); U.S. EPA and U.S. COE (1993)	
020	Protothaca staminea	Swartz et al. (1979); U.S. EPA and U.S. COE (1991)	
017	Mytitus edulis	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1991, 1993)	
027	Callinectes sapidus	U.S. EPA and U.S. COE (1991)	
151	Palaemonetes sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	
910	Mytilus edulis	U.S. EPA (1991b)	
600	Crassost ea virginica	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1991, 1993)	
011	Crassost ea gigas	ASTM (1989) (E724-89); U.S. EPA and U.S. COE (1993)	Notes
030	Crangon sp.	U.S. EPA and U.S. COE (1991)	EL - elutriate
153	Cyprinodon variegatus	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)	EX - extract INT - interetitiel water
010	Crassost ea gigas	U.S. EPA (1991b)	S - sediment
157	Menidia sp.	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)	N/A – not applicable
158	Menidia sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	IV.S - not specified
014	Mercenaria mercenaria	ASTM (1989) (E724-89)	EC - Environment Canada (1990, 1992)
026	Callinectes sapidus	U.S. EPA and U.S. COE (1991)	UD = 0.3. EPA and 0.3. COE (1991)
065	Mysidopsis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	Т – U.S. EPA (1992)
162	Neomysis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	
161	Neomysis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	
056	Gasterosteus aculeatus	Environment Canada (1990c)	
064	Mysidopsis sp.	U.S. EPA and U.S. COE (1991, 1993); U.S. EPA (1991a)	
156	Leuresthes tenuis	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)	
165	Dinophilus avrociliatus	Jong et al (1990): Carr et al (1989)	

;	ċ	
	1	
,	,	
1	1	
į	7	
ì	•	•
1	į	
7	į	
3	¢	ľ
:		
	,	
Ĺ	i	
	١	
	,	
í	É	
ì		
4	9	
-	_	
-	d	ĺ
ì	7	
	_	
į	1	
į	i	
ŀ		
2	>	
5	-	
ì		
í	=	١
Ě		
t	_	
7	2	
÷	Š	
;	=	۰
Ĺ	ı	
Ç	Ī	į
Ç	Y	
Ç	-	
٠	,	
Š		
è	ř	
		•
•	•	į
1	ı	•
ć		
Ļ	ı	
-		
r		
-	į	

Test		Exposure	• Biotic	Common			Test
No.	Site	Media	Group	Name	Life Stage	Recommended	Species
100	E/S	S	Amphipod	Amphipod	Juv or adult females		Ampelisca abdita
134	E/S	တ	Amphipod	Amphipod	Juveniles		Leptocheirus ptumulosus
35	E/S	တ	Amphipod	Amphipod	Mixed sexes (4-8 mm)		Leptocheirus plumulosus
129	E/S	တ	Amphipod	Amphipod	Large juv and adults (3-5 mm)		Eohaustorius estuarius
58	E/S	တ	Amphipod	Amphipod	Adults		Corophium volutator
33	E/S	တ	Amphipod	Amphipod	Juveniles (2-4 mm)		Leptocheirus plumulosus
710	E/S	핍	Bivalve	Blue mussel	Embryos		Mytilus edulis
-	E/S	긥	Bivalve	Pacific oyster	Embryos		Crassost ea gigas
10	E/S	တ	Bivalve	Pacific oyster	Embryos		Crassost ea gigas
91	E/S	Ø	Bivalve	Blue mussel	Embryos		Mytilus edulis
4	E/S	ᆸ	Bivalve	Quahog clam	Embryos		Mercenaria mercenaria
600	E/S	핍	Bivalve	Eastern oyster	Embryos		Crassost ea virginica
187	E/S	핔	Fish	Sheepshead minnow	Adults		Cyprinodon variegatus
176	E/S	ă	Bacterium	Microtox	Cells		Photobacterium phosphoreum
191	E/S	ĪNI	Polychaete	Polychaete	Females (1 ~2 days)		Dinophilus gyrocillatus
175	E/S	တ	Bacterium	Microtox	Celfs		Photobacterium phosphoreum

_
=
50
Si.
Ī
ш
=
9
~

							Exposure Relevance
Test	Test	Salinity			Habitat		
Š.	Species	(bbt)	Duration	Media	Group	Ecorating	Notes
9	Ampelisca abdita	28-35	10 days	တ	_	4	Particle-feeding, tube dweller
134	Leptocheirus plumulosus	6.3-8.0	30 days	တ	_	4	i
135	Leptocheirus plumulosus	2-30	28 days	တ	-	4	
129	Eohausforius estuarius	2~<28	10 days	တ	_	4	
128	Corophium volutator		10 days	ຫ	-	က	
133	Leptocheirus plumulosus	5-25	28 davs	w	-	4	
017	Mytilus edulis	18-32	48 hrs	, ਘੁ	. a		
110	Crassost ea gigas	18-32	48 hrs	ᆸ	. a.	. 0	
010	Crassostea gigas	28	48-60 hrs	တ	۵	-	
910	Mytilus edulis	28	48 60 hrs	တ	۵	-	
014	Mercenaria mercenaria	18~32	48 hrs	ᆸ	۵	0	
600	Crassost ea virginica	18-32	48 hrs	ᆸ	۵	0	
187	Cyprinodon variegatus	30	96 hrs	ᆸ	z	0	
176	Photobacterium phosphoreum	20	15 min	Ճ	a .	0	
191	Dinophilus gyrociliatus	25 +/- 1	7 days	Ņ	ш	-	
175	Photobacterium phosphoreum	20	30 min	ဟ	۵	0	

cont.)	
2	
0-1	
三	
8	

			Availability	
Test	Test Test		Geographic	
Š	Species	Seasonality	Соvегаде	Cultured
8	Ampelisca abdita	Year -round (juveniles sometimes difficult to obtain)	East coast of North America; Gulf of Mexico; San Francisco Bay	No; field collected
134	Leptocheirus plumutosus	Year -round; cultured organisms available	East coast of North America	Yes; also field collected
135	Leptocheirus plumulosus	Year -round; cultured organisms available	East coast of North America	Yes; also field collected
129	Eohaustorius estuarius	Year round	Central British Columbia to central California	No; field collected
128	Corophium volutator	Densities increase from June to September; low from January to May	Northeast coast of North America	
133	Leptocheirus plumulosus	Year –round; cultured organisms available	East coast of North America	Yes; also field collected
017	Mytilus edulis	6 months; cultured organisms available	West coast of North America	Yes
011	Crassost ea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
010	Crassost ea gigas	6 months (lab conditioning possible)	West coast of North America	Yes
910	Mytilus edulis	6 months; cultured organisms available	West coast of North America	Yes
014	Mercenaria mercenaria	Limited	East coast of North America	Yes
600	Crassost ea virginica	Limited	East and gulf coasts of North America	Yes
187	Cyprinodon variegatus	Cultured organisms available	East coast of North America	Yes; also field collected
176	Photobacterium phosphoreum	N/A; laboratory cultures	N/A; laboratory cultures	Yes
191	Dinophilus gyrociliatus			
175	Photobacterium phosphoreum	N/A; laboratory cultures	N/A; laboratory cultures	Yes

_		
ċ	_	
•	1	
L	Ц	
Š	0	
۲	_	

INDEE U-IZ. COIII.	7111.			
Availability	ility	Ecological Relevance	91 в матсе	
Test Protocol	Overall	Fleid	Species	Overall
No. Development	Availability	Availability Validation	Importance	EcoRelevance
001 ASTM (1990)	ဧ		High; foundation species	9
134 Under development	±		Burrow-building	Ø
135 Modified	က		Burrow-building	Q
129 ASTM (1990)	က	3 Field validated (calibrated) to benthos (Swartz et al. 1994)	Free-burrowing, sand dweller, imp. prey to shorebirds and fishes	Ø
128	က		Species forms a major food component of migrating seabinds	CV
133 ASTM (1990)	ю		Burow-building	Q
017 ASTM (1989)	က		High; foundation species; harvested	4
011 ASTM (1989)	8	Field validated (calitrated) to benthos (Becker et al. 1990)	High; sensitive bivalve lifestage; harvested	ဗ
010 U.S. EPA (1991b)	Ø,	Field validated (calibrated) to benthos (Becker et al. 1990)	High; sensitive bivalve lifestage; harvested	4
016 U.S. EPA (1991b)	ဗ		High; foundation species; harvested	4
014 ASTM (1989)	N		Harvested	4
009 ASTM (1989)	N		High; sensitive bivalve lifestage; harvested	4
187 Incomplete ref.	4			Q
176 Modified	4	Field validated (calibrated) to benthos (Glesy et al. 1990, Roslu et al. 1989, Williams et al. 1986).	Low	Q
191 Yes	-			-
175 Yes	CI		Low	-

it.)
cont.
-12
0
Ш
TABL

2	ואשרב ט – ובי ניסווני	and the same of th				
					Reliability	
Test	Test				Overall	
Š	Species	Accuracy	Objectivity	Endpoint	Reliability	Notes
8	Ampelisca abdita	-1	I	Reburial and 10-day growth	8	Problem with inexperienced lab
134	Leptocheirus plumulosus	Σ	I	Growth and reproduction	CV	
135	Leptocheirus plumulosus	Σ	I	Growth and reproduction	CI	
129	Eohaustorius estuarius		I	Reburial	α	
128	Corophium volutator	ي.	I	Reburial	၈	Interlab (Paine and McPherson 1991a)
133	Leptocheirus płumulosus	Σ	Ι	Growth and fer tility	ά	
017	Mytilus edulis	Σ	٦	Abnormality	82	Inter/intra lab (Pastorok et al. 1994)
110	Crassost ea gigas	Σ	_	Abnormality	8	Inter/intra lab (Pastorok et al. 1994)
010	Crassost ea gigas	Σ	_	Abnormality	Q	
016	Mytilus edulis	Σ	J	Abnormality	-	
410	Mercenaria mercenaria	Σ	_	Abnormality	-	
600	Crassost ea virginica	Σ	٦	Growth; abnormality	-	
187	Cyprinodon variegatus	ب	Σ	Respiration	-	
176	Photobacterium phosphoreum	_	I	Luminescence	α.	
191	Dinophilus gyrocifiatus	Σ	I	Fecundity	(N	
175	Photobacterium phosphoreum		I	Luminescence	CV.	

_
•
ŧ
7
9
_
_
S
-
- 1
_
5
F D-
щ
щ
щ
щ

Ampelisaca abdita Imbabits line sand—mudsilt; Species tolerance range established; not fed Leptocheirus pumulosus Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993); not fed Crassoste agigas Mytilus edulis Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993); fed Lutriate test (N/A); not fed Crassoste agigas Mytilus edulis Lives in medium to fine grained sediments (Chapman et al. 1997); not fed Crassoste agigas Mytilus edulis Lives in medium to fine grained sediments (Chapman et al. 1997); not fed Crassoste agigas Mytilus edulis Lives in medium to fine grained sediments (Chapman et al. 1997); not fed Crassoste agigas Mytilus edulis Lives in medium to fine grained sediments (Chapman et al. 1997); not fed Crassoste agigas Not fed Crassoste agigas Not fed Crassoste agigas Intersite test (N/A); not fed Crassoste agigas Dinophitus gyvocalietus Photobacderium phosphoreum Lives in medium to fine grained sediments (Chapman et al. 1990); not fed Crassoste agigas Dinophitus gyvocalietus Lives in medium to fine grained sediments (N/A); hot fed Crassoste agigas Dinophitus gyvocalietus Lives in medium to fine grained sediments (Chapman et al. 1990); not fed Crassoste agigas Dinophitus gyvocalietus Lives in medium to fine grained sediments (Chapman et al. 1990); not fed Crassoste agigas Dinophitus gyvocalietus Lives in medium to fine grained sediments (Chapman et al. 1990); not fed Crassoste agigas Lives in medium to Mystilus et al. 1990; not fed	ŧ	-	Diariprops	
Ampelisca abdita Ampelisca abdita Ampelisca abdita Ampelisca abdita Ampelisca abdita Ampelisca abdita Lives in medium to fine sand —mud/silt; Species tolerance range established: not fed Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993); not fed Corophium volutator Lepbcheius plumulosus Corophium volutator Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993) Aprilius edulis Crassoste agigas Crassoste agigas Crassoste agigas Crassoste agigas Not fed Myrilus edulis Myrilus edulis Myrilus edulis Myrilus edulis Myrilus edulis Crassoste agigas Not fed Crassoste agigas Not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Cyptrinodon variegatus Eutriate test (N/A); not fed Crassoste aviginica Corophilus yellos et al. 1993); not fed Crassoste aviginica Corophilus yellos et (N/A); not fed Crassoste aviginica Corophilus yellos et al. 1993); not fed Crassoste avi	<u>.</u>			
Ampelisca abdita Inhabits fine sand – mudslit; Species tolerance range established: not fed Lepbocheirus pumulosus Lepbocheirus pumulosus Echausbrius estuarlus Prefers sand; not fed Corophium volutator Lepbocheirus pumulosus Mytilus edulis Crassostra a gigas Crassostra a viginica Crassostra wiginica Crassostra wiginica Chassostra wiginica Chastostra wiginica Chastostra in more maria Coyprinodon variegatus Chastostra in prosphoreum Chastitei test (N/A); not fed Chastostra in more maria Chastostra in more more maria Chastostra in more maria Chaptor more maria Chastostra in more maria in in or fed Chastostra in more maria in more maria in in or fed Chastostra in more maria in more maria in in or fed Chastostra in m	[Species	Notes	Overall
Leptocherrus pumulosus Leptocherrus pumulosus Eohaustorius estuarius Corophium volutator Leptocherus pumulosus Mytilus edulis Crassost ea gigas Grassost ea gigas Mytilus edulis Mercenaria mercenaria Crassost ea viginica Crassost ea viginica Cryprinodon variegatus Photobacterium phosphoreum Photobacterium phosphoreum Photobacterium phosphoreum		Ampelisca abdita	Inhabits fine sand-mud/sitt; Species tolerance range established; not fed	Interferences
Leptocherus plumulosus Eohaustorius estuarius Corophium volutator Leptocherus plumulosus Mytilus edulis Crassost ea gigas Grassost ea viginica Grassost ea viginica Crassost ea viginica Crassost ea viginica Cyprinodon variegatus Photobacterium phosphoreum Photobacterium phosphoreum Photobacterium phosphoreum		Leptocheirus plumulosus	Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993); not fed	က
Echaustorius estuarius Corophium volutator Leptocherus plumulosus Mytilus edulis Crassost ea gigas Crassost ea gigas Grassost ea gigas Mytilus edulis Mercenaria mercenaria Crassost ea viginica Cyprinodon variegatus Photobacterium phosphoreum Photobacterium phosphoreum		Leptocheirus plumulosus	Lives in medium to fine sand; wide tolerance (sit to sand) (McSae et al. 1000)	က
Leptocheirus plumulosus Mytilus edulis Crassost ea gigas Crassost ea gigas Crassost ea gigas Aytilus edulis Mercenaria mercenaria Cassost ea viginica Cyprinodon variegatus Photobacterium phosphoreum Photobacterium phosphoreum		Eohaustorius estuarius	Prefers sand; not fed	က
Leptocheirus plumulosus Mytilus edulis Crassost ea gigas Crassost ea gigas Mytilus edulis Mercenaria mercenaria Crassost ea virginica Cryprinodon variegatus Photobacterium phosphoreum Photobacterium phosphoreum		Corophium volutator	Little effect of grain size or organic content on survival rates; 37% silt or clay, mud or muddy sand; not found in suifide mud with excessive nmanic dentine	<i>m</i> (
Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A); not fed Not fed Not fed Increased response in fine grained Increased response in fine grained Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A).		Leptocheine numiliere	Charles and the state of the st	?
Elutriate test (N/A); not fed Not fed Increased response in fine grainec Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A).		Mytilus edulis	Lives in medium to fine sand; wide tolerance (sit to sand) (McGee et al. 1993); fed	o
Elutriate test (N/A); not fed Not fed Indeased response in fine grained Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A) Extract test (N/A) less sensitive to NH3 Interstitial test (N/A)		Crassostea didae	Del Del (VA) 1001 (et al. 1001)	
Indreased response in fine grained Indreased response in fine grained Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A). Extract test (N/A) less sensitive to NH3 Interstitial test (N/A).		Crassostes ciose	First lest (N/A); not led	* *
Indeased response in fine grained Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A). Extract test (N/A); less sensitive to NH3 Interstitial test (N/A).		man and an	Dailor	t '
Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A) Extract test (N/A); less sensitive to NH3 Interstitial test (N/A)		Mytifus edulis	Increased response in fine grained sediments (Chapman et al. 1987); not fed	00
Elutriate test (N/A); not fed Elutriate test (N/A); not fed Elutriate test (N/A) Extract test (N/A), less sensitive to NH3 Interstitial test (N/A)				
Elutriate test (N/A); not fed Elutriate test (N/A) Extract test (N/A); less sensitive to NH3 Interstitial test (N/A)		Mercenaria mercenaria	Elutriate test (N/A); not fed	
Elutriate test (N/A) Extract test (N/A); less sensitive to NH3 Interstitial test (N/A) less sensitive to NH3 then Coninder		Crassost ea virginica	Elutrate test (N/A): not fed	4
Extract test (N/A); less sensitive to NH3 Interstitial test (N/A)		Cyprinodon variegatus	Elutrate test (NA)	4
Interstitial test (N/A) Less sensitive to NH3 than Carioda		Photobacterium phosphoreum	EXITACT fact (N/A) lace concilio to NM3 than Colored	4
		Dinophilus gyrociliatus	Interstitial test (NA)	-
		Photobacterium phosphoreum		က

_
=
(cont
12.
- 1
Щ
TABL
-

Chemical Discrimination

No. Sensitivity

oor sensitive to wide range of anthropogenic materials (e.g., PAH, PCB, metals).

134

129 E. estuaris less sensitive to fines than R. abronius (DeWitt et al. 1989).128 Hgh (>90%) survival rates have been noted for sediments with up to 102 g/kg total volatile residue (Paine and McPherson 1991b).

133
O17 Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1987) and Long et al. (1990).
O11 010 016 Highly sensitive response of M. edulis to toxic sediment was reported in Chapman et al. (1987) and Long et al. (1990).

175 High sensitivity, more sensitive to hydrophobic chemicals than elutrate Microtox.

_
╚
0
cont
₹
S
•
_
- 1
_
ш
=
ABLE
⋖
$\overline{}$

	·····		
		Chemical Discrimination	
Test	Test Test	Overall	Regulatory
S S	Species	Sensitivity	Status
00	Ampelisca abdita	4	Low
134	Leptocheirus plumulosus	4	Low
135	Leptocheirus plumulosus	4	Low
129	Eohaustorius estuarius	4	Low
128	Corophium volutator	4	Low
133	Leptochelrus plumulosus	4	Low
217	Mytilus edulis	4	Low
011	Crassost ea gigas	4	Low
010	Crassost ea gigas	4	Medium
910	Mytilus edulis	4	Medium
410	Mercenaria mercenaria	4	Low
600	Crassost ea virginica	4	Low
187	Cyprinodon variegatus	4	Low
176	Photobacterium phosphoreum		Low
191	Dinophilus gyrociliatus	4	Low
175	Photobacterium phosphoreum	က	Low

TABLE D-12. (cont.)

General Notes

- Control survivability declines in coarse sand; euryhaling amphbods are more sensitive to contaminated sediments than other major taxa (Swartz 1987). <u>8</u>
- The corr entration sensitivity of L. plumulosus varied with the bioavailability of the toxbant 134
- High level of availability, easy to handle, tolerant to a wide range of sallnities; amphipods are more sensitive to contaminated sediments than other major taxa (Swartz 1987), The concentration - sensitivity of L. plumulosus varied with the bioavailability of the toxicant. 135 129
- This species is generally less sensitive to contaminated sediments than A. abronius, animals selective deposit feeders, feeding on diatoms, microalgae, and bacteria associated with sediment particles; found over a wide range of salinities.
- The cord entration sensitivity of L. plumulosus varied with the bloavailability of the toxicant. 133
- Sensitivity of M. edulis and R. abronius tests appears to be similar (Chap man et al. 1987; Long et al. 1990, Williams et al. 1986); ab normal development if >30 embryos/ml.
 - Not too difficult to isolate and obtain large numbers of embryos from individual male-female pairs.

5

017

- Not too difficult to isolate and obtain large numbers of embryos from individual male~female pairs. 910
- Sensitivity of M. edulis and R. abronius tests appears to be similar (Chap man et al. 1987; Long et al. 1990; Williams et al. 1986); ab normal development if >30 embryos/ml.
- Abnormal development if >30 embryos/ml. 014

187

- Can tolerate DO of 0.5 mg/L; however, growth is reduced at DO <4.2 mg/L; abnormal development if >30 embryos/mL 8
- Widely used as estuarine toxicity and physiological test organism; has been proposed for use in dredged material assessments.
- Burton and Ingersoll (1994) reported that Mcrotox had equal sensitivity to Oncorhyrchus mykiss, Pimephales promelas, Lepomis macrochirus, Cyprindon variegatus, and Daphnia magna.
- 176 191
- Burton and Ingersoll (1994) reported that Microtox had equal sensitivity to Oncorhyrchus mykiss, Pimephales promelas, Lepomis macrochirus, Cyprindon variegatus, and Daphnia magna.

EC – Environment Canada (1990, 1992) GB – U.S. EPA and U.S. COE (1991) IN – U.S. EPA and U.S. COE (1993) TT – U.S. EPA (1992)

EX - extract
INT - interstitlal water
S - sediment

Notes: EL - elutriate

N/A - not applicable N/S - not specified

TABLE D-12. (cont.)

<u>.</u>	Species	References
901	Ampelisca abdita	ASTM (1990) (E1367-90)
134	Leptocheirus plumulosus	McGee et al. (1993)
135	Leptocheirus plumulosus	Schiekatet al. (1992)
129	Eohaustorius estuarius	ASTM (1990) (E1367-90)
128	Corophium volutator	Tay et al. (1992)
133	Leptocheirus plumulosus	DeWitt et al. (1992)
210	Mytifus edulis	ASTM (1989) (E724-89)
110	Crassost ea gigas	ASTM (1989) (E724-89)
010	Crassost ea gigas	U.S. EPA (1991b)
910	Mytilus edulis	U.S. EPA (1991b)
014	Mercenaria mercenaria	ASTM (1989) (E724-89)
600	Crassost ea virginica	ASTM (1989) (E724-89)
187	Cyprinodon variegatus	Aiden et al. (1988)
176	Photobacterium phosphoreum	Jacobs et al. (1992); Microbics (1992); U.S. EPA (1991b)
191	Dinophilus gyrociliatus	Carr et al. (1989); Long et al. (1990)
175	Photobacterium phosphoreum	Brouwer etal. (1990)

TABLE D-13. BASIS FOR SEDIMENT TOXICITY TEST EVALUATION - FRESHWATER LETHAL

Test		Exposure	Biotic	Common			Test
No.	Site	Media	Group	Name	Life Stage	Recommended	Species
241	F/L	တ	Insect	Mayfly	Nymphs		Hexagenia limbata
539	F/L	တ	Insect	Mayfly	Young nymphs		Hexagenta limbata
238	F/L	တ	Insect	Midge	2nd instar larvae	T,IN G	Chironomus tentans
237	F/L	တ	Insect	Midge	Neonates or broae	Z	Chironomus riparius
200	F/L	တ	Amphipod	Amphipod	Juvenites (2-3 mm)	¥.	Hyalella azteca
242	F/L	Ø	Insect	Mayfly	Nymphs		Hexagenia limbata
509	F/L	ΙΝΙ	Cladoceran	Water flea	Neonates	Z	Daphnia magna
526	F/L	တ	Plant	Marshgrass	Seedlings		Echinochloa crusgalli
250	F/L	တ	Oligochaete	Oligochaete	Large worms (3-4 mg)		Lumbriculus variegatus
249	F/L	Ø	Oligochaete	Oligochaete	Mixed-age		Lumbriculus variegatus
212	F/L	ᆸ	Cladoceran	Waterflea	Neonates (< 24 hrs)	EC	Daphnia magna
240	F/L	IN	Insect	Mayfly	Nymphs		Hexagenia limbata
202	F/L	П	Cladoceran	Waterflea	Neonates	<u>z</u>	Ceriodaphnia dubia
213	F/	EL	Cladoceran	Water flea	Neonates (< 24 hrs)	<u>z</u>	Daphnia pulex
208	F/L	П	Cladoceran	Waterflea	Neonates	2	Daphna magna
214	F/L	ᇳ	Cladoceran	Water flea	Neonates (< 24 hrs)	2	Daphnia pulex
202	F/L	ဟ	Bivalve	Paper pondshell clam	Juveniles (8 – 10 days)		Anodonta imbecillis
252	F/L	ဟ	Oligochaete	Oligochaete	Mixed age; similar size		Pristina leidyi
255	F/L	Ø	Oligochaete	Oligochaete	Mixedage		Tubifex tubifex
222	F/L	ᆸ	Fish	Bluegill	Approx 4 days		Lepomis macrochirus
226	F/L	ᆸ	Fish	Fathead minnow	Larvae (<24 hrs old)	2	Pimephales prometas
234	F/L	EL	Fish	Rainbow trout	Fry or fingerlings (15-30 days)	IN EC	Oncorhynchus myklss (Salmo gairdneri)
235	F/L	Ø	Fish	Rainbow trout	Egg-sac stage		Oncorhynchus mykiss (Salmo gairdneri)
199	F/L	IN	Amphipod	Amphipod	Juveniles		Hyalella azteca
220	F/L	ᆸ	Fish	Channel catfish	Approx 4 days		Ictalurus punctatus
229	F/L	ᆸ	Fish	Fathead minnow	Approx 4 days	Z	Pimephales prometas
207	F/L	Ø	Cladoceran	Water flea	Neonates		Ceriodaphnia dubia
211	F/L	Ø	Cladoceran	Water flea	Neonates		Daphnia magna
251	F/L	Ħ	Oligochaete	Oligochaete	Similar size		Pristina leldyi
232	F/L	Ճ	Fish	Fathead minnow	Embryo – larva!		Pimephales promelas
233	F/L	တ	Fish	Fathead minnow	Juveniles (3-4 months)		Pimephales prometas
244	F/L	ᆸ	Nematode	Nerratode	L1 stage juveniles		Panagrellus redivivus
195	F/L	Ճ	Amphibian	African clawed frog	Embryos		Xenopus la evis

Exposure Relevance Notes Ecorating Group Habitat 四百四四日 s F 피크 s 풀 피 တတတ 山のの日日 S S 10-18 days 10 - 14 days 10-30 days 10 - 14 days 48-96 hrs Duration 48 - 96hrs 14 days 10 days 10 days 10 days 2 weeks 21 days 10 days 48 hrs 21 days 168 hrs 21 days 48 hrs 48 hrs 96 hrs 7 days 6 days 96 hrs 96 hrs 96 hrs 96 hrs 96 hrs 48 hrs 48 hrs 96 hrs 4 days Š ¥ ¥ 4 4 4 2 2 2 **4 4 4 4 4** 2 2 2 2 2 2 **4 4 4 4 4** 2 2 2 2 2 2 Oncorhynchus mykiss (Salmo gairdneri) Oncorhynchus mykiss (Salmo gairdneri) Lumbriculus variegatus Lumbriculus variegatus TABLE D-13. (cont.) Echinochloa crusgalli Pimephales prometas Lepomis macrochirus Pimephales prometas Panagrellus redivivus Pimephales prometas Pimephales prometas Chironomus tentans Chironomus riparius Ceriodaphnia dubia Hexagenia limbata Anodonta imbecillis Ceriodaphnia dubia Hexagenia limbata ctalurus punctatus Hexagenia limbata Hexagenia limbata Daphnia magna Daphnia magna Daphnia magna Hyalella azteca Daphnia magna **Fubifex tubifex** Hyalella azteca Xenopus bevis Daphnia pulex Daphnia pulex Pristina leidyi Pristina leidyi Species Test 239 238 237 240 205 242 209 256 250 249 213 208 214 202 252 252 222 226 234 235 235 220 229 211 251 232

TABLE D-13. (cont.)

	7	1000000		
1		Availabili	Ą	Ecological Relevance
ě		Protocol	Overal	Field
o N	o. Species	Development	Availability	Validation
241	1 Hexagenia limbata		8	Field validated (calibrated) to benthos (Ghey et al. 1990). but 10 - day test did not predict chronic effects in field (Mature et al. 1994).
239	9 Hexagenia limbata	Yes	ဂ	Field validated (calibrated) to benthos (Glesy et al. 1990), but 10 - day test did not predict chronic effects in field (Melting et al. 1994).
238	3 Chironomus tentans	ASTM (1991b)	4	Field validated (calibrated) to benthos (Gesv et al. 1988: 1990)
237	7 Chironomus riparius	ASTM (1991b)	4	
200) Hyalella azteca	ASTM (1991b)	4	
242	Pexagenia limbata	Krantzberg (1990)	ო	Field validated (calibrated) to benthos (Giesy et at 1990).
508	Daphnia magna		4	Field validated (calibrated) to benthos (Giesvet at 1988: 1990)
256	S Echinochloa crusgalli	Yes	-	
220) Lumbriculus variegatus	Yes	6	
249	Lumbriculus variegatus	Adapted	ဗ	
212	Daphnia magna	EC (1990a, d)	4	Field validated (calibrated) to benthos (Giesvet al. 1988: 1990)
240	Hexagenia limbata		6	Field validated (calibrated) to benthos (Giesy et al. 1990).
202	o Ceriodaphnia dubia	U.S. EPA (1991b)	4	
213	Daphnia pulex	Yes	4	
208	i Daphnia magna	Yes	4	Field validated (calibrated) to benthos (Glesy et al. 1988; 1990)
214	Daphnia pulex	EC (1990 a)	4	
202	Anodonta imbecillis	Yes	cv	
252	Pristina leidyi	Yes	N	
255	Tubifex tubifex	Yes	N	Field validated (calibrated) to benthos (Wederholmand Dave 1989).
222	Lepomis macrochirus	Yes	4	
226	Pimephales prometas	EC (1992 d)	4	
234	Oncorhynchus mykiss (Salmo gairdneri)	EC (1990 b, e)	4	
235	Oncorhynchus mykiss (Salmo gairdneri)	Yes	6	
199	Hyalella azteca	Not specified	9	
220	Ictalurus punctatus	Yes	4	
229	Pimephales prometas	Yes	4	
207	Ceriodaphnia dubla	U.S. EPA (1985)	ဗ	
211	Daphnia magna	Yes	6	Field validated (calibrated) to benithos (Glesy et al. 1988; 1990)
251	Pristina leidyi	Yes	8	
232	Pirrephales promelas	Modified	4	
233	Pimephales prometas	Kantzberg (1990)	67	
244		(200.) 8	~ ~	
195		Modified	9	

	Ecological Helevance	
Test	t Species Importance	Overall EcoRelevance
241		6
239		ဂ
238		8
237	Imp. in the diet of young and adult fish and surface feeding ducks; high, imp. in benthic food webs and	8
200	Detritovore that will burrow in the sediment surface, digests bacteria and algae from ingested sediment particles.	8
242		2
209	Frequently in contact with the sediment surface; exposed to both water soluble contaminants in the overlying water and particulate bound contaminants in the sediment surface.	က
256	High; foundation species	4
250		8
249		N
212	Frequently in contact with the sediment surface; exposed to both water soluble contaminants in the overlying water and particulate bound contaminants in the sediment surface.	8
240		၈
202	Fine mest, filler te ders; major group converting phytoplankton and bacter te into animal protein (Carpenter et al. 1985); significant portion of the diet of numerous fish species (including salmonids).	8
213	Frequently in contact with the sediment surface; exposed	8
208	Frequently in contact with the sediment surface; exposed to both water soluble contaminants in the overlying water and particulate bound contaminants in the sediment surface.	N
214	Frequently in contact with the sediment surface; exposed to both water soluble contaminants in the overlying water and particulate bound contaminants in the sediment surface.	8
202		2
252		8
255		8
222		ဇ
226		N
234		၈
235		၈
199	Detritovore that will burrow in the sediment surface; digests bacteria and algae from ingested sediment particles.	2
220		n
229		8
207	Fine mesh, filler sedens; major group converting phytoplankton and bacteria into animal protein (Carpenter et al. 1985); significant portion of the diet of numerous fish species (including salmonids).	2
211	Frequently in contact with the sediment surface; exposed to both water soluble contaminants in the overlying water and particulate bound contaminants in the sediment surface.	2
251		8
232		N
233		8
244		₩
195	low: a lien to United States	_

						Reliability
Test	Test				Overall	
No.	Species	Accuracy	Objectivity	Endpoint	Reliability	Notes
241	Hexagenta limbata	I	I	Survival	6	
239	Hexagenia limbata	I	I	Survival	က	
238	Chironomus tentans	I	I	Survival		
237	Chironomus riparius	I	I	Survival	6	
200	Hyalella azteca	I	I	Survival	6	
242	Hexagenia limbata	I	Ξ	Survival	е	
209	Daphnia magna	I	I	Survival	4	Inter/intra lab (Buikerna 1983; Grothe and Kimerle 1985)
256	Echinochloa crusgalli	Ξ	I	Survival	က	
250	Lumbriculus variegatus	Ι	I	Survival	က	
249	Lumbriculus variegatus	I	I	Survival	ಣ	
212	Daphnia magma	I	I	Survival	4	Inter/intra lab (Kovacs and Ferguson 1990)
240	Hexagenia fimbata	I	I	Survival	က	
205	Ceriodaphnia dubia	I	I	Survival	4	Inter/intra lab (DeGraeve et al. 1989; EA 1984)
213	Daphnia pulex	I	I	Survival	4	Inter/intra lab (Dorn 1984)
208	Daphnia magna	I	Ξ	Survival	4	Inter/intra lab (Buikema 1983; Grothe and Kimberle 1985)
214	Daphnia pulex	Ξ	I	Survival	ဗ	
202	Anodonta imbecillis	I	I	Survival	9	
252	Pristina leidyi	I	エ	Survival	9	
255	Tubifex tubifex	I	I	Survival	က	
222	Lepomis macrochirus	I	I	Survival	4	Inter/intra lab (Dorn 1984)
226	Pimephales prometas	Ξ	Ξ	Survival	4	Interkb (API 1988; Anderson and Norberg – King 1991; Rue et al. 1988)
234	Oncorhynchus mykiss (Salmo gairdneri)	I	I	Survival	e	
235	Oncorhynchus mykiss (Salmo gairdneri)	I	I	Survival	ဗ	
98	Hyalella azteca	I	I	Survival	က	
220	ictalurus punctatus	I	I	Survival	ဂ	
529	Pimephales prometas	x	Ξ	Survival	6	
207	Cerioda phnia dubia	I	I	Survival	ဗ	
211	Daphnia magna	±	I	Survival	ဗ	
251	Pristina leidyi	I	I	Survival	ဗ	
232	Pimephales promelas	I	I	Survival	9	
233	Pimephales prometas	I	I	Survival	ဂ	
244	Panagrellus redivivus	I	I	Survival	ဂ	
195	Xenopus bevis	1	=	Sirvival	e.	

	and advanta	
	SEATING IN	
Test Test		Overall
No. Species	Notes	Interferences
241 Hexagenia limbata	Cannibalism in Brge individuals (Dillon and Gibson 1990)	င
239 Hexagenia limbata	Cannibalism in Brge Individuals (Dillon and Gibson 1990)	၈
238 Chironomus tentans	Inhabit fine sedimentand <0.15 mm to 2.0 mm; not found where H2S >0.3 mg/L; fed	N
237 Chironomus riparius	Wide tolerance to grain-size; >90% silt/chy to 100% sand; fed	8
200 Hyaiella azteca	Wide tolerance of sediment grain—size; >90% silt/clay to 100% sand did not reduce survival or growth; fed	က
242 Hexagenia limbata	Cannibalism in brge individuals (Dillon and Gibson 1990)	က
209 Daphnia magna	Interstitial test (N/A); more sensitive to NH3 than to Microtox (Ankley et al. 1990); not fed	4
256 Echinochtoa crusgafli		4
250 Lumbriculus variegatus		ဗ
249 Lumbriculus variegatus	Not fed	ဗ
212 Daphnia magna	Elutrate test (N/A); more sensitive to NH3 than Microtox (Ankley et al. 1990); not fed	4
240 Hexagenia limbata	Interstital test (N/A); cannibalism in large individuals (Dillon and Gibson 1990)	N
205 Ceriodaphnia dubia	Elutriate test (N/A); more sensitive to NH3 than Microtox (Ankley et al. 1990); fed at2h and 48h	6
213 Daphnia pulex	Elutriate test (N/A); fed at 48h	6
Daphnia magna	Elutriate test (N/A); more sensitive to NH3 than Microtox (Ankley et al. 1990); fed at 48h (if test extends to 96h)	က
Daphnia pulex	Elutriate test (N/A); not fed	4
Anodonta imbecillis	Not fed	6
Pristina leidyl		4
255 Tubifex tubifex	Not fed	4
Lepomis macrochirus	Elutriate test (N/A); not fed	4
226 Pimephales prometas	Elutriate test (N/A); more sensitive to NH3 than Microtox (Ankley et al. 1990)	4
234 Oncorhynchus mykiss (Salmo gairdneri)	Elutrate test (N/A)	4
235 Oncorhynchus mykiss (Salmo gairdneri)		-
199 Hyalella azteca	Interstitial test (N/A)	က
Ictalurus punctatus	Elutriate test (N/A); not fed	4
229 Pimephales promekas	Elutrate test (N/A); more sensitive to NH3 than Microtox (Ankley et al. 1990)	4
Ceriodaphnia dubia	Sediment may interfere with feeding; more sensitive to NH3 than Microtox (Ankley et al. 1990); fed at - 2h and at 48h	0
211 Daphnia magna	Sediment may interfere with feeding; more sensitive to NH3 than Microtox (Anklay et al. 1990); not fed	0
Pristina leidyi	Elutriste test (N/A)	ဇ
Pimephales promelas	Extract test (N/A); more sensitive to NHB than Microtox (Ankley et al. 1990)	8
233 Pimephales prometas	More sensitive to NH3 than Microtox (Ankley et al. 1990)	8
244 Panagrellus redivivus	Elutriate test (N/A)	8
195 Xenopus bevis	Extract test (N/A)	•

Y.	TABLE D-13. (cont.)Chemical Discrimination
No.	Sensitivity
241	1
239	
238	
200	More sensitive than C. tentans sediment test
242	
209	Sensitive species; less sensitive than Microtox (15-min, pore water test) and C. tenlans (10-d, sediment test) (Glesy et al. 1988).
256	
250	Species similar in sensitivity to Daphnia app, for copper but less sensitive to mixed chemicals in harbor muds (Nebeker et al. 1984).
249	Species similar in sensitivity to Daphnia app, for copper but less sensitive to mixed chemicals in harbor muds (Nebeker et al. 1984).
212	Sensitive species; less sensitive than Microtox (15-min, pore water test) and C. tentans (10-d, sediment test) (Giesy et al. 1988).
240	More sensitive test than D. magna (48-h, pore water) and C. tentans (10-d, pore water) (Giesy et al. 1990).
202	In elutriste tests, C. dubis was less sensitive than Hazteca, and exhibited the same sensitivity as P. prometa and L. varigatus; more sensitive than D. magna and D. pulex; high sensitivity in general
213	Sensitive species
208	Sensitive species; less sensitive than Microtox (15—min, pore water test) and C. tentans (10—d, sediment test) (Giesy et al. 1988).
214	Sensitive species
202	
252	
255	
222	
226	
234	
235	
199	Relatively sensitive species; in pore water tests, H. azteca was more sensitive than C. dubla, P. prometas, and L. variecatus.
220	
229	
207	More sensitive than L. variegatus; more sensitive than D. magna and D. pulex; high sensitivity in general.
211	Sensitive species; less sensitive than Microtox (15-min, pore water test) and C. tentans (10-d, sediment test) (Glesy et at 1988).
251	
232	
233	
244	
195	Terratogenicity endpoint more sensitive than similar test with P. prometas (Dawson et al. 1988).

Chemical Discrimination Overall Sensitivity Particular Chemicals Metals Metals Metais Metals Oncorhynchus mykiss (Salmo gairdneri) Oncorhynchus mykiss (Salmo gairdneri) Lumbriculus variegatus Lumbriculus variegatus TABLE D-13. (cont.) Echinochloa crusgalli epomis macrochirus Pimephales prometas Pimephales prometas Chironomus tentans Chironomus riparius Pimephales prometas Ceriodaphnia dubia Anodonta imbecillis Hexagenia limbata Hexagenia limbata chalurus punchatus Ceriodaphnia dubia Hexagenia limbata Hexagenia limbata Daphnia magna Hyalelba azteca Daphnia magna Daphnia magma Daphnia magna Daphnia pulex Daphnia putex ubifex tubifex Hyalella azteca Pristina leidyi Pristina leidyi Species Test 237 242 256 250 249 212 240 213 208 205 202 252 255 226 234 214 235 199 220 207 211 251 232

Medium Medium Medium Medium Medium Medium

νoγ

Medium

Low

Low V Low Low

Pimephales promelas Panagrellus redivivus

233

Xenopus bevis

Medium

ow to Medium

ě

Medium

High

High

Low

Regulatory Status

TABLE D-13. (cont.)

General Notes

- Important component of fish and waterfowl diets; provide critical link between changing organic detritus into a readily available food source (Burton and Ingersoll 1994).
- Important component of fish and waterfowl diets; provide critical link between changing organic detritus into a readily a wallable food source (Burton and Ingersoll 1994). 239
- Sensitive to a wich range of contaminants; has short generation time, is easily cultured in the lab; 10 day exposure optimal. 238
- Sensitive to a wide range of contaminants; has short generation time, is easily cuttured in the lab; 10—day exposure optimal. 237
- Dominantrole in manyaquatic ecosystems; process organic matter (detritus) an dane a primary food sourca for ben thic fee ding fish. Pen mak 1978, 1989) 200
- Important component of fish and waterfowl diets; provide critical link between changing organic detritus into a readity a waitable food source (Burton and Ingersoll 1994). 242
- Text response matches we I with other tests (Gasy et al. 1990); major grp. In many 200 bankton communities (Burton and Ingersoll 1994); ctackoce ans one of the more sensitive groups of organisms used in tox. tests (Mayer and Ellershock 1986) 209
 - Roots daquatic plants can be used to evaluate the overlying water, interstitial water, and the sediment (Burton and Ingersoll 1994). 256
- Oligochaetes are relatively insensitive to many classes of contaminants (Glesy and Hoke 1999); play a major roke in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1994) 250
- Ollgochaetes are metrively inscisitive to many classes of contaminants (Glesyand Hoke 1989); play a major roke in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1994) 249
- Majorgroup in many zoopbankton communithes (Burton and Ingersoll 1994); chadocerans are one of the more sensitive groups of organisms used in toxicity besting (Mayer and Ellers)eck 1988) 212
- Lab growth response predicted by Daphnia (48—h, pore water) tethal and C. tentans (10—d, sed/pore water) growth test, imp. part of fish/waterfowl diets; provide imp. link blwn changing detritus into food (Burton and Ingersoll 1994). 240
 - Unilive other dephnid species, C. dubla can be cultured in hard or soft water; cannot survive dissolved oxygen breis <5 mg/L; organisms are defloate and should be handled carefully during testing. 205
- Major group in many zooptankton communities (Burton and Ingersoll 1994); caldocenans are ore of the more sensitive groups of organisms used in toxicity testing (Mayer and Ellersleck 1988).

213

- Majorgroup in many zoopankton communites (Burton and Ingersoll 1994); cadocerans are ore of the more sensitive groups of organisms used in toxicity testing (Mayer and Elbersback 1988) 208
- Majorgroup in many zooptankton communitts (Burton and Ingersoll 1994); ctadoceran sere one of the more sensitive groups of organisms used in toxicity testing (Mayerand Elberskeck, 1986) 214 202
- Oligochaetes are relatively insensitive to many classes of contaminants (Glesyand Hoke 1989); play a majorroka in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1994). 252
 - Oligochaetes traditionally have been regarded as relatively insensitive to many classes of contaminants (Gissy and Hoke 1989) 255
 - 222
- Seven day test has shown an excellent come bitton with ecological evaluations of pollubad waters; toxic response between pone waterand elutrate (relative to sediment best did not differ significantly; not cost effective for screening 226
 - Toxicity tests have been done world-wide with this species; large database. 234
- Toxicity tests have been done world-wide with this species; large database 235
- Dominant role in many aquatic ecosystems; process organic matter (detrivs) and are a primary food source for benthic leeding fish (Pennak 1978, 1989). 99 220
- Toxic response between pore water and elutrate (relative to the bulk sediment test) did not differ significantly; not cost effective for screening. 229
- Unlike other daphnid species, C. dubla can be cultured in hard or soft water; cannot survive dissolved oxygen 19 we is <5 mg/L; organism sane da loate and should be han died can efully during testing. 207
 - Major group in many zoopbankton communitis (Burton and Ingersoll 1994); cadocerans are ore of the more sensitive groups of organisms used in toxicity testing (Mayer and Ellerstack 1988) 211
- Oligochates are relatively insensitive to many classes of contaminants (Glasy and Hoke 1989); play a major roke in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1994). 251
 - Toxic response between pore water and elutrate (relative to the bulk sediment test) did not differ significantly; not cost effective for screening. 232
- Fish feed on sediments during test (Burton 1891); not cost effective for screening

o N	Species	References
241	Hexagenia limbata	Giosy et al (1990)
239	Hexagenia limbata	Malueg et al. (1984a, b); Nebeker et al. (1984); U.S. EPA and U.S. COE (1993)
238	Chironomus tentans	ASTM (1991b) (E1383–90); U.S. EPA and U.S. COE (1993); Ingersoll and Nelson (1990); Nelson etal. (1990)
237	Chironormus riparius	ASTM (1991b) (E1383–90); U.S. EPA and U.S. COE (1993); Ingersoll and Nelson (1990); Nelson etal. (1990)
200	Hyalella azteca	ASTM (1991b) (E1383–90); U.S. EPA and U.S. COE (1993)
242	Hexagenia limbata	Kantzberg and Boyd (1992)
509	Daphnia magna	Giesy et al. (1988, 1990)
256	Echinochloa crusgalli	Walsh et at (1991)
250	Lumbriculus variegatus	Dermott and Murawar (1992)
249	Lumbriculus variegatus	U.S. EPA and U.S. COE (1993); Ankley etal (1992); Bailey and Lui (1980)
212	Daphnia magna	Environment Caracta (1990a, d)
240	Hexagenia limbata	Giesy et al. (1990)
205	Ceriodaphnia dubia	Ankley et al (1991); U.S. EPAand U.S. COE (1993); U.S. EPA (1991a); Environment Canack (1992e)
213	Daphnia pulex	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
208	Оарһпа тадга	Nebeker et al. (1984); U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
214	Daphnia pulex	Environment Carrada (1990a)
202	Anodonta imbecillis	U.S. EPA and U.S. COE (1993)
252	Pristina leidyi	Smith et al. (1991); U.S. EPA and U.S. COE (1993)
255	Tubifex tubifex	U.S. EPA and U.S. COE (1993); Reynoldson et al. (1991)
222	Lepomis macrochirus	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
226	Pimephales prometas	Environment Carada (1992d)
234	Oncorhynchus mykiss (Salmo gairdneri)	Environment Canada (1990b, e); U.S. EPAand U.S. COE (1993); U.S. EPA (1991a)
235	Oncorhynchus mykiss (Salmo gairdneri)	Birge et al. (1984); Krantzberg (1989); Krantzberg and Boyd (1992)
199	Hyalelbazteca	Ankley etal (1991)
220	ictalurus punctatus	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
229	Pimephales prometas	U.S. EPA and U.S. COE (1993); U.S. EPA (1991a)
202	Ceriodaphnia dubia	Sassoon-Brickson and Burton (1991); Stemmer et al. (1990b)
211	Daphnia magna	Nebeker et al. (1984); Stemmer et al. (1990a,b)
251	Pristina leidyi	Smith et al. (1991)
232	Pimephales promelas	Dawson etal. (1988)
233	Pimephales prometas	Kantzberg and Boyd (1992)
244	Panagrellus redivivus	Burrett et al. (no date); Samoiloff et al (1980)
1		

EC - Environment Canada (1990, 1992)
GB - U.S. EPA and U.S. COE (1991)
IN - U.S. EPA and U.S. COE (1993)
TT - U.S. EPA (1992)

EX ~ extract INT ~ interstitial water S ~ sediment

Notes: EL - elutriate

N/A - notapplicable N/S - not specified

Test Species	Chironomus tentans	Chironomie riperine	Hatelb externs	How can limbs to	Hydrila verticilata		Echinochioa crusgalli	nyalella azteca	Certodaphnia dubia	Chironomus tentans		Lambricans wriegalus	Lombricates variedates	Pimenhales promehs	Selenastrum capricornutum	Photographic registration of choton	month of the contract of the c	Uncorrynchus mykiss (Salmo gairdneri)	Seletastrum caphoornutum Driving Inidus	Photobacterium phosphoreum	4	Discontained on the contraction of the contraction	Dimenhalm momens	Chlorette valencie	Oncortynchus mykiss (Salmo gairdneri)	Panantallie radioniie	Chlorela culcarie	Venonie bois	veriopus mens	Photobacterium phosphoreum		Agromores hydrophie	Panadrallie radiónie	Vibro fischeri	Allmino attention at the contract of the contr
Te Recommended S		ਹ ਦ	œ.		Í	· ů	ú:		2	· 5		3 3		5H		ď			an d	ä	ć	A) (of circle to) (of circle		. C	Б Б	ď	5	i di		. 44	Ġ	A		e A	11.
Life Stage	2nd instar larvae	Neonates or larvae	Juveniles (2 – 3 mm)	Nymphs	Apical shoots	Seedlings	(doow 1/) selinevil.	Name (* 1 moon)	Adults	2nd instar larvae	Large worms (3 – 4 mg)	Juveniles and adults	15 mm in length	Larvae (<24 hrs old)	Cells	Cells	Egg-sac stage	Cells	Mixed age: similar size	Cells	Juvenile (5 davs)	Embryo-larval	Juveniles (3 –4 months)	Cells	Gorad cell (RTG-2)	L1 stage juveniles	Cells	Embryos	Cells	Cells	Cells	Cells	L2 stage juveniles	Cells	NIA
Common Name	Midge	Midge	Amphipod	Mayfly	Aq vascular plant	Marsh grass	Amphipod	Water flea	Oligochaete	Midge	Oligochaete	Oligochaete	Oligochaete	Fathead mirmow	Green algae	Microtox	Rainbow trout	Greenalgae	Oligochaete	Microtox	Water flea	Fathead minnow	Fathead minnow	Algae	Rainbow trout	Nerratode	Algae	African clawed frog	Mulatox	Microtox	Microtox	Aquatic bacterium	Nematode	Mutatox	Missohini
Biotic Group	Insect	Insect	Amphipod	Insect	Plant	Plant	Amphipod	Chroceran	Oligochaete	Insect	Oligochaete	Oligochaete	Oligochaete	Fish	Algae	Bacterium	Fish	Algae	Oligochaete	Bacterium	Ckdoceran	Fish	Fish	Algae	Fish	Nerratode	Afgae	Amphibian	Bacterium	Bacterium	Bacterium	Bacterium	Nematode	Bacterium	Mirrohe
Exposure Media	တ	တ	တ	ဟ	s	တ	S	ū	ြက	INI	တ	s	တ	П	ᆸ	N	တ	ĪNI	Ø	ል	Ø	Ä	တ	E	တ	딤	S	Ä	တ	တ	ဟ	ă	ង	긥	ū
Site	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	F/S	3/3
Test No.	238	237	200	242	333	256	269	282	330	304	250	323	324	526	260	272	235	261	252	176	211	232	233	263	302	244	262	195	278	273	274	270	320	279	308

TAE	TABLE D-14. (cont.)			
			Availability	
Test	Test		Geographic	
80°	Species	Seasonality	Сочегаде	Cultured
238	Chironomus tentans	Year-round	Mid-continental areas of North America	Yes
237	Chironomus riparius	Year-round	Worldwide	Yes
200	Hyalella azteca	Year - round	Widely distributed throughout North America	Yes; also field collected
242	Hexagenia limbata	Year - round	Widely distributed throughout North America	No; field collected
333	Hydrilla verticillata			
256	Echinochloa crusgalli			
569	Hyalelb azteca	Year-round	Widely distributed throughout North America	Yes; also field collected
285	Ceriodaphnia dubia	Year - round	Temperate zone worldwide; littoral areas of lakes, ponds, and marshes	Yes
330	Tubifex tubifex	Cultured organisms available	Wide-spread	Yes
304	Chironomus tentans	Year round	Mid-continental areas of North America	Yes
250	Lumbriculus variegatus	Year - round	Widely distributed throughout North America	
323	Lumbriculus variegatus	Year-round	Widely distributed throughout North America	Yes
324	Lumbriculus variegatus	Year - round	Widely distributed throughout North America	Yes
226	Pimephales promelas	Year round	Canada and eastern United States (not rative west of Rocky Mountains)	Yes
260	Selerastrum capricornutum	Cultured organisms available	Wide – spread	Yes
272	Photoba cterium phosphoreum	N/A; la boratory cultures	N/A; bboratory cultures	Yes
235	Oncorhynchus mykiss (Salmo gairdneri)	Year - round	Western North America	Yes
261	Selenastrum capricornutum	Cultured organisms available	Wide-spread	Yes
252	Pristina teidyi	Cultured		Yes
176	Photobacterium phosphoreum	N/A; laboratory cultures	N/A; la boratory cultures	Yes
211	Daphnia magna	Year - round	Widely distributed throughout North America	Yes
232	Pimephales prometas	Year round	Canada and eastern United States (not retive west of Rocky Mountains)	Yes
233	Pimephales prometas	Year - round	Canada and eastern United States (not rative west of Rocky Mountains)	Yes
263	Chlorella vulgaris	Cultured organisms available	Wide-spread	Yes
302	Oncorhynchus mykiss (Salmo gairdneri) Year-round	Year – round	Western North America	Yes
244	Panagrellus redivivus			
262	Chiorella vulgaris	Cultured organisms available	Wide-spread	Yes
195	Xenopus bevis	Cultured organisms available		Yes
278	Vibrio fischeri	Cultured organisms available		Yes
273	Photobacterium phosphoreum	N/A; laboratory cultures	N/A; laboratory cultures	Yes
274	Photobacterium phosphoreum	N/A; laboratory cultures	N/A; laboratory cultures	Yes
270	Aeromonas hydrophila			Yes
320	Panagrellus redivivus			
279	Vibrio fischeri	Cultured organisms available		Yes
308	Alkaline phosphatase (APA)			Yes
084	Salmonella typhimurium	N/A; laboratory cultures		Yes

_	
ont)	
٦. چ	
Ξ	
1	
Щ	
Ð	
\perp	

IAB	IABLE D-14. (cont.)			
		Availability		Ecological Relevance
Test	Test	Protocol	Overall	Feld
Š.	Species	Development	Availability	Validation
238	Chironomus tentans	ASTM (1991b)	4	Field walidated (calibrated) to benthos (Glesy et al. 1988; 1990)
237	Chironomus riparius	ASTM (1991b)	4	
200	Hyalella azteca	ASTM (1991b)	4	
242	Hexagenia limbata	Krantzberg (1990)	6	Field walidated (calibrated) to benthos (Giesy et al. 1990).
333	Hydrilla verticillata	Yes	2	
526	Echinochtoa crusgalli	Yes	2	
569	Hyalelb azteca		၈	
285	Ceriodaphnia dubia	EC (1992e)	4	
330	Tubifex tubifex	Yes	8	Field walldated (calibrated) to benthos (Wiederholm and Dave 1989).
304	Chironomus tentans		က	Field validated (calibrated) to benthos (Giesy et al. 1988; 1990)
250	Lumbriculus variegatus	Yes	6	
323	Lumbriculus variegatus	Phipps and Ankley (1990)	-	
324	Lumbricutus variegatus	Yes	-	
526	Pimephales prometas	EC (1992 d)	4	
260	Selenastrum capricornutum	EC (1992 c)	4	
272	Photobacterium phosphoreum	Yes	4	Field validated (calibrated) to benthos (Glesv et al. 1990: Rosiu et al. 1989: Williams et al. 1986)
235	Oncorhynchus mykiss (Salmo gairdneri)	Yes	က	
261	Selenastrum capricornutum	Yes	4	
252	Pristina leidyi	Yes	8	
176	Photobacterium phosphoreum	Modified	4	Field validated (calibrated) to benthos (Giesy et al. 1990; Rosiu et al. 1989; Williams et al. 1986).
211	Daphnia magna	Yes	6	Field validated (calibrated) to benthos (Glesy et al. 1988; 1990)
232	Pimephales prometas	Modified	4	
233	Pimephales promeks	Krantzberg (1990)	ဂ	
263	Chlorella vulgaris		8	
302	Oncorhynchus myklss (Salmo gairdneri) U.S EPA (1991b)	U.S EPA (1991b)	-	
244	Panagrellus redivivus		8	
262	Chlorella vulgaris		CZ	
195	Xenopus faevis	Modified	6	
278	Vibrio fischeri	Yes	8	
273	Photobacterium phosphoreum	Yes	8	
274	Photobacterium phosphoreum	Yes	8	
270	Aeromonas hydrophila		2	
320	Panagrellus redivivus	Samoiloffetal. (1980)	-	
579	Vibrio fischeri	Yes	2	
308	Alkaline phosphatase (APA)		-	
084	Salmonella typhimurium	Yes	2	

j	Ecological Relevance	
Ě		
Š.	Importance	Overall
238	Imp. in the diet of voundand authors feeding durks from in boosts food onto	EcoHelevance
237	In the diet of vound end of the back of the first on the diet of vound end of the first of the diet of vound end of the first of the diet of the first on the diet of the di	8
		8
3	Destritovore that will burrow in the sediment surface; digests bacteria and algae from ingested sediment particles.	·
242		J (
333	High; foundation species	N
į		ო
256	High; foundation species	,
269	Detritovore that will burrow in the sediment surface; digests bacteria and a lose from indested sediment metricles	n (
285		~
330	graph straight and the detail of the straight of the straight of the detail of the det	8
304	Imp. in the diet of young and adult fish and surface feeding ducis; high, imp. in benthic food webs and purtient cocking	N
		m
220	Low (terestrial; wetland species)	ć
323		
324		N (
226		N
260		8
		8
2/2		·
232	Harvested; eggs and tarvae develop in close association with the sediment.	u (
261		, ,
252		N (
176	Low	N 6
211	From land it is come as with the continue of t	1
333	requestly in contact with the sediment surface, exposed to both water soluble committents in the overlying water and particulate bound contamirants in the sediment surface.	2
202		2
88		1 (3)
200		c
302	Harvested; eggs and knae develop in close association with the sediment.	N FO
244	Terrestrial	
262		2
195	Low; non-native	8
278	Low	0
27.2		- -
		-
274	Low	,
270	Low	- ,
320	Terrestrial	- (
279	Low	ν •
308		- ,
084	Low	- •
		-

Salmonella typhimurium

		Interferences	
Test	Test		Overall
o N	Species	Notes	Interferences
238	Chironomus tentans	Inhabit line sedimentand < 0.15 mm to 2.0 mm; not found where H2S > 0.3 mg/L; fed	2
237	Chironomus riparius	Wide tolerance to grain—size; >90% silt/cby to 100% sand; fed	cs.
200	Hyalella azteca	Wide tolerance of sediment grain—size; >90% sitt/clay to 100% sand did not reduce survival or growth.; fed	၈
242	Hexagenia limbata	Cannibalism in large individuals (Dillonand Gibson 1990)	6
333	Hydrilla verticillata		4
256	Echinochloa crusgalli		4
569	Hyalelbazteca	Wide tolerance of sediment grain-size; >90% silt/clay to 100% sand did not reduce survival or growth.	4
282	Ceriodaphnia dubia	Elutrate test (N/A); more sensitive to NH3 than Microtox (Ankley et al 1990); fed daily	ო
304	l ubifex tubliex Chironomus tentans	Interstitial test (N/A); not found where HZS is >0.3 mg/L; ted	4 -
			¢
323	Lumbriculus variedatus		၁ ო
324	Lumbriculus variegatus) P
226	Pimephales prometas	Elutriate test (N/A); more sensitive to NH3 than Microtox (Ankley et al 1990)	4
260	Selenastrum capricornutum	Elutrate test (N/A)	4
272	Photobacterium phosphoreum	Interstitial test (N/A); less sensitive to NH3 than Ceriodaphnia and Pimaphales (Ankley et al. 1990); not fed	4
235	Oncorhynchus mykiss (Salmo gairdneri)		+
261	Selenastrum capricornutum	Interstal test (N/A)	4
252	Pristina leidyi		4
176	Photobacterium phosphoreum	Extract test (N/A); less sensitive to NH3 than Ceriodaphnia and Pimephales (Ankley et al. 1990); not fed	2
211	Daphnia magna	Sediment may interfere with feeding; more sensitive to NH3 than Microtrox (Ankley et al. 1990)	0
232	Pimephales prometas	More sensitive to NH3 than Microtox (Ankley et al. 1990)	8
233	Pimephales prometas	More sensitive to NH3 than Microtox (Ankley et al., 1990)	€N
263	Chlorella vulgaris	Elutrate test (N/A)	4
302	Oncorhynchus mykiss (Salmo gairdneri)	Not fed; potential effects of sediment	.0
244	Panagrellus redivivus	Elutriate test (N/A)	82
262	Chlorella vulgaris	Potential effects of sediment	0
195	Xenopus kevis	Extract test (N/A)	81
278	Vibrio fischeri	Potential effects of sediment	0
273	Photobacterium phosphoreum	Less sensitive to NH3 than Ceriodaphnia and Pimephales (Ankley et al. 1990); not fed; potential effects of sediment	0
274	Photobacterium phosphoreum	Less sensitive to NH3 than Ceriodaphnia and Pimephales (Ankley et al. 1990); not fed; potential effects of sediment	0
270	Aeromonas hydrophila	Extract test (N/A)	8
320	Panagrellus redivivus	Extract test (n/A)	0
279	Vibrio fischeri	Elutriate fest (N/A)	0
308	Alkaline phosphatase (APA)		0
084	Salmonella typhimurium	Extract test (N/A)	<

	등
III	ina
8	FIS
4	
_1	lica
<u> </u>	190
BLI	р
•	ł

Similar sensitivity as Microtox (15 - min, pore water) test (Giesy et al. 1988); good discrimination (more than D. magna survival). More sensitive than C. tentans sediment test Sensitivity N 88 88 237 200 242

333

256 269 285 More sensitive than Lumbriculus variegatus; more sensitive than D. magna and D. pulex; high sensitivity in general. 330

Similar sensitivity as Microtox (15 - min, pore water) test (Giesy et at 1988); good discrimination (more than D. magna survival);

304

250 323 324

Species similar in sensitivity to Daphnia app. for copper but less sensitive to mixed chemicals in harbor muds (Nebeker et al. 1984).

Species similar in sensitivity to Daphnia app. for copper but less sensitive to mixed chemicals in harbor muds (Nebeker et al. 1984). Species simiar in sensitivity to Daphnia app, for copper but less sensitive to mixed chemicals in harbor muds (Nebeker et al. 1984).

High sensitivity to metals and herbicides (Thomas et al. 1986).

260

226

272

235

Good discrimination among sites (Giesy et al. 1988; 1990); high senskivity; responsive to PAHs (Giesy et al. 1990).

High sensitivity to metals and herbicides (Thomas et al 1986).

261

252

176

232

Good discrimination among sites (Giesy et al. 1988; 1990); high sensitivity.

Sensitive species; less sensitive than Microtox (15 - min, pore water test) and C. tentans (10 - d, sediment test) (Glesy et al. 1988). 211

263 High sensitivity to metals and herbicides (Thomas et al. 1986).

Natural genotoxicity may occur due to decomposition of plants.

302

244 262 High sensitivity to metals and herbicides (Thomas et al. 1986).

Terratogenicity endpoint more sensitive than similar test with P. promelas (Dawson et al. 1988).

High sensitivity; more sensitive to hydrophobic chemicals than elutriate Microtox

High sensitivity; more sensitive to hydrophobic chemicals than elutrate Microtox.

274 270

320

279 308 084

273

195 278

TAB	TABLE D-14. (cont.)	Chemic	Chemical Discrimination	
Test	Test	Particular	Overall	Boomlaton
No.		Chemicals	Sensitivity	Status
238	Chironomus tentans		4	Low
237	Chironomus riparius		4	Low
200	Hyalella azteca		4	Low to Medium
242	Hexagenia limbata		4	Low
333	Hydrika verticikata		2	Low
256	Echinochloa crusgalli		4	mo J
569	Hyalella azteca		. 4	in a
285	Čeriodaphnia dubia		. 4	Medium
330	Tubifex tubifex		4	Low
304	Chironomus tentans		4	Low to Medium
250	Lumbriculus variegatus		4	Low
323	Lumbriculus variegatus		4	Low
324	Lumbriculus variegatus		4	Low
526	Pimephales promelas		+	Medium
260	Selenastrum capricornutum		3	Medium
272	Photobacterium phosphoreum		6	Low to Medium
235	Oncorhynchus mykiss (Salmo gairdneri)		4	Low
261	Selenastrum capricornutum			Low
252	Pristina leidyi		2	Low
176	Photobacterium phosphoreum		ဇ	Low
211	Daphnia magna	Metals	4	Low
232	Pimephales prometas		-	Low to Medium
233	Pimephales prometas		-	Low
263	Chlorella vulgaris		8	Low
302	Oncorhynchus mykiss (Salmo gairdneri)		4	Low
244	Panagrellus redivivus		2	Low
262	Chlorella vulgaris		9	Low
195	Xenopus beevis		4	Low
278	Vibrio fischeri		ဇ	Low
273	Photobacterium phosphoreum		ဇ	Low
274	Photobacterium phosphoreum		ဗ	Low
270	Aeromonas hydrophila		8	Low
320	Panagrellus redivivus		. 8	Low
279	Vibrio fischeri		ဂ	Low
308	Alkaline phosphatase (APA)		၈	
084	Salmonella typhimurium		3	Low

TABLE D-14. (cont.)

General Notes o N

Sensitive to a wide range of contaminants; has short generation time, is easily cultured in the ab

Sensitive to a wide range of contaminants; has short generation time, is easily cultured in the tab; 10-day exposure optimal 237

Tests > 30 days can add potential reproductive capacity as another endpoint, with reproductive behavior, appearance of secondary sex characteristics, egg production, and number of young produced. 28

Important component of fish and waterfowr diets; provide critical link between changing organic obtritus into a readily available food source (Burton and Ingersoil 1994) 242

Roots daquatic plants can be used to evaluate the overlying water, interstitit i water, and the sediment (Burton and ingersoll 1994)

333

285

Roob daqualic plants can be used to evaluate the overlying water, interstital water, and the sediment (Burton and ingersoll 1994). Test is not yet demonstrated to be reliable for sediment. 256 Tests > 30 days can add potential reproductive capacity as an other endpoint, with reproductive behavior, appearance of secondary sex characteristics, egg production, and number of young produced. 269

Unlive other dephnid species, C. dubia can be culture d in hard or soft water; cannot survive dissolved oxygen levels <5 mg/L; organisms are defrate and should be handled carefully during testing

Oligochaetes traditionally have been regarded as relatively insensitive to many classes of confaminants (Glesy and Hoke 1989) 330

Sensitive to a wide range of contaminants; has short generation time, is easily cultured in the lab; 10—day exposure optimal. 304

Oligochaetes are relatively insensitive to many classes of contaminants (Glesyand Hole 1989); play a major role in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1884); 250

Oligochaetes are relatively insensitive to many classes of contaminants (Gesyand Hoke 1989); play a major role in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1984) 323

Seven day test has shown an excellent corne bition with ecological evaluations of polluted waters; toxic response between pons waterand elutrible (rebative to sediment test clid not differ algoriticantly; not cost effective for sceening. Ollgochaetes are relatively insensitive to many classes of contaminants (Glesy and Hove 1999); play a major role in the processing of organic material and as a food source for benthic feeding fish (Burton and Ingersoll 1994) 324 226

De Zwart and Sloof (1993) and Le Blanc (1994) reported that this growth test is more sensitive than other commonly used bests; further development needed correlation with Microtox (Glasy and Hoke 1990) 260

Burton and Ingersoll (1994) re ported that Microtox hade qual sensitivity to Oncorhynchus mykks, Pimephales promelas, Lepomis macrochirus, Cyprinidon variegatus, and Daphinis magna Toxicity tests have been done world-wide with this species; large database. 235 272

De Zwart and Stoof (1993) and Le Blanc (1994) reported that this growth test is more sensitive than other commonly used tests; further development needed correlation with Microtox (Glasy and Hober (1990)) 261

Oligochaetes are relatively insensitive to many classes of contaminants (Gesyand Hoke 1989); play a major role in the processing of organic material and as a food source for benthic feeding fish (Burton in press). 252

Burton and Ingersoll (1994) re ported that Microtox had e qual sensitivity to Oncochynchus mykiss, Pimephales promelas, Lepomis macrochirus, Cyprinidon variegatus, and Daphinla magna. 176

Majorgroup in many zoopbankton communities (Burton and Ingersoll 1994); chadoce ans are one of the more sensitive groups of organisms used in toxicity testing (Mayer and Elbersleck 1988) 211 232

Toxic response between pore water and elutrate (relative to the bulk sediment test) did not differ significantly; not cost effective for screening.

Fish feed on sediments during test (Burton 1991) 263 233

Glesy and Hote (1990) recommended further development.

Test depends on a chembal extraction procedure that is specific for neutral nonionic compounds 302

244

195

279

084

320

Glesyand Hoke (1990) recommended further development. 262 Burton and Ingersoll (1994) re ported that Microtox had e qual sensitivity to Oncorhynchus mykss, Pirnephales promelas, Lepomis macrochirus, Cyprinidon variegatus, and Daphina magna

Burton and Ingersoll (1994) re ported that Microtox had e qual sensitivity to Oncorhynchus mykiss, Plinephales promelas, Lepomis macrochirus, Cyprinidon varie gatus, and Daphnia magna.

8
4.
0
3.1
IAE

Š.	Species	References
238	Chironomus tentans	ASTM (1991b) (£1383-90); Giesy et al. (1990); Wentsel et al. (1977a)
	CIII O I O I O I O I O I O I O I O I O I	ACTUAL (1901) (1-190) only only only only only only only only
Š	Chironomus riparius	(10 - 100 - 10 - 10 - 10 - 10 - 10 - 10
200	Hyalella azteca	ASTM (1991b) (E1383-90)
242	Hexagenia limbata	Kantzberg and Boyd (1992)
333	Hydrilla verticillata	Klaine and Himman (no date)
256	Echinochloa crusgalli	Walsh et al (1991)
269	Hyalefa azteca	Borgmann stat (1989)
285	Čeriodaphnia dubia	Environment Carracka (1992e)
330	Tubifex tubifex	ī
304	Chironomus tentans	
250	Lumbriculus variecatus	Dermott and Murawar (1992)
323	Lumbriculus variegatus	Phipps and Ankley (1990)
324	Lumbriculus variegatus	Dermottand Murawar (1992) NIVA — not applicable NIVS — not applicable NI
226	Pimephales prometas	
260	Selerastrum capricornulum	
272	Photobacterium phosphoreum	Hoke et al. (1992) IN - U.S. EPA and U.S. COE (1993)
235	Oncorbynchus mykiss (Salmo cairdneri)	Birge et al. (1984); Kanizberg (1989); Kranizberg and Boyd (1992)
261	Selemestrum capricornutum	Burton et al. (1989)
252	Pristina leidyi	Smith et al. (1991)
176	Photobacterium phosphoreum	Jacobs et al. (1992)
211	Daphnia magna	Nebeker et al. (1984); see Ceriodaphnia dubla (Environment Canda 1992e)
232	Pimephales prometas	Dawson et al (1988)
233	Pimephales prometas	Kantzberg and Boyd (1992)
263	Chlorella vulgaris	Murawar and Murawar (1987)
302	Oncorhynchus mykiss (Salmo gairdneri)	Chapman et al. (1985); U.S. EPA (1991b)
244	Panagrellus redivivus	Burnett et al. (no date); Samoiloff et al. (1980)
262	Chlorella vulgaris	Murawar and Murawar (1987)
195	Xenopus bevis	Dawson et al. (1988)
278	Vibrio fischeri	Microbics (1993)
273	Photobacterium phosphoreum	Microbics (1991)
274	Photobacterium phosphoreum	Brouwer et al (1990)
270	Aeromonas hydrophila	Dutka and Kwan (1981); Flemming and Trevors (1989)
320	Panagrellus redivivus	Samoiloff et al. (1983)
279	Vibrio fischeri	Mcrobics (1993)
308	Alkaline phosphatase (APA)	Burton et al. (1989)
084	Salmonella tynhimitrium	shorts and Bailty (1992)

236pp

API PUBL*4607 94 ■ 0732290 0555452 642 ■

American Petroleum Institute 1220 L. Street, Northwest Washington, D.C. 20005