Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations

HEALTH AND ENVIRONMENTAL SCIENCES API PUBLICATION NUMBER 4589 DECEMBER 1993

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations

Health and Environmental Sciences Department

PUBLICATION NUMBER 4589

PREPARED UNDER CONTRACT BY:

STAR ENVIRONMENTAL P.O. BOX 13425 TORRANCE, CA 90503

DECEMBER 1993

American Petroleum Institute

API PUBL*4589 93 🎟 0732290 0517491 574 🛤

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFAC-TURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

Copyright © 1993 American Petroleum Institute

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT(s)

Dr. Paul Martino, Health and Environmental Sciences Department

MEMBERS OF THE FUGITIVE EMISSIONS PROJECT GROUP

John Bourke, ARCO Oil and Gas Company Kerry Mire, Texaco E&P, Inc. Vick Newsom, Amoco Corporation Mark Pike, Exxon Corporation Dr. Raghavan Ramanan, Mobil Exploration & Production Andy Shah, Conoco Inc. Jim Strong, Unocal Corporation Charles Tixier, Shell Oil Company Dr. Jenny Yang, Marathon Oil Company

STAR Environmental would also like to thank Dr. Paul Wakim (American Petroleum Institute) for conducting the statistical analysis of the data and assistance in developing the correlation equations and emission factors presented in the appendix of this report. The valuable guidance of Robert Lott (Gas Research Institute) both during the course of the study and the review of the final report is gratefully acknowledged.

PREFACE

This report presents final results of an API/GRI study entitled "Fugitive Hydrocarbon Emissions from Oil and Gas Production Operations". The data collection efforts and development of correlation equations and emission factors for fugitive hydrocarbon emissions from oil and gas production operations described in this report include onshore light crude facilities, onshore heavy crude facilities, onshore gas production facilities, and offshore oil and gas facilities. A gas processing plant correlation equation is included, but emission factors for gas processing plants are not. Emission factors for gas processing plants will be determined in 1994 and reported in a separate report after more field data are collected in a joint research effort with the EPA. The statistical analysis of the data gathered in this study was conducted in accordance with the US EPA Protocol for Equipment Leak Emission Estimates (EPA-453/R-93-026, June 1993) to facilitate acceptance by the EPA. The American Petroleum Institute does not necessarily endorse the EPA protocol as the best method for analyzing the data in this study. There may be other methods of statistical analysis that are more appropriate. In this study, as in the EPA protocol, the common convention of reporting emission factors to three significant figures has been followed, even though it may not be warranted given the inherent variation in the precision and accuracy of emissions measurements.

Not for Resale

ABSTRACT

In 1980, the American Petroleum Institute published emission factors for fugitive hydrocarbon emissions from onshore and offshore petroleum production sites. The new emission factors developed from this joint study by API and the Gas Research Institute replace the existing 1980 API factors. More than 180,000 components were screened using EPA Method 21 guidelines and over 700 leaks were speciated to determine new emission rates of total hydrocarbons, volatile organic compounds, and individual air toxics (i.e., benzene, toluene, ethyl benzene, and xylenes).

The new study has also produced emission correlation equations that can be used to predict mass emission rates from individual instrument screening values. These equations allow operators to more accurately quantify actual emissions from their site rather than relying on generalized emission factors. This greatly improves assessment of control technologies and selection of equipment to lower fugitive hydrocarbon emissions. As the new leak definition imposed by the Clean Air Act Amendments of 1990 becomes effective, results of this study will be indispensable to operators.

Results of the study are summarized in easy-to-read graphics and easyto-use factors. A workbook presented at the end of the report allows site operators to tailor the new factors and equations to their individual use.

TABLE OF CONTENTS

SECTION

PAGE	

EXECUTIVE SUMMARYES-1
1. STUDY METHODOLOGY1-1
INTRODUCTION1-1
Objectives1-1
Scope1-1
DESCRIPTION OF METHODOLOGY 1-2
Study Site Selection1-3
Screening Procedures1-4
Bagging Procedures1-6
Laboratory Procedures1-8
Quality Assurance/Quality Control Procedures
DATA MANAGEMENT1-9
Development of Correlation Equations1-9
Development of Emission Factors 1-10
2. ONSHORE RESULTS AND ANALYSIS
DATA COLLECTION2-1
QUALITY ASSURANCE/QUALITY CONTROL
CORRELATION EQUATIONS
EMISSION FACTORS2-21
Average Emission Factors 2-21
Leak/No Leak Emission Factors2-22
Stratified Emission Factors2-22
SPECIATION OF EMISSIONS
REGIONAL DIFFERENCES IN FUGITIVE EMISSIONS
CONTROL EFFICIENCY OF INSPECTION AND MAINTENANCE PROGRAMS 2-36
3. OFFSHORE RESULTS AND ANALYSIS
DATA COLLECTION
QUALITY ASSURANCE/QUALITY CONTROL
CORRELATION EQUATIONS
EMISSION FACTORS
Average Emission Factors
Leak/No Leak Emission Factors
Stratified Emission Factors
SPECIATION OF EMISSIONS

TABLE OF CONTENTS (Continued)

SECTION

3.	OFFSHORE RESULTS AND ANALYSIS (Continued)	
	REGIONAL DIFFERENCES IN FUGITIVE EMISSIONS	3-14
	CONTROL EFFICIENCY OF INSPECTION AND MAINTENANCE PROGRAMS	3-15

LIST OF APPENDICES

APPENDIX A STATISTICAL ANA	LYSIS OF DATAA-1
APPENDIX B: FIELD INVENTORY	SHEET DATAB-1
APPENDIX C EMITTER DATA	C-1
APPENDIX D NONAROMATIC SE	PECIATION DATAD-1
APPENDIX E AROMATIC SPECIA	TION DATAE-1

LIST OF TABLES

TABLE

ES-1	Number of Components Screened, Emitters Found, and Samples Collected and Analyzed during API/GRI Study ES-2
ES-2	Correlation EquationsES-5
ES-3	Default Zero THC Emission Factors ES-5
ES-4	Average THC Emission Factors (Overall) ES-6
ES-5	Average THC Emission Factors (Component Specific)ES-6
ES-6	Leak/No Leak THC Emission FactorsES-6
ES-7	Stratified THC Emission Factors ES-7
ES-8	Speciated Hydrocarbon FactorsES-7
1-1	Sites Included in the 1993 API/GRI Study1-4
2-1	Components Screened and Emitters Found at Onshore Sites
2-2	Onshore Emitters by Screening Range2-2
2-3	Contribution of Each Screening Range to Total Emissions
2-4	First and Second Analyses for Nonaromatic Hydrocarbons2-6
2-5	First and Second Analyses for Aromatic Hydrocarbons
2-6	Correlation of Repeated Laboratory Analyses2-15
2-7	Correlation Equations
2-8	Default Zero THC Emission Factors
2-9	Average THC Emission Factors (Overall)2-21
2-10	Average THC Emission Factors (Component specific)2-21
2-11	Leak/No-Leak THC Emission Factors2-22
2-12	Stratified THC Emission Factors2-22
2-13	Weight Fraction of Emissions by Number of Carbons 2-36
2-14	Average Emission Rate of Components with ISVs of ≥100,000 ppmv (By region) 2-36
3-1	Components Screened and Emitters Found at Offshore Platforms
3-2	Offshore Emitters by Screening Range
3-3	Contribution of Each Screening Range to Total Emissions
3-4	Correlation Equations
3-5	Default Zero THC Emission Factors
3-6	Average THC Emission Factors (Overall)
3-7	Average THC Emission Factors (Component specific)
3-8	Leak/No-Leak THC Emission Factors
3-9	Stratified THC Emission Factors

LIST OF TABLES (Continued)

ION	PAGE
Weight Fraction of Emissions by Number of Carbons	3-8
Number of Components Installed on Pacific OCS Platforms Monitored by the MMS, and the Average Leak Rates	3-14
Fugitive Hydrocarbon Emissions Predicted by MMS and API/GRI Correlation Equations	3-14
	ION Weight Fraction of Emissions by Number of Carbons Number of Components Installed on Pacific OCS Platforms Monitored by the MMS, and the Average Leak Rates Fugitive Hydrocarbon Emissions Predicted by MMS and API/GRI Correlation Equations

LIST OF FIGURES

FIGUE	RE	<u>PAGE</u>
1-1	1993 API/GRI Study Sites	1-3
2-1	Distribution of Onshore Emitters	2-3
2-2	Percent of Total Emission by Range	2-3
2-3	Comparison of Repeat Analyses at Laboratory (C1)	2-9
2-4	Comparison of Repeat Analyses at Laboratory (C2)	2-9
2-5	Comparison of Repeat Analyses at Laboratory (C3)	2-10
2-6	Comparison of Repeat Analyses at Laboratory (C4)	2-10
2-7	Comparison of Repeat Analyses at Laboratory (C5)	2-11
2-8	Comparison of Repeat Analyses at Laboratory (C6+)	2-11
2-9	Comparison of Repeat Analyses at Laboratory (Benzene)	2-13
2-10	Comparison of Repeat Analyses at Laboratory (Toluene)	2-13
2-11	Comparison of Repeat Analyses at Laboratory (Ethyl-Benzene)	2-14
2-12	Comparison of Repeat Analyses at Laboratory (m+p Xylene)	2-14
2-13	Comparison of Repeat Analyses at Laboratory (o Xylene)	2-15
2-14	Comparison of Onshore Sample Bags as Collected and as Analyzed	2-16
2-15	Light Crude Production Correlation (CN, VL, OEL)	2-18
2-16	Light Crude Production Correlation (Others)	2-18
2-17	Heavy Crude Production Correlation (CN, VL, OEL, Others)	2-19
2-18	Natural Gas Production Correlation (CN, OEL)	2-19
2-19	Natural Gas Production Correlation (VL, Others)	2-20
2-20	Natural Gas Processing Correlation (CN, VL, OEL, Others)	2-20
2-21	Weight Percent Hydrocarbons in Samples (Light Crude #1)	
2-22	Weight Percent Hydrocarbons in Samples (Light Crude #2)	2-25
2-23	Weight Percent Hydrocarbons in Samples (Light Crude #3)	2-26
2-24	Weight Percent Hydrocarbons in Samples (Light Crude #4)	2-27
2-25	Weight Percent Hydrocarbons in Samples (Heavy Crude #5, 6, 7, & 8)	2-28
2-26	Weight Percent Hydrocarbons in Samples (Gas Production #9)	2-29
2-27	Weight Percent Hydrocarbons in Samples (Gas Production #10)	2-30
2-28	Weight Percent Hydrocarbons in Samples (Gas Production #11)	2-31
2-29	Weight Percent Hydrocarbons in Samples (Gas Production #12)	2-32
2-30	Weight Percent Air Toxics in Light Crude Emissions	2-33
2-31	Weight Percent Air Toxics in Heavy Crude Emissions	2-34
2-32	Weight Percent Air Toxics in Gas Production Emissions	2-35
3-1	Distribution of Offshore Emitters	3-3
3-2	Percent of Total Emission by Range	3-3

LIST OF FIGURES (Continued)

Figure		Page
3-3	Comparison of Offshore Sample Bags as Collected and as Analyzed	3-4
3-4	Offshore Production Correlation (CN, OEL)	3-6
3-5	Offshore Production Correlation (VL, Others)	3-6
3-6	Weight Percent Hydrocarbons in Samples (Offshore #17)	3-9
3-7	Weight Percent Hydrocarbons in Samples (Offshore #18)	. 3-10
3-8	Weight Percent Hydrocarbons in Samples (Offshore #19)	.3-11
3-9	Weight Percent Hydrocarbons in Samples (Offshore #20)	3-12
3-10	Weight Percent Air Toxics in Gulf Offshore Emissions	3-13
3-11	MMS Connection and Open-Ended Line Data with API/GRI Offshore Equations	3-16
3-12	MMS Valve and Other Data with API/GRI Offshore Equations	3-16
3-13	Distribution of Pacific OCS Emitters	3-17
3-14	Percent of Total Emissions by Range (Pacific OCS Platforms)	3-17

EXECUTIVE SUMMARY

INTRODUCTION

The American Petroleum Institute (API) and the Gas Research Institute (GRI) conducted an extensive field study of fugitive hydrocarbon emissions from petroleum production operations. Data were collected from 184,035 components at 20 different sites and used to develop new emission factors and correlation equations. This report contains new emission factors for light crude production sites, heavy crude production sites, gas production sites, and Gulf of Mexico (Gulf) offshore petroleum production operations that supersede those published by API in "Fugitive Hydrocarbon Emissions from Petroleum Production Operations, Volumes I and II," (1980). Emission factors for gas processing plants will be published in a separate report after the collection of additional field data. This report also contains emission correlation equations that can be used to calculate fugitive emissions from individual instrument screening values (ISV) obtained with portable hydrocarbon monitoring instruments at all types of petroleum production facilities.

OBJECTIVES

Objectives of the study were:

- 1. Development of correlation equations relating instrument screening values to mass emission rates;
- 2. Development of emission factors;
- 3. Development of profiles of speciated hydrocarbon emissions including air toxics;
- 4. Assessment of regional differences in fugitive emissions; and,
- 5. Assessment of control efficiency of Inspection and Maintenance programs.

STUDY GUIDELINES AND PROCEDURES

The following types of petroleum production facilities were visited:

Onshore light crude production Onshore heavy crude production Onshore natural gas production Onshore natural gas processing plants Gulf of Mexico offshore platforms

At the beginning of each site visit, monitoring personnel met with representatives of the operating company to become oriented with the facility lay-out and safety requirements. Monitoring and sample collection activities started immediately after the orientation meetings. The following precautions were

ES-1

taken to assure that monitoring data and hydrocarbon samples were representative of the normal operating condition of each facility:

- Monitoring work was conducted without petroleum company supervision;
- Components that gave elevated screening values were recorded on confidential field data sheets (these were not shown to oil company personnel until the end of the visit);
- No identification markers were attached to emitting components during the time between screening and hydrocarbon collection;
- Collection of fugitive hydrocarbon emission samples occurred as soon after detection as possible to minimize the possibility of changes due to maintenance activities.

During the first days of each visit, all components were counted, logged, and screened with portable hydrocarbon monitoring instruments equipped with flame ionization detectors. All elevated readings (10 parts-per-million by volume, methane equivalence [ppmv] or more) were recorded; descriptive information about each component that gave an elevated reading was also recorded. [NOTE: Components with ISVs of 10 ppmv or more are referred to in this report as "emitters."]

Approximately 15 percent of the emitters were enclosed in polyethylene tents to collect samples of the fugitive hydrocarbons. [NOTE: This procedure is referred to herein as "bagging".] All of the collected samples were speciated into C1 through C6+ fractions. Approximately 25 percent of the samples were also analyzed for air toxics. Mass emission rates were calculated for all the bagged emitters.

Table ES-1 shows the number of components screened, the number of emitters found, and the number of samples collected at each of the five types of petroleum production facilities. The table also shows the number of samples speciated into C1 through C6+ fractions, and the number analyzed for aromatic air toxics.

COLLECTED AND ANALYZED FOR THE API/GRISTODY					
FACILITY	COMPONENTS	EMITTERS	EMITTERS	ANALYZED	ANALYZED
TYPE	SCREENED	FOUND*	SAMPLED	C1 -C6+	Air Toxics
Onshore Lt. Crude	48,652	991	165	165	43
Onshore Hvy Crude	13,756	62	30	30	4
Onshore Natural Gas	40,178	1,513	92	92	43
Onshore Gas Plant	35,764	1,615	175	175	40
Offshore Oil/Gas	45,685	615	243	243	38
TOTAL	184,035	4,796	705	705	168

Table ES-1. NUMBER OF COMPONENTS SCREENED, EMITTERS FOUND, AND SAMPLES COLLECTED AND ANALYZED FOR THE API/GRI STUDY

*NOTE: Emitter = ISV >10 ppmv

During the inventory task, components were grouped as follows:

- 1. Connections (CN)
- 2. Valves (VL)
- 3. Open Ended Lines (OEL)
- 4. Compressor Seals (CS)
- 5. Pump Seals (PS)
- 6. Pressure Relief Valves (PRV)
- 7. Dump Lever Arms (DLA)
- 8. Polished Rod Pumps (ROD)
- 9. Miscellaneous (MISC)

During data analysis, component types 4 through 9 were combined into a single "Others" category.

Correlation equations were developed from speciation data to show the relationship between ISVs and mass emission rates. A separate correlation equation was sought for each of four component types (CN, VL, OEL, Other) at each of the five types of facility, however, several of the sub-sets of data were found to be statistically identical and were therefore combined by type of facility. "Default zero" emission rates were defined for components with ISVs below 10 ppmv.

Emission factors were developed using the correlation equations and all 184,035 ISVs. This was done by calculating an emission rate for each ISV using the appropriate correlation equation, then adding all calculated emission rates for each facility type/component type combination to give the total expected emission rates. "Average" emission factors (average emissions per installed components) were derived by dividing total emissions by the total number of components. "Leak/No Leak" and "Stratified" emission factors were developed by grouping the data according to ISVs. Speciated weight fractions (C1 through C6+, and air toxics) of fugitive emission were also developed.

RESULTS

Correlation equations were developed for all five types of petroleum production facilities; emission factors were developed for four of the five types of facilities. Additional data are being collected for gas plants after which those emission factors will be calculated and presented in a separate report. Statistical evaluation showed that because many of the correlation equations were statistically equivalent; only eight equations were needed to predict emissions from the five types of facilities.

ES-3

Emission factors were developed for the same categories as the correlation equations (except gas processing plants). Speciation factors were developed for each site type. The five types of facilities were defined as follows:

- <u>Onshore light crude production sites.</u> This group included onshore production sites that produced only oil and sites that produced oil mixed with gas. Oil produced at these sites had an API gravity of 20 or more.
- <u>Onshore heavy crude production sites.</u> Sites that produced oil with an API gravity less than 20 were designated as heavy crude sites. Thermally enhanced oil recovery sites were included in this category.
- <u>Onshore gas production sites.</u> This category included sites that produced dry natural gas, natural gas liquids, condensate, or a very minor amount of light oil along with the produced gas. Equipment located along-side the wells or at gathering stations were included in this category. Co-located gas plants were counted in the Onshore gas processing plant category.
- <u>Onshore gas processing plants.</u> Onshore plants that process natural gas and/or natural gas liquids were included in this category. Wells located adjacent to the gas plant were counted in the Onshore gas production category instead of this category.
- Offshore oil and gas production platforms. All offshore operations were included in this category.

No evidence of statistical differences among different regions of the country was found except for offshore platforms. Comparison of the data produced by this study of Gulf platforms with study data published by the US Minerals Management Service (MMS) in "Fugitive Hydrocarbon Emissions From Pacific OCS Facilities, Volumes 1 and 2," (November 1992), indicated that Pacific platforms have a lower leak frequency than Gulf platforms. Offshore platforms in either area have lower leak frequencies than onshore facilities.

Ninety percent of fugitive hydrocarbon emissions observed in this study came from components that had large leaks (usually less than one percent of the total installed components). This suggests that an inspection and maintenance program that can reduce the number of large leaks may be effective in reducing total fugitive hydrocarbon emissions.

Correlation Equations

Correlations between ISVs and mass emission rates were calculated from laboratory analyses for ISVs above 10 ppmv. Correlation equations were developed by regressing the natural logarithm of total hydrocarbon emissions (In THC) on the natural logarithm of the instrument screening values (In ISV). A simple linear regression (least squares fit) was then calculated and converted from log space to arithmetic space using a scale bias correction factor. Table ES-2 gives the correlation equations for all types of sites.

ES-4

	Table ES-2.	CORRELATION	EQUATIONS
--	-------------	-------------	-----------

FACILITY	COMPONENT TYPE	CORRELATION EQUATION	
Onshore Light Crude	CN, VL, OEL	THC(lb/day) = 8.61 x 10 ⁻⁵ (ISV ppmv) ^{0.83}	
Onshore Light Crude	Other	THC(lb/day) = 1.24 x 10 ⁻³ (ISV ppmv) ^{0.61}	
Onshore Heavy Crude	All	THC(lb/day) = 3.29 x 10 ⁻⁵ (ISV ppmv) ^{0.89}	
Onshore Gas Production	CN, OEL	THC(lb/day) = 8.04 x 10 ⁻⁶ (ISV ppmv) ^{1.02}	
Onshore Gas Production	VL, Other	THC(lb/day) = 9.79 x 10 ⁻⁵ (ISV ppmv) ^{0.96}	
Onshore Gas Plant	Ali	$THC(lb/day) = 1.79 \times 10^{-4}(ISV ppmv)^{0.87}$	
Offshore Oil & Gas	CN, OEL	THC(lb/day) = 1.04 x 10 ⁻⁵ (ISV ppmv) ^{0.99}	
Offshore Oil & Gas	VL, Other	$THC(lb/day) = 3.30 \times 10^{-4}(ISV ppmv)^{0.87}$	

NOTE: All correlation equations and emission factors presented in this report are based on ISVs obtained within 1 cm of the component surfaces.

Default Zero Emission Factors

The correlation equations predict emission rates from 0.00008 to 0.00505 lb/day for components with ISVs of 10 ppmv depending on the facility type and component type. In this report, all components with screening values below 10 ppmv have been assumed to leak at rates that produce ISVs of 5 ppmv. Table ES-3 gives the THC default zeros.

FACILITY TYPE	COMPONENT TYPE	DEFAULT ZERO	
Onshore Light Crude	CN, VL, OEL	0.00033 lb/day-component	
Onshore Light Crude	Other	0.00331 lb/day-component	
Onshore Heavy Crude	All	0.00014 lb/day-component	
Onshore Gas Production	CN, OEL	0.00004 lb/day-component	
Onshore Gas Production	VL, Other	0.00046 lb/day-component	
Onshore Gas Plant	All	0.00073 lb/day-component	
Offshore Oil & Gas	CN, OEL	0.00005 lb/day-component	
Offshore Oil & Gas	VL, Other	0.00134 lb/day-component	

Table ES-3. DEFAULT ZERO THC EMISSION FACTORS

Average Emission Factors

Average emission factors are used to predict fugitive hydrocarbon emissions when the only information available about a site is the number of components installed. Average factors for four types of sites (excluding gas plants) were developed by dividing total emissions by the total number of installed components. Average emission factors for individual component types were developed by dividing the component type's contribution to total emissions by the number of those components. Table ES-4 gives the overall average THC emission factors for each facility type; Table ES-5 gives component specific average THC emission factors for each facility type/component type combination.

	(C	Overall)
Onshore Light Crude	All	0.0085 lb/day-component
Onshore Heavy Crude	All	0.0002 lb/day-component
Onshore Gas Production	Ali	0.0233 lb/day-component
Offshore Oil & Gas	All	0.0055 lb/day-component

Table ES-4. AVERAGE THC EMISSION FACTORS (Overall)

Table ES-5 AVERAGE THC EMISSION FACTORS (Component specific) [lb/day-component]

	CONNECTIONS	VALVES	OPEN-ENDED	OTHERS				
Onshore Light Crude	0.0041	0.0197	0.0351	0.0991				
Onshore Heavy Crude	0.0001	0.0002	0.0010	0.0007				
Onshore Gas Production	0.0038	0.1063	0.0107	0.2870				
Offshore Oil & Gas	0.0006	0.0217	0.0099	0.1036				

Leak/No Leak Emission Factors

Another method of calculating fugitive hydrocarbon emissions is to screen components and determine the number above and below a leak definition (in ppmv). "Leak/No Leak" THC emission factors are given in Table ES-6.

	(Founds/Day-	Component)	
FACILITY TYPE	COMP. Type	No Leak <10,000 ppmv	Leak ≥10,000 ppmv
Onshore Light Crude	CN, VL, OEL	0.00060	0.91
Onshore Light Crude	Other	0.01660	0.878
Onshore Heavy Crude	All	0.00016	0.119
Onshore Gas Production	CN, OEL	0.00021	0.380
Onshore Gas Production	VL, Other	0.00546	2.45
Gulf Offshore Oil & Gas	CN, OEL	0.00012	0.183
Gulf Offshore Oil & Gas	VL, Other	0.00267	2.22

Table ES-6. "LEAK/NO-LEAK" THC EMISSION FACTORS (Pounds/Day-Component)

Stratified Emission Factors

Stratified THC emission factors given in Table ES-7 show the emission rates for components with ISVs below 10 ppmv; from 10 to 9,999 ppmv; from 10,000 to 99,999; and equal to or greater than 100,000 ppmv.

ES-6

		INSTRUMENT SCREENING RANGE						
FACILITY TYPE	COMPONEN T TYPE	<10 ppmv	10 to 9,999	10,000 to 99,999	≥ 100,000 ppmv			
Onshore Light Crude	CN, VL, OEL	0.00033	0.0274	0.395	1.22			
Onshore Light Crude	Other	0.00331	0.0610	0.365	1.39			
Onshore Heavy Crude	All	0.00014	0.0046	0.119	na			
Onshore Gas Production	CN, OEL	0.00004	0.0112	0.126	1.01			
Onshore Gas Production	VL, Other	0.00046	0.0871	0.756	6.18			
Offshore Oil & Gas	CN, OEL	0.00005	0.0099	0.097	0.927			
Offshore Oil & Gas	VL, Other	0.00134	0.1187	1.071	7.39			

Table ES-7. "STRATIFIED" THC EMISSION FACTORS (Pounds/Day-Component)

Speciated Hydrocarbon Factors

Tables ES-2 through ES-7 present correlation equations and emission factors for calculating THC (all hydrocarbon species combined). Emission rates for individual hydrocarbon species can be calculated by multiplying THC emissions by the weight fractions given in Table ES-8.

Table ES-8 SPECIATED FUGITIVE EMISSION FACTORS (Weight Fraction of THC emissions in each category)

			VOC	C5 .	RENTENE	TOUTENE	ETHYL-	YVI ENER
	METHANE	NMILC	VUC	00+	DENZENE	TOLUENE	DENZENE	ATLENES
Onshore Light Crude	0.613	0.387	0.292	0.02430	0.00027	0.00075	0.00017	0.00036
Onshore Heavy Crude	0.942	0.058	0.030	0.00752	0.00935	0.00344	0.00051	0.00372
Onshore Gas Production	0.920	0.080	0.035	0.00338	0.00023	0.00039	0.00002	0.00010
Offshore Oil & Gas	0.791	0.210	0.110	0.00673	0.00133	0.00089	0.00016	0.00027

NOTES:

1. Emission factor = Speciated Emissions/Total Emissions

2. NMHC = Non-methane hydrocarbon

3. VOC = Propane and heavier hydrocarbon

4. Many hydrocarbons are included in more than one group, for example, C6+ is also included in the NMHC and VOC groups.

SUMMARY/CONCLUSIONS

Accuracy of Screening and Bagging Techniques

Instrument screening values are influenced by such things as wind speed and direction, instrument dynamics (calibration, battery charge, flow rate), and sampling protocols. As a result, there is a wide

ES-7

variation in ISVs found for each mass emission rate. Statistical analysis of the relationship between ISVs and mass emission rates yields a "regression correlation coefficient" (r) which indicates how closely the two variables are related. A coefficient of 1.00 indicates perfect correlation. Regression correlation coefficients for the various equations developed from API/GRI data ranged from 0.56 to 0.86; a single equation developed by combining all the data into one set had a correlation coefficient of 0.71. This compares favorably with the four equations published by the EPA in "Protocols for Equipment Leak Emission Estimates" (June 1993) that ranged from 0.45 to 0.87, and with the regression correlation coefficient published with the MMS Pacific OCS platform data which is 0.79.

Speciated Emissions and Air Toxics

Methane was the major fugitive hydrocarbon at all types of petroleum production sites. Hexane was found in levels of 2 percent by weight or less, while benzene and toluene were found at levels below 1 weight percent. Concentrations of xylenes and ethyl-benzene were usually near the laboratory method detection limits.

Regional Differences in Emissions

No apparent regional differences have been found except for offshore platforms.

Inspection and Maintenance

More than 90 percent of the total emissions came from components with ISVs of 10,000 ppmv or more. Inspection and Maintenance (I&M) practices that are effective in reducing the number of ISVs at 10,000 ppmv or more could significantly reduce fugitive hydrocarbon emissions.

SECTION 1 STUDY METHODOLOGY

INTRODUCTION

In 1980, the American Petroleum Institute (API) published "Fugitive Hydrocarbon Emissions from Petroleum Production Operations, Volumes I and II" that contained fugitive hydrocarbon emission factors for onshore and offshore petroleum production operations. Separate emission factors were given for various types of connections, valves, open-ended lines (drains and sample connections), pressure relief valves, pump and compressor seals, hatches, diaphragms, meters, sight glasses, and pits at each of three strata of facilities: 1) Onshore producing operations, 2) Offshore producing operations, and 3) Gas plant operations. Approximately 150 different emission factors were given for each stratum. Speciation information for the factors was presented as average weight percents of C1, C2, C3, C4, C5, and C6+ hydrocarbon for each stream type. The report did not contain information on air toxics emissions. The effectiveness of inspection and maintenance programs was investigated, but results were inconclusive.

Changes in petroleum production facility equipment and operations since the factors were published, as well as changes in the regulatory environment, have resulted in significant reductions of fugitive hydrocarbons emissions. As a result, the 1980 API factors overpredict emissions from modern facilities.

Objectives

Beginning in 1990, API and the Gas Research Institute (GRI) conducted a study to:

- Develop correlation equations relating instrument screening values (ISVs) to mass emission rates;
- 2. Develop new fugitive hydrocarbon emission factors;
- 3. Develop profiles of speciated hydrocarbon emissions including air toxics;
- 4. Assess regional differences in fugitive emissions;
- 5. Assess control efficiency of Inspection and Maintenance programs.

<u>Scope</u>

This report presents data collected at four light crude production sites, four heavy crude production sites, four gas production sites, four gas processing plants, and four Gulf of Mexico platforms. Correlation equations were developed from data collected at all five types of facilities. Fugitive hydrocarbon emission factors and air toxics weight fractions were developed from data at four types of

sites. A separate report on fugitive hydrocarbon emission factors and air toxics weight fractions for gas plants will be published after more field data are collected in a joint research effort with the EPA.

The 1980 emission factors for connections, valves, and open-ended lines are directly superseded by the new emission factors developed in this study. The limited number of uncontrolled pressure relief valves, pump seals, compressor seals, and other components found during the study did not provide enough data to allow development of new factors for these components as separate types. Instead these and other miscellaneous components were grouped into one category called "Others". The study produced two types of emission factors: 1) emission factors for use with component counts and, 2) emission factors for use with ISVs. Separate correlation equations were developed for connections, valves, open-ended lines, and other components. Emissions were speciated according to hydrocarbon length (number of carbon atoms) and type (aromatic and nonaromatic hydrocarbons).

DESCRIPTION OF METHODOLOGY

Sixteen onshore sites and four offshore sites were visited in the contiguous United States. A total of 184,035 components was screened according to US EPA Method 21 guidelines using portable monitoring instruments. A total of 4,796 components gave ISVs of 10 parts-per-million by volume methane equivalence (ppmv) or more. These components are referred to in this report as "emitters". Mass emission rates from approximately 15 percent of the emitters were quantified by enclosing the components in polyethylene tents or bags ("bagging") and collecting samples of the escaping hydrocarbons in Tedlar sample bags. Mass emission rates from the bagged emitters were used to develop correlation equations; correlation equations were used to develop emission factors. The five types of petroleum production facilities visited were:

- <u>Onshore light crude production sites</u>. This group included onshore production sites that produced only oil and sites that produced oil mixed with gas. Oil produced at these sites had an API gravity of 20 or more.
- <u>Onshore heavy crude production sites.</u> Sites that produced oil with an API gravity less than 20 were designated as heavy crude sites. Thermally enhanced oil recovery sites were included in this category.
- <u>Onshore gas production sites.</u> This category included sites that produced dry natural gas, natural gas liquids, condensate, or a very minor amount of light oil along with the produced gas. Equipment located beside the wells or at gathering stations were included in this category. Co-located gas plants were counted in the Onshore gas processing plant category.
- <u>Onshore gas processing plants.</u> Onshore plants that process natural gas and/or natural gas liquids were included in this category. Wells located next to the gas plant were counted in the Onshore gas production category instead of this category.

• <u>Offshore oil and gas production platforms.</u> All offshore operations were included in this category.

Study Sites Selection

Figure 1-1 shows the approximate location of the sites visited. The figure also shows the two major regions of petroleum production in the contiguous United States. These regions account for more than 90 percent of total oil and gas production in the lower 48 states. Four of the onshore sites were light crude production fields, four were heavy crude production fields, four were dry gas production fields, and four were gas plants.

NOTE: Darkened areas are regions of major oil and gas production.

Table 1-1 lists the number of components screened at each site, the number of emitters found, and the number of samples collected. Site numbers are assigned by facility type and number of components screened.

	SITE	COMPONENTS	EMITTERS	SAMPLES
FACILITY TYPE	NO.	SCREENED	FOUND	COLLECTED
Light Crude	1	27,155	522	43
Light Crude	2	14,620	290	39
Light Crude	3	4,095	84	58
Light Crude	4	2,782	95	28
Heavy Crude	5	6,362	19	9
Heavy Crude	6	2,799	21	9
Heavy Crude	7	2,696	8	6
Heavy Crude	8	1,899	14	8
Gas Production	9	14,066	324	23
Gas Production	10	9,374	316	36
Gas Production	11	9,094	628	22
Gas Production	12	7,644	245	36
Gas Plant	13	11,235	416	61
Gas Plant	14	10,673	616	30
Gas Plant	15	7,786	303	42
Gas Plant	16	6,070	280	34
Offshore Platform	17	15,734	218	76
Offshore Platform	18	10,967	145	56
Offshore Platform	19	10,271	93	61
Offshore Platform	20	8,713	159	59
TOTALS		184,035	4,796	736

Table 1-1. SITES INCLUDED IN THE 1993 API/GRI STUDY

Screening Procedures

Components were screened using commercially available portable monitoring instruments that met the following requirements of EPA Method 21 -- "Determination of Volatile Organic Compounds Leaks":

- 1. The instruments had flame ionization detectors (FID);
- 2. The instruments responded to hydrocarbons in concentrations between 1 and 10,000 ppmv in air and the instrument scale was readable within 2.5 percent; dilution techniques were employed when needed to extend the instrument range above 10,000 ppmv.
- 3. The probe tips did not exceed 0.25 inches in outside diameter;
- 4. The instruments contained electrically driven pumps that sampled between 0.1 and 3.0 liters per minute;
- 5. The instruments were intrinsically safe;
- 6. The instruments responded to hydrocarbons within 5 seconds.

At the beginning of each day, all instruments were calibrated near zero, at mid-range, and near their upper measurement limits with zero air and certified mixtures of methane-in-air. Calibrations were checked throughout the day.

1-4

API PUBL*4589 93 🔳 0732290 0517513 T65 🖿

The instruments had response factors between 0.5 and 1.5 for methane, ethane, propane, butane, pentane, hexane, benzene, toluene, ethyl-benzene, and xylenes, which were the major hydrocarbons found in petroleum production fugitive emissions. [NOTE: Field measurements were not corrected for variability of instrument response to different hydrocarbons (response factors)].

Each site was subdivided into small geographic sub-areas containing from 50 to 200 equipment components. All valves, connections, pump seals, compressor seals, pressure relief devices, openended lines, meters, sight glasses, hatches, and vents in each sub-area were inventoried and screened. "Protocols for Equipment Leak Emission Estimates" (June 1993) recommends the following, "hold the probe tip just over (a dirty) surface to avoid scooping up contaminants". The API/GRI study was conducted with the inlet probe of the monitoring instrument held within 1 cm of all points of possible emissions to prevent contamination and assure consistent screening values throughout the study. This was consistent with petroleum industry practice.

The EPA protocol says that two additional methods of protecting against contamination are using flexible plastic tubing as an expendable extension to the probe tip and packing the tubing with untreated fiberglass. Plastic tubing without fiberglass packing was sometimes used during the API/GRI study. The instruments had internal dust filters which were cleaned on a regular basis.

Each component was screened by moving the instrument probe along all areas of possible leakage while observing the instrument readout. When an increased reading was observed, the probe was moved slowly across the area until the maximum meter reading was obtained. The probe inlet was held at the point of highest reading for at least 10 seconds (twice the instrument response time). The maximum reading was recorded as the ISV.

The stems of valves were screened at the opening between the stems and packing nuts, and all other points of possible emissions. Body seals and plugs were also screened. Emissions from any of these areas were recorded as "Valve emissions". The connections between valve bodies and process piping were counted as "Connections". The ends of valves open to atmosphere, or connected to short pieces of pipe which in turn were open to atmosphere were counted as "Open-Ended Lines".

Flanges, threaded connections, and tubing fittings were screened at all possible points of emissions. Emissions from these components were recorded as "Connection" emissions.

API PUBL*4589 93 🗰 0732290 0517514 9T1 🖿

Many pump seals and compressor seals had been enclosed and routed to flare headers or vapor recovery systems. These components were not counted or screened. Accessible pump and compressor seals were screened with traverses at the outer circumference surfaces of the shafts and seal interfaces. Emissions from these areas were recorded as "Compressor Seal" or "Pump Seal" emissions. Plugs, flanges, threaded connections, and valves on pumps and compressors were also screened. Emissions from these components were recorded as emissions from connections, valves, or open-ended lines, not as compressor or pump emissions.

Pressure relief valves (PRV) connected to flare headers were not counted or screened. PRVs that vented to atmosphere were screened by holding the sampling probe at the center of the exhaust areas.

Other sources such as process drains, degassing vents, access doors and hatches, were screened at all openings and other points of possible emission. If the openings were less than one inch diameter, a single reading was taken. Larger openings were screened around the entire perimeter.

The types and numbers of components screened in each sub-area were recorded on field data sheets. All ISVs of 10 ppmv or more were recorded on the field data sheets along with descriptions of the sizes and types of components giving elevated readings.

Bagging Procedures

EPA Protocol guidelines for the "Vacuum Method" were followed with some additional procedures to improve collection. Each component was re-screened immediately before bagging to locate the point of highest emissions. A sampling tube was then attached to the component with the tube inlet placed within 1 cm of the point of highest emissions. The other end of the tube was attached to a rotameter which in turn was connected to an electrically driven sampling pump capable of drawing between 1.5 and 20 liter per minute. A second tube (ambient air supply tube) was attached to the opposite side of the component. The component and tubes were then enclosed in a tight-fitting 4 mil thick polyethylene bag, the edges of the bag being heat-sealed and/or taped to prevent uncontrolled entry of air into the bag.

When the pump was started, the bag collapsed, thus preventing loss of hydrocarbon. The reduced pressure inside of the bag caused ambient air to be drawn in through the ambient air supply tube. The flow rate of ambient air into the bag was monitored with a second rotameter attached to the inlet side of the ambient air supply tube. If the flow through the two rotameters (bag inlet and bag outlet) was not

1-6

Not for Resale

comparable, the bag was resealed. [NOTE: Concentrations of hydrocarbon in the ambient air were usually less than 5 ppmv. At a typical sampling rate of 3 liters per minute, the additional hydrocarbon drawn into the bag with the ambient air was less than 0.00000003 lb/minute (0.00004 lb/day) which had a negligible effect on the development of correlation equations and subsequent development of emission factors.]

When a controlled flow rate through the bag was achieved, the pump outlet was measured with the hydrocarbon monitoring instrument until a constant reading was recorded for three consecutive 30-second periods. A Tedlar sample bag was then attached to the pump outlet and filled and emptied three times. The Tedlar sample bag was then filled for the fourth time and sent to an off-site laboratory for analysis.

After the Tedlar sample bag had been filled for the final time, the pump outlet was again measured with the portable hydrocarbon monitoring instrument until a constant reading is recorded for three consecutive 30-second periods. The polyethylene bag is then completely removed from the component and the component is re-screened with the portable monitoring instrument to give a "post-bagging" reading.

The pre-bagging and post-bagging screening values are recorded on the field data sheets with their times of measurement. Instrument readings of the pump outlet before and after sample collection are also recorded with their exact times of measurement. The field data sheets also contain sample identification numbers, component types and locations, pump identification numbers, pump flow rates, dates, and names of field personnel conducting sample collections.

Chain of custody forms are prepared which included sample identification numbers, dates and times of sample collection, readings of the pump outlet (in ppmv) just before filling the bags, and signatures of field technicians transporting the samples. The forms are signed and dated by the receiving laboratories, and the laboratory identification numbers are recorded beside the field identification numbers.

The program design includes a feed-back mechanism to adjust the number and types of components selected for mass emissions quantification. Information obtained at the first sites showed that approximately 80 percent of the components are connections, 17 percent are valves, 2 percent are open-ended lines and the remaining 1 percent is composed of uncontrolled compressor seals, uncontrolled pump seals, polished rod stuffing boxes, dump lever arm seals, hatches, vents,

1-7

Not for Resale

uncontrolled pressure relief devices, and other components. The information also showed that more than 90 percent of the fugitive emissions comes from connections, valves and open-ended lines with ISVs of 10,000 ppmv or more. As a result, bagging at later study sites was directed mainly at large emitters in these three types of components.

Laboratory Procedures

Gas chromatography (GC) is used to separate the hydrocarbons by species. Aromatic hydrocarbons are quantified using photo-ionization detectors or by mass spectroscopy (MS); nonaromatic hydrocarbons are quantified using flame ionization detectors. Concentrations of the following hydrocarbon species are reported in ppmv to three significant digits:

Methane (C1) Hydrocarbons containing two carbon atoms per molecule (C2) Hydrocarbons containing three carbon atoms per molecule (C3) Hydrocarbons containing four carbon atoms per molecule (C4) Hydrocarbons containing five carbon atoms per molecule (C5) Hydrocarbons containing six or more carbon atoms (C6+) Benzene Toluene Ethyl-benzene meta and para Xylenes ortho Xylene

Speciated laboratory analyses in parts per million by volume are converted to mass emission rates using the following molecular weight assumptions:

CHEMICAL	ASSUMED	
SPECIES MOL	ECULAR WEIGH	IT
C1	16	
C2	30	
C3	44	
C4	58	
C5	72	
C6+	86	
Benzene	78	
Toluene	92	
Ethyl-benzene	106	
Žylenes	106	
-		

Quality Assurance/Quality Control Procedures

Approximately 15 percent of the analyses were replicated in the laboratory to assess precision. Field blanks and bags filled with calibration gases of known concentrations were given coded identification numbers and sent to the laboratory to assess accuracy. Duplicate samples of fugitive emissions were collected from several of the components. Some of the duplicate samples were given coded

identification numbers and sent to the same laboratory to assess precision of the analyses; others were sent to a second laboratory for comparison analysis.

API conducted an independent audit of the field contractor and laboratories used in the program to examine site sample collection forms, chain of custody forms and sample identity designations, laboratory data (GC, GC/MS tracings), calibration records and reported values. In general, the API auditor found the data to be well organized and trackable. The few discrepancies found in the data were discussed and resolved.

DATA MANAGEMENT

Actual ISVs of 10 ppmv or more were recorded for 4,796 components. Seven-hundred and thirty-six (736) samples of fugitive hydrocarbon were collected and analyzed. Correlation equations were developed from the bagging data and ISVs; emission factors were developed from the correlation equations, ISVs, and component inventories. Appendix A contains detailed descriptions of methods used to develop correlation equations and emission factors.

Development of Correlation Equations

Because fugitive emission concentrations tend to be log-normally distributed, model equations have been derived over the past several years by regressing the natural logarithm of total hydrocarbon emissions, (In(THC)), on the natural logarithm of the ISV, (In(ISV)). The model equations have been typically of the form:

• •	$ln(THC) = \alpha + \beta \bullet ln(ISV)$	[Equation for log space]	Eq. 1-1
or	$THC=e^{\alpha}(ISV)^{\beta}$	[Equation for arithmetic space]	Eq. 1-2

where α and β denote respectively the intercept and slope of the regression model on the log-log scale. This model equation form was used to develop correlation equations for the API/GRI data.

A general Analysis of Variance model was used to allow different intercepts and slopes for each facility type/component type combination. Through a series of iterations, terms that were not statistically significant were excluded from the model until only significant terms remained.

Linear regressions calculated in log space are biased low because of the relationship between actual numbers and their logarithms. When making the transformation of equations from log space to arithmetic space, intercepts have to be adjusted to produce unbiased predictions. Adjustments were made using the following scale bias correction factor (SBCF):

1-9

SBCF = 1 +
$$(m-1)^{1}T$$
 $(m-1)^{3}T^{2}$ $(m-1)^{5}T^{3}$ + ... Eq. 1-3
 $m^{1}T^{1}$ $m^{2}T^{2}T^{2}$ $(m-1)^{5}T^{3}$ + ... Eq. 1-3

Where:

 $T = 0.5 \star (mean square error of the regression)$

m = number of data pairs

Correlation equations developed from the new data are given in Sections 2 and 3 of this report.

Development of Emission Factors

Five ISV ranges were defined to account for the distribution of the number of components and their emission contributions:

≥100,000 ppmv 10,000 to 99,999 ppmv 1,000 to 9,999 ppmv 10 to 999 ppmv <10 ppmv

Bagged hydrocarbon emissions were then modeled to verify that average emissions in each range were homogeneous across the facility type/component type categories chosen during correlation equation development. The screening value of each component was entered into the appropriate correlation equation and estimated emissions were obtained.

The lower useful limit of the hydrocarbon monitoring instrument is considered to be 10 ppmv. Ambient levels of methane in the atmosphere are approximately 2 ppmv or more. Further, difficulties with equipment calibration, battery fade-out, and other operator induced variables make readings of less than 10 ppmv highly unrepeatable. For these reasons, ISVs of less than 10 ppmv were entered into the equations as 5 ppmv. The total of the estimated THC emissions was then calculated for each of the five ranges. Finally, the average emissions were computed as total emissions divided by total number of components. Average emission factors for specific component types were developed by dividing the component type's contribution to total emissions by the number of those components.

"Leak/No-Leak" emission factors were calculated for each site. Stratified emission factors were developed for four ranges: ISVs below 10 ppmv; from 10 to 9,999 ppmv; from 10,000 to 99,999; and equal to or greater than 100,000 ppmv.

Not for Resale

SECTION 2 ONSHORE RESULTS AND ANALYSIS

DATA COLLECTION

A total of 138,350 components at 16 onshore sites was inventoried and screened using portable hydrocarbon analyzers. The sites were divided into sub-areas. Inventories were prepared by counting the connections (CN), valves (VL), open-ended lines (OEL), compressor seals (CS), pump seals (PS), pressure relief valves (PRV) and miscellaneous components (Misc) contained in each sub-area. All components in each sub-area were screened according to EPA Method 21 guidelines. Two sites contained thousands of wells; at these sites it was necessary to select a limited number of the sub-areas for screening.

Full descriptions of 4,181 onshore components found to have instrument screening values (ISV) of 10 parts per million by volume (ppmv) methane equivalence or more were recorded on field data sheets. These components are referred to as "emitters" in this report. Samples of fugitive hydrocarbons from 473 emitters were collected and speciated for nonaromatic hydrocarbons. A total of 144 samples that had high total hydrocarbon content was also analyzed to determine benzene, toluene, xylenes, and ethyl-benzene concentrations.

Appendix B of this report contains inventory and screening data for all sites. Appendix C lists the location, component type, and ISV for each emitter. Appendix D contains nonaromatic speciation data. Appendix E contains aromatic speciation data.

Table 2-1 contains a summary of the number and types of components screened at each onshore site and the number of emitters found. In the table, ISVs are grouped into one of six ranges: 10 to 99; 100 to 499; 500 to 999; 1,000 to 9,999; 10,000 to 99,999 and \geq 100,000 ppmv.

S I	COMPONENTS SCREENED								EMI	TTERS	6 BY	SCREEM	ING RAN	IGE (p	pmv)
T E	CN	VL.	OEL	cs	ΡS	PRV	Misc	ALL	10 to 99	100 499	500 999	1,000 9,999	10,000 99,999	100 k plus	ALL
1	20767	6121	143	6	11	0	107	27155	84	78	30	83	76	171	522
2	12041	2010	378	1	6	14	170	14620	39	59	28	56	49	59	290
3	3040	867	87	4	4	18	75	4095	13	12	8	24	18	9	84
4	2155	520	85	2	2	4	14	2782	25	18	2	15	20	15	95
5	5282	890	127	0	0	2	61	6362	11	5	1	2	0	0	19
6	2208	446	106	0	0	0	39	2799	13	4	0	2	2	0	21
7	2127	407	110	0	0	8	44	2696	5	0	1	2	0	0	8
8	1433	330	96	0	0	3	37	1899	12	2	0	0	0	0	14
9	11990	1815	215	8	8	6	24	14066	29	58	21	90	82	44	324
10	7171	1758	344	1	0	45	55	9374	49	71	26	54	86	30	316
11	7324	1238	269	25	2	208	28	9094	22	61	9	218	231	87	628
12	6027	1248	223	15	0	112	19	7644	49	36	14	58	55	33	245
13	8463	2427	278	14	21	32	0	11235	29	89	25	107	56	110	416
14	8110	2141	229	29	44	74	46	10673	54	81	28	167	207	79	616
15	6310	1296	71	20	26	28	35	7786	12	34	17	80	97	63	303
16	4781	1127	86	26	15	31	4	6070	9	36	12	57	115	51	280
	109229	24641	2847	151	139	585	758	138350	455	644	222	1015	1094	751	4181

Table 2-1. COMPONENTS SCREENED AND EMITTERS FOUND AT ONSHORE SITES

NOTE: CN = Connection; VL = Valve; OEL = Open-Ended Line; CS = Compressor Seal; PS = Pump Seal; PRV = Pressure Relief Valves; Misc = Miscellaneous.

Approximately 10 percent of the emitters in each range were bagged to collect fugitive hydrocarbons for analysis. Extra samples were collected from three categories: 500 to 999 ppmv; 1,000 to 9,999 ppmv; and \geq 100,000 ppmv. The number of emitters found and samples collected are shown in Table 2-2.

	Below 10	10 to 99	100 to 499	500 to 999	1,000 to 9,999	10,000 to 99,999	100,000 plus
Emitters	NA	455	644	222	1015	1094	751
Samples	25	47	65	32	119	71	113

Table 2-2. ONSHORE EMITTERS BY SCREENING RANGE (ppmv)

NA: This study classified components with ISV below 10 ppmv as non-emitters.

The distribution of all emitters found at onshore sites, arranged by emission rate, is shown in Figure 2-1. The contribution of each group of emitters to total emissions (as determined from laboratory analyses) is shown in Figure 2-2. About 85 percent of total mass emissions came from individual emissions of 1 lb/day or more (0.18 tons/yr); twelve percent came from individual emissions between 0.125 and 0.999 lb/day (0.02 to 0.18 tons/yr); while about three percent came from emitters with rates of 0.1249 lb/day or less (0.02 tons/yr or less).

Figure 2-1. DISTRIBUTION OF ONSHORE EMITTERS [Based on Laboratory Analyses] (From 138,350 Components Screened)

TOTAL HYROCARBON EMISSION RATE (Ib/day)

TOTAL HYROCARBON EMISSION RATE (Ib/day)

The contributions of five ISV emitter ranges to total emissions are shown in Table 2-3. Approximately 93 percent of all emissions came from leaks that equal or exceed 10,000 ppmv. The remaining 7 percent came mostly from the 1,000 to 9,999 ppmv ISV range; only 0.7 percent came from emitters with ISV from 10 to 999 ppmv and 1.8 percent came from ISV <10 ppmv. The data in Table 2-3 suggests that all emitters with ISVs from 10 to 9,999 ppmv can be combined into a single group without compromising the ability to predict emissions.

	BUTION OF	EACH SCHE	ENING HAN		AL EMISSIONS
	<10 ppmv	10 to 999 ppmv	1,000 to 9,999	10,000 to 99,999	100,000 plus
Components in Range	134,169	1,321	1,015	1,094	751
Average Rate (lbs/day- component)	0.00043	0.0174	0.146	0.601	3.21
Total Emissions (lbs/day)	58	23	148	657	2,414
Percent of Total	1.8%	0.7%	4.5%	19.9%	73.1%

Fable 2-3.	CONTRIBUTION	OF EACH	SCREENING	RANGE TO	D TOTAL	EMISSIONS

QUALITY ASSURANCE/QUALITY CONTROL

Samples were speciated into six nonaromantic groups (C1, C2, C3, C4, C5, and C6+); some were also speciated into four aromatic types (benzene, toluene, ethyl-benzene, and xylenes). Approximately 15 percent of the samples were analyzed twice to evaluate laboratory precision. Table 2-4 shows the variation in results from the first and second analyses for nonaromatic hydrocarbons. (NOTE: The methane concentration was often so much higher than the concentration of other hydrocarbons that two separate runs were needed for each analysis: a diluted run to quantify methane and a more concentrated run to quantify the remaining nonaromatic hydrocarbons. Usually only the "methane run" or "nonmethane run" was repeated as a quality assurance check; therefore many of the analyses shown in Table 2-4 have "na" indicating the species that were not analyzed twice.)

Figure 2-3 graphically shows methane concentrations from Table 2-4. Samples that had the same or nearly the same concentration in both analyses fall on the diagonal line across the figure. Data points below the diagonal indicate second analyses with lower methane content than the corresponding first analyses; data points above the diagonal indicate second analyses with higher methane content than the corresponding first analyses. The figure shows that first and second analyses for methane had good agreement for the entire range from 3 to nearly 1,000,000 ppmv in the sample bag. The correlation equation of the least squares linear regression of natural

2-4

log(second Methane concentration) versus natural log(first Methane concentration) is 0.99983 indicating a very high correlation. Figures 2-4 through 2-8 graphically show the correlation of repeated analyses for other nonaromatic species.

Table 2-5 and Figures 2-9 through 2-13 show similar information for aromatic hydrocarbon content of samples. Table 2-6 contains the coefficients of correlation (r) for all sets of data.

Not for Resale

Table 2-4	FIRST AND SECOND ANALYSES FOR NON-AROMATIC HYDROCARBONS (ppmv)
-----------	--

111	3%	15%	%0	-4%	Γ	Γ	8%	4%		1%	%0		Γ	4%	1%	3%		Ι	%0	Γ	7%	3%	% 4	T	Τ		1%		5%	Γ	Τ	%0	3%	5%	%6.	3%	Γ	Τ
a + 6	12	17 -4	4	4	╞	$\left \right $	4	=	-	15	-	+	-	20	52 -1	5	+		14 6	$\left \right $	30	21	-	+	┝	┢	16	┢	8	-	┢	02	m	9	46	2	╞	╀
2nd Cf					8U	na			na Na			BL	80		6		80	80		Bu				вu	na	na	en la	Bu		BU	80	0					вп	er.
1st C6+	11	30	9	4	3	1,290	4	11	26	15	-	52	-	19	847	ß	19	805	6	4	28	21	-	274	445	274	318	-	8	554	4	0.02	3	7	50	2	7	0 4
Diff	-2%	-4%	-6%	-10%			1%	-19%		-19%	%0			3%	4%	5%		Γ	-6%	Γ	1%	-3%	10%			Γ	-1%		-17%			0.0	2%	-6%	-1%	1%	Γ	Γ
2nd C5	5	71	5	9	BU	BU	12	1	BU	1	-	ВП	вu	58	1,520	е	BU	na	2	80	66	35	10	BU	na	BU	698	na	e	BU	na	0.1	-	7	31	2	BU	80
1st C5	5	74	9	7	2	2,100	12	13	32	14	-	122	-	56	1,460	3	32	1,490	7	28	99	36	6	1,840	2,640	1,180	702	2	4	1,100	6	0.1		8	32	2	e	0.1
Diff.	~9-	%0	17%	-3%		Γ	-4%	-3%	Γ	-2%	%0			2%	6%	-6%			1%		1%	-2%	%0	Γ	Γ		-2%		-8%			%6	%0	-5%	-1%	-3%	Γ	Γ
2nd C4	3	224	7	13	na	58	329	48	ВП	21	-	8u	вп	113	3,900	8	na	па	19	na	198	85	71	na	Bu	na	12	na	3	вu	вu	-	44	18	21	44	na	ВП
1st C4	3	225	9	14	3	6,240	344	50	66	21	-	375	-	111	3,690	6	101	3,536	19	20	196	87	71	8,220	11,000	3,970	12	4	4	2,240	8	-	44	19	21	46	1	-
Diff.	%6-	1%	1%	1%			4%	-1%		1%	6%			2%	5%	-2%			3%		2%	-3%	%0				-8%		53%			42%	1%	-4%	-2%	-2%	%0	
nd C3	3	357	8	36	na	па	31,200	77	na	56	2	na	na	132	7,100	7	na	па	38	na	366	137	464	па	BU	na	-	na	5	na	na	5	357	38	11	323	374	na
1st C3 2	S	355	8	35	103	14,000	30,100	78	191	56	-	634	-	129	6,740	7	241	5,290	36	308	360	141	462	27,800	37,500	15,700	-	31	10	5,550	44	3	352	39	11	328	374	64
Diff.	%0	4%	1%	-2%			%0	%0		2%	-1%			3%	1%	-33%			-1%		1%	-2%	•7%				15%		-16%			1%	-2%	-1%	-2%	%0	%0	~9-
nd C2	-	250	-	22	na	na	238	39	na	46	49	na	กล	67	18,300	-	na	na	28	na	257	328	2,530	na	вu	na	-	na	8	na	na	10	7,900	86	26	1,030	1,785	3,260
1st C2 2	-	240	6	22	411	14,300	238	39	456	45	50	2,070	6	66	18,100	2	954	3,109	28	16,500	254	336	2,720	54,600	54,400	59,800	-	966	8	21,000	1,740	10	8,090	87	27	1,030	1,785	3,450
jit.	7%	5%	5%	3%	3%	3%	3%	3%	2%	2%	2%	2%	2%	2%	- 1%	1%	1%		- %	1%	1%	1%	- %	%	%0	%0	%0	%0	%0	%0	%0	%0	%	%	%0	%	%	0%
nd C1	œ	2,390	72	72	4,633	92,600	6	461	5,137	313	27,300	22,300	4,480	507	000'20	2	6,820	29,769	272	44,000	2,174	7,490	554	000,68	57,000	18,000	e	78,000	30	42,000	64,000	114	75,000	1,710	180	10,100	20,924	34,000
rt C1 2	~	2,275	69	20	4,488	89,800	м	449	5,012	306	26,800	21,900	4,400	498	03,000 5	2	6,760	29,514	270	40,000 5	2,159	7,440	551	88,000 1	56,000 2	15,000 8	3	76,000 5	30	41,000 3	63,000 9	114	75,000 3	1,710	180	10,100	20,924	34,0001
Sample 16		7		4	2	9	7	∞	6	10	=	12	13	14	15 3	16	17	18	19	20 5	21	22	23	24 1.	25 2	26 8	27	28 5	29	30 3	31 9	32	33 3	34	35	36	37	38 1.

Not for Resale
iit.	T			3%	4%			46%	-4%	-5%	75%		18%		Τ		4%	٦	8%	1%			1	1		1%				-10%	4%	3%	1%	-8%	%0	-22%	-4%	
2nd C6 + D	BU	BU	ВU	72	31	Bu	вu	3	234	360	0.04	ВП	10	Bn	na	na	11	Q	-	20	na	BL	9U	na	Bu	e	QN	na	na	-	8	455	336	3	359	2	29	na
1st C6 + 3	-	2	-	70	30	na	411	2	244	378	0.2	0.03	12	Q	2	0.4	11	Q	-	20	2	46	15	592	376	e	0.02	-	-	-	7	440	334	e N	360	2	31	1,793
Diff.				3%	1%			14%	-3%	-1%	-37%		3%				%0	9%6	7%	-1%						4%	-53%			-4%	-1%	1%	%0	-14%	-2%	-7%	%6-	-13%
2nd C5	eu u	Bu	na	69	174	na	na	6	634	1,060	1	ЪВ	15	па	Bu	пa	12	7	2	46	na	na	вu	na	na	4	0.1	Bu	na	-	13	384	1,300	8	290	4	23	4,138
1st C5	-	5	1	68	173	0.02	2,500	8	656	1,070	1	QN	15	0.4	-	0.4	12	9	2	46	11	61	31	1,630	2,090	4	0.2	-	e	1	13	380	1,300	თ	296	4	26	4,742
Diff.				1%	-1%			-1%	1%	1%	-1%		2%				4%	4%	8%	1%						3%	1%			-2%	-3%	2%	-17%	%0	%0	-3%	-2%	-11%
2nd C4	nа	na	B U	118	882	na	вu	26	1,600	2,900	2	na	148	na	ВП	вu	36	25	2	90	na	вu	па	вu	na	12	5	n 8	na	0.1	68	420	254	1,490	317	11	20	11,381
1st C4	-	9	39	117	890	2	12,000	26	1,590	2,860	2	0.1	145	1	0.3	2	34	24	5	89	52	114	38	3,870	9,410	12	5	-	31	0.1	20	413	307	1,490	318	11	20	12,811
Diff.		_		%0	4%			%0	-1%	%0	-1%	-5%	1%				3%	2%	11%	1%						21%	2%			-1%	-3%	3%	-7%	-1%	%0	-3%	-2%	-6%
Ind C3	na	nа	na	117	4,070	na	вп	43	3,440	6,100	4	2	995	n 8	na	вu	58	44	-	141	na	e U	na	вu	na	27 -	21	na	na	12	133	338	16	21	232	21	12	16,364
1st C3 2	1	20	2,690	117	3,930	30	37,000	43	3,470	6,100	4	3	988	8	e	42	56	43	-	140	132	281	80	14,200	24,500	34	21	20	367	12	137	327	18	22	232	22	12	17,492
				%0	6%			1%	-4%	-2%	%0	-2%	1%				-2%	-1%	-1%	-1%	Γ	Ī		T		1%	3%			%0	-3%	4%	-19%	-21%	-1%	-2%	-2%	-5%
nd C2 D	ЪВП	na	BU	83	9,400	na	BU	66	5,990	9,910	14	48	2,740	8U	ВП	na	29	27	3	117	BU	na	na	na	BU	36	350	вu	na	508	87	115	2	-	64	63	10	9,963
1st C2 2	ы	587	102,000	83	8,900	645	56,500	98	6.230	10,100	14	49	2,700	287	94	1.220	30	27	e	118	419	424	174	7,480	13,600	36	341	699	3,780	510	68	111	2	1	65	64	10	10.447
Diff.	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	-1%	-1%	-1%	%1-	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-1%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-2%
2nd C1	2,220	267.000	864.000	82	36,400	68,100	273 000	2,530	23.400	41,500	164	4,740	145	42,500	2,580	12.200	243	240	112	492	6.750	2.830	17.700	59.000	32,300	320	4,420	21,600	40,900	72,000	847	258	2	8	149	1,400	37	91.707
1st C1	2,220	267.000	865.000	82	36,500	68.300	274.000	2.540	23.500	41.700	165	4.770	146	42.800	2,600	12.300	245	242	113	497	6.820	2.860	17.900	59.700	32.700	324	4.480	21,900	41,500	73.100	860	262	5	8	152	1,430	37	94.036
Sample	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	22	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76

API PUBL*4589 93 🎟 0732290 0517525 787 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table 2-4 (Continued) FIRST AND SECOND ANALYSES FOR NON-AROMATIC HYDROCARBONS (ppmv)

Diff.	15%	2%	1%	7%			-2%		-3%	39%	%0			-12%	6%	-2%	%6	37%	%6-	1%	%0	%0		-20%	-2%	5%	2%	-11%		-2%	%6-	%0	-17%
2nd C6 +	10	14	8	3	na	nа	22	na	224	9	92	na	na	-	19	5	56	15	0.3	-	-	-	na	1,025	165	41	528	101	na	9	14	99	2
1st C6 +	6	14	8	2	10	0.03	22	21	230	4	91	-	8	2	18	9	51	11	0.3	1	1	1	1,960	1,279	169	39	518	113	67	9	15	66	9
Diff.	14%	-2%	2%	47%		-25%	-2%		1%	20%	%0			-26%	5%	-2%	9%6	-1%	0.1	-32%	-4%	33%	-2%	-17%	-4%	6%	1%	-3%	-12%	%0	-41%	%0	-12%
2nd C5	15	38	16	2	na	0.03	17	na	184	11	202	na	na	1	17	11	37	93	0.3	1	3	2	3,580	1,268	598	74	1,690	225	88	6	1	150	8
1st C5	13	39	15	1	16	0.04	18	64	183	6	203	ND	5	2	16	11	34	36	0.3	2	3	2	3,670	1,534	621	69	1,680	231	100	8	-	150	6
Diff.	1%	-3%	1%	1%		-2%	-1%		-1%	%0	-1%			%0	1%	-1%	8%	-1%		-3%	22%	15%	-5%	-13%	-4%	6%	%0	1%	-21%	%0	1%	%0	-2%
2nd C4	31	78	42	866	ทล	1	27	na	174	25	360	na	มล	4	33	36	24	185	QN	4	4	2	12,500	2,545	1,790	164	3,500	574	389	26	3	356	17
1st C4	31	80	41	857	38	1	27	212	175	25	364	0.04	1	4	33	37	22	187	DN	4	3	1	13,100	2,928	1,870	154	3,500	571	494	26	3	357	17
Diff.	-1%	%9⁺	1%	1%		-5%	-3%		-2%	-1%	-1%			%0	%0	-2%	6%	-2%	-30%	%0	15%	-1%	-10%	-10%	-3%	7%	-11%	1%	-4%	%0	%0	%0	%0
2nd C3	42	τG	93	36	вu	2	25	пa	102	51	292	пa	80	8	38	76	13	73	0.2	22	16	10	37,600	4,045	4,880	402	4,390	1,035	592	93	17	472	26
1st C3	42	100	92	36	17	2	26	453	104	51	295	2	85	œ	, 38	77	13	22	0.2	22	14	10	41,800	4,489	5,050	375	4,920	1,028	619	93	17	473	26
Diff.	%0	-2%	1%	150%		-12%	-1%	-5%	-3%	%0	-1%			%0	-1%	-1%	-2%	3%	-26%	%0	1%	2%	-10%	%8-	-3%	7%	1%	4%	-5%	%0	1%	%0	-1%
2nd C2	25	63	179	F	na	-	20	977	23	160	57	na	na	24	25	41	4	11	9	877	672	500	102,000	3,268	3,700	1,280	5,400	738	305	321	110	307	59
1st C2	25	20/	177	0.4	240	2	20	1,030	24	160	57	154	253	24	25	42	7	11	2	873	667	490	113,000	3,561	3,830	1,200	5,370	711	321	322	109	307	53
Diff.	-3%	-3%	-3%	-4%	-4%	-4%	-5%	-5%	-6%	-6%	-7%	-8%	-8%	-11%	-17%	-21%	-23%	-25%	-33%														
2nd C1	393	95	1,590	ß	6,920	28	61	6,010	50	4,240	12	14,700	2,853	251	50	3	22	3	129	na	na	na	BU	пa	BU	Bn	BU	BU	มล	8U	BU	BU	na
1st C1	405	57	1,640	S	7,220	29	64	6,350	53	4,500	13	15,900	3,088	281	60	4	29	4	193	531,000	369,000	275,000	250,000	36,823	28,600	19,600	12,700	8,367	3,806	2,880	2,220	1,530	1,330
Sample	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109

ND = Not detected na = Not analyzed

API PUBL*4589 93 🎟 0732290 0517526 613 📟

2-8

			_		_			_	_		_																			
	Diff.	%0	4%	4%	%0	-15%	%0	%0	%0	%0	%0	-1%	%0	%0		%0		7%	25%	15%	%0			-19%	%0	-1%		-4%	-35%	%8
	o Xyl2	0.020	0.080	5.160	0.065	0.109	0.065	0.055	0.500	0.055	0.055	0.367	0.055	0.050	QN	0.020	QN	0.322	0.324	0.142	0.065	BU	BU	0.042	0.050	0.590	Q	0.141	0.474	1 050
5	o Xyl1	0.020	0.083	5.400	0.065	0.095	0.065	0.055	0.500	0.055	0.055	0.362	0.055	0.050	Q	0.020	QN	0.347	0.430	0.167	0.065	80	eu	0.035	0.050	0.586	QN	0.135	0.350	1.140
(bpm	Diff.	%0	-18%	23%	%0	6%	30%	11%	16%	-14%	-6%	-8%		22%	5%		_	8%	-1%	%6	%0	Ī		-5%	%0	10%	-3%	-2%	12%	.8%
RBONS	m+p Xyl2	0.020	0.181	0.250	0.065	0.235	0.145	0.092	0.757	0.133	0.231	1.230	QN	0.075	0.990	QN	QN	0.654	0.973	0.566	0.065	na	BU	0.102	0.080	2.020	1.710	0.274	1.060	2.940
YDROCA	m+p Xyl1	0.020	0.154	0.325	0.065	0.250	0.207	0.103	0.904	0.117	0.217	1.140	DN	0.096	1.040	QN	QN	0.710	0.963	0.619	0.065	BU	BU	0.097	0.080	2.240	1.660	0.268	1.210	2.730
Ц Ц Ц	Diff.	%0	-11%	16%	%0	2%	32%	%0	-24%	%0	%0	13%	%0	%0	31%	%0		11%	8%	-7%	%0			-10%	%0	-3%	%8-	-1%	16%	-3%
AROMAT	E-Ben2	0.020	0.157	0.182	0.065	0.240	0.097	0.055	0.118	0.055	0.055	0.178	0.055	0.060	0.138	0.020	DN	0.271	0.830	0.077	0.065	na	na	0.025	0.050	0.420	1.180	0.190	0.548	0.723
ES FOR /	E-Ben1	0.020	0.142	0.217	0.065	0.244	0.144	0.055	0.095	0.055	0.055	0.205	0.055	0.060	0.200	0.020	QN	0.306	0.905	0.072	0.065	na	BC	0.023	0.050	0.408	1.090	0.189	0.656	0.703
ALYSI	Diff.	%0	%0	%6	-12%	2%	6%	3%	1%	-5%	2%	-1%	4%	-11%	2%	1%	1%	%0	-2%	2%	13%			2%	-1%	-1%	-4%	%0	%0	~2~
ND AN	Toluene 2	0.075	0.542	0.712	0.095	1.490	5.580	1.540	4.340	0.318	1.720	4.280	0,998	4.680	7.220	0.305	8.440	4.080	16.600	1.810	0.093	па	na	0.725	0.430	6.540	14.700	1.060	5.320	11.000
ND SECC	Toluene 1	0.075	0.544	0.779	0.085	1.520	5.960	1.590	4.370	0.302	1.760	4.240	1.040	4.220	7.360	0.307	8.540	4.080	16.200	1.840	0.107	na	na	0.741	0.424	6.500	14.100	1.060	5.330	10.500
ST AI		28%	11%	11%	%6	%6	7%	5%	4%	4%	3%	3%	3%	2%	2%	1%	1%	1%	%0	%0	%0	%0	%0	%0	-1%	-1%	-2%	-2%	-2%	-2%
FIR	Benzene Z	0.028	0.354	0.114	0.210	16.100	5.030	3.030	76.800	0.173	1.750	1.700	2.340	11.900	4.870	2.110	4.310	1.860	42.300	0.532	0.065	0.035	0.035	0.249	5.730	2.270	5.500	0.486	7.280	3.440
•	benzene 1	0.039	0.399	0.128	0.231	17.600	5.390	3.190	80.000	0.180	1.810	1.750	2.400	12.200	4.970	2.140	4.360	1.870	42.500	0.534	0.065	0.035	0.035	0.248	5.690	2.240	5.400	0.477	7.130	3.360
Same S	oampie	×	-	U	۵	ш	ш	σ	т	-	-	×	۰.	Σ	z	0	٩	٥	æ	s	F	∍	>	≥	×	~	2	AA	BB	ខ្ល

ND = Not detected. na = Not analyzed.

API PUBL*4589 93 🖿 0732290 0517530 044 🖿

Figure 2-9.

COMPARISON OF REPEAT ANALYSES AT LABORATORY

FIRST ANALYSIS (ppmv)

2-13

Figure 2-12. COMPARISON OF REPEAT ANALYSES AT LABORATORY (m + p Xylene)

2-14

Table 2-6. CORRELATION OF R	EPEALED	LABORATORY	ANALYSES
-----------------------------	---------	------------	----------

CHEMICAL SPECIES	COEFFICIENT OF CORRELATION (r)
Methane	0.99983
C2 hydrocarbons	0.99880
C3 hydrocarbons	0.99803
C4 hydrocarbons	0.99971
C5 hydrocarbons	0.99645
C6+ hydrocarbons	0.99485
Benzene	0.99950
Toluene	0.99927
Ethyl Benzene	0.99947
m+p Xylenes	0.99545
o Xylene	0.99692

Monitoring instruments were calibrated daily with certified concentrations of methane in air. During sample collection, the pump outlet was measured with the monitoring instrument just before filling the sample bag to give "as filled" ISVs. As an additional check on accuracy of the field crew, bagging techniques, and sample collection procedures, the "as filled" ISVs of the sample bags were compared with the "as analyzed" concentrations (see Figure 2-14). The coefficient of correlation for these data is: r = 0.86. This indicates that calibration procedures, bagging procedures, and sampling procedures produced acceptable results.

2-15

Figure 2-14. COMPARISON OF ONSHORE SAMPLE BAGS AS COLLECTED AND AS ANALYZED (Total Hydrocarbons)

CORRELATION EQUATIONS

Correlation equations were developed to predict mass emission rates for ISVs above 10 ppmv. World-wide background levels of methane approach 2 ppmv in open areas; localized areas such as swamps, highways, farms, and industrial sites often have background concentrations exceeding 5 ppmv. Therefore, it is inadvisable to attempt to measure ISVs less than 10 ppmv and/or use correlation equations to predict emissions from these extremely small sources. Sources with ISVs less than 10 ppmv were assumed to have ISVs of 5 ppmv.

All measured ISVs were used to produce the correlation equations that were developed by regressing the natural logarithm of total hydrocarbon emissions on the natural logarithm of ISV. The analysis

began with a general Analysis of Variance (ANOVA) model that allowed for four types of components with the possibility of different intercepts and different slopes for each component type. Terms not statistically significant were excluded sequentially from the model until all terms left in the model were significant. The resulting correlation equations are shown in Table 2-7.

FACILITY TYPE	COMPONENT TYPE	CORRELATION EQUATION
Onshore Light Crude	CN, VL, OEL	THC(lb/day) = 8.61 x 10 ⁻⁵ (ISV ppmv) ^{0.83}
Onshore Light Crude	Other	THC(lb/day) = 1.24×10^{-3} (ISV ppmv) ^{0.61}
Onshore Heavy Crude	All	THC(lb/day) = 3.29 x 10 ⁻⁵ (ISV ppmv) ^{0.89}
Onshore Gas Production	CN, OEL	$THC(lb/day) = 8.04 \times 10^{-6} (ISV ppmv)^{1.02}$
Onshore Gas Production	VL, Other	THC(lb/day) = 9.79 x 10 ⁻⁵ (ISV ppmv) ^{0.96}
Onshore Gas Plant	All	THC(lb/day) = 1.79×10^{-4} (ISV ppmv) ^{0.87}

Table 2-7. CORRELATION EQUATIONS

Figures 2-15 through 2-20 show the total hydrocarbon (THC) emissions data and correlation equations in log-log plots for each facility type/component type combination. Note that most individual data points fall below the correlation lines. This is due to the nature of log-log plots.

Figure 2-15. LIGHT CRUDE PRODUCTION CORRELATION (CN,VL, OEL)

Figure 2-18. NATURAL GAS PRODUCTION CORRELATION (CN, OEL)

Figure 2-19. NATURAL GAS PRODUCTION CORRELATION (VL, Others)

Components with ISVs less than 10 ppmv were assumed to emit hydrocarbons at "default zero" rates that result in ISVs of 5 ppmv. Table 2-8 gives default zeros for use with each correlation equation.

Table 2-8	. DEFAULT ZERO 1	THC EMISSION FACTORS
FACILITY TYPE	COMPONENT TYPE	DEFAULT ZERO
Onshore Light Crude	CN, VL, OEL	0.00033 lb/day-component
Onshore Light Crude	Other	0.00331 lb/day-component
Onshore Heavy Crude	All	0.00014 lb/day-component
Onshore Gas Production	CN, OEL	0.00004 lb/day-component
Onshore Gas Production	VL, Other	0.00046 lb/day-component
Onshore Gas Plant	All	0.00073 lb/day-component

EMISSION FACTORS

Three types of THC emission factors were developed: Average emission factors, Leak/No Leak emission factors, and Speciated emission factors. Each type of emission factor is discussed below.

Average Emission Factors

Average THC emission factors are used to predict fugitive hydrocarbon emissions when the only information available about a site is the number of components installed. Average THC emission factors were developed by dividing total emissions by the total number of installed components. Average THC emission factors for individual component types were developed by dividing the component type's contribution to total emissions by the number of those components. Table 2-9 gives the overall average emission factor; Table 2-10 gives component specific average emission factors.

	(Overall)	
FACILITY TYPE	COMPONENT TYPE	AVERAGE EMISSION FACTOR
Onshore Light Crude	Ali	0.0085 lb/day-component
Onshore Heavy Crude	All	0.0002 lb/day-component
Onshore Gas Production	All	0.0233 lb/day-component

Table 2-9.	AVERAGE THC EMISSION FACTORS
	(Overall)

Table 2-10. AVERAGE THC EMISSION FACTORS (Component specific) [lb/day-component]

FACILITY TYPE	CONNECTIONS	VALVES	OPEN-ENDED	OTHERS
Onshore Light Crude	0.0041	0.0197	0.0351	0.0991
Onshore Heavy Crude	0.0001	0.0002	0.0010	0.0007
Onshore Gas Production	0.0038	0.1063	0.0107	0.2870

Leak/No Leak Emission Factors

Another method of calculating fugitive hydrocarbon emissions is to screen components and determine the number above and below a leak definition (in ppmv). Table 2-11 gives the average THC emission rates for all components above and below the leak definition.

	(. •		••/
FACILITY TYPE	COMP. TYPE	No Leak <10,000 ppmv	Leak ≥10,000 ppmv
Onshore Light Crude	CN, VL, OEL	0.00060	0.91
Onshore Light Crude	Other	0.01660	0.878
Onshore Heavy Crude	All	0.00016	0.119
Onshore Gas Production	CN, OEL	0.00021	0.380
Onshore Gas Production	VL, Other	0.00546	2.45

Table 2-11. LEAK/NO-LEAK THC EMISSION FACTORS (Pounds/Day-Component)

Stratified Emission Factors

Stratified THC emission factors given in Table 2-12 show the emission rates for components with ISVs below 10 ppmv, from 10 to 9,999 ppmv, from 10,000 to 99,999, and equal to or greater than 100.000 ppmv.

Table 2-12.	STRATIFIED THC EMISSION FACTORS
	(Pounds/Day-Component)

		INST	RUMENT S	CREENING F	RANGE
FACILITY TYPE	COMPONENT TYPE	<10 ppmv	10 to 9,999	10,000 to 99,999	≥ 100,000 pmv
Onshore Light Crude	CN, VL, OEL	0.00033	0.0274	0.395	1.22
Onshore Light Crude	Other	0.00331	0.0610	0.365	1.39
Onshore Heavy Crude	All	0.00014	0.0046	0.119	па
Onshore Gas Production	CN, OEL	0.00004	0.0112	0.126	1.01
Onshore Gas Production	VL, Other	0.00046	0.0871	0.756	6.18

SPECIATION OF EMISSIONS

Bagged samples were speciated by gas chromatography into six nonaromatic groups:

- C1 (methane)
- C2 (hydrocarbons with two carbons)
- C3 (hydrocarbons with three carbons)
- C4 (hydrocarbons with four carbons) C5 (hydrocarbons with five carbons)
- C6+ (hydrocarbons with six or more carbons)

Large leaks were also speciated into four aromatic groups: benzene, toluene, ethyl-benzene, and xylenes. Attempts to speciate small leaks into aromatic groups were unsuccessful since the aromatic

concentrations inside the sample bags were usually below the detection limit of approximately 50 parts-per-billion.

Figures 2-21 through 2-29 show nonaromatic speciation results for four individual light crude production sites, combined results for the four heavy crude sites, and individual results for four gas production sites arranged according to methane content.

Figures 2-30 through 2-32 show aromatic speciation results combined by facility type.

Figure 2-21. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Light Crude #1)

Figure 2-23. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Light Crude #3)

Figure 2-24. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Light Crude #4)

Figure 2-26. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Gas Production #9)

2-31

Figure 2-29. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Gas Production #12)

Figure 2-30. WEIGHT PERCENT AIR TOXICS IN LIGHT CRUDE EMISSIONS

2-33

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Figure 2-32. WEIGHT PERCENT AIR TOXICS IN GAS PRODUCTION EMISSIONS

2-35

Speciation factors were calculated for each facility type by combining the total weight of each of the species (methane, ethane, C3, C4, C5, C6+) for all mass emissions rates and dividing by the total emissions. Speciation factors (fraction by weight) are shown in Table 2-13. These weight fractions can be used to convert THC correlation equations and emission factors from Tables 2-7 through 2-12 into speciated emissions.

Table 2-13. WEIGHT FRACTION OF EMISSIONS BY NUMBER OF CARBONS (For use with THC emission factors)

	C1	C 2	C 3	C4	C 5	C6+	Benzene	Toluene	Ethy⊩ Benzene	Xylenes
LightOude	0.613	0.095	0.129	0.099	0.039	0.024	0.00027	0.00075	0.00017	0.00036
Heavy Orude	0.942	0.027	0.013	0.006	0.004	0.008	0.00935	0.00344	0.00051	0.00372
Gas Prod.	0.920	0.045	0.018	0.009	0.005	0.003	0.00023	0.00039	0.00002	0.00010

[NOTE: Total hydrocarbon emission numbers used in this report refer to the total of C1 through C6+ hydrocarbons plus benzene, toluene, xylenes, and ethyl-benzene. Nonaromatic hydrocarbons heavier than hexane were below detection limits.]

REGIONAL DIFFERENCES IN FUGITIVE EMISSIONS

Production sites were tested in four regions of the country. Table 2-14 shows the average emission rate for emitters with screening values of 100,000 ppmv or more; no obvious trends are evident.

Table 2-14. AVERAGE EMISSION RATE OF COMPONENTS WITH ISVs OF ≥100,000 PPMV (By region)

	WEST COAST	ROCKY MTS.	MID-CONTINENT	GULF COAST
Light Crude Production	4.2 lb/day	0.4 lb/day	2.9 lb/day	7.4 lb/day
Gas Production	0.5 lb/day	2.5 lb/day	7.7 lb/day	0.1 lb/day

CONTROL EFFICIENCY OF INSPECTION AND MAINTENANCE PROGRAMS

Ninety percent of fugitive hydrocarbon emissions observed onshore came from components that had ISVs of 10,000 ppmv or more (usually less than one percent of the total installed components). This suggests that inspection and maintenance activities that can reduce the number of large leaks may be effective in reducing total fugitive hydrocarbon emissions.

SECTION 3 OFFSHORE RESULTS AND ANALYSIS

DATA COLLECTION

A total of 45,685 equipment components was inventoried and screened using portable hydrocarbon analyzers at four Gulf of Mexico (Gulf) offshore platforms. The platforms were completely divided into sub-areas, and inventories were prepared by counting the connections (CN), valves (VL), openended lines (OEL), compressor seals (CS), pump seals (PS), pressure relief valves (PRV) and miscellaneous components (Misc) contained in each sub-area. All components in each sub-area were inventoried and screened according to EPA Method 21 guidelines.

Full descriptions of 615 components found to have ISV of 10 ppmv or more were recorded on field data sheets. These components are referred to as "emitters" in this report. Samples of fugitive hydrocarbon emissions from 241 emitters were collected and speciated for nonaromatic hydrocarbons. A total of 38 samples with high total hydrocarbon content was analyzed to determine benzene, toluene, xylenes, and ethyl-benzene concentrations.

Appendix B of this report contains inventory and screening data for all sites. Appendix C lists the location, component type, and ISV for each emitter found. Appendix D contains nonaromatic speciation data. Appendix E contains aromatic speciation data.

Table 3-1 contains a summary of the number and types of components screened at each offshore platform and the number of emitters found. In the table ISVs are grouped into one of six ranges: 10 to 99; 100 to 499; 500 to 999; 1,000 to 9,999; 10,000 to 99,999; and >100,000 ppmv.

	Table 3-1	. (COMP	ONEN	ITS S	CREE	NED A	ND EMI	TTERS	S FOU	ND A	T OFFS	SHORE F	PLATEC	DRMS
S I		CO	MPON	ENTS	SCI	REEN	ED		EN	TTEF	RS BY :	SCREE	NING RAM	IGE (ppi	יזי)
T	CN	vi	OEL	~	D V	עממ	Miec	ALL	10 to	100	500	1,000	10,000	100 k	A1 I
_		V L	UEL	3	F3	FNV	WISC		33	499	333	3,333	55,555	pius	
17	12927	2327	407	6	17	37	13	15734	34	44	15	48	77	0	218
18	8028	2405	487	3	7	23	14	10967	27	22	9	17	38	32	145
19	7287	2705	205	4	21	35	14	10271	16	19	6	27	25	0	93
20	7044	1391	204	0	22	26	26	8713	21	26	11	30	71	0	159
	35286	8828	1303	13	67	121	67	45685	98	111	41	122	211	32	615

Table 3-1.	COMPONEN	TS SCREENED	AND EMITTERS FOUND AT OFFSHORE PLATFORMS
	COMPONENTS	SCREENED	EMITTERS BY SCREENING RANGE (ppmv)

NOTE: CN = Connection; VL = Valve; OEL = Open-Ended Line; CS = Compressor Seal; PS = Pump Seal; PRV = Pressure Relief Valves; Misc = Miscellaneous.

Approximately 40 percent of the emitters were bagged to collect fugitive hydrocarbons for analysis. The number of emitters found and samples collected are shown in Table 3-2. Many of the emitters in

the 10,000 to 99,999 ppmv range were found to emit at levels above 100,000 ppmv on the days that bagging occurred. This resulted in more bags being collected for the 100,000 plus range than were originally identified.

Table 0 E	. 0110					
	10 to 99	100 to	500 to	1000 to	10,000	100,000
		499	999	9,999	to	plus
					99,999	
Emitters	98	111	41	122	211	32
Samples	11	38	11	66	60	55

Table 3-2. OFFSHORE EMITTERS BY SCREENING RANGE (ppmv)

NOTE: This study classified components with ISV below 10 ppmv as non-emitters.

Figure 3-1 shows a profile of the actual mass emission rates from all emitters found at offshore platforms during the study. The number of emitters decreases with increasing emission rate.

The relative contribution of each of the eighteen mass emission rate ranges to total emissions is shown in Figure 3-2. Over 79 percent of total mass emissions observed during the API/GRI study came from individual emissions of 1 lb/day or more (0.18 tons/year); eighteen percent came from individual emissions between 0.125 and 0.999 lb/day (0.02 and 0.18 tons/year); while about three percent came from emitters with rates of 0.1249 lb/day or less (0.02 tons/year or less).

The contribution of each ISV emitter range to total emissions (as determined by laboratory analyses) is shown in Table 3-3. Approximately 89 percent of all emissions came from leaks that equal or exceed 10,000 ppmv. Less than five percent came from the 1,000 to 9,999 ppmv ISV range; and only 1.0 percent came from emitters with ISVs from 10 to 999 ppmv. The data in Table 3-3 suggests that all emitters with ISVs from 10 to 9,999 ppmv can be combined into a single group without compromising the ability to predict emissions.

	<10 ppmv	10 to 999 ppmv	1,000 to 9,999	10,000 to 99,999	100,000 plus
Emitters	45,070	250	122	211	32
Average Rate (lbs/emitter- day)	0.00031	0.0094	0.102	0.429	4.16
Total Emissions (lbs/day)	13.8	2.4	12.4	91	133
Percent of Total	5.4%	1.0%	4.9%	36.0%	52.7%

TADIE 3-3. CONTRIBUTION OF EACH SCREENING RANGE TO TOTAL EMISSIC	Fable 3-3.	CONTRIBUTION (OF EACH	SCREENING	RANGE TO	TOTAL	EMISSION
--	------------	----------------	---------	-----------	----------	-------	----------

DISTRIBUTION OF OFFSHORE EMITTERS [Based on Laboratory Analyses] (From 45,685 Components Screened)

PERCENT OF TOTAL EMISSIONS BY RANGE [Based on Laboratory Analyses]

TOTAL HYROCARBON EMISSION RATE (Ib/day)

3-3

QUALITY ASSURANCE/QUALITY CONTROL

Monitoring instruments were calibrated daily with certified concentrations of methane in air. As an additional check on accuracy of the field crew, bagging techniques, and sample collection procedures, the ISV readings of the sample bags in the field were compared with the laboratory GC analyses (see Figure 3-3). The coefficient of correlation for these data (without the values at Field ISV = 10,000 and Field ISV = 100,000) is: r = 0.80. This indicates that calibration procedures, bagging procedures, and sampling procedures produced acceptable results.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

CORRELATION EQUATIONS

Correlation equations were developed to predict mass emission rates for ISVs above 10 ppmv. World-wide background levels of methane approach 2 ppmv in open areas; localized areas such as swamps, highways, farms, and industrial sites often have background concentrations exceeding 5 ppmv. Therefore, it is inadvisable to attempt to measure ISVs less than 10 ppmv and/or use correlation equations to predict emissions from these extremely small sources. Sources with ISVs less than 10 ppmv were assumed to average 5 ppmv.

All measured ISVs were included in the correlation equations shown in this section. Equations were developed by regressing the natural logarithm of total hydrocarbon emissions on the natural logarithm of ISV. The analysis began with a general Analysis of Variance (ANOVA) model that allowed for four types of components (Connections, Valves, Open-ended lines, and Others) with the possibility of different intercepts and different slopes for each component. Terms that were not statistically significant were excluded sequentially from the model until all terms left in the model were significant. The resulting two correlation equations for offshore facilities are shown in Table 3-4.

Table 3-4. CORRELATION EQUATIONS

FACILITY TYPE	COMPONENT TYPE	CORRELATION EQUATION
Offshore Oil & Gas	CN, OEL	THC(lb/day) = 1.04 x 10 ⁻⁵ (ISV ppmv) ^{0.99}
Offshore Oil & Gas	VL, Other	THC(lb/day) = 3.30×10^{-4} (ISV ppmv) ^{0.87}

Figures 3-4 and 3-5 show the total hydrocarbon (THC) emissions data and correlation equations.

Components with ISVs less than 10 ppmv were assumed to emit hydrocarbons at "default zero" rates that produce ISVs of 5 ppmv. Table 3-5 gives the default zeros used in this report for offshore platforms.

	DEFAULT ZENU THU	ENISSION FACTORS		
FACILITY TYPE	COMPONENT TYPE	DEFAULT ZERO		
Offshore Oil & Gas	CN, OEL	0.00005 lb/day-component		
Offshore Oil & Gas	VL, Other	0.00134 lb/day-component		

Table 3-5. DEFAULT ZERO THC EMISSION FACTORS

EMISSION FACTORS

Three types of THC emission factors were developed: Average emission factors, Leak/No Leak emissions factors, and Speciated emission factors. Each type of emission factor is discussed below.

Average Emission Factors

Average emission factors are used to predict fugitive hydrocarbon emissions when the only information available about a site is the number of components installed. Average THC factors for offshore platforms were developed by dividing total emissions by the total number of installed components. Average THC emission factors for individual component types were developed by dividing the component type's contribution to total emissions by the number of those components. Table 3-6 gives the overall average emission factors for offshore platforms; Table 3-7 gives component specific average emission factors for offshore platforms.

Table 3-6. AVERAGE THC EMISSION FACTORS (Overall)

FACILITY TYPE	COMPONENT	TYPE	AVERAGE	EMISSION	FACTOR
Offshore Oil & Gas	All		0.0055	lb/day-comp	onent

Table 3-7. AVERAGE THC EMISSION FACTORS (Component specific) [lb/day-component]

FACILITY TYPE	CONNECTIONS	VALVES	OPEN-ENDED	OTHERS
Offshore Oil & Gas	0.0006	0.0217	0.0099	0.1036

Leak/No Leak Emission Factors

Another method of calculating fugitive THC emissions is to screen components and determine the number above and below a leak definition (in ppmv). Table 3-8 shows the "Leak/No Leak" THC emission factors.

(Pounds/Day-Component)					
FACILITY TYPE	COMP. TYPE	No Leak <10,000 ppmv	Leak <u>≥</u> 10,000 ppmv		
Offshore Oil & Gas	CN, OEL	0.00012	0.183		
Offshore Oil & Gas	VL, Other	0.00267	2.22		

Table 3-8. LEAK/NO-LEAK THC EMISSION FACTORS (Pounds/Day-Component)

Stratified Emission Factors

Stratified THC emission factors given in Table 3-9 show the emission rates for components with ISVs below 10 ppmv, from 10 to 9,999 ppmv, from 10,000 to 99,999, and equal to or greater than 100,000 ppmv.

	(1	Founds/Da	y-component)		
FACILITY TYPE	COMPONENT TYPE	<10 ppmv	INSTRUMENT 10 to 9,999	SCREENING 10,000 to 99,999	RANGE ≥ 100,000 ppmv
Offshore Oil & Gas	CN, OEL	0.00005	0.0099	0.097	0.927
Offshore Oil & Gas	VL, Other	0.00134	0.1187	1.071	7.39

Table 3-9.	STRATIFIED THC EMISSION FACTORS
	(Pounds/Day-Component)

SPECIATION OF EMISSIONS

Bagged samples were speciated by gas chromatography into six nonaromatic groups:

C1 (methane)

C2 (ethane)

C3 (hydrocarbons with three carbons)

C4 (hydrocarbons with four carbons)

C5 (hydrocarbons with five carbons)

C6+ (hydrocarbons with six or more carbons)

Large leaks were also speciated into four aromatic groups: benzene, toluene, ethyl-benzene, and xylenes. Attempts to speciate small leaks into aromatic groups were unsuccessful since the aromatic concentrations inside the sample bags were usually below the detection limit of approximately 50 parts-per-billion.

Figure 3-6 shows nonaromatic speciation results for samples collected at Site 17. The samples are arranged according to methane content. Most of the samples have high methane concentrations; non-methane concentrations in the samples are correspondingly low. Figure 3-7 shows nonaromatic speciation results for samples collected at Site 18. Figures 3-8 and 9, respectively, show nonaromatic speciation results for samples collected at Site 19 and Site 20. All four platforms have similar results.

Figure 3-10 shows aromatic speciation results from 30 samples. One sample had an aromatic fraction that exceeded 2 percent; Most of the other samples had benzene, toluene, and/or xylene concentration of less than two-tenths of one percent. Speciation factors were calculated by combining the total weight of each of the species (methane, C2, C3, C4, C5, and C6+) for all mass emission rates and dividing by the total emissions. Speciation factors (fraction by weight) are shown in Table 3-10. The table also contains air toxic emission factors. These factors can be used to convert THC emission factors from Tables 3-4 through 3-9 into speciated emissions.

Table 3-10.	WEIGHT FRACTION OF EMISSIONS BY NUMBER OF CARBONS
	(For use with THC emission factors)

C1	C 2	С3	C 4	C 5	C6+	Benzene	Toluene	Ethyl- Benzene	Xylenes
0.791	0.099	0.054	0.032	0.016	0.0067	0.00133	0.00089	0.00016	0.00027

3-8

3-11

Figure 3-9. WEIGHT PERCENT HYDROCARBONS IN SAMPLES (Offshore #20)

3-12

Figure 3-10. WEIGHT PERCENT AIR TOXICS IN GULF OFFSHORE EMISSIONS

WEIGHT PERCENT

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

REGIONAL DIFFERENCES IN FUGITIVE EMISSIONS

The US Minerals Management Service (MMS) conducted a fugitive hydrocarbon monitoring study of seven Pacific OCS platforms and published the results of the study in November 1992 (OCS Report; MMS 92-0043). Approximately 89,000 components were screened using EPA Method 21 guidelines to locate emissions. A total of 211 components with ISV of 500 ppmv or more and 84 components with ISV below 500 ppmv were bagged to determine fugitive hydrocarbon emission rates. Table 3-11 gives the number of components installed on each Pacific OCS platform and the average emission rate per component reported by the MMS.

Table 3-11.	NUMBER OF COMPONENTS INSTALLED ON PACIFIC OCS PLATFO	ORMS
	MONITORED BY THE MMS, AND THE AVERAGE LEAK RATES	

PLATFORM NUMBER	NUMBER OF COMPONENTS	AVERAGE EMISSION RATE (lb/component-day)
1	16,966	0.00247
2	17,905	0.00347
3	24,721	0.00565
4	11,932	0.00351
5	11,217	0.00375
6	16,065	0.00619
7	13,647	0.00430

These average emission rates are very similar to the rate (0.0055 lb/component-day) found during the API/GRI study in the Gulf of Mexico.

MMS published a single correlation equation for predicting fugitive hydrocarbons as a function of ISV: THC (lb/day) = 1.82×10^{-5} (ISV)0.781. Table 3-12 compares predicted emissions derived with this equation to predictions by the two API/GRI offshore equations.

	AND API/GRI CORRELATION EQUATIONS					
	MMS EQUATION	API/GRI EQUATION	API/GRI EQUATION			
	THC (lb/day) =	THC (lb/day) =	THC (lb/day) =			
	1.82 x 10 ⁻⁵ (ISV) ^{0.781}	1.04 x 10 ⁻⁵ (ISV)0.99	3.30 x 10 ⁻⁴ (ISV)0.87			
ISV	All Components	CN, OEL	VL, Others			
10	0.0001	0.0001	0.0024			
100	0.0007	0.0010	0.0181			
1,000	0.004	0.010	0.134			
10,000	0.024	0.095	0.997			
100,000	0.15	0.93	7.39			

Table 3-12.	FUGITIVE HYDROCARBON EMISSIONS PREDICTED BY MMS
	AND API/GRI CORRELATION EQUATIONS

The API/GRI equations predict higher emissions than the MMS equation. Figures 3-11 and 3-12, respectively, show the MMS data and API/GRI correlation equations for connections and open-ended lines, and valves and others.

API PUBL*4589 93 🎟 0732290 0517569 TO9 📟

The MMS study found that fugitive hydrocarbon emissions from Pacific OCS platforms are approximately 64 wt.% methane, 4 wt.% ethane, and less than 1 wt.% benzene and other aromatics. This is similar to the speciation found in Gulf of Mexico fugitive emissions.

Data presented in the MMS report was used to estimate the emission rates of all components with ISVs of 500 ppmv or more. Figure 3-13 shows a possible distribution of those emitters. The distribution is very similar to the one developed for Gulf of Mexico platforms (see Figure 3-1). The "percent of total emission" for Pacific OCS components in each range is shown in Figure 3-14; this is very similar to the percentages calculated for Gulf of Mexico platforms (see Figure 3-2).

CONTROL EFFICIENCY OF INSPECTION AND MAINTENANCE PROGRAMS

The Gulf platforms are located more than 3 miles offshore and are not subject to the jurisdiction of local air control agencies. All platforms had similar operator initiated inspection and maintenance programs.

3-15

Figure 3-11. MMS CONNECTION AND OPEN-ENDED LINE DATA WITH API/GRI OFFSHORE EQUATION

Figure 3-12. MMS VALVE AND "OTHER" DATA WITH API/GRI OFFSHORE EQUATION

Figure 3-13. DISTRIBUTION OF PACIFIC OCS EMITTERS (Per 45,000 Components Screened)

TOTAL HYROCARBON EMISSION RATE (Ib/day)

TOTAL HYROCARBON EMISSION RATE (Ib/day)

3-17

WORKBOOK

for

CALCULATING FUGITIVE HYDROCARBON EMISSIONS from OIL AND GAS PRODUCTION OPERATIONS

This workbook contains three methods for estimating fugitive hydrocarbon emissions from petroleum production facilities. The simplest method (Method One) requires that the number of equipment components (connections, valves, open-ended lines, and others) at a facility be counted or estimated. A more sophisticated method (Method Two) requires screening of all equipment components with a portable hydrocarbon monitoring instrument. The most sophisticated method (Method Three) requires screening of all components and collection of hydrocarbon samples from large leaks.

METHOD ONE -- COMPONENT COUNT

Background

Emission factors contained in this workbook were developed by counting and screening 184,000 components at 20 onshore and offshore petroleum production sites selected at random from the West Coast to the Gulf of Mexico. Additional information collected by the US Minerals Management Service was used in the option section of this method.

Description of Method

The number of equipment components at a site is determined by counting or estimating. The total number of components is then multiplied by the appropriate emission factor from Table 1 to calculate total hydrocarbon (THC) emissions. Table 1 contains emission factors for five types of petroleum production facilities. The component count or estimate can also be divided according to component type (Connections, Valves, Open-Ended Lines, Others) and multiplied by the emission factors from Table 2 to calculate THC emissions from each type of component. Emission rates of individual hydrocarbon species can be calculated using the THC emission rates (from either Table 1 or Table 2) and the speciation factors in Table 3. Definitions for the five types of petroleum production facilities and four component types are given below.

Definitions

The five types of petroleum production facilities are:

- <u>Onshore light crude production sites.</u> This group includes onshore production sites that produce only oil and sites that produce oil mixed with gas. Oil produced at these sites typically has an API gravity of 20 or more. Components on wellheads, field separators, stock tanks, production field compressors, and other co-located equipment are counted in this category.
- <u>Onshore heavy crude production sites.</u> Sites that produce oil with an API gravity less than 20 should use "Heavy Crude" emission factors. Thermally enhanced oil recovery sites are included in this category. All production equipment at the well site is counted in this category.
- <u>Onshore gas production sites.</u> This category is for sites that produce dry natural gas (no co-produced oil). Sites that produce natural gas liquids, condensate, or a very minor amount of light oil along with the gas should also be included in this category. Equipment located beside the wells or at gathering stations is included in this category. Co-located gas plants are counted in the Onshore gas processing plant category.
- <u>Onshore gas processing plants.</u> Onshore plants that process natural gas and/or natural gas liquids are included in this category. If wells are located next to the gas plant, the wells and associated equipment are counted in the Onshore gas production category instead of this category.
- <u>Offshore oil and gas production platforms</u>. All offshore operations are included in this category.

W-1

The four types of equipment components are:

- <u>Connections</u>, Bolted flanges, threaded connections, and tubing fittings are included in this group. Each connection of hydrocarbon processing lines to a valve is considered a connection and should be counted in this group; however, the body flange and bonnet of a valve, and plugs threaded directly into the valve body are considered part of the valve and should not be included in this group. A piece of pipe with one end connected to a valve and the second end open to atmosphere is considered an "open-ended line" not a connection.
- <u>Valves.</u> Valves that have visible actuators are included in this category. Check valves are not counted as valves. Pressure relief valves are not included in this category. Each valve is counted only once regardless of the number of body flanges, bonnet flanges, or plugs that are a part of the valve. Each connection of a valve to a hydrocarbon processing line is considered a "connection" and is included in that group.
- <u>Open-Ended Lines.</u> The end of any valve that can be opened to the atmosphere (sample connection, drains, bleed valves, etc.) is counted as an open-ended line. The open end of a pressure relief valve is not counted in this category. If a short piece of pipe is attached to the end of a valve, but no pressure build-up can occur in the pipe, the system is counted as an open-ended line and not a connection.
- <u>Others.</u> This category includes all other components such as pump seals, compressor seals, pressure relief valves, hatches, dump lever arms, polished rod stuffing boxes, instruments, sight glasses, etc.

(Air components combined)					
FACILITY TYPE	COMPONENT TYPE	EMISSION FACTOR			
Onshore Light Crude	All	0.0085 lb/day-component			
Onshore Heavy Crude	All	0.0002 lb/day-component			
Onshore Gas Production	All	0.0233 lb/day-component			
Offshore Oil & Gas	All	0.0055 lb/day-component			

Table 1. AVERAGE EMISSION FACTORS (All components combined)

Table 2.	AVERAGE EMISSION FACTORS
	(Component specific)
	[lb/day-component]

	[
	Connection	Valves	Open-Ended	Others
Light Crude	0.0041	0.0197	0.0351	0.0991
Heavy Crude	0.0001	0.0002	0.0010	0.0007
Gas Production	0.0038	0.1063	0.0107	0.2870
Offshore Gas/Oil	0.0006	0.0217	0.0099	0.1036

	(Weight Fraction of THC emissions in each category)							
	Methane	NMHC	voc	C6+	Benzene	Toluene	Ethyl- Benzene	Xylenes
Light Crude	0.613	0.387	0.292	0.02430	0.00027	0.00075	0.00017	0.00036
Heavy Crude	0.942	0.058	0.030	0.00752	0.00935	0.00344	0.00051	0.00372
Gas Production	0.920	0.080	0.035	0.00338	0.00023	0.00039	0.00002	0.00010
Offshore Gas/Oil	0.791	0.210	0.110	0.00673	0.00133	0.00089	0.00016	0.00027

Table 3. SPECIATED FUGITIVE EMISSION FACTORS (Weight Fraction of THC emissions in each category)

NOTES:

- 1. Emission factor = Speciated Emissions/Total Emissions
- 2. NMHC = Non-methane hydrocarbon
- 3. VOC = Propane and heavier hydrocarbon
- Many hydrocarbons are included in more than one group, for example, C6+ is also included in the NMHC and VOC groups.

Example Calculations

Total hydrocarbon emissions (THC) for a hypothetical onshore gas production site with the following component inventory:

Connections	7700
Valves	1425
Open-ended lines	242
Pressure Relief Valves	86
Pump Seals	2
Compressor Seals	10
Hatches	11
Miscellaneous	24
TOTAL	9500

Using Table 1:

9500 components x 0.0233 lb/day-components

= 221 lb/day THC emissions.

Using Table 2:

7700 (CN) x 0.0038 lb/day-components

+ 1425 (VL) x 0.1063 lb/day component

- + 242 (OEL) x 0.0107 lb/day component
- + 133 (Others) x 0.287 lb/day component

= 221 lb/day THC emissions.

Using Table 3:

221 lb/day THC emissions x

•	0.920 Methane	=	203 lb/day
	0.080 NMHC	=	18 lb/day
	0.035 VOC	=	8 lb/day
	0.00338 C6+	Ξ	0.7 lb/day
	0.00023 Benzene	=	0.05 lb/dav
	0.00039 Toluene	=	0.09 lb/day
	0.00002 Ethyl-Benzene	=	0.004 lb/day
	0.00010 Xylénes	=	0.02 lb/day
	5		•

Options to Method One

The total number of components at a site can be obtained by counting the number of valves and using Table 4 to estimate the other components. Table 4 was developed from 470,000 components inventoried at a total of 48 sites in three separate studies by API (1980), API/GRI (1993) and the US Minerals Management Service (1989).

Table	Table 4. PERCENTAGE OF TOTAL COMPONENTS BY TYPE			BY TYPE
	Connection	Valves	Open-Ends	Others
Light Crude	78.5%	18.5%	2%	1%
Heavy Crude	80%	15%	3.5%	1.5%
Gas Production	81%	15%	2.5%	1.5%
Gas Plant	76.5%	19%	2.5%	2%
Pacific Offshore	81.5%	14%	2.5%	2%
Gulf Offshore	80.5%	15%	2.5%	2%

NOTE: "Gulf" is Gulf of Mexico

Example Calculations

The hypothetical onshore gas production site in the example above had 1425 valves; the estimated total number of components is then:

1425 valves/0.15 = 9,500 total components.

Interpretation of Results

Method One is built on the assumption that the average leak rate of a group of components at one site is the same as the average leak rate of a second group of similar components at another site. A number of factors such as facility age, equipment condition, inspection and maintenance programs, and petroleum product characteristics could cause this assumption to be incorrect.

W-4

METHOD ONE

Emission factors were developed from facilities of all ages and conditions, and with a variety of inspection and maintenance programs and product characteristics. The factors are intended to predict fugitive emissions from "average" facilities across the nation that are maintained with normal "good housekeeping" practices. The factors do not include data from equipment with unusually high or low emissions. Emissions from facilities that are known to have unusually high or low potential to emit should not be calculated using this method unless a mechanism is developed for increasing or decreasing the predicted values. The other two methods presented in this workbook are more appropriate for calculating emissions from facilities that are not average.

METHOD TWO -- COMPONENT SCREENING

Background

Method Two is based on data collected during instrument screening of 184,000 components at 20 onshore and offshore sites selected at random from the West Coast to the Gulf of Mexico. The components were screened with a portable hydrocarbon monitoring instrument that contained a flame ionization detector.

Description of Method

To use the tables presented in this method, all components must be screened using a portable hydrocarbon monitor according to EPA Reference Method 21 guidelines. The amount of information that needs to be recorded for each component depends on which table will be used to calculate the emissions. Table 5 presents emission factors for components with instrument screening values (ISV) in two categories: less than 10,000 ppmv, and equal to or greater than 10,000 ppmv. To use the table, the facility type, component type, and ISV range must be recorded for each component screened.

Table 5.	EMISSION FAC (Pounds/Da	TORS DIVIDE ay-Componen	ED AT 10,000 Pl t)
FACILITY TYPE	COMP. TYPE	<10,000	<u>≥</u> 10,000
Onshore Light Crude	CN, VL, OEL	0.00060	0.91
Onshore Light Crude	Other	0.01660	0.878
Onshore Heavy Crude	All	0.00016	0.119
Onshore Gas Production	CN, OEL	0.00021	0.380
Onshore Gas Production	VL, Other	0.00546	2.45
Offshore Oil & Gas	CN, OEL	0.00012	0.183
Offshore Oil & Gas	VL, Other	0.00267	2.22

[NOTE: Definitions of facility types and component types are given in Method One.]

Table 6 contains emission factors stratified into four screening ranges: less than 10 ppmv; 10 to 9,999 ppmv; 10,000 to 99,999 ppmv, and 100,000 ppmv. To use Table 6, the facility type, component type, and ISV range must be recorded for each component screened. The emission factors given for 100,000 ppmv are used for all components with screening values at or above 100,000 ppmv. [NOTE: No data is available for heavy crude production components screening at or above 100,000 ppmv.]

(Pounds/Day-Component)					
INSTR			RUMENT SC	REENING R	ANGE
FACILITY TYPE	COMPONENT TYPE	<10 ppmv	10 to 9,999	10,000 to 99,999	≥ 100,000 ppmv
Onshore Light Crude	CN, VL, OEL	0.00033	0.0274	0.395	1.22
Onshore Light Crude	Other	0.00331	0.0610	0.365	1.39
Onshore Heavy Crude	All	0.00014	0.0046	0.119	na
Onshore Gas Production	CN, OEL	0.00004	0.0112	0.126	1.01
Onshore Gas Production	VL, Other	0.00046	0.0871	0.756	6.18
Offshore Oil & Gas	CN, OEL	0.00005	0.0099	0.097	0.927
Offshore Oil & Gas	VL, Other	0.00134	0.1187	1.071	7.39

Table 6 STRATIEIED EMISSION EACTORS

Table 7 contains correlation equations that convert individual ISV readings to mass emission rates in pounds per day. To use Table 7, each ISVs of 10 ppmv or more must be recorded and not grouped into ranges. Readings of 100,000 ppmv or more are assumed to be exactly 100,000 ppmv when calculating the mass emission rate. Components with ISV below 10 ppmv are assumed to emit at the rates shown in Table 8.

FACILITY TYPE COMPONENT TYPE CORRELATION EQUATION **Onshore Light Crude** CN, VL, OEL $THC(Ib/day) = 8.61 \times 10^{-5}(ISV ppmv)^{0.83}$ **Onshore Light Crude** Other THC(lb/day) = $1.24 \times 10^{-3} (ISV ppmv)^{0.61}$ **Onshore Heavy Crude** All $THC(lb/day) = 3.29 \times 10^{-5} (ISV ppmv)^{0.89}$ **Onshore Gas Production** CN, OEL $THC(lb/day) = 8.04 \times 10^{-6}(ISV ppmv)^{1.02}$ **Onshore Gas Production** VL. Other $THC(lb/day) = 9.79 \times 10^{-5}(ISV ppmy)^{0.96}$ **Onshore Gas Plant** All $THC(lb/day) = 1.79 \times 10^{-4}(ISV ppmv)^{0.87}$ Offshore Oil & Gas CN, OEL THC(lb/day) = 1.04×10^{-5} (ISV ppmv)^{0.99} Offshore Oil & Gas VL, Other $THC(Ib/day) = 3.30 \times 10^{-4}(ISV ppmy)^{0.87}$

Table 7.	CORRELATION	EQUATIONS

Table 8. EMISSION FACTORS FOR ISVs BELOW 10 PPMV				
FACILITY TYPE	COMPONENT TYPE	DEFAULT ZERO		
Onshore Light Crude	CN, VL, OEL	0.00033 lb/day-component		
Onshore Light Crude	Other	0.00331 lb/day-component		
Onshore Heavy Crude	All	0.00014 lb/day-component		
Onshore Gas Production	CN, OEL	0.00004 lb/day-component		
Onshore Gas Production	VL, Other	0.00046 lb/day-component		
Onshore Gas Plant	All	0.00073 lb/day-component		
Offshore Oil & Gas	CN, OEL	0.00005 lb/day-component		
Offshore Oil & Gas	VL, Other	0.00134 lb/day-component		

W-7

Screening Methodology

Method Two emission factors are based on screening values obtained at an instrument sampling rate of 1,000 cc/minute with the sampling probe held within 1 centimeter of the point of emissions. Higher instrument flow rates will result in lower ISVs and must be corrected to the equivalent of 1,000 cc/minute before use; likewise ISVs obtained at instrument flow rates below 1,000 cc/minute must be adjusted to avoid over prediction of emissions. All screening should be conducted according to EPA Reference Method 21.

Example Calculations

A hypothetical onshore light crude production site was found to have the following inventory and emitting components (ISV \geq 10 ppmv):

Connections (CN)	2,355
Valves (VL)	555
Open-ended lines (OEL)	60
Polished Rod Stuffing Boxes (PRSB)	22
Dump Lever Arms (DLA)	8
TOTAL	3.000

Emitter Range	For CN,VL,OEL	For Others
100,000 ppmv	9 @ 100,000	2 @ 100,000
10,000 to 99,999	1@ 80,000	1@ 10,000
ppmv	5@ 50,000	
	1@ 25,000	
	7 @ 10,000	
10 to 9,999 ppmv	2@ 9,000	
	4 @ 8,000	
	4 @ 6,000	
	3@ 5,000	
	4 @ 6,000	
	9@ 3,000	
	25 @ 2,000	
	16@ 1,000	
	19 @ 500	
	21 @ 200	
	21 @ 100	
	75@10	
Less than 10 ppmv	2,747@ 5	27@5

Copyright American Petroleum Institute No reproduction or networking permitted without license from IHS Using Table 5:

	CN,VL,OEL	Others
10,000 ppmv or more	23	3
Less than 10, 000 ppmv	2,947	27

23 (CN,VL,OEL) x 0.91 lb/day-component

+ 2,947 (CN,VL,OEL) x 0.0006 lb/day-component

+ 3 (Others) x 0.878 lb/day-component

+ 27 (Others) x 0.0166 lb/day-component

= 26 lb/day THC emissions

Using Table 6:

	CN,VL,OEL	Others
100,000 ppmv	9	2
10,000 to 99,999 ppmv	14	1
10 to 9,999 ppmv	200	0
Less than 10 ppmv	2,747	27

9 (CN,VL,OEL) x 1.22 lb/day-component

+ 14 (CN,VL,OEL) x 0.395 lb/day-component

+ 200 (CN,VL,OEL) x 0.0274 lb/day-component

+ 2,747 (CN,VL,OEL) x 0.00033 lb/day-component

+ 2 (Other) x 1.39 lb/day-component

+ 1 (Other) x 0.365 lb/day-component

+ 0 (Other) x 0.0610 lb/day-component

+ 27 (Other) x 0.00331 lb/day-component

= 26 lb/day THC emissions

Using Tables 7 and 8

Туре	Number	ISV	lb/day Each	lb/day Total
cn/vl/oel	9@	100,000	1.2162	10.9458
cn/vl/oel	1@	80,000	1.0106	1.0106
cn/vl/oel	5@	50000	0.6841	3.4207
cn/vl/oel	1@	25,000	0.3849	0.3849
cn/vl/oel	7@	10,000	0.1799	1.2592
cn/vl/oel	2@	9,000	0.1648	0.3297
cn/vl/oel	4@	8,000	0.1495	0.5979
cn/vl/oel	4@	6,000	0.1177	0.4709
cn/vl/oel	3@	5,000	0.1012	0.3036
cn/vl/oel	1@	4,000	0.0841	0.0841
cn/vl/oei	9@	3,000	0.0662	0.5960
cn/vl/oel	25@	2,000	0.0473	1.1825
cn/vi/oei	16@	1,000	0.0266	0.4257
cn/vl/oel	19@	500	0.0150	0.2844
cn/vl/oel	21@	200	0.0070	0.1469
cn/vl/oel	21@	100	0.0039	0.0826
cn/vl/oel	75@	10	0.0006	0.0437
cn/vl/oel	2748@	5	0.0003	0.8995
others	2@	100,000	1.3913	2.7826
others	1@	10,000	0.3415	0.3415
others	27@	5	0.0033	0.0894
TOTAL				26 pounds

Emission factors in Tables 5 through 8 give total hydrocarbon (THC) emissions. Emission rates of individual hydrocarbon species can be calculated using the THC emission rate and the factors in Table 3 (see Method One).

Using Table 3:

26 lb/day THC emissions x

0.613 Methane	=	16 lb/day
0.387 NMHC	=	10 lb/day
0.292 VOC	=	8 lb/day
0.02430 C6+	z	0.6 lb/day
0.00027 Benzene	=	0.007 lb/day
0.00075 Toluene	=	0.020 lb/day
0.00017 Ethyl-Benzene	=	0.004 lb/day
0.00036 Xylenes	=	0.009 lb/day

[NOTE: Many hydrocarbons are included in more than one group, for example, C6+ is also included in the NMHC and VOC groups.]

METHOD TWO

Options to Method Two

An approximate facility emission rate can be developed by screening a representative subset of all the types of components, assuming the unscreened components have the same average screening values as the ones that were screened. A second option for obtaining an estimate of facility emissions with a minimum of screening is to screen all the valves and use their emissions to estimate total emissions. Table 4 in Method One shows that valves constitute from 15 to 20 percent of the total components at a site; however, as shown in Table 9 (below), valves are usually responsible for about half the fugitive hydrocarbon emissions. A third option is to measure only a representative portion of the valves. This further reduces the amount of screening needed to obtain an estimate of total facility emissions, but the user must be aware that estimations made from only a few data points may not be as accurate as estimations made from many data points.

	Connection	Valves	Open-Ends	Others
Light Crude	38%	43%	8%	12%
Heavy Crude	51%	19%	23%	7%
Gas Production	13%	68%	1%	18%
Gulf Offshore	8%	54%	4%	34%

Table 9. PERCENTAGE OF FACILITY EMISSIONS BY COMPONENT TYPE

NOTES: "Gulf" is Gulf of Mexico

Example Calculation

One thousand valves were screened at a hypothetical gas production site and calculated to have a combined emission rate of 105 lb/day THC using Tables 7 and 8. The plant is known to have a total 4,174 valves. THC and benzene emissions for the entire gas plant were calculated in three steps:

Step One -- THC emissions from valves; 4,174 valves x 105 lb THC/1,000 valves

= 438 lb/day THC from valves;

Step Two -- THC emissions from entire plant;

Table 9 states that valves at gas production sites contribute 68% of the total fugitive hydrocarbon emissions; therefore total emissions are estimated to be:

438/0.68 = 644 lb/day THC emissions;

Step Three -- Benzene emissions from entire site;

Table 3 shows that gas production emissions contain 0.00023 lbs of benzene per pound of THC; therefore:

644 x 0.00023 = 0.15 lb/day benzene.

W-11

Interpretation of Results

Method Two is based on the assumption that the relationship between ISVs and hydrocarbon emission rates at any individual site is the same as the relationship found at sites used to develop the correlations presented in this workbook.

If the user of this workbook has reason to believe that the assumption may not be true for the site in question, Method Three should be used instead of Method Two.

METHOD THREE

METHOD THREE -- COLLECTION OF HYDROCARBON SAMPLES

Background

Approximately ninety percent of the fugitive hydrocarbon emissions used to develop emission factors for Methods One and Two came from the one percent of the components with ISV of 10,000 ppmv or more. The most intensive method of calculating emission rates for a site is using emissions factors or correlation equations from Method Two to predict emissions for components with ISV less than 10,000 ppmv, and collecting hydrocarbon samples from a representative number of components with ISV of 10,000 ppmv or 10,000 ppmv or more.

Overview of Method

All components are monitored using a portable hydrocarbon monitoring instrument. Twenty components (or ten percent of the components, whichever is greater) with ISV of 10,000 ppmv are enclosed in polyethylene bags and samples of hydrocarbon collected and analyzed to determine mass emission rates. The unsampled components with ISVs of 10,000 ppmv or more are assume to leak at the same rate as the average of the bagged components.

Details of Method

The monitoring instrument is used to locate the exact point of emission from the component. A 1/4 inch flexible plastic tube (sample tube) is then attached to the component with the open end of the tube within 1 centimeter of the exact point of emission (referred to here as the front of the component). A second flexible plastic tube (referred to here as the air supply tube) is attached to the "back" of the component with the open end toward the point of highest emission.

The component and tubes are enclosed in a polyethylene bag and all bag openings are heat-sealed or taped to prevent uncontrolled entry of air. The second end of the sample tube is attached to a flow metering device (typically a rotameter) which in turn is connected to a variable rate sampling pump. The second end of the air supply tube is connected to another metering device. The pump is started while observing the plastic bag; the pump rate is adjusted until the bag collapses onto the component. The flow rates through the two metering devices are compared. If the difference between the two metering devices is greater than 10%, the bag must be resealed and/or the pump flow rate must be increased.

The portable monitoring instrument is used to measure the ISV of the pump outlet until a constant reading has been recorded for three consecutive 30 second periods. The pump ISV and flow rate are

W-13

METHOD THREE

recorded, and the pump outlet is connected to an inert sampling bag. When the sampling bag is full, its hydrocarbon content is determined using techniques such as gas chromatography or mass spectroscopy. Mass emission rate from the component is calculated using pump flow rate and chemical analysis of pump exhaust.

Speciated mass emission rates can be estimated using Table 3 or by using speciated data from the laboratory analyses if available.

Example Calculations

All the components on a hypothetical offshore platform were screened with the following results:

	(indimosi of components in ca	ion screening range)
Component Type	<10,000 ppmv	<u>≥</u> 10,000 ppmv
Connections	9,677	22
Valves	1,760	14
Open-Ended Lines	302	14
Others	201	10
TOTAL	11,940	60

(Number of components in each screening range)

Emissions were first estimated using Table 5 to determine relative contribution of each group of components:

CONTRIBUT	FION OF EACH GROU	P TO TOTAL EMISSIO	DNS
	(Calculated using factor	s from Table 6)	
nent Type	<10,000 ppmv	>10,000 ppmv	1

Component Type	<10,000 ppmv	<u>></u> 10,000 ppmv
Connections	1.16 lb/day	4.03 lb/day
Valves	4.70 lb/day	31.08 lb/day
Open-Ended Lines	0.04 lb/day	2.56 lb/day
Others	0.54 lb/day	22.20 lb/day
TOTAL	6.44 lb/day	59.87 lb/day

Based on this calculation it was decided to bag some of the components with ISV of 10,000 ppmv or greater to more accurately determine total fugitive hydrocarbon emissions from the platform. The following bagging results were obtained:

METHOD THREE

DAGGI	NG HEODEI	010111110	THEITORE		uay,
Connection	0.488	Valve	0.108	Open-Ended	0.200
Connection	0.233	Valve	0.001	Open-Ended	0.356
Connection	0.006	Valve	0.702	Open-Ended	0.038
Connection	0.054	Valve	0.014	Open-Ended	1.001
Connection	0.003	Valve	0.040	Average	0.399
Connection	0.203	Valve	0.021		
Connection	0.110	Valve	0.273	Other	0.072
Connection	2.116	Valve	0.152	Other	0.078
Average	0.390	Average	0.164	Other	0.275
				Other	0.017
				Other	0.050
				Average	0.098

BAGGING RESULTS FOR HYPOTHETICAL PLATFORM (lb/day)

Final platform emissions were calculated using Table 5 factors for components with screening values below 10,000 ppmv and average bagging results for components with screening values of 10,000 ppmv or more.

COMPONENT	NUMBER	AVERAGE RATE (lb/day-component)	TOTAL RATE (lb/day)
Connections ≥10,000	22	0.390	8.58
Valves ≥10,000 ppmv	14	0.164	2.30
Open-Ended ≥10,000	14	0.399	5.59
Others ≥10,000 ppmv	10	0.098	0.98
All <10,000 ppmv	11,940	(see Table 5)	6.58
TOTAL	12,000		24.03

FINAL CALCULATION OF THC EMISSION RATE

An emission rate of VOC was also desired for the platform. The calculated emission rate (using Table 3) is:

24.03 lb THC/day x 0.110 = 2.64 lb/day

Interpretation of Results

Although Method Three is more labor intensive than Methods One or Two, it may predict the same total fugitive hydrocarbon emission rate as either of those methods. Alternatively, Method Three may predict either higher or lower emissions than would be predicted by Methods One and Two depending on the average leak rate of the large emitters found at the site being tested in relation to the emitters used to develop the emission factors contained in this workbook.

For some example calculations given in this workbook, the methods for estimating emissions yield the same estimate for total hydrocarbon emissions. The examples were purposely designed to give the same estimate, so as not to imply that increased effort in calculating emission estimates will necessarily result in lower predicted emissions.

W-15

APPENDICES

- APPENDIX A: STATISTICAL ANALYSIS OF DATA
- APPENDIX B: FIELD INVENTORY SHEET DATA
- APPENDIX C: EMITTER DATA
- APPENDIX D: NON-AROMATIC SPECIATION DATA
- APPENDIX E: AROMATIC SPECIATION DATA

APPENDIX A: STATISTICAL ANALYSIS OF DATA

The two main objectives of this appendix are:

- to develop model equations that estimate total hydrocarbon fugitive emissions from instrument screening values in oil and gas production facilities;
- (2) to develop emission factors for total hydrocarbon and speciated fugitive emissions.

The outline of this appendix is as follows:

Section 1 - Model Equations

Defines eight groups that require (based on statistical tests) different model equations.

Section 2 - Total Hydrocarbon Emission Factors

Provides several sets of emission factors for total hydrocarbon based on two different methods. The recommended set is shown in a separate table.

Section 3 - Speciated Fugitive Emission Factors

Provides factors for speciated fugitive emissions.

1. MODEL EQUATIONS

Over the past several years, model equations for predicting fugitive emission concentrations have been derived by regressing the natural logarithm¹ of total hydrocarbon emissions (In(THC)) on the natural logarithm of the Instrument Screening Value (In(ISV)). This approach has led to normally distributed residuals, an important assumption in regression analysis not satisfied when both variables are kept in their original scale.

The model equations have been typically of the form

$$\ln(\mathsf{THC}) = \alpha + \beta \ln(\mathsf{ISV})$$

or

 $\mathsf{THC} = \mathsf{e}^{\alpha} (\mathsf{ISV})^{\beta}$

where α and β denote respectively the intercept and slope of the regression model on the log-log scale.

In this study and for the same reason mentioned above, the same model equation form is used, with total hydrocarbon concentrations in pounds per day (lb/day) measured by "bagging" the component, and screening values in parts per million by volume (ppmv) measured by using portable monitoring instruments. Moreover, five facility types were considered (natural gas processing, natural gas production, heavy crude oil production, light crude oil production and offshore oil and gas production), and more than a dozen component types (valves, open-ended lines, connections, polished rods, pressure relief valves, etc). Because some of the component types included very few data points, they were categorized into four classes: valves, connections, open-ended lines and others. Nonetheless, the number of possible combinations of facility and component types was still quite large, and therefore needed to be reduced by identifying combinations with similar intercepts and slopes so that they can be grouped into one regression model.

This was accomplished by first considering the most general Analysis Of Variance (ANOVA) model, i.e. a model that allows for different intercepts and different slopes for each of the facility type/component type combinations. The higher order terms that were not statistically significant were excluded sequentially (one at a time) from the model until all terms left in the model were significant. Table 1 below lists the eight different groups that were statistically determined to need different equations.

Copyright American Petroleum Institute Provided by IHS under license with API no reproduction or networking permitted without license from IHS

¹ The natural and base 10 logarithms would lead to the same model equations for the original (arithmetic) scale.

The complete data base contained 705 pairs of bagging/screening values. Five of them were excluded because they were considered as statistical outliers².

Table 2 presents the model equations for each of the eight groups. These equations were developed according to EPA's methodology as described in EPA's "Protocol for Equipment Leak Emission Estimates" (June 1993).

FACILITY TYPE	COMPONENT TYPE [®]	ISV RANGE (ppmv)	N	AVG. THC EMISSION (Ib/day-emitter)
Natural Gas Processing	CN,VL,OEL,Other	1-100,000	174	1.85
Natural Gas Production	CN,OEL	10100,000	29	0.32
Natural Gas Production	VL,Other	1-100,000	63	1.55
Heavy Crude Oil Production	CN,VL,OEL,Other	25–10,000	30	0.012
Light Crude Oil Production	CN,VL,OEL	1–100,000	141	0.57
Light Crude Oil Production	Other	1–100,000	22	0.096
Offshore Oil & Gas Production	CN,OEL	30-100,000	169	0.22
Offshore Oil & Gas Production	VL,Other	15–100,000	72	1.03

TABLE 1 - AGGREGATION INTO 8 GROUPS

^a CN = Connection, VL = Valve, OEL = Open-Ended Line.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

² Observations with studentized residuals greater than 3 in absolute value were considered to be statistical outliers.

TABLE 2 - MODEL EQUATIONS FOR ESTIMATING TOTAL HYDROCARBON FROM SCREENING VALUES

Natural Gas CN,VL,OEL,Other 0.87 Processing CN,VL,OEL,Other 0.96 Natural Gas CN,OEL 1.02 Production VL,Other 0.96 Natural Gas VL,Other 0.96 Iteavy Crude CN,VL,OEL,Other 0.87 Light Crude Oil CN,VL,OEL,Other 0.86 Light Crude Oil CN,VL,OEL,Other 0.86 Light Crude Oil CN,VL,OEL 0.86 Light Crude Oil CN,VL,OEL 0.86	0.87			
Natural Gas ProductionCN,OEL1.02ProductionVL,Other0.96Natural Gas ProductionVL,Other0.96Natural Gas ProductionVL,OEL,Other0.86Light Crude Oil ProductionCN,VL,OEL,Other0.86Light Crude Oil ProductionCN,VL,OEL0.86		-10.214	4.89	THC(lb/day) = 1.79x10 ⁻⁴ (SV ppmv) ^{0.87}
Natural Gas ProductionVL,Other0.96ProductionO.I Production0.85Uight Crude OilCN,VL,OEL,Other0.85Light Crude OilCN,VL,OEL0.85Light Crude OilCN,VL,OEL0.85	1.02	-13.391	5.26	THC(lb/day) = 8.04x10 ⁻⁶ (SV ppmv) ^{1.02}
Heavy Crude CN,VL,OEL,Other 0.86 O:I Production CN,VL,OEL,Other 0.86 Light Crude Oil CN,VL,OEL 0.86 Light Crude Oil Other 0.86	0.96	-11.474	9.41	THC(lb/day) = 9.79x10 ⁻⁵ (SV ppmv) ^{0.96}
Light Crude Oil CN,VL,OEL 0.85 Production CN,VL,OEL 0.85 Light Crude Oil Othor	0.89	-11.156	2.30	THC(lb/day) = 3.29x10 ⁻⁵ (SV ppmv) ^{0.89}
Light Crude Oil	0.83	-10.949	4.90	THC(lb/day) = 8.61x10 ⁻⁵ (SV ppmv) ^{0.83}
Production Outer 0.0	0.61	-8.061	3.92	THC(lb/day) = 1.24x10 ⁻³ (SV ppmv) ^{0.61}
Offshore Oil & CN,OEL 0.95 Gas Production	0.99	-13.101	5.09	THC(lb/day) = 1.04x10 ⁻⁵ (SV ppmv) ^{0.99}
Offshore Oil & VL,Other 0.87 Gas Production	0.87	-11.139	22.67	THC(lb/day) = 3.30x10 ⁻⁴ (SV ppmv) ^{0.87}

^a CN = Connection, VL = Valve, OEL = Open-Ended Line.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

A-4

2. TOTAL HYDROCARBON EMISSION FACTORS

First, five Instrument Screening Value (ISV) ranges were defined to account for the distribution of the number of components and their emission contributions: 100,000 ppmv³ 10,000 – 99,999 ppmv

10,000 – 99,999 ppmv 1,000 – 9,999 ppmv 10 – 999 ppmv < 10 ppmv.

Bagged hydrocarbon emissions were then modeled to determine whether average emissions in each range are homogeneous across facility types and component types. It was found that the same 8 groups of facility/component types that were formed to develop the model equations could also be considered here as needing different emission factors. This should not be too surprising since essentially the term for actual screening value was replaced in the model by a class variable for the 5 screening value ranges.

Once the ISV ranges and individual groups were determined, the next step was to calculate emission factors. Two methods were considered:

- The first method is based on bagging analyses. The bagged components were divided into the 5 ranges according to their screening values. Then for each range, the average hydrocarbon emission was calculated based on the bagging results. In a few cases, there were no bagged components in the <10 ppmv range. In those cases, the overall average emission of all bagged components (from all facility types) with ISV < 10 ppmv was calculated. The result, 0.00037 lb/day-component, was used.</p>
- The second method is based on the model equations presented in Table 2. The screening value from each screened component (bagged and not bagged) was entered in the appropriate model equation to obtain the corresponding estimated emission. ISVs categorized as less than 10 ppmv (i.e. with no actual value) were entered in the equation as 5 ppmv. The total of the estimated total hydrocarbon emissions was then calculated for each of the 5 ranges. Finally, the average emissions were computed as: total HC emission / total number of components.

³ The data base used for this study did not contain ISVs strictly greater than 100,000 ppmv, only ISVs equal to 100,000 ppmv.

The advantage of the first method is that the bagged emissions are more accurate than those obtained from the model equations. With the second method however, model equation averages are based on hundreds of estimated emissions (compared to only a few bagged emissions in some cases). So unless the model equations are grossly biased, averages based on the second method are expected to be more reliable and stable.

Another advantage of the second method over the first is that the first may lead to a lower emission factor for a higher screening value range. For example, Table 8 shows that the emission factor based on bagged components for the 10,000–99,999 ppmv range is 0.0492 lb/day-component, whereas it is equal to 0.142 lb/day-component for the 1,000–9,999 ppmv range. This anomaly cannot happen using the model equations.

Tables 3-10 give emission factors calculated based on each of the two methods described above and for each of the 8 groups of facility/component types. The top part of each page shows the calculation steps that led to the THC averages. It also indicates the contribution of each range to the total emission. The bottom part of each page provides emission factors for different stratification scenarios.

One question of interest is whether the two methods led to similar emission factors and consequently to similar total HC emissions. For the following groups the two methods were fairly close in terms of total HC (bottom line of top table):

- Natural Gas Production Facilities CN, OEL⁴ (Table 4)
- Natural Gas Production Facilities VL, Other (Table 5)

For the following groups, the first method (based on bagged components) led to higher total HC emission estimates:

- Heavy Crude Oil Production Facilities CN, VL, OEL, Other (Table 6)
- Light Crude Oil Production Facilities CN, VL, OEL (Table 7)
- Offshore Oil & Gas Production Facilities CN, OEL (Table 9)

For the following groups, the second method (based on model equations) led to higher total HC emission estimates:

- Light Crude Oil Production Facilities Other (Table 8)
- Offshore Oil & Gas Production Facilities VL, Other (Table 10)

⁴ CN = Connection, VL = Valve, OEL = Open-Ended Line.

One reason the method based on the model equations is believed to be more appropriate is that it is based on hundreds of ISVs. Estimated emissions for individual components may not be accurate; but overall, the average THC emissions are expected to be reasonably reliable, or at least more reliable than averages based on only a few bagged components. Another reason the second method is recommended is that whether one chooses to use the model equations directly or the emission factors derived from the model equations to estimate total emissions, one should obtain roughly similar results.

Finally, of the different sets of emission factors (or stratification scenarios), the one based on 4 ISV ranges is recommended for the following reasons:

- The 100,000 ppmv components need to be identified separately since they contribute the majority of total emissions.
- The number of components in the 10,000 to 99,999 ppmv range should also be determined since they too contribute a considerable portion of total emissions.
- The number of components below 10 ppmv represent the non-emitters. Their number should also be known separately.
- The 4th range (10 9,999 ppmv) is automatically determined since it is the remaining interval.

Table 11 shows the emission factors based on the recommended method for these 4 ranges.

TABLE 3 - TOTAL HYDROCARBON EMISSION FACTORS FOR: NATURAL GAS PROCESSING FACILITIES – CN,VL,OEL,Other

EMISSION FACTORS FOR NATURAL GAS PROCESSING FACILITIES

WILL BE PUBLISHED IN A SEPARATE REPORT

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS
ISV	TOTAL	BASED ON BAGGED COMPONENTS			BASED ON MODEL EQUATION			
RANGE (PPMV)	# OF COMP.	# OF BAGGED COMP.	AVG. THC (Ib/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL
100,000	96	6	1.53	146.63	86.1	1.01	97.17	72.5
10,000-99,999	238	5	0.0379	9.02	5.3	0.126	29.91	22.3
1,000-9,999	259	7	0.0092	2.38	1.4	0.0201	5.21	3.9
10-999	242	11	0.00048	0.12	0.1	0.00169	0.41	0.3
<10	32,728	0	0.00037	12.11	7.1	0.00004	1.36	1.0
TOTAL	33,563	29		170.26	100.0		134.05	100.0

TABLE 4 - TOTAL HYDROCARBON EMISSION FACTORS FOR: NATURAL GAS PRODUCTION FACILITIES - CN,OEL

ISV	AVERAGE THC (lb/day-component)			
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION		
100,000	1.53	1.01		
10,000-99,999	0.0379	0.126		
10-9,999	0.0050	0.0112		
<10	0.00037	0.00004		

62

10,000-100,000	0.466	0.380
10-9,999	0.0050	0.0112
<10	0.00037	0.00004

10,000-100,000	0.466	0.380
<10,000	0.00044	0.00021

10-100,000	0.189	0.159
<10	0.00037	0.00004

A-9

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

TABLE 5 - TOTAL HYDROCARBON EMISSION FACTORS FOR	:
NATURAL GAS PRODUCTION FACILITIES – VL, Other	

TOTAL		BASED ON BAGGED COMPONENTS				BASED ON MODEL EQUATION		
RANGE (PPMV)	# OF COMP.	# OF BAGGED COMP.	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL	AVG. THC (Ib/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL
100,000	98	19	3.85	377.64	36.5	6.18	605.35	75.4
10,000-99,999	216	8	3.02	653.26	63.1	0.756	163.36	20.3
1,000-9,999	161	14	0.0197	3.17	0.3	0.177	28.46	3.5
10-999	203	17	0.00698	1.42	0.1	0.0160	3.24	0.4
<10	5,937	5	0.00007	0.41	0.0	0.00046	2.73	0.3
TOTAL	6,615	63		1035.89	100.0		803.13	100.0

ISV	AVERAGE THC (lb/day-component)			
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION		
100,000	3.85	6.18		
10,000-99,999	3.02	0.756		
10-9,999	0.0126	0.0871		
<10	0.00007	0.00046		

-

10,000-100,000	3.28	2.45
10-9,999	0.0126	0.0871
<10	0.00007	0.00046

10,000-100,000	3.28	2.45
<10,000	0.00079	0.00546

10-100,000	1.53	1.18
<10	0.00007	0.00046

A-10

TABLE 6 - TOTAL HYDROCARBON EMISSION FACTORS FOR:
HEAVY CRUDE OIL PRODUCTION FACILITIES – CN,VL,OEL,Other

ISV RANGE # (PPMV) COMP.	TOTAL	BASED ON BAGGED COMPONENTS				BASED ON MODEL EQUATION		
	# OF COMP.	# OF BAGGED COMP.	AVG. THC (lb/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL
100,000	0	0	-	0	0.0	-	0	0.0
10,000-99,999	2	2	0.0711	0.14	2.5	0.119	0.24	10.0
1,000-9,999	6	4	0.0387	0.23	4.1	0.0323	0.19	8.1
10-999	54	24	0.00308	0.17	3.0	0.00147	0.08	3.3
<10	13,694	0	0.00037	5.07	90.4	0.00014	1.89	78.7
TOTAL	13,756	30		5.61	100.0		2.40	100.0

ISV	AVERAGE THC (Ib/day-component)				
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION			
100,000	-	-			
10,000-99,999	0.0711	0.119			
10-9,999	0.00665	0.0046			
<10	0.00037	0.00014			

10,000-100,000	0.0711	0.119
10-9,999	0.00665	0.0046
<10	0.00037	0.00014

10,000-100,000	0.0711	0.119
<10,000	0.00040	0.00016

10-100,000	0.00872	0.00826
<10	0.00037	0.00014

ISV TOTA RANGE # (PPMV) COM	TOTAL	BASED ON BAGGED COMPONENTS				BASED ON MODEL EQUATION		
	# OF COMP.	# OF BAGGED COMP.	AVG. THC (lb/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL	AVG. THC (Ib/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL
100,000	233	21	3.14	730.83	86.1	1.22	283.37	77.0
10,000-99,999	142	25	0.534	75.84	8.9	0.395	56.09	15.2
1,000-9,999	158	45	0.0234	3.69	0.4	0.0693	10.95	3.0
10-999	325	46	0.00557	1.81	0.2	0.00701	2.28	0.6
<10	47,356	6	0.00077	36.23	4.3	0.00033	15.51	4.2
TOTAL	48,214	143		848.40	100.0		368.20	100.0

TABLE 7 - TOTAL HYDROCARBON EMISSION FACTORS FOR: LIGHT CRUDE OIL PRODUCTION FACILITIES - CN,VL,OEL

ISV	AVERAGE THC (lb/day-component)					
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION				
100,000	3.14	1.22				
10,000-99,999	0.534	0.395				
10-9,999	0.0114	0.0274				
<10	0.00077	0.00033				

10,000-100,000	2.15	0.91		
10-9,999	0.0114	0.0274		
< 10	0.00077	0.00033		

10,000-100,000	2.15	0.91
<10,000	0.00087	0.00060

10-100,000	0.947	0.411
<10	0.00077	0.00033

A-12

TABLE 8 - TOTAL HYDROCARBON EMISSION FACTORS FOR	ł :
LIGHT CRUDE OIL PRODUCTION FACILITIES – Other	

ISV TOTAL RANGE # (PPMV) COMP.	TOTAL	BASED ON BAGGED COMPONENTS			BASED ON MODEL EQUATION			
	# OF BAGGED COMP.	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL	AVG. THC (Ib/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL	
100,000	21	1	0.183	3.83	42.7	1.39	29.22	67.3
10,000-99,999	21	3	0.0492	1.03	11.5	0.365	7.66	17.6
1,000-9,999	20	12	0.142	2.85	31.7	0.177	3.54	8.1
10-999	71	4	0.0168	1.19	13.3	0.0284	2.02	4.6
<10	305	2	0.00022	0.07	0.8	0.00331	1.01	2.3
TOTAL	438	22		8.97	100.0		43.44	100.0

ISV	AVERAGE THC (Ib/day-component)				
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION			
100,000	0.183	1.39			
10,000-99,999	0.0492	0.365			
10-9,999	0.0444	0.0610			
<10	0.00022	0.00331			

10,000-100,000	0.116	0.878
10-9,999	0.0444	0.0610
<10	0.00022	0.00331

10,000-100,000	0.116	0.878
<10,000	0.0104	0.0166

10-100,000	0.0670	0.319
<10	0.00022	0.00331

161/	BASED ON BAGGED COMPONENTS			BASED ON MODEL EQUATION				
RANGE (PPMV)	# OF COMP.	# OF BAGGED COMP.	AVG. THC (Ib/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL
100,000	16	31	1.036	16.57	29.9	0.927	14.83	45.2
10,000-99,999	139	34	0.138	19.22	34.7	0.097	13.46	41.0
1,000-9,999	90	54	0.0521	4.69	8.5	0.0258	2.32	7.1
10-999	180	52	0.00878	1.58	2.8	0.00197	0.35	1.1
<10	36,164	0	0.00037	13.38	24.1	0.00005	1.85	5.6
TOTAL	36,589	171		55.44	100.0		32.82	100.0

TABLE 9 - TOTAL HYDROCARBON EMISSION FACTORS FOR: OFFSHORE OIL & GAS PRODUCTION FACILITIES - CN,OEL

ISV	AVERAGE THC (lb/day-component)				
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION			
100,000	1.036	0.927			
10,000-99,999	0.138	0.097			
10-9,999	0.0232	0.0099			
<10	0.00037	0.00005			

10,000-100,000	0.231	0.183
10-9,999	0.0232	0.0099
~10	0.00037	0.00005

10,000-100,000	0.231	0.183
<10,000	0.00054	0.00012

10-100,000	0.0990	0.0729		
<10	0.00037	0.00005		

TABLE 10 - TOTAL HYDROCARBON EMISSION FACTORS FOR	R:
OFFSHORE OIL & GAS PRODUCTION FACILITIES – VL, Other	r

ICV	TOTAL	BASED ON BAGGED COMPONENTS			BASED ON MODEL EQUATION			
RANGE (PPMV)	# OF COMP.	# OF BAGGED COMP.	AVG. THC (Ib/day- comp.)	TOTAL THC (lb/day)	% OF GRAND TOTAL	AVG. THC (lb/day- comp.)	TOTAL THC (Ib/day)	% OF GRAND TOTAL
100,000	16	24	2.25	36.05	37.7	7.39	118.20	53.9
10,000-99,999	72	26	0.760	54.73	57.3	1.071	77.13	35.2
1,000-9,999	32	12	0.0211	0.67	0.7	0.316	10.11	4.6
10-999	70	10	0.0110	0.77	0.8	0.0285	1.99	0.9
<10	8,906	0	0.00037	3.30	3.4	0.00134	11.92	5.4
TOTAL	9,096	72		95.52	100.0		219.36	100.0

ISV	AVERAGE THC (Ib/day-component)				
RANGE (PPMV)	BASED ON BAGGED COMP.	BASED ON MODEL EQUATION			
100,000	2.25	7.39			
10,000-99,999	0.760	1.071			
10-9,999	0.0142	0.1187			
<10	0.00037	0.00134			

10,000-100,000	1.032	2.220
10-9,999	0.0142	0.1187
<10	0.00037	0.00134

10,000-100,000	1.032	2.220
<10,000	0.00053	0.00267

10-100,000	0.485	1.092
<10	0.00037	0.00134

FACILITY		EMISS FOR THI	SION FACTORS (I E FOLLOWING 4	b/day-compo ISV RANGES	onent) 5 (ppmv)
ITPE	TTPE	100,000	10,000–99,999	10–9,999	<10
Natural Gas Processing	CN,VL,OEL,Other	TBD	TBD	TBD	TBD
Natural Gas Production	CN,OEL	1.01	0.126	0.0112	0.00004
Natural Gas Production	VL,Other	6.18	0.756	0.0871	0.00046
Heavy Crude Oil Production	CN,VL,OEL,Other	NA⁵	0.119	0.0046	0.00014
Light Crude Oil Production	CN,VL,OEL	1.22	0.395	0.0274	0.00033
Light Crude Oil Production	Other	1.39	0.365	0.0610	0.00331
Offshore Oil & Gas Product.	CN,OEL	0.927	0.097	0.0099	0.00005
Offshore Oil & Gas Product.	VL,Other	7.39	1.071	0.1187	0.00134

TABLE 11 - RECOMMENDED TOTAL HYDROCARBON EMISSION FACTORS (BASED ON MODEL EQUATIONS)

^a CN = Connection, VL = Valve, OEL = Open-Ended Line.

^b Not Applicable (see Table 6).

TBD = TO BE DETERMINED

A-16

3. SPECIATED FUGITIVE EMISSION FACTORS

As with the development of the model equations and the calculation of THC emission factors, the first step is to form groups of facility/component types that may be viewed as having similar characteristics. In this case, the fraction of speciated emissions to THC was calculated and modeled to determine whether different facility types or component types should be considered separately. It was found that in most cases, component types did not affect the fraction of speciated emissions, but facility types did. Consequently, for each of the 5 facility types and each of the species listed in Table 12, the fractions of total speciated emissions to THC emissions were calculated. The number of components that were bagged and speciated is also shown. For heavy crude oil production sites, that number was in some cases quite low (N=4), and as a result, the corresponding emission factors are not as reliable as for the sites with a larger number of components (N \geq 30).

What follows is an example of how to use Table 12 to estimate total speciated fugitive emissions:

Estimated total methane fugitive emissions in a light crude oil production = facility (lb/day)

0.613 x Estimated total HC fugitive emissions (lb/day)

	Ligl Oil P	ht Crude roduction	Hea Oil P	vy Crude roduction	P ₁	itural Gas oduction	Pr	ıtural Gas ocessing	Offsl Gas F	nore Oil & Production
	z	Fraction ^a	z	Fraction ^a	z	Fraction ^a	z	Fraction ^ª	z	Fraction ^a
Methane	165	0.613	30	0.942	92	0.920	175	TBD	243	0.791
NMHC	165	0.387	30	0.058	92	0.080	175	TBD	243	0.210
VOC	165	0.292	30	0.0299	92	0.0347	175	TBD	243	0.110
Hexane ^b	165	0.0243	30	0.00752	92	0.00338	175	TBD	243	0.00673
Benzene	43	0.000269	4	0.00935	43	0.000231	38	TBD	37	0.00133
Toluene	43	0.000750	4	0.00344	43	0.000391	40	TBD	38	0.000888
Ethyl-Benzene	43	0.000165	4	0.000505	43	0.0000174	37	TBD	37	0.000158
Xylene	42	0.000357	4	0.00372	43	0.0000968	39	TBD	37	0.000269

A-18

Not for Resale

TABLE 12 - SPECIATED FUGITIVE EMISSION FACTORS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

 $\frac{1}{2} Fraction = \frac{\sum Speciated Emissions (lb/day)}{\sum Total HC Emissions (lb/day)}$

^b In most cases, the majority of the C6+ emissions were n-hexane.

API PUBL*4589 93 🎟 0732290 0517607 642 📟

APPENDIX B FIELD INVENTORY SHEET DATA

											EMI	TTER	S BY S	CREEN	ING RAN	IGE (ppr	۲ آ
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITF	ARFA	AREA	CN	۲L	0.E.L	cs	PS	PRV	OTH	ALL	66	499	666	6666	66666		ALL
	Moti	A	46	14	0	0	0	0	-	61	2	0	0	0	0	0	2
- -	Well		44	13	0	0	0	0	-	58	0	-	0	0	0	0	-
- `	Well		90	o	C	C	0	0	0	37	0	0	0	Ŧ	0	0	-
- .	wei	> 4	2) Ç		C	C	C	C	40	0	0	0	0	0	0	0
- .	Well		E2	Ωα	- 6		C		0	35	0	-	0	0	0	0	-
-	Well	u ı	45	° *			Ċ	, c	-	60	3	F	0	0	1	0	5
- `	Well		54 74	1 1	C		0	0	-	67	2	0	0	0	0	0	2
	Well	בפ	5	17	C	0	0	0	-	70	0	0	0	-	0	0	-
	vveil Mvoli	-	46	13	0	0	0	0	-	60	0	-	0	0	0	0	-
- -	Well		63	16	0	0	0	0	-	80	0	3	-	0	-	3	8
- -	Well	, -	38	=	0	0	0	0	0	49	0	0	0	-	0	0	-
- -	Well	2	50	16	0	0	0	0	1	76	0	0	0	0	0	0	0
- -	wei		45	10	0	0	0	0	-	58	0	0	0	0	0	0	0
-	Well	1 2	202	9	0	0	0	0	0	26	0	0	0	0	0	0	0
	Mal	z	28	11	0	0	0	0	0	39	0	0	0	0	0	0	0
	I Mell		24	8	0	0	0	0	0	32	0	0	0	0	0	0	0
			24	9 6	0	0	0	0	0	32	0	0	+	0	0	0	-
		. c	43	13	0	0	0	0	-	57	0	0	0	0	0	0	0
	Well	3 0	AA	15	C	0	0	0	-	64	0	-	0	0	0	0	-
			48	15	0	0	0	0	-	64	-	0	0	0	0	0	-
	1 Well		42	13	0	0	0	0	-	56	0	0	0	0	•	0	0
	1 Wall	=	44	14	0	0	0	0	0	58	0	0	0	0		0	•
		> >	33		0	0	0	0	0	44	0	0	0	0	0	0	•
		. 3	43	=	0	0	0	0	-	55	0	0	-	0	0	0	-
	1 Moll	: ×	54	16	0	0	0	0	0	70	0	0	0	0	0	0	0
		: >	28	6	0	0	0	0	0	37	0	-	0		-	0	2
	1 Woll		21	8	0	0	0	0	0	29	0	0	0	0	0	-	-
	1 Woll	×	29	6	0	0	0	0	0	1 38	-	0	0	0	0	0	-

API PUBL*4589 93 🎟 0732290 0517608 589 🛤

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	TTER	S BY S	SCREEN	ING RAI	VGE (ppi) nu
		SUB		_							10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲L	O.E.L	cs	PS	РЯV	OTH	ALL	8	6 6	6 66	6666	66666		ALL
-	Well	AB	32	6	0	0	0	0	0	41	0	0	0	0	0	0	0
1	Well	AC	33	6	0	0	0	0	0	42	-	0	0	0	0	0	-
-	Well	AD	30	10	0	0	0	0	0	40	0	0	0	0	0	0	0
-	Well	AE	36	11	0	0	0	0	0	47	0	0	0	0	0	0	0
-	Well	AF	37	12	0	0	0	0	0	49	0	0	0	0	0	0	0
-	Well	AG	31	11	0	0	0	0	0	42	0	0	0	0	0	0	0
-	Well	AH	21	2	0	0	0	0	0	28	0	0	0	0	0	0	0
-	Well	A	24	6	0	0	0	0	0	33	0	-	0	0	0	0	-
-	Well	AK	25	6	0	0	0	0	0	34	0	0	-	0	0	0	-
1	Well	AL	31	10	0	0	0	0	0	41	0	0	0	0	0	1	-
-	Well	AM	35	12	0	0	0	0	0	47	-	0	0	0	0	0	-
-	Well	AN	44	14	0	0	0	0	1	59	0	0	0	0	0	0	0
-	Well	AO	42	12	0	0	0	0	-	55	0	-	0	0	0	0	-
-	Well	AP	45	14	0	0	0	0	-	60	0	0	0	0	0	0	0
	Well	AQ	24	2	0	0	0	0	0	31	0	0	0	0	0	0	0
-	Well	AR	27	6	0	0	0	0	0	36	0	0	0	0	0	0	0
-	Well	AS	31	6	1	0	0	0	0	41	2	0	0	-	0	-	4
-	Well	AT	26	8	0	0	0	0	0	34	0	0	0	-	0	0	-
-	Well	AU	18	6	3	0	0	0	0	30		0	0	0	0	0	+
۲	Well	AV	29	11	1	0	0	0	0	41	0	0	0	0	0	0	0
1	Well	AW	49	15	0	0	0	0	-	65	0	-	1	0	0	0	2
-	Well	AX	34	11	0	0	0	0	0	45	-	0	0	0	0	0	-
-	Well	AY	47	13	0	0	0	0	+	61	0	0	-	0	0	0	-
-	Well	AZ	49	15	1	0	0	0	-	99	-	0	0	0	0	0	-
-	Well	BA	61	17	0	0	0	0	-	62	0	0	-	0	0	0	-
-	Well	88	45	13	0	0	0	0	-	59	-	-	0	-	0	0	Э
-	Well	BC	53	14	0	0	0	0	-	68	-	0	0	0	0	0	-
-	Well	BD	51	15	0	0	0	0	-	1 67	-	-	0	0	0	0	2

API PUBL*4589 93 🔳 0732290 0517609 415 🔳

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	ITTER	S BY S	SCREEN	UNG RAP	VGE (ppi	(vn
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲۲	0.E.L	cs	ЪS	РЯV	OTH	ALL	8	499	86	6 666	66666		A L
-	Well	BE	39	12	0	0	0	0	-	52	0	0	0	0	0	0	0
-	Weil	BF	46	13	0	0	0	0	-	60	0	1	0	0	0	0	-
-	Well	BG	18	6	0	0	0	0	0	24	0	0	0	0	0	0	0
-	Well	ВН	24	7	0	0	0	0	0	31	0	0	+	0	0	0	-
-	Well	В	26	10	0	0	0	0	0	36	2	0	0	0	ł	0	3
-	Well	BJ	40	12	0	0	0	0	-	53	0	-	0	0	0	0	-
-	Well	BK	19	9	0	0	0	0	0	25	0	0	0	0	0	0	0
-	Well	BL	27	6	0	0	0	0	0	36	0	0	0	0	0	0	0
-	Weli	BM	26	6	0	0	0	0	0	35	0	0	0	0	0	0	0
-	Well	BN	30	9	0	0	0	0	0	39	0	0	0	-	0	0	-
-	Well	BO	32	11	0	0	0	0	0	43	0	0	0	0	0	0	0
-	Well	ВР	30	11	0	0	0	0	0	41	-	0	0	0	0	0	Ļ
-	Well	BQ	30	6	0	0	0	0	0	39	0	0	0	0	0	0	0
-	Well	BR	25	9	0	0	0	0	0	34	-	0	0	0	0	0	-
-	Well	BS	23	8	0	0	0	0	0	31	0	-	0	0	0	0	-
-	Well	ВТ	30	10	0	0	0	0	0	40	2	0	0	0	0	0	2
-	Well	BU	25	8	0	0	0	0	0	33	0	0	0	0	0	0	0
-	Well	BV	27	6	0	0	0	0	0	36	0	0	-	-	0	0	2
-	Well	BW	24	8	0	0	0	0	0	32	0	0	0	1	0	0	-
-	Well	BX	38	13	2	0	0	0	1	54	0	0	0	0	0	0	0
-	Well	ВΥ	41	13	1	0	0	0	+	56	1	0	0	-	0	0	2
-	Well	BZ	26	9	0	0	0	0	0	35	0	0	0	0	0	0	0
-	Well	СA	25	8	0	0	0	0	0	33	1	1	0	0	0	0	2
-	Well	СВ	20	7	0	0	0	0	0	27	0	0	0	-	0	0	1
-	Well	8	29	10	0	0	0	0	0	39	0	0	0	0	0	0	0
-	Well	B	37	9	0	0	0	0	1	47	0	1	0	0	0	0	-
-	Well	Э	26	8	0	0	0	0	0	34	0	0	0	+	0	0	-
-	I Well	СF	44	12	0	0	0	0	ł	t 57	0	1	0	1	0	0	2

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	TTER:	S BY S	CREEN	IING RA	NGE (ppr	nv)
		SUB								•	10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	SN	۲	O.E.L	cs	PS	РЯV	OTH	ALL	8	499	666	6666	66666		ALL
1	Well	S	33	11	0	0	0	0	0	44	0	0	0	0	0	0	0
1	Well	СН	27	6	0	0	0	0	0	36	0	-	0	0	0	1	2
1	Well	ō	33	11	0	0	0	0	0	44	0	0	0	0	0	0	0
-	Well	3	21	6	1	0	0	0	0	31	0	-	0	0	0	-	2
-	Well	ð	23	8	0	0	0	0	0	31	0	0	0	-	0	0	-
-	Well	С	34	10	0	0	0	0	0	44	0		0	0	0	0	-
-	Well	GM	31	10	1	0	0	0	0	42	+	0	0	-	0	0	2
-	Well	S	41	13	+	0	0	0	1	56	0	0	0	0	0	0	0
+	Well	8	48	14	0	0	0	0	1	63	1	0	0	0	0	0	-
1	Well	СР	47	14	0	0	0	0	-	62	0	5	0	0	1	0	9
-	Well	g	48	15	-	0	0	0	-	65	0	0	0	0	0	0	0
1	Well	СВ	48	14	0	0	0	0	+	63	4	0	0	0	0	0	4
1	Well	cs	46	15	1	0	0	0	-	63	0	0	0	0	0	0	0
-	Well	СŢ	42	12	0	0	0	0	Ŧ	55	0	-	0	0	0	0	-
Ŧ	Well	сn	38	11	0	0	0	0	+	50	-	0	0	-	0	0	2
-	Well	S	24	8	0	0	0	0	0	32	0	0	-	-	0	0	2
F	Well	CW	24	8	0	0	0	0	0	32	0	0	-	0	0	0	t
-	Well	сx	22	7	0	0	0	0	0	29	0	0	0	0	0	0	0
-	Well	сY	36	11	0	0	0	0	0	47	0	0	0	0	0	0	0
1	Well	CZ	33	11	0	0	0	0	0	44	0	0	0	0	0	0	0
Ŧ	Well	DA	21	2	0	0	0	0	0	28	0	0	0	0	0	0	0
-	Well	DB	23	2	0	0	0	0	0	30	0	0	0	0	0	0	0
-	Weil	DC	38	12	0	0	0	0	-	51	1	2	-	0	0	0	4
-	Well	DD	24	8	0	0	0	0	0	32	0	0	0	0	0	0	0
-	Well	DE	41	13	+	0	0	0	-	56	0	0	0	0	0	0	0
-	Well	DF	25	6	0	0	0	0	0	34	-	0	0	Ŧ	0	0	2
-	Well	DG	33	10	0	0	0	0	0	43	0	0	0	0	0	-	-
1	Well	Н	24	8	0	0	0	0	0	. 32	0	0	0	1	0	0	-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B-4

Γ		Е	0	0	0	-	-	-	0	0	~	0	Γ-	°	0	-	0		-	- 0	-00	-000	- 0 0 0 0	- 0 0 0 0 -	-0000-0	-0000-0-	- 0 0 0 0 - 0	- 0 0 0 0 0	-0000-00-	-0000-00
) +	A	0	0	0	-	0	0	0	0		0			0		-		2											
	100,000																													
ING RAI	10,000 to	99999	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-		0	0 0	000		000-	000-0	000-00		0 0 0 - 0 0 0 0		0 0 0 - 0 0 0 0 0
CHEEN	1,000 to	6666	0	0	0	-	F	0	0	0	0	0	0	0	0	0	0	0	4	5	0							00000-0	00000-00	00000-000
0100	500 to	666	0	0	0	0	°	0	0	0	0	0	0	0	0	0	0	0	0		0	00	000	0000	00000	0000-	0000-0	0000-00	0000-000	0000-0000
	00 to	499	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0		0	00	000	0000	00000	000000	000000	0000000	00000000	• • • • • • • • • • • • •
	10 to	8	0	0	0	0	0	0	6	0	0	0	0	0	0	-	0	0	0	ľ	5	0 0					000000	0000000	00000000	0 0 0 0 0 0 0 0 -
=	<u>.</u>	ALL	53	32	50	39	32	34	35	63	35	31	35	30	51	42	35	42	45	35	2	39	39	53 41 39	41 53 20 41 53 41	39 53 53 37	39 39 41 37 37 35	39 39 53 37 37 35 57	39 39 41 41 41 35 35 57 57	39 39 41 41 41 41 37 35 57 57 35 35
		OTH	-	0	-	0	0	0	0	-	0	0	0	0	1	0	0	0	0	0	,	0	00	00-	00-0	00-00	00-000	0 0 - 0 0 -	00-00	00-000
		PRV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	00	000	0000	00000	00000	0000000	00000000	000000000
		Sd	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	00	000	0000	00000	000000	0000000	0000000	000000000
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	00	000	0000	00000	000000	0000000	0000000	00000000
		0.E.L	0	0	1	0	0	0	0	0	+	0	0	0	-	0	0	1	0	0		0	00	000	0000	S 0 0 0		0 7 5 0 0 0	0 0 0 0 0 7 0 0	0 0 0 7 5 0 0 0
		۲	12	8	12	10	8	6	6	15	6	8	6	8	Ξ	10	6	6	1	6		101	11	11 12	10 11 10	11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	11 10 10 10 10 10 10 10 10 10 10 10 10 1	11 12 10 10 13 13	11 10 10 10 10 10 10 10 10 10 10 10 10 1	11 10 10 10 10 10 10 10 10 10 10 10 10 1
		CN	40	24	36	29	24	25	26	47	25	23	26	22	38	32	26	32	34	26	20	3	30	30	31 40 30	30 31 31 25	30 31 25 25 25	30 31 31 25 25 43	30 30 31 31 25 25 43 47	30 30 31 31 31 25 25 43 47 47 27
	SUB	AREA	ā	2	Я	DL	MQ	ND	DO	DP	ğ	Ы	DS	DT	DQ	2	M	ň	Ъ	DZ	Ĺ	E I	58	E E C					5 8 2 0 0 U U U U U U U U U U U U U U U U U	
		AREA	Welt	Well		Well	Well Well	Well Well Well	Well Well Well Well	Vell Well Well Well	Vell Well Well Well Well	Vell Well Well Well Well	Vell Well Well Well Well Well	Vell Well Well Well Well Well Well																
		SITE	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-		Ŧ								

API PUBL*4589 93 🗰 0732290 0517612 TOT 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B-5

											EM	TTER	S BY S	CREEN	VING RA	NGE (ppr	1v)
SUB	SUB										10 to	100 to	200 10	1,000 to	10,000 to	100,000+	
EA AREA CN	AREA CN	S		۲	0.E.L	S	ΡS	РЯV	OTH	ALL	66	499	6 6	6666	66666		ALL
EK 25	EK 25	25		6		0	0	0	0	35	0	0	0	0	0	0	0
EL 20	EL 20	20		6	0	0	0	0	0	26	0	0	0	0	0	0	0
EM 22	EM 22	22		2	0	0	0	0	0	29	0	0	0	0	0	0	0
EN 24	EN 24	24		8	0	0	0	0	0	32	0	0	0	0	0	0	0
EO 25	EO 25	25		8	0	0	0	0	0	33	0	0	0	0	0	0	0
EP 30	EP 30	30		10	0	0	0	0	0	40	0	0	0	-	0	0	-
EQ 32	EQ 32	32	1	11	0	0	0	0	0	43	0	-	0	0	-	-	e
ER 26	ER 26	26		11	2	0	0	0	0	39	0	0	0	0	0	-	-
ES 28	ES 28	28		10	0	0	0	0	0	38	0	-	0	0	0	0	-
ET 43	ET 43	43		14	0	0	0	0	0	57	-	0	0	0	0	-	2
EU 28	EU 28	28	1	8	0	0	0	0	0	36	-	0	0	0	0	0	-
EV 52	EV 52	52		16	2	0	0	0	1	71	0	0	0	0	0	0	0
EW 30	EW 30	30		10	0	0	0	0	0	40	0	0	0	0	0	0	0
EX 24	EX 24	24	- !	8	0	0	0	0	0	32	-	0	0	0	0	0	-
EY 48	EY 48	48	- 1	14	0	0	0	0	-	63	0	+	0	0	0	0	+
EZ 33	EZ 33	33		Ξ	0	0	0	0	0	44	0	0	1	0	0	0	+
FA 47	FA 47	47	1	16	-	0	0	0	0	64	0	0	0	1	0	0	+
FB 31	FB 31	31		9	0	0	0	0	0	41	0	0	0	0	0	0	0
FC 37	FC 37	37	- 1	14	0	0	0	0	-	52	1	0	0	-	0	-	9
FD 35	FD 35	35	- 1	12	0	0	0	0	0	47	0	0	0	0	1	0	-
FE 25	FE 25	25		6	0	0	0	0	0	34	0	0	0	0	0	0	0
FF 19	FF 19	19		6	4	0	0	0	0	32	0	-	0	0	0	0	-
FG 28	FG 28	28		10	0	0	0	0	0	38	0	-	0	0	0	0	-
FH 30	FH 30	30		10	0	0	0	0	0	40	0	0	0	-	0	0	+
FI 26	FI 26	26		6	0	0	0	0	0	35	0	0	0	0	0	0	0
FJ 42	FJ 42	42		13	2	0	0	0		58	0	0	0	-	D	0	-
FK 13	FK 13	13		93	0	0	-	0	0	17	0	0	0	0	0	0	0
FL 25	FL 25	25		6	0	0	0	0	0	1 34	0	0	0	0	0	0	0

API PUBL*4589 93 🛲 0732290 0517613 946 🎟

B-6

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

			2	2	C	- 1	- 1 -	51.	-1-	-1-	ਗ	5 I	01	2	- 1	1-	1-	-17	VI.	-1	<u> </u>	-1		_		170		τ.					
(vmc		AL	_										_							-				-	ę	16	1	3	2	G	9	=	7
NGE (pr	100,000		0	Ŧ	0							4	°	0	0	-			7	0	0	0	0	0	9	2	e		ה ק	=	2	ω	5
NG RAI	10,000 to	66666	0	0	0	C					5	-	0	1	0	0	c		5 (∍	•	0	0	0	-	9	9		• •	-	0	0	0
CREENI	,000 to	6666	0	0	0	c	,		5	5 0	2 0	5	-	0	0	0	6			╞	•	-	0	0	2	5	-	-	4 0	<u>, ,</u>	-		+
BY S(500 to 1	8	0	-	0	-	1					5	0	0	0	0	0	-		5	-	-	-	-	0	0	-	6		5	5	5	-
TERS	00 to	<u>8</u>	-	0	0	0	ſ					5	5	0	-	0	-	-		5	-	-	-	0	1	5	0	6		5	5 0	5	0
EMI	10 to 1	8	-	0	0	6	c					5	∍	-	0	0	0	6	, ,	- '	0	-	╡	-	0	-	6	-	, -			5	0
F			4	47	45	62	61	37	5		e de	3 6	<u>c</u> p	52	35	33	63	63	3 8	3 6	09	58	58	50	1061	1816	1513	853	550	000	070	077	460
-			-	-	0	0	-				, -			<u>_</u>	0	0	-																-
		5																									0						
		АНЧ	0	0	0	0	0	0	ÌC					0	0	0	0	0	C				5 0	5	0	0	0	0	0	c			Ы
	20	2 ľ		0	0	0	0	0	C	C	0	C		5	0	0	0	0	c	Ċ					0	0	0	0	0	C			5
	ę	3			0	0	0	0	ō	0	0	C		5		0	0	0	0	6					5	0	0	0	0	c			5
	L L L			~	0	e	-	0	0	e	-	6		5	•	2	2	7	0	c			> c	- - -	•	0	0	0	0	14	14	0	0
	7	; ;	: ;	2	2	14	13	6	=	=	18	6	=		م	6	7	16	14	13	2 5	2 C	2 5	2 100	C77	450	375	200	329	269	269	325	200
	CN	S.	3 8	20	3	45	46	28	33	26	65	26	07	00	9	22	46	40	47	46	44	44	34	200	020	1366	1138	653	1221	943	943	1117	
	AREA	M	Z		2	đ	Ğ	FR	FS	F	FU	5	Ρ				7	GA	GB	gC	GD	GE	GF		< c		с С	0	ш	Ľ	U	Ŧ	-
	AREA	Vell	Veli	Vali		Vell	Veli	Vell	Vell	Vell	Veli	Vell	Vell	Vell	101	veir	vell	Vell	Velt	/ell	/ell	/ell	/ell	padar		eauer	eader	eader	eader	eader	eader	eader	
	SITE	-	-			-	-	>	-	7	-	1	1	-			-	>	-	-	-	5	-	I F			<u> </u>	<u>I</u> -	<u>I</u> -	<u>н</u>	I -	H F	

API PUBL*4589 93 🖿 0732290 0517614 882 페

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

B-7

											μ	ITTER	IS BY	SCREEN	VING RA	NGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲	O.E.L	cs	bS	РВV	OTH	ALL	66	499	6 66	6666	66666		ALL
	i Heater	A	101	26	0	0	0	0	2	129	+	-	0	0	0	-	ຕ
	Heater	۵	104	29	£	0	0	0	2	138	0	-	0	0	0	0	-
	Heater	o	105	29	2	0	0	0	2	138	1	0	0	0	0	0	-
	Heater	٥	222	69	3	0	0	0	2	296	1	0	2	0	4	4	Ŧ
	Heater	ш	91	24	0	0	0	0	0	115	0	0	0	0	0	+	-
	Heater	ш	91	24	0	0	0	0	0	115	0	0	0	1	0	-	2
	Heater	σ	142	40	0	0	0	0	2	184	1	0	+	0	+	3	6
	Heater	Т	87	24	2	0	0	0	0	113	3	0	0	1	-	-	9
	Heater	-	198	68	0	0	0	0	2	268	2	6	0	1	+	3	13
	Heater	د	91	24	0	0	0	0	0	115	0	1	0	0	0	2	3
	Heater	¥	104	27	0	0	0	0	2	133	7	0	0	2	2	0	Ξ
	Heater		62	16	0	0	0	0	2	80	1	0	0	1	2	0	4
	Heater	Σ	75	20	0	0	0	0	2	67	1	7	5	3	0	0	16
	Heater	z	87	22	0	0	0	0	0	109	0	0	0	0		3	4
	Heater	0	169	51	1	0	0	0	2	223	0	2	0	2	3	3	10
	Heater	٩	168	47	3	0	0	0	2	220	0	1	1	1	3	2	8
	Heater	σ	118	29	0	0	0	0	0	147	0	0	0	0	-	0	-
	t Heater	œ	98	25	0	0	0	0	0	123	1	0	0	0	-	-	3
	Heater	s	158	42	4	0	0	0	2	206	1	1	0	1	-	-	5
	Heater	Т	82	4	4	0	0	0	2	92	1	-	0	0	0	4	9
	Heater	ה	98	25	0	0	0	0	0	123	0	0	0	0	0	-	-
	Heater	>	91	23	2	0	0	0	0	116	0	0	0	0	-	4	5
	Heater	Ν	194	56	4	0	0	0	2	256	0	0	0	2	2	-	5
	Separator	A	85	26	1	0	0	0	1	113	2	0	-	0	0	0	3
	Separator	۵	114	27	0	0	0	0	1	142	0	0	0	0	0	-	-
	Separator	υ	44	15	0	0	0	0	1	60	0	0	0	0	-	2	3
	Separator	٥	87	26	0	0	0	0	1	114	0	0	0	0	0	2	2
	Separator	ш	95	28	0	0	0	0	1	: 124	0	1	0	+	0	4	9

	1		N.	1m		Τ-	1-	1.0		1		1.0	Ter		1	1	Te		1.0	1	1	1					-	_		_
() M		ALL												5	ſ	~		-	°			P	4	°	Ĩ	7	9	3	8	
IGE (pp	100,000+		-	-	°	0			2		0		0	3	2	F	0	0	0	-	0	0	2	0	5	4	5	3	5	
NG RAN	10,000 to	66666	2	-	0	0	0	0	0	0	0	-	0	~	0	0	0	0	0	-	~	0	0	0	0	~	4	0	2	
CREEN	1,000 to	6666	0	0	0	-	-	-	0	-	-	-	-	-	-	0	0	-	0	0	0	0	2	0	-	0	-	0	-	
S BY S	500 to	86	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TTER	100 to	6	2	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	
EM	10 to	8	2	+	0	0	0	0	0	0	0	0	-	2	0	-	0	0	0	-	0	0	0	0	-	-	0	0	0	
		ALL	131	183	37	146	128	150	164	162	112	112	162	145	164	61	36	78	42	65	54	45	82	149	20	67	101	87	06	
		0TH	-	-	+	+	0	-	-	+	-	+	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		РЯЧ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	ЪS	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	(cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	-	-	-	0	0	
		O.E.L	ल	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	-	0	0	2	-	2	2	
		3	29	38	8	31	27	30	36	33	23	23	33	31	32	14	6	17	10	14	12	Ξ	17	34	12	14	17	16	15	
	;	CN	8	144	28	114	101	119	127	128	88	88	128	113	131	47	27	61	32	51	42	32	64	112	57	50	82	69	73	
1	SUB	AHEA	<u> </u>	σ	τ	-	ر	¥	_	Σ	z	0	٩	σ	æ	4	ß	υ	٥	ш	ш	σ	۲	۲	в	υ	٥	ш	Ľ	
		AHEA	Separator	Meter	Meter	Meter	Meter	Meter	Aeter	Aeter	nstruments	Vater	nstruments	nstruments	nstruments	nstruments	nstruments													
	L H U		Ť	-	-	Ŧ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	₹	=	-	=	

API PUBL*4589 93 🖿 0732290 0517616 655 페

		_		_	-	-				
(vm		AL	8	0	0) C	0	0	4	522
IGE (pp	100,000+		9	0	0	-	0	0	2	171
ING RAP	10,000 to	66666	2	0	0	-	0	0	0	76
CREEN	1,000 to	6666	0	0	0	0	0	0	0	83
S BY S	500 to	666	0	0	0	0	0	0	0	30
ITTER	100 to	499	0	0	0	-	0	0	-	78
EM	10 to	8	0	0	0	0	0	0	-	84
[•	ALL	132	119	165	144	65	91	267	27155
		ОТН	0	0	0	0	0	0	0	107
		РЯV	0	0	0	0	0	0	0	0
		PS	0	0	0	2	-	+	4	Ξ
		SS	0	0	0	0	0	0	0	9
		0.E.L	2	0	0	0	0	0	0	143
		۲	23	21	29	25	13	17	52	6121
		z	107	98	136	117	51	73	211	20767
	SUB	AREA	н	۷	8	A	В	υ	٥	
		AREA	Instruments	Tank	Tank	Sales	Sales	Sales	Sales	
		SITE	-	-	-	-	-	-	-	

API PUBL*4589 93 🔳 0732290 0517617 591 🔳

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	ITTEF	S BY	SCREEN	VING RAI	NGE (pp	(vm
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
2115	AHEA	AHEA	S	۲	0.E.L	cs	PS	PRV	OTH	ALL	8	4 99	6 6	6666	66666		ALL
2	Well	4	49	9	3	0	0	0	+	59	0	-	0	0	0	0	Ļ
~	Weil	m	37	5	2	0	0	0	+	45	+-	0	0	0	0	2	
~	Well	υ	46	8	3	0	0	0	-	58	-	0	0	0	0	0	-
~	Well	۵	46	2	2	0	0	0	-	56	0	-	0	0	0	0	-
2	Well	ш	26	6	2	0	0	0	-	35	0	-	0	0	0	0	-
2	Well	ш	57	6	2	0	0	0	-	69	-	0	0	0	0	0	
2	Well	ნ	43	7	3	0	0	0	-	54	-	0	0	0	0	-	2
~	Well	I	47	6	2	0	0	0	-	56	0	-	0	-	0	0	
2	Well	-	57	2	2	0	0	0	-	67	0	0	-	0	0	0	
2	Well	-	119	18	5	0	0	0	5	147	0	2	-	-	3	2	0
2	Well	×	61	6	3	0	0	0	-	74	0	-	0	-	0	0	2
2	Well	-	57	10	3	0	0	0	-	71	-	0	0	-	0	0	2
2	Well	Σ	69	10	3	0	0	0		83	0	0	0	-	0	0	-
2	Well	z	63	=	4	0	0	0	1	62	0	2	0	2	0	0	4
2	Well	0	74	10	-	0	0	0	-	86	0	0	0	-	0	0	-
~	Well	م	42	9	2	0	0	0	-	51	-	0	0	0	0	2	6
~	Well	σ	86	13	4	0	0	0	+	104	0	0	0	Ŧ	0	F	2
2	Well	æ	47	8	2	0	0	0	-	58	Ŧ	0	0	0	0	0	-
2	Well	S	28	7	2	0	0	0	-	38	0	0	-	0	-	0	8
~	Well	⊢	49	8	2	0	0	0	-	60	0	0	-	0	0	0	-
2	Well	∍	56	8	2	0	0	0	-	67	0	-	0	2	0	0	e
~	Well	>	40	10	2	0	0	0	0	52	0	0	0	0	0	0	0
2	Well	3	166	26	5	0	0	0	2	199	2	0	0	0	0	0	2
2	Well	×	63	12	-	0	-	0	0	27	0	0	0	-	0	0	-
2	Well	>	02	12	2	0	0	0	0	84	3	6	-	0	-	0	8
2	Well	Z	129	25	5	0	0	0	2	161	e	3	0	0	-	2	6
2	Well	¥	126	23	4	0	0	0	2	155	0	-	2	-	-	93	8
2	Well	AB	64	12	2	0	0	0	0	. 78	0	0	0	0	0	0	0

API PUBL*4589 93 🗰 0732290 0517618 428 🛤

B-11

		Ĭ									EM	TTER	S BY S	CREEN	ING RAN	VGE (ppr	lv)
		SUB				-, <u>-</u> ,					10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	٨L	O.E.L	cs	PS	РВУ	OTH	ALL	66	499	666	6666	66666		AL
2	Well	AC	115	22	5	0	0	0	2	144	0	0	-	-	0	5	7
2	Well	AD	104	12	4	0	0	0	2	122	0	-	0	0	0	-	2
2	Well	AE	120	19	5	0	0	0	0	144	0	0	0	e	0	2	5
2	Well	AF	129	25	9	0	0	0	1	161	0	4	0	e	0	e	₽
2	Well	AG	144	23	3	0	0	0	2	172	0	0	0	2	2	8	12
2	Well	AH	137	23	8	0	0	0	2	170	0	+-	0	2	3	2	æ
3	Well	A	109	22	9	0	0	0	3	140	0	0	0	0	3	0	3
2	Well	ΡŊ	95	25	2	0	0	0	0	122	0	+	0	0	0	0	-
2	Well	AK	84	17	2	0	0	0	0	103	0	0	0	-	0	-	2
2	Header	۷	253	56	-	0	0	0	0	310	0	0	0	0	0	0	0
2	Header	B	188	41	0	0	0	0	0	229	0	0	0	0	0	0	0
2	Header	υ	308	64	3	0	0	0	0	375	0	0	0	0	0	0	0
2	Header	٥	27	12	0	0	0	0	0	89	0	0	0	0	0	0	0
2	Header	ш	405	71	4	0	0	+	0	481	2	0	-	0	-	0	4
2	Header	Ľ	68	17	0	0	0	0	0	85	0	0	0	0	0	0	0
2	Heater	۲	198	30	4	0	0	0	3	235	2	0	0	-	0	0	3
2	Heater	ß	52	9	3	0	0	-	5	67	1	2	1	2	-	0	7
2	Heater	υ	85	13	2	0	0	-	3	104	0	-	-	0	2	0	4
2	Heater	۵	218	36	8	0	0	0	9	268	0	-	0	0	0	8	e
2	Heater	ш	270	39	6	0	0	1	7	326	2	4	0	33	-	0	9
2	Heater	Ŀ	103	8	-	0	0	+	4	117	0		0	0	0	-	2
2	Heater	თ	317	43	2	0	0	2	9	370	-	2	-	2	2	33	Ξ
2	Heater	r	233	34	4	0	0	1	3	275	3	0	-	0	-	2	7
2	Heater	-	196	19	9	0	0	0	3	224	0	-	0	-	0	0	2
2	Heater	-	45	5	2	0	1	0	0	53	0	0	0	0	0	0	0
2	Heater	¥	190	23	1	0	0	0	4	218	0	0	-	-	0	0	2
2	Separator	A	154	18	2	0	0	1	4	179	0	0	0	0	0	0	0
2	Separator	в	305	52	14	0	0	0	9	1 377	-	0	0	0	0	0	-

	1		2 0	2 2	ט נ	> c	2 2	- 0	> 4	To	2	5	-	1-	.] ल	G	0	To	Te	10		Te	Te	Tm		TΞ	T=	
(vm(₹														-												
NGE (pr	100,000																	0	0			0		0		0	0	
NG RAN	10,000 to	66666		C		C		-	0	0	0	0	-	0	4	9	=	0	~	0	0	0	-	-	0	0	0	0
CREENI	(,000 to	Refer	; -	·†c	, ~	C	~	-	†-	0	0	0	0	0	6	e	-	0	0	0	0	0	ر	0	0	10	0	0
S BY SI	90 ge	ŝ	; -	+-	0	0	·	0	2	0	-	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	0	0
ITERS	00 to	C C	0	10	-	10	~	†-	0	0	-	-	0	0	0	5	2	0	-	0	0	0	0	-	0	0	-	-
EMI	0 to 0 to	6	0	~	-	0	0	0	-	0	0	-	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0
		205	366	282	327	145	136	227	298	74	446	116	233	188	124	400	288	66	205	130	143	155	165	142	59	83	1	62
	OTH	-	4	9	-	0	5	-	2	-	2	4	+	0	0	0	10	0	4	2	3	0	2	0	0	0	0	1
	рву	0	2	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	Sd	0	D	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0
	SS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
	O.E.L	=	6	10	10	3	2	6	8	3	15	2	3	6	4	2	2	2	5	9	3	4	2	2	2	0	-	-
	۲	30	48	37	47	15	14	32	41	8	57	Ξ	37	27	27	72	39	13	26	15	19	17	18	25	10	6	0	8
	CN	163	303	228	269	126	114	185	247	62	372	66	192	152	93	325	232	83	169	107	118	134	143	110	47	73	0	52
	SUB AREA	v	٥	ш	ш	ნ	I	-	-	¥	_	Σ	4	8	υ	∢	A		с	0	ш		IJ	4	8	0	٥	ш
	AREA	eparator	leter	leter	feter	ompressor	crubber	ank	ank	ank	ank	ank																
 		5	5	5	5	5	5	<u>s</u>	S	<u></u>	S	<u>s</u>	2	2	2	2	S	S	S	S	S	S	S	Ë	<u> </u>	<u> </u>	Ë	Ë

API PUBL*4589 93 🎟 0732290 0517620 086 🖿

-

-	_				_						_				
nv)		ALL		0	0	13	5	5	-	1	-	2	1	0	290
(GE (pp	100,000+		0	0	0	3	1	1	0	0	0	0	0	0	59
ING RAN	10,000 to	66666	0	0	0	3	1	2	0	0	0	0	1	0	49
CREEN	1,000 to	6666	Ŧ	0	0	2	1	0	0	0	0	0	0	0	56
S BY S	500 to	666	0	0	0	2	0	0	0	0	+	0	0	0	28
ITTER	100 to	499	0	0	0	3	2	0	0	1	0	0	0	0	59
EM	10 to	66	0	0	0	0	0	2	1	0	0	2	0	0	39
		ALL	40	49	92	228	189	190	76	126	58	278	66	170	14620
		OTH	+-	2	2	7	4	+	1	2	+	0	0	0	170
		РЯV	0	0	0	0	0	0	0	0	0	0	0	0	14
		PS	0	0	0	0	0	0	0	0	0	0	0	0	9
		cs	0	0	0	0	0	0	0	0	0	0	0	0	-
		O.E.L	+	1	3	6	7	3	4	2	2	12	2	7	378
		٨L	5	6	11	22	29	38	11	14	7	45	10	28	2010
		CN	33	40	76	190	149	148	60	108	48	221	54	135	12041
	SUB	AREA	ڻ ا	н	-	ں ا	¥	Ļ	Σ	z	0	٨	8	υ	
		AREA	Tank	Tank	Tank	Tank	Tank	Tank	Tank	Tank	Tank	Sales	Sales	Sales	
		SITE	2	2	2	2	2	2	2	2	2	2	2	2	

API PUBL*4589 93 🖿 0732290 0517621 T12 🖿

•

B-14

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

	1			-		> C	> o	0 0	- 1 0	- 0			V T	rIc			alc	J C		<u>, T</u> =	10	Tir		10	516	<u> </u>	-1-	51		
(vm		ALL																								1			- °	° +
IGE (pp	100,000+		0	0									- -			, c) c	° C	0		, –	· c						•		
NG RAN	10,000 to	66666	0	-	c				- c	Ċ	, c				C	c		c	0	c	c	-	c	c		, c				
CREENI	1,000 to	6666	0	0	c	0	+-				,		-		0	c	0	0	0	0	0		c	0	- c	, -			5 e	
S BY S	500 to	666	0	0	6	0	C	- 1	- c			, -		0	0		0	0	0	0	0	0	0	1	10	-				
TTER	100 to	499	0	0	0	0	C	, -	- c	6			-	0	10	10	0	0	0	10	-	-	0	~	- c			,		
EMI	10 to	8	-	0	0	0	-	-	-	0	C	- C	,†-	0	0	0	0	0	0	-	0	0	6	6	0	ſ		c		, -
		ALL	60	32	62	93	311	193	82	161	42	53	63	140	164	54	43	138	43	45	83	123	88	61	189	104	88	120	179	134
		OTH	0	0	0	0	0	0	-	0	-	-	-	-	2	-	-	0	-	-	-	0	0	4	9	4	2	C	0	0
		PRV	-	0	0	0	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	0
	1	Sd	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
		O.E.L	2	0	3	0	16	5	-	2	0	0	0	6	9	1	0	-	0	0	0	2	3	0	2	0	0	8	9	0
	5	ł	18	2	20	31	76	37	18	37	9	11	14	30	39	12	10	33	1	10	16	24	15	14	36	17	19	31	37	16
	Z	s د	69	25	56	62	218	151	61	121	31	40	47	102	116	39	31	103	31	33	65	26	70	43	145	83	67	81	136	115
Ę	SUB	АПЕА	4	8	4	B	ပ	٥	A	В	υ	۵	ш	ш	U	I	-	-	×	-	Σ	٨	в	۲	B	٩	В	۲	В	٨
	ADEA	ANCA	Weil	Weil	Header	Header	Header	leader	Separator	Separator	Separator	Separator	Separator	Separator	Separator	Separator	Separator	Separator	Separator	Separator	eparator	Aeter	Aeter	Chiller	Chiller	ehydrator	ehydrator	ulfur	ulfur	ompressor
	SITC		2	5	~ ~	e	e.	33	e	e	e e	e e	e e	.		c	<u>е</u>	.	с С	300	0) 0)	N C	<u>v</u> 8	<u></u>	<u></u>	0	3	35	35	30

Not for Resale

`,,`===

	1		-	2	2	-	0	4	0	2	0	0	-	-	4	e
(vm		AL							-	-						ő
VGE (pp	100,000+		0	0	0	0	0	0	0	Ŧ	0	0	0	0	2	6
ING RAP	10,000 to	66666	0	1	0	0	0	3	9	0	0	0	0	0	+	18
CREEN	1,000 to	6666	0	8	+	0	0	0	+	0	0	0	-	0	-	24
S BY S	500 to	666	0	+	0	0	0	0	-	0	0	0	0	0	0	8
ITTER	100 to	499	1	-	1	1	0	0	2	0	0	0	0	0	0	12
M	10 to	8	0	-	0	0	0	-	0	-	0	0	0	-	0	13
	•	ALL	159	120	81	5	13	29	39	169	46	8	89	66	155	4095
		OTH	0	0	0	4	1	16	16	3	-	2	0	Э	-	75
		РВV	0	0	-	0	0	0	0	0	0	2	0	0	0	18
		PS	-	0	0	0	0	0	0	0	0	-	0	2	0	4
		cs	0	0	0	0	0	0	0	0	0	0	-	0	0	4
		O.E.L	-	3	7	0	2	0	0	3	0	+	-	0	5	87
		۲L	29	25	17	0	3	1	2	39	7	22	20	20	35	867
		CN	128	92	56	1	2	12	21	124	38	68	67	74	114	3040
	SUB	AREA	В	A	۲	В	c	٥	ш	۲	В	υ	٥	A	A	
		AREA	Compressor	Scrubber	Water	Water	Water	Water	Water	Tank	Tank	Tank	Tank	Sales	Flare	
		SITE	3	3	3	3	3	3	3	3	Э	3	3	3	3	

API PUBL*4589 93 🖿 0732290 0517623 895 🖿

B-16

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	TTER	S BY S	CREEN	IING RAN	NGE (ppi) L
		SUB									10 to	100 to	500 to	1,000 to	10,000 ta	100,000+	
Ă		AREA	CN	۲L	O.E.L	cs	PS	РВУ	ОТН	ALL	66	499	6 66	6666	66666		AL
		٨	55	16	1	0	0	0	1	73	0	0	0	0	0	1	-
		B	14	5	0	0	0	0	0	22	0	0	0	0	0	0	
		ပ	57	17	-	0	0	0	1	76	ł	0	0	0	0	0	-
		٥	32	6	0	0	0	0	0	41	0	0	0	0	0	0	
		ш	57	17	3	0	0	0	-	78	3	0	0	0	-	0	7
		۱L	49	12	3	0	0	0	0	64	0	0	0	0	2	0	
		თ	61	20	2	0	0	0	0	88	ł	0	0	0	0	0	•
		н	53	16	4	0	0	0	+	74	-	-	0	2	2	0	Ű
		-	33	11	2	0	0	0	0	46	0	0	0	0	0	0	
		ſ	57	15	4	0	0	0	0	76	-	0	0	-	0	0	
		¥	44	11	2	0	0	0	1	58	0	0	0	0	0	0	
		۲	50	14	4	0	0	0	1	69	0	2	0	0	0	1	
		Σ	34	10	3	0	0	0	1	48	0	0	0	0	0	0	0
		z	134	36	11	0	0	1	0	182	0	t	0	0	3	0	7
_		A	66	10	0	0	0	0	0	76	0	0	1	+	+	1	v
-		8	253	56	4	0	0	0	0	313	3	9	0	1	0	2	12
-		ပ	250	59	4	0	0	0	0	313	12	2	0	0	0	1	15
ŝ		A	46	10	2	0	0	0	0	58	0	0	0	0	0	0	0
ŝ	-	в	116	28	0	0	0	0	0	144	0	0	0	0	0	0	0
e l	-	ပ	65	16	Ŧ	0	0	0	0	82	0	1	0	0	0	0	-
es.	sor	A	63	10	9	1	0	ţ	0	81	0	2	0	4	1	6	13
es.	sor	8	40	3	1	1	0	0	1	46	1	2	0	9	0	0	5,
ě	sor	υ	27	8	ł	0	0	0	1	37	0	0	0	0	0	1	
la	tor	A	162	33	0	0	0	0	2	197	0	+	1	0	6	2	÷
ě	L	A	87	19	9	0	0	0	0	112	0	0	0	0	0	0	U
Je C		В	75	19	0	0	0	0	1	95	-	0	0	0	0	0	
		A	26	9	2	0	0	0	0	34	0	0	0	0	0	0	0
		В	41	8	0	0	0	0	1	+ 50	0	0	0	0	1	0	-

	_									ž U	ITTER	S BY S	CREEN	IING RAI	NGE (ppr	nv)
SUB	SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
AREA AREA	AREA	 CN	۲L	O.E.L	cs	PS	РЯV	OTH	ALL	66	499	666	6666	66666		ALL
ank C	ပ	 16	3	-	0	+	0	+	22	-	0	0	0	0	0	-
ales A	A	36	6	0	0	0	2	0	47	0	0	0	0	3	0	9
ales B	В	 56	14	6	0	-	0	0	80	0	0	0	0	0	0	0
		 2155	520	85	2	2	4	14	2782	25	18	2	15	20	15	95

•

B-18

											EM	ITTER	S BY	SCREEN	VING RAI	NGE (pp	lvm
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SILE	AREA	AREA	S	۲	0.E.L	cs	PS	РВV	ОТН	ALL	66	499	6 66	6666	66666		ALL
5	Nell	٩	56	11	2	0	0	0	-	20	0	0	°	-	0	C	
5	Nell	8	61	6	0	0	0	0		71	-	-	0	0	0		
5	Nell	υ	60	6	1	0	0	0	-	71	-	0	0	0	0		· -
5 V	Nell	۵	73	10	3	0	0	0	-	87	0	0	-	0	0		
5	Veli	ш	62	10	3	0	0	0	-	76	°	-	°	0	0	C	
5	Vell	Ľ	54	8	2	0	0	0	-	65	-	0	°	0	0	, e	
5 <	Vell	ჟ	46	8	2	0	0	0	-	57	°	0	°	0	0	C	
5 <	Vell	I	64	11	1	0	0	0	-	17	-	0	°	0	0	C	
5 <	Vell	-	80	12	3	0	0	0	-	8	0	0	°	0	0		0
5 <	Vell	7	64	10	3	0	0	0	-	78	0	0	0	0	0	0	
5 <	Vell	¥	75	12	5	0	0	0	-	93	0	0	°	0	0	C	C
5 <	Vell	L	65	10	3	0	0	0	-	62	0	0	0	0	0	C	
5 <	Vell	Σ	72	10	3	0	0	0	-	86	0	0	0	0	0	0) O
5	Vell	z	02	10	2	0	0	0	-	83	0	-	0	0	0	0	-
5 <	Vell	0	63	6	0	0	0	0	0	72	0	0	0	0	0	0	C
5 <	Vell	٩	60	6	2	0	0	0	0	71	0	0	0	0	0	0	0
5 <	Vell	σ	61	6	-	0	0	0	-	72	0	0	0	0	0	0	0
5 <	Vell	æ	62	6	2	0	0	0	-	74	0	0	0	0	0	0	0
5	Velt	S	62	6	2	0	0	0	-	74	0	0	0	0	0	0	0
5 4	Vell	⊢	63	6	-	0	0	0	-	74	-	0	0	0	0	0	-
5 4	Vell	∍	63	6	-	0	0	0	-	74	0	0	0	0	0	0	0
5 4	Vell	>	63	6	-	0	0	0	+	74	0	0	0	0	0	0	0
5	Vell	≥	63	6	-	0	0	0	-	74	0	0	0	0	0	0	0
5 4	Vell	×	60	6	-	0	0	0	+	71	-	0	0	0	0	0	-
5 🗸	Vell	≻	59	6	2	0	0	0	-	71	0	0	0	0	0	0	0
2	Vell	Z	71	6	-	0	0	0	-	82	0	0	0	0	0	0	Î
5 <	Vell	AA	65	6	-	0	0	0	-	76	0	0	0	0	0	0	0
5 M	Vell	AB	66	6	0	0	0	0	-	₹ 76	0	0	0	0	0	0	0

	T			0									_																	_
() mv		ALL	•	U	0	-	-	-	0	0	0	1	0	-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
IGE (pp	100,000+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NG RAN	0,000 to	66666	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CREENI	,000 to	6666	0	0	0	0	Ŧ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S BY S	500 to	666	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TTER	100 to	499	0	0	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ē	10 to	8	-	0	0	0	0	+	0	0	0	-	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0
		ALL	75	92	80	63	76	72	74	73	71	83	75	73	73	67	68	75	75	67	60	81	78	79	72	79	81	87	84	. 87
		OTH	1	+	1	1	-	1	-	-	-	-	-	1	-	۲	-	-	-	-	+	-	-	-	-	-	-	-	-	-
		РЯV	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		O.E.L	0	0	1	0	0	1	1	1	2	2	2	2	0	2	2	2	2	2	2	3	3	3	2	3	3	2	3	e
		۲L	10	6	6	2	6	6	6	6	6	11	10	6	6	10	6	6	6	10	8	10	10	10	10	10	10	10	10	10
		CN	64	82	69	55	66	61	63	61	59	69	62	61	63	54	56	63	63	54	49	67	64	65	59	65	67	74	20	73
	SUB	AREA	AC	AD	AE	ΨF	AG	AH	AI	۲J	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	88	BC	BD
		AREA	Well	Nell																										
		SITE	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5

			,						EM	TTER	S BY S	CREEN	VING RA	NGE (pp	() M
		۱ (i		10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
N N		0.0		S	PS	РВУ	OTH	ALL	8	664	8	6666	66666		AL
64 10	┋┤		~	0	0	0	-	78	0	0	0	0	0	0	0
69 10	0		0	-	0	0	-	83	0	0	0	0	0	0	0
63	8		~	0	0	0	-	74	0	0	0	0	0	0	0
58 8	8	1	~	0	0	0	-	69	0	0	0	0	0	0	0
54 8	8		2	0	0	0	1	65	0	0	0	0	0	0	0
57 8	8	- 1	~	0	0	0	-	68	0	0	0	0	0	0	0
30 6	9		-	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9	1	0	0	0	0	0	36	0	0	0	0	0	0	0
18 6	9		-	0	0	0	0	25	0	0	0	0	0	0	0
18 6	9	- 1	-	0	0	0	0	25	0	0	0	0	0	0	0
20 6	9		0	0	0	0	0	26	0	0	0	0	0	0	0
18 6	9		-	0	0	0	0	25	0	0	0	0	0	0	0
20 6	9		0	0	0	0	0	26	0	0	0	0	0	0	0
20 6	9		0	0	0	0	0	26	0	0	0	0	0	0	0
18 6	6		-	0	0	0	0	25	0	0	0	0	0	0	0
18 6	9		-	0	0	0	0	25	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9	- 1	0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	0	0	0	°
30 6	6		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	6		0	0	0	0	0	36	-	0	0	0	0	0	-
30 6	6		0	0	0	0	0	36	0	0	0	0	0	0	0
30 6	9		0	0	0	0	0	36	0	0	0	10	0	0	0
30 6	9	1	0	-	0	0	0	1 36	0	0	0	0	0	0	0

											EM	ITTER	S BY S	SCREEN	IING RAI	VGE (pp	mv)
		SUB								•	10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲L	0.E.L	SS	PS	РВV	отн	ALL	8	4 99	666	6666	66666		ALL
5	Header	3	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	×	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	≻	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
2	Header	Z	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	A	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AB	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
2	Header	AC	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AD	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AE	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AF	30	9	0	0	0	0	0	36	0	0	0	0	0	. 0	0
2	Header	AG	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AH	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AI	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AJ	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AK	30	9	0	0	0	0	0	36	0	0	0	0	0	0	0
5	Header	AL	20	9	0	0	0	0	0	26	0	0	0	0	0	0	0
5	Header	AM	18	9	-	0	0	0	0	25	0	0	0	0	0	0	0
5	Header	AN	20	9	0	0	0	0	0	26	0	0	0	0	0	0	0
5	Header	AO	18	9	1	0	0	0	0	25	0	0	0	0	0	0	0
5	Header	AP	20	9	0	0	0	0	0	26	0	0	0	0	0	0	0
5	Header	AQ	30	9	0	0	0	0	-	37	0	0	0	0	0	0	0
5	Separator	A	89	28	5	0	0	0	0	122	0	0	0	0	0	0	0
2 2	Separator	В	27	5	0	0	0	0	0	32	0	0	0	0	0	0	0
5	Separator	ပ	94	17	3	0	0	-	0	115	0	0	0	0	0	0	0
			5282	890	127	0	0	2	61	6362	Ξ	5	-	8	0	0	19

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SUB	SUB										10 to	117EF 100 to	SO to	SCREET	NING RAI	NGE (pp 100.000+	() M
AREA AREA CN VL O.E.L CS	AREA CN VL O.E.L CS	CN VL O.E.L CS	VL O.E.L CS	O.E.L CS	cs		PS	PRV	ОТН	ALL	66	499	666	6666	66666		AL
Well A 50 10 4	A 50 10 4	50 10 4	10 4	4		0	0	0	÷	65	0	0	0	0	-	0	
Well B 52 10 3	B 52 10 3	52 10 3	10 3	3		0	0	0	Ŧ	66	0	0	0	0	0	0	
Well C 51 9 3	C 51 9 3	51 9 3	9 3	3		0	0	0	1	64	0	0	0	0	0	0	
Well D 49 9 3	D 49 9 3	49 9 3	9 3	3		0	0	0	+	62	0	0	0	2	0	0	
Well E 40 8 2	E 40 8 2	40 8 2	8 2	2		0	0	0	-	51	0	-	0	0	0	0	
Well F 54 11 0	F 54 11 0	54 11 0	11 0	0		0	0	0	0	65	2	0	0	0	0	0	
Well G 53 11 3	G 53 11 3	53 11 3	11 3	3		0	0	0	Ŧ	68	0	-	0	0	0	0	
Well H 34 9 2	H 34 9 2	34 9 2	9 2	2		0	0	0	1	46	2	-	0	0	0	0	
Well I 54 9 2	1 54 9 2	54 9 2	9 2	2		0	0	0	1	66	-	0	0	0	1	0	
Well J 51 9 3	J 51 9 3	51 9 3	9 3	3		0	0	0	ł	64	0	-	0	0	0	0	
Well K 51 9 2	K 51 9 2	51 9 2	9 2	2		0	0	0	+	63	-	0	0	0	0	0	
Well L 51 9 3	L 51 9 3	51 9 3	9 3	3		0	0	0	1	64	-	0	0	0	0	0	
Well M 47 9 2	M 47 9 2	47 9 2	9 2	2		0	0	0	1	59	+	0	0	0	0	0	
Well N 37 6 1	N 37 6 1	37 6 1	6 1	-		0	0	0	-	45	2	0	0	0	0	0	
Well 0 49 9 3	0 49 9 3	49 9 3	9	3		0	0	0	-	62	+	0	0	0	0	0	
Well P 32 8 3	P 32 8 3	32 8 3	8 3	3		0	0	0	+	44	2	0	0	0	0	0	
Well Q 58 10 2	Q 58 10 2	58 10 2	10 2	2		0	0	0	-	71	0	0	0	0	0	0	
Well R 33 8 2	R 33 8 2	33 8 2	8 2	2		0	0	0	-	44	0	0	0	0	0	0	
Well S 56 12 3	S 56 12 3	56 12 3	12 3	3		0	0	0	1	72	0	0	0	0	0	0	
Well T 43 8 3	T 43 8 3	43 8 3	8 3	3		0	0	0	Ŧ	55	0	0	0	0	0	0	
Well U 55 12 3	U 55 12 3	55 12 3	12 3	3		0	0	0	t	71	0	0	0	0	0	0	
Well V 57 11 2	V 57 11 2	57 11 2	11 2	2		0	0	0	1	71	0	0	0	0	0	0	
Well W 51 9 3	W 51 9 3	51 9 3	9 3	e		0	0	0	1	64	0	0	0	0	0	0	
Well X 43 8 2	X 43 8 2	43 8 2	8 2	2		0	0	0	1	54	0	0	0	0	0	0	
Well Y 54 10 2	Y 54 10 2	54 10 2	10 2	2		0	0	0	1	67	0	0	0	0	0	0	
Well Z 35 7 1	Z 35 7 1	35 7 1	7 1	-		0	0	0	1	44	0	0	0	0	0	0	
Well AA 57 10 3	AA 57 10 3	57 10 3	10 3	3		0	0	0	1	71	0	0	0	0	0	0	
Well AB 36 8 2	AB 36 8 2	36 8 2	8 2	2		0	0	0	ł	47	0	0	0	0	0	0	

API PUBL*4589 93 🖬 0732290 0517630 T25 페

1

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	ITTER	S BY S	CREEN	VING RAI	NGE (ppi	lun)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	·
SITE	AREA	AREA	CN	۲L	O.E.L	cs	PS	PRV	OTH	ALL	8	499	666	6666	66666		ALL
9	Well	AC	57	ŧ	2	0	0	0	-	12	0	0	0	0	0	0	0
9	Well	AD	49	6	2	0	0	0	-	61	0	0	0	0	0	0	0
9	Well	AE	49	6	4	0	0	0	-	63	0	0	0	0	0	0	0
9	Well	AF	48	6	4	0	0	0	1	62	0	0	0	0	0	0	0
9	Well	AG	49	6	3	0	0	0	1	62	0	0	0	0	0	0	0
9	Well	AH	48	10	4	0	0	0	1	63	0	0	0	0	0	0	0
9	Well	A	48	6	3	0	0	0	-	61	0	0	0	0	0	0	0
9	Well	٨J	48	6	2	0	0	0	-	60	0	0	0	0	0	0	0
9	Well	AK	52	10	3	0	0	0	-	99	0	0	0	0	0	0	0
9	Well	AL	36	2	-	0	0	0	-	45	0	0	0	0	0	0 .	0
9	Well	AM	34	10	С	0	0	0	-	48	0	0	0	0	0	0	0
9	Well	AN	41	9	-	0	0	0	-	49	0	0	0	0	0	0	0
9	Header	۲	12	e	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	Β	12	3	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	υ	12	3	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	۵	12	3	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	ш	12	3	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	Ŀ	12	3	0	D	0	0	0	15	0	0	0	0	0	0	0
9	Header	თ	28	8	2	0	0	0	0	38	0	0	0	0	0	0	0
9	Header	I	12	9	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	-	26	2	2	0	0	0	0	35	0	0	0	0	0	0	0
9	Header	٦	12	e	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	¥	12	e	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	_	12	e	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	Σ	28	7	-	0	0	0	0	36	0	0	0	0	0	0	0
9	Header	z	12	£	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	0	12	°	0	0	0	0	0	15	0	0	0	0	0	0	0
9	Header	٩	12	3	0	0	0	0	0	15	0	0	0	0	0	0	0

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B-24

	API	PUBL*4589	93		0732290	0517632	8 T 8	
--	-----	-----------	----	--	---------	---------	-------	--

•.

		Ę	0	0	0	0	21																							
) M	<u> </u>	-																												
IGE (pr	100,0004																													
ING RAN	10,000 to	66666	0	0	0	0	2																							
CREEN	1,000 to	6666	0	0	0	0	2																							
S BY S	500 to	6 6	0	0	0	0	0																							
TTER	100 to	499	0	0	0	0	4																							
EMI	10 to	8	0	0	0	0	13																							
		ALL	15	15	33	36	2799																							
		OTH	0	0	0	0	39																							
		PRV	0	0	0	0	0																							
		PS	0	0	0	0	0																							
		cs	0	0	0	0	0																							
		0.E.L	0	0	1	1	106																							
		۲	3	3	6	2	446																							
	<u></u>	CN	12	12	26	28	2208																							
	SUB	AREA	σ	н	S	⊢																								
		AREA	Header	Header	Header	Header																								
		SITE	9	9	9	9																								
	-	_										_												-	-			-		-
---------	-----------	-------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	---
(vr		ALL	-	-	-	-	-	-	0	-	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	°	0	0	0	Ċ
GE (ppr	100,000+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
NG RAN	10,000 to	66666	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CREENI	1,000 to	6666	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S BY S	500 to	8	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TTER	100 to	664	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EMI	10 to	8	0	0	0	-	-	+	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ALL	45	40	43	43	42	42	45	36	48	50	43	46	52	40	40	43	42	48	51	42	45	51	38	46	41	41	41	
		OTH		1	*	1	-	-		-	-	+	-	-	-	-	-	*	-	-	-	-	ł	-	ł	1	1	1	1	
		PRV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		O.E.L	2	-	3	2	9	3	3	-	-	4	3	3	2	3	2	2	2	-	-	2	3	-	e	2	-	-	e	
		٨L	7	2	2	2	2	2	7	9	8	8	8	6	6	2	2	7	7	7	8	2	2	8	2	2	9	7	2	
		CN	35	31	32	33	31	31	34	28	38	37	31	33	40	29	30	33	32	39	41	32	34	41	27	36	33	32	30	
	SUB	AREA	٨	8	υ	۵	ш	L	σ	Т	-	~	¥	L	Σ	z	0	٩	σ	œ	s	F	∍	>	3	×	≻	Z	A	
		AREA	Vell	Veli	Veli	Vell	Vell	Nell	Nell	Nell	Nell	Vell	Nell	Vell	Nell	Vell	Nell	Vell	Well	Well	Well	Well								
		SITE	7 2	2	1	7	7	7	~	7	~	~	1	1	Th	1×	Th	12	1	1	112	12	1	7	1×	1	~	7	~	

(ALL.	0	0	0	0	0	0	°	0	0	0	°	0	0	0	0	0	ſ
(mqq)	+00		0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	-
NGE	100,0																		L
ING HA	10,000 to	66666	0		0					0	0	0	0	0	0		0	0	
CHEEN	1,000 to	6666	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
S BY	500 to	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ſ
Ë	100 to	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ſ
E	10 to	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		ALL	53	44	47	44	53	48	44	41	54	56	44	44	44	56	323	473	1000
		OTH	-	-	3	-	-	-	-	-	-	-	-	-	-	-	0	0	~ ~
		PRV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	C
		PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<
		0.E.L	e	2	-	3	4	3	2	2	5	9	2	2	5	3	7	7	44
		٨L	6	8	8	8	6	8	8	2	6	6	8	8	8	6	42	45	707
		S	40	33	35	32	39	36	33	31	39	43	33	33	33	43	270	417	2427
	SUB	AREA	AC	AD	AE	AF	AG	AH	Ā	٩J	AK	AL	AM	AN	AO	AP	۲	В	
		AHEA	Well	Header	Header														
	Ļ	<u>н</u>	2	2	2	2	7	~	~	2	~	7	~	~	2	~	~	7	

Not for Resale

API PUBL*4589 93 🔳 0732290 0517634 670 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

											EM	TTER	S BY S	CREEN	VING RAI	NGE (ppi	Juv)
ļ		SUB								-	10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
<u>"</u>	AHEA	AREA	CN	۲	0.E.L	SS	PS	РВV	OTH	ALL	8	499	86	6666	66666		ALL
ω	Well	٩	32	8	2	0	0	0	-	43	0	0	0	0	0	0	0
ω	Well	B	33	6	4	0	0	0	-	47	0	0	0	0	0	0	0
8	Well	υ	31	8	4	0	0	0	-	44	0	0	0	0	0	C	C
ω	Well	۵	30	7	2	0	0	0	-	40	-	0	0	0	0	0	
ω	Well	ш	42	=	4	0	0	0	0	57	0	0	0	0	0	0	0
ω	Well	۲	35	8	2	0	0	0	-	46	0	0	0	0	0	0	Ô
8	Well	ŋ	40	8	2	0	0	0	-	51	0	0	0	0	0	C	
8	Well	I	34	7	-	0	0	0	-	43	-	0	0	0	0	0	, -
8	Well		32	8	3	0	0	0	-	44	0	0	0	0	0	0	0
8	Well	7	32	8	3	0	0	0	-	44	0	0	0	0	0	0	0
8	Well	¥	32	7	2	0	0	0	-	42	0	0	0	0	0	0	0
8	Well	_	34	2	3	0	0	0	-	45	0	0	0	0	0	0	0
8	Well	Σ	29	8	3	0	0	0	-	41	0	0	0	0	0	0	0
8	Well	z	31	8	3	0	0	0	1	43	0	0	0	0	0	0	0
8	Well	0	31	8	3	0	0	0	-	43	2	0	0	0	0	0	2
8	Well	٩	31	7	3	0	0	0	-	42	-	0	0	0	0	ō	-
8	Well	σ	31	7	3	0	0	0	-	42	0	0	0	0	0	0	0
8	Well	æ	14	3	+	0	0	0	0	18	0	0	0	0	0	0	0
8	Well	s	35	8	2	0	0	0	-	46	0	0	0	0	0	0	0
6	Weli	F	21	4	2	0	0	0	0	27	0	0	0	0	0	0	0
8	Well	D	26	2	2	0	0	0	1	36	0	0	0	0	0	0	0
8	Well	>	35	6	2	0	0	0	1	47	-	0	0	0	0	0	-
8	Vell	3	31	7	2	0	0	0	+	41	0	0	0	0	0	0	0
10	Nell	×	31	7	2	0	0	0	1	41	0	0	0	0	0	0	0
8	Nell	7	30	9	2	0	0	0	Ŧ	39	-	0	0	0	0	0	-
8	Nell	ч	40	8	2	0	0	0	-	51	0	0	0	0	0	0	0
8	Nell	¥	30	7	2	0	0	0	+	40	0	D	0	0	0	0	0
8	Vell	AB	33	2	2	0	0	0	+	t 43	0	0	0	0	0	0	0

	T			-	_	_	-		_	-	_	_		_		_		_				
(vm		F	-	°		***					0	0		2	9	0	0	C				t
4GE (pp	100,000+		0	0	0	0	C				0	0	ſ		5	0	0	C			2	5
NG RAN	10,000 to	66666	0	0	0	0	C			5	Э	0	e		5	0	0	C		5 0		5
CREEN	1,000 to	R	0	5	0	0	0	,			∍	0	c		5	5	0	c	6		e	2
S BY S	500 to	\$		5	-	0	0	c			┓	0	c	6	5	5	0	0				>
TTER	100 to	ŝ	510	5	•	0	0	c			5	0	-	c	1	5	0	0	10		-	
EMI	9 to 10 to	ß	- 0	5	-	-	0	-	1-		5	0	-	C		5	•	0	c		. 5	2
	VI I	100	9 5	nc	45	40	44	49	42		74	43	42	44		701	3	29	13	17	1899	
	OTH		- -	-	-	-	-	-	† ,		-	-	-	-	+	- (╞	0	0	-	37	
	PRV		5 6				0	0	0	C		0	0	ſ	- -	-	-	-	0	10	e	
	Sd						0	0	0	C		0	0	0	c			0	0	0	0	
	SS	c				5	0	0	0	c		9	0	0	C		5	0	0	0	0	
	O.E.L	-	+-				3	2	0	-		2	0	3	0			-	-	-	96	
	۲	α	α		- r		8	8	2	80			7	80	8	0	2	8	2	e	330	
	CN	38	40	35	3 6	5	32	38	31	32	6	25	31	32	110	23	3	19	10	13	1433	
	AREA	AC	AD	AF	AE A		AG.	AH	AI	AJ	AL	Ē	٩٢	AM	4	æ		5	۲	в		
	AREA	Well	Well	Well	Well	IA/AH	vveil	Welt	Well	Well	Weli		Well	Well	Header	Header	London	пеадег	Separator	Separator		
	SITE	8	ß	8	œ) °	٥	8	8	8	α		Ω	8	Ø	8	0	a	80	8	7	

Not for Resale

API PUBL*4589 93 🔳 0732290 0517636 443 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

										EM	ITTEF	IS BY	SCREET	NING RAI	NGE (ppi	nv)
ຮ	8									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
2	REA	CN	۲۲	O.E.L	cs	ЪS	ΡЯ٧	OTH	ALL	8	6 6 4	666	6666	66666		ALL
	۲	122	31	5	0	0	0	0	158	2	+	+	2	0	Ŧ	7
1	A	364	46	4	0	0	0	2	416	0	-	0	-	0	1	3
	В	261	33	2	0	0	0	2	303	1	-	+	۲	-	0	5
	c	255	33	4	0	0	0	2	294	1	0	0	0	0	0	-
	٥	307	48	5	0	0	0	2	362	1	+	0	0	-	0	3
1	ш	240	30	4	0	0	0	2	276	1	0	0	0	-	0	2
	ш	329	45	4	0	0	0	2	380	1	2	-	2	5	+	12
	Ⴠ	207	22	4	0	0	1	1	235	2	3	3	-	-	+	11
	A	225	31	5	0	0	0	0	261	1	0	0	1	0	0	2
	В	233	40	5	0	0	0	0	278	+	. 0	0	2	0	0	3
	υ	315	42	9	0	0	0	0	363	0	0	0	0	t	0	-
	٥	237	35	4	0	0	0	0	276	0	5	0	1	4	0	10
	ω	241	43	7	0	0	0	0	291	0	0	0	2	0	0	2
	١L	252	33	3	0	0	0	0	288	0	0	0	2	0	0	2
	თ	302	47	5	0	0	0	0	354	0	0	0	1	0	0	1
	т	251	37	3	0	0	0	0	291	0	0	0	2	1	0	3
	-	284	41	4	0	0	0	0	329	0	-	+	1	3	0	6
	ſ	248	39	6	0	0	0	0	293	+	-	0	-	-	0	4
	¥	254	42	5	0	0	0	0	301	0	+	0	2	-	0	4
		244	32	3	0	0	0	0	279	0	1	1	3	-	0	9
	Σ	227	40	3	0	0	0	0	270	+	0	0	1	2	0	4
	z	326	51	2	0	0	0	0	379	0	1	0	1	0	0	2
	0	185	4	2	0	0	0	-	192	0	0	0	-	3	0	4
	Ч	128	24	4	0	0	0	0	156	0	0	1	0	0	0	1
	σ	244	39	3	0	0	0	0	286	-	2	0	1	1	2	7
	Я	214	34	3	0	0	0	0	251	0	0	0	2	1	1	4
	A	122	19	3	0	0	0	0	144		0	-	0	0	0	2
	A	413	48	15	2	0	0	2	480	1	4	4	4	4	4	21

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

											EM	ITTER	S BY S	SCREEN	VING RAI	NGE (pp	() mv
		SUB			1			,			10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲	0.E.L	SS	bS	РВV	OTH	ALL	8	499	666	6666	66666		ALL
5	Compressor	8	206	22	2	0	0	1	3	234	5	4	2	4	1	2	18
6	Compressor	ပ	520	85	6	2	0	0	0	616	0	0	0	4	4	-	6
6	Compressor	٥	423	52	5	2	0	0	0	482	0	0	-	11	-	6	22
6	Compressor	ш	530	62	4	2	0	0	0	598	0	0	0	9	8	5	19
6	Compressor	Ľ.	89	6	4	0	1	0	0	103	-	0	0	0	-	0	2
6	Compressor	თ	270	58	9	0	0	ŧ	0	335	0	-	0	9	3	0	10
6	Compressor	I	87	19	-	0	0	0	0	107	0	0	0	2	-	0	3
6	Dehydrator	٩	147	24	0	0	0	0	0	171	°	0	0	0	2	0	2
6	Dehydrator	В	47	15	2	0	0	0	0	64	0	0	0	0	0	0	0
6	Dehydrator	υ	45	15	2	0	0	0	0	62	0	2	0	0	0	0	2
6	Dehydrator	۵	29	9	-	0	0	0	0	36	0	-	-	0	0	0	8
6	Dehydrator	ш	157	39	3	0	0	0	0	199	0	-	0	0	-	0	2
6	Dehydrator	ш	140	21	9	0	0	0	0	167	0	0	-	2	4	0	7
6	Dehydrator	IJ	63	20	0	0	0	0	0	83	-	9	-	-	-	0	9
6	Dehydrator	т	129	21	-	0	0	0	0	151	0	-	0	6	3	0	2
6	Dehydrator	-	314	60	4	0	0	0	0	378	0	4	0	2	5	0	=
6	Dehydrator	,	51	12	-	0	0	0	0	64	0	0	0	0	0	0	0
6	Dehydrator	¥	114	21	2	0	0	0	0	137	0	-	0	-	2	0	4
6	Dehydrator		67	9	-	0	0	0	0	78	0	2	0	N	5	0	6
6	Dehydrator	Σ	415	70	6	0	0	0	0	494	0	-	-	3	2	0	2
6	Scrubber	۲	207	31	2	0	0	0	0	240	0	5	0	4	0	0	6
6	V. Recovery	۲	78	10	3	0	2	0	0	93	0	0	0	0	0	0	0
6	Tank	۷	116	10	0	0	-	0	1	128	2	-	0	0	0	F	4
6	Tank	8	89	9	0	0	0	0	1	75	0	0	0	0	-	0	-
6	Tank	υ	92	Ξ	-	0	0	0	1	105	0	-	0	F	-	1	4
6	Tank	٥	73	14	2	0	0	1	0	06	0	0	0	0	2	10	12
6	Tank	ш	72	16	-	0	0	-	0	06	0	0	0	-	2	3	9
6	Tank	Ľ	72	16	-	0	0	-	0	90	0	0	0	0	0	0	0

API PUBL*4589 93 🎟 0732290 0517638 216 🖿

()		ALL	7	0	2	324
GE (ppr	+ 000'00		0	0	1	44
ING RAN	10,000 to 1	66666	0	0	0	82
CREEN	1,000 to	6666	1	0	-	06
S BY S	500 to	666	0	0	0	21
TTER	100 to	499	2	0	0	58
EMI	10 to	66	4	0	0	29
		ALL	116	198	96	14066
		OTH		Ŧ	0	24
		РВV	0	0	0	9
		ЪS	0	-	3	8
		cs	0	0	0	8
		0.E.L	8	3	3	215
		۲L	18	21	12	1815
		CN	68	172	78	11990
	SUB	AREA	A	В	υ	
		AREA	Load	Load	Load	
		SITE	6	6	6	

Not for Resale

API PUBL*4589 93 🔳 0732290 0517639 152 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

		T		° °			1	°Te	1	1-	1	10		10		0	0	-	0	1-	10	10	1-	10	10	10		10		51
nuo n			0	0	0	, -	10				-	1_	-																	
NGF /r	100,001															0	0	0	0	0	0	0	0	0	0	-	0	0	6	;†
ING RA	10,000 to	66666		0	0	-	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	=	0	0	0	-	-	+
REEN	000 to	6666	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0	-	0	-	0	0	0	+
BY SC	00 to 1	666	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	2	0	0	-	0	0	0	0	0	
TTERS	100 to 5	66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-	0	0	-	0	0	0	0	0	0	
EMI	10 to	8	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	-	0	
F			32	44	36	66	34	46	20	32	76	43	35	4	45	35	39	37	42	30	12	<u></u>	5	90	5	9	6	8	8	- 16
		¥		-																								e e	~	10
		HO									0		0		0	0	0		0	0	0			0	=	0	0	0	0	0
	100	2H7	0		0	=	┓		•		-	0	=	5	-	-	5	5	-	5	5	-	5	0	-	-	-	-	┛	-
	DC	2	5	5	-	-	-	-		5,	5,	<u> </u>	5 0	5 0	5	5 0	5 0	5 0		5 0	5 0	5		5	-	0 0	57	573	<u>_</u>	0
			-	5	=	5 0	-	5 0	5 0		5	5 0			5															_
	č	5																												0
	0.E.L										- ~	s u		2	2 4		- u	2	2			1		r fo			r e			5
	۲۲	B	=	-			2		- a	12	=	6	1=	=) [2	2	=	12	12	=	2	10	5	10	: :	0	, 6	- 10	5
_	Z	8	8	2	62	24	8	4	8	59	59	5	25	3	5	25	21	26	25	42	28	28	22	24	63	25	26	24	5	2
8	EA			-	-	-	-		-			<u> </u>			L															
SL	AR	<	8			ш Г	<u>u</u>	5	Т	-	2	¥		Σ	z	0	٩	o	æ	S	F	Э	>	3	×	>	2	¥	AB	
	NEA																													1
		Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Well	Nell	Vell	Vell	Vell	Vell	Vell	Vell	/ell	/ell	lell	(elt	(ell	
	SITE	2	2	10	10	10	10	10	10	10	10	2	2	2	10/	10	2	힘	0	2	2	10	10	10	10	20	0	2 ≥	10 W	

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SITE AREA SUB NU Dec Part Dec ENTITERES SY SCREENINGE ANALEE (prom) NOID				C	2	4 0	$N \mid c$	⊃⊺ ·	-1	-		01	-1	-1	-1	oT	NI.	0	8			Te		<u>.</u>		- 1 -		<u> </u>					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 Mm		AL															Ŧ	¥	=								9	8	۳ ا	2	2	3
SIFE AREA CN WL CS PS PN OTH MITTERS BY SORRENNIGATION 10 Molei AC 441 VL	VGF (nr	100,001		C	-				∍∣		5	5	5	-	0	0	0	0	+	0	0	0	c			5	5	-	•	╸	2	0	0
SITE AREA SUB VII CC 44 VL CS PS PHV OTH EMITTERS YS CREET 10 World AC 44 13 2 0 </td <td>NG RAN</td> <td>10,000 to</td> <td>66666</td> <td>0</td> <td>Γ</td> <td>C</td> <td></td> <td>5</td> <td>- ,</td> <td></td> <td>5</td> <td></td> <td>5</td> <td>5</td> <td>5</td> <td>5</td> <td>•</td> <td>2</td> <td>3</td> <td>3</td> <td>0</td> <td>-</td> <td>c</td> <td>c</td> <td></td> <td>•</td> <td></td> <td>5</td> <td>5</td> <td>┛</td> <td>-</td> <td>0</td> <td>-</td>	NG RAN	10,000 to	66666	0	Γ	C		5	- ,		5		5	5	5	5	•	2	3	3	0	-	c	c		•		5	5	┛	-	0	-
SITE AREA CN VL OEL CS PS PNV OTH PMV OTH PMV OTH PMV OTH PMV OTH PMV OTH PMV	CREEN	1,000 to	6666	0	0	î				5 0	5 6	5 -	- (5 0	5	5	5	7	0	2	0	ł	0	0	+++++++++++++++++++++++++++++++++++++++			5,	- (∍	0	7	0
SIIE AREA NL OEL SS FN ML FM ML FM MITER 10 MEd AN VL OEL SS FS FN ML 96 00	BY S	500 to	666	0	0	6				5 0				╕		5	╞┼	-	-	-	-	0	0	+-	-		5 0		5	5	-	-	-
SHE AREA SUB VL OE.L CS PS PHV OTH AL 10 Well AC 44 13 2 0<	TERS	00 to :	499	0	0	10		, c								2 0	N	<u>_</u>	4	4	0	-	0	-	-		+-		<u>,</u>	- 1	-	-	_
SUE AREA SUB VL O.E.L SS PHV OTH ALL 10 Weel AC 44 13 2 0	EMIT	0 10 1	66	0	0	0	0				5						5	5	~	0	-	0	0	2	-	+-		r u			N -	_	_
SUE AREA SUB NL OEL CS PS PHV OTH ALL 10 Well AC 44 13 2 0<			_	39	98	9	9											_															
SUE AREA SUB NL O.E.L CS PS PHV OTH 10 Weel AC AA 13 2 0<			ALL							2 C			0	0 0	^{יי}		Ť C	Ŕ		18	132	132	132	132	115	115	115	142				202	22
SITE AREA NN NL O.E.L CS PS PHV 10 Weil AC V V.L O.E.L CS PS PHV 10 Weil AC AC V.L O.E.L CS PS PHV 10 Weil AC AC V.L O.E.L CS PS PHV 10 Weil AC AC V.L O.E.L CS PS PHV 10 Weil AC AC 33 9 4 0 0 0 0 10 Weil AN Z3 9 4 0			OTH	0	0	0	0	C									5 0	N C	N	2	=	1	+	-	-	-	-	+-	-+-	-+-			=
SITE AREA NUB SUB NL O.E.L CS PS 10 Well AC 44 13 2 0 0 10 Well AC 44 13 2 0 0 10 Well AE 23 9 4 0 0 10 Well AE 23 13 3 0 0 10 Well AF 30 13 3 0 0 10 Well AI 22 10 3 0 0 10 Well AL 23 9 4 0 0 10 Well AL 23 9 4 0 0 10 Well AN 23 9 4 0 0 10 Well AN 23 12 3 0 0 10 Well AN			РВV	0	F	0	0	0			c	c		· [c					5	0	0	0	0	0	0	0	c	e				5	=
SITE AREA CN VL O.E.L CS 10 Mell AC 44 13 2 0 10 Mell AC 44 13 2 0 10 Mell AC 44 13 2 0 10 Mell AC 23 9 4 0 10 Mell AF 30 13 3 0 10 Mell AF 30 13 3 0 10 Well AH 43 14 43 0 10 Well AL 22 10 3 0 10 Well AL 77 19 4 0 10 Well AL 73 3 0 0 10 Well AL 73 3 0 0 10 Well AL 73 9 4 0			PS	0	0	0	0	0	c		0	0	C						5	•	-	0	0	0	0	0	0	c				5	5
SITE AREA SUB NL O.E.L 10 Well AC 44 13 2 10 Well AC 44 13 2 10 Well AC 44 13 2 10 Well AC 23 9 4 10 Well AF 30 13 2 10 Well AF 30 13 2 10 Well AH A3 14 4 10 Well AL 77 19 9 4 10 Well AL 77 19 4 4 10 Well AL 77 19 9 4 10 Well AN 23 9 4 4 10 Well AN 23 9 4 4 10 Well AN 23 9 4 4 </td <td></td> <td></td> <td>S</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>0</td> <td>-</td> <td></td> <td></td> <td>5</td> <td>•</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>e</td> <td>C</td> <td></td> <td></td> <td>5 0</td> <td>5</td>			S	0	0	0	0	0	C	0	0	0	0	C	0	-			5	•	0	0	0	0	0	0	0	e	C			5 0	5
SITEAREASUBN10Weil $AC441310WeilAC441310WeilAC441310WeilAC271110WeilAC271110WeilAC271110WeilAC271110WeilAI23910WeilAI23910WeilAI23910WeilAN23910WeilAN23910WeilAN23910WeilAN23910WeilAN23910WeilAN23910WeilAN23910WeilAN23910HeaderB1393810HeaderC1393810HeaderC1393810HeaderC1392710HeaderC1392110HeaderC1392110HeaderC1392110HeaderC1392110HeaderC1392110HeaderC1392110Header$			O.E.L	2	0	4	9	e	4	5	e	9	0	4	4	C				4	0	0	e	3	5	5	5	5	5	P	. 4		2
SITE AREA SUB SUB 10 Well AC 44 10 Well AD 78 10 Well AD 78 10 Well AF 43 10 Well AF 23 10 Well AF 23 10 Well AF 30 10 Well AF 30 10 Well AH 43 10 Well AH 31 10 Well AH 31 10 Well AH 33 10 Well AN 23 10 Well AN 23 <t< td=""><td></td><td></td><td>۲</td><td>2</td><td>1</td><td>6</td><td>13</td><td>Ξ</td><td>14</td><td>9</td><td>10</td><td>12</td><td>19</td><td>6</td><td>6</td><td>6</td><td>38</td><td>3 B</td><td>3 8</td><td>8</td><td>72</td><td>27</td><td>27</td><td>27</td><td>21</td><td>21</td><td>21</td><td>21</td><td>21</td><td>20</td><td>200</td><td></td><td></td></t<>			۲	2	1	6	13	Ξ	14	9	10	12	19	6	6	6	38	3 B	3 8	8	72	27	27	27	21	21	21	21	21	20	200		
SITEAREASUB10WellAREAAREA10WellAC10WellAC10WellAF10WellAF10WellAF10WellAF10WellAF10WellAH10WellAH10WellAH10WellAH10WellAH10WellAH10WellAH10HeaderA10HeaderB10HeaderC10HeaderC10HeaderC10HeaderA10<		ł	2	44	78	23	30	27	43	22	29	31	22	23	23	33	139	130	120	BO .	5	5	ē	<u>10</u>	88	88	88	88	88	105	105	57	5
SITE AREA 10 Well 10 Header 10 Header	4	SUB	ALLA	AC	A	AE	ΑF	AG	AH	AI	٩J	AK	AL	AM	AN	AO	4	8		> c			 	5	 T	-	٦	¥		Σ	z	A	
SI SI SI SI SI SI SI SI SI SI		ARFA		wei	Vell	Vell	Vell	Vell	Vell	Vell	Vell	Vell	Velt	Vell	/ell	/eli	eader	eader	eader	padar	cauci		eader	eader	eader	eader	sader	ader	ader	ader	ader	ater	
		SITE					10	10	10 <	10 <	> 10 1	10	10 V	10	10 4	10 M	10 H	10 H	10H	10 H	HOF				Ĭ O F	т Р	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	10 H¢	10 He	10 He	10 He	10 He	

											EM	ITTER	S BY S	CREEN	VING RA	NGE (ppr	
SITE	ARFA	SUB	Z	5	u C	č	C C				10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
	Heater	AA	FO	10	2	S	2	УН Ч	НО	ALL	8	499	66	6666	66666		AL
	Hotor			3	2			-	-	9		2	0	0	0	2	2
		2	RC	=			0	-1	-	73	0	0	0	0	2	0	2
2	Heater	AE	51	8	-	0	0	-	-	62	0	0	0	0	0	0	0
2	Heater	AF	20	10	2	0	0	1	-	84	0	0	0	-	-	0	2
2	Heater	AG	56	7	2	0	0	-	-	67	0	0	-	F	0	-	
2	Heater	AH	64	12	2	0	0	-	0	62	0	0	0	0		-	
2	Heater	A	50	11	2	0	0	-	-	65	2	-	-	0	-	C	
₽	Heater	A	59	10	2	0	0	-	-	73	0	0	0		0		
10	Heater	AM	68	10	5	0	0	-	-	85	°	5	0	e	2	0	10
₽	Heater	AN	62	10	2	0	0	-	0	75	0	2	0	0	-	0	C
₽	Heater	P	48	8	-	0	0	-	0	58	-	0	0	0	1	0	2
2	Heater	B	75	Ξ	3	0	0	-	-	91	-	3	-	0	0	2	2
2	Heater	ш	67	6	2	0	0	-	-	80	2	0	0	3	0	0	5
₽	Heater	ш	57	12	2	0	0	+	-	73	0	0	0	0	3	0	C
10	Heater	IJ	52	18	4	0	0	0	+	75	-	-	10	2	0	0	4
9	Heater	т	61	6	-	0	0	-	-	73	-	0	0	0	-	0	2
2	Heater	-	59	10	-	0	0	1	-	72	-	-	-	2	-	-	2
₽	Heater	¥	59	14	3	0	0	-	-	78	-	5	0	e	0	-	10
2	Heater		51	7	-	0	0	F	-	61	0	-	0	-	-	0	3
9	Heater	Σ	99	13	2	0	0	-	-	77	-	0	0	-	-	-	4
2	Heater	z	8	10	2	0	0	-	-	74	0	0	0	-	2	-	4
₽	Heater	0	65	12	3	0	0	-	-	82	-	-	0	-	-	0	4
₽	Heater	٩	46	8	2	0	0	+	-	58	0	0	-	0	2	0	3
₽	Heater	σ	67	12	2	0	0	0	2	83	0	0	0	0	0	-	-
₽	Heater	æ	64	2	-	0	0	-	-	74	0	0	0	-	-	2	4
2	Heater	S	7	12	-	0	0	-	-	86	-	0	0	0	0	0	-
2	Heater	-	56	6	2	0	0	-	+	69	0	0	0	0	2	0	2
9	Heater	∍	35	5	2	0	0	-	1	44	0	0	-	0	0	0	-

		_	, l °	s c	1	7 0		, ,	- -	<u> </u>	2	4	5 6	10			N	N	0	ন	~	-1	2	8	7		·Γα	जन	जल
1vmt		A	! 					_															-						31
NGF (or	100 000													- <	5	- (5	0	0	0	0	0	-	-	C	c		, <u>6</u>
ING RA	10.000 to	66666		- -	-	- -		4 +	-	F F	- c	¥ 7	- 0	4 4	0 0	D 0	N	5	0	•	-	0	2	-	-	C	<u>,</u>	;†=	, 86
SCREEN	1,000 to	6666	e	C	0		5-				-		-	- c	5 -	- <	5 0	5	5	-	0	0	-	4	2	10	+-		54
S BY	500 to	666			ſ				· -		-		- ~				╕	- 0	5		•	•	-	-	0	-	6	0	26
TTER	100 to	499	G	C			1-	. 6	6		+-	-	· c	-	+-		5-	- -	5	╸	-†	0	4	0	2	-	†-	10	1
EM	10 to	8	2	C	C	C				0			, -	i c					5	╡		=	2	-	-	2	+-	10	49
		ALL	68	78	82	82	132	217	163	115	115	115	158	158	110	124	75	2.4			001	921	129	264	285	194	201	77	9374
		ОТН	0	0	-	†=	0	0	-	-	-	+-	-	-	┼╾	-	· c	c		> (> (5	-	-	0	0	0	55
		РВV	1	-	-	-	0	0	0	0	0	o	0	0		0		C	0 0	7		5 0	.	╤┼	0	1	0	0	45
		PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C				5 0	5 0	∍	0	0	0	0	0
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e					5 0	5	0	0	0	0	-
		0.E.L	-	2	2	-	4	4	-	e	e	3	7	2	5	9	0	e.	a a		v v	s u		5	5	8	3	3	344
		۲L	7	11	12	12	24	45	33	27	27	27	24	24	25	26	14	15	24		5	ac ac	3 5	20	48	39	34	15	1758
		S	59	64	66	67	104	168	128	84	84	84	126	126	88	91	57	59	83	с н н	3 6	0	3)R	231	146	164	59	1171
	SUB	AREA	>	3	Υ	z	٨	8	ပ	٥	ш	Ľ.	ს	I	1	7	¥	4		: œ						0	۵	ш	-
		AHEA	Heater	Heater	Heater	Heater	Separator	Separator	Separator	Separator	Separator	separator	eparator	eparator	eparator	eparator	eparator	teter	ompressor	ombressor	ombressor	ondensate	ahvdrator	ciryuratur	enydrator	ehydrator	ehydrator	ehydrator	
	Ļ		-	9	2	9	ê	9	9	9	<u>0</u>	10	10 5	9	10 S	10 S	10 S	10 N	10 C	100	100	10					흵	<u>a</u>	-

API PUBL*4589 93 🖿 0732290 0517643 683 페

	1	- 1	9	-	æ	2	3	-	6	IN	4	10		1 -	- [(51		10	-				(0									
(hun		AL																36	2	1	15	13	9	29	16	14	1		ימ	B	7	12
IGE (pp	100,000+		0	0	0	0	0	0	-	0	0	0	0	C			0	8	4	2	2	2	1	9	2	-	~	+-		-1	7	0
NG RAN	0,000 to	66666	e	-	-	0	0	0	0	0	0	0	0	C			0	12	2	2	9	5	2	10	~	4	2		- 0	0	\$	9
CREENI	000 to	66 86	•	-	2	-	-	0	0	-	1	0	-	0	6		-	12	8	~	9	5	33	<u>0</u>	~	6	7	4	-	0 0	•	5
BY SI	500 to 1	8	-	•	0	-	0	0	0	0	0	0	0	0	-		5	5	-	0	•	0	0	0	0	0	0	0			5	0
TERS	00 to 5	8	=†	-	0	-	-	-	-	-	2	0	-	0	-		5	2	~	-	-	-	-	0	-	0	-	0	-			-
EMI	10 to 1	8	~	5	~	-	-	-	-	0	-	0	0	-	0	6		5	•	0	╞	-	-	-	0	0	0	0	G		5	5
F		;	49	8	E	8	54	64	4 9	58	69	59	57	41	50	50		9	4	62	44	8	9	39	83	-	32	58	82	14	2 5	Ĩ
		₹															ſ					~	2	Ň	Ň	ñ	2	3	~	2		Ň
					0	0	0	4	0	0	0	0	0	0	0	C			0	0 0	5		∍	-		╕	0	0	0	C		5
	Mad			5	5			0	0	-	0	0	0	0	0	C	2	5	2	0 0	5	-	<u>.</u>	2		₽	9	8	4	2		5
	ų	2			5	5	5	0	0	0	0	ō	•	0	0	0	C		5			2 0	5,	-+-	5	5	0	0	-	0	6	7
	ų	3			5 0	5	5	5	5	-	5	╸	0	0	0	0	c		5	- -	-+-	- •	- -	,	- •	-	-	-	0	0	+-	-
	0 1				- •	- -	- •	- -	- .	- -	-	-	-	2	-	-	12	-	- 1		D +	- 0		4 (0 1		-	4	7	4	æ	,
	۲L	σ	ç	2 4	2			= ;		2 9	2		2	8	9	=	26	28		34	36		3 4	5 2	3 6	5	25	38	46	43	33	
	CN	39	40	61	S Q	2 5	H BY	<u>}</u>	10	0 1	3 5	7	ç	5	39	47	164	164	anc	300	178	179	101	000	102		081	207	220	211	182	
	AREA	A	æ	0) LL	1 11	. ୯	, 1	+- : -	. -	, <u>,</u>	ـــــــــــــــــــــــــــــــــــــ	- - - :	Σ	z	۲	6			<u>ш</u>		C	, I	-			×		Σ	z	
	AREA	Nell	Nelt	Vell	Veli	Vell	Vell	Vell	Vell	Vell	Vell	Vell		101		Vell	eparator	eparator	anarator	updidioi	charaior	eparator	sparator	parator								
	SITE	11/	11	=	=	=	1=	=	=	1=	1	11				5	11 S	11 Se	11 St	1		<u>رة</u>	11 Se	11 Se								

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B-37

			5	0	9	C	24	55	2	9	2	-	15	-	-	0	1-	-	0	-	-	-	N	(0)	0					<u> </u>
1×m		R																												2 C
F (or	1000'0		0	0		0	6	8	-	0	1	0	e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IANG	10		3	2	4	-	0	e	4	4	0	_	2		_															
- SN	10,000	6666						2						Ū		0	0	-	0	0	0	0	-	-	0	0	0	-	2	-
REEN	0 to	8	~	-	3	0	6	21	4	-	0	0	9	-	0	0	-	0	-	0	-	0	0	_	0	_				
SCR	110		=																											*-
IS BY	500 te	666 6				3				$^{\circ}$	-	0	0	0	0	0	0	0	0	0	0	-	-	-	0	-	0	허	-	0
TER	100 to	6		0	-	0	~	0	-	-†	히	0	-	-	0	0	-	-	-	0	0	0	-	허	0	-	0	+	0	2
EM	0 10	8	╕	0	-	~	-	9	0	=†	╕	-	0	-	0	-	-	-	-	<u>_</u>	0	0	-	-	-	-	-		_	
	-			5			4					\downarrow																		
		AL L	24	16	2	14	2	19	52	380	180	253	195	8	26	52	31	30	35	8	36	53	32	31	27	28	34	2	162	1051
-			5	-	-	-	-	-																						
	i	5							-										- '		2	0			5				5	히
		≥ •	=	5	<u></u>	4	5	2	π	a r		$\sqrt{1}$	<u>_</u>	5	5	5	5	5	-	5	5	5			5 0	5	5	5		
	20	2													5 0	5 0			5	5	5 0	5	5 0			5	5	5 0		5
		-	.	- •	+,			╡		5 -																				
	č	3																											2	7
	- L	: 9	2 4	7	- 6	2			+-	- .		r u	- 1	+-		+-	┼╴	- -	-+-	+-	- -	┽╸	+-		+-	+-			10	Ļ
	C				+																									
	۲	0			' `←	6	5 ≚	: ا ۳	6	2	35	24) e.) e.) e.	e		2 6	e			0	0	e	, e.	0	, 6	10	7
		197	28	38	2		55	68	12	8	=	8	90	2		2	9		0		6									
	ວົ							-	l °°	-	2	=						0		6		7	0	Ň	5	30	99	8	8	
SUB	REA	<	m	0		<u> </u>	L.	0	I		-	×	A		0		 	 	65		-	+			$+$ _	╀─	-	╞		
	4				-	-	$\left - \right $					-	-			 _	<u> </u>	[Ľ		<u> </u>		ľ		Σ			σ	~	
	REA	rator	rator	rator	rator	rator	rator	rator	ator	ator	ator	ator																		
	A	behyd	bhyd	ehyd	ehyd	ehyd	ehydi	ehydi	ehydi	ehydr	ehydr	shydr	hr	hk	¥	논	ž	놀	녿	ž	¥	¥	Ϊ×	ž	¥	¥	×	×	×	
	ITE	1	11 C	110	1	10	10	110	1	1	11 D	11 D(11 Ta	11 Ta	11 Ta	11 Ta	11 Ta	11 Ta	11 Tai	1 Tai	1 Tar	1 Tar	1 Tar	1 Tar	1 Tan	1 Tan	1 Tan	1 Tan	Tan	
	S				L	L																		-	-	-	-	-	÷	

API PUBL*4589 93 🎟 0732290 0517645 456 🖿

SITE AREA SUB VL C.L. CS PS PRV OTH ALL SOD 1000 SOD 10000 MOD				١L	6.		4	N	2	5	4	P	1	ິ	2	-	N	~	2	40		8	89	328
SILE AREA SUB Image: register of the section of the		Vmq	±		0			5	0	0	0						<u> </u>		-		1	\downarrow		_
SITE AREA SUB L C. PS. PRV OTH ALL BMITTERS PS SCHEENING FREENING FRE		NGE (p	100,000												-								2	87
SITE AREA SUB VL O.E.L CS PS PRV OTH ALL SP EMITTERS BY SCREEN 11 Tark 5 44 9 1 0 000 000 000 000 000 000 0		NG RA	0,000 to	66666	-				0	2	-	2	C		-		0	0	8	16	14	: 2	3	231
SILE AREA SUB FIL CS PS PRV OTH EMITTERS PX Stress 11 Tank S 44 9 1 0 0 2 56 1 0 1 11 Tank T 68 8 4 0 0 2 56 1 0 1 1 11 Tank V 76 12 2 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1		REENI	000 to 1	666	0	2	6	+	∍	-	-	+	~	'	0	0	0	0	2	14	13	2	5	18
SITE AREA SUB VL DE.L CS PRV OTH ALL PMITTERS 11 Tank S 44 9 1 0 0 2 56 1 00 90 900 <td< td=""><td></td><td>Y SC</td><td>to 1,0</td><td>5</td><td>-</td><td>0</td><td>+-</td><td>+</td><td>╞</td><td>-</td><td>0</td><td></td><td>6</td><td>+</td><td>-</td><td>0</td><td>0</td><td>~</td><td>0</td><td></td><td></td><td></td><td></td><td>~</td></td<>		Y SC	to 1,0	5	-	0	+-	+	╞	-	0		6	+	-	0	0	~	0					~
SITE AREA SUB VL O.E.L CS PRV OTH ALL $\frac{601}{100}$ $\frac{600}{100}$ \frac		RS B	200	8	0	0						-					_							"
SITE AREA SUB VL D.E.L S PRV OTH ALL 000 11 Tank S 44 9 1 0 0 2 56 100 11 Tank S 44 9 1 0 0 2 56 100 11 Tank V 76 12 2 0 0 0 60 60 1 90 1 11 Tank V 76 12 2 0 0 0 60 90 1 90 1 90 1 1 7 90 1 90 1 90 90 1 90 90 1 90 90 1 90 90 1 90 90 90 90 90 90 90 90 1 1 1 1 1 1 1 1 1 1 1		ATTE	ğ	<u>ş</u>	_	_						0	0			°	0	0	~	4	3	9	"	5
SITE APEA SUB VL O.E.L CS PRV OTH ALL 11 Tank S 44 9 1 0 0 2 56 11 Tank S 44 9 1 0 0 2 56 11 Tank V 76 12 2 0 0 0 2 56 11 Tank V 76 12 2 0 0 0 9 8 11 Tank V 76 12 2 0 0 0 9 9 11 Tank V 76 8 2 0 0 0 9 9 11 Tank V 76 8 2 0 0 0 9 9 11 Tank A 73 12 3 0 0 0 9 9		ũ	10 to	8					-			0	0	ľ	•	0	-		0	0	0	Fe	، ۲	ž
SITE AREA RUB NL O.E.L CS PS PRV OTH 11 Tank 5 44 9 1 0 0 0 2 11 Tank 5 44 9 1 0 0 0 2 11 Tank U 68 8 4 0 0 0 2 11 Tank U 69 8 4 0 0 0 2 11 Tank V 76 12 2 0 0 0 2 11 Tank V 76 8 2 0 0 0 2 11 Tank V 75 9 2 0 0 0 0 0 1 11 Tank AA 73 12 3 0 0 0 0 1 1 1 1 1 <td></td> <td></td> <td></td> <td>ALL</td> <td>56</td> <td>80</td> <td>85</td> <td>8</td> <td>R I</td> <td>83</td> <td>8</td> <td>86</td> <td>83</td> <td></td> <td>R</td> <td>98</td> <td>66</td> <td>15</td> <td>196</td> <td>209</td> <td>265</td> <td>258</td> <td>VOUD</td> <td>Hene</td>				ALL	56	80	85	8	R I	83	8	86	83		R	98	66	15	196	209	265	258	VOUD	Hene
SITE AREA NB VL O.E.L CS PS PRV 11 Tank S 44 9 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1				HO	2	0	4	e		7	5	0	0	C	5	•	0	0	5	0	0	0	28	
SITE AREA SUB VL O.E.L CS PS 11 Tank 5 44 9 1 0 0 11 Tank 7 68 8 4 0 0 0 11 Tank U 69 8 4 0 0 0 11 Tank V 76 12 2 0 0 0 11 Tank V 76 12 2 0 0 0 11 Tank V 76 8 2 0 0 0 11 Tank V 76 8 2 0 0 0 11 Tank X 73 12 3 0 0 0 11 Tank AA 73 12 2 0 0 0 0 11 Tank AB 55 8				AHA		0	0	C		5	5	0	0	c		5	5	5	9	9	22	20	208	
SITE AREA SUB N VL O.E.L CS 11 Tank S 44 9 1 0 11 Tank S 44 9 1 0 11 Tank V 76 8 4 0 11 Tank U 69 8 4 0 11 Tank V 76 12 2 0 11 Tank V 76 8 3 0 11 Tank Y 76 8 3 0 11 Tank A 73 12 3 0 11 Tank AB 55 8 3 0 0 11 Tank AA 73 12 2 0 0 11 Tank AA 11 2 2 0 0 1 11 Sales B <td></td> <td></td> <td>20</td> <td>2</td> <td>⋽</td> <td>5</td> <td>0</td> <td>0</td> <td>6</td> <td>5 0</td> <td>5 0</td> <td>a†</td> <td>0</td> <td>c</td> <td></td> <td>5 0</td> <td>5</td> <td>5</td> <td>5</td> <td>5</td> <td>0</td> <td>0</td> <td>2</td> <td></td>			20	2	⋽	5	0	0	6	5 0	5 0	a†	0	c		5 0	5	5	5	5	0	0	2	
SITE AREA SUB VL O.E.L 11 Tank S 44 9 1 11 Tank S 44 9 1 11 Tank S 44 9 4 11 Tank U 69 8 4 11 Tank V 76 12 2 11 Tank V 76 8 2 2 11 Tank V 76 8 2 3 3 11 Tank X 776 8 2 3 3 11 Tank AA 73 12 2 3 3 11 Tank AB 55 8 9 3 3 11 Tank AC 88 9 2 2 2 11 Tank AB 157 26 6 6 10	ſ		ű	3	5		0	0			5	5	0	C			5			~	-	1	25	
SILE AREA SUB SUB 11 Tank S 44 9 11 Tank S 44 9 11 Tank T 68 8 11 Tank U 69 8 11 Tank V 76 12 11 Tank V 76 12 11 Tank V 76 8 11 Tank Y 76 8 11 Tank X 79 9 11 Tank A 73 12 11 Tank A 73 12 11 Tank AB 55 8 11 Tank AB 55 8 11 Tank AO 11 2 11 Tank AO 11 2 11 Sales A 157 26 11<			0.F.1			4	4	2	₹		10	<u>v</u> (0	e		1 0	1 4		2	₽	6	269	
SITE AREA SUB SUB 11 Tank S 44 11 Tank S 44 11 Tank S 44 11 Tank S 44 11 Tank U 69 11 Tank V 76 11 Tank V 76 11 Tank V 76 11 Tank X 79 11 Tank Z 73 11 Tank AB 55 11 Tank AB 157 11 Tank AB 157 11 Sales A 157 11 Sales B 157 11 <td>ſ</td> <td></td> <td>٨٢</td> <td>0</td> <td>2 0</td> <td></td> <td>₽</td> <td>12</td> <td>8</td> <td>6</td> <td>ď</td> <td></td> <td>2</td> <td>12</td> <td>æ</td> <td>σ</td> <td></td> <td>28</td> <td>V V</td> <td>P e</td> <td>RJ</td> <td>56</td> <td>1238</td> <td></td>	ſ		٨٢	0	2 0		₽	12	8	6	ď		2	12	æ	σ		28	V V	P e	RJ	56	1238	
SITE AREA AREA AREA 11 Tank S 11 Tank S 11 Tank U 11 Tank U 11 Tank V 11 Tank V 11 Tank A 11 Sales A 1 Sales			CN	44	: gy	3 8	8	9/	69	62	76	2		2	55	88	=	157	151	203		202	7324	
SITE AREA 11 Tank 11 Sales 11 Sales 11 Sales 11 Sales		SUB	AREA	S	 		> 3	>	3	×	>	~		Ş	AB	AC	AD	∢	8	0	,	- >	-	
			AREA	Tank	ank	ank	duc		ank	ank	ank	ank	ank		ank	ank	ank	ales	ales	ales	lac			
			SITE	11	11	=			Ē	=	11 T	11 7	11		<u> </u> -	11 T.	11	11 S	11 S	11 Sé	11 5,	+		

API PUBL*4589 93 🎟 0732290 0517646 392 📖

B-39

					TE	Im	1-	T	-	Te	T		7	1	1		· · · ·	1 -												
(nm		ALL											-		-	4					2	e	-	2	-	5	5	0	-	-
GE (pp	100,000 +		0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	-	0	0	0	0	0	0	0	0
NG RAN	0,000 to	66666	0	-	0	0	0	0	0	0	2	0	0	0	-	9	0	0	-	0	-	-	-	0	0	-	0	0	-	0
REENI	000 to 1	6666	0	0	0	0	0	0	-	0	-	0	-	0	0	0	0	0	-	0	2	-	0	-	-	9	2	0	0	0
BY SC	500 to 1	666	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TERS	00 to 5	664	0	0	-	-	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0	0
EMI	10 to	8	0	0	0	2	0	0	0	0	2	0	0	-	0	0	0	0	0	0	-	0	0	-	0	-	2	0	0	-
		ALL	58	33	33	36	50	53	24	61	238	41	25	49	28	38	34	33	53	34	46	73	43	30	45	52	48	46	39	144
		OTH	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		РВУ	0	0	0	2	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		PS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		cs	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.E.L	2	0	0	0	4	-	-	2	10	-	0	2	0	2	2	0	-	2	2	0	3	0	3	3	0	2	0	6
		۲	14	6	8	4	11	11	7	15	34	10	5	12	7	6	8	7	10	7	10	18	6	2	12	13	12	11	10	25
		CN	42	27	25	29	35	41	16	44	188	90	20	35	21	30	24	26	42	25	34	55	31	23	30	36	36	33	29	110
	SUB	AREA	۲	8	v	٥	ш	u.	თ	I	-	ر	¥		Σ	z	0	٩	o	æ	S	-	5	>	3	×	>	Z	₹	4
		AREA	Well	Well	Well	Well	Vell	Nell	Vell	leater																				
		SITE	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12/	12/	12/	12/	121	12/	121	121	121	12	121	12 1	12 1	12

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

	┝─						EMI	TTER	S BY S	CREEN	VING RAI	NGE (pp	(vu
		-					10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
. 0.E.L CS PS	L CS PS	8		РВV	OTH	ALL	8	66	666	9 666	66666		ALL
0 0 6	0 0	0	0	0	0	67	0	0	0	0	0	0	0
18 3 0	3 0	0	0	2	0	115	-	0	0	1	-	-	4
16 2 0	2 0	0	0	2	0	127	2	5	0	1	-	0	6
25 9 0	0	0	0	3	-	159	0	0	0	0	-	0	-
20 5 0	5 0	0	°	2	0	135	0	-	2	-	e	3	10
23 7 0	7 0	-	0	2	0	152	0	3	0	3	5	-	12
27 0 0	0 0	0	0	2	0	159	4	2	0	2	-	-	10
25 5 0	5 0	0	0	2	0	146	0	3	0	4	-	-	6
11 0 0	0 0	-	0	0	2	59	0	2	-	0	0	0	3
15 5 0	5 0	0	0	2	-	66	0	+	0	0	-	0	2
25 4 0	4 0	0	0	2	-	136	-	-	-	-	-	0	5
40 10 0	0 0	-	0	4	0	233	0	0	0	0	0	0	0
12 3 0	3 0	0	0	-	0	82	0	0	0	0	0	2	2
25 5 0	5 0	0	0	2	-	139	-	2	0	0	3	0	9
13 4 0	4 0	0	0	2	0	80	0	0	0	0	0	-	-
24 9 0	9 0	0	0	2	0	132	-	-	0	0	-	0	3
47 19 0	9 0	-	0	9	0	277	3	2	0	1	0	1	7
22 5 0	5 0	-	0	-	0	137	0	0	-	-	1	0	3
15 5 0	5 0	0	0	2	-	85	-	0	0	0	-	0	2
39 16 0	6 0	0	0	2	0	238	-	0	-	2	3	4	=
28 0 0	0 0	-	0	3	0	208	3	-	-	2	-	0	13
30 8 0	8 0	-	0	6	2	199	0	0	0	-	0	0	-
16 0 0	0 0	-	0	-	0	91	2	0	0	2	-	0	5
25 0 0	0	-	0	-	-	119	2	0	2	-	-	0	9
17 0 0	0	-	0	2	0	103	-	2	2	-	-	0	4
15 6 0	6 0	-	0	0	0	106	0	0	0	0	0	-	-
14 5 0	5 0	0	0	3	0	81	0	0	0	0	-	-	2
34 7 0	7 0	_	0	2	0	224	4	0	0	-	-	2	8

											EM	ITTER	S BY S	SCREEN	VING RA	NGE (pp	hv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲	0.E.L	cs	ΡS	PRV	OTH	ALL	66	499	66	6666	66666		ALL
7	2 Separator	۲	48	9	0	0	0	-	0	55	0	-	0	-	0	0	2
2	2 Separator	В	34	9	0	0	0	+	0	41	-	0	0	-	-	0	3
12	2 Separator	Т	68	12	0	0	0	-	-	82	-	0	0	e	-	0	5
12	Separator	S	21	5	0	0	0	-	0	27	0	0	0	0	0	0	0
12	2 Separator	>	44	6	0	0	0	2	0	55	~	0	0	0	2	0	3
12	Meter	٨	76	14	2	0	0	2	0	94	0	0	0	0	0	0	0
12	Meter	B	49	6	0	0	0	2	0	60	0	0	0	-	0	0	-
12	Meter	υ	24	5	-	0	0	ţ	0	31	0	0	0	0	0	0	0
12	Meter	۵	74	19	0	0	0	٢	-	95	0	0	0	0	0	0	0
12	Meter	ш	46	8	0	0	0	2	0	56	-	0	0	0	0	-	2
12	Meter	ს	59	14	0	0	0	3	0	76	-	0	-	0	-	0	3
12	Meter	Ľ	31	9	0	0	0	1	0	38	-	0	0	0	0	0	-
12	Compressor	в	189	31	3	1	0	0	0	224	0	0	0	2	0	-	3
12	Compressor	ပ	171	25	5	-	0	5	0	207	3	0	-	0	-	-	9
12	Compressor	٥	157	32	9	-	0	4	0	200	0	0	0	-	0	e	4
12	Compressor	u.	212	30	9	3	0	5	2	258	2	2	0	0	1	2	7
12	Compressor	IJ	212	30	9	3	0	5	2	258	0	0	0	5	2	0	2
12	Compressor	۲	159	14	0	2	0	5	1	181	0	0	0	0	2	0	2
12	Compressor	ш	154	18	0	3	0	5	1	181	0	2	0	0	0	2	4
12	Scrubber	۲	32	16	0	0	0	2	0	50	0	0	0	0	-	0	-
			6027	1248	223	15	0	112	19	7644	49	36	4	58	55	33	245

API PUBL*4589 93 🔳 0732290 0517649 0T1 🛤

B-42

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

	1		1 4	· /	- I a	51 C		~ 1	+ I.	- 1 -			21-								_	_	_			_	_				
(vm		ALL														<u> </u>								4	= :	= :	₽	13	9	+	7
IGE (pp	100,000+		-					"					v				7 0			N C	×	2	5	-	5 0	2	e	5	2	0	3
NG RAN	10,000 to	66666	0	0	C		•					- 1			V							•	- ' '	5 0	5	- ,	0	0	3	-	0
CREEN	1,000 to	6666	-	0	5	6	-					;†-	+-		y Y	2 4			•		0	1 0		Ţ	-	+	-	7	0	0	-
S BY S	500 to	86	0	-	10	-		- 1							6							, -		5 6	10	;	- -	-†	0	-	0
TTER	100 to	8	0	0	-	4	Ĩ.	1	-	-	-	6		0	10	6			1				-	- 4	2 6			~	~	0	0
EMI	10 to	8	2	0	0	0	e			-	0	-	ſ	0	10				1			- -		5	+ -		, 7	5	╸	=	-
		ALL	207	141	137	132	95	122	16	384	147	367	233	139	102	106	87	99	8	6	8	108	138	205	370	510		380	640	68	112
		OTH	0	0	Ó	0	0	C	c	0	0	0	0	0	ō	0	0	0	0	0	0	c	c	, c		Ċ			5	0	0
		РНИ	0	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	e	-		ō			- ,	5	•	0
		ЪS	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	10	10	0	C		~	0			4 (0	0
	(ß	0	0	0	0	0	0	10	-	0	0	0	0	0	4	10	0	~	~	~	0	0	0	0	e			5	5	0
		O.E.L	4	-	3	-	4	2	4	4	-	12	3	4	4	4	0	0	0	-	2	0	0	9	4	15	V	-	2	٥	4
	5	۲ ۲	36	33	27	32	22	33	25	56	36	75	55	37	12	12	24	17	13	13	13	48	38	49	81	128	88	100		2 1	25
	R	5	10/	106	107	66	69	87	62	321	110	278	175	98	86	86	8	43	75	74	73	147	66	150	283	365	299	VED	PD-	5 8	3
	ABCA		<	A	8	ပ	٥	۲	8	ပ	۷	в	υ	٥	ш	Ŧ	в	I	-	ſ	¥		Σ	∢	в	υ	٥	u		c 🛛	
	AREA	Hoador	Licauer	Scrubber	Scrubber	Scrubber	Scrubber	Dehydrator	Dehydrator	Dehydrator	Compression	Compression	Sulfur	sulfur	ultur	ulfur	ultur	ractionation	ractionation												
	SITE	1 5		2	13	13	13	13	131	131	13	13	2	13	20	13	13	13(13	130	130	130	13 0	13 5	13 5	13 5	13 S	13 S	13 F	12	

API PUBL*4589 93 📖 0732290 0517650 813 🖿

											EM	ITTER	S BY	SCREET	VING RA	NGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲	0.E.L	cs	PS	PRV	OTH	ALL	66	499	666	6666	66666		ALL
13	Fractionation	ပ	95	23	5	0	0	0	0	123	+	2	1	1	-	2	8
13	Fractionation	٥	95	34	7	0	2	3	0	141	0	-	0	0	3	4	8
13	Fractionation	ш	154	51	9	0	-	-	0	216	0	0	0	4	-	3	8
13	Fractionation	Ľ	164	51	4	0	-	0	0	220	0	0	-	3	2	2	8
13	Fractionation	ნ	160	47	5	0	0	0	0	212	-	-	0	0	0	-	3
13	Fractionation	I	113	29	0	0	0	0	0	142	0	-	2	-	0	0	4
13	Fractionation		35	6	0	0	0	2	0	46	0	0	0	-	-	0	2
13	Fractionation	7	120	37	0	0	0	0	0	157	0	0	-	3	-	0	5
13	Meter	۲	224	74	13	0	0	2	0	313	-	0	0	93	2	-	7
13	Tank	A	121	35	0	0	0	-	0	157	0	0	0	2	0	5	7
13	Tank	В	62	10	0	0	2	-	0	75	0	0	0	0	0	0	0
13	Tank	ပ	50	18	4	0	0	0	0	72	0	-	0	0	0	-	2
13	Tank	٥	101	38	3	0	0	0	0	142	0	2	-	2	3	2	10
13	Tank	ш	38	14	2	0	0	0	0	54	0	-	-	2	+	0	5
13	Tank	ш	46	18	4	0	0	0	0	68	0	0	0	0	0	-	-
13	Tank	G	67	23	9	0	0	0	0	96	0	2	0	0	-	-	4
13	Tank	Ξ	65	26	12	0	0	0	0	103		2	0	0	3	-	7
13	Tank	-	105	38	2	0	0	0	0	145	-	3	2	-	-	4	12
13	Tank	-	103	37	4	0	0	0	0	. 144	0	3	-	-	2	2	6
13	Tank	×	96	29	-	0	0	0	0	128	0	9	2	5	-	4	18
13	Tank		227	02	17	0	0	-	0	315	4	-	0	-	0	0	6
13	Tank	Σ	103	33	7	0	0	-	0	144	4	-	0	0	0	0	5
13	Tank	z	272	12	18	0	2	0	0	363	-	12	0	14	3	5	35
13	Tank	0	76	12	2	0	0	0	0	96	0	0	0	2	0	0	2
13	Tank	٩	61	12	2	3	0	3	0	81	0	-	0	-	e	2	7
5	Tank	0	68	22	0	0	2		0	93	0	0	-	-	-	2	5
13	Tank	œ	170	27	5	0	-	0	0	203	0	-	0	3	2	-	7
5	Sales	A	106	26	-	0	0	-	0	134	0	0	0	2	-	2	5

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

			Τα	To	JC	510	210	516	n l a	-1.	1		1 10
(vm		ALL	-										416
IGE (pp	100,000+		σ) -	- 4				5 0				110
ING RAN	10,000 to	66666	e		-	Ī		1 +		5 -			56
CREEN	1,000 to	6666	e	fa	C			C	v c	-	- -	- c	107
S BY S	500 to	666	-	0	õ		· -	•		- 6			25
TTER	100 to	66	2	-	C		C	, -	- (1	-	-	89
EM	10 to	66	0	0		0	C						29
		ALL	180	125	83	182	238	202	177	157	57	178	11235
		OTH	0	0	0							0	0
		PRV	0	0	•	-	C	0 0		- 1	0	-	32
		PS	0	0	0	0	0	0			0	0	21
		cs	0	0	0	0	0			ē	0	0	14
		O.E.L	5	7	3	=	-	0	4	4	2	-	278
		۲L	40	22	18	38	51	33	36	30	12	31	2427
		CN	135	8	61	132	186	169	137	122	43	145	8463
1	SUB	AREA	В	υ	۵	۷	в	υ	0	ш	Ľ	U	
		AREA	Sales	Sales	Sales	Load	Load	Load	Load	Load	Load	Load	
		SITE	13	13	13	13	13	13	13	131	13	13	

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

		Ч	10	5	8	8	5	5	20	~	2	6	4	26	2	21	16	9	S	~	9	9	4	-	2	e	4	4	9	2
) m		A																												
IGE (pp	100,000+		0	0	0	0	0	0	4	-	2	0	0	5	0	1	4	0	-	4	2	0	0	0	0	0	0	0	0	0
NG RAP	10,000 to	66666	9	2	-	2	3	-	10	0	2	4	0	13	0	3	2	1	9	3	3	Э	-	-	0	0	0	0	0	0
CREEN	1,000 to	6666	1	-	1	2	0	2	4	1	0	4	2	8	2	12	7	5	1	0	1	2	2	0	0	2	0	0	2	-
S N S	500 to	88	0	0	0	0	0	0	0	-	-	1	-	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	-	-
ITERS	100 to	6	-	2	2	0	-	2	-	4	2	0	1	0	0	2	0	0	0	0	0	-	0	0	2	1	0	0	3	0
EMI.	10 to	8	2	0	4	4	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	4	4	0	0
		ALL	360	202	189	129	29	325	188	95	143	133	112	336	32	120	224	185	162	172	160	185	176	81	93	60	152	202	55	150
		OTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	2	Ŧ	2	0	0	0	-
		РВV	0	0	0	0	0	0	2	0	-	0	0	0	32	0	0	0	1	1	-	0	0	1	0	-	1	-	-	0
		PS	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	3	0
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	4	4	4	4	0	0	0	0	0	0	0	0	0
		0.E.L	12	7	2	2	0	7	2	0	0	0	1	20	0	0	0	10	2	2	2	6	6	4	5	3	2	0	+	5
		۲	76	52	48	26	9	99	34	19	22	31	19	112	0	40	35	22	20	21	22	35	32	19	17	18	27	31	6	30
		S	272	143	139	101	23	252	149	76	120	102	92	204	0	80	184	149	135	144	131	141	135	55	20	99	120	168	41	114
	SUB	AREA	۲	В	υ	A	۲	8	υ	۵	ш	Ľ	U	۲	В	0	۵	ш	u.	IJ	I	-	-	×		Σ	z	0	٩	σ
		AREA	Header	leader	leader	Scrubber	Dehydrator	Compression	ompression																					
		SITE	7	141	14	4	14	14[14	14	14	14	14 [140	4	4	140	140	14	14 0	40	40	40	40	40	140	140	140	140	140

API PUBL*4589 93 🗰 0732290 0517653 522 🗰

B-46

_				T	1	1	1.	-	1	-	1	-	1				<u> </u>	-		_										
mv)		ALL	3	12	2	2	2	0	8		e.	10	4	=	10	10	18	8	0	9	5	5	5	5	5	8	2	3	3	-
IGE (pp	100,000+		0	-		0	0		ľ	0	0	0	0	0	0	0	6	2	0	0	0	-	0	0	0	0	0	0	0	0
ING RAN	10,000 to	66666	1	9	2	-	2	0	5	0	-	5	0	4	3	5	2	-	0	2	3	-	9	-	-	8	0	-	-	0
CREEN	1,000 to	6666	+	5	5	-	-	0	-	-	2	4	4	2	3	4	4	5	0	-	-	0	-	-	2	0	0	2	-	-
S BY S	500 to	666	+	0	0	°	0	0	0	0	0	0	0	0	0	-	0	0	0	2	0	0	0	-	-	0	2	0	-	0
ITTER	100 to	66	0	0	9	0	2	0	2	0	0	0	0	3	-	0	2	3	0	-	-	e	-	2	-	0	0	0	0	0
EM	10 to	8	0	0	0	0	2	0	0	0	0	-	0	2	3	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
		ALL	201	145	167	30	06	57	122	45	106	78	125	213	125	276	180	126	67	71	109	95	92	121	117	170	83	110	97	28
		OTH	-	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	9	0	-
		РЯ	0	0	0	0	0	0	0	0	0	0	0	4	0	1	0	0	0	1	0	0	0	0	0	2	0	0	0	0
		PS	0	0	0	0	0	0	0	0	0	0	0	2	-	0	0	0	0	0	0	0	0	0	0	0	-	0	-	0
		S	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.E.L	10	0	0	1	4	3	1	0	0	0	0	33	-	2	-	-	4	0	0	-	2	0	-	7	5	-	5	0
	;	۲	44	22	23	6	21	13	26	12	20	19	30	40	25	58	38	25	20	12	26	22	24	27	28	35	16	18	14	5
	č	S	146	119	140	23	65	41	95	33	86	59	95	160	98	211	141	100	43	58	83	72	88	92	88	126	61	88	17	22
	SUB	AHEA	œ	S	⊢	Э	>	٨	۲	8	υ	۵	ш	ш	J	I	-	-	×	-	Σ	z	0	٩	σ	۲	æ	ы	٥	ш
		AHEA	Compression	Compression	Compression	Compression	Compression	Sulfur	Fractionation	Tank	Tank	Tank	Tank	Tank																
	11.0	SILE	14	14	14	14	4	14	14	14	14	14	14	4	14	4	4	4	14	4	4	14	14	14	4	4	4	7	-	4

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

Internet Affanct SUB France										. ,												-		101				_			_
	2		ALL	9	2	0	ε	4	9	9	2	-	4	4	9	2	13	2	1 3	5	21	19	15	9	25	2	9	=	6	9	Q
It Ant. Sub Feat Emittrens PrScrittenting And serve Emittrens PrScrittenting And serve Itemination Emittrens PrScrittenting And serve Itemination Emittrens PrScrittenting And serve Itemination Emittrens PrScrittenting And serve Itemination	GE (ppn	+ 000'00		0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	-	4	3	4	-	12	3	0	4	5	3	0
	RAN	00 to 1	8	-	-	0	0	0	8	8	9	9	0	0	5	0	-	0	4	-	6	3	5	~	-	~	-	2	~	2	C
ITE AREA SUB Ite Ite SS 15 2 0 2 2 10 10	DNIN	0,01	8		_	_	-	_	_	-	_	0	-	-	-		9	-	5	-	8	3	4	~	0	0	-	5	-	0	
It ARE SUB VL CSL CS PAV DTL Te MTTTTSPY 14 Tark F 55 15 2 0 1 73 0 2 0 14 Tark F 55 15 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	CHEE	1,000 t	6666																												
Italy SUB VI O.E.L CS PSV OTH ALL SOH VII Ital TEA ALL SOH VII ODE CS PSV DTH ALL SOH VII DOE C CS TEA ALL SS 15 C <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<>	S BY S	500 to	666	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	-	0	0	4	0	-	•	•	0	0	0	0	C
It Array SUB VL O.E.L SPS PRV OTH ALL SOB 14 Tark F 55 15 2 0 1 0 73 0 14 Tark G 644 12 0 0 2 78 0 14 Tark H 74 14 1 0 2 78 0 14 Tark H 74 14 1 0 2 13 0 14 Tark N 74 14 1 0 2 13 25 0 1 3 255 1 <td>TTER</td> <td>100 to</td> <td>6</td> <td>2</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>2</td> <td>-</td> <td>0</td> <td>4</td> <td>0</td> <td>3</td> <td>0</td> <td>-</td> <td>-</td> <td>C</td>	TTER	100 to	6	2	0	0	-	0	0	0	3	-	0	0	0	0	4	0	3	0	0	2	-	0	4	0	3	0	-	-	C
AFEA SUB VL O.E.L CS PS PAV OTH ALL 14 Tank F 55 15 2 0 1 0 0 73 14 Tank H 74 14 1 0 2 78 14 Tank H 74 14 1 0 2 78 14 Tank H 74 14 1 0 2 13 14 Tank L 107 19 6 0 2 14 14 Tank L 107 19 6 0 2 13 14 Tank N 4 0 0 2 14 14 Tank R 4 0 0 1 0 73 14 Tank R 78 2 0 0 1 0 73 14 <td>EM</td> <td>10 to</td> <td>8</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td> <td>-</td> <td>2</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>-</td> <td>0</td> <td>S</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td>	EM	10 to	8	0	0	0	2	0	-	-	0	0	-	0	0	-	2	-	0	0	0	4	-	0	S	0	2	0	0	0	C
AFEA SUB VL O.E.L CS PS PN OTH 14 Tank F 55 15 2 0 1 0 <td></td> <td></td> <td>ALL</td> <td>73</td> <td>78</td> <td>91</td> <td>137</td> <td>255</td> <td>142</td> <td>82</td> <td>117</td> <td>67</td> <td>66</td> <td>98</td> <td>73</td> <td>60</td> <td>58</td> <td>93</td> <td>56</td> <td>39</td> <td>72</td> <td>274</td> <td>205</td> <td>55</td> <td>137</td> <td>58</td> <td>95</td> <td>98</td> <td>53</td> <td>21</td> <td>48</td>			ALL	73	78	91	137	255	142	82	117	67	66	98	73	60	58	93	56	39	72	274	205	55	137	58	95	98	53	21	48
AFEA SUB VL O.E.L CS PS PAV 14 Tank F 55 15 2 0 1 0 14 Tank H 74 14 1 107 19 6 0 0 0 0 0 14 Tank I 107 19 6 0 3 0 1 0 2 0 1 0 2 0 1 0 2 0 0 2 0 1 0 2 0 1 0 2 0 1 0 2 1 1 107 19 5 0 0 2 1			OTH	0	2	0	2	3	5	-	5	-	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
SITE AREA SUB NL O.E.L CS PS 14 Tank F 55 15 2 0 1 14 Tank F 55 15 2 0 0 14 Tank H 74 12 0 0 0 14 Tank H 74 14 1 0 2 14 Tank J 183 62 6 0 0 14 Tank K 98 33 4 0 0 14 Tank K 98 33 4 0 0 14 Tank N 73 27 4 0 0 14 Tank R A 15 5 0 0 0 14 Tank N A 15 5 0 0 0 14 Tank N			РЯV	0	0	0	0	-	2	2	2	2	1	1	-	0	1	0	1	0	-	4	-	0	0	0	0	0	3	0	C
Site AREA NB VL O.E.L CS 14 Tank F 55 15 2 0 14 Tank F 55 15 2 0 0 14 Tank H 74 14 11 0 0 14 Tank H 74 14 14 0 0 14 Tank H 74 14 1 0 0 14 Tank L 107 19 62 6 0 14 Tank L 58 17 4 0 14 Tank N 79 27 4 0 14 Tank N 75 20 2 0 0 14 Tank N A 15 15 4 0 14 Tank N A 15 16 0 0			PS	1	0	2	3	0	0	0	0	0	0	0	0	1	5	0	5	0	3	0	6	0	3	0	2	0	0	0	0
SITE AREA SUB VL O.E.L 14 Tank F 55 15 2 14 Tank F 55 15 2 14 Tank H 74 14 1 14 Tank H 74 14 1 14 Tank I 107 19 6 14 Tank L 107 19 6 14 Tank L 183 62 6 14 Tank N 73 62 6 14 Tank N 73 62 6 14 Tank N 74 15 5 14 Tank N 74 15 5 14 Tank N 76 16 1 14 Tank N 76 18 5 1 14 Tank N 75 <td></td> <td></td> <td>cs</td> <td>0</td>			cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUB SUB SUB NL 14 Tank F 55 15 14 Tank G 64 12 14 Tank H 74 14 14 Tank J 183 62 14 Tank K 98 33 14 Tank K 98 33 14 Tank N A4 15 14 Tank N A4 15 14 Tank N A4 16 14 Tank N A4 14 14 Tank N A4 14 14 Tank N N 75 14 Tank N N 76 <t< td=""><td></td><td></td><td>0.E.L</td><td>2</td><td>0</td><td></td><td>9</td><td>9</td><td>4</td><td>4</td><td>4</td><td>5</td><td>2</td><td>2</td><td>4</td><td>-</td><td>0</td><td>5</td><td>0</td><td>0</td><td>0</td><td>6</td><td>0</td><td>1</td><td>0</td><td>-</td><td>0</td><td>0</td><td>2</td><td>0</td><td></td></t<>			0.E.L	2	0		9	9	4	4	4	5	2	2	4	-	0	5	0	0	0	6	0	1	0	-	0	0	2	0	
SITE AREA SUB SUB 14 Tank F 55 14 Tank F 55 14 Tank F 55 14 Tank F 55 14 Tank H 74 14 Tank K 98 14 Tank K N 14 Tank N 79 14 Tank N N 14 Tank </td <td></td> <td></td> <td>٨L</td> <td>15</td> <td>12</td> <td>14</td> <td>19</td> <td>62</td> <td>33</td> <td>17</td> <td>27</td> <td>15</td> <td>15</td> <td>20</td> <td>18</td> <td>14</td> <td>=</td> <td>18</td> <td>10</td> <td>7</td> <td>14</td> <td>55</td> <td>33</td> <td>15</td> <td>26</td> <td>12</td> <td>13</td> <td>21</td> <td>13</td> <td>5</td> <td>a</td>			٨L	15	12	14	19	62	33	17	27	15	15	20	18	14	=	18	10	7	14	55	33	15	26	12	13	21	13	5	a
SITEAREAAREAAREA14TankAF14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAA14TankAB14TankAB14SalesAB			CN	55	64	74	107	183	86	58	62	44	48	75	50	44	40	70	39	32	54	206	165	39	108	45	80	17	35	16	36
SITE AREA 14 Tank 14 Sales 14 Sales 15 Sales 15 Sales 15 Sales 16 Sales 17 Sales 17 Sales 18 Sal		SUB	AREA	٤	U	I	-	2	×		Σ	z	0	٩	o	в	4	В	υ	٥	ш	ш	G	I	-	5	×		Σ	z	
H H <td></td> <td></td> <td>AREA</td> <td>ank</td> <td>Sales</td> <td>Sales</td> <td>Sales</td> <td>bales</td> <td>Sales</td> <td>1</td>			AREA	ank	ank	ank	ank	ank	ank	ank	ank	ank	ank	ank	ank	ank	Sales	Sales	Sales	bales	Sales	Sales	Sales	1							
		_	JITE	141	141	14 1	14	14 T	141	141	141	141	141	141	141	141	14 5	14 5	14 5	14	14 5	14	14	14	14	14	4	14	14	14	

API PUBL*4589 93 🔳 0732290 0517655 3T5 🖿

	1	-	To	5	1		6	5
(vm		AL		-			614	5
IGE (pp	100,000+				-	-	70	
ING RAN	10,000 to	66666	ſ	2	6	1	207	
SCREEN	1,000 to	6666	F	-	~	"	167	2
S BY S	500 to	666	0	Ŷ	0	,	28	2
ITTER	100 to	6 6 1	V	•	-		81	;
EM	10 to	66	0	•	-		54	
		ALL	131		115		10673	
		HIO	0		0		46	
		лнч	0		0		74	
	0	۲S	0		0		44	
	ç	c S	0		0		29	
	- - -	0.E.L	6		9		229	
	17	4 L	20		21		2141	
	NC		105		88		8110	
	ABEA		8	ļ	ר כי			
	ARFA		Load	•	Load			
	SITE		14		4			

											EM	TTER	S BY S	SCREEN	UING RAI	NGE (ppi	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	٨L	0.E.L	cs	ΡS	РЯV	отн	ALL	9 9	499	966	6666	66666		ALL
15	Header	۲	150	28	2	0	0	0	0	180	2	-	0	1	3	4	1
15	Header	В	87	14	1	0	0	0	0	102	0	-	0	2	1	1	5
15	Header	ပ	102	18	2	0	0	0	2	124	0	-	0	-	2	-	5
15	Dehydrator	۷	82	17	2	0	0	2	0	103	0	0	0	-	4	9	=
15	Compression	A	199	41	3	e	0	-	-	248	0	4	-	10	0	0	15
15	Compression	8	120	12	9	-	0	0	3	142	0	0	0	9	0	0	9
15	Compression	ပ	132	19	4	-	0	-	3	160	0	0	-	2	-	0	4
15	Compression	۵	144	25	0	-	0	0	-	171	0	2	2	3	2	0	6
15	Compression	ш	133	16	1	-	0	0	-	152	0	-	2	9	9	0	15
15	Compression	Ľ	123	20	2	1	0	0	-	147	0	-	-	7	4	0	13
15	Compression	J	133	29	4	t	0	0	-	168	0	0	0	6	9	0	15
15	Compression	I	168	35	0	1	0	0	-	205	0	-	0	3	11	0	15
15	Compression	-	238	42	2	0	0	7	0	289	0	0	0	0	0	2	2
15	Compression	-	85	4	-	2	0	1	1	94	0	-	0	0	3	0	4
15	Compression	¥	22	4	0	2	0	0	-	84	0	0	0	0	4	-	5
15	Compression	_	81	4	0	2	0	0	-	88	0	5	-	-	3	0	10
15	Compression	Σ	8	2	0	3	0	0	3	112	0	0	0	0	-	0	-
15	Sulfur	۲	122	30	3	0	0	0	0	155	0	0	0	0	0	0	0
15	Sulfur	80	323	84	-	0	4	0	2	414	-	-	0	0	0	0	2
15	Sulfur	υ	153	24	0	0	0	0	0	177	0	0	0	0	0	0	0
15	Sulfur	٥	41	6	-	0	0	0	0	51	0	0	0	0	0	0	0
15	Fractionation	4	94	26	-	0	0	0	+	122	2	+	-	2	0	0	9
15	Fractionation	B	8	21	0	0	1	0	0	118	0	0	0	0	0	3	3
15	Fractionation	o	52	17	0	0	0	0	0	69	-	-	-	-	-	0	5
15	Fractionation	٥	53	18	e	0	2	0	0	76	-	0	0	0	0	0	+
15	Fractionation	ш	72	17	0	0	0	1	-	91	0	0	0	0	0	0	0
15	Fractionation	ш	59	13	-	0	0	0	0	73	0	0	0	0	0	0	0
15	Fractionation	G	78	21	0	0	0	0	2	101	0	-	-	0	4	0	9

API PUBL*4589 93 🗰 0732290 0517657 178 📰

											EM	TTEP	IS BY	SCREEN	VING RAI	VGE (pp	(vu
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
	AREA	AREA	CN	۲۲	0.E.L	S	PS	РВV	OTH	ALL	99	499	666	6666	66666		ML
15	Fractionation	I	39	14	0	0	0	0	0	53	0	0	-	0	0	0	-
15	Fractionation	-	219	59	0	0	0	0	0	278	0	-	2	3	3	2	=
15	Fractionation	-	25	10	0	0	0	0	0	35	0	°	0	0	0	-	-
15	Fractionation	¥	15	9	0	0	0	0	0	21	0	0	0	0	0	0	0
15	Fractionation	Г	72	19	4	0	0	0	0	95	0	-	0	4	-	5	Ξ
15	Fractionation	Z	70	22	0	0	2	2	0	96	0	°	2	2	2	0	9
15	Fractionation	z	140	46	0	0	0	0	0	186	0	-	-	2	5	2	14
15	Fractionation	0	24	2	2	0	0	2	2	32	0	0	0	0	0	0	0
15	Fractionation	٦	32	2	2	0	0	2	2	40	0	0	0	0	0	0	0
15	Fractionation	σ	181	36	1	0	0	0	0	218	0	0	0	-	0	-	2
15	Fractionation	æ	251	61	-	0	4	-	-	319	0	0	0	0	-	0	-
15	Meter	۲	16	3	0	0	0	0	0	19	0	0	0	0	0	0	0
15	Meter	B	137	25	0	0	0	0	0	162	0	0	0	0	4	2	9
15	Meter	υ	143	27	0	0	0	0	0	170	0	0	0	0	e	5	8
15	Meter	۵	127	24	1	0	0	0	0	152	0	0	0	0	0	0	0
15	Meter	ш	149	23	-	0	0	0	0	173	0	-	0	0	0	1	2
15	Tank	۲	55	16	-	0	0	0	0	72	0	2	0	5	9	0	13
15	Tank	в	8	12	0	0	4	-	0	77	2	-	0	0	0	1	4
15	Tank	υ	44	10	1	0	+	-	0	57	0	0	0	0	0	-	-
15	Tank	٥	105	26	2	0	0	2	0	135	0	0	0	0	2	2	4
15	Tank	ш	35	5	+	0	-	-	0	43	0	0	0	2	0	3	5
15	Tank	L.	8	15	0	0	0	-	0	96	0	0	0	2	-	0	3
15	Tank	J	107	23	0	0	2	0	0	132	0	-	0	0	5	10	16
15	Tank	I	24	9	0	0	-	-	0	32	0	0	0	0	-	0	-
15	Tank	-	120	32	2	0	0	0	0	154	0	-	0	-	4	2	8
15	Tank	7	75	13	0	0	4	-	0	93	-	0	0	0	-	-	3
15	Tank	¥	26	25	-	0	0	0	0	123	0	2	0	-	0	0	3
15	Tank	-	133	29	4	-	0	0	-	168	2	-	0	2	0	0	5

(vm		ALL	C.			303
EMITTERS BY SCREENING RANGE (pp)	100,000+			0	C	63
ING RAN	10,000 to	66666	2	0	0	97
CREEN	1,000 to	6668	0	0	0	80
S BY S	500 ta	666	0	0	0	17
EMITTERS BY SCREENING RANGE (p	100 to	499	0	0	0	34
	10 to	8	0	0	0	12
		ALL	124	219	1961	7786
		OTH	2	-	0	35
		РВV	0	0	0	28
		PS	0	0	0	26
		cs	0	0	0	20
		O.E.L	0	3	4	71
		۲	24	33	33	1296
		S	98	182	159	6310
	SUB	AREA	W	A	В	
		AREA	Tank	Sales	Sales	
		SITE	15	15	15	

											EM	TTER	S BY S	CREEN	IING RAI	VGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲	0.E.L	cs	PS	PRV	OTH	ALL	86	499	666	6666	99999		ALL
=	Header	٩	73	16	1	0	0	0	0	66	0	1	0	0	0	0	1
16	Header	<u></u>	142	52	0	0	0	0	0	194	0	0	0	0	0	0	0
16	Header	ပ	131	40	2	0	1	0	0	174	0	0	0	0	-	0	-
16	Separator	۲	51	15	-	0	0	-	0	89	0	0	0	0	0	0	0
16	Separator	в	50	18	2	0	0	-	0	71	0	-	0	0	-	0	2
16	Separator	ပ	40	14	12	0	2	2	2	72	0	0	0	0	4	0	4
16	Separator	٥	76	27	2	0	0	0	0	105	0	0	0	0	0	0	0
16	Separator	ш	25	10	0	0	0	0	0	35	0	0	0	0	0	0	0
16	Scrubber	A	33	12	Ŧ	0	0	0	0	46	0	2	0	0	0	0	2
16	Scrubber	В	15	7	0	0	0	0	0	22	0	0	0	0	0	0	0
16	Scrubber	ပ	55	17	0	0	0	0	0	72	0	0	0	0	0	0	0
16	Scrubber	٥	72	21	0	0	0	0	0	93	0	0	0	0	0	0	0
16	Scrubber	ω	51	16	0	0	0	0	0	67	0	0	0	0	0	0	0
16	Scrubber	Ŀ	48	13	0	0	0	0	0	61	0	0	0	0	-	0	-
16	Dehydrator	۲	61	13	2	0	0	0	0	76	0	0	0	0	7	0	7
16	Dehydrator	Β	71	18	5	0	0	2	0	96	0	0	3	-	5	0	6
16	Compression	A	178	42	8	0	0	0	0	228	1	-	-	0	3	0	9
16	Compression	80	349	86	0	0	0	12	0	447	2	3	0	-	9	0	12
16	Compression	ပ	199	41	3	0	0	2	-	246	0	0	0	2	3	0	5
16	Compression	۵	131	5	0	4	0	0	0	140	0	0	0	5	5	10	20
16	Compression	ш	29	1	-	0	0	0	-	42	1	0	0	-	2	0	4
16	Compression	ш	132	7	0	4	0	0	0	143	0	0	0	5	5	10	20
16	Compression	J	105	5	0	4	0	0	0	114	0	0	0	5	5	10	20
16	Compression	т	182	15	0	4	0	0	0	201	0	1	0	9	7	6	23
16	Compression	-	174	13	0	4	0	0	0	191	0	0	+	•	0		3
16	Compression	~	163	12	0	4	0	0	0	179	1	4	-	9	4	9	22
16	Sulfur	4	114	29	-	2	0	0	0	146	0	-	0	0	1	0	2
16	Sulfur	в	12	5	0	0	0	0	0	17	0	0	0	0	0	0	0

.

		Ţ	4	_	~	8	0	0	0	2	0	-	2	15	0	9	0	-	N	6	œ	~	4	-	-	0	-	0	10	-
(vmd	+	<	0			<u> </u> _				Ļ										_										
NGE (p	100,000															0					-			0	0	0	0	0	0	0
IING RA	10,000 to	66666	1	4	-	7	0	0	0	0	0	0	0	4	0	5	0	0	-	2	4	2	-	0	0	2	-	0	0	-
SCREEN	1,000 to	6666		2	0	0	0	0	0	0	0	-	0	3	0	-	0	0	0	-	-	0	-	0	0	-	0	0	0	0
S BY S	500 to	666	0	-	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0
ITER:	100 to	66 4		0	-	0	0	0	0	~	0	0	~	9	0	0	0	-	0	0	2	0	2	-	0	0	0	0	0	0
EMI	10 to	8		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F		_	93	41	43	100	18	22	53	6	6	9	5	9	6	9	6	5	3	-	-	3	0	5	4	8		6	9	
		ALL		2										14	<i>u</i> ,	14	Ę	с,	6	9	2	2	4	-	-	e	5	, en	-	5
		OTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		PRV	0	2	+	0	0	0	0	0	0	0	0	-	1	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
		ΡS	0	0	3	0	0	0	0	0	0	0	0	0	3	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.E.L	3	0	0	9	0	0	0	0	0	0	0	4	0	7	0	0	3	8	2	0	0	0	0	0	0	0	0	0
		¥	17	53	6	15	4	4	9	4	4	10	2	31	Ξ	29	18	2	9	24	13	5	6	4	4	6	12	6	2	14
		z	73	186	33	60	14	18	17	15	15	56	13	110	44	110	91	28	24	67	36	18	31	Ξ	10	29	37	29	14	37
	SUB	AREA	<	8	υ	٥	Е	Ľ	ŋ	I	-	-	¥		Σ	z	0	0	٩	σ	œ	s	⊢	D	>	3	×	7	2	¥
		AREA	Fractionation	Fractionation	Fractionation	Fractionation	^r ractionation	^c ractionation	ractionation	^c ractionation	^c ractionation	ractionation	⁻ ractionation	⁻ ractionation	ractionation	ractionation	⁻ ractionation	ractionation												
	1	SILE	9	16	161	16	16	16	16	16	161	16	161	161	16 F	161	16 F	16	16	16 F	16F	16 F	16 F	16 F	16 F	16	16 F	16 F	16 F	16 F

API PUBL*4589 93 📖 0732290 0517661 6T9 📖

B-54

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

			10	10	गन	-] -	7-	1-	10		7-	-1-	· [e) v		2 0	2
() m		ALL															28
VGE (pp	100,000+		C						C					0		0	51
ING RAI	10,000 to	66666	0	0		0	C	0	0	C	C	2	2	-	5	2	115
SCREEN	1,000 to	6666	0	0	0	0	+-	0	10	0	1-	0	0	0	3	~	57
S BY S	500 to	666	0	0	0	0	0	0	0	0	0	-	0	0	0	-	12
TTER	100 to	499	0	0	0	0	0	-	0	0	10	1-	0	Ñ	0	0	36
EMI	10 to	8	0	0	0	0	0	0	0	0	0	0	0	2	-	0	6
		ALL	20	15	42	35	26	12	24	23	18	174	48	51	245	295	6070
		OTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
		PRV	0	0	0	0	0	0	0	-	0	2	0	1	0	0	31
		PS	0	0	0	0	0	0	0	0	0	2	0	0	0	2	15
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26
		O.E.L	0	0	4	0	-	0	0	0	0	0	-	0	5	-	86
		۲	5	3	6	=	5	3	5	4	3	28	6	:	48	71	1127
		S	15	12	29	24	20	6	19	18	15	142	38	39	192	221	4781
	SUB	AREA	AB	AC	AD	AE	AF	AG	АН	A	٩J	A	A	В	۷	۲	
		AREA	^E ractionation	⁻ ractionation	ractionation	-ractionation	-ractionation	Meter	ank	ank	sales	lare					
		SILE	161	161	161	16 F	16 F	16 F	16 F	16 F	16 F	16 N	16 1	16 1	16 9	16 F	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

											EMI	TTER	S BY S	SCREEN	VING RAI	NGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲۲	O.E.L	cs	PS	PRV	OTH	ALL	8	499	666	6666	66666		۸L
1	Well	4	54	16	3	0	0	0	0	73	0	0	0	0	0	0	0
17	Well	в	47	11	-	0	0	0	0	59	0	0	0	0	0	0	0
11	Well	ပ	74	18	3	0	0	0	0	95	4	0	0	0	-	0	5
11	Well	٥	69	17	3	0	0	0	0	89	0	0	0	0	0	0	0
1	Well	ш	77	19	3	0	0	0	0	66	0	0	0	0	0	0	0
17	Well	Ŀ	78	20	4	0	0	0	0	102	0	0	0	0	0	0	0
1	Well	ჟ	42	6	-	0	0	0	0	52	0	0	0	0	0	0	0
17	Well	т	54	12	4	0	0	0	0	70	0	0	0	0	0	0	0
17	Well	-	25	5	0	0	0	0	0	30	0	0	0	0	0	0	0
17	Well	~	116	26	9	0	0	0	0	148	0	2	0	0	0	0	2
17	Well	×	106	21	2	0	0	0	0	129	0	0	0	0	0	0	0
17	Well	-	67	14	3	0	0	0	0	84	0	0	0	0	0	0	0
17	Well	Σ	54	12	0	0	0	0	0	66	9	0	0	0	0	0	9
17	Well	z	96	22	2	0	0	0	0	115	0	0	0	2	2	0	4
17	Well	0	66	21	3	0	0	0	0	114	0	0	0	0	-	0	-
17	Well	٩	51	13	-	0	0	0	0	65	0	0	0	0	0	0	0
11	Well	σ	85	19	2	0	0	0	0	106	0	2	0	0	0	0	2
17	Well	œ	89	20	-	0	0	0	0	110	5	7	-	7	0	0	20
17	Well	s	102	19	0	0	0	0	0	121	0	0	0	0	0	0	0
17	Well	F	112	22	3	0	0	0	0	137	0	0	0	0	0	0	0
17	Well	Э	124	30	2	0	0	0	0	156	0	0	0	0	0	0	0
17	Header	۲	153	19	5	0	0	0	0	177	0	0	0	0	0	0	0
17	Header	8	61	15	2	0	0	0	0	78	2	4	0	0	-	0	7
17	Header	ပ	197	54	18	0	0	0	0	269	0	-	0	0	2	0	3
17	Header	٥	216	46	9	0	0	0	0	268	0	2	-	0	-	0	4
17	Header	ш	400	98	0	0	0	0	0	498	9	2	0	-	-	0	7
17	Header	Ľ	205	45	0	0	0	0	0	250	0	0	0	0	0	0	0
17	Heater	<	333	79	5	0	0	3	0	420	0	3	2	1	4	0	10

											EM	ITTER	S BY S	SCREEN	VING RAI	VGE (pp	(vm
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲	0.E.L	cs	PS	РВV	OTH	ALL	8	499	666	9999	66666		ALL
=	Separator	۲	519	115	19	0	0	-	-	655	0	0	1	0	2	0	3
1	' Separator	8	451	101	34	0	0	-	0	587	0	0	3	2	-	0	9
-	Separator	υ	404	77	19	0	0	0	0	500	9	6	-	5	2	0	20
1	Separator	٥	483	110	25	0	0	-	0	619	0	0	0	0	2	0	2
17	Separator	ш	343	82	2	0	0	-	0	428	0	-	-	2	0	0	4
-	Meter	٩	194	39	12	0	0	0	0	245	0	-	0	3	1	0	5
17	Meter	8	267	57	14	0	2	-	2	343	0	0	0	0	0	0	0
17	Filter	A	290	41	11	0	0	-	0	343	0	0	0	0	-	0	-
-	Filter	8	434	51	9	0	0	-	0	492	0	0	0	-	3	0	4
1	Filter	ပ	293	26	8	0	0	-	0	328	0	-	-	2	1	0	5
1	Filter	۵	382	52	7	0	0	-	0	442	0	0	0	2	2	0	4
1	Compressor	۲	712	82	20	2	0	5	0	821	0	-	°	-	14	0	16
1	Compressor	8	765	78	22	2	0	4	0	871	0	0	-	7	19	0	27
11	Compressor	ပ	692	103	29	2	0	4	0	907	0	0	0	5	12	0	17
1	Scrubber	۲	279	49	5	0	0	1	0	334	0	0	0	2	0	0	2
1	Scrubber	8	389	72	13	0	0	1	0	475	0	-	0	0	0	0	-
7	Water	۲	115	26	=	0	0	0	0	152	0	0	-	0	0	0	-
7	Water	8	525	82	2	0	6	4	2	626	7	5	0	-	0	0	13
1	Water	ပ	421	60	15	0	2	3	9	507	0	2	-	0	+	0	4
17	Tank	۲	210	33	2	0	0	0	-	246	0	0	0	-	0	0	-
11	Tank	æ	265	44	8	0	0	0	1	318	0	0	0	0	0	0	0
1	Tank	ပ	104	14	0	0	3	1	0	122	0	-	0	0	0	0	-
1	Tank	٥	104	14	0	0	3	1	0	122	-	2	0	0	0	0	3
1	Sales	۲	251	41	2	0	0	0	0	299	0	0	-	0	2	0	3
7	Sales	B	39	8	-	0	0	0	0	48	0	0	0	0	0	0	°
1	Flare	4	426	93	13	0	0	0	0	532	0	0	0	-	0	0	-
1	Flare	B	326	55	6	0	-	-	0	392	0	0	0	2	-	0	3
			12927	2327	407	9	17	37	13	15734	34	44	15	48	77	0	218

API PUBL*4589 93 🎟 0732290 0517664 308 📟

											EM	TTEF	IS BY	SCREEN	NING RAI	NGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	S	۲L	O.E.L	cs	ЪS	РВV	OTH	ALL	88	499	666	6666	66666		ALL
8	3 Well	۷	330	89	69	0	0	0	0	488	0	-	0	-	0	8	10
18	3 Well	В	582	147	53	0	0	0	0	782	0	0	0	0	0	2	2
18	3 Well	ပ	555	183	75	0	0	0	0	813	0	2	0	0	4	0	9
18	3 Well	٥	410	139	60	0	0	0	0	609	0	0	-	2	2	3	8
18	Header	٨	267	55	23	0	0	0	0	345	2	0	0	0	0	0	2
18	8 Header	В	456	128	11	0	0	9	0	601	9	0	0	1	0	0	2
18	8 Header	ပ	303	113	19	0	0	0	0	435	2	-	0	-	0	0	4
18	Header	٥	95	33	e	0	0	-	0	132	0	0	0	0	0	0	0
18	Heater	A	126	20	-	0	0	0	0	147	0	0	0	0	0	0	0
18	Separator	٨	123	41	4	0	0	0	0	168	0	0	0	0	0	0	0
18	Separator	в	328	113	8	0	0	0	0	449	2	2	0	0	3	1	8
18	Separator	ပ	238	71	6	0	0	0	2	320	2	1	0	-	-	0	5
18	Separator	٥	313	120	5	0	0	0	0	438	0	0	0	-	2	0	3
18	Separator	ш	337	100	24	0	0	2	0	463	0	1	0	0	2	0	3
18	Separator	L.	125	22	3	0	0	2	0	152	0	0	0	0	0	-	-
18	Separator	J	296	88	16	0	0	2	0	402	-	0	0	0	0	0	-
18	Separator	I	318	86	10	0	0	0	0	414	-	0	0	0	-	0	2
₽	Meter	٩	345	121	11	0	4	4	2	487	0	0	0	0	0	0	0
18	Compressor	۲	351	119	6	-	0	0	0	477	0	4	2	-	-	9	14
1 8	Dehydrator	۲	161	56	2	0	0	0	0	219	0	0	0	0	3	0	3
18	Dehydrator	B	109	23	0	0	0	0	0	132	0	0	0	0	-	0	-
18	Dehydrator	υ	334	96	15	0	3	0	0	448	0	0	0	0	0	2	2
18	Scrubber	۲	72	23	3	0	0	0	0	98	0	0	0	0	0	0	0
18	Instrument	۲	355	130	8	0	0	6	0	499	0	0	-	0	4	2	7
18	Instrument	B	230	49	7	0	0	0	0	286	0	5	0	2	2	3	12
18	V Recovery	۲	180	37	11	2	0	0	0	230	1	0	5	9	-	4	17
18	Water	4	180	57	12	0	0	0	0	249	2	-	0	-	-	0	5
18	Water	B	237	64	15	0	0	0	10	326	0	0	0	0	10	0	10

API PUBL*4589 93 🖿 0732290 0517665 244 🖿

(vu		AL	=		145
IGE (ppi	100,000+		0	0	32
ING RAN	10,000 to	66666	0	0	38
CREEN	1,000 to	6666	0	0	11
S BY S	500 to	666	0	0	6
ITTER	100 to	499	4	0	22
EM	10 to	8	2	-	27
		ALL	180	178	10967
		OTH	0	0	14
		РВУ	0	0	23
		ЪS	0	0	7
		cs	0	0	3
		O.E.L	4	0	487
		٨L	45	37	2405
		CN	131	141	8028
	SUB	AREA	υ	A	
		AREA	Water	Sales	
		SITE	18	18	

											Ш Ш	ITTEF	3S BY	SCREEN	NING RA	NGE (pp	mv)
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+	
SITE	AREA	AREA	CN	۲	0.E.L	cs	ЪS	PRV	ОТН	ALL	8	499	666	6666	66666		ALL
19	Well	٩	125	54	4	0	0	0	0	183	2	0	0	0	0	0	2
19	Well	В	142	62	5	0	0	0	0	209	-	-	0	5	2	0	6
19	Weil	С	137	57	8	0	0	0	0	202	0	0	-	0	-	0	2
19	Well	۵	133	56	4	0	0	0	0	193	-	2	0	-	-	0	5
19	Well	ш	148	58	3	0	0	0	0	209	-	0	0	0	2	0	3
19	Header	A	261	85	2	0	0	0	0	348	0	0	0	0	0	0	0
19	Header	В	242	85	2	0	0	0	0	329	0	-	0	0	0	0	-
19	Header	С	171	71	3	0	0	0	0	245	-	-	+	0	1	0	4
19	Heater	A	172	75	15	0	0	1	0	263	0	0	0	0	0	0	0
19	Heater	8	252	103	2	0	0	1	0	358	0	0	0	0	0	0	0
19	Heater	ပ	77	51	+	0	0	2	0	131	0	-	0	-	0	0	2
19	Heater	۵	111	32	1	0	0	0	0	144	0	0	0	0	0	0	0
19	Heater	ш	48	25	2	0	0	1	0	76	0	0	0	0	0	0	0
19	Heater	Ľ	112	44	9	0	2	0	0	164	0	0	0	0	0	0	0
19	Separator	٨	260	114	5	0	0	1	0	380	-	4	0	-	0	0	9
19	Separator	в	231	74	9	0	0	1	0	312	0	0	0	0	0	0	0
19	Separator	υ	214	74	-	0	0	1	0	290	0	0	0	0	0	0	0
19	Separator	۵	229	77	3	0	0	1	0	310	F	1	0	0	F	0	3
19	Compressor	A	102	28	0	0	0	-	0	131	1	1	0	-	1	0	4
19	Compressor	В	148	72	3	0	0	1	0	224	1	0	2	3	5	0	11
19	Compressor	ပ	168	62	11	2	0	1	0	244	0	0	0	-	2	0	3
19	Compressor	۵	191	64	6	2	0	2	0	268	0	-	0	5	4	0	10
19	Dehydration	۷	226	95	5	0	0	0	0	326	0	0	0	0	0	0	0
19	Dehydration	В	12	2	0	0	0	0	0	14	0	0	0	0	0	0	0
19	Dehydration	с	130	57	7	0	0	0	0	194	0	1	0	0	0	0	-
19	Dehydration	٥	50	16	0	0	0	-	0	67	0	0	0	0	0	0	0
19	Dehydration	ш	51	19	0	0	0	-	0	71	0	0	0	0	0	0	0
19	Dehydration	щ.	30	19	5	0	0	0	0	54	0	0	0	0	0	0	0

API PUBL*4589 93 🖿 0732290 0517667 017 🖿

1

			_											_		_	_							_
(vu		ALL.	0	0	0	0	-	13	0	-	4	0	0	0	0	0	0	0	0	0	0	0	8	93
GE (ppr	100,000+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NG RAN	10,000 to	66666	0	0	0	0	1	2	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	25
CREENI	1,000 to	6666	0	0	0	0	0	4	0	-	2	0	0	0	0	0	0	0	0	0	0	0	2	27
S BY S	500 to	666	0	0	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	9
TTER	100 to	499	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	19
EMI	10 to	8	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	16
		ALL	208	122	107	131	169	443	188	197	385	271	347	237	195	68	69	50	127	312	57	292	307	10271
		OTH	0	0	0	0	0	0	0	0	8	0	0	0	0	0	-	0	0	3	0	2	0	14
		PRV	3	0	-	-	-	4	-	-	-	0	0	1	1	0	0	0	0	0	-	3	0	35
	-	PS	0	9	0	-	0	0	0	0	1	0	0	0	0	0	1	2	3	3	1	1	0	21
		cs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
		O.E.L	2	9	7	2	4	3	5	3	15	11	4	2	1	2	5	2	0	6	0	12	0	205
		۲L	55	22	23	29	38	111	44	44	92	55	97	68	65	25	15	17	27	81	6	69	88	2705
		CN	148	88	76	98	126	325	138	149	268	205	246	166	128	62	47	58	97	219	46	205	219	7287
	SUB	AREA	G	Η	A	B	υ	A	A	В	A	В	A	8	υ	٥	ш	Ľ	ß	н	-	A	В	
		AREA	Dehydration	Dehydration	Scrubber	Scrubber	Scrubber	Instrument	V Recovery	V Recovery	Water	Water	Tank	Sales	Sales									
		SITE	19	19	19	19	19	19	19	19	19	19	19	19	19.	19	19	19	19	19	19	19	19	
											M M	TTEH	S BY S	CREEN	UNG RAN	VGE (pp	() mv)							
------	-------------	------	-----	-----	-------	----	----	-----	-----	-------	--------	--------	------------	----------	----------------	----------	-----------							
		SUB									10 to	100 to	500 to	1,000 to	10,000 to	100,000+								
SITE	AREA	AREA	CN	٨L	0.E.L	cs	PS	РЯV	OTH	ALL	8	499	666	6666	66666		¥							
20	Well	A	134	48	6	0	0	0	0	191	0	0	-	0	e	0	4							
20	Well	ω	66	24	9	0	0	0	0	120	0	0	0	0	0	0	0							
20	Welt	ပ	82	24	3	0	0	0	0	109	0	e	0	0	2	0	5							
20	Well	٥	85	22	10	0	0	0	0	117	0	3	0	-	0	0	4							
20	Well	ш	67	28	9	0	0	0	0	131		4	-	3	3	0	12							
20	Header	۲	528	118	36	0	0	2	0	684	2	2	-	e	9	0	14							
20	Heater	A	540	82	15	0	0	1	0	638	0	+	2	8	5	0	16							
20	Heater	в	183	5	0	0	0	0	1	189	0	0	0	0	2	0	2							
20	Heater	ပ	182	5	0	0	0	0	0	187	0	0	0	0	2	0	2							
20	Heater	٥	26	8	3	0	0	0	0	37	0	0	0	0	0	0	0							
20	Heater	ш	66	25	4	0	0	2	0	67	0	2	*	0	0	0	ຕ							
20	Separator	A	203	50	5	0	0	2	0	260	2	-	0	0	-	0	4							
20	Separator	8	203	56	5	0	0	0	0	264	0	1	0	0	2	0	e							
20	Separator	v	375	76	15	0	0	3	2	471	0	-	0	-	Ŧ	0	13							
20	Meter	A	574	84	5	0	0	8	0	671	0	2	-	e	10	0	16							
20	Filter	A	188	40	7	0	0	2	0	237	2	-	0	0	2	0	5							
20	Dehydration	۲	158	42	6	0	0	0	0	209	3	0	0	0	2	0	5							
20	Dehydration	В	408	11	0	0	0	0	3	422	0	0	0	0	4	0	4							
20	Dehydration	U	444	75	12	0	9	2	0	539	0	0	0	0	0	0	0							
20	Scrubber	۲	199	39	6	0	0	1	0	248	0	0	0	-	2	0	3							
20	Scrubber	ω	207	44	0	0	2	0	0	253	2	2	2	0	4	0	₽							
20	Water	A	177	38	9	0	4	0	2	227	0	-	0	e	-	0	5							
20	Water	В	385	72	10	0	0	0	0	467	1	0	0	0	С	0	4							
20	Water	O	275	76	8	0	4	0	14	377	0	1	0	5	4	0	9							
20	Tank	A	20	12	0	0	0	1	0	83	0	0	0	0	0	0	0							
20	Tank	Β	244	58	7	0	0	0	0	309	-	-	-	2	0	0	5							
20	Tank	U	157	42	2	0	0	0	0	201	4	0	0	0	0	0	4							
20	Tank	٥	132	25	0	0	0	0	0	t 157	0	0	0	0	0	0	0							

B-62

nv)		ALL	-	5	159
IGE (ppr	100,000+		0	0	0
ING RAN	10,000 to	66666	0	2	71
SCREEN	1,000 to	6666	0	0	30
S BY S	500 to	866	1	0	=
ITTER	100 to	499	0	0	26
EM	10 to	89	0	3	21
		ALL	405	413	8713
		HTO	4	0	26
		PRV	2	0	26
		PS	9	0	22
		SS	0	0	0
		0.E.L	12	0	204
		۲L	84	78	1391
		CN	297	335	7044
	SUB	AREA	ш	۷	
		AREA	Tank	Sales	
		SITE	20	20	

.

.

B-63

APPENDIX C EMITTER DATA

						A	ΡI	₽١	JB	L*	45	85	ء ا	EI			٥?	Зē	2°	10	۵	5 l	76	72	4	84												
	8	8	BI	81	8	8	8	8	ß	22	750	200	500	200	500	500	500	500	475	00 4	400	300	300	300	300	250	250	250	225	200	20	50	20	50	175	42		
PPMV	1,2(1,2(1,2	1,2	1,0	1,0	- 0,	-		1-													 						_	_		_				_		
	ч	uo	Ы	uo	uo	uo	ion	lon	tion	lon	tion	tion	tion	tion	tion	lion	tion	ction	ction	dion	rion	ction	ction	ction	ection	ection	ection	ection	ection	ection	ection	lection	nection	rection	rection	nection		
TYPE	nnecti	nnecti	nnecti	nnecti	nnect	Dunect	onnect	onnect	onnect	onnec	onnec	onnec	onnec	onnec	onne	onne	onne	anno	anno	auro			Conne	Conne	Conne	Conn	Conn	Conn	Com	Conn	Conr	Con	Con	Con	Con	I Con		
E	8	<u> 8</u> -	18	100		10 1-	10	Ŭ F	10 1-	0	1-	1-	1-	F	F	F	1-	1-	Ī	-		- -	- -	-	-	-	-		-	-		-	[
5	<u>;]</u>					1 16				L Te					ग	318	318	318	318	318	3	318							000	000	500	200	200	500	200	200		
VNOO		10.000	000 0	000	B FOC		900'0	B 00	8 00	7 50	2019									C'E	3'0	0,6	2.0				10	5										
																Clion	Ction	otion	sction	sction	ection	ection	ection	ection	ection	ection	lection								- Inderite	noctio		
		Danne		nauluo	Dannec	onnec	onnec	Danno		auno	onne	onne	onne	onne	Conne	Conne	Conne	Conne	Conne	Conne	Conne	Conne	Con	Con	Con	Con	Con											
			5 0	319	<u>-</u>	-			- <u> </u>		ĔŤ	Ŧ	-1	-	Ē	-	=	-	-	1	-	-	-	-	-													
	5		Ц БТ	 51	ᆰ	 ਗ਼			 sī		2	8	8	हा	8	8	00	00	8	00	log	000	000	000	80	8	8	8	8		B	80	000.0	000	0,00	0,000	000	
	VMd	00,00	8	8 8	80,00	80,00	80,00	0,02	0,07	50,0	50,0	40,0	40,0	35,0	35,0	30,0	30,0	25,(20,(20,0	20,	20,	15,	15,	15	15	15	2	₽ : 	₽	-	₽ _+	Ĕ	₩ +	= · -+			
	-	=	-	- u	Ę	ų	u	E	5	n	uo	5	Б	uo	uo	uo	ion	uoj	noi	noi	ion	tion	tion	tion	tion	tion	stion	ction	ction	ction	ction	ction	ction	ction	ction	sction	ection	
	TYPE	nectio	nectio	nectio	nectio	nectic	nectic	nectic	nnectio	nnectl	nnecti	nnecti	nnecti	nnecti	nnect	nnect	nnect	nnect	onnect	Dennec	Danno	onnec	onnec	onnec	onnec	onnec	onnec	onne	Conne	Conne	Conne	Conne	Conne	Conne	Conne	Conne	Conne	
		1 Con	1 Con	1 Cor	1 Cor	lõ F	00	- Co	- Co	8	0	18	0	10 -	0		Ĭ		10					1-	1-	1-	F	-	-	F	-	F	F	-	-	-	-	
	SITI					<u> </u>															 5TG	니. 키의			1			18	18	18	8	18		18	18	lõ	100]
	N	000.0	0.000	000.0	0000	0000	000.0	000.00	000.00	000.00				00 00							00,001				1000	100.001	100.0	100,0	100,0	100.0	100,0	100.0	1001	100	100,	100,	100	:
	dd	P			: =	219		12	F		1										-	Ę							15	18	5				ion	noi	noi	
	Lu		retion 1	, ion				action 1	ortion			ection action					lecilo	nectio	nectio	nectio	nectio	nectic	inectio	nectio	necut	inecui	itoona	nnecti	nnect	toonu	toon of					Denne		
	15																	Con	5	5	1 Con	5	5					3 2	3 2	3 2	312	510	<u>3 c</u> - ·	310 - -	510	5 C - -		ᅴ
	1110			-	-	1	-	- •	- •	- -																										 जात		่า อ
			31	SI		g	8				8	8	8	8	8	8	000'	000'0	000'0	000'0	000'0	0,000	0'000	0,000	000'0	000'00	000'00	000'00	00,000	00,000	00,001	00'00	00'00	00'00	00,00	00'00	00,001	100,001
		Mdd	1001		9 9	100	00-	9	<u>e</u>	ŝ	<u></u>	9	9	ē	5	<u>0</u>	100	100	10 T	1 P	0 F	ļ₽ 	9	10	10	2 -	₽ _									=	5	u u
		ш	ion	tion	tion	tion	tion	tion	tion	Stion	ction	ction	ction	ction	ction	ction	ction	sction	ection	ection	ection	ection	ection	ection	lection	lection	nection	nection	nection	nectio	nectio	nectio	nectio	nectic	nectic	nectic	nectio	nnectio
		Ł	Dannec	onnec	onnec	onnec	onnec	onnet.	onnet	onnet	onne	Sonne	Jonne	Conne	Conne	Conne	Conne	Conne	Conn	Conn		Conn	Conn	Conn	Conc	Cont	Con	Con	Con	I Con	1 Con	1 Con	1 Con	1 Cor	ŭ 1 1	<u>Ö</u>	100	1 Coi
		ТЕ	Ŭ F	Ŭ F	1 <u>0</u> -	10	19	-	-10	-	F	F	F	Ē	F	Ē	F	-	-	-		- -	-															1
		SI	L			1	1_	L	ட	L	1_	1		4			• •																					

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C-1

SITE	TYPE	PPMV	SITE	TYPE	VMqq	SITE	TYPE	PPMV	SITE TYF	E E	VMdo	SITE	TYPE	VMdd
-	Connection	175	-	Connection	20	-	Valve	100,000	1 Valve	-	00,000	-	Valve	10,000
[Connection	175	-	Connection	20	-	Valve	100,000	1 Valve		000'00	-	Valve	10,000
[Connection	150	-	Connection	20	-	Valve	100,000	1 Valve	-	00,000	-	Valve	10,000
-	Connection	150	-	Connection	15	-	Vaive	100,000	1 Valve	-	000'00	-	Valve	10,000
-	Connection	125	-	Valve	100,000	-	Valve	100,000	1 Valve	-	00,000	-	Valve	10,000
[-	Connection	100	-	Valve	100,000	-	Valve	100,000	1 Valve	-	00,000	-	Valve	8,000
-	Connection	100	-	Valve	100,000	-	Valve	100,000	1 Valve		000'00	-	Valve	8,000
[Connection	100	-	Valve	100,000	-	Valve	100,000	1 Valve	-	000'00	-	Valve	8,000
-	Connection	100	-	Valve	100,000	-	Valve	100,000	1 Valve	-	00'00	-	Valve	8,000
[Connection	66	-	Valve	100,000	-	Valve	100,000	1 Valve		90,000	-	Valve	5,000
-	Connection	75	-	Valve	100,000	-	Valve	100,000	1 Valve		90,000	-	Valve	4,000
-	Connection	75	-	Valve	100,000	-	Valve	100,000	1 Valve		80,000	-	Valve	4,000
	Connection	75	-	Valve	100,000	-	Valve	100,000	1 Valve		80,000	-	Valve	3,000
	Connection	75	-	Valve	100,000		Valve	100,000	1 Valve		70,000	-	Valve	3,000
-	Connection	60	-	Valve	100,000	-	Valve	100,000	1 Valve		70,000	-	Valve	3,000
-	Connection	60	-	Valve	100,000	-	Valve	100,000	1 Valve		60,000	1	Valve	3,000
	Connection	55	-	Valve	100,000	-	Valve	100,000	1 Valve		60,000	1	Valve	2,200
-	Connection	50	-	Valve	100,000	-	Valve	100,000	1 Valve		60,000	1	Valve	2,000
-	Connection	50	-	Valve	100,000	-	Valve	100,000	1 Valve		45,000	-	Valve	2,000
-	Connection	45	-	Valve	100,000	-	Valve	100,000	1 Valve		40,000	-	Valve	2,000
-	Connection	45	-	Valve	100,000	-	Valve	100,000	1 Valve		40,000	-	Valve	2,000
-	Connection	40	-	Valve	100,000	-	Valve	100,000	1 Valve		35,000	-	Valve	2,000
-	Connection	40	-	Valve	100,000	-	Valve	100,000	1 Valve		35,000	-	Valve	2,000
-	Connection	40	-	Valve	100,000	1	Valve	100,000	1 Valve	_	30,000	-	Valve	2,000
-	Connection	35	-	Valve	100,000	-	Valve	100,000	1 Valve		20,000	-	Valve	1,700
-	Connection	35	-	Valve	100,000	-	Valve	100,000	1 Valve		20,000	-	Valve	1,250
-	Connection	35	-	Valve	100,000	-	Valve	100,000	1 Valve	_	20,000	-	Valve	1,250
-	Connection	30	-	Valve	100,000	-	Valve	100,000	1 Valve	_	20,000	-	Valve	1,200
-	Connection	30	-	Valve	100,000	-	Valve	100,000	1 Valve	_	17,000	-	Valve	1,200
-	Connection	25	-	Valve	100,000	-	Valve	100,000	1 Valve		15,000	-	Valve	1,200
-	Connection	25	1	Valve	100,000	-	Valve	100,000	1 Valve		15,000	-	Valve	1,000
-	Connection	25	-	Valve	100,000	-	Valve	100,000	1 Valve		15,000	-	Valve	1,000
-	Connection	25	-	Valve	100,000	-	Valve	100,000	1 Valve		12,000	-	Valve	1,000
-	Connection	20		Valve	100,000	-	Valve	100,000	1 Valve		12,000	-	Valve	1,000
-	Connection	20	-	Valve	100,000	-	Valve	100,000	1 Valve		12,000	-	Valve	750
-	Connection	20	-	Valve	100,000	-	Valve	100,000	1 Valve		12,000	-	Valve	750

API PUBL*4589 93 🖿 0732290 0517673 310 🖿

					A	ΡI	F	UE	3L×	K4 !	58	9	93			87	'3a	22	90	0	51	7E	<u>،</u> 7۲	łā	25	7										
VMdd	150	125	125	125	125	100	100	100	20	20	89	50	50	50	40	40	40	20																		
ITE TYPE	1 PolishedRod																																			
5]		<u> </u>	<u> </u>	L			L	I				<u> </u>			I						<u> </u>		I	<u> </u>										
VMqq	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	25,000	15,000	10,000	10,000	000'6	000'6	9,000	8,000	5,000	1,700	006	500	500	300	2,000	1,500	750	750	200	500	400	300	300	275	175	175	150
TYPE	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	PolishedRod																													
SITE				-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
PPMV	30	30	30	25	20	20	20	20	20	100,000	100,000	100,000	100,000	100,000	000'001	000'001	000'001	000'001	80,000	70,000	15,000	9,500	7,000	2,000	1,500	300	200	100	60	35	30	25	20	000'00	000'00	00,000
\vdash	+	-				-		-			-	-	-	-	-	-	-	-																-	-	-
TYPE	Valve	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	DumpArm	DumpArm	DumpArm																
SITE	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	뤼
PPMV	125	125	100	100	100	100	100	8	75	75	75	75	75	75	20	60	8	8	8	20	50	50	50	20	50	20	50	50	45	45	45	45	45	9	35	8
TYPE	Valve	Valve	Valve	Valve	/alve	lalve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	alve	/alve	/alve	alve	alve	'alve	'alve	alve	'alve	alve	alve	alve											
ITE	-	-	-	-	-	-	-	-	=	7	7	=	7	=	=	=	=	=	=	=	-	7	-	7	=	-	-	-	7	-	-	-	2-	2	2	2
PPMV	75(75(75(75(200	60(600	200	20(2	500	50(400	400	350	350	350	300	300	300	300	250	250	250	250	200	200	200	200	200	200	200	200	175	175	150	125
E TYPE	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	I Valve	1 Valve	1 Valve	1 Valve																	
SIT																																				

								AF	Γ	Р١	JB	∟*	45	89	9	EI			70	35	29	0	05	517	6	75	ľ	93								
DPMV	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	7,000	5,000	5,000	5,000	4,000	4,000	3,500	3,000	3,000	3,000	3,000	2,500	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	1,500	1,200	1,000	1,000	1,000	1,000	1,000	900
E TYPE	2 Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve														
LIS																						~			~	2	2	2	~	~	2	2	2	~	2	2
VMdd	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	90,000	90,000	80,000	70,000	60,000	40,000	30,000	20,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TE TYPE	2 Valve																																			
5	1							l	[<u> </u>																			
PPMV	200	200	150	150	150	150	100	80	02	04	09	60	50	40	20	20	20	20	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
TYPE	Connection	Valve	/alve																																	
SITE	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2	~
				0		0								0																						
PPMV	2,50	2,50	2,00	2,00	1,50	1,20	1,00	1,00(906	80(80(20(20(70(200	200	200	909	200	500	400	400	400	300	300	300	300	300	300	200	200	200	200	200	200	200
TYPE	Connection																																			
SITE	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2 (2	~	5	2	2	~	~	~	2	2	~	2	2
PPMV	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	70,000	50,000	30,000	20,000	20,000	20,000	20,000	15,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	8,000	8,000	5,000	3,000	2,500
TYPE	Connection																																			
SITE	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2	5	2	2	2	2	2 (

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

						4	AP	Ι	PU	BL	*4	158	9	93	3 I		0	73	22	290		35	17	67	6	02	T		I							
PPMV																																				
TYPE																																				
SITE																																				
PPMV	80	30																																		
SITE TYPE	2 Vent	2 Vent																																		
VMdd	100,000	100,000	15,000	2,500	2,000	200	300	200	100	100,000	3,000	100,000	100,000	10,000	2,000	1,500	500	400	300	175	150	150	20	20	20	30	20	20	1,000	1,000	10,000	5,000	300	200	100	100
TYPE	Hatch	Hatch	Hatch	Hatch	Hatch	Hatch	Hatch	Hatch	Hatch	Instrument	Instrument	PolishedRod	² olishedRod	PolishedRod	PolishedRod	PressureRelie	PumpSeal	Vent	Vent	Vent	Vent	Vent	Vent													
SITE	2	2	2	2	2	~	2	2	2	2	2	2	2	2	2	2	8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~	N	2
PPMV	50	50	40	40	40	30	30	20	20	20	20	15	100,000	100,000	100,000	100,000	100,000	15,000	10,000	10,000	10,000	6,000	2,000	2,000	1,200	1,000	1,000	700	300	300	300	200	20	60	40	10
TYPE	Valve	Valve	Valve	Vaive	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd													
SITE	2	2	2	~	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
PPMV	750	200	200	200	700	700	200	700	200	500	500	500	400	400	300	300	250	250	200	200	200	150	150	125	125	100	100	100	100	100	100	100	20	20	60	50
Е ТҮРЕ	2 Valve	? Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	2 Valve	2 Valve	Valve	Valve	. Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	2 Valve	2 Valve
SITE				``	.,																					``	Ň						Ň		Ĩ	

_							AP	I	ΡL	JBI	-*'	45	89	9	Ξ		۵	173	322	29	0	0.5	72	67	7	Τŧ	96									
PPMV																																				
TYPE																																				
SITE																																				
VMqq																																				
TYPE																																				
SITE	•																																			
PPMV	10,000	10,000	10,000	10,000	10,000	7,000	500	300	300	50	20	10,000																								
түре	Hatch	latch	latch	fatch	latch	olishedRod																														
SITE	31	1 1 1 1 1 1	31	31	3	3	3 1	31	н С	31	3 1	3 F																								
PPMV	2,000	2,000	1,500	1,200	1,000	1,000	1,000	800	800	800	600	500	400	300	200	150	100	100	40	30	30	25	20	100,000	20,000	3,000	1,500	35	500	200	40	16	12,000	10,000	10,000	10,000
TYPE	'alve	alve	'alve	alve	alve	alve	penEnd	penEnd	penEnd	penEnd	compressor	umpArm	umpArm	umpArm	umpArm	latch	latch	latch	latch																	
SITE	3/	3 /	3	3 \	3 \	3 1	3 1	3 (3 (3 \	3 <	3 (3 <	3 <	3 <	<u>ле</u>	3 1	3 \	3 <	3 <	3 1	3 \	3 \	30	30	30	3 C	30	30	3	30	30	3 1	3 ⊢	3 1	31
VMqq	100,000	100,000	100,000	10,000	10,000	9,000	8,000	8,000	6,000	5,000	4,000	2,000	1,500	1,500	600	300	150	100	50	25	20	100,000	100,000	100,000	100,000	100,000	70,000	40,000	40,000	30,000	10,000	9,000	8,000	4,000	3,000	2,000
ТҮРЕ	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	'alve	/alve	'alve	/alve	/alve	'alve
SITE	3 (э С	3(3(3 (3(3 (3 (300	3	3	300	3	с С	3	3(3 (3(3 (3 (3 (3 \	3/	3	3/	3/	3 \	3 \	3 /	3 \	3 \	3 \	3	3 \	3 /	3

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

						4	AP]	I I	PUI	BL	*4	58	9	93			0	73	22	90		151	171	57	8	9 T	5									
VMdd																																				
TYPE																																				
SITE																																				
PPMV																																				
TYPE																																				
SITE																																				
PPMV	100	50	50	30	30	20	10,000	10	100,000	10,000	50	100	4,000	300	10	10	10,000	1,000	100,000	100,000	100,000	10,000	1,000												•	
TYPE	OpenEnd	OpenEnd	DpenEnd	OpenEnd	DpenEnd	DenEnd	Hatch	latch	nstrument	nstrument	nstrument	Meter	olishedRod	olishedRod	olishedRod	olishedRod	ressureRelie	ressureRelie	/ent	/ent	/ent	/ent	/ent													
SITE	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 /	4 \	4	4	4													
PPMV	10,000	10,000	10,000	9,000	1,500	1,000	1,000	1,000	1,000	500	500	300	300	200	150	100	100	100	50	30	30	30	20	15	10	10	10	10,000	10,000	10,000	10,000	2,000	3,000	300	300	100
TYPE	'alve	'alve	'alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	penEnd	penEnd	penEnd	penEnd	penEnd	penEnd	penEnd	penEnd	penEnd													
SITE	4	4 \	4 V	4 V	4	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 V	4 C	4 O	4 C	4 0	4 0	40	40	40	40
PPMV	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000	10,000	5,000	4,000	3,000	1,000	200	200	200	100	100	50	50	40	30	20	20	20	100,000	100,000	100,000	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000
ТҮРЕ	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Valve	Valve	Valve	Valve	/alve	/alve	Valve	Valve	Valve	Valve	Valve																
SITE	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

_					_														
PPMV																			
TYPE																			
SITE																			
VMqq																			
TYPE																			
SITE																			
VMqq																			
TYPE																			
SITE																			
PPMV																			
түре																			
SITE																			
PPMV	200	5,000	500	300	200	200	75	30	20	20	20	2,000	100	50	50	45	30	20	10
ТҮРЕ	Connection	/alve	DpenEnd	OpenEnd	DpenEnd	olishedRod													
SITE	5 (5	5 (5 (5 (5	5	50	5 0	5 (5 0	5	5 F	5	5 F	5 F	5 F	5 F	5 F

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

	VWdd				T			T	T	T	T	T			T	T	T	T	T			
	TYPE																					
1	SITE												$\frac{1}{2}$							╀╴	+-	
	VMdd												T	T							T	
	ТүрЕ																					
ľ	SITE																					
	VMdd																					
	IYPE																					
CITC																						
DPMV				T	T			T	T	T	T	T	T	T	T	T	T	T		T]
TYPE																						
SITE			$\left \right $				╀╴		-							-	 			 -	$\left \right $	
PPMV	50	50	9	50	10,000	10,000	2,500	300	ē	12	1,500	100	100	100	12	9	90	2	20	12	<u></u>]
TYPE	Connection	Connection	Connection	alve	DenEnd	penEnd	penEnd	penEnd	penEnd	penEnd	olishedRod	olishedRod	DlishedRod	DishedRod	blishedRod	blishedRod	lishedRod	lishedRod	lishedRod	lishedRod	lishedRod	
SITE	<u> </u>	6	9	9	9 6	900	6 C	09	09	90	6 Pt	6 P(6 P(6 Pc	6 Pc	6 Pc	6 Pc	6 Po	6 Po	6 Po	6 Po	

API PUBL*4589 93 🔳 0732290 0517680 550 🔳

VMqq									
түре									
SITE									
РРМИ									
түре									
SITE									
PPMV									
TYPE									
SITE									
VMP									
TYPE									
SITE									
PPMV	2,000	1,000	500	70	40	25	20	20	
TYPE	DenEnd	DenEnd	penEnd	olishedRod	olishedRod	olishedRod	olishedRod	olishedRod	
SITE	7 C	7 0	7 C	7 P	7 P	7 P	7 P	7 P	

Not for Resale

	A Midd														-
TVDE															
SITE	5														
DPMV															
TYPE	1														
SITE															
PPMV															
ТүрЕ															
SITE															
PPMV															
TYPE															
SITE															
PPMV	100	100	30	75	50	50	50	50	40	20	10	10	10	10	
ТҮРЕ	OpenEnd	OpenEnd	OpenEnd	PolishedRod											
SITE	8	8	8	8	8	8	8	8	ω	8	8	8	8	8	

API PUBL*4589 93 🗰 0732290 0517682 323 🖿

SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	VMqq
5	Connection	100,000	6	Connection	15,000	6	Connection	10,000	o-	Connection	3,000	6	Connection	500
6	Connection	100,000	٣ ش	Connection	15,000	6	Connection	10,000	6	Connection	2,500	6	Connection	500
Ő	Connection	100,000	ိ	Connection	12,000	6	Connection	9,000	6	Connection	2,000	6	Connection	500
တိ	Connection	100,000	ß	Connection	12,000	6	Connection	8,000	6	Connection	2,000	6	Connection	400
ő	Connection	100,000	6	Connection	10,000	6	Connection	7,000	6	Connection	2,000	6	Connection	300
ő	Connection	100,000	ő	Connection	10,000	6	Connection	7,000	6	Connection	2,000	6	Connection	300
°	Connection	100,000	6	Connection	10,000	6	Connection	7,000	6	Connection	2,000	6	Connection	300
ő	Connection	100,000	്	Connection	10,000	6	Connection	7,000	6	Connection	2,000	6	Connection	300
6	Connection	100,000	6	Connection	10,000	6	Connection	7,000	6	Connection	2,000	6	Connection	300
ത	Connection	100,000	6	Connection	10,000	6	Connection	6,000	6	Connection	2,000	6	Connection	300
6	Connection	100,000	6	Connection	10,000	6	Connection	6,000	6	Connection	2,000	6	Connection	300
6	Connection	100,000	6	Connection	10,000	6	Connection	6,000	6	Connection	2,000	6	Connection	250
6	Connection	100,000	6	Connection	10,000	6	Connection	5,000	6	Connection	2,000	6	Connection	200
٥ (Connection	100,000	ြိ	Connection	10,000	6	Connection	5,000	6	Connection.	2,000	თ	Connection	200
6	Connection	100,000	6	Connection	10,000	6	Connection	5,000	6	Connection	2,000	6	Connection	200
Ő	Connection	100,000	6	Connection	10,000	6	Connection	5,000	6	Connection	2,000	6	Connection	200
ß	Connection	100,000	6	Connection	10,000	6	Connection	5,000	6	Connection	1,500	6	Connection	200
ő	Connection	100,000	တ	Connection	10,000	6	Connection	4,000	6	Connection	1,500	6	Connection	200
6	Connection	100,000	6	Connection	10,000	6	Connection	4,000	6	Connection	1,200	6	Connection	150
5	Connection	100,000	6	Connection	10,000	6	Connection	4,000	6	Connection	1,000	6	Connection	150
6	Connection	000'06	6	Connection	10,000	6	Connection	4,000	6	Connection	1,000	6	Connection	150
တိ	Connection	90,000	6	Connection	10,000	6	Connection	4,000	6	Connection	1,000	6	Connection	150
6	Connection	90,000	6	Connection	10,000	6	Connection	4,000	6	Connection	1,000	6	Connection	100
6	Connection	70,000	6	Connection	10,000	6	Connection	4,000	6	Connection	1,000	6	Connection	100
6	Connection	70,000	6	Connection	10,000	6	Connection	4,000	6	Connection	800	6	Connection	100
6	Connection	70,000	6	Connection	10,000	6	Connection	4,000	6	Connection	700	6	Connection	100
6	Connection	50,000	6	Connection	10,000	6	Connection	4,000	6	Connection	700	6	Connection	100
6	Connection	50,000	6	Connection	10,000	6	Connection	4,000	6	Connection	700	6	Connection	100
၈	Connection	40,000	6	Connection	10,000	9	Connection	3,500	6	Connection	700	6	Connection	100
6	Connection	40,000	တ	Connection	10,000	6	Connection	3,500	6	Connection	600	6	Connection	100
6	Connection	40,000	6	Connection	10,000	6	Connection	3,500	6	Connection	500	6	Connection	100
6	Connection	30,000	ത	Connection	10,000	6	Connection	3,000	6	Connection	500	6	Connection	100
6	Connection	30,000	6	Connection	10,000	6	Connection	3,000	6	Connection	500	6	Connection	8
6	Connection	30,000	6	Connection	10,000	6	Connection	3,000	6	Connection	500	9	Connection	80
6	Connection	20,000	6	Connection	10,000	6	Connection	3,000	6	Connection	500	6	Connection	70
5	Connection	20,000	5	Connection	10,000	6	Connection	3,000	6	Connection	500	6	Connection	70

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4589 93 🗰 0732290 0517683 267 🛤

	·					AP	I	PL	IBL	**	+58	59	9	3 			173	122	291] [05	17	68	4	11	Г <u>Б</u>										
VMqq																																				
TYPE																																				
SITE																																				
PPMV	200	200	200	150	150	150	150	100	100	100	80	50	50	40	40	20	100,000	100,000	100,000	10,000	10,000	10,000	5,000	4,000	4,000	400	150	70,000	15,000	10,000	2,000	200	150	200	200	50
E TYPE	9 Valve	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 OpenEnd	9 Hatch	9 Hatch	9 Instrument	9 Instrument	9 Instrument	Instrument	PressureRelie	9 PressureRelie	PressureRelie															
SIT																																				
VMdd	2,000	2,000	2,000	1,500	1,500	1,500	1,500	1,500	1,200	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	200	500	500	500	500	500	400	400	400	300	300	300	300	300	300	300	300	250	200
TE TYPE	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve	9 Valve																	
5																																				
PPMV	100,000	100,000	100,000	80,000	80,000	40,000	40,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	000'6	7,000	5,000	4,000	4,000	3,500	3,000	3,000	3,000	2,500
TYPE	Valve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve	/alve											
SITE	6	6	6	6	6	6	6	6	6	9	6	6	6	6	6	9	9	9	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
PPMV	70	70	60	50	50	50	50	30	30	30	30	25	20	20	20	20	15	10	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
TYPE	Connection	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve																								
SITE	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

SITE TYPE PPMV S
10 Connection 4
10 Connection

API PUBL*4589 93 🖿 0732290 0517685 032 📟

C-14

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

					A	ΡI	Ρ	UE	}L×	(41	589	9 '	Ξ			07	32	29	10	01	51	76	86	Т	75											
VMqq																																				
TYPE																																				
SITE																																				
PPMV	10,000	10,000	10,000	5,000	10,000	10,000	300	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000	10,000	9,000	8,000	750	500	500	450	100	500	20	10,000	3,500	125								
ITE TYPE	10 DumpArm	10 DumpArm	10 DumpArm	10 DumpArm	10 Hatch	10 Hatch	10 Hatch	10 Instrument	10 Meter	10 Meter	10 PressureRelie	10 Vent	10 Vent																							
[<u>s</u>																																				
PPMV	100,00	100,00	10,00	9,00	2,00	1,00	50	20	30(20(15(15(Ø	2(4(ы	10(1,500	100,000	100'000	100,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TYPE	0 OpenEnd) OpenEnd	OpenEnd	OpenEnd) OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	Compressor	Diaphragm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm	DumpArm
SITI	Ŧ	Ŧ	Ŧ	Ē	Ę	Ē	Ē	Ĕ	Ē	Ē	Ē	Ē	÷	10	10	₽	9	₽	₽	₽	₽	₽	10	₽	₽	10	10	10	₽	₽	9	₽	10	₽	9	₽
PPMV	200	200	200	200	200	200	150	150	150	150	125	125	100	100	100	100	100	80	02	50	50	40	30	30	30	25	20	20	20	15	15	15	10	10	10	100,000
ТҮРЕ	Valve	Valve	Valve	Valve .	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	/alve	/alve	Valve	/alve	/alve	/alve	DpenEnd
SITE	9	9	9	9	10	10	9	10	10	10	10	9	2	9	9	9	9	9	9	2	=	2	2	0	힡	9	9	<u>0</u>	2	10	9	9	9	=	<u>=</u>	희
VMdd	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	9,000	8,000	8,000	8,000	7,000	5,000	4,000	3,000	2,500	2,000	1,500	1,500	1,200	1,000	1,000	800	800	200	600	500	500	500	450	400	300	200	200
SITE TYPE	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve	10 Valve

SITE	TYPF	VMqq	SITE	TYPE	VMqq	SITE	TYPE	PPMV	SITE	TYPE	VM dd	SITE	ТҮРЕ	VMqq
; =	Connection	100,000	=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	11	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	1	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	÷	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	Ξ	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	1	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
F	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	₽	Connection	10,000	=	Connection	10,000	=	Connection	10,000
÷	Connection	100,000	=	Connection	100,000	=	Connection	10,000	1	Connection	10,000	=	Connection	10,000
Ξ	Connection	100,000	=	Connection	100,000	=	Connection	10,000	Ξ	Connection	10,000	Ŧ	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	1	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	Ξ	Connection	10,000	1	Connection	10,000	Ŧ	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	Ξ	Connection	10,000	=	Connection	10,000
Ŧ	Connection	100,000	=	Connection	100,000	=	Connection	10,000	1	Connection	10,000	=	Connection	10,000
F	Connection	100,000	=	Connection	100,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	100,000	=	Connection	10,000	Ŧ	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	Ξ	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	÷	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
Ŧ	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	÷	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	÷	Connection	10,000	÷	Connection	10,000	7	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	7	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	-	Connection	10,000	=	Connection	10,000
=	Connection	100,000	=	Connection	10,000	=	Connection	10,000	11	Connection	10,000	=	Connection	10,000

API PUBL*4589 93 🎟 0732290 0517687 905 📟

SITE	ТҮРЕ	PPMV	SITE	TYPE	VMqq	SITE	TYPE	PPMV	SITE	TYPE	VMdd	SITE	TYPE	PPMV
=	Connection	10,000	=	Connection	1,000	Ξ	Connection	1,000	=	Connection	1,000	=	Connection	1,000
=	Connection	10,000	=	Connection	1,000	=	Connection	1,000	-	Connection	1,000	=	Connection	1,000
Ξ	Connection	10,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	F	Connection	1,000
=	Connection	10,000	11	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000
=	Connection	10,000	-	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000
7	Connection	10,000	=	Connection	1,000									
=	Connection	10,000	Ξ	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	150
=	Connection	10,000	11	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	150
=	Connection	10,000	11	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	150
Ξ	Connection	10,000	11	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	100
=	Connection	10,000	11	Connection	1,000	Ξ	Connection	1,000	=	Connection	1,000	Ŧ	Connection	100
7	Connection	10,000	11	Connection	1,000	=	Connection	1,000	=	Connection	1,000	Ξ	Connection	100
=	Connection	2,000	=	Connection	1,000	Ξ	Connection	1,000	Ξ	Connection	1,000	Ξ	Connection	100
=	Connection	2,000	7	Connection	1,000	Ŧ	Connection	1,000	Ŧ	Connection	1,000	=	Connection	100
=	Connection	1,500	=	Connection	1,000	Ξ	Connection	1,000	Ξ	Connection	1,000	=	Connection	100
=	Connection	1,000	Ξ	Connection	1,000	:	Connection	1,000	=	Connection	1,000	=	Connection	100
Ξ	Connection	1,000	Ξ	Connection	1,000	Ŧ	Connection	1,000	=	Connection	1,000	÷	Connection	100
=	Connection	1,000	1	Connection	1,000	Ξ	Connection	1,000	Ξ	Connection	1,000	=	Connection	100
=	Connection	1,000	=	Connection	1,000	11	Connection	1,000	Ŧ	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	Ŧ	Connection	1,000	÷	Connection	1,000	1	Connection	100
=	Connection	1,000	=	Connection	1,000	Ŧ	Connection	1,000	:	Connection	1,000	11	Connection	100
=	Connection	1,000	Ŧ	Connection	1,000	=	Connection	1,000	÷	Connection	1,000	=	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	÷	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	Ξ	Connection	1,000	=	Connection	1,000	Ŧ	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	Ŧ	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	Ξ	Connection	1,000	=	Connection	1,000	11	Connection	1,000	11	Connection	100
=	Connection	1,000	Ŧ	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	11	Connection	100
=	Connection	1,000	=	Connection	1,000	₽	Connection	1,000	=	Connection	1,000	ŧ	Connection	100
=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	1,000	=	Connection	100

API PUBL*4589 93 🗰 0732290 0517688 841 📟

C-17

								A	ΡI	Ρ	UB	L*	45	689	9	E F			07	'3a	229	30	0	51	76	89	7	88	5							
VMqq	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,660	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
SITE TYPE	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve										
VMdd	10,000	10,000	10,000	10,000	6,000	5,000	4,000	2,000	1,700	1,500	1,500	1,500	1,200	1,200	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
SITE TYPE	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve										
VM dd	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
SITE TYPE	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve										
VMqq	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
ITE TYPE	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve	11 Valve										
PPMV	100	100	100	100	100	100	80	80	60	50	25	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	10,000	10,000
E TYPE	1 Connection	1 Valve	1 Valve	I Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	1 Valve	I Valve	1 Valve	I Valve	I Valve	l Valve	l Valve	Valve	l Valve	Valve	l Valve	l Valve	I Valve	l Valve	l Valve	I Valve										
SIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	두	=	=	=	-	÷	-	-	-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

							AP	I	ΡL	IBL	_* ⁱ	45	89	9	3		(17:	35	29	0	05	17	6	30	4'	ГΤ									
VMqq																																				
TYPE																																				
SITE																						-														
Ş			Γ			ľ									Γ		Γ			Γ		T					Γ			Γ	Τ		Γ			
bbb																						_														
TYPE																																				
SITE																																				
VMqq	10,000	10,000	10,000	10,000	3,000	1,500	1,000	1,000	750	500	400	175	150	100	50	50																				
TYPE	'ent	'ent	'ent	'ent	'ent	ent	ent	ent	ent	ent	'ent	ent	ent	ent	ent	ent																				
SITE	=	=	=	1	=	1	1	=	=	1	11	1	=	5	1	=																				
PPMV	20	100,000	10,000	10,000	10,000	10,000	7,000	40	3,000	2,000	850	100	60	10,000	10,000	10,000	8,000	4,000	3,500	500	500	500	100	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TYPE	/alve	DpenEnd	DpenEnd	DpenEnd	DpenEnd	DpenEnd	DpenEnd	DenEnd	Drain	Drain	Drain	Drain	Drain	latch	latch	Hatch	latch	latch	latch	latch	latch	łatch	łatch	'ent	'ent	/ent	'ent	'ent	'ent	'ent	'ent	'ent	'ent	'ent	'ent	'ent
SITE	11/	11	11	11	11	11	11 (1	11	11	11	11 [11	111	11	111	111	11	111	11	111	11	111	11 \	11	11	11	11	11 \	11 \	11	11 \	11 \	1	11 \	11
VMqq	1,000	1,000	750	600	500	300	300	300	200	200	200	150	100	100	100	100	100	100	100	100	100	100	100	100	60	80	60	50	50	40	40	30	30	25	20	20
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve
SITE	=	=	Ŧ	=	11	11	=	=	1	÷	11	1	11	11	11	:	÷	11	Ξ	Ξ	=	1	11	11	-	=	11	11	11	1	=	11	11	=	=	=

							AP	Ι	ΡL	IBL	_*I	45	89	9	З			173	92	29	0	05	17	69	11	33	36									
VMdd	300	300	300	200	200	200	200	100	100	50	50	50	50	50	50	40	40	30	30	30	30	20	18	12	12	10	10	100,000	100,000	10,000	10,000	10,000	10,000	10,000	10,000	4,000
TYPE	2 Valve	2 Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	OpenEnd								
SITE	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	7	12
	g	8	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	Q	0	0	0	0	0	0	Q	0	0	Q	0	0			 [0]
PPMV	10,0(10,0(10,0(10,0(10,0(10,0(10,0(6'00	9'00	8,00	8,0(2'0(5,00	4,00	4,00	4,00	4,00	3,00	3,00	2,00	2,00	2,00	2,00	2,00	2,00	1,50	1,50	1,20	1,00	1,00	1,00	6	60	60	50	40
TYPE	Valve	/alve	/aive	/alve																																
SITE	12	12	12	12	12	12	12	12	12	12	12	12 \	12	12	12	12	12 \	12 \	12	12	12/	12 \	12	12	12 \	12 \	12 \	12 /	12 \	12	12 \	12 \	12 \	12 \	12 \	12/
<u> </u>	10		0	0	0	0	10	0				0			0										6											
VMdd	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	20,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00(10,00(10,00(10,00(10,000
TYPE	Valve	/alve	/atve	/alve																																
SITE	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12 \	12	12	12	12/	12
	10	0	0			10	10	6					0											10		0										
PPMV	1,00	95	50	50	40	40	30	30	õ	20	20	20	10	10	10	10	4	4	4(4	õ	3(ĕ	5	5(2(16	1	Ŧ	100,000	100,000	100,000	100,001	100,000	100,000	100,000
TYPE	Connection	/alve																																		
SITE	12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (12 \	12 \	12 \	12 \	12 \	12	12 \
PPMV	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	6,000	6,000	6,000	5,000	5,000	5,000	3,000	3,000	2,500	2,000	2,000	2,000	2,000	1,800	1,800	1,500	1,100
TYPE	Connection																																			
SITE	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

_						A	PI	P	UB	L*	45	689	9 9	73			07	32	25	90	0.	51	76	92	2	272	2									
	VM44														T					T				T										T	T	
TVDE																																				
CITE	5		T		1																										╉		-	+	+	+
DPMV					T																					T								T		
TYPE																																				
SITE																										+							-	+	-	
VMqq																																		T	Ť	
TYPE																																				
SITE										-									+		+-										-			$\left \right $		
PPMV	2.000	2.000	2002	500	500	500	400	300	250	150	100	100	80	20	50	\$	30	30	25	25	8	15	15	15	15	100,000	100,000	100,000	4,000						T	\square
TYPE	ressureRelie	ent	ant	ent	ent																															
SITE	12 F	12 F	12 F	12 F	12 P	12 F	12 F	12 P	12 PI	12 PI	12 V(12 Ve	12 V6	12 V(
PPMV	3,000	2,500	2,500	2,000	2,000	2,000	500	500	500	400	250	200	200	200	100	100	100	50	50	30	20	100,000	100,000	100,000	100,000	10,000	1,000	15	10,000	100,000	10,000	10,000	8,000	3,500	3,000	3,000
ТҮРЕ	OpenEnd	DpenEnd	OpenEnd	DpenEnd	DenEnd	DpenEnd	Compressor	Compressor	Compressor	Compressor	Compressor	Compressor	latch	nstrument	ressureRelie	ressureRelie	ressureRelie	ressureRelie	ressureRelie	ressureRelie	ressureRelie															
SITE	12	12	12	12	12	12	12	12	12	2	12	<u>1</u> 2	12	15	12	12	12	12	12	12	12(12	2	12 (12 (12	12	12+	12	12 12	12 F	12 F	12 P	12 P	12 P	12 P

E TYPE PPMV 3 Valve 100,000 3 Valve 100,000	3 Valve 100,000		3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000 3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 3 Valve 100,000	3 Valve 100,000 4 Valve 100,000	3 Valve 100,000 4 Valve 100,000 5 Valve 100,000	3 Valve 100,000 4 Valve 100,000 5 Valve 100,000 6 Valve 100,000 7 Valve 100,000	3 Valve 100,000 4 Valve 100,000 1 Valve 100,000 1 Valve 100,000 1 Valve 100,000 1 Valve 100,000	3 Valve 100,000 4 Valve 100,000 9 Valve 100,000 1 Valve 100,000	3 Valve 100,000 4 Valve 100,000 5 Valve 100,000 6 Valve 100,000 7 Valve 100,000	3 Valve 100,000 4 Valve 100,000 5 Valve 100,000 6 Valve 100,000 7 Valve 100,000 8 Valve 100,000 9 Valve 100,000 1 Valve 100,000 1 Valve 100,000 1 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve	3 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000	3 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000	3 Valve 100,000 4 Valve 100,000 9 Valve 100,000 9 Valve 100,000 1 Valve 100,000 Valve 100,000	3 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve Valve 100,000 Valve Valve <t< th=""><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <tr< th=""><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <tr< th=""><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 1 100,000</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,0</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 4 1000,000</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100</th></tr<></th></tr<></th></t<>	3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <tr< th=""><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <tr< th=""><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 1 100,000</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,0</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 4 1000,000</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100</th></tr<></th></tr<>	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 1 Valve 100,000 Valve 100,000 Valve 1 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <tr< th=""><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 1 100,000</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,0</th><th>3 Valve 100,000 3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 4 1000,000</th><th>3 Valve 100,000 3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100</th></tr<>	3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 4 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 <	3 Valve 100,000 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 4 100,000 Valve 1 100,000	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,000 Valve 100,0	3 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 Valve 100,000 4 100,000 100,000 4 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 4 1000,000	3 Valve 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 100,000 4 100,000 Valve 100,000 Valve 100,000 100
00 13 13	1915	13 13	00 13	00 13	12	2																								
PPM 100,0 100,0	100,0	100,0	100,00	100,0(100,00	100 01	10'00 I	100,00	100,00	100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 00 00 00 00 00 00 00 00 00 00 00 0	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,000	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,000 100,000 100,000 100,000 100,000	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,000 100,000 100,000 100,000	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00000000	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00000000	100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00000000
SITE TYI 13 Valve 13 Valve	13 Valve	13 Valve 13 Valve	13 Valve	13 Valve	13 Valve	13 Valve		13 Valve 13 Valve	13 Valve 13 Valve 13 Valve	13 Valve 13 Valve 13 Valve 13 Valve	13 Valve 13 Valve 13 Valve 13 Valve 13 Valve	13 Valve	13Valve13Valve13Valve13Valve13Valve13Valve13Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve	13 Valve 13 Valve <td>13 Valve 13 Valve <td>13 Valve 13 Valve</td><td>13 Valve 13 Valve</td><td>13 Valve 13 Valve <td>13 Valve 13 Valve</td></td></td>	13 Valve 13 Valve <td>13 Valve 13 Valve</td> <td>13 Valve 13 Valve</td> <td>13 Valve 13 Valve <td>13 Valve 13 Valve</td></td>	13 Valve	13 Valve	13 Valve 13 Valve <td>13 Valve 13 Valve</td>	13 Valve
PPMV 1,000	1,000	1,000	1,000	1,000	1,000	1,000	007		500	500 300	700 300 300	700 300 300 300 300	700 300 300 300 300 300	700 300 300 300 300 300 300	700 300 300 300 300 300 200	700 500 300 300 300 300 200 200	700 500 300 300 300 300 200 200 200	700 500 300 300 300 300 300 300 300 300 3	700 300 300 300 300 300 300 300 300 200 150 150	700 500 300 300 300 300 300 300 300 300 3	700 500 300 300 300 300 300 300 300 150 150 150 100	700 500 300 300 300 300 300 300 300 300 100 1	700 300 300 300 300 300 300 300 300 100 1	700 300 300 300 300 300 300 300 300 100 1	700 300 300 300 300 300 300 300 300 300	700 300 300	700 500 300	700 500 300	700 500 300	700 500 300
SITE TYPE 13 Connection 13 Connection	13 Connection 13 Connection	13 Connection 13 Connection	13 Connection	13 Connection	13 Connection	13 Connection			13 Connection	13 Connection 13 Connection	13 Connection 13 Connection 13 Connection	13 Connection 13 Connection 13 Connection 13 Connection	13 Connection 13 Connection 13 Connection 13 Connection 13 Connection	 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 	 Connection Connection Connection Connection Connection Connection Connection 	 Connection Connection Connection Connection Connection Connection Connection Connection 	13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection	13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection 13 Connection	 Connection 	 13 Connection 	 13 Connection 	 13 Connection 	 13 Connection 	 13 Connection 	13Connection	13Connection	 13 Connection 	13Connection	13Connection13	 13 Connection
10,000	10,000	10,000	10,000	10,000	10,000	000'01	8,000		5,000	5,000	5,000 5,000	5,000 5,000 5,000	5,000 5,000 5,000 5,000	5,000 5,000 5,000 5,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000	5,000 5,000 5,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 2,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 2,000 2,000	5,000 5,000 5,000 5,000 5,000 3,000	5,000 5,000 5,000 5,000 5,000 3,000 2,000 2,000 2,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 1,500 2,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 1,500 2,000	5,000 5,000 5,000 5,000 5,000 3,000 3,000 3,000 1,500 1,500 1,500 1,500
SITE TYPE 13 Connection 13 Connection	13 Connection 13 Connection	13 Connection	13 Connection	13 Connection	13 Connection	13 Connection	13 Connection		13 Connection	13 Connection 13 Connection	13 Connection 13 Connection 13 Connection	13 Connection13 Connection13 Connection13 Connection	13Connection13Connection13Connection13Connection	 Connection Connection Connection Connection Connection Connection 	13Connection13Connection13Connection13Connection13Connection13Connection	13Connection13Connection13Connection13Connection13Connection13Connection13Connection	 13 Connection 	 Connection 	 Connection 	 Connection 	 Connection 	13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection13Connection	13Connection	13Connection	13Connection	13Connection	13Connection	13Connection	13Connection	13Connection
	0,000	100,000	100,000	000'001		100,000	100,000	100 000	222	100,000	100,000	100,000 100,000	100,000 100,000 100,000	100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 30,000 30,000 30,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 20,000 20,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 20,000 20,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 20,000 20,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 20,000 20,000 20,000 20,000	100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 20,000 20,000 20,000 20,000
PPMV 100,000 100,000	<u> </u>	╶┧╌╍╋	- 1	-	1	1	1	٦	- 1	- _																				

API PUBL*4589 93 🛤 0732290 0517693 109 🖿

						A	ΡI	Р	UB	L*	45	689	9 '	1 3			07	32	29	10	0.	51	76	94	٥	45	i									
VMqq	200	200	150	150	150	150	150	150	150	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	70	70	60	60	50	50	50	50	50
re type	13 Valve	3 Valve	3 Valve	13 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve																			
S				Ľ	Ĺ	Ĺ	Ľ							Ľ	Ľ			-	[[-	-		–	[[-		Γ	-	-	-	-	-	-	-
PPMV	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	250	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve													
I III	13	12	33	13	33	13	₽	2	3	13	13	13	13	13	13	3	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
PPMV	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	800	800	800	600	600	500	500	500	500	500	500	500	500	500	500	500	500	500	400	300	300
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Vaive	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve													
E	13	13	13	13	13	13	13	13	13	₽	₽	13	₽	₽	33	13	13	13	13	13	13	13	13	₽	33	13	₽	₽	13	13	13	₽	3	13	₽	₽
	L	L																																		_
PPMV	5,000	5,000	5,000	4,000	4,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	2,000	2,000	2,000	2,000	2,000	2,000	1,800	1,500	1,500	1,500	1,500	1,200	1,000	1,000
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve													
ITE	13	13	13	13	13	33	9	33	₽	9	₽	₽	9	₽	9	₽	2	₽ 1	₽ 2	<u></u>	9	₽ 2	₽ 2	33	£ ₽	₽ ₽	<u>9</u>	<u>e</u>	₽ 2	₽ ₽	9	₽ 2	5	10	2	<u></u>
S																																				
VMqq	50,000	50,000	40,000	30,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	15,000	15,000	15,000	12,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	8,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
E TYPE	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	3 Valve	Valve	Valve	3 Valve	Valve	3 Valve	3 Valve	3 Valve													
SIT	-	-	-	-	-	-	÷	-	-	÷	÷	-	-	÷	ř]	Ψ	÷	Ψ	÷	-	÷	-	÷	÷	÷	-	Ψ	Ψ	Ψ	Ψ	¥	Ψ	Ϋ́	-	÷	÷

								A	PI	: F	PUE	3L>	*4.	58	9	93			0	73	22	90		151	·76	-9!	5	T8	1							
																																			T	
TVDE																																				
Ë		╁	╁	\uparrow	╈	╈	+		┼╴	╀╴		-	+-	+		┼	╀	+	╀	+	+	+	+	╀	╋	-	-	╀	╀	+	+	┼	+	+	-	+
<u> </u>	<u>7</u>	 		1_ T	⊥_ ⊤_	1_ 7_		1 T	1	1 T	1. T-				 					<u> </u>						<u> </u>										
AMdd.																																				
ТҮРЕ																																				
ITE	+			┼╴	╞	╞	+	-	$\left \right $	$\left \right $	-		┢	\vdash	-	-	$\left \right $	-		╀	╀	╀─	╞	-	-	-	╀	-		-	-	-	╞		-	
S	<u> </u>	1		L	<u> </u>	<u> </u> 1-		<u> </u>	<u> </u>		<u> </u>		I						<u> </u>																	
PPMV																																				
TYPE																																				
ITE					$\left \right $			-						-			-				$\left \right $	-	-		-		-		-	-	-					
0																						 		<u> </u>			L				L					
VMdd	100,00	100,00	10,00	8,00	2,00	7,000	4,00(3,00(3,00(20,000	100,000	100,000	500	500	2,000	20	100,000	5,000	100	200																
TYPE	Compressor	Compressor	Compressor	Compressor	Compressor	Compressor	Compressor	Compressor	Compressor	latch	nstrument	nstrument	nstrument	nstrument	ressureRelie	ressureRelie	umpSeal	umpSeal	umpSeal	ent																
SITE	13	13	13 (13 (13 (13 (13 (13 (13 (131	13	13 11	13 11	13 11	13 F	13 F	13 P	13 P	13 P	13 V		-						-								
>	50	50	9	40	Ş	35	g	ຊ	50	2			Q	2								0				0										
Mdd			-								• •	100,0(100,00	100,00	100,00	100,00	100,00	20,00	3,00	2,00	1,50	99	50	30	15	15	10	10	10	10	8	3(21	100,000	100,000	100,000
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	OpenEnd	OpenEnd	OpenEnd	OpenEnd	DpenEnd	OpenEnd	OpenEnd	OpenEnd	DpenEnd	DpenEnd	OpenEnd	DpenEnd	DpenEnd	DpenEnd	DenEnd	DpenEnd	DenEnd	DenEnd	DenEnd	DenEnd	penEnd	penEnd	ompressor	ompressor	ompressor
SITE	13	13	13	5	13	₽ ₽	13	13	£	13	13	<u>۳</u>	<u>2</u>	<u>e</u>	13	200	13	13	13 (13	13(13	13 (13	13	13	13	13	13 C	13	130	13 C	2 2	5 5	<u>2</u>	130
						_						_															- 1			- 1	ļ		- 1			1

	VMdd	1,000	1,000	1,000	1,000	1,000	200	600	500	500	500	500	500	500	500	500	500	400	400	300	300	300	300	300	250	200	200	200	200	200	200	200	200	200	200	200	4 EV
	TYPE	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection									
	SILE	4	7	4	4	4	4	14	14	4	14 (14 (14 (14 (14 (14 (14 0	14 0	14 0	14 C	14 C	14 C	14 C	40	14 C	14 C	14 C	140	14 C	14 C	14 C	14 C	14 C	14 C	14 C	14 C	14 C
	VM44	5,000	000'9	5,000	5,000	5,000	5,000	5,000	4,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	2,000	2,000	2,000	2,000	2,000	2,000	1,700	1,400	1,100	1,000	1,000	1,000	1,000
TUNT		Connection	CONTRECTION	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	connection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection												
CITC		± ;		± ;	4	•	4	4	4	4	7	14	14	4	4	14	4	4	4	7	4	7	7	7	7	7	4	2	14	7	40	7	40	40	40	40	14 C
DPAN			0000		10,000	10,000	000'01	000'01	000'01	000'01	10,000	10,000	000'01	10,000	10,000	000'01	000'01	10,000	10,000	10,000	10,000	10,000	10,000	000'6	9,000	000'6	9,000	8,000	8,000	000'	000'/	0000'/	000'/	6,000	6,000	- 1000 -	5,000
TYPE	Connection	Connection	Connection	Onnaction	Connection	onnoction	Onnoction		OILIPCTION	onnection	onnection	onnection	OTTRECHON	onnection	Onnection	Olifiection	onnection		Dimection			Dinection				Unection	Intection	nnection									
SITE	14 (14	14 (140																5 C	14		4			5 C						30		5 2	50	
PPMV	70.000	50.000	50.000	50.000	40.000	30,000	30,000	20,000	20,000	20,000						0000		00001	000'01	10,000	0000+	10000	0000	000,01	0000	000.01	10,000	10,000	10,000								
TYPE	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Onnection	Connection	Connection	Connection	Connection	Connection	Onnoction	onnection		Connection	Connection	Connection		Connection	Onnection	Onnaction	Connection	onnection	Onnection	onnaction	Connection	Connection	onnection		onnaction	onnaction	
SITE	14	14	14	14	14	14	4	14	14	14	14	14	14	4	14	14												14	140								2
PPMV	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100.000	100 000	100.000	100.000	100.000	100.000	100.000	100.000	100 000	100 000	100 000	100,000	100.000	100 000	100,000	100,000	100,000	100 000	100 000	100.000	100.000	100.000		00000	00000	BU DOD	BO DOD	70.000	1000 02	
ТҮРЕ	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	Connection	onnection	Connection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	
SITE	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14 (14	14	14 (14 (14	14 (14 (14	14 0	14 0	14 0	140	14 0	140	14 0	14 0	14 0	14 0	14 0	140	14 C	-

API PUBL*4589 93 🎟 0732290 0517696 918 📟

SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	VMqq	SITE	TYPE	PPMV	SITE	TYPE	PPMV
14	Connection	150	4	Connection	10	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	4	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	4	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	90,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	000'06	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	90,000	14	Valve	10,000	14	Valve	10,000
14	Connection	100	14	Valve	100,000	14	Valve	000'06	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	80,000	14	Valve	10,000	14	Valve	10,000
14	Connection	70	14	Valve	100,000	14	Valve	70,000	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	60,000	14	Valve	10,000	14	Valve	10,000
14	Connection	70	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	70	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	55	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	55	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
4	Connection	50	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	50,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	40,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	40,000	14	Valve	10,000	14	Valve	10,000
14	Connection	50	14	Valve	100,000	14	Valve	40,000	14	Valve	10,000	14	Valve	10,000
14	Connection	40	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	40	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	30	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	30	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	30	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	30,000	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000	14	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000	4	Valve	10,000
14	Connection	20	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000	14	Valve	10,000
14	Connection	15	14	Valve	100,000	14	Valve	10,000	14	Valve	10,000	7	Valve	10,000

API PUBL*4589 93 🔳 0732290 0517697 854 🔳

C-26

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SITE	түре	PPMV	SITE	ETYPE	PPMV	SITE	TYPE	VMqq	SITE	TYPE	VMdd	SITE	TYPE	VM dd
7	Valve	10,000	4	4 Valve	7,000	14	Valve	2,000	4	Valve	600	4	Valve	200
14	Valve	10,000	1	4 Valve	2,000	14	Valve	2,000	14	Valve	600	4	Valve	150
4	Valve	10,000	1	4 Valve	7,000	14	Valve	2,000	4	Valve	500	4	Valve	150
4	Valve	10,000	1	4 Valve	2,000	14	Valve	2,000	4	Valve	500	14	Valve	150
14	Valve	10,000	-	4 Valve	7,000	14	Valve	2,000	14	Valve	500	14	Valve	150
4	Valve	10,000	14	4 Valve	6,000	14	Valve	2,000	4	Valve	500	14	Valve	150
4	Valve	10,000	-	4 Valve	6,000	14	Valve	2,000	44	Valve	500	14	Valve	150
7	Valve	10,000	14	4 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
14	Valve	10,000	14	1 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
4	Valve	10,000	14	4 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
4	Valve	10,000	1	4 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
7	Valve	10,000	1	4 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
14	Valve	10,000	14	4 Valve	5,000	14	Valve	2,000	14	Valve	500	14	Valve	100
7	Valve	10,000	-	4 Valve	5,000	14	Valve	2,000	14	Valve	400	14	Valve	100
4	Valve	10,000	14	4 Valve	5,000	14	Valve	2,000	14	Valve	400	14	Valve	100
4	Valve	10,000	14	4 Valve	5,000	14	Valve	1,800	14	Valve	300	14	Valve	100
4	Valve	10,000	14	4 Valve	5,000	14	Valve	1,700	4	Valve	300	14	Valve	100
14	Valve	10,000	14	4 Valve	5,000	14	Valve	1,400	14	Valve	300	14	Valve	100
₹	Valve	10,000	14	1 Valve	4,000	14	Valve	1,100	14	Valve	300	14	Valve	100
7	Valve	10,000	-	4 Valve	4,000	14	Valve	1,000	14	Valve	300	14	Valve	100
7	Valve	10,000	-	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	70
7	Valve	10,000	2	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	70
7	Valve	10,000	-	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	20
7	Valve	10,000	-	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	8
7	Valve	10,000	2	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	55
4	Valve	000'6	-	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	50
4	Valve	9,000	7	4 Valve	3,000	14	Valve	1,000	14	Valve	300	14	Valve	50
7	Valve	9,000	7	4 Valve	3,000	14	Valve	1,000	14	Valve	250	14	Valve	50
7	Valve	9,000	7	4 Valve	3,000	14	Valve	1,000	14	Valve	200	14	Valve	50
7	Valve	9,000	-	4 Valve	3,000	14	Valve	1,000	14	Valve	200	14	Valve	50
7	Valve	9,000	-	4 Valve	3,000	4	Valve	1,000	14	Valve	200	14	Valve	50
7	Valve	9,000	7	4 Valve	3,000	14	Valve	1,000	14	Valve	200	14	Valve	50
7	Valve	000'6	-	4 Valve	3,000	14	Valve	1,000	14	Valve	200	14	Valve	50
4	Valve	000'6	÷	4 Valve	2,000	14	Valve	1,000	14	Valve	200	14	Valve	50
7	Valve	8,000	-	4 Valve	2,000	14	Valve	800	14	Valve	200	14	Valve	45
4	Valve	8,000	Ť	4 Valve	2,000	14	Valve	200	14	Valve	200	14	Valve	30

SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITI	TYPE	PPMV	SITE	TYPE	VMdd	SITE	TYPE	VMqq
14	Valve	30	14	t PressureRelie	100,000	Ĩ	4 PumpSeal	60						
14	Valve	30	14	1 PressureRelie	10,000	È	4 PumpSeal	50						
14	Valve	30	14	1 PressureRelie	10,000	Ť	4 PumpSeal	50						
14	Valve	15	14	1 PressureRelie	10,000	÷	4 Vent	100,000						
14	Valve	15	14	t PressureRelie	10,000									
14	Valve	15	14	t PressureRelie	7,000									
14	OpenEnd	100,000	14	t PressureRelie	5,000									
14	OpenEnd	100,000	14	I PressureRelie	2,000									
14	OpenEnd	100,000	14	I PressureRelie	1,200									
14	OpenEnd	20,000	14	1 PressureRelie	1,200									
14	OpenEnd	10,000	14	1 PressureRelie	1,000									
14	OpenEnd	10,000	14	I PressureRelie	300									
14	OpenEnd	10,000	14	1 PumpSeal	100,000									
14	OpenEnd	9,000	14	t PumpSeal	10,000									
14	OpenEnd	9,000	14	I PumpSeal	10,000									
14	OpenEnd	5,000	14	I PumpSeal	10,000									
14	OpenEnd	5,000	14	I PumpSeal	10,000									
14	OpenEnd	4,000	14	I PumpSeal	10,000									
14	OpenEnd	3,000	14	I PumpSeal	10,000									
14	OpenEnd	3,000	14	I PumpSeal	10,000									
14	OpenEnd	1,000	14	I PumpSeal	5,000									
14	OpenEnd	300	14	I PumpSeal	4,000									
14	OpenEnd	50	14	I PumpSeal	4,000									
14	OpenEnd	40	14	PumpSeal	3,000									
14	OpenEnd	30	4	t PumpSeal	3,000					_				
14	Drain	1,000	4	I PumpSeal	3,000									
14	Drain	600	4	I PumpSeal	2,000					-				
14	Hatch	10,000	14	I PumpSeal	1,000									
14	Hatch	10,000	14	I PumpSeal	1,000									
14	Hatch	8,000	14	I PumpSeal	1,000									
14	Hatch	8,000	14	I PumpSeal	500									
14	Hatch	3,000	14	I PumpSeal	400									
14	Hatch	1,200	14	I PumpSeal	300									
14	Instrument	9,000	14	I PumpSeal	200									
14	Instrument	3,000	14	I PumpSeal	150									
14	PressureRelic	100,000	-	I PumpSeal	100									

API PUBL*4589 93 🔳 0732290 0517699 627 🔳

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

PPMV	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	000 001
TYPE	Valve	Value																																		
SITE	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
VMqq	200	500	500	500	500	500	500	500	500	500	400	400	400	300	300	300	200	200	200	200	200	200	200	200	200	150	100	100	100	100	60	50	50	50	50	30
түрЕ	Connection	onnaction																																		
SITE	15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (1510
VMqq	3,000	3,000	3,000	2,500	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	1,500	1,200	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	800
TYPE	Connection																																			
SITE	15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15 0	15 (15 (15 (15 0	15 (15 (15 (15 0	15 (15 (15 0	15 (150	15 0	15 0	15 (15 0	15(15 (15 (15 (1510
VMdd	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	9,000	8,000	8,000	7,000	5,000	5,000	5,000	4,000	4,000	4,000	4,000	3,000	3,000	3,000	3,000	3,000	3,000	3.000
E TYPE	5 Connection																																			
SIT	-	-	-		••••	-	-	-			-		-	-		-	-	-	-	-	-					-	-	-		-	-		-	-		_
VMP	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	30,000	30,000	20,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
SITE TYPE	15 Connection																																			

API PUBL*4589 93 🖿 0732290 0517700 179 🖿

	VMqq								Τ		Γ			Τ	T		T		T														T			T	T		-
	TYPE																																						-
l	SITE																$\left \right $				-	+	-	_	_									+	+-	+		_	
	VMqq	2,000	1,100	10,000	100,000	100,000	100,000	100,000	100,000	10,000	10,000	10,000	1,000	300	15	200			T															<u> </u>	Ī		T		
	SITE TYPE	15 OpenEnd	15 OpenEnd	15 Instrument	15 PumpSeal	15 Vent																																	
	VM44	2,000	2,000	2,000	000;1	1,500	000'1	000'1	000	000'1	750	200	500	200	200	500	400	300	300	250	200	200	200	0, 00		<u>201</u>		3	3	2 5	2	20	50	20	000,000	000'00	000'00	2,000	
	15 Value	15 Valve	15 Valve	15 Valve	to vaive	15 Valve	15 Valve	15 Valve	15 Valve	15 Volue	15 Valve	15 Valve	13 Valve	13 Valve	10 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	5 Valva	5 Valvo	5 Valvo	5 Valve	5 Valva	5 Volve	Avin of	5 Valve	5 Valve	5 OpenEnd 1	5 OpenEnd 1	5 OpenEnd 1	5 OpenEnd	
DPMV	10.000	10 000	10 000	10,000	10.001	10 000	10.000		10.000	10.001	10,000	00001		10,000			000'01	000'01	10,000	10,000	10,000	10,000	10,000	10.000	0006	2,000	6,000	5 000	5,000	5.000	5 000	0,000	000'+	4,000	4,000	4,000	3,000	2,000	
SITE TYPE	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valvo	15 Valvo	16 Weber	13 Valve	e vaive	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valve	15 Valvo	10 VAIVE	15 Vaive	15 Valve	15 Valve	15 Valve						
VMdd	100,000	100,000	100,000	100,000	100,000	100,000	80,000	40,000	40,000	35,000	30,000	30,000	30,000	30,000	30,000	20.000	20.000	000 02	20,000	- 1000	000.61	15,000	15,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10.000	10.000				000,01	000,01	
TYPE	Valve	Valve	Valve	Valve	/alve	/alve	/alve	alve	alve	alve	avle	evi	utuo.		live	live	live	lve	lve	lve	lve	Ve	Ve	ve	ve	ve	VP	40			20								
SITE	15	15/	15 \	15 \	15 \	15 V	15 V.	15 V.	15 V	15 Vi	15 V	15 Vé	15 Ve	15 Va	15 Va	15 1/3	15 1/2	PA CI		15 Va	15 Va	15 Va	15 Vai	15 Val	15 Valv	15 Valv	15 Valv	15 Valv	D										

API PUBL*4589 93 🖿 0732290 0517701 005 페 •

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

•

SITE	TYPE	VMqq	SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV	SITE	TYPE	PPMV
16	Connection	100,000	1 6	S Connection	10,000	16	Connection	500	16	Valve	100,000	16	Valve	10,000
16	Connection	100,000	9	S Connection	10,000	16	Connection	300	16	Valve	100,000	16	Valve	10,000
16	Connection	100,000	16	S Connection	10,000	16	Connection	300	9	Valve	100,000	16	Valve	10,000
16	Connection	100,000	-16	S Connection	10,000	16	Connection	300	16	Valve	100,000	16	Valve	10,000
16	Connection	100,000	۹	S Connection	10,000	16	Connection	200	16	Valve	100,000	16	Valve	10,000
16	Connection	100,000	16	Sconnection	10,000	16	Connection	200	16	Valve	100,000	16	Valve	10,000
16	Connection	100,000	9	Sonnection	10,000	16	Connection	200	16	Valve	40,000	16	Valve	10,000
16	Connection	100,000	16	Sonnection	10,000	16	Connection	200	16	Valve	15,000	16	Valve	10,000
9	Connection	100,000	16	Connection	10,000	16	Connection	150	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Connection	100	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Connection	100	16	Valve	10,000	16	Valve	10,000
9	Connection	100,000	16	Connection	10,000	16	Connection	100	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Connection	100	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Connection	100	16	Valve	10,000	16	Valve	10,000
9	Connection	100,000	16	Connection	10,000	16	Connection	0 6	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Connection	20	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	16	Connection	10,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
9	Connection	100,000	16	Connection	3,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
9	Connection	100,000	16	Connection	2,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
9	Connection	100,000	16	Connection	2,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	100,000	1 6	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
9	Connection	70,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	40,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	40,000	9	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16 \	Valve	10,000
16	Connection	40,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
91	Connection	40,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16	Valve	10,000
16	Connection	20,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16/	Valve	10,000
16	Connection	10,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16 \	/alve	10,000
91	Connection	10,000	16	Connection	1,000	16	Valve	100,000	16	Valve	10,000	16 \	/alve	10,000
16	Connection	10,000	16	Connection	800	16	Valve	100,000	16	Valve	10,000	16 \	/alve	10,000
16	Connection	10,000	16	Connection	200	16	Valve	100,000	16	Valve	10,000	16	/alve	10,000
91	Connection	10,000	16	Connection	200	16	Valve	100,000	16	Valve	10,000	16	/alve	10,000
91	Connection	10,000	16	Connection	500	16	Valve	100,000	16	Vatve	10,000	16	/alve	10,000

							A	ΡI	Ρ	UB	L*	45	689	3 '	33			07	32	25	10	0.	51	77	03		88	}								
PPMV																																				
TYPE																																				
SITE																														+						
PPMV																																				
TYPE																																				
SITE	-																																			
VMdd	10,000	10,000	10,000	10,000	9,000	600	200	200	100	100,000	3,000	3,000	2,000	2,000	2,000	150	50	10,000	10,000	2,000	10,000	100	10,000	10,000	10,000	10,000	10,000	1,000								
TYPE	DpenEnd	Compressor	Irain	strument	istrument	Istrument	ressureRelie	ressureRelie	umpSeal	umpSeal	umpSeal	umpSeat	umpSeal	umpSeal																						
SITE	16	16 (16 (16 (16 (16 (16 (16 (16 (16 (16 (16 0	16 0	16 (16 0	16 C	16 D	16 lr	16 Ir	16 1	16 P	16 P	16 P	16 P	16 P	16 P	16 P	16 P								
VMqq	1000	1000	1000	800	200	500	500	500	500	400	400	400	400	300	300	250	250	200	200	150	150	125	100	100	100	100	100	90	80	60	50	50	30	10,000	10,000	10,000
TYPE	Valve	Valve	Valve	Valve	Valve	/alve	/alve	/alve	/alve	/atve	/alve	/alve	/alve	/alve	/alve	/alve	alve	'alve	alve	'alve	'alve	alve	alve	alve	penEnd	penEnd	penEnd									
SITE	16	16	16	16	16	16	16	16	16	16	16	16	16	16 \	16	16	16 \	16 \	16	16	16 \	16 /	16 \	16 \	16 \	16 \	16 V	16 \	16 V	16 C	16 C	16 C				
PPMV	10,000	10,000	9,000	8,000	8,000	7,000	6,000	6,000	5,000	5,000	5,000	4,000	4,000	3,000	3,000	3,000	2,000	2,000	2,000	2,000	2,000	2000	1500	1200	1200	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
SITE TYPE	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve	16 Valve															

DPMV	30	308	900	30	10,000	10,000	10,000	10.000	10.000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	9,000	5,000	5,000	5,000	5,000	3,000	2,000	2,000	2,000	1,000	1,000	1,000	1,000	500	200	150
TYPE	Connection	Connection	Connection	Connection	Valve	Valve	/alve	alve	'alve	alve	aive	alve																								
SITE	1	1	=	17	17	17	1-	17	17/	17	17	17/	17 \	171	171	171	17/	17 \	171	17 \	17 \	17 \	17 \	17 V	17 V	17 V	17 \	17 V								
VMqq	200	200	200	200	200	200	200	175	100	100	100	100	100	100	100	100	100	100	75	75	75	75	70	60	60	60	50	50	50	45	40	40	40	40	35	30
TYPE	Connection	onnection	onnection	onnection	connection	onnection	onnection																													
SITE	17	17	17 (17 (17 (17 (17 (17/0	17 (17 (17 (1	17 (17 (17 (17 (17 0	17 0	17 (17 0	4	170	10	4	2	2	2	170	17 0	110	4	170	120	4	17 C	17 C
	0	0		0	0	0	0	0	0	0			0	0	0	0	0	0			-	5	 ठा	<u></u>	 	 ਹ	 ਨਾ									
VMP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	80	20	50	50	50	50	50	50	50	50	50	50	50	50	40	ЭО ЭО	ЭÖС	30(30(30(30(300	30(25(25(25(20(200
TYPE	Connection	onnection	onnection	connection	onnection																															
SITE	17	17	17	17	17 (1	4	17 (17 (17 (1	17	17 (17 (17	17 (17 (17 0	÷	17 0	=	=	2	2	2	2	2	17 0	4	2	4	2	2	2	120	17 C
PPMV	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	7,000	5,000	5,000	5,000	5,000	5,000	4,000	3,000	3,000	3,000	3,000	2,500	2,000	2,000	2,000	2,000	1,500	1,500	1,500	1,500	1,300	1,000	1,000	1,000
TYPE	Connection																																			
SITE	17	17	-	1	2	2	17	1	-1	7	4	7	- 1	7	-	-			-	-		2	-	-	-	-	-	-	2	1	=	=	1	-1	=	17 0
VMqq	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TYPE	Connection																																			
SITE	7	7	-	2	2	-	4	=	7	-	2 :	-	-]!	=	2	=]	=	=	= !	- !	2	- :	- :	2	2	2	- :	2	=	- !	2	-1:	1	= :	2	-

API PUBL*4589 93 🛤 0732290 0517704 814 페
Į		Γ	Γ	Т	Τ	Γ	Г	Т	Γ	Γ	T	<u> </u>	Γ	Г	1	Γ	1	Γ-	—	Γ		Г	<u> </u>	<u> </u>		<u> </u>	—	<u> </u>	r	<u> </u>	<u> </u>					
וערב																																				
SILE																																				
PPMV																																				
ТҮРЕ																																				
SITE																																				
PPMV																																				
TYPE																																				
SITE																																				
PPMV	10,000	1,000																																		
TYPE	nstrument	ressureRelie																																		
SITE	17	17 F											_																							
VMqq	150	100	100	100	100	100	100	100	80	60	50	50	45	45	40	40	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	3,000	400	100	70	60	50	35	10,000	10,000
TYPE	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	Valve	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	OpenEnd	Instrument	Instrument
SITE	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17

C-34

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4589 93 🔳 0732290 0517705 750 🔳

						AP	Ι	Ρl	JBI	_*	45	89	9	3		C	173	122	290	וכ	35	17	70	6	65	17										
DPMV	500																																			
TYPE	Vent																																			
SITE	18																																			
VMqq	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10.000	1.500	1,000	1,000	200	200	500	300	200	200	200	100	100	50	50	100,000	10,000	50	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TYPE	OpenEnd	Compressor	Compressor	Drain	Hatch	Hatch																														
SITE	18	₽	18	18	13	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	181	18	18
PPMV	200	200	200	200	200	200	125	100	100	75	75	50	50	30	30	25	25	20	20	20	15	12	10	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	40,000	10,000	10,000
TYPE	Valve	OpenEnd	OpenEnd	DpenEnd	OpenEnd	DpenEnd	DpenEnd	DpenEnd	OpenEnd	DpenEnd	DpenEnd	DpenEnd	DpenEnd	OpenEnd																						
SITE	18	18	18	18	18	18	18	18	₩	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18 (18 (18 (18(18 (18 (18 (18 (18 (18 (18 (18 (18 (
PPMV	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	50,000	40,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	6,000	5,000	2,000	2,000	2,000	1,000	300	500	400	300	250	250
түре	/alve	/alve	/alve	/alve	/alve	/aive	'alve	'alve	/alve	alve	alve																									
SITE	18 \	18 \	18 \	18	18 \	18 <	18 \	18 \	18 V	18 V	18 V	18 V	18 <	18 V	18 V	18 V	18 V	18 <	18 <	18 <	18/	18 <	18 <	18 <	18 V	18 V	18 <	18 (18 <	18 <	18 V	18 V	18 (18 V	18 (18 V
PPMV	100,000	100,000	100,000	100,000	100,000	100,000	10,000	10,000	10,000	10,000	10,000	10,000	5,000	5,000	4,000	4,000	2,500	2,000	1,000	202	200	500	300	200	100	75	20	20	30	30	20	20	20	15	10	100,000
TYPE	Connection	/alve																																		
SITE	18	18	8	8	8	∞	8	18	8	18	-	8	2	8	<u>۳</u>	18	8	₩ ₩	18	18	8	8	18	8	18	8	8	18(18	18	18	<u>=</u>	<u>ه</u>	18	8	18

C-35

Not for Resale

	VMdd																																	T		
	IYPE																																			
1110		1	1	1				+				$\frac{1}{1}$	$\frac{1}{1}$		+	+	+	+	╀		+	+	-	+	┦		+	+	+	+	+	+	+	+	+	+
VINDO				T	T	T		T		T		T	T	T	T		T	T	T	T	T		T	T	T			T							T	
TVPF									T																											
SITE																			+-			-												$\frac{1}{1}$	+	
PPMV	2.000	1.000	1.000	1 000	1.000	500	300	300	150	100	100	100	40	10,000	10,000	4,000	2,000	300	200	150	20											Ţ				
TYPE	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	alve	oenEnd	DenEnd	DenEnd	DenEnd	DenEnd	penEnd	penEnd	enEnd						}									+
SITE	191	19 1	19 \	19 V	19 (19 1	19 V	19 V	19 V	19 0	19 0	19 O	19 01	19 01	19 01	19 01	190				-						-	┞		<u> </u>		$\left \right $				
PPMV	300	300	250	200	200	200	150	100	100	100	80	02	60	50	50	50	50	50	50	50	35	8	8	25	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10.000	10,000	10,000	3,000	2,000
TYPE	Connection	connection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	nnection	nnection	nnection	nnection	nnection	nnection	ve	ve	ve	ve	ve	ve Ve	e e	/e	le le	le le	e e	(e
SITE	19 (19 C	19 C	19 C	19 C	19 C	19 C	19 C	19 C	19 C	19 C	19 C	19 0	1 <u>9</u> 0	19 C	19 0	19 CC	19 Cc	19 Cc	19 Cc	19 Co	19 Co	19 Co	19 Co	19 Val	19 Val	19 Val	19 Val	19 Val	19 Val	19 Val	19 Val	19 Valv	19 Valv	19 Valv	19 Valv
PPMV	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	000'2	3,000	3,000	3,000	2,500	2,000	2,000	2,000	1,500	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	800	200	500	500	500
TYPE	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	onnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nnection	nection	nection	nection	nection	nection	nection	inection	nection	nection	nection	nection	nection
SITE	19 C	19 C	0 19 1	19 C	19 C	1900	19 0	19 00	1 <u>9</u> C	19 0	19 00						200	00 61	19/00	19 00	19 Co	19 Co	19 Col	19 Col	19 Col	19 Cor	19 Cor	19 Cor	19 Cor	19 Cor	19 Con	19 Con	19 Con	19 Con	19 Con	19 Con

C-36

API PUBL*4589 93 🖿 0732290 0517707 523 🖿

VMqq	60	50	50	50	50	35	20	10,000	10,000	10,000	10,000	1,000	800	500	200																					
TYPE	OpenEnd	Vent																																		
SITE	20	20	20	20	20	20	20	ຊ	8	20	20	20	20	20	20																					
PPMV	10,000	10,000	10,000	10,000	10,000	10,000	5,000	1,500	1,000	500	500	400	200	200	100	100	80	50	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	8,000	2,000	1,000	1,000	500	250	200	100	100	80
TYPE	alve	penEnd																																		
SITE	20 V	20 O	20 O	20 O	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 0	20 O	20 0	20 0																	
VMqq	250	200	200	200	200	200	200	150	100	100	100	100	6	70	60	50	50	45	40	35	30	25	25	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
TYPE	Connection	onnection	alve																																	
SITE	20 (20 (20(0	20	20 (20 (20 (20 (20 (20 (20 (20 0	200	20 (20 (20 0	20 0	20 (20 0	20	20	20 0	20 (20 \	20 \	20<	20 \	20	20 \	20 \	20 <	20 \	20	20 \	20 \	20 \
VMqq	10,000	10,000	10,000	10,000	9,000	9,000	9,000	5,000	5,000	4,000	3,000	3,000	2,500	2,500	2,000	2,000	1,500	1,500	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	500	500	500	500	500	500	300	300	300	300
түре	Connection																																			
SITE	20	20	ຊ	20	20	20	20	20	20 (20 (20	20 (20	20	20	20 0	20 (20	20 (20	20	20	20 (20	20 (20	20 (20 (20 0	20 (20 (20 (20 (20 (20 (20 (
PPMV	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000
SITE TYPE	20 Connection																																			

API PUBL*4589 93 🗰 0732290 0517708 46T 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

C-37

APPENDIX D NON-AROMATIC SPECIATION DATA

		ORIG.	PRE-BAG			HYDROCAR	BON EMISSION	VS (cc/min)		
SITE	TYPE	ISV	ISV	G	3	ខ	2	CS CS	C6+	TOTAL
-	CN	1000001	100000	0.062	0:004	0.003	0.002	0.000	0.003	0.074
-	CN	100000	100000	8.687	0.313	0.009	0.001	0.003	0.005	9.018
-	CN	100000	100000	82.695	1.967	0.047	0.004	0.002	0.003	84.717
	CN	2500	100000	77.845	5.145	2.803	1.503	0.491	0.171	87.959
	SS	10000	40000	1404.500	634.834	234.832	73.596	20.618	11.011	2379.392
	Z	2000	4000	21.215	3.441	1.513	0.708	0.215	0.069	27.162
	z z	100000	2500	6.733	0.331	0.052	0.009	0.004	0.046	7.174
	CN	2000	2000	4.974	0.537	0.279	0.124	0.047	0.024	5.985
	CN	1500	2000	33.363	0.852	0.116	0.026	0.007	0.014	34.378
-	S	AN	100	0.525	0.038	0.016	0.006	0.003	0.004	0.591
	S	15000	66	0.049	0.002	0.001	0.001	0.001	0.003	0.056
		20	40	0.040	0.014	0.009	0.006	0.004	0.004	0.078
- -		100000	100000	598.980	15.422	0.287	0.004	0.001	0.002	614.695
		000001	0000/	44.435	1.477	0.041	0.003	0.003	0.005	45.963
- -		000/	6000	6.348	2.041	1.413	0.829	0.357	0.225	11.214
- -	OEL	80000	1500	0.732	0.051	0.029	600.0	0.005	0.011	0.837
		100000	100000	73.168	2.235	0.065	0.002	0.003	0.005	75.479
		100000	00006	73.168	6.916	2.118	1.253	0.408	0.175	84.037
-		60000	60000	22.687	0.531	0.036	0.008	0.004	0.009	23.275
		100000	20000	10.190	1.176	0.688	0.332	0.119	0.069	12.575
-		AN	9000	0.585	0.022	0.001	0.000	0.001	0.001	0.610
-	۲ ۲	45000	0006	4.367	0.101	0.003	0.000	0.001	0.094	4.567
		1250	2000	5.112	1.026	1.580	1.193	0.501	0.221	9.632
- •		100000	4000	3.579	0.079	0.003	0.001	0.001	0.002	3.664
		100000	3500	0.017	0.000	0.001	0.000	0.000	0.001	0.019
- -		/50	3500	54.291	0.528	0.241	0.116	0.093	0.045	55.314
- •		3000	2500	1.902	0.092	0.031	0.012	0.006	0.005	2.048
- •		921	2000	1.086	0.610	0.346	0.149	0.044	0.022	2.257
-		50	2000	2.881	0.391	0.139	0.049	0.016	0.009	3.486
-		35000	1500	0.743	0.021	0.002	0.001	0.000	0.003	0.771
- -		250	1500	0.306	0.030	0.029	0.034	0.025	0.026	0.450
-		20	1500	0.113	0.031	0.037	0.061	0.078	0.093	0.413
-		20	1500	0.431	0.065	0.206	0.431	0.254	0.163	1.550
-		1000	006	0.213	0.066	0.086	0:090	0.058	0.075	0.589
-		500	006	24.901	0.184	0.102	0.055	0.025	0.019	25.286
- -		60	006	29.996	0.731	0.039	0.007	0.004	0.005	30.781
Ŧ		100001	600	0.007	0.000	0.000	0.000	0.001	0.000	0.008
-		6)	450	0.670	0.073	0.044	0.019	0.005	0.001	0.812

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

	TOTAL	2.500	× 0.574	1.140	0.083
	68+	0.104	0.054	0.116	0.001
4S (cc/min)	છ	0.180	0.048	0.078	0.011
ON EMISSION	8	0.295	0.099	0.044	0.018
HYDROCARE	ß	0.272	0.115	0.022	0.010
	3	0.254	0.076	0.030	0.003
	CI	1.395	0.182	0.849	660.0
PRE-BAG	ISV	250	200	150	06
ORIG.	ISV	250	750	1250	NA
	TYPE	٨L	٨L	٨Ĺ	۲
	SITE	-	-	-	-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

API PUBL*4589 93 🗰 0732290 0517711 T54 📟

		ORIG.	PRE-BAG							
SITE	TYPE	ISV	ISV	Ð	ε	HIDHOCAHE	SON EMISSIO	NS (cc/min)		
2	BACK	NA	ſ		Ż	3	3	చి	+90	TOTAL
2	CN	VIV		0.14/	0.003	0.001	0.000	0.000	0.000	1 1 E
~	CN	2000	10000	138.334	2.220	0.104	0.006	0.000	0000	101.0
6		nnne	0000	11.177	0.186	0.000	0.002	0.004	0100	140.041
1 0	5	YN.	200	1.232	0.021	0.005	0000	0000	01000	8/0.11
7 C	5	NA	150	0.189	0.051	0.003	0.001	0.000	0.000	1.258
V	2	40	40	0.004	0.000	0.000	0000		0.000	0.245
N	Z	NA		0.008	0.000	0000	0000	0.000	0.165	0.168
2	INST	NA	30000	6.435	0.068	0.000	0000	0.000	0.000	0.008
2	OEL	100000	100000	3473.920	27 6AD	0.000	0.000	0.000	0.000	6.509
2	OEL	10000	100000	10 694	0.110	100.0	120.0	0.001	0.008	3502.140
2	OEL	2000	12000	E AEA	0.10	lann.n	0.000	0.000	0.000	10.811
2	OEL	300	20002	10000	001.00	800.0	0.000	0.000	0.005	6.637
2	OEL	6000	6000	100.00	0.964	1.381	1.381	0.798	0.824	6.332
2	OEL	1200	1200	1011	0.044	0.037	0.018	0.009	0.004	24.502
2	OEL	1000	500	110.0	100.0	0.005	0.005	0.008	0.018	0.047
2	OEL	10000	1000	0.002	0.003	0.004	0.001	0.000	0.000	0.070
ŝ	- Hereit	00000	001	G21.U	0.010	0.009	0.004	0.000	0000	0.0.0
6		01	2	0.074	0.000	0.000	0.000	0.000	0000	0.140
1 6		0001	1000	0.609	0.013	0.004	0000	1000	0000	C/N'N
V	VEN	200	2000	1.197	0.009	0.001	0000	100.0	100.0	0.629
2	VEN	100	100	0.220	0.000	0000	0000	0.000	0.002	1.210
2	۲L	100000	100000	1342.875	28 970	1000	0.000	0.000	0.000	0.221
2		100000	60000	1035 096	7 000	107.1	001.0	0.040	0.012	1373.314
2	7	20000	50000	370.048	1.020	0.170	0.001	0.011	0.020	1042.520
2	۲ م	50	50000	25.110	0.140	601.0	0.035	0.001	0.000	372.870
2		00006	15000	21 504	0.140	0.032	0.015	0.002	0.007	25.314
2		NA	100001	38.802	0.000	0.013	0.018	0.009	0.007	21.723
2		2500	0006	95.958	0.640	0.010	0.001	0.001	0.001	39.045
2		3000	3500	7.573	0.050	0.017	0.002	0.001	0.000	96.621
2		1500	3000	1 679	0000	C10.0	0.004	0.000	0.000	7.648
2	F F	40000	2000	0.010	0000	0.007	0.002	0.000	0.000	1.719
2		10000	BOD	0 10.0	0.000	0.000	0.000	0.000	0.000	0.014
2		2002	200	0.10/	0.001	0.004	0.001	0.000	0.001	0 104
6		0000	001	U.138	0.002	0.002	0.000	0.000	0000	
10		2000	400	7.499	0.053	0.005	0.001	0.001	0.000	0.143
v 0		AN	300	0.059	0.010	0.016	0.004	1000	0.000	1.559
~ ~		. 100000	300	0.200	0.002	0.005	0.001	10000	100.0	0.091
7		NA	50	0.136	0.011	0.008	000	0.000	0.000	0.208
							4.006	100.0	0.000	0.159

		ORIG.	PRE-BAG			HYDROCARB	ION EMISSION	NS (cc/min)		
SITE	TYPE	NSI	ISV	CI	C2	ខ	C C	C5	C6+	TOTAL
3	BOX	NA	100001	0.822	0.186	0.468	0.564	0.409	0.366	2.814
3	BOX	NA	10000	3.250	0.590	1.975	2.740	2.705	3.390	14.650
3	BOX	NA	8000	0.943	0.400	1.177	1.487	1.368	1.584	6.959
3	BOX	NA	5000	9.100	1.770	5.300	5.850	4.005	3.780	29.805
3	BOX	NA	4000	2.830	0.965	3.420	5.200	5.550	6.550	24.515
e	BOX	NA	3000	4.185	1.750	4.930	6.950	8.300	10.550	36.665
3	BOX	NA	1000	0.187	0.084	0.364	0.613	0.641	0.805	2.693
3	BOX	NA	1000	6.031	2.224	10.397	19.758	20.202	18.093	76.705
e	BOX	NA	1000	0.525	0.255	1.165	1.670	1.615	1.965	7.195
3	BOX	NA	1000	0.299	0.025	0.101	0.284	0.435	0.720	1.863
3	BOX	NA	1000	1.010	0.425	1.480	2.010	1.810	2.200	8.935
3	BOX	NA	1000	0.760	0.323	1.160	1.590	1.480	1.800	7.113
9	BOX	NA	300	0.172	0.023	0.091	0.179	0.182	0.255	0.902
3	BOX	NA	300	0.204	0.141	0.600	0.855	0.780	0.950	3.530
9	вох	NA	75	0.173	0.079	0.429	0.564	0.711	1.014	2.971
3	CN	NA	100000	305.631	29.556	37.259	24.302	12.732	10.616	420.096
3	CN	NA	100000	1585.947	192.687	316.124	199.589	80.929	37.885	2413.159
е С	CN	NA	10	0.094	0.010	0.032	0.012	0.013	0.025	0.187
3	INST	NA	100000	66.308	5.657	1.185	0.003	0.008	0.023	73.184
3	OEL	NA	20000	0.967	0.180	0.153	0.123	0.052	0.045	1.520
e	OEL	NA	2000	1.283	0.079	0.133	0.097	0.041	0.028	1.660
93	OEL	NA	1500	1.578	0.208	0.409	0.352	0.177	0.060	2.784
3	OEL	NA	150	0.767	0.086	0.137	0.076	0.020	0.000	1.086
е С	OEL	NA	2.5	060.0	0.012	0.006	0.003	0.007	0.026	0.144
e	٨٢	NA	100000	780.499	86.710	145.184	106.331	39.359	14.882	1172.964
3	٨٢	NA	100000	250.869	26.427	44.965	30.056	12.665	6.843	371.824
e	٨L	AN	100000	4251.709	387.847	732.488	419.042	65.306	11.900	5868.290
33	٨L	AN	100000	609.79	5.984	7.506	3.698	1.131	0.507	86.433
9	٨٢	NA	100000	71.120	6.044	8.738	4.854	1.964	0.961	93.679
3		NA	100000	6.842	0.805	1.141	0.621	0.208	0.089	9.706
3	٨٢	NA	20000	14.222	1.302	0.326	0.008	0.007	0.011	15.878
33	٨٢	NA	40000	40.525	3.711	1.049	0.006	0.036	0.272	45.599
3	٨L	NA	30000	15.883	1.445	0.605	0.210	0.101	0.084	18.329
e	٨L	NA	30000	7.209	0.761	1.125	0.713	0.236	0.096	10.140
3	4	NA	20000	9.786	0.802	0.271	0.003	0.015	0.026	10.903
3	٨L	NA	10000	2.960	0.364	0.157	0.000	0.008	0.026	3.516
3	٨٢	NA	4000	7.739	0.799	0.219	0.023	0.012	0.012	8.804
e	_ لا	NA	3000	2.386	0.178	0.262	0.184	0.079	0.031	3.120

D-4

		ORIG	PREBAG							
SITE	TVDE					HIDHUCAHB	UN EMISSION	S (cc/min)		
		ACI	ISV	G	8	ខ	2	ප	+90	TOTAL
n	۲۲	NA	0008	1.423	0.124	0.247	0.157	0.042	0.035	
3	۲	NA	2500	2.066	0.217	0330	0.175	1000	100.0	2.023
e	٨٢	NA	2000	5 920	0.520	10107	2000	1000	C20.0	2.847
с С		NA	0000	10.00	0.26.0	0.101	100'0	0.002	0.000	6.630
ſ		VIV		100.21	1.0.1	1.962	1.565	0.316	0.213	17.135
0			2000	0.010	0.027	0.045	0.034	0.023	0:030	0.169
2 6		VN VIV	2000	0.008	0.358	0.126	0.015	0.034	0.003	0.544
2 4			10061	0.776	0.095	0.178	0.108	0.038	0.035	1.231
2		EN I	0061	0.488	0.042	0.067	0.045	0.025	0.033	0.701
2 6		AN .	800	2.725	0.283	0.434	0.222	0.042	0.023	3.729
2 0		AN	800	0.039	0.028	1.274	0.010	0.010	0.024	1 385
20		AN	500	1.141	0.094	0.024	0.002	0.013	0.036	1 310
20		NA	300	0.856	0.088	0.115	0.061	0.022	0.028	1.170
20		NA	200	0.355	0:030	0.013	0.005	0.007	0.000	0.411
0 m		NA	200	0.374	0.031	0.009	0.002	0.001	0.012	0.429
> ~		AN A	200	6.519	0.558	0.153	0.039	0.026	0.031	7.325
2 6			40	0.132	0.019	0.037	0.028	0.014	0.022	0.251
2			01	0.202	0.000	0.001	0.000	0.004	0.024	0.231
2 6			197Z	0.374	0.074	0.062	0.068	0.030	0.028	0.636
2 6		AN AN	G .2	0.009	0.002	0.003	0.003	0.007	0.047	0.070
2		NA	2	0.132	0.006	0.003	0.001	0.002	0.000	0.145

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS D-5

Not for Resale

.

		ORIG.	PRE-BAG			HYDROCARB	ON EMISSION	IS (cc/min)		
SITE	TYPE	IŠV	ISV	હ	ß	ខ	2	CS	+90 Ce+	TOTAL
4	BACK	NA	4.5	0.034	0.001	0.000	0.000	0.001	0.000	0.036
4	S	NA	3000	2.153	0.139	0:050	0.026	0.009	0.005	2.381
4	S	AN	1000	0.400	0.027	0.010	0.004	0.002	0.003	0.446
4	SC	NA	400	0.295	0.018	0.007	0.001	0.000	0.001	0.323
4	z	NA	125	0.105	0.006	0.003	0.000	0.000	0.001	0.115
4	SS	NA	20	0.068	0.004	0.002	0.000	0.001	0.000	0.075
4	z	NA	40	0.074	0.005	0.002	0.000	0.000	0.001	0.082
4		NA	12	0.005	0.000	0.000	0.000	0.000	0.002	0.007
4		AN	100000	13.982	0.637	0.255	0.141	0.054	0.032	15.101
4		AN .	80000	122.682	4.078	1.302	0.649	0.275	0.166	129.153
4		AN	50000	74.340	2.643	0.843	0.418	0.147	0.072	78.463
* *		AN 1	40000	22.599	1.008	0.449	0.294	0.147	0.096	24.593
4		NA	20000	41.291	1.818	0.812	0.528	0.265	0.190	44.905
4		NA	5000	2.084	0.104	0.040	0.013	0.006	0.005	2.252
4		AN	2000	5.964	0.219	0.071	0.034	0.017	0.018	6.323
* *		NA	1200	4.150	0.187	0.063	0.032	0.012	0.007	4.450
4		NA	750	0.053	0.003	0.002	0.001	0.000	0.000	0.059
4.		AN	100	0.021	0.000	0.000	0.000	0.003	0.000	0.024
4		AN	12	0.006	0.000	0.001	0.001	0.001	0.003	0.013
*		AN .	100000	0.095	0.008	0.008	0.008	0.001	0.000	0.120
7		NA	100000	5148.576	307.555	114.526	62.700	24.808	14.392	5672.558
t v		NA N	10000	7.650	0.295	0.129	0.078	0.025	0.006	8.183
7 4		AN 1	10000	38.062	1.916	0.719	0.367	0.177	0.113	41.355
*		AN	10000	23.220	1.049	0.440	0.272	0.112	0.066	25.159
₹		NA	1000	0.399	0.021	0.009	0.005	0.002	0.000	0.435
₹₹		NA	006	2.458	0.144	0.050	0.017	0.017	0.012	2.698
+		NA	400	1.702	0.147	0.062	0.008	0.023	0.016	1.957
₹		NA	12	0.003	0.000	0.000	0.000	0.000	0.001	0.005
t		MA	4.5	0.005	0.000	0.000	0.000	0.000	0.000	0.006

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS D-6

		ORIG.	PRE-BAG			HYDROCARE	ON EMISSIO	NS (cc/min)		
SITE	TYPE	ISV	ISV	CI	62	3	2	CS 1	1 450	TOTAL
9	BOX	NA	50	0.020	0.010	0.002	0.002	0.002	000	
2	BOX	45	45	0.020	0.010	0.002	0.002	0.002	0.002	0000
5	OEL	NA	10000	0.301	0.137	0.068	0.014	0.014	0.014	0.548
ς ι	OEL	500	2000	22.975	0.447	0.109	0.073	0.053	0.154	23.810
¢		75	180	0.049	0.018	0.009	0.002	0.002	0.002	0.081
<u>م</u>		200	100	0.034	0.020	0.010	0.002	0.002	0.002	0.071
0		30	100	0.057	0.019	0.010	0.002	0.002	0.002	0.092
ŝ		20	45	0.041	0.015	0.007	0.001	0.001	0.001	0.068
0	YO ^B	1500	1000	29.945	0.053	0.015	0.015	0.007	0.001	30.036
0 9		100	800	18.033	1.155	0.191	0.024	0.012	0.002	19.416
		5	200	0.867	0.020	0.010	0.002	0.002	0.002	0.904
0 0		50	400	0.113	0.020	0.010	0.002	0.002	0.002	0.150
0 4		09	30	0.222	0.020	0.010	0.002	0.002	0.002	0.259
0 0		00001	10000	60.556	0.164	0.137	0.068	0.014	0.014	60.953
		0092	1200	10.545	0.032	0.015	0.007	0.001	0.001	10.603
0 (300	30	0.037	0.017	0.008	0.002	0.002	0.002	0.068
0 1		50	150	0.152	0.020	0.010	0.002	0.002	0.002	0.188
		0/	02	0:030	0.020	0.010	0.002	0.002	0.002	0.067
- 1		40	40	0.034	0.021	0.011	0.002	0.002	0.002	0.072
-		67	25	0.020	0.010	0.002	0.002	0.002	0.002	0.038
		1000	50	1.247	0.019	0.010	0.002	0.002	0.002	1.282
- 0		nne	40	1.454	0.019	0.010	0.002	0.002	0.002	1.488
0 0		00	300	1.555	0.020	0.010	0.002	0.002	0.002	1.591
0 0		AN	150	0.239	0.021	0.011	0.002	0.002	0.002	0.277
0 0		Dç	150	0.146	0.020	0.010	0.002	0.002	0.002	0.182
ρα		NA	2000	1.791	0.020	0.010	0.002	0.002	0.002	1.828
α		001	300	1.371	0.021	0.011	0.002	0.002	0.002	1 409
α		NA	150	1.185	0.021	0.011	0.002	0.002	0.002	1.224
ο α			001	0.596	0.020	0.010	0.002	0.002	0.002	0.633
2			00	061.0	0.020	0.010	0.002	0.002	0.002	0.233

.

D-7

Not for Resale

NSI ISV								
	ISV NSI	G	C2	ខ	2	CE CE	+90	TOTAL
NA	100000	8.761	0.892	0.034	0.00	0.018	0.013	9.718
NA	10000	0.047	0.000	0.002	0.001	0.009	0.005	0.064
3500	3000	2.224	0.120	0.006	0.001	0.000	0.001	2.353
1000	3000	1.305	0.076	0.007	0.001	0.001	0.000	1.389
200	600	0.006	0.061	0.114	0.054	0.017	0.008	0.259
1000	400	0.099	0.014	0.011	0.009	0.008	0.008	0.148
100	200	0.195	0.011	0.005	0.001	0.000	0.001	0.214
2000	3000	0.052	0.002	0.002	0.000	0.000	0.001	0.057
10000	2000	1.173	0.111	0.062	0.026	0.008	0.004	1.383
NA	10000	0.579	0.035	0.007	0.000	0.006	0.004	0.631
5000	0006	3.123	0.166	0.009	0.001	0.000	0.000	3.299
400	200	600.0	0:000	0.000	0.000	0.000	0.000	0.009
200	200	3.020	0.185	0.011	0.005	0.000	0.000	3.220
80000	100000	67.648	5.149	0.314	0.070	0.003	0.000	73.184
NA	20000	0.013	1.753	3.358	1.473	0.448	0.209	7.254
1000	8000	0.399	3.049	0.666	0.055	0.000	0.000	4.170
NA	500	0.361	0.020	0.003	0.001	0.000	0.000	0.384
150	200	0.024	0.002	0.001	0.001	0.000	0.000	0.028
100000	100	0.011	0.001	0.002	0.000	0.000	0.000	0.013

Not for Resale

API PUBL*4589 93 🗰 0732290 0517717 472 📖

		ORIG.	PRE-BAG							
SITE	TYPE	NSI	NSI	ľ	ŝ	нурносан	IBON EMISSIC	DNS (cc/min)		
0-	BACK	NA		5	25	ខ	3	S	69	TOTAI
10	RACK		C.1	0.008	0.000	0.000	0.000	0.000		
		AN	-	0.007	0.001	0000		0000	0.000	0.008
2	2	NA	100000	314.541	19.258	6.010 6.010	0000	0.000	0.000	0.008
-	CN	NA	10000	66.042	0.64F	0.010	2.4/1	1.112	0.621	344.021
10	CN	NA	2000	1531	0000	000.0	0.035	0.030	0.057	66.869
10	CN	NA	500	1001	0.230	0.142	960.0	0.054	0.027	2.080
10	CN	NA	10	0.1.00	1110.0	0.004	0.001	0.000	0.000	0.146
10	DLA	NA	100000	0.000	0.000	0.000	0.000	0.000	0.000	0.005
10	OEL	NA	0001	000.2401	6/67/2G	130.952	52.637	24.553	12.389	8291.071
10	OEL	NA	300	862.0	0.077	0.130	0.225	0.351	0.531	1612
10	OEL	NA	50	6/20	0.024	0.008	0.003	0.002	0.000	0.316
10	OEL	NA	10	60000	0.002	0.003	0.002	0.002	0.000	0.048
10	PRV	NA	100001	0.000	0.000	0.000	0.000	0.001	0.000	0.010
10	PRV	NA	200	000.2000	89.874	3.411	0.269	0.046	0.019	8395.628
10	PRV	NA	15	0.04	0.103	0.039	0.036	0.036	0.083	0 QRU
₽		NA	000001	9/0.0	0.002	0.002	0.000	0.000	0.001	1000
10	+		000001	124.230	1.108	0.054	0.008	0.004	100.0	100.0
20		AN A	10000	746.090	37.227	10.638	4.517	2103		CUP.CZ1
		NA	100000	1128.316	10.655	0 492	0.00	1001.2	1.340	801.921
2	7	NA	60000	39.223	2 336	0 765	0000	0.000	0.000	1139.497
0	٨L	NA	10000	4 642	0.302	00.0	0.337	0.160	0.076	42.897
10		NA	10000	5472.368	337 008	0.133	0.059	0.032	0.028	5.286
10		NA	10000	2022 048	01 504	000.60	35.948	17.653	8.891	5960.933
10		NA	10000	262,668	2 5.04	1101	0.660	0.568	0.597	2046.894
9	۲	NA	10000	1609.200	0 705	11.0	0.001	0.000	0.020	265.350
10	۔ ۲	NA	3000	29 840	1 200	0.200	0.042	0.004	0.000	1610.181
10	٨٢	NA	750	1.877	0.203	5000	0.138	0.045	0.016	31.602
10		NA	2001	1 040	0100	160.0	0.038	0.011	0.00	2.325
10	٨٢	NA	100	0.021	0.013	800.0	0.000	0.000	0.000	1.976
10		NA	50	0.006	10000	0.020	0.035	0.044	0.047	0.187
10		NA	1.5	0.004	0.001	0.000	0.000	0.000	0.000	0.007
10		NA	1.5	0.004	0000	0.000	0.000	0.000	0.000	0.005
Į					~~~~	Innn'n	0.000	0.000	0.000	0.005

API PUBL*4589 93 🖿 0732290 0517718 309 🛤

D-9

		ORIG.	PRE-BAG			HYDROCARR	ON FAIRCION	lo foo (min)		
SITE	TYPE	ISV	ISV	5	ε			is (cc/min)		
-	AMB	NA			3	3	5	3	\$	TOTAL
11	ANAB		0001	2.002	0.156	0.065	0.026	0.0101	0.010	3 150
		AN	200	13.264	1.901	1.099	0.555	0.220	0.144	800.0
		NA	60	0.008	0.000	0.002	0.001	0.004		11.103
=	OEL	40	1200	0.081	0 149	0.240	1000	+00.0	0.074	0.087
=	OEL	20	300			0,673	417·0	101.0	660.0	0.894
11	PRV	NA		800.0	0.000	0.000	0.000	0.001	0.001	0.012
F	PRV	VIV		890.122	35.207	34.468	15.363	5.170	3.176	314 471
F	Vont		C/ I	0.582	0.087	0.036	0.068	0.102	0.161	1027
		N A	100000	162.039	16.438	3.909	1.754	0.655	0.380	100.1
-	Nent	175	300	5.823	0.651	0 188	0.053	5000	00000	100.182
111	۸L	NA	100001	1020 V	0.000		0.000	110.0	0.012	6.744
=		300		202.4	0.62.0	0.114	0.055	0.022	0.019	5.425
-		NIN	2000	2.547	0.169	0.054	0.023	0.003	0.003	2 800
F		YVI COOL	0061	19.618	2.769	0.699	0.293	0.091	0.054	22.000
		1200	3000	19.792	1.216	0.383	0.151	0.039	1000	420.02
=	٨L	AN	2000	0.537	0.040	0.018		1000	0.014	21.587
11	۲Ľ	100000	2000	0.830	0.050	0.000	6000	0.004	0.002	0.610
11		150	1500	0.345	0.447	070.0	210.0	0.005	0.002	0.922
11		NA	10001	0700	0.11	0.117	0.110	0.095	0.164	0.949
11		NA	200	0.340	001.0	0.099	0.034	0.008	0.001	1 237
F			000	CZ8.U	0.083	0.022	0.012	0.006	0.004	0 051
F	20		200	0.007	0.001	0.001	0.001	0.000	0 930	1000
		001	100	0.158	0.036	0.028	0.029	0.011	0000	0.941
			Value of the second sec						600.0	N.272

D-10	
------	--

CITC	L F	ORIG.	PRE-BAG			HYDROCARB	ON EMISSION	VS (cc/min)		
		<u>NSI</u>	ISV	CI	C3	ខ	δ	C5		TOTAL
24	BACK	NA	2	0.100	0.000	0.000	0.000	0.002	0.002	NUL U
-	22	100	100000	1747.008	2.930	0.094	0.012	0.006	0.003	1750 053
2		5000	10000	0.000	0.000	0.000	0.000	0.000	0000	0000
2 4		000001	100000	809.811	1.780	0.061	0.018	0.014	0.007	R11 601
2 5		1000	100000	23.445	0.039	0.002	0.002	0.004	0.003	201 20
2 5		000001	100000	187.641	0.284	0.006	0.003	0.006	0.003	187 943
2 5		000001	100000	1610.523	2.648	0.066	0.011	0.005	0.004	1613 257
24		10000	100000	81.284	0.151	0.004	0.002	0.002	0.002	R1 AAA
2		10000	35000	13.345	0.028	0.002	0.002	0.002	0.00	13 270
2 4		200	20000	0.992	0.009	0.002	0.002	0.016	0.008	10.01
2 4		009	8000	0.000	0.000	0.000	0.000	0.000	0.000	0000
2 5		00001	6000	0.000	0.000	0.000	0.000	0.000	0.000	0000
2 4		2000	3500	0.000	0.000	0.000	0.000	0.000	0.000	0000
<u>v</u> ¢		006	3000	0.000	0.000	0.000	0.000	0.000	0.000	
12		3000	1000	0.000	0.000	0.000	0.000	0.000	0.000	0000
4		2000	800	0.000	0.000	0.000	0.000	0.000	0000	0000
2		NA	500	0.000	0.000	0.000	0.000	0.000	0000	0000
2 2		500	40	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1 5		200	25	0.000	0.000	0.000	0.000	0.000	0.000	0000
7 5	DDV DDV	/00/	6000	0.000	0.000	0.000	0.000	0.000	0.000	0000
2 4		0005	4000	0.000	0.000	0.000	0.000	0.000	0.000	
24	L HV	2000	1500	6.733	0.016	0.002	0.002	0.002	0.000	0.000 6 756
2 5	PHV DDV	2000	500	0.000	0.000	0.000	0.000	0.000	0.000	0000
2 5		1991	150	0.000	0.000	0.000	0.000	0.000	0.000	0000
2 5		000001	100000	683.910	1.252	0.026	0.002	0.010	0.002	685 202
1 2		1000001	100000	2.978	0.006	0.000	0.000	0.004	0.003	2 991
1 2		00000	100000	6.400	0.011	0.000	0.000	0.004	0.003	6418
2 5		000001	000001	101.606	0.020	0.000	0.000	0.002	0.003	101 631
2 9		1000001	100000	4574.250	8.265	0.209	0.036	0.041	0.019	1582 821
2		10000	100000	1229.250	2.190	0.046	0.006	0.008	0000	1231502
2 5		100001	100000	2073.042	3.747	0.077	0.019	0.020	0.003	2076 907
2 5		00001	100000	2003.254	4.378	0.115	0.015	0.006	0.004	2007.779
1 5		1200	00001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12		4000	400	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7		200	60	0.000	0.000	0.000	0.000	0.000	0.000	0.000
									_	

D-11

		ORIG.	PRE-BAG			HYDROCARE	ION EMISSION	VS (cc/min)		
SITE	TYPE	ISV	ISV	cı	ß	ខ	2	3	-90	TOTAL
13	BACK	2	2	0.003	0.002	0.004	0.023	0.003	0.019	0.055
13	CN	100000	100000	0.375	4.738	37.861	134.994	72.414	19.355	269.737
13	z	100000	100000	30.856	3.217	2.754	1.748	0.754	0.397	39.726
13	S	1000	100000	0.104	5.054	149.685	2.724	0.012	0.014	157.593
13	S	1500	2000	0.029	0.002	0.211	5.031	0.007	0.014	5.294
13	S	NA	800	7.167	0.018	0.046	0.075	0.031	0.016	7.352
13	COMP	100000	100000	247.874	31.057	58.958	16.068	6.768	2.458	363.184
13	INST	500	100000	361.005	17.258	6.164	2.278	0.473	0.122	387.299
13	OEL	100000	100000	0.040	0.003	0.029	42.376	0.653	0.010	43.110
13	OEL	100000	100000	1.371	0.416	0.720	5.400	92.567	4.126	104.599
13	OEL	2000	10000	0.022	0:030	0.665	0.040	0.001	0.008	0.767
13	OEL	600	100	0.011	0.051	1.277	0.056	0.003	0.011	1.409
13	OEL	100	100	0.032	0.004	0.007	0.586	0.016	0.015	0.660
13	OEL	500	20	0.015	0.000	0.008	0.052	0.008	0.016	0.100
2	- LUMP	5000	5000	0.628	0.073	0.044	462.556	2.002	0.052	465.356
13		AN	100000	0.095	0.467	2.937	6.914	3,131	1.000	14.544
13	7	100000	100000	0.027	0.011	0.096	1.667	7.058	1.813	10.672
13		100000	100000	0.047	0.026	0.557	23.272	0.381	0.035	24.319
13	7	100000	100000	0.200	0.049	0.241	61.891	1.640	0.033	64.053
13		100000	100000	0.031	0.003	0.014	0.194	18.820	5.281	24.343
13	7	100000	100000	0.044	0.007	0.117	8.089	0.051	0.019	8.326
13	ר	100000	100000	0.014	0.002	0.341	31,180	1.584	0.012	33.133
13		100000	100000	0.017	1.360	171.991	1.966	0.068	0.021	175.423
13	٦	100000	100000	0.054	8.800	363.982	2.686	0.216	0.045	375.782
13	۔ ۲	100000	100000	2.894	19.870	271.450	0.722	0.018	0.010	294.964
13	7	100000	100000	465.808	53.530	5.174	0.249	0.039	0.017	524.817
13		100000	100000	83.882	33.978	102.995	61.584	28.403	12.635	323.477
13		100000	100000	125.292	16.936	21.342	7.380	1.736	0.400	173.086
13	7	100000	100000	4326.835	317.478	83.351	21.077	6.265	1.455	4756.461
13	- - -	100000	100000	160.675	21.517	28.371	10.506	3.489	0.949	225.507
13		100000	100000	0.048	0.697	5.223	0.115	0.010	0.011	6.104
2	7	100000	100000	0.011	0.033	0.657	0.013	0.004	0.017	0.735
13	۲	80000	100000	0.042	0.007	0.674	17.865	0.019	0.019	18.627
13	7	20000	100000	0.013	0.128	21.976	2.475	0.021	0.044	24.657
13	7	100000	80000	0.024	0.012	0.422	, 8.314	0.034	0.015	8.821
EL		80000	80000	0.054	1.958	43.448	15.109	3.813	0.541	64.923
E 6		80000	80000	89.509	10.062	12.902	3.537	0.679	0.075	116.763
2		40000	40000	35.248	986.1	0.533	0.014	0.015	0.015	37.411

Not for Resale

SITE TYPE ISV C1 C2 C3 C4 C5 C6+ TOTAL 13 VL 50000 30000 0.086 0.007 2.530 104.486 0.124 0.025 107.28 13 VL 15000 25000 0.066 0.037 0.057 0.015 15.160 13 VL 15000 15000 0.016 0.037 0.611 0.253 0.015 15.160 13 VL 15000 15000 0.016 0.003 1.023 0.611 0.253 0.015 2.122 13 VL 5000 15000 0.015 0.033 10.044 0.014 9.232 13 VL 5000 10.016 0.003 10.023 10.014 9.253 13 VL 5000 0.015 0.015 0.014 9.025 13 VL 5000 0.015 0.015 0.014 9.025 13 VL			ORIG.	PRE-BAG			HYDROCARE	ON EMISSION	IS (cc/min)		
13 VL 50000 30000 0.086 0.007 2.530 104.486 0.124 0.025 10.7358 13 VL 15000 25000 0.027 0.067 0.067 0.016 15.150 13 VL 15000 25000 0.0161 0.027 0.5978 0.067 0.005 0.013 0.016 13 VL 15000 15000 0.016 0.003 0.003 0.003 0.004 0.005 0.016 0.003 13 VL 15000 12000 0.015 0.015 0.015 0.013 0.013 13 VL 500 12000 0.015 0.015 0.014 0.025 13 VL 5000 1003 0.015 0.015 0.014 0.013 0.014 0.013 0.014 0.025 0.016 0.016 0.016 0.013 0.014 0.025 0.016 0.016 0.016 0.016 0.016 0.016 0.016 <th>SITE</th> <th>TYPE</th> <th>ISV</th> <th>ISV</th> <th>CI</th> <th>5 5</th> <th>ខ</th> <th>2</th> <th>CS CS</th> <th></th> <th>TOTAL</th>	SITE	TYPE	ISV	ISV	CI	5 5	ខ	2	CS CS		TOTAL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	٨٢	20000	30000	0.086	0.007	2.530	104.486	0.124	0.025	107.258
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	۲	100000	25000	0.022	0.002	0.661	14.445	0.005	0.015	15.150
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	۲	15000	20000	40.066	0.057	0.078	0.057	0.00	0.014	40.281
13 VL 500 15000 0.061 0.009 1.023 0.611 0.253 0.075 2.122 13 VL 10000 15000 5000 183.709 76.405 137.641 52.865 11.742 2.112 $46.4.4.74$ 13 VL 5000 5000 0.038 0.637 9.025 0.197 0.014 0.925 5.523 13 VL 5000 0.0075 0.075 0.014 0.055 5.529 0.197 0.014 0.925 5.523 13 VL 5000 0.015 0.004 0.005 5.389 4.242 3.562 13 VL NA 2500 0.391 16.426 82.131 17.410 0.069 0.013 116.458 13 VL NA 1500 0.391 16.426 82.131 17.410 0.069 0.013 116.493 13 VL NA 1500 0.392 0.033 0.033 <t< td=""><td>13</td><td>۲</td><td>15000</td><td>15000</td><td>0.018</td><td>0.002</td><td>0.594</td><td>0.082</td><td>0.006</td><td>0.103</td><td>0.805</td></t<>	13	۲	15000	15000	0.018	0.002	0.594	0.082	0.006	0.103	0.805
13 VL 10000 12000 0.016 0.003 0.003 10.044 0.024 0.010 10.093 13 VL 15000 5000 183.709 76.405 137.641 52.865 11.742 2.112 464.474 13 VL 2000 5000 0.038 0.637 9.025 0.197 0.014 9.293 13 VL 5000 0.015 0.004 0.005 3.810 1.726 5.623 13 VL NA 2500 0.820 2.317 4.716 0.331 1.7410 0.013 1.756 13 VL NA 2500 0.362 1.207 4.716 8.579 0.338 0.653 3.577 13 VL NA 1500 0.362 0.003 0.003 0.013 1.64473 1.64474 13 VL NA 2500 0.362 1.646 8.731 1.7410 0.013 1.6469 7.663	13	۲	500	15000	0.061	0.099	1.023	0.611	0.253	0.075	2.122
13VL150005000183.70976.405137.64152.86511.7422.112 464.474 13VL200050000.0380.6379.0250.1970.0180.0149.92513VL500050000.0070.0353.5000.0340.0110.0143.56213VL500030000.0150.0070.0353.5000.0673.8111.7265.62913VLNA25000.8200.8225.3884.2420.7920.12113.55513VLNA25000.39116.42682.13117.4100.0690.013116.43913VLNA15002.4270.0030.0100.0220.0130.1623.56213VLNA15002.4610.0030.0100.0330.6333.56213VLNA15002.4270.0030.0100.0690.0533.56113VLNA10000.0220.0610.0020.0630.0730.0233.56113VL100010000.3200.0620.0160.0690.0690.0730.02113VL3009000.3700.0190.0300.0730.0310.0710.03113VL3009000.3600.3700.3600.3660.0690.0330.02113VL300<	13	۲	10000	12000	0.016	0.003	0.003	10.044	0.024	0.010	10.099
13 VL 2000 5000 0.038 0.637 9.025 0.197 0.018 0.014 9.929 13 VL 5000 4000 0.007 0.095 3.500 0.014 0.014 3.662 13 VL 5000 3000 0.015 0.095 3.500 0.017 0.1726 5.629 13 VL NA 2500 0.362 1.207 4.716 8.579 2.399 0.013 115.68 13 VL NA 1500 2.427 0.003 0.010 0.077 0.173 0.053 3.587 13 VL NA 1500 2.461 0.003 0.010 0.077 0.933 1.938 13 VL NA 1000 1000 0.280 0.019 0.023 0.013 1.054 1.036 13 VL NA 1000 0.026 0.057 0.033 0.021 1.034 1.035 1.034 1.034 <td>13</td> <td>7</td> <td>15000</td> <td>5000</td> <td>183.709</td> <td>76.405</td> <td>137.641</td> <td>52.865</td> <td>11.742</td> <td>2.112</td> <td>464.474</td>	13	7	15000	5000	183.709	76.405	137.641	52.865	11.742	2.112	464.474
13 VL 5000 4000 0.007 0.095 3.500 0.011 0.014 3.662 13 VL 5000 3000 0.015 0.004 0.065 3.811 1.726 5.629 13 VL NA 2500 0.362 0.302 0.015 0.004 0.065 0.667 3.811 1.726 5.629 13 VL NA 2500 0.391 16.426 82.131 17.410 0.069 0.013 116.439 13 VL NA 1500 2.461 0.003 0.010 0.107 0.944 0.053 3.563 13 VL NA 1500 2.861 0.003 0.013 0.405 1.036 0.973 0.937 0.953 3.563 13 VL NA 1000 0.023 0.019 0.033 0.021 0.037 0.021 1.936 1.936 1.936 1.936 1.936 1.936 1.936 1.936	13	۲	2000	5000	0.038	0.637	9.025	0.197	0.018	0.014	9.929
13 VL 5000 3000 0.015 0.004 0.005 0.067 3.811 1.726 5.623 13 VL NA 2500 0.820 2.202 5.388 4.242 0.792 0.121 13.665 13 VL NA 2500 0.362 1.207 4.716 8.579 2.399 0.013 116.439 13 VL NA 1500 0.361 16.426 82.131 17.410 0.069 0.013 116.439 13 VL NA 1500 2.461 0.003 0.010 0.107 0.938 0.653 3.563 13 VL NA 1500 0.220 0.057 0.032 0.107 0.933 0.935 3.563 13 VL NA 1000 1000 0.220 0.016 0.053 0.265 3.565 13 VL 1000 1000 0.330 0.213 0.027 0.073 0.027 0.80	13	۲	5000	4000	0.007	0.095	3.500	0.034	0.011	0.014	3.662
13 VL NA 2500 0.820 2.202 5.388 4.242 0.792 0.121 13.565 13 VL NA 2500 0.362 1.207 4.716 8.579 2.399 0.406 17.668 13 VL NA 1500 0.391 16.426 82.131 17.410 0.069 0.013 116.439 13 VL NA 1500 2.461 0.003 0.010 0.107 0.944 0.053 3.573 13 VL NA 1500 2.461 0.003 0.0107 0.405 1.936 0.653 3.583 13 VL NA 1000 0.022 0.0082 1.221 0.033 0.021 1.694 13 VL 1000 1.454 0.213 0.265 0.100 0.073 0.071 1.694 1.694 13 VL 1000 1.454 0.213 0.265 0.100 0.073 0.071	13	٦	5000	3000	0.015	0.004	0.005	0.067	3.811	1.726	5.629
13 VL NA 2500 0.362 1.207 4.716 8.579 2.399 0.406 17.668 13 VL NA 1500 0.391 16.426 82.131 17.410 0.069 0.013 116.439 13 VL NA 1500 2.461 0.003 0.010 0.069 0.053 3.583 13 VL NA 1500 2.461 0.003 0.0107 0.938 0.053 3.583 13 VL NA 1500 0.280 0.057 0.003 0.405 1.394 0.053 3.583 13 VL NA 1000 0.280 0.281 0.213 0.265 0.100 0.070 2.163 3.563 13 VL 1000 1050 0.281 0.265 0.160 0.070 2.163 0.764 0.070 2.163 13 VL 300 500 0.285 5.375 0.073 0.070 2.163<	13	۲۲	NA	2500	0.820	2.202	5.388	4.242	0.792	0.121	13.565
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	۲	NA	2500	0.362	1.207	4.716	8.579	2.399	0.406	17.668
13 VL NA 1500 2.427 0.004 0.022 0.133 0.938 0.053 3.577 13 VL NA 1500 2.461 0.003 0.010 0.107 0.944 0.059 3.583 13 VL NA 1000 0.022 0.003 0.107 0.944 0.059 3.583 13 VL NA 1000 0.022 0.027 0.093 0.405 1.030 0.473 1.935 13 VL 1000 1000 0.280 0.213 0.265 0.100 0.070 2.465 0.2165 13 VL 300 900 0.370 0.119 0.186 0.073 0.070 2.165 13 VL 300 500 0.370 0.116 0.166 0.070 2.165 13 VL 10000 300 0.033 0.012 0.073 0.023 0.071 13 VL 1200 <t< td=""><td>13</td><td></td><td>3000</td><td>2000</td><td>0.391</td><td>16.426</td><td>82.131</td><td>17.410</td><td>0.069</td><td>0.013</td><td>116.439</td></t<>	13		3000	2000	0.391	16.426	82.131	17.410	0.069	0.013	116.439
13 VL NA 1500 2.461 0.003 0.010 0.107 0.944 0.059 3.583 13 VL NA 1000 0.022 0.004 0.003 0.405 1.030 0.473 1.935 13 VL 1000 1000 0.720 0.057 0.082 1.221 0.033 0.073 0.73 1.935 13 VL 1000 1000 1000 1.454 0.213 0.265 0.100 0.073 0.070 2.163 13 VL 300 900 0.370 0.119 0.186 0.073 0.073 0.070 2.165 13 VL 300 500 0.376 0.554 5.375 0.014 0.015 0.023 6.031 13 VL 10000 300 0.033 0.012 0.050 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.0714	13	٦	NA	1500	2.427	0.004	0.022	0.133	0.938	0.053	3.577
13 VL NA 1000 0.022 0.004 0.003 0.405 1.030 0.473 1.935 13 VL 1000 1000 0.0280 0.057 0.082 1.221 0.033 0.021 1.694 13 VL 1000 1000 1.454 0.213 0.265 0.100 0.073 0.070 2.165 13 VL 300 900 0.370 0.119 0.186 0.073 0.073 0.070 2.165 13 VL 300 500 0.370 0.119 0.186 0.073 0.073 0.073 0.070 2.165 13 VL 10000 300 0.030 0.012 0.013 0.015 0.073 0.073 0.073 0.173 13 VL 1200 300 0.033 0.012 0.013 0.017 0.017 0.017 0.017 0.173 13 VL 1200 3.714 0.013 0.02	13		AN	1500	2.461	0.003	0.010	0.107	0.944	0.059	3.583
13 VL 1000 1000 1000 0.280 0.057 0.082 1.221 0.033 0.021 1.694 13 VL 1000 1000 1.454 0.213 0.265 0.100 0.064 0.070 2.165 13 VL 300 900 0.370 0.119 0.186 0.073 0.070 2.165 13 VL 300 500 0.036 0.119 0.186 0.074 0.073 0.021 2.165 13 VL 300 500 0.036 0.554 5.375 0.014 0.019 0.033 6.031 13 VL 10000 300 0.030 0.012 0.013 0.017 0.017 0.173 13 VL 1200 3.714 0.013 0.021 0.017 0.017 0.017 0.017 0.017 0.017 13 VL NL NA 250 0.022 0.017 0.013 0.017	13		AN	1000	0.022	0.004	0.003	0.405	1.030	0.473	1.935
13 VL 1000 1000 1.454 0.213 0.265 0.100 0.064 0.070 2.165 13 VL 3000 900 0.370 0.119 0.186 0.073 0.037 0.022 0.807 13 VL 300 500 0.036 0.554 5.375 0.014 0.019 0.033 6.031 13 VL 10000 300 0.036 0.554 5.375 0.014 0.019 0.033 6.031 13 VL 10000 300 0.030 0.012 0.013 0.071 0.015 0.073 6.0173 13 VL 1200 300 3.714 0.013 0.021 0.017 0.017 3.850 13 VL NA 250 0.022 0.062 0.017 0.017 0.017 3.850 13 VL NA 250 0.022 0.062 0.017 0.017 0.017 0.017 0.017 <td>13</td> <td></td> <td>1000</td> <td>1000</td> <td>0.280</td> <td>0.057</td> <td>0.082</td> <td>1.221</td> <td>0.033</td> <td>0.021</td> <td>1.694</td>	13		1000	1000	0.280	0.057	0.082	1.221	0.033	0.021	1.694
13 VL 3000 900 0.370 0.119 0.186 0.073 0.037 0.022 0.807 13 VL 300 500 0.036 0.554 5.375 0.014 0.019 0.033 6.031 13 VL 10000 300 0.036 0.012 0.038 0.015 0.033 6.031 13 VL 1200 300 0.030 0.012 0.038 0.050 0.015 0.017 3.650 13 VL 1200 300 3.714 0.013 0.021 0.013 0.017 3.850 13 VL NA 250 0.022 0.062 0.421 1.051 0.017 3.850	13	۲	1000	1000	1.454	0.213	0.265	0.100	0.064	0.070	2.165
13 VL 300 500 0.036 0.554 5.375 0.014 0.019 0.033 6.031 13 VL 10000 300 0.030 0.012 0.038 0.050 0.015 0.029 0.173 13 VL 1200 300 0.013 0.013 0.021 0.017 0.017 0.017 3.850 13 VL 1200 3.00 3.714 0.013 0.021 0.013 0.017 3.850 13 VL NA 250 0.022 0.062 0.421 1.051 0.532 0.062 2.149	13	7	3000	900	0.370	0.119	0.186	0.073	0.037	0.022	0.807
13 VL 10000 300 0.030 0.012 0.038 0.050 0.015 0.029 0.173 13 VL 1200 300 3.714 0.013 0.021 0.017 3.650 13 VL NA 250 0.022 0.062 0.421 1.051 0.013 0.017 3.650 13 VL NA 250 0.022 0.062 0.421 1.051 0.532 0.062 2.149	13	۲	300	500	0.036	0.554	5.375	0.014	0.019	0.033	6.031
13 VL 1200 300 3.714 0.013 0.021 0.071 0.013 0.017 3.850 13 VL NA 250 0.022 0.062 0.421 1.051 0.532 0.062 2.149	13	۲ ۲	10000	300	0.030	0.012	0.038	0:050	0.015	0.029	0.173
13 VL NA 250 0.022 0.062 0.421 1.051 0.532 0.062 2.149	13	71	1200	300	3.714	0.013	0.021	0.071	0.013	0.017	3.850
	13		NA	250	0.022	0.062	0.421	1.051	0.532	0.062	2.149

D-13

Not for Resale

API PUBL*4589 93 🖿 0732290 0517722 83T 📟

۰.

		ORIG.	PRE-BAG			HYDROCARB	IOISSIME NO	VS (cc/min)		
SITE	TYPE	ISV	ISV	C1	C2	ខ	3	CS	+90	TOTAL
14	BACK	NA	1.75	0.011	0:006	0:001	0.001	0.001	100.0	0.022
14	BACK	NA	1.5	0.020	0.010	0.002	0.002	0.002	0.002	0.038
14	BACK	NA	-	0.020	0.010	0.002	0.002	0.002	0.002	0.038
14	BACK	NA	+	0.020	0.010	0.002	0.002	0.002	0.002	0.038
14	S	NA	2000	0.018	0.009	0.002	0.025	0.559	0.117	0.730
14	CN	NA	600	0.586	0.024	0.012	0.002	0.002	0.002	0.628
14	N	NA	125	0.015	0.015	0.015	0.077	0.062	0.015	0.197
14	S	NA	100	0.087	0.029	0.015	0.003	0.003	0.003	0.139
14	SN	NA	2.5	0.013	0.006	0.001	0.001	0.001	0.001	0.024
14	OEL	NA	20	0.016	0.008	0.002	0.002	0.002	0.002	0:030
14	OEL	NA	60	0.064	0.011	0.006	0.001	0.001	0.001	0.085
14	OEL	AN	30	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14	OEL	NA	28	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14	OEL	NA	18	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14	OEL	AN	4.5	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14	7	AN	3500	0.030	0.036	1.015	0.081	0:030	0.015	1.208
14	۲Ľ	NA	1500	0.031	0.016	0.003	0.003	0.003	0.003	0.059
14	۲	NA	1200	0.294	0.032	0.016	0.003	0.003	0.003	0.352
14	7	AN	1200	0.017	0.042	0.984	0.056	0.017	0.008	1.124
14	7	NA	006	0.006	0.134	0.059	0.003	0.002	0.001	0.206
14		AN	900	0.028	0.028	0.307	3.738	0.193	0.028	4.322
14	۲۲	NA	500	0.024	0.073	0.842	0.024	0.012	0.002	0.976
14		AN	300	0.017	0.008	0.002	0.002	0.002	0.002	0.032
14	7	NA	250	0.502	0.015	0.006	0.001	0.001	0.001	0.528
14		AN	40	0.021	0.011	0.002	0.002	0.002	0.002	0.041
14	7	AN	35	0.014	0.011	0.006	0.001	0.001	0.001	0.034
4	7	NA	18	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14		NA	15	0.011	0.006	0.001	0.001	0.001	0.001	0.022
4	7	AN	1.5	0.011	0.006	0.001	0.001	0.001	0.001	0.022
4	7	NA	-	0.011	0.006	0.001	0.001	0.001	0.001	0.022
14		NA	-	0.011	0.006	0.001	0.001	0.001	0.001	0.022

API PUBL*4589 93 🗰 0732290 0517723 776 🛤

D-14

Not for Resale

		ORIG.	PRE-BAG			HVDBOCABB				
SITE	TYPE	ISV	ISV	CI	8			is (cc/min)		
15	CN	NA	1000001	190 668	10 444	3	5	3	+80	TOTAL
15	CN	NA	100001	103.001	13.444	0.192	0.859	0.087	0.033	217.284
15	CN	NA		130.001	0.100	0.167	0.027	0.020	0.043	199.109
15	CN	NA	100001	AE2 611	00.100	1.449	0.026	0.014	0.013	2344.221
15	CN	NA		110.204	107.11	0.481	0.081	0.032	0.016	474.372
15	CN	NA		167.100	0.321	0.187	0.003	0.011	0.012	309.824
15	CN	NA		150.0	0.410	0.041	0.004	0.001	0.000	6.988
15	CN .		0000	2/0.1//	163.853	112.950	33.132	7.952	1.340	1090.299
15	NC		0000	/20.7	1.671	1.982	1.253	0.651	0.283	12.877
15			2000	11.654	2.457	0.103	0.003	0.009	0.015	80.241
15	OF1		062	7.479	0.948	0.689	0.259	0.079	0.028	9.482
15			00001	0.983	6.300	1656.486	0.306	0.033	0.036	1664 144
2 4		AN 1	2000	5.811	0.642	0.603	0.210	0.077	0.046	7 280
2		NA	1500	0.036	3.360	0.461	0.164	0.027	0.011	1.003 1.050
		AN	100	0.110	0.105	0.078	0.023	0.005	0.000	500 C
<u>0</u>		AN	100000	224.175	6.887	0.615	0.116	0.027	0.012	0.321
2	<u>۷</u> ۲	NA	100000	96.306	11.908	7.676	0 212	0 477	2000	201.032
15		NA	100000	2.618	48.422	17 710	2.010	0.477	0.0/4	118.754
15		NA	100000	1298 422	242 100	150.054	2.000	0.200	0.208	71.827
15		NA	10000	0 588	AD 505	+C7'EC1	43.438	8.303	1.438	1759.024
15		NA		00000	40.000	38.700	11.927	2.724	0.482	95.173
15		NA NA		04/9.190	103.300	1.451	0.064	0.001	0.001	3584.014
15		VN VIN	00000	256.6264	933.267	611.166	198.216	41.295	6.789	6316.665
15			00001	0.091	0.074	0.111	0.028	0.022	0.012	0.338
24		YN I	000001	220.588	45.552	30.667	7.694	1.736	0 285	306 522
2		NA	100000	627.690	42.504	3.569	0.221	0.009	0.013	574 00E
2	7	NA	100000	0.520	0.504	41.680	0.007	0.001	2000	CUU.4/0
15	۲	NA	100000	46.286	1.110	0.056	0.007	0000	100.0	42./13
15		NA	100000	9684.360	295 911	5 504	0.000	0.002	0.003	47.464
15	٨٢	NA	45000	5.913	121 100	0.064 60 713	0.000	200- F	0.079	9986.736
15	<u>لا</u>	NA	20000	9.862	5 240	6 4.00	0.122	1.122	0.468	198.736
15		NA	10000	0.321	10.070	10.400	2.380	0.548	0.156	24.625
15		NA	10000	3 020	174 575	100.21	4.198	0.949	0.155	29.196
15		NA		0.300	B/C/h/1	198./91	67.793	12.870	2.829	460.800
15		NA NA	10000	200.00	3.430	1.331	0.302	0.066	0:030	35.747
15		VIV	00001	1./13	0.069	0.033	0.215	13.451	33.357	48.837
15	+		0000	11.363	1.027	0.718	0.236	0.052	0.011	13.40R
2 4		AN 1	9006	0.123	0.080	0.300	0.380	0.647	0.180	1 710
2 4		NA	2000	47.241	7.004	4.642	1.883	1.004	0 757	60 E31
<u>c</u>		AN	4000	0.165	0.753	3.898	4.810	2 682	1 205	100.301
2		AN	125	0.241	0.070	0.060	0.016	0.005	0000	10.014
0		NA	-	0.036	0.096	0.114	0.022	0000	17000	CRC.U
						,	0.046	1211/1	N.U17	0.298

D-	1	5
<i>D</i> -	1	J

Not for Resale

		ORIG.	PRE-BAG			HYDROCARE	NON FMISSION	IS (cc /min)		
SITE	TYPE	ISV	ISV	CI	33	ទ	Carlor and the second s		į	TOTAL
16	BACK	NA	10000	000.83	0,040	0.360		3	+	IUIAL
16	BACK	NA	1200	0.000	200.0	2000	70.122	000.0	0.025	24.568
16	BACK	NA	500	0000	1.032	0.032	0.019	0.013	0.010	0.466
16	RACK	VIV	000	0.004	110.0	0.010	0.002	0.003	0.003	0.693
16	RACK		400	0.220	0.005	0.001	0.003	0.004	0.002	0.242
2 4	ANNA T	AN AN	520	0.082	0.004	0.012	0.002	0.001	0.000	0.101
		AN	2	0.230	0.019	0.003	0.001	0.000	0.000	0 253
	5	AN	100000	326.435	94.523	54.884	24.214	6.583	1 847	508 ABG
9	Z	NA	100000	353.528	30.066	1.396	0.099	0.031	0.065	200.400
16	CN	NA	100000	688.884	166.852	100.772	47 247	17.676	0.00	CB1.COC
16	CN	NA	10000	75.827	10.275	6.079	2 841	1 166	0.240	1027.676
16	CN	NA	10000	681.568	52 373	2 0 0 7	0.116	001.1	cac.u	96.754
16	CN	NA	4000	R NER	1 220	17070	0.110	0.028	0.004	736.115
16	CN	NA		0.000	0021	0.089	cnn.n	0.002	0.001	9.394
16		NA	0004	0.334	0.780	1.0.0	0.012	0.013	0.009	9.825
16		VIN	1000	10.134	111.0	0.158	0.127	0.062	0.022	0.634
16			0001	0.365	12.744	13.630	6.392	2.753	1.165	37.050
2 4		AN A	20	0.805	0.107	0.070	0.047	0.004	0.000	1.033
		AN .	20	2.063	0.166	0.029	0.011	0.001	0.000	026.6
0		VN.	100000	2.849	0.378	7.187	0.004	0.001	0000	10.110
0		AN	100000	63.437	11.706	6.684	2.719	0.868	0.225	06,670
9		NA	100000	174.451	17.134	0.810	0.046	0.018	0.064	400 000
16	OEL	NA	100000	14108.080	1394.288	63,437	4 328	0001	100.0	192,520
16	OEL	NA	100000	239.776	101.386	02 RQU	EE OBD	6701	0.392	15571.554
16	OEL	NA	100001	0 883	AR 786	0.000	100.00	31./18	9.780	541.629
16	DEL	NA	100001	12 014	1001.00	0.400	1.2/3	0.156	0.013	68.398
16	OEL	NA	2002	0 100	122.00	10.224	1.471	0.179	0.149	75.157
16	4	NA	100001	0.102	0.020	0.011	0.006	0.003	0.001	0.144
16	AL	NA		9:004	1.104	109.675	0.280	0.057	0.033	175.152
16		NA		10014.040	1829.472	48.248	0.694	0.019	0.013	17393.086
16	+ ! >	VIV	00000	201.800	44.302	15.748	8.161	3.175	1.209	334.460
2 4		Y Y	100001	8465.792	5075.888	1485.101	721.027	272.627	102.953	16123.388
19			00001	3105.760	901.992	459.256	135.794	30.397	4.526	4637.726
16		AN A	100001	753.312	197.296	112.997	44.840	11.658	4,125	1124.228
		YN I	10000	689.120	168.032	74.198	16.803	3.266	0.559	951 979
0		NA	100000	685.580	62.446	6.063	0.515	0.052	0.016	754 679
0		NA	100000	743.400	62.776	7.104	1.652	0.826	0.413	916 171
91		NA	100000	277.536	17.105	0.697	0.040	0.001	0.015	010.171
16	۲L	NA	100000	443.680	117.622	65.514	30.019	10 205	C100	230.394
16	٦٢	NA	10000	740.474	192.104	97.798	34.928	6 881	100.4	0/3.82/
16	٨L	NA	10000	8.704	1.463	49.088	0.018	0000	0.0.1	106.6/01
						1,,,,,,	0.00	0.010	ccu.u	59.338

D-16

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

			0.0							
		OHO.	PHE-BAG			HYDROCARE	ON EMISSIO	NS (cc/min)		
SILE	TYPE	ISV	ISV	5	ε	ε	2			
				5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	5	3	÷3	TOTAL
0	<u>۷</u> ۲	NA	10000	0.249	6.918	6.894	3 474	101 1	Nak V	
9			0000	1-0 0-1				161.1	0.400	19.189
	:		0000	1/2.3/4	20.787	25.488	6.155	0.736	0 175	966 74C
16	_ ۲	NA	100001	000 040	100 10	012 0		22:12	21.0	017.002
			2000	010.022	20012	0.748	0.0371	0.0071	0 008	100 510
10	7	NA	VUUV	0170	002.0	0000		10010	2000	£10.234
				0.173	U. / BU	0.222	0.038	0.008	0 004	1 221
9	7	NAN	10001	1110		0100			1 0010	1071
ľ			200	110.0	0.140	1910.2	0.0281	0.0061	0 0041	2 E/JE
9	~ ~	NAI	200	14 001	101	010		20012	100.0	COC.2
			202	170.41	1.131	8cu.u	0.004	0.001	0.001	16.07E
										010.01

•

		ORIG.	PRE-BAG			HYDROCAR	RON FAIREIO	MC for Imin		
SITE	TYPE	NSI	ISV	ય	8	B	CA		130	TOTAL
17	CAL	NA	10000	17.188	0.020	0.010	0000	600.0		
17	CAL	NA	38	0.072	0.020	0.010	200.0	2000	200'0	17.224
17	CN	NA	1000001	2.896	0.160	0.000	0.00	2000	0.002	0.108
17	CN	10000	100000	178 B4B	36.368	0.000	010.0	910.0	0.016	3.184
17	ON	100001		100.001	000,000	014.21	3.3.12	0.864	0.160	231.968
17	NC	10000	00001	100.004	266.20	29.72	5.568	1.248	0.464	279.888
1	NC		nnnt	0.123	0.062	0.012	0.012	0.012	0.012	0.234
		nne	00001	39.757	0.904	0.315	0.137	0.069	0.014	41.196
		0001	10000	83.1324	1.6692	0.4524	0.1872	0.156	0.078	R5 675
2 ;	2	500	2000	0.470151	0.01583	0.007915	0.001583	0.001583	0.001583	0000
- !		AN	5000	4.742	0.085	0.029	0.018	0.00	0000	PEH'N
	ZS A	1000	5000	0.763524	0.014859	0.01143	0.005715	0.001143	0.001143	1,004
2	Z C C	1000	5000	0.032	0.018	0.009	0.0021	0.002		0.130
	z Z	500	5000	86.110	1.690	0.589	0.153	0.109	0.045	0.00
2	ZS CS	3000	4000	0.085	0.017	0.008	0.002	0.002	0000	00.04
	CN	1000	3000	3.568	0.16	0.08	0.016	0.016	0.002	0.11.0
17	S	NA	2000	1.075055	0.022009	0.01693	0.008465	0.0.0	0.001602	3.856
17	S	NA	2000	0.111786	0.01803	0.009015	0 001803		0.001090	071.1
17	CN	NA	2000	2.560	0.160	0.080	D AAB	0000000	0.001803	0.144
17	CN	300	1250	0.368	0.018		0000	001.00	0.080	3.488
17	CN	NA	1000	2 2042RG	0.056027	0.003	0.002	0.002	0.002	0.400
17	<u>on</u>	3000	1000	9667	1300000		66010'0	0.008465	0.001693	2.333
17	CN SN	1500	10001	0.0000	0.04044	0.018	0.009	0.002	0.002	2.744
17	CN	10000	0001	N'NCNEE	11010.0	U.UUZUZZ	0.002022	0.002022	0.002022	0.038
17		0000	002	0.604	0.018	0.00	0.002	0.002	0.002	0.478
17		500	001	0.034	0.019	0.010	0.002	0.002	0.002	0.729
17	CN -	500	000	6/0100/0	0.01693	0.008465	0.001693	0.001693	0.001693	0.882
17	CN CN	300	000	110.0	0.019	010.0	0.002	0.002	0.002	0.545
17	CN N	45	200	0.606	CIN.N	0.007	0.001	0.001	0.001	0.834
17	NC	2	000	060.0	110.0	0.008	0.002	0.002	0.002	0.626
17		OF UV	200	0.04/	10.0	0.008	0.002	0.002	0.002	0.078
17		02	00	962.0	0.018	0.009	0.002	0.002	0.002	0.288
14		VIV		0.01693	0.008465	0.001693	0.001693	0.001693	0.001693	0.032
17			10000	1.040	0.022	0.018	0.009	0.002	0.002	1.093
12			10000	1/2.920	12.375	4.554	1.188	0.347	0.165	191.549
12		0000	nnnt	960.62	0.48	0.16	0.16	0.08	0.016	25,952
12		0000	10000	0.118	0.059	0.0118	4 0.0118	0.0118	0.0118	0.224
			10000	4.048	0.160	0.080	0.016	0.016	0.016	4.336
12			10001	185.163	26.499	9.125	2.426	0.776	0.429	224.417
:		YN1	4000	2.921	0.056	0.020	0.018	0.009	0.002	3 025
										21012

		ORIG.	PRE-BAG							
SITE	TYPE	NSI	ISV	5	ε	HADDHUTH	BUN EMISSIC	JNS (cc/min)		
F	0EL	NA	ADDK		3	3	5	S	80	TOTAL
17	0FT	VIV	4000	4.224	0.132	0.066	0.013	0.013	0.013	4.462
-			0000	0.357	0.017	0.008	0.002	0.002	0.002	0 388
		AN	3000	2.816	0.018	0.009	0.002	0.002	0000	000.0
= [AN	3000	0.754	0.015	0.007	0.001	0.001	0.001	2.043
-	CEL	NA	3000	0.240	0.017	0.008	0.002	0000	1000	19/0
2	CEL	NA	3000	1.265	0.091	0.068	0.030	0.002	0.002	1/2/0
-	OEL	NA	2000	0.571551	0.01803	0.009015	0.001803	0.00100	0.001000	1.480
-	OEL	AN	1000	0.157	0.018	0.009	0.002		0000	0.004
2	OEL	60	600	0.142	0.018	0.009	0.002	200.0	2000	0.189
1	OEL	NA	350	0.146	0.017	0.008	200.0	200.0	0.002	0.175
17	OEL	NA	300	0.442	0.018	0000	2000	200.0	0.002	0.176
17	OEL	NA	300	0.186	0.018	0000	0.000	0.002	0.002	0.474
17	OEL	NA	200	0.093397	0.01583	0.003015	0.002	0.002	0.002	0.218
17	OEL	NA	1001	0 113580	0.0100	190000	0.001583	0.001583	0.001583	0.122
17	OEL	NA	1001	111	0.01000	G10600.0	0.001803	0.001803	0.001803	0.146
17	OEL	NA	35	0.07	010.0	0.009	0.002	0.002	0.002	0.444
17	PRV	VIV	202	0.201	/10.0	0.008	0.002	0.002	0.002	0.237
17	VENT		00001	0.018	0.009	0.002	0.050	0.018	0.009	0.106
17			00001	25.862526	0.445212	0.150192	0.037548	0.02682	0.01341	26.536
<u>_</u>		AN 1	00001	43.470	0.770	0.263	0.175	0.088	0.018	AA 700
		AN	100000	0.224	0.160	0.080	0.016	0.016	0.016	0 1.44
		NA	10000	507.552	12.121	4.165	1 105	0 402	1010:0	210.0
-	7	NA	10000	0.396	0.165	0.083	0.017	2100	0.17	909.626
-	۲	100001	10000	870.48598	11.54244	3 72008	1 0100	100	10.0	0.693
17		10000	10000	1726.5204	77.55	27 2184	2610.1	0.77714	0.59878	888.144
17		10000	10000	99.924	1 716	101212	07.1	3.7224	1.0164	1843.288
17		10000	10000	649.74	15.623	C110'D	cq1.0	0.0825	0.0165	102.482
17		10000	10000	1976	2 160	004.0	1.445	0.697	0.17	673.081
17	Ĭ	10000	10000	1015 210	001.00	1.104	0.304	0.16	0.08	132.416
17		10000	10000	017.0	0.000	1.247	0.329	0.151	0.137	1920.178
17	+ ! =	001	10000	0.100	0.080	0.016	0.016	0.016	0.016	0.304
17	+ !Þ	0000	0000	0.17	GR0.0	0.017	0.017	0.017	0.017	0.323
++		2000	SUUU	3.425776	0.062776	0.02242	0.038114	0.02242	0.01121	3 583
		0001	2000	0.651	0.020	0.010	0.002	0.002	0.000	0.00
		150	150	0.165208	0.01544	0.00772	0.001544	0 001544	0.001544	0.00
2	7	100	45	0.02202	0.01101	0.002202	0.002202		6400000	0.193
2		NA	15	0.066	0.033	0.007	0.007	0.007		0.042
2	۲	NA	15	0.066	0.033	0.007	1007	1000	N.UU/1	0.125
I							100.0	N.UU7	0.007	0.125

D-19

		ORIG.	PRE-BAG			HYDROCARB	ON EMISSION	IS (cc/min)		
SITE	TYPE	NSI	- NSI	CI	3	ខ	S	C5	-90 C8+	TOTAL
18	си	100000	100000	42.221	0.915	0.395	0.179	060.0	0.018	43.818
18	CN	100000	100000	1234.967	32.570	16.224	8.505	3.091	1.153	1296.510
181	CN	10000	100000	1290.757	398.413	12.952	4.593	2.131	0.562	1709.407
18	CN	10000	100000	2246.885	61.007	18.041	8.747	5.311	1.944	2341.935
18	CN	5000	100000	217.718	2.787	1.971	1.257	2.447	0.357	226.537
18	CN	10000	10000	5.302	0.425	0.170	0.085	0.017	0.017	6.015
18	CN	100000	1500	1.718	0.165	0.083	0.165	0.529	0.165	2.825
18	DEL	100000	100000	698.608	112.289	98.262	2.332	0.859	0.356	912.705
18	OEL	100000	100000	73.384	11.439	15.106	10.705	3.440	1.240	115.315
18	OEL	100000	100000	268.083	0.170	0.085	0.170	1.325	0.170	270.003
18	OEL	100000	100000	1568.095	34.246	12.241	6.195	3.436	0.628	1624.841
18	OEL	100000	100000	172.174	3.823	1.392	0.661	0.248	0.118	178.416
18	OEL	10000	100000	464.195	10.936	4.014	1.784	0.578	0.314	481.822
18	DEL	10000	100000	103.200	3.007	1.090	0.430	0.132	0.165	108.024
18	OEL	10000	100000	1209.766	37.335	11.987	4.256	1.824	0.793	1265.961
18	OEL	10000	50000	155.312	0.118	0.118	0.118	0.330	0.059	156.055
18	OEL	10000	40000	75.475	3.354	1.686	0.969	0.395	0.215	82.093
18	OEL	10000	30000	2.280	0.165	0.083	0.017	0.017	0.017	2.577
18	DEL	10000	15000	48.786	1.381	0.359	0.179	060.0	0.018	50.813
18	DEL	100000	10000	26.304	2.039	0.974	0.170	0.113	0.113	29.713
18	OEL	10000	10000	8.258	0.493	0.170	0.085	0.017	0.017	9.040
18	OEL	10000	10000	1.020	0.191	0.127	0.064	0.013	0.013	1.427
18	OEL	NA	2000	0.142	0.071	0.014	0.014	0.014	0.014	0.269
18	OEL	1000	2000	259.271	86.010	97.816	67.690	26.144	1.030	537.961
18	OEL	10000	1000	1.150	0.132	0.066	0.013	0.013	0.013	1.388
18	OEL	1500	1000	2.664	0.770	0.818	0.514	0.177	0.160	5.103
18	OEL	1000	1000	2.957	0.170	0.085	0.017	0.017	0.017	3.262
18	OEL	100000	600	175.150	0.094	0.047	600.0	0.009	600.0	175.320
18	OEL	NA	500	1.237	0.179	060.0	0.018	0.018	0.018	1.560
18	٨Ľ	100000	100000	353.895	45.109	25.900	16.860	2.475	1.004	445.243
18	٨	100000	100000	180.095	3.390	1.435	0.807	0.395	0.341	186.463
181	٨٢	100000	100000	1.351	0.344	0.433	0.421	0.319	0.229	3.097
181	٨٢	100000	100000	651.884	20.913	12.232	7.049	2.995	2.924	697.997
18		100000	100000	1021.043	150.896	143.614	89.339	32.410	11.712	1449.014
18	7	100000	100000	450.696	13.831	4.520	1.631	0.765	0.204	471.647
18	٨	100000	100000	3731.240	192.720	56.633	26.704	9.452	5.103	4021.853
18	٨٢	50000	100000	122.929	3.126	1.572	0.838	0.297	0.175	128.937
18		40000	100000	4133.219	242.357	72.811	34.358	12.081	4.571	4499.397

D-20

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

		ORIG.	PRE-BAG							
SITE	TYPE	NSI				GHADDAUTH	UN EMISSIUN	45 (cc/min)		
0			ACI	5	23	ខ	2	පි	+90	TOTAL
0		100001	100000	722.552	13.943	5.931	3.221	1.338	1272.0	047 7 170
2	٨٢	10000	100000	464.979	14.561	4 862	1 723	0 732	0.10	071.141
18	۲L	2000	100000	1852.668	53.773	25.243	20.006	10 764	1001.0	48/.021
18	7	006	1000001	0.175	0.087	0.017	0.017	101.01	10+1	19/2/91
18		200	100001	2240.077	100.0	110.0	110.0	/10.0	0.017	0.332
18			00000	116.6420	384.189	59.490	28.325	8.586	3.948	3734.514
2		00000	0000	0.170	0.085	0.017	0.017	0.017	0.017	0 322
0		10000	50000	57.741	1.075	0.465	0.241	0.080	0.080	50.602
2	۲۲	2000	15000	1.652	0 165	0.002	2100	100		000.60
18		100001	10001	1001	3	000.0	10.0	1/10.0	0.017	1.949
4	1	100001	00001	260.4	0.179	0.179	0.233	1.094	060.0	6.367
•		nnnni	00001	8.333	1.178	0.700	0.430	0.123	0.061	10 824
0		00001	10000	114.418	2.478	1.256	0.710	1.297	0 165	110.004
2	-	8000	8000	7.228	2.170	2.009	1.363	1 417	02.00	130.51
18		2000	5000	30.937	0 05.0	DEAN		1121	0.173	14.357
18		10001	VUUV	100.001	7000	4+C.U	0.283	0.091	0.113	32.919
18			0000	100.01	0.323	0.170	0.085	0.017	0.017	11.419
	!	00001	0002	2.583	0.179	060.0	0.018	0.018	0.018	2.906

•1

D-21

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Ę	1	ORIG.	PRE-BAG			HVDBOOM				
SIF	TYPE	ISV	NSI	ទ	ε			JNS (cc/min)		
6	CN	AN	100000	476.127	201 100	3	5	පි	+90	TOTAL
19	CN	NA	100000	106.001	091.12	7.524	4 2.521	1.254	0.488	509 113
61	CN	NA	100001	100.04	9.323	2.735	1.537	0.226	0.113	120.854
19	CN	NA	100001	181 245	0.461	0.190	0.064	0.031	0.028	13.678
19	CN	NAT	10000	CH7.101	11.597	6.463	2.537	1.616	0.664	2017 122
19	CN	NA	100001	10.14	G69.1	0.988	0.354	0.166	0.104	16 425
19	CN	100001	10001	00.1042	12./00886	5.835771	1.982503	1.034423	0.306433	R8 564
19	CN	10000	10001	000.0	0.160	0.080	0.016	0.016	0.016	100.00
19	CN 1	100001	00001	0/1.40	1.568	0.560	0.176	0.160	U URU U	0000
19	CN	100001		968882.1	0.044688	0.02352	0.01176	0.002352	0.00250	027.00
19				58.4	2.096	0.864	0.288	0.16	0.00	1.3/4
19	CN 1	NA NA		2.784	0.16	0.08	0.016	0.016	0.00	01.888
19			nnne	1.888952	0.066092	0.027716	0.02132	0.01066	0.001000	3.072
19			8000	1.022	0.034	0.018	0.000		0.002132	2.017
0		0000	0009	2.384	0.160	0.080	0.016	2000	0.002	1.087
2 0		2500	5000	0.460496	0.01693	0.008465	0.010	0.016	0.016	2.672
2 9		2000	5000	0.303047	0.01693	0 008465	0.001000	0.001693	0.001693	0.491
2 0		AN	3000	0.01583	0.007915	0.001502	0.001093	0.001693	0.001693	0.334
2	N	NA	1500	0.076185	0.01603	0.0001000	690100.0	0.001583	0.001583	0.030
5	S S	NA	10001	0.019	0.010	cotonon	0.001693	0.001693	0.001693	0.107
ח	cN	1000	1000	0 177	010.0	0.UUZ	0.002	0.002	0.002	0.036
-16	CN	50	10001	0 533688	0.010	0.009	0.002	0.002	0.002	0.200
19	CN	30	enn	0000000	0.019633	0.01803	0.009015	0.001803	0.001803	0.594
19	CN CN	500	500	0.001	0.025	0.018	0.009	0.002	0.00	
19	CN	NA	000	0.01033	0.008465	0.001693	0.001693	0.001693	0.001693	0.000
19		NA	100	0.184	0.018	0,009	0.002	0.002	0000	0.032
19	CN 1	000	000	0.055869	0.01693	0.008465	0.0016931	0.001602	0.001000	0.216
161			300	0.073	0.017	0.008	0000	0000	0.001093	0.086
0		AN 1	200	0.01803	0.009015	0.001803	0.001803	0.002	0.002	0.103
10		AN X	150	0.034	0.017	0.008	0000	0.000	0.001803	0.034
10		NA	150	0.519751	0.01693	0.008465	0.001693	0.002	0.002	0.064
2 0		NA 2	100	0.018623	0.01693	0.008465	0.001603	0.001000	0.001693	0.550
		nc	50	0.025242	0.01803	0.009015	0.001000	660100'0	0.001693	0.049
10		60	40	0.017	0.008	0.000	0000	0.001803	0.001803	0.058
E C		NA	30	0.01693	0.008465	0.005	0.002	0.002	0.002	0.032
2 C	L L	NA	100000	286.954	A 648	200 0	0.001093	0.001693	0.001693	0.032
5		NA	20000	0.682	0.024	160.2	0.824	0.256	0.142	299.719
5	JEL	10000	10000	29.152		10.0	. 0.008	0.002	0.002	0.735
6	JEL T	NA	3500	0.356	0.132	0.410	0.160	0.080	0.016	30.832
	λ.Γ.	NA	2000	0.024	0.02	000.0	0.013	0.013	0.013	0.594
				1	1.1.7.0	0.008	0.002	0.002	0.002	0.054

D-22

-		ORIG.	PRE-BAG			HYDROCARI	ON FMISSIO	NS (co /min)		ſ
	TYPE	ISV	ISV	CI	3	ខ	2	CS I	+90	TOTAL
	OEL	NA	2000	0.094	0.019	0.010	0.002	0.002	0.002	061.0
_	OEL	10000	2000	0.216	0.127	0.064	0.013	0.013	0.013	0.450
	OEL	NA	1100	0.528	0.020	0.017	0.008	0.002	0.002	0.577
	OEL	NA	1000	1.562	0.165	0.127	0.064	0.013	0.013	1.943
		2000	600	0.125	0.017	0.008	0.002	0.002	0.002	0,156
		200	400	0.019149	0.01473	0.007365	0.001473	0.001473	0.001473	0.046
		NA	250	0.01693	0.008465	0.001693	0.001693	0.001693	0.001693	0.032
		AN	150	0.017	0.008	0.002	0.002	0.002	0.002	0.032
		300	1091	0.017	0.008	0.002	0.002	0.002	0.002	0.032
	7	00001	100000	27.072	096.0	0.400	0.160	0.080	0.016	28.688
	7	00001	100000	637.280	49.434	21.500	7.244	3.482	1.172	720.110
- 1		10000	100000	539.904	28.352	12.576	4.304	2.128	0.688	587 952
- 1	~~	10000	100000	336.320	13.152	5.408	1.792	0.848	0.288	357 808
	۲	10000	50000	51.948	1.388	0.468	0.156	0 156	0.078	54 104
		10000	10000	49.385	0.924	0.231	0 165	0.083	0.000	101.101
		10000	10000	262.864	8.208	2 928	0 944	0.425	10.0	50.804
	4	10000	10000	712.256	224.480	92.736	38.320	15 720	0.100	966.672
	٨Ĺ	500	10000	19.519	0 702	0 288	0.06	071.01	0.440	108.8901
1		1000	4000	0.465	2010	00000	CENIN	0.044	0.026	20.674
	1	601	0001	0.402	0.027	620.0	0.018	0.009	0.002	0.546
1			2000	0.049	G10.0	0.007	0.001	0.001	0.001	0.075
- 1		000	0001	160.0	0.015	0.007	0.001	0.001	0.001	0.124
1		300	1000	0.341986	0.01693	0.008465	0.001693	0.001693	0.001693	0.372
		NA	350	37.623	1.488	0.573	0.201	0.097	0.027	40.009

•.*

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

		ORIG.	PRE-BAG			HYDROCAR	BON FMISSIO	NS (cc/min)		
SITE	TYPE	ISV	NSI	CI	ß	Ű	CA			10404
20	CAL	NA	469	0.064	060.0	0.010		3	+5	IUIAL
20	CN	NA	100000	7 7055	0.050			0.002	0.002	0.100
20	CN	NA	1000001	105.21	001.0	01.0	C280.0	0.0165	0.0165	8.151
20	CN	NA	100000	10.19	0.260	0.040	0.24	0.16	0.08	108.928
20	CN	10000	1000001	2 358720	0.0000	0.10	0.08	0.016	0.016	19.744
20	CN N	10000	100000	EA EAEA	1 200	0.01913	COC600.0	0.001913	0.001913	2.441
20	CN NO	10000		464 0464	070.1	0.4524	0.156	0.078	0.0156	66.674
20	CN 1	10000		1010.101	1.4141	2.5972	0.7097	0.3624	0.151	162.250
20		100001	100001	11.4/2	0.336	0.16	0.08	0.016	0.016	18.080
00		00001	00001	144.352	3.536	1.264	0.336	0.16	0.16	149 R/R
00		00001	20000	1.419	0.165	0.0825	0.0165	0.0165	0.165	3121
200		NA	10000	0.502821	0.01693	0.008465	0.001693	0.001693	0.001693	017.1
7	3	00001	10000	63.712	1.184	0.4	0.16	0.08	0.016	0.000
N7 00	23	0006	6500	0.235327	0.01693	0.008465	0.001693	0.001693	0.0.0	200.00
N2	CN	NA	2000	0.213318	0.01693	0 008465	0.001602	0.001000	00010000	0.200
20	SN	300	300	8.415	0.108	0.165	0.0000	0.001093	669100.0	0.244
20	CN	250	300	0.277662	0.1803	0.00015	C700100 0	cq10.0	0.0165	8.894
20		200	250	0.01602	0.000465	0.00000	0.001803	0.001803	0.001803	0.310
20	CN	200	200	001000	C040000	0.001693	0.001693	0.001693	0.001693	0.032
20	<u>CN</u>	1000	150	0.01090	COPBUUN	0.001693	0.001693	0.001693	0.001693	0.032
20	NO NO	006		0.04005	0.01093	0.008465	0.001693	0.001693	0.001693	0.071
20	NC	200	001	0.22009	0.01693	0.008465	0.001693	0.001693	0.001693	0.251
20		20	100	0.382236	0.01803	0.009015	0.001803	0.001803	0.001803	0.415
20	110	C2 VIV	000001	0.452553	0.01803	0.009015	0.001803	0.001803	0.001803	0.485
20		VIV	00001	0.01803	0.009015	0.001803	0.001803	0.001803	0.001803	0.034
200			00001	15.877467	1.733721	0.612768	0.169395	0.08838	0.048609	18.530
20		10000	100000	141.776	4.032	1.456	0.4	0.208	0.16	148.032
20	0FT	100001		961.201	5.68	1.936	0.512	0.256	0.16	171.280
20	DEL	100001	20000	CR08.CE	1.812	0.6191	0.1661	0.0755	0.151	98.633
20	OEL	NA		0,0000.0	0.0132	0.0066	0.00132	0.00132	0.00132	0.412
20	OEL	NA	0000	0 171705	0.24	0.16	0.08	0.016	0.016	12.960
20		2000	2000	C07171-0	0.01803	0.009015	0.001803	0.001803	0.001803	0.204
20	OEL -	1000	1500	0.01010	0.1/6/	0.16	0.08	0.016	0.016	9.248
20		000-	0001	0.323131	0.01693	0.008465	0.001693	0.001693	0.001693	0.554
20		00	0001	0.048681	0.01803	0.009015	0.001803	0.001803	0.001803	0.081
20		0000	0061	0.054176	0.01693	0.008465	0.001693	0.001693	0.001693	0.085
20		0001	1000	0.23702	0.01693	0.008465	,0.001693	0.001693	0.001693	0.267
20		001	0001	0.624717	0.01693	0.008465	0.001693	0.001693	0.001693	DEE
20		009	800	0.026911	0.01583	0.007915	0.001583	0.001583	0.001583	0.055
		MA	400	0.029	0.017	0.008	0.002	0.002	0.00	0.060
									70.00	RCU.U

ł		CHIG.	L PHE-BAG			HYDROCAR	JON EMISSIOI	NS (cc/min)		
SILE	IYPE	ISV	ISV	ច	8 S	ខ	2	C5	C8+	TOTAI
20	OEL	NA	250	0.016931	0.008465	0.001602	1 COSTOC O	0.0012100		
20		000	000	000100		0001000	0601000	0.001033	0.001093	0.032
		50	ZUUZ	0.01693	0.008465	0.001693	0.001693	0.001693	0.001693	0.032
2		ρç	200	0.275859	0.019833	0.01803	0.009015	0.001803	0.001803	0.326
22	Ľ.	100	110	0.01693	0.008465	0.001693	0.001693	0.001693	0.001693	0.032
2 N	OEL	NA	20	0.106061	0.01583	0.007915	0.001583	0.001583	0.001583	0.135
20	OEL	80	55	0.036347	0.01913	0.009565	0.001913	0.001913	0.001913	0.100
20	VENT	10000	100000	0.528	0.16	0.08	0.016	0.016	0.016	0.01
20	VENT	10000	100000	158.496	11.31	3.9936	1.092	0.5616	0.218A	176 677
20	VENT	10000	2000	20.144	. 0.352	0.16	BU U	0.010	2101	710.011
20	VENT	800	1500	1 7802	0 1 40	1100	00.0	010.0	010.0	20.708
00	VENT	500	0001	1001.1	0.142	1/0.0	0.0142	0.0142	0.0142	2.045
3 6		Inne	nne	2.706	0.165	0.0825	0.0165	0.0165	0.0165	3.003
3 8		NA	100000	0.544	0.16	0.08	0.016	0.016	0.016	0.832
2,6	7	00001	100000	14.671	0.238	0.17	0.085	0.017	0.017	15.198
22		400	100000	22.672	0.432	0.16	0.08	0.016	0.016	93.376
20	۲۲	NA	10000	0.475992	0.01803	0.009015	0.001803	0.001803	0.001803	0.000
20	۲-	5000	10000	1.054063	0.021043	0.01913	0.009565	0.001000	0.001000	0000
20	۲	500	180	0.025242	0.01803	0.009015	0.001803	0.01010	0.001000	0.1.0
							000.0000	0001000	0.00100.0	9000

API PUBL*4589 93 🗰 0732290 0517734 551 📖

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS D-25

Not for Resale

٦

Ψ.

.

APPENDIX E AROMATIC SPECIATION DATA

		ORIG.	PRE-	HYDR	OCARBON EM	ISSIONS (cc/n	nin)
SITE	TYPE	ISV	BAG	Benzene	Toluene	E-Benzene	Xylenes
1	VL	75	450	0.000098	0.000046	0.000046	0.000376
1	CN	10 000	40000	0.233147	0.729778	0.160675	0.333709
1	CN	20	40	0.000449	0.003397	0.001887	0.026402
1	VL	750	200	0.004944	0.015559	0.009584	0.012375
1	٧L	500	900	0.001134	0.004004	0.002730	0.003191
1	CN	100000	2500	0.029208	0.001677	0.000728	0.001374
1	VL	125	2000	0.001140	0.001647	0.000510	0.000702
1	VL	750	3500	0.003063	0.006248	0.002172	0.002493
1	VL	20	1500	0.050954	0.004550	0.000734	0.001043
1	VL	50	2000	0.000443	0.000886	0.000610	0.000735
1	CN	1500	2000	0.001462	0.003215	0.000576	0.001240
1	CN	15000	90	0.000176	0.001253	0.000649	0.001265
1	- CN	NA	10 0	0.000291	0.001565	0.000831	0.001089
2	CN	40	40	0.000178	0.000581	0.000038	0.000207
2	OEL	300	7000	0.026668	0.076936	0.004885	0.032072
2	VENT	200	2000	0.000710	0.000067	0.000067	0.000133
2	VL	100000	60000	0.008354	0.000467	0.000467	0.000935
2	VL	90000	15000	0.002857	0.000530	0.000530	0.001059
2	OEL	6000	6000	0.000343	0.000343	0.000343	0.000685
2	VL	3000	3500	0.0 00078	0.000078	0.000078	0.000155
2	OEL	70	70	0.000045	0.000045	0.000045	0.000090
2	VL	100000	300	0.000045	0.000045	0.000045	0.000090
2	CN	5000	5000	0.001261	0.004652	0.001571	0.000997
2	VL	50	50000	0.000545	0.001155	0.000545	0.001090
2	VENT	100	100	0.000081	0.000081	0.000081	0.000162
2	VL	10000	800	0.000245	0.001508	0.000404	0.011258
2	OEL	100000	100000	0.000498	0.000498	0.000498	0.000997
2	BACK	NA	1	0.000081	0.000081	0.000081	0.000163
2	CN	NA	1	0.000081	0.000081	0.000081	0.000308
2	VL	NA	300	0.000063	0.000168	0.000063	0.000126
2	VL	NA	10000	0.000070	0.000190	0.000070	0.000141
3	BOX	NA	300	0.006944	0.031000	0.003348	0.005410
3	BOX	NA	75	0.022950	0.069300	0.006870	0.014760
3	BOX	NA	1000	0.019075	0.050400	0.003990	0.012355
3	BOX	NA	10000	0.012090	0.024118	0.002117	0.004607
3	BOX	NA	8000	0.034812	0.087840	0.006480	0.016560
4	OEL	NA	12	0.000469	0.000342	0.000031	0.000062
4	VL	NA	100000	0.000425	0.000425	0.000425	0.000850
4	VL	NA	1000	0.000067	0.000067	0.000067	0.000133
4	٧L	NA	12	0.000108	0.000189	0.000031	0.000062
4	VL	NA	400	0.000859	0.000413	0.000413	0.000826

API PUBL*4589 93 🗰 0732290 0517737 260 📟

		ORIG.	PRE-	HYDF	OCARBON EN	ISSIONS (cc/r	nin)
SITE	TYPE	ISV	BAG	Benzene	Toluene	E-Benzene	Xylenes
4	VL	NA	10000	0.007397	0.003183	0.000084	0 .000346
4	OEL	NA	100000	0.004089	0.001754	0.000084	0.000281
5	OEL	NA	10000	0.190263	0.055436	0.013551	0.044349
6	OEL	10000	10000	0.168362	0.052425	0.006844	0.050235
6	BOX	1500	1000	0.018854	0.005170	0.000471	0.004905
6	BOX	100	800	0.024461	0.009855	0.000400	0.007197
8	BOX	50	300	0.008088	0.001213	0.001011	0.002022
9	CN	3500	3000	0.000074	0.000074	0.000074	0.000148
9	CN	100	200	0.000049	0.000049	0.000049	0.000097
9	INST	2000	3000	0.00 0052	0.000116	0.000052	0.000104
9	CN	1000	4 00	0.000358	0.001058	0.000035	0.000201
9	VL	1000	8000	0.000018	0.000040	0.000018	0.000036
9	VL	150	200	0.000034	0.000114	0.000018	0.000054
9	INST	10000	2000	0.000097	0.000113	0.000016	0.000032
9	CN	200	600	0.000424	0.000626	0.000333	0.001536
9	VL	NA	70000	0.0 07674	0.008499	0.000178	0.000308
10	BACK	NA	1.5	0.000000	0.000066	0.000066	0.000132
10	CN	NA	500	0.0 00038	0.000038	0.000038	0.000075
10	OEL	NA	300	0.000056	0.000056	0.000056	0.000112
10	OEL	NA	50	0.000045	0.000045	0.000045	0.000090
10	OEL	NA	10	0.000045	0.000136	0.000045	0.000090
10	VL	NA	100	0.002740	0.006010	0.000424	0.001497
10	VL	NA	1.5	0.000052	0.000052	0.000052	0.000104
10	OEL	NA	1000	0.035 306	0.112147	0.007404	0.040913
10	VL	NA	750	0.0079 03	0.000938	0.000436	0.000872
10	CN	NA	2000	0.003634	0.001487	0.000545	0.001090
10	VL	NA	10000	0.001784	0.003188	0.000545	0.001090
10	CN	NA	100000	0.017492	0.023751	0.000530	0.004253
10	DLA	NA	100000	0.327379	0.422062	0.014668	0.077833
10	VL	NA	10000	0.174923	0.242325	0.009629	0.049685
10	VL	NA	100000	0.001784	0.003188	0.000545	0.001090
10	VL	NA	10000	0.027603	0.068364	0.003081	0.024778
11	Vent	175	300	0.001632	0.003882	0.000251	0.002519
11	. VL	100	100	0.0009 06	0.002350	0.000198	0.000811
11	VL	150	1500	0.009730	0.019035	0.000256	0.001406
11	VL	300	9000	0.000178	0.000190	0.000087	0.000175
11	VL	1200	3000	0.001294	0.002409	0.000473	0.000723
11	OEL	20	300	0.001136	0.003880	0.000158	0.001590
11	VL	100000	2000	0.000064	0.000136	0.000081	0.000163
11	OEL	40	1200	0.004382	0.004284	0.000069	0.000620
11	VL	NA	500	0.000561	0.002297	0.000672	0.002977

E-2

API PUBL*4589 93 🗰 0732290 0517738 177 🖿

		ORIG.	PRE-	HYD	ROCARBON EI	MISSIONS (cc/	min)
SITE	TYPE	ISV	BAG	Benzene	Toluene	E-Benzene	Xylenes
11	CN	NA	60	0.000143	0.000265	0.000282	0.001137
11	VL	NA	2000	0.000069	0.000337	0.000087	0.000175
11	PRV	NA	175	0.010727	0.016834	0.001341	0.003315
11	AMB	NA	1000	0.003486	0.000780	0.000373	0.001915
11	AMB	NA	200	0.016438	0.024356	0.000565	0.004109
11	VL	NA	1000	0.000840	0.001317	0.000236	0.001160
11	PRV	NA.	100000	0.229458	0.307750	0.005367	0.050126
11	VL	NA	100000	0.001225	0.004092	0.001564	0.003128
11	VL	NA	7500	0.004440	0.006007	0.000081	0.001065
11	Vent	NA	100000	0.024256	0.027329	0.000578	0.004297
11	VL	NA	200	0.000178	0.000346	0.000087	0.000175
12	PRV	3500		0.000000	0.000000	0.000000	0.000000
12	VL	4000		0.000000	0.000000	0.000000	0.000000
12	VL	300		0.000000	0.000000	0.000000	0.000000
12	OEL	3000		0.000000	0.000000	0.000000	0.000000
12	OEL	2000		0.000000	0.000000	0.000000	0.000000
12	OEL	500		0.000000	0.000000	0.000000	0.000000
13	VL	100000	100000	0.002049	0.001235	0.000377	0.000673
13	VL	100000	100000	0.238203	0.092135	0.004876	0.007556
13	VL	100000	8 0000	0.000148	0.000335	0.000045	0.000089
13	VL	1200	300	0.000217	0.000194	0.000057	0.000103
13	VL	NA	1500	0.004140	0.002573	0.000193	0.001008
13	VL	NA	1000	0.052878	0.006424	0.000350	0.000446
13	VL	NA	1500	0.012079	0.000944	0.000056	0.000101
13	VL_	NA	100000	0.041141	0.030398	0.003440	0.008868
13	VI	NA	250	0.001438	0.000517	0.000056	0.000157
13	VL	NA	2500	0.010890	0.001572	0.000051	0.000159
13	VL.	NA	2500	0.003489	0.002416	0.000253	0.000669
13	CN	NA	800	0.000165	0.000101	0.000053	0.000096
14	VL.	NA	1	0.000000	0.000000	na	0.000000
14	VL.	NA	1	na	0.000000	na	na
14	VL.	NA	40	na	na	na	0.000394
14	BACK	NA	1	na	0.000000	na	na
15	CN	NA	9000	0.065976	0.036528	0.000425	0.000708
15	VL.	NA	7000	0.198216	0.073505	0.000496	0.001833
15	VL.	NA	4000	0.032506	0.030260	0.000370	0.002352
15	VL.	NA	100000	0.102403	0.007658	0.000448	0.001166
15	VL.	NA	9000	0.003862	0.005398	0.000410	0.000819
15	VL.	NA	20000	0.008034	0.012686	0.001571	0.003473
15	VL	NA	100000	0.064204	0.016643	0.000538	0.000897
15	VL	NA	100000	1.308226	0.262636	0.001371	0.003254

API PUBL*4589 93 🎟 0732290 0517739 033 🎟

		ORIG.	PRE-	HYDR	OCARBON EN	ISSIONS (cc/I	nin)
SITE	TYPE	ISV	BAG	Benzene	Toluene	E-Benzene	Xylenes
15	OEL	NA	1500	0.001038	0.001548	0.000264	0.000529
15	VL	NA	100000	0.272597	0.124103	0.000538	0.000897
15	VL	NA	100000	0.011801	0.052547	0.000538	0.000897
15	٧L	NA	10000	0.039631	0.019879	0.000357	0.001593
15	VL	NA	45 000	0.009809	0.006207	0.000317	0.000634
15	VL	NA	100000	0.004484	0.118185	0.000538	0.000897
15	CN	NA	2000	0.001022	0.014006	0.001202	0.005685
15	OEL	NA	100000	0.003540	0.001996	0.000425	0.000708
16	BACK	NA	2	0.000000	0.000000	0.000000	0.000000
16	OEL	NA	700	0.000627	0.000277	0.000034	0.001786
16	VL	NA	4000	0.019444	0.000194	0.000078	0.000858
16	VL	NA	10 000	0.193021	0.010734	0.000263	0.002659
16	OEL	NA	100000	0.588773	0.002098	0.000260	0.002856
16	VL	NA	100000	2.133440	0.241664	0.006948	0.084016
16	CN	NA	20	0.000502	0.000502	0.001184	0.001937
16	CN	NA	4000	0.000435	0.000044	0.000073	0.000798
16	OEL	NA	10000	0.003157	0.005417	0.000502	0.002744
16	OEL	NA	100000	0.000237	0.000154	0.000040	0.000435
16	VL_	NA	100000	0.001090	0.005121	0.000463	0.000925
17	VL	10000	10000	0.626509	0.300077	0.020956	0.047900
17	VL.	10000	10000	0.431911	0.299607	0.020226	0.052010
17	OEL	10000	10000	0.000026	0.000022	0.00008	0.000016
17	VL	10000	10 000	0.199097	0.124379	0.011567	0.023134
17	CN	10000	10000	0.152867	0.062712	0.010886	0.021773
17	VL	10000	10000	0.380011	0.175411	0.018643	0.024857
17	CN	5000	10 000	0.012667	0.010739	0.009321	0.018643
17	OEL	10000	10000	0.086450	0.034492	0.011227	0.022453
17	VL	10000	10000	0.000015	0.000013	0.000011	0.000022
17	OEL	NA	3500	0.000002	0.000001	0.000001	0.000002
17	VL	NA	100000	0.000094	0.000033	0.000011	0.000022
17	VL	NA	10000	0.000025	0.000013	0.000011	0.000023
17	CN	NA	100000	0.059174	0.012542	0.010886	0.021773
18	CN	100000	100000	na	0.000003	na	na
18	VL	40000	100000	0.080125	0.031657	0.003199	0.012833
19	VL	10000	50000	0.014424	0.036687	0.010614	0.021228
19	VL	10000	100000	0.014794	0.012542	0.010886	0.021773
19	VL	500	10000	0.002378	0.002016	0.001750	0.003500
19	VL	10000	100000	0.472933	0.254376	0.011227	0.033680
19	CN	10000	10000	0.002175	0.001844	0.001600	0.003201
19	-CN	10000	10000	0.014794	0.012542	0.010886	0.021773
19	CN	NA NA	100000	0.201994	0.082675	0.007689	0.015377

E-4

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

4

API PUBL*4589 93 🛲 0732290 0517740 855 🛤

		ORIG.	PRE-	HYDROCARBON EMISSIONS (cc/min)			
SITE	TYPE	ISV	BAG	Benzene	Toluene	E-Benzene	Xylenes
19	CN	NA	10000	0.060527	0.019907	0.001152	0.002304
19	CN	NA	10000	0.102384	0.067076	0.010274	0.020548
.19	CN	NA	10000	0.002581	0.002189	0.001900	0.003799
19	CN	NA	100000	0.052887	0.044839	0.008981	0.017963
19	OEL	NA	100000	0.013129	0.011131	0.009662	0.019323
19	VL	NA	350	0.001464	0.001241	0.001077	0.002154
20	CN	10000	100000	0.014424	0.012229	0.010614	0.021228
20	VL	400	100000	0.014794	0.087797	0.010886	0.021773
20	VL	10000	100000	0.015718	0.022211	0.011567	0.023134
20	٧L	5000	10000	0.005306	0.006998	0.001302	0.002603
20	VENT	10000	100000	0.600990	0.216043	0.074300	0.021228
20	OEL	10000	100000	0.078899	0.225763	0.010886	0.021773
20	OEL	10000	100000	0.046538	0.193336	0.010274	0.020548
20	OEL	NA	100000	0.000002	0.000001	0.000001	0.000002
20	VL	NA	100000	0.000015	0.000013	0.000011	0.000022
20	CN	NA	100000	0.167661	0.079435	0.010886	0.021773

.

~

E-5
Order No. 841-45890

.