Hazard Response Modeling Uncertainty (A Quantitative Method)

Volume II Evaluation of Commonly Used Hazardous Gas Dispersion Models

HEALTH AND ENVIRONMENTAL SCIENCES API PUBLICATION NUMBER 4546 OCTOBER 1992

> American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

Hazardous Response Modeling Uncertainty (A Quantitative Method)

Volume II Evaluation of Commonly Used Hazardous Gas Dispersion Models

Prepared for:

American Petroleum Institute Health and Environmental Sciences Department and Air Force Engineering and Services Center Tyndall Air Force Base

PUBLICATION NUMBER 4546 OCTOBER 1992

PREPARED UNDER CONTRACT BY: SIGMA RESEARCH CORPORATION 196 BAKER AVENUE CONCORD, MASSACHUSETTS

> American Petroleum Institute

API PUBL*4546 92 🗰 0732290 0505440 32T 🛤

FOREWORD

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANUFAC-TURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

Copyright @ 1992 American Petroleum Institute

API PUBL*4546 92 🛲 0732290 0505441 266 📟

ACKNOWLEDGMENTS

THE FOLLOWING PEOPLE ARE RECOGNIZED FOR THEIR CONTRIBUTIONS OF TIME AND EXPERTISE DURING THIS STUDY AND IN THE PREPARATION OF THIS REPORT:

API STAFF CONTACT:

Howard Feldman, Health and Environmental Sciences

MEMBERS OF THE AIR MODELING TASK FORCE

Kenneth Steinberg, Exxon Research and Enginering Company Thomas Baker, ARCO Oil and Gas Company Douglas Blewitt, Amoco Corporation Richard Carney, Phillips Petroleum Comany David Fontaine, Chevron Research and Technology Company Lee Gilmer, Texaco Research Marvin Hertz, Shell Development Company Gilbert Jersey, Mobil Research and Development Company George Lauer, ARCO Robert Peace, Unocal

WE ARE INDEBTED TO CAPTAIN MICHAEL MOSS, UNITED STATES AIR FORCE, FOR HIS CONSIDERABLE EFFORTS DURING THE DEVELOPMENT OF THIS PUBLICATION.

İĤ

API PUBL*4546 92 🗰 0732290 0505442 1T2 🛤

ABSTRACT

This volume of the final report provides documentation of some of the results of a two year project entitled <u>Hazard Response Modeling Uncertainty (A</u> <u>Quantitative Method</u>). Work that has been accomplished on the technical work tasks related to evaluating the performance of commonly used hazardous gas dispersion models is summarized.

Eight datasets are used in the evaluation. Those field experiments that involve the release of dense-gas clouds are Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, and Thorney Island. Those field experiments that involve the release of passive clouds are Hanford (Kr⁸⁵ tracer studies) and Prairie Grass. Data from these experiments are placed in a common format as a Modelers' Data Archive (MDA), and an extensive set of software was developed to prepare data-files for each model evaluated.

Fourteen dispersion models are evaluated, including six publiclyavailable computer models (AFTOX, DEGADIS, HEGADAS, INPUFF, OB/DG, and SLAB) and six proprietary computer models (AIRTOX, CHARM, FOCUS, GASTAR, PHAST, and TRACE). A simple Gaussian plume formula and a set of nomograms (Britter and McQuaid) are also evaluated for comparative purposes.

The statistical evaluation indicates that there are a few models that can successfully predict concentrations with a mean bias of 20 percent or less, a relative mean square error of 50 percent or less, and little variability of the residual errors with the input parameters. These models are identified in Section VII. It is also clear that model performance is not dependent upon model complexity.

It is necessary to point out that this evaluation exercise has been by no means independent, since all of the models have been previously tested by the developers with at least one of the datasets. Furthermore, some of the results may be fortuitous, since, in a few cases, certain models have been applied to source scenarios for which they were not originally intended.

API PUBL*4546 92 🎟 0732290 0505443 039 🞟

TABLE OF CONTENTS

Section		Title	Page
	EXECU	JTIVE SUMMARY	ES-1
I.	INTRO	DDUCTION	1
	Α.	OBJECTIVES	1
	в.	BACKGROUND	3
		 EPA Model Evaluation Program	5
		 A Methodology for Evaluating Heavy Gas Dispersion Models	7
	с.	SCOPE	
II.	DATAS	SETS	
	А.	CRITERIA FOR CHOOSING DATASETS	. 11
	в.	DESCRIPTION OF INDIVIDUAL STUDIES	
		1. Burro and Coyote	. 14
		 Desert Tortoise and Goldfish Hanford Kr⁸⁵ 	. 16 . 22
		4. Maplin Sands	. 25
		5. Prairie Grass	. 28 . 32
	С.	CREATION OF A MODELERS' DATA ARCHIVE	. 36
	D.	METHODS FOR CALCULATING REQUIRED VARIABLES	. 39
		1. Burro	. 41 . 42 . 43 . 46 . 47
	E.	SUMMARY OF DATASETS	. 49
III.	MODEI	LS	. 53
	A.	CRITERIA FOR CHOOSING MODELS	. 53
	в.	DESCRIPTION OF MODELS EVALUATED	. 57
		 AFTOX 3.1 (Air Force Toxic Chemical Model . AIRTOX	. 60
		Release Model	65 67

.

.

API PUBL*4546 92 🛤 0732290 0505444 T75 🛤

III. B. (CONTINUED)

		6. FOCUS 2.1
		Accidental Releases)
		9. HEGADAS (NTIS)
		9. HEGADAS (NTIS)
		11. OB/DG (Ocean Breeze/Dry Gulch) 76
		12. PHAST 2.01 (Process Hazard Analysis Software Tool)
		Software Tool)
		14. TRACE III
	c.	APPLICATION OF MODELS TO DATASETS 81
		1. MDA Interface
		2. Initializing Individual Models 89
	D.	SUMMARY OF MODELS
IV.	STA	TISTICAL MODEL EVALUATION
	Α.	PERFORMANCE MEASURES AND CONFIDENCE LIMITS 119
	в.	RESULTS OF EVALUATION
		1. Evaluation of Concentration Predictions 125 2. Cloud Widths (σ_v)
v.	SCI	ENTIFIC EVALUATION BY MEANS OF RESIDUAL PLOTS . 145
	А.	PROCEDURES
	в.	RESULTS
VI.		SITIVITY ANALYSIS USING MONTE CARLO PROCEDURES163
	А.	OVERVIEW
	в.	CHOICE OF MODELS AND INPUT PARAMETERS 163
	с.	IMPLEMENTATION
	D.	RESULTS
VII.	SUM	MARY OF EVALUATION
	Α.	CONCENTRATION PREDICTIONS
	в.	WIDTHS
	с.	SCREENING MODEL RECOMMENDATIONS
REFERENCI	ES .	· · · · · · · · · · · · · · · · · · ·

API PUBL*4546 92 🔳 0732290 0505445 901 📟

APPENDICES

<u>Appendix</u>

<u>Title</u>

<u>Page</u>

A	MODELERS' DATA ARCHIVE FILES	•	•	187
В	MODELAPPLICATION INFORMATION	•	•	205
С	TABULATION OF THE OBSERVED AND PREDICTED CLOUD-WIDTHS AND CONCENTRATIONS	•		293
D	TABULATION OF THE PERFORMANCE MEASURES AND THE RESULTS OF CONFIDENCE LIMITS ANALYSIS	•	•	315

API PUBL*4546 92 🖿 0732290 0505446 848 🖿

LIST OF FIGURES

Figure	Title	Page
1.	Instrumentation Array for the 1980 LNG Dispersion Tests at NWC, China Lake (Reference 14)	. 15
2.	Instrumentation Array for the Coyote Series at NWC, China Lake. "Old" Locations Mark those used in the Burro Series (Reference	
	15)	. 17
3.	Sensor Array for the Desert Tortoise Series Experiments	. 20
4.	Configuration of Meteorological Towers and Kr ⁸⁵ Detectors for the Hanford Kr ⁸⁵ Trials (Reference 18)	. 24
5.	Initial Configuration of the Maplin Sands Site	. 27
б.	Revised Configuration of the Maplin Sands Site (After Trail 35)	. 27
7.	Configuration of Instrumentation Used for the Phase I Trials at Thorney Island (Reference 25) .	. 34
8.	Correlation for continuous releases from Britter and McQuaid (Reference 42)	. 64
9.	Correlation for instantaneous release from Britter and McQuaid (Reference 42)	. 64
10.	Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ell}nC_o - \ell nC_p)$ and geometric variance VG = $\exp[(\overline{\ell}nC_o - \ell nC_p)^2]$ for concentration predictions and observations for the continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). Ninety-five percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations	. 127
11.	Model performance measures, Geometric Mean	
	Bias MG = $\exp(\overline{(\ln C_o - \ell n C_p)})$ and geometric variance VG = $\exp[(\overline{(\ln C_o - \ell n C_p)^2}]$ for concentration predictions and observations for the instantaneous dense gas data from Thorney Island. Ninety-five percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of	

API PUBL*4546 92 🖿 0732290 0505447 784 🖿

	two" agreement between mean predictions and observations
12.	Model performance measures, Geometric Mean
	Bias MG = $\exp(\overline{(\ln C_o - \ln C_p)})$ and geometric variance VG = $\exp[(\overline{(\ln C_o - \ln C_p)^2}]$ for concentration predictions and observations at distances greater than or equal to 200 m. a) Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b) Instantaneous dense gas data from Thorney Island. Ninety-five percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and
	observations
13.	Model performance measures, Geometric Mean
	Bias MG = $\exp(\overline{(\ln C_o - \ell n C_p)})$ and geometric variance VG = $\exp[(\overline{(\ell n C_o - \ell n C_p)^2}]$ for concentration predictions and observations at distances less than 200 m. a) Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b) Instantaneous dense gas data from Thorney Island. Ninety-five percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations 135
14.	Model performance measures, Geometric Mean
	Bias MG = $\exp(\overline{(\ln C_o - \ell nC_p)})$ and geometric variance VG = $\exp[(\overline{(\ln C_o - \ell nC_p)^2}]$ for concentration predictions and observations. a) Continuous passive gas group of datasets (Prairie Grass and Hanford-continuous). b) Instantaneous passive gas dataset from Hanford. Ninety- five percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations
15.	Model performance measures, Geometric Mean
	Bias MG = $\exp(\overline{\ell nC_o} - \ell nC_p)$ and geometric variance VG = $\exp[(\overline{\ell nC_o} - \ell nC_p)^2]$ for concentration

API PUBL*4546 92 🗰 0732290 0505448 610 🛲

16.

17.

18.

19.

Model performance measures, Geometric Mean

Bias MG = $\exp(lnC_{o} - lnC_{o})$ and geometric variance $VG = \exp[((\ell nC_{o} - \ell nC_{p})^{2})]$ for plume width predictions and observations. a) Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b) Continuous passive gas group of datasets (Hanford, Prairie Grass). Ninety-five percent confidence intervals on MG are indicated. There is no significant difference in part a) between the MG and VG values for the three better models (GPM, AIRTOX, and SLAB). The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and . 142 observations . . . Distributions of C_p/C_o for the datasets containing continuous releases of dense-gas clouds (Burro⁽¹⁾, Coyote⁽²⁾, Desert Tortoise⁽³⁾, Goldfish⁽⁴⁾, Mapling Sands LNG⁽⁷⁾, Maplin Sands LPG⁽⁸⁾, Thorney Island⁽¹⁰⁾). The "box plots" indicate the 2nd, 16th, 40th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class 146 Distributions of C_p/C_o for Thorney Island instantaneous releases of dense-gas clouds. The "box plots" indicate the 2nd, 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the . 152 class . Distributions of Cp/Co for Prairie Grass

copyright American Petroleum Institute Provided by IHS under license with API Io reproduction or networking permitted without license from IHS

API PUBL*4546 92 🗰 0732290 0505449 557 🖿

LIST OF TABLES

T	<u>able</u>	Title]	Page
	1.	LIST OF EXPERIMENTS THAT WERE CONSIDERED FOR THE MODEL EVALUATION DATA ARCHIVE		12
	2.	SUMMARY OF THE BURRO AND COYOTE TRIALS	•	18
	3.	SUMMARY OF DESERT TORTOISE AND GOLDFISH EXPERIMENTS		23
	4.	SUMMARY OF HANFORD KRYPTON-85 TRACER RELEASES		26
	5.	SUMMARY OF THE MAPLIN SANDS EXPERIMENT	•	29
	6.	SUMMARY OF SELECTED METEOROLOGICAL DATA FROM PRAIRIE GRASS TRIALS	•	31
	7.	SUMMARY DESCRIPTION OF PHASE I TRIALS AND CONTINUOUS RELEASE TRIALS		35
	8.	LIST OF INFORMATION CONTAINED IN AN MDA FILE	•	37
	9.	SUMMARY OF CHARACTERISTICS OF THE DATASETS	•	50
	10.	ATTRIBUTES OF MODELS	•	115
	11.	MATRIX OF MODELS AND DATASETS FOR WHICH LATERAL CLOUD WIDTHS ARE EVALUATED	•	123
	12.	MATRIX OF MODELS AND DATASETS FOR WHICH MAXIMUM CONCENTRATIONS ARE EVALUATED	•	124
	13.	SUMMARY OF SUMMARY OF FB AND NMSE RESULTS FOR PREDICTING PEAK CONCENTRATIONS, AT DISTANCES > 200M	•	139
	14.	PROBLEM REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS RELEASES OF DENSE-GAS CLOUDS	•	151
	15.	PROBLEM REVEALED BY RESIDUAL PLOTS FOR INSTANTANEOUS DENSE-GAS CLOUDS (THORNEY ISLAND)	•	155
	16.	PROBLEM REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS PASSIVE-GAS CLOUDS (PRAIRIE GRASS)		161
	17.	AN EXAMPLE OF THE OUTPUT FILE GENERATED BY THE MDAMC PACKAGE, WHERE 20 MONTE CRLO SIMULATIONS OF THE SLAB MODEL FOR THE DESERT TORTOISE 3 EXPERIMENT WERE PERFORMED		167
	18.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ALL SEVEN PRIMARY INPUT PARAMETERS (SEE TEXT) WERE PERTURBED SIMULTANEOUSLY IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3		1.00
		EXPERIMENT. (S.D.: STANDARD DEVIATION)		тря

API PUBL*4546 92 🛲 0732290 0505450 279 🛲

LIST OF TABLES (CONTINUED)

<u>Table</u>	Title			j	Page
19.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DOMAIN-AVERAGED WIND SPEED WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT	•	•		168
20.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN WIND SPEED BETWEEN DOAMIN-AVERAGE AND A TOWER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT		•		169
21.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN TEMPERATURE BETWEEN TWO LEVELS ON A TOWER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)				169
22.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE RELATIVE HUMIDITY WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)		•		170
23.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SURFACE ROUGHNESS WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)		•	•	170
24.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE EMISSION RATE WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)				171
25.	MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE DIAMETER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)	•	•	•	171
26.	RATIOS OF RELATIVE MODEL UNCERTAINTIES, σ_c/C , AND σ_w/w , TO THE RELATIVE INPUT DATA UNCERTAINTIES, σ_i/i , FOR THE SLAB MODEL WHEN THE SEVEN PRIMARY INPUT PARAMETERS WERE PERTURBED ONE AT A TIME IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)			_	173

<u>Table</u>

LIST OF TABLES (CONTINUED)

<u>Title</u>

<u>Page</u>

27.	RANKING OF MODELS ACCORDING TO FAC2 (FACTOR OF TWO) STATISTIC, WHICH EQUALS THE FRACTION OF TIME THAT THE PREDICTIONS ARE WITHIN A FACTOR OF TWO OF THE OBSERVATIONS
28.	
20.	SUMMARY OF PERFORMANCE EVALUATION BASED ON GEOMETRIC MEAN BIAS MG AND GEOMETRIC VARIANCE
	VG FOR CONCENTRATONS, NEGLECTING INSTANTANEOUS PASSIVE DATASET. THE TERMS
	"OVER" AND "UNDER" REFER TO THE BIAS IN THE
	MEAN PREDICTIONS

API PUBL*454692 🛲 07322900505452041 🖿

EXECUTIVE SUMMARY

A. OBJECTIVE

The overall objective of this project is to develop and test computer software containing a quantitative method for estimating the uncertainty in PC-based hazard response models. This software is to be used by planners and engineers in order to evaluate the predictions of hazard response models with field observations and determine the confidence intervals on these predictions. This particular volume (II) provides an example of the application of the software to 14 typical hazard response models and 8 sets of field data:

B. BACKGROUND

The U.S. Air Force and the American Petroleum Institute, among others, have increased emphasis on calculating toxic corridors due to releases of hazardous chemicals into the air. There are dozens of PC-based computer models recently developed in order to calculate these toxic corridors. However, the uncertainties in these models have not been adequately determined, partly due to the lack of a standardized quantitative method that could be applied to these models. Individual model developers generally present a limited evaluation of their own model, and the USEPA has published some partial evaluations, but a comprehensive study has not been completed.

C. SCOPE

The scope of the overall project has included acquisition and testing of databases and models, development and application of model evaluation software, and assessment of the components of uncertainty. The current volume (II) emphasizes an example application of the model to a reasonably comprehensive set of 14 hazard response models and 8 independent field experiments. Both proprietary and publicly-available models are considered, and the field data cover a wide variety of source scenarios and thermodynamic behavior.

API PUBL*4546 92 🎟 0792290 0505459 T&& 📟

D. METHODOLOGY

The statistical performance measures are tabulated and discussed for six publicly-available computer models (AFTOX, DEGADIS, HEGADAS, INPUFF, OB/DG, and SLAB) and six proprietary computer models (AIRTOX, CHARM, FOCUS, GASTAR, PHAST, and TRACE). In addition, results are presented for two simple analytical models--the Gaussian plume model (GPM) and the Britter and McQuaid model (B&M). These models were applied to data from eight field tests, where the source scenarios include continuous dense gas releases (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, and Thorney Island-C), instantaneous dense gas releases (Thorney Island-I), continuous passive gas releases (Prairie Grass and Hanford-C), and instantaneous passive gas releases (Hanford-I).

The report contains discussions of the following major topics:

- Creation of Modelers Data Archive (MDA)--Each field experiment is described in detail and the data from all experiments are combined in a consistent Modelers Data Archive (MDA) that can be used to initialize and evaluate all of the models. The MDA is listed in an Appendix to Volume II, and a floppy disk containing the MDA is available to all interested persons.
- Application of Models to MDA--The 14 models are reviewed and methods of applying them to the MDA are discussed. In many cases, preprocessor and postprocessor software had to be written so that all 14 models could begin from the same set of input data and could produce consistent output data.
- Statistical Model Evaluation--The model performance measures (mean bias, mean square error, correlation coefficient, fraction within a factor of two) and their confidence limits are calculated for each model and each data group and are presented in tables and figures. The primary mode of graphical presentation is a figure with mean square error on the vertical axis and mean bias on the horizontal axis, on which points are plotted for each model. Summary tables are provided.

ES-2

API PUBL*4546 92 🎟 0732290 0505454 914 📟

- Residual Plots-- Many figures are given, in which ratios of prediction to observation are plotted versus input parameter (for example, wind speed or stability) for each model. Conclusions are given in summary tables.
- Sensitivity Study--The Monte Carlo sensitivity software is used to determine the sensitivity of the SLAB model to variations in input parameters.

E. CONCLUSIONS

- A few models can successfully predict concentrations with a mean bias of 20 percent or less, a relative scatter of 50 percent or less, and little variability of the residual errors with input parameters.
- The four models (BM, GPM, SLAB, and HEGADAS) that produce the best "Factor of Two" agreement are on the list of six models (BM, GPM, SLAB, HEGADAS, CHARM, and PHAST) that produce the most consistent performance for the statistics describing the mean bias and the variance.
- The performance of any model is not related to its cost or complexity.
- In two of the three data groups, the "best" model is one which was <u>not</u> originally developed for that scenario (that is, GPM for continuous dense gas releases and SLAB for continuous passive gas releases).
- The BM, GPM, SLAB, and HEGADAS models demonstrate the most consistent performance for the "fraction within a factor of two" (FAC2) statistic.
 - The results of the analyses in this section lead to the recommendation that the following simple, analytical formulas can be confidently used for screening purposes for sources over flat, open terrain:

API PUBL*4546 92 🗰 0732290 0505455 850 🗰

BM (Britter and McQuaid) for continuous and instantaneous dense gas releases.

GPM (Gaussian Plume Model) for continuous passive gas releases.

There are insufficient field data to justify recommendations for instantaneous passive gas releases. However, the EPA's INPUFF model appears to perform reasonably well for the Hanford dataset in Figure 14b.

These screening models would not be appropriate for source scenarios and terrain types outside of those used in the model derivations. For example, because the screening models neglect variations in roughness length, they would be inappropriate for urban areas or heavily industrialized areas.

F. RECOMMENDATIONS

This evaluation exercise has been by no means independent, since all of the models have been previously tested by the developers with at least one of the datasets. Furthermore, some of the results may be fortuitous, since, in a few cases, certain models have been applied to source scenarios for which they were not originally intended.

In the future, our model evaluation software should be used to evaluate models with new independent datasets. An attempt should be made to set up standards for models so that they all conform to certain scenarios and to certain input and output data requirements. SECTION I

INTRODUCTION

A. OBJECTIVES

This is Volume II of a three volume set describing the results of a project in which a quantitative method has been developed to determine the uncertainties in hazardous gas models. The first volume discusses the user's guide for this model evaluation method and the third volume discusses the three components of model uncertainty--data input errors, stochastic fluctuations, and model physics errors. The current volume provides an example of the application of the procedures.

The Phase II research has had the following eight technical objectives or tasks. The volume of the final report that deals with each of the following tasks is listed in parentheses at the end of the paragraphs.

> Task 1: Archival of Data Sets and Preparation of Modelers Data Bases. A computerized archive of field data sets has been prepared. This archive includes a broad range of source conditions, meteorological conditions, and averaging times. The information in the data base is sufficient to run any of the models. (Volume II)

Task 2: Archival of Hazard Response Models, including Testing. A comprehensive archive of available microcomputer-based hazard response models has been prepared. This includes recently developed or modified publicly-available models such as SLAB and DEGADIS, as well as proprietary models that are in common use. (Volume II)

Task 3: Application of Models to Test Data. Predictions from the models obtained under Task 2 were produced for the field tests obtained under Task 1. In some cases it was necessary to make additional calculations so that the input data are in the form acceptable by the model, or so that the model output data are in the form required by the model evaluation software. (Volume II)

API PUBL*4546 92 🛲 0732290 0505457 623 📟

Task 4: Further Development of Model Evaluation Software. The statistical model evaluation software has been refined and further developed so that it is sufficiently general to take a wide variety of input data sets and calculate a complete set of possible performance measures. It is possible to calculate confidence intervals (that is, model uncertainties) from this procedure. (Volume I)

Task 5: Application of Model Evaluation Software. The model evaluation software was applied to the model predictions and data sets in our archive. Estimates of typical confidence limits for certain classes of models and sizes of data set were made. (Volume II)

Task 6: Assessment of Data Uncertainties. The contribution of data uncertainties to total model error were estimated. Part of this research involves investigation of Air Force meteorological instrumentation and quality control/quality assurance procedures, as well as field tests by NCAR scientists of instrument accuracy and representativeness. (Volume III)

Task 7: Assessment of Stochastic Uncertainties. The contribution of stochastic or random uncertainties to total model error was further studied, and a quantitative procedure was developed for estimating this component as a function of receptor position, source type, sampling and averaging time, and meteorological conditions. The effect of these fluctuations on relations for toxic response were studied. (Volume III)

Task 8: Assessment of Model Physics Errors. Dimensional analysis and various reduction procedures were applied to the complete archive of data sets and models in order to isolate the contribution of errors in model physics assumptions to the total model uncertainty. (Volume III)

2

API PUBL*4546 92 🔳 0732290 0505458 56T 📟

B. BACKGROUND

The U.S. Air Force and the American Petroleum Institute, among others, have increased emphasis on calculating "toxic corridors" due to potential release of hazardous chemicals. The Ocean Breeze/Dry Gulch (OB/DG) model was originally used for calculating these corridors, and does contain an estimate of model uncertainty. However, the OB/DG model does not account for many important scientific phenomena, such as two-phase jets, evaporative emissions, and dense gas slumping. The new models mentioned above are more advanced scientifically, but do not include model uncertainty. The intent of this research is to fully develop quantitative model evaluation procedures, better estimate the components of the uncertainty (data input errors, stochastic uncertainties, and model physics errors), and test the procedures using a wide spectrum of field and laboratory experiments.

Several evaluations of dispersion models applicable to the release of toxic material to the atmosphere were reviewed in the Phase I report for this project. We repeat reviews of the more recent studies, and include an overview of a recent evaluation program sponsored by EPA.

1. EPA Model Evaluation Program

The EPA has been sponsoring a related dense gas model evaluation project being performed by TRC Environmental Consultants. We have exchanged ideas and information with the EPA scientists, and have reviewed a preliminary draft copy of their final report (Reference 1). The purpose of this section is to briefly compare the methods and results of the two studies.

The two studies are evaluating the models in the list below:

	EPA	USAF/API
Publicly Available	SLAB DEGADIS	SLAB DEGADIS GAUSSIAN PLUME MODEL INPUFF AFTOX HEGADAS OB/DG Britter & McQuaid

3

API PUBL*4546 92 🛲 0732290 0505459 4T6 🛲

• • • • • • • • • • • • • • • • • • •	EPA	USAF/API	
Proprietary	AIRTOX	AIRTOX	
	CHARM	CHARM	
	TRACE	TRACE	
	FOCUS	FOCUS	
	SAFEMODE	PHAST	
		GASTAR	

It is seen that the USAF/API study includes six more publicly-available models and one more proprietary model.

The following field data sets are used:

	EPA	USAF/API
Dense Gas	Burro Desert Tortoise Goldfish	Burro Desert Tortoise Goldfish Coyote Maplin Sands Thorney Island
<u></u>	EPA	USAF/API
Passive Gas		Prairie Grass Hanford Kr85

The EPA study was deliberately restricted to data sets in which dense gases were continuously released for periods of three to ten minutes. The total numbers of individual field tests in the EPA and USAF/API studies are 9 and 118, respectively.

The EPA contractor permitted the model developers to advise them on how to run the models (for example, definitions of input conditions and choices of model options), whereas the models were run in a more independent manner in the USAF/API study. The developers were asked to comment on the way their models were set up in the USAF/API study, but the final decision was made by us.

The model performance measures used in the two studies are similar. Both considered maximum concentrations and plume widths on monitoring arcs. In any given field test, there were about two to seven monitoring arcs.

4

API PUBL*454692 🎟 0732290 0505460 118 🚥

The results of the EPA study were inconclusive. The TRACE, CHARM, DEGADIS, and SLAB model performances were not significantly different, and "none demonstrated good performance consistently for all three experimental programs". In contrast, as will be shown below, the USAF/API results were more conclusive, perhaps because of the much larger set of data.

2. Model Sensitivity Studies

During 1986 and 1987, Professor Carney of Florida State University prepared several papers for the AFESC on the sensitivity of the AFTOX, CHARM, and PUFF models to uncertainties in input data (Reference 2). His 1987 paper applied the uncertainty formula suggested by Freeman et al. (Reference 3), which has also been applied by Hanna (Reference 4) to a simplified air quality model. If concentration, C, is an analytical function of the variables x_i (i = 1 to n), then the uncertainty or variance $V_c = \sigma_c^2$ is given by the equation

$$V_{c} = \sum_{i=1}^{n} \left(\partial C / \partial x_{i} \right)^{2} V_{xi} + \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\partial^{2} C / \partial x_{i} \partial x_{j} \right)^{2} V_{xi} V_{xj}$$

$$+ 0.5 \sum_{i=1}^{n} \left(\partial^{2} C / \partial x_{i}^{2} \right) V_{xi}^{2}$$

$$(1)$$

where V_{xi} is the uncertainty or variance in input variable x_i . This equation is a Taylor expansion and implicitly assumes that the individual uncertainties are much less than one. Carney (Reference 2) finds that the wind speed, u, contributes the most uncertainty to the concentration, C, predicted by the AFTOX model.

3. Summary of Field Data

Ermak et al. (Reference 5) has put together a comprehensive summary of 26 "bench mark" field experiments, including data from Burro (LNG), Coyote (LNG), Eagle (N_2O_4), Desert Tortoise (NH_3), Maplin Sands (LNG and LPG) and Thorney Island (Freon). This study (funded by AFESC) presents input data

5

API PUBL*4546 92 M 0732290 0505461 054 M required by models and includes observed peak concentrations, average centerline concentrations, and average height and width of the cloud as a function of downwind distance. These data are sufficiently complete for anyone to run and evaluate his model.

4. A Methodology for Evaluating Heavy Gas Dispersion Models

In another recent draft report prepared for AFESC, Ermak and Merry (Reference 6) review methods for evaluating heavy gas dispersion models. They first list several specific criteria of interest to the Air Force:

- The methodology is to be based on comparison of model predictions with field-scale experimental observations.
- The methods of comparison must be quantitative and statistical in nature.
- The methods must help identify limitations of the models and levels of confidence.
- The methodology must be compatible with atmospheric dispersion models of interest to the Air Force.

These criteria are similar to those for our present study.

The Ermak and Merry (Reference 6) report is a review of general evaluation methods and heavy gas model data sets, and does not contain examples of applications of any new evaluation methods with field data sets. They first review the general philosophy of model evaluation, pointing out that sometimes evaluations of model physics are just as important as quantitative statistical evaluations. Much of their philosophical discussion follows the points made in a review paper by Venkatram (Reference 7). For example, a model whose predictions agree with field data but which contains an irrational physical assumption (for example, dense gas plumes accelerate upward) is not a good model. Also, they recognize that most model predictions represent ensemble averages, whereas field experiments represent only a single realization of the countless data that make up an

б

API PUBL*4546 92 🎟 0732290 0505462 T90 🎟

ensemble. They emphasize that observed concentrations are strong functions of averaging time, and that most heavy gas dispersion models do not include the effects of averaging time.

Heavy gas dispersion models are distinguished from other dispersion models by three effects: reduced turbulent mixing, gravity spreading, and lingering. The main parameters of interest in evaluations of these models are the maximum concentration, the average concentration over the cloud, and the cloud width and height (all as a function of downwind distance, x). Ermak and Merry emphasize the <u>ratio</u> of predicted to observed variables and define several statistics, such as the mean and the variance. Methods of estimating confidence limits on these statistics are suggested, and the report closes with an example of the application of some of their suggested procedures to a concocted data set drawn from a Gaussian distribution.

5. Comprehensive Model Evaluation Studies

Mercer's (Reference 8) review emphasizes estimation of variability or uncertainty in model predictions, which he finds is typically an order of magnitude when outliers are considered. He includes the following quote from Lamb (Reference 9), which is also appropriate for our discussion.

"The predictions even of a perfect model cannot be expected to agree with observations at all locations. Consequently, the common goal of model validation should be one of determining whether observed concentrations fall within the interval indicated by the model with the frequency indicated, and if not, whether the failure is attributable to sampling fluctuations or is due to the failure of the hypotheses on which the model is based. From the standpoint of regulatory needs the utility of a model is measured partly by the width of the interval in which a majority of observations can be expected to fall. If the width of the interval is very large, the model may provide no more information than one could gather simply by guessing the expected concentration. In particular, when the width of the interval of probable concentration values exceeds the allowable error bounds on the model's predictions, the model is of no value in that particular application."

7

API PUBL*4546 92 🖬 0732290 0505463 927 🛲

Mercer (Reference 8) then produces concentration predictions of ten different models for a dense gas source equivalent to that used in the Thorney Island experiments. This comparison shows that the 10 model predictions range over an order of magnitude at any given downwind distance.

6. CMA Model Evaluation Program

The Chemical Manufacturers' Association (CMA) sponsored an evaluation of eight dense gas dispersion models and nine spill evaporation models (References 10 and 11). The authors ran some of the models themselves and requested the developers of proprietary models to run their own models using standard input data sets. Model uncertainty is typically a factor of two to five. The comparisons are clouded by the use of some data sets that had already been used to "tune" certain of the models tested.

C. SCOPE

This introductory section has provided an overview of the objectives of the entire project, which was initiated because there are no standard objective quantitative means of evaluating microcomputer-based hazard response models. There are dozens of such models including several sponsored wholly or in part by the U.S. Air Force and the American Petroleum Institute: ADAM, AFTOX, CHARM, DEGADIS, SLAB, and OB/DG. A few data sets exist for testing these models, but, up until now, the models have not been tested or intercompared with these data on the basis of standard statistical significance tests. The U.S. EPA recently sponsored a related model evaluation project (Reference 1), which had a more limited scope and considered fewer models and datasets.

In this volume, we focus on a demonstration of the system to evaluate the performance of micro-computer-based dispersion models that are applicable to releases of toxic chemicals into the atmosphere. The study includes a total of 14 models and 8 datasets. The datasets are described in Section II, and the models are described in Section III. Results of the statistical evaluations are presented in Section IV, and a scientific evaluation of the distribution of residuals is presented in Section V. One example of how Monte Carlo procedures described in Volume I can be used to investigate the

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 8

API PUBL*4546 92 🛲 0732290 0505464 863 📟

sensitivity of a model to uncertainties in the input data is discussed in Section VI. The overall results are presented in Section VII.

When reading about the evaluations presented in Section IV and V, it is important to remember that, in many cases, there can be more than one way to apply a given model to a given dataset. Our approach has been to retain a fair degree of "independence" from the developers of the models being tested. We assembled/developed the data required as input to the models, assembled/developed the data against which the models are compared, applied the models, and then requested comments on our approach from the developers of the models. We supplied each developer with a description of the datasets and the procedure used to apply the developer's model to each dataset. We also provided a list of the concentrations obtained from the model, and those concentrations against which the modeled concentrations are compared, but we did not provide any indication of model performance relative to other models used in the study. Comments solicited in this way resulted in changes to our evaluation only if errors in the application were discovered. In this way, we were able to maintain a uniform approach to all of the models, and we consider the results indicative of what would be obtained by modelers "in the field."

This approach did not, however, preclude earlier discussions with the model developers. Upon reading the user's manuals, clarifications were sometimes needed, and these were addressed by means of telephone conversations and/or letters. Some of the models in the study underwent revisions during the study, so that some interaction focused on implementing new versions of the models. Such new versions sometimes contained bugs that became obvious as we began to use them, and this information was immediately passed on to the developer, and generally resulted in a revision. We emphasize, however, that none of these interactions focused on model performance issues arising from work performed during this study. Section III B characterizes the nature of our interactions with each of the model developers.

9

API PUBL*4546 92 M 0732290 0505465 7TT M SECTION II

DATASETS

A. CRITERIA FOR CHOOSING DATASETS

The hazard response models included in this study (see Section 3) possess widely varying capabilities, but the majority do have several traits that influence the choice of datasets for evaluating this group of models. Chief among these is a preference for treating near-surface releases. As a result, we have not included datasets in which an elevated (say, more than a meter or two above the surface) source is used. Beyond this restriction, our criteria for selecting the datasets include:

- Concurrent meteorological data must be available, obtained from sensors located near the site of the trials.
- Concentrations should be available at more than one distance downwind, with sufficient lateral resolution to document the spatial structure of the cloud.
- 3. Temporal resolution of the concentration measurements should be less than the smaller of the duration of the release or the time-of-travel from the point of release to the nearest monitor.
- Datasets chosen should document dispersion over a wide range of meteorological dispersion regimes.
- Datasets chosen should include passive or "tracer" gas releases as well as dense-gas releases.
- 6. Datasets chosen should include instantaneous releases and continuous releases.

Many field experiments have been conducted for the purpose of evaluating dispersion models. Draxler (Reference 12) reviews many carried out with positively or neutrally buoyant sources. Hanna and Drivas (Reference 13) review many carried out with negatively buoyant sources. A total of 16 datasets derived from these reviews were considered for inclusion in this

	Material	Dense	Type of Release		
Name	Released	Gas	Quasi-Continuous	Instantaneous	
Burro	LNG	√	√		
Coyote	LNG, LCH _A	√	√		
Desert Tortoise	NH ₃	√	✓		
*Eagle	N ₂ 0 ₄	√	\checkmark		
*Falcon	LNG	√	√		
Goldfish	HF	√	√		
*Porton Down	Freon-12	√		√	
Thorney Island	Freon-12(N ₂) 🗸	√	√	
Maplin Sands	LNG, LP	√	\checkmark	√	
Prairie Grass	so ₂		\checkmark		
*Dry Gulch	FP		\checkmark		
*Ocean Breeze	FP		\checkmark		
*Green Glow	FP		√		
Hanford Kr ⁸⁵	Kr ⁸⁵		√	√	
*Sandstorm	Be		√		
*Adobe	Ве		√		

TABLE 1.	LIST C	OF EXPERIMENTS	THAT	WERE	CONSIDERED	FOR	THE	MODEL	EVALUATION	
	DATA A	ARCHIVE.								

* Not included in the modeling data archive

API PUBL*4546 92 🖿 0732290 0505467 572 🎟

project, and are listed in Table 1. Nine involve releases of denser-thanair gases, while seven involve the release of gases or suspended particles in amounts small enough to act as passive tracers.

Based on a review of the data and the documentation for these 16 experiments, a decision was made not to consider seven of them. Neither the ADOBE nor Sandstorm experiments were included in the study, since they were concerned with the transport and diffusion of buoyant exhaust clouds from rocket motors. Few of the models tested in this project can accommodate a buoyant cloud, and furthermore, there are not sufficient data on the exhaust characteristics of the rocket motors in the data reports to adequately define the temperature and volume flux of the jet. Data from the Falcon Experiments were excluded from the study for two reasons: only one of the trials was successful from the point of view of evaluating diffusion models, and a data report is not available. The Eagle tests were also excluded, since some of the tests involved the use of a barrier to the flow, which sets them apart from the remainder of the datasets used in the study, and there were instrument problems with the remaining tests.

Of the remaining 11 experiments, 5 are tracer experiments (that is, the chemical that is released behaves as an inert or passive non-buoyant substance as it disperses downwind). The Prairie Grass experiment provides high quality dispersion data over a wide range of turbulence regimes at an ideal site. The Dry Gulch, Ocean Breeze, and Green Glow data are not included because they are similar to the Prairie Grass data, yet cover a more limited range of stabilities. The Kr^{85} tracer experiment conducted in Hanford, WA is included because it provides good data for puff releases as well as quasi-continuous releases of neutral-density or passive gases.

One of the remaining dense-gas dispersion datasets was recently dropped from consideration as well. The Porton Down dataset includes 42 trials in which mixtures of Freon-12 and air were released in the form of an instantaneous cloud. Those trials include variations in initial cloud density, wind speed, and surface roughness, but they lack an extensive array of monitors capable of providing continuous concentration measurements. The primary monitors provided only dosage measurements. These dosages can be used to estimate a mean concentration during the time over which the cloud passed through the monitoring array, but we found that these estimates contribute little to the goal of quantifying model performance. We expected

13

API PUBL*4546 92 🖿 0732290 0505468 409 📟

that the models would tend to produce estimates of peak concentration which would exceed the average concentrations estimated from the dosages--and all of the models did. No additional information could be obtained from the dataset. As a result, we have excluded the Porton Down trials from any further discussion in this report.

Hence, the performance evaluations are based on a total of 8 datasets. In the remainder of this section, we provide: a description of each of the field studies (Section II B); a description of the MDA containing data from each dataset (Section II C); a summary of the methods used to calculate information required by the MDA (Section II D); and an overall summary of the datasets (Section II E).

B. DESCRIPTION OF INDIVIDUAL FIELD STUDIES

1. Burro and Coyote

Both the Burro (Reference 14) and Coyote (Reference 15)⁻ series of trials were conducted at the Naval Weapons Center (NWC) at China Lake, California. Sponsored by the U.S. Dept. of Energy and the Gas Research Institute, the trials consisted of releases of LNG onto the surface of a 1 m deep pool of water, 58 m in diameter. In addition, the Coyote series expanded on the earlier Burro trials by studying the occurrence of rapid-phasetransitions (RPT), and included releases of liquefied methane and liquid nitrogen. The Burro series focused on the transport and diffusion of vapor from spills of LNG on water. The Coyote series focused on the characteristics of fires resulting from ignition of clouds from LNG spills, and the series also focused on the RPT explosions. In all, eight trials from the Burro series and four trials from the Coyote series are suitable for testing transport and diffusion models.

For the Burro series, twenty cup-and-vane anemometers were located at a height of 2 m at various positions within the test array in order to map the wind field. There were six 10 m tall turbulence stations, one upwind and five downwind, which had bivane anemometers at three levels and thermocouples at four levels. Humidities were measured close to the array centerline at eight stations, including the upwind turbulence station. Ground heat-flux sensors were mounted at seven downwind stations along with the humidity sensors. Figure 1 shows the configuration of the test site.

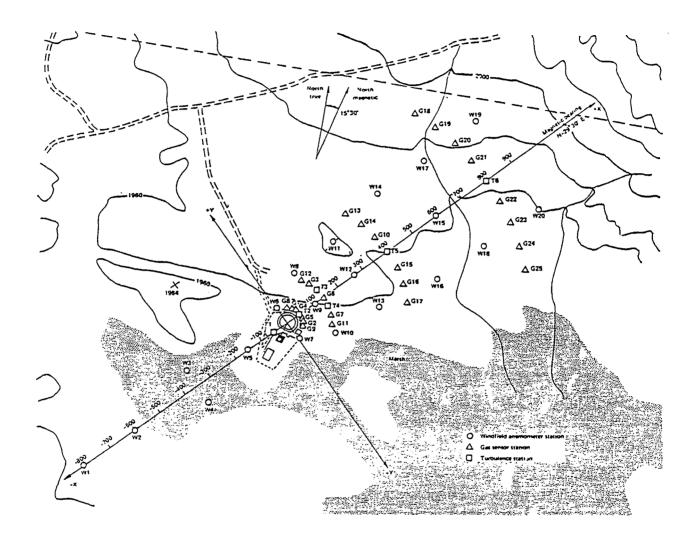


Figure 1. Instrumentation Array for the 1980 LNG Dispersion Tests at NWC, China Lake (Reference 14).

API PUBL*4546 92 MM 0732290 0505470 067 MM

Concentrations were measured at heights of 1 m, 3 m, and 8 m at 25 gas-sampling stations and 5 turbulence stations arranged in arcs at distances of 57 m, 140 m, 400 m, and 800 m downwind from the spill point. The turbulence stations sample the data at a higher rate than the gas stations (3-5 Hz compared to 1 Hz). The lateral spacing between stations varied from 13 m at stations closer to the spill point, to 80 m at stations located 800 m downwind.

The Coyote series maintained a similar array of instrumentation. However, only two of the turbulence stations (one upwind, one at 300 m downwind of the spill site) were instrumented with bivane anemometers because of a concern that they might be damaged. Gas concentrations were measured at heights of 1 m, 3 m, and 8 m at 24 gas-sampling stations and 5 turbulence stations arranged in arcs at distances of 110 m, 140 m, 200 m, 300 m, 400 m and 500 m downwind from the spill point. Note that there were in fact only one and two gas sensors deployed at distances of 110 m and 500 m downwind, respectively. The lateral spacing between stations varied from 30 m at a distance of 140 m downwind to 60 m at a distance of 800 m downwind. Figure 2 shows the configuration of the test site.

Data from all eight Burro trials and three of the four Coyote trials are available on 9-track tape prepared by Lawrence Livermore National Laboratory (LLNL). Comparison data-reports (Burro, (Reference 14); Coyote, (Reference 15)) are also available, and proved very useful in preparing the data for use in the evaluations. The individual trials contained in these reports include

Burro: 2, 3, 4, 5, 6, 7, 8, 9 Coyote: 3, 5, 6

A brief summary of the characteristics of the source emissions and the meteorological conditions for the eight Burro trials and four Coyote trials is given in Table 2.

2. Desert Tortoise and Goldfish

These two series of field experiments were conducted at the Frenchman Flat area of the Nevada Test Site. The first in the series, Desert Tortoise (Reference 16) was designed to document the transport and

16

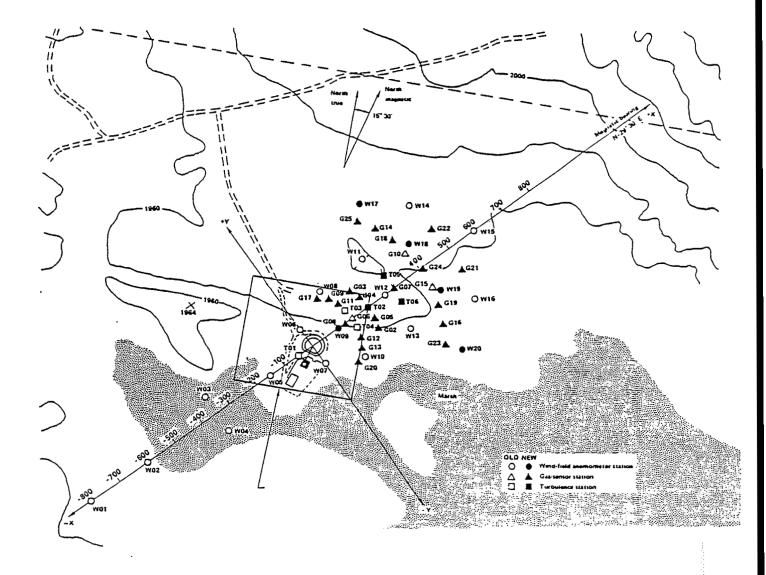


Figure 2. Instrumentation Array for the Coyote Series at NWC, China Lake. "Old" Locations Mark those used in the Burro Series (Reference 15).

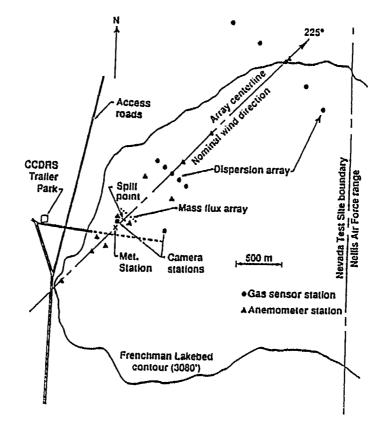
API PUBL*4546 92 🗰 0732290 0505472 937 🛤

				والمراجع المراجع المراجع المراجع المراجع المراجع		<u></u>	
Test Name	Date	Material Spilled	Spill Volyme (m)	Spill Bate (m /min)		Averaged Wind Direction (degrees)	Atmospheric Stability Class
Burro 2	18 June	LNG	34.3	11.9	5.4	221	С
Burro 3	2 July	LNG	34.0	12.2	5.4	224	С
Burro 4	9 July	LNG	35.3	12.1	9.0	217	с
Burro 5	16 July	LNG	35.8	11.3	7.4	218	С
Burro 6	5 Aug.	LNG	27.5	12.8	9.1	220	C
Burro 7	27 Aug.	LNG	39.4	13.6	8.4	208	C∕D
Burro 8	3 Sept.	. LNG	28.4	16.0	1.8	235	E
Burro 9	17 Sept.	. LNG	24.2	18.4	5.7	232	D
Coyote 3	2 Sept.	. LNG	14.6	13.5	6.0	205	С
Coyote 5	7 Oct.	LNG	28.0	17.1	9.7	229	С
Coyote 6	27 Oct.	LNG	22.8	16.6	4.6	220	ם

TABLE 2. SUMMARY OF THE BURRO AND COYOTE TRIALS.

API PUBL*4546 92 🎟 0732290 0505473 876 🎟

diffusion of ammonia vapor resulting from a cryogenic release of liquid ammonia. For each of the four trials, pressurized liquid NH_3 was released from a spill pipe pointing downwind at a height of about 1 m above the ground. The liquid jet flashed as it exited the pipe and its pressure decreased, resulting in about 18 percent of the liquid changing phase to become a gas. The remaining 82 percent of the NH_3 -jet remained as a liquid, which was broken up into an aerosol by the turbulence inside the jet. Very little, if any of the unflashed liquid was observed to form a pool on the ground. Dispersion of the vapor-aerosol cloud was dominated by the dynamics of the turbulent jet near the point of release, but the slumping and horizontal spreading of the cloud downwind of the jet zone indicated the dominance of dense-gas dynamics at later stages.


Figure 3 shows the configuration of instrumentation used during Desert Tortoise. Eleven cup-and-vane anemometers were located at a height of 2 m at various positions within the test array in order to define the wind field for the planning of field experiments and the subsequent calculation of plume trajectories. In addition, a 20 m tall meteorological tower was located just upwind of the spill area, with temperature measured at four levels and wind speed and turbulence at three levels. Ground heat fluxes were measured at that tower and at three locations just downwind of the spill.

 ${
m NH}_3$ concentrations and temperatures were obtained at elevations of 1, 2.5, and 6 m on seven towers located along an arc at a distance of 100 m downwind of the source. In most cases, nearly all of the plume was below the 6 m level of the towers and within the lateral domain of the towers. Additional ${
m NH}_3$ concentration observations at elevations of 1, 3.5, and 8.5 m were taken on five monitoring towers at a distance of 800 m from the source, where the lateral spacing of the towers was 100 m. Finally there were two arcs with up to eight portable ground-level stations at distances of 1400 m or 2800 m, and on occasion at 5500 m downwind. No information on vertical distribution of ${
m NH}_3$ concentration was available from these more distance arcs.

The Goldfish trials are very similar to the Desert Tortoise NH₃ trials described above. Hydrogen fluoride (HF) was released using a similar release mechanism and some of the same sets of instruments. Note that

19

٠,

API PUBL*4546 92 🔳 0732290 0505475 649 🖿

although six trials were conducted, the last three involved a study of the effectiveness of water sprays, and are not included in this evaluation demonstration. A portion of the liquid HF flashed upon release, creating a turbulent jet in which the unflashed liquid was broken up into an aerosol that remained in the jet-cloud. No pooling of the liquid was observed.

HF samplers were located on cross-wind lines at distance of 300, 1000, and 3000 m from the source. The closest line has 11 sampling locations, with instruments at heights of 1, 3, and 8 m at the inner 5 positions and instruments at a height of 1 m on the outer 6 positions. The 1000 m line has 13 sampling locations, with three levels of measurement on the inner 9 and only one level on the outer 4. The 3000 m line has 11 sampling locations, with a similar variation in sampler heights. In general the observed height of the HF cloud was less than the highest sampler level at the 300 m sampling line, but appeared to extend above the highest sample levels at the larger distances. The maximum ground level concentration and the cloud width could be accurately estimated in each test.

Data from the Desert Tortoise experiment are available on a 9-track tape from LLNL, and a companion report similar to the ones prepared for Burro and Coyote is also available (Reference 16). No such report is scheduled to be produced for the Goldfish experiment. Data for the 3 dispersion trials (not the three mitigation effectiveness trials) were obtained from Mr. D. Blewitt of AMOCO (one of the sponsors of Goldfish), and much of the documentation for these trials may be found in a paper that appeared in the International Conference on Vapor Cloud Modeling (Reference 17). The individual trials contained in these reports include:

> Desert Tortoise: 1, 2, 3, 4 Goldfish: 1, 2, 3

API PUBL*4546 92 🗰 0732290 0505476 585 📟

Table 3 provides an overview of these two field experiments. Most of the trials were performed during "neutral" stability conditions, with moderate wind speeds of 3 to 7 m/s. Although generally similar, note that Desert Tortoise trials differ from Goldfish trials in that the spill rates are about an order of magnitude greater.

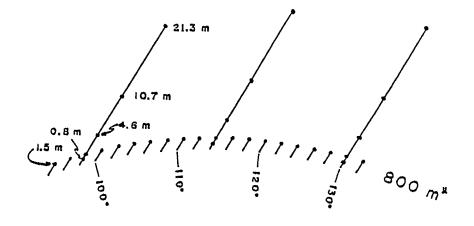
3. Hanford Kr⁸⁵

The results from 13 dispersion trials conducted at the Atomic Energy Commission's Hanford reservation are reported by Nickola (Reference 18). Five of these trials involved the instantaneous release of small quantities of the inert radioactive gas krypton-85 (Kr^{85}), and the other eight involved short-period releases of Kr^{85} over periods of ten to twenty minutes.

Up to as many as 64 detectors were operated along arcs located 200 m and 800 m downwind of the point of release. This section of the Hanford field diffusion grid is nearly flat, and is covered with sagebrush and steppe grasses. Most of the detector locations consisted of one detector set at 1.5 m above the surface. However, each row also included three towers on which five detectors provided a vertical profile of the Kr^{85} clouds. The configuration is shown in Figure 4. Note that the uppermost detectors did not extend above the top of the diffusing clouds.

Meteorological data are reported for averaging periods of 1 minute, 5 minutes, and the period over which data were collected during a trial. These data are taken from the faster-response instruments mounted on the 25 m tower located near the source, when available. Otherwise, the data are reported from strip-charts recorded by instruments on the 122 m tower. Tabulations of time-series of meteorological and concentration data for both the instantaneous and continuous releases of Kr^{85} are printed in the data report for the study (Reference 18). Wind speed, the standard deviation of wind speed and wind direction, and temperature are reported for consecutive 1-minute periods during each trial. Concentration data from the near-surface samplers (1.5 m above the ground) and the elevated sampling masts are reported at intervals of 38.4 seconds for the continuous release trials, and are reported at intervals of either 1.2, 2.4, or 4.8 seconds for the instantaneous release trials.

API PUBL*4546 92 🖿 0732290 0505477 411 📟


		<u> </u>				
Trial Name	Date	Duration (sec)	Spill Bate (m min)	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)	Atmospheric Stability Class
DT 1	24 Aug.	126	7.0	7.4	224	D
DT 2	29 Aug.	255	10.3	5.7	226	D
DT 3	1 Sept.	166	11.7	7.4	219	D
DT 4	6 Sept.	381	9.5	4.5	229	Е
GF 1	1 Aug.	125	1.78	5.6	-	D
GF 2	14 Aug.	360	0.66	4.2	-	D
GF 3	20 Aug.	360	0.65	5.4	-	D

.

TABLE 3. SUMMARY OF DESERT TORTOISE AND GOLDFISH EXPERIMENTS.

23

API PUBL*4546 92 🗰 0732290 0505478 358 🛤

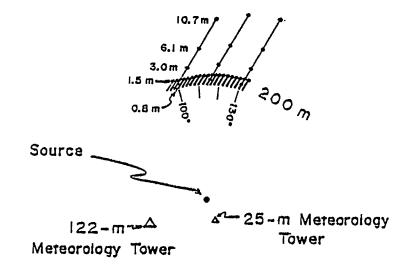


Figure 4. Configuration of Meteorological Towers and Kr⁸⁵ Detectors for the Hanford Kr⁸⁵ Trials (Reference 18).

API PUBL*4546 92 🎟 0732290 0505479 294 📟

As part of a project funded by the EPA, TRC Environmental Consultants, Inc. had entered the concentration data and meteorological data for six of the eight instantaneous release trials into computer files. The two trials dropped from use for this project were less desirable than the others because portions of the clouds drifted to the side of the array of detectors. We obtained these data and entered data for the five continuousrelease trials into LOTUS 1-2-3 worksheets, preserving all of the information and structure of the original tables. The following trials comprise the data recorded on magnetic media:

> Continuous-Release Trials: C1, C2, C3, C4, C5 Instantaneous Release Trials: P2, P3, P5, P6, P7, P8

A summary of the meteorological data for six of the eight instantaneousrelease trials and all five continuous-release trials is presented in Table 4.

4. Maplin Sands

The dispersion and combustion trials conducted at Maplin Sands in 1980 (Reference 19) involved the release of liquefied natural gas (LNG) and refrigerated liquid propane (LPG) onto the surface of the sea. Each liquid was released in both a continuous and an instantaneous mode. The size of a spill during each trial was approximately 20 m³.

Because the objective of the trials was to study the behavior of LNG and LPG vapor clouds over the sea, the site was located on the tidal flats of the Thames estuary. A shallow dike 300 m in diameter was constructed around the spill area to meet the requirement that the spill occur on the sea surface. Pontoons with either 4 m masts or 10 m masts were used to position meteorological instruments and sampling instruments along arcs downwind of the spill area. Figure 5 shows the pontoon configuration at the start of the series, and Figure 6 shows the revised configuration used after Trial 35. A

25

API PUBL*4546 92 🗰 0732290 0505480 TOG 📟

TABLE 4. SUMMARY OF HANFORD KRYPTON-85 TRACER RELEASES.

-					المالية بالمجالة فالإلى فكا			
Trial No.*	Date (1967)	Start (PST)	End (PST)	Duration (min & sec)	Total Emitted (Ci)	Release Rate (Ci/Sec)	Wind Speed at 1.5 m (mps)	Qualitative Thermal Stability

P2	Sep 14			-	10.0		1.3	Very Stable
C1	Sep 15	0000:00	0015:28	15:28	10.9	0.0117	1.3	Very Stable
P3	Oct 17	0738:00		-	10.0	, ~	4.2	Neutral
C2	Oct 17	0801:50	0801:50	15:05	10.9	0.0120	3.9	Unstable
P5	Oct 23	1052:40		-	10.0	~	8.0	Unstable
C3	Oct 23	1101:25	1115:40	14:15	23.8	0.0278	7.1	Unstable
P6	Oct 23	1130:00			10.0		7.3	Unstable
P7	Oct 24	1052:30	-	-	10.0	-	4.6	Unstable
C4	Oct 24	1104:30	1114:28	9:58	22.8	0.0388	3.9	Unstable
C5	Nov 8	0512:22	0532:13	19:51	20.4	0.0171	2.6	Stable
P8	Nov 8	0602:00	-		10.0		1.5	Stable

* P: Denotes a puff (instantaneous) release

C: Denotes a continuous (short-period) release

26

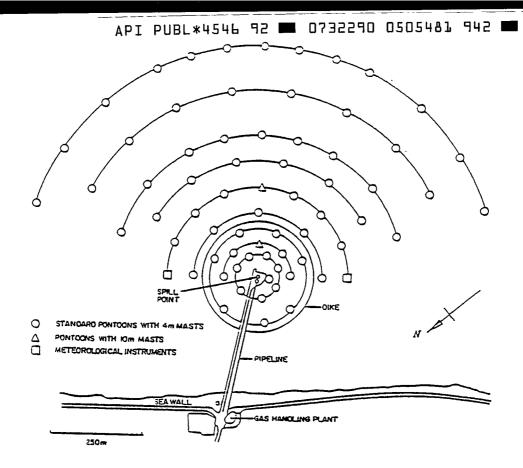
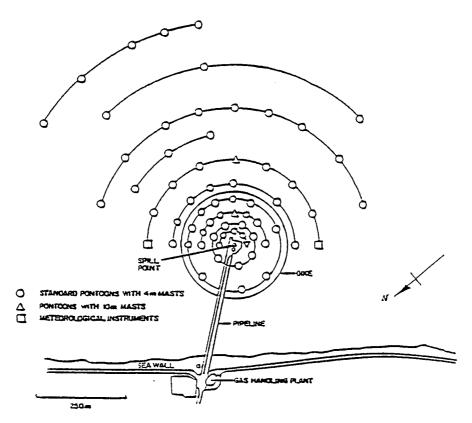
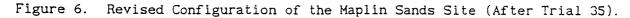




Figure 5. Initial Configuration of the Maplin Sands Site.

API PUBL*4546 92 🛲 0732290 0505482 889 🛲

total of 360 sensors were deployed in these trials, 200 of which were gas concentration sensors. Other types of sensors included:

Parameter	Instrument Type	Number Of Sensors
Wind speed	Cup anemometer	5
Wind direction	Vane	5
Turbulence	Ultrasonic anemometer	6
Air temperature	Platinum resistance	8
Relative humidity	Humicap	2
Insolation	Solarimeter	2
Sea surface roughness	Conductivity probe	1
Sea current	Turbine	2
Sea temperature	Platinum resistance	2
Cloud temperature	Thermocouple	66

Table 5 summarizes features of each of the Maplin Sands trials. The combustion aspects of some of these trials removes the vapor cloud, so the dispersion data are available only up to the moment of ignition. Not all of these trials are used in the performance evaluations. None of the instantaneous trials are retained. Within the continuous propane trials, trial 45 is dropped due to unsteady winds, and trials 51 and 55 are dropped because the vapor-clouds largely "missed" the sampler array. Within the continuous LNG trials, trial 37 is dropped due to the buoyant nature of the cloud, trial 39 is dropped because the cloud was ignited within 1 minute of the release, and trial 56 is dropped because much of the cloud did not pass through the sensor array. Trials 9, 12, and 15 are also dropped from the study because much of the LNG evaporated in the air prior to reaching the water (Reference 20), thereby complicating the nature of the release (a simple evaporating pool description is not appropriate). Therefore, the trials actually used in the performance evaluation are:

> LNG: 27, 29, 34, 35 LPG: 42, 43, 46, 47, 49, 50, 52, 54

5. Prairie Grass

Project Prairie Grass, designed by Air Force Cambridge Research Center personnel, was held in north central Nebraska near O'Neill in the summer of 1956 (Reference 21). Small amounts of SO₂ were released continuously over 10-minute periods from ground level in the 70 trials that

API PUBL*4546 92 🎟 0732290 0505483 715 📟

.

.

TABLE 5. SUMMARY OF THE MAPLIN SANDS EXPERIMENT.

Trial Number	Volyme (m)	Bate (m /min)	Duration of steady flow (s)	Wind Speed (m/s)	Comments
Continuous Propane					
42		2.5	180	3.7	Underwater release
43		2.3	330	5.5	
•45		4.6	330	~2	Wind very unsteady
46		2.8	360	8.1	
47		3.9	210	5.ó	
49		2.0	90	6.2	Ignited
50		4.3	160	7.9	Ignited
*51		5. 6	140	6.9	Ignited
					Plume center missed sensors
52		5.3	140	7.9	Underwater release
54		2.3	180	3.8	
*55		5.2	150	5.5	At edge of sensor array
Continuous	LNG				
* 9		1.6	300	8.9	
*12		0.7-1.1	340	1.5	
*15		2.9	285	3.6	
27		3.2	160	5.5	Ignited
29		4.1	225	7.4	- 6
34		3.0	95	8.6	
35		3.8	135	9.8	
*37		4.1	230	4.7	Pipe end below water surface Buoyant plume
*39		4.7	60	4.1	Ignited
*56		2.5	80	5.1	Plume only briefly over sensors
Instantaneo	us Propan	e			
*63	17.	-	-	3.4	
Instantaneo	us LNG				
*22	10				T (b
*23	12. 8.5	-	-	5.5	Ignited
دے	0.0	-	-	6.6	Ignited briefly

• These trials are not included in the performance evaluation

API PUBL*4546 92 🎟 0732290 0505484 651 🛤

comprised the project. Dosage measurements were made on arcs located at distances of 50, 100, 200, 400, and S00 meters downwind. About half of the trials were conducted during unstable daytime conditions and the rest were held at night with temperature inversions present. Meteorological measurements included wind speed, direction, and fluctuations in direction from cup anemometers and airfoil type wind vanes. Micrometeorological data, rawinsonde data, and aircraft soundings were also taken.

The site was located on virtually flat land covered with natural prairie grasses. The roughness length determined for the site by some of the researchers was 0.6 centimeters. Dosages were measured at a height of 1.5 meters along the arcs using midget impingers. The meteorological data were given as 10-minute averages.

Earlier, the Porton Down dataset was dropped because most of the data obtained in the monitoring array are in the form of dosages. Why, then, are the dosages obtained during Prairie Grass acceptable? The reason is that the duration of the Prairie Grass releases (10 minutes) is long enough to create a quasi-steady plume over the monitoring array. In the absence of meandering, the time series of concentrations that <u>might</u> have been measured would have a plateau-like appearance. The average concentration estimated from the dosage (assuming a time-scale equal to the duration of the release = 10 minutes) would then be a fair estimate of the peak concentration. The Porton Down data, on the other hand, involve instantaneous releases, which would result in a time series of concentrations that <u>might</u> have been measured which would have a peak-like appearance. The mean concentration estimated from the dosage and the time it takes such a cloud to pass a monitor is a poor estimate of the peak concentration. Hence, the dosages from the Prairie Grass dataset are more useful for evaluating model performance. Note, however, that the average concentrations are still expected to be less than the peak concentrations.

Table 6 provides a summary of the meteorology for a subset of 44 trials that will be used on this project. These 44 represent the best of the program, and have been used extensively by other researchers (for example, Reference 22; Reference 23; Reference 24).

30

API PUBL*4546 92 🖿 0732290 0505485 598 🖿

TABLE 6.	SUMMARY (DF	SELECTED	METEOROLOGICAL	DATA	FROM	PRAIRIE	GRASS	TRIALS.
----------	-----------	----	----------	----------------	------	------	---------	-------	---------

	TRIAL	U (m⁄s)	STABILITY CLASS	TRIAL	U (m⁄s)	STABILITY CLASS
				<u></u>		
Ę	7	4.2	В	37	4.6	D
	8	4.9	С	38	4.1	D
	9	6.9	С	41	4.0	E
	10	4.6	В	42	5.3	D
	13	1.3	F	43	5.0	С
	15	3.4	A	44	5.7	С
	16	3.2	A	45	6.1	D
	17	3.3	D	46	5.2	D
	18	3.5	Ε	48	8.0	Ð
	19	5.8	С	49	6.3	С
	20	8.6	D	50	6.6	С
	21	6.1	a	51	6.1	D
	22	6.4	D	53	2.5	D F
	23	5.9	D	54	4.0	D
	24	6.2	D	55	5.4	D
	25	2.8	A	56	4.3	D
	28	2.6	Ē	57	6.7	
	29	3.5	D	58	1.9	D F
	32	2.2	F	59	2.6	F
	33	8.5	D	60	4.9	D
	34	9.0	D	61	8.0	ם
	36	1.9	F	62	5.2	С

API PUBL*4546 92 🗰 0732290 0505486 424 📟

6. Thorney Island

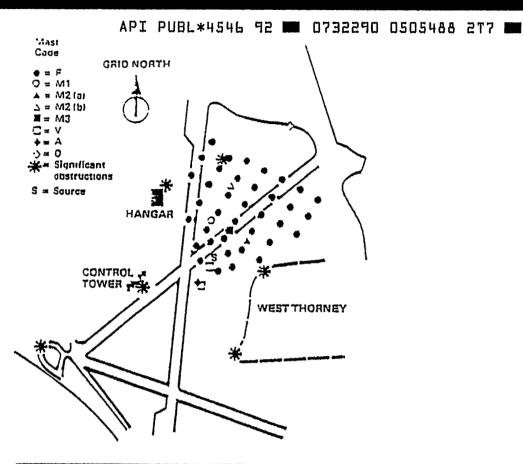
The Heavy Gas Dispersion Trials project at Thorney Island (Reference 25) organized by the British Health and Safety Executive consists of the following five types of trials:

- (1) Phase I the instantaneous release of a preformed cloud of approximated 2000 m^3 of dense gas over flat terrain. Sixteen trials were carried out.
- (2) Phase II Ten trials were carried out to study the effects of obstacles on Phase I-type releases.
- (3) Continuous release trials Three trials in which approximately 2000 m^3 of heavy gas was released at a rate of 5 m^3 /sec over flat terrain.
- (4) GRI trial A single Phase I-type of release.
- (5) Phase III- Six continuous release trials in which a fenced enclosure surrounded the gas container.

For this project, we are focusing on the Phase I trials (item #1) and the continuous-release trials (item #3). The instantaneous-release trials of Phase I are similar in design to those conducted earlier at Porton Down, but the size of the source is approximately fifty times larger, and continuous monitors were used to obtain concentration measurements.

A gas container with a volume of 2000 m^3 was filled with a mixture of freon and nitrogen. For instantaneous release trials, the sides of the gas container collapsed to the ground upon release. For continuous release trials, the gas container simply served as a storage tank. The gas would then be ducted below the ground to the chosen release position. The release mechanism was designed to give a ground-level release with zero vertical momentum.

API PUBL*4546 92 🛲 0732290 0505487 360 🛲


A 30 m tall meteorological tower was was located 150 m upwind from the release point. The instrumentation consisted of five cup anemometers, five temperature sensors, two sonic anemometers, and one sensor each for relative humidity, solar radiation and barometric pressure. Four trailer-mounted towers, with a total of eight sonic anemometers, were also deployed. Note that the 30 m tall tower was replaced by a 20 m tall tower for continuous release trials.

Thirty-eight towers were used to measure gas concentrations. Measurements were taken at four levels. The lowest gas sensor was positioned at a height of 0.4 m; and the highest at 4 m on towers close to the spill point, 10 m at most other towers, and 14.5 m at towers in the far field. The towers were placed on a rectangular grid with distances up to about 300 m from the release point. The four trailer-mounted towers mentioned previously also had gas sensors mounted at four different heights. The configuration of instrumentation at the site is shown in Figure 7.

Copies of the 9-track tapes containing data for the instantaneous release trials were obtained through the API, who had contributed to the experiments, and who are co-funding this model performance evaluation. We have averaged the 20-Hz data in blocks of 0.6 seconds each. Data for the continuous release trials were obtained from TRC Environmental Consultants, Inc., who had digitized plots of the data to produce data corresponding to 30-s averages. A total of 9 of the 16 continuous release trials and 2 of the 3 instantaneous release trials were retained for the evaluation. Trials 10, 11, and 46 were dropped because of wind-shifts during the trial; trial 4 was dropped because the cloud became elevated; trial 5 was dropped because the release mechanism malfunctioned, producing 2 clouds rather than 1; and trials 14, 15, and 16 were dropped because the density of the initial cloud appeared to be stratified. The trials included in this study are:

> Instantaneous releases: 6, 7, 8, 9, 12, 13, 17, 18, 19 Continuous releases: 45, 47

A brief summary of the characteristics of the source emissions and the meteorological conditions for the Phase I and continuous release trials is given in Table 7.

Mast Code	Instrumentation
A ·	5 cup anemometers 2 sonic anemometers 6 thermometers 1 solarimeter 2 relative humidity sensors 1 wind vape
v	1 wind vane
F	4 gas sensors (1 Hz)
M1	1 sonic anemometer 4 gas sensors (1 Hz) 2 gas sensors (10 Hz)
M2 (a)	4 gas sensors (1 Hz) 2 sonic anemometers 2 gas sensors (10 Hz)
M2 (b)	4 gas sensors (1 Hz) 2 sonic anemometers 1 gas sensor (10 Hz)
M3	4 gas sensors (1 Hz) 3 sonic anemometers 3 gas sensors (10 Hz)
ס	4 gas sensors (1 Hz) 1 cup anemometer 1 wind vane 1 relative humidity sensor 1 thermometer

Figure 7. Configuration of Instrumentation Used for the Phase I Trials at Thorney Island (Reference 25).

API PUBL*4546 92 📰 0732290 0505489 133 🎟

TABLE 7. SUMMARY DESCRIPTION OF PHASE I TRIALS AND CONTINUOUS RELEASE TRIALS.

Trial Number	Date	Wind ¹ Speed m⁄s	Stability ² Class	Volume Released m	Initial Relative Density
Phase I					
006	8/4/82	2.6	D/E	1580	1.60
007	8/9/82	3.2	E	2000	1.75
008	9/9/82	2.4	D	2000	1.63
009	9/15/82	1.7	F	2000	1.60
012	10/15/82	2.6	E	1950	2.37
013	10/19/82	7.5	D	1950	2.00
017	6/9/83	5.0	D/E	1700	4.20
018	6/10/83	7.4	D	1700	1.87
019	6/10/83	6.4	D/E	2100	2.12
Continuo	us				
045	6/9/84	2.1	E/F	2000	2.0
047	6/15/84	1.5	F	2000	2.05

¹ Wind speeds are at 10 m height on the 'A' mast averaged over the duration of each experiment.

Pasquill Stability Categories are assessed from observation, solar radiation, vertical temperature gradient, standard deviation of horizontal wind direction and Richardson number.

API PUBL*4546 92 🗰 0732290 0505490 955 🖿

C. CREATION OF A MODELERS' DATA ARCHIVE

Application of 14 dissimilar models to 8 databases containing a total of 96 trials demands that the data be placed in a common format. Furthermore, this format must include enough information to satisfy the input requirements of all of the models. We have developed what may be called a Modelers' Data Archive (MDA) to perform this function. It certainly does not contain all of the data from each experiment; rather, it contains only that information that we have used in running the 14 models. As such, the MDA is a subset of the complete database. Table 8 lists the information contained in an MDA file. Most of the entries are self-explanatory.

At the beginning of the MDA, information is given that defines the experiment and trial, followed by a listing of several chemical properties of the released substance. Chemical properties include the molecular weight, normal boiling point, latent heat of evaporation, heat capacity of the vapor phase, heat capacity of the liquid phase, the density of the liquid, and the Antoine coefficients. The coefficients for the Antoine equation for calculating vapor pressure as a function of temperature are taken from the SLAB user's guide, since only SLAB requires these as input. Physical properties of the release are then given, which not only provide specific dimensions, but also information on the general type of the release (source type and source phase) so that appropriate information can be passed to each of the models. Meteorological data appear next. Temperr+ures at two specified heights and wind speed at one specified height used to estimate the Monin-Obukhov length scale, L (although this may be specified directly). What is termed "domain average" values of wind speed and two measures of turbulence follow. This speed is the value actually used in the models, along with either the calculated value of L, or that observed. The earlier wind speed is used only in estimating L. If many near-surface measurements of wind speed are available, than a true "domain-average" speed can be used. However, if only one tower is available, then the speed measured near the surface (for near-surface releases) should be used as the "domain-average" speed. Site information includes the surface roughness length, soil (or water) temperature, and a soil moisture indicator. The Bowen ratio is a measure of the importance of the latent heat flux in computing the Monin-Obukhov length.

36

TABLE 8. LIST OF INFORMATION CONTAINED IN AN MDA FILE.

Paraguill-Cliford stability class $(\Lambda-1;D-4;F-6)$ i latitude (dog) i longitude (dog) a veraging time for yeak concentration $\{\mu\}$ averaging time for averaged concentration $\{\mu\}$ i averaging time for averaged concentration $\{\mu\}$ i suggested receptor height for modeling $\{\mu\}$ i number of distance downwind mol. wolght (g/mole) normal bolling point (K) latent haat of evaporation (J/kg) specific heat - vapor (J/kg-K) specific heat - liquid (J/kg-K) donsity of liquid (kg/m^{*3}) donsity of liquid (kg/m^{*3}) coefficient A for vapor pressure equation coefficient A for vapor pressure equation source dianoter (m) source dianoter (m) source containment (dianuter (m) cource type (11, 11, As, EP) source containment dianuter (m) The main set of the second se E distance downwind (m) distance downwind (m) distance downwind (m) distance downwind (turminal record: -99.9) ambient temperature 11-lower (K) measurement height for temperature 11 (m) Ξ Muthana is at least 91% in composition 3-char. aburcylation of chemical number of trials included in HDA time zone designation trial ID amblant tomperature 12-uppor (K) measurement height for temperature 12 soll temperature (K) soll molsture (1:dry,2:mulat,3:water) Inverse Hontn-Obukhov Langth (17m) cloud cover (1) s split/evaporation rate (kg/s)
s split duration (s)
t total released (kg)
i initial concentration (pyw)
a mblent presence (it)
r relective humidity (i) distance downwind {m} distance downwind {m} wind speed (m/s) minuto nonth year hour day 79. 10730. 10730. 14.4 308.52 1.0 308.42 10. -99.9 5:1300 5:1300 3348.5 443.4 963.6 993.6 111.6 45.13 135.98 18.82 .0002 0.250 -99.9 -0071 35.9 117.7 57. 140. 400. -99.9 5.94 50. 50. 90 11 11 11 12 13 0.74 <u>.</u> 8 å 116.93 107. 12453 1000000. 18.12 111.6 511900. 53180.5 3348.5 438.5 438.5 983.89 983.89 983.89 983.99 983.99 983.99 111.6 1.5 306.02 1.0 306.28 .0002 0.074 -99.9 -99.9 6.66-20.03 5.9 57. 140. 100. 399.9 . 80 856 99.46 174. 17289 1000000. 111.6 511900. 2238. 3348.5 438.6 8.8083 963.89 -99.9 111.6 38.60 7.4 106.96 1.0 10.53 -99.9 18.22 8.75 3.0 3.21 3.21 3.21 3.20 0.375 -99.9 -99.9 99.9 5.9 . 88 . e à 129. 11888. 1000000. 5 80 116 117.24 111.6 221900. 221900. 412.3 8.8083 8.8083 8.8083 9.99 -99.9 -91.16 37.17 5.1 312.67 1.0 311.64 10. 12.22 35.9 117.7 51. 140. -99.9 -99.9 900 81.25 190. 15444 1000000. 17.08 111.6 511900. 2238. 3348.5 431.4 6.8083 963.89 963.89 -99.9 34.89 5.9 314.27 1.0 313.28 .0002 0.332 -99.9 10. -99.9 11.7 6.66 6.66 6.66 . 79 BUS - 9 15221. 15221. 1000000. 111.6 511900. 22238. 3348.5 431.2 8.8083 983.69 993.69 111.6 36.09 2.7 309.05 1.0 107.97 9.35 9.0 1.19 1.19 1.19 1.00 1.404 1.022 1.0270 17.05 36.96 10. -99.9 35.9 57. 140. -99.9 -99.9 .00. Liquetted metuerly das 106 111.6 511900. 511900. 2238.5 3348.5 4.80.7 4.80.8 983.89 983.89 983.89 983.89 983.89 983.89 983.89 983.89 983.89 983.89 983.89 983.80 975.80 9 54 87.98 11672. 11000000. 936 5.2 5.2 5.2 5.2 110.0 10.0 10.0 10.0 10.0 10.0 5.58 5.58 5.4 113.3 113.3 2.0 2.0 2.0 0.250 0.250 0.250 0.250 0.250 0.250 0.250 35.9 51. 140. -99.9 -99.9 00.00 â 15 58 86.10 173. 14980. 1000000. 17.46 111.6 511900. 511900. 2238.5 3348.5 444.1 444.1 444.1 444.1 983.69 983.69 983.69 1111.6 35.91 2.1 311.27 1.0 310.22 11111 10. - 99. 9 .0002 0.218 -99.9 -99.9 1. 57. 1140. 99.9 99.9 8. . 11 . . **B**U2 1. 40. 100. 1001

API PUBL*4546 92 🗰 0732290 0505492 728 🛤

It is the ratio of the sensible heat flux to the latent heat flux, and is generally estimated rather than calculated or measured. The last information in the file describes what specific information should be obtained from the model when applied to a particular experiment and trial: concentration averaging time, concentration of interest (for specifying the lateral extent of the cloud or signaling how far downwind the model calculations should extend), and receptor height and distances. Two averaging times are given. These correspond to the shortest averaging time contained in a dataset, and a longer averaging time that corresponds to the duration of the release (for quasi-continuous releases).

In many cases, not all of the entries are needed to characterize a trial. For example, no heat exchange or changes in phase occur in the Thorney Island trials, so the thermal properties of the gas are not used. Whenever this is the case, a value of "-99.9" may be contained in the MDA file.

The structure of the MDA file allows information describing a turbulent, two-phase jet-release to be specified within the same framework as a single-phase, evaporating pool-release. We have developed a set of programs to read the MDA files and produce tables of data needed to run each model. These tables provide all data in the units requested by the model. At the same time, the programs create all input files read by many of the models at the time of execution, so that these models are essentially driven directly from the MDA files. The goals satisfied in producing the MDA and software in this way are:

- 1. To document assumptions used to initialize the models in a consistent way,
- 2. To automate the process of preparing model-runs to the maximum possible extent,
- 3. To develop a way to easily implement alternate methods of initialization, and
- 4. To develop a framework for investigating the influence of data uncertainty on assessing model performance.

In addition to an MDA file for each experiment, concentration files were also prepared for the distances and averaging times contained in the MDA. Concentrations reported in these files represent the largest values measured

API PUBL*4546 92 🎟 0732290 0505493 664 📟

at each distance, for each averaging time. For some datasets, a measure of the scale of the lateral half-width of the concentration distribution is characterized as σ_y at each location downwind. Both the concentrations and the values of σ_y are compared to predicted values to produce measures of model performance as described in Section IV.

D. METHODS FOR CALCULATING REQUIRED VARIABLES

Much of the information required to complete the MDA for each dataset is readily obtained. However, some entries do require explanation. In the following sections, we discuss how the MDA for each of the datasets was prepared. The MDA for each dataset is listed in Appendix A.

Measures of the observed concentration field must also be derived from the datasets. The performance of the models is assessed by comparing modeled "centerline" or "peak" concentrations and crosswind cloud-widths (σ_y) with those derived from the measured concentrations. The method used to characterize the observed values is best illustrated by considering a generic dataset in which time series of measured concentrations are available at several heights and locations along several monitoring arcs downwind of the point of release. For each arc, the peak concentrations and σ_y are obtained as follows:

A peak "instantaneous" concentration is found by selecting the single largest measured concentration from among all concentrations reported by all samplers at all heights, along the arc. No "instantaneous" σ_{v} is estimated. Next, a peak average concentration is found. To do this, we review the time series of concentrations along the arc, and define an averaging window that excludes the leading and trailing edges of the cloud. The length of this window is typically of the same order as the duration of the release for a quasi-continuous source. Concentrations are averaged over this window at each receptor, thereby producing a cross-section of average concentrations along the arc (across the cloud). The largest concentration in the cross-section is selected to represent the peak average concentration. Note that there is a likelihood that this method will slightly underestimate the peak, which may fall between receptors. A second-moment calculation involving the averaged concentrations at the lowest measurement-height along the arc then determines σ_v . However, several conditions must be satisfied before such a σ_v can be considered valid:

API PUBL*4546 92 🗰 0732290 0505494 STO 🛤

- 1. There must be at least four monitors reporting non-zero values of average concentration.
- 2. The receptor showing the maximum concentration must not be located at either end of the arc.
- 3. The lateral distribution must not exhibit a clear bi-modal pattern.

Departures from this treatment of a generic dataset are identified in the following discussions for each dataset.

1. Burro

The data report (Reference 14) contains summary sheets for the trials, which serve as the basis for most of the data placed in the MDA. • The following comments should be noted:

- The mixture of methane, ethane, and propane that makes up the LNG is reported in the summary sheets. We use this information to calculate the molecular weight of the mixture, but all other properties in the MDA are for pure methane.
- The source diameter is calculated by assuming that the spill rate is equal to the total evaporation rate. Using an evaporation rate per unit area of 0.085 kg/m²/s for LNG on water, the diameter varies as a function of the rate of release.
- The source containment diameter is set equal to the diameter of the water test basin created for the series of experiments.
- The relative humidity is that termed "downwind humidity" in the summary sheets.
- The temperatures and wind speed used in calculating the Monin-Obukhov length are obtained from the "upwind vertical profile" data.

40

API PUBL*4546 92 🖿 0732290 0505495 437 🖿

- The domain-averaged wind speed and turbulence data use the average values listed on the summary sheets.
- The Pasquill-Gifford stability class values are assigned on the basis of characterizations such as "neutral", slightly stable", etc.

The following correspondence was assumed:

unstable,	slightly	unstable	С
neutral			D
slightly s	stable		E

Peak concentrations (both "instantaneous" and average), and the σ_y , for the average concentration distribution along each monitoring arc are found as described for the generic dataset. Cross-sections of concentrations along each arc, which are plotted in the data report, provided the means for defining the windows for averaging the concentrations.

2. Coyote

The structure and documentation for the Coyote dataset is nearly the same as that for Burro, so that the process of preparing the MDA is virtually the same. The only departure is in specifying the Pasquill-Gifford stability class. The data report for Coyote (Reference 15) does not provide the stability classification. However, a later summary of a dataset for dispersion modeling (Reference 26) does report the stability class for each of the three trials in the MDA.

3. Desert Tortoise

The information placed in the MDA for this experiment is taken from the data report (Reference 16). The following comments should be noted:

• The exit pressure is assumed to equal the pressure measured prior to the point of discharge. It is not the tank pressure that is listed.

API PUBL*4546 92 MM 0732290 0505496 373 MM The wind speed and the temperatures used to calculate the Monin-Obukhov length are those measured at site G01.

- The domain-averaged wind data are those reported as the average values at 2 m.
- The spill rate is the rate actually listed, with no adjustments for the results of the mass-flux estimates made from the data obtained along the arc at 100m downward of the point of release.
- Peak concentrations and values of σ_y for the arcs at distances of 100 m and 800 m downwind of the point of release are obtained in the manner described for the generic dataset.

4. Goldfish

The MDA for the Goldfish experiment was prepared from information contained in Blewitt (Reference 17), and from information obtained directly from Mr. D. Blewitt of AMOCO, one of the sponsors of the experiment. The following points should be noted:

- Some chemical properties listed for HF vary among several references. The latent heat of vaporization listed in Perry's Handbook (Reference 27) is 7460 cal/mol, which is equivalent to 1.558x10⁶ J/kg. But Lange's Handbook of Chemistry (Reference 28) and a basic chemistry textbook (Reference 29) list the latent heat of vaporization as 1.8 Kcal/mol, which is equivalent to 3.76x10⁵ J/kg. Several of the models that are evaluated also list the physical properties of HF. PHAST uses 1.266x10⁶ J/kg at 293 K, and the user's guide for SLAB contains an example in which the latent heat of vaporization for HF is 3.732x10⁵ J/kg. These differences may be due to different assumptions by the references regarding the degree of polymerization of the HF. We have chosen the number used by SLAB for this property of HF, because personnel at LLNL have developed SLAB and have conducted the Goldfish tests.
- The diameter of the discharge orifice is not listed in any of the references for this experiment. The values used in the MDA were obtained from Mr. D. Blewitt of AMOCO.

API PUBL*4546 92 🎟 0732290 0505497 20T 📟

Concentration measurements for short sampling times (of order 1s) are not available. Instead, averaging times are assumed to be either 66.6s, or 38.3s, depending on the sampler position. As a result, we only characterize the peak concentration for the averaging time associated with all samplers in a particular arc. A corresponding value of σ_y is calculated from the concentrations reported at monitors along the arc during the same period that contains the peak concentration. The methodology follows that for the generic case except no averaging is performed. Hence, the averaging time associated with σ_y is either 88.3 or 66.6s.

5. Hanford Kr⁸⁵

 ${\rm Kr}^{85}$ is a radioactive gas, and was released in very small quantities both as a continuous release and as an instantaneous release. The instantaneous releases were accomplished by sealing a small volume of the gas in a quartz vial, and then dropping a weight onto the container to crush it. The continuous releases were accomplished by adding a very small amount of ${\rm Kr}^{85}$ to a cylinder of compressed argon gas, and releasing the mixture at a controlled rate. In both cases, the ${\rm Kr}^{85}$ was quantified in terms of its disintegration rate: Ci/s for the continuous releases, and Ci for the instantaneous releases. Concentrations downwind of the release were measured as radiation counts, and converted to the equivalent Ci/m³ (actually expressed as $\mu {\rm Ci/m}^3$).

Using a half-life of 10.4 years, we calculate that there are 2×10^{-8} kg-moles of Kr⁸⁵ associated with 1 Ci. Because the instantaneous release made use of only 10 Ci, the mass and volume of the gas in the vial was very small. The continuous release rate did not exceed 0.0388 Ci/s of Kr⁸⁵, which amounts to approximately 7.8×10^{-10} kg-mole/s. However, because the Kr⁸⁵ was introduced into an argon carrier-gas at an unspecified mixing ratio, we do not know the initial dilution of Kr⁸⁵.

Based on these considerations, we have modeled the Hanford Kr^{85} trials with a neutral-density gas, released at a small rate. The gas is taken to be "dry air", which ensures that dense-gas effects will not be significant in the simulations. Emission rates (kg/s) or total mass released (kg) of the

43

API PUBL*4546 92 🛲 0792290 0505498 146 🛲

"dry air" are established by arbitrarily assigning 1 kg of mass to 1 Ci, so that the instantaneous releases are modeled as if 10 kg (~ 1/3 kg-mole) of "dry air" were released, and the continuous releases are modeled as if 0.0388 kg/s (at most) of "dry air" were released.

Smaller amounts of "dry air" could have been modeled. For example, we could have assigned 1 g of mass to 1 Ci. This may alter model predictions. To gauge the effect of choosing 1 kg/Ci rather than 1 g/Ci in obtaining modeled normalized concentrations (that is, C/Q in μ s/m³ or μ /m³), we ran the SLAB model both ways. The results are:

SLAB

TRIAL	DIST	1 kg/Cl C(ppm)	1 g/Cl C(ppm)	RATIO/1000
HC1	200	110.3	0.1093	1.009
	800	13.21	0.0132	1.001
HC2	200	3.384	0.00338	1.001
	800	0.255	0.000255	1.000
HC3	200	6.121	0.00612	1.000
	800	0.467	0.000467	1.000
HC4	200	6.785	0.00679	0.999
	800	0.486	0.000486	1.000
HC5	200	15.44	0.0155	0.996
	800	1.274	0.00127	1.003
HI2	200	1583	2.489	0.636
	800	87.85	0.0995	0.883
HI3	200	430.5	0.5049	0.853
	800	14.61	0.01526	0.957
HI5	200	388.2	0.4497	0.863
	800	14.31	0.01486	0.963
HI6	200	375.6	0.4346	0.864
	800	13.58	0.0141	0.963
HI7	200	328.8	0.3784	0.869
	800	10.88	0.01127	0.965
HI8	200	785.5	0.979	0.802
	800	29.99	0.0318	0.943

These results indicate that the initial size of the source (within SLAB at least) has a minor influence on scaled concentrations predicted at distances of 200 and 800 m from the source for the continuous release trials (HC's), but can have a significant influence on the prediction of concentrations for the instantaneous release trials (HI's). Note that 10 kg of "dry air" at standard temperature and pressure occupies approximately 7.7 m³, which corresponds to a cube that is almost 2 m on a side.

API PUBL*4546 92 🖿 0732290 0505499 082 🖿

Tables for INPUFF and GPM were also prepared to see to what extent the size of the source affects the scaled concentrations that are predicted. In applying both of these models, we specified an initial σ_y and σ_z to assure that the peak concentration at the source did not exceed the density of the gas at the source. Therefore, we expect to see at least a small effect of initial source volume on the predicted concentrations.

		INPUFF Mo 1 kg/Ci		
TRIAL	DIST	C(ppm)		RATI 0/ 1000
HC1	200	60 21	0.06942	0.9 9 7
1101	800		0.007535	0.999
HC2	200		0.002369	0.999
	800		0.000193	0.999
HC3	200		0.003058	0.999
	800		0.000253	1.000
HC4	200		0.007691	0.998
	800		0.000625	1.000
HCS	200	21.69	0.02173	0.998
	800	2.281	0.002282	1.000
HI2	200	3408	3.68	0.926
	800	110.2	0.1133	0.973
HI3	200	452	0.4415	1.024
	800		0.01305	0.992
HI5	200	111.3	0.1132	0.983
	800	3.034	0.003048	0.995
HI6	200	113.7	0.1156	0.984
	800		0.003044	0.995
HI7	200	132.1	0.1349	0.979
	800		0.003016	0.995
HIS	200	1059	1.136	0.932
	800	31.11	0.03167	0.982
		GPM Model		
		1 kg/Ci		
TRIAL	DIST	C(ppm)	C(ppm)	RATIO/1000
HC1	200	86.62	0.08803	0.984
	800	7.661	0.007695	0.996
HC2	200	2.139	0.002145	0.9 9 7
	800	0.1465		0.999
HC3	200		0.003475	0.997
	800		0.000237	0.9 99
HC4	200		0.008758	0.995
	800		0.000598	0.999
HC5	200	23.68	0.02386	0.992

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

800 1.875 0.001879 0.998

API PUBL*4546 92 MM 0732290 0505500 624 MM The continuous release trials show little influence, as was found for the SLAB runs. A greater effect is seen in the predictions at 200 m for the instantaneous releases, but it is not as large as the effect seen in the SLAB runs.

Because the trials are modeled as if "dry air" were released, the information on chemical properties in the MDA is taken from standard references. Release rates and meteorological data are taken from the data report (Reference 18). The following points should be noted:

- The source temperature is set equal to the ambient temperature measured at the lower instrument-height.
- The release rate of Kr⁸⁵ in Ci/s is numerically equal to the release rate of our surrogate in kg/s.
- No distinction is made between the "wind speed" entry, and the "domain-averaged wind speed."
- Concentrations reported in units of $\operatorname{Cl/m}^3$ are converted to ppm by dividing by the factor $\rho \propto 10^{-6}$, where ρ is the density of dry air at ambient temperature and pressure.
- For the instantaneous releases, only peak concentrations for an averaging time of 4.8s are available. No $\sigma_{\rm c}$ values are calculated.
- For the continuous releases, short-term peak concentrations are obtained for an averaging time of 38.4s. Longer averages are calculated, and values of σ_y are calculated following the methodology of the generic dataset.
- 6. Maplin Sands

A series of data reports (Reference 30), one for each trial, contains information used to prepare the MDA for the LNG and the LPG trials. The following points should be noted:

 Molecular weights are calculated on the basis of the listed composition of the LNG or LPG for each trial. All other properties are those for methane (for LNG) or propane (for LPG).

API PUBL*4546 92 🎟 0732290 0505501 560 🎟

- The temperature of the source is the boiling point temperature.
- The source diameter is calculated by assuming that the spill rate is equal to the total evaporation rate. We use an evaporation rate per unit area of 0.085 kg/m²/m for LNG on water, and a rate of 0.120 kg/m²/s for LPG on water.
- The duration of the spill is that listed as the period of steady discharge.
- Relative humidity for trials 29, 34, and 35 is not that listed in the data reports. Dr. J. Puttock informed us that the fetch for these three trials was over open water, rather than land. Relative humidities derived from measurements made at 1 m above the surface near the point of release are more representative than those listed in the data reports. We have placed the revised values in the MDA.
- Cloud cover is not reported, but photographs are included for each trial. We have estimated the cloud cover on the basis of these photographs.
- Concentration data are available in the form of plots, rather than on magnetic tape. We have obtained the peak concentration at a number of distances downwind of the release from plots of maximum concentration versus distance. Because the spacing of samplers along each arc was not small relative to the size of the vapor-clouds, reported concentrations cannot be considered good measures of the "true" peak concentrations, and no calculations of $\sigma_{\rm v}$ were attempted.

7. Prairie Grass

Data used to prepare the MDA for this dataset are derived from several sources. The 44 trials chosen for this evaluation are those deemed most useful by Briggs (Reference 22). Much of the meteorological data, and all source data and concentration data were obtained from Mr. B. Kunkel of AFGL, who had created data files from the original data report (Reference 21). Later analyses of the Prairie Grass data provided estimates of u, and L (Reference 24), and σ_{c} (Reference 23). The following points should be noted:

 SO_2 is the tracer-gas released, so all chemical properties are those for SO_2 .

- Concentrations are derived from dosages, for releases of 10 min duration. Therefore, no short-term concentrations are available.
 - Because the Prairie Grass data are frequently cited as having been used in the development of the Pasquill-Gifford (PG) dispersion curves, which are said to be applicable for a surface roughness of 0.03 m, the roughness length for the Prairie Grass site might be thought to be 0.03 m. This is not true. All values of σ_z obtained from Prairie Grass had been "re-scaled" to be consistent with the roughness length 0.03 m when these data were used to develop the PG curves. The actual roughness for the site is 0.006 m.
- 8. Thorney Island

The data report (Reference 31) provided most of the information used to prepare the MDA. Additional analyses by Puttock (Reference 32) provided estimates of the roughness length for each trial (this varied by wind direction), and provided computed values of u_* and heat flux, from which the Monin-Obukhov length was calculated without requiring surrogate methods (as were employed for the other datasets). The following additional points should be noted:

- Molecular weight is calculated from the relative density of the cloud. The density of the air at ambient temperature and pressure is computed, and multiplied by the relative density. Knowing the molar volume of a perfect gas at ambient conditions, the molecular weight of the Freon/Nitrogen mixture is found. All other chemical properties listed in the MDA are those for pure Freon-12.
- The temperature of the cloud is set equal to the ambient temperature at "level 1."
- No distinction is made between the tower wind speed and the domain-averaged wind speed.

48

API PUBL*4546 92 🔳 0732290 0505503 333 🔳

Peak concentrations for the continuous releases are limited to averaging times of 30s, because these data were digitized from plots of the time series. No further averaging was applied, and no estimates of σ_y were attempted due to the nature of the monitoring array. The array is rectangular, but the orientation was generally not orthogonal to the wind direction, which means that sampling rows or arcs across the cloud could not be formed. However, it was still possible to determine peak concentrations at certain distances with reasonable accuracy.

Peak concentrations for the instantaneous releases represent an averaging time of 0.6s, so these are considered "instantaneous" values. Because the release was not quasi-continuous, and because of the nature of the monitoring array, no values of σ_y were estimated.

E. SUMMARY OF DATASETS

An overview of the general characteristics of each of the experiments contained in the MDA is useful when interpreting the performance of the models that have been evaluated. Table 9 lists important characteristics of each dataset.

Three experiments document releases of LNG on water: Burro, Coyote, and Maplin Sands. A small pool of water was used in the 11 trials of Burro and Coyote, while the 4 Maplin Sands LNG trials were performed over shallow water at the coast. The duration of spills during these trials covers a similar range, but the total spilled during Maplin Sands trials was less than that at the other sites. The most significant difference between Maplin Sands and the Burro-Coyote trials is seen in the averaging times and the qualitative assessment of the lateral resolution of the sampling array. Concentrations from both Burro and Coyote were averaged over a period of "steady" release conditions, which correspond to periods when each sampler was within the vapor-cloud. With good spatial coverage along each sampling arc, the resulting concentrations are viewed as being representative of average, in-cloud concentrations (but not peak concentrations). Spatial coverage of the Maplin Sands vapor clouds was not good, and we have used the peak

. 49

SUMMARY OF CHARACTERISTICS OF THE DATASETS. TABLE 9.

	Burro	Coyote	Desert Tortoise	Goldfish	lianford Kr ⁸⁵ (ContInuous)	llanford Kr ⁸⁵ Hapili (Instantancous) Sands	Mapi In Sands	Fruirie Grass	Thorney Island (Instantaneous)	Thorney Islan (Continuous)
Mumber of filals	33	C.	4	e	S	6	4,8	44	0	
Mater sal	L NG	DIVI	с _{ии}	JII	K ^{BS}	K ⁸⁵	1710°, LPG	so ²	Freon & N ₂	r Freon & R.,
lype of Arlease	Bolling Liquid	Bolling Liquid	2-Phase Jat	2-Phase Jet	Gas	Gas	Bolllag Llquld	Gas Jet	Gas	Gas
[vtal Huss [kg]	10700-17300	6500-12700	6500-12700 10000-36800	3500-3800	11-24*	10-	LNG: 2000-6600 23-63 LPG: 100-380	0 23-63	3150-8700	nost
Duration (s)	061-62	65-98	126-381	125-360	1611-865	[Instantaneous] 60-360	60-360	600	[Instantaneous]	AF
Surface	Hater	Hator	Soll	Soll .	Soll	Soll	Hater	Soll	Soll	
Roughness (m)	. 0002	. 0002	C00 ⁺ .	£00.	.03	.03	£000.	. 006	.005018	PUI 5
Stability Class	с-Е	C-D	D-E	a	C-E	C-F	a	A-F	D-F	
Nax. Distance (m)	140-800	300-400	800	3000	800	800	400-650	800	500-580	
Min Averaging fime (s)	1	1	1	66.6-88.3	38.4	4.8	n	(Dogage)	0.06	
Averaging Time (s)	40~140	20-90	80-300	66.6-88.3	270-845	4.8	с	600	0.06	9; ;
Qualitative Assessment:										
Lateral Resolution	ნაიძ	Good	Goud	Good	Good	Good	Harginal	Good	, Good	Good
Temporal Resolution	Good	Good	Good	Fair	Good	Good	Good	Fair	Guad	
Curies, rather than kg, are used as a measure of the amount of this radioactive tracer released.	kg, are used at	ו א אטאטורפ ס	of the amount o	of this radios	ict Ive					12290
¹ Culturations are measured beyond 800 m, but thuse are not well-instrumented measurement areas.	sasured beyond	300 m. but t	duse are not	rell-lastruxen	ited					051

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

50

0505504 27T 🖿

API PUBL*4546 92 🎟 0732290 0505505 106 📟

3-second-average concentration data. Thus, we may have a good measure of peak, short-term concentrations at some distances during some trials, but not others. We would expect there to be greater scatter in the performance of models on the Maplin Sands trials than on the Burro and Coyote trials as a result of these differences. As a separate model comparison, short term peaks are also evaluated for the continuous dense gas data sets.

The Desert Tortoise and Goldfish experiments document two-phase turbulent jets. Although similar in many respects, the difference in the minimum averaging time of the concentrations is significant. This minimum averaging time is only 1 second in the Desert Tortoise experiments, but is 66.6 or 88.3 seconds (approximately half the duration of the releases), in the Goldfish experiments. Consequently it is difficult to assess whether or not reported concentrations in the Goldfish experiments represent in-cloud averages.

One experiment, Thorney Island, involves the release of mixtures of freon and nitrogen to simulate a generic dense gas release in which density differences are controlled only by dilution. Because the total <u>mixture</u> was sampled, rather than just the freon, these trials need not be modeled as releases of freon that are initially diluted.

Finally, two experiments involve the release of "trace" amounts of gases which are meant to document passive dispersion processes. Both are "continuous" releases of at least 10 minutes duration (the longest durations in the study). Because of the long duration, use of dosage data from Prairie Grass to infer average concentrations does not raise the same problems found in the Porton Down dataset. We have modeled the Kr^{85} releases as a neutral gas, with mass taken to be equivalent to its radioactive content (in Curies). The SO₂ released in the Prairie Grass trials is denser than air, but it is released in small quantity as a jet, so that it behaves as a neutral-density gas cloud. We have initialized each of the dense-gas models with the actual conditions of the release so that some dense-gas calculations may actually be performed for the initial stages of the dispersion, especially for those models that do not simulate the effects of entrainment of air into turbulent jets.

API PUBL*4546 92 🖿 0732290 0505506 042 페 SECTION III MODELS

A. CRITERIA FOR CHOOSING MODELS

Several dispersion models that are either publicly available or proprietary were initially considered for inclusion in this demonstration of the system to evaluate the performance of micro-computer-based models applicable to releases of toxic chemicals into the atmosphere. The list of potential models was derived from the tabulation presented in the Phase I report for this project, and from the list of models of interest to the two sponsors of this project (USAF and API). Criteria considered in selecting the models for the demonstration included the following:

- 1. The model must be available in a version that runs on a "PC."
- If the model is proprietary, the developers must be willing to "loan" a copy for use on this project.
- 3. Models that obtain chemical properties from an internal database must either include all the chemicals required for the datasets included in the evaluation, or they must provide a mechanism for altering the chemical database.

Models that satisfy these criteria were also judged on the ease with which they can be applied to many trials. Those that are readily "automated" and for which a postprocessor can be prepared to extract specific information for each trial, were given preference over <u>similar</u> models that require far more user-involvement.

A total of 24 candidate models are listed below: 14 that have been included in this demonstration are marked with an asterisk:

ACTOR	CADM	+ INPUFF
ADAM	+CHARM	LCMPUFF

53

API	PUBL*4546 92 🗰 0732290) OSOSSO7 T89 🖿
• AFTOX	-DEGADIS	•OB/DG
*AIRTOX	+FOCUS (EAHAP)	•PHAST (SAFETI/WHAZAN)
ALOHA	*GASTAR	*SLAB
ARCHIE	*GPM	•TRACE
Britter & McQuai	d •HEGADAS	+TRACE

Three of the models not chosen are closely related to models that are included, and so are listed in parentheses. FOCUS is essentially a later version of EAHAP. SAFETI and WHAZAN, along with PHAST, are part of the family of models developed by Technica Ltd. for different computer systems. PHAST, the representative that we include in the evaluation, is the version specifically designed for use on micro-computers. Also, LOMPUFF, which requires a VAX computer rather than a micro-computer, uses the INPUFF dispersion model, which is included in the evaluation. Reasons for not including the remaining six models are:

ACTOR (Analysis of Consequences of Toxic Releases): This model was developed by the New Jersey Department of Environmental Protection (Reference 33). It operates within the framework of a LOTUS worksheet, and contains algorithms for treating negatively and neutrally buoyant vapors resulting from either continuous or instantaneous releases. This was submitted to us as a new model late in the program, so there was not sufficient time to incorporate ACTOR in our model evaluation software system.

ADAM (Air Force Dispersion Assessment Model): The ADAM model was originally developed for the U.S. Air Force by Raj and Morris (Reference 34) as an improvement to the OB/DG model, which does not account for dense gases or in-plume chemistry and thermodynamic effects. The model was recently modified to include the special chemical properties of HF and liquid fluorine (LF_2). With this change, ADAM can be applied to releases of nitrogen tetroxide (N_2O_4), phosgene (COCl₂), anhydrous ammonia (NH_3), chlorine (Cl₂), sulfur dioxide (SO_2), hydrogen sulfide (H_2S), fluorine (F_2), and hydrogen fluoride (HF). For these chemicals, it includes algorithms for chemical reactions, aerosols, and mixing processes for up to 16 types of releases. It was not included in this demonstration because several chemicals required for the datasets are not among those treated by ADAM, and no simple facility is provided to incorporate "new" chemicals in the database.

API PUBL*4546 92 🖿 0732290 0505508 915 💻

ALOHA (Areal Locations of Hazardous Atmospheres): The NOAA (National Oceanic and Atmospheric Administration) ALOHA air model is designed to provide atmospheric dispersion estimates based on the Gaussian equations. Version 4 of the ALOHA air model is equivalent to a simple Gaussian plume model with an averaging time of ten minutes, and does not consider effects of dense gases, chemical reactions, liquid-vapor mixtures, and liquid releases. The ALOHA model is the "air" part of the comprehensive NOAA CAMEO model (Reference 35), and is still under active development. For example, Version 5 has been under development during the past two years, and contains algorithms that approximate the dense gas dispersion model DEGADIS. It is intended for application to hazardous vapors released at ground-level. As implemented on Macintosh machines, ALOHA is straightforward and easy to use. We have not included ALOHA in our evaluation because (1) version 5 is designed to emulate the DEGADIS model, which is included in the evaluation, (2) version 4 is functionally equivalent to the simple Gaussian plume calculation coded as GPM in the evaluation, and (3) both versions are designed for the Macintosh computer environment, and are not compatible with the systems used for the rest of the models. We note that a windows-based DOS version is under development, but is unavailable for this effort.

ARCHIE (Automated Resources for Chemical Hazard Incident Evaluation): ARCHIE was developed for the Federal Emergency Management Agency (FEMA), the U.S. Department of Transportation (DOT), and the U.S. Environmental Protection Agency (EPA), and is described in a handbook that can be obtained from regional FEMA offices (Reference 36). The primary purpose of ARCHIE is to provide emergency preparedness personnel with several integrated estimation methods that may be used to assess the vapor dispersion, fire, and explosion impacts associated with episodic discharges of hazardous materials into the terrestrial (that is, land) environment. The program is also intended to facilitate a better understanding of the nature and sequence of events that may follow an accident and their resulting consequences.

The dispersion model within ARCHIE is essentially the Gaussian plume model for point-source releases, with correction terms for releases of finite-duration. No heat transfer, chemical effects, or dense-gas effects are simulated. We do not include ARCHIE in the evaluation because the Gaussian plume and puff calculations of GPM and INPUFF are representative of this class of dispersion modeling techniques.

55

API PUBL*4546 92 🗰 0732290 0505509 851 🛲

CADM (Calm Air Dispersion Model): CADM was developed by and is available from SoftSkills, Inc. Moser (Reference 37) describes it as a generalized program for modeling the spreading and dispersion of dense-gas clouds during calm periods. We have not included CADM in this evaluation because the number of trials in which dense-gas clouds are released during calm or low-wind-speed meteorological conditions is small.

HGSYSTEM (Heavy Gas System): HGSYSTEM is a recently-developed revision to the HEGADAS model, designed especially for modeling releases of hydrogen fluoride The development of the model, first known as HFSYSTEM, focused on three $(\mathrm{HF}).$ areas (Reference 38): (1) the modeling of the complex thermodynamics of HF/H_O/Air mixtures (including aerosol effects on cloud density); (2) the treatment of a wide range of surface roughness conditions (including possible multiple surface roughness conditions); and (3) jet flow and air entrainment for pressurized releases of HF, followed by transition to ground-based dense gas dispersion. First, the HEGADAS model was modified to meet these objectives. The HFPLUME model was developed and tested to simulate jet flows from pressurized releases, dispersing initially as an elevated HF plume. The touchdown and slumping of an initially-elevated dense HF plume were also modeled in HFPLUME, with a link into HEGADAS to complete the modeling of the transition from an elevated to grounded dense gas cloud. Later, a source estimation model, a pool evaporation model, and a far-field Gaussian model (linked to HFPLUME) were added to provide a more complete source and dispersion modeling package.

We have not included HGSYSTEM in this evaluation because the code was not received until late in the study and there was insufficient time to thoroughly test the program and correct the few "bugs" that were found during initial test runs. Furthermore, it was found that the formats of the outputs vary depending upon which of the major modules is used in a simulation, so that significant work still remains in being able to efficiently obtain results from the model when simulating the many trials used in the evaluation.

56

API PUBL*4546 92 ■ 0732290 0505510 573 ■ B. DESCRIPTION OF MODELS EVALUATED

14 models were evaluated--8 of these are publicly-available (AFTOX, Britter & McQuaid, DEGADIS, GPM, HEGADAS, INPUFF, OB/DG, and SLAB), and 6 are proprietary (AIRTOX, CHARM, FOCUS, GASTAR, PHAST, and TRACE). Those termed "publicly-available" can be obtained from published texts, from their developers, or from the EPA for the cost of reproduction. The source-code for these models is distributed along with the user's guides. Those termed "proprietary" are sold by individual companies, which typically provide technical support for the product and reference materials, but do not provide the source-code. Primary references for these 14 models are listed below:

AFTOX (3.1)	Kunkel (Reference 39)
AIRTOX	Heinold et al. (Reference 40),
	Mills (Reference 41)
BM	Britter & McQuaid (Reference 42)
CHARM (6.1)	Eltgroth (Reference 43)
DEGADIS (2.1)	Havens (Reference 44),
	Spicer and Havens (Reference 45)
FOCUS (2.1)	Quest Consultants (Reference 46)
GASTAR (2.22)	CERC (Reference 47)
GPM (Gaussian Plume Model)	Hanna et al. (Reference 48)
HEGADAS (NTIS)	Witlox (Reference 49)
INPUFF (2.3)	Peterson and Lavdas (Reference 50)
OB/DG	Nou (Reference 51)
PHAST (2.01)	Technica (Reference 52)
SLAB (Feb, 1990)	Ermak (Reference 53)
TRACE II	DuPont (Reference 54)

All of the developers of the proprietary models have provided us with copies of the software, with the stipulation that the models be used only for this one project. We have independently applied these proprietary models to the datasets, and have discussed the procedures for doing this with the model developers only when user's guides were unclear or when problems were encountered, much as any purchaser of the models would. Comments on our methods of applying all of the models were solicited from the developers only after the evaluations were completed, and responses were incorporated into revisions to the evaluation only when these were considered major. In this way, we believe that the results of this evaluation are consistent with "routine" use of the models.

57

API PUBL*4546 92 🎟 0732290 0505511 40T 🛤

1. AFTOX 3.1 (Air Force Toxic Chemical Dispersion Model)

The U.S. Air Force AFTOX model, version 3.1, was developed by Kunkel (Reference 39), and is based on the SPILLS model developed by the Shell Oil Company (Reference 55). AFTOX is intended to be an improvement over the Ocean Breeze/Dry Gulch (OB/DG) dispersion model, which is an empirical regression equation derived more than two decades ago from a series of diffusion experiments conducted by the Air Force at Cape Canaveral, Florida, Vandenberg AFB, California, and in Kansas. The data from over 200 diffusion tests were used to derive the OB/DG equation, and these same data have been used in the development and testing of the AFTOX model.

AFTOX is an interactive Gaussian puff/plume model. AFTOX does not consider dense gas effects, but does treat five different types of releases:

- Continuous gas
- Continuous liquid
- Instantaneous gas
- Instantaneous liquid
- Continuous buoyant gas released from a stack

The model determines whether the release is a gas or liquid based on whether the air temperature is above or below the boiling point temperature of the chemical. Gas releases are assumed to be point sources and liquid releases are assumed to be area sources. For the latter case, the geometry of the area source is assumed to have little affect on concentrations at most distances of interest.

AFTOX uses either one of two methods to determine stability:

- 1) wind speed and solar elevation angle (Reference 56), or
- 2) observed σ_A (Reference 57)

Concentration estimates are adjusted for the effect of averaging time on the degree of lateral meandering. Default values of the concentration averaging time are assumed by the model for quasi-continuous releases. For

API PUBL*4546 92 🚥 0732290 0505512 346 페

release durations equal to or greater than fifteen minutes, the default averaging time is fifteen minutes¹. For shorter releases, the default averaging time is equal to the actual duration of release. The user can override the default averaging times in the range from one to fifteen minutes. For instantaneous releases, the averaging time is one minute and the user does not have the option of choosing other values.

AFTOX does not accept a variable emission rate. For continuous releases, the release duration can be specified as either finite or infinite, and a duration of 10,000 minutes will be assumed internally by AFTOX for the latter case.

Because AFTOX runs only in the interactive mode, repeated runs become very time-consuming, and repeated runs are frequently needed because solutions are given as a function of time. The user must specify the elapsed time after the spill as an input parameter for the diffusion calculation. Multiple AFTOX runs, each one with a different elapsed time, are necessary in order to find the maximum concentration at a fixed distance downwind of the source. A more efficient way to find the maximum concentration at a given location is to run AFTOX using the assumption that the release duration is infinite, and specify a relatively long elapsed time, say 30 minutes. However, such a procedure is appropriate only if the source duration is longer than the averaging time.

The latest version of AFTOX was received in August, 1989. Among other changes, version 3.1 has remedied several problems encountered by Sigma in running version 2.1 and reported to the developer. Changing times and locations of interest is handled properly now, and the model now considers distances of travel greater than 1000 m during unstable meteorological regimes. However, another problem has been identified that affects concentrations calculated within 100 m downwind of an instantaneous release. We found that the time-series of such concentrations shows an abrupt (nearly instantaneous) rise from zero.

1

A previous version of AFTOX only lets the user specify the concentration averaging time if the release is equal to or greater than one hour duration. For shorter releases, the model assumes a default ten-minute averaging time.

API PUBL*4546 92 🗰 0732290 0505513 282 📷

This results in a distorted time-series of calculated concentration. At receptors further downwind, the calculated time-series of concentration agrees with that from a simple Gaussian puff model. Because AFTOX is based on the simple puff model, modeled concentrations near the source are considered suspicious. This apparent problem was reported to the developer, but has not been rectified.

2. AIRTOX

The AIRTOX modeling system was developed and is distributed by ENSR Consulting and Engineering. The system operates within a user-interface developed as a LOTUS 1-2-3 spreadsheet. ENSR provided Sigma with a configuration of AIRTOX that requires the user to specify the "release profile" (the information required to initialize the dispersion model). They point out that a number of auxiliary programs (spreadsheets) are available from ENSR for calculating release characteristics for a wide range of source types. However, because our model evaluation and comparison activities focus on simulating trials in which the characteristics of the release are known, the auxiliary programs are not required.

AIRTOX calculates concentrations of toxic or flammable chemical concentrations downwind of time dependent releases. The chemical releases can take the form of a liquid, gas, or a two-phase combination of liquid and gas. The model user must input the release rate and meteorological conditions as a function of time. For each release scenario, the user must specify whether the release is a "catastrophic" (non-jet) or an "engineered" (jet) release. A catastrophic release would occur in conjunction with a general failure of a containment vessel. Engineering releases would occur through specially designed orifices such as relief valves or rupture disks.

All emissions from a release, including those attributed to a liquid pool, are assumed to occur at ground level. Concentrations due to the directly-released gas, flashed gas, and suspended aerosol are calculated separately from the concentrations due to pool emissions. These component concentrations are later combined by the model in the calculation of the temporal and spatial concentration profiles.

60

API PUBL*4546 92 🎟 0732290 0505514 119 📟

Three different types of dispersion are treated in the AIRTOX model. For jet releases, the growth and dilution of the plume is controlled by the turbulence generated by the difference in velocity between the ambient air and the core of the jet. The effective gravitational acceleration felt by the jet is proportional to the relative density difference between the jet and the ambient air. Either one of two criteria are used to determine the transition of the jet to a buoyancy dominated plume. The first is the criterion that the jet velocity falls to a value equal to the ambient wind speed. The second criterion is that the upward or downward velocity, due solely to buoyancy effects, equals the jet velocity.

When it reaches the ground, whether from a catastrophic or jet release, a heavier-than-air plume will spread in the lateral direction due to gravitational slumping. The height and width of a jet release plume, which falls to the ground, are assumed to be the same. For catastrophic releases, the height is assumed to be equal to one-fourth of the width. The rate of air entrainment is modeled as a function of plume height, atmospheric stability, wind speed and surface roughness. The plume rate of spread in the lateral direction is slowed as more ambient air is entrained into the plume, thereby reducing its density with respect to air. An analytical expression is used to compute the height and width of the slumping plume as a function of downwind distance. When the lateral growth rate of the plume equals that which would occur under passive dispersion, then the concentrations downwind from that point are calculated by use of a conventional Gaussian plume model. The Gaussian model uses the Briggs dispersion coefficients for rural surroundings. The influence of building wakes upon the passive dispersion coefficients is modeled in a fashion similar to that used in the EPA Industrial Source Complex (ISC) model.

Prior to soliciting comments on our modeling approach, interaction between Sigma Research and the developer of AIRTOX was limited to clarifying aspects of the "snap shot" representation of the predicted concentrations. During the review, the developer noted an inappropriate specification of the cloud temperature within the model. This was corrected in the final statistics used in our evaluation, as noted in section III.C.2.

61

API PUBL*4546 92 🛲 0732290 0505515 055 📟

3. Britter & McQuaid Model

The Britter and McQuaid (B&M) model is given as a set of simple equations and nomograms in their Workbook on the Dispersion of Dense Gases (Reference 42). The authors collected the results of many laboratory and field studies of dense gas dispersion, plotted the data in dimensionless form, and drew curves that best fit the data. The model is best suited to instantaneous or continuous ground level area or volume sources of dense gases. Sigma has reduced the nomograms to electronic form to create the model referred to as "BM."

The following parameters are used in the model:

Q ₀ (m ³)	Initial cloud volume
<pre>~o (m / q₀ (m ³/s)</pre>	Initial plume volume flux
u (m/s)	Wind speed at $z = 10$ m
T (s)	Duration of release
x (m)	Downwind distance
ρ _o (kg/m ³) ρ _a (kg/m ³)	Initial gas density
$\rho_{a} (kg/m^{3})$	Ambient gas density
$g_0' = g (\rho_0 - \rho_a)/\rho_a$	Initial buoyancy term
D (m)	Characteristic source dimension
	$D_i = Q_0^{1/3}$ instantaneous release
	$D_i = Q_o^{1/3}$ instantaneous release $D_c = (q_o/u)^{1/2}$ continuous release

Roughness length, averaging time, and atmospheric stability class are not included in this list because the available data do not show any strong influence of these parameters. It can be stated that the representative averaging time for the continuous plumes in these experiments is about 3 to 10 minutes, the representative roughness length is a few cm (that is, a flat grassy surface), and the representative stability class is about C or D (that is, neutral to slightly unstable).

The following criteria are used to decide whether the release should be considered to be instantaneous or continuous:

62

API PUBL*4546 92 🖿 0732290 0505516 T91 🎟

$$uT_{o}/x \ge 2.5 \rightarrow Continuous$$

 $uT_{o}/x \le 0.6 \rightarrow Instantaneous$
 $0.6 \le uT_{o}/x \le 2.5 \rightarrow Calculate both ways, take minimum concentration.$

The following criteria are used to decide whether the release is sufficiently dense that dense gas formulas should be used:

 $(g_0'q_0/u^3D_c)^{1/3} \ge 0.15$ Continuous $(g_0'q_0)^{1/2}/uD_i \ge 0.20$ Instantaneous

where $g_0' = g(\rho_0 - \rho_a)/\rho_a$ is the reduced buoyancy parameter, $D_c = (q_0/u)^{1/2}$ is the representative source dimension for the continuous case, and $D_i = Q_0^{-1/3}$ is that for the instantaneous case.

Computer software containing equations for the two nomograms presented in Figures 8 and 9 are then used to estimate the normalized downwind distance $(x/D_i \text{ for an instantaneous release or } x/D_c \text{ for a continuous release})$ that a given normalized concentration $(C_m/C_o, \text{ where } C_m \text{ is the maximum concentration in the cloud or plume and C_o is the initial concentration) occurs, as a function of the initial stability parameter <math>((g_o'Q_o^{1/3})^{1/2}/u \text{ for an instantaneous release or } (g_o'^2 q_o)^{1/5}/u \text{ for a continuous release}).$

In order to assure that C_m/C_o smoothly approaches 1 as x approaches 0.0, we include the following interpolation formulas at small x (that is, for $x \le 30 D_o$ or $x \le 3 D_i$):

$$C_{m}/C_{o} = \frac{306(x/D_{c})^{-2}}{1 + 306(x/D_{c})^{-2}}$$
 Continuous (2)

$$C_{m}/C_{o} = \frac{3.24 (x/D_{i})^{-2}}{1 + 3.24 (x/D_{i})^{-2}}$$
 Instantaneous (3)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 63

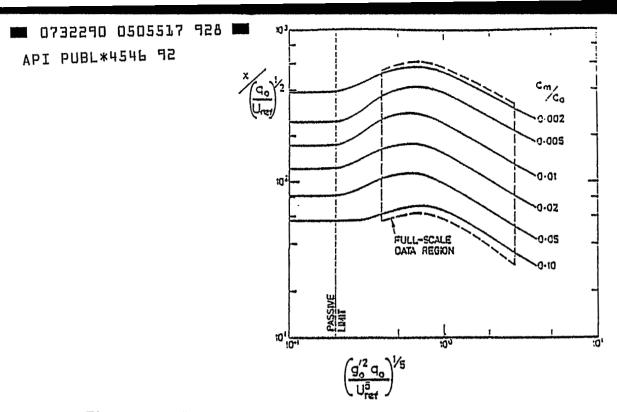


Figure 8. Correlation for continuous releases from Britter and McQuaid (Reference 42).

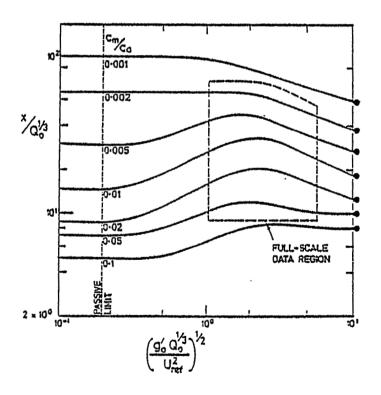


Figure 9. Correlation for instantaneous release from Britter and McQuaid (Reference 42).

64

API PUBL*4546 92 🎟 0732290 0505518 864 📟

The B&M method is not really appropriate for the near-source region of jets or for two-phase plumes. However, the authors point out that the jet effect is usually minor at downwind distances beyond about 100 m. Furthermore, they suggest a method for accounting for the effects of a twophase ammonia cloud. For example, on page 73 of the Workbook they discuss the cloud initialization procedure for the Potchefstroom ammonia accident. They assume that enough ambient air is mixed into the ammonia plume to completely evaporate the unflashed liquid and that the initial density equals the air-ammonia mixture density at the normal boiling point of ammonia $(T = 240^{\circ}K)$. After calculating this initial density, ρ_{o} , and volume, Q_{o} , they assume that there are no thermodynamic processes acting in the cloud (that is, $T_{cloud} = T_{a}$) in subsequent calculations. We have used this method for simulating the datasets that involve 2-phase clouds.

We emphasize that the B&M model is included in this analysis as a benchmark screening model. It should not be applied to scenarios outside of its range of derivation. For example, it would be inappropriate for application in urban areas.

4. CHARM 6.1 (Complex and Hazardous Air Release Model)

The CHARM model, developed by the Radian Corporation (Reference 43), is a Gaussian puff model. CHARM treats any release to be a series of puffs, each of which can be described by procedures reviewed below. The following four types of releases are considered by CHARM:

- Continuous liquid
- Continuous gas
- Instantaneous liquid
- Instantaneous gas

If the release is continuous, the user is asked to input the emission duration together with information on whether the emission rate is constant, decreasing linearly, or decreasing exponentially.

API PUBL*4546 92 🗰 0792290 0505519 7TO 🛲

CHARM allows the puff characteristics of the source to be calculated from the input release data, or it accepts puff information directly from the user. For continuous or instantaneous liquid releases, CHARM calculates, if required by the user, the rate of emission of mass from the storage container. It then uses the Shell SPILLS (Reference 55) model to calculate the length of time required for the liquid to evaporate into the air, the size of the liquid pool which will form, and ultimately, the puff dimension. No water vapor or air is assumed to be mixed with the puff material during the source term calculation. However, the newly released version 6 does include an entrainment algorithm for jet-releases.

CHARM uses the conventional Pasquill-Gifford dispersion parameters to estimate the widths for elevated puffs (not in contact with the ground) or any puffs not heavier than air. CHARM ultimately reduces to a standard Gaussian model for neutrally buoyant material. On the other hand, CHARM uses the dispersion parameters in the Eidsvik (Reference 58) model to estimate the widths of heavier-than-air puffs on the ground. CHARM allows a variable concentration averaging time, but the effects of wind meandering are not simulated.

The CHARM model is operated by means of a sequence of menus or screens in an interactive process whereby the properties of a series of puffs are determined and meteorological data are entered. Results of the subsequent transport and dispersion calculations are presented in the form of on-screen graphics; centerline concentrations at (or near) specified distances downwind, and crosswind distance to a specific concentration are obtained from the plot of concentration contours on the screen. This process is feasible because a movable "cross-hair" can be invoked to define a position, and the concentration at this position is displayed at the bottom of the screen.

One particular refinement contained in Version 6 of the model has proven essential in applying CHARM to the datasets that include instantaneous releases and monitors placed within 100 m of the point of release. The new version can be implemented with a time-step of 1 second, rather than 1 minute. With a transport speed greater than 1.5 m/s, a puff would pass by all receptors located within 100 m by the end of the first 1-min time-step. With

66

API PUBL*4546 92 🎟 0732290 0505520 412 🚥

the resolution afforded by the 1-s time-step, all trials can be modeled with adequate resolution.

Version 6 of CHARM was sent to Sigma Research for use in this study after efforts to apply version 5 to instantaneous release trials proved unsatisfactory. We notified the developer of our problem, and were told of the release of version 6. The first copy of version 6 sent to us would not load properly, and after discussing a problem found in its replacement, one other bug was identified and fixed by the developer. All other interactions with the developer were initiated in response to our request for comments on our methods for applying CHARM in this study. These discussions are summarized in Section III.C.2.

5. DEGADIS 2.1 (DEnse Gas DISpersion Model)

The DEGADIS model was first developed by Havens and Spicer (Reference 59) for the U.S. Coast Guard for application to LNG spills from tankers. It is an adaptation of the Shell HEGADAS model, designed to model the dispersion of dense gas (or aerosol) clouds released at ground-level with zero initial momentum, into an atmospheric boundary layer flow over flat, level terrain. More recently, an algorithm for the dispersion of vertical jets emitted perpendicular to the mean wind (Reference 60) has been included by Havens (Reference 44) as a "front end" to the DEGADIS 2.1 model. Note that this model does not include a "release model", so that the characteristics of the source must be provided by the user.

The DEGADIS model uses the concept of atmospheric take-up rate, or the rate at which source material can be taken up or absorbed by the atmosphere, to determine the possible formation of a so-called secondary source blanket. If the gas release rate does not exceed the potential atmospheric take-up rate, the model assumes that the gas is taken up directly by the atmospheric flow and is dispersed downwind. However, if the gas release rate exceeds the potential atmospheric take-up rate, the model assumes that a denser-than-air secondary source blanket is formed over the primary source. The blanket is represented as a cylindrical gas volume which spreads laterally as a density-driven flow with entrainment from the top of the source blanket by wind shear and air entrainment into the advancing front

67

API PUBL*4546 92 🖿 0792290 0505521 959 🖿

edge. The blanket spreads laterally until the atmospheric take-up rate from the top is balanced by the air entrainment rate from the side and, if applicable, by the rate of gas addition from under the blanket. The blanket center is assumed stationary over the source. The atmospheric take-up rate is assumed to increase with increasing friction velocity and decreasing density excess of the gas (relative to the ambient air).

Once the secondary source blanket (if any) stops growing, DEGADIS proceeds to calculate the downwind dispersion. The model treats the dispersion of gas entrained from the secondary vapor cloud as if it were emitted from an area-source. Concentration profiles are assumed to have a horizontally homogeneous central core with Gaussian edges. Once enough air has been entrained to reduce the density of the cloud, entrainment rates (that is, dispersion rates) nearly conform to dispersion rates for passive (neutrally buoyant) clouds. The lateral length scale is consistent with the PG (Reference 61) $\sigma_{\rm y}$ -curves, but the vertical scale is not always consistent with the PG $\sigma_{\rm z}$. The formulation for the vertical scale approaches the PG $\sigma_{\rm z}$ for neutral conditions in the far-field, and the values for stable conditions are similar to the corresponding PG $\sigma_{\rm z}$ values. But the vertical length scale in the far-field does not approach the PG $\sigma_{\rm z}$ values during convective conditions.

DEGADIS always requires the user to input the concentration averaging time, regardless of whether the simulation is steady or transient. DEGADIS assumes that the effects of averaging time on observed plume properties arise primarily as a result of horizontal plume meander. Spicer and Havens (Reference 45) state that for a concentration averaging time, t_a , other than 600 seconds, the σ_v contained in the model is scaled by:

$$(t_a/600s)^{0.2}$$
 (4)

The most recent version (2.1) of DEGADIS includes an algorithm for vertical momentum jets, based on the model of Ooms et al. (Reference 60). The "jet model" serves as a front-end for the DEGADIS model, and a "bridge" is used to initialize DEGADIS by means of the output from the jet model. However, we note that DEGADIS will not be invoked if the cloud that results from the jet

68

API PUBL*4546 92 🎟 0732290 0505522 295 🎟

model is effectively passive (not dense relative to air). In this case, the jet model calculates concentrations using dispersion rates that match the PG rates for both $\sigma_{\rm y}$ and $\sigma_{\rm z}$. Hence, if the complete DEGADIS (2.1) system were to be applied to trials from "tracer" experiments, the jet model would be used exclusively, and the results should be similar to those obtained with a simple Gaussian plume model.

DEGADIS 2.1 is supported through an electronic bulletin board run by the EPA. Several minor updates have been made to the model during the duration of this study, and we have kept our version current. The only interaction with the developer, which was specifically related to applying DEGADIS to the datasets used in this study, was a discussion related to initializing an instantaneous, dense-gas release. The model would not run properly if the height of the cloud were large compared to its radius. In fact, the initial cloud should more closely resemble a "pancake" than a top-hat. No other interactions specifically related to the application of DEGADIS in this study occurred between Sigma Research and the developer prior to our request for comments. Issues raised by the developer at that time are summarized in Section III.C.2.

6. FOCUS 2.1

The FOCUS model is being maintained and distributed by Quest Consultants, Inc., and is descended from the EAHAP model developed by Energy Analysts, Inc. A comprehensive hazards analysis software package, it includes the following release models:

- Instantaneous gas
- Instantaneous liquid
- Regulated gas (constant emission rate with finite duration)
- Regulated liquid (constant emission rate with finite duration)
- Transient gas
- Transient liquid
- Transient two-phase

If any of the above release models produces a liquid flow, a liquid pool vaporization model will be executed before the dispersion models are run.

API PUBL*4546 92 MM 0732290 0505523 121 MM Release of liquid onto water, soil, concrete, and ice is treated in this pool vaporization model.

FOCUS contains the following four vapor dispersion models to determine the transient (strict steady state dispersion is not considered by FOCUS) behavior of vapor introduced to the atmosphere: (1) Instantaneous lighter-than-air gas dispersion model, where a version of the Gaussian instantaneous area source model is included; (2) Transient heavier-than-air gas dispersion model, where a version of the algorithms used in DEGADIS is included; (3) Transient lighter-than-air gas dispersion model, where a version of the Gaussian transient area source model is included; (4) Momentum jet gas dispersion model, where a version of the Ooms momentum jet gas dispersion model is included, and the jet can have any orientation.

Having an extensive set of release models, FOCUS is designed to be run with only the basic information such as chemical species, release temperature and pressure, meteorological conditions, release rate and orifice size. Other information such as the exact type of release (for example, cryogenic pool spill and horizontal jet), jet speed, and aerosol fraction will all be determined within the model. FOCUS either accepts the release rate specified by the user for a regulated release, or for an unregulated release, calculates the release rate internally according to the geometry of the release. User-specified release rates were always used for this model evaluation exercise.

In addition to the vapor dispersion, FOCUS also has models that perform hazard analyses on explosion and fire radiation. FOCUS is the only model under evaluation that is able to calculate thermodynamic properties of a mixture of many (up to ten) chemical components.

FOCUS requires the user to specify a dispersion coefficient averaging time to account for plume meandering. There is a minimum of 1 minute and a maximum of 600 minutes for the averaging time. Different averaging times for concentration estimates only affect dispersion predictions in the far field, but not in the near field due to the dominating source effect.

70

API PUBL*454692 🎟 0732290 0505524 068 📟

FOCUS is designed mainly to be run in the interactive mode. FOCUS can also be run in the batch mode; but this requires a working knowledge of the model. The execution time of FOCUS is comparable to that of DEGADIS. Comprehensive graphics capabilities are also built into the model.

The developer of FOCUS provided a tutorial at Sigma Research in the use of the model. This was especially helpful in developing the procedure used to "automate" the process of applying the model. As stated above, driving the model in batch mode rather than in interactive mode requires a working knowledge of the model. Although this interaction with the developer is different from that associated with other models in this study, we must emphasize that the tutorial was directed towards the mechanics of the modeling system, rather than the specifics for modeling each of the trials in our study.

7. GASTAR 2.22 (GASeous Transport from Accidental Releases)

The GASTAR model, developed jointly by Cambridge Environmental Research Consultants (CERC) of England and EnviroTech Research Ltd. of Canada, is a system of computer programs written in FORTRAN for simulating the dispersion of dense and passive gases released into the atmosphere. The version that Sigma currently has is 2.22. GASTAR covers a wide spectrum of different release scenarios. The following three basic types of releases are considered by GASTAR:

- Isothermal
- Thermal
- Aerosol

and each type of release can be characterized as:

- Instantaneous
- Continuous (finite duration)
- Time-varying

As a result, releases such as cryogenic pool spill, catastrophic release, and two-phase jet can all be treated by the model.

71

API PUBL*4546 92 III 0732290 0505525 TT4 IIII For continuous or time-varying releases, a secondary source blanket forms as a result of the balance between the emission rate and the rate of uptake by the atmosphere. The jet module of GASTAR simulates a jet of arbitrary orientation. The aerosol fraction for an aerosol release is specified by the user, rather than calculated by the model. GASTAR also simulates a release in calm wind conditions.

The basic dispersion algorithm used in GASTAR is similar to that used in HEGADAS and DEGADIS. In brief, the similarity approach is used to reduce the basic equations of motion to a set of ordinary equations. These equations are then further written in a bulk (or box-model) form, and modified to re-introduce the assumed profiles. The horizontal concentration profiles used in the model are a uniform central core with error-function edges. The vertical concentration profiles are in the form of $\exp(-z^{1.5})$ for the passive plumes, and $\exp(-z)$ when the puffs or plumes are dense. Effects of atmospheric turbulence and cloud top entrainment on the dilution of the source cloud are included in the model.

GASTAR has an averaging time option available for plumes to account for meandering. There is a minimum of 20 seconds for the averaging time, consistent with the puff dispersion parameters. The usual 0.2-power law is used by GASTAR to modify the dispersion coefficients according to the averaging time.

GASTAR is highly modular in design. It has a simple I/O structure in that all the input files, interface files between modules, and the output file are very compact. The model runs very fast among the models under evaluation, even for transient releases. It also has built-in comprehensive graphics capabilities. The model can be run in either the batch or the interactive mode.

Several interactions with the developer of GASTAR occurred prior to our request for comments. The version of the model originally sent to us did not yet have a momentum jet algorithm. When first tested, we ran the model for several hypothetical scenarios. The use of a roughness length of 1 m in our scenario caused the model to crash. When the developer was informed of this, a revision was sent to us. Later, the jet module was finished, and the new

72

API PUBL*4546 92 🎟 0732290 0505526 930 📟

version was delivered by the developer. No other substantive interactions with the developer occurred prior to our request for comments.

8. GPM (Gaussian Plume Model)

Any evaluation of modeling techniques can benefit from comparisons with simple, well-known techniques. With this in mind, we have prepared a simple Gaussian plume model. This model follows the general practice explained in many applied air pollution modeling texts, such as Hanna et al. (Reference 48). It is designed for point-source releases with the added flexibility of accepting an initial value for the plume-spread parameters σ_y and σ_z . We use initial values to obtain peak "centerline" concentrations at the source that, when expressed in ppm, do not exceed an initial value for the concentration (most of the time, the initial concentration is one million ppm, which corresponds to a pure gas).

The curves for σ_y and σ_z are similar to the PG values, but are formulated as by Briggs (Reference 62) for open-country sites. No adjustments are made for surface roughness, density, aerosol chemistry, or wind speed measuring height, but an averaging time is included. This is done by multiplying the applicable value of σ_y by $(t/t_0)^{0.2}$, where t is the averaging time (min) and t_ is equal to 10 min.

9. HEGADAS (NTIS)

HEGADAS, a model developed by Shell U.K., is designed to model the dispersion of a ground-level, area-source dense cloud released with zero initial momentum. The basic model was first described by Colenbrander (Reference 63) and a user's guide for the latest version is written by Witlox (Reference 49). The version obtained for this project (available from NTIS) does not treat aerosols. Heavy gas effects are due to either large molecular weight or low temperature. Heat and water vapor transfer are considered. No "source-modules" are contained in the model, so that all emission information must be provided by the user.

Because HEGADAS is written in ANSI FORTRAN, the program can be transported to other computer environments with ease. The model is run in

API PUBL*4546 92 MM 0732290 0505527 877 MM batch mode and it permits validation of the input parameters, so that the possibility of user input errors is reduced.

The algorithms in HEGADAS are similar to those in DEGADIS with regard to the area-source formulation, the secondary source blanket, and the dispersion formulation. As in DEGADIS, the lateral dispersion parameter is calculated by:

$$\sigma_{y} = \delta \cdot x^{\beta}$$
 (5)

where δ and β are functions of the stability class, but these must be specified by the user (tables are provided). Furthermore, according to the user's guide, δ for continuous releases should be scaled based on the averaging time, t_{av} .

$$\delta = \delta_{10\min} (t_{av}/600s)^{0.2}$$
(6)

where t is in seconds, and $\delta_{10 \text{ min}}$ are the tabulated values for an averaging time of ten minutes. In other words, HEGADAS does not accept the averaging time explicitly. Instead, it is the user's responsibility to specify a value of δ for a particular averaging time. The user's guide also tabulates values of δ_{τ} , which are applicable to instantaneous releases. It is assumed that

$$\delta_{10\min} = 2 \cdot \delta_{I} \tag{7}$$

for all stability classes. Thus, a lower limit of 18.75s for the averaging time is implied. However, as just stated, HEGADAS does not accept the averaging time explicitly.

The user must also provide the Monin-Obukhov length. L, which is a measure of atmospheric stability. A figure containing the Monin-Obukhov length as a function of surface roughness is provided in the user's guide. However, the practical usefulness of such a figure is limited. Therefore, Sigma has developed the following empirical equations for different stability classes to approximate the curves in the figure:

API PUBL*4546 92 🖿 0732290 0505528 703 🖿

Class A: $L = -11.43 \cdot z_0^{0.103}$ (both L and z_0 are in meters) Class B: $L = -25.98 \cdot z_0^{0.171}$ Class C: $L = -123.40 \cdot z_0^{0.304}$ Class D: $L = \infty(9999$ is actually input) Class E: $L = 123.40 \cdot z_0^{0.304}$ Class F: $L = 25.98 \cdot z_0^{0.171}$

Finally, HEGADAS should not be applied to instantaneous releases. The developers note that the HEGABOX model would be needed for this class of releases. As a result, we have not applied HEGADAS to trials that involve instantaneous releases. This direction from the developer was obtained after we had requested comments on our approach. No interactions occurred before this.

10. INPUFF 2.3

INPUFF version 2.3 is the current version of EPA's Gaussian puff model that is applicable to multiple sources. The Gaussian puff diffusion equation is used to compute the contribution to the concentration of each puff at each receptor during each time step. Computations in INPUFF can be made for single or multiple point sources at up to 100 receptor locations. In the default mode, the model assumes a homogeneous wind field. However, the user has the option of specifying the wind field for each meteorological period at up to 100 user-defined grid locations. Three dispersion algorithms are utilized within INPUFF for dispersion downwind of the source. These include Pasquill's scheme as discussed by Turner (Reference 61) and a dispersion algorithm discussed by Irwin (Reference 64), which is a synthesis of Draxler's (Reference 65) and Cramer's (Reference 66) ideas. The third dispersion scheme is used for long travel times in which the growth of the puff becomes proportional to the square root of travel time. Optionally the user can incorporate his own subroutines for dispersion and plume rise. Removal is incorporated through deposition and gravitational settling algorithms (Reference 67). A software plotting package is provided to display

75

API PUBL*4546 92 MM 0732290 0505529 647 MM concentration versus time for a given receptor and the puff trajectories after each simulation time.

Because INPUFF contains no dense-gas algorithm. its use on this project will highlight the importance of dense-gas effects in the near-field of the release. Farther downwind, the lack of a dense-gas module may not be as important.

11. OB/DG (Ocean Breeze/Dry Gulch)

The Ocean Breeze/Dry Gulch (OB/DG) model (Reference 51) was developed for use in support of rocket fuel handling operations at Cape Canaveral and Vandenberg. Dispersion data were collected at those two sites (Cape Canaveral, Florida = Ocean Breeze; Vandenberg AFB, California = Dry Gulch) and at the Prairie Grass, Kansas, site during the 1950s and 1960s. These data were used to develop a purely empirical correlation known as the OB/DG model:

$$C_{p}/Q = 0.00211 \text{ x}^{-1.96} \sigma_{\theta}^{-0.506} (\Delta T + 10)^{4.33}$$
 (8)

or
$$C_p/Q = 0.000175 \text{ x}^{-1.95} (\Delta T + 10)^{4.92}$$
 (9)

where the ratio of the concentration to the source strength C_p/Q is in s m⁻³, the downwind distance x is in m, the standard deviation of wind direction fluctuations σ_{θ} is in deg, and ΔT is defined as the temperature difference (°F) between the 54 ft. and 6 ft. levels on a tower. Wind speed is absent because it is strongly correlated with ΔT . Equation (2), which is the version used in this evaluation, accounts for the strong correlation between σ_{θ} and ΔT . Stabilities ranged from neutral to unstable during most of these tests.

12. PHAST 2.01 (Process Hazard Analysis Software Tool)

PHAST is a PC-based model developed by Technica Ltd., who provided Sigma with version 2.01. The system includes modules for calculating the characteristics of a release, and for simulating initial mixing in turbulent jets, dense-cloud dispersion. and passive dispersion.

API PUBL*4546 92 🎟 0732290 0505530 361 🎟

The release module includes emissions calculations for two-phase flow from an orifice in an infinite reservoir or from a pipe connected to a storage vessel. A flow rate calculated from the initial conditions is held constant in the subsequent analyses until all of the material has been released. The presence of aerosols in vapor released to the atmosphere is explicitly treated. The result of the calculation of droplet size in the cloud tends to produce "small" droplets that tend to remain suspended in the cloud. When liquid released to the atmosphere collects on the ground, PHAST uses a liquid spill model to estimate the vaporization rate.

Dense-gas dispersion is modeled after Cox and Carpenter (Reference 68). Concentrations within the cloud cross-section are uniform. Mixing occurs by means of entrainment across the top of the cloud and entrainment at the edges of the cloud. The former depends on the turbulence of the atmosphere and the Richardson number of the cloud. The latter depends on the rate at which the cloud is spreading due to gravity. This model is used until the rate of spreading by gravity becomes less than that due to passive dispersion, at which point a Gaussian model is used.

The developer of PHAST had been contacted a number of times prior to our request for comments. These earlier interactions centered on specific requests about the formulas used in the model. In particular, more guidance on the definition of the surface roughness parameter was requested, and a request was made for the equations used to model a cloud as if it were released from a virtual line-source. No other interactions occurred before comments on our methods for applying the model were requested.

13. SLAB (February, 1990)

The SLAB model was first developed at Lawrence Livermore National Laboratory (LLNL) for application to data from field experiments at their testing facility. The original SLAB model included only the transient mode and there was minimal documentation. The code has been further improved by Ermak (Reference 53) so that now both transient and steady modes are included.

77

API PUBL*4546 92 🗰 0792290 0505591 2TA 🖿

To date. Sigma has received five versions of SLAB. dated 12/88. 1/89, 2/89, 11/89. and 2/90. A comprehensive user's guide was delivered with the 11/89 version. The latest version includes revisions to the plume rise formulas, the time-averaging formulas, and formulas for calculating maximum concentrations at receptors elevated above the surface. The 1989 version of the SLAB model is designed to consider the following source types:

- Continuous evaporating pool
- Horizontal jet
- Vertical jet
- Instantaneous or short duration evaporating pool

In the case of an evaporating pool release, the source is assumed to be all vapor. However, in the case of jet and instantaneous source releases, the source may be part vapor and part liquid droplets, and the user must specify the initial liquid mass fraction.

Transport and dispersion are calculated by solving the conservation equations of mass, momentum, energy, species, and half-width, with the cloud modeled as either a steady state plume, a transient puff, or a combination of both depending on the the duration of release. In the steady state plume mode, the crosswind-averaged conservation equations are solved, and all variables depend only on the downwind distance. In the transient puff mode, the volume-averaged conservation equations are solved, and all variables depend only on the downwind travel time of the puff center of mass. Time is related to downwind distance by the height-averaged ambient wind speed. The basic conservation equations are solved using the Runge-Kutta numerical integration scheme (in space or time).

The instantaneous ensemble averaged concentration is obtained as a solution to the basic conservation equations. The time-averaged concentration at any given location is then calculated using the instantaneous ensemble averaged concentration, the concentration averaging time, and the assumed profiles in the lateral and vertical directions. Calculation of the time-averaged volume concentration in SLAB includes the effects of lateral cloud meander and the finite length of the spill on the averaged value.

API PUBL*4546 92 🛲 0732290 0505532 134 💻

SLAB is not run in the interactive mode. The required input file is easily prepared and many simulations can be run in batch mode. Because SLAB is coded in ANSI FORTRAN, it can be transported to other computer environments with few problems.

In spite of the fact that five versions of SLAB were submitted during the course of this study, interactions with the developer were limited. The versions were not being developed in response to our use of the model in this study.

14. TRACE II

Version II of TRACE uses release and dispersion algorithms similar to those contained in Dupont's SAFER system. It is able to model instantaneous, steady-state, and transient releases of toxic chemicals. Dense, neutrally buoyant, and positively buoyant gas releases may be modeled as well as liquid pool evaporation, liquid release flashing, and aerosol formation. Physical properties for over 100 chemicals are available through a chemical data base that may be expanded by the user.

TRACE computes emission rates and the thermodynamic state of the emission from information on the chemical properties, environmental variables (atmospheric pressure and ambient temperature), tank specifications (length, breadth, height or diameter), rupture geometry (circular, rectangular, smooth or jagged edges) and the containment variables (pressure, temperature). Release scenarios are grouped into three categories:

- 1. Gas flow through a rupture
- 2. Two-phase flow-through rupture
- 3. Liquid flow-through rupture

Depending upon the initial containment variables, the release may undergo a flashing phenomena and TRACE will calculate the fraction of liquid that flashes to vapor, and the resultant temperature of the cloud. The aerosol content of this stream (liquid droplet fraction entrained) depends upon the flashing fraction, the liquid/vapor density ratio, the ratio of heat

API PUBL*4546 92 🗰 0732290 0505533 070 🖿

transfer between the liquid and vapor phases, the velocity of the stream, and the surface tension. Depending upon the condition during the release, it is possible to have a flash, an aerosol, and a liquid pool fraction.

The initial vapor cloud, in general, consists of a flashed vapor and liquid droplets. An initial air entrainment formulation determines the quantity of air in the cloud.

The model for the liquid stream that forms the pool consists of a system of coupled ordinary differential equations for the pool volume, pool radius, and mass evaporated. The amount of liquid evaporating from a pool is dependent upon the exposure area and the heat balance of the pool. In the case of multicomponent liquid spill, the model treats the spill as an ideal liquid solution. The mass transfer rate equation for evaporation is applied to each component, and the total evaporation rate is obtained by summing all compounds.

For dense gases, the model uses different modules for simulating behavior in the air and on the ground. When the cloud is in the air, the model solves conservation equations for mass, momentum (horizontal and vertical), and energy. On the ground, the equations additionally include the simulation of gravity slumping and frictional drag/mixing due to surface roughness effects. The motion of the cloud on the ground is determined by the height-averaged wind speed within the cloud. The dense gas model has a transition into a Gaussian phase when the density difference between the cloud and the ambient air is less than a specified ratio and/or the rate of change of cloud dimension is comparable to the rate of change of the crosswind Gaussian dispersion coefficient.

Prior to requesting comments on our use of the model, interactions with the developer were limited to questions about specifying the depth of a liquid pool, and the implementation of averaging time in the model. After requesting comments, the developer made several suggestions, which are discussed in Section III.C.2.

80

API PUBL*4546 92 🔳 0732290 0505534 T07 🔳

C. APPLICATION OF MODELS TO DATASETS

All 14 models have been "interfaced" with the Modelers' Data Archive (MDA), and 12 have been "automated." The "interface" between a model and the MDA is a program designed to extract information from the MDA file, and to prepare a table of input parameters and data required for each model. These tables would allow an analyst to enter all data in the requested units while executing each of the models. Choices about methods of initialization are made in the program. "Automated" models do not require us to manually enter data from these tables. That is, programs have been developed to construct all necessary input files, so that the automated models can be run in batch mode.

1. MDA Interface

Missing data in the MDA files are denoted by the value "-99.9", and may be present because no measurements are available, or because particular data are not relevant to the type of release. The first step in processing the data in the MDA is to replace certain types of missing data with either default or calculated values. These are summarized here.

Initial Concentration	1.0E+06 ppm (no dilution)
Ambient Pressure	1.0 atm
Exit Temperature	ambient temperature (K) measured nearest
	the ground
Soil Temperature	ambient temperature (K) as above
Normal Boiling Point	ambient temperature (K) as above
Relative Humidity	80 percent if over water
	50 percent if over wet soil
	20 percent if over dry land
Bowen Ratio	5 (essentially dry)
M-O Length, u _z , PG Class	estimated

The last of the entries above indicate that the Monin-Obukhov length scale (L), the friction velocity (u_{\star}) , and the Pasquill-Gifford stability class may be estimated. L and u_{\star} are normally calculated from a pair of temperature measurements, a wind speed, the surface roughness length (z_0) , and the Bowen ratio. This is accomplished by solving the surface similarity profile

81

API PUBL*454L 92 **III** 0732290 0505535 943 **III** equations, and the calculated values usually replace any that may be reported in the MDA. This is done if values reported in the MDA were derived in a similar way (that is, from profile measurements of wind speed and temperature). A special case is the Thorney Island dataset. As pointed out in Section II, flux measurements were used to calculate the Monin-Obukhov length for these trials, rather than the profile method. Therefore, the interface program does <u>not</u> replace the values reported in the MDA for the Thorney Island trials. If the P-G stability class is missing, this is estimated from Golder's curves, making use of the calculated value of L, and the surface roughness.

If temperature measurements at two elevations near the surface are not available, either the reported values of L and u_{w} are retained, or these are estimated from the reported P-G stability class by making use of Golder's curves once again. This clearly requires that some information on the stability or turbulence regime must be provided in the MDA.

Several consistency checks are also made. Of particular note is a check on whether the diameter of the release is provided. This must be provided for releases characterized as an evaporating pool, or as a horizontal jet. If it is missing for these types of releases, processing of the dataset is halted, and an error message is written to the screen.

In addition to supplying default values and providing estimates of missing data, the MDA interface programs also provide calculated properties of the release. These calculated properties are needed to initialize models that do not have extensive modules for estimating the source-term. The MDA contains primary data obtained from data files and reports for each of the experiments used in this program. However, the application of any one of the models typically forces the modeler to, at a minimum, convert some of the units of measure, or compute a volume flux from mass flux and density information. In some cases, such as the application of a model that does not treat aerosols at all to the Desert Tortoise trials , the user needs to do far more to initialize the model in such a way that aerosol effects are simulated to some degree.

Recognizing that data in the archive are not complete in this sense, the second step in processing the data in the MDA is to calculate a

82

API PUBL*4546 92 🎟 0732290 0505536 88T 📟

number of quantities from the information provided in the MDA, which are needed to initialize one or more of the models to be evaluated. These quantities are discussed below.

Wind Speed at 1 and 10 m: Several models assume, either explicitly or implicitly, that the wind speed provided by the user is that measured at a height of 10m above the surface. Other models implicitly require a measure of the transport speed near the surface (which we take to be 1 m above the surface) in order to initialize them properly as discussed later in estimating the diameter of an area source. Many of the datasets include wind speed measured at some other height (u(z)). We have used the wind speed profile from surface similarity theory to calculate the speed at 10m from a knowledge of L, u(z), and z_0 :

ws(10) = u(z)
$$\frac{\ln(10/z_0) - \Psi(10/L)}{\ln(z/z_0) - \Psi(z/L)}$$
(10)

The functions Ψ_{m} are quite complex, and are thoroughly described in equations (6) through (9) in Volume III. The wind speed at 1 m is calculated by means of the same equation, with the "10's" replaced with "1's."

The use of the symbol "u" for wind speed on the right-hand side of the equation has a specific purpose. Two wind speeds are entered into the MDA. The first is denoted as "ws", and is the speed measured on the same tower, and for the same averaging time, as the temperature measurements. This speed is used in concert with the temperature measurements to estimate the Monin-Obukhov length scale. The second is denoted as "u", and is the transport speed, which may represent an averaging time longer or shorter than "ws", or even an average of wind speed measurements from several locations. We use "u" rather than "ws" to estimate the wind speed at 1 and 10 m, because these estimates are related to transport. We assume that the Monin-Obukhov length calculated on the basis of "ws" applies to the entire duration and domain of the particular trial.

Boiling Point Temperature at Ambient Pressure: Several of the trials were performed at atmospheric pressures different from "1 atm", so the boiling point temperature is not equal to the normal boiling point

83

0732290 0505537 716

temperature. If the coefficients (A,B) for the vapor pressure equation are provided in the MDA, the actual boiling point temperature is calculated. This calculation uses the same formulation as the SLAB model:

$$T_{\rm bp} = T_{\rm nbp} + \frac{B \ln(P)}{A \left[A - \ln(P)\right]}$$
(11)

where P is the ambient pressure in atmospheres.

<u>Volumes and Densities</u>: The ambient temperature, the temperature of the material at the point of release, and the boiling point temperature of the material can differ. Depending on the type of release, the properties of the release given to a model may be any one of these. Therefore, several volumes and densities are calculated for each of these temperatures, assuming ideal gas behavior. These include

Molar Volume, Vapor Density, Volume Flux, and Total Volume Released.

<u>Properties of Moist Air</u>: Moisture in the air alters many of its properties. Those that are calculated are the molecular weight and density:

$$P_{sat} = .00603 e^{5417.8(1/273.2 - 1/T)}$$
 (12)

$$r = \frac{RH}{100} \frac{MW(water)}{(-1 + P MW(dry air)/P_{sat})}$$
(13)

$$MW_{a} = \frac{MW(dry air) (1 + r)}{1 + r MW(dry air) / MW(water)}$$
(14)

$$\rho_{a} = MW_{a} / MV(ambient)$$
(15)

where MW denotes molecular weight. MV denotes molar volume, and RH is the relative humidity in percent.

API PUBL*4546 92 🛲 0732290 0505538 652 📟

<u>Treatment of Aerosols</u>: For cryogenic releases, a portion of the liquid that is released flashes to vapor, and the remaining liquid is frequently broken up into fine aerosols which remain suspended in the cloud. The mass fraction that flashes to vapor is calculated from the relation for simple flashing:

$$f = c_{p\ell} \left(T_s - T_{bp} \right) / \Lambda$$
(16)

where T_s is the storage temperature just before the liquid reaches the atmosphere (the exit temperature in the MDA), T_{bp} is the boiling-point temperature, Λ is the latent heat of vaporization, and c_{pl} is the specific heat of the liquid. This mass fraction that is in the vapor state allows us to calculate the following properties of the <u>mixture at the boiling-point</u> <u>temperature</u>:

Density, Effective Molecular Weight, Volume Flux, and Total Volume Released.

These properties could be used to initialize a model that does not treat two-phase vapor clouds if we assume that the aerosols evaporate so slowly that the simulation should not consider any heat exchanges due to evaporation. In this case, the cloud of suspended aerosols is treated as if it were a gas with an effective molecular weight that is adjusted so that the proper density is achieved.

A second method for initializing this type of model allows all of the liquid to evaporate, so that none of the aerosols survives. Because this requires heat from the ambient air, a substantial amount of air is mixed into the cloud, which possesses a temperature equal to the boiling-point temperature. This dilution assumption represents the extreme opposite to first method. Rather than never allowing the aerosol to evaporate, which emphasizes the importance of the initial density of the mixture, all of the aerosol is immediately evaporated, with much dilution, which emphasizes the importance of the mixing that takes place during the rapid phase changes.

85

API PUBL*4546 92 MM 0732290 0505539 599 MM The following properties are calculated for a <u>diluted vapor cloud at the</u>

boiling point temperature:

Density, Mole Fraction Vapor, Contaminant Mass Fraction, Total Volume Released, and Volume Flux.

Models that are able to simulate the dispersion of a single-phase mixture of air and vapor can use these calculated properties of the diluted source cloud at the boiling-point temperature. Note that the molecular weight for these models is that of the chemical released. Models which cannot accept a diluted source directly must be given an effective molecular weight, as before, but this time the molecular weight is chosen to produce that density at ambient conditions which equals the density of the diluted cloud at the boiling point temperature. Several of the properties of the diluted cloud are computed as follows:

Initial mole fraction of vapor in the cloud (MFV):

$$MFV = \frac{\text{kg-moles vapor}}{\text{kg-moles air + kg-moles vapor}} = \left(1 + \frac{\text{kg-moles air}}{\text{kg-moles vapor}}\right)^{-1}$$
(17)
$$= \left(1 + \left[\frac{\Lambda}{\text{dE}} \frac{\text{MW}_v}{\text{MW}_a}(1-f)\right]\right)^{-1}$$

Contaminant mass fraction (CMF):

 $CMF = \frac{\text{mass contaminant}}{\text{mass contaminant + mass air}} = \left(1 + \frac{\text{mass air}}{\text{mass aerosol}} (1-f)\right)^{-1} (18)$

$$= \left(1 + \frac{\Lambda}{dE}(1-f)\right)^{-1}$$

for
$$dE = c_p(air) \left[T(air) - T_{bp} \right]$$

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

86

API PUBL*4546 92 🖿 0732290 0505540 200 💻

Density of the cloud:

$$\rho = \frac{MFV MW_v + (1 - MFV) MW_a}{MV_{bp}}$$
(19)

where MW_v is the molecular weight of the vapor, MW_a is the molecular weight of the air, f is the fraction of contaminant that flashes to vapor (initially), A is the latent heat of vaporization of the contaminant, and dE is the heat released in cooling the air to the boiling point temperature of the contaminant.

Specifving Source Dimensions: Not all models accept source dimensions that are explicitly provided in the MDA. A good example is DEGADIS, which must characterize a source as a ground-level area source, regardless of whether the source is a rapidly evaporating pool, or a turbulent horizontal jet. Also, the MDA for a cryogenic release may provide information on the physical dimensions of the point at which the material is released to the atmosphere, but the ensuing flashing process largely determines the initial character of the resulting two-phase jet, so that the initial properties of the source must be estimated. The following discussion outlines the assumptions made in estimating the dimension of the release for various types of releases, and for various types of models.

(1) Liquid Release Into an Evaporating Pool (EP)

This release is characterized as an area source in all of the models that require a source-dimension, and the diameter of the pool (either bounded or unbounded) must be provided in the MDA (a missing value indicator is not allowed). Therefore, the MDA values are used without alteration.

(2) Instantaneous Release (IR) of a Gas or a Cryogenic Liquid

This type of release is also characterized as an area source in all of the models that require a source-dimension. If the MDA should contain the diameter of the cloud resulting from the instantaneous release of a gas, as in the Thorney Island trials for example, that diameter is used without API PUBL*4546 92 MM 0732290 0505541 147 MM alteration. However, if the diameter is not provided, or if the cloud results from a cryogenic release, the diameter is calculated for a volume shaped as a cylinder in which the radius of the base is equal to the height:

diameter = 2
$$\left(\text{volume } / \pi \right)^{1/3}$$
 (20)

The volume used depends on the temperature of the cloud, and in the case of cryogenic liquids, the method selected for the simulation of aerosol effects.

(3) Extended Release of a Gas as an Area Source (AS)

The diameter of the source region contained in the MDA is used when available. However, if the diameter of the source is missing from the MDA, it is estimated in the following way. The volume flux is known, having been calculated from other information contained in the MDA. When divided by a velocity scale, an areal scale is obtained. Taking the transport wind speed at a height of 1 m as the velocity scale, we interpret the resulting scale as the area of the equivalent area source which produces the volume flux. Hence, the diameter of the source is estimated as:

diameter =
$$2\sqrt{\frac{Q}{\pi U}}$$
 (21)

where Q is the volume flux for the gas at the exit temperature. Note that the volume flux must contain any air which may be mixed with the gas before reaching the atmosphere.

> (4) Extended Release as a Horizontal Jet (Either a Gas or Cryogenic Liquid)

Several of the models included in the evaluation can accept information that describes a jet, while others cannot. Methods used to specify the dimension of the source will first be described for those models that do accept a jet. For gases, the diameter contained in the MDA is used without modification. (Remember that this diameter must be provided in the MDA for sources characterized as horizontal jets.) For cryogenic liquids, the initial diameter of the jet must be consistent with the total volume flux, including the fraction of the liquid that flashes to vapor. Or if all

API PUBL*4546 92 🎟 0732290 0505542 083 📟

of the liquid is evaporated by mixing in air, the volume flux must include the air as well. We assume that the speed of the jet is equal to the speed of the liquid at the orifice, and that the cross-sectional area of the jet enlarges to accommodate the change in density. Denote the density of the jet as ρ_i , and the density of the liquid as ρ_1 , then:

jet diameter = orifice diameter
$$\sqrt{\rho_1 / \rho_j}$$
 (22)

For models that simulate aerosols, ρ_j equals the density of the vapor/aerosol mixture at the boiling point temperature. It is assumed that the droplets are small enough to remain airborne. For those that do not simulate aerosols, ρ_j would equal either the density of the vapor/aerosol mixture at the boiling point temperature if we assume that the aerosols never evaporate, or ρ_j equals the density of the vapor/air mixture of the diluted jet if we assume that all of the aerosols are evaporated at the source as a result of entraining a sufficient amount of air.

Models that do not accept a jet as a source are initialized as an area source. Equation 21 is described previously. Note that the treatment of aerosols influences the value of the volume flux used in this equation, as does the presence of air.

2. Initializing Individual Models

The final step in processing the data in the MDA is the preparation of files specifically designed for each of the models that are being evaluated. A subset of the MDA "interface" files is presented in Appendix B to illustrate how each model is applied to the different types of releases. As an overview of the procedures employed in initializing the models, the following sections address each model in turn, and summarize procedures for each type of release. This discussion is organized into several categories which cover aspects of specifying chemical properties, meteorological data, treatments of various types of sources, and our approach to extracting results for comparisons with observed data. The final category summarizes major comments received from the developer of each model.

89

API PUBL*4546 92 🛲 0732290 0505543 Tit 🛤

<u>AFTOX</u>

AFTOX does not contain algorithms for simulating dense gas effects, aerosols, or initially dilute mixtures, but it does contain an evaporative emissions algorithm. Initialization procedures in this evaluation are limited to defining the meteorology, and specifying the mass emission rate (or total mass released if the spill is an instantaneous release) and pool area (if the spill is an evaporating liquid).

CHEMICAL DATABASE: A chemical database is contained in the model, primarily to provide information on slowly evaporating pools, and to convert between mass concentrations and volume concentrations. We modified AFTOX so that it always obtains the molecular weight of the vapor-cloud from the input file, rather than making use of the chemical database. This simplifies our evaluation, because the molecular weight is the only property required to model all of the trials, and is only used in converting concentrations from mass units to volume units.

WIND SPEED MEASUREMENT HEIGHT: AFTOX requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: Averaging time for the concentrations predicted by the model are supplied by the user, and this is used to approximate the effects of meanders in the flow. However, the minimum averaging time allowed is 60 s. No dosage-type averaging is done.

INITIAL CONCENTRATION: AFTOX dispersion calculations do not consider volumetric aspects of the initial vapor cloud, which can at times lead to near-field concentrations in excess of 1 part-per-part. In the case of source clouds that are diluted with air, we have specified an effective molecular weight for the vapor-air mixture (the model has been changed to allow the user to specify this molecular weight). AFTOX uses this molecular weight to convert from mass concentrations to volume concentrations. Near the source, we have applied an adjustment to all of the concentration predicted by AFTOX to force the results to values that do not exceed 1 part-per-part. The adjustment is given by:

90

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🖿 0732290 0505544 956 📟

C' = C/(1 + C)

where C' and C are in parts-per-part.

EVAPORATING POOL SOURCES: This type of source is not explicitly contained in the trials used in this evaluation, because AFTOX treats a boiling pool as a gaseous release.

TWO-PHASE JET SOURCES: AFTOX does not treat aerosols or density effects, so the phase of the material release does not matter. The consequences of this neglect of density effects will be seen in the model evaluations with field data in Section IV. Note that AFTOX is basically a point-source model, so that the area of the jet is not needed.

VAPOR-JET SOURCES: This type of source is simply modeled as a point-source.

POSTPROCESSING: Concentrations and sigma-y values can be reported at distances specified by the user, so no further processing is needed to extract these.

ISSUES RAISED IN REVIEW: AFTOX computes a stability class from either σ_{θ} , or from the wind speed and solar elevation provided by the modeler. We have always provided a value for σ_{θ} . If σ_{θ} was not available within the MDA, we calculated a value for σ_{θ} that would produce the stability class listed in the MDA, or derived from other information in the MDA. This was accomplished by "inverting" the calculation contained in AFTOX. This method assures consistency in the evaluation in that all models that make use of a stability class are using the same value.

<u>AIRTOX</u>

The version of AIRTOX that is being evaluated does not contain a source-model, so that all emission rate, temperature, aerosol fraction, and jet velocity information is calculated from the MDA. The model will

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS (23)

API PUBL*4546 92 🛲 0732290 0505545 892 🛲

explicitly account for initial dilution, aerosol evaporation. and entrainment for turbulent jets, which simplifies initialization procedures.

CHEMICAL DATABASE: AIRTOX has an extensive chemical database, which contains most of the chemicals used in these trials. Those that are not included are:

(1) Freon-12 We have changed the molecular weight listed for Freon in the database to 121.39 g/mole, and have left all other properties unchanged.

(2) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.

(3) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. Chemical properties of "dry air" were obtained by starting with nitrogen (MW=30), and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.

- (4) LPG LPG is modeled as pure propane.
- (5) LNG LNG is modeled as pure methane.

Note that the cases in which Freon-12 or a mixture of Freon-12 and Nitrogen was released are isothermal; the temperature of the cloud and air are equal, and heat transfer from the ground is not important. This aspect allowed us to modify the molecular weight without regard for any of the other properties of the gas, because the transport and dispersion processes are not influenced by the thermodynamic calculations.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that wind speeds

92

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🎟 0732290 0505546 729 🎟

are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: No averaging times can be specified. AIRTOX does not adjust for meander effects, and does not produce dosage information, as the output is in terms of concentration "snapshots."

INITIAL CONCENTRATION: A dilution factor can be provided to simulate releases that are diluted, so that any initial concentration can be matched.

EVAPORATING POOL SOURCES: The emission rate, pool area, and pool temperature can be explicitly given to the model. A nominal pool depth of 0.01 m has been assumed for these simulations.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the jet calculated from the MDA can be accepted by the model. The only adjustment to the initial condition of the jet is that due to flashing. As described in subsection 3.3, the initial diameter of the jet is estimated from the diameter of the orifice, and the density of the mixture (see Equation 22).

VAPOR-JET SOURCES: Jets are explicitly treated, so that no other initialization procedures are required.

POSTPROCESSING: Concentrations and sigma-y values are reported at distances that are determined within the model. We obtain information at other distances in the following way. The files produced by AIRTOX report information in the form of "snapshots" at fixed intervals in time. We search through the time-history of concentrations at each distance to locate the maximum value at each distance. Concentrations and sigma-y values at the distances listed in the MDA are then found by interpolating linearly between these.

ISSUES RAISED IN REVIEW: Two changes were made to the way in which AIRTOX was applied to the trials.

API PUBL*4546 92 🛲 0792290 0505547 665 🛤

(1) Releases of boiling liquids onto water had made use of values of thermal diffusivity and conductivity for wet soil, rather than those for water. This was done because no values for water were listed as options in AIRTOX. The developers have suggested, and we have used, the following values for water:

> conductivity: 1.41 E-03 kcal/m-s-K diffusivity: 1.41 E-06 m²/s

(2) The version of AIRTOX used in this study reports concentrations that are converted from mass units to volume units by assuming a cloud temperature equal to the ambient temperature. The actual cloud temperature should have been used, and this change has been implemented in later versions of AIRTOX. We have changed all concentrations from AIRTOX to account for the cloud temperature. The correction factor depends on the initial temperature of the cloud, the ambient temperature, the heat capacities of the cloud and air, and the concentration (mole fraction) originally reported by AIRTOX.

BRITTER & MCQUAID (BM)

BM is a "workbook" model applicable to either continuous or instantaneous releases of vapor clouds that are denser than air. The nomograms that form the basis of the model require only a limited amount of information.

CHEMICAL DATABASE: None.

WIND SPEED MEASUREMENT HEIGHT: The model implicitly assumes that a wind speed measured at 10 m will be provided. We estimate the speed at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: No averaging time is explicitly incorporated in the procedure.

94

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🔳 0732290 0505548 5Tl 🎟

INITIAL CONCENTRATION: The model requires an initial volume or volume flux, and an initial density, so that any initial concentration can be accommodated.

EVAPORATING POOL SURFACES: These are modeled as a continuous release of vapor; the size of the pool is not needed.

TWO-PHASE JET SOURCES: Aspects of the jet are not included, but aerosols are modeled by mixing enough air into the cloud to evaporate all aerosol.

VAPOR-JET SOURCES: Aspects of the jet are not modeled.

POSTPROCESSING: The model provides the ratio of the concentration at each distance to the initial concentration, so that concentration estimates in ppm are easily calculated without the need for interpolation. No estimate for σ_v is made.

CHARM

CHARM is operated by means of a sequence of menus or screens in an interactive process whereby the properties of a series of puffs are determined and meteorological data are entered. Because the menu system makes use of the special cursor keys (those without standard ASCII equivalent codes), the model could not be "automated" for use during this project.

CHARM allows the source data to be calculated directly from primary release information (for example, tank pressure, hole size, etc.), or it accepts puff information specified by the user. We have used the "user-specified" release option in order to obtain source-parameters directly comparable to those used in the other models being evaluated. We note that this is Version 6.1 of the model, which has only recently been released. This version allows a minimum resolution of 1 second in simulating releases, rather than the 1 minute used in Version 5, when properly initialized. This is particularly important in obtaining concentrations at receptors near the source, because concentrations are only provided at distances equal to the product of the wind speed and the time-step.

95

API PUBL*4546 92 🗰 0732290 0505549 438 🛲

CHEMICAL DATABASE: A chemical database is used by CHARM. As in the application of AIRTOX, most of the chemicals needed for the evaluation are provided. We note the following exceptions:

(1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.

(2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. The chemical properties of "dry air" were obtained by using the entry for oxygen, and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.

- (3) LPG LPG is modeled as pure propane.
- (4) LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: CHARM requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: We make no allowance for averaging time because meander effects are not explicitly included. CHARM 6.1 does provide average concentrations as an option, but this average is related to the predicted dose--it does not include averaging time effects on the dispersion process.

INITIAL CONCENTRATION: The initial fraction of air contained in the vapor cloud is specified by the user, so that any initial concentration can be modeled.

96

API PUBL*4546 92 🗰 0732290 0505550 15T 🎟

SOURCES: When operated in the "user-specified" mode, there is no difference in the types of data needed to initialize the different types of sources. For each type, CHARM needs characteristics to define each puff, including temperature, diameter, initial horizontal and vertical velocity, molar air fraction, and aerosol fraction.

POSTPROCESSING: No postprocessing is done in applying CHARM, because the concentration data are obtained "manually" by means of the screen options. Typically, a cursor is placed at the required distance, and time series of concentrations is generated for that distance. The peak value is read from the display. No information on the lateral scale of the cloud has been obtained. Note that all concentrations were estimated for receptors placed on the ground.

ISSUES RAISED IN REVIEW:

(1) The application procedure for the Thorney Island trials was questioned, because rather than modifying the molecular weight of "Freon-12" to represent the mixture of Freon-12 and nitrogen, the nitrogen could have been treated as "air." That is, the release could have been considered a diluted release, and the simulated concentrations of Freon could have been adjusted later to represent the original cloud (Freon + "air"). This method would be preferred if heat transfer were important. However, we have demonstrated that the methods are equivalent in this application to the Thorney Island trials.

(2) The Hanford trials were originally modeled as if carbon monoxide (MW=28) were the gas released. Although CO is only slightly less dense than air, this cloud was predicted to rise. After this problem was diagnosed by the developer, we modeled the Hanford trials with all models by using gases with molecular weight set equal to 29.0. The developer also pointed out the inherent problem of using a surrogate gas for the tracer-releases that cannot preserve the actual volumetric aspects of the release (see the discussion of the Hanford dataset in Section II).

(3) The size of the discharge orifice used during the Goldfish trials was questioned by the developer. Previous CHARM simulations of these

API PUBL*4546 92 🗰 0792290 0505551 096 🎟

trials had used a larger value, which resulted in a flow speed of 1 to 3 m/s at the point of release, rather than a flow speed of about 20 m/s. However, the size of the orifice contained in our MDA is the reported value. The developer also suggested that the size of the jet be set equal to the size of the orifice, without allowing for the volume of the liquid that flashes to vapor. This latter suggestion is not consistent with methods used to initialize other models, and was not adopted for this study.

DEGADIS

Although DEGADIS 2.1 contains the Ooms jet model (JETPLUME) for vertical jets, none of the trials in this evaluation involve vertical jets. But because the two passive gas continuous source experiments (Prairie Grass and Hanford) involved releases of small volumes of tracer material from a horizontally-oriented orifice, it was possible to simulate them as vertically-oriented jets with insignificant change in the initial jet elevation. Consequently these two experiments were modeled with JETPLUME. The initializations of all other experiments were made compatible with the basic area source formulation of the dispersion model.

CHEMICAL DATABASE: Properties of a few chemicals are contained in the code, but allowance is made for modifying any of these properties when setting up individual runs. Therefore, no "database" information was relied upon in this series of evaluations.

WIND SPEED MEASUREMENT HEIGHT: DEGADIS requests both a wind speed and the height at which the speed is measured. These are obtained from the MDA.

AVERAGING TIME ISSUES: An adjustment for averaging time is made to the rate of growth of the "tails" of the lateral distribution of concentrations. The lower limit allowed varies by stability class, with the minimum value equal to approximately 18 s. No mechanism is provided to perform dosage calculations, even for the transient version of the model. Time-series of predicted concentrations could be averaged in this way, but this would require the development of additional code.

98

API PUBL*4546 92 🎟 0732290 0505552 T22 📟

INITIAL CONCENTRATION: A chemical mass fraction can be specified by the user, so that any initial concentration can be simulated at the source.

EVAPORATING POOL SOURCES: The LNG and LPG trials involve rapidly boiling pools. These are readily simulated as an area source, with the cloud temperature and pool area specified from the MDA.

TWO-PHASE JET SOURCES: Aerosols are not treated explicitly in the model. When using the isothermal source option, a series of data describing the concentration-density relationship is supplied by the user, and this can simulate density effects resulting from evaporation of the aerosols. In these evaluations, we have used a simple form of this relationship: a series of points describing the density of the vapor-aerosol-air mixture and the mass concentration of the vapor-aerosol in the cloud (as a function of the mole fraction of vapor-aerosol in the cloud) obtained by assuming complete adiabatic mixing. That is, the heat released by cooling the air (which is entrained) to the boiling-point temperature of the vapor is used to evaporate a portion of the aerosol. Once sufficient air is entrained to evaporate all of the aerosol, additional air raises the temperature of the cloud of vapor and air. This is what a user would be able to do without access to supplementary aerosol calculations.

VAPOR-JET SOURCES: Being an area source formulation, jets must be represented as an "equivalent" area source. The approach is described in Section III.C.1.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between those concentrations listed in the output files. Widths are calculated from interpolated values of "half width" and "Sy", which describe the lateral distribution of concentrations. The width, measured as " σ_y ", is equivalent to the distance from the center of the cloud to the point at which the concentration drops to EXP(-0.5) times the concentration at the center of the cloud.

99

API PUBL*4546 92 MM 0792290 0505559 969 MM

ISSUES RAISED IN REVIEW:

(1) The developers noted initially that the area-source part of DEGADIS should <u>not</u> be applied to passive tracer releases. Consequently, we modified our test procedures and applied JETPLUME to those experiments.

(2) We had originally treated aerosols by providing DEGADIS with initial conditions in which all aerosol had been evaporated by the entrainment of a sufficient amount of air. The developers recommended that the fuller treatment of the evaporation process be used. Because the adiabatic mixing relationships are readily implemented, we did change our method for treating aerosols. This method was described above.

FOCUS

FOCUS is operated by means of a sequence of menus or screens in an interactive process whereby the material properties, and characteristics of the weather, release, and terrain are entered. FOCUS can be run either in batch mode or in interactive mode once the input file is created. Our approach is to create one template input file for each of the datasets by running the input module of FOCUS. The MDA then creates the input file for each trial by updating the meteorological and release conditions in the corresponding template input file, so that all FOCUS runs can be run in batch mode. We note that because the Thorney Island trials use mixtures of Freon-12 and nitrogen, which affects the thermodynamic calculations of the input module, all input files for the Thorney Island dataset were created manually.

FOCUS allows the source data to be calculated directly from primary release information (for example, vessel volume, hole size, pipe length, etc.) or it accepts regulated release information specified by the user. We have used the regulated release option in order to obtain source-parameters directly comparable to those used in the other models being evaluated. FOCUS contains algorithms to treat aerosols, turbulent entrainment for jets, and evaporating pools. FOCUS has a dispersion algorithm similar to those of DEGADIS.

100

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🖿 0732290 0505554 &T5 💻

CHEMICAL DATABASE: A chemical database is used by FOCUS. All of the chemicals needed for the evaluation are provided. FOCUS is the only model in this study that deals with multi-component releases explicitly, like the Thorney Island trials. The model calculates the thermodynamic properties of the mixture internally. We note the following exceptions:

(1) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of Carbon Monoxide were released, equal in mass emission rate to the radiation rate. CO, with a molecular weight of 28, is slightly less dense than air. Because we cannot alter the chemical properties in the database, we decided to use a gas slightly less dense than air rather than a gas that is slightly heavier than air.

(2) LPG LPG is modeled as pure propane, since its mole fraction is very close to unity.

(3) LNG LNG is modeled as pure methane, since its mole fraction is very close to unity.

WIND SPEED MEASUREMENT HEIGHT: FOCUS assumes that the wind speeds are measured at 10 m. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: Averaging time for the dispersion coefficients is specified by the user. No dosage-type averaging is done.

INITIAL CONCENTRATION: The initial fraction of air contained in the vapor cloud can be specified as additional components of the mixture being released, so that any initial concentration can be modeled.

SOURCES: The user can either specify the release as an unregulated release, where emission rate is calculated internally based on primary release information (for example, vessel volume, hole size, pipe length, etc.), or specify the release as a regulated

API PUBL*4546 92 🗰 0732290 0505555 731 🖿

release, where emission rate is input by the user. Other parameters such as aerosol fraction and jet velocity are all calculated internally by FOCUS.

SURFACE ROUGHNESS: FOCUS is one of only two models in this evaluation study (the other is AFTOX) that allows the user to specify the surface roughness both at the spill point and the surrounding area. Due to the uniform sites for our datasets, we use the same roughness for both.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between values contained in the output files. No estimates for σ_y are provided.

GASTAR

GASTAR mainly is operated by means of a sequence of menus or screens in an interactive process whereby the material properties, and characteristics of the weather and release are entered. However, because of the simple I/O structure, GASTAR can also be easily run in batch mode.

GASTAR contains algorithms to treat aerosols, turbulent entrainment for jets, and evaporating pools. GASTAR has a dispersion algorithm similar in concept to those of HEGADAS and DEGADIS.

CHEMICAL DATABASE: GASTAR includes an extensive chemical database. Most of the chemicals included in this evaluation can be drawn directly from the database, but there are several exceptions:

(1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.

(2) KR⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. One of the gases in the database is dry air, so modifications were not needed. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of air.

102

API PUBL*4546 92 🗰 0732290 0505556 678 📟

(3) LPG LPG is modeled as pure propane.

(4) LNG LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that the wind speeds are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height.

AVERAGING TIME ISSUES: Averaging times for the dispersion coefficients is specified by values in the MDA. No dosage-type averaging is done.

INITIAL CONCENTRATION: A dilution factor can be provided to simulate releases that are diluted, so that any initial concentration can be matched.

EVAPORATING POOL SOURCES: The emission rate, pool radius, and pool temperature can be explicitly given to the model.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the jet calculated from the MDA can be accepted by the model. The only adjustment to the initial condition of the jet is that due to flashing. As described in Section III.C.1, the initial diameter of the jet is estimated from the diameter of the orifice, and the density of the mixture.

VAPOR-JET SOURCES: Jets are explicitly treated, so that no other initialization procedures are required.

POSTPROCESSING: Concentrations and width parameters (from which sigma-y values can be derived) are reported at distances that are determined within the model. Concentrations and sigma-y values at the distances listed in the MDA are then found by interpolating linearly between these.

API PUBL*4546 92 🗰 0732290 0505557 504 🛲

GAUSSIAN PLUME MODEL/INPUFF

These models are applied in this evaluation as point source models, and contain no algorithms to simulate aerosols or density effects.

CHEMICAL DATABASE: There is no chemical database.

WIND SPEED MEASUREMENT HEIGHT: No measurement height is required, as these models assume that a wind speed representative of the transport speed is supplied. We have used the "reported" wind speed from the MDA, regardless of the height at which it was measured. Note that this is seldom equal to the wind speed estimated at 10 m for these trials.

AVERAGING TIME ISSUES: The steady-state GPM does include an adjustment to the lateral spreading parameter which is meant to incorporate meander effects on mean concentration distributions. INPUFF does not. The lower limit allowed for this adjustment is 20 s.

INITIAL CONCENTRATION: The initial concentration produced by these models is controlled by the initial size of the plume or puff. Initial values of sigma-y and sigma-z are calculated to produce a peak mass concentration at x=0 which is equal to the density of the cloud at the source. This automatically provides the proper specification of the volume concentration at the source.

EVAPORATING POOL SOURCES: These are treated as sources of pure vapor emanating from a point.

TWO-PHASE JET SOURCES: Because aerosols are not treated by these models, we have initialized these sources by including enough air to evaporate all of the aerosols, as described in subsection 3.3. Aspects related to the jets themselves are ignored.

VAPOR-JET SOURCES: Aspects related to the jets are ignored. These sources are modeled as simple point sources.

104

API PUBL*4546 92 🎟 0732290 0505558 440 🎟

POSTPROCESSING: Concentrations are provided in the output at the distances specified in the MDA. Widths (sigma-y) are also provided by GPM at these distances, but no information on the width is provided in the output from INPUFF.

ISSUES RAISED IN REVIEW: Three options are provided in INPUFF for specifying the puff coefficients σ_y and σ_z . We used the option that invokes the PG values of σ_y and σ_z that are typically employed in plume-models. This was done to be as consistent as possible with the GPM calculations, so that together, GPM and INPUFF represent a well-known benchmark against which the performance of other models may be compared.

HEGADAS (NTIS)

This version of HEGADAS is very similar in operation to DEGADIS. The basic formulation is that of an area source from which a dense gas emanates.

CHEMICAL DATABASE: No chemical database is incorporated in HEGADAS.

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: Averaging time is included by altering the parameters that determine the growth rate of the lateral tails of the horizontal distribution. The approach is equivalent to that contained in DEGADIS, except that the user must specify the parameters rather than the averaging time.

INITIAL CONCENTRATION: There is no provision for an initial concentration other than that of a pure gas. We must use an effective molecular weight for the air/chemical mixture in those trials that require an initially dilute cloud, and adjust predicted concentrations to reflect the concentration of the chemical in air. Isothermal conditions are imposed.

EVAPORATING POOL SOURCES: The rapidly boiling pools of LNG and LPG are treated as area sources, as in DEGADIS.

API PUBL*4546 92 🗰 0732290 0505559 387 🛤

TWO-PHASE JET SOURCES: The inability to accept a diluted vapor cloud results in the need to use the "pseudo-gas" approach described in Section III.C.1. Aerosols are evaporated by adding air to the source, but the resultant "chemical" is characterized by a molecular weight that depends on the mixture of gas and air at the boiling point temperature of the gas. At the suggestion of the developers of HEGADAS, we employ a non-isothermal simulation for the dispersion of this "pseudo-gas." The initial temperature of the cloud is the boiling-point temperature, and the heat capacity is the mole-fraction-weighted mean of that for the vapor, and that for air.

VAPOR-JET SOURCES: The initialization described in Section III.C.1 that allows a jet to be characterized as an area source is followed in the application of HEGADAS. However, a lower limit to the size of the area source (8 m square) was imposed in order to obtain results at distances contained in the sampler arrays. The model provides concentration estimates at internally determined distances, which are based on the scale of the area source. We had explored the sensitivity of the predictions to changes in the size of the area source, and found that to be small for those trials in which the limit-values were required.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between those concentrations listed in the output files. Widths are calculated from interpolated values of "MIDP" and "Sy", which describe the lateral distribution of concentrations. Note that the definition of "Sy" in HEGADAS differs by a constant factor from the definition used in DEGADIS.

ISSUES RAISED IN REVIEW: In addition to the suggestion that the non-isothermal option be used in simulating aerosols, the following were raised:

(1) The surface transfer parameter for dispersion over water should be set to 4, not 3. We have reset this parameter to 4 for the Burro, Coyote, and Maplin Sands trials.

106

API PUBL*4546 92 🖿 0732290 0505560 0T9 📟

(2) The linear interpolation used to obtain concentrations at points between those provided by the model can lead to significant underestimates of the predicted concentrations close to the source. The parameter XSTEP controls the spacing of points provided by HEGADAS. We revised the algorithm used to specify XSTEP (it depends on the length of the area-source) so that an absolute step-size of 5 m is always obtained. This minimized interpolation errors.

<u>SLAB</u>

SLAB explicitly allows the user to model horizontal jets, with or without aerosols, as well as evaporating pools. Therefore, much of the data contained in the MDA can go directly into the model.

CHEMICAL DATABASE: There is no chemical database. Chemical properties required by the model are listed for 14 substances in the users guide. We note that the following chemicals are not contained in the table, and must be constructed from outside sources of information:

(1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by taking properties of Freon as the base for all other properties, and we change the molecular weight to reflect the mixture. Isothermal conditions must be assumed, and are appropriate for these trials.

(2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if a small amount of "dry air" (with molecular weight equal to 29 g/mole) were released, equal in mass emission rate to the radiation rate. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.

- (3) LPG LPG is modeled as pure propane.
- (4) LNG is modeled as pure methane.

107

API PUBL*4546 92 🗰 0732290 0505561 T35 🛲

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: SLAB explicitly accounts for meandering effects and time-averaging of concentrations (such as for dose calculations) for the period specified by the user. None of the other models in this evaluation do both.

INITIAL CONCENTRATION: The model assumes that the material released is pure, being undiluted.

EVAPORATING POOL SOURCES: The emission rate, size of the pool, and temperature of the pool are explicitly accepted as input.

TWO-PHASE JET SOURCES: SLAB includes algorithms for the treatment of evaporation of aerosols, and entrainment due to turbulent jets. This type of source is characterized by the liquid mass fraction, temperature, and cross-sectional area of the jet. This area includes the fraction of the material that flashes to vapor, as discussed in Section III.C.1 (Equation 22). The velocity of the jet is determined internally by conservation of mass.

VAPOR-JET SOURCES: These sources are specified in the same way as the two-phase jets, except that the liquid mass fraction is zero, and the area of the release is simply the area of the orifice through which the gas is emitted.

POSTPROCESSING: Concentrations are obtained at the distances specified in the MDA by interpolating linearly between values contained in the output files. Linear interpolation is also used to estimate the lateral distance between the center of the distribution and the point at which the concentration equals $C_o^* EXP(-0.5)$, which is our operational definition of sigma-y.

108

API PUBL*4546 92 🗰 0732290 0505562 971 🎟

TRACE

TRACE contains algorithms to treat aerosols, and allows for sources that are initially diluted with air, but does not contain a turbulent entrainment algorithm for jets.

CHEMICAL DATABASE: TRACE includes an extensive chemical database. Most of the chemicals included in this evaluation can be drawn directly from the database, but there are several exceptions:

(1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.

(2) Kr⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. The chemical properties of "dry air" are obtained by modifying the file for nitrogen. We change the molecular weight to 29.0. This procedure essentially results in a small amount of gas being released which is nearly equal to the density of the air.

- (3) LPG LPG is modeled as pure propane.
- (4) LNG LNG is modeled as pure methane.

WIND SPEED MEASUREMENT HEIGHT: The height at which the wind is measured is a required input to the model, and is provided by the MDA.

AVERAGING TIME ISSUES: Averaging time is an input to the model, and is used to simulate the effects of meander for "longer" averaging times. However, the formulation produces insignificant adjustments to the predicted concentrations if the averaging time is less than 900 s, which is the case for most of the trials included in this evaluation.

API PUBL*4546 92 🗰 0732290 0505563 808 🛤

INITIAL CONCENTRATION: The initial concentration is specified as an air/chemical mole ratio.

EVAPORATING POOL SOURCES: Evaporation from pools is characterized by the initial pool radius, pool temperature, and flow rate into the pool. These quantities are obtained from the MDA. In addition, a minimum pool depth, and an albedo is required, and we have used default values of 0.01 m for the minimum depth, and an albedo of 0.15. The emission rate for the vapor is calculated within the model.

TWO-PHASE JET SOURCES: The amount of liquid that flashes to vapor is computed by TRACE, but the amount of liquid that remains suspended as aerosol in the jet (rather than deposited on the ground) can be specified by the user in the form of an "aerosol/flash" mass ratio. The mass ratio chosen in this evaluation is 10000., which is large enough to force all of the liquid to remain in the cloud. A second option allows the user to specify how much air is entrained as some portion of the aerosol is evaporated. We have followed the recommendations contained in the manual, and selected the default mode for this option. This default mode mixes in sufficient air to evaporate all of the aerosol, but unlike the method described in Section III. C. 1, the thermodynamic calculations allow the cloud to become supercooled. As a result, less air is required, and the resulting mixture is denser due to the lower temperature, and the smaller fraction of air.

VAPOR-JET SOURCES: No entrainment calculations are performed for turbulent jets, so this type of source is simply initialized as a release of gas from an area derived from the diameter of the release reported in the MDA.

POSTPROCESSING: Concentrations are predicted at up to 4 distances provided by the user. Therefore, trials that involved more than 4 distances were simulated several times in order to avoid the use of interpolations based on only 4 points. No information compatible with sigma-y is provided in the output from the model.

ISSUES RAISED IN REVIEW: The developers of TRACE suggested that linear interpolation not be used in obtaining concentrations at specific

API PUBL*4546 92 🔳 0732290 0505564 744 🔳

distances. As a result, no interpolation was used, as noted above. A suggestion was also made that we perform off-centerline calculations for comparisons with the Thorney Island trials. We retain the centerline calculations because a clear trajectory for the observed cloud is not well-defined and we wish to apply all of the models in a similar way.

<u>OB/DG</u>

This regression formula requires distance, and Δt over a specified height interval. It provides concentration in mass units, divided by the emission rate. Therefore, to perform the OB/DG calculation, we obtain two temperatures and the heights at which they were measured, and the distance to each monitor from the MDA. Concentrations are converted to ppm (volume) by means of the emission rate, molar volume, and the molecular weight of the gas. Finally, we avoid predicting concentrations in excess of 1 part-per part by using the adjustment formula discussed for AFTOX. No estimates of σ_y can be obtained from OB/DG.

PHAST

PHAST requires a release scenario, rather than specific information on the rate of release, aerosol fraction, source-induced entrainment, etc. For example, liquids may be released from some sort of container, through a hole or release valve, and the user must specify the storage conditions and the size of the hole. With this type of information, PHAST calculates the properties of the release, including the emission rate. Because our aim is to reproduce controlled experiments in which the properties of the release are fairly well known, we must "engineer" the description of the release in order to obtain the stated properties of the release. This generally requires some iteration in which tank pressure or hole size is varied. As a result, the input data listed on the top portion of each page in Appendix B are not those actually used in reproducing the stated emission rates.

CHEMICAL DATABASE: PHAST has an extensive chemical database, which contains most of the chemicals used in these trials. Those that are not included are:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 111

API PUBL*4546 92 🛲 0732290 0505565 680 🛲

(1) Freon+N₂ The Thorney Island trials used a mixture of Freon-12 and Nitrogen as the vapor cloud. We simulate the density of these mixtures by creating a "chemical" for each of the trials. Using Freon as the base for all other properties, we change the molecular weight to reflect the mixture.

(2) Kr ⁸⁵ The Hanford trials used the radioactive properties of Krypton-85 to track the tracer-cloud. We model these trials as if an amount of "dry air" were released, equal in mass emission rate to the radiation rate. Chemical properties for the "dry air" are specified by taking the property-file for NO (MW=30), and changing the molecular weight to 29.0. This procedure essentially results in a small amount of gas begin released which is nearly equal to the density of the air.

- (3) LPG is modeled as pure propane.
- (4) LNG is modeled as pure methane.

Note that the cases in which Freon-12 or a mixture of Freon-12 and Nitrogen were release are isothermal; the temperature of the cloud and air are equal, and heat transfer from the ground is not important. This aspect allowed us to modify the molecular weight without regard for any of the other properties of the gas, because the transport and dispersion processes are not influenced by the thermodynamic calculations.

WIND SPEED MEASUREMENT HEIGHT: The model assumes that wind speeds are equivalent to those measured at 10 m above the surface. We estimate winds at 10 m if the MDA contains winds measured at some other height. A related parameter is the Surface Roughness Parameter (SRP), which depends on the roughness length (z_0) , and the height at which the wind speed is assumed to be measured (10 m). The SRP is defined as SRP = 0.4/ln(10/z_0).

AVERAGING TIME ISSUES: No averaging times can be specified.

EVAPORATING POOL SOURCES: The emission rate, pool area, and pool temperature are provided in the MDA, but PHAST generally performs its own evaporation calculations, so it does not use these data. We found that the

112

API PUBL*4546 92 🔳 0732290 0505566 517 🔳

evaporation rate and the size of the pool determined by PHAST results in a net emission rate that is less than that given to all of the other models. To circumvent this situation, the developer of PHAST indicated that something like a "user-specified" mode of release can be obtained by altering the chemical property database. If a chemical is listed as a "reactive liquid", PHAST allows the modeler to specify the area of the source, and the emission rate. We implemented this approach for all LNG and LPG spills.

TWO-PHASE JET SOURCES: Aerosols and jets are explicitly treated, so that the properties of the two-phase jet are calculated within PHAST on the basis of the storage conditions and exit circumstances. We use the liquid leak from a Padded Liquid Vessel scenario in which the temperature and pressure are obtained from the MDA, and the hole size is varied until the stated emission rate is obtained. Note that the chemical properties of HF (for the Goldfish trials) differ from those assumed in the MDA, and as a result, the fraction flashed is on the order of 1.5 percent, rather than the 15 percent used to initialize other models in this evaluation program.

VAPOR-JET SOURCES: Jets are explicitly treated, so the only initialization procedure required is specifying the release scenario. We use the Pressurized Gas Vessel scenario in which the vapor escapes from a hole in a short (1 m long) line or, for the Prairie Grass trials, from a hole in the vessel. The diameter of the hole is taken from the MDA, and the pressure is varied in order to obtain the stated emission rate.

POSTPROCESSING: Concentrations are reported at three fixed distances as well as at an extensive list of other distances that are determined within the model. These are tabulated manually. Measures related to σ_y are also listed at these distances. Recall that σ_y is defined as the lateral distance from the center of the cloud to the point at which the concentration equals EXP(-0.5) times the concentration at the center. A box model is used to simulate the initial development of the cloud when the material is denser than air. This produces an estimate of the mean concentration in the cloud, and its "radius." Because the box model employs a "top-hat" profile for the lateral distribution of concentration in the cloud, the distance from the center of the cloud to the point at which the

113

API PUBL*4546 92 🗰 0792290 0505567 459 🎟

cloud, is equal to the reported "radius." Therefore, we use the reported "radius" as our measure of σ_y . Once a transition to "passive" dispersion is signaled in the model, a virtual line-source formulation is matched to the cloud and the lateral distribution of concentration is characterized in terms of the half-width of the virtual line-source, L, and a lateral "dispersion coefficient", S_y. From the equations describing a line-source, the condition that is given by:

$$\exp(-0.5) = \left\{ \operatorname{ERF}\left(\frac{L - \sigma_{y}}{\sqrt{2} S_{y}}\right) + \operatorname{ERF}\left(\frac{L + \sigma_{y}}{\sqrt{2} S_{y}}\right) \right\} / 2 \operatorname{ERF}\left(\frac{L}{\sqrt{2} S_{y}}\right)$$
(24)

where ERF is the error function. This implicit equation for σ_y as a function of L and S, for a line-source is solved using an iterative method.

ISSUES RAISED IN REVIEW: The central issue raised by the developer was the use of the "reactive liquid" specification that allowed us to model the evaporating pools of LNG and LPG in a manner consistent with the other models. Also noted, was a difference between version 2.01 used here, and the current version--the new version accounts for upwind spread of the cloud during the slumping phase, which results in larger concentrations. This effect would be most noticeable for the Thorney Island trials.

D. SUMMARY OF MODELS

The models evaluated here have considerable variation in their capabilities and input requirements. Some models simulate all aspects of a complex release typified by the Desert Tortoise and Goldfish experiments, including aerosols, entrainment processes associated with momentum jets, variable averaging times, detailed meteorological data, and site roughness. Others contain no modules that explicitly simulate aerosols, or dense-gas effects for that matter. These attributes are summarized here in order to highlight differences among the models which influence how each is applied to the various datasets. In Section II.E, we summarized significant attributes of the datasets included in this evaluation. Table 10 summarizes the ability of each of the models to account for these and other attributes.

114

Table 10

that the Model does not Account for Variations in that Attribute. A Number Indicates the Value Assumed by the Model. An Asterisk Attributes of Models. A Check (/) Indicates that the Model Accounts fro Variation in that Attributes. A Double Dash Indicates Indicates that we Accounted for this Attribute in our Model Initialization Assumptions.

	AFTOX	AIRTOX	BM	CHARM	DEGADIS	FOCUS	GASTAR	ЮРМ	HEGADAS	INPUFF	08/00	PHAST	SLAB	TRACE
<u>Iype of Release</u> : Neutral Dense 2-phase	≻ ; ;	~ ~ ~	; > *:	~ ~ ~	~ ~ *:		~ ~ ~	> : :	~ ~ *	> ; ;	> ; ;	* * *	> > >	~ ~ ~
<u>Character of Release</u> : Non-jet Jet	> ;	~ ~	> ;	* *	> :	~ ~	~ ~	> ;	~ :	> ;	> ;	~ ~	~ ~	~ ~
<u>Duration of Release</u> : Continuous Instantancous	~ ~	~ ~	~ ~	~ ~	~ ~	~ ~	~ ~	> ;	> ;	~ ~	> :	~ ~	~ ~	
<u>Iype of Surface (Heat Transfer)</u> : Soil Water	: :	~ ~		: :	~ ~	~ ~			~ ~	: :	: :	~ ~	: :	~ ~
Surface Roughness:	7	~	1	~	7	7	7	(0.03m)	•	(0.03 _{in})	:	7	~	~
<u>Averaging Time</u> : Meteorological Dosage	~ ;	(10min) 		(10min) 4	> ;	· ·	> ;	> ;	> ;	(10inin) 7	: :	(10min) 	~ ~	> :
Receptor Height (m):	7	0	0	7	0	-	0	7	0	7	1.5	0	7	7

API PUBL*4546 92 🖿 0732290 0505568 39T 📟

115

API PUBL*4546 92 🗰 0732290 0505569 226 🗰

The type of release (neutral, dense, 2-phase) has obvious implications for the dataset. The chief question that arises is: "How well do models perform in simulating dense-gas dispersion trials when no dense-gas algorithms are included?" Four models (AFTOX, GPM, INPUFF, and OB/DG) are designed for neutral releases only, and one (BM) is designed for dense-gas releases only. The character of the release indicates if entrainment and mixing induced by the turbulence associated with jet-like releases are included. Half of the models do not treat jets, which may influence their relative performance on the Desert Tortoise and Goldfish datasets. duration of the release identifies models that are not able to treat instantaneous releases. Three models (GPM, HEGADAS, and OB/DG) do not, and so these models are not applied to the datasets with instantaneous releases. Note that as we have defined the various releases, all that are not instantaneous are considered continuous, regardless of the actual duration. Furthermore, we use a constant emission rate for those releases, so that "transient release" modes available in some of the models are not evaluated.

The next two categories describe attributes of the surface beneath the cloud. Six models distinguish among several categories (for example, dry soil, wet soil, water) in order to better represent heat and water vapor exchanges between the cloud and the surface. The rest either ignore heat exchange altogether (these models do not treat dense-gas clouds) or request just the temperature of the surface. Most of the models do require the roughness of the surface in order to characterize the turbulent surface-layer of the atmosphere. The simple Gaussian models GPM and INPUFF do not require a roughness length, because the length of 0.03 m is implicit in the PG dispersion rates that they use. BM and OB/DG, on the other hand, do not consider the roughness of the surface.

The averaging time is broken down into a meteorological averaging time, and a dosage averaging time. The meteorological averaging time refers to the use of algorithms that recognize the effect of averaging time on the atmospheric motions which affect the dispersion process. For a continuous release, the meander of the plume over longer averaging times increases the lateral spread of the "average plume." Eight of the models allow this type of averaging to be specified, and four more implicitly fix this averaging

116

API PUBL*4546 92 🎟 0732290 0505570 T48 🎟

period to approximately 10 min by their use of PG dispersion rates in the passive limit, or the far-field. The dosage averaging time refers to the process whereby a time series of predicted concentrations are averaged over some specified period. This generally is relevant to instantaneous releases, or true transient releases. Two models, CHARM and INPUFF, allow the user to control the averaging period for this type of average, but do not alter the corresponding meteorological averaging period, so the result must be interpreted carefully. SLAB, on the other hand, incorporates both types of averaging, so that when an averaging period is specified, both aspects are treated consistently.

The last attribute in the table is the height at which concentrations are provided. This height cannot be adjusted in eight of the models (six of these place receptors at the surface, which is appropriate if peak concentration estimates are needed for surface-level releases). We note that all of the other models except CHARM were applied to the datasets with the actual height of the near-surface monitors specified. The height of the receptors used in a model can be very important when evaluating model performance against observed concentrations, especially with thin, dense-gas clouds. Monitors are usually placed above the surface. Measurements made near the point of release may not capture the largest concentrations if the depth of the cloud is less than the height of the sensor. Furthermore, the modeled cloud may be very shallow, so that a receptor placed at the height of the monitors may "miss" the modeled cloud. Depending on the formulation of the model, and the details of the trial, large underpredictions or overpredictions may result. Given this component of uncertainty in the evaluation, the results obtained at monitors/receptors placed near the point of release may not, in general, be "reliable."

117

API PUBL*4546 92 M 0732290 0505571 984 M SECTION IV STATISTICAL MODEL EVALUATION

A. PERFORMANCE MEASURES AND CONFIDENCE LIMITS

The statistical evaluation methods used in this study are those described in Volume I. The model evaluation software package, BOOT, is based on recommendations by Hanna (Reference 69), who has applied an earlier version of the software to several air quality modeling scenarios. The software package can calculate the model performance measures known as the fractional bias (FB), geometric mean bias (MG), normalized mean square error (NMSE), geometric mean variance (VG), correlation coefficient (R), and fraction within a factor of two (FA2), which are defined below:

$$FB = \frac{\overline{X_o} - \overline{X_p}}{0.5(\overline{X_o} + \overline{X_p})}$$
(25)

 $MG = \exp(\overline{\ell n X_{o}} - \overline{\ell n X_{p}})$ (26)

$$NMSE = \frac{\left(\frac{X_{o} - X_{p}}{x_{o}}\right)^{2}}{\frac{X_{o}X_{p}}{x_{o}}}$$
(27)

$$VG = \exp\left[\left(\ell n X_{o} - \ell n X_{p}\right)^{2}\right]$$
(28)

$$R = \frac{\overline{(X_o - \overline{X_o})(X_p - \overline{X_p})}}{\sigma_{X_p} \sigma_{X_o}}$$
(29)

FAC2 = fraction of data for which $0.5 \le X_p/X_o \le 2.$ (30)

where ${\rm X}_{\rm O}$ is an observed quantity, and ${\rm X}_{\rm p}$ is the corresponding modeled quantity.

119

API PUBL*4546 92 🗰 0732290 0505572 810 🗰

Because the logarithmic forms of the mean bias and the variance (equations 26 and 28) are more difficult to visualize than the absolute forms (equations 25 and 27), we prefer to use the absolute versions whenever possible. However, use of the absolute performance measures (FB and NMSE) is most justified only if X_{o} and X_{p} are never very different (say, within a factor of two). For example, this situation would occur if all data were taken on a monitoring arc at a fixed distance downstream. if the source emission rate were constant over all experiments, and if meteorological conditions were similar. However, if a data set contains several pairs of data with X_o/X_p and X_p/X_o equal to 10, 100, or more, then the logarithmic forms (MG and VG) are more appropriate. Since the observed concentrations vary over many orders of magnitude in the current study, due to the use of field data from a wide range of downwind distances, for a wide range of source emission rates, and from variable meteorological conditions, and also since C_0/C_p or C_p/C_o are often large in our data sets, we use MG and VG in the following analyses.

Because of certain characteristics of the logarithm (that is, $(lnX_o - lnX_p) = ln(X_o/X_p)$), equations (26) and (28) can be rewritten:

$$MG = \exp\left[\frac{\ln(X_o/X_p)}{2}\right]$$
(31)

$$VG = \exp\left[\left(\ell n (X_o / X_p)\right)^2\right]$$
(32)

A "perfect" model would have both MG and VG equal to 1.0. Geometric mean bias (MG) values of 0.5 and 2.0 can be thought of as "factor of two" overpredictions and underpredictions in the mean, respectively. A geometric variance (VG) value of about 1.6 indicates a typical factor of two scatter between the individual pairs of observed and predicted values.

If there is only a mean bias in the predictions and no random scatter, then the following relation is valid:

$$\exp[(\ln VG)^{1/2}] = MG$$
(33)

120

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 📖 0732290 0505573 757 🎟

The line representing this relation is drawn on the figures presented later in this section. At a given MG, the value of VG cannot be less than the values given by equation (33).

The values for the performance measures do not, alone, "tell the whole story." We would also like to know whether the mean bias for a particular model is <u>significantly</u> different from zero, for example. In addition, if model A has a geometric mean bias (MG) = 1.1, and model B has MG = 1.3, we may judge model A to have a "better" MG, but this conclusion may not be significant. Therefore, we also wish to know if MG (or any other measure) for model A is significantly different from that for model B. These questions require estimates of the 95 percent confidence intervals about the performance measure, and the differences between performance measures.

Our software employs bootstrap resampling methods to estimate the standard deviation, σ , of the variable in question. Then the 95 percent confidence intervals are calculated using the student-t procedure:

95% confidence limits = mean
$$\pm t_{95} \sigma(n/(n-1))^{1/2}$$
 (34)

where n is the number of data pairs. Tables in which the student-t parameter, t_{95} , is given as a function of degrees of freedom, n-1, can be found in most statistics textbooks (for example, for large n, $t_{95} \sim 2$). In the figures that follow, 95 percent confidence limits on the geometric mean bias, MG, are drawn as horizontal lines, and significant differences in MG or VG values between different models are discussed for the few models with the best performance.

B. RESULTS OF EVALUATION

Performance measures are calculated from modeled and observed concentrations, and modeled and observed cloud-widths. The individual observed values and the modeled values for each monitoring arc (distance) of each trial, for each model, are listed in Appendix C. Two groups of concentrations are presented for the continuous dense gas field trials. The first includes modeled and observed concentrations that represent the longest averaging period available for that particular field trial, up to the period over which the observed concentrations can be considered steady. The second

API PUBL*4546 92 🛲 0732290 0505574 693 🛲

group represents the shortest averaging period available, but only for those four datasets that include both long and short averaging times. The data for the shorter averaging time are included because the predictions of some models are intended to represent short-term maximum concentrations. Matrices of the models and datasets included in Appendix C are presented in Tables 11 and 12.

Performance measures for concentrations can be evaluated for all 14 models and eight datasets, but there are several "holes." The holes arise because GPM, HEGADAS, and OB/DG are not applicable to instantaneous releases, and because modeled concentrations could not be obtained from DEGADIS and FOCUS when applied to the Hanford instantaneous releases. Furthermore, the Britter and McQuaid (BM) model is not appropriate for passive gas releases.

Performance measures for cloud-widths can be evaluated for eight models and six datasets (in some cases, the model is incapable of predicting cloud widths, and in other cases, the dataset is insufficient for estimating the observed cloud width).

Overall statistics could be calculated by combining results from all of the trials without regard for whether individual records were from a dataset containing instantaneous releases of a dense-gas cloud, or from a dataset of quasi-continuous releases of a passive tracer-gas. However, these datasets are sufficiently different that we wish to identify the performance of models for each type of dataset separately. To do this, we have identified four distinct groups of datasets, and have divided the continuous dense gas datasets into two separate groups--one for short averaging times (Group 1), and one for long averaging times (Group 2). The five groups are defined below:

- Group 1 All continuous-release dense-gas datasets, for short averaging times--that is, minimum time resolution in the data. (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island-Continuous)
- Group 2 Same as Group 1 but for longer averaging times approximately equal to the duration of release (several minutes)
- Group 3 All continuous-release, neutral-buoyancy passive-gas datasets (Prairie Grass and Hanford-Continuous)

122

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

TABLE 11. MATRIX OF MODELS AND DATASETS FOR WHICH LATERAL CLOUD WIDTHS ARE EVALUATED.

Thorney Island Instantaneous	:	:	:	:	:	:	;	ł	4 4		:	:	:	:
Thorney Island Continuous	;	:	:	;	:	;	t t	:	t t	;	:	ţ		:
Maplin Prairie Sands Grass	7	7	:	:	7	:	7	7	7	ł	:	7	7	;
Maplin Sands	ł	1	:	:	:	1 1	:	ł	5 1	;	;	. ¦	:	:
Hanford Hanford Goldfish Continuous Instantaneous	;	:	:	1 1	5 2	;	;	* *	:	;	:	;	ť	ł
Hanford Cont inuous	7	7	:	:	7	:	7	7	7	:	ł	7	7	:
	~	7	1	;	7	ł	7	7	7	:	;	~	~	:
Desert Coyote Tortoise	~	7	1	;	7	ł	7	~	7	ţ	;	7	>	;
Coyote	7	7	t 1	1	>	:	7	7	7	5	ł.	7	7	5 2
Burro	7	7	:	:	~	;	>	>	7	;	:	7	~	:
	AFTOX	AIRTOX	BM	CHARM	DEGADIS	FOCUS	GASTAR	GPM	HEGADAS	INPUFF	OB/DG	PHAST	SLAB	TRACE

123

API PUBL*4546 92 🖿 0732290 0505575 52T 🎟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

TABLE 12. MATRIX OF MODELS AND DATASETS FOR WHICH MAXIMUM CONCENTRATIONS ARE EVALUATED. ASTERISKS IDENTIFY DATASETS FOR WHICH BOTH SHORT AND LONG AVERAGING TIMES ARE EVALUATED.

	Burro*	Coyote*	Desert* Burro* Coyote* Tortoise	Goldfish	llanford* Cont înuous	Hanford* Hanford Goldfish Continuous Instantaneous		Maplin Prairie Sands Grass	Thorney Island Continuous	Thorney Island Instantaneous
AFTOX	7	7	7	r	•	7	~	~	7	*
AIRTOX	7	7	7	~	7	~	~	7	7	*
MB	7	7	7	7	7	7	7	7	7	~
CHARM	7	7	7	7	~	~	~	7	7	~
DEGADIS	~	7	~	7	~	:	~	7	7	7
Focus	~	7	7	7	*	:	~	7	~	7
GASTAR	7	7	7	7	7	7	••	~	~	7
GPM	~	7	~	7	7	ł	7	7	7	:
HEGADAS	~	7	7	7	7	;	7	7	7	;
INPUFF	~	7	7	~	~	7	7	7	7	7
08/06	7	7	7	~	7	:	~	7	7	;
PliAST	7	7	7	7	~	~	~	7	7	7
SLAB	~	7	7	7	~	*	~	7	~	*
IRACE	7	7	7	7	~	7	7	7	~	7

API PUBL*4546 92 🖿 0732290 0505577 3T2 💻

- Group 4 All instantaneous-release dense-gas datasets (Thorney Island-Instantaneous)
- Group 5 All instantaneous-release neutral-buoyancy passive-gas datasets (Hanford-Instantaneous)

Groups 1, 2, and 3 each include two or more experimental sites, but groups 4 and 5 each include a single experimental site. Obtaining performance measures for a group of several datasets brings up the difficult statistical problem of the best way of combining performance measures when several different types of field experiments are being analyzed. Hanna (Reference 69) recommends a method suggested by Tukey (Reference 70) in which, if the total dataset can be broken down into m datasets or blocks consisting of i_m points each, then the mean statistical parameters are calculated for the entire group of data, and 95 percent confidence intervals are calculated by blocked bootstrap or jackknife resampling. These m groups or blocks of data are separated by some sort of difference in input variables or environmental parameters (for example, one block may be high-wind cases and another block may be low-wind cases). In this blocking procedure, the resampling is done within blocks so that there always are i_m points resampled from a given block.

Predicted cloud widths are also evaluated. Because the monitoring network in several of the field tests (for example, Maplin Sands and Thorney Island) had insufficient resolution to define cloud widths, only two distinct groups of datasets are represented:

Group 2 above, minus Maplin Sands and Thorney Island-Continuous. Group 3 above.

- 1. Evaluation of Concentration Predictions
 - a. Group 1: Continuous Dense Gas Releases with Short Averaging Times, All Distances

Statistics calculated for Group 1 (continuous dense gas releases with short averaging times) are listed in Appendix D-1, and the overall geometric mean bias, MG, and geometric variance, VG, for each model

125

API PUBL*4546 92 🗰 0732290 0505578 239 🗰

are shown in Figure 10a. A perfect model compared against perfect observations would be placed at the MG = 1 and VG = 1 point on this figure. Α model that has no random scatter but suffers a mean bias would be placed somewhere along the parabolic curve that represents the minimum possible value of VG that corresponds to a particular MG (see Equation 33). Therefore, all of the points must lie "within" the parabola. Furthermore, the dotted lines on the figures mark the values of MG that correspond to "factor-of-two" differences in the means. Models that fall between the dotted lines produce estimates that are within a factor of two of observed values, on average.

The results illustrated in Figure 10a include all trials and all monitoring arcs for the datasets that involve short-term averages from quasi-continuous releases of dense-gas clouds (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, and Thorney Island (continuous)). The geometric mean bias MG values for all of the models except FOCUS, AIRTOX, INPUFF, and OBDG are within the dashed vertical lines, indicating that, on average, peak modeled concentrations are within a factor of two of peak observed concentrations. The tendencies of these models to overpredict or underpredict in Figure 10a can be summarized as follows:

> Models that Overpredict by More Than a Factor of Two: FOCUS

> Models that Overpredict by Less Than a Factor of Two: GASTAR, HEGADAS, PHAST, DEGADIS

Models with No Significant Overprediction or Underprediction: BM, AFTOX, TRACE

Models that Underpredict by Less Than a Factor of Two: SLAB, GPM, CHARM

Models that Underpredict by More Than a Factor of Two: AIRTOX, OBDG, INPUFF

The FOCUS, AIRTOX, OBDG, and INPUFF models have a relatively large geometric variance, VG. The other models are "bunched" within a VG range of about 1.4 to 2.6. GASTAR has the smallest VG, indicating a typical

126

opyright American Petroleum Institute rovided by IHS under license with API lo reproduction or networking permitted without license from IHS

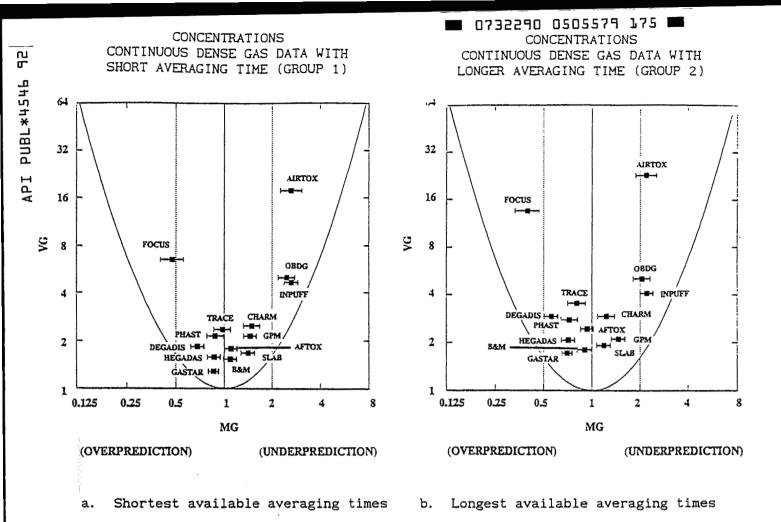


Figure 10. Model performance measures, Geometric Mean Bias MG = $\exp(\frac{\ln C_o - \ln C_p}{p})$ and Geometric Variance VG = $\exp[(\frac{\ln C_o - \ln C_p}{2})^2]$ for concentration predictions and observations for the continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

API PUBL*4546 92 🛲 0732290 0505580 997 🛤

scatter of slightly less than a factor of two. Note that the model (TRACE) with the best geometric mean does not have the smallest variance, and the model (GASTAR) with the smallest variance does not have the best geometric mean.

Group 2: Continuous Dense Gas Releases with Long Averaging Time, All Distances

Figure 10b shows the results for Group 2, for the same models and datasets as Group 1, but for concentrations associated with the "longest available" averaging times (approximately equal to the duration of the release). Actually, the only datasets that are altered by this distinction between Groups 1 and 2 are Burro, Coyote, and Desert Tortoise, which comprise approximately 1/3 of the data points in the combined set. Statistics tabulated for Group 2 that are plotted in Figure 10b are listed in Appendix D-2. Comparison of Figure 10b with Figure 10a shows, as expected, a shift of all models towards the left of the figure (that is, towards the overprediction side). The tendencies of the models to overpredict or underpredict in Figure 10b is summarized below.

> Models that Overpredict by More Than a Factor of Two: FOCUS

> Models that Overpredict by Less Than a Factor of Two: GASTAR, DEGADIS, TRACE, HEGADAS, PHAST

Models with No Significant Overprediction or Underprediction: BM, AFTOX

Models that Underpredict by Less Than a Factor of Two: CHARM, GPM, SLAB

Models that Underpredict by About a Factor of Two: AIRTOX, OBDG, INPUFF

128

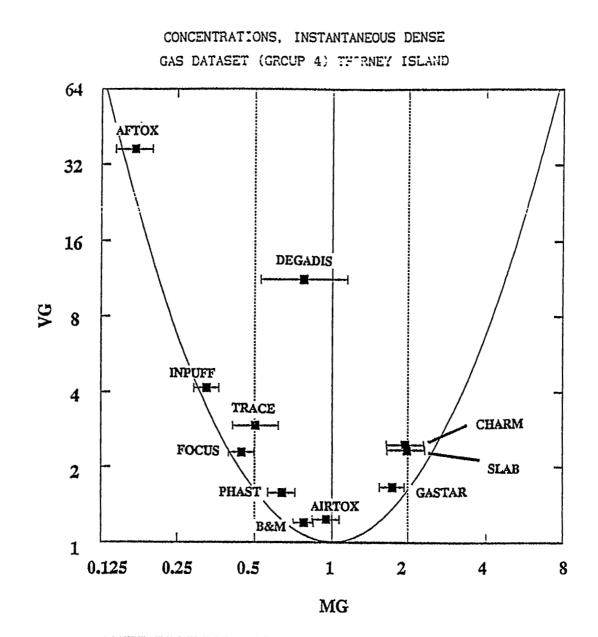
API PUBL*454692 🎟 0732290 0505581 823 🎟

Except for the FOCUS and AIRTOX models, which have a relatively large geometric variance (VG), all models have moderate values of VG, in the range from about 2 to 5. These values indicate that the random scatter is typically about two to four times the mean. Five models (GASTAR, SLAB, GPM, and BM) have the lowest values of VG. In this figure, it is interesting that the Gaussian plume model (GPM) has relatively low geometric mean bias MG and geometric variance VG, which may be a fortuitous result, since that model is the simplest of all and does not include dense gas effects. However, another possibility is that the <u>centerline concentration</u> in a plume is not highly influenced by the plume density, since the changes in plume <u>width</u> are compensated by changes in plume <u>depth</u>.

c. Group 4: Instantaneous Dense Gas Releases, All Distances

In order to keep the discussions of the dense gas datasets together, we next consider Group 4, the Thorney Island (instantaneous release) trials. Figure 11 shows the results for Group 4 and the statistics are tabulated in Appendix D-3. These results are markedly different from those for the continuous releases of dense-gas clouds, since there is relatively little random scatter (except for the DEGADIS model) and the variance for all models tends to be dominated by the mean bias (that is, the points lie near the parabola marking minimum variance values, from Equation 33).

Analysis of the geometric mean bias, MG, in Figure 11 leads to the following conclusions:


Models That Overpredict by More Than a Factor of Two: INPUFF, AFTOX

Models that Overpredict by about a Factor of Two: TRACE, FOCUS

Models that Overpredict by Less Than a Factor of Two: BM, PHAST, DEGADIS

Models with No Significant Overprediction or Underprediction: AIRTOX

API PUBL*4546 92 🛲 0732290 0505582 76T 🛲

(OVERPREDICTION)

(UNDERPREDICTION)

Figure 11. Model performance measures, Geometric Mean Bias MG = $\exp(\frac{\ln C_o - \ln C_p}{p})$ and Geometric Variance VG = $\exp[(\ln C_o - \ln C_p)^2]$ for concentration predictions and observations for the instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

130

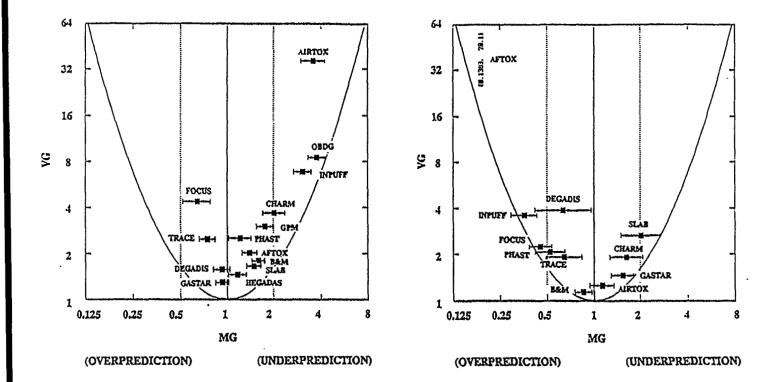
API PUBL*4546 92 🛲 0732290 0505583 6T6 📟

Models that Underpredict by Less Than a Factor of Two: GASTAR

Models that Underpredict by About a Factor of Two: SLAB, CHARM

There are two models (BM and AIRTOX) with relatively low geometric variance of about 1.4 in Figure 11 indicating a typical scatter less than the mean. The AIRTOX model has the best geometric mean and the second-best variance, while the BM model has the best variance and the second-best geometric mean. The AFTOX and DEGADIS models have large variances.

d. Groups 1 and 4 (Dense Gas Releases), Distances > 200 m


Each of these evaluations for the dense-gas datasets in Groups 1, 2, and 4 include monitored and modeled concentrations at all downwind monitoring arcs. However, comparisons of predicted and modeled concentrations near the source may be misleading. Peak concentrations at the ground surface in shallow clouds may not be adequately detected by monitors placed on short masts above the ground (even at heights of 1 to 2 m), because the cloud may lie nearer the surface. A bias could result from insufficient resolution in either the vertical or lateral array of samplers. Concentrations modeled at the surface may appear to be overestimates in such cases, and overall performance evaluations that include these data may lead to inappropriate conclusions. Therefore, we have reduced the number of data points in Groups 1 and 4 by removing monitoring data from arcs closer than 200 m to the release point. This criterion removes the closest monitoring arc in all of the dense-gas datasets. The resulting statistics for this reduced set of data are tabulated in Appendices D-4 and D-5, and are summarized for Groups 1 and 4 in Figures 12a and 12b, respectively. With fewer data points, the 95 percent confidence limits on the statistical measures increase, especially for Group 4 (Thorney Island--instantaneous), shown in Figure 12b.

After removal of the data from the closest monitoring arcs, many of the models show a shift toward either less overpredictions or more underpredictions (that is, the mean ratio $\overline{C_p}/\overline{C_o}$ has decreased). This would be

131

CONCENTRATIONS CONTINUOUS DENSE GAS DATA WITH SHORT AVERAGING TIME (GROUP 1) AND $X \ge 200$ M

CONCENTRATIONS INSTANTANEOUS DENSE GAS DATA (GROUP 4) AND $X \ge 200$ M

Continuous dense groups of datasets b. Instantaneous dense gas a. (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island)

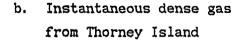


Figure 12. Model performance measures, Geometric Mean Bias MG = $\exp(\frac{\ln C_o - \ln C_p}{\ln C_o})$ and Geometric Variance VG = $\exp[(lnC_o - lnC_p)^2]$ for concentration predictions and observations at distances greater than or equal to 200 m. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). Instantaneous dense gas data from Thorney Island. 95 percent b: confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

API PUBL*4546 92 🖿 0732290 0505585 479 🖿

consistent with removing an overprediction tendency on the monitoring arcs in the near-field, where the measured concentrations may not represent peak concentrations. Analysis of the fractional bias in Figures 12a and 12b leads to the following conclusions for the dense gas data sets with the closest monitoring arc excluded:

 Models that Overpredict by More Than a Factor of Two:

 Continuous Release
 Instantaneous Release

 NONE
 INPUFF, AFTOX

 Models that Overpredict by about a Factor of Two:

 Continuous Release
 Instantaneous Release

 NONE
 FOCUS; DEGADIS, TRACE, PHAST

Models that Overpredict by Less Than a Factor of Two:Continuous ReleaseInstantaneous ReleaseFOCUS, TRACEBM

Models with Insignificant Overprediction or Underprediction:Continuous ReleaseInstantaneous ReleaseDEGADIS, GASTARAIRTOX

Models that Underpredict by Less Than a Factor of Two:Continuous ReleaseInstantaneous ReleasePHAST, HEGADAS, BM, SLAB, AFTOXGASTAR

 Models that Underpredict by about a Factor of Two:

 Continuous Release
 Instantaneous Release

 GPM, CHARM
 SLAB, CHARM

Models that Underpredict by More Than a Factor of Two:Continuous ReleaseInstantaneous ReleaseOB/DG, AIRTOX, INPUFFNONE

The results for the geometric variance in Figures 12a and 12b are similar to those in Figures 10a and 11, since the only difference is the

API PUBL*4546 92 🛲 0732290 0505586 305 🛲

removal of the monitoring arcs with x < 200 m. With this change, most variances were reduced slightly. The largest variance in Group 1 is still given by the AIRTOX model, and the largest variance in Group 4 is still given by the AFTOX model. The GASTAR and EM models still show good performance for Group 4 (Thorney Island), although the AIRTOX model has "moved up" into one of the top three positions.

e. Groups 1 and 4 (Dense Gas Releases), Distances < 200 m

In order to assess the differences between model performance at far and near monitoring arcs, the data for x < 200 m are presented in Figure 13. Any dense gas effects will be amplified at these close distances. However, the observations may not indicate the true maximum concentration, because of inadequate horizontal and vertical resolution of the monitoring network.

Comparing Figures 12 and 13, it is seen that there indeed are more cases of model overprediction at close distances. Because of the shifts in the points, some of the models (for example, SLAB, GPM, TRACE, CHARM, AIRTOX) demonstrate improved performance at close distances for the continuous sources (parts a of the figures). Shifts also occur for the instantaneous sources (parts b of the figures), with the performance of some models (for, example, DEGADIS) deteriorating at the close distances, while the performance of other models (for example, PHAST) improves.

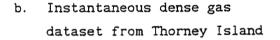
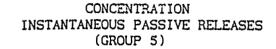
f. Groups 3 and 5: Passive Gas Releases

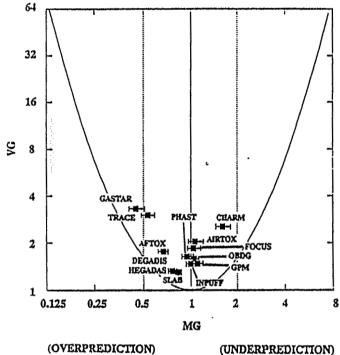
The statistics for the passive gas releases in Group 3 (continuous passive-gas releases) and Group 5 (instantaneous passive-gas releases) are tabulated in Appendices D-6 and D-7, and the plots of geometric mean bias MG versus geometric variance VG are shown in Figures 14a and 14b, respectively. Note that statistics for the continuous releases are dominated by the Prairie Grass dataset, while those for instantaneous releases are derived solely from the Hanford dataset.

The confidence limits on the geometric mean bias, MG, for the continuous releases of passive gases shown in Figure 14a are small, because

134

a. Continuous dense gas group datasets (Burro, Coyote, Desert Tortoise,Goldfish, Maplin Sands, Thorney Island)


Figure 13. Model performance measures, Geometric Mean Bias MG = $\exp(\overline{\ln C_o - \ln C_p})^2$ and Geometric Variance VG = $\exp[(\overline{\ln C_o - \ln C_p})^2]$ for concentration predictions and observations at distances less than 200 m. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b: Instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

API PUBL*4546 92 MM 0732290 0505588 188 MM

64

CONCENTRATION CONTINUOUS PASSIVE RELEASES (GROUP 3)

(UNDERPREDICTION)

- Continuous passive gas group of b. Instantaneous passive gas dataset a. datasets (Prairie Grass and Hanford-continuous)
- ġ TRACE 32 16 AFTOX Š 8 INFIDE 4 MAST 2 AIRTOX CASTAR 1 0.25 2 0.125 0.5 1 £ 8 MG (OVERPREDICTION) (UNDERPREDICTION)
 - from Hanford
- Model performance measures, Geometric Mean Bias MG = $exp((lnC_0 lnC_p))$ Figure 14. and Geometric Variance VG = $\exp[(lnC_0 - lnC_p)^2]$ for concentration predictions and observations. a: Continuous passive gas group of datasets (Prairie Grass and Hanford-continuous). b: Instantaneous passive gas dataset from Hanford. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

136

API PUBL*4546 92 🔳 0732290 0505589 014 💻

the Prairie Grass dataset provides many data-points. The GASTAR, TRACE, and CHARM models have relatively large variances. The geometric mean biases for Group 3 can be summarized as follows:

> Models that Overpredict by about a Factor of Two: TRACE, GASTAR

Models that Overpredict by Less Than a Factor of Two: AFTOX, DEGADIS, HEGADAS, SLAB

Models with No Significant Overprediction or Underprediction: INPUFF, GPM, OBDG, PHAST, FOCUS, AIRTOX

The models with the lowest variance (VG \sim 1.5) for Group 3 are the HEGADAS and SLAB models. The magnitude of the scatter for these models is slightly less than the mean value. The good performance of the HEGADAS model is surprising and probably fortuitous since that model is being initialized assuming a small area source, whereas the actual release was a small point source. A group of other models (AIRTOX, DEGADIS, OBDG, FOCUS, GPM, INPUFF, PHAST, and AFTOX) have relatively low VG values in the range from about 1.6 to 2.2, indicating that their scatter is approximately equal to the mean.

The Hanford dataset (Group 5) in Figure 14b has few numbers, leading to a large span in 95 percent confidence limits for the geometric mean bias, MG. Even so, all of the models tend to overpredict the peak concentrations on average. The GASTAR, AIRTOX, PHAST, INPUFF, and CHARM models have the best performance, with mean overpredictions of about 10 to 50 percent and scatters approximately equal to the mean. The TRACE model is unique in its very large degree of overprediction.

g. Analysis of Differences among Models

Up to this point we have characterized the tendency of each model to either overpredict or underpredict peak concentrations, based on the statistical measure, but we have not selected a "best" model. One way to characterize a "best" group of models is to identify the models with the

137

API PUBL*4546 92 🗰 0732290 0505590 836 🛲

smallest mean bias and the smallest scatter, and then ask the question: which other models have a bias or a scatter which is not significantly different from that of the "best" model? The answer provides one basis for defining the "best" group of models.

Appendix D-8 contains tabulations showing whether or not the difference in the geometric variance between pairs of models is significantly different from zero, at the 95 percent confidence level. Consider first the results for the continuous releases of dense gas shown in Figure 12a (Group 1, for distances greater than 200 m). GASTAR appears to have the best overall performance, but we see that its variance is not significantly different from the variance for HEGADAS. However, we see that the geometric mean bias MG found for GASTAR <u>is</u> significantly different from and closer to zero than the bias for the HEGADAS model, although there is no difference between the biases of the GASTAR and DEGADIS models. We conclude that, in general, this group of three models does a better job than the others of matching the peak observed concentrations at distances of 200 m or greater for continuous releases of dense gases.

A summary of model performance for the better performing models at distances greater than 200 m is given in Table 13 for Data Groups 1, 3, 4, and 5. There are no models that appear on the list of better models for all four data groups.

h. Analysis of Model Performance for Stable Ambient Conditions

Another facet of model performance that can be evaluated with these data is the question of how the models perform for the subset of the dense-gas data for which the atmospheric stability class is either E or F (that is, stable ambient conditions). Because "worst-case" dispersion conditions are usually found for these stabilities, many model applications focus on these stable ambient conditions. Figures 15a and 15b show the geometric mean bias (MG) and geometric variance (VG) results, and the statistics themselves are tabulated in Appendices D-9 and D-10 for the continuous and passive dense-gas releases, respectively.

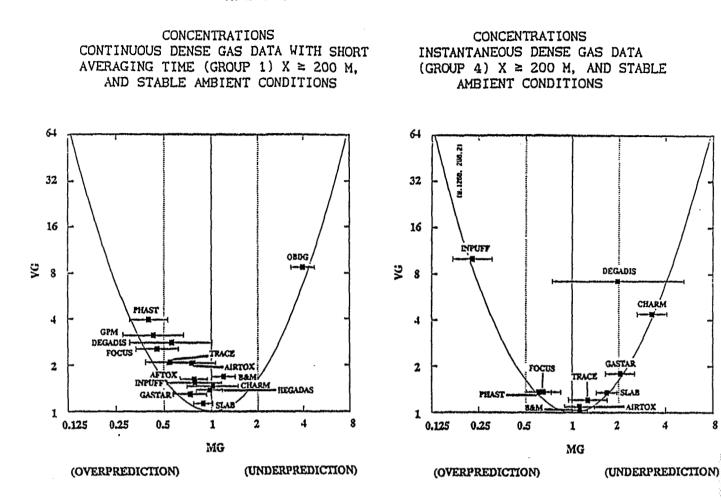

138

TABLE 13. SUMMARY OF BIAS AND VARIANCE RESULTS FOR PREDICTING PEAK CONCENTRATIONS, AT DISTANCES > 200 M.

	Minimum* Geometric Mean Bias MG	Minimum* Geometric Variance VG			
	= exp(lnc /c)	= exp(inc /c) ²)	Grou Overpredicts	<u>Group of Better Models</u> Fren Und	dels Underpredicts
Continuous Dense Gas (x ≥ 200 m) Fig. 12a	0.95 (i.e., 5% bias)	1.4+		GASTAR DEGADIS	HEGADAS Slab Bm Aftox
Instantaneous Dense Gas (Thorney Island) (x ≥ 200 m) Fig. 12b	0.90 (i.e., 10% bias)	1.2	. H	AIRTOX	GASTAR
Continuous Passive Gas Fig. 14a	1.00 (i.e., no bias)	1.4	HEGADAS SLAB	GPM INPUFF 08DG PHAST FOCUS AIRTOX	
Instantaneous Passive Gas (Hanford) (x = 800 m) fig. 14b	0.95 (i.e., 5% bias)	1.3	CHARM INPUFF PHAST	AIRTOX	

* Minimum among the "better" performing group of models

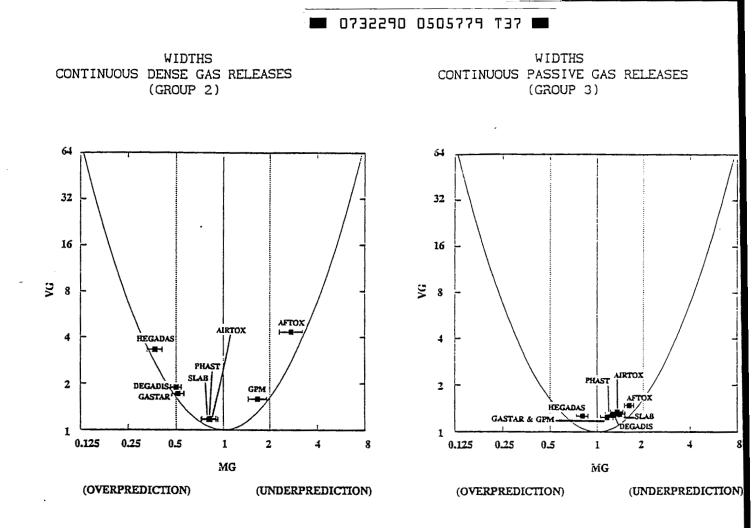
+ A value of VG $\tilde{~}$ 1.6 indicates scatter equal to the mean

- Continuous dense gas group of a. datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island)
- b. Instantaneous dense gas data from Thorney Island

8

Model performance measures, Geometric Mean Bias MG = $exp(\overline{lnC_o} - lnC_p)$ Figure 15. and Geometric Variance VG = $\exp[(lnC_o - lnC_p)^2]$ for concentration predictions and observations at distances greater than or equal to 200 m for STABLE (class E, F) conditions. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish, Maplin Sands, Thorney Island). b: Instantaneous dense gas data from Thorney Island. 95 percent confidence intervals on MG are indicated. The solid line is the "minimum VG" curve, from Equation (33). The dashed lines represent "factor of two" agreement between mean predictions and observations.

API PUBL*4546 92 🎟 0792290 0505599 545 🛲


Comparing Figure 15a with Figure 12a, which includes all ambient stabilities, the models tend more towards overpredictions of peak concentrations during stable ambient conditions. In fact, only the OB/DG model shows a significant underprediction in Figure 15a. Although confidence limits are large due to the smaller number of points, one group of models appears to provide better performance. This group includes BM, HEGADAS, SLAB, CHARM, GASTAR, AFTOX, and INPUFF. Note that when the unstable and neutral ambient conditions are eliminated, the FOCUS model performance greatly improves.

Comparing Figures 15b and 12b, which both apply to instantaneous releases of dense gases, it is seen that the models show a greater tendency towards underpredictions during stable conditions. As before, the variance is dominated by the mean bias for most models. However, all the 95 percent confidence limits on the mean bias are fairly broad, since this sample of the dataset contains few points. The performance of the AIRTOX, B&M, and TRACE models is fairly good, while the performance of the AFTOX, CHARM, DEGADIS, and INPUFF models is relatively poor.

2. Cloud Widths (σ_{i})

Another measure of model performance is the ability of the model to simulate cloud widths, which are very important for defining regions of toxic impacts. Figures 16a and 16b show the geometric mean bias MG and geometric variance VG results for predicting the width of the clouds for continuous dense-gas releases and continuous passive-gas releases, respectively. The corresponding statistics are tabulated in Appendices D-11 and D-12. These figures correspond to the performance measures for concentration predictions in Figures 10b and 14a. Comparing the figures, it is immediately evident that predictions of the widths are generally more successful, overall, than are the predictions of concentration. The largest values of variance are smaller, probably due to the smaller range of observed values of cloud widths. Furthermore, the variations in variance are largely due to variations in mean bias, as expressed by Equation (33).

141

- Continuous dense gas group of datasets
 (Burro, Coyote, Desert Tortoise,
 Goldfish)
- B. Continuous passive gas group of datasets (Hanford, Prairie Grass)

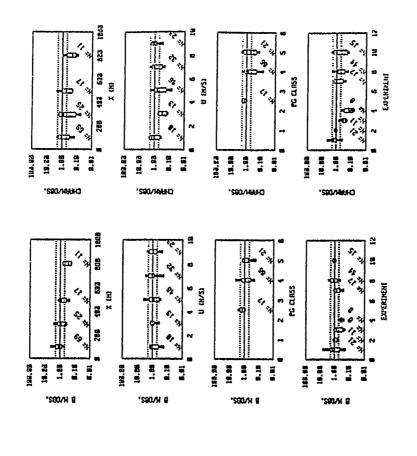
Figure 16. Model performance measures, Geometric Mean Bias $MG = \exp(\overline{lnC_o - lnC_p})^2$ and Geometric Variance $VG = \exp[(lnC_o - lnC_p)^2]$ for plume width predictions and observations. a: Continuous dense gas group of datasets (Burro, Coyote, Desert Tortoise, Goldfish). b: Continuous passive gas group of datasets (Hanford, Prairie Grass). 95 percent confidence intervals on MG are indicated. There is no significant difference in part a among the MG and VG values for the three better models (GPM, AIRTOX, and SLAB). The solid line is the "minimum VG" curve, from Equation (3e). The dashed lines represent "factor of two" agreement between mean predictions and observations.

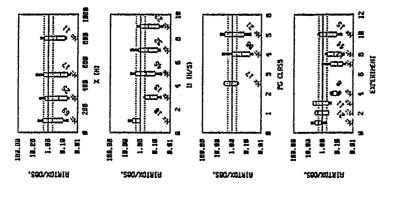
API PUBL*4546 92 🔳 0732290 0505594 481 🔳

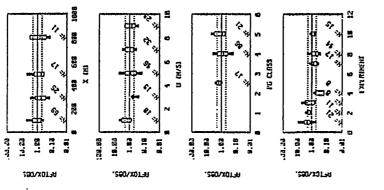
For the dense-gas releases, models such as GPM and AFTOX that do not treat dense gases (and hence dense gas slumping) underpredict the width, as might be anticipated. The other models that do simulate dense gases tend to overpredict. AIRTOX, PHAST, and SLAB overpredict the width by less than about 30 percent, on the average. DEGADIS, GASTAR, and HEGADAS overpredict the width by a factor of two or more.

For the passive releases, only HEGADAS tends to overpredict the widths. The rest underpredict by a small amount. There is no distinction between the performance of the simple passive dispersion model, GPM, and the dense-gas models. Overall, it is interesting to note that the models tend to slightly underpredict the width, and overpredict the peak concentrations resulting from continuous releases of passive gases.

A. PROCEDURES

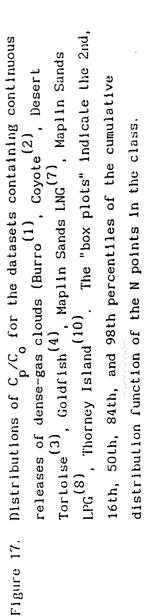

One way of evaluating the scientific credibility of a model is through the use of residual plots, where "residual" is defined in this application as the ratio of the predicted to the observed concentration (note that the logarithm of this ratio equals the difference between the logarithm of the two concentrations). In other applications, the residual could be defined as the arithmetic difference between the observed and predicted concentrations. Values of the residual can be plotted versus variables such as wind speed or stability. The residual of a good model (1) should not exhibit any trend with variables such as wind speed and stability class, and (2) should not exhibit large deviations from unity (implying a perfect match between the model and the observed). The SIGPLOT plotting package described in Volume I was used to generate the residual plots for this evaluation.


The residuals are grouped for plotting by means of "box plots." Grouping is usually necessary because of the large number of data points. The cumulative distribution function (cdf) of the residuals within each group is represented by the 2nd, 16th, 50th, 84th, and 98th percentiles. These five significant points in the cdf are then plotted in a "box" pattern. As mentioned above, the residual boxes should not exhibit any systematic dependence on primary variables. It is also desirable that the residual boxes should be compact and should not deviate too much from unity.

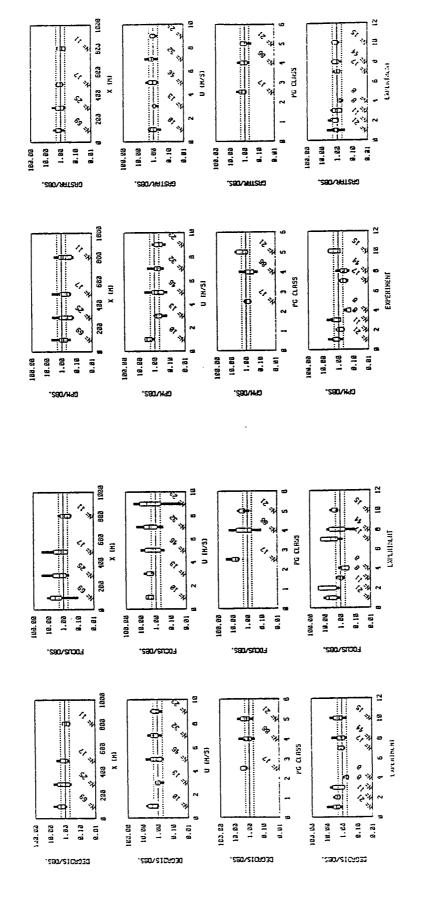

B. RESULTS

Residuals for the continuous dense-gas releases are shown in Figure 17, where four "variables" are used: downwind distance (X), ambient wind speed (U), ambient Pasquill-Gifford stability class (PG CLASS), and the number of the experiment (EXPERIMENT). The PG CLASS numbers follow the normal convention in which 1 = very unstable (A), 2 = unstable (B), 3 = slightly unstable (C), 4 = neutral (D), 5 = slightly stable (E), and 6 = stable (F). The number of the experiment is based on the following alphabetical ordering of the datasets:

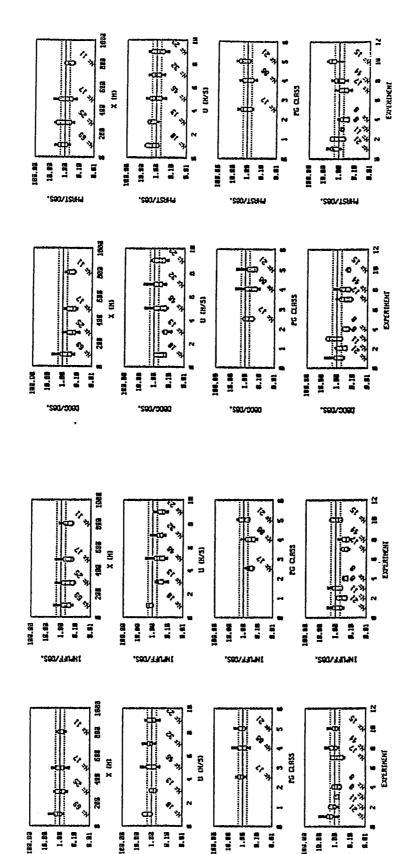
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


146

.


Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale


The "box plots" indicate the 2nd, Distributions of C_p/C_o for the datasets containing continuous , Maplin Sands ', Desert 16th, 50th, 84th, and 98th percentiles of the cumulative distribution function of the N points in the class. Coyote⁽²⁾ , Maplin Sands LNG⁽⁷⁾, releases of dense-gas clouds (Burro⁽¹⁾, Thorney Island⁽¹⁰⁾ , Goldfish⁽⁴⁾. Tortoise⁽³⁾ • (8) LPG Figure 17.

API PUBL*4546 92 🔳 0732290 0505597 190 🔳

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 147

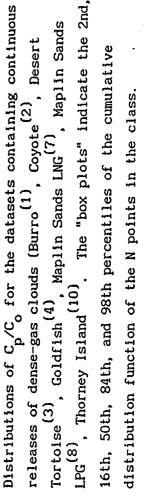
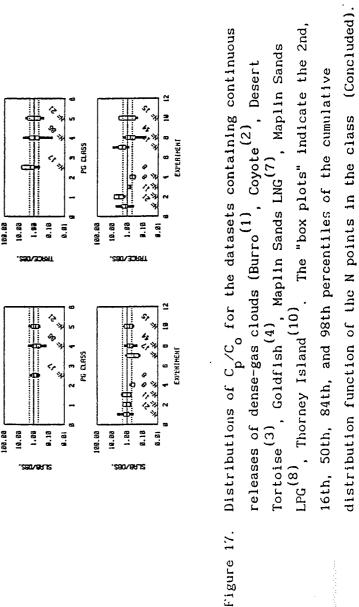
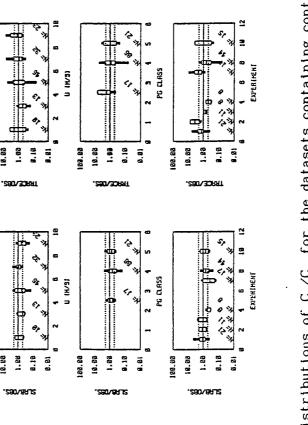


Figure 17.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

"S90/SHOUD3H


1500/SHOH03H


Not for Resale

1520/04/04/04

148

*S90/SHOHOGH

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

1000

629 \$

699

88

1808

88

609

199

XGE

10.00

148.88

188.89

188.88

18.88

1.80

·\$80/9675

9.10 8.91

19.80 8. 9.10 8.81

1590/30401

X (H)

108.60 18.83

API PUBL*4546 92 🗰 0732290 0505600 505 📠

- 1. Burro
- 2. Coyote
- 3. Desert Tortoise
- 4. Goldfish
- 5. Hanford (continuous)
- 6. Hanford (instantaneous)
- 7. Maplin Sands (LNG)
- 8. Maplin Sands (LPG)
- 9. Prairie Grass
- 10. Thorney Island (continuous)
- 11. Thorney Island (instantaneous)

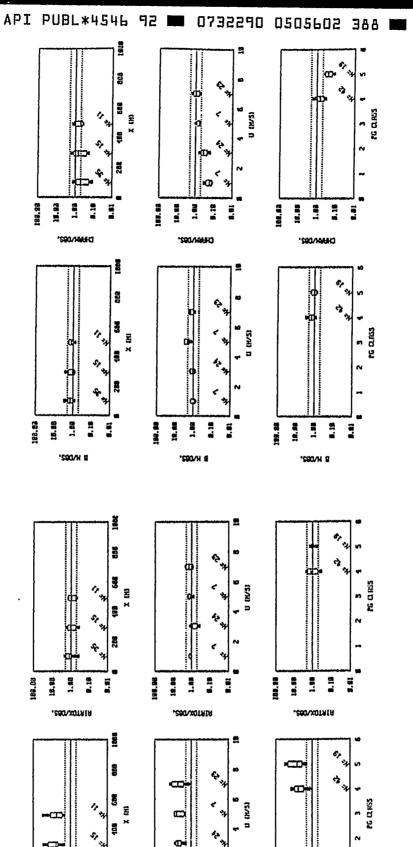

Plotting the distribution of residuals against the experiment identifies potential "problems" with individual experiments. A good example of this is the Goldfish experiment. All of the models tend to underpredict concentrations observed during Goldfish. Table 14 summarizes characteristics of the performance of each of the models that are revealed by the plots of residuals. The main "problem" for many of the models is not a problem for certain dispersion regimes or a problem with near-field or far-field receptors. It is a problem of uneven performance <u>among</u> the datasets. A model will tend to overestimate concentrations for one dataset, and underestimate those for another. This can lead to a low overall mean bias but a large variance. However, some models such as GASTAR and HEGADAS display less variability in performance across the datasets, which indicates that there is reason to believe the other models can be improved in this regard.

Figure 18 contains the residual plots for the instantaneous-release dense-gas dataset (Group 4). Because only the Thorney Island trials are included in this group, there is no reason to plot residuals as a function of dataset. Table 15 summarizes the characteristics revealed in Figure 18. The most common problem identified is the tendency of some dense-gas models to underpredict peak concentrations and of other models to overpredict these concentrations during low wind speed, stable conditions. Also, we see that the simple passive gas models tend to overpredict concentrations in general. The AIRTOX, BM, GASTAR, and SLAB models show the desirable trait of relatively small variability in their residual plots.

API PUBL*4546 92 🎟 0732290 0505601 441 🎟

- TABLE 14. PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUCUS RELEASES OF DENSE-GAS CLOUDS. (SEE FIGURE 17).
- AFTOX: Much of variability arises from uneven performance among individual datasets.
- AIRTOX: There is a large range in performance overall, with particularly large underpredictions for Goldfish and Maplin Sands. Underpredicts for all wind speeds except very low wind speed.
- BM: Tendency to underpredict at greater distances.
- CHARM: Much of variability is due to Desert Tortoise and Goldfish trials (2-phase jets). Tendency to underpredict at greater distances.
- DEGADIS: Tendency to overpredict at shorter distances.
- FOCUS: Large overpredictions during unstable conditions at shorter distances.
- GPM: Overpredictions for light wind speeds and stable conditions.
- GASTAR: Few problems, since there is little variability of residuals.
- **HEGADAS:** Few problems, since there is little variability of residuals.
- INPUFF: Much of variability is due to underpredictions for the Goldfish and Maplin Sands trials.
- OB/DG: Tends to underpredict in general, with poorest performance found for Goldfish, Maplin Sands, and Thorney Island trials.
- PHAST: Overpredicts at short distances, underpredicts at greater distances.
- SLAB: Few problems, since there is little variability of residuals.
- TRACE: Most variability arises from uneven performance among individual datasets.

Distributions of C /C for Thorney Island instantaneous releases 50th, 84th, and 98th percentiles of the cumulative distribution The "box plots" indicate the 2nd, 16th, function of the N points in the class. of dense-gas clouds. Figure 18.

2. X

9, 81

1.53

.200/X01%

18.23

1.83 8.18

.230/x01%

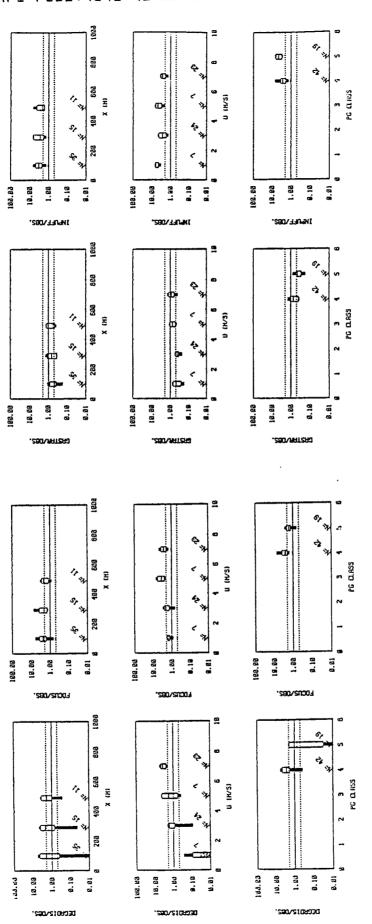
8.81

1.12.52

നാ

10.52

149.631

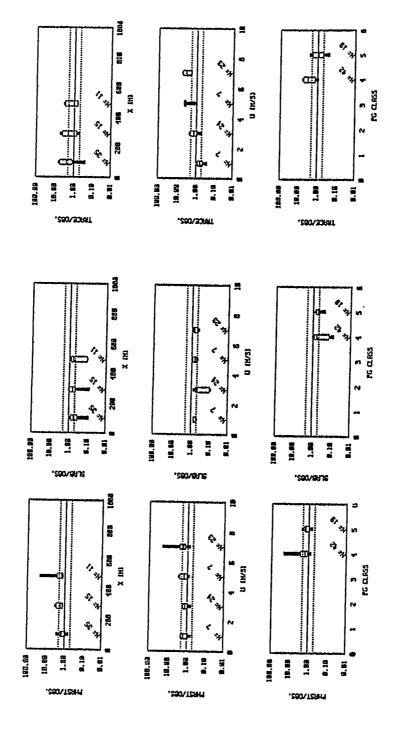

8,12

'\$90/x01.4

ő. 9

82.681 86.81 1.82

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


Distributions of C /C for Thorney Island instantaneous releases and 98th percentiles of the cumulative distribution The "box plots" indicate the 2nd, 16th, function of the N points in the class. of dense-gas clouds. 50th, 84th, Figure 18.

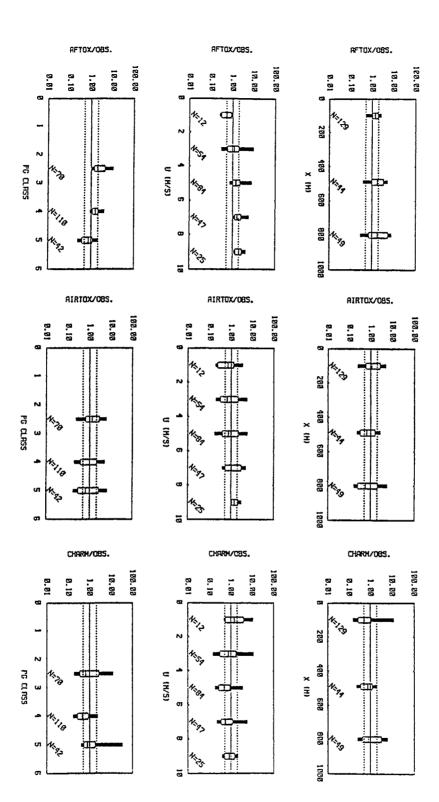
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 153

Not for Resale

API PUBL*4546 92 🗰 0732290 0505603 214 📟

Distributions of C_p/C_o for Thorney Island instantaneous releases of dense-gas clouds. The "box plots" indicate the 2nd, 16th, 50th, 84th, and 98th percentiles of the cumulative distribution The "box plots" indicate the 2nd, 16th, function of the N points in the class (Concluded). Figure 18.

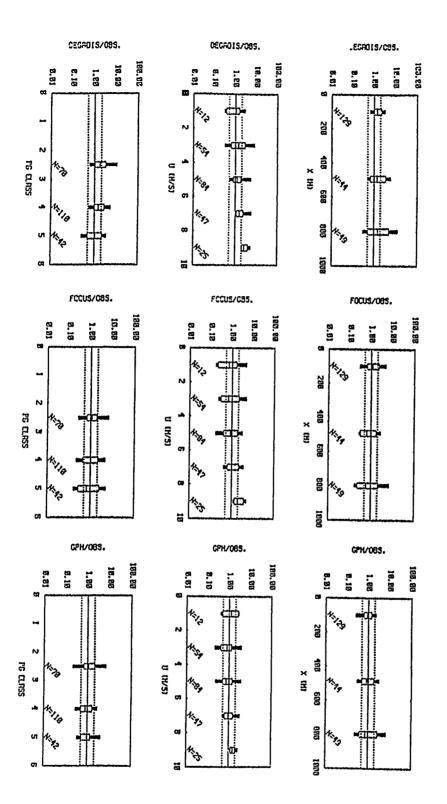
API PUBL*4546 92 🔳 0732290 0505605 097 📖


- TABLE 15.PROBLEMS REVEALED BY RESIDUAL PLOTS FOR INSTANTANEOUS DENSE-GAS
CLOUDS (THORNEY ISLAND). (SEE FIGURE 18).
- AFTOX: Large overpredictions; worse for light wind speed, stable conditions
- AIRTOX: Few problems, since there is little variability in residual plots.
- BM: Few problems, since there is little variability in residual plots.
- CHARM: Underpredicts during low wind speed, stable conditions, at short distances.
- DEGADIS: Underpredicts during low winds and overpredicts during high winds.
- FOCUS: Moderate overpredictions throughout, with little variability.
- GASTAR: Few problems, since there is little variability in residual plots.
- INPUFF: General overpredictions throughout, with little variability.
- PHAST: A few large overpredictions during high wind speed conditions.
- SLAB: Few problems, since there is little variability in residual plots.
- TRACE: Underpredicts during low wind speed conditions and overpredicts during high wind speed conditions.

API PUBL*4546 92 🛲 0732290 0505606 T23 🛲

Because there are few data-points in the dataset for instantaneous releases of passive-gas clouds (Hanford), we have not produced residual plots for this dataset (Group 5). The plots for continuous releases of passive-gas clouds (Prairie Grass - Group 3) are shown in Figure 19, and the results are summarized in Table 16. Among the models designed for dense-gas clouds, several tend to increasingly overpredict concentrations during increasingly unstable conditions or higher wind conditions. The CHARM, GPM, HEGADAS, INPUFF, and SLAB models have the desirable trait that there is relatively little variability in their residual plots for this group of data.

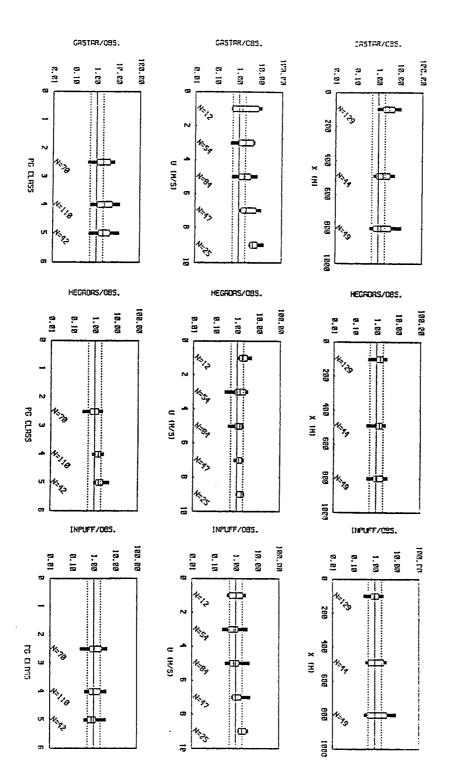
156


API PUBL*4546 92 🗰 0732290 0505607 96T 🛲

of Distributions of C $/C_{\rm p}$ for Prairie Grass continuous releases passive-gas clouds. Figure 19.

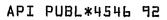
157

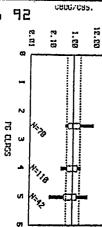
API PUBL*4546 92 🗰 0732290 0505608 AT6 🛤

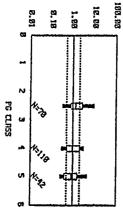


158

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


.


API PUBL*4546 92 🎟 0732290 0505609 732 🎟


Distributions of C $/C_o$ for Prairie Grass continuous releases of passive-gas clouds. Figure 19.

159

162.08

SURE/085.

TRACE/085.

1.89

8.81

N

Ģ

, I ×1,0

(J 2

0

9.91

6

N

ω

-1

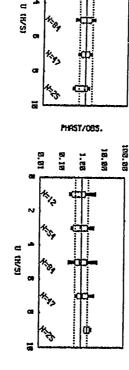
(K:1)0 , ه

(Kigg S

FG CL/155

8. 18

PG CLINS


8.10 1.00 185.63

193.63

15.88

18.93

PHAST/085

SLA8/085.

1-20

9. 10

8.81

U (H/S)

σ

-

19

6.81 8. 18

N

n

α

5

0 (X/S)

1.12

×.s,

``8**4**

رلأ

^وي:

÷3

18902/085.

1.00

193. 89

18.88

^K./2

198.88

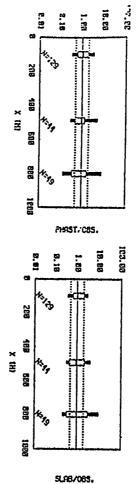
18,96

-000/000.

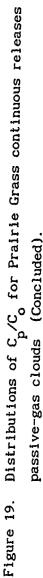
].23

2.18

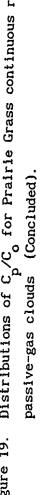
8,81


N

^K.Z


ŝ,

102.68


15.53

WW 133.

of

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

160

r۲

<u>اللہ</u>

129,98 15,08 1.01 8.18 1.98 *7₄₃, 200 188 × 3 508 909 ×., g TRACE/085. 100.00 JØ. DØ 0. 19 1.86 1**0**-01 ŵą, 200 108 X IH) ٠, 598 89 1.29

Not for Resale

API PUBL*4546 92 🔳 0732290 0505611 390 🖿

- TABLE 16. PROBLEMS REVEALED BY RESIDUAL PLOTS FOR CONTINUOUS PASSIVE-GAS CLOUDS (PRAIRIE GRASS). (SEE FIGURE 19).
- AFTOX: Slightly underpredicts during light wind speed, stable conditions.
- AIRTOX: Trend towards underpredictions at greater distances, light winds, and stable conditions.
- CHARM: Few problems, since there is little variability in residual plots.
- DEGADIS: Overpredicts slightly in general, but with little variability in residual plots.
- FOCUS: Relative underpredictions at low wind speeds and overpredictions at high wind speeds.
- GPM: Few problems, since there is little variability in residual plots.
- GASTAR: Overpredicts at shorter distances and higher wind speeds.
- HEGADAS: Few problems, since there is little variability in residual plots.
- INPUFF: Few problems, since there is little variability in residual plots.
- OB/DG: Underprediction tendency during light wind speeds.
- PHAST: Overpredicts during high wind speed conditions.
- SLAB: Few problems, since there is little variability in residual plots.
- TRACE: Overpredicts with increasingly higher winds and unstable dispersion conditions

SECTION VI

SENSITIVITY ANALYSIS USING MONTE CARLO PROCEDURES

A. OVERVIEW

The Monte Carlo method is one way of estimating the magnitude of model uncertainties due to input data errors. The method involves running the model multiple times, with the input parameters slightly perturbed each time (see Volume I, Section IX). It is necessary to implement the Monte Carlo sensitivity analyses on a platform where the user can easily run the model repeatedly, efficiently extract the information of interest, and not be overwhelmed by the amount of the output generated. The MDA (Modeler Data Archive) software package previously described in this volume serves as an ideal choice for this platform in that the execution of most of the dispersion models has been automated, and in that the extraction of useful information from the outputs can be achieved by the post-processors that have already been developed. In the following, we shall call the software package that implements the Monte Carlo method MDAMC.

B. CHOICE OF MODELS AND INPUT PARAMETERS

There are some important criteria that should be heeded in choosing specific dispersion models for application of the Monte Carlo sensitivity analyses. First, it is desirable that the input, the execution and the post-processing of the model be fully automated. Second, it is desirable that the model can execute reasonably fast (say, less than 10 seconds for each run), since it is necessary to run the model hundreds to thousands of times. Last, as a somewhat less stringent requirement, the model should have a simple I/O structure, such as a small number of compact input and output files are involved. Based on these criteria, the SLAB model was chosen for testing of MDAMC. The AFTOX, DEGADIS, GASTAR and GPM models also satisfy these criteria, but were not used in the sensitivity study reported in this section.

The input parameters accepted by the models can be classified as primary and secondary. Secondary input parameters are derived from the primary input parameters. Wind and temperature measurements, and surface roughness are the examples of primary input parameters. Monin-Obukhov length and stability class are the examples of secondary input parameters. In the Monte Carlo study, only

API PUBL*4546 92 🗰 0732290 0505613 163 🛤

variations in the primary input parameters are considered. The following seven primary input parameters are perturbed at each Monte Carlo simulation in our example:

- domain averaged wind speed (u),
- difference in wind speed between the domain-average and a tower (du),
- difference in temperature between two levels on a tower (dT),
 - relative humidity (RH),
- surface roughness (z_0) ,
- source emission rate (Q), and
- source diameter (D).

The first four parameters are related to the meteorology, the fifth parameter is related to the site condition, and the last two parameters are related to the source condition. In this application, it is assumed that there is no correlation among the primary input parameters. Other secondary variables such as Monin-Obukhov length, friction velocity, and stability parameter are calculated from the above seven primary parameters.

Currently, the MDAMC package uses concentrations and cloud widths at certain downwind distances as indicators of model uncertainty due to input data errors.

Perhaps the most difficult problem encountered in Monte-Carlo sensitivity analyses is the specification of the distributions of the primary input parameters. The Gaussian distribution (for example, Reference 71) and the log-normal distribution (for example, Reference 72) are common choices for many ambient measurements. However, there is a lack of knowledge about the distributions for some parameters. Moreover, in the case of the surface roughness and the source emission rate, the need for a detailed description of their distributions becomes less clear. O'Neill et al. (Reference 73) found out the results of a Monte Carlo analysis of their stream ecosystem model were not sensitive to the choice of parameter distributions. Therefore, it was decided that a simple uniform distribution would be used for all parameters in this example. For a uniform distribution the probability of occurrence of the parameter is the same at all points within an upper and lower bound. Outside of these bounds, the probability of occurrence is zero.

API PUBL*4546 92 📰 0732290 0505614 OTT 📰

The range of a parameter is the only information needed to fully define a uniform distribution. The ranges of uncertainties associated with meteorological observations depend on the kind of the instrument used, the averaging time, the orientation with the wind direction, and the atmospheric stability (see Volume III of this report). For simplicity, the MDAMC package assumes the following default values for the ranges of uncertainties for the input parameters; however, the user always has the option of specifying his own ranges.

wind speed (u and du):	the mean ± larger of 0.5 m/s and $\sigma_{\rm u}$
temperature difference (dT):	the mean ± 0.2°C
relative humidity (RH):	the mean ± 10 percent
surface roughness (z ₀):	the mean ± 1/2 order of magnitude
source emission rate (Q):	the mean ± 1/2 order of magnitude
source diameter (D):	the mean ± 1/2 order of magnitude

For example, if the observed domain-averaged wind speed, u, is 5.6 m/s and the standard deviation, $\sigma_{\rm u}$, is 0.9 m/s, is the wind speed for each Monte Carlo simulation will be drawn randomly from the range between 4.7 and 6.5 m/s. If the reported surface roughness is 0.0316 m, the surface roughness for each Monte Carlo simulation will be drawn randomly from the range between 0.01 and 0.1 m.

C. IMPLEMENTATION

During the execution of MDAMC, the user has to specify: 1) a dispersion model whose uncertainty due to data input errors is to be investigated, 2) a trial from which perturbations on the primary input parameters will be created, 3) the number of Monte Carlo simulations to be made, and 4) the ranges for the primary input parameters, if the default values provided by the program were not desired.

The output file created by MDAMC echoes most of the user inputs just described previously. As an option, the file lists the values of the input and output parameters for each Monte Carlo simulation. Finally, the file includes the minimums, maximums, means and standard deviations for all the parameters

165

API PUBL*4546 92 🗰 0792290 0505615 T96 🖿

based on all the simulations, so that the user can analyze the relationship of input data errors to model uncertainty. An example of this output file is shown in Table 17.

D. RESULTS

In the following, the Desert Tortoise 3 experiment and the SLAB model are chosen to demonstrate the use of the MDAMC package. It takes roughly two hours to complete 500 simulations using the SLAB model on a PC with 80386 CPU and 80387 math co-processor, both running at 25MHz. The default uncertainties for the primary input parameters that were previously described were used. For the Desert Tortoise 3 experiment the following observed values were listed in the MDA: u = 7.4 m/s, du = 0.2 m/s, $dT = -0.02^{\circ}\text{C}$, RH = 14.8 percent, $z_0 = 0.003 \text{ m}$, Q = 130.7 kg/s, D=0.0945 m, and u= 1.0 m/s. For a uniform distribution with the default ranges of uncertainties, the ratios of standard deviation to mean for u, du, dT, RH, z_0 , Q, and D are 0.078, 2.89, 5.77, 0.39, 0.47, 0.47, and 0.47, respectively. The MDAMC package was first run with all seven primary input parameters perturbed simultaneously. In order to isolate the influence of each parameter, MDAMC was run seven more times, each time varying only one of the primary input parameters. Table 18 summarizes the results when all seven parameters were perturbed, and the corresponding probability density functions (pdf) of the concentrations and widths are shown in Figure 20. Tables 19 through 25 summarize the results when only one of the parameters was perturbed. Model results using the original input data without any perturbation were also included in the tables and referred to as the "reference value."

Table 26 summarizes the ratio of the relative model uncertainties, $\overline{\sigma_c}/\overline{C}$ and σ_w/\overline{w} , to the relative input data uncertainties, σ_i/\overline{I} (C = concentration, w = width, i = input parameter) for this particular example of Monte Carlo sensitivity analysis. Note that the relative sensitivities are less than unity for all variables and that the predictions are the most sensitive to variations in wind speed and source strength.

From Figure 20 it is clear that even though all the primary input parameters were given a uniform distribution, the distribution of the subsequent model results is far from being uniform. It is evident from Table

166

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🔳 0732290 0505616 972 🔳

TABLE 17. AN EXAMPLE OF THE OUTPUT FILE GENERATED BY THE MDAMC PACKAGE, WHERE 20 MONTE CARLO SIMULATIONS OF THE SLAB MODEL FOR THE DESERT TORTOISE 3 EXPERIMENT WERE PERFORMED.

Trial name: dt3 20 No. of simulation: Orig. value, l.b., u.b., mean, sigma, and sigma/mean for each variable: Note that the means and sigmas here are based on the THEORETICAL UNIFORM distribution u 7.40 6.40 8.40 7.40 0.577 0.780E-01 8.40 1.20 0.577 0.780E-01 2.89 7.40 -0.800 0.200 0.200 du -0.200E-01 -0.220 0.180 24.8 -0.200E-01 0.115 -5.77 dT 14.8 RH 14.8 4.80 0.390 0.300E-02 0.948E-03 0.948E-02 0.521E-02 0.246E-02 0.472 z0 o 131. 41.3 413. 227. 107. 0.472 Rdiam 0.945E-01 0.299E-01 0.299 0.164 0.776E-01 0.472 AFTOX = n DEGADIS = D GASTAR = n GPM = n - ... - y SLAB NDIST = And the downwind distances (m) are: 100. 800. u du d۳ RH z0 Q Rdiam L PG conc(ppm)... sigy(m)... Following are the values of the parameters for each simulation: Following are the values of the parameters for each simulation: 7.180E+00-4.577E-01 3.693E-02 2.218E+01 2.403E-03 2.990E+02 9.451E-02 4.433E+02 4 3.050E+05 2.010E+01 1.389E+01 1.067E+02 6.864E+00 1.131E+00 4.853E-02 1.107E+01 7.112E-03 4.092E+02 1.123E-01 7.997E+02 4 3.439E+05 2.133E+04 1.485E+01 1.165E+02 7.804E+00 3.245E-01 1.084E-01 2.081E+01 6.710E-03 3.527E+02 2.610E-01 6.275E+02 4 3.233E+05 1.773E+04 2.917E+01 9.763E+01 7.811E+00-3.991E-01 1.369E-01 1.971E+01 4.210E-03 2.209E+02 2.541E-01 4.139E+02 4 2.351E+05 1.258E+04 2.890E+01 9.66E+01 7.365E+00-4.086E-01 3.866E-02 7.263E+00 3.628E-03 2.472E+02 2.541E-01 5.273E+02 4 2.631E+05 1.258E+04 2.890E+01 9.66E+01 7.365E+00-4.086E-01 3.866E-02 7.263E+00 3.628E-03 2.472E+02 2.611E-01 7.467E+02 4 2.427E+05 1.225E+04 3.068E+01 9.066E+01 6.756E+00-5.513E-02 3.835E-02 2.471E+01 9.208E-03 2.439E+02 2.611E-01 7.467E+02 4 2.427E+05 1.156E+04 2.007E+01 9.643E+01 7.371E+00 5.474E-01 1.230E-01 1.302E+01 1.997E-03 1.737E+02 1.248E+01-2.045E+03 4 2.703E+05 1.156E+04 2.007E+01 9.643E+01 7.371E+00 5.474E-01 1.230E-01 1.302E+01 1.084E-03 9.177E+01 1.131E-01 4.028E+02 4 2.554E+05 1.246E+04 1.743E+01 8.820E+01 7.080E+00 6.179E-01-3.019E-02 2.278E+01 1.084E-03 9.177E+01 1.131E-01 4.028E+02 4 2.554E+05 1.152E+04 2.507E+01 7.962E+01 8.364E+00-6.513E-01 5.882E+02 8.073E+00 1.577E+02 3.157E+02 2.108E+01 4.655E+02 4 2.105E+05 1.152E+04 2.507E+01 7.962E+01 7.158E+00 1.603E+01 8.617E+02 1.420E+01 7.377E+03 2.557E+02 2.089E+01 4.655E+02 4 2.910E+05 1.557E+04 2.507E+01 9.752E+01 7.159E+00-3.557E-01 1.005E+01 1.439E+01 6.732Z+03 3.557E+02 2.089E+01 1.065E+03 4 2.910E+05 1.557E+04 2.507E+01 9.752E+01 7.559E+00 3.63E+00 1.033E+01 4.051E+03 2.557E+02 2.089E+02 4 3.266E+05 1.886E+04 3.2554E+01 9.7252E+01 7.559E+00 3.63E+00 1.033E+01 4.051E+03 3.557E+02 2.741E+01 4.581E+02 4 3.266E+05 1.886E+04 3.2554E+01 9.732E+01 7.559E+00 3.637E+00 1.034E+01 2.175E+01 4.932E+03 3.645E+02 1.937E+03 4 3.416E+05 2.292E+04 1.553E+01 1.052E+02 7.844E+00 6.039E+01-2.172E+01 2.071E+01 4.236E+03 3.64 Following are the min., max., means and standard deviations of the parameters for all simulations:

6.433E+00-6.513E-01-2.172E-01 6.340E+00 1.084E-03 4.359E+01 3.045E-02-2.181E+03 8.527E+04 2.506E+03 9.998E+00 6.115E+01 8.364E+00 1.131E+00 1.600E-01 2.471E+01 9.209E-03 4.092E+02 2.872E-01 3.937E+03 3.439E+05 2.292E+04 3.254E+01 1.204E+02 7.443E+00 1.405E-01 2.369E-02 1.545E+01 5.402E-03 2.358E+02 1.681E-01 5.705E+02 2.374E+05 1.309E+04 2.199E+01 9.180E+01 5.291E-01 5.764E-01 1.021E-01 5.561E+00 2.513E-03 9.319E+01 8.577E-02 1.180E+03 7.503E+04 5.115E+03 7.150E+00 1.416E+01

167

API PUBL*4546 92 MM 0732290 0505617 809 MM

TABLE 18. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ALL SEVEN PRIMARY INPUT PARAMETERS (SEE TEXT) WERE PERTURBED SIMULTANECUSLY IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISES EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	66709	2074	9.4	57.6
maximum	424204	31130	38.5	127.7
mean	236500	13230	21.0	92.2
s.d.	87390	6032	6.7	15.1
s.d./mean	0.37	0.46	0.32	0.16

TABLE 19. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DOMAIN AVERAGED WIND SPEED WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	203398	7593	15.4	74.0
maximum	215402	9595	18.6	90.4
mean	209600	8540	17.0	81.7
s.d.	3431	582	0.9	4.8
s.d./mean	0.016	0.068	0.053	0.059

168

API PUBL*4546 92 🗰 0732290 0505618 745 🛤

TABLE 20. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN WIND SPEED BETWEEN DOMAIN-AVERAGE AND A TOWER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	209700	8459	16.8	81.0
maximum	209700	8541	16.8	81.2
mean	209700	8488	16.8	81.1
s.d.	0	21	0	0.06
s.d./mean	0	0.0025	0	0.0007

TABLE 21. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE DIFFERENCE IN TEMPERATURE BETWEEN TWO LEVELS ON A TOWER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	208698	8249	16.8	80.9
maximum	209702	8713	16.9	81.2
mean	209500	8494	16.9	81.1
s.d.	311	132	0.02	0.06
s.d./mean	0.0015	0.016	0.0012	0.0007

API PUBL*4546 92 🗰 0732290 0505619 681 🛲

TABLE 22. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE RELATIVE HUMIDITY WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	207398	8368	16.8	81.0
maximum	211102	8641	17.0	81.2
mean	209400	8492	16.9	81.1
s.d.	1018	75	0.06	0.06
s.d./mean	0.0049	0.0088	0.0036	0.0007

TABLE 23. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SURFACE ROUGHNESS WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	184698	6599	16.1	77.5
maximum	219102	10810	17.9	84.3
mean	200300	7827	17.2	79.8
s.d.	10240	1062	0.5	1.7
s.d./mean	0.05	0.14	0.029	0.021

API PUBL*4546 92 🔳 0732290 0505620 3T3 📕

TABLE 24. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE EMISSION RATE WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	84789	2749	12.5	61.8
maximum	321303	23880	17.7	114.5
mean	257500	14450	15.0	94.5
s.d.	61460	6049	1.6	14.4
s.d./mean	0.24	0.42	0.11	0.15

TABLE 25. MODEL UNCERTAINTIES FOR THE SLAB MODEL WHEN ONLY THE SOURCE DIAMETER WAS PERTURBED IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (S.D.: STANDARD DEVIATION)

	conc (ppm) @ 100m	conc (ppm) @ 800m	width (m) @ 100m	width (m) @ 800m
Reference value	210000	8545	16.8	81.3
minimum	99209	7475	11.6	79.0
maximum	210402	8504	28.4	86.2
mean	180200	8305	21.7	80.7
s.d.	23450	1955	5.3	2.1
s.d./mean	0.13	0.24	0.24	0.026

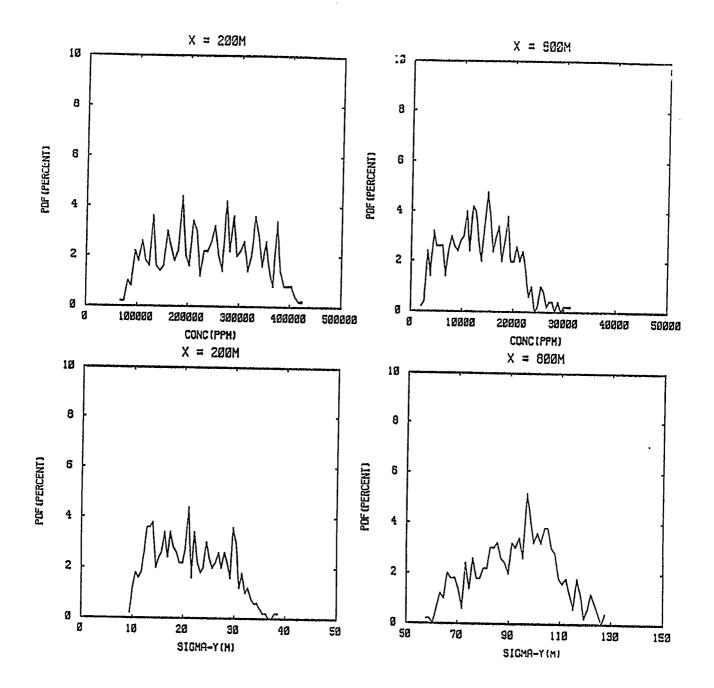


Figure 20. The probability density functions (pdf) of the concentrations and widths (sigma-y) at 200 and 800m downwind based on 500 Monte Carlo simulations of the SLAB model for the Desert Tortoise3 experiment.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🖿 0732290 0505622 176 🔳

TABLE 26. RATIOS OF RELATIVE MODEL UNCERTAINTIES, σ_{c}/\overline{C} AND σ_{w}/\overline{w} , TO THE RELATIVE INPUT DATA UNCERTAINTIES, σ_{i}/\overline{i} , FOR THE SLAB MODEL WHEN THE SEVEN PRIMARY INPUT PARAMETERS (SEE TEXT) WERE PERTURBED ONE AT A TIME IN 500 MONTE CARLO SIMULATIONS FOR THE DESERT TORTOISE 3 EXPERIMENT. (σ = STANDARD DEVIATION, OVERBAR = MEAN, C = CONCENTRATION, w = CLOUD-WIDTH, AND i = INPUT PARAMETER).

	Downwind Distance	u	du	dT	RH	z ₀	Q	D
σ _i ∕ i		0.078	2.89	5.77	0.30	0.472	0.472	0.472
 م_⁄2	200 m	0.21	0	0.0026	0.012	0.11	0.51	0.28
σ _c /̄C σ _i / ī	800 m	0.87	0.00087	0.0027	0.023	0.29	0.89	0.050
ক _₩ ∕₩	200 m	0.71	0	0.00024	0.0085	0.058	0.23	0.52
σ _i / ī	800 m	0.75	0.00025	0.00012	0.0017	0.045	0.32	0.055

API PUBL*4546 92 🛲 0732290 0505623 002 🛲

18 that large ranges of the model results due to input data uncertainties are observed. However, for the SLAB model and a horizontal aerosol jet release like Desert Tortoise 3, Table 26 shows that the large ranges in predictions are mainly attributed to uncertainties in the wind speed (u), the source emission rate (Q), and the source diameter (D). Uncertainties in the surface roughness (z_0) have a moderate influence. Uncertainties in the wind speed difference, (du), the temperature, (dT), and the relative humidity, (RH), are found to be relatively inconsequential. The results of this example point out the importance for a dispersion model to simulate the source term correctly for a horizontal aerosol jet release.

The calculated sensitivities could depend strongly on the model formulation and on the value of the original (reference) data. For example, if the uncertainty range of ΔT crosses a threshold where the PG class jumps from C to D, D to E, etc., then a large change in concentration or cloud width may result.

174

API PUBL*4546 92 M 0732290 0505624 T49 SECTION VII SUMMARY OF EVALUATION

The tables and figures in the previous sections provide quantitative estimates of the model performance measures for individual groups of experiments (for example, dense-gas continuous releases or neutrally-buoyant gas instantaneous releases). Emphasis was on the geometric mean bias, MG, and the geometric variance, VG, for each group. It is difficult to combine these results, since the problem often reduces to comparing "apples" to "oranges." For example, how can the BM model, which applies only to dense gas releases, be compared with the Gaussian plume model, which applies only to continuous releases of neutrally-buoyant gases?

In this section, the model evaluation exercise is generalized by combining the information from the different datasets in a qualitative manner. For this purpose, we use the following three groups of datasets:

- Group 1: Continuous dense gas releases, with short averaging times (several of the models state that they are most applicable to short rather than long averaging times)
- Group 3: Instantaneous dense gas releases (Thorney Island)
- Group 4: Continuous passive gas releases (mostly Prairie Grass)

The experiments with instantaneous passive gas releases are not included in this final summary since there were relatively few runs and all the models tended to overpredict.

A. CONCENTRATION PREDICTIONS

The evaluations discussed in Section IV emphasized use of the logarithm of concentration, which lessens the influence of outliers and which gives equal weight to over- or under-predictions. The FAC2 statistic is also a logarithmic measure, since it is the fraction of the predictions that are within a factor of two of observations. Ranking of models according to the FAC2 results is given in Table 27, where the ranges of FAC2 are arbitrarily

API PUBL*4546 92 MM 0732290 0505625 985 MM

TAELE 27. RANKING OF MODELS ACCORDING TO FAC2 (FACTOR OF TWO) STATISTIC, WHICH EQUALS THE FRACTION OF TIME THAT THE PREDICTIONS ARE WITHIN A FACTOR OF TWO OF THE OBSERVATIONS.

Continuous Dense Gas Releases (Short Averaging Time)		Instantaneous Dense Gas Releases		Continuous Passive Gas Releases	
FAC2 > 0.7	(GPM) BM HEGADAS SLAB	FAC2 > 0.8	BM AIRTOX™	FAC2 > 0.8	(SLAB) (HEGADAS)
0.6 < FAC2 < 0.	(AFTOX)	0.6 < FAC2 < 0.8	[PHAST [™] SLAB	0.7 < FAC2 < 0.8	GPM OBDG INPUFF AFTOX
	CHARM [™]	0.5 < FAC2 < 0.6	GASTAR [™] CHARM [™]		[PHAST [™]
0.4 < FAC2 < 0.	6 GASTAR [™] PHAST [™] FOCUS [™]	0.2 < FAC2 < 0.5	TRACE [™] FOCUS [™] DEGADIS	0.5 < FAC2 < 0.7	DEGADIS FOCUS [™] TRACE [™] AIRTOX [™] CHARM [™]
FAC2 < 0.4	(OBDG) (INPUFF) AIRTOX [™]	FAC2 < 0.2	(INPUFF) (AFTOX)	FAC2 < 0.5	GASTAR™

Notes: Parentheses indicate scenarios for which the model was <u>not</u> originally developed. The superscript m indicates a proprietary model. The ranges in FAC2 were arbitrarily chosen so that the models were more or less equally divided into four or five distinct clusters.

API PUBL*4546 92 🗰 0732290 0505626 811 🖿

chosen in each group such that the models are divided into four or five distinct clusters. Several conclusions can be made from this table:

- The FAC2 performance of any model is not related to its cost or complexity.
- In two of the three groups, the "best" model is one which was <u>not</u> originally developed for that scenario (that is, GPM for continuous dense gas releases and SLAB for continuous passive gas releases).
- The better models can have their predictions within a factor of two of the observations about 70 or 80 percent of the time.
- The BM, GPM, SLAB, and HEGADAS models demonstrate the most consistent performance for the FAC2 statistic.

Qualitative assessments based on the geometric mean bias, MG, and the geometric variance, VG, are given in Table 28. These results are sometimes slightly different from those from the "Factor of Two" analysis in Table 27. However, the four models (BM, GPM, SLAB, and HEGADAS) that produced the best "Factor of Two" agreement are on the list of six models (BM, GPM, SLAB, HEGADAS, CHARM, and PHAST) that produce the most consistent performance for the statistics MG and VG.

For safety purposes it may be better if a model overpredicts than underpredicts concentration. From this viewpoint, of the "top six" models, the SLAB and CHARM models may be less desirable because of their tendency to underpredict by a slight amount in Table 28.

B. WIDTHS

Figures 16a and 16b presented the geometric mean bias, MG, and the geometric variance, VG, for each model for the predicted and observed widths at the continuous release datasets. The better models for the dense gas releases were the AIRTOX, PHAST, and SLAB models. The AFTOX width predictions were about a factor of three low and the HEGADAS predictions were about a

177

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🗰 0732290 0505627 758 🛤

TABLE 28. SUMMARY OF PERFORMANCE EVALUATION BASED ON GEOMETRIC MEAN BIAS MG AND GEOMETRIC VARIANCE VG FOR CONCENTRATIONS, NEGLECTING INSTANTANEOUS PASSIVE DATASET. THE TERMS "OVER" AND "UNDER" REFER TO THE BIAS IN THE MEAN PREDICTIONS.

	Continuous Dense Gas Releases (Short Averaging Time)	Instantaneous Dense Gas Releases	Continuous Passive Gas Releases
AFTOX	(Good)	(Poor-Way Over)	Fair-Over
AIRTOX™	Poor-Under	+Good	+Fair
BM	Good	+Good	
CHARM™	Fair-Under	Fair-Under	+Fair-Under
DEGADIS	Good-Over	Poor	(Fair-Over)
FOCUS [™]	Poor-Over	Poor-Over	Good
GASTAR™	+Good	+Fair-Under	Poor-Over
GPM	(Good-Under)		+Good
HEGADAS	+Good		+(Good)
INPUFF	(Poor-Under)	(Poor-Over)	+Good
OB/DG	(Poor-Under)		Good
PHAST [™]	Fair	Fair-Over	Good
SLAB	+Good-Under	+Fair-Under	+(Good)
TRACE [™]	Fair	Poor-Over	Poor-Over

Notes: Parentheses indicate scenarios for which the model was <u>not</u> originally developed. The superscript m indicates a proprietary model. The symbol * marks a "better" model. The symbol + marks a model with minimal trend in its residual plots.

178

API PUBL*4546 92 🖿 0732290 0505628 694 🎟

factor of three high, while the GPM width predictions were about 40 percent low and the GASTAR and DEGADIS predictions were about a factor of two high. For the passive gas releases, all models performed reasonably well, with little difference among the results. It is difficult to choose a "better" model from these data because of this lack of variation. As before, it is concluded that the ability of a model to accurately simulate plume widths is not a function of its cost or complexity.

C. SCREENING MODEL RECOMMENDATIONS

The results of the analyses in this section lead to the recommendation that the following simple, analytical formulas can be confidently used for screening purposes for sources over flat, open terrain:

BM (Britter and McQuaid) for continuous and instantaneous dense gas releases.

GPM (Gaussian Plume Model) for continuous passive gas releases.

There are insufficient field data to justify recommendations for instantaneous passive gas releases. However, the EPA's INPUFF model appears to perform reasonably well for the Hanford dataset in Figure 14b.

These screening models would not be appropriate for source scenarios and terrain types outside of those used in the model derivations. For example, because the screening models neglect variations in roughness length, they would be inappropriate for urban areas or heavily industrialized areas.

API PUBL*4546 92 🎟 0732290 0505629 520 🎟

REFERENCES

- 1. Zapert, J.G., Londergan, R.J., and Thistle, H., <u>Evaluation of Dense Gas</u> <u>Simulation Models</u> (draft), EPA Contract No. 68-02-4399(24), 1990.
- Carney, T.A. <u>A Comparative Study and Evaluation of Four Atmospheric</u> <u>Dispersion Models with Present or Potential Utility in Air Force</u> <u>Operations</u>, and <u>A Feasibility Study and Test Application of Uncertainty</u> <u>Estimates to an Atmospheric Dispersion Model</u>, Final reports for AFESC Mini-Grant Program, Tyndall AFB, FL 32403-6001, 1986 and 1987.
- Freeman, D.L., Egami, R.T., Robinson N.F. and Watson, J.G., "A Method for Propagating Measurement Uncertainties through Dispersion Models," <u>J. Air Poll. Control Assoc.</u>, 36, pp. 246-253, 1986.
- 4. Hanna, S.R., "Air quality model evaluation and uncertainty," <u>J. Air</u> <u>Poll. Control Assoc</u>., 38, pp. 406-412, 1988.
- 5. Ermak, D. L., Chapman, R., Goldwine, C., Goveia, J., and Rodean, H.C. <u>Heavy Gas Dispersion Test Summary Report</u>. ESL-TR-88-22. AFESC, Tyndall AFB, FL, June 1989.
- Ermak, D.L. and Merry, M.H. A Methodology for Evaluating Heavy Gas Dispersion Models. ESL-TR-88-37. AFESC, Tyndall AFB, Florida, June 1989.
- 7. Venkatram, A., "Model Evaluation," in a <u>Short Course on Air Pollution</u> <u>Modeling</u>, AMS, Boston, 1986.
- Mercer, A. "Methods of Validation of Heavy Gas Dispersion Models: A Review." <u>IMA Conf. on Stably Strat. Flows and Dense Gas Dispersion</u>, April 1986.
- 9. Lamb, R.G., "Air Pollution Models as Descriptions of Cause-Effect Relationships." <u>Atmos. Environ.</u>, <u>18</u>, pp 591-606, 1984.
- McNaughton, J., Atwater, A., Bodner, M., and Worley, G. <u>Evaluation and</u> <u>Assessment of Models for Emergency Response Planning</u>. TRC report prepared for the Chemical Manufacturers Association, 229 pp. 1986.
- McNaughton, D.J., Worley, G.G. and Bodner, P.M., "Evaluating Emergency Response Models for the Chemical Industry." <u>Chem. Eng. Progress</u>, pp. 46-51, January 1987.
- Draxler, R.R. "Diffusion and Transport Experiments." Chapter 9 in <u>Atmospheric Science and Power Production</u>. DOE/TIC-27601. USDOE, pp. 367-422, 1982.
- Layland, D.E., McNaughton, D.J. and Bodner, P.M., "Assessing the Reliability of Dispersion Models for Hazardous Materials Releases." <u>Proc. 5th Joint Conf. on Applic. of Air Poll.</u> Meteorol. AMS, 1986.

181

API PUBL*4546 92 🗰 0732290 0505630 242 📟

- 14. Koopman, R.P., Baker, J., Cederwall, R.T., Goldwin Jr., H.C., Hogan, W.J., Kamppinen, L.M., Kiefer, R.D., McClure, J.W., McRae, T.G., Morgan, D.L., Morris, L.K., Spann Jr., M.W. and Lind, C.D., <u>Burro series data</u> <u>report.</u> <u>LLNL/NWC 1980 LNG Scill Tests</u>, UCID-19075, Lawrence Livermore National Laboratory, Livermore, CA, 1982.
- 15. Goldwire, H.C. Jr., Rodean, H.C., Cederwall, R.T., Kansa, E.J., Koopman, R.P., McClure, J.W., McRae, T.G., Morris, L.K., Kamppinen, L., Kiefer, R.D., Urtiew P.A. and Lind, C.D., <u>Covote series data report, LLNL/NWC</u> <u>1981 LNG Spill Tests: Dispersion, vapor burn, and rapid phase</u> <u>transition</u>, UCID-199953, Lawrence Livermore National Laboratory, Livermore, CA, 1983.
- 16. Goldwire, H.C. Jr., McRae, T.G., Johnson, G.W., Hipple, D.L., Koopman, R.P. McClure, J.W., Morris L.K. and Cederwall, R.T., <u>Desert Tortoise</u> <u>series data report: 1983 pressurized ammonia spills</u>, UCID-20562, Lawrence Livermore National Laboratory, Livermore, CA, 1985.
- Blewitt, D.N., Yohn, J.F., Koopman R.P. and Brown T.C., "Conduct of Anhydrous Hydrofluoric Acid Spill Experiments," <u>Proc. Int. Conf. On</u> <u>Vapor Cloud Modeling</u>, AIChE, New York, pp. 1-38, 1987.
- 18. Nickola, P.W., Ramsdell Jr., J.V. and Ludwick, J.D., <u>Detailed</u> <u>time-histories of concentrations resulting from puff and short-period</u> <u>releases of an inert radioactive gas: A volume of atmospheric diffusion</u> <u>data</u>, BNWL-1272, UC-53, Battelle Pacific Northwest Laboratories, Richland, WA 99352, 1970.
- 19. Puttock, J.S., Blackmore, D.R., Colenbrander, G.W., Davies, P.T., Evans, A., Homer, J.B., Redfearn, J.J., Van't Sant, W.C. and Wilson, R.P., <u>Spill</u> <u>tests of LNG and refrigerated liquid propane on the sea, Maplin Sands,</u> <u>1980: Experimental details of the dispersion tests</u>, TNER.84.046, Shell Research Ltd., Thornton Research Centre, Combustion Division, 1984.
- 20. Colenbrander, G.W., and Puttock, J.S., "Dense Gas Dispersion Behaviour, Experimental Observations and Model Developments," <u>Proc. 4th</u> <u>International Symposium on Loss Prevention and Safety Promotion in the</u> <u>Process Industries</u>, Harrogate, 1983.
- Barad, M.L., <u>Project Prairie Grass, A Field Program in Diffusion</u>, Vol. I. AFCRC-TR-58-235 (I), AD 152572. AFGL, Hanscom AFB, MA 01731, 1958.
- 22. Briggs, G.A., "Similarity Forms for Ground-Source Surface-Layer Diffusion," <u>Boundary Layer Meteor.</u>, 23, pp. 489-502, 1982.
- Nieuwstadt, F.T.M., "Application of mixed-layer similarity to the observed dispersion from a ground-level source," <u>J. Appl. Meteorol.</u>, 19, pp. 157-162, 1980.
- 24. van Ulden, A.P., "Simple estimates for vertical diffusion from sources near the ground," <u>Atmos. Environ.</u>, 12, pp. 2125-2129, 1978.

API PUBL*4546 92 🖿 0732290 0505631 189 🖿

- 25. McQuaid, J. (ed.), Heavy Gas Dispersion Trials at Thorney Island. <u>Proceedings of Symposium at the University of Sheffield</u>, Great Britian, 3-5 April, 1984, Elsevier, Amsterdam, The Netherlands, 1985.
- 26. Ermak, D.L., Chapman, R., Goldwire, C., Goveia, J., and Rodean, H.C. <u>Heavy Gas Dispersion Test Summary Report</u>. Report for AFESC, 1988.
- 27. Perry, R.H. and Green, D., <u>Perry's Chemical Engineer's Handbook.</u> 6th edition. McGraw-Hill, New York, 1984.
- Dean, J.A., <u>Lange's Handbook of Chemistry</u>, 13th edition, McGraw-Hill, New York, 1985.
- 29. Paul, M.A., King E.J. and Farinholt, L.H., <u>General Chemistry</u>. Harcourt, Brace, & World, Inc., New York, 1967.
- 30. Colenbrander, G.W., Evans, A., Puttock, J.S., <u>Spill Tests of LNG and Refrigerated Liquid Propane on the Sea, Maplin Sands, 1980: Dispersion Data Digests</u>, TNER.83.063 through TNER.83.073, and TNER.84.025 through TNER.84.043, Thornton Research Centre, Shell Research Ltd., 1984.
- 31. McQuaid, J. and Roebuck, B., <u>Large Scale Field Trials on Dense Gas Vapor</u> <u>Dispersion: Final Report to Sponsors on the Heavy Gas Dispersion Trials</u> <u>at Thorney Island 1982-84</u>, Health and Safety Executive, Safety Engineering Laboratory, Sheffield, England, 1985.
- 32. Puttock, J.S., "Comparisons of Thorney Island Data with Predictions of HEGABOX/HEGADAS." J. Haz. Mat., 16, pp 439-455, 1987.
- 33. Akuma, E., Costanza, P., and Hagen, G., "Consequence Analysis of Atmospherically Dispersed Toxic Chemical Releases: Modeling for Planning and Emergency Response," <u>Proc. of the 7th Technical Seminar on Chemical</u> <u>Spills</u>, sponsored by Environment Canada, Edmonton, Alberta, 1990.
- 34. Raj, P.K. and Morris, J.A., <u>Source Characterization and Heavy Gas</u> <u>Dispersion Models for Reactive Chemical</u>, AFGL-TR-88-0003(I). AFGL, Hanscom AFB, MA 01731, 1987.
- 35. Harris, L.A., ed. <u>The CAMEO Manual</u>. National Oceanic and Atmospheric Administration, Hazardous Materials Response Branch, Modeling and Simulation Studies, Seattle, WA, 218 pp, 1987.
- 36. <u>Handbook of Chemical Hazard Analysis Procedures</u>, FEMA, Publications Office, 500 C Street, S.W., Washington, D.C. 20472, 1989.
- 37. Moser, J.H., <u>CADM: A Computer Program for Modeling the Dispersion of</u> <u>Heavy Gas in Calm Air</u>, SoftSkills, Inc., P.O. Box 989, Cypress, TX 77429, 1989.
- 38. McFarlane, K., Prothero, A., Puttock, J.S., Roberts, P.T., and Witlox, H.W.M, <u>Development and Validation of Atmospheric Dispersion Models for</u> <u>Hvdrogen Fluoride. Part I: Technical Reference Model</u>, TNER. 90.015, Shell Research Ltd., Thornton Research Centre, Chester, England, 1990.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 페 0792290 0505692 015 酬

- 39. Kunkel, B.A., <u>User's Guide for the Air Force Toxic Chemical Dispersion</u> <u>Model (AFTOX)</u>, AFGL-TR-8S-0009. AFGL, Hanscom AFB, MA 01731, 1988.
- Heinold, D.W., Paine, R.J., Walker, K.C., and Smith D.G., "Evaluation of the AIRTOX dispersion algorithms using data from heavy gas field experiments." <u>Proc. 5th Conf. on Application of Air Poll. Meteorol.</u>, AMS, Boston, 1986.
- 41. Mills, M., "Techniques for Modeling Jet Releases for Emergency Prevention and Preparedness Applications," 1988 Hazardous Materials Spills Conference, co-sponsored by the American Institute of Chemical Engineers and the National Response Team, Chicago, IL, 1988.
- Britter, R.E. and McQuaid, J., <u>Workbook on the Dispersion of Dense Gases</u>. HSE Contract Research Report No. 17/1988. Health and Safety Executive, Sheffield, UK, 129 pp, 1988.
- 43. Eltgroth, M., <u>Complex Hazard Air Release Model (CHARM) Version 6.0</u> <u>Technical Document</u>, Radian Corporation, Austin, TX 78720, 1990.
- 44. Havens, J.A., <u>A Dispersion Model for Elevated Dense Gas Jet Chemical</u> <u>Releases, Volumes I and II</u>, EPA-450/4-88-006, U.S. Environmental Protection Agency, 1988.
- 45. Spicer, T.O., and Havens, J.A., <u>Development of Vapor Dispersion Models</u> <u>for Non-neutrally Buoyant Gas Mixtures -- Analysis of TFI/NH3 Test Data</u>, ESL-TR-87-72, AFESC, Tyndall Air Force Base, Florida, 1988.
- 46. <u>Focus Input and Reference Manuals</u>, Quest Consultants, Inc., Norman, OK, 1990.
- 47. <u>GASTAR Dense Gas Dispersion Model Version 2.2 User Guide</u>, Cambridge Environmental Research Consultants, Cambridge, England, 1990.
- Hanna, S.R., Applications in air pollution modeling. Ch. 7 in <u>Atmospheric Turbulence and Air Pollution Modeling</u>. (F.T.M. Nieuwstadt and H. van Dop, eds.), D. Reidel, Dordrecht, Holland, pp. 275-310, 1982.
- 49. Witlox, H.W.M., <u>User's Guide for the HEGADAS Heavy Gas Dispersion</u> <u>Program</u>, Shell Research Ltd, 1988.
- 50. Petersen, W.B. and Lavdas, L.G. <u>INPUFF 2.0 A Multiple Source Gaussian</u> <u>Puff Dispersion Algorithm</u>. Users Guide, ASRL, USEPA, Research Triangle Park, NC, 1986.
- 51. Nou, J.V. <u>The Ocean Breeze and Dry Gulch Diffusion Programs</u>, AFCRL, Hanscom AFB, MA, 1963.
- 52. Phast Version 2.0 Theory Manual, Technica Ltd., London, England, 1989.
- 53. Ermak, D.L., <u>User's Manual for SLAB: An Atmospheric Dispersion Model</u> <u>for Denser-Than-Air Releases (Draft. November Version)</u>, Lawrence Livermore National Laboratory, Livermore, CA 94550, 1989.
- 54. <u>User's Manual for TRACE II</u>, E.I. Dupont DeNemours, 5700 Corsa Ave., Westlake Village, CA 91362, 1989.

184

API PUBL*4546 92 🛲 0732290 0505633 T51 🛤

- 55. Fleischer, M.T. <u>SPILLS, An Evaporation/Air Dispersion Model for</u> <u>Chemical Spills on Land</u>. Shell Development Center, Westhollow Research Center, P.O. Box 1380, Houston, TX, 77001, 1980.
- 56. Golder, D., "Relations Between Stability Parameters in the surface layer. <u>Bound. Layer Meteorol</u>., 3, pp. 46-68, 1972.
- 57. Mitchell, A.E., Jr., "A comparison of short-term dispersion estimates resulting from various atmospheric stability classification methods," <u>Atmos. Environ.</u>, 16, pp. 765-773, 1982.
- 58. Eidsvik, K.J., "A Model for Heavy Gas Dispersion in the Atmosphere," <u>Atmos. Environ.</u>, 14, pp. 69-77, 1980.
- 59. Havens, J.A. and Spicer, T.O., <u>Development of an Atmospheric Dispersion</u> <u>Model for Heavier-than-Air Gas Mixtures</u>, Final report to U.S. Coast Guard, CG-D-23-85, USCG HQ, Washington, DC, 1985.
- 60. Ooms, G., Mahieu A.P. and Zelis, F., The plume path of vent gases heavier than air. <u>Proc. First International Symposium on Loss Prevention</u> <u>and Safety Promotion in the Process Industries</u>, C.H. Buschman, Ed., Elsevier Press, 1974.
- Turner, D.B., <u>Workbook of Atmospheric dispersion estimates</u>, Office of Air Programs Publication No. AP-26 (NITS PB 191-482). U.S. Environmental Protection Agency, Research Triangle Park, NC, 84 pp, 1970.
- 62. Briggs, G.A. <u>Diffusion Estimation for Small Emissions</u>. ATDL Contribution File No. 79, Atmospheric Turbulence and Diffusion Laboratory, 1973.
- Colenbrander, G.W., "A Mathematical Model for the Transient Behaviour of Dense Gas Vapour Clouds," <u>Proc. Third International Symposium on Loss</u> <u>Prevention and Safety Promotion in the Process Industries</u>, Basle, 1980.
- Irwin, J.S., Estimating plume disperison--A comparison of several sigma schemes. <u>J. Climate Applied Meteorol</u>., 22, pp. 92-114, 1983.
- Draxler, R.R., "Determination of Atmospheric Diffusion Parameters," <u>Atmos. Environ.</u>, 10, pp. 99-105, 1976.
- 66. Cramer, H.E., "Improved Techniques for Modeling the Dispersion of Tall stack plume," In: <u>Proceedings of the Seventh International Technical</u> <u>Meeting on Air Pollution Modeling and its Application</u>, No. 51, NATO/CCMS, pp. 731-780, (NTIS PB 270-799), 1976.
- 67. Rao, K.S., <u>Analytical solutions of a gradient-transfer model for plume</u> <u>deposition and sedimentation</u>, NOAA Tech. Memo. ERL ARL-109, 75 pp., EPA-600/3-82-079, U.S. Environmental Protection Agency, Research Triangle Park, NC, (NTIS PB 82-215 153), 1982.
- 68. Cox, R.A. and Carpenter, R.J., "Further Development of a Dense Cloud Dispersion Model for Hazard Analysis," In F. Hartwig (ed.), <u>Heavy Gas</u> <u>and Risk Assessment</u>. D. Reidel, Dordrecht FRG, 1980.

185

- 69. Hanna, S.R., "Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods," <u>Atmos.</u> <u>Environ</u>., 23, pp. 1385-1398, 1989.
- 70. Tukey, J.W., <u>Kinds of Bootstraps and Kinds of Jackknifes</u>, <u>Discussed in</u> <u>Terms of a Year of Weather-Related Data</u>, Tech. Report 292, Dept. of Statistics, Princeton University, 08544, 1987.
- Lewellen, W.S. and Sykes, R.I., "Meteorological Data Needs for Modeling Air Quality Uncertainties," <u>J. Atmos. and Oceanic Tech.</u>, 6, pp. 759-768, 1989.
- 72. Irwin, J.S., Rao, S.T., Petersen, W.B. and Turner, D.B., "Relating Error Bounds for Maximum Concentration Estimates to Diffusion Meteorology Uncertainty," <u>Atmos. Environ</u>., 21, pp. 1927-1937, 1987.
- 73. O'Neill, R.V., Gardner, R.H. and Carney, J.H., "Parameter Constraints in a Stream Ecosystem Model: Incorporation of a Priori Information in Monte Carlo Error Analysis," <u>Ecological Modeling</u>, 16, pp. 51-65, 1982.

API PUBL*4546 92 🎟 0732290 0505635 824 🎟

APPENDIX A

MODELERS DATA ARCHIVES FILES

Included in this Appendix are the listing of the Modelers Data Archives (MDA) files for the following experiments:

Burro Coyote Desert Tortoise Goldfish Hanford (continuous) Hanford (instantaneous) Maplin Sands (LNG) Maplin Sands (LPG) Prairie Grass Thorney Island (continuous) Thorney Island (instantaneous)

Methane is at least 914 in composition 3-char. abbreviation of chemical number of trials included in MDA trial ID month anoth anoth anoth month anoth anoth month anoth anoth mon	 averaging time for purchash (s) averaging time for averaged concentration (s) concentration of interest for moduling (pum) suggested receptor height for moduling (m) distance downwind (m)
	50. 100. 140. 800.
BU8 9 9 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 1111.6 111.6 111.6 111.6 111.6 111.6 111.6 11.6	80 100. 57 140. 800.
BU7 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	140. 100. 110. 140. -99.9
BU6 8 8 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.0 110.0 11.0 11	70. 100. 57. - 99.9 - 99.9
7 100 100 110 110 111.6 111.6 111.6 111.6 110.0 110.0 11.1 11.1	130. 110. 21. 140. - 99.9
2238 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 111.6 112.2 112.2 112.9 11.1	80. 100. 140. - 99.9 - 99.9
Hattin Hattin Hautin Haustied mutural yas Haustied mutural yas Haustied mutural yas Haustie Hau	100. 257. 99.9
Butto 1.19uet Led 8 8 8 8 1.19uet Led 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2	40. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

188

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

189

Not for Resale

measurement height tor wind spued (m) domain-avg wind speed (m/s) domain-avg sigma-u (m/z) domain-avg sigma-theta (uug) domain-avg uigma-theta (uug) measurement ht for domain-avg wind data (m) severaging time for domain-avg data (s) roughness longity z0 (m) friction velocity u-star (m/s) bowen ratio esilmate Pasquill-Gifford stabillty class (A-1;D-4;F-6) longitudu (deg) averaging time for pusk concentration (s) averaging time for averaged concentration (s) serentration of interest for modoling (ppm) suggested recuptor height for modoling (m) specific heat - vapor $\{J/Kg-K\}$ specific heat - liquid $\{J/Kg-K\}$ specific heat - liquid $\{Xg/m^{+2}\}$ conficient A for vapor pressure equation coefficient B for vapor pressure equation distance downwind (m) distance downwind (m) distance downwind (m) distance downwind (m) distance downwind (terminal record: -99.9) amblent temperature 11-lower (K) measurement height for temperature 11 (m) Ξ Muthane is at luast 86% in composition 3-char. abbroviation of chemical number of trials included in HDA time zone designation trial ID ambfent temperature 42-upper {K} measurement height for temperature 42 soil tomperatura (K) soil moistura (l:dry,2:moist,3:water) mol. weight (g/mole) normal bolling point (K) latent heat of evaporation (J/Kg) Inverse Montn-Obukhov lungth (1/m) source diameter (m) source elevation (m) source type (IR,HJ,AS,EP) source phasu (I,C,G) source containment diameter (m) splil/evaporation rata (kg/s) splil duration (s) total released (kg) number of distances downwind initial concentration (ppm) amblent pressure (atm) relative humidity (4) source temperature (K) exit pressure (atm) wind speed (m/s) cloud cover (1) latitude (deg) minute month yoar hour γab 19.09 111.6 511900. 10139. 1000000. .930 22.8 297.26 2238. 3348.5 444.7 6.8083 983.89 -99.9 111.6 12.93 58. 123.03 82 1. 297.46 -99.9 180. .0002 .200 -99.9 .0136 60. 4 .117.7 .04 5.1 6.6 5.1 400. .00. 140. 200. CC06 227 81 15 43 . . ä 5 B Llquefled natural gas 12676. 1000000. 20.19 111.6 511900. 22238. 3348.5 452.7 8.8083 8.8083 993.89 -99.9 58. 129.02 22.1 301.49 . 300.24 160. .0002 .442 -99.9 -.0377 9.46-3 10.47 .927 35.9 117.7 00. 99.9 ----1. 50. 100. 105 3 12 6512. 1000000. 19.51 111.6 511500. 2238. 3348.5 447.4 8.8083 963.89 --99.9 111.6 38.63 Coyote 11.3 311.45 100.67]. 310.34 4. - 99.9 2. 160. .0002 .200 .200 .500 33.9 33.9 111.7 111.7 100. .924 6.11 - 99.9 99.9 0.00 S ŝ <u>ы</u>. . Е о 81 2 38 65 σ

API PUBL*4546 92 ■ 0732290 0505637 6T7 ■

. 3-char. abbreviation of chemical inumber of trials included in NDA i time orde of control	trial Tota designation the trial ID	: month	: day	: hour	: minute	: mol. weight (g/mole)	: normal boiling point (K)	: latent heat of evaporation (J/kg)	: Neat capacity - Vapor (J/Kg-K) : heat capacity - Jionia / 11/6-14	: density of liquid (kg/m**3)	: coefficient A for vapor pressure equation	: coefficient B for vapor pressure equation	: Source temperature (K)	: source diameter (m)	: source elevation (m)	: source type (IR,HJ,AS,EP) : source observing to the	: Source containment diameter (m)	: spill/evaporation rate {kg/u}	: splil duration (2) : total rolassoi (60)	: initial concentration (pran)	: ambient pressure (atm)	: rolative humidity (\$) : ambient homorative, \$)	a measurement holght for temperature \$1 (m)		: moasuroment height for temperature #2 (m) : soil temourature rel	: soil moisture (lidry, 2:moist, 3:water)	: wind speed (m/s)	: moasurement helght for wind speed (m) . dowsto-see eloc round (m/s)	. domaîn-avy will spece (m/s) 2 domaîn-avg sîgma-u (m/s)	: domain-avg sigma-thuta (dog)	: mussurement holght for domain-avg wind duta (m) : averable time for domain-nor don dot do	roughness length z0 (m)	: friction velocity n-star (m/s)	· Porte tetto cellmalo	: cloud cover (1)	: Pasquill-Gifford stability class (A-1;D-4;F-6)	: lafitude (dcg) : boncfrude (dec)	. Tongrading Time for besk concentration for	: averaging time for averaged concentration (s)	: concentration of interest for moduling (pyum)	: suggusted facuptor haight for modeling (m) : numbar of distances downwind	: distance dounwind	distance downwind
	Dr4	57 4	9 E8	18	15	17.03	239.7	2190 D	1490.0	682.8	10.31499	7C.2C12	297.3	0.0345	0.79	⊒ ∪	6.69-	96.7	-99.9	1.0e406	0.891	305.63	0.82	306.90	301.0	~	4.64	1.50	6.99.9	0.0 0.0	180.	600.0	6 . 66 I	6.99-	1.0		116.0	1.	300.	10U.	5	100.	-99.9
	era î	م ر	83	15	37	17.03	1 370.06	2190.0	4490.0	682.8	10.31499	11.23	295.3	0.0945	<u>د</u> ر . ۲	ζU	-99.9	130.7	-99.9	1.0a106	0.895 14 A	307.01	0.82	307.05 51 31	304.8	2	7.60		1.0	6°3	180.	0.001	7,75 7,75 1,75 1,75 1,75 1,75 1,75 1,75	- 99, 9	0.0	- -	116.0	1.	120.	. nu.	1	100.	-99-9
u lac muonta	DT2	2 7	83	II	20	17.03	1 229.1	2190-0	44.90.0	682.8	10.31499	20.11	293.3	0.0545	67 .D	ο	- 99. 9	111.5	-99.9	1.02106	0.896	303.63	0.82	304.51	303.0	m ;	5.54 24	5.8	0.7	0.0	100.	0.005	2.42- 0.09-	6.99.9		-	116.0	٦.	160.	1 uu.	2	100.	.90 4
besett Tortolse Anbydrous Anmonia 2013 4 8	pri °	24	63 63	16	37	17.03	1.372106	2190.0	1490.0	682.a	10.31499 2122 52	10.0	294.1	0.061	67 .0 1 H	10	6.66-	19.1	- 99.9	1.00106	13.2	302.05	0.82	16.10	304, 8		1.15	7.4	2.7	0.7	140,	U.001	9.99	99.9	0.1	~	116.0	١.	80. 100		2	100.	. 99 4

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS •

190

• : •	. 3-chaf. abbreviation of chemical : number of trials included in MDA : the zone destantion	8		. Year : hour	: minute : mol. wuight (y/mole)	al bolling point (K)	lc heat	: specific near - liquid (J/Ky-N) : density of liquid (kg/m**3)	: coefficient A for vapor pressure equation	hteestd	<pre>source temperature (K) source diameter (M)</pre>		: source type (IR, HJ, AS, EP) : source chase (L.C.G)	=	<pre>splil/evaporation rate (kg/s)</pre>	1	: Initial concentration (pixm)	ampienc pressure (acm) : relative humidity (4)	<pre>: amblent temperature - owur (K) . moscurement boloch for formerature (m)</pre>	-upper (K)	: measurement helght for temperature 12 (m) : soil temporature (K)	molsture (1:	rement heldhe for	: domain-avg wind spued (m/s) : domain-avg sigmu-u (m/s)	sigma-thuta (deg)		: roughness length z0 (m) ; friction velocity υ-stat (m/μ)	: bowen ratio estimate	: Invarse Monin-Obukhov length (1/m) : cloud cover (1)	_	: Jacichude (deg) : longitude (deg)	: averaging time for peak concentration (s) : averaging time for averaged concentration (s)	concentration of interest for modeling (pun) successed recent or helph for modeling (pun)	distances downw	pul nunop	риглимор
		GF3 8	20	81	15 20.01	292.7	1450.	.0262 987.	11.06	7.48	312.2	1.	20	-99.9	10.27 360	3697.	1000000.	17.7	307.61	308.96	16.6 -99.9	1 1 1	2.	5.4 -99.9	10.7	900.	.000	.66	- 99, 9 - 99, 9		30./ 116.	66.6 88.3		300	1000.	56
	Lluur lde	GF'2 A	, F (18	15 20.01		1450.	2528. 987.	11.06	1.35	211.2	. uč 1 č	3.	-99.9	10.46 360	3766.	1000000.	10.7	309.3H	S	16.6 -99.9		?	4.2		2. 900.	. 26	99.			10.7	66.6 AR 3	30.	2	. 0	6.66-
	Goldtlah Nytrojen Nf 3 3	CF.1	a – š	18	15 20.01	1.202	1450.	2528. 907.	3	6.8 6.8	213.2	2	3.	- 49.9	27.67	3459.	1000000.	ردی. 4.9	310.40	310.93	16.6 -99.9		2	5. t - 99_9	10.1	4. 900.	.003		0,00		Ju./ 116.	66.6 AR 7	30.		1000.	- 99.9

API PUBL*4546 92 🎟 0732290 0505639 47T 🛲

.

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

. 3-char. abbruvlation of chemical : number of trials included in HDA	: time zone designation	: trial ID . most	e mourta	: year	: hour	: minute : mol. wuinht in/molei infairi	: normal boiling point (K)	: latent heat of evaporation (J/kg)	: specific heat - vapor (J/kg-K) : specific heat - llowid varbourd	: density of liouid (ko/m**3)	: coefficient A for vapor pressure equation	: coefficient B for vapor pressure equation	source temporate (K)	: source diamoter (m)	: source elevation (n)	: source phase (L.C.G)	: source containment diamuter (m)	ato (C1/5	: Spill duration (s) : total released (ke)		andfent pressure (atm)	: relative humidity (5)	a amustant tomperature fi-fower (K) I measuroment height for temperature it (m)	;	: muasuroment height for temperature £2 (m) : soil remonstrue /s	soff moisture (lidry, 2:moist, 3:water)	: wind speed (m/s)	a measuremont helght for wind spund (m) a domain-avy wind scened /w/wi	: domain-avg sigma-u (m/s)	: domain-avg sigma-thuta (dog)	: muasurement ht for domain-avg wind data (m) : averaeine fime for domain-aver data (m)	roughness langth 20 (m)	<pre>: friction velocity u-star (m/s)</pre>	: fourtie Monto-Obustion lands : ////	: cloud cover (1)	: Pasquill-Gifford stability class (A-1;D-4;F-6)	: longitude (dec)	: averaging time for peak concentration (s)	averaging time for averaged concentration (s)	: concuntration of interest for moduling (pum) : supposted recentor helphr for moduling for	s downwind	: distance dounwind (m)	: distance downwind (m) : distance downwind (terminal record: -99.9]	
	,	5)IC?	. 83	67	05	29.0	120.3	115800.	-99.9	5 66-	-99°.9	ה מי היה ו	278.82	6-66-	1. AS	ט	5-56-	1110	20.4	1000000.	6.99.9	272 ACC	.9	279.32	15. -99.9	1	2.6	2.6	58		1480.	0.03	6 . 66 I	6.66-	6.99.9	1 1 1 1 1 1 1	119.5	38.4	537.6	1.5	2	200.	-99.9	
		10	24	67	11	29.0	120.3	115800.	-99.9	-99.9	6.99.9	6 66 I	286.65	-99.9	 AS	0	-99.9	.0388	22.8	1000000.	6°66-	286.65	.9.	284.65	15.9	-	9.E		1.02	13.	660.	0.03	6 66 1	6.66-	-99.9	19 19 19	119.5	38.4	268.8	1.5	2	200. 800	- 99.9	
		10	23	67	10	29.0	120.3	115800.	-99.9	-99.9	6.66-	6 6 6 1	268.93	-99.9	. P	U	6.06-	.U2/8	23.8	1000000.	00°0	288.93	6.	287.54	-99.9	-		7.1	1.44	2, - 2, -	840,	0.03	9.991 9.991	6.66-	-99.9		119.5	38.4	208.8	1.5	2	200.	-99.9	
inford (continuons) rypton-85 85		10	17	6)	80	29.0	120.3	115800.	- 99, 9	- 99, 9	6.99.9	6. 66.	285.43	-99.9	•••	0	- 55.9	0710.	10.9	1000000.	-99.9	285.43	6.	284.71	-99.9	-	9.6 -	3.9	90		050.	0.03	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 99. 9	- 99. 9	5 9 F	2.911	38.4	844.8	1.5	2	200.	-99.9	
llunford («u Krypton-85 Ké5 S	8	1.71	15	67	88	29.0	120.3	115800.	- 99.9	-99.9	- 99, 9	6.66.	290, 87	- 99.9	ks.	0	- 29.9	. UI I V	10.9	1000000.	- 39.9	290.87	1.5	292.19	-99.9	~		1.3	.23	11.8	2340.	E0.0	2,92.	- 99. 9	- 99, 9	(°,0	119.5	38.4	460.8 0 1	1.5	2	200. 800.	-99.9	

•

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

192

۲ <u>5</u> 5	trial ID month dau	. 447 2 Yoar 2 Dour	9	: moi. Weight (g/mole) : normal boiling molot ///	nt heat	<pre>heat capacity - vapor (J/kg-K) heat capacity - 11cuit (J/kg-K)</pre>	densicy of liq	<pre>coufficient B for vapor pressure equation coefficient B for vapor pressure constraint</pre>	ressure (atm)	<pre>\$ source temperature (K) \$ source diameter {m}</pre>	source elevation (m)		: source containment diameter (m)	on rate (kg/s	: total released (kg)	Initial concentration (ppm)	amustent presento (atm) relative humfdftv (t)		aussurement height for temperature \$3 {m} ambient temperature \$2-moor for	arement height for tenper.	2-molet 3	(R/S)	musurement holght for wind speed (m) domain-avg wind spued (m/s)	m-ruls	ht for	data (s)		bowen ratio estimate inverse Monta-Obuthow Janut - 22 Zart	loud cover (5)	Passwill-Gifford stability claus (A-1;D-4;F-6) latitudo (doo)	(deg)	averaging time for peak concentration (s) averaging time for averaged concentration	tion of interest for modeling		pin I Huwop	distance downwind distance downoind	stance downwi	distance downwind distance downeiwi	Istance dounul	distance downwind (terminal record: -99.9)
	6 6 7				38	3348.	ų	597.8	-66-	20.		1 1 1	- 63.9	27.09	3657.7	1000000		289.30		10.1	S	5.8 .0		199.991		0.0003 :	÷ 6-66-	5.66-	50	. 0. IS	1.0 :	יייי היירי	100.	,	••		56.95			8
Çus	N534 9 17	802	6 57 71	111.7	203880	3348.5	430.2	597.84	6.99-9	18.0	о 2	5 H	6.66-	16.12 26	2043	1000000	, e	288.40	20, 205	10.1	j'n	8.6 10	, n , n	9 0 6 9 6 6 -	2	0,0003 0,0003	5.99-	6°66-	22	0.14		ח רי	100. 0 4	20	87 22	5/1 6.96-	66	99.	-99.9	66
	6759 6	140	16 26	111.7	509880 2230 0	3348.5	426.8	181.165	-99.9	20.9	- -	;	6.46-	225	9	10000001 - 99 9	5	289.30 1 9		10.1	, m	1. 10	7.4	- 99.9	- i i i	0, 0003 0, 0003	-99.9	6.66-	88	0.12	0. 1.0	ח ח	100.		85	200	182	324	-	6.22.
Mipila Stads 11qaffird Matural 186 4 200 200 200 200	5 5 1700	80 10		111.7	509880 2238 0	3348.5	435.3		-99.96 - 111	18.6	-	4 M.	2.99.5	n.	3714.4	0000001 6.96-	3	208.10 1 9		10.1 288.6		2,5 10	2.6	0.7 - 29.9	01	- 3	6 6 -	-99.9	10	0.12	0.	n m	100. 0.9	ŝ	63 151	324	400	<u>ي</u>	9,99,9 0,00	2

API PUBL*4546 92 🗰 0732290 0505642 T64 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

194

3-char, abbreviation of chumical s number of trials included to ADA		• ••	•••			: normal bolling point (K) : latent heat of everyoration (1/ko)	: heat capacity -	•••		: coefficient B for vapor pressure equation		: source temperature (K) • source diamoter /m/	: source elevation (m)	: source type (IR, IIJ, AS, EP)	: storage phase (L-11q, C-cryo, G-gas)		• ••	• ••	: Initial concentration (pixm)	: amblent pressure (atm) - relation bootder. (1)	: rejerive numiqity (%) : amblent temperature #1-lower (K)	: measurement height for temperature 11 (m)		 measurement neight for temperature 12 (m) soll temperature (K) 	molsture (1		; mudsurement nurght for Wind speed (m) ; domain-avg wind speed (m/s)	: domain-avg sigma-u (m/s)	•	a measurement nt lof domain-avy wind data (m) a sucracing time for domain-and data for		<pre># friction velocity u-star (m/s)</pre>	: Dowon ratio estimate · fourse Monto-Abuthou function for the start	: cloud cover (A)	: Pasquill-Gittord stability class (A-1;1)-4;F-6)	: latitude (deg)	: Jongleudu (deg) : avuranîng rime for mush concontration (m)	: averaging time for averaged concentration (2)	rr modeling (pp	: suggested recuptor height for modeling (m)	: number of distances downwind : distance downwind	distance downwind			: distance downwind • distance downund		
	MS54 10	15	80	25 25	43.94	231.1	1670.0	2520.0	0.00C 0	1872.46	6-66-	1.162		43	, 1	9.44-	180	3456.0	1000000	- 77. 9.4	281.60	1.9	281.63	282.6	m ,	9.E	3.7	0	6.66-	180	0.0003	6.66-	4.44.1 0.00-1	2	6.06-	21.0	,	, w	100.		4 9	92	178	247	5 6 6 6 1	6.66-	-99.9
	HS52 10	, 6	80	- Fe	43.87	231.1	1678.0	2520.0	0.102	1872.46	6.66-	1.163	0	EP	1 00	4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	140	6195.0	1000000	7.77.	285.00	1.9	285.05	205.1	сц.	6.7	4.1	0.8	- 49,9	180	0.0003	6.66-	4 . 44 - 9 9 9 9	22	6.66-	51.0	0,1	, u	100.	6.0	۹ <u>ا</u>	95	178	249	965	e.99	6 66 -
	MS50 10		08	10 38	43.93	231.1	1678.0	2520.0	9.0927	1872.46	6.66-	19.5	0	ය ⁻	0 0 1	27.44- 25.89	160	5742.4	1000000	7.771 70	283.60	1.9	283.65	283.1	с т (6.1	1.9	0.8	-99.9	250	0.0003	6.99.9	4 . 4 4 I		6.44-	51.0	0.F		100.	0.9	, 6,	66	182	400	7.00 7.00 1	6.66-	6.92-
	MS 49 10	e e	09	36	43.76	231.1	1678.0	2520.0	9.0927	1872.46	6.66-	1.163	0	43	- 00 - 1	16 21	06	1503.9	1000000	7.77 I	286.50	1.9	286.71	286.2	сп (9'5 9	5.5 2.5	0.3	6.99-	6	0.0003	6.66-	7 0 0 1 1 0 0 1	9	6.44-	51.0	0. e	n u	100.	6.0	۹ <u>م</u>	129	180	250	3 2 2 4 D 0	6.64	6.66-
	MS47 10	- -	60	16	43.84	231.1 425740	1678.0	2520.0	10927	1872.46	6.99-	1.162		તુ	- - -	2.22-	210	6839.7	1000000	174. AC	230.60	1.9	10.290.57	290.3	~ `	9.9 7	6.2	0.6	- 99.9	1005	£000.0	- 99.9	7 7 7 1 7 7 7 7	50	6.46-	51.0	о. -	1 M	100.	6°0	• 0f	128	182	250	400	6.94-	6.66-
262	MS 46 10		09	1 2	43.95	231.1 425740	1678.0	2520.0	2790 P	1872.46	6.99.9	1.162	0	EP.	- - -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	360	8413.2	0000001	- 22 - 2	291.90	1.9	291.86	290.5	~	с. 9 С. 9	6.1 1	0.9	6.66-	101	0.0003	6.99.9	4.44-	20	0.99.9	51.0	0. F	, m	100.	6.0		16	1 30	182	062	401	6.64-
) əurdəid spu	643M 0	7B	80	11	41.93	231.1	1678.0	2520.0	5,000 v	1872.46	6.66-	1.162	0	EP	1. 0.: 0.:	4.44- 00 90	330	63.16.0	0000001	4.74. 9.00	290.20	1.9	290.12	292.1	~	2.2 2.0	0.4	0.6	6.64-	10	0.0003	- 99.9	0.00- 0.00-	50	9.66-	51.0	n. r	,	100.	0.9	5 B B	129	249	400	4.44. 4.66.	6.99-	6.99
Mapilin Sunds Liquiffied Propune Gas 186 6	0 바:42	28	60	33	43.93	231.1 425740	1674.0	2520.0	2,000 P	1872.46	6 . 96 : 	1.127 2 0 1	0	EP		1 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	180	11:6.6	1000040	9.66-	0.46. 0.142	6.1	26.162	6.122	~		-	0.7	6.64-	160	0.000	0.00-	0.00	0:	9.44	51.0	0.4	,	100.	5°0		33	63	123	67 C F C	9 0 C	6.94-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

.

.

- 3-char, abbrevlation of chemical number of trials included in MDA time zone designation trial ID trial ID aday year bour minute	<pre>mol. weight (g/mole) normal boiling point {K} latent heat of evaporation (J/kg) specific heat - vapor (J/kg-K) specific heat - iquid (J/kg-K) densfry of liquid (kg/m^{era}3) coefficient A for vapor pressure equation coefficient A for vapor pressure equation coefficient A for vapor pressure equation exit pressure (atm) cource diameter (m) source diameter (m) source othere (1, C, G) source othere (1, C, G) source othere (1, C, G) source containment diameter (m) source containment diameter (m) source containment diameter (m) source phase (1, C, G) source othere (1, C, G) source type (18, M), AS, EP) source type (18, M), AS, EP) source type (18, M), AS, EP) source type (1, C, G) source (1, C,</pre>	rolativu humidity (1) ambiont temperature 11-lowur (K) maasurement helght for temporature 1 (m) ambiont temperature 12-upper (K) measurement helght for temporature 2 (m) soil temperature (K) soil temperature (K) measurement helght for wind speed (m/s) domain-avg sigma-tute (dug) domain-avg sigma-tute (dug) measurement ht for domain-avg wind data (m) resurement ht for domain-avg wind data (m) recombiness lengty u-star (m/s) foughness lengty u-star (m/s) bowen ratio astimate	INVOLSE HONIN-Obukhov lungth $\{1/m\}$ cloud cover $\{N\}$ Parquill-Gifford stability class $\{A-1;D-4;F-4\}$ latitude (deg) latitude (deg) latitude (deg) latitude (deg) latitude (deg) latitude (deg) averaging time for peak concentration $\{s\}$ averaging time for averaged concentration $\{s\}$ averaging time for averaged concentration $\{s\}$ averaging time of a theorem averaged concentration $\{s\}$ concentration of interest for modeling $\{m\}$ subgested receptor height for modeling $\{m\}$ is upgested receptor height for modeling $\{m\}$ averaged averaged $\{m\}$ distance downhind $\{m\}$ distance downwind $\{m\}$ distance downwind $\{m\}$ distance downwind $\{m\}$ distance downwind $\{m\}$
	64. 263.13 265.00. 622.6 622.6 1462. 1462. 1462. -99.9 0.0508 0.0565 0.0565 0.0565 0.0565 0.0565 0.0565 0.00000.	-99.9 300.15 300.65 1.99.9 2.6.65 2.6.65 2.9.9 2.9.9 2.9.9 2.9.9 2.9.9 2.9.9 2.9.9	70,020 4 42,3 42,3 600. 11. 500. 11. 500. 100. 100. 100. 100
500 100 100 100 100 100 100 100 100 100	64. 386500. 386500. 622. 1462. -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	-99.9 2.01.15 2.01.15 16.15 19.9 2.2 2.2 18.5 2.2 000. 0.24 0.24 0.24 0.24	00.1223 98.3 660.600.600. 5.5 11.5 200. 200. 299.9
PG15 23 23 23 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	64, 263,13 265,00. 622,6 1331,6 1462, -99,9 -99,9 1,15 0,0508 1,15 0,0508 0,055 500. 190900.	-99.9 295.115 295.115 299.9 1 99.9 2.4 2.6 20. 2000. 0.23 0.23 0.23 0.23 0.23	2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000.
PG13 2000000000000000000000000000000000000	64. 263.13 265.00 625.00 622.9 1331. 1331. 1331. 1331. 1331. 1331. 1331. 150.0 10.0010 10.0000	-99.9 291.15 293.115 295.05 1.3 1.3 29.9 0.09 29.9 29.9 29.9 29.9 29.9	20.20 6.00 8.00.3 6.00.6.00 6.00.3 7.1.5 7.5 8.00. 7.9 9.9 9.9 9.9 9.9 9.9 9.9
PG10 11 12 00 00	64. 263.13 265.13 265.00. 525.600. 1331. 1462. -99.9 -99.9 -99.9 0.0921 0.0921 100000. -99.9	-99.9 204.15 204.15 204.15 302.15 16.8 1 1 20.15 20.6 00.32 -0.32 -0.0909	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PC3 11 11 16 00 00 00 00 00 00 00 00 00 00 00 00 00	64. 263.13 266.13 266.13 266.0 1462. 1462. 299.9 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.15 201.25 200.25 200.25 200.25 200.25 200.25 20	-99.9 201.15 201.15 16. 16. 10.2 6.9 6.0 10.2 6.0 600. -91.9 -91.9	33 33 342 38 36 50 50 50 50 50 50 50 50 50 50 50 50 50
loxide set 1 loxide set 1 PCB 7 10 17 56 17	64. 263.13 3865.00. 3865.00. 525.60. 1331. 525.60. 595.9 0.0911 5500. 100000.	-99.9 205.15 205.15 203.95 20.95 4.9 4.9 -99.9 0.31 -9.92 0.31 -9.92 -9.	600 600 600 600 700 800 800 90 90 90 90
Prairie Grass Sulfur dioxide So2 8 8 8 8 8 8 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	64. 263.13 386500. 622.60. 1331. 1331. -99.9 205.15	-99.9 205.15 205.15 205.15 16. 16. 16. 25.6 14.2 4.2 25.6 600. 006 0.1020 0.1020	0 2 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8

196

Not for Resale

.

3-char, abbrevlation of chemical number of trials included in MDA thus accordentions to	trial ID month day year hour	<pre>mol. wuight (g/mole) normal boiling point (K) latent heat of evaporation (J/kg) specific heat - vapor (J/kg-K) specific heat - liquid (J/kg-K) donsity of liquid (kg/m**3) coefficient A for vapor pressure equation coefficient B for vapor pressure equation over pressure equation</pre>	source temperature (K) source temperature (K) source dlamuter (m) source olevation (m) source phaw (1,,13,Ks, $E_{\rm P}$) source phaw (1,,56) source containment dlamuter (m) spill/uvaporation fate (kg/s) spill duration (s)	<pre>total released [kg) i lnitial concentration (ppw) ambient pressure (atw) relative humidity (1) ambient temperature 11-lower (K) ambient theight for temperature 11 (m) ambient temperature 22-upper (K)</pre>	: measurement height for temperature 12 (m) : soil temperature (K) : soil moisture (I:dry, 2:muist, 3:water) : wind speed (m/s) : measurement height for wind speed (m) : domain-avg wind speed (m/s) : domain-avg sigma-twita (deg) : domain-avg sigma-theia (deg) : measurement ht for domuin-avg wind data (m)	<pre>: avoraging time for domain-avg data (s) : roughness length z0 (m) : friction volocity u-star (m/s) : bowen ratio estimatu : inverse Monin-Obukhov lungth (1/m) : cloud cover (4) : cloud cover (4) : anguill-Gifford stubility class (A-1;D-4;F-6) : latitude (dog) : longitudu (dog)</pre>	 averaging time for puak concentration (s) averaging time for averaged concentration (s) concentration of interest for modeling (gun) suggested tecupic height for modeling (n) number of distances downwind distance downwind (m)
	PG25 8 1 13 00	64. 263.13 286500. 1322.6 1462. -99.9 -99.9	298.15 0.0508 1.45 6.1014 0.1014 0.1014	60.8 1000000. -99.9 -99.9 298.15 2. 297.45	222221-16. 199. 199. 199. 199. 199. 199. 199. 1	600. 0.206 -9.9.9 -0.1613 100 12.3 98.3	600. 1.5 5.5 50. 200. 1.9 200.
	PG24 7 29 23 00	64. 263.13 386500. 622.6 1331. 1462. -99.9	295.15 0.0508 13 13 60 0.0412 0.0412	24.7 100000. -99.9 -95.15 295.15 2. 295.35	16. 1 99.9 6.2 6.2 7.199.9 2.1	600. 0.306 0.39,9 0.0040 0.0040 4.3 98,3	600. 1.5 5.5 200. 2000. 2000.
	PG23 7 29 26 21 00	64. 263.13 286500. 1321. 1462. -99.9	296.15 0.0508 1.15 6.0 0.0409	24.5 1000000. -99.9 -99.9 296.15 2, 15 296.35	16.9 9.9 2.9 2.9 2.9 2.9 2.9	600. .006 0.399 0.0052 4.4 4.3 98.3	600. 1.5 5.5 200. 200. 200. 200.
	PG22 7 25 26 24 00	64. 263.13 286500. 1331. 1462. -99.9 -99.9	0.0508 45.08 60.0484 0.0484 0.0484	29.0 1000000. -99.9 -99.9 300.15 2.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	600. 006 -99.9 60.0049 42. 38.3	600. 1.5 5.0 2.00 2.00 2.00 2.00 2.00
	PG21 7 25 26 00	64. 263.13 286500. 1321. 1462. 99.9 99.9	0.0508 1.45 1.45 1.45 1.45 1.45 1.45 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	30.5 1000000. -99.9 -99.9 302.15 2. 302.45	16. 99.9 6.1 26.9 2.6 2.6 2.6	600. 0.306 0.306 -99.9 0.0058 100 42.3 98.3	600. 1. 50. 50. 100. 100. 190.
	PG20 7 55 14	64. 263.13 386500. 622.6 1331. 1462. 99.9	600. 60. 60. 60. 60. 600. 600.	60.7 1000000. -99.9 -99.9 307.15 2.	7 8 9 7 9 0 1 9 0 0 1 9 0 0 1 9 0 0 1 9 0 0 1 9 0 1 1	600. 006 0.60 -99.9 -0.0161 42.3 98.3	600 600 50 50 50 50 50 50 50 50 50 50 50 50 5
tass, set 2 oxide	PG19 25 11	64. 261.13 265.00. 1331. 1331. -99.9		61.1 1000000. -99.9 -99.9 302.15 2. 300.85	2	600. 0.306 0.399.9 -0.0357 30.357 30.357 82.3 88.3	600. 11. 50. 500. 2000. - 99. 9
Pradruc Grass, Sultur dioxide SO2 B	6 1116 23 25 22 22	64. 261.13 386500. 622.6 1331. 1462. -99.9	- 99.9 297.15 297.15 45 111 45 60 0.057 600.	34.6 1000000. -99.9 -99.9 29.15 25.15 25.15	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	600. 0060.20 -99.7 -91.1 10 42.3 98.3 98.3	6000 500 500 500 500 500 50 50 50 50 50 5

clond cuver [1] Pasquill-Citford stability class (A-l;D-4;F~6) latitude (dog) mol. weight (g/mole)normal bolling point (K)latent heat of evapoxation (J/Kg)specific heat - vapor (J/Kg-K)specific heat - liquid (J/Kg-K)density of liquid (Kg/m^{-3}) coefficient B for vapor pressure equation coefficient B for vapor pressure equation exit pressure (atn)3 avoraging time for puak concentration (s) averaging time for averaged concentration (s) concentration of interest for meduling (pym) suggested recepter height for meduling (n) Ē | (m) 1 (m) 1 (m) 1 (m) 1 (c:mfnal rucord: -99.9) Ξ Ξ relative humidity (1) ambient temperature 11-jouer (K) measurement height for temperature 1 ambient temperature 12-upper (K) Measurement height for temperature 12 3-char. abbrevlation of chemical number of triais included in MDA time zone designation triai ID inverse Monin-Obakhov length (1/m) source temperature (K) source diameter (m) source diameter (m) source tevation (m) source type (18,11,AS,EP) source to take (18,11,AS,EP) source thase (18,11,AS,EP) source to take (18,11,AS,EP) source containment diameter (m) spill duration (s) total released (kg) total released (kg) initial concentration (p)m) ŝ number of distances downwind bowen ratio estimate distance downwind (m) distance downwind (m) ријмимор stance downwind stance downwind longitude (deg) year hour minute st ance distance nonth daγ -99.9 600. 70.2 2012 2012 -99.9 -99.9 224.15 224.15 224.35 16.9 -99.9 263.13 386500. 622.6 1462. -99.9 -99.9 -99.9 -99.9 294.15 -45 1331. PG38 2 50. 100. 200. 800. 42.3 58.3 600. <u>, vi</u> -99.9 0.0403 600. 24.2 1000000. -99.9 -99.9 263.13 386500. 622.6 1331. 1462. -99.9 -99.9 -99.9 -99.9 15 15 15 15 15 15 294.55 99.9 PG37 .0.9 99.9 2. 600. 006 0.29 0.29 20.0105 30 50. 100. 200. 300. 9 42.3 98.3 600. , °? --99.9 600. 600. 1000000. -99.9 293.15 263.13 386500. 622.6 1331. 1462. -99.9 -99.9 -99.9 -99.9 293.15 293.15 294.95 16, -99.9 PG36 . 9.96 9.97 2. 600. 006 0.10 -99.9 0.1282 s. 12.3 8.3 500. 500. 500. 500. 00. -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 58.4 -99.9 204.15 263.13 386500. 622.6 203.05 303.05 16, -99,9 462. 2634 50. 100. 200. 800. \$2.3 \$8.3 600. o, <u>.</u> ^ -99.9 0.0947 600. 56.8 1000000. -99.9 -99.9 263.13 386500. 622.6 1462. -99.9 -99.9 -99.9 -99.9 302.15 0.0508 è1.15 **EE**33 .1EEI 16. -99.9 'n 12.3 50. 100. 100. 99.9 000 s. -99.9 0.0414 600. 24.8 24.8 1000000. -99.9 -99.9 263.13 263.13 386500. 622.6 1331. 1462. -996.9 -999.9 -999.9 -995.15 0.0508 HJ 2. 299.45 16. -99.9 PG32 2. 600. 006 0.13 -99.9 10.1205 2.2 -99.9 3.6.9 ~ 1.5 3.500 400 -99.9 -99.9 12.3 500. 500. Prulule Grass, set 3 Sultur dloxido S02 -99.9 0.0415 600. 24.9 100000. -99.9 -99.9 263.13 386500. 622.6 -99.9 -99.9 -99.9 298.15 0.0508 2. 299.05 16. -99.9 1331. 1 23:5 -99:9 -99:9 -99:9 -99:9 -99:9 -99:9 -99:9 -90:28 -11: -90:2 PG29 1462. 50. 100. 200. 990. -99.9 0.0417 600. 25.0 1000000. -99.9 -99.9 263.13 386500. 622.6 1331. 1462. -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 2. 254.15 Pui2B 16. - 99.9 2. c - 99. c 2. 600. .006 0.16 -99.9 0.011/ 50. 50. 200. 100. 12.3 . 00. . •?

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

198

3-char, abbrevlation of chumical number of trials included in NDA	LIMU COUR UESIGNALION T ETEAL ID month day : year : hour	minuce mol. weight (g/mule) normal bolling point (K) latent heat of evaporation (J/kg) specific heat - vapor (J/kg-K) specific heat - liquid (J/kg-K) density of liquid (kg/m^^3) coefficient B for vapor pressure equation coefficient B for vapor pressure equation coefficient L for vapor pressure equation coefficient L for vapor pressure equation	source diameter (n) source diameter (n) source phase (L, C, G) source containment diamutur (n) source containment diamutur (n) splil/uvaporation (s) splil/duration (s) total released (ky) initial concentration (pput) ambient pressure (atm) relative humidity (h)	<pre>amblent temperature i1-lower (K) massurement height for temperature i1 (m) massurement height for temperature i2 (m) mossurement height for temperature i2 (m) soil temperature (K) soil temperat</pre>	<pre>comment if or domain-avg wind data (m) averaging time for domain-avg wind data (m) friction volocity u-star (m/s) bowen ratio estimate invorse Monin-Guukhov lungth (1/m) cloud cover (N) finteria Monin-Guukhov lungth (1/m) cloud cover (N) fastitudo (dog) latitudo (dog) latitudo (dog) cloud cover (N) sveraging time for peak concentration (s) averaging time for everyed concentration (s) suggested recuptor height for modeling (pim) suggested recuptor height for modeling (n) number of distances downwind distance downwind (m) distance downwind (m)</pre>
	PG49 8 21 10	64. 263.13 263.6 622.6 1331. 1462. -99.9 -99.9 -99.9 -99.9	0.0508 45 69.9 0.102 61.2 61.2 -99.9 -99.9	297.15 295.35 16. 19.9 1.3 6.3 6.3 20.9 11.9	22 600. 0.45 99.9 -0.0357 800. 11.5 500. 11.5 100. 11.5 100. 11.5 100. 11.5 100. 11.5 100. 11.5 100. 11.5 100. 11.5 100. 100.
	P 648 21 26 9	645 263.13 265.00 1321.6 1462.6 199.9 299.9 299.9 299.9 215 293.15	0.0508 45 61 99.9 0.1041 62.5 62.5 -99.9	293.15 291.95 16.9 19.9 8.0 8.0 8.1 8.1 8.1	2.2 600. .006 0.51 0.51. 4 4 4 4 2.00 600. .5 5 5 5 5 5 5 600. .9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	PG46 8 15 18 18	645 263.13 265.00. 1321. 1462.6 199.9 299.9 209.9 209.9 200.15	0.0508 .45 .45 .45 .09.9 0.0997 0.0997 600.6 .09.9 .99.9	306.15 306.55 16.55 19.9 1.2 5.2 5.2 5.2 2.2 2.2 7.7	2. 600. 0.006 0.306 0.306 0.0066 1. 5. 50. 10
	PC45 8 15 17	64. 261.13 265.00. 1322.6 1462. 199.9 299.9 299.9 209.19	0.0508 45 61 699.9 0.1008 600.5 1000000 1000000 199.9	309.15 308.75 308.75 16.1 199.9 6.1 -99.9 6.9	2. 600. 0066 0.39.9 90.0115 98.3 98.3 98.3 98.3 90.0 11. 10. 10. 100.
	PG44 8 15 14 14	64. 263.13 265.00. 1331. 1462.6 -99.9 -99.9 310.15	0.0508 45 45 45 45 45 60 60.4 60.4 1000000. -99.9	310.15 310.15 16. -99.9 5.7 5.7 -99.9 12.9	2. .006 0.40 0.40 -99.9 42.3 42.3 42.3 600. 500. 500. 2000. 2000. 2000. 99.9
	PG43 B 15 12	64. 263.13 265.00. 1322.6 1322.6 192.9 292.9 292.9 292.9 200.9	0.0508 .15 .15 .15 .15 .29 .9 .0086 .00.0586 .00.0586 .00.0586 .190.00000. .190.9 .99.9	308.15 306.75 306.75 16.9 19.9 5.0 5.0 -99.9 12.2	22
irass, set 4 Gxlde	PC 42 B 14 56 5 6	64. 261.13 261.13 1322.6 1331. 1462.6 -99.9 -99.9 -99.9 -99.9	0.0508 .45 .45 .99.9 .00.0564 600. 33.8 .100000U. -99.9	296.15 296.55 296.55 199.9 5.8 5.8 6.6 6.6	2. 600. 600. 99.9 42.3 42.3 600. 500. 500. 500. 11.5 500. 11.5 500. 10.0 600. 11.5 10.0 600. 10.0 10
Prutrlu Grass, Sultur dloxido So2 B	8 8 3 5 6 3 1 4 3 5 6	64. 261.11 261.11 1331. 1331. 195.9 - 99.9 - 99.9 29.19	0.0508 45 5 5 6 6 6 0 19 5 7 3 9 - 9 9 .9 9 .9 9 .9 9 .9 9 .9	294.15 25:.55 25:.55 26.25 29.4 1.0 4.0 2.0 2.0 2.0 2.0	2. 600. 600. 5.23 5.29.9 600. 5.11. 5.00 11.5 5.00 100. 5.00 100. 5.00 100. 5.00 100. 5.00 100. 5.00 100. 5.00 100. 5.00 5.00

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 199

<pre>. 3-char. abbreviation of chemical number of trials included in MDA time zone designation trial ID month month day day four monte monte monte monte monte monte tour specific heat - liguid (J/kg-K) specific heat - liguid (J/kg-K)</pre>	coefficient & for vapor pressure equation coefficient & for vapor pressure equation exit pressure (atm) source temperature (k) source diameter (m) source diameter (m) source elevation (m) source of [18, M, As, EP) source of [18, M, As, As, As, As, As, As, As, As, As, As	measurement holght for temperature #1 (m) ambient temperature #2-uppur (K) measurement height for temperature #2 (m) soil temperature (K) soil moisture (1:dry,2:moist,3:water) wind speed (m/s) measurement height for wind speed (m) demain-avg sigma-tuteta (deg) demain-avg sigma-tuteta (deg) demain-avg sigma-tuteta (deg) measurement he for demain-avg data (s) demain-avg sigma-tuteta (deg) demain-avg sigma-tuteta (deg) measurement he for demain-avg data (s) treffection volocity u-star (m/s) beiden railo estimate furctse Honin-Obukhov length (1/m) stouti-cover (s)	latitude (dog) longitude (dog) averaging time for pusk concentration (s) averaging time for pusk concentration (s) averaging time for averaged concentration (s) concentration of interest for modeling (nuc) suggested receptor height for modeling (ni number of distances downwind (m) distance downwind (m)
PG58 PG58 PG58 PG58 PG58 PG58 PG58 PG58	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	2. 16.05.05 16.05.05 -9.9.9 1.9.9 2. 00.1 -99.9 0.1563 0.1563 6 0.11 6 0.15630 0.1563000000000000000000000000000000000000	42.3 600. 600. 11. 200. 290. 290. 290. 290. 290.
8657 8657 25 264. 264. 263.13 263.13 263.13 263.13 263.13 263.13 263.13 263.13 263.13 263.13 263.13	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	308.55 16. 7 19. 9 19. 9 19. 9 20. 46 0. 46 0. 46 0. 46 0. 0052	42.3 600. 600. 50. 50. 200. -99.9
PG56 8 25 25 26 26 26 13 26 13 13 13 31 52 26 13 31 52 26 13 31 52 26 13 31 52 5 6 52 5 6 52 5 5 5 5 5 5 5 5 5 5 5	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	269.75 16.11	42.3 98.3 600. 11. 50. 50. 100. -99.9
PGSS PGSS PGSS PGSS PGSS PGSS PGSS PGSS	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	25. 29. 5 16. 55 2. 4 2. 4 2. 5 2. 4 2. 5 5 2. 4 2. 5 5 2. 4 5 2. 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98.3 98.3 50. 1. 100. 100. 99.9 99.9
PG54 PG54 24 256 22 263.13 386500. 652.6 1331.	-99.9 -99.9 -99.9 -99.15 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	293.05 16.05 16.05 19.05 20.05 20.05 20.05 21.05	84.3 600. 50. 50. 11. 50. 100. -99.9
PG53 PG53 PG53 PG53 PG53 PG53 PG53 PG53	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9	291.05 16.105 199.9 22.5 23.9 23.9 29.9 0.1000 0.17 0.1000 0.17 0.1000	98.3 600. 1.5 500. 500. -99.9
Ctures, sut 5 loxide to 5 PC5 PC5 21 25 26 26 26 26 26 26 13 26 13 26 13 26 13 26 13 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 26	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 100000 -99.9 -99.9 2.15	303.75 - 99.9 - 99.9 6.1 6.1 6.1 6.1 - 99.9 - 93.9 - 0.0250 - 0.0250 - 0.0250 - 0.0250	98.3 600. 5.5 100. 200. 290. 290.
Ptaltie Grass, Sulfut dloxids, Sulfut dloxids, B Puso	-99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 -99.9 2,115	302, c5 - 99, 9 1 - 99, 9 6, 6 6, 6 6, 6 6, 6 6, 0 10, 9 20, 9 20, 9 20, 9 20, 6 20, 9 20,	98.3 600. 500. 11.5 50. 200. 200. 200.

200

3-char. abbreviation of chemical number of triais included in MDA + +	tring zone designation trial ID	: шолсл : day	: Yuar	: nour : minute	alght (g/mole)	<pre>: normal boling point (K) : latent heat of evaporation (J/kg)</pre>	- vapor (J/kg	: specific heat - liquid (J/Kg-K) - densiry of light /kg/m4431	ssure	: coefficient B for vapor pressure equation	source temporature (K)		SOURCO BLEVALION (M)	source phase (L,C,G)		spill/evaporacion face (Kg/S) spill duration (S)	released (kg)	: Initial concentration (ppm)	s amplent pressure (atm) s relative hum/d/ty (4)	;	; measurement height for temperature #1 (m) : ambient temperature #2~upper [K]	: measurement height for temporature 12 (m)	: soll temperature (K) : soll moisture (l:dry,2:moist,3:water)	speed (m/s)	: measurgment height for wind speed (m) : domain-avg wind speed (m/s)	: domain-avg sigma-u (m/s) - domain-avg sigma-u (m/s)	5	data	: friction velocity u-star (m/s)	: bowen ratio estimate	: Invorse Monin-Ubuknov Langli (1/m) : cloud cover (%)	: Pasquill-Glifford stability class (A-1; D-4; F-6)	: latitudo (deg) : localtude (deg)	for peak concentration (s)	: avoraging time for avoraged concentration (s)	for modeling	: number of distances downwind	holunub	: distance downwind (m) : distance downwind (m)	downuind (m)	: distance downwind (terminal record: -99.9)
	PG62	8 26	56	14	64.	263.13	622.6	1331.	-99.9	99,9 9,99,9	305.15	0.0508	- 45	20	-99.9	0,1021	61.3	1000000.	5°66'		2. 304.15	16.	99.9 1	5.2	2. 5.2	-99.9	а.а 2.	600. 006	0.34	-99.9	-0.05 80		42.3 QA 1	600.	600.	1.5	4	200.	400. 800.		6.66-
	PG61	B 26	56	11	64.	263.13 386500	622.6	1331.	-99.9	6.99.9	307.15	0.0508	. 45	<u>و</u>	6.99-	0.1021 600	61.3	1000000.	6.66-	307.15	2. 305 35	16.	~99.9 1	8.0	2. B.O	6-99.9	11.0	600.	0.51	-99.9	-0.0263	. 4	42.3	600.	600.	1.5	ŝ	.001 100.	200.	.008	6.66-
uss, set 6 ,xlde	PG60	8	56	0	64.	263.13	622.6	.1331.	.20F1	6.66-	4.44-	0.0508	.45	[] C	-99.9	0.0385	23.1	1000000.	-99.9 -44.4		2. 260 02	16.	-99.9 1	ę. 4	2. 4. 4	6.66-	5.9	600.	.006 0.28	6.99-	0.0172	0.4	42.J	600.	.009	1.5	S	50. 100.	200.	800.	- 99. ي
Prutte Grass, Sultur utoxtde S02 4	6 PG59	8	56	22	64.	263.13	522.6	.1331.	1402. - 49 4	6 6 6 -	-99.9	0,0508	.45	CH 3	49.9	0.0402	24.1	100000.	-99.9 - 40.9	297.12	2.	16.	-99.9	2.0	2. b	۲. <u>6</u> 2-	5.2	600.	.006 0.14	- 65 J	0.0909 50	90 9	42.1	600.	.003	.1	2	50. 100.	200.	400. 800.	6.99-

API PUBL*4546 92 🔳 0732290 0505649 319 💻

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

201

. 3-char. abbruviation of chunical : number of trials included in HDA	: time zone designation • rrist rh		: day	: year	; mour ; minute		boiling point (K)			m/gX) blup	vapor pressure	z cosiiicient b lot vapor pressure equation z exit pressure fatmi	te tempera	diameter (m)			: source pnase (L,C,G) : source containment diameter (m)	ion rate (kg/s	duration (s)	eleasod (kg)		: rolative humidity (5)	beraturo #1-lower (K)	ent height for temper	: ampiont temperature f1-upper (K) : measurement height for temperature f2 (m)	(grass) temperature (K)	: soli moisture (lidry,2:moist,3:Hater) : Wind speed (m/s)	UD UD IN	wind spued (m/s)	: domain-avg sigma-u (m/x) : domain-avg sigma-theta (dom)	: model's for domain-avg wind data (m)	st domain-avg data (s)	: rouguness longtn zu (m) : friction volocity u-star (m/s)	<pre>powan ratio astimate</pre>	: inverse Monin-Obukhov langth (1/m)	: cloud cover (s) : Pascull1-Gifford stability class (A-1:D-4:F-6)		(deg)	time for peak concentration (s)	averaged concentrati terest for modeling	ptor height	f distances downwind	DI I MUMOD	; distance downwing (m)	stance downwind	downwind	: distance downwind (m) : distance downwind (m)	downwind	downwind (m)	: distance downwind (terminal record: -99.9)
r Island (continuous) c f Freun-12 and Mitrogen	L ¥	1047 6	15		20 08		243.4			152		20.01 1	287.45		.0	AS AS	5 199.9	10.22	465.			91.4 97.4	287.45	2.	5.99.9	287.65		10.		5.551 5.551	10.	600. 200.	0.01 -95.9	-99.9		с. У	<u>5</u> 1.	1.	30.	100		v 0	50. 80	- D2 - D2	250.	335.	472.	6.661	6.66-	-99.9
Thot ney M1 xt ur 6 F12 2	0	1 C+J	60	84	50	57.8	243.4	. 000cd1	970.	1520.	-99.9	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	286.25	2.	о.	AS 2	-44.4	10.67	455.	4855.	1000000.	100.	286.25	2. 2. :	- <u>9</u> - 99 - 9	285.95	- ~		2.3	- 99.9	10.	600.	-99.9	6.66.	- 99.9		51.			200		6	40.			12.	58.		12.	6.66-

API PUBL*4546 92 🗰 0732290 0505650 030 🛲

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

202

. 3-chát, abbruvlation of chemicul : numbor of trials iochaid io woa	D	minute mol. weight $(g/mole)$ normal bolling point (K) latent heat of evaporation (J/ky) specific heat - vapor $(J/kg-K)$ specific heat - iquid $(J/kg-K)$ density of liquid (Kg/m^{+3}) coefficient A for vapor pressure equation coefficient B for vapor pressure equation exit pressure (atm) source temporature (K)	: source alevation (m) source type (IR, UJ,AS, EP) source phase (L,C,G) source containment diamuter (m) splii/uvaporation rate (kg/s) splii duration (s) total released (kg) total released (kg) initial concentration (ppw) amblent pressure (atm) relative humidity (h)	<pre>amblent temperature 11-10wur (K) moasurement height for temperature 11 (m) amblent temperature 12-upper (K) muasurement hoight for temperature 12 (m) soil (grass) temperature (R) soil moisture (lidry,2:muist,3:wutut) wind speed (m/s) measurement height for wind speud (m) domain-avy wind speed (m/s) domain-avy sigmu-u (m/s)</pre>	a commitment by four duals (m) measurement by for domain-avy wind duta (m) a versaling time for domain-avy data (s) i roughness length 20 (m) friction velocity u-star (m/s) bowen rulio estimatu i inverse Monin-Obukhov lungth (1/m) cloud cover (1) Pasquill-Cifford stability claus (A-1; $D-4;F-\dot{u}$) i astitude (deg) i baittude (deg)	averaging time for peak concentration (s) averaging time for averaged concentration (s) concentration of interest for modeling (i)un) suggested recuptur height for modeling (n) number of distances downwind distance downwind (m) distance downwind (m)
	1119 6 10 20 20	61.27 243.4 165000. 970. 1520. -99.9 286.47 245.9 214.1 214.1	I I G 99.9 99.9 99.9 99.9 99.9 93 84.8 93 84.8	286.47 286.51 16.51 16.15 286.15 10.4 6.4 6.4 6.4	10,00 00 00 00 00 00 00 00 00 00	
	TI18 6 10 15 15	54.04 243.4 165000. 970. 1520. -99.9 -99.9 289.9 289.9 244.5 289.9 244.5 289.9 244.5	L L - 99.9 - 99.9 - 99.9 - 99.9 - 994 - 994 - 994 - 994	289.66 28.52 28.52 29.6 298 7.4 7.4 7.4 7.4 7.4 7.4 7.4	10. 0005 0005 0005 0005 0005 0005 0005 0	
	TI17 6 83 19 19	121.38 243.4 165000. 970. 11570. -99.9 -99.9 289.21	IR 6 -99.9 -99.9 87110. 100000.	289.21 26. 22 26. 92 16. 291.05 291.05 5.0 5.0 67 5.0 8 0 7	600 600 600 60 60 60 60 60 60 6	.6 100 111 111 199 199 199 199 199 199 199
	7113 10 19 11 11 41	57.80 243.4 165000. 9700. 1520. -99.9 -99.9 286.88	IR 6 -99.9 -99.9 4800. 1000000.	206.88 206.44 16.206.44 16.207.85 207.85 7.3 7.3 5.30	10. 384. -99.9 -99.9 -011 -011 -011 -011 -011 -011 -011 -01	
	TT12 10 15 17 21	68.49 243.4 165000. 970. 1520. -99.9 -99.9 283.29	IR -99.9 -99.9 -99.9 -99.9 -99.9 100000. 1.000	283.29 284.31 16.284.31 16.15 285.15 2.5 2.5 2.5 2.5 2.5 2.5 2.5	10. 600 699.99 60.100 60.100 11. 11. 11. 11. 11. 11. 11.	
	115 9 15 18 18 18	46.24 243.4 165000. 1520. -99.9 -99.9 291.45 291.45	IR -99.9 -99.9 -99.9 3866. 100000. 1.006	231.45 292.11 16. -99.9 1.7 1.7 1.7 1.7 -91.9	10. 600 -99.9 -99.9 -99.9 0.650 0.650 1.	.6 100 100 11100 1222 100 100 100 100 100
ntanoor) nd Nitrogun	1118 9 82 1728 49	47.11 243.4 165000. 610. 1520. 1520. -99.9 -99.9 290.9 290.6		290.68 290.58 16.291.55 291.55 2.4 2.4 2.4 3.4 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	10. 600. -99.9 -110 25. 110	.6 100 100 100 100 100 100 100 100 100 10
Thorney Island (Instantaneous) Mixtura of Freen-12 and Nitrogon F12 9	1:17 9 882 119 33	50.58 243.4 165000. 1520. 1520. -99.9 -99.9 240.46 240.46	IR -99.9 -99.9 -299.9 -99.9 4249.9 1000000.	290.46 290.47 290.47 16. 290.85 3.4 3.4 3.4 10. 8 17 8 17	10. 600. -99.9 99.9 99.9 25. 011 25.	.6 100 100 1100 1100 1000 1000 1000 1000000
Thorney 1 Mixtura o F12 9	9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	47.69 243.4 165000. 1520. 1520. -99.9 29.9 29.9 29.9	18 	291.03 291.01 291.01 16. 19.0 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	10. 600. 	600000 60000000 600000 600000000

API PUBL*4546 92 🖿 0732290 0505651 T77 💻

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🎟 0732290 0505652 903 📟

APPENDIX 3

MODEL APPLICATION INFORMATION

Included in this Appendix are the tables containing the input parameters to each of the following models:

AFTOX AIRTOX Britter and McQuaid CHARM DEGADIS FOCUS GASTAR GPM HEGADAS INPUFF OBDG PHAST SLAB TRACE

for each of the following experiments:

Burro Coyote Desert Tortoise Goldfish Hanford (continuous) Hanford (instantaneous) Maplin Sands (LNG) Maplin Sands (LPG) Prairie Grass Thorney Island (continuous) Thorney Island (instantaneous)

API PUBL*4546 92 MM 0732290 0505653 84T MM

AFTOX INPUT DATA FOR: INEMICAL RELEASED :

Surro Liquefied natural gas

IS FRINTER ON?	: N								
	: 3								
	Ŷ								
	. MET	310							
TIME LONE	: 3								
	: 302		303	304	305	306	307	308	309
MONTH	. 302	4			505		307	200 . 3	3
DAY		:3						3	:7
YEAR	•	30							30
HOUR		15							18
MINUTE		59			20			.,	37
TYPE OF SPILL		1		. 1					1
STATION NO.		15				:5	15	15	15
CHEMICAL NO.		56							36
MOLECULAR WEIGHT		17.460						19.120	18.320
CONC. OF INTEREST	•	100.00						100.00	100.00
MEAS. HEIGHT (m)		2.0						2.0	2.0
AMB. TEMP. (C)		38.1						32.3	35.3
WIND DIR. (deg)		0.0						32.3	0.0
WIND SPEED (m/s)		5.4					5.4	1.3	5.7
HAVE STOV. OF DIR?									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STD. DEV. DIR. (deg);		13.5						5.5	4.4
AVERAGING TIME (ain)		5,00						6.00	5.00
CLOUD COV. (8ths)		0.00						0.00	5.00
SOIL MOISTURE		2	•	-	•			2	2
INVERSION?		5							
SITE ROUGHNESS (Cm)		0.020						n 0 000	1
RELEASE HT (m)		0.020					0.020 0.00	0.020	0.020
CONTINUOUS GAS RELEAS		v. vv	0.00	0.00	0.00	0.00	0.00	0,00	0.00
EMIS. RATE (kg/min) :		5166.0	5278.8	5217.6	4875.0	5533.2	5967.5	7015.8	8158.9
STILL LEAKING?		5100.0 n							
ELAPSED TIME (min)		2.88						ה 1.78	n 1.32
CONC. AVG TIME (min):		1.00					2.33	1.33	1.00
SPECIFIED CONC (ppm)		100.					100.	100.	100.
DOWNWIND DIST. (m)	i I	57.0					57.0		
TRAVEL TIME (min)	1	0.2						57.0	57.0
DOWNWIND DIST. (m)		140.0					0.1 140.0	0.4 140.0	0.1
TRAVEL TIME (min)		0.4					0.2		140.0
DOWNWIND DIST. (m)		-99.9						0.9	0.3
TRAVEL TIME (min)		-99.9 0.0					400.0	400.0	400.0
DOWNWIND DIST. (m)		-99.9					0.7 -99.9	2.5 800.0	1.0
TRAVEL TIME (min)		-99.9						5.2	800.0
SOLAR ANGLE (deg)		35.76						-11.25	2.0 -9.22
source intender (deg) -		JJ + / U	10.13	20.04	31.03	34.43	1.30	-11.43	-7.44

•

API PUBL*4546 92 🖿 0732290 0505654 786 📟

AFTOX INPUT DATA FOR: Coyota INEMICAL RELEASED : Liquefied natural gas

•

. . Mechane is at least 36% in c

15 PRINTER ON7	: N			
STATION NO.2	: 3			
CHANGE DATE/TIME?	: ?			
UNIT SYSTEM?	: MET	RIC		
TIME LONE	: 3			
TRIAL	: CO3	CO5	CD6	
MONTH	:	9	10	10
Day	:	з	7	27
YEAR	:	91	31	51
HOUR	:	15	12	15
MINUTE	:	38	9	43
TYPE OF SPILL	:	1	ĩ	1
STATION NO.	:	15	15	15
CHEMICAL NO.	:	56	56	56
MOLECULAR WEIGHT	:	19.510	20.190	19.090
CONC. OF INTEREST	:	100.00	100.00	100.00
MEAS. HEIGHT (m)	:	2.0	2.0	2.0
AMB. TEMP. (C)	:	38.3	28.3	24.1
WIND DIR. (deg)	:	0.0	0.0	0.0
WIND SPEED (m/s)	:	6.0	9.7	4.6
	:	ž	Y	Ý
STD. DEV. DIR. (deg)	:	6.0	5.1	5.1
AVERAGING TIME (min)	:	3.00	3.00	3.00
CLOUD COV. (8ths)	:	1	3	4
SOIL MOISTURE	:	2	2	2
INVERSION?	:	a	n	
SITE ROUGHNESS (cm)	:	0.020	0.020	0.020
RELEASE HT (m)	:	0.00	0.00	0.00
CONTINUOUS GAS RELEA	SE			
EMIS. RATE (kg/min)	:	6040.2	7741.2	7381.3
STILL LEAKING?	:	n	n	a
ELAPSED TIME (min)	:	1.08	1.63	1.37
CONC. AVG TIME (min)	:	1.00	1.50	1.17
SPECIFIED CONC (ppm)	:	100.	100.	100.
COWNWIND DIST. (m)	:	140.0	140.0	140.0
TRAVEL TIME (min)	:	0.3	0.2	0.4
DOWNWIND DIST. (m)	:	200.0	200.0	200.0
TRAVEL TIME (min)	:	0.5	0.3	0.6
DOWNWIND DIST. (m)	:	300.0	300.0	300.0
TRAVEL TIME (min)	:	0.7	0.5	0.9
		-99.9	400.0	400.0
TRAVEL TIME (min)	:	0.0	0.6	1.2
	:	31.20	48.33	2.36

IS PRINTER ON? :	я				
STATION VO 1					
SHANGE DATE/TIME? UNIT SYSTEM? TIME LONE TRIAL MONTH DAY	÷.				
-nite systems	MET				
THE TONE					
	7771	DT2	573	274	
-D-04	~	9	3	9	
		24	29	,	9
YEAR :		49 33	33	83	-
ACUR		:6	11	15	93
MINUTE :		37	20	37	18
				37	15
TYPE OF SPILL :		1		.2	.1
STATION NO. :		12	12	12	12
CHEMICAL NO. :		13 17.030 100.00	13	:3	13
MOLECULAR WEIGHT :		17.030	17.030	17.030	17.930
CONC. OF INTEREST :		100.00	100.00	100.00	100.00
		2.0	2.0	2.0	2.0
AMB. TEMP. (C) :			30.4		32.4
		0.0	0.0	0.0	0.0
WIND SPEED (m/s) :		7.4	S.3	7.4	4.5
HAVE STOV. OF DIR? :		¥	¥	*	¥
STD. DEV. DIR. (deg):		5.7	7.5	8.3	5.0
AVERAGING TIME (min) :		3.00	7.5 3.00 0	3.00	3.00
CLOUD COV. (8ths) :		3	0	5	э
SOIL MOISTURE :		2	2	2	1
CLOUD COV. (8ths) : SOIL MOISTURE : INVERSION? :		n	n	a	a
SITE ROUGHNESS (cm) :		0.300	0.300	0.300	0.300
RELEASE HT (m) :		0.79	0.79	0.79	0.79
CONTINUOUS GAS RELEAS				-	
EMIS. RATE (kg/min) :		4782.0	6690.0	7842.3	5802.0
STILL LEAKING? : ELAPSED TIME (min) :		n	a	n	2
ELAPSED TIME (min) :		2.10	4.25	2.77	6.35
CONC. AVG TIME (min) :		1.33	2.67	2.00	5.00
SPECIFIED CONG (ppm) :		100.		100.	100
COWNWIND DIST. (m) :		100.0	100.0	100.0	100.0
TRAVEL TIME (min) :		0.2	9.2	0.2	0.3
COWNWIND DIST. (m) : TRAVEL TIME (min) : SOLAR ANGLE (deg) :		800.0	800.0	800.0	500.0
TRAVEL TIME (min) :		1.4	1.7	1.4	2.1
SOLAR ANGLE (deg)		20.68		30.46	
					44 10

•

AFTOX	INSOL	DATA	FOR:
CHEMIC	AL RES	LEASED	:

Goldfisn Hydrogen fluoride

-

•

	: 3			
	: 3			
	: *			
	: MET			
	: 3			
	: GZ1			
	:	9	8	3
	:	1	14	20
	:	90	90	90
	:	18	18	18
MINUTE	:	15	15	15
	:	1	1	1
	:	12	12	12
	:	48	48	48
MOLECULAR WEIGHT		20.010	20.010	20,310
CONC. OF INTEREST	:	30.00	30.00	30.00
MEAS, HEIGHT (m)	:	2_0	2.0	2.0
AMB. TEMP. (C)		37.2	36.2	34.4
WIND DIR. (deg)		0.0	0.0	0.0
WIND SPEED (m/s) :		5.6	4.2	5.4
HAVE STOV. OF DIR? :		ž	ž	Y
STD. DEV. DIR. (deg):	:	10.7	14.9	10.7
AVERAGING TIME (min) :		15.00	15,00	15.00
CLOUD COV. (8ths) :		э	0	0
SOIL MOISTURE		1	1	1
INVERSION?		n	n	n
SITE ROUGHNESS (cm) :		0.300	0.300	0.300
RELEASE HT (m)		1.00	1.00	1.00
CONTINUOUS GAS RELEAS	ΞE			
IMIS, RATE (kg/min) :		1660.2	627.6	616.2
STILL LEAKING7		n	'n	n
ELAPSED TIME (min)		2.08	6.00	6.00
CONC. AVG TIME (min) :		1.47	1.47	1.47
SPECIFIED CONC (ppm) :		30.	30.	30.
DOWNWIND DIST. (m)		300.0	300.0	300.0
TRAVEL TIME (min)		0.7	0.9	0.7
DOWNWIND DIST. (m)		1000.0	1000.0	1000.0
TRAVET, TIME (min)		2.3	3.1	2.2
DOWNWIND DIST. (m)		3000.0	-99.9	3000.0
TRAVEL TIME (min)		6.8	0.5	6.7
SOLAR ANGLE (deg)		6.06	3,60	2.21
	•			

209

AFTOX INPUT DATA FOR: JHEMICAL RELEASED :		(continuous) 15	API	PUBL*	1546	92	0792290	0505657	495	
IS PRINTER ON? :	м									
JTATION NO.7 :	3									
	Ŷ									
	METRIC									
TIME CONE :	3									
		HC3	HC 4	HCS						
MONTH		10	10	10						
JAY 1	:5	17	:3	24						
YEAR	d7	57	57	57	57					
HOUR	ő	5	11	11	5					
MINUTE	ŏ	2	1	4						
TYPE OF SPILL :	1		ĩ	1	:2					
STATION NO.	16	26	16	16	15					
CHEMICAL NO.	78	78	78	78	78					
MOLECULAR WEIGHT	29.000	29.000	29.000	29.000	29.000					
CONC. OF INTEREST :	0,10	0,10	0.10	0.10	0,10					
MEAS. HEIGHT (m)	1.5	1.5	1.5	1.5	1.5					
AMB. TEMP. (C)	17.7	12.2	15.7	13,4	5.5					
WIND DIR. (deg) :	0.0	5.5	5.0	0.0	0.0					
WIND SPEED (m/s) :	1.3	3.9	7.1	3.9	2.5					
HAVE STOV. OF DIR?	~~~ Y	ž	Ŷ	š.s Y	×3					
STD. DEV. DIR. (deg);	11.3	5.1	9.3	13.0	7.4					
AVERAGING TIME (min):	39.00	14.17	14.00	11.00	24.07					
CLOUD CCV. (8ths) :	35.00	3	3	-1.00	24.07					
SOIL MOISTURE	1	5	1	-	ن ۱					
INVERSION?				1						
SITE ROUGHNESS (cm) :	3.000	n 1 200	n 1 000	1	3					
RELEASE HT (m)	1.00	3.000	3.000	3.000	3.000					
CONTINUOUS GAS RELEASE		1.00	1.00	1.00	1.00					
EMIS. RATE (kg/min) : STILL LEAKING? :	0.7	0.7	1.7	2.3	1.0					
	n n	n 15 00	3	а а а а	a a					
ELAPSED TIME (min) :	15.47	15.08	14.25	9.97	19.85					
CONC. AVG TIME (min):	7.68	14.08	4.48	4.48	8,96					
SPECIFIED CONC (ppm):	0.	0.	0.	٥.	٥.					
DOWNWIND DIST. (m) :	200.0	200.0	200.0	200.0	200.0					
TRAVEL TIME (min) :	1.0	0.6	0.3	0.6	0.8					
COWNWIND DIST. (m) :	800.0	800.0	800.0	0.008	800.0					
TRAVEL TIME (min) :	3.9	2.4	1.3	2.5	3.2					
SOLAR ANGLE (deg) :	-40.08	15.98	31.69	31.45	-16.85					

Not for Resale

e

					_		_		
AFTOX INPUT DATA FOR:		Hanford :	instantane	-1141		07321	290	050565	8 321 🛲
INEMICAL RELEASED		Xrypton-d		0437					
			-			ΔPT	PHR	L*4546	92
13 PRINTER CN7 :	х					~			3 🗖
	3								
CHANGE DATE/TIME? :	Ŷ								
	MET	RIC							
TIME CONE :	3								
TRIAL :	HI2	HIJ	HIS	HIG		HI7	HIS		
MONTH :		9	10	10	10		10	11	
CAY :		14	17	23	23		24	3	-
YEAR :		57	67	67	.57		57	57	
HOUR :		23	7	10	11		10	5	
MINUTE :		э	38	53	30		53	2	
TYPE OF SPILL :		2	2	2	2		2	2	
STATION NO. :		16	16	16	16		16	16	
CHEMICAL NO. :		78	78	78	78		78	78	
MOLECULAR WEIGHT :		29.000	29.000	29.000	29.000	29.0	00	29.000	
CONC. OF INTEREST :		0.10	0.10	0,10	0.10	J.,	10	0,10	
MEAS, HEIGHT (m) :		1.5	1.5	1.5	1.5	1	. S	1.5	
AMB. TEMP. (C) :		18.3	11.9	15.5	15.1	12	- 4	4.5	
WIND DIR. (deg) :		0.0	0.0	0.0	0.0	a	.0	0.0	
WIND SPEED (m/s) :		1.3	4.1	7.6	7.2	4	.5	1.6	
HAVE STOV. OF DIR? :		Y	ž	Y	ž		Y	Y	
STD. DEV. DIR. (deg):		4.4	5.1	6.4	5.4	9	-1	3.7	
AVERAGING TIME (min):		20.00	10.00	3.33	4,00	3.	50	9.00	
CLOUD COV. (8ths) :		0	0	0	0		0	0	
SOIL MOISTURE :		1	1	1	1		1	1	
INVERSION? :		n	a	n	n		n	a	
SITE ROUGHNESS (cm) :		3.000	3,000	3.000	3.000	3.0	00	3.000	
RELEASE HT (m) :		0.00	0.00	0.00	0.00	0_0	00	0.00	
INSTANTANEOUS GAS RELE	LASE								
TOTAL MASS (kg) :		10.00	10.00	10.00	10.00	10.	00	10.00	
CONC. AVG TIME (min) :		1.00	1.00	1.00	1.00	1.	00	1.00	
SPECIFIED CONC (ppm) :		ο.	0.	0.	٥.		0.	0.	
DOWNWIND DIST. (m) :		200.0	200.0	200.0	200.0	200		200.0	
TRAVEL TIME (min) :		0.9	0.6	0.3	0.3		.5	1.1	
DOWNWIND DIST. (m) :		800.0	800.0	800.0	800.0	800		800.0	
TRAVEL TIME (min) :		3.7	2.2	1.2	1.3		.1	4.6	
SOLAR ANGLE (deg) :		-38.36	12.40	31.38	32.36	31.0		-8.40	
							•		

•

211

•

AFTOX INPUT DATA FOR: Madelin Jands AF DXEMICAL RELEASED : Liquified Natural Jas

IS PRINTER CM2 STATION NO.? CHANGE DATE/TIME? UNIT SYSTEM? TIME JONE TRIAL MONTH DAY YEAR HOUR MINUTE TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND SPEED (m/s) HAVE STDV. OF DIR. (deg) WIND SPEED (m/s) STD. DEV. JTR. (deg) AVERAGING TIME (min) CLOUD COV. (8ths) SOIL MOISTURE INVERSION? SITE ROUGHNESS (cm) RELEASE HT (m) CONTINUOUS GAS RELEA			
LA FRANCAR WAS			
TYANCE ALTE MENER			
WIM SYCHENS	· ·		
THE TONE			
	· v		VC75
		,y	
214	. ,	3	
7630	. 20	30	30 40
VOUR		14	10 50
MINITE	1	• • •	3 3
TYDE OF COTT			• •
STATION NO.		.7	·, ·,
CHEMICAL NO.	. 56	56	16 16
MOLECULAR WETCHT	17 10	16.260 16	660 16 100
CONC. OF INTEREST	: 100.00	100.00 10	
MEAS, HETCHT (m)	10.0	10-0	10.0 .00.00
AMB. TEMP. (C)	14 0	16 1	15 2 16 1
WIND DIR. (deg)	: 0.0	0.0	0.0 0.0
WIND SPEED (m/s)	1 5.6	7.4	8.5 9.6
HAVE STOV. OF DIR?	Y Y	v	v v
STD. DEV. DIR. (deg)	5.4	5.7	4.8 5.2
AVERAGING TIME (min)	2.57	3.75	1.30 2.25
CLOUD COV. (Sths)	. 0	7	1 1
SOIL MOISTURE	. 2	2	2 2
INVERSION?	, - , n	5	2 2
SITE ROUGHNESS (cm)	. 0.030	0.030 0.	.030 0.030
RELEASE HT (m)	: 0.00	0.00	0.00
CONTINUOUS GAS RELEA	SE		
EMIS. RATE (kg/min)	: 1392.6	1749.6 129	0.6 1625.4
STILL LEAKING?	1 0	n	5 5
ELAPSED TIME (min)	2.67	3.75 2	.58 2.25
CONC. AVG TIME (min)	: 1.00	1.00	1.30 1.30
SPECIFIED CONC (DDm)	: 100.	100.	100. 100.
COWNWIND DIST. (m)	: 89.0	58.0 5	7.0 129.0
TRAVEL TIME (min)	: 0.3	0.1	0.2 0.2
COWNWIND DIST. (m)	: 131.0	90.0 17	/9.0 250.0
TRAVEL TIME (min)	: 0.4	0.2	0.4 0.4
DOWNWIND DIST. (m)	: 324.0	130.0 -9	9.9 406.0
TRAVEL TIME (min)	: 1.0	0.3	6.7 0.7
DOWNWIND DIST. (m)	: 400.0	182.0 -9	9.9 -99.9
TRAVEL TIME (min)	: 1.2	0.4	1.2 0.0
COWNWIND DIST. (m)	: 650.0	252.0 -4	9.9 -99.9
TRAVEL TIME (min)	: 1.9	0.6	0.0 0.0
COWNWIND DIST. (m)	: -99,9	324.0 -9	9.9 -99.9
TRAVEL TIME (min)	: 0.0	0.7	0.0 0.0
DOWNWIND DIST. (a)	: -99.9	403.0 -9	9.9 -99.9
RELEASE HT (m) CONTINUOUS GAS RELEA EMIS. RATE (kg/min) STILL LEAKING? ELAPSED TIME (min) SPECIFIED CONC (ppm) COMMIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min) SOUND DIST. (m) TRAVEL TIME (min)	: 0.0	0.9	0.0 0.0
Solar Angle (deg)	: 41.35	36.77 36	.12 40.12

								<u> </u>	_	_
AFTOX INPUT DATA FOR	· Vanita tooo		API F	フUBL*45	46 92	07	32290	0505660	T&T	
CHEMICAL RELEASED	·	n Nonana las	•							
	· Jaquinied Pl	upano das								
IS PRINTER ON?	: :									
	: 3									
CHANGE DATE/TIME?										
	: METRIC									
TTVE TONE	· •									
TRIAL	: MS42 MS	47 46	16 46	147 VC		50 100	c) vo	S.A.		
TRIAL SONE TRIAL MONTH DAY YEAR HOUR MINUTE TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg) AVERAGING TIMS (min) CLOUD COV. (8ths) SOIL MOISTURE INVERSION? SITE ROUGHNESS (CT) RELEASE HT (m) CONTINUOUS GAS RELEAS		(4.)	ייי סי	547 <u>95</u> 4 10	19 25	JU	J∠ 33			
CAY	- 9 - 9	28	-0	_0				15		
YEAR	- 28	20	80	-	30	3	30	30		
HOUR	. 30 . 1c	17	50 19	30	-0		50	ve R		
MINUTE		19	17	16			- 4	25		
TYPE OF SETT	. 33	10	-4	1	، د ۱					
STATION NO	· · ·	17	17	17				17		
CHEMICAL VO	· 1/	1 20	1 (20	21	- 1	_ / _ 2 7		÷1 60		
MOTECHTSD WETCHT	. 08	42 020	17 050	00 47 340	17 760	50	0C	00		
COVE OF TURPARE	100 30	43.930	43.330	43.340	43.,60	43.930	43.870	43,940		
WERE WETCHE (-)	· 10.0	10.00	100.00	100.00	10.00	100.00	100.00	100.00		
MB TEND (C)	: 10.0	10.0	T0.0	10.0	10.0	10.0	10.0	10.0		
ATTE STR. (C)	: 18.3	17.0	18.7	17.4	13.3	10.4	1.3	5.4		
AIND CREED (-(-)	. 0.0	0.0	0.5	0.0	5.5	2.2	0.0	5.5		
AIND SPEED (m/s)	: 4.0	5.3	8.1	6.2	5.3	7.9	7.4	3.7		
HAVE STOV. OF DIR?	: <u>Y</u>	, Y	Ŷ	Y	Y	Y	Y	Y		
SID. DEV. JIR. (deg):	: 5.5	6.2	6.7	6.1	4.5	5.9	5.5	5.5		
AVERAGING TIME (min):	: 3.00	5.67	8.00	5.00	1.50	4.17	3.00	3.00		
CLUUD COV. (8ths)	: 2	4	1	4	3	б	1	٥		
SULL MOISTURE	: 2	2	2	2	2	2	2	2		
INVERSION?	: n	n	п	n	n	n	a	n		
SITE ROUGHNESS (CE)	. 0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030		
RELEASE HT (m)	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
CONTINUOUS GAS RELZAS	SE									
EMIS. RATE (kg/min)	: 1252.2	1152.0	1402.2	1954.2	1002.6	2153.4	2655.0	1152.0		
STILL LEAKING?	: n	n	n	n	n	n	n	n		
ELAPSED TIME (min)	: 3.00	5.50	6.00	3.50	1.50	2.67	2.33	3.00		
CONC. AVG TIME (min):	: 1.00	1_00	1.00	1_00	1.00	1.00	1.00	1,00		
SPECIFIED CONC (ppm) :	: 100.	100.	100.	100.	100.	100.	100.	100.		
DOWNWIND DIST. (m)	: 28.0	88.0	34.0	90.0	90.0	100. 59.0	61.0	56.0		
MIS. RATE (kg/min) STILL LEAKING? ELAPSED TIME (min) CONC. AVG TIME (min) SPECIFIED CONC (ppm) DOWNWIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m)	: 0.1	0.3	0.1	0.2	0.3	0.1 93.0 0.2 182.0	0.1	0.3		
DOWNWIND DIST. (m)	: 53.0	129.0	91.0	128.0	129.0	93.0	95.0	85.0		
TRAVEL TIME (min)	. 0.2	0.4	0.2	0.3	0.4	0.2	0.2	0.4		
DOWNWIND DIST. (m)	83.0	249.0	130.0	182.0	180.0	182.0	178.0	178.0		
TRAVEL TIME (min)	0.3	0.7	0.3	0.5	0.5	0.4	0.4	0.8		
DOWNWIND DIST. (m)	123.0	400.0	182.0	250.0	250.0	400.0	249.0	247.0		
TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min) DOWNWIND DIST. (m) TRAVEL TIME (min)	0.5	1.1	0.4	9.7	0.8	0.8	0.6	1.1		
DOWNWIND DIST. (m)	179.0	-99.9	250.0	321.0	322.9	-99.9	398.0	-99.9		
TRAVEL TIME (min)	0.7	0.6	0.5	0.9	1.0	0.0	0.9	0.0		
DOWNWIND DIST. (m)	247.0	-99.9	322-0	0.7 321.0 0.9 400.0	400-0	-99.9	650.0	-99.9		
TRAVEL TIME (min)	1_0	0.7	0_7	1 1	1 7	0.0	1 <	0.0		
DOWNWIND DIST. (m)	398.0	-99.9	401.0	1.1 -99.9		- 39 9	-99.9			
TRAVEL TIME (min)	: 1.7	0.9	0.8							
SOLAR ANGLE (deg)		4.04	21.24							
		7493	~~~*		21.02	20.37	44.03	TOTAT		

.

AFTOX INPUT DATA FOR: CHEMICAL RELEASED :

Prairie Grass, jet 1 Sulfur dioxide

	: N								
	: 3								
	: 7								
	: METRIC								
Time lone	: 5								
TRIAL	: 2G7	2G8	2G9		2G10	?G13	2015	PG1 6	PG17
MONTH	:	7	7	?	7	-		7	7
CAY	:	10	10	11	11	22	23	23	
YEAR	:	56	56	56	56	56	36	36	
HOUR	:	14	:7	16	12	20	9		
MINUTE	:	15	0	3	0	э	36 9)		3
TYPE OF SPILL	:	:	2	1	1	1	:	:	:
STATION NO.	:	19	19	19	19	:9	:9	19	19
CHEMICAL NO.	:	71	71	71	71	71	:9 71	71	
TIME IONE TRIAL MONTH DAY YEAR HOUR MINUTE TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg)	: 64	.000	64.300	64.000	64.000	64.000	54.000	64.000	54.000
CONC. OF INTEREST	:	1.00	1.00	1.00	1.00	1.30	1.00	1.00	1.00
MEAS, HEIGHT (m)	:	2.0	2.0	2.0	2.0	2.0	2.0	2.0	• •
							21.9	27.3	26.3
WIND DIR. (deg)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WIND SPEED (m/s)	:	4.2	4.9	5.9	4.5	:.3	3.9 3.4	3.2	3.3
MIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg) AVERAGING TIME (min)	1	Y	Y	Ŷ	4	Ŷ			7
STD. DEV. DIR. (ded)		25.5	:0.2	10.2	15.3	3.2	12.3	13.5	
AVERAGING TIME (min)	. 1	0.00	10.00	10.00	10.00	10.00	12.3 10.00	13.5 10.00	10.00
CLCUD COV. (8ths) SOIL MOISTURE INVERSION? SITE ROUGHNESS (cm) RELEASE HT (m)	-	0	10.30 0 1	2	20.00	1	5	3	5
SOIL MOISTURE		1	i	ĩ	ĩ	1	1	:	
INVERSION?		ā	a.	n			5	3	3
SITE ROUGHNESS (cm)	. 0	. 600	0.600		0.600	0.600	3.500	0.600	0.600
RELEASE HT (m)		0.45	0.45	0.45	0.600 0.45	0.45	0.45	0.600	0.45
CONTINUOUS GAS RELEAS	SV.								
EMIS. RATE (kg/min)		5.4	5,5 n	5.5	3.5	3.7	5.7	5.6	3.4
STITL IFAKING?		n			n	л	n		a .
ELAPSED TIME (min) CONC. AVG TIME (min)	1	0.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
CONC. AVG TIME (min)	. ī	0.00	10.00	10.00	10.00		10,00		
SPECIFIED CONC (ppm)		1.	1.	1.			1.		
DOLDINTIN DTCM /		ea a	50.0	50.0			50.0		
TRAVEL TIME (min)		0.2	0.1	0.1	0.2		0.2	0.2	
DOWNWIND DIST. (m)	1	00.0	100.0	100.0			200.0		100.0
TRAVEL TIME (min)		0.3	0,3	0.2	0.3		0.4		
COWNWIND DIST. (m)	2	00.0	200.0	200.0			200.0		
TRAVEL TIME (min)		0.7	9.6	0.4			0.8		
TRAVEL TIME (min) COWNWIND DIST, (m)	4	00.0	400.0	400.0			400.0	400.0	
TRAVEL TIME (min)		1.4		0.8	1.2	0.8	1.7		
TRAVEL TIME (min) DOWNWIND DIST. (m)	8	00.0	800.0	800.0			800.0		
TRAVEL TIME (min)		2.7	2.3	1.6			3.3		
TRAVEL TIME (min) SOLAR ANGLE (deg)	6	1.58	32.68				28.00		
(- •						20100		

· . . - [·] - [·] . . [·] . . [·] . . [·] - - -

214

AFTOX INPUT DATA FOR:		Island (continuous)	0732290 0505662 852 🔳
CHEMICAL RELEASED :	Mixcure	of Freon-12 and Mitrogen	
IS PRINTER ON? :			API PUBL*4546 92
JTATION NO.: :	3		
JHANGE DATE/TIME? :	Y		
UNIT SYSTEM?	METRIC		
	3		
		C47	
MONTH	5	6	
DAY :		15	
	9		
ILAR :	5 9 34 19	94	
HOUR	19	20	
MINUTE :	59	3	
TYPE OF SPILL :	1	1	
STATION NO. :	11	11	
CHEMICAL NO. :	46	46	
MOLECULAR WEIGHT :	57.300	57.300	
CONC. OF INTEREST :	100.00	100.00	
MEAS, HEIGHT (m)	10.0	10.0	
INR TEMP (C)	17 2	14.3	
	2.0	0.0	
WIND CREED (a(a)		1.5	
HIND SELED (IN/S/ :	4.3	ž	
DAY DAY YEAR HOUR HOUR TYPE OF SPILL STATION NO. CHEMICAL NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. OF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? STD. DEV. DIR. (deg) AVERAGING TIME (min): AVERAGING TIME (min): CLOUD COV. (8ths)	-	1	
STD. DEV. DIR. (deg):	4.4	2.0	
AVERAGING TIME (min):	10.00	10.00	
CLOUD COV. (8ths) :	-	0	
SOIL MOISTURE :	1	1	
CLOUD COV. (8ths) : Soil Moisture : Inversion? :	a	a	
SITE ROUGHNESS (cm) :	1.000	1.000	
SITE ROUGHNESS (cm) : RELEASE HT (m) :	0.00	0.00	
CONTINUOUS GAS RELEAS	32		
IMIS, RATE (kg/min) :	640 2	613.2	
STILL LEAKING?		a	
ELAPSED TIME (min)	7 58	7.75	
CONC. AVG TIME (min):	1.00	1.00	
	1.00	1.00	
SPECIFIED CONC (ppm) :	100.	100.	
DOWNWIND DIST. (m) :	40.0	50.0	
TRAVEL TIME (min) :		0.6	
DOWNWIND DIST. (m) :	53.0	90.0	
TRAVEL TIME (min) :		1.0	
DOWNWIND DIST. (m) :	72.0	212.0	
TRAVEL TIME (min) :	0.5	2.4	
DOWNWIND DIST. (m) :	90.0	250.0	
TRAVEL TIME (min) :	0.7	2.8	
DOWNWIND DIST. (m)	112.0	335.0	
TRAVEL TIME (min) :		3.7	
COWNWIND DIST. (m)		472.0	
TRAVEL TIME (min)		5.2	
COWNWIND DIST. (m) :		-99.9	
TRAVEL TIME (min) :		0.9	
DOWNWIND DIST. (m) :		-99.9	
TRAVEL TIME (min) :		0.0	
COWNWIND DIST. (m) :		-99.9	
TRAVEL TIME (min) :		0.0	
SOLAR ANGLE (deg) :	1.28	0.62	

215

VFTOX INPUT DATA FOR: IMEMICAL AELIASED :

Thorney Island (Instantaneous) Mixture of Freen-12 and Nitrogen

M 0732290 0505663 799 M API PUBL*4546 92

	: 3								
JTATION NO. 2	: 3								
MANGE DATE/TIME?	: ?								
INTE SYSTEM?	VETRIC								
TTME SONE									
19431				¥9 *				*** 2 **	
VOUNU		• ' _ • '		- ,			·••· ·		·
AGATA	3	3	3	, , ,	10		2	2	2
DAY		3	3		15	- 9	,	10	10
YEAR	32	32	32	32	32	32	33	33	33
HOUR	: 19	19	:7	:9	:7	11	19	13	20
MINJTE :	: 11	33	49	46	21	41	52	56	41
TYPE OF SPILL :	2	2	2	2	2	2	2	2	2
JTATION NO.? HANGE DATE/TIME? UNIT SYSTEM? TIME ZONE TRIAL MONTH DAY YEAR HOUR MINUTE TYPE OF SPILL STATION NO. CHEMICAL NO. MOLECULAR WEIGHT CONC. GF INTEREST MEAS. HEIGHT (m) AMB. TEMP. (C) WIND SPEED (m/s) HAVE STDV. OF DIR? JTD. DEV. DIR. (deg) WIND SPEED (m/s) HAVE STDV. OF DIR? JTD. DEV. DIR. (deg) NUND SPEED (m/s) HAVE STDV. OF DIR? SITE ROUGHNESS (cm) RELEASE HT (m) INSTANTANEOUS GAS REL TOTAL MASS (kg)	: 11	11	11	11	11	11	11	11	:1
CHEMICAL NO.	46	46	46	46	46	46	46	46	46
MOLECHLAR WEIGHT	47.590	50.580	47.110	46.240	58.490	57.800	121.380	54.040	51 . 270
CONC. OF INTERES	100.00	100 00	100 00	100 00	100 00	277000		100 20	100.00
WERE SETTING (m)	10000	1010	10.00		10.00				10 0
	10.0		10.0	10.0			-0.5		
AMB. PEMP. (C)	12.0		17.3	10.3	-0	13 a 1	- 6 - 5	-0-3	
WIND DIR. (deg)	0.0	0.0	0.0	2.0	0.0	0.0	3.3	5.0	3.0
WIND SPEED (m/s)	2.5	3.4	2.4	1.7	2.5	7.3	5.0	7.4	5.4
HAVE STOV. OF DIR?	i Y	¥	¥	Ŷ	¥	Ý	ž	Y	Ŷ
STD. DEV. DIR. (deg):	6.5	3.1	3.9	2.0	5.0	5.3	8.0	7,7	5.3
AVERAGING TIME (min) :	10.00	10.00	10.00	10.00	:0.00	5.40	10.00	10.00	10.00
CLOUD COV. (8ths)	4	2	2	3	7	3	5	5	3
SOTT MOISTURE	1	Ĩ	ī		1		i	-	Ĩ
"NVERSTON?		-		-	-	-		-	-
STAR DOUGHNESS (m)	1 000	1 200	1 200	1 200	. 200	• • • • •	• • • • •	^ £00	
STISYCE SA (m)	1.300	1,300	0.00	0.500			1.300	1.00	
		4.00	0.00	0.00	0.00	0.00	5.50	3.00	0.00
INSTANTANECUS GAS REI	16A56								
TOTAL MASS (kg)	3147.30	4249.00	3958.00	3866.30	5736.00	4800.00	3711.00	3881.30	5477.00
CONC. AVG TIME (min):	1.00	1.00	1.00	1.00	1.00	1.30	1.00	1.00	1.00
SPECIFIED CONC (ppm) :	100.	100.	100.	100.	100.	100.	100.	100.	100.
COWNWIND DIST. (m) :	71.0	72.0	71.0	71.0	71.0	71.0	40.0	40.0	40.0
TRAVEL TIME (min)	0.4	0.3	0.5	0.7	0.5	0.2	0.1	0.1	0.1
DOWNWIND DIST. (m)	141.0	100.0	100.0	100.0	150.0	100.0	50.0	60.0	60.0
TRAVEL TIME (min)	0.8	0.5	0.7	1.0	1.0	3.2	0.2	0.1	0.2
DOWNWIND DIST. (m)	180.0	150.0	150.0	141.0	200.0	224 0	71.0	70.0	71.0
TOBUET, TTWE (min)	1 1	~ ~ ~	100.0	1 4	1 7	~ ~ ~ ~			0.2
	· · · · ·	180.0	200.0	100 0	101.0	110.0	100.0	10.0	100.0
DOWNWIND DIST. (m)	203.0	100.0	200.0	180.0	301.0	310.0	200.0	00.0	100.0
IRAVEL TIME (MIN)	14/	0.9	1.4	2.3	4.1	9.7	0.3	0.2	0.3
DOWNWIND DIST. (M)	424.0	224.0	364.0	224.0	200.0	361.3	141.0	100.0	224.0
TRAVEL TIME (min)	2.5	1.1	2.5	2.2	3.3	0.9	0.5	0.2	0.6
DOWNWIND DIST. (m)	-99.9	361.0	412.0	316.0	-99.9	412.0	224.0	200.0	361.0
TRAVEL TIME (min) :	1.1	1.5	2.9	3.1	1.2	0.9	0.7	0.5	0.9
COWNWIND DIST. (m) :	-99.9	500.0	510.0	503.0	~99.9	-99.9	500.0	224.0	583.0
TRAVEL TIME (min) :	1.9	2.5	3.5	4.9	0.0	0.0	1.7	0.5	1.5
DOWNWIND DIST. (m)	~99_9	-99.9	-99.9	-99.9	-99.9	-99.9	- 49 . 9	300.0	-99.9
TRAVEL TIME (mint	2 4	0.0	0 0	1.1	0.0	0.0	0.0	07	5.0
DOWNUTIND DIET /mt		-09.9	- 20 0		- 40 4	_20 3		400 0	-99.9
MORNELIU VIDIA (4) i		~~~	~~~,,,		-77.7			100.0	0.0
	3.4	0.0	0.0	0.0	0.0	0.0	5.0	J. J	0.0
JOWNWIND DIST. (M)	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	\$10.0	-99.9
TOTAL MASS (kg) TOTAL MASS (kg) CONC. AVG TIME (min): SPECIFIED CONG (ppm): DOWNWIND DIST. (m): TRAVEL TIME (min): DOWNWIND DIST. (m): DOWNWIND DIST.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_ 1	0.0
SOLAR ANGLE (deg) :	4.37	-9.27	6.33	-4.70	-1.31	29.34	2.08	37.46	-3.75

			-							
	AIRTOX DATA FOR :		Burro				073229	0 0505)664 <u></u> 60	25 🛲
	AIRTOX DATA FOR : INEMICAL RELEASED :		Liquefied	natural	ças		API PL	JBL*45	46 92	
	<pre>SCENARID DATA SCENARID DOT MUMBER RELEASE (JET-1, OTHER-0) EMISSION RATE (kg/s) DURATION (s) & LIQUID & AEROSOL RELATIVE HUMIDITY (%) SURFACE ROUGANESS (m) BUILDING WIDTH (m) BUILDING WIDTH (m) BUILDING WIDTH (m) BUILDING HEIGHT (m) FOR NON-JET RELEASES - DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msK) SOIL THERM DIFF (m^2/s) FOR JET RELEASES ONLY</pre>									
	SCENARIO	: 3	302 3	03	3074	305	306	307	305	309
	JUT NUMBER	:	1971	1971	1971	1971	1971	1971	1971	1971
	ALLEASE (GLT=1, STHER=0)):	3	0	5	5	3	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	CAISSION RALL (KG/S)	:	36,100	87.980	30.960	81.250	92.220	99.460	116.930	-72-180
	L CONTRACTION (S)	•	1/3.	-6/.	1/5.	190.	.29.	-/4.	197.	
			100.3	_00.0	100.0	100.5	-00.0		100.0	-00.0
	STATUT WINDLEY (4)	:	7.5	5.5	3.3	5.5	5.5			
	SUBSACT DOUCHNESS (4)		0 00010	0,00020	0.00000	t.c	0.2020	0.00000	0.00070	
	SUITEDING WIDTY (D)	:	0.00020	3.30020	0.00020	0.00020	0.00020	0.00020	0.00020	3.00020
	BUILDING HETCHT (m)	:	0.0	0.0	1.5	~~~~	2.5		1 1	
	FOR NON-CET SETENSES .	<u>.</u>	0.5	0.0	0.0	0.0	0.5	0.0	3.0	0.0
	DILUTION FACTOR	•	0.0	0.0	0.0	0.0	0.0	3.0	2.0	0.0
	STORAGE TEMP. (K)	:	111.6	111.6	111.6	111.6	111.6	111.6	111.6	111.5
	DIKE AREA (m^2)	-	2642.1	2642.1	2642.1	2642.1	2642.1	2642.1	2642.1	2642
	POOL DEPTH (m)	-	0.01	0.01	0.01	0.01	0.01	2.01	0,01	0.01
	SOIL COND. (kcal/msK)	-	0.141E-02	0.141E-02	0.1412-02	0.141E-02	0.141E-02	0.141E-02	0.141E-02	0.1412-02
	SOIL THERM DIFF (m-2/s)		0.141E-05	0.141E-05	0.141E-05	0.1415-05	0.141E-05	0.1412-05	0.141E-05	0.141E-05
	FOR JET RELEASES ONLY									
	RELEASE TEMP. (K)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3
	RELEASE HT. (m)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	CRIFICE AREA (m^2)	:	0.0000	0.0000	0.0000	0,000	0.0000	0.000	0.0000	0.0000
	EXIT VEL. (a/s)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ANGLE (deg from hor.)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SOIL THERM DIFF (m~2/s) FOR JET RELEASES ONLY RELEASE TEMP. (K) RELEASE HT. (m) ORIFICE AREA (m~2) EXIT VEL. (m/s) ANGLE (deg from hor.)									
	••• USER DATA •••									
	MODE (0=SNAP, 1=FOOT)	:	1	1	1	1	1	1	1	1
	REPORTING TIMES (S)	:	80	80	80	90	60	80	50	30
	MODEL TIME STEP (S)	:	10	10	10	10	10	10	10	10
	FOOTPRT START TIME (S)	:	0	0	0	0	0	0	0	0
	MODE (0-SNAP, 1-FOOT) REPORTING TIMES (S) MODEL TIME STEP (S) FOOTPRT START TIME (S) FOOTPRT STOP TIME (S)	:	160	160	160	180	120	160	400	150
	FCHO INPUTS (1 was)		1	1	,	1	•	•	•	1
	SNAPSHOT CONCS /1=yest	:	1	1	1	-	1	1	1	1
	MAX CONCS (1=yes)	•	- 1	1	1	1	1	- ,	1	1
	RECEPTOR CONCS (1=yes)		1	ī	1		1	1	1	- 1
	HEIGHT & SIGMA (1-Ves)		1	1	1	1	1	1	1	1
	ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes)			-			-	-	-	-
	*** CONCENTRATION LEVE	ELS	(PLOT) ***							
•	JSER=0, DATABASE=1	:	0	0	٥	0	0	0	0	0
	USER - HIGH LEV (ppm)	:	100.00	100.00	100.00	100.00	100.00	100,00	100.00	100.00
	OSER - MID LEV (ppm)	:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	*** CONCENTRATION LEVE USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - MID LEV (ppm) USER - LOW LEV (ppm)	:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
			_							
	WIND SPEED (m/a)	ыл (- 	10.7		10 /			<i>с</i> न
	WIND DIR (deg)	-	0.0	5.9	10.3	8.9	14.4	9.7	2.6	6.7
	WIND SPEED (m/s) WIND DIR (dsq) STAB CLASS (A-1,7-6) TEMPERATURE (K)	:	U.U 7	0.0	0.0	0.0	0.0	0_0	0.0	0.0
	TEMPERATURE (K)	;	311.3	307.8	309.0	374.3	312.7	307 0	306 0	108 5
		•	01110					507.0	100.0	50015
	X-COORDINATE (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)									
	X-COORDINATE (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Y-COORDINATES (m)	:	-57.0	-57.0	-57.0	-57.0	-57.0	-57.0	-57.0	-57.0
	Y-COORDINATES (m)	:	-140.0	-140.0	-140.0	-140.0	-140.0	-140.0	-140.0	-140.0
	Y-COORDINATES (II)	:	99.9	99.9	99.9	99.9	99.9	-400.0	-400.0	-400.0
	Y-COORDINATES (m)	:	99.9	99.9	99.9	99.9	99.9	99.9	-300.0	-300.0

•

217

	AP1 PUBL#4546
AIRTOX DATA FOR :	Soloce Soloce
SHEMICAL RELEASED :	Liquetied natural gas
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
*** SCENARIO DATA ***	
SCENARIO :	203 205 206
DOT NUMBER :	1971 1971 1971
Release (Jet=1, Other=0) :	o))
EMISSION RATE (kg/s) :	100.570 129.020 123.030
DURATION (S) :	53. 39. 32.
4 12007D 1	100.0 100.0 100.0
ALROSOL :	3.3 3.3 3.3
RELATIVE HUMIDITY (1) :	11.3 22.1 22.3
SURFACE ROUGHNESS (m) :	0.00020 0.00020 0.00020
BUILDING WIDTH (m) :	0.0 0.0 0.0
BUTTOTNO NETONE (m)	0.0 0.0 1.0
FOR VOV-127 DETENCE	
DITUTION ELEMBED	0.0 0.0 0.0
STORAGE TEMP. (A)	
JIKE AREA (m. 2)	2092.1 2092.2 2092.1
POOL DEFTH (m)	3.31 0.31 3.31
SOIL COND. (Keal/msK) :	0.1412-02 0.1412-02 0.1412-02
SOIL THERM DIFF (m^2/s) :	J.141E-05 J.141E-05 J.141E-05
FOR JET RELEASES ONLY -	~
RELEASE TEMP. (K) :	o.o o.o o.o
RELEASE HT. (m) :	0.00 0.00 0.00
CRIFICE AREA (m^2) :	0.0000 0.0000 0.0000
EXIT VEL. (m/s) :	3.00 0.00 0.00
ANGLE (deg from hor.) :	0.0 0.0 0.0
*** USER DATA ***	
MODE (GASNAR, INFOOT) .	1 1 1
PEDODTING THES (c)	30 40 40
MODEL WINE STED (S)	
SOOMDDM CHADM WING (a)	1 1 1 30 40 40 10 10 10 0 0 0
FOOTPRT START TIME (S) T	0 0 0 90 80 120
MODE (C-SNAP, 1-FOOT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :	90 80 220
THE PRINT OPTIONS THE ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT & SIGMA (1-yes) :	
*** PRINT OPTIONS ***	
ECHQ INPUTS (1-yes) :	1 1 1
SNAPSHOT CONCS (1=yes):	1 1 1
MAX CONCS (1-yes) :	1 1 1
RECEPTOR CONCS (1=yes):	ĩ ĩ ĩ
HEIGHT & SIGMA (1-yes):	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
*** CONCENTRATION LEVEL	S (PLOT) *** 0 0 0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
USER=0, DATABASE=1 :	0 0 0
USER - HIGH LEV (ppm) :	100.00 100.00 100.00
USER - MID LEV (ppm) :	100.00 100.30 100.00
USER - LOW LEV (ppm) :	100.00 100.00 100.00
*** METEOROLOGICAL DATA	(5 min.) ***
WIND SPEED (m/s)	6.7 11 0 57
WIND DIR (deal)	0.0 0.0 0.0
STAR (7362 (8-1) 7-4)	
TEMPEDIATION (N-1/(-7) ;	6.7 11.0 5.7 0.0 0.0 0.0 3. 3. 4. 311.5 301.5 297.3
IMPERATORE (A) :	211-2 201-2 524-3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
*** RECEPTOR DATA ***	
X-GUORDINATE (II)	0.0 0.0 0.0
Y-COORDINATES (m) :	-140.3 -140.0 -140.3
-COORDINATES (m) :	-200.0 -200.0 -200.3
Y-CCORDINATES (m) :	-300.0 -300.0 -300.0
Y-CCORDINATES (m) :	99.9 -400.0 -400.0

. Methane is at least 36% in s

AIRTOX DATA FOR : D		- A D		քուն	92		0732290	ΠςΠζίμ	ЦТД	
CHEMICAL RELEASED : A	esert fortol	Se AF	T LODE	*1310	1	_		0303000	710	
CALIFICAL ALLANDED : A	nnyarous Am	ionia								
JCENARIO DATA										
SCENARIO DALA CEL	3.81									
SCLARIU :	JTL J	12								
JOI NOMBER	1005	1005	_005	1005						
RELASE(GEL=1, JTHER=0):				-						
LMISSION RATE (KG/s) :	79.700	111.300	130.700	36.700		-				
DURATION (s) :	126.	255.	156.	381.						
* LIQUID :	31.3	31.7	91.1	30.4						
AEROSOL :	100.0	100.0	100.0	100.0				•		
RELATIVE HUMIDITY (*) :	13.2	17.5	14.3	21.3						
SURFACE ROUGHNESS (m) :	0.00300	0.00300	0.00300	0.00300						
BUILDING WIDTH (m) :	0.0	0.0	0.0	0.0						
BUILDING HEIGHT (m) :	0.0	0.0	0.0	0.0						
FOR NON-JET RELEASES										
SCENARIO DATA SCENARIO : DOT MUMBER : RELEASE (JIT-1, JTHER-0) : DURATION (S) : t LIQUID : t AEROSOL : SURFACE ROUGHNESS (m) : BUILDING WIDTH (m) : BUILDING HEIGHT (m) : FOR NON-UZT RELEASES DILUTION FACTOR :	0.0	0.0	0.0	0.0						
STORAGE TEMP. (K) :	0_0	0.0	0.0	0.0						
FOR NON-JET RELEASES DILUTION FACTOR : STORAGE TEMP. (K) : DIKE AREA (m^2) : POOL DEPTH (m) : SOIL COND. (kcal/msK) :	0.0	0.0	0.0	0.0						
200L DEPTH (m)	0.00	0.00	0.00	0.00						
SOIL COND. (kcal/msK) :	0.0005+00	0.0005+00	0.0005+00	0 0005+00						
SOIL THERM DIFF (=^2/s) :										
FOR JET RELEASES ONLY -		0.0002.00	010002.00	0.2002.00						
2517355 TWD (X) .	277 5	277 6	777 5	277 .						
DETERCE VE (m)	237.3	237.3	237.3	227.1						
	0.15	1 1100	1 1647	1 1115						
OKIFICE AREA (are2) :	J. 3445	1	1.204/	1.2115						
RELEASE TEMP. (K) : RELEASE HT. (m) : GRIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLE (deg from hor.) :	22.00	23.28	27.29	209						
ANGLE (deg from hor.) :	0.0	0.0	0.0	0.0						
THE USER DATA										
MODE (0=SNAP, 1=FOOT) :	1	1	1	1						
REPORTING TIMES (s) :	60	120	30	190						
MODEL TIME STEP (s) :	10	10	10	10						
FOOTPRT START TIME (s):	0	0	٥	Э						
MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :	180	240	240	380						
*** PRINT OPTIONS ***										
ECHO INPUTS (1-yes) :	1	1	1	1						
SNAPSHOT CONCS (1-yes):	1	1	1	1						
MAX CONCS (1-ves) :	1	1	1	1						
RECEPTOR CONCS (1=yes):	ī	ĩ	1	Ţ						
ECHO INPOTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT 4 SIGMA (1-yes):	-	1	1	1						
USER-0, DATABASE-1 : USER-0, DATABASE-1 : USER - HIGH LEV (ppm) : USER - MID LEV (ppm) : USER - LOW LEV (ppm) :	S (PLOT) ***									•
USER=0. DATABASE=1		n	0	0						
USER - HTGH ITV (mm)	100 00	100.00	100.00	100.00						
USER - MTD TTV /mms	100.00	100.00	100.00	100,00						
	100.00	100.00	100.00	100.00						
anew - Tow the (bbut :	100.00	100.00	100.00	100.00						
*** METEOROLOGICAL DATA	(5	•								
WIND SPEED /-/-	(° mine) -	- -		<i>.</i> .						
	9.7	1.5	9.3	6.Z						
STAD OTK (deg)	0.0	0.0	0.0	0.0						
WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A=1,F=6) : TEMPERATURE (K) :	4.	4.	4.	5.						
IMPERATURE (K) :	302.3	303.6	307.1	305.6						
RECEPTOR DATA	<u> </u>	_	_	-						
A-CUORDINATE (m) :	0.0	0.0	0.0	0.0						
I-COORDINATES (m) :	-100.0	-100.3	-10010	-100.0						
*** RECEPTOR DATA *** X-COORDINATE (m) Y-COORDINATES (m) Y-COORDINATES (m)	-300.0	-300.0	-300.J	-300.0						

API PUBL*4546 92 🛲 0732290 0505667 334 🛤

.

			API	PUBL*45
AIRTOX DATA FOR : Inemical released :		Goldfian		
<pre>SCENARIO DATA ''' SCENARIO DOT NUMBER RELEASE (JET~1, OTHER=0) IMISSICN RATE (kq/s) DURATION .s) * LIQUID * AROSOL RELATIVE HUMIDITY (*) SURFACE ROUGHNESS (m) BUILDING WIDTH (m) SUILDING HEIGHT (m) FOR NON-JET RELEASES - DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msK) SOIL THERM DIFF(m^2/s) FOR JET RELEASES ONLY PTTREE TEMP. (K)</pre>				
SCENARIO		373	122	373
DOT NUMBER	-	1052	1052	1053
RELEASE (JET +1, OTHER+0)		:		
IMISSION RATE (KC/3)		27.570	10.460	10.270
DURATION .si		:25.	360.	360.
A SIGUID	1	34.0	95.3	34.7
+ AEROSOL	:	100.0	100.3	100.3
RELATIVE HUMIDITY (*)	:	4.9	10.7	17.7
SURFACE ROUGHNESS (m)	1	0.00300	0.00300	0.00300
BUILDING WIDTH (m)	:	0.0	0.0	٥.٥
SUILDING HEIGHT (m)	:	0.0	0.0	5.5
FOR NON-JET RELEASES -				
DILUTION FACTOR	:	0.0	0.0	5.5
STORAGE TEMP. (K)	:	0.0	0.0	0.0
DIKE AREA (m^2)	1	0.0	0.0	5.5
PCOL DEPTH (M)	:	0.30	05.0	3.00
SOIL COND. (KCal/msK)	:	0.000E+00	0.0002+00	0.0002+00
SOLL THERM DIFF (5"1/S)	1	0.0002+00	0.005+00	0.0005+00
FOR JET RELEASES ONLY		200 5	200 4	*** <i>*</i>
7577367 UT (n)	1	203.0	1 10	203.0
ADTETCE 1953 (MAD)		0 2006	0 2004	1 1016
TYT (m/e)	-	20 13	23 4	22 22
ANGLE (deg from hor.)	:	0.0	0.3	3.3
FOR JET RELEASES ONLY RELEASE TEMP. (K) RELEASE HT. (m) CRIFICE AREA (m ²) EXIT VEL. (m/s) ANGLE (deg from hor.)	•			
MODE (0-SNAP, 1-FOOT)	:	1	1	1
REPORTING TIMES (s)	:	60	180	180
MODEL TIME STEP (s)	:	10	10	:0
FOOTPRT START TIME (S)	:	0	0	9
MODE (0-SNAP, 1-FOOT) REPORTING TIMES (S) MODEL TIME STEP (S) FOOTPRT START TIME (S) FOOTPRT STOP TIME (S)	1	480	540	720
*** PRINT OPTIONS *** ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 6 SIGMA (1-yes)				_
ECHO INPUTS (1-ves)	:	1	1	1
SNAPSHOT CONCS (1-yes)	:	1	1	-
MAX CONCS (1=yes)	1	ŀ		
RECEPTOR CONCS (1-yes)	1	1		1
HEIGHT & SIGMA (1=yes)	1	1	1	1
*** CONCENTRATION LEVE USER-0, DATABASE=1 USER - HIGH LEV (ppm) USER - MID LEV (ppm) USER - LCW LEV (ppm)	TC	(01/07) ###	,	
USER-0. DATABASE-1	دہرار ہ	(101)	6	0
USER - HIGH LEV (nom)	;	30.00	30-00	30.00
USER - MID LEV (pran)	÷	30.00	30.00	30,00
USER - LOW LEV (DOM)	i	30.00	30.00	30.00
WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A=1,7=6) TEMPERATURE (K)	A	(5 min.) **	**	
WIND SPEED (m/s)	;	7.3	5.4	7.5
WIND DIR (deg)	:	0.0	0.0	0.0
STAB CLASS (A=1,7=6)	:	4.	4.	4.
TEMPERATURE (K)	1	310.4	309.4	307.5
*** RECEPTOR DATA ***	_			. .
A-COURDINATE (M)	1	0.0	0.0	5.0
I-COORDINATES (M)	1	C.001-	~300.0	-300.0
X-COORDINATE (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)	1	~1000.0	~1000.0	-1000-0
	2	-3000.0	22.3	-2000-3

· • `

220

_		1					
	ALATOX DATA FOR : CHEMICAL AELEASED :					173229	0
	THENTON DALA FOR S	Hanford	(CONCINUOU	5)			
	CALARCAL ACCEASES :	Arypton-	00			API	DH
	JCENARIO ·	HC1	HC2	HC3	HC:	505	
	DOT NUMBER : (9999-N2 With m.w29.0 RELEASE (JET-1, DTHER-0) : IMISSION RATE (kq/s) : URATION (s) : * LIQUID : * AEROSOL : RELATIVE HUMIDITY (*) : SURFACE ROUGHNESS (m) : BUILDING WIDTH (m) : BUILDING WIDTH (m) : SULDING WIDTH (m) : SULDING SACTOR : STORAGE TEMP. (K) : DIKUE AREA (m^2) : POOL DEPTH (m) : SOIL COND. (kcal/msk) : SOIL CHEM DIFF (m^2/s) : FOR JET RELEASES ONLY -	3999	9999	9999		9996	
	:9999-N2 with m.w29.3	}					
	RELEASE (JET=1, OTHER=0) :	່ວ	0	э	э	3	
	EMISSION RATE (kg/s) :	0.312	0.012	0.028	0.039	3.017	
	DURATION (s) :	928.	905.	355.	598.	1191.	
	* LIQUID :	0.0	0.0	0.0	3.3	3.0	
	* AEROSOL :	0.0	0.0	0.0	3.3	3.3	
	RELATIVE HUMIDITY (%) :	20.0	20.0	20.0	20.0	20.0	
	SURFACE ROUGHNESS (m) :	0.03000	0.03000	0.03000	0.03000	0.03000	
	BUILDING WIDTH (m) :	0.0	0.0	0.0	5.5	0.0	
	SUILDING HEIGHT (m) :	0.0	0.0	0.0	0.0	0.0	
	FOR NON-JET RELEASES						
	JILUTION FACTOR :	0.0	0.0	0.0	0.0	3.9	
	STORAGE TEMP. (K) :	290.9	285.4	288.9	286.5	278.3	
	DINE AREA (m···2)	0.0	0.0	0.0	0.5	0.0	
	SOLL DEPTH (m) :	0.545-04	10.01 0.01	10.01 0.547.04	0.5640.04	0.01	
	SOLL COND. (RCal/ask) :	0.3645-04	0.3645-04	0.3042-04	0.3846-04	0.3042-04	
	FOR JET DELEASES ONLY -	- 0.2446-00	0.2442-00	0.2442-08	0.2446-00	0.2442-00	
	SELENSES ONEL -	- 0.0	0.0	1 1	2.2	2.2	
	RELEASE ST. (m)	0.00	0.00	0.00	0.00	ວັວດ	
	ORIFICE AREA (m^2)	0.000	0.000	0.0000	0.000	0.000	
	EXIT VEL. (m/s)	0.00	0.00	0.00	0.00	0.00	
	ANGLE (deg from hor.) :	0.0	0.0	0.3	0.0	0.0	
	SOIL THERM DIFF(m^2/s): FOR JET RELEASES ONLY RELEASE TEMP. (K) : RELEASE HT. (m) : ORIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLE (deg from hor.) :	-				-	
	*** USER DATA ***						
	MODE (0-SNAP, 1-FOOT) :	1	1	1	1	1	
	REPORTING TIMES (s) :	460	450	420	290	590	
	MODEL TIME STEP (s) :	10	10	10	10	10	
	FOOTPRT START TIME (s):	0	0	0	٥	٥	
	MODE (0-SNAP, 1-FOOT) : MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :	920	900	840	580	1180	
	ECHO INDUES (1						
	SNAPSHOT CONCE (leves)	1	1	-	1	1	
	MAY CONCS (1-yes):	1	1	÷.	1	ī	
	RECEPTOR CONCS (Invest	1	1	1	1	1	
	ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT & SIGMA (1-yes) :	ī	1	1.	1 1 1 1	ĩ	
		-	-	-	-		
	USER-O, DATABASE-1 : USER-O, DATABASE-1 : USER - HIGH LZV (ppm) : USER - MID LEV (ppm) : USER - LCW LEV (ppm) :	S (PLOT) ***	•				
	USER-0, DATABASE-1 :	0	٥	0	0	0	
	USER - HIGH LEV (ppm) :	0.10	0.10	0,10	0.10	0.10	
	USER - MID LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	
	USER - LCW LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	
	*** WETEODOLOGICAL DATA	15 -4- 1 +1	••				
	WIND SPEED (m/c)	(5 min.) **		10.7	c (
	WIND DIR (deg)	0.0	3.0	10.3	1.4	***	
	STAB CLASS (A=1.7=6)	5.0 K	7	1	v.J 7	· · · ·	
	*** METEOROLOGICAL DATA WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A=1,7=6) : TEMPERATURE (X) :	290.9	285.4	288_9	286.6	278 3	
			~~~~	20013	200.0	2,522	
	X-CCORDINATE (m)         :           Y-COORDINATES (m)         :           Y-COORDINATES (m)         :						
	X-CCORDINATE (m) :	0.0	0.0	0.0	0.0	0.0	
	Y-COORDINATES (m) :	-200.0	-200.0	-200.0	-200.0	-200.0	
	Y-COORDINATES (I) :	-300.J	-300.0	-300.3	-300.0	-100.0	

#### 073229005668270 💻

VPI PUBL*4546 92

.

221

NIRTOX DATA FOR : JHEMICAL RELEASED :				07	92290	0505665	1 107	
ALATOX DATA FOR :	Hanford (1	nscancan	eousi					
	MAAbcoweee				API P	UBL*454	6 92	
VIN SCENARIO DATA VIN JCENARIO : DOT NUMBER : 9999-42 With m.W. 429 J DEFENSE (JECH L. JONEPEO)								
JCENARIO :	HI2 HI	3 :	HIS :	HIS	H <b>17</b> :	HIS		
COT NUMBER :	9999	9999	3999	3999	3999	3999		
9999=42 vith m.v.=29.J)		-						
RELEASE (JET +1, JTHER=0) ;	3	3	C	3	3	3		
	1.000	1.100	1.000	1.000	1.000	1,300		
4 .TOUTD		1.1						
AEROSOL :	0.0	0.0	2.3	3.0	2.3	3.5		
RELATIVE HUMIDITY (%) :	20.0	20.0	20.0	20.0	20.0	20.0		
SURFACE ROUGHNESS (m) :	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000		
BUILDING WIDTH (=) ;	0.0	5.5	0.0	3.0	3.0	3.0		
BUILDING HEIGHT (m) :	0.0	0.0	0.0	0.0	0.0	0.0		
FOR NON-JET RELEASES								
STODACT TEND (2)	0.0	0.0	0.0	0.0	0.0	2.0		
STORAGE LAP. (A) :	291.3	245.1	288.7	288.3	285.5	277.8		
POOL DEPTH (m) :	0.01	0.01	0.31	3.31	0.01	0.01		
SOIL COND. (kcal/msK) :	0.5648-04 0	S64E-04	0.564E-04	0.564E-04	0.564E-04	0.5648-04		
9999-42 with m.w29.J)         RELEASE (JET-1, JTHER-0):         IMISSION RATE (kg/s):         CURATION (s):         * LIQUID         * AEROSOL         RELATIVE HUMIDITY (*):         SURFACE ROUGHNESS (m):         SUILDING WIDTH (m):         SOTILDING HEIGHT (m):         FOR NON-JET RELEASES         DILDING REGORCA:         STORAGE TEMP. (K):         JIXE AREA (m^2):         POOL DEFTH (m)         SOIL COND. (kcal/msK):         SOIL THERM DIFF(m^2/s):         FOR JET RELEASES ONLY	0.244E-06 0.	.244E-06	0.244E-06	0.244E-06	0.244E-06	0.244E-06		
for jet releases only -								
RELEASE TEMP. (X) :	0.0	0.0	0.0	0.0	0.0	3.3		
RELEASE HT. (m) :	0.00	0.00	0.00	0.00	0.00	3.30		
ORIFICE AREA (M*2)	0.0000	5.0000	0.0000	3.3000	0.0000	0.000		
ANGLE (deg from bor ) :	0.00	0.00	J.00	J.00	0.00	3.00		
SOIL THERM DIFF (m^2/s): FOR JIT RELEASES ONLY				5.0	0.0	0.0		
MODE (O-SNAP, 1-FOOT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :								
MODE (0-SNAP, 1-FOOT) :	1	1	1	1	1	1		
REPORTING TIMES (s) :	20	10	:0	10	10	30		
MODEL TIME STEP (S) :	10	10	70	10	10	10		
FOOTED CTOP THE (5)	520	200		100	220	660		
(OOTENT STOP 1246 (8) 1	520	300	100	-00	200	260		
*** PRINT OPTICNS ***				•				
ECHO INPUTS (1-yes) :	1	1	1	1	1	1		
SNAPSHOT CONCS (1-yes):	1	1	1	1	1	1		
MAX CONCS (1=yes) :	1	1	1	1	1	1		
SECRETCK CONCS (1=yes):	• 1	1	1	1	ļ			
ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT 4 SIGMA (1-yes) :	*	-	×	÷	÷	<u> </u>		
*** CONCENTRATION LEVELS JSER=0, DATABASE=1 : JSER - HIGH LEV (ppm) : JSER - MID LEV (ppm) : JSER - LCW LEV (ppm) :	(PLOT) ***							
JSER-0, DATABASE-1 :	0	0	0	0	0	0		
JSER - HIGH LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	0.10		
JSER - MID LEV (ppm) :	0.10	0.10	0.10	0.10	0.10	0.10		
USER - LOW LEV (ppm) :	0.10	0.10	0.10	0.10	9.10	0.10		
*** METEOROLOGICAL DATA	(5 min_) ***							
WIND SPEED (m/s) :	3.6	6.0	11.1	10.4	6.4	2.9		
WIND DIR (deg) :	0.0	0.0	0.0	0.0	0.0	0.0		
STAB CLASS (A=1, F=6) :	6.	4.	3.	3.	3.	5.		
WIND SPEED (m/s) WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A=1,7=6) : TIMPERATURE (K)	291.5	285.1	288.7	288.3	285.6	277.3		
XXX RECEPTOR DATA XXX X-COORDINATE (m) : Y-COORDINATES (m) : Y-COORDINATES (m) :								
X-COORDINATE (m) :	0.0	0.0	0.0	0.0	0.0	0.0		
Y-COORDINATES (m) :	-200.0	-200.0	-200.0	-200.0	-200.3	-200.0		
Y-COORDINATES (m) :	C.005~	-300.0	~300.0	-300.0	-300.0	-800.0		

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

222

		4 ED T			0999900	0000130	<b>6</b> 29 <b>1</b>
AIRTOX DATA FOR	: Mapila Sanda	, API	<b>HORF</b> *	4546 92	0135570	0505670	האר מר
CHEMICAL RELEASED	: Louified Na	Eural Cas					
				•			
*** SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET-1, DTHER=( EMISSION AXTE (kg/s) DURATION (s) * LIQUID * AEROSOL RELATIVE HUMIDITY (*) SURFACE ROUGHNESS (m) BUILDING WIDTH (m) BUILDING WIDTH (m) BUILDING HEIGHT (m) FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msk)	-						
SCENAR10	: MS27	M\$29	4534	1535			
OOT NUMBER		: 971	: 971				
RELEASE (JET=L. OTHER=C	ov • • •						
THISSIC ANTE ANTE		20 100	21 510	17 000			
DIDATTON (c)		23.400	35	27.050			
L TOUTD	. 100.0	223.	100 2	133.			
* 1520COT		100.0	10010	-00.5			
		0.0		5.0			
SUDERCE ROMIDILI (4)		/1.0	90.0	77.0			
SURFACE ROUGANESS (A)		0.00030	0.00030	0.00030			
SUILDING WIDTH (M)	: 0.0	0.0	0.0	0.0			
BUILDING HEIGHT (m)	: 0.0	0.0	0.0	0.0			
FOR NON-JET RELEASES							
DILUTION FACTOR	: 0.3	0.0	0.0	0.0			
STORAGE TEMP. (K)	: 111.7	111.7	111.7	111.7			
DIKE AREA (m^2)	: 0.0	0.0	0.0	0.0			
FOOL DEFTH (m)	: 0.01	0.01	0.01	0.01			
SOIL COND. (kcal/msK)	: 0.141E-02	0.141E-02	0.141E-02	0.141E-02			
SOIL THERM DIFF (m^2/s	s): 0.141E-05	0.141E-05	0.141E-05	0.141E-05			
FOR JET RELEASES ONLY	(						
RELEASE TEMP. (K)	: 0.0	0.0	0.0	0.0			
RELEASE HT. (m)	: 0.00	0.00	0.00	0.00			
ORIFICE AREA (m^2)	0.0000	0.0000	0.0000	0.0000			
FYTT VEL. (m/s)			0 00	0.00			
ANGLE (deg from bor )			0.00	0.00			
SOIL THERM DIFF (m^2/s FOR JET RELEASES ONL) RELEASE TEMP. (K) RELEASE HT. (m) ORIFICE AREA (m^2) EXIT VEL. (m/s) ANGLE (deg from hor.)		0.0	0.0	0.0			
*** USER DATA ***							
WODE (A-CNAD 1-COOR							
MODE (U-SRAP, I-FOOT)	: 1	1	1	1			
REPORTING TIMES (3)	: 80	110	40	60			
MODEL TIME STEP (s)	: 10	10	10	10			
FOOTPRT START TIME (S	5): 0	0	0	0			
MODE (0-SNAP, 1-FOOT) REPORTING TIMES (3) MODEL TIME STEP (3) FOOTPRT START TIME (5) FOOTPRT STOP TIME (5)	: 240	220	80	120			
*** PRINT OPTIONS ***	•						
ECHO INPUTS (1=yes)	: 1	. 1	1	1			
SNAPSHOT CONCS (1-yes	3): 1	. 1	1	1			
MAX CONCS (1-yes)	: 1	. 1	1	1			
RECEPTOR CONCS (1=yes	3): 1	. 1	1	1			
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes)	s): 1	. 1	1	1			
*** CONCENTRATION LEV	ELS (PLOT) **	*					
USER-0, DATABASE-1 USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - MID LEV (ppm) USER - LOW LEV (ppm)	: 0	0	0	0			
USER - HIGH LEV (DOM)	: 100.00	100.00	100.00	100.00			
USER - MID LEV (DDm)	100.00	100.00	100.00	100.00			
USER - LOW LEV (prm)	100.00	100.00	100.00	100.00			
*** METEOROLOGICAL DA	TA (5 min.) *	**					
WIND SPEED (m/s)	: 5.6	7-4	8.5	9.6			
WIND DIR (deg)	0.0	0_0	0_0	0.0			
WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A-1,7=6) TEMPERATURE (K)	: 4.	4	4	4			
TEMPERATURE (X)	• 288.1	289.3	788 4	289.7			
	. 20044						
*** RECEPTOR DATA ***	•						
X-COORDINATE (m)		0_0	0.0	<b>n</b> n			
Y-COORDINATES (m)		_58 0	-27 0	-179 0			
Y-COORDINATES (m)	177 0		-170 0	-143.0			
Y=COORDINATES (m)	10/ 0	_120.0	-1/5.0	-230.3			
		-100.0	33.3	-400.0			
Y-COODDINATES (E)	-400.0	-182.0	33.3	33.3			
I-COORDINATES (M)		-252.0	33.3	99.9			
I-COORDINATES (M)	: 99.9	-324.0	99.9	99.9			
X-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)	: 99.9	-403.0	99.9	99.9			

AIRTOX DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Jas

<pre>*** SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET-1, OTHER-0); HISSION RATE (kq/s) DURATION ,s) * LIQUID * AEROSOL RELATIVE HUMIDITY (*); SURFACE ROUGHNESS (m) BUILDING HIDTH (m) BUILDING HEIGHT (m) FOR NON-JET RELEASES DILUTION FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) POOL DEPTH (m) SOIL COND. (kcal/msK); SOIL THERM DIFF(m^2/s); FOR JET RELEASES ONLY</pre>								
SCENARIO	: MS42 :	1543	MS46	MS47	MS49	MSSO 3	4552	MS54
DOT NUMBER	1978	1978	1973	1978	1978	1973	1973	1978
RELEASE (JET +1, OTHER+0)	3	- 3	3	3		3	2	- 3
EMISSION RATE (kg/s)	20.470	19.200	23.370	32.570	16.710	35.890	44.250	12.200
CURATION SI	190.	330.	360.	21.0	30	1.50	0 .	180.
1 1.101173	100.0	100.0	100.0	100 0		100 3	100.0	100.0
L 1500501	1 1 1							100.0
SETSATUR HENTOTAY (4)		30.0	- 11	70.0	10 0	70.0	24 4	26.0
ACLALING ACCOUNTED IN A	0 10000	30.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.0070	35.3	19.0	0.000	33.0
SURFACE ACCOUNTEDS (#1 )	0.00030	0.00030	0.00030	0.00030	0.00030	3.00030	1.00030	0100000
BUILDING ALDIA (A)	0.0	3.5	0.0	3.0	3.5	0.0	5.5	0.5
BUILDING REIGHT (H)	0.0	0.0	0.0	0.0	5.3	3.3	2.2	0.0
FOR NON-JET RELEASES	•							
DILUTION FACTOR	0.0	0.0	0.0	0.0	2.0	0.0	3.3	3.0
STORAGE TEMP. (K)	231.1	231.1	231.1	231.1	231.1	231.1	231.1	231.1
DIKE AREA (m^2)	0.0	0.0	0.0	5.0	0.0	0.0	ə.ə	0.0
PCOL DEPTH (m)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
SOIL COND. (keal/msK) ;	0.141E-02	0.141E-02	C.141E-02	0.1412-02	0.141E-02	0,1415-02	0.141E-02	0.1412-02
SOIL THERM DIFF (m^2/s) ;	0.141E-05	0.141E-05	3.141E-05	0.141E+05	3.141E-05	0.1412-05	0.1412-05	0.141E-05
FOR JET RELEASES CNLY .								
RELEASE TEMP. (K)	0.0	0.0	0.0	3.0	0.0	5.5	0.0	0.0
RELEASE HT. (m)	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00
ORTFICE AREA (MO2)	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000
	0.0000	0.0000	0.0000	0.0000	0.0000	2.0000	0.0000	0.0000
NGTE (deg from how )	0.00	0.00	0.00		0.00	1.00	0.00	3.05
WARE (red rold wors)	V.V	V.U	0.0	4.4	0.0	4.5	0.0	0.0
SOIL THERM DIFF (m ² /s); FOR JET RELEASES CNLY - RELEASE TEMP. (K) SELEASE HT. (m) ORIFICE AREA (m ² ) EXIT VEL. (m/s) ANGLE (deg from hor.);								
WORD WORLD I ROOM						-		
MODE (U=SNAP, I=FOCT)	L				-			
REPORTING TIMES (S)	90	160	180	100	40	0B	70	30
MODEL TIME STEP (s)	10	10	10	10	10	10	10	10
FOOTPRT START TIME (S):	0	0	0	0	0	0	0	0
MODE (0=SNAP, 1=FOCT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :	270	320	360	200	120	160	210	180
*** PRINT CPTIONS ***								
ECHO INPUTS (1-yes)	1	1	1	1	1	1	1	1
SNAPSHOT CONCS (1=ves)	1	1	1	1	1	1	1	:
MAX CONCS (1=ves)	ĩ	ī	ī	ī	ī			1
RECEPTOR CONCS (Inves)	. ī	ĩ	1	. ,	1			
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes)	1	Ţ,	1				Ţ	<b>?</b>
Hardens a ortent (1-102)	*	-	•	-	-		*	*
USER - MID LEV (ppm) : USER - MID LEV (ppm) : USER - MID LEV (ppm) : USER - LOW LEV (ppm) :	S (97.071 ###	,						
NGEDMA DETERACT-1		•	0	•	•		^	0
HEED _ HICH IEN (han)	100.00	100.00	100.00	100.00	100 00	100.00	100.00	100.00
HOED - HID INI (put) ;	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
HORD - LOW TRY (ppu) ;	100.00	100,00	100.00	100.00	100.00	100.00	100.00	100.00
OREK - TOM TEA (bbm) :	100-00	100.00	100.00	100.00	100-00	100*00	100.00	100,00
*** METEOROLOGICAL DATA WIND SPEED (m/s) WIND DIR (deg) STAB CLASS (A=1,F=5) TEMPERATURE (X)	(5 min.) **							_
WIND SPEED (m/s)	4.0	5.8	8.1	6.2	5.5	7.9	7.4	3.7
WIND DIR (deg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAB CLASS (A=1,F=6)	4.	4.	4.	4.	4.	4.	4.	4.
TEMPERATURE (X)	291.5	290.2	291.9	290.6	286.5	283.6	285.3	291.6
X-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)								
X-CCORDINATE (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Y-COORDINATES (m)	-28.0	-88.0	-34.0	-90.0	- 40 . 0	+59_0	-41.3	-56.0
Y-COORDINATES (m)	-53.0	-129.0	-91.0	-128.0	w1 29_0	-43-1	_ 45 1	-45.0
Y-COORDINATES (-)	- 22 1	-240 A	-120 1	122 1	_; 40 0		_178 ^	_170 1
V_COODATVATTS ()	-107 0	-275.0	-100.0	-106.0	-130.0	-102.0	-1/0.0	
A-000001/190006 /m/ 3			-104.0	-230.0	-230.0		-100 -	-29/10
V-COODDINATES (A)	-17,3°0	77.7	-230.0	-321-0	-322.0	99.9	-398.0	39.9
I-COORDINATES (II)	-247.0	22.2	-522.0	-400.0	-400.0	99.9	-650.0	99.9
I-COORDINATES (III)	-398.0	33.3	-401.3	99.9	99.9	99.9	99.9	99.9

AIRTOX DATA FOR :	Prairie d	Crass, sec			732240	05056	75 711	, <b>199</b>
AIRTOX DATA FOR : Inemical released :	Sulfur d	Loxice			-			
				4	API PU	31*454	6 92	
··· SCENARIO DATA ···								
SCENARIO : DOT NUMBER :	2G7	2G3	209	2G10	2G13 :	FG15 :	9315	PG17
COLVAUNDER COLVAUNDER RELEASE (JET-1, OTHER-0): EMISSION RATE (kg/s) : DURATION (s) : t LIQUID : t AEROSOL : RELATIVE HUMIDITY (t) : SURFACE ROUGHNESS (m) : HUHDING HUMPU (c) :	1079	1079	1079	1079	1079	1079	1079	1079
RELEASE (JET-1, OTHER-0) :	1	1	:	:	, :	1	1	1
EMISSION RATE (kg/s) :	0.090	0.091	0.092	0.092	0.361	0.095	0.093	0.056
DURATION (s) :	600.	600.	600.	600.	50C.	500.	500.	600.
* LIQUID :	0.0	0.0	0.0	0.0	۵.۵	5.5	0.0	0.0
* AEROSOL :	0.0	0.0	٥.٥	0.0	0.0	5.5	5.5	0.0
RELATIVE HUMIDITY (%) :	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
SURFACE ROUGHNESS (m) :	0.00600	0.00600	0.00600	0,00600	0.00600	0.00600	0.00600	0.00600
SUILDING WIDTH (m) :	0.0	0.0	0.0	0.0	0.0	) 3.3	0.0	0.0
SUILDING WIDTH (m) : BUILDING HEIGHT (m) :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DILUTION FACTOR : STORAGE TEMP. (X) : DIKE AREA (M^2) : FOOL DEPTH (M) :	0.0	0.0	0.0	0.0				
STORAGE TEMP. (K) :	0.0	0.0		0.0				
DIRE AREA (m^2) :	0.0	0_0						
FOOL DEPTH (m) ;	0.00	0.00						
SOIL COND. (kcal/msK) :								
SOIL THERM DIFF (m^2/s) :		0.000E+00	0.000E+00	0.000E+00	0.0002+00	3.300E+00	0.002+00	0.300E+00
FOR JET RELEASES ONLY -	-							
RELEASE TEMP. (K) : RELEASE HT. (m) : CRIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLZ (deg from hor.) :	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1
RELEASE HT. (m) :	0.45	0.45	0.45	0.45	3.45	0.45		
CRIFICE AREA (m^2) :	0.0020	0.0020	0.0020	0.0020	0.0020			
EXIT VEL. (m/s) :	17.34	17.57	17.51	17,71	11.32	17.32	17.70	
ANGLZ (deg from hor.) :	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0
THE USER DATA THE	_							
MODE (U-SNAP, 1-FOOT) :	1	1	1		1	1	-	_
REPORTING TIMES (s) :	300	300	300					
MODEL TIME STEP (s) :	10	10	10			10		10
FOOTPRT START TIME (s):	0	0	0	-	-	-	•	-
MODE (0-SNAP, 1-FOOT) : REPORTING TIMES (s) : MODEL TIME STEP (s) : FOOTPRT START TIME (s) : FOOTPRT STOP TIME (s) :	600	600	600	600	600	600	600	600
*** PRINT OPTIONS ***	-	_			_	_		
ECHO INPUTS (1-yes) :	1	1	1	1	_	1	1	-
SNAPSHOT CONCS (1-yes):	1	1	1	1				
MAX CONCS (1=yes) :	1	1	1	1		1	1	
ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT & SIGMA (1-yes) :	1	1	1			-		
HEIGHT & SIGMA (1=yes):	1	1	1	1	. 1	1	1	1
*** CONCENTRATION LEVEL				_				
JSER-0, DATABASE-1 :	0		-	0	-	-	•	-
USER - HIGH LEV (ppm) :								
USER - MID LEV (ppm) :	1.00							
USER - LOW LEV (ppm) :	1,00	1.00	1.00	1_00	1.00	1.00	1.00	1.00
	<i></i>							
*** METEOROLOGICAL DATA				-		-	_	
WIND SPEED (m/s) :	4.9	5.9						
WIND DIR (deg) :	0.0	0.0						
WIND DIR (deg) : STAB CLASS (A-1,F-6) : TEMPERATURE (X) :	2.							
		305.1	301.1	304.1	293.1	295.1	301.1	300.1
K CONDINIE		<b>.</b> -					_	
X-COORDINATE (m) :	0.0	0.0				0.0		
I-COORDINATES (M) :	-50.0	-50.0			-400.0			
:-COORDINATES (E) ;	-100.0	-100.0			-300.0			
I-COORDINATES (m) :	-200.0	-200.0			99.9	-200.0		
:-COURDINATES (m) :	-400.0	-400.0		-400.0		-400.0		
X-COORDINATE (m)       ::         Y-COORDINATES (m)       ::	-300.0	-300.0	c.005-	-300.0	<b>39.</b> 9	-300.0	-300.0	C.005-

AIRTOX DATA FOR : DREMICAL RELEASED :	Thorney	Island (continuous	}
IMEMICAL RELEASED :	Mixture	of Freen-12 and Ni	crogen
SCENARIO DATA *** SCENARIO DOT NUMBER RELEASE (JET~1, OTHER=0): LMISSICN RATE (Kg/s): DURATION (s) 1 LIQUID 1 AEROSOL 2 SURFACE ROUGHNESS (m): BUILDING WIDTH (m) BUILDING WIDTH (m) BUILDING HEIGHT (m) SULLDING FACTOR STORAGE TEMP. (K) DIKE AREA (m^2) FOOL DEPTH (m) SOIL COND. (kcal/msK): SOIL THERM DIFF(m^2/s): SOIL THERM DIFF(m^2/s):			
SGEMARIO	1045	7047	
JOT NUMBER :	9913	3312	
	10.200	J	
LAISSICA MALL (XG/S) :	10.570	.0.220	
JURATION (5)	435.	165.	
	0.0	0.0	
TALKUSUL		0.5	
RELATIVE ROMIDITI (4) :	100.0	97.4	
JURPACE ROUGHNESS (M) :	3.01000	3.31600	
: (ה) אזינוא טאועבוט :	9.0	0.0	
BUILDING RELEAT (M) :	0.0	9.0	
SOR NON-OLT REPEASES			
DILUTION FROZON	U.J	J.J	
STORAGE TEAP. (A)	480.3	287.3	
DIAL ARLA (M. 2)	U.U 0.01	0.0	
FOOD DEFTR (m) 1	0.01		
SOIL COND. (KCal/msk) :	0.0042-04	0.3042-04	
SOIL COND. (kdal/msk) : SOIL THERM DIFF(m^2/s) : FOR JET RELEASES ONLY - RELEASE TIMP. (K) : RELEASE HT. (m) : ORIFICE AREA (m^2) : EXIT VEL. (m/s) : ANGLE (deg from hor.) :	0.2448-06	0.2446-06	
FOR JET RELEASES ONLY -	~		
RELEASE TEMP. (K) :	0.0	0.0	
RELEASE HT. (M) :	0.00	0.00	
ORIFICE AREA (m^2) :	0.0000	0.000	
EXIT VEL. (m/s) :	0.00	0.00	
ANGLE (deg from hor.) :	0.0	0.0	
*** USER DATA ***			
MODE (0=SNAP, 1=FCOT) :		1	
REPORTING TIMES (s) :	220	230	
MODEL TIME STEP (S) :	10	10	
FOOTPRT START TIME (s):	3	Ó	
MODE (0-SNAP, 1-FCOT) : REPORTING TIMES (S) : MODEL TIME STEP (S) : FOOTPRT START TIME (S) : FOOTPRT STOP TIME (S) :	440	690	
*** PRINT OPTIONS ***	-	_	
ECHO INPUTS (1-yes) :	1	1	
SNAPSHOT CONCS (1=yes):	1	1	
MAX CONCS (1=yes) :	1	1	
RECEPTOR CONCS (1-yes):	1	1	
*** PRINT OPTIONS *** ECHO INPUTS (1-yes) : SNAPSHOT CONCS (1-yes) : MAX CONCS (1-yes) : RECEPTOR CONCS (1-yes) : HEIGHT & SIGMA (1-yes) :	1	1	
*** CONCENTRATION LEVEL	S (PLOT) **	•	
USER=0, DATABASE=1 :	0	0	
USER - HIGH LEV (ppm) :	100.00	100.00	
USER - MID LEV (ppm) :	100.00	100.00	
USER - HIGH LEV (ppm) : USER - HIGH LEV (ppm) : USER - HIGH LEV (ppm) : USER - MID LEV (ppm) : USER - LCW LEV (ppm) :	100.00	100.00	
METEOROLOGICAL DATA	(5 min.) *	**	
MIND SPEED (m/s) :	2.3	1.5	
WIND DIR (deq) :	0.0	0.0	
STAB CLASS (A=1,F=6) :	5.	6.	
WIND SPEED (m/s) : WIND DIR (deg) : STAB CLASS (A=1,F=6) : TEMPERATURE (X) :	286.3	287.5	
*** RECEPTOR DATA ***			
X-COORDINATE (m) :		0.0	
Y-COORDINATES (m) :	-40.0	-50.0	
Y-COORDINATES (m) :	-53.0	-90.0	
Y-COORDINATES (m) :	-72.0	-212.0	
Y-COORDINATES (m) :	-90.0	~250.0	
Y-CCORDINATES (m) :	-112.0	-335.0	
Y-COORDINATES (m) :	-158.0	~472.0	
Y-COORDINATES (m) :	-250.0	99.9	
Y-COORDINATES (m) :	~335.0	99.9	
Y-CCORDINATES (m) :	-472.0	99.9	

### 🗯 0732290 0505673 638 🛲

API PUBL*4546 92

ALATOX DATA FOR : CHEMICAL RELEASED : Thorney Island (instantaneous) Mixture of Freon-12 and Mitrogen

#### ■ 0732290 0505674 574 ■ API PUBL*4546 92

					n -		L * 10 / L			
*** SCENARIO DATA ***										
<b>SCENARIO</b>					7112			7213	7119	
DOT NUMBER	9906	9907	<del>3</del> 905	9909	3912	3913	3917	9919	3913	
RELEASE (JET-1, OTHER-0) :	3906 0	0						3		
EMISSION RATE (kg/s)	314.700		-	-	-		-	338.100	•	
DURATION (s)	10.	10.								
	: 0.0	0.0	5.5	3.0	0.0	5.3	0.0	0.0	0.0	
+ AEROSOL	10. 0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	
RELATIVE HUMIDITY (1)	74.3	30.7	37.5	37.3	56.2	74.1	34.0	31.3	94.8	
SURFACE ROUGHNESS (m)	0.01800	0.01800	0.01200							
		0.0	0.0					0.00000		
· · · · · · · · · · · · · · · · · · ·	: 0.0	0.0						- • -		
	: 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FOR NON-JET RELEASES										
DILUTION FACTOR	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
STORAGE TEMP. (K)	291.8	290.5	290.7	291.5	283.3	286.9	289.2	289.7	286.5	
DIKE AREA (m^2)	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
POOL DEPTH (m)		0.01	0.01	0.01				0.01	0.01	
SOIL COND. (kcal/msK)										
SOIL THERM DIFF (m^2/s):		0.244E-05	0.244E-06	0.244E-06	0.2446-06	0.2448-06	0.2442-05	0.244E-06	0.244E-06	
FOR JET RELEASES ONLY -										
RELEASE TEMP. (K)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
	0 0000	0.0000	0,0000						0.0000	
		0.0000								
EXIT VEL. (m/s)	0.00	0.00	0.00					0.00	0.00	
ANGLE (deg from hor.) :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••• USER DATA ••••										
MODE (0-SNAP, 1-FOOT) :	1	1	1	1	1	1	1	1	1	
REPORTING TIMES (s)		10	10		-	10	-	10	-	
										÷
		10	10	10		10		10	10	4
FOOTPRT START TIME (s):		-	0	0	-	0		•	Q	1
FOOTPRT STOP TIME (s) :	340	320	460	- 640	440	140	240	160	220	-2
										- ,-
*** PRINT OPTIONS ***										
	1	1	1	1	1	1	1	1	1	-
ECHO INPUTS (1=yes)	1	1	-			1	1	1	-	-
ECHO INPUTS (1=yes) SNAPSHOT CONCS (1=yes):	1	1	1	1	1	1	1	1	1	;
ECHO INPUTS (1=yes) SNAPSHOT CONCS (1=yes) MAX CONCS (1=yes)	1	1	1	1	1	1	1	1	1	:
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes)	1	1 1 1	1	1 1 1	1	1 1 1	1	1	1 1 1	
ECHO INPUTS (1=yes) SNAPSHOT CONCS (1=yes) MAX CONCS (1=yes)	1	1 1 1	1	1 1 1	1	1	1	1	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes)	1 1 1 1 1 1	1 1 1	1	1 1 1	1	1 1 1	1	1	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes)	1 1 1 1 1 1	1 1 1	1	1 1 1	1	1 1 1	1	1	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) CONCENTRATION LEVEN	1 1 1 1 LS (PLOT) ***	1 1 1	1	1 1 1	1	1 1 1	1	1	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) *** CONCENTRATION LEVEN USER=0, DATABASE=1	1 1 1	1 1 1 2	1111	1 1 1 0	1 1 1 1 1 0	1 1 1 1	111111	1 1 1 1	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER-0, DATABASE-1 USER - HIGH LZV (ppm):	1 1 1 2.5 (PLOT)	1 1 1 1	1 1 1 1 100.00	1 1 1 1 1 0 100.00	1 1 1 1 1 0 100.00	1 1 1 1 1 0 100,00	1 1 1 1 0 100.00	1 1 1 1 1 0 100.00	1 1 1 100.00	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) CONCENTRATION LEVEN USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - MID LEV (ppm)	1 1 1 .S (PLOT) *** 0 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER-0, DATABASE-1 USER - HIGH LZV (ppm):	1 1 1 .S (PLOT) *** 0 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 1 100.00	1 1 1 1 1 0 100.00	1 1 1 1 100.00 100.00	1 1 1 1 1 0 100,00	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1	
ECHO INPUTS (1=yes) SNAPSHOT CCNCS (1=yes): MAX CONCS (1=yes): MAX CONCS (1=yes): HEIGHT 4 SIGMA (1=yes): HEIGHT 4 S	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER-0, DATABASE-1 USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - LCW LEV (ppm): HETEOROLOGICAL DATA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 100.00 100.00 100.00	0 100.00 100.00 100.00	) 1 100.00 100.00 100.00	1 1 1 1 100.00 100.00 100.00	1 1 1 1 100.00 100.00 100.00	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - LOW LEV (ppm) USER - LOW LEV (ppm) USER - LOW LEV (ppm)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 100.00 100.00	1 1 1 1 1 0 100.00 100.00	1 1 1 1 100.00 100.00 100.00	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER-0, DATABASE-1 USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - LCW LEV (ppm): HETEOROLOGICAL DATA	1 1 1 2 3 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 100.00 100.00 100.00	0 100.00 100.00 100.00	1 1 1 100.00 100.00 100.00 5.0	1 1 1 1 100.00 100.00 100.00	1 1 1 1 100.00 100.00 100.00	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - MID LZV (ppm) USER - LCW LEV (ppm) WIND SPEED (m/s) WIND DIR (deg)	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00	1 1 1 100.00 100.00 100.00 100.00	1 1 1 1 100.00 100.00 100.00 100.00 2.5 0.0	1 1 1 100.00 100.00 100.00 100.00 7.3 0.0	1 1 1 100.00 100.00 100.00 5.0 0.0	1 1 1 100.00 100.00 100.00 100.00	1 1 1 100.00 100.00 100.00 100.00	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): USER - 0 DATABASE-1 USER - HIGH LEV (ppm): USER - HIGH LEV (ppm): USER - HIGH LEV (ppm): USER - HIGH LEV (ppm): USER - LOW LEV (ppm): HIMD SPEED (m/s): HIMD SPEED (m/s): STAB CLASS (A-1, 2-6):	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 100.00	0 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 1 00.00 100.00 100.00 100.00 7.3 0.0 4.	1 1 1 1 100.00 100.00 100.00 100.00 5.0 0.0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4.	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - MID LZV (ppm) USER - LCW LEV (ppm) WIND SPEED (m/s) WIND DIR (deg)	1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 100.00 100.00 100.00 100.00	1 1 1 1 100.00 100.00 100.00 100.00 100.00	0 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 1 00.00 100.00 100.00 100.00 7.3 0.0 4.	1 1 1 1 100.00 100.00 100.00 100.00 5.0 0.0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4.	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) STAB CLASS (A-1, f-6) TEMPERATURE (K)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 100.00	0 100.00 100.00 100.00 100.00 100.00 5.	1 1 1 1 1 00.00 100.00 100.00 100.00 7.3 0.0 4.	1 1 1 1 100.00 100.00 100.00 100.00 5.0 0.0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4.	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - LCW LEV (ppm) STAB CLASS (A-1, 2-6) TEMPERATURE (K) TEMPERATURE (K)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 2.4 0.0 4. 290.7	1 1 1 1 100.00 100.00 100.00 100.00 1.7 0.0 6. 291.5	1 1 1 1 100.00 100.00 100.00 100.00 2.5 0.0 5. 283.3	1 1 1 1 100.00 100.00 100.00 7.3 0.0 4. 286.3	1 1 1 100.00 100.00 100.00 100.00 5.0 0.0 4. 289.2	1 1 1 1 100.00 100.00 100.00 7.4 0.0 4. 289.7	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4. 286.5	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): USER - 0 DATABASE-1 USER - HIGH LZV (ppm): USER - LGW LZV (ppm): SIGMA (1-yes): SIGMA (1-yes): SIGMA (1-yes): SIGMA (1-yes): SIGMA (1-yes): MIND DIR (1-yes): SIGMA (1-yes): SIGMA (1-yes): SIGMA (1-yes): MIND DIR (1-yes): SIGMA (1-yes): SIGMA (1-yes): SIGMA (1-yes): MIND DIR (1-yes): MIND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 100.00 100.00 100.00 10.0	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 , 283.3 0.0	1 1 1 1 1 00.00 100.00 100.00 100.00 7.3 0.0 4. 286.3	1 1 1 1 1 00.00 100.00 100.00 100.00 5.0 0.0 4. 289.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4. 286.5	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER-0, DATABASE-1 USER-0, DATABASE-1 USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - LCW LEV (ppm): STAB CLOSS (A-1,2-6): TEMPERATURE (K): TEMPERATURE (K): X-CCORDINATE (m): Y-COORDINATES (m): STAB CLOSS (m): STAB CLOSS (m): MIND STAB CLOSS (m): STAB	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 00.00 100.00 100.00 100.00 5.0 0.0 4. 289.2 0.0 -40.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4. 286.5	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) HEIGHT & SIGMA (1-yes) USER-0, DATABASE-1 USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - LCW LEV (ppm) STAB CLASS (A-1, 2-6) TEMPERATURE (K) TEMPERATURE (M) CONDINATE (M)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 100.00 100.00 100.00 10.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 00.00 100.00 100.00 100.00 7.3 0.0 4. 286.3	1 1 1 1 1 00.00 100.00 100.00 100.00 5.0 0.0 4. 289.2 0.0 -40.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 100.00 100.00 100.00 100.00 6.4 0.0 4. 286.5	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - MID LZV (ppm) USER - LCW LZV (ppm) STAB CLASS (A-1,2-6) TEMPERATURE (K) TO RECEPTOR DATA X-CCORDINATES (m) Y-COORDINATES (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 4. 290.7 4. 290.7 0.0 0-71.0 -120.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.00 100.00 100.00 100.00 100.00 -71.0 -71.0 -100.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER-0, DATABASE-1 USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - LOW LEV (ppm) STAB CLASS (A-1, 2-6) TEMPERATURE (K) TEMPERATURE (K) TEMPERATURE (M) Y-CCORDINATES (M) Y-COORDINATES (M)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 0 0.00 100.00 100.00 100.00 4. 290.7 0.0 -71.0 -100.0 -150.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00000000	0 0 100.00 100.00 100.00 100.00 100.00 100.00 5. 283.3 0.0 -71.0 -71.0 -200.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 100.00 4.286.3 0.0 -71.0 -100.00 -71.0 -100.00	3 3 100.00 100.00 100.00 100.00 5.0 0.0 4. 289.2 0.0 -40.0 -50.0 -71.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): RECEPTOR CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER - 0, DATABASE-1 USER - HIGH LEV (ppm): USER - LOW LEV (ppm): STAB CLASS (A-1, 2-6): TEMPERATURE (K) TEMPERATURE (K) TEMPERATURE (M) Y-COORDINATES (M) Y-COORDINATES (M) Y-COORDINATES (M) Y-COORDINATES (M)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER - 0, DATABASE-1 USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - HIGH LZV (ppm): USER - LCW LEV (ppm): USER - LCW LEV (ppm): STAB CLASS (A-1,2-6): TEMPERATURE (K): TEMPERATURE (K): CCOORDINATES (m): Y-COORDINATES (m): Y-C	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 100.00 100.00 100.00 -71.0 -100.0 -71.0 -10.0 -361.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER -0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - LCW LZV (ppm) USER - LCW LZV (ppm) STAB CLASS (A-1,2-6) TEMPERATURE (K) TEMPERATURE (K) TEMPERATURE (M) Y-COORDINATES (M)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) CONCENTRATION LEVEN USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - HIGH LEV (ppm) USER - LOW LEV (ppm) STAB CLASS (A-1,2-6) TEMPERATURE (K) TH RECEPTOR DATA X-COORDINATES (m) Y-COORDINATES (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER -0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - LCW LZV (ppm) USER - LCW LZV (ppm) STAB CLASS (A-1,2-6) TEMPERATURE (K) TEMPERATURE (K) TEMPERATURE (M) Y-COORDINATES (M)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 100.00 100.00 100.00 100.00 5.0 0.0 4. 289.2 0.0 -40.c -50.c -71.c -100.c -101.c -224.c -500.c	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes) MAX CONCS (1-yes) RECEPTOR CONCS (1-yes) HEIGHT 4 SIGMA (1-yes) HEIGHT 4 SIGMA (1-yes) USER-0, DATABASE-1 USER-0, DATABASE-1 USER - HIGH LZV (ppm) USER - HIGH LZV (ppm) USER - LCW LZV (ppm) USER - LCW LZV (ppm) STAB CLASS (A-1,2-6) TEMPERATURE (K) TO RECEPTOR DATA X-COORDINATES (m) Y-COORDINATES (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1	) ) ) ) ) ) ) ) ) ) ) ) ) )	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ECHO INPUTS (1-yes) SNAPSHOT CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): MAX CONCS (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): HEIGHT 4 SIGMA (1-yes): USER - 0, DATABASE-1 USER - HIGH LEV (ppm): USER - HIGH LEV (ppm): STAB CLASS (A-1, 2-6): TEMPERATURE (K) MIND DIR (deq) STAB CLASS (A-1, 2-6): TEMPERATURE (K) MIND SEED (m/s): Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m) Y-COORDINATES (m)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	

34M INPUT DATA FOR : Chemical Released :	API PUBL*4546 92 MM 0792290 0505675 400
TRIAL : INITIAL CONC (ppp) : DENSE ENCUGH? (inst): DENSE ENCUGH? (cnst): MIN DIST INST (m) : COR. PARAM. (inst) : MAX DIST CNST (m) : COR. PARAM. (cnst) : 1/Dc (1/m) :	BUZ BUJ BU4 EUS BU6 BU7 BU8 BU9 1.300000 1.300000 1.300000 1.200000 1.200000 1.200000 1.200000 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
B4M INPUT DATA FOR : CHEMICAL RELEASED :	Coyote . Liquefied natural gas . Methane is at least 864 in c
	C03       C05       C06         1.000000       1.000000       1.000000         Y       Y       Y         723.       1794.       T84.         1.70       1.15       1.38         0.671E-01       0.544E-01       0.576E-01         174.       431.       198.         0.78       0.50       0.89         0.362       0.417       0.301
34M INPUT DATA FOR : CHEMICAL RELEASED :	
INITIAL CONC (ppp) : DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : COR. PARAM. (inst) : 1/Di (1/m) : MAX DIST CNST (m) :	DT1 DT2 DT3 DT4 0.089979 0.091419 0.096518 0.095455 Y Y Y Y 2033. 3241. 2568. 3952. 1.11 1.69 1.35 2.18 0.1922-01 0.1362-01 0.1522-01 0.1262-01 488. 778. 616. 949. 0.58 0.79 0.68 0.94 0.9262-01 0.7012-01 0.7322-01 0.6922-01
BAM INPUT DATA FOR : CHEMICAL RELEASED :	Goldfish . Hydrogen fluoride .
TRIAL : INITIAL CONC (ppp) : DENSE ENOUGH? (INST): DENSE ENOUGH? (ORST): MIN DIST INST (m) : COR. PARAM. (INST) : 1/D1 (1/m) : MAX DIST CHST (m) : COR. PARAM. (CNST) : 1/Dc (1/m) ;	GF1       GF2       GF3         0.088112       0.083367       0.076311         Y       Y       Y         1521.       3227.       4482.         0.54       0.74       C.51         0.2568-01       0.2558-01       0.2508-01         365.       774.       1076.         0.32       0.36       0.25         0.132       0.179       0.204

	■ 0732290 0505676 347 ■
34M INPUT DATA FOR	: Hanibrd (continuous)
INEMICAL RELEASED	: Xrypton-35
	API PUBL*4546 92 HC1 HC2 HC3 HC4 HC5 1.000000 1.000000 1.000000 1.000000 N N N N N 5259. 3452. 14691. 5346. 3374. 0.37 0.04 0.372 0.35 0.396 1262. 2029. 3526. 1293. 2010. 1262. 2029. 3526. 1293. 2010. 1268. 24.1 21.3 13.1 17.7
TRIAL	: HC1 HC2 HC3 HC4 HC5
INITIAL CONC (ppp)	: 1.000000 1.000000 1.000000 1.000000 1.000000
DENSE ENCUGH? (inst)	: <u>1 N N N N</u>
DENSE ENCUGH? (cnst)	X X X X X
MIN DIST INST (m)	: 5259. 3452. 14691. 3346. 3374.
LUR. PARAM. (Inst)	: 0.37 0.34 0.32 3.35 3.35
_/D1 (1/m)	: 0.481 0.484 0.372 0.378 0.396
MAX DIST UNST (m)	: 1262. 2029. 3526. 1293. 2010.
COR. PARAM. (cast)	: 0.33 0.32 3.31 3.32 3.32
1/DC (1/m)	: 18.8 24.1 21.3 13.1 17.7
SEM INPUT DATA FOR	: Hanford (instantaneous) : Krypton-35
CREMICAL RELEASED	: Arypeon-45
TRIAL	: HI2 HI3 HI5 HI6 HI7 HI8
DENSE SNOUGHD ((Den)	: 1.000000 1.000000 1.000000 1.000000 1.000000
DENSE ENOUGH? (INSC);	I A A A A A A
VIN DICT INCT (CHIL)	
	1.000000       1.000000       1.000000       1.000000       1.000000         N       N       N       N       N       N         1       N       N       N       N       N         1       0.00       0.00       0.00       0.00       0.00         1       0.06       0.03       0.02       0.02       0.03       0.05         1       0.06       0.497       0.497       0.498       0.503         1       0.       0.       0.       0.       0.         1       0.00       0.30       0.20       0.00       0.00         1       0.00       0.30       0.20       0.00       0.00         1       0.00       0.30       0.20       0.00       0.00         1       0.100E+05       0.100E+05       0.100E+05       0.100E+05
(D1 (1/m)	
COR PARAM (CORE)	
1/Dc (1/m)	
1996 (1978)	
BEM INPUT DATA FOR	· Maplin Sanda
	: Liquified Natural Gas
	•
TRIAL	: MS27 MS29 MS34 MS35 : 1.000000 1.000000 1.000000
INITIAL CONC (DDD)	1.000000 1.000000 1.000000 1.000000
DENSE ENOUGH? (inst)	ž ž ž ž ž
DENSE ENOUGH? (CRSE)	y y y
MIN DIST INST (m)	1493. 2775. 1346. 2160.
COR. PARAM. (inst)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1/Di (1/m)	0.795E-01 0.647E-01 0.962E-01 0.788E-01
MAX DIST CNST (m)	358. 666. 323. 518.
COR. PARAM. (CHSE)	0-57 0-43 0-36 0-33
1/Dc (1/m)	0.671 0.671 0.848 0.796
• • • •	
34M INPUT DATA FOR	: Maplin Sands
CHEMICAL RELEASED :	: Liquified Propane Gas
TRIAL	: M542 M543 M546 M547 M549 M550 M552 M554
INITIAL CONC (ppp)	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
DENSE ENOUGH? (inst);	: , , , , , , , , , ,
DENSE ENOUGH? (Cnst):	. ž ž ť ž ž ž ž
MIN DIST INST (m)	: 1200. 3190. 4860. 2170. 825. 2107. 1727. 1110.
COR. PARAM. (inst) :	: 2.58 1.33 1.46 1.33 1.57 1.36 1.47 2.64
1/D1 (1/m)	: 0.8512-01 0.715E-01 0.6512-01 0.697E-01 0.115 0.739E-01 0.720E-01 0.875E-01
MAX DIST CNST (m) :	288. 766. 1166. 521. 198. 506. 414. 266.
COR. PARAM. (cnst) :	· 0.94 0.53 0.47 0.66 0.54 0.52 0.58 0.97
_/DC (1/m) :	1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         1.0000000       1.0000000       1.000000       1.000000       1.000000       1.000000         1.000000000       1.0000000       1.0000000       1.0000000       1.0000000       1.0000000         1.000000000000000       1.00000000

223

34M INPUT DATA FOR : JHEMICAL RELEASED :	API PUBL*4546 92 MM 0732290 0505677 283 MM Prairie Grass, sec 1 Sulfur dioxide
INITIAL CONC(ppp) : DENSE ENOUGH? (Inst): DENSE ENOUGH? (Inst): MIN DIST INST (m) : COR. PARAM. (Inst) : L.Di (1/m) :	9G7       7G8       7G9       7G10       7G13       7G15       7G16       7G17         1.000000       1.000000       1.000000       1.000000       1.000000       1.000000       1.000000       1.000000         4926.       5880.       3385.       5383.       2737.       3982.       3749.       4625.         1.17       0.38       0.69       1.07       1.35       1.45       1.54       1.14         0.362       0.360       0.361       0.359       0.417       0.359       0.425         1182.       1411.       2012.       1292.       657.       956.       900.       1110.         0.128       0.24       0.16       0.26       0.36       0.37       0.27         11.8       12.8       15.4       12.2       10.9       10.5       10.2       14.5
B4M INPUT DATA FOR : CHEMICAL RELEASED :	Thorney Island (continuous) . Mixture of Freon-12 and Nitrogen .
TRIAL : INITIAL CONC (ppp) : DENSE ENOUGH? (inst): DENSE ENOUGH? (cnst): MIN DIST INST (m) : COR. PARAM. (inst) : 1/Di (1/m) : MAX DIST CNST (m) : COR. PARAM. (cnst) : 1/Dc (1/m) :	Y 1744. 1163. 4.34 7.40 0.798E-01 0.8025-01 419. 279. 1.46 2.22
34M INPUT DATA FOR : CHEMICAL RELEASED :	Thorney Island (instantaneous) Mixture of Freon-12 and Nitrogen
INITIAL CONC(ppp) : DENSE ENOUGH? (inst): DENSE ENOUGH? (inst): MIN DIST INST (m) : COR. PARAM. (inst). : 1/D1 (1/m) : MAX DIST CNST (m) : COR. PARAM. (cnst) :	0.859E-01 0.796E-01 0.796E-01 0.796E-01 0.801E-01 0.802E-01 0.936E-01 0.935E-01 0.779E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

3urra API PUBL*4546 92 🛲 0732290 0505678 11T 📟 MARM INPUT DATA FOR: BUERD API PUBL*4546 70 DIDLE .C. MEMICAL RELEASED : MEEDING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS MODE : PLANNING - USER SPECIFIED RELEASE PARAMETERS, NO BUILDINGS

TRIAL :	302 303	304	BUS	3U 6	307	308	3U 3U	9
CONC. SPEC. (ppm) :	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	7,1	5.2	2.7	5.3	5.1	7.4	4.5	14.4
AIR TEMP. (C) :	38.1	34.5	35.3	41.1	39.5	33.3	32.3	35.3
	0.927	0.936	0.933	0.929	0.923	3.328	0.929	3.928
WIND SPEED (m/s) :	5.4	5.4	₹.C	7.4	9.1	3.4	1.8	5.7
ROUGHNESS LENGTH (=) :	0.0002	0.0002	0.0002	0.0002	0.000Z	3.0002	0.0002 .	0.0002
MEASUREMENT HT (m) :	2.0	2.0	2.0	2.0	2.3	2.0	2.0	2.0
STAB. CLASS :		С	c	с	c	C	£	2
RELEASE HEIGHT (m) :	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RELEASE LOC = (0,0) :								
GAS TEMP (C) :	-162.5	-162.5	-162.6	-162.6	-162.5	-162.5	-162.6	-162.5
DIAMETER (m) :		36.30	36.09	34.39	37.17	38,60	41.35	45.13
HOR. SPEED (m/s) :				0.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MOLAR WATER FRACT. :	0.000	0.000	0.000	0.000	0.000	0000.0	0.000	0.000
MOLAR AIR FRACT. :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IF CONTINUOUS, USE CON		N RATE:						
EMIS. RATE (g/s) :		87980.	36960.	81250.	92220.	99460.	116930.	135980.
RELEASE DUR. (min) :			2.92	3.17	2.15	2.90	1.78	1.32
IF INSTANTANEOUS, USE								
MASS RELEASED (kg) :		0.	٥.		٥.	э.	٥.	э.
RECEPTOR DIST. (m) :		57.0	57.0	57.0	57.0	57.0	57.0	57.0
RECEPTOR DIST. (m) :	140.0	140.0	140.0	140.0	140.0	140.0	140.0	140.0
RECEPTOR DIST. (a) :	-99.9	-99.9	-99.9	9.9	-99.3	400.0	400.0	400.0
RECEPTOR DIST. (m) :	-99.9	-99.9	-99.9	-99.9	-99.9	-99.3	800.0	300.0

CHARM INPUT DATA FOR: CHEMICAL RELEASED : MODE :	Mechane		FIED RELEASE		least 86% in c
TRIAL : CONC. SPEC. (ppm) :	C03 (	205 Ci	06		
CONC. SPEC. (ppm) :	100.0	100.0	100.0		
REL HUMID. (*) AIR TEMP. (C) AIR PRESSURE (aCM) WIND SPEED (m/s) ROUGHNESS LENGTH (m):	11.3	22.1	22.8		
AIR TEMP. (C) :	38.3	28.3	24.1		
AIR PRESSURE (atm) :	0.924	0.927	0.930		
WIND SPEED (m/s) :	6.0	9.7	4.6		
ROUGHNESS LENGTH (m):	0.0002	0.0002	0.0002		
MEASUREMENT HT (m) : STAB. CLASS : RELEASE HEIGHT (m) :	2.0	2.0	2.0		
STAB. CLASS :	C.	c	Ð		
RELEASE HEIGHT (m) :	0.00	0.00	0.00		
RELEASE LOC = (0,0) :		•			
RELEASE HEIGHT (m) : RELEASE LOC - (0,0) : GAS TEMP (C) : DIAMETER (m) :	-162.6	-162.6	-162.6		
DIAMETER (m) :	38.83	43.96	42.93		
DIAMETER (m) HOR. SPEED (m/s)	0.00	0.00	0.00		
FRACTION DROPLETS :	0_000	0.000	0_000		
MOLAR WATER FRACT. :	0.000	0.000	0.000		
MOLAR WATER FRACT. : MOLAR AIR FRACT. :	0.000	0.000	0.000		
IF CONTINUOUS, USE CO					
EMIS. RATE (g/s) :	100670.	129020.	123030.		
RELEASE DUR. (min) :	1.08	1.63	1.37		
IF INSTANTANEOUS, USE		RELEASED:			
MASS RELEASED (kg) :			٥.		
RECEPTOR DIST. (m)	140.0	140_0	140.0		
RECEPTOR DIST. (m)	200.0	200.0	200_0		
RECEPTOR DIST. (m) : RECEPTOR DIST. (m) :	300.0	300.0	300.0		
RECEPTOR DIST. (m)					

231

 IMARM INPUT DATA FOR: Desert Tortoise
 AP1 PUBL#4546 72 011

 IMARM INPUT DATA FOR: Desert Tortoise
 U11

 IMARM INPUT DATA FOR: Desert Tortoise
 IMARMENTERS

 MODE
 IMARMENTERS, NO BUILDINGS

TRIAL	371	<b>572 51</b>	.3 <b>.</b> 77	4
TRIAL CONC. SPEC. ppm)	100.0			
CONC. SPEC. ppm) REL HUMID. (1)	13.2	17.5		21.3
AIR TEMP. C:	28.3	30.4		
AIR PRESSURE (acm)	0.897	3.398		
WIND SPEED m/s)	7.4			4.5
ROUGHNESS LENGTH (m);				0.0030
MEASUREMENT HT (m)	2.3	2.3	2.0	2.0
STAB. CLASS :	C	ົວ	C	E
RELEASE HEIGHT (m) :	0.79	0.79	0.79	0.79
RELEASE LOC - (0,0) :				
GAS TEMP (C) :	~35.7	-35.7	~35.7	-35.7
DIAMETER (m) :	1.04	1.19	1.22	1.24
HOR. SPEED (m/s) :	22.65	23.28	27.29	20.19
FRACTION DROPLETS :	0.813	0.817	0.811	0.304
MOLAR WATER FRACT. :	0.000	0.000	0.000	0.000
MOLAR AIR FRACT. :	0.000	0.000	0.000	
IF CONTINUOUS, USE CO	NSTANT EMIS			
IMIS. RATE (g/s) :	79700.	112500.	130700.	96700.
RELEASE OUR. (min) :	2.10	4.25	2.77	5.35
IF INSTANTANEOUS, USE	TOTAL MASS	RELEASED:	-•	
	2.	э.	٥.	٥.
RECEPTOR DIST. (m)	100.0		100.0	
RECEPTOR DIST. (a)	900.0	300.0	800.0	800.0

CHARM INPUT DATA FOR									
CHEMICAL RELEASED	:	Hydrog	ren 1	luoride	1				
MODE	: PLA	NNING -	USE	R SPECI	FIED	RELEASE	PARAMETERS,	NO	BUILDINGS
TRIAL CONC. SPEC. (ppm) REL HUMID. (%) AIR TEMP. (C) AIR PRESSURE (acm) WIND SPEED (m/s) ROUGHNESS LENGTH (m)	: GF1		gf2	G	23				
CONC. SPEC. (ppm)	;	30.0	)	30.0		30.0			
REL HUMID. (%)	:	4.9	)	10.7		17.7			
AIR TEMP. (C)	:	37.2	2	36,2		34.4			
AIR PRESSURE (acm)	:	0.893	<b>L</b>	0,889	0	.894			
WIND SPEED (m/s)	:	5.6	;	4.2		5.4			
ROUGHNESS LENGTH (m)	:	0.0030	)	0.0030	٥.	0030			
MEASUREMENT HT (m) STAB, CLASS RELEASE HEIGHT (m)	:	2.0	)	2.0		2.0			
STAB, CLASS	:	2	)	D		D			
RELEASE HEIGHT (m)	:	1.00	1	1.00		1.00			
GAS TEMP (C) DIAMETER (m) HOR. SPEED (m/s) FRACTION DROPLETS MOLAR WATER FRACT.	:	16.4		16.4		16.4			
DIAMETER (m)	:	0.61		0.34		0.34			
HOR. SPEED (m/s)	:	20.33	1	23.04	2	2.62			
FRACTION DROPLETS	:	0.840	•	0.853	0	.847			
MOLAR WATER FRACT.	:	0.000	ļ –	0.000	0	.000			
MOLAR AIR FRACT.	:	0.000	)	0.000	0	.000			
IF CONTINUCUS, USE C	CNSTA	NT EMIS	SICN	RATE:					
emis, rate (g/s)						270.			
RELEASE DUR. (min)	:	2,08		6,00		6.30			
IF INSTANTANEOUS, US	E TOT	AL MASS	REL	EASED:					
MASS RELEASED (Xg)	:	σ.		0.		0.			
RECEPTOR DIST. (m)	1	300.0		300.0	3	00.0			
IF INSTANTANEOUS, US MASS RELEASED (XG) RECEPTOR DIST. (m) RECEPTOR DIST. (m)	:	1000.0		1000.0	10	00.0			
RECEPTOR DIST. (m)	:	3000.0	1	-99.9	30	00.0			

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

- LAAM LYCU, JALA (CR	Hanford	loonclauous	1		073229	10 050568	0 878 💻	
SHEMICAL RELEASED :		en 4155 3.4.	-29.2}			10 020200		
MODE :	?LANNING -	USER SPECIFI	ED RELEASE	PARAMETER	RS, NO BUILD			<b>D D</b>
						API	PUBL*4546	שר
		C2 HC3	HC 4	HCS				
JONC. SPEC. (ppm) ;	0.1	0.1	3.1	0.1	o.:			
REL HUMID. (N) :	20.0	20.0	20.0	20.0	20.J			
AIR TEMP. (C) ;	17.7	12.2	15.7	13.4	5.5			
AIR PRESSURE (atm) :	1.000	1.300	1.300	1,000	1.000			
WIND SPEED (m/s) :	1.3	3.9	7.1	3.9	2.5			
ROUGHNESS LENGTH (m):	0.0300	0.0300	0.0300	0.0300	0,0300			
MEASUREMENT HT (m) :	2.5	1.5	1.5	1.5	1.5			
STAB. CLASS :	7	c	5	c	Ξ			
RELEASE HEIGHT (m) :	1,00	1.00	1.00	1.30	1.00			
RELEASE LOC - (0,0) :								
GAS TEMP (C) :	17.7	12.2	15.7	13.4	5.5			
DIAMETER (m) :	0,11	0.06	3.37	0.11	0.09			
HOR, SPEED (m/s) ;	0.00	0.00	3.20	0.00	0.00			
FRACTION DROPLETS :	0.000	0.000	0.200	0,000	0.000			
MOLAR WATER FRACT. :	0.000	0.000	0.000	0.000	0.000			
MOLAR AIR FRACT. :	0.000	0,000	0.200	0.000	0.000			
IF CONTINUOUS, USE CO	NSTANT EMISS	ION RATE:		-				
EMIS. RATE (g/s) :	12.	12.	281	39.	17.			
RELEASE DUR. (min) :	15.47	15.08	14.25	9.97	19.85			
IF INSTANTANEOUS, JSE								
MASS RELEASED (kg) :	۰. ۱۹۳۳ دیاری	0.	٥.	٥.	э.			
RECEPTOR DIST. (m) ;		200.0	200.0	200.0	200.0			
RECEPTOR DIST. (m) :	300.0	800.0	800.0	300.0	800.0			
ALOGEION DIDI. (A) :	200.0	200.0	auu	300.0	300.5			

CHARM INPUT DATA FOR						
CHEMICAL RELEASED						
MODE	: PLANNING -	USER SPEC	IFIED RELEASE	E PARAMET	ERS, NO BU	ILDINGS
TRIAL	: HT2	813	साड भा	5 H	T7 4	178
TRIAL CONC. SPEC. (ppm)	· · · · · · · · · · · · · · · · · · ·		0.1	0 1	- · · · ·	 ^ 1
SET. HIMTD (\$)	. 20 0	20.0	20 0	20.0	20 0	20.0
REL HUMID. (%) AIR TEMP. (C)	. 18 1	11 0	15 5	15 1	12.0	20.0
AIR PRESSURE (acm)						
WIND SPEED (m/s)			7.5	7.2	4.5	
ROUGHNESS LENGTH (m)						
MEASUREMENT HT (m)						
STAB. CLASS	: 3		c	с		
RELEASE HEIGHT (m)		0_00	0.00	0.00	0.00	0.00
RELEASE LOC - (0,0)						
GAS TEMP (C)		11.9	15.5	15.1	12.4	4.6
DIAMETER (m)	: 2.76	5 2.74	2.75	2.75	2.74	2.71
HOR. SPEED (m/s)	: 0.00	0.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS	: 0.000	0_000	0.000	0,000	0.000	0.000
MOLAR WATER FRACT.	: 0.000	0_000	0.000	0.000	0.000	0.000
MOLAR AIR FRACT.	: 0.000	0.000	0.000	0,000	0.000	
IF CONTINUOUS, USE C	CONSTANT EMIS	SICN RATE:				
EMIS, RATE (g/s)			٥.	0.	0.	٥.
RELEASE DUR. (min)			0.00			
IF INSTANTANEOUS, US						
MASS RELZASED (kg)			10.	: 0	10	10
RECEPTOR DIST. (m)		200.0	200.0			
RECEPTOR DIST. (m)		800.0	300.0		800.0	
ALCEFICA DIDI. (II)			300.0	500.0	800.3	800.0

233

TRIAL	4527	MS29 MS	34 %5	35
CONC. SPEC. (ppm) :	100.0		100.3	100.0
REL HUMID. (1)	53.3		30.3	77.0
AIR TEMP. C) :	14.3	15.1	15.2	15.1
AIR PRESSURE (acm) :	1.000		1.000	:
WIND SPEED (m/s) :	5.5		3.5	9.6
ROUGHNESS LENGTH (m) :	0.0003		0.0003	
MEASUREMENT HT (m) :	10.0	:0.0	:0.0	10.0
STAB. CLASS :			3	2
RELEASE HEIGHT (m) :	0.00	0.00	0.00	0.00
RELEASE LOC = (0,0) :				
GAS TEMP (C) :	-161.5	-161.5	~161.3	-161.5
DIAMETER (m) :	18.60	20.90	18.00	20.10
HOR, SPEED (m/s) :	0.00	0.00	0.00	0.00
FRACTION DROPLETS :	0.000	0,000	0.000	0.000
MOLAR WATER FRACT. :	0.000	0.000	0.000	0.000
MOLAR AIR FRACT. :	0.000	0.000	0.000	0.000
IF CONTINUOUS, USE CO	NSTANT EMIS:	SICN RATE:		
EMIS. RATE (g/s) :	23210.	29160.	21510.	27090.
RELEASE DUR. (min) :	2.57		1.55	2.25
IF INSTANTANEOUS, USE	TOTAL MASS	RELEASED:		
MASS RELEASED (kg) :	ο.	э.	э.	٥.
RECEPTOR DIST. (m) :	39.0	58.0	37.0	:29.0
RECEPTOR DIST. (m) :	131.0	90.0	179.0	250.0
RECEPTOR DIST. (m) :	324.0	130.0	-99.9	406.0
RECEPTOR DIST. (m) :	400.0	182.0	-99.9	-99.9
RECEPTOR DIST. (m) :	650.0	252.0	-99.9	-99.9
RECEPTOR DIST. (m) :	-99.9	324.0	-99.9	-99.9
RECEPTOR DIST. (m) :	-99.9	403.0	-99.9	-99.9

	Maplin Sands Propane PLANNING - U		ED RELEAS	e paramets	RS, NO 3	UILDINGS		
TRIAL :	<b>พร</b> 42 พร	43 MS4	16 MS	47 MS	49	MS50 M	S52 3	(\$54
CONC. SPEC. (ppm) :	100.0	100.0	100.0	100.0	100.0	:00.0	100.0	100.0
REL HUMID. (1) :	80.0	\$0.0	71.0	78.0	88.0	79.0	53.0	85.0
AIR TEMP. (C) ;	18.3	17,0	18.7	17.4	13.3		11.3	8.4
AIR PRESSURE (atm) :	1.000	1.000	1.000	1.000	1.000		1.000	1.000
WIND SPEED (m/s) :	4.0	5.3	8.1	6.2	5.5		7.4	3.7
ROUGHNESS LENGTH (m) :		0.0003	0.0003	0.0003	0.0003		0.0003	0.0003
MEASUREMENT HT (m) :		10.0	10.0	10.0	10.0		10.0	10.0
STAB. CLASS	Ď	D	5	Ď	5		Ē.	0
RELEASE HEIGHT (m)	0.00	0.00	0.00		0.00		0.00	0.00
RELEASE LCC - (0,0) :								
GAS TEMP (C)	-42.1	-42.1	~42.1	~42.1	-42.1	-42.1	-42.1	-42.1
DIAMETER (m) :	14.90	14.30	15.70	18.60	13.30		21.70	14.30
HOR. SPEED (m/s) :	0.00	0.00	0.00	0.00	0.30		0.00	0.00
FRACTION DROPLETS :		0.000	0.000	0.000	0.000			0,000
MOLAR WATER FRACT. :	0.000	0.000	0.000	0.000	0.000		0.000	0.000
MOLAR AIR FRACT. :	0.000	0.200	0.000	0.000	0.000		0.000	0.000
IF CONTINUOUS, USE CO								
EMIS. RATE (C/S) :	20870.	19200.	23370.	32570.	16710.	35890.	44250.	19200.
RELEASE DUR. (min) :	3.00	5.50	6.00	3.50	1.30		2.33	3.00
IF INSTANTANEOUS, USE								
MASS RELEASED (Xq) :	э.	0.	٥.	0.	э.	э.	٥.	э.
RECEPTOR DIST. (m)	28.0	88.0	34.0	90.0	90.0		51.0	36.0
RECEPTOR DIST. (m) :		129.0	91.3	128.0	129.0	93.0	95.0	85.0
RECEPTOR DIST. (m) :		249.0	130.0	192.0	180.0	182.0	178.0	178.0
RECEPTOR DIST. (m) :		400.0	182.0	250.0	250.0		249.0	247.0
RECEPTOR DIST. (m) :	179.0	-99.9	250.0	321.0	322.0		398.0	-99.9
RECEPTOR DIST. (m) :	247.0	-99.9	322.0	400.0	400.0			-99.9
RECEPTOR DIST. (m)	398.0	-99.9	401.0	-99.9	-99.9			-99.9
	30010							

CHARM INPUT SATA FOR	. 2	araes tot			*1546	92 🔳	07322	90 050!	5682	640	
CHEMICAL RELEASED	· · · · · · · · · · · · · · · · · · ·	210X128	· AF	T FODE	-**3*0		0,266				
	: PLANNING -				THE ON 25'	TDINGS					
		SSER SCERE									
TRIAL					;13 ?G		16 ?G	17			
	: 1.3	1.0	2.0	1.0	1.0	1.0	1.0	:.0			
REL HUMID. (%)	: 20.0		20.0	20.0	20.0		20.0				
AIR TEMP. (C)			27.9	30.3	19.9						
AIR PRESSURE (atm)		1.000	1.000	1.000	1,000	1.000	1.000	1.000			
WIND SPEED (m/s)	: 4.2	4.9	5.9	4.5	1.3	3.4	3.2	3.3			
ROUGHNESS LENGTH (m)	: 0,0060		0,0060	3.0050	0,0060	0.0060	3.3060	0.0060			
MEASUREMENT HT (m) STAB. CLASS RELEASE HEIGHT (m)	: 2.0	2.0	2.3	2.0	2.0	2.3	2.0	2.0			
STAB. CLASS	: 3	c	Ξ.	3	7	λ	À	2			
RELÉASE HEIGHT (m)	: 0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45			
RELEASE LOC - (0,3)											
GAS TEMP (C)	: 31.9	31.9	27.3	30.9	19.9	21.9	27.9	26.9			
DIAMETER (m)	: 3.35	0.05	0.05	0.05	0.05	0.05	0.05	0.05			
HOR. SPEED (m/s)	: 17.34	17.57	17.51	17.71	11.32	17.82	17.70	10,72			
FRACTION DROPLETS	: 0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000			
MOLAR WATER FRACT.	: 0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000			
MOLAR AIR FRACT.	: 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
IF CONTINUOUS, USE CO	ONSTANT EMISS	ICN RATE:									
EMIS, RATE (g/s)		91.	92.	92.	61.	96.	93.	57.			
RELEASE DUR. (min)	: 10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00			
IF INSTANTANEOUS, US2	E TOTAL MASS	RELEASED:									
MASS RELEASED (kg)	. J.	С.	ο.	э.	э.	٥.	٥.	ο.			
RECEPTOR DIST. (m)	50.J	50.0	50.0	50.0	400.0	50.0	50.0	50.0			
RECEPTOR DIST. (m)	100.0	100.0	100.0	100.0	800.0	100.0	100.0	100.0			
RECEPTOR DIST. (m)	200.0	200.0	200.0	200.0	-99.9	200.0	200.0	200.0			
RECEPTOR DIST. (m)	400.0	400.0	400.0	400.0	-99.9	400.0	400.0	400.0			
RECEPTOR DIST. (m)	800.0	800.0	800.0	800.0	-99.9	800.0	C.005	800.0			

_____

..

.

CHARM INPUT DATA FOR: CHEMICAL RELEASED :					
CALAICAL KELEASED :	USB IXLAL-	SPECIFIC name	tor inorne	Y 15	
MODE :	PLANNING -	USER SPECIFIE	D SELEASE	PARAMETERS,	NO BUILDING
TRIAL : CONC. SPEC. (ppm) : REL HUMID. (%) : AIR TEMP. (C) : AIR PRESSURE (atm) : WIND SPEED (m/s) : ROUGHNESS LENGTH (m) : WESSUREVET (m) :	TC45 1	EC47			
CONC. SPEC. (ppm) :	100.0	100.0			
REL HUMID. (%) :	100.0	97.4			
AIR TEMP. (C) :	13.0	14.3			
AIR PRESSURE (atm) :	1.000	1.000			
WIND SPEED (m/s) :	2.3	1.5			
ROUGHNESS LENGTH (m) :	0.0100	0.0100			
MEASUREMENT HT (m) :	10.0	10.0			
MEASUREMENT HT (m) : STAB. CLASS : RELEASE HEIGHT (m) :	Ξ	F			
RELEASE HEIGHT (m) :	0.00	0.00			
RELEASE LCC = (0,0) : RELEASE LCC = (0,0) : SAS TEMP (C) : DIAMETER (m) : HOR. SPEED (m/s) : FRACTION DROPLETS : MOLAR WATER FRACT. : VOLAR ATER FRACT. :					
GAS TEMP (C) :	13.0	14.3			
DIAMETER (m) :	2.00	2.00			
HOR. SPEED (m/s) :	0.00	0.00			
FRACTION DROPLETS :	0.000	0_000			
OLAR WATER FRACT. :	0.000	0.000			
COLAR AIR FRACT. :	0.000	0.000			
IF CONTINUOUS, USE CON					
EMIS. RATE (g/s) :					
RELEASE DUR. (min) :	7.58	7.75			
IF INSTANTANEOUS, JSE					
ASS RELEASED (kg) : RECEPTOR DIST. (m) :	40_0	50.0			
RECEPTOR DIST. (m) :	53.0	90.0			
RECEPTOR DIST. (m) : RECEPTOR DIST. (m) :	72.0	212.0			
RECEPTOR DIST. (m) :	90.0	250.0			
227720700 0757 /ml	112 0	225 0			
RECEPTOR DIST. (m)	158.0	472.0			
RECEPTOR DIST. (m)	250-0	-99.9			
RECEPTOR DIST. (m) : RECEPTOR DIST. (m) : RECEPTOR DIST. (m) : RECEPTOR DIST. (m) :	335.0	- 49 . 9			

<u> </u>						<b>–</b> 0333		CUEL 1 2	587 🖿
JHARM INPUT DATA FOR:	Thorney	Isiang (in	stantaneous	<b>c</b> )			2270 0	3U3803	307 <b></b>
INEMICAL RELEASED ;	Jse TRIAL-SI	PROIVIC nam	e for Thor	lev ta			A 175 77		
HCDE :	PLANNING -	SER SPECIF	IED RELEASE	PARAMETS	35. NO 90	1101863	APT	PUBL*4	546 92
	-								
	716 71	17 TX:	s 723		12 7	113 73	17 7	113 73	19
CONC. SPEC. (ppm) :	100.0	100.0	100.0	100.0	100.0	100.0	100.0	:00.0	100.0
REL HUMID. (1) :	74.3	30.7	37.5	37.3	56.2	74.1	94,0	91.3	34.3
AIR TEMP. (C) :	18.5	17.3	17.5	19.3	10.1	13.7	16.0	15.5	13.3
AIR PRESSURE (acm) :	1.000	1.008	1.009	1.306	1.000	1,006	0.995	3,394	0, 393
WIND SPEED (m/s) :	2.3	3.4	2.4	:.7	2.5	7.3	5.0	7.5	5.4
ROUGHNESS LENGTH (m):		0.0180	0.0120	0.0080	0.0180	3.3100	0.0180	0.0050	0.0100
MEASUREMENT HT (m) :	:0.0	10.0	10.0	10.0	10.0	:0.0	10.0	10.0	10.0
STAB. CLASS :	<b>C</b>	8	2	F	E	5	5	5	5
RELEASE HEIGHT (m) :	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	0.00
RELEASE LOC = $(0,0)$ :									
GAS TEMP (C) :	18.6	17.3	17.5	18.3	10.1	13.7	16.0	15.5	13.3
DIAMETER (a) :	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.30
HOR. SPEED (m/s) :	0.00	0.00	0.00	0.00	3.00	0.00	0.00	0.00	0.00
FRACTION DROPLETS :	0.000	0.000	0.000	0.000	3.000	0.000	0.000	0.000	0.000
MOLAR WATER FRACT. :	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000
MOLAR AIR FRACT. :	0.000	0.000	0.000	0.300	0.000	0.000	0.000	0.000	0.000
IF CONTINUOUS, USE CON		ON RATE:							
EMIS. RATE (g/s) :	٥.	э.	٥.	٥.	٥.	c.	٥.	з.	٥.
RELEASE OUR. (min) :	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IF INSTANTANECUS, USE	TOTAL MASS B	ELEASED:							
MASS RELEASED (kg) :	3147.	4249.	3958.	3866.	5736.	4800.	8711.	3881.	5477.
RECEPTOR DIST. (m) :	71.0	71.0	71.3	71.0	71.0	71.0	40.0	40.0	40.0
RECEPTOR DIST. (m) :	141.0	100.0	100.0	100.0	150.0	100.0	50.0	50.0	60.0
RECEPTOR DIST. (m) :	180.0	150.0	150.0	141.0	200.0	224.0	71.0	70.0	71.0
RECEPTOR DIST. (m) :	283.0	180.0	200.0	180.0	361.0	316.0	100.0	30.0	100.0
RECEPTOR DIST. (m) :	424.0	224.0	364.0	224.0	500.0	361.0	141.0	100.0	224.0
RECEPTOR DIST. (m) ;	-99.9	361.0	412.0	316.0	- 99.9	412.0	224.0	200.0	361.0
RECEPTOR DIST. (m) :	-99.9	500.0	510.0	503.0	-99.9	-99.9	500.0	224.0	583.0
RECEPTOR DIST. (m)	-99.9	-99.9	-99.9	-39.9	-99.9	-99.9	-99.9	300.0	-99.9
RECEPTOR DIST. (m)	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	400.0	-99.9
RECEPTOR DIST. (m)	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	510.0	-99.9
								~****	

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

.

236

DEG. INPUT DATA FOR : INEMICAL RELEASED :

API PUBL*4546 92

Burro Liquefied nacural gas ■ 0732290 0505684 413 ■

TRIAL	:	302 3	EU3	5U4	305	306 3	307 3	5U8 E	SU 9
UO (m/s)	:	5.4	5.4	9.0	7.4	9.:	3.4	:.3	5.7
MEAS, HEIGHT (m)	:	2.0	2.0	2.0	2.0	2.0	2.0	2.3	2.3
ROUGHNESS LENGTH (m)	:	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
PG STAB CLASS	:	3	3	3		_	4	5	÷
AVERAGING TIME (s)	:	40.0	100.0	30.J	130.0	70.0	140.0	50.0	50.0
MONIN-OBUHKOV LEN (m)	:	-12.9	-5.3	-49.3	-35.6	-53.4		15.5	-2288.3
AMB. TEMP. (X)	:	311.3	307.3	309.0	314.3	312.7	307.0	306.0	308.5
AMB. PRESS. (atm)	:	0.927	0.936	0.933	0.929	0.923	0.928	0.929	3.328
REL. HUMID. (%)	:	7.1	5.2	2.7	5.9	5.1	7.4	4.3	14.4
AIR DENSITY (kg/m^3)	:	1.050	1.073	1,366	1.042	1.041	1.066	1.071	1.059
ISOTHERMAL? 1-YES	:	0	0	0	0	0	٥	0	0
SURFACE TEMP (K)	:	311.3	307.3	309.0	314.3	312.7	307.0	306.0	308.5
HEAT TRNS 0-no ;1-std	:	1	1	1	1	1	1	1	1
H2O TRNS 0-no ;1-std	:	1	1	1	1	1	1	1	1
MOL. WT. (kg/kg-mol)	:	17.46	17.26	17.05	17.08	17.24	18.22	18.12	18.82
GAS TEMP. (K)	:	111.6	111.6	:11.5	111.5	111.6	111.6	111.6	111.5
GAS DENSITY (kg/m^3)	:	1.769	1.766	1.738	1.734	1.739	1.348	1.340	1.909
HEAT CAP CONST	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HEAT CAP FOWER	:	5.000	5.000	5.000	5.000	5,000	5,000	5.000	5.000
UPPER CONC. (mol frac)	:	0,000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
LOWER CONC. (mol frac)	:	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	:	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000
STEADY-STATE? T-TRUE	:	T	Т	:	T	T	T	7	3
EVOLUTION RATE (kg/s)	:	86.10	37.98	86,36	81.25	92.22	99.46	116.93	135.98
		17.955	18,150				19,300		22.565
TOTAL MASS (kg)	:	14980.00	14712.00	15221.00			17289.00	12453.00	10730.00

DEG. INPUT DATA FOR : CHEMICAL RELEASED :		Coyota Liquefiad	natural	g25
TRIAL	:	C03 C	05	C06
ŪŪ (m_/s)	:	6.0	9.7	4.6
MEAS. HEIGHT (m)	:	2.0	2.0	2.0
ROUGHNESS LENGTH (m)	:	0.00020	0.00020	0.00020
FG STAB CLASS	:	3	3	
AVERAGING TIME (s)	:	50.0		
MONIN-OBUHKOV LEN (m)	:	-12.2		
AMB. TEMP. (K)	:	311.5	301.5	
AMB. PRESS. (atm)	:	0.924	0.927	0.930
REL. HUMID. (%)	:	11.3	22.1	. 22.8
AIR DENSITY (kg/m^3)	:	1.045	1.082	1.102
ISOTHERMAL? 1-YES	:			· •
SURFACE TEMP (K)	:	311.5		
HEAT TRNS 0-no ;1-std		1	1	. 1
H20 TRNS 0-no ;1-std	-	1	1	1
MOL. WT. (kg/kg-mol)	:		20.19	
GAS TEMP. (K)	:		111.6	
GAS DENSITY (kg/m^3)	:	1_970		
HEAT CAP CONST	:	0.0		
HEAT CAP POWER	:	5.000		
OPPER CONC. (mol frac)			0.000100	
LOWER CONC. (mol frac) RECEPTOR HT. (m)	÷			
	.:	0.0		
CHEMICAL MASS FRACTION STEADY-STATE? T-TRUE			1.00000	
EVOLUTION RATE (kg/s)			100.07	100 00
SOURCE RADIUS (m)	:	100.67	129.02	123.03
TOTAL MASS (kg)	÷		24.000	27.403
totun mass (kg)	•	6532.00	17010.00	10139.00

. . Methane is at least 86% in c

Not for Resale

237

DEG. INPUT DATA FOR : Desert fortoise IMEMICAL RELEASED : Annyorous Armonia AEROSOL MODELED WITH MIXTURE FILE

TRIAL	1	271 :		73 3	74
00 (m/s)	:	7.4	5.3	7.4	4.5
MEAS. HEIGHT (m)	:	2.2	2.3	2.0	
ROUGHNESS LENGTH (m)	:	0.00300	0.00300	0.00300	
7G STAB JLASS	1	4	4	4	5
AVERAGING TIME (s)	:	\$0.5	150.0	120.0	300.0
MONIN-OBCHKOV LEN (m)	:	93.2	34.3		
AMB, TEMP, (K)	:	302.3	303.5	307.1	305.6
AMB. PRESS. (atm)	1	0.397	0.398	0.895	0.391
REL. HUMID. (4)				:4.8	21.3
AIR DENSITY (kg/m^3)	-	1.047			
REL. HUMID. (1) AIR DENSITY (kg/m^3) ISOTHERMAL? 1-YES	:	1			1
SURFACE TEMP (X)		302.0	303.5	307.1	305.5
HEAT TRNS 0-no ;1-scd		0	0	0	0
H20 TRNS 0-no ;1-std	:	0	0	3	Ō
MOL. WT. (kg/kg-mol)		17.03	17.03	17.03	17.03
GAS TEMP. (K)	:	302.0	303.6	307.1	305.5
GAS DENSITY (kg/m^3)		4.156	4,276		
HEAT CAP CONST HEAT CAP POWER UPPER CONC. (mol frad)	÷	0.0			0.0
HEAT CAP POWER	÷	0.000	0.000	0.000	
UPPER CONC. (mol frac)	÷.	0.000100	0.000100	0.000100	
LOWER CONC. (mol frac)		3.300103		0.000100	0.000100
RECEPTOR HT. (m)	÷	0.0			
CHEMICAL MASS FRACTION	-		1.00000		1.00000
STEADY-STATE? T-TRUE		1	7		*
EVOLUTION RATE (kg/s)	÷	79.70	111.50	130.70	96.70
SOURCE RADIUS (m)				1.238	
TOTAL MASS (kg)	•	10042.20		21696.20	36842.70
(14)	•				

DEG. INPUT DATA FOR	:	Goldfish	
CHEMICAL RELEASED	:	Hydrogen	fluoride
AEROSOL MODELED WITH	I MIXTO	RE FILE	

U0 (m/s)       :       5.6       4.2       5.4         MEAS. HEIGHT (m)       :       2.0       2.0       2.0         ROUGHNESS LENGTH (m)       :       0.00300       0.00300       0.00300         PG STAB CLASS       :       4       4         AVERAGING TIME (s)       :       88.3       85.3       88.3         MONIN-OBUHKOV LEN (m)       :       101.3       173.1       40.9         AMB. TEMP. (K)       :       310.4       309.4       307.6         AMB. TEMP. (K)       :       310.4       309.4       307.6         REL. HUMID. (%)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL2 1-WES       :       1       1       1         SURFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TRNS 0-no ;1=std :       0       0       0       0	TRIAL :	GF1 (	3F2 G	F3
ROUGHNESS LENGTH (m):       0.00300       0.00300       0.00300         PG STAB CLASS       :       4       4         AVERAGING TIME (s):       :       88.3       88.3         MONIN-OBUHKOV LEN (m):       :       101.3       173.1       40.9         AMB. TEMP. (K):       :       310.4       309.4       307.6         AMB. TEMP. (K):       :       0.893       0.889       0.894         REL. HUMID. (%):       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3):       1.015       1.012       1.023         ISOTHERMAL2 1=YES:       1       1       1         SURFACE TEMP (K):       :       310.4       309.4       307.6         HEAT TRNS 0=no; 1=std:       0       0       0       0	UO (m/s) :	. 5.6	4.2	5.4
ROUGHNESS LENGTH (m) :       0.00300       0.00300       0.00300         PG STAB CLASS       4       4       4         AVERAGING TIME (s) :       88.3       88.3       88.3         MONIN-OBUHKOV LEN (m) :       101.3       173.1       40.9         AMB. TEMP. (K) :       310.4       309.4       307.6         AMB. TEMP. (K) :       0.893       0.889       0.894         REL. HUMID. (*) :       4.9       10.7       17.7         AIR DENSITY (kg/m^3) :       1.015       1.012       1.023         ISOTHERMAL? 1=YES :       1       1       1         SURFACE TEMP (K) :       310.4       309.4       307.6         HEAT TRNS 0=n0 ; 1=std :       0       0       0	MEAS. HEIGHT (m) :	2.0	2.0	2.0
AVERAGING TIME (s)         88.3         88.3         88.3         88.3           MONIN-OBUHKOV LEN (m)         101.3         173.1         40.9           AMB. TEMP. (K)         310.4         309.4         307.6           AMB. TEMP. (K)         310.4         309.4         307.6           AMB. TEMP. (K)         0.893         0.869         0.894           AMB. TEMP. (K)         1.015         1.017         17.7           AIR DENSITY (kg/m^3)         1.015         1.012         1.023           ISOTHERMAL2 1-WES         1         1         1           SURFACE TEMP (K)         310.4         309.4         307.6           HEAT TRNS Owno 1=std :         0         0         0           H20 TRNS 0=no 1=std :         0         0         0	ROUGHNESS LENGTH (m) :			
MONIN-OBUHKOV LEN (m):       101.3       173.1       40.9         AHB. TEMP. (K)       :       310.4       309.4       307.6         AMB. PRESS. (atm)       :       0.893       0.889       0.894         REL. HUMID. (*)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL? 1=YES       :       1       1       1         SURFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TENS 0=no ; 1=std :       0       0       0       0	PG STAB CLASS :	. 4	4	4
MONIN-OBUHKOV LEN (m):       101.3       173.1       40.9         AHB. TEMP. (K)       :       310.4       309.4       307.6         AMB. PRESS. (atm)       :       0.893       0.889       0.894         REL. HUMID. (*)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL? 1=YES       :       1       1       1         SURFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TENS 0=no ; 1=std :       0       0       0       0	AVERAGING TIME (s) :	88.3	88.3	88.3
AMB. TEMP. (K)       :       310.4       309.4       307.6         AMB. PRESS. (atm)       :       0.893       0.889       0.894         REL. HUMID. (%)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL? 1=YES       :       1       :       1         SUBFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TRNS 0=no; 1=std:       :       0       0       0				
AMB. PRESS. (atm)       :       0.893       0.889       0.894         REL. HUMID. (%)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL2 1=YES       :       1       :       1         SURFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TRNS 0=no ;1=std :       0       0       0         H2O TRNS 0=no ;1=std :       0       0       0				
REL. HUMID. (1)       :       4.9       10.7       17.7         AIR DENSITY (kg/m^3)       :       1.015       1.012       1.023         ISOTHERMAL? 1-YES       :       1       1       1         SURFACE TEMP (K)       :       310.4       309.4       307.6         HEAT TRNS 0-no ;1-std :       0       0       0         H20 TRNS 0-no ;1-std :       0       0       0	AMB. PRESS. (atm) :	0.893	0.889	0.894
AIR DENSITY (kg/m^3) :       1.015       1.012       1.023         ISOTHERMAL? 1=YES :       1       1       1         SURFACE TEMP (K) :       310.4       309.4       307.6         HEAT TENS 0=no ; 1=std :       0       0       0         H20 TENS 0=no ; 1=std :       0       0       0		4.9		
ISOTHERMAL? 1-YES : 1 1 1 SURFACE TEMP (K) : 310.4 309.4 307.6 HEAT TRNS 0-no ;1-std : 0 0 0 H20 TRNS 0-no ;1-std : 0 0 0				
HEAT TRNS 0=no ;1=std :         0         0         0           H2O TRNS 0=no ;1=std :         0         0         0	ISOTHERMAL? 1-YES :	1	1	1
HEAT TRNS 0=no ;1=std :         0         0         0           H2O TRNS 0=no ;1=std :         0         0         0	SURFACE TEMP (K)	310.4	309.4	307.6
		ő	0	0
	H20 TRNS 0=no :1=std :	Ő	ō	ō
$MOL_{MT_{c}}(kg/kg-mol)$ : 20.01 20.01 20.01	MOL. WT. (kg/kg-mol) :	20.01	20.01	20.01
GAS TEMP. (K) : 310.4 309.4 307.5				
GAS DENSITY (kg/m^3) : 4.683 5.065 4.900				
HEAT CAP CONST : 0.0 0.0 0.0				
HEAT CAP POWER : 0.000 0.000 0.000	HEAT CAP POWER	0.000	0.000	
CPPER CONC. (mol frac): 0.000030 0.000030 0.000030	CPPER CONC. (mol fract :			
LOWER CONC. (mol frac): 0.000030 0.000030 0.000030				
RECEPTOR HT. (m) : 0.0 0.0 0.0				
CHEMICAL MASS FRACTION: 1.00000 1.00000 1.00000				
STEADY-STATE? T-TRUE : T	STEADY-STATE? T-TRUE :		7	7
EVOLUTION RATE (kg/s) : 27.67 10.46 10.27		27.67	10.46	10.27
SOURCE RADIUS (m) : 0.615 0.419 0.375				
TOTAL MASS (kg) : 3459.00 3766.00 3697.00				
FILE OF ORDERED TRIPLES: dggf.mix				

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

238

:

DEG. INPUT DATA FOR : INEMICAL RELEASED :

Hanford (continuous) Krypton-85

TRIAL	:	HC1 :	:01 :	ic3	HC 4	:cs
UO (m/s)	:	1.3	3.3	7.1	3.3	2.5
MEAS. HEIGHT (m) Roughness length (m)	:	1.5	1.5	1.5	2.5	1.5
ROUGHNESS LENGTH (m)	:	0.03000	3.03000	0.03000	0.03000	0.03000
PG STAB CLASS	:	5	3	3	3	5
AVERAGING TIME (s)	:	460.3	344.3	268.3	268.3	537.5
MONIN-OBUHKCV LEN (m)	:	6.9	-111.3	-136.1	-26.7	70.2
AMB. TIMP. (X)	:	290.3	285.4	298.9	286.6	278.3
AMB. PRESS. (acm) REL. HUMID. (%)	:	1.000	1.300	1.000	1.000	1.000
REL. HUMID. (%)	:	20.0	20.0	20.0	20.0	20.0
AIR DENSITY (kg/m^3)	:	1.213	1,236	:.221	1.231	1,266
ISOTHERMAL? 1-YES	:	1	1	1	1	1
SURFACE TEMP (K)	:	290.9	285.4	288.9	286.6	278.3
HEAT TRNS J-no ;1-std	:	0	0	0	0	0
H2O TRNS 0-no ;1-std	:	0	٥	0	0	3
MOL. WT. (kg/kg-mol)	:	29.00	29.00	29.00	29.00	29.00
GAS TEMP. (K)	:	290.9	285.4	288.9	286.6	278.5
GAS DENSITY (kg/m^3)		1.216	1.239	1.224	1.234	1.269
HEAT CAP CONST	:	-26079.0	-26079.0	-26079.0	-26079.0	-26079.0
HEAT CAP FOWER	:	1.000	1.000	1.000	1.000	1.000
UPPER CONC. (mol frac)	:	0.000000	0_00000	0.00000	0.00000	0.000000
LOWER CONC. (mol frac)	:	0.000000	0.00000	0.00000	0.00000	0,00000
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	1:	1.00000	1.00000	1.00000	1.00000	1,00000
STEADY-STATE? T-TRUE	;	T	Ţ	2	7	7
EVOLUTION RATE (kg/s)	:	0.01	0.01	0.03	0.04	0.02
SOURCE RADIUS (m)	:	0.053	0.030	0.334	0.053	0.043
TOTAL MASS (kg)	:	10,90	10,90	23.80	22.30	20,40

DEG. INPUT DATA FOR : CHEMICAL RELEASED :

Hanford (instantaneous) Krypton-85

TRIAL	: н	12 H	цз н	IIS H	I6 H	17 н	18
UO (m/s)	:	1.3	4.1	7.6	7.2	4.5	1.5
MEAS, HEIGHT (m)	:	1.5				1.5	
ROUGHNESS LENGTH (m)	:	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000
PG STAB CLASS	:	6	4		3	3	5
AVERAGING TIME (s)	:	4.8	4.8	4.8		4.8	4.8
MONIN-OBUHKOV LEN (m)	:	5.7	-262.9	-216.5	-155.3	-63.6	27.3
AMB. TEMP. (K)	:	291.5	285.1	288.7	288.3	285.6	277.8
AMB. PRESS. (atm)	:	1.000	1.000	1.000	1.000	1.000	1.000
REL. HUMID. (%)	:	20.0	20.0	20.0	20.0	20.0	20.0
AIR DENSITY (kg/m^3)	:	1.210	1.238	1.222	1.224	1.236	1.271
ISOTHERMAL? 1=YES	:	1	1	1	· 1	1	1
SURFACE TEMP (K)	:	291.5	285.1	288.7	288.3	285.6	277.8
HEAT TRNS 0-no ;1-std	:	0	0	0	0	0	0
H2O TRNS 0=no ;1=std	:	0	0	0	0	0	0
MOL. WT. (kg/kg-mol)	:	29.00	29,00	29.00	29,00	29.00	29,00
GAS TEMP. (K)	:		285.1	288.7	288.3	285.6	277.8
GAS DENSITY (kg/m^3)	:	1.213	1.241	1.225	1.227	1.238	1.273
HEAT CAP CONST	:	-26079.0	-26079.0	-26079.0	-26079.0	-26079.0	-26079.0
HEAT CAP POWER	:	1.000	1.000	1.000	1.000	1.000	1.000
UPPER CONC. (mol frac)	:	0.000000	0.00000	0.00000	0.000000	0.000000	0.00000
LOWER CONC. (mol frac)	:	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	:	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
STEADY-STATE? T-TRUE	:	?	7	5	F	E	7
EVOLUTION RATE (kg/s)	:	0.00	0.00	0.00	0.00	0.00	0.00
SOURCE RADIUS (m)		1.379	1.369	1.375	1.374	1.370	1.357
TOTAL MASS (kg)	:	10.00	10.00	10.00	10,00	10.00	10.00

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

239

		• • •			
TRIAL	;	MS27 :	1529	4534 3	1535
00 (m/s)	:	5.6	7.4	9.5	9.5
MEAS. HEIGHT 'mh	:	:0.0	10.0	10.0	10.0
roughness length (m)	:	3.30030	0.30030	0.00030	3.30030
PG STAB CLASS	:	4	4	4	4
AVERAGING TIME (s)	:	3.0	3.2	3.0	3.5
MONIN-OSCHKOV LEN (m)	:	-37.0	1220.5	-102.7	-31.5
AMB. TEMP. (K)	:	298.1	289.3	288.4	289.3
AMB. PRESS. (acm)	:	1.000	1.000	1.000	1.000
REL. HUMID. (%)	:	53.0	71.0		
REL. HUMID. (%) AIR DENSITY (kg/m^3) ISOTHERMAL: LayES	:	1.222	1.215	1.218	1.215
ISOTHERMAL? 1-YES	:	Q	0	0	0
SURFACE TEMP (K)	:	288.8	290.0	289.0	289.8
HEAT TANS 3+no /1+std	:	1	1	:	1
H20 TRNS 0-no /1-std		1	1	1	ī
MOL. WT. (kg/kg-mol)	:	17.11	16,26	16.66	16.39
GAS TEMP. (K)	:	111.7	111.7	111.7	111.7
GAS DENSITY (kg/m^3)	:	1.868	1.775	1.319	1.790
HEAT CAP CONST	:	0.0			
HEAT CAP POWER	:	5.000	5.000	5.000	
UPPER CONC. (mol frad)	:	0.00100			
LOWER CONC. (mol frac)	:	0.000100	0.000100	0.000100	0.000160
RECEPTOR HT. (m)	:	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION	:	1.00000	1.00000	1.00000	1.00000
STEADY-STATE? T-TRUE	:	7	7		7
EVOLUTION RATE (kg/s)	:	23.21	29.16	21.51	27.09
SOURCE RADIUS (m)	:	9.300		9.000	
TOTAL MASS (kg)	1	3714.40	6561.30		3657.70

DEG. INPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Gas

TRIAL	:	MS42	MS43	:4S4	6 :	4547		M549	ş	£\$50		MS52	2	4554	
JO (m/s)	:	4.0	5	.a	8.1		6.2		5.5		7.9		7.4		3.7
MEAS. HEIGHT (m)	:	10.0	10	.0	10.0		10.0		10.0	:	10.0		10.0		10.0
ROUGHNESS LENGTH (m)	:	0.00030	0.000	30	0.00030	0.0	0030	0.	00030		0030	э.	00030	0.	00030
PG STAB CLASS	:	4		4	4		4	-	4		4		4		4
AVERAGING TIME (S)	:	3.0	3	.0	3.0		3.0		3.0		3.0		3.0		3.0
MONIN-OBUHKOV LEN (m)	:	99.7	9999	.0	750.2	2	94.2		69.6	20	18.7		224.9		57.8
AMB. TEMP. (K)	:	291.5	290	.2	291,9	2	90.6		286.5		33.6		285.0		281.5
AMB. PRESS. (atm)	1	1,000	1.0	00	1.000	1	.000		1.000	1	. 000		1.000		1.000
REL. HUMID. (%)	:	80.0	80	.0	71.0		78.0		88.0		79.0		53.0		85.0
AIR DENSITY (kg/m^3)	:	1.204	1.2	10	1.203	1	.209		1.227	1.	241		1.236		1.250
isothermal? 1=yes	:	0		0	0		0		0		0		0		0
SURFACE TEMP (K)	:	291.7	292.	.1	290.5	2	90.3		286.2	28	13.1		285.1		282.6
HEAT TRNS 0=no ;1=std	:	1		1	1		1		1		1		1		1
H20 TRNS 0=no ;l=std	:	1		1	1		1		1		1		1		1
MOL. WT. (kg/kg-mol)	1	43.93			43.35	4	3.84		43.76	43	1.93		43.87		43,94
GAS TEMP. (X)	:	231.1			231.1	2	31.1		231.1	2:	32.1		231.1		231.1
GAS DENSITY (kg/m^3)		2,318	2.3:	18	2.319	2	.314		2.309	2.	.318		2.315		2.319
HEAT CAP CONST	:	15.4	15.	.4	15.4		15.4		15.4	2	15.4		15.4		15.4
heat cap fower	:	2.250	2.2	50	2.250	2	.250		2.250	2.	250		2.250		2.250
UPPER CONC. (mol frac)		0.000100	0,00016	ca o	.000100	0.00	0100	0.0	00100	0.000	100	0.0	00100	0.0	00100
LOWER CONC. (mol frac)	:	0.000100			.000100	0.00	0100	0.0	00100	0.000	1100	0.0	00100	0.0	00100
RECEPTOR HT. (m)	:	0.0		.0	0.0		0.0		0.0		0.0		3.3		0.0
CHEMICAL MASS FRACTION	:	1.00000	1.000	00 :	1.00000	1.0	0000	1.	00000	1.00	0000	:	00000	1.	00000
STEADY-STATE? T-TRUE	:	T		~			7		7		1				-
EVOLUTION RATE (kg/s)	:	20.87			23.37		2.57		16.71	35	5.89		44.25		19.20
SOURCE RADIUS (m)	:	7.450			7.850	9	.300		6.650	9.	.750	2	0.350		7.150
Total Mass (kg)	:	3756,60	6336.0	00	8413.20	683	9.70	15	03.90	5742	2.40	61	95.00	34	56.00

240

DEG. IMPOT DATA FOR : Prairie Grass, set 1 API PUBL*4546 92 - 0732290 0505688 069 - SUEMICAL RELEASED : Sulfur dioxide

:

73.IAL							<i>.</i>		<b>~</b> 17
	:	2G7 2						G16 ?	
00 (m/s)	:	4.2					3.4		3.3
MEAS. HEIGHT (m)	:	2.0			2.0			2.0	2.0
ROUGHNESS LENGTH (m)	:	0.00600	0.00600	0.00600	3,00600	0.00600	0.00600	0.00600	0.00600
PG STAB CLASS	:	2	3	3	2	- 6	1	1	4
AVERAGING TIME (s)	:	600.0	600.0	600.3	600.0	600.0	500.0	500.0	500.0
MONIN-OBUHKOV LEN (m)	:	-3.2	-20.6	-34.1	-7.5	6.0	-7.7	-7.3	49.3
AMB. TEMP. (X)	:	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1
AMB. PRESS. (acm)	:	1.000	1.000	1.000	1.000	1.000	1,300	1.000	1,000
REL. HUMID. (%)	:	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
AIR DENSITY (kg/m^3)	:	1.154	1.154	1.170	1,158	1.203	1.195	1.170	1.174
ISOTHERMAL? 1-YES	:	1	1	:	1	1	1	1	1
SURFACE TEMP (K)	:	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1
HEAT TRNS J-no ;1-scd	:	0	0	່ວ	0	э	0	0	0
H2O TRNS 0-no ;1-std		0		a	Ó	0	0	0	0
MOL. WT. (kg/kg-mol)	:	64.00	64.00	64,00	54.00	64.00	54.00	64.00	54.00
GAS TEMP. (K)	:	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1
GAS DENSITY (kg/m^3)	:	2.558	2.558	2.592	2.566	2.563	2.545	2.392	2.501
HEAT CAP CONST	:	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4	6546.4
HEAT CAP POWER		1.000	1.000	1.000	1.000		1.000		1.000
UPPER CONC. (mol frac)	:	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001
LOWER CONC. (moi frac)		0.000001	0.00001	0.00001	0.000001	0.000001	0.000001	0.00001	0.00001
RECEPTOR HT. (m)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHEMICAL MASS FRACTION		1.00000	1.00000	1.00000	1,00000	1.00000	1,00000	1,00000	1.00000
STEADY-STATE? T-TRUE		Ţ	Ţ	7	Ţ	+		Ţ	7
EVOLUTION RATE (kg/s)	:			0.09	-	0.06	0.10		3.06
SOURCE RADIUS (m)	:	0.054		0.043		0.084	0.061		
TOTAL MASS (kg)	:	53.90	54.70	55.20	55.30	36.70	57.30	55.30	33.90
LOLDE LEDG (KG)	÷	22.20	54.70	55,20	12.20	30.70	57.30	53.80	33.90

DEG. INPUT DATA FOR : CHEMICAL RELEASED : Thorney Island (continuous) Mixture of Freon-12 and Nitrogen

TRIAL	-	TC45 1	
UO (m/s)	:	2.3	1.5
MEAS, HEIGHT (m)		10.0	10.0
ROUGHNESS LENGTH (m)		0.01000	0,01000
PG STAB CLASS	:	5	6
AVERAGING TIME (s)	:	5 30.0 21.7	30.0
MONIN-OBUHKOV LEN (m)			10.8
AMB. TEMP. (K)	:	286.3	287.5
AMB. PRESS. (atm)	:	1,000	1.000
REL. HUMID. (%)	:	100.0	97.4
AIR DENSITY (kg/m^3)	:	1.227	1.222
ISOTHERMAL? 1-YES	:	1	1
SURFACE TEMP (K)	:	286.3	287.5
HEAT TRNS 0=no ;1=std	:	0	0
H20 TRNS C-no ;1-std	:	0	0
MOL. WT. (kg/kg-mol)		57.80	57.80
GAS TEMP. (K)	:	286.3	
GAS DENSITY (kg/m^3)	:	2.463	2.452
HEAT CAP CONST	÷	1958.0	1958.0
HEAT CAP POWER		1.000	1,000
UPPER CONC. (mol frac)	÷		
LOWER CONC. (mol frac)			0.000100
RECEPTOR HT. (m)		0.0	
CHEMICAL MASS FRACTION		1.00000	1.00000
STEADY-STATE? T-TRUE			T
EVOLUTION RATE (kg/s)			10.22
SOURCE RADIUS (m)	:	1,000	
TOTAL MASS (kg)	:		4752.00
Totata (2000 (XG)	٠	4033.00	4152,00

## API PUBL*4546 92 MM 0732290 0505689 TT5 MM Thorney Island (Instantaneous) Mixture of Freen-12 and Nitrogen

. 10.5

DEG. INPUT DATA FOR : CHEMICAL RELEASED :

77.17.L :			::7 :		729	7212		7217	7719	721.9
00 m/s) :		2.3	3.4					5.3		5.4
MEAS. HEIGHT (m) :		10.3	10.0							
ROUGHNESS LENGTH (m)		0.01800	0.01300							
73 STAB CLASS		4	S		4400000	0.01000	1.01000	0.01000	3.00000	0.01000
AVERAGING TIME (s) :		3.5	0.6	J. 5	3.5	3.5	3.5	5.6	3.6	3.5
MONIN-OBUHKOV LEN (m) :		9999.0	90.2		:.3	10.3				333.3
AMB, TEMP. (X) :		291.3	290.5	290.7	291.5	283.3				286.5
AMS. PRESS. (atm) :	:	1.000	1.308	1.009	1.306					2.393
REL. HUMID. (%)	:	74.3	30.7	37.5	a7.3					94.3
AIR DENSITY (kg/m~3) :	:	1,203	1.219	1.218	1.211	1.243				
ISOTHERMAL? 1-YES :		********	*****	******	****	******	*****	1.208	1.205	1.218
			200 5			J			0	
SURFACE TEMP (K) :		291.3	290.5	290.7	291.5	285.1	286.9	291.3	297.5	286.5
HEAT TRNS 0-no ;1-std :		0	0	0	5		Ű		. 1	U O
H20 TRNS 0-no ;1-std :			0		•	0	0	0	0	0
MOL. WT. (kg/kg-mol) :		47.69	50.58	47.11	46.24					61.27
GAS TEMP. (K) :		291.3	290.5	290.7	291.5	253.3				286.5
GAS DENSITY (kg/m^3) :			2.141	1.994	1.947	2.949				2.390
HEAT CAP CONST :		-4209.1	-2446.2			8478.3	1958.0	40741.5	-335.6	4074.7
Heat cap power :	ł	1.000	1.000	1.300	1.000	1.000	1,000	1.000	1,000	1.000
UPPER CONC. (mol frac):	:	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.00100
LOWER CONC. (mol frac):	;	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100	0.000100
RECEPTOR HT. (m) :		0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0
CHEMICAL MASS FRACTION:	:	1.00000	1.00000	1.30000	1.00000	1.30000	1.00000	1.30003	1.00000	1.00000
STEADY-STATE? T-TRUE :		ſ	7	7	7	7	7	7	r	F
EVOLUTION RATE (kg/s) :		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SOURCE RADIUS (m) :		7.000	7.000			7.000				7.000
TOTAL MASS (kg) :			4249.00	3958.00						5477.00

FOCUS INPUT DATA FOR DHEMICAL AELEASED	:	Burro Liquefi	ed natural	ças		0 <b>P</b> 55E7	05056	190 7 <b>1</b> 7	
INEMICAL AELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	:	ou2 b Metric unit	u3 1 s	ל 4 של	u\$ 5	ບ6 ີວ	ປີ 1	ວ ຮັບສ	69
MATERIAL SCREEN.									1,00000
PRIMARY CHEMICAL NO. Mole Fraction Material Temperature (C) Material Pressure (kPa)	:	-162.35 93.9	-162.55 94.3	-162.35 94.3	-162.35 94.1	-162.35 93.5	-152.55 94.0	-162.55	-162.35 94.0
WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%)	:	5.02 7.10	5.93 5.20	10.27	8.40 5.90	10.40	9.73 7.40	2.57	6.59 14.40
WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS	:	38.12 C	34.60 C	35.90 C	41.12 C	39.52 C	33.31 D	32.87 E	35.37 0
RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) PETEASE VELOUT (m)	:	2.383	2.783	2.917	3.167	2.150	2.900	1.783	1.317
PIPE DIAMETER (m)	:	0.15000	0.15000	0.15000	0.15000	0.15000	0.15000	0.15000	0.15000
EXIT AREA (M2) FLCW RATE (kg/s)	:	0.01767	0.31767 87.9800	0.01767 86.9600	0,01767 31,2500	0.01767 92.2200	0.31767	0.01767	0,01767
EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	:	0.000 270.0	0.000 270.0	0.000 270.0	0.000 270.0	0.000 270.0	0.000 270.0	0.000 270.0	0.000 270.0
TERRAIN SCREEN: SURFACE ROUGHNESS (M) CAIM OPEN SEA	:	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020
SURFACE TEMP. (C)	:	38.12	34.60	35,90	41.12	39,52	33.81	32,87	35.37
DIXING SCREEN: UNCONFINED									
VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PI	PM								
LOWEST CONC. LIMIT, 2PM	:	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM	:	200.000	200.000	200.000	200.000	200.000	200,000	200.000 400.000	200.000 400.000
DISP. COEFF. AVG. TIME (min	1):	0.667	1.667	1.333	2.167	1.167	2.333	1.333	0.833
USE DEFAULT TIME STEP POSIT	CION:	5					•		
FOCUS INPUT DATA FOR	:	Coyote	od parumal	<i>a</i> 2 <i>a</i>	•	Yorhone (		961 1- 4	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN:					•	Mechane i	s at least	86% in c	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS					:	Mechane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: 4	co3 c Metric unit	os c s	96		Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: 4	co3 c Metric unit	os c s	96		Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)	: 4	co3 c Metric unit	os c s	96	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)		203 C: Metric unit 1.00000 -162.55 93.6	25 0 5 1.00000 -162.55 93.9	26 1.00000 -162.55 94.2	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)		203 C: Metric unit 1 1.00000 -162.55 93.6	25 0 5 1.00000 -162.55 93.9	26 1.00000 -162.55 94.2	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)		203 C: Metric unit 1 1.00000 -162.55 93.6	25 0 5 1.00000 -162.55 93.9	26 1.00000 -162.55 94.2	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPA) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN:		203 C: Metric unit 1 1.00000 -162.55 93.6	25 0 5 1.00000 -162.55 93.9	26 1.00000 -162.55 94.2	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS SELENSE		40171C UNIT 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C	05 0 s 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C	26 1.0000 -162.55 94.2 5.74 22.80 24.11 D	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS SELENSE		40171C UNIT 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C	05 0 s 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C	26 1.0000 -162.55 94.2 5.74 22.80 24.11 D	:	Methane i:	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS SELENSE		40171C UNIT 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C	05 0 s 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C	26 1.0000 -162.55 94.2 5.74 22.80 24.11 D	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS SELENSE		40171C UNIT 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C	05 0 s 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C	26 1.0000 -162.55 94.2 5.74 22.80 24.11 D	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPA) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN:		40171C UNIT 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C	05 0 s 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C	26 1.0000 -162.55 94.2 5.74 22.80 24.11 D	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE CURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kq/s) RELEASE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGRNESS (m)		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0	05 05 1 1.00000 -162.55 93.9 10.99 22.00 28.34 C 1.633 0.15000 0.01767 129.0200 0.02070.0	26 1.0000 -162.55 94.2 5.74 22.30 24.11 D 1.367 0.15000 0.01767 123.0300 0.0270.0	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN 52A		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0 0.00020	es s 1 1.0000 -162.55 93.9 10.99 22.10 28.34 C 1.633 0.15000 0.01767 129.0200 0.270.0 0.00020	<pre>&gt;&gt;6 1 1.00000 -162.55 94.2 5.74 22.30 24.11 0 1.367 0.15000 0.01767 123.0300 0.000 270.0 0.00020</pre>	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE CURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kq/s) RELEASE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGRNESS (m)		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0 0.00020	es s 1 1.0000 -162.55 93.9 10.99 22.10 28.34 C 1.633 0.15000 0.01767 129.0200 0.270.0 0.00020	<pre>&gt;&gt;6 1 1.00000 -162.55 94.2 5.74 22.30 24.11 0 1.367 0.15000 0.01767 123.0300 0.000 270.0 0.00020</pre>	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE CURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kq/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE TEMP. (C) DIXING SCREEN: UNCONFINED VD/VE SCREEN: TRACK. ONE COMPONENT		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0 0.00020	es s 1 1.0000 -162.55 93.9 10.99 22.10 28.34 C 1.633 0.15000 0.01767 129.0200 0.270.0 0.00020	<pre>&gt;&gt;6 1 1.00000 -162.55 94.2 5.74 22.30 24.11 0 1.367 0.15000 0.01767 123.0300 0.000 270.0 0.00020</pre>	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE TEMP. (C) DIKING SCREEN: UNCOMFINED VD/VE SCREEN: TRACK.ONE COMPONENT EXPRESS CONCENTRATION IN P		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0 38.30	es s 1 1.0000 -162.55 93.9 10.99 22.10 28.34 C 1.633 0.15000 0.01767 129.0200 0.270.0 0.00020 23.34	<pre>&gt;&gt;6</pre>	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE CURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kq/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE TEMP. (C) DIXING SCREEN: UNCONFINED VD/VE SCREEN: TRACK.ONE COMPONENT EXPRESS CONCENTRATION IN P) LOWEST CONC. LIMIT, PMM		203 C: Metric unit 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.283 0.15000 0.01767 100.6700 0.000 270.0 38.30	ess 1 1.00000 -162.55 93.9 10.99 22.10 28.34 C 1.633 0.1503 0.001767 129.0200 0.01767 129.0200 0.00020 28.34 0.00020 28.34 1.60.00020 28.34	<pre>&gt;&gt;6 1.0000 -162.55 94.2 5.74 22.30 24.11 0 1.367 0.15000 0.01767 123.0300 0.00020 270.0 0.00020 24.11 100.000</pre>	:	Methane i	s at least	: 86% in c	
TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (Kq/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE TEMP. (C) DIXING SCREEN: UNCONFINED VD/VE SCREEN: TRACK.ONE COMPONENT EXPRESS CONCENTRATION IN P!		203 C: Metric unit 1 1.00000 -162.55 93.6 6.68 11.30 38.30 C 1.083 0.15000 0.01767 100.6700 0.000 270.0 38.30	ess	<pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>	:	Methane i	s at least	: 86% in c	

FOCUS INPUT DATA FOR	: Desert Tor	AP:	I PUBL	*4546	92 📖	0792290	0505691	653 <b>m</b>
	: Annyarous	Arito fil a	J gi	:4				
MATERIAL SCREEN: PRIMARY CHEMICAL NO. Mole Fraction Material Temperature (C) Material Pressure (KP3)	: 53 : 1.00000 : 21.55 : 1013.3	53 1.00000 20.15 1116.5	53 1.00000 22.15 1137.9	53 1.00000 24.15 1179.4				
WEATHER SCREEN: WIND SPEED 3 10M (m/s) Rel. Homidity (%) Ambient Temp. (C) P-G class								
RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	2.100 0.03100 0.00515 79.7000 0.790 0.00	4.250 0.09450 0.00701 11.5000 0.790 0.0	2.767 0.09450 0.00701 130.7000 0.790 0.0	6.350 0.09450 0.00701 96.7000 0.790 0.0				
TERRAIN SCREEN: SURFACE ROUGHNESS (m) MUD FLATS SURFACE TEMP. (C)								
DIXING SCREZN; UNCONFINED								
VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min USE DEFAULT TIME STEP POSIT	: 100.000 : 200.000 : 400.000 ): 1.333	100.000 200.000 400.000 2.667	100.000 200.000 400.000 2.000	100.000 200.000 400.000 5.000				
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME		an fluoride		:				
VACENTAL ACOPEN.								
MALEXIANI SCHEICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)	: 50 : 1.00000 : 40.05 : 689.0	50 1.00000 38.05 744.7	1.00000					
WEATHER SCREEN: WIND SPEED 3 10M (m/s) Rel. Humidity (%) Ambient Temp. (C) P-G class	: 7.30 : 4.90 : 37.25 : D	5.38 10.70 36.23 0	7.47 17.70 34.46 2					
RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (%g/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	: 2.983 : 0.04190 : 0.00138 : 27.5700 : 1.000 : 0.0	6.000 0.02420 0.00046 10.4600 1.000 0.0	6.300 0.02420 0.00046 10.2700 1.000 0.0					
TERRAIN SCREEN: SURFACE ROUGHNESS (m) MOD FLATS SURFACE TEMP. (C)								
DIKING SCREEN: UNCONFINED								
VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PP LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM MICHEST CONC. LIMIT, PPM DIEP. COEFF. AVG. TIME (min	+ 30.000	50.000	30.000					

FOCUS INPUT DATA FOR DHEMICAL RELEASED TITLE SCREEN:		Hanford	(continuo	: 51	07	0P55E	050569	2 59T	
SHEMICAL RELEASED	÷	Xrypcon	-35			·			
TITLE SCREEN: TRIAL NAME	• 5	c1 b	=2 h	-3 E	c4 3	A és	PI PUB	L*4546	92
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: 3	ecric unit:	3						
MATERIAL SCREEN:									
MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)	:	52	52	52	52-	52			
MATERIAL TEMPERATURE (C)	:	1.00000	1.00000	1.00000	13.50	5,57			
MATERIAL PRESSURE (KPa)	:	101.3	101.3	191.3	101.3	101.3		•	
WIND SPEED 3 10M (m/s)	:	3.40	5.50	10.31	5.36	4.22			
REL. HUMIDITY (%) AMBIENT TEMP. (C)	:	20.00	20.00	20.00	20.00	20.00 5.67			
WEATHER SCREEN? WIND SPEED 3 10M (m/s) REL. HUMIDITY (4) AMBIENT TEMP. (C) P-G CLASS	:	F	c	c	C	Ξ			
SETENCE CORFEN.									
CONTINUOUS RELEASE RELEASE DURATION (min) FIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEICHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE				14 250		10.050			
PIPE DIAMETER (m)	:	0.10553	0.05930	0.06734	0.10649	3.38611			
EXIT AREA (m2)	:	0.00875	0.00276	0.00356	0.00891	0.00582			
FLOW RATE (kg/s) BELEASE HEICHT (m)	:	0.0117	0.0120	0.0278	0.0388	5.3171			
ANGLE FROM HORIZON TO EXIT	ті	0.0	0.0	0.0	0.0	0.0			
REGULATED RELEASE									
TERRAIN SCREEN:									
SURFACE ROUGHNESS (m) TALL GRASS	:	0.03000	0.03000	0.03000	0.03000	0.03000			
SURFACE TEMP. (C)	:	17.72	12,28	15.78	13.50	5.67			
DIKING SCREEN:									
UNCONFINED									
VD/VE SCREEN:									
TRACK ONE COMPONENT									
EXPRESS CONCENTRATION IN I	PPM .	0 100	0 100	0 100	0 100	0 100			
MIDDLE CONC. LIMIT, PPM	:	0.200	0.200	0.200	0.200	0.200			
	-	A 400		A 400	0 400	A 100			
HIGHEST CONC. LIMIT, PPM	:	7 680	14 080	0.400	4 490	0.400			
EXPRESS CONCENTRATION IN I LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (mi USE DEFAULT TIME STEP POSI	: in): ITICNS	7.680	14.080	4.480	4,480	8.960			
USE DEFAULT TIME STEP POSI	ITICNS				4.480	8.960			
USE DEFAULT TIME STEP POSI	ITICNS				4.480	8.960			
FOCUS INPUT DATA FOR CHEMICAL RELEASED	:	Hanford Krypton-	(instanta) -85	ieous)					
FOCUS INPUT DATA FOR CHEMICAL RELEASED	:	Hanford Krypton-	(instanta) -85	ieous)			18		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: : : h : M	Hanford Krypton- 12 h: etric unit:	(instanta) -85 L3 h:	neous) LS h	16 h	17 h			
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: : : h : M	Hanford Krypton- 12 h: etric unit:	(instanta) -85 L3 h:	neous) LS h	16 h	17 h			
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: : : h : M	Hanford Krypton- 12 h: etric unit:	(instanta) -85 L3 h:	neous) LS h	16 h	17 h			
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: : : h : M	Hanford Krypton- 12 h: etric unit:	(instanta) -85 L3 h:	neous) LS h	16 h	17 h			
FOCUS INPUT DATA FOR CHEMICAL RELEASED	: : : h : M	Hanford Krypton- 12 h: etric unit:	(instanta) -85 L3 h:	neous) LS h	16 h	17 h			
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN:	: : h : M : M : :	Hanford Krypton 12 h: etric unit: 62 1.00000 18.29 101.3	(instanta) -85 13 h: 5 1.00000 11.94 101.3	heous) 15 h 1.00000 15.56 101.3	16 h 62 1.00000 15.11 101.3	17 h 62 1.30000 12.44 191.3	62 1.00000 4.61 101.3		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN:	: : h : M : M : :	Hanford Krypton 12 h: etric unit: 62 1.00000 18.29 101.3	(instanta) -85 13 h: 5 1.00000 11.94 101.3	heous) 15 h 1.00000 15.56 101.3	16 h 62 1.00000 15.11 101.3	17 h 62 1.30000 12.44 191.3	62 1.00000 4.61 101.3		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 4 10M (m/s) REL. HUMIDITY (%) AMBLENT TEMP. (C)	: : : : : : : : : : : : : :	Hanford Krypton 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instanta) +35 1.3 h: 5 1.00000 11.94 101.3 5.99 20.00 11.34	120003) 62 1,00000 15.56 101.3 11.06 20.00 15.36	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11	17 h 1.20000 12.44 101.3 6.37 20.00 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa)	: : h : M : M : :	Hanford Krypton 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39	(instanta) +35 1.3 h: 5 1.00000 11.94 101.3 5.99 20.00 11.34	100005) 1.00000 15.56 101.3 11.06 20.00 15.56	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11	17 h 1.20000 12.44 101.3 6.37 20.00 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: : h : M : M : : : : : :	Hanford Krypton 12 h: stric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instanta) =35 1.00000 11.94 101.3 5.99 20.00 11.34 2	120000 1.00000 15.56 101.3 11.06 20.00 15.36 C	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C	17 h 52 1.20000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 2		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN:	: : h : M : M : : : : : :	Hanford Krypton 12 h: stric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instanta) =35 1.00000 11.94 101.3 5.99 20.00 11.34 2	120000 1.00000 15.56 101.3 11.06 20.00 15.36 C	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C	17 h 52 1.20000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 2		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED & 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kg)	: : h : M : M : : : : : :	Hanford Krypton 12 h: stric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instanta) =35 1.00000 11.94 101.3 5.99 20.00 11.34 2	120000 1.00000 15.56 101.3 11.06 20.00 15.36 C	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C	17 h 52 1.20000 12.44 101.3 6.37 20.00 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 2		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN:	: : h : M : M : : : : : :	Hanford Krypton 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 F	(instanta) =35 1.00000 11.94 101.3 5.99 20.00 11.34 D	10.000 15.56 101.3 11.06 20.00 15.56 C	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00	17 h 62 1.20000 12.44 101.3 6.37 20.00 12.44 C 10.00	62 1.00000 4.61 101.3 2.92 20.00 4.61 2		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m)	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN:	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS SURFACE TEMP. (C)	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED YD/VE SCREEN:	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kq) TERRAIN SCREEN: SURFACE ROUGHNESS (m) TALL GRASS SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED YD/VE SCREEN: TRACK ONE COMPONENT	: h : h : M : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 62 1.00000 18.39 101.3 3.62 20.00 18.39 7 10.00 0.03000	(instanta) -85 1.00000 11.94 101.3 5.99 20.00 11.34 0.00 0.03000	neous) 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.03000	17 h 62 1.00000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000	62 1.00000 4.61 101.3 2.92 20.00 4.61 2 10.00 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN	: h : h : M : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39	(instanta) -35 1.00000 11.94 101.3 5.99 20.00 11.94 - 0.03000 11.94	heous) 15 h 22 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000 15.56 0.100	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.030000 15.11 2.120	17 h 62 1.30000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.33000 12.44	62 1.00000 4.61 101.3 2.92 20.00 4.61 2.000 0.03000 4.61		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN	: h : h : M : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39	(instanta) -35 1.00000 11.94 101.3 5.99 20.00 11.94 - 0.03000 11.94	heous) 15 h 22 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000 15.56 0.100	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.030000 15.11 2.120	17 h 62 1.20000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000 12.44 S.100 0.200	62 1.00000 4.61 101.3 2.92 20.00 4.61 5 10.00 0.03000 4.61		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANECUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN	: h : h : M : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39	(instanta) -35 1.00000 11.94 101.3 5.99 20.00 11.94 - 0.03000 11.94	heous) 15 h 22 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000 15.56 0.100	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.030000 15.11 2.120	17 h 62 1.20000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000 12.44 S.100 0.200	62 1.00000 4.61 101.3 2.92 20.00 4.61 20.00 0.03000 4.61 0.000 0.03000		
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: INSTANTANEOUS RELEASE MASS SPILLED (Kg) TERRAIN SCREEN: SURFACE TEMP. (C) DIKING SCREEN: UNCONFINED VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN	: h : h : M : : : : : : : : : : : : : : : : : :	Hanford Krypton- 12 h: etric unit: 1.00000 18.39 101.3 3.62 20.00 18.39 F 10.00 0.03000 18.39 18.39	(instanta) -35 1.00000 11.94 101.3 5.99 20.00 11.94 - 0.03000 11.94	heous) 15 h 22 1.00000 15.56 101.3 11.06 20.00 15.56 C 10.00 0.03000 15.56 0.100	16 h 62 1.00000 15.11 101.3 10.42 20.00 15.11 C 10.00 0.030000 15.11 2.120	17 h 62 1.20000 12.44 101.3 6.37 20.00 12.44 C 10.00 0.03000 12.44 C	62 1.00000 4.61 101.3 2.92 20.00 4.61 20.00 0.03000 4.61 0.000 0.03000		

.

FOCUS INPUT DATA FOR	: Man	lin Sand	API	PUBL*	4546 9	15 📖	0732290	05051	593 4Z	26 📖
TITLE SCREEN:	: 119	ulfied S	aturai Jas							
TRIAL NAME Type of Units	: ms2 ; Met	7 . Tio unit	529 n 3	334 m	335					
MATERIAL SCREEN: FRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPA)	:	1.00000 -162.45 101.3	1 1.000C0 -162.45 101.3	:.20000 -162.45 101.3	1 1.20000 -152.45 101.3					
WEATHER SCREEN: WIND SPEED 3 10M (m/s) Rêl. Humidity (3) Ambient Temp. (C) P-G Class	: : :	5.60 53.00 14.95 C	7.40 71.30 16.15 D	3.50 90.00 15.25 D	9,60 77.00 16.15 D					
RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE	•	2.667 0.15000 0.01767 23.2100 0.000 270.0	3.750 0.15000 0.01767 29.1600 0.000 270.0	1.583 0.15000 0.01767 21.5100 0.000 270.0	2.250 0.15000 0.01767 27.0900 0.000 270.0					
TERRAIN SCREEN: Surface Roughness (m)	:	0.00030	0.00030	0.00030	0.00030					
Caim open sea Surface Temp. (C)	:	15.65	16.35	15.35	16.65					
DIKING SCREEN: UNCONFINED										
VD/VE SCREEN: TRACK ONE COMPONENT EXPRESS CONCENTRATION IN PI LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min USE DEFAULT TIME STEP POSIT	: : : 1):		100.000 200.000 400.000 0.050	200.000	100.000 200.000 400.000 0.050					
Focus input data for Chemical Released Title Screen: TRIAL NAME	: Map. : Liqu : ms4:	2 11	ropane Gas 843 m	s46 ಮ	147 au	<b>54</b> 9 :	2 <b>5</b> 50 m33	52 m.	154	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS	: Map. : Liq : ms4 : Met: :	uifind 2: 2 mi ric unit: 3 1.00000 -43.05	ropane Gas 843 m	3 1.00000 -43.05	3 1.00000 -43.05	3 1.00000 ~43.05	3 1.00000 -43.05	3 1.00000 -43.05	3 1.00000 ~43.05 101.3	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C)	: Map. : Liqu : ms4 : Met: : : : :	uified P: 2 mi ric unit: 3 1.00000 -43.05 101.3	ropane Gas s 1.00000 -43.05 101.3	3 1.00000 -43.05 101.3 3.10 71.00 18.75	3 1.00000 -43.05 101.3 6.20 78.00 17.45	3 1.00000 -43.05 101.3 \$.50 88.00 13.35	3 1.00000 -43.05 101.3 7.90 79.00 10.45	3 1.23000 -43.05 :01.3 7.40 53.00 :1.35	3 1.0000 -43.05 101.3 3.70 85.00 3.45	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN:	: Map. : Liq : ns4: : Met: : : : : :	uified P: 2 mi ric unit: 3 1.00000 -43.05 101.3 4.00 30.00 18.35 D	state         3           1.00000         -43.05           101.3         5.80           \$0.00         17.05           0         0	3 1.00000 -43.05 101.3 3.10 71.00 18.75 0	3 1.00000 -43.05 101.3 6.20 78.00 17.45 D	3 1.00000 -43.05 101.3 \$.50 88.00 13.35	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.8900 0.000	3 1.23000 -43.05 101.3 7.40 63.00 11.25 0 2.333 0.15000 3.01767 44.2500 2.000	3 1.0000 -43.05 101.3 3.70 85.00 3.45 5 3.000 0.15000 0.15000 0.1767 19.2000 0.200	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kPa) WEATHER SCREEN: MIND SPEED 3 10M (m/s) REL. HUMIDITY (N) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m) CALM OPEN SEA	: Map. : Liq : ms4 : Met: : : : : : : : : : : : : : : : : : :	uified P: 2 mit 1 unit: 3 2.00000 -43.05 101.3 4.00 30.00 18.35 0.3100 0.15000 0.31767 20.8700 0.3000 270.0 0.00030	sta         3           1.00000         -43.05           101.3         5.80           5.80         5.200           0.15000         0.15000           0.15000         270.0           0.00030         0	3 1.00000 -43.05 101.3 3.10 71.00 18.75 0 0.15000 0.15000 0.15000 0.1767 23.3700 0.3000 270.3 0.300030	3 1.00000 -43.05 101.3 6.20 78.00 17.45 0.15000 0.01767 32.5700 0.20030	3 1.30000 -43.05 101.3 5.50 88.00 13.35 0 13.35 0 1.5000 0.15000 0.15000 0.21767 16.7100 2.000 270.0	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.3900 0.000 270.0 0.00030	3 1.20000 -43.05 101.3 7.40 63.00 11.35 0.25000 0.01767 44.2500 0.0270.0 0.00030	3 1.0000 +43.05 101.3 3.70 85.00 3.45 5 3.000 0.15000 0.01767 19.2000 0.270.3 0.00030	
FOCUS INPUT DATA FOR CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (kpa) WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (%) AMBIENT TEMP. (C) P-G CLASS RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE SCREEN: CONTINUOUS RELEASE RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE TERRAIN SCREEN: SURFACE ROUGHNESS (m)	: Map. : Liq : ms4 : Met: : : : : : : : : : : : : : : : : : :	uified P: 2 mit 1 unit: 3 2.00000 -43.05 101.3 4.00 30.00 18.35 0.3100 0.15000 0.31767 20.8700 0.3000 270.0 0.00030	sta         3           1.00000         -43.05           101.3         5.80           5.80         5.200           0.15000         0.15000           0.15000         270.0           0.00030         0	3 1.00000 -43.05 101.3 3.10 71.00 18.75 0 0.15000 0.15000 0.15000 0.1767 23.3700 0.3000 270.3 0.300030	3 1.00000 -43.05 101.3 6.20 78.00 17.45 0.15000 0.01767 32.5700 0.20030	3 1.30000 -43.05 101.3 5.50 88.00 13.35 0 13.35 0 1.5000 0.15000 0.15000 0.21767 16.7100 2.000 270.0	3 1.00000 -43.05 101.3 7.90 79.00 10.45 D 2.667 0.15000 0.01767 35.3900 0.000 270.0 0.00030	3 1.20000 -43.05 101.3 7.40 63.00 11.35 0.25000 0.01767 44.2500 0.0270.0 0.00030	3 1.0000 +43.05 101.3 3.70 85.00 3.45 5 3.000 0.15000 0.01767 19.2000 0.270.3 0.00030	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

700115	NPUT DATA FOR	:	3	Jrass, s			0732a	290 050	5694 .	16C 🚥
	L AELERGED	-	Sulfur		ac					
71712 3		•	201102	110X120						
TRIAL N			-	-						
					563	pq10	pg13	pg15 :	cg15	2917
TYPE OF		: X	atric unit.	S						
KIRITAN	L GCRZEN:									
PRIMARY	CHEMICAL NO.	:	44	44	+4	44	44	44		
MOLE FR	ACTION	:	1.00000	1.00000			1.00000	1,00000	1.00000	
MATERIA	L TEMPERATURE (C)	:	32.00	32.20					28.30	
	L PRESSURE (kga)	÷	101.3	101.3					101.3	
	2 : A2256A2 (X22)	•	-01-5	-64-0		-01-3				
	SCREEN :									
	GED 1 10M (m/s)	:	4.93	5.98					3.75	4.52
	AIDITY (1)	:	20.00	20.00	20,00	20.00	20.00	20.00	20.00	20.00
AMBIENT	TEMP. (C)	:	32.00	32.00	28.00	31.00	20,00	22.00	28.00	27.00
P-G CLA	55	:	з	ć	c	з	7	à	4	. >
			_	-	-	_	-	-	-	
RELEASE	SCREEN:									
	DUS RELEASE									
	DURATION (min)		10.000	10.000		10.000	10 000	10 000	10.000	10 000
		:	10.000	10.000					10.000	
	AMETER (m)	:	0.05080	0.05080					0.05080	
EXIT AR		:	0.00203	0.00203					0.00203	
	E (kg/s)	:	0.0899	0.0911	3.3920	0.0921	0.0611	0.3955	0.0930	0.0565
	HEIGHT (m)	:	0.450	0.450	0,450	0.450	0.450	0.450	0.450	0.450
ANGLE F	ROM HORIZON TO EXIT	:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REGULAT	ED RELEASE					-	-			
TERRATN	SCREEN:									
	ROUGHNESS (m)	:	0,00600	2 00000	2 20000	0 00000	0 00000			
CUT GRAS		•	0.00000	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600
SURFACE	TEMP. (C)	:	32.00	32.00	28.00	31.00	20.00	22.00	28.00	27.00
DIKING S										
JNCONF I	IED									
VD/VE SC	REEN:									
TRACK OF	IE COMPONENT									
	CONCENTRATION IN PE	м								
			1.000	1.000	1.000	1 000	1.000	1 000		
	CONC. LIMIT, PPM	•							1.000	
		:	2.000	2.000	2.000				2.000	
	CONC. LIMIT, PPM	:	4.000	4.000	4.000				4.000	
	DEFF. AVG. TIME (min		10.000	10.000	10.000	10.000	10.000	· 10.000	10.300	10.000
USE DEFA	ULT TIME STEP POSIT	ZNOIS								
	PUT DATA FOR	:	Thorney	Island (	continuous	) .				
	RELEASED	:	Mixture	of Freon-	-12 and Ni	trogen				
TITLE SC	REEN:					-				
TRIAL NA	LME	: to	:45 t.c	-47						
	mitte									

CHEMICAL RELEASED	:	Mixture	of	Freon-12	and a
TITLE SCREEN:					
TRIAL NAME	:	to45 to	:47		
TYPE OF UNITS	:	Matric units			
MATERIAL SCREEN:					
PRIMARY CHEMICAL NO.	:	56		56	
MOLE FRACTION	:	0.32043	٥.	32043	
SECONDARY CHEMICAL NO.	:	16	•••	16	
MOLE FRACTION	-	0.67957	٥.	67957	
MATERIAL TEMPERATURE (C)	-	13.10		14.30	
MATERIAL PRESSURE (KPa)	-	101.3		101.3	
CHEMICAL RELEASED TITLE SCREEN: TRIAL NAME TYPE OF UNITS MATERIAL SCREEN: PRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CREMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPa)	•				
WIND SPEED 3 10M (m/s)	•	2.30		1 50	
REL HUMIDITY (5)		100.00		97 40	
AMBIENT TEMP. (C)	:	13 10		14 30	
2-G CLASS	:	20110		-1.50	
WEATHER SCREEN: WIND SPEED 3 10M (m/s) REL. HUMIDITY (3) AMBIENT TIMP. (C) P-G CLASS	•	-		-	
RELEASE SCREEN:					
CONTINUOUS RELEASE RELEASE DURATION (min) PIPE DIAMETER (m) EXIT AREA (m2) FLOW RATE (kg/s) RELEASE HEIGHT (m) ANGLE FROM HORIZON TO EXIT REGULATED RELEASE		7 507		7 750	
STOP DIAMETED (m)	:	2 40000	-	7.750	
EXIM APEN (m)	-	2.00000	4.	14150	
TION DITT (Vala)	-	3.74738	3.	19159	
DETENCE VETCUE (-)	-	10.6700	10	.2200	
NOTE FROM WORLDON TO FYIT	:	0.000		0.000	
REGULATED RELEASE	:	0.0		0.0	
KEGOLAIED KELLASE					
TERRAIN SCREEN:					
TERRAIN SCREEN: SURFACE ROUGHNESS (m)					
CHA (D) 44					
CUT GRASS Surface Temp. (C)					
SURFACE TEMP. (C)	:	12.50		14.30	
DIKING SCREEN:					
UNCONFINED					
VD/VE SCREEN:					
TRACK ONE COMPONENT					
EXPERSION ONE INTEGENTIATION IN PE LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM NIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min USE DEFAULT TIME STEP POSIT	M				
LOWEST CONC. LIMIT, PPM	:	100.000		0.000	
MIDDLE CONC. LIMIT, PPM	:	200.300	20	0.300	
HIGHEST CONC. LIMIT, 29M	:	400.300	40	0.000	
DISP. COEFF. AVG. TIME (mir	: :	0.500		0.300	
USE DEFAULT TIME STEP POSIT	:::::	ls			

АРІ РИВL*4546 92

FICUS INPUT DATA FOR DIEMICAL RELEASED	:			instancaned 1-12 and Nit			<b>m</b> 07	) OP55E 19 I9A	]50569 JBL*45	
TRIAL NAME Type of Units	: t1 : Me	.6 t: stric unit:		t19 t	19 3	112 t	£13 ·	:117 :	113 t	119
MATERIAL SCREEN: FRIMARY CHEMICAL NO. MOLE FRACTION SECONDARY CHEMICAL NO. MOLE FRACTION MATERIAL TEMPERATURE (C) MATERIAL PRESSURE (KPA)		56 0.21172 16 0.78828 18.59 101.3	56 0.24280 16 0.75720 17.31 102.1	0.20548 15 0.79452 17.33	56 3.19613 16 0.30387 19.30 19.9	56 3.43538 16 3.56462 13.14 101.3	56 3.32043 6 0.67957 13.73 101.3	56 1.00000 15 0.00000 16.06 100.8	56 0.23000 16 0.72000 16.51 100.7	36 0.35774 16 0.54225 13.32 100.6
WEATHER SCREEN: WIND SPEED 3 10M (m/s) Rel. Humidity (4) Ambient Temp. (C) 2-3 Class	:	2.30 74.80 18.68 D	3.40 80.70 17.31 E	97.60 17.53	1.70 87.30 18.30 F	2.50 66.20 10.14 E	7.30 74.10 13.73 D	5.00 94.00 16.36 J	7.40 81.30 16.51 0	6.40 94.30 13.32 D
RELEASE SCREEN: Instantanecus release Mass spilled (kg)	:	3147.00	4249.00	3958.00	3866.00	5736.30	4800.00	8711.00	3881,00	5477.00
TERRAIN SCREEN; Surfacz Roughness (m) Cut grass Surface TEMP. (C)	:	0.01800 18.68	0.01800	0.01200	0.00800	0.31800	0.01000	0.01800 17.90	0.30500 24.30	0.01600 13.00
DIXING SCREEN: UNCONFINED										
VD/VE SCREEN: TRACK MIXTURE EXPRESS CONCENTRATION IN PI LOWEST CONC. LIMIT, PPM MIDDLE CONC. LIMIT, PPM HIGHEST CONC. LIMIT, PPM DISP. COEFF. AVG. TIME (min USE DEFAULT TIME STEP POSIT	: : :	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010	150.000 200.000 400.000 9.010	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010	100.000 200.000 400.000 0.010

API PUBL*4546 92

: : 🔳 0732290 0505696 135 🔳

TRIAL NAME	:	302 3	3U3 :	31/4	ឋទ	306	307	308	309
CHEMICAL NO.	:	9	Э	э	э		) Э	Э	9
WIND 37EED } 10M (m/s)	:	6.02	5.93	10.27	3,40	19.40	) <del>3</del> .73	2.37	6.69
SURFACE ROUGHNESS (m)	:	0,00020	0,00020	3.30020	0.00020	0.00020			0.00020
2-G CLASS	:	c	c (	c	c		: ว	Ξ	Ð
M-O LENGTH (m)	:	-12.947	-5.914	-49.310	-35.634	- 53 . 3 93	-148.633	15.478	-2288.323
AIR TEMP. (X)	:	311.27	307.75	309.05	314.27	312.57	306.36	306.02	308.52
ATM. PRESSURE (mb)	:	939.29	948.40	945.36	941.31	935.23	940.30	941.31	940.30
SFC. TIMP. (K)	:	311.27	307.75	309.05	314.27	312.67	306.96	306.32	308.52
REL. HUMIDITY (3)	:	7.10	5,20	2.70	5.30	5.10	) 7.40	4.30	14.40
REL. TYPE: I-INSTANTANEOUS,	С	and $\lambda$ -CONT:	NUOUS, T-	TIME-VARYI	łG				
	:	с	c	c	c	c	: с	c	c
REL. TYPE: I-ISOTHERMAL, T-	TH	ERMAL, A-AEF	OSOL						
	:	:		7	T		: T		Ţ
INIT. CLOUD DENS. (kg/m^3)	:	1.769	1.766	1.738	1.734	1.739	1.348	1.340	1.909
PHYSICAL SOURCE WIDHT (m)	:	35.910	36,300	36.090	34.890	37.170	38.600	41.350	45.130
INIT. FLOW RATE (m^3/s)	:	48.6755	49.8309	50.0201	46.8545	53,0295	53,3249	63.3599	71.2425
INIT. CONCENTRATION (mol)	:	1.0000	1,0000	1,0000	1,0000	1_0000	1.0000	1.0000	1.0000
INIT. TEMPERATURE (K)	:	111.60	111.60	111.50	111.60	111.60	) 111.50	111.50	111.60
SIMULATION DURATION (S)	:	125.93	125,93	115.36	118.92	115.38	147.62	544.44	240.35
AVERAGING TIME (s)	:	40,00	100.00	\$0.00	130.00	70.00	140.00	30.00	50.00

GASTAR INPUT DATA FOR		Coyota		
CHEMICAL RELEASED	:	Liquefi	led natural	gas
TRIAL NAME	:			06
CHEMICAL NO.	:	9	9	9
WIND SPEED 3 10M (m/s)	:	6.68	10,99	5.74
SURFACE ROUGHNESS (m)	:	0.00020	0.00020	0.00020
2-G CLASS	:	c	c	a
M-O LENGTH (m)	:	-12.197	-31.665	56.085
AIR TEMP. (K)	:	311.45	301.49	297,26
ATM. PRESSURE (mb)	:	936.24	939,28	942.32
SFC. TEMP. (K)	:	311.45	301.49	297.26
AIND SPEED 3 IVA (M/S) SURFACE ROUGHNESS (M) P-G CLASS M-O LENGTH (M) AIR TEMP. (K) AIM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMIDITY (t)	:	11.30	22.10	22.30
REL. TYPE: I=INSTANTANEOUS,	С	and A=CONT1	NUOUS, T-T	IME-VARYING
	:	с	С	с
REL. TYPE: I-ISOTHERMAL, T-	тн	ERMAL, A-AEP	rosol	
	:	Т	Ŧ	· 7
INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m)	:	1.970	2.045	1.940
PHYSICAL SOURCE WIDHT (m)	:	38.830	43,960	42.930
INIT. FLOW RATE (m^3/s)	:	51.0978	63.0772	63.4094
INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol)	:	1.0000	1.0000	1.0000
INIT. TEMPERATURE (K)	:	111.60	111.60	111.60
INIT. TEMPERATURE (K) SIMULATION CURATION (S)	:	150.00	141.24	186,96
AVERAGING TIME (s)	:	50,00	90.00	70.00

GASTAR INPUT DATA FOR	:	Desert Tor	toise		
CHEMICAL RELEASED					
TRIAL NAME CHEMICAL NO. WIND SPEED 3 10M (m/s) SURFACE ROUGHNESS (m) P-G CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mb) SFC. TEMP. (K) REL. HUMP. (K) REL. HUMP. (K) REL. HUMP. (K)	:	DT1	DT2	<b>573</b>	<b>T</b> 4
CHEMICAL NO.	:	1	2	1	1
WIND SPEED 3 10M (m/s)	:	9.68	7,63	9.28	5.22
SURFACE ROUGHNESS (II)	:	0.00300	0.00300	0.00300	0.00300
2-G CLASS	:	D	9	Ð	Ξ
M-O LENGTH (II)	:	93.201	84.333	847.250	41,002
AIR TEMP. (K)	:	302.03	303.63	307.07	305.63
ATM. PRESSURE (mb)	:	908.89	909,90	906.86	902.31
SFC. TEMP. (X)	:	304.30	303.80	304.80	304.00
REL. HUMIDITY (%)	:	13.20	17.50	14.30	21.30
REL. TYPE: I=INSTANTANEOUS,	ċ	and A-CONT	INUOUS, T-	TIME-YARYIN	IG
	:	c	c	c	с
REL. TYPE: I-INSTANTANEOUS, REL. TYPE: I-ISOTHERMAL, T-	тн	ERMAL, A-AE	ROSOL		
INIT. MASS FLUX (kg/s) INIT. DIAMETER (m) INIT. CLOUD DENS. (kg/m^3)	;	A	. λ	λ	λ
INIT. MASS FLUX (kg/s)	:	79.7	111.3	130.7	96.7
INIT. DIAMETER (m)	:	1.937	1.194	1.213	1.242
INIT. CLOUD DENS. (kg/m^3)	:	4.166	4.276	4.112	3.953
INIT. CONCENTRATION (mol)	:	1.0000	1.0000	1.0000	1.0000
INIT. TEMPERATURE (K)	:	237.54	237.57	237.50	237.41
INIT. AEROSOL FRACTION	:	0.813	0.317	0.311	0.304
INIT. HEIGHT (m)	:	0.79	0.79	0.79	0.79
INIT. THETA (deg)	:	a	, D	2	3
INIT. PHI (seq)	:	0	. 3	5	С
SIMU. DIST. FOR DUET (m)	:	500	500	500	500
SIMULATION DURATION (s)	:	208.11	237.93	208.11	277.78
INIT. CLOUD DENS. (kg/m^3) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K) INIT. AEROSOL FRACTION INIT. HEIGHT (m) INIT. THETA (deg) INIT. 7HI (deg) SIMU. DIST. FOR DJET (m) SIMULATION DURATION (s) AVERAGING TIME (s)	:	30.00	160.00	120.00	300.00

. Methane is at least 86% in c

LASTAR INFOT DATA FOR Chemical Aeleased

: MS27	MS	29	:4 <b>53</b> 4 3	1535
:	Э	3	9	9
:	5.50	7.40	8.50	9.50
: 3.	00030	0.00030	3.30030	2.30030
:	2	0	2	5
: -3	6.953	1220,632	-102.720	-41.378
: 2	88.10	299.00	288.40	239.30
: 10	13.25	1013.25	1013.25	1015.15
: 2	88.30	290.00	289.00	289.30
	53.00	71.30	90.00	77.30
C and A	-CONTIN	uous. :-	TIME-VARYI	13
		-		-
			-	•
:	7			7
	1.968	1.775	1.819	1.790
· 1	11.70	111.70	111.70	111.70
. 2	16.07	.546	121.06	42.29
	: 3. : -3 : 10 : 10 : 2 : 2 : 10 : 12 : 12 : 12 : 12 : 12 : 12 : 12 : 12	<pre></pre>	3         3         7         40           3         3         5         60         7         40           3         3         5         3         1         20         63         3           3         -36         953         1         20         63         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <	: T T T T T : 1.968 1.775 1.819 : 18.600 20.900 18.900 : 12.4235 16.4243 11.3246 : 1.0000 1.0000 1.5000 : 111.70 111.70 111.70 : 216.07 154.46 121.06

: Mapiin Janus : Liquified Natural Jas

GASTAR CHEMICA	-	-	for	Maplin S Liquifie	ids 2zopane	Gag	

CHEMICAL NO.       :       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12	12 3.70
SURFACE ROUGHNESS (m) : 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	3.70
	0.00030
	D
M-O LENGTH (m) ; 99.735 9999.000 750.151 294.223 69.596 208.744 224.903	67.837
AIR TEMP. (X) : 291.50 290.20 291.90 290.60 286.50 283.60 285.00	281.60
ATM. PRESSURE (mb) : 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25 1013.25	1013.25
SFC. TEMP. (K) : 291.70 292.10 190.50 290.30 286.20 283.10 285.10	282.60
REL. HUMIDITY (4) : 80.00 80.00 71.00 78.00 88.00 79.00 63.00	85.00
REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, I-TIME-VARYING	
. : C C C C C C C C	C
Rel. Type: I-isothermal, T-thermal, A-aerosol	
	Ţ
INIT. CLOUD DENS. (kg/m^3) : 2.318 2.318 2.319 2.314 2.309 2.318 2.315	2.319
PHYSICAL SOURCE WIDHT (m) : 14.900 14.300 15.700 18.600 13.300 19.500 21.700	14.300
INIT. FLOW RATE (m^3/s) : 9.0018 8.2815 10.0755 14.0771 7.2355 15.4803 19.1123	8,2796
INIT. CONCENTRATION (mol) : 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000
INIT. TEMPERATURE (X) : 231.10 231.10 231.10 231.10 231.10 231.10 231.10	231.10
SIMULATION DURATION (S) : 199.50 168.97 149.51 164.52 172.73 150.53 187.84	166.76
AVERAGING TIME (s) : 3.00 3.00 3.00 3.00 3.00 3.00 3.00	3.00

GASTAR INPUT DATA FOR	: Prairie	Grass, set	5 1					
CHEMICAL RELEASED	: Sulfur	dioxide						
TRIAL NAME	: 2G7	2 <b>G8</b> 20	39 2	G10	2G13	PG15 P	G16	PG17
CHEMICAL NO.	: 13	13	13	13	12		13	13
WIND SPEED 1 10M (m/s)		5.88						
	: 4.93		8.38	5.38			3.75	
SURFACE ROUGHNESS (m)	: 0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.00600	0.30600
7-g Class	: В	C	C	3	:	'À	λ	0
M-O LENGTH (m)	: -8.178	-20.611	-34.123	-7.452	5.014	-7.736	-7.834	49.806
AIR TEMP. (K)	: 305.15	305.15	301.15	304.15			301.15	300.15
ATM. PRESSURE (mb)	: 1013.25	1013.25	1013.25	:013.25			1013.25	1013.25
SFC. TEMP. (K)	: 305.15	305.15	301.15	304.15				
							301.15	300.15
REL. HUMIDITY (%)	: 20.00	20.00	20.00	20.00	20.00	20,00	20.30	20.00
REL. TYPE: I-INSTANTANEOUS,	C and A=CONT.	INVOUS, T-T	ME-VARYIN	G				
	: C	C	C	C		: с	C	¢
REL. TYPE: I=ISOTHERMAL, T=	THERMAL, A-AE	ROSOL						
	1 I	=	=		•	: :	Ξ	Ĩ
INIT. CLOUD DENS. (kg/m^3)	: 2.558	2,558	2.592	2.366	2.563	2.545	2.592	2.501
PHYSICAL SCURCE WIDHT (m)	: 0.051	0.051	3.351	0.051			0.051	
INIT. FLOW RATE (m^3/s)	: 0.0351	0.0356	0.0355	0.0359			0.0359	
INIT. CONCENTRATION (mol)	: 1.0000	1.0000	1.0000	1.0000			:.0000	
SIMULATION DURATION (S)	: 290.48	263.27	215.94	273.91	715.38	335.29	350.00	342.42
AVERAGING TIME (S)	: 600.00	500.00	600.00	500.00	600.00	600.00	600.00	400.00

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

CHEMICAL RELEASED		Tuatadaa		
		ayazoyen		
TRIAL NAME	:	371 G7	2	573
CHEMICAL NO.	:	14	14	14
WIND SPEED } 10M (m/s)	:	7.30	5.38	7.47
SURFACE ROUGHNESS (m)	:	7.30 0.00300	0.00300	3.30300
2-4 CLASS	:	C	2	2
ATM PRESSURE (m) ATM PRESSURE (mo) SFC. TEMP. (K) REL. HUMIDITY (%)	:	101,293	173.142	:0.927
AIR TEMP. (X)	:	310.40	309.38	307.61
ATM. PRESSURE (mp)	:	904.33	900.78	305.35
SFC. TEMP. (K)	:	310.40	309.38	307.51
REL. HUMIDITY (%)	:	4.90	10.70	17.70
	-			THE WINKTHE
REL. TYPE: 1-INSTANTANEOUS,	С.	and A-CONTIN	000S,	TTT-AKITNG
REL. TIPE: L=UNSTANTANEOUS,	с :			C
REL. TYPE: I-ISOTHERMAL, T-1	:	C	c	
REL. TYPE: I-ISOTHERMAL, T-1	: ГНЕ •	C RMAL, A-AERO	SOL	c J
REL. TYPE: I-ISOTHERMAL, T-1	: ראב :	C RMAL, A-AERO A 4 683	SOL A	C A 900
REL. TYPE: I-ISOTHERMAL, T-1	: ראב :	C RMAL, A-AERO A 4 683	SOL A	C A 900
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW BATE (m^3/s)	: HE : :	C RMAL, A-AERO A 4.683 0.608 5.9087	C SOL δ.365 0.338 2.0653	C A 4.900 0.343 2.0957
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW BATE (m^3/s)	: HE : :	C RMAL, A-AERO A 4.683 0.608 5.9087	C SOL δ.365 0.338 2.0653	C A 4.900 0.343 2.0957
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS, (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K)	: : : : : : :	C RMAL, A-AERO A 4.683 0.608 5.9087 1.0000 289,58	C SOL 5.065 0.338 2.0653 1.0000 289,46	C 4.900 0.343 2.0957 1.0000 289.61
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS, (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K)	: : : : : : :	C RMAL, A-AERO A 4.683 0.608 5.9087 1.0000 289,58	C SOL 5.065 0.338 2.0653 1.0000 289,46	C 4.900 0.343 2.0957 1.0000 289.61
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. CONCENTRATION (mol) INIT. AEROSOL FRACTION SIMULATION DURATION (s)	: : : : : : : : : : : : : : : : : : :	C RMAL, A-AERO A 4.683 0.608 5.9087 1.0000 289.58 0.840 635.71	C SOL 5.065 0.338 2.0653 1.0000 289.46 0.853 338.10	C 4.900 0.343 2.0957 1.0000 289.61 0.847 555.26
REL. TYPE: I-ISOTHERMAL, T-1 INIT. CLOUD DENS, (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (mol) INIT. TEMPERATURE (K)	: : : : : : : : : : : : : : : : : : :	C RMAL, A-AERO A 4.683 0.608 5.9087 1.0000 289.58 0.840 635.71	C SOL 5.065 0.338 2.0653 1.0000 289.46 0.853 338.10	C 4.900 0.343 2.0957 1.0000 289.61 0.847 555.26

:

: :

:

JASTAR INPUT DATA FOR

GASTAR INPUT DATA FOR

AVERAGING TIME (s)

0732290	0505698	T_08	
API	PUBL*4546	92	

5

Ξ

с

Τ

1.0000 407.69

537.60

1.0000 305.13

268.80

CHEMICAL RELEASED Krypton-85 : : HCl HC2 HC3 HC4 HC : 5 5 5 5 : 3,40 5,60 10.31 5.36 : 0.03000 0.03000 0.03000 0.03000 TRIAL NAME 5 CHEMICAL NO. WIND SPEED 3 10M (m/s) 4.22 SURFACE ROUGHNESS (m) 0.03000 2-G CLASS c c F с : M-O LENGTH (m) 6.875 -111.826 -186.121 -26.653 70.243 : AIR TEMP. (K) ATM. PRESSURE (mb) 290.87 285.43 288.93 286.65 278.82 : 1013,25 1013.25 1013.25 1013.25 1013.25 : SFC. TEMP. (K) REL. HUMIDITY (*) 

 SFC. TEMP. (K)
 : 290.87
 285.43
 288.93

 REL. HUMIDITY (%)
 : 20.00
 20.00
 20.00

 REL. TYPE: I-INSTANTANEOUS, C and A-CONTINUOUS, T-TIME-VARYING

 286.65 278.82 20.00 20,00 c c С C REL. TYPE: I-ISOTHERMAL, T-THERMAL, A-AEROSOL Т Τ I : INIT. CLOUD DENS. (kg/m^3) PHYSICAL SOURCE WIDHT (m) INIT. FLOW RATE (m^3/s) INIT. CONCENTRATION (moi) SIMULATION DURATION (s) : 1.216 1.239 1.224 1.234 1.269 0.106 0.059 0.067 0.106 0.086 : : 0.0096 0.0097 0.0227 0.0314 0.0135

1.0000 715.38

460.80

Hanford (continuous)

1.0000

268.80

•						
GASTAR INPUT DATA FOR	: Нап	ford (instant	aneous)			
CHEMICAL RELEASED	: Xry	pton-85				
TRIAL NAME	: HIZ	HI3	HIS H	<b>16</b> 3	117 H	18
CHEMICAL NO.	:	5 5	5	5	5	5
WIND SPEED 3 10M (a/s)	: 3	.62 5.99	11.06	10.42	5.37	2.92
SURFACE ROUGHNESS (m)	: 0.03	0000 0.03000	0,03000	0,03000	0.03000	0.03000
P-G CLASS	:	F 9	c	c	с	Ξ
M-O LENGTH (m)	: 5.	742 -262.928	-216.547	-155.306	-53.594	27.267
AIR TEMP. (K)	: 291	54 285.09	288.71	288.26	285.39	277.76
ATM. PRESSURE (mb)	: 1013	.25 1013.25	1013.25	1013.25	1013,25	1013.25
SFC. TEMP. (X)	: 291	54 285.09	288.71	288.26	285.59	277.76
REL. HUMIDITY (*)		.00 20.00			20.00	20.00
REL. TYPE: I-INSTANTANEOUS,	C and A=C	CNTINUOUS, 7-	TIME-VARYIN	G		
	:	I I	:	Ξ	:	Ξ
REL. TYPE: I-ISOTHERMAL, T-	THERMAL, A	-AEROSOL				
	:	I I	:	Ξ	:	Ξ
INIT. CLOUD DENS. (kg/m^3)	: 1.	.213 1.241	1.225	1.227	1.238	1.273
INIT. CLOUD RAD. (m)	: 1.2	1792 1.3690	1,3748	1.3740	1.3698	1.3572
INIT. CLOUD VOL. (273)		.243 3.060	3.153	3.150	3.074	7.353
INIT. CONCENTRATION (mol)	: 1.0	0000 1.0000	1.0000	1.0000	1.0000	1.0000
INIT. MOMENTUM MIXING: A: W	TELL MIXED,	B: OTHERWISE				
	:	з з	Э	з	з	з
SIMULATION DURATION (s)	: 715	5.38 295.12	205.25	211.11	277.78	600.00

1,0000

844,80

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

MO 0732290 0505699 944 MM

API PUBL*4546 92

CASTAR INPUT DATA FOR	: Thorney Island (Centinuous)
CHEMICAL RELEASED	: Mixture of Freen-12 and Mitzogen
TRIAL NAME	: 1045 1047
CHEMICAL NO.	: 25 26
WIND SPEED 3 10M (m/s)	1 2.30 1.50
CHEMICAL NO. WIND SPEED 1 10M (m/s) SURFACE ROUGHNESS (m) P-J CLASS M-O LENGTH (m) AIR TEMP. (K) ATM. PRESSURE (mD)	· 0.01000 0.01000
2-4 CLASS	
	21.5/0 _0.335
AIR TEMP. (K)	1 286.25 287.45
ATM. PRESSURE (mp)	: 1013.25 1013.25
SEC. TEMP. (X)	: 285.35 287.55
REL. HUMIDITY (4)	100.30 97.40
	, G and A=CONTINUOUS, T=TIME=VARYING
Made Liets a Thothattantoval	
	1 C C
REL. TYPE: I-ISOTHERMAL, T-	-THERMAL, A-AEROSOL
	; I I
INIT. CLOUD DENS. (kg/m^3)	: 2,463 2,452
PHYSICAL SOURCE WIDHT (m)	: 2.000 2.000
INIT. FLOW RATE (m^3/s)	: 4.3326 4.1673
INIT. CONCENTRATION (mol)	1.0000 1.0000
SIMULATION DURATION (S)	: 305.22 414.67
AVERAGING TIME (S)	: 30.00 30.00
	· · · · · · · · · · · · · · · · · · ·

GASTAR INPUT DATA FOR	:	Thorney Island (instantaneous)
CHEMICAL RELEASED	:	Mixture of Freon-12 and Mitzogen

.

TRIAL NAME	:	716		19 1	19 1	112 :		117	TI8 T	119
CHEMICAL NO.	:	16	17	18	19	20	21	22	23	24
WIND SPEED 3 10M (m/s)	:	2.80	3.40	2.40	1.70	2.50	7.30	5.00	7.40	6.40
SURFACE ROUGHNESS (m)	:	0.01800	0.01800	0.01200	0.00800	0.01800	0.01000	0.01800	0.00500	0.01000
PG CLASS	:	0	E	G	7	S	5	D	9	D
M-O LENGTH (m)	:	9999.000	90.909	-9.091	1,538	10.000	-90.909	-200.000	-43.478	333,333
AIR TEMP. (K)	:	291.33	290.46	290.68	291.45	283.29	286.98	289.21	289.66	286.47
ATM. PRESSURE (mb)	:	1013.25	1021.36	1022.37	1019.33	1013.25	1019.33	1008.18	1007.17	1006,16
SFC. TEMP. (K)	1	291.83	290.85	291.55	291.45	285.15	287.35	291.05	297.45	286,15
REL. HUMIDITY (%)	:	74.80		87.50	37.30	66.20	74.10	94.00	31.30	94.80
REL. TYPE: I-INSTANTANEOUS,	С	and A-CONT	inuous, T=1	IME-VARYIN	G					
	1	I	ľ	1	I	I	I	I	I	I
REL. TYPE: I-ISOTHERMAL, T-	CHE	ERMAL, A-AEI	rosol							
	:	1	ĩ	I	ĩ	I	I	ĩ	ĩ	I
INIT. CLCUD DENS. (kg/m^3)	:	1.993	2.141	1.994	1.947	2.949	2.472	5.093	2.262	2.590
INIT. CLOUD RAD. (m)	:	7.0000	7.0000	7,0000	7.0000	7.0000	7.0000	7.000	7.0000	7.0000
INIT. CLCOD VOL. (m^3)	:	1578.944	1984.728	1984.513	1985.991	1945.273	1941.704	1710.324	1715.923	2114.424
INIT. CONCENTRATION (mol)	1	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
INIT. MOMENTUM MIXING: A: WE	.1.	MIXED, 8:	OTHERWISE							
	:	Э	3	Э	З	3	Э	3	3	а
SIMULATION DURATION (S)	:	251.43	247.06	312.50	395.88	300.00	156.44	200.00	168.92	191.09

. Methane is at least 86% in c

TRIAL	:	302 30	13 30	14	305	3U 6	307	308	509
EMIS, RATE (g/s)	:	36100.	87980.	36960.	31250.	92220.	<b>9946</b> C.	116930.	135980.
WIND SPEED (m/s)	:	5.4	5.4	э.э	7.4	۶.:	3.4	2.3	5.7
STAB, CLASS	:	5	c	c	C	3	: D	Ξ	2
AVG. TIME (min)	:	0.67	1.57	1.33	2.17	1.27	2.33	1.33	3.33
INITIAL SIGMA-Y (m)	:	2.32892	2.34606	2.21339	2.38234	2.27968	2.36857	5.55167	3.31640
INITIAL SIGMA-2 (m)	:	2.32892	2.84606	2.21339	2.38234	2.27968	2.36857	5.35167	3.31640
PLUME HEIGHT (m)	:	0.3	0.0	0.0	0_0	0.0	0.0	0.0	. 0.0
REC. HT. (m)	:	1.	1.	1.	1.	2.		1.	1.
L:RURAL 2:CRBAN	:	1	1	1	1	:	. 1	1	1
CONC. SPEC. (ppm)	:	100.	100.	100.	100.	100.	100.	100.	100.
MOLEC. WT. (g/mol)	:	17.46	17.26	17.05	17.38	17.24	18.22	18.12	18.32
AIR TEMP. (K)	:	311.3	307.5	309.0	314.3	312.7	307.0	306.0	308.5

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR CHEMICAL RELEASED	_	Coyote Liquefie	d natural	ças
TRIAL	:	c03 cc	5 C	06
EMIS. RATE (g/s)	:	100670.	129020.	123030.
WIND SPEED (a/s)	:	6.0	9.7	4.6
STAB. CLASS	:	с	С	ē
AVG. TIME (min)	:	0.83	1.50	1.17
INITIAL SIGMA-Y (m)	:	2,75051	2.36472	3.41869
INITIAL SIGMA-Z (m)	:	2.75051	2.36472	3,41869
PLOME HEIGHT (E)	:	0.0	0.0	0.0
REC. HT. (m)	:	1.	1.	1.
1:RURAL 2: URBAN	:	1	1	1
CONC. SPEC. (ppm)	:	100.	100.	100.
MOLEC. WT. (g/mol)	:	19.51	20.19	19.09
AIR TEMP. (K)	:	311.5	301.5	297.3

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR : Desert Tortoise CHEMICAL RELEASED : Anhydrous Ammonia

TRIAL	: D	T1 D1	r2 D:	r3 D1	:4
EMIS. RATE (g/s)	:	79700.	111500.	130700.	96700.
WIND SPEED (m/s)	:	7.4	5.8	7.4	4.5
STAB. CLASS	:	D	D	D	Ξ
AVG. TIME (min)	:	1.33	2.67	2.00	5,00
INITIAL SIGMA-Y (m)	:	1.63536	2.18545	2.10040	2.32223
INITIAL SIGMA-2 (3)	:	1.63536	2.18545	2.10040	2.32223
PLUME HEIGHT (m)	:	0.8	0.8	0.3	0.3
REC. HT. (m)	:	1.	1.	1.	1.
L:RURAL 2:URBAN	:	1	1	1	1
CONC. SPEC. (ppm)	:	100.	100.	100.	100.
MOLEC. WT. (g/mol)	:	17.03	17.03	17.03	17.03
AIR TEMP. (K)	:	302.0	303.6	307.:	305.6

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 253

JFM INPUT DATA FOR : JNEMICAL RELEASED :

		*********		
JHEMICAL RELEASED	:	Hyarogen	fluoride	
TRIAL	:	371 37:	2 32	-3
EMIS. RATE (g/d)	:	27670.	10460.	10270.
WIND SPEED (m/s)	:	5.4	4.2	5.4
STAB. CLASS	:	2	2	2
AVG. TIME min)	:	1.47	1.47	1.47
INITIAL SICKA-Y (m)	:	1.21901	3.36714	0.75548
INITIAL SIGMA-2 (m)	:	1.21901	3.36714	0.75548
PLUME HEIGHT (m)	:	1.0	1.0	1.0
REC. HTm)	:	2.	:.	1.
RURAL 2:URBAN	:	1	:	
CONC. SPEC. (ppm)	:	30.	30.	30.
MOLEC. WT. (g/moi)	:	20.31	20.31	20.01
AIR TEMP. (K)	:	310.4	309.4	307.5

Jolafian

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

JPM INPUT DATA FOR CNEMICAL RELEASED	:	Hanford Krypton	(continuo) -85	45)		
TRIAL	:	HC1 H	C2 H(	C3 X0	34 H	25
IMIS, RATE (g/s)	:	:2.	12.	28.	39.	17.
WIND SPEED (m/s)	:	1.3	3.9	7.1	3.9	2.5
STAB. CLASS	-	7	С	C	C	2
AVG. TIME (min)		7.68	14.08	4.48	4.48	8.96
INITIAL SIGMA-Y (m)		0.04854	0.02811	0.03191	0.35066	0.04062
INITIAL SIGMA-Z (m)		0.04854	0.02811	0.03191	0.05066	0.04062
PLUME HEIGHT (m)		1.0	1.0	1.0	1.0	1.0
REC. HT. (m)	÷	2.	2.	2.	2.	2.
1:RURAL 2:URBAN		-ī	ĩ	1	ĩ	ī
CONC. SPEC. (ppm)	1	0.	9.	a.	g.	0.
MOLEC. WT. (g/mol)	1	29.00	29.00	29.00	29.00	29.00
AIR TEMP. (K)	ł	290.9	285.4	288.3	286.6	278.3

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

GPM INPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Natural Gas

TRIAL	:	MS27 1	1529	MS34	MS35
EMIS. RATE (g/s)	:	23210.	29160.	21510.	27090.
WIND SPEED (m/s)	:	5.6	7.4	8.5	9.6
STAB. CLASS	:		0		
AVG. TIME (min)	:	0.05	0.05	0.05	0.05
INITIAL SIGMA-Y (m)		1.34958	1.35270	1.06925	1.14015
INITIAL SIGMA-2 (m)					1.14015
PLUME HEIGHT (m)	1				0.0
REC. HT. (m)		1.			
L:RURAL 2:URBAN			1		
CONC. SPEC. (ppm)	•	100.	100.	100.	100.
MOLEC, WT. (g/mol)		:7.11			
	;				

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

S2M INPUT DATA FOR Diemical Released	:	liquified ?	ropane Gas							269 🔳
TRIAL LMIS. RATE (G/S) WIND SPEED (T/S)	:	MS42 M	543 55	546	<u>4547 4</u>	549 >	4550 %	\$\$2 Y	1554	
IMIS. RATE (G/S)	:	20870.	19200.	23370.	32570.	15710.	35890.	44250.	19200.	
WIND SPEED (m/s)	:	4.0	5.3	3.1	5.2	5.3	7.3	7.4	3.7	
STAB. CLASS	:	2	С	5	C	2	5	C	5	
AVG. TIME (min)	:	0,05	0.05	0.05	0.05	0.35	0.05	0.05	0.05	
WIND SPEED (m/s) STAB. CLASS AVG. TIME (min) INITIAL SIGMA-Y (m)	:	0.95056	0.75546	0.70719	0.35331	3.72051	0.37489	1.30690	0.93163	
PLUME HEIGHT (m)	:	0.0	0.0	3.3	0.0	0.0	0.3	0.0	5.0	
REC. HT. (m)	:	1.	1.		:.	:.	:.	<u>.</u>	<b>`</b> .	
L:RURAL 2: CRBAN	:	1	1	1	:	1	:	1	1	
CONC. SPEC. (ppm)	;	100.	100.	100.	100.	100.	100.	100.	100.	
MOLIC, WT. (g/mol)	:	43.93	43.93	43.35	43.34	43.76	43.93	43.87	43.94	
PLUME HEIGHT (m) REC. HT. (m) 1:RURAL 2:URBAN CONC. SPEC. (ppm) MOLEC. WT. (g/mol) AIR TEMP. (K)	:	291.5	290.2	291.9	290.6	286.3	283.6	285.0	281.5	
GPM INPUT DATA FOR CHEMICAL RELEASED TRIAL EMIS. RATE (q/s) WIND SPEED (m/s) STAB. CLASS AVG. TIME (min) INITIAL SIGMA-Y (m) INITIAL SIGMA-Z (m) PLUME HEIGHT (m)	:	Sulfur o	iioxide		PG10 P		9 <b>G15</b> 20	G16 =	1917	
EMIS. RATE (g/s)	:	90.	91.	92.	92.	61.	96.	93.	57.	
WIND SPEED (m/s)	÷	4.2	4.9	5.9	4.5	1.3	3.4	3.2	3.3	
STAB. CLASS	-	3	c	c	3		À	2.2		
AVG. TIME (min)		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
INITIAL SIGMA-Y (m)	:	0.05161	0.04810	0.04046	0.04983	0.07496	0.05814	0.35974	0.04578	
INITIAL SIGMA-Z (m)	:	0.05161	0.04810	3.04046	3.04983	0.07496	0.05814	0.35974	0.04578	
PLUME HEIGHT (m)	:	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
REC. HT. (m)	:	2.	2.	2.	2.	2.	2.	2.	2.	
1:RURAL 2:URBAN	:	1	1	1	1	1	1	1	1	
CONC. SPEC. (ppm)	:	1.	1.	1.	1.	1.	1.	1.	1.	
MOLEC. WT. (g/mol)	:	64.00	64.00	64.30	64.00	64.00	64.CO	54.00	64.00	
PLUME HEIGHT (m) REC. HT. (m) 1:RURAL 2:URBAN CONC. SPEC. (ppm) MOLEC. WT. (g/mol) AIR TEMP. (K)	:	305.1	305.1	301.1	304.1	293.1	295.1	301.1	300.1	
NOTE: initial sigmas the initial con	ar	e used to be	a consister	nt with					· .	

Thorney Island (continuous) Mixture of Freon-12 and Nitrogen

۶ 0.50

0.94039 0.94039

0.0

0,50 0,77435 0,77435 0,0 0,0 1 100, 57,30 286,3 REC. HT. (m) : 1:RURAL 2:URBAN : CONC. SPEC. (ppm) : MOLEC. HT. (g/mol) : AIR TEMP. (K) : 1 100. 57.30 287.3

:

: TC45 TC47 : 10670. 10220. : 2.3 1.5 2.3 E

0.50 0.77435

CPM INPUT DATA FOR : CHEMICAL RELEASED :

TRIAL : : EMIS. RATE (g/s) : MIND SPEED (m/s) : STAB. CLASS : AVG. TIME (min) : INITIAL SIGMA-Y (m) : INITIAL SIGMA-Z (m) :

PLOME HEIGHT (m)

NOTE: initial sigmas are used to be consistent with the initial concentration at the source

(EG. INPUT DATA FOR DHEMICAL RELEASED	-	Burro Liquefia	API a macural		4546 9	2 📖 0	1732290	0505	703 1T5	
IRIAL Iont Iburf -	::	BU2 0 4	J	3	3		BU7 0 4		343 3 4	
- PCOL DATA PLL (m)	:	35.910	36.300	36.390	34.390	37.170	39.500	41,350	45,130	
PLHW (m) * Ambient conditions	:	17.955	18.150	13.345	17.445		:9.300	20.925	22.565	
" 20 (m)	:	2.00	2.00	2.00	2.00		2.00	2.00	2.00	
uo (m/s) Airtemp (C) Rh	1 : :	5.40 38.07 0.071	3.40 34.55 0.052	9.20 35.35 0.327	7.40 41.37 0.059	39.47	3.40 33.76 0.374	1.30 32.32 0.345	5.70 35.32 0.144	
TGROUND (C)	:	38.07	34.55	35.35	41.07	39.47	33.76	32.32	35.32	
DISP	_									
ROUGH (R) Monin (R) Crossw Delta Crossw Beta Crossw Beta	:::::::::::::::::::::::::::::::::::::::	0.00020 -12.95 0.122 0.397 1.150	0.20020 -3.31 0.146 0.397 1.150	0.0020 -49.31 0.140 0.397 1.150	0.00020 -35.53 0.134 0.897 1.150	0.00020 -53.39 0.135 0.397 1.150	0.00020 -148.53 0.096 0.905 1.150	0.00020 15.48 0.065 0.902 1.150	0.00020 -500.00 0.078 0.905 1.150	
CICOD										
XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3)	:	0.139 17.8 1.000E-07 1.769E-04 8.844E-05	1.766E-04	1.738E-04	1.7348-04	1.739E-04	1.848E-04	1.3402-04	1.3092-04	
SOURCE										
FLUX (kg/m**2/s) TEMPGAS (C) C2GAS (J/mol/K) MMGAS (kg/kmol) WATGAS HEATGR		6.677E-02 ~161.50 39.08 17.46 0.00 24	6.677E-02 -161.50 38.63 17.26 0.00 24	6.676E-02 -161.50 38.16 17.05 0.00 24	6.675E-02 -161.60 38.23 17.08 0.30 24	6.675E-02 -161.50 38.58 17.24 0.00 24	6.675E-02 -161.60 40.78 18.22 0.00 24	6.676E-02 -161.50 40.55 18.12 0.00 24	6.676E-02 -161.60 42.12 18.82 0.00 24	
HEG. INPUT DATA FOR : CHEMICAL RELEASED		Coyota	l natural d	13 6	• ,	lethone is	-	16k in a		
HEG. INPUT DATA FOR : CHEMICAL RELEASED : TRIAL	I.	Liquefied	inatural (	<b>]23</b> 206	:,	fechane is	at least (	164 in c		
CHEMICAL RELEASED : TRIAL ICNT ISURF	I.	Liquefied		-	: >	lethane is	at least (	164 in c		
CHEMICAL RELEASED : TRIAL ICNT	:	Liquefied CO3 C	:05 (	206 Q	: ,	(ethane is	at løast (	364 in c		
CHEMICAL RELEASED ; TRIAL IGNT ISURF * POOL DATA * PLL (m) PLHW (m)	:	Liquefied CO3 C	:05 (	206 Q	: :	{ethane is	at least 8	36% in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS		Liquefied CO3 C 4 38.830 19.415	205 0 4 43.960 21.980	206 0 4 42.930 21.465	: ,	fethane is	at least (	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF POOL DATA PLL (m) PLHW (m) AMBIENT CONDITIONS		Liquefied CO3 C 4 38.830 19.415	205 0 4 43.960 21.980	206 0 4 42.930 21.465	: ,	fethane is	at least 8	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF * POOL DATA * PLL (m) PLHW (m) AMBIENT CONDITIONS * ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) *		Liquefied CO3 C 4 38.830 19.415	205 0 4 43.960 21.980	206 0 4 42.930 21.465	: ,	fethane is	at løast 8	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF * POOL DATA * PLL (m) PLHW (m) * AMBIENT CONDITIONS * ZO (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) * ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE		Liquefiec GO3 C 38.830 19.415 2.90 6.00 38.25 0.113 38.25	2.00 43.960 21.980 2.00 9.70 28.29 0.221 28.29	206 0 42.930 21.465 2.00 4.60 24.06 0.228 24.06	: ,	fethane is	at least 8	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF * POOL DATA * PLL (m) PLHW (m) AMBIENT CONDITIONS * 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) DISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE CLOUD		Liquefied GO3 0 4 38.830 19.415 2.00 5.00 38.25 0.113 38.25 0.00020 -12.20 0.127 0.397 1.150	2.00 43.960 21.980 21.980 21.980 28.29 0.221 28.29 0.20020 -31.66 0.143 0.897 1.150	42.930 21.465 2.00 4.60 24.06 0.228 24.06 0.2020 56.08 0.083 0.905 1.150	: ,	fethane is	at least 8	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF * POOL DATA * PLL (m) PLHW (m) ANBIENT CONDITIONS * 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) * RUSP * ROUGH (m) HONIN (m) CROSSW DELTA CROSSW BETA CZ		Liquefied GO3 0 4 38.830 19.415 2.00 5.00 38.25 0.113 38.25 0.00020 -12.20 0.127 0.397 1.150	2.00 43.960 21.980 21.980 2.00 9.70 28.29 0.221 28.29 0.20020 -31.66 0.143 0.897 1.150	42.930 21.465 2.00 4.60 24.06 0.228 24.06 0.2020 56.08 0.083 0.905 1.150	: ,	fethane is	at least 8	364 in c		
CHEMICAL RELEASED ; TRIAL ICNT ISURF * POOL DATA * PLL (m) PLHW (m) * AMBIENT CONDITIONS * 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) * CLOUD * CLOUD * XSTEP XMAX (m) CAMIN (kg/m**3) CC (kg/m**3) CL (kg/m**3)		Liquefiec GO3 0 4 38.830 19.415 2.00 5.00 38.25 0.113 38.25 0.127 0.397 1.150 0.129 20.5 1.002-07 1.9702-04 9.8512-05	2.00 43.960 21.980 21.980 2.00 9.70 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.221 28.29 0.28 0.143 0.587 1.150 0.144 20.5 1.250 0.214 20.5 1.250 0.212 1.250 0.212 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.252 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552	42.930 21.465 2.30 21.465 2.30 4.60 24.66 0.228 24.66 0.228 24.66 0.228 24.66 0.228 24.66 0.228 24.66 0.228 24.66 0.228 24.66 0.228 24.65 0.228 24.65 1.250 2.1.165 21.20 2.1.165 2.20 1.2002-07 1.3402-04 9.7012-05		fethane is	at least 8	364 in ¢		

.

The set of	HEG. INPUT DATA FOR CHEMICAL HELEASED PSEUDO-GAS APPROACH	: An	ayerous Am	conia	AT ANF	36*4346	0732290	UJUJ (UT	للابري
TANK       :       ?       ?       ?         COL       TATA         PELE (In)       :       14.00       13.413       18.76       20.451         PELE (In)       :       14.00       13.413       18.76       20.451         PELE (In)       :       1.4.00       13.413       18.76       20.451         PELE (In)       :       2.00       2.00       2.00       2.00         District       :       0.0200       0.0000       0.0000       0.0000         Cit       :       0.0200       0.0000       0.0000       0.0000	TRIAL		<b>DT1</b> :		отз :				
22.10 ml       :       1.4.80       1.9.63       1.2.16       70.433         21.00 ml       :       7.400       1.000       2.00       2.00         20 ml       :       2.00       2.00       2.00       2.00         20 ml       :       2.00       2.00       2.00       2.00         20 ml       :       2.00       2.00       2.00       2.00         20 ml       :       2.00       3.00       3.01       3.01       3.01         20 ml       :       2.00       3.00       3.01       3.01       3.01         20 ml       :       3.00       3.01       3.00       3.00       3.00       3.00         2127       :       3.00       3.00       3.00       3.00       3.00       3.00         20 ml       :       0.000       0.000       0.0000       0.0000       0.0000       .00000         20 ml       :       0.000       0.0000       0.0000       0.0000       0.00000         20 ml       :       0.000       0.000       1.000       1.000       0.0000         20 ml       :       0.000       0.000       0.000       0.000       0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>						-			
PLank (a) : 7.400 9.407 9.100 10.225 Mag Lint CONDITIONS 30 (m) : 7.400 3.407 1.00 1.00 30 (m) : 7.40 3.40 1.00 30 (m) : 7.40 3.40 1.00 31.60 10.225 CTROUND (c) : 3.1.60 10.60 0.0000 0.0000 CSC 100 CSC	, POOL DATA								
Selent CobDITIONS           20 Mail 1: 2.00         2.00         3.00         2.00           Selent CobDITIONS         1: 2.00         3.00         2.00           Selent CobDITIONS         1: 2.00         3.00         2.00           Selent CobDITIONS         1: 2.00         3.00         3.00           Selent CobDITIONS         1: 2.00         0.0000         0.0000           Selent CobDITIONS         1: 0.0000         0.0000         0.0000           Selent Selent Selent CobDITIONS         1: 0.0000         0.0000         0.0000           Selent Selent Selent Selent Selent CobDITIONS         1: 0.00000         0.0000         0.0000           Selent S	, ?LL (m)	:	14.301	19.615	18.261	20,451			
The form         1         0         1.00         1.00         1.00         1.00           TARETER (C)         2         2         0.13         31.20         31.43           TARETER (C)         2         2         0.13         31.20         31.43           TARETER (C)         1         31.40         0.131         0.0310         0.121           TARETER (C)         1         31.40         0.0310         0.0310         0.0310           TARETER (C)         1         0.0300         0.03100         0.0310         0.0310           TARETER (C)         1         0.0300         0.0310         0.0310         0.0310           TARETER (C)         1         0.0350         0.0430         0.0310         0.0310           TARETER (C)         1         0.0350         0.0430         0.1320         0.344           TARETER (C)         1         0.1350         0.1328         0.344           TARETER (C)         1         1.0005-07         1.0005-07         0.0005-07           TARETER (C)         1         1.0025-07         1.0005-07         0.000           TARETER (C)         1         1.0025-07         1.0005-07         0.000	PLHW (m)	:	7,400	9.807	9.130	10.225			
TO (m/s) : 7,40 5.20 7.10 4.80 MATERNE (C) : 24.43 30.73 30.74 5.243 MATERNE (C) : 0.122 0.173 0.140 3.243 MATERNE (C) : 0.122 0.173 0.140 3.243 MATERNE (C) : 0.00300 0.00300 0.20300 MATERNE (C) : 0.00300 0.00300 0.20300 MATERNE (C) : 0.00300 0.00300 0.20300 CCOSSM DETA : 0.0046 0.095 0.093 0.092 CCOSSM DETA : 0.0046 0.095 0.093 0.092 CCOSSM DETA : 0.0046 0.095 0.093 0.092 CCOSSM DETA : 0.0164 0.095 0.093 0.092 CCOSSM DETA : 0.0164 0.095 0.093 0.092 CCOSSM DETA : 0.0165 0.095 0.093 0.092 CCOSSM DETA : 0.0166 0.005 0.092 CCOSSM DETA : 0.0166 0.005 0.092 CCOS (MA(M)) : 0.0047 0.0050 0.005 0.092 CCOS (MA(M)) : 0.0047 0.0050 0.0050 0.0020 CCOS (MA(M)) : 0.0047 0.0050 0.0050 0.0020 CCOS (MA(M)) : 0.007.3 0.005 0.0050 0.0020 CCOS (MA(M)) : 0.007.3 0.0050 0.0050 0.0020 CCOS (MA(M)) : 0.000 0.000 0.0000 CCOS (MA(M)) : 0.000 0.000 0.000 CCOS (MA(M)) : 0.000 0.000 CCOS (MA(M)) : 0.000 0.000 0.000 CCOS (MA(M)) : 0.0000 0.0000 CCOS (MA(M)) : 0.0000 CCOS (MA(M)) : 0.0000  0.0000 CCOS (MA(M)) : 0.0000 0.0000 CCOS	MBIENT CONDITIONS								
ALATENE (C) : 28.83 30.43 31.97 32.13 TRADUM (C) : 11.80 30.60 31.20 0.0230 TRADUM (C) : 11.80 30.60 31.20 0.0230 STRUCTUR (E) : 0.0230 0.00200 0.0230 STRUCTUR (E) : 0.0230 0.00200 0.0230 STRUCTUR (E) : 0.035 0.025 0.023 STRUCTUR (E) : 0.035 0.025 0.025 STRUCTUR (E) : 0.035 0.025 0.025 CC : 1.120 1.150 1.150 1.130 CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT CCUT	20 (m) 30 (m/s)								
TENDONID (C) : 31.60 30.60 11.60 30.90 ISF MONIN (m) : 0.00300 0.00300 0.00300 0.00300 MONIN (m) : 33.20 84.33 847.13 41.30 MONIN (m) : 33.20 84.33 847.13 41.30 CE : 1.150 1.150 1.150 LISO 1.150 1.150 LISO 1.150 1.150 LISO 1.150 1.150 LISO 1.150 1.150 LISO 1.100-0.100-7 LINOUTONE TEMPONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOUTONE LINOU	AIRTEMP (C)	:	28.83	30,43	33.97	32.43			
SOUCH [m]       :       0.0330       0.00300       0.00300       0.00300         SOULA [m]       :       0.123       0.4.33       0.1250       1.120         SOULA [m]       :       0.125       0.1250       1.120       1.120         SOULA [m]       :       0.1250       1.1250       1.120       1.120         SOULA [m]       :       0.138       0.2255       0.274       0.244         SAMAK (m]       :       0.738       0.271       0.000-07       1.0000-07         COMACT       :       0.202-07       1.0000-07       1.0000-07       1.0000-07         COMACT       :       0.4256       0.527-00       1.9412+00       1.2250-03       1.9412+00         COMACT       :       0.203       0.773       27.73       27.73       27.73         SAMACTASED       :       SUULA (marration in the suula in the suul	TGROUND (C)								
MONIN (m)         i         91.20         84.33         847.25         41.00           CROSSW DETX         i         0.086         0.098         0.085         0.102           CROSSW DETX         i         0.086         0.098         0.085         0.102           CROSSW DETX         i         0.086         0.098         0.102         0.102           CROSSW DETX         i         0.108         0.108         0.108         0.108           CAUNT Koyner-31         i         0.128         0.1274         0.144           CHANT Koyner-31         i         1.4255-03         1.4025-04         1.4025-04           CHANT Koyner-31         i         1.4255-03         1.4025-04         1.4025-04           CHANT Koyner-32(r)         i         6.6085-00         5.9412+00         1.9412+00           CREAK (Mac/XN)         i         25.64         25.70         25.79         2.40           CREAK (Mac/XN)         i         25.63         25.70         27.7         2.40           CREAK (Mac/XN)         i         24.24         24         24           CREAK (Mac/XN)         i         27.60         2.77         2.70           CREAK (Mac/XN)         i	ISP								
EAGLESY DELTA : 0.086 0.098 0.093 0.085 CASESY DELTA : 0.0305 0.095 0.092 CC : 1.120 1.120 1.120 1.120 LIDO XSTEP : 0.138 0.253 0.274 0.244 MAX (pre-r1) : 1.001-01 1.001-07 1.001-07 CL (pre-r1) : 1.001-01 1.001-07 CL (pre-r1) : 2.001-01 4.000-01.001 CL (pre-r1) : 2.001-01 4.000-01.001 CL (pre-r1) : 2.001 0.00 0.000 CL (pre-r1) : 2.001 0.00 0.000 EEMTOR (CL IIIN CHARSED : Mydragen fluoride ESTUD-0-ASA PEROACH SIMPLATING ALLYVAPOR HIX ESTUD-0-ASA PEROACH SIMPLATING ALLYVAPOR HIX ESTUD-0-ASA PEROACH SIMPLATING ALLYVAPOR HIX CL (n) : 0.0139 8.000 8.000 HEINT CONDITIONS C3 (m/s) : 2.002 0.000 0.000 HEINT CONDITIONS C3 (m/s) : 2.002 0.000 CATR ZDU (n) : 0.0003 0.0000 CATR ZDU (n) : 0.0003 0.0000 CATR ZDU (n) : 0.0003 0.0000 CATR ZDU (n) : 0.000 0.0003 CATR ZDU (n) : 0.000 0.0000 CATR ZDU (n) : 0.000 0.0000 CATR ZDU (n) : 0.000 0.0000 CATR ZDU (n) : 0.000 0.0000 CATR ZDU (n) : 0.0000 0.00000 CATR ZDU (n) : 0.0000 0.0000	ROUGH (m)								
cz       i.1150       1.150       1.150         CSUD       XXTFP       i.0.138       0.255       0.474       0.414         XXTFP       i.0.002-07       1.002-07       1.002-07       0.025       0.474         XXTX       i.0.002-07       1.002-07       1.002-07       0.002-07       0.002-07         XXTX       i.0.428-03       1.4012-03       1.1390-04       6.6424-04         OGRCE       I.XXX       i.0.002-07       1.002-07       1.002-07         TXXX       (ky/am*1)       i.0.002-03       1.9124-03       1.9412+03         TXXX       (ky/am*1)       i.0.138-00       6.6127+00       1.9412+03         TXXX       (ky/am*1)       i.0.27.33       27.77       27.77       1.77         TXXX       (ky/am*1)       i.0.01       0.000       0.000       0.000       0.000         TXXX       (ky/am*1)       i.0.014/1000       1.0012-03       1.0012-03       1.0012-03         TXXX       i.0.014/1000       i.0.000       0.000       0.000       0.000         TXXX       i.0.014/1000       i.0.000       0.000       0.000       0.000         TXXX       i.0.014/1000       i.0.000       0.0000       0.0000 <td>CROSSW DELTA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CROSSW DELTA								
Laud XSTEP : 0.338 0.255 0.274 0.244 MAX (m) : 1000E-07 1.000E-07 1.000E-07 CAME (ky/m+1) : 1.425E-03 1.000E-07 1.000E-07 CCME (ky/m+1) : 1.425E-03 1.000E-03 1.320E-03 CCME (ky/m+1) : 1.425E-03 1.000E-03 1.320E-04 CCME (ky/m+1) : 1.425E-03 1.000E-03 1.320E-04 CCME (ky/m+1) : 1.425E-03 1.000E-03 1.320E-04 CCME (ky/m+1) : 1.425E-03 1.000E-03 1.941E-00 CCME (ky/m+1) : 1.57.63 -32.60 -32.60 CCME (ky/m+1) : 1.57.63 -32.60 -32.60 CCME (ky/m+1) : 1.57.63 -32.60 CCME (ky/m+1) : 1.57.75 -27.75 CCME (ky/m+1) : 1.58.75 -57.75 CCME (ky/m+1) : 1.58.75 -57.75 CCME (ky/m+1) : 1.68.75 br>CCME (ky/m+1) : 1.63.75 CCME (ky/m+1) : 1.67.75 CCME	CROSSW BETA CE								
XSTEP : 0.338 0.255 0.274 0.244 RXAX (a) [2**3] : 1.000E-07 1.000E-07 1.000E-07 CU (kg/k=*3) : 7.123E-04 7.007E-04 6.02E-04 CU (kg/k=*3) : 7.123E-04 7.007E-04 CU (kg/k=*3) : 7.123E-04 7.007E-04 CU (kg/k=*3) : 7.123E-04 7.007E-04 CU (kg/k=*3) : 7.123E-04 7.007E 7.73 CU (kg/k=*3) : 7.123E-04 7.007E 7.73 CU (kg/k=*3) : 7.12 CU (kg/k=*3)	LOUD								
XHAX (a)       :       87.3       66.3       71.2       63.6         CHM (Kq/m ¹ )       :       1.4256-03       1.3026-07       1.3026-07         CG (Kq/m ¹ )       :       1.4256-03       1.3226-03       1.3226-03         CG (Kq/m ¹ )       :       1.4256-03       1.3226-03       1.3226-03         CG (Kq/m ¹ /s)       :       1.6026-01       0.6027-01       0.602-07         CG (Kq/m ¹ /s)       :       1.6026-01       0.1226-03       1.3226-03         CG (Kq/m ¹ /s)       :       6.6028-00       6.6127+00       1.94124-00         CG (Kq/m ⁻¹ /s)       :       6.6027-00       6.6127+00       1.94124-00         CG (Kq/mel)       :       27.83       27.73       27.71       7.73         CG (Kq/mel)       :       27.73       27.71       7.71       7.71         CG (Kq/mel)       :       27.00       2.00       2.00       2.00       2.00       2.00         SULM (m)       :       10.339       8.000       8.000       4.000       4.000         VELM (m)       :       10.123       173.14       0.93       5.13       34.41         ISP       :       0.431       0.423			0_338	0-255	0.774	0.244			
UC (kg/m ¹ ) : 1.4255-03 1.4012-03 1.1228-03 C (kg/m ³ ) : 7.123E-04 7.007E-04 6.642E+0 1.941E+00 TIXK (kg/m ¹ /) : 6.00E+00 5.173E+00 6.612E+0 1.941E+00 TIXK (kg/m ¹ /) : 23.61 23.60 23.44 23.00 C C C C C C C C C C C C C C C C C C C	XMAX (m)	:	87.5	66.3	71.2	63.6			
UNACE TLUX (kg/m**2/s) : 6.608E+00 5.173E+00 6.612E+00 1.941E+00 TEMPGAS (C) : -35.66 -35.63 -35.70 -35.79 MAGAS (C) : 23.61 29.60 29.44 29.40 MAGAS (C) : 27.23 27.73 27.73 MAGAS (C) : 27.23 27.73 27.73 MAGAS (C) : 24 24 24 24 EXAMPLESSED : 24 24 24 24 EXAMPLESSED : 24 24 24 24 EXAMPLESSED : 37.40 MAGAS (C) : 27.43 EXAMPLESSED : 37.40 COMPLESSED : 4.000 MAGAS (C) : 37.20 COMPLESSED : 4.000 MAGAS (C) : 4.000	CU (kg/m==3)	:	1.425E-03	1.4012-03	1.3202-03	1.329E-03			
FLUX (kg/m**2/s)       : 6.608E+00 5.173E+00 6.612E+00 1.9412+00         FEMFGAS (C)       : -35.66       -35.70         FEARGAS (C)       : -35.66       -35.70         FEARGAS (C)       : 2.7.83       29.40         AMCDAS (C)       : 2.7.83       27.73       27.71         AMCDAS (C)       : 2.7.83       27.73       27.71         AMCDAS (C)       : 2.4       24       24         PERFORM CALLESED :       : Rydrogen fluoride         PSEUDO-GAS AFFROACH SIMULATING ALLV/AFOR MIX         TRIL       : GT1       GT2         CUT       : 0       0       0         ISOUF       : 2       2       2         DOL       DATA       2       2       2         VELM (m)       : 10.339       8.000       4.000         HBIENT CONDITIONS       2       0       2.00       2.00         10 (m)       : 2.00       2.00       2.00       34.41         AMTENP (C)       : 37.20       36.15       34.41         AMTENP (C)       : 37.20       36.15       34.51         SP       2000       .000300       0.00300       0.2030         CONTN (m)       : 101.29       173.14		:	7.1235-04	7.0072-04	6.602E-04	6.6448-04			
TEMPERAS (C) : -35.66 -35.63 -35.70 -35.79 FEGAS (Xep(xscl) : 27.83 27.79 27.73 27.71 ARTCAS : 0.000 0.20 0.200 HEATOR : 24 24 24 24 HEG. INFUT DATA FOR : Goldfish EIMMUAN, AILLASED : Reverent Hubride SEMDO-GAS APROACE SIMULATING ARRAYAPOR MIX TELLA : GF1 GF2 GF3 COT : 2 2 2 COL DATA FIL (m) : 10.339 8.000 8.000 HEATOR : 0.0300 8.000 HEATOR : 0.0430 0.107 CON : 0.049 0.107 CON : 0.047 0.257 COS : 1.150 1.150 COS : 1.150 1.150 CON : 0.037 0.087 COS : 1.150 1.150 CON : 0.048 0.000 CON : 0.00300 0.00300 CON : 0.021 CON : 0.037 0.087 CON : 0.087 0.087 CON : 0.038 CON : 0.037 0.087 CON : 0.087 0.087 CON : 0.087 0.087 CON : 0.087 0.087 CON : 0.087 0.087 CON : 0.087 CO	OURCE								
CPCAS (7/mol/K)       :       29.81       29.80       29.44       29.40         MATCAS       :       0.00       0.00       0.00       0.00         MATCAS       :       0.00       0.00       0.00         MATCAS       :       0.00       0.00       0.00         MATCAS       :       0.24       24       24         REG. INPUT DATA FOR :       Goldfish       Environmental ELESSED :       Environmental ELESSED :       Environmental ELESSED :         CETT       :       GF1       GF2       GF3         CETT       :       2       2       2         DOOL       DATA       :       5.170       4.000       4.000         MEINT CENDITIENS       :       5.60       4.20       5.40         C3 (min)       :       2.00       2.00       2.00         C3 (min)       :       3.0030       0.00300       0.00300         C3 (min)       :       3.0030       0.00300       0.00300         C3 (min)       :       0.0030       0.00300       0.00300         C3 (min)       :       0.0129       173.14       4.0.33         CADGH (m)       :       0.129 <td< td=""><td>TLUX (kg/m**2/s) TEMPGAS (C)</td><td>:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	TLUX (kg/m**2/s) TEMPGAS (C)	:							
MATCAS : 0.00 0.00 0.00 0.00 HEALTGE : 24 24 24 REALTRE : 21 24 24 24 REALTRE : 1000 DATA FOR : 6000 for the second fluoride SEUDO-ASA APPROACH SIMULATING AIR/VAPOR MIX TRIAL : GFI GF2 GF3 CCMT : 0 0 0 ISOURF : 2 2 2 2 COOL DATA FLK (m) : 10.339 0.000 0.000 PLKK (m) : 5.170 4.000 4.000 MBIENT CONDITIONS C3 (m/s) : 5.100 4.000 4.000 MBIENT CONDITIONS C3 (m/s) : 5.00 4.00 5.00 C3 (m/s) : 5.00 4.00 C3 (m/s) : 5.00 4.00 C3 (m/s) : 5.00 4.00 C3 (m/s) : 0.00300 0.00300 0.00300 MONIN (m) : 0.00300 0.00300 0.00300 MONIN (m) : 0.00300 0.00300 0.00300 C3 (m/s) : 0.00200 0.00300 C3 (m/s) : 0.00200 C3 (m/s) : 0.00200 C3 (m/s) : 0.00200 C3 (m/	CPGAS (J/mol/K)	:	29.81	29.80	29.94	29.80			
<pre>HEG. INPUT DATA FOR : Goldfish CEMICAL RELEASED : Hydrogen fluoride PSEUDO-GAS APPROACH SINGUATING AIR/VAPOR MIX TRLL : GF1 GF2 GF3 CUT : 0 0 0 ISURF : 2 2 2 COL DATA PLL (m) : 10.339 8.000 8.000 HEGINT CONDITIONS CS (m) : 2.00 2.00 2.00 HEGINT CONDITIONS CS (m) : 2.00 2.00 2.00 CUT : 37.20 36.18 34.41 AR : 0.049 0.107 0.177 CROUND (C) : 37.20 36.18 34.41 SR : 0.049 0.107 0.177 CROUND (C) : 37.20 36.18 34.41 SR : 0.049 0.107 0.177 CROUND (C) : 37.20 36.18 34.41 SR : 0.049 0.107 0.177 CROUND (C) : 37.20 36.18 34.41 SR : 0.049 0.107 0.177 CROUND (C) : 1.37.20 36.18 34.41 LSP CROSSM DELTA : 0.085 0.030 0.00300 CROSSM JETA : 0.085 0.005 CZ : 1.150 1.130 1.200 CROSSM JETA : 0.395 0.305 0.205 CZ : 1.150 1.130 1.200 CROSSM JETA : 0.484 0.625 0.625 CROSSM JETA : 0.484 0.625 0.625 CROSSM JETA : 0.385.5 137.5 437.5 CROSSM JETA : 0.305 0.1050 0.2000 COURCE FLUX (kg/m**3) : 1.302E-04 1.394E-04 4.170E-04 U. (kg/m**3) : 1.302E-04 1.394E-04 4.170E-04 CROSSM CI : 1.130 1.4.10 CROSSM CI : 1.130 1.150 CROSSM JETA : 1.002E-07 CI (kg/m**3) : 1.302E-04 1.394E-04 4.170E-04 CROSSM JETA : 0.130 1.130 1.200 CRCE FLUX (kg/m**3) : 4.132E+00 3.758E+00 1.9612+00 CROSSM CI : 15.13 14.25 1.200 CRCE FLUX (kg/m**3) : 4.132E+00 3.758E+00 1.9612+00 CROSSM CI : 15.03 1.200 CRCE FLUX (kg/m**3) : 4.132E+00 3.758E+00 1.9612+00 CROSSM JETA : 0.00 J.00 J.00 J.00 J.00 J.00 J.00 J.</pre>									
ISURF : 2 2 2 2 DOL DATA PLL (m) : 10.339 8.000 8.000 PLAW (m) : 5.170 4.000 4.000 WHIENT CONDITIONS C3 (m) : 2.00 2.00 2.00 C3 (m/s) : 5.60 4.20 5.40 ATATTMP (C) : 37.20 36.18 34.41 TSP C3ROUND (C) : 37.20 36.18 34.41 ISP C4006 (m) : 0.00300 0.00300 0.00300 MONIN (m) : 101.29 173.14 40.33 CASSM DELTA : 0.087 0.087 CASSM DELTA : 0.087 0.087 CASSM DELTA : 0.095 0.305 0.305 C2 : 1.150 1.150 1.150 LOUD XSTEP : 0.484 0.625 0.625 CAMAX (m) : 338.5 187.5 437.5 CAMIX (m) : 1.002-07 1.2002-07 C1 (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE T12X (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE T12X (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE T12X (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED	:	24 Goldfish Hydrogen	24 fluoride					
PLL (m)       :       10.339       8.000       8.000         PLLW (m)       :       5.170       4.000       4.000         WHENT CONDITIONS         230 (m)       :       2.00       2.00       2.00         330 (m/s)       :       5.60       4.20       5.40         ATRTEMP (C)       :       37.20       36.18       34.41         RH       :       0.049       0.107       0.177         TURQUND (C)       :       37.20       36.18       34.41         ISP       :       0.00300       0.00300       0.0037         ACUGH (m)       :       0.027       0.037       0.037         CROSSW DELTA       :       0.0497       0.02300         CROSSW DELTA       :       0.965       0.905         CZ       :       1.150       1.150         LOUD       :       338.5       187.5       437.5         CMIN (kq/m**3)       :       1.302E-04       1.397E-04       2.385E-04         CURCE       :       :       1.312E+00       2.758E+00       2.961E+04         TMMCAS (kq/m**2/s)       :       1.302E-04       2.385E-04       :       : <tr< th=""><th>HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL</th><th>: : : : : : :</th><th>24 Goldfish Hydrogen LATING AIR/ SFl G</th><th>24 fluoride VAPOR MIX SF2 0</th><th>· 24</th><th></th><th></th><th></th><th></th></tr<>	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SFl G	24 fluoride VAPOR MIX SF2 0	· 24				
PLL (m)       :       10.339       8.000       8.000         MBIENT CONDITIONS         23 (m)       :       2.00       2.00         20 (m/s)       :       3.7.20       36.18       34.41         ISP       .       0.00300       0.00300       0.0037         ROUGH (m)       :       0.0057       0.087       0.087         CROSSW DELTA       :       0.905       0.305       0.305         CZ       :       1.150       1.150       1.150         LODD       XSTEP       :       0.484       0.625       0.625         CMAN (kg/m**3)       :       1.302E-04       1.794E-04       1.794E-04         CURCE       :       :       1.302E-04       1.397E-04       2.085E-04         CURCE       :       :       1.4.132E+00       2.758E+00       2	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED	: : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0	24 fluoride VAPOR MIX WF2 0	· 24				
MBJENT CONDITIONS 23 (m) : 2.00 2.00 2.00 30 (m/s) : 5.60 4.20 5.40 ATRTEMP (C) : 37.20 36.18 34.41 RH : 0.049 0.107 0.177 TOROUND (C) : 37.20 36.18 34.41 ISP ROUGH (m) : 0.00300 0.00300 0.00300 MONIN (m) : 101.29 173.14 40.93 CROSSW DELTA : 0.905 0.087 0.027 CROSSW DELTA : 0.905 0.305 0.305 CZ : 1.150 1.150 1.150 LOUD XSTEP : 0.484 0.625 0.625 CMAN (m) : 338.5 197.5 437.5 CMAN (m) : 338.5 197.5 437.5 CMAN (m) : 338.5 197.5 437.5 CMAN (m/sr ³ ) : 1.3002-07 1.0002-07 CT (kg/m ^{**3} ) : 1.3002-04 1.397E-04 2.385E-04 CURCE FLUX (kg/m ^{**2} /s) : 4.132E+00 2.758E+00 2.961E+00 TIMPGAS (C) : 15.38 1.62.6 15.41 C7GAS (J/mo1/K) : 29.39 19.35 29.02 MGGAS (Kg/kmo1) : 28.14 28.15 23.17 MTGAS (C/Kmo1) : 28.14 28.15 23.17 MTGAS (Kg/mm) : 28.14 28.15 23.17 MTGAS (Kg/mm) : 28.14 28.15 23.17 MTGAS (Kg/kmo1) : 2	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF	: : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0	24 fluoride VAPOR MIX WF2 0	· 24				
23 (m)       :       2.00       2.00       2.00         23 (m/s)       :       5.60       4.20       5.40         ALRTEMP (C)       :       37.20       36.18       34.41         RH       :       0.049       0.107       0.177         TEROUND (C)       :       37.20       36.18       34.41         ISF       ROUGH (m)       :       0.00300       0.00300         WONIN (m)       :       101.29       173.14       40.93         CROSSW DELTA       :       0.087       0.087       0.287         CROSSW DELTA       :       0.305       0.305       0.305         CZ       :       1.150       1.150       1.150         LOUD       XSTEP       :       0.484       0.625       0.625         CMAX (m)       :       338.5       197.5       437.5         CMMNN (kg/m**3)       :       1.0002+07       1.0002+07       1.0002+07         CU (kg/m**3)       :       1.3022=04       1.397E=04       2.085E=04         CURCE       :       :       16.33       16.26       16.42         ?ZMGAS (C)       :       :       15.33       16.26       16	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF OOL DATA PLL (m)	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339	24 fluoride VAPOR MIX SF2 (0 2 8.000	· 24 5F3 0 2 8.000				
ISP ROUGH (m) : 0.00300 0.00300 0.00300 ROUGN (m) : 101.29 173.14 40.93 CROSSW DELTA : 0.087 0.087 CROSSW JETA : 0.905 0.905 0.305 CE : 1.150 1.150 1.150 LOUD XSTEP : 0.484 0.625 0.625 XCMAX (m) : 338.5 197.3 437.5 CAMIN (Kq/m**3) : 1.002-07 1.002-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 L1 (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE FLIX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEM9GAS (C) : 16.33 16.26 16.11 CFGAS (J/mol/K) : 29.29 29.05 29.22 MWGAS (Kq/km0l) : 28.14 28.15 29.17 WMGAS (kq/km0l) : 0.00 0.20 0.20	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED ?SEUDO-GAS APPROACH TRIAL ICNT ISURF COL DATA PLL (m) ?LAW (m)	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339	24 fluoride VAPOR MIX SF2 (0 2 8.000	· 24 5F3 0 2 8.000				
ISP ROUGH (m) : 0.00300 0.00300 0.00300 ROUGN (m) : 101.29 173.14 40.93 CROSSW DELTA : 0.087 0.087 CROSSW JETA : 0.905 0.905 0.305 CE : 1.150 1.150 1.150 LOUD XSTEP : 0.484 0.625 0.625 XCMAX (m) : 338.5 197.3 437.5 CAMIN (Kq/m**3) : 1.002-07 1.0002-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 LL (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE FLIX (Kq/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEM9GAS (C) : 16.33 16.16 16.11 CFGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (Kq/km0l) : 28.14 28.15 29.17 MWGAS (Kq/km0l) : 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COL DATA PLL (m) PLAW (m) MBIENT CONDITIONS	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339 5.170	24 fluoride VAPOR MIX F2 0 2 8.000 4.000	· 24	24			
ISP ROUGH (m) : 0.00300 0.00300 0.00300 ROUGN (m) : 101.29 173.14 40.93 CROSSW DELTA : 0.087 0.087 CROSSW JETA : 0.905 0.905 0.305 CE : 1.150 1.150 1.150 LOUD XSTEP : 0.484 0.625 0.625 XCMAX (m) : 338.5 197.3 437.5 CAMIN (Kq/m**3) : 1.002-07 1.002-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 L1 (kg/m**3) : 1.302E-04 1.397E-04 2.385E-04 CURCE FLIX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEM9GAS (C) : 16.33 16.26 16.11 CFGAS (J/mol/K) : 29.29 29.05 29.22 MWGAS (Kq/km0l) : 28.14 28.15 29.17 WMGAS (kq/km0l) : 0.00 0.20 0.20	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COL DATA PLL (M) PLAW (M) MEDIENT CONDITIONS	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339 5.170	24 fluoride VAPOR MIX F2 0 2 8.000 4.000	· 24	24			
ROUGH (m)       :       0.00300       0.00300       0.00300         MONIN (m)       :       101.29       173.14       40.93         CROSSW DELTA       :       0.087       0.087         CROSSW JETA       :       0.905       0.305         CROSSW JETA       :       0.905       0.305         CROSSW JETA       :       0.905       0.305         CZ       :       1.150       1.150         LOUD       XSTEP       :       0.484       0.625       0.625         XCMAX (m)       :       338.5       197.5       437.5         CAMIN (kq/m**3)       :       1.000E-07       1.000E-07       1.000E-07         CU (kq/m**3)       :       1.300E-04       1.794E-04       4.170E-04         CU (kq/m**3)       :       1.302E-04       1.397E-04       2.085E-04         CURCE       :       1.6.38       16.126       16.41         CPAGAS (C)       :       16.38       16.26       16.41         CPAGAS (C/moi/K)       :       29.03       29.02         WAGAS       :       0.00       0.00       0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICHT ISURF OOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339 5.170	24 fluoride VAPOR MIX F2 0 2 8.000 4.000	· 24	24			
LOUD KSTEP : 0.484 0.625 0.625 KMAX (m) : 338.5 197.5 437.5 CAMIN (kg/m**3) : 1.000E-07 1.000E-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 CL (kg/m**3) : 1.802E-04 1.397E-04 2.085E-04 CURCE FLUX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEMGGAS (c) : 16.38 16.26 16.41 CZGAS (J/moi/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COL DATA PLL (m) PLAW (m) MBIENT CONDITIONS	: : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 0 2 10.339 5.170	24 fluoride VAPOR MIX F2 0 2 8.000 4.000	· 24	24			
LOUD KSTEP : 0.484 0.625 0.625 KMAX (m) : 338.5 197.5 437.5 CAMIN (kg/m**3) : 1.000E-07 1.000E-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 CL (kg/m**3) : 1.802E-04 1.397E-04 2.085E-04 CURCE FLUX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEMGGAS (c) : 16.38 16.26 16.41 CZGAS (J/moi/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF OOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) 00 (m/s) AIRTEMP (C) RH TGROUND (C) ISP	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ 5F1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	24 fluoride VAPOR MIX F2 0 8.000 4.000 4.000 2.90 4.20 36.18 0.107 36.18	24 F3 0 2.00 4.000 2.00 5.40 34.41 0.177 34.41	24			
LOUD KSTEP : 0.484 0.625 0.625 KMAX (m) : 338.5 197.5 437.5 CAMIN (kg/m**3) : 1.000E-07 1.000E-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 CL (kg/m**3) : 1.802E-04 1.397E-04 2.085E-04 CURCE FLUX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEM9GAS (c) : 16.38 16.26 16.41 CZGAS (J/moi/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF OOL DATA PLL (m) PLLW (m) MBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH GGROUND (C) ISP	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ 5F1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	24 fluoride VAPOR MIX F2 0 8.000 4.000 4.000 2.90 4.20 36.18 0.107 36.18	24 F3 0 2.00 4.000 2.00 5.40 34.41 0.177 34.41	24			
LOUD KSTEP : 0.484 0.625 0.625 KMAX (m) : 338.5 197.5 437.5 CAMIN (kg/m**3) : 1.000E-07 1.000E-07 CU (kg/m**3) : 3.604E-04 3.794E-04 4.170E-04 CL (kg/m**3) : 1.802E-04 1.397E-04 2.085E-04 CURCE FLUX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEM9GAS (c) : 16.38 16.26 16.41 CZGAS (J/moi/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF OOL DATA PLL (m) PLLW (m) MBIENT CONDITIONS 20 (m) U0 (m/s) AIRTEMP (C) RH GGROUND (C) ISP	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ 5F1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	24 fluoride VAPOR MIX F2 0 8.000 4.000 4.000 2.90 4.20 36.18 0.107 36.18	24 F3 0 2.00 4.000 2.00 5.40 34.41 0.177 34.41	24			
KSTEP       :       0.484       0.625       0.625         XCMAX (m)       :       338.5       197.5       437.5         CAMIN (kq/m**3)       :       1.0002-07       1.0002-07       1.0002-07         CU (kq/m**3)       :       1.3002-04       1.7942-04       4.1702-04         CL (kq/m**3)       :       1.3022-04       1.3972+04       2.0852-04         CURCE       :       :       16.38       16.26       16.41         CZGAS (C)       :       :       16.38       16.26       16.41         CZGAS (J/moi/K)       :       :       29.09       29.02       MMGAS (kg/kmol)       :       28.14       28.15       28.17         WATCAS       :       0.00       :       :       0.20       :       0.20	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF OOL DATA PLL (m) PLL (m) PLHW (m) MBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CE	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ 5F1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	24 fluoride VAPOR MIX F2 0 8.000 4.000 4.000 2.90 4.20 36.18 0.107 36.18	24 F3 0 2.00 4.000 2.00 5.40 34.41 0.177 34.41	24			
CURCE FLUX (kg/m**2/s) : 4.132E+00 3.758E+00 2.961E+00 TEMPGAS (c) : 15.38 16.26 16.41 CPGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 28.17 WATGAS : 0.00 0.00 0.00	HEATGR HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF OOL DATA PLL (m) PLL (m) PLL (m) PLL (m) PLL (m) COL DATA PLL (m) PLL (m) PL (m) PLL	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ 5F1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20	24 fluoride VAPOR MIX F2 0 8.000 4.000 4.000 2.90 4.20 36.18 0.107 36.18	24 F3 0 2.00 4.000 2.00 5.40 34.41 0.177 34.41	24			
CURCE FLUX (kg/m**2/s) : 4.132E+00 3.758E+00 2.961E+00 TEMPGAS (c) : 16.38 16.26 16.41 CPGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW DELTA CE	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.387 0.905 1.150	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.90 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 0.305 1.150	24 F3 0 2.00 2.00 5.40 34.41 0.177 34.41 0.1277 34.41 0.1277 34.51 0.1250	24			
CURCE FLUX (kg/m**2/s) : 4.132E+00 3.758E+00 2.961E+00 TEMPGAS (c) : 16.38 16.26 16.41 CPGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATCAS : 0.00 0.00 0.00	HEATGR HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW DELTA CE	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.387 0.905 1.150	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.90 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 0.305 1.150	24 F3 0 2.00 2.00 5.40 34.41 0.177 34.41 0.1277 0.34.41 0.1277 0.1270 1.150	24			
FLUX (kg/m**2/s) : 4.132E+00 2.758E+00 2.961E+00 TEMPGAS (C) : 16.38 16.26 16.41 CFGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 28.17 WATGAS : 0.00 0.00 0.00	HEATGR HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C) ISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW DELTA CE	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.387 0.905 1.150	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.90 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 0.305 1.150	24 F3 0 2.00 2.00 5.40 34.41 0.177 34.41 0.1277 0.34.41 0.1277 0.1270 1.150	24			
TEMPGAS (C) : 15.38 16.26 16.41 CPGAS (J/mol/K) : 29.09 29.05 29.02 MWGAS (kg/kmol) : 28.14 28.15 29.17 WATGAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLL (m) PLL (m) PLL (m) PLL (m) COOL DATA PLL (m) PLL (m)	: : : : : : : : : : : : : : : : : : :	24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.387 0.905 1.150	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.90 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 0.305 1.150	24 F3 0 2.00 2.00 5.40 34.41 0.177 34.41 0.1277 0.34.41 0.1277 0.1270 1.150	24			
CPGAS (J/mol/K) : 29.09 29.05 29.02 MMGAS (Kg/kmol) : 28.14 28.15 28.17 WATGAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) UD (m/s) AIRTEMP (C) RH UD (m/s) AIRTEMP (C) RH TGROUND (C) USP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW DELTA CROSSW BETA CE LOUD XSTEP XMIN (kg/m-*3) CL (kg/m-*3) CU (kg/m-*3) CU (kg/m-*3)		24 Goldfish Hydrogen LATING AIR/ SF1 0 2.00 5.60 37.20 0.049 37.20 0.00300 101.29 0.385 1.150 0.484 338.5 1.2002-07 3.604E-04 1.3022-04	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.00 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 0.365 1.150 0.525 1.754-04 1.3972-04	24 FF3 0 2.00 2.00 5.40 34.41 0.177 34.41 0.177 0.305 1.150 0.625 1.3002-07 1.702-04 2.085E-04	24			
WATSAS : 0.00 0.00 0.00	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MBIENT CONDITIONS 20 (m) UD (m/s) ALRTEMP (C) RH TGROUND (C) DSSP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW BETA CE LOUD XSTEP CMAX (m) CAMIN (kg/m**3) CI (kg/m**2/s) FLUX (kg/m**2/s)		24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.00300 101.29 0.387 0.905 1.150 0.484 338.5 1.2002-07 3.604E-04 1.302E-04	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.00 4.000 2.00 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.20300 173.14 0.687 0.305 1.150 2.585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 +00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 2.7585 -00 -00 2.7585 -00 -00 -00 -00 -00 -00 -00 -0	24 FF3 0 2.00 5.40 3.41 0.177 34.41 0.0300 40.93 0.387 0.305 1.150 0.625 1.37.5 1.2002-07 4.70E-04 2.385E-04 2.961E+0C	24			
NF1772 · 74 14 74	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICNT ISURF COOL DATA PLL (m) PLAW (m) MEDIENT CONDITIONS 20 (m) UD (m/s) AIRTEMP (C) RH TGROUND (C) PLSF ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW BETA CE LOUD XSTEP CMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CU (kg/m**2/s) TEMPGAS (C)		24 Goldfish Hydrogen LATING AIR/ SF1 0 2.00 5.60 37.20 0.00300 101.29 0.37.20 0.00300 101.29 0.387 0.905 1.150 0.484 338.5 1.3002-07 3.604E-04 1.3022-04	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.00 4.000 2.00 4.000 36.18 0.107 36.18 0.20300 173.14 0.687 0.305 1.150 0.625 1.758E+00 16.26	24 <b>F3</b> 0 2.00 5.40 34.41 0.0300 4.300 2.20 5.40 34.41 0.177 34.41 0.0300 40.93 0.087 0.305 1.150 0.625 437.5 1.2002-07 4.70E-04 2.961E+0C 2.961E+0C 16.41 29.52	24			
	HEATGR HEG. INPUT DATA FOR CHEMICAL RELEASED PSEUDO-GAS APPROACH TRIAL ICMT ISURF COOL DATA PLL (m) PLL (m) PLHW (m) MBJENT CONDITIONS 20 (m) UO (m/s) AIRTEMP (C) RH UGROUND (C) ISP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW DELTA CROSSW BETA CE LOUD XSTEP CMAX (m) CAMIN (kg/m=3) CL (kg/m=3		24 Goldfish Hydrogen LATING AIR/ SF1 0 2 10.339 5.170 2.00 5.60 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.049 37.20 0.057 0.905 1.150 0.157 0.905 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150	24 fluoride VAPOR MIX F2 0 8.000 4.000 2.00 4.000 2.00 4.000 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.107 36.18 0.2000 173.14 0.687 0.305 1.150 2.500 4.20 1.150 1.150 2.585 4.20 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1	24 FF3 0 2.00 5.40 3.41 0.177 34.41 0.0300 40.93 0.387 0.305 1.150 0.625 1.37.5 1.2002-07 4.170E-04 2.385E-04 2.961E+00 16.41 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.52 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.55 29.5	24			

GEG. INPUT DATA FOR	. :		(sontinuo)	.s, AP:	C PUBL	*4546	92	0732290	0505705	T78	
inemical released Trial Iont		Krypcon- HC1	HC2		HC 4	HCS					
ISURF	:					-					
PCOL DATA											
?LL (m) ?LHW (m)	:										
AMBIENT CONDITIONS											
20 (m) 30 (m/s) AIRTEMP (C) RH	:	1.50	3.90	7.10	1.50 3.90 13.45 0.200	2.50 5.62					
TGROUND (C)	:	17.67			13.45						
DISP											
RCUGH (m) MONIN (m) CROSSW DELTA CROSSW BETA CE	: : : : : : : : : : : : : : : : : : : :	0.03000 5.87 0.062 0.902 1.150	-111.33 0.224 0.997	-186.12 0.178 0.897	0.03000 -26.65 0.178 0.397 1.150	0.03000 70.24 0.096 0.902 1.150					
CLOUD											
XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3)	:::::::::::::::::::::::::::::::::::::::	1.216E-07	162.5 1.000E-07 1.239E-07	162.5 1.000E-07	1.234E-07	1.269E-07					
SOURCE											
* FLUX (kg/m**2/s) TEMPGAS (C) CPGAS (J/mol/K) MMGAS (kg/kmol) WATGAS	:::::::::::::::::::::::::::::::::::::::	1.828E-04 17.67 7.22 29.00 0.00	1.875E-04 12.23 7.22 29.00 0.00	7.22	6.063E-04 13.45 7.22 29.00 0.00	2.672E-04 5.62 7.22 29.00 0.00					
HEATGR	:	24	24		24	24					
HEG. INPUT DATA FOR CHEMICAL RELEASED		plin Sands quified Nat	tural Gas								
trial Icnt Isurf		MS27 3 0 4	1529 1 0 4	4534 X 0 4	1535 0 4						
* PCOL DATA		-	•		•						
* ?LL (m) ?LHW (m)	:	18.600 9.300	20.900 10.450	18.000 9.000	20.100 10.050						
AMBIENT CONDITIONS											
20 (m) J0 (m/s)	:	10.00 5.50 14.90 0.530 15.60	10.00	10.00	10.00						
JO (m/s) Airtemp (C) Rh	:	14.90	16.10	15.20	16.10						
TGROUND (C)	:	15.60	16.80	15.80	16.60						
DISP											
ROUGH (m) Monin (m) Crossw Delta Crossw Beta Ce	:	0.00030 -36.95 0.064 0.905	0.00030 1220.63 0.064 0.905	0.00030 -102.72 0.064 0.305 1.130	0.00030 -31.58 0.064 0.905						
	•				÷1≈ÿV						
*	•	0.269	0.230	3.278	0 240						
XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3) CL (kg/m**3)		61.3 1.000E-07 1.368E-04 9.341E-05	43.2 43.2 1.00CE-07 1.77SE-04 3.377E-05	37.7 1.000E-07 1.319E-04 9.095E-05	45.1 45.1 1.000E-07 1.790E-04 3.948E-05						
SCURCE											
FLUX (kg/m=*2/s) TEMPGAS (C) JTGAS (J/mol/K) WWGAS (kg/kmol) WATGAS HEATGR	: : : : : : : : : : : : : : : : : : : :	6.709E-02 -161.50 38.29 17.11 0.30	5.575E-02 -161.30 35.39 :5.25 0.00 24	5.5392-02 -151.30 37.29 15.56 0.00 24	6.7052-02 -161.30 36.58 16.29 0.00 24						

258

HEG. INPUT DATA FOR Chemical Released		iin Sands uified Pro	opane Gas	API P	UBL*45	46 92	<b>III</b> 073	32290 1	0505706
TRIAL Iont Isurf	: M : :	542 S S42 S 4	1543 : O 4	4546 : 0 4	4547 S 3 4	4549 3 3 4	4550 S S 4		4554 0 4
PCOL DATA									
?LL (m) ?LNW (m)	:	14.900 7.450	14.300 7.150	15.700 7.350	18.500 9.100	13.300 5.550	19.300 9.750	21.700 10.350	
AMBIENT CONDITIONS									
20 (m) UO (m/s) AIRTEMP (C) RH TGROUND (C)	::	10.00 4.00 18.30 0.800 18.50	10.00 5.30 17.00 0.300 18.90	10.00 3.10 18.70 0.710 17.30	10.00 5.20 17.40 0.780 17.10	10.00 5.50 13.30 0.880 13.00	10.00 7.90 10.40 0.790 9.90	10.00 7.40 11.30 0.630 11.30	3.40 0.350
DISP T									
ROUGH (m) Monin (m) Crossw Jelta Crossw Jeta Ce	::	0.00030 99.73 0.064 0.905 1.150	0.00030 9999.00 0.064 0.905 1.150	0.00030 750.15 0.064 0.305 1.150	0.00030 294.22 J.064 0.905 1.150	0.00030 69.60 0.064 0.905 1.150	0.00030 208.74 0.064 0.305 1.130	0.00030 224.90 0.064 0.905 1.150	67.34
XSTEP XMAX (m) CAMIN (kg/m=*3) CU (kg/m=*3) CL (kg/m=*3) *		0.336 60.3 1.000E-07 2.318E-04 1.159E-04	0.350 52.9 1.300E-07 2.318E-04 1.159E-04	0.318 57.4 1.000E-07 2.319E-04 1.160E-04	0.269 48.4 1.000E-07 2.314E-04 1.157E-04	0.376 67.7 1.000E-07 2.309E-04 1.155E-04	0.256 45.2 1.000E-07 2.318E-04 1.159E-04	0.230 53.0 1.200E-07 2.315E-04 1.158E-04	52.2 1.000E-07
SOURCE									
FLUX (kg/m**2/s) TEMPGAS (C) CZGAS (J/mol/K) MMGAS (kg/kmol) WATGAS HEATGR		9.400E-02 -42.10 73.71 43.93 0.00 24	9.389E-02 -42.10 73.71 43.93 0.00 24	9.481E-02 -42.10 73.75 43.95 0.00 24	9.414E-02 -42.10 73.56 43.84 0.00 24	-42.10 73.43 43.76	9.439E-02 -42.10 73.71 43.93 0.00 24	9.397E-02 -42.10 73.61 43.87 0.00 24	-42.10 73.73 43.94 0.00
HEG. INPUT DATA FOR CHEMICAL RELEASED	:	Prairie ( Sulfur di	irass, sec loxide	1					
		Sulfur di	oxide			2 <b>G13</b> 0 3	P <b>G15</b> 8 0 3	2 <b>G16</b> 0 3	PG17 0 3
CHEMICAL RELEASED TRIAL ICNT ISORF FOOL DATA	: : P(	Sulfur di G7 P O	loxide 2G8 1 0	2 <b>G9</b> 1 0	0	0	0	0	0
CHEMICAL RELEASED TRIAL IONT ISORF	: : P(	Sulfur di G7 P O	loxide 2G8 1 0	2 <b>G9</b> 1 0	0	0	0	0	0 3
CHEMICAL RELEASED TRIAL ICAT ISURF POOL DATA PLL (m) PLKW (m)	: : P( : :	Sulfur di G7 E 3 8.000	2G8 2 2G8 2 3 8.000	2 <b>G9</b> 1 0 3 8.000	0 3 3.000	0 3 8.000	0 3 8.000	0 3 8.000	0 3 8.000
CHEMICAL RELEASED TRIAL ICNT ISORF POOL DATA PLL (m) PLEM (m)	: : P( : :	Sulfur di G7 E 3 8.000	2.00 2.00 2.00 4.00 31.95 0.200	2 <b>G9</b> 1 0 3 8.000 4.000 2.00 5.30 27.95	0 3.000 4.000 4.60 30.95 0.200	0 3 8.000 4.000 1.50 19.35 0.200	0 3 8.000 4.000 2.00 3.40 21.35 0.200	0 3 8.000 4.000 2.00 3.20 27.95 0.200	0 3 8.000 4.000 2.00 3.30 25.95 0.200
CHEMICAL RELEASED TRIAL ICNT ISORF POOL DATA PIL (m) PLAW (m) AMBIENT CONDITIONS ZO (m) JO (m/s) AIRTEMP (C) RH	: : : : : :	Sulfur di G7 P 0 3 8.000 4.200 4.200 31.95 0.200	2.00 2.00 2.00 4.00 31.95 0.200	2 <b>G9</b> 1 0 3 8.000 4.000 6.30 27.35 0.200	0 3.000 4.000 4.60 30.95 0.200	0 3 8.000 4.000 1.50 19.35 0.200	0 3 8.000 4.000 2.00 3.40 21.35 0.200	0 3 8.000 4.000 2.00 3.20 27.95 0.200	0 3 8.000 4.000 2.00 3.30 25.95 0.200
CHEMICAL RELEASED TRIAL IENT ISURF POOL DATA PLL (m) PLL (m)	: P( : : : : : : : : : : : : : :	Sulfur di G7 P 0 3 8.000 4.200 4.200 31.95 0.200	2.00 2.00 4.000 4.000 4.000 1.95 0.200 31.95 0.200 -20.61 0.209 0.397	2G9 1 8.000 4.000 2.00 5.30 27.35 0.200 27.35 0.200 -34.12 0.209	0 3.000 4.000 4.000 4.60 30.95 0.200 30.95 0.20600 -7.45 0.371 0.366	0 3 8.000 4.200 1.50 19.95 0.200 19.95 0.20600 6.31 0.065 0.902	0 3 8.000 4.000 2.00 21.35 0.200 21.35 0.200 21.95 0.00600 -7.74 0.527 0.365	0 3 8.000 4.000 2.00 3.20 27.95 0.200 27.95 0.20600 -7.33 0.527 C.365	0 3 3.00 4.000 2.00 3.30 25.95 0.200 26.95 0.20600 49.31 0.128 0.305
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLAW (m) AMBIENT CONDITIONS ZO (m) JO (m/s) AIRTEMP (C) RH IGROUND (C) PONIN (m) CROSSW DELTA CROSSW BETA	: P( : : : : : : : : : : : : : : : : : :	Sulfur di G7 P 0 3 8.000 4.200 4.200 31.95 0.200 31.95 0.200 31.95 0.200 31.95 0.200 31.95	2.00 2.00 4.000 4.000 4.000 1.95 0.200 31.95 0.200 -20.61 0.209 0.397	2G9 1 8.000 4.000 2.20 6.30 27.35 0.200 27.35 0.200 0.34.12 0.209 0.897	0 3.000 4.000 4.000 4.60 30.95 0.200 30.95 0.20600 -7.45 0.371 0.366	0 3 8.000 4.200 1.50 19.95 0.200 19.95 0.20600 6.31 0.065 0.902	0 3 8.000 4.000 2.00 21.35 0.200 21.35 0.200 21.95 0.00600 -7.74 0.527 0.365	0 3 8.000 4.000 2.00 3.20 27.95 0.200 27.95 0.20600 -7.33 0.527 C.365	0 3 3.00 4.000 2.00 3.30 25.95 0.200 26.95 0.20600 49.31 0.128 0.305
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLNM (m) AMBIENT CONDITIONS CO (m) JO (m/s) AIRTEMP (C) RH TGROUND (C) TSP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW BETA CZ CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3)	· P	Sulfur di G7 P 0 3 8.000 4.200 4.200 31.95 0.200 31.95 0.200 31.95 0.200 31.95 0.200 0.625 1.255 1.200E-07 2.558E-06	208 10 208 10 3 3 3 3 4.000 4.000 2.00 4.000 31.95 0.200 31.95 0.209 0.397 1.150 0.625 1.205 1.205 1.255 1.205 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.2	2G9 1 8.000 4.000 2.00 6.30 27.35 0.200 27.35 0.200 27.35 0.200 27.35 0.209 0.897 1.150 0.625 162.5 1.200E-07 2.592E-06	0 3.000 4.000 2.00 4.60 30.95 0.200 30.95 0.200 30.95 0.200 0.371 0.366 1.150 0.625 1.62.5 1.2002-07 2.3665-06	0 3 8.000 4.300 1.30 19.35 0.200 19.95 0.200 6.31 0.365 0.902 1.150 0.625 1.62.5 1.3002-07 2.5632-36	0 3 8.000 4.000 21.35 0.200 21.35 0.200 21.35 0.200 21.35 0.200 21.35 0.220 21.35	0 3 8.000 4.000 2.00 27.95 0.200 27.95 0.200 27.95 0.200 27.95 0.525 1.150 0.525 1.500 2.002-07 2.392=-06	0 3 8.000 4.000 2.00 3.30 25.95 0.200 26.95 0.20600 49.81 0.128 0.305 1.150 0.525 1.52.5 1.2002-07 2.5012-06
CHEMICAL RELEASED TRIAL ICNT ISURF POOL DATA PLL (m) PLNM (m) AMBIENT CONDITIONS CO (m) JO (m/s) AIRTEMP (C) RH TGROUND (C) TSP ROUGH (m) MONIN (m) CROSSW DELTA CROSSW DELTA CROSSW BETA CZ CLOUD XSTEP XMAX (m) CAMIN (kg/m**3) CU (kg/m**3)	· P	Sulfur di G7 P 0 3 8.000 4.200 4.200 31.95 0.200 31.95 0.200 31.95 0.200 31.95 0.200 0.625 1.255 1.200E-07 2.558E-06	208 10 208 10 3 3 3 3 4.000 4.000 2.00 4.000 31.95 0.200 31.95 0.209 0.397 1.150 0.625 1.205 1.205 1.255 1.205 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.2	2G9 1 8.000 4.000 2.00 6.30 27.35 0.200 27.35 0.200 27.35 0.200 27.35 0.209 0.897 1.150 0.625 162.5 1.200E-07 2.592E-06	0 3.000 4.000 2.00 4.60 30.95 0.200 30.95 0.200 30.95 0.200 0.371 0.366 1.150 0.625 1.62.5 1.2002-07 2.3665-06	0 3 8.000 4.300 1.30 19.35 0.200 19.95 0.200 6.31 0.365 0.902 1.150 0.625 1.62.5 1.3002-07 2.5632-36	0 3 8.000 4.000 21.00 21.00 21.95 0.200 21.95 0.200 21.95 0.205 0.255 1.150 0.625 1.150 0.625 1.150 2.545-06	0 3 8.000 4.000 2.00 27.95 0.200 27.95 0.200 27.95 0.200 27.95 0.525 1.150 0.525 1.500 2.002-07 2.392=-06	0 3 8.000 4.000 2.00 3.30 25.95 0.200 26.95 0.20600 49.81 0.128 0.305 1.150 0.525 1.52.5 1.2002-07 2.5012-06

904 🗰

:

.

			APT PL	JBC*4246	•
HEG. INPUT DATA FOR	:	Thorney	Island (co	0.0 1 90 90 91	
INEMICAL RELEASED	:	Mixture	of Freen-i	2 ing Nitzogen	
				- the hasavyen	
TRIAL	:	7045	1047		
	:		) 🤉		
ISURF	:	3	3		
PCOL DATA					
PCOL DATA					
711 (m)					
?LHH (m)	:	a*550			
* ************************************	:	4.000	4.000		
AMBIENT CONDITIONS					
* 					
20 (m)					
00 (m/s)	:	10.00			
AIRTEMP (C)	:	2.30			
RH (C)	:	13.05			
TGROUND (C)		1.000			
•	1	12.75	14.45		
DISP					
*					
Rough (m)	:	0.01000			
MONIN (m)	:	21.57			
CROSSW CELTA	:	0.354	10.34		
CROSSW BETA	:	0.302	0.036		
CE	:	1,150			
•	•	1.130	1.150		
CIOUD					
-					
XSTEP	:	0 626	0.625		
XMAX (m)	:	121.5			
CAMIN (kg/m==3)	:	1.3002-07	1 0000.00		
CU (kg/m==3)	:	2.463E-04	2 4638.04		
CL (Xg/m==3)	:	1.2312-04	2.1322-04		
*	•	T. T	1-2265-04		
SCURCE					
•					
FLUX (kg/m=*2/s)	:	1.667E-01	1.5975-01		
TEMPGAS (C)		13.05			
C2GAS (J/mol/K)	:	35.26	35.26		
MAGAS (kg/kmol)	;	57.30	57.80		
WATGAS	:	0.00	0.00		
HEATGR	÷	24	24		
	-	27	41		

.

INPUFF INPUT DATA : CHEMICAL RELEASED	FOR:		led natura.	i jas		073229	0 0505	708 78	17 🔳
TRIAL NAME		3U2	303	304	305	306	367 3	303	309
27	:				303	508	507		
LADT	:								
1222									
XEYDS?	:								
	:					-			
SYMAX (m)	:								
1200	:								
LPIC	:								
KGRDSW (km)	;	0.00							
YGRDSW (km)	:	-4.30							
XSIZZ (km)	:	8.00							
YSIZE (km)	: : :	8.00							
NTIME	:	1							*
ITIME (s)	:		680	720	760	650	680	1100	80C
NSOURC	:								
NREC	:	-	2	2	2	2	3	4	4
XREC (km)	:	-	0.057	-	-	-	-	0.057	0.057
YREC (km)				0.007	0.037	0.037	0.007	0.057	
	:				1 000			1 000	1 000
IREC (m)	:			1.000	1.000		1.000	1.000	1.000
XREC (km)	:			0.140	0.140	0.140	0.140	0.140	0.140
YREC (km)	:								
ZREC (m)	:	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
XREC (km)	:	-0.100	-0.100	-0.100	-0.100	-0.100	0.400	0.400	0.400
YREC (km)	:								
ZREC (m)	:			1.000	1,000	1.000	1.000	1.000	1.000
XREC (km)					-0,100			0.300	0.800
YREC (km)	:								
ZREC (m)	:			1.000	1.000	1.000	1,000	1.000	1.000
LDWSH				1.000	1.000	1.000	1.000	1.000	1.000
	:								
LBID	:								
LDEPS	:								
LUPLRS	:								
LCMBPF	:	Т							
ISTEP (s)	:	-1							
ISAMPL (s)	:	5	10	10	10	10	10	10	5
ISTRTC (s)	:								
SDCMEN	:	1.00							
ANHGT (m)	:	1.00 2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
WDIR (deg)	:	770 0	2.00	2.00	2.00	2.00	2.00	4.00	2.00
WCDD (m(m)		270.0 5.40 9999.	5 (A	0.00				1	6 70
WSPD (m/s)	:	5.40	5.40	9.00	7.40	9.10	8.40	1.80	5.70
51. (m)	:	9999.							
kst	:	3		3	3	3	4	6	5
	:	-9,900							
SGTH (rad)	:	-9.900							
TEMP (K)	:	311.27	307.75	309.05	314.27	312.67	306.96	306.02	308.52
CDIS (km)	:			0.057				0.057	0.057
XSORC (km)	:								
YSORC (km)	:								
NSRCDS	:			4	4	5	4	10	10
	:	170		180	190		170		80
	:	170	110	100	190	130	10	110	80
DV (cm/s)	:								
SVV (cm/s)	:	0.00							
Q2 (g/s)		0.00 0.861E+05	0.380E+05	0.870E+05	0.812E+05	0.9225+05	0.995E+05	0.1172+06	0.136E+06
HPP (m)	:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TSP (K)		300.00							
DP (m)	:	1.00							
VSP (m/s)	:								
VFP (==3/s)	:								
SYOP (a)	:			2.21	2.38	2.28	2.37	5.55	3.32
SZOP (m)	:								
			2.33	2.21	2.38	2.28	2.37	5.55	3.32
SDIR (deg)	:								
SSPD (m/s)		0.00							
ALL FOLLCWING SOURC	.Σ Ε	MISSION REC	ORDS HAVE 1	UERO PHIESS	CON RATE				

ALL FOLLOWING SOURCE EMISSION RECORDS HAVE ZERO EMISSION RATE

· · · · · · · · · · · · · · · · · · ·	_							
induff indut data fo Chemical Aeleased	8:		Coyota				-	
	•		-idue1	260	acur	ar gas		
TRIAL NAME	:	303		CCS		206		
in Ladt	:		5 F					
1222	-		ŗ					
XEYDS?								
KEYDSP JYMAX (m)	:		1000.0					
			5					
LPIC KGRDSW (Xm)	:							
YGRDSW (Xm)	;		0.00					
XSIZE (km)	:		9.00					
YSIZE (km)	1		8.00					
0 L 4012	2		1			_		
ITIME (s)	1		700		700	,	720	
NSOURC NREC	: :		13			1	4	
XREC (km)	:		3.140					
YREC (km)			0.000					
IREC (m)	:		1.000		1.000	)	1.000	
XREC (km)	:		0.200		0.200	)	0.200	
YREC (km) CREC (m)	:		0,000		1.000		1,000	
XREC (km)	-		1.000		0.300	,	3.300	
YREC (km)			0.000					
3REC (m)	:		1.000		1.000	)	1.300 3.400	
XREC (km)	:				0.400	)	3.400	
YREC (km) ZREC (m)	:		0.000		1 000			
YREC (km) CREC (km) XREC (km) ZREC (km) XREC (km) YREC (km) YREC (km) ZREC (m) LDWSH LDD	:		1.000 F		1.000	;	1.000	
LBID	÷		5					
LBID LDEPS LUPLRS LCMBPF ISTEP (s) ISAMPL (s) ISAMPL (s) ISTRTC (s) 3DCMBN NHGT (m) dDIR (deg) WSPD (m/s) HL (m) KST SGPH (rad) SGTH (rad) TEMP (K) CDIS (km)	1		F					
LUPLRS	:		F					
LCMBPF ISTEP (s)	÷		T					
ISAMPL (s)	•		-1 5		10	•	10	
ISTRTC (S)	-		ō					
TOCMEN	:		1.00					
NHGT (m)	:		2.00		2.00	)	2.00	
(DIR (deg) WSPD (m/s)	1		270.0					
HIL (m)	1		6.00 9999.		9.70		4.00	
KST	1		3		3		4	
SGPH (rad)	1		-9.900					
SGTH (rad)	1		-9.900					
TEMP (K) CDIS (km)	:		311.45		0.140 0.140		97.26	
XSORC (km)	:		0.000		0.210		0.210	
YSORC (km)	:		0.000					
MCDCDC			10		7		9	
ISUPDT (S)	1		70		100		80	
ISUPDT (S) SV (Cm/S) SVV (Cm/S) QP (g/S) HPP (m) TCD (V)	-		0.00					
Q2 (g/s)	:	0.1	012+06	0.12	295+06	0.12	32+06	
HPP (m)	:		0.00		0.00		5.00	
-DE (5)	:		300.00					
52 (m) VSB (m(a)	:		1.00					
752 (m/s) 772 (m**3/s)	1		0.00					
SYOP (m)			2.75		2.36		3.42	
SZOP (m)	;		2.75		2.36		3.42	
SDIR (deg)	:		270.					
SSPD (m/s)	:	70	0.00			485A		7100
ALL FOLLOWING SOURCE	- 11	1921	ON RECO	nWS	UVA E	46.KQ	CHISSICN	MATE

## Mechane is at least \$64 in a

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

262

.

	INFUFF INFUT DATA FOR:	Desert forto			 או שוו בוונ	92	0222520	0505710	335	
		Annyarous Am	aonia A	PI PUD	5644340		01222.12			
		<b>571 57</b>	z 27	з р [.]	<b>T</b> 4					
	IM :	ว์								
	1ADT :									
	1222 :	5								
	KEYDSP :	:								
	SYMAX (D) :	1000.0								
	1200	7								
	1210									
	KGRDSW (km) :	0.00								
	YGRDSW (km)									
	XSIZE (km)									
	YSIZE (km)									
	NTIME :									
	ITIME (s)		780	350	1140					
			700	120	40					
			2	2	2					
	XREC (km) :		0,100	0.100	0.100					
	YREC (km) :									
	IREC (a) :		1,000	1.000	1.000					
	XREC (km) :		0.300	0.300	0.300					
	YREC (km) :									
	2REC (m) :		1.000	1.000	1_000					
1	LDWSH :									
÷	1310 :									
\$	LDEPS :									
÷	LUPLRS :	2								
÷.	LCMBPF :	I								
Ĺ	ISTEP (s) :	-1								
	ISAMPL (s) :	10	10	10	10					
	ISTRIC (s) :	٥								
	SDCMBN :	1.30								
	ANHGT (m) :	2.00	2.00	2.00	2.00					
	WDIR (deg) :	270.0								
	WSPD (m/s) :		5.80	7.40	4.50					
	HL (m) :									
	KST :	4	4	4	6					
	SG2H (rad) :		•							
	SGTH (rad) :									
	TEMP (K) :		303.63	307.07	305.63					
	CDIS (km) :	0.100	0.100	0.100	0,100					
	XSORC (km) :							•	•	
	YSORC (km)									
	NSRCDS :	6	3	5	3					
	ISUPDT (s)	130	260	170	380					
	DV (cm/s)	0.00								
	SVV (cm/s)	0.00								
	QP (g/s) :		1712+06 0	1312+06	9672+05					
	HPP (m) :	0.79	0.79	0.79	0.79					
	TSP (K)	300.00	v., , ,	***3						
	DP (m)	1.00								
	VSP (m/s)	0.00								
	VEP (m**3/s) :	0.00								
	SYOP (m) :	1.64	2.19	2.10	2.32					
	5ZOP (m)	1.64	2.19	2.10	2.32					
	SDIR (deg) :	270.	6 a a J							
	SS2D (m/s)	0.00								
		~.~~								

SS2D (m/s) : 0.00 ALL FOLLOWING SOURCE EMISSION RECORDS HAVE ZERO EMISSION RATE

•

20.

139"79	INPUT	DATA	703:
SREMICA	L 3818	CIERAL	:

FCR: Galafian API : Hydrogen fluoride

.

CHEMICAL RELEASED	: Hydrod	jen fluorid	e	
TO TAL NAME	: 071	372	373	
		57.2		
1.07				
1322	:			
XEYDS2	:			
	1000.3			
1200	: 10001			
	;			
	: 0.00			
	: -4.30			
	: 3.00			
ITIME (S)	: 1170		1440	
NSCURC				
NREC	: 1		•	
XREC (km)				
•	: 0.200		0.300	
	: 0.000			
	: 1.000			
	: 1.000		1.300	
	: 0.000			
JREC (m)	: 1.000			
XREC (km)	: 3.000		3.000	
YREC (km)	: 0.000			
IREC (m)	: 1,000		2,000	
2REC (m) XREC (km) TREC (km) IDWSH LDUPLAS LDUPLAS LOUPLAS LCMBOF ISTATC (s) SDCMEN ANHGT (m) MDIR (deg) MSPD (m/s) HL (m) KST SOCH (reg)	: 7			
LBID	1 I			
ldeps	: f			
luplrs	: 7	•		
lower	: 1	•		
ISTEP (s)	: -1			
ISAMPL (S)	: 10	10	10	
ISTRTC (s)	: 0			
SDCMEN	: 1.00	r		
ANHGT (m)	: 2.00	2.00	2.00	
WDIR (deg)	: 270.0	ł		
WSPD (m/s)	: 5,60	4.20	5.40	
HL (m)	: 9999.			
XST		4	4	
SGPH (rad)	: -9.900	1		
	: ~9,900			
	: 310.40		307.61	
	: 0.300			
	: 0.000			
	: 0,000			
	: 9		4	
		360	360	
OV (cm/s)	: 130 : 0.00 : 0.00 : 0.277E+05			
OV (cm/s) SVV (cm/s)	. 0.00			
QP (g/s)	0.2778+05	0.1052+05	0.1032+05	
		1.00	1.00	
TSP (K)	: 300.00		4.04	
32 (m)	: 300.00 : 1.00			
VSP (m/s)	: 0.00			
	: 0.00			
SYCP (m)			0.76	
SZOP (m)				
SDIR (deg)	: 1.22	0.87	0.76	
SSPD (m/s)	: 270.			
	: 0.00			
ALL FOLLOWING SOURCE	SUITSOION KEC	ONDO NAVE	erko EMISSIC	a KATE

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 264

INPUFF INPUT DAT			(continuo	us)			073
CHEMICAL RELEASE	D :	Xrypcon	-35				
TRIAL NAME	:	HC1 H	c2 #	ca ::		ics	A
22	:	5					
ladt	:	7					
1222	:	5					
XEYOS2	:	1				-	
JYMAX (m)	:	1000.0					
1205	:	1 1000.5 F					
12IC	:						
KGRDSW (km)	:						
YGRDSW (km)		-4 20					
XSIZE (km)	:	5.00					
YSIZE (km)	:						
NTIME	:	1					
ITIME (s)	:		2730	2580	1200	3570	
NSCURC	:	1					
NREC	:	2	2	2	2	2	
KREC (km)	:	0.200	0.200	0.200	0.200	0.200	
YREC (km)	:						
CREC (m)		1,500	1.300	1.500	1,500	1,500	
XREC (km)	:	0.800	0.800				
YREC (km)		0.000					
IREC (m)	:		1.500	1.500	1.500	1.500	
LOWSH	:	7.000					
1310		5					
LDEPS	:						
1021.85	:	7					
LCMBPF	:						
ISTEP (s)	:						
ISAMPL (s)	:		10	10	10	10	
ISTRIC (s)	:	0	10	10	10	10	
SDCMEN	:						
ANHGT (m)	:			1,50	1.50	1.50	
WDIR (deg)	:	270.0	1.00	1.00	1.30	1.30	
WS2D (m/s)	:		2 00	- 10	2 20		
	:		3.90	7.10	3.90	2.60	
HL (m) KST	:	-	3	-	-	~	
	:	-9.900	د	3	3	6	
SGPH (rad) SGTH (rad)	:	-9.900					
TEMP (K)			20E (7	200 02	10C (F	170 00	
COIS (km)	:		285.43				
XSORC (km)	:	0.200	0,200	0.200	0.200	0.200	
YSORC (km)	•	0.000					
NSRCDS		0.000	3	3	2	3	
ISUPDT (s)	:		910			1190	
• •	:	930	910	860	600	1790	
DV (cm/s)	•	0.00					
SVV (cm/s)		930 0.00 0.00 11.7 1.00 300 00	10.0	27.3	38.8		
QP (g/s)		11.00	12.0				
HPP (m)		1.00 300,00	1.00	1.00	1.00	1-00	
TSP (K)	•						
DP (m)	:						
VSP (m/s)	:						
VEP (m==3/s)	:			· ·-		<b>.</b>	
SYOP (m)	:		0.03		0.05		
SZCP (m)	:	0.05	0.03	0.03	0,05	0.04	
SDIR (deg) SSPD (m/s)	:	270.					
SOLU (EL/S)	:	0.00					
ALL FOLLOWING SO	0465 5	HISSION RECO	AUS RAVE Z	LKU LMISSI	UN RATE		

PI PUBL*4546 92

## Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

265

INPUFF INPUT DATA 70 Imemical released		rg 'inscant	aneous) A	PI PUE	3L*4546	92 📖	0732290	0505713	044	
TRIAL NAME	: Xrypt: : HI2		HIS 3	HI6	H <b>1</b> 7 H	:23				
		5			G <b>a</b> ( ) .					
LADT										
1222										
KEYDSP										
SYMAX (m)	: 1000.3									
1200	:									
	•									
1210										
KGRDSW (km)	: 0.00									
YGRDSW (km)	: -4.00									
KSIZE (km)	: 8.00									
YSIZE (km)	: \$.00									
NTIME	: :									
ITIME (S)	: 1200	) 300	700	700	300	1100				
NSOURC	: 1									
NREC	: 2		2	2	2	2				
XREC (km)	. 0.200	0.200		0.200	0.200	0.200				
YREC (km)	: 0.000					•				
IREC (m)	: 1.500		1.500	1.500	1.300	1.300				
XREC (km)	: 0.800			0.500	0.300	0,800				
YREC (km)	: 0.000					01000				
CREC (m)	: 1,500		1.300	1.500	1.500	1.500				
LOWSH	: :		11000		A. 300	**300				
1310	: 7									
LDEPS	: 1									
LUPLRS	: 7									
LCMBPF	: 7									
ISTEP (s)	: -1									
ISAMPL (S)	: 1	. 1	1	:	1	1				
ISTRTC (s)	: 0	)								
SDCMBN	: 1.00	)								
ANHGT (m)	: 1.50	1.50	1,50	1.50	1.50	1.50				
WDIR (deg)	: 270.0									
WSPD (m/s)	: 1.30		7.60	7.20	4.50	1.60				
HL (m)	9999.									
KST	; 7		3	3	3	6				
SG2H (rad)	-9.900			-		v				
SGTH (rad)	: -9,900									
TEMP (K)	: 291.54		288.71	288.26	285.59	277.76				
CDIS (km)										
XSORC (km)			0,200	0.200	0.200	0,200				
	: 0.000									
YSORC (km)	: 0.000									
NSRCDS	: 100		100	100	100	100				
ISUPDT (s)	: 12		7	7	8	11				
DV (cm/s)	: 0.00									
SVV (cm/s)	: 0.00									
Q2 (g/s)	: 833.		0.1432+04			909.				
HPP (m)	: 0,00		0.00	0.00	0.00	0.00				
TSP (K)	: 300.00									
DP (m)	: 1.00									
VSP (m/s)	: 0.00									
779 (m**3/s)	: 0.00									
SYOP (m)	: 0.41		0.22	0.23	9.27	0.38				
SZOP (m)	: 0.41		0.22	0.23	0.27	0.38				
SDIR (deg)	: 270.	V.20	V.44	0.23	V • 4 /	~~~~				
SSPD (m/s)	: 0.00									
			1000 51/10	ALT						
ALL FOLLOWING SOURCE	SHISSION KEC	OWS WAR	-CRU 201551	ON ANTA						

266

INPUFF INPUT DATA FOR			API	PUBL*454	6 92	0732290	0505714	T80 🔳
	: Liquified Nat							
	: MS27 MS2 : 5	29 MS	534	MS35				
	: 7							
	: F : 1							
SYMAX (m)	: 1000.0							
	: 7							
LPIC XGRDSW (Xm)	: T : 0.00							
	-4,30							
	: 8.00							
	: 8.00 : 1							
	: 300	690	700	700				
	: 1	_	_	_				
	: 5 : 0.089	7 0.058	2 0.087					
and a second	: 0.000			V.115				
	0.900	0.900	0.900					
	: 0.131 : 0.000	0.090	0.179	0.250				
	: 0.900	0,900	0.900	0,900				
XREC (km)	: 0.324	0,130	-0.100	0.406				
	. 0.000	0 000	0.900	0,900				
	: 0.900 : 0.400	0.900 0.182	-0.100					
YREC (km)	0.000							
	. 0.900	0.900	0.900					
· · · · · · · · · · · · · · · · · · ·	: 0.650 : 0.000	0.252	-0.100	-0.100				
	0.900	0.900	0.900	0,900				
	-0.100	0.324	-0,100	-0.100				
	0.000 0.900	0.900	0.900	0,900				
	-0.100	0.403	-0.100					
	0,000							
	0.900 F	0.900	0.900	0,900				
Laid								
LDEPS								
LUPLRS LCMBPF	: 7 : T							
	: -1							
	:, 1	1	1	1				
	: 0 : 1.00							
	10.00	10.00	10.00	10.00				
	: 270.0							
	5.60 9999.	7.40	8.50	9.50				
	4	4	4	4				
•	-9.900							
	: -9.900 : 288.10	289.30	288.40	289.30				
	0.089	0,058	0.087					
XSORC (km)	0.000							
YSORC (km) NSRCDS LSUPDT (s)	: 0.000	3	7	5				
ISUPDT (s)	: 5 : 160	230	100	140				
DV (cm/s)	: 0.00							
SVV (cm/s) QP (g/s)	0.00 0.00 0.232E+05 0.	2925+05 0	). 71 SE+0 S	0 2715+05				
APP (m)	: 0.00	0.00	0.00	0.00				
TSP (K)	: 300.00							
DP (m) VSP (m/s)	: 1.00							
	: 0.00							
SYOP (m)	: 1.35	1.35	1.07	1.14				
	: 1.35 : 270.	1.35	1.07	1.14				
	: 0.00							
ALL FOLLOWING SOURCE		DS HAVE ZI	ERO EMISS	ION RATE				

ingupp ingut data for		ld s		L*4546	92 🔳	0792	290 05	05715	917 🛛	
	: Liquifiea									
ipial same In			\$46	MS47	MS49	MS50 3	MS52	MS54		
* * * *	: 6									
* 11 * * * 11 * *	. 7									
KEYDSP	. 1									
SYMAX (m)	: 1000.0									
1200	: 7									
LPIC XGRDSW (km)										
YGRDSW (km)	: 0.00 : -4.00									
a a construction and the second se	8.00									
YSILE (km)	8.00									
NTIME	: 1									
ITIME (s)	: 720 : 1		720	940	720	300	700	720		
NSCURC NREC	: 7		7	6	6	4	5	4		
	0.028		0.034	0.090			3.361	3.356		
YREC (km)	: 0.000									
	: 0.900		0.900	0.900			3.300	0.500		
XREC (km)	. 0.053		0.391	0.128	0.129	3.093	0.095	0.085		
YREC (km) SREC (m)	: 0.000 : 0.000		0,900	0.900	0.900	0.900	0.900	0.500		
XREC (km)	0.083		0.130	0.182			0.178	0.178		
YREC (km)	0.000									
	: 0.900		0.900	0,900			3.900	0.500		
	: 0.123		0.132	0.250	0.250	0.400	3.249	3.247		
YREC (km) 2REC (m)	0.000		0.900	0.300	0.900	0.900	2 000	A 500		
XREC (km)	0.900		0.250	0.321	0.322		0.900 0.398	0.500 -0,100		
	0,000				*1466		1050			
ZREC (m)			0,900	0.900	0,900	0,900	0.900	0,500	ļ.	
	0.247	-0,100	0.322	0.400	0.400	-0.100	3.630	-0.100		
	. 0.000	0 200	0 000	0,900		0 000	0.000	0 500		
ZREC (m) XREC (km)			0.900 0.401	-0.100	0,900 -0,100		0.900 -0.100	0.500 -0.100		
	0.000		0.101		-01-00		-0.200	-0.100		
	0.900		0.900	0.900	0.900	0.900	0.900	0.500	j.	
LDWSH										
lbid Ldeps										
LUPLRS	: î									
LCMBPF	. T									
ISTEP (S)	-1									
ISAMPL (s)			1	1	1	2	1	1		
ISTRTC (s)	0									
SDCMBN Anhgt (m)			10.00	10.00	10.00	10.00	10.00	10.00		
WDIR (deg)	270.0		10100	20.00	10.00	-0-00	~~.~~	20.00		
WSPD (m/s)			8.10	6.20	5,50	7,90	7,40	3.70		
HL (m)	9999.									
KST SGFH (rad)	4 -9,900	4	4	4	4	4	4	4		
SGTH (rad)	-9.900 -9.900									
	291.50		291.90	290.60	286.50	283.50	285.00	291.50	1	
	0.028	0.088								
	0.000									
	0.000		2	,		-	-			
	: 4 180		360							
	0.00		500	210	50	200	-10	200		
SVV (cm/s)	0.00									
	0.209E+05									
	. 0.00		0.00	0.00	0.00	0.00	0.00	0.00		
TSP (K) DP (m)	300.00									
	0.00									
•	0.00									
SYCP (m)	. 0.95	0.76	0.71					0.93		
	: 0.95		0.71	0.95	0.72	0.37	1.01	0.93		
	270. 0.00									
ALL FOLLOWING SOURCE			ERO FUTCE	TON RATE						
			***** ********************************							

INPUFF INPUT DATA FOR INFMICAL RELEASED	R:	Prairie Sulfur :	Jrass, J	ec 2 AP	I PUBL	*4546	92 🔳	073229	10 0505716	853 🔳
TRIAL NAME	: 207								G17	
274	:,	5								
LADT	:	÷								
1722	:	7								
XEYDS2	:	1								
SYMAX (m)		1000.0								
1202	:	F								
	:									
XGRDSW (km)		0.00								
YGRDSW (km)		-4.00								
XSIZE (km) XSIZE (km)		3,00								
YSIZE (km) NTIME	:	8.00								
	:	1 1200	1200			1800	1200	1200	1200	
	:		1200	1200	0 1200	1800	1200	1200	_200	
	:	1 5	5	5	5 S	2	5	5	5	
	:	0.050	0.050	-				-	0.050	
YREC (Xm)	:	0.000		5.03(	0.000	0.400	0.030			
	:	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	
XREC (Km)	:	0.100	0.100	0.100					0.100	
YREC (km)	:	0.000								
IREC (a)	:	1.500	1.500						1.300	
XREC (km)	:	0.200	0.200						0.200	
YREC (km)		0.000								
IREC (m)	:	1.500	1.500						1.500	
		0.400	0.400	0.400	0.400	-0.100	0.400	0.400	0.400	
YREC (km)		0.000		-						
		1.500	1.500						1.500	
		0.800	0.800	0,800	0.300	-0,100	0.300	0.800	0.800	
YREC (km) ZREC (m)		0.000							1 600	
-	:	1.500 F	1.500	1.500	1.500	1.500	1.500	1.500	1.500	
ldwsh LBID	:	2 2								
LBID LDEPS	:	F F								
LUPLRS	:	r F								
LCMBPF	:	ŕ								
ISTEP (s)	:	-1								
ISAMPL (S)	:	10	10	10	10	10	10	10	10	
ISTRTC (s)	:	0		- `		10			-	
SDCMBN		1.00								
ANHGT (m)	:	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
		270.0								
		4.20	4.90	6.90	4.60	1.30	3.40	3.20	3.30	
HL (m) XST		9999.							-	
KST SGPV (rad)		2	3	3	3 2	7	1	1	5	
SGPH (rad) SGTH (rad)		-9.900								
		-9.900 305.15	305.15	301.15	5 304.15	293.15	295.15	301	300 15	
CDIS (km)		0.050	305.15						300.15 0.050	
XSORC (km)		0.000	0.000	0.030	. 0.020	0.400	0.030	0.050	J. J.J.	
		0.000								
NSRCDS	:	2	2	2	2 2	3	2	2	2	
ISUPDT (s)	:	600	600						500	
DV (cm./s)	:	0.00								
SVV (cm/s)	:	0.00								
Q2 (g/s)	: 89.	.9						93.0		
( <i>m</i> ) 992	:	0.45						0.45		
TS2 (K)		300.00								
		1.00								
	:	0.00								
VEP (m**3/s) SYCP (m)		0.00	· · ·	<u> </u>		-	-	-	A 45	
	:	0.05	0.05		1 0.05					
	: :	0.05 270.	0.05	0.04	0.05	0.07	0.06	0.06	0.05	
	:	270.								
ALL FOLLOWING SOURCE			205 23100 -	TERO ENTER	ION DATE					
			LUC TAYL		A CHINE					

.

.

INPUTT INPUT DATA FOR: INEMICAL RELEASED : :

TRIAL XAME IN

702:		Thorney	:5)	lang (con	11nu	1221
:	3	Mixcure	0ź	Freen-12	ana	Nitrogen
:	TC45	10 5	47			

🗰 0792290 0505717 79T 🛤

API PUBL*4546 92

.

4A 1 2 2 m			
1707 1702	: 7		
XEYDSP			
SYMAX (m)	1000.5		
1200	: :		
1210	1 7		
XGRDSW (km)	: 0.00		
	: -4.30		
	: 9.00		
YSIZE (Xm)	: 8.00		
NTIME	: 1		
	920	940	
	: 1		
NREC	; 9	6	
	0.040	0.050	
	: 0,000		
	: 0.400	0.400	
	: 0.053	0.090	
	: 0.000		
	: 0.400	0.400	
	: 0.072	0.212	
	: 0.000		
	: 0.400	0.400	
	: 0.090	0.250	
	: 0.000		
	. 0.400	0.400	
	: 0.112	0.335	
	: 0.000		
	: 0.400	0.400	
	: 0,158	0.472	
	: 0.000		
ZREC (m)	: 0,400	0.400	
XREC (km)	: 0.250	-0.100	
YREC (km)	: 0.000		
ZREC (m)	: 0.400	0.400	
XREC (km)	: 0.335	-0.100	
YREC (km)	: 0.000		
ZREC (m)	: 0.400	0.400	
XREC (km)	: 0.472	-0.100	
YREC (km)	: 0.000		
ZREC (m)	: 0.400	0.400	
ldwsh	1 7		
	: ?		
ldeps	: 7		
	: ?		
	: T		
ISTEP (S)	: -1		
	: 5	5	
	: 0		
	: 1.00		
	: 10.00	10.00	
WDIR (deg)	: 270.0		
	: 2.30	1.50	
hL (m)	: 9999.	-	
XST CODU (March)	: 6	7	
SGPH (rad)	: -9.900		
SGTH (rad)	-9.900		
TEMP (K)	: 286.25	287.45	
CDIS (km)	: 0.040	0.050	
XSCRC (km)	: 0.000		
YSORC (km) NSRCDS	: 0.000	•	
ISUPDT (s)	: 2	2	
DV (cm/s)	: 460	470	
5VV (cm/s)	: 0.00		
QP (g/s)	· · · · · · · ·	0 1042406	
HPP (m)	: 0.107E+05 : 0.00	3.30	
TSP (K)	: 300.00	V.JU	
D2 (m)	: 1.00		
VSP (m/s)	: 0.00		
VFP (m**3/s)	: 0.00		
SYCP (m)	: 0.77	3.94	
5202 (m)	: 0.77	3.34	
SDIR (deg)		V.24	
· ·	• 220		
332D (m/s)	: 270.		
337D (m/s) All following source	: 0.00	1004 VAVE 1200	TUTESTON DAMP

INPUFF INPUT DATA FOR	· · · ·		nstantaneo			1735571	0505	718 621	
CHEMICAL RELEASED	: Mixture	of Freen-	12 and N12	roçen					
TRIAL NAME	: 716 7	17 -	-:3 -:	:9 7	112 T	:::3 ::	117 7	118 7	219
	: 5								
1107									
1722 XIYOS2									
XEYDSP SYMAX (m)	•								
1200									
	: 7								
KGRDSW (km)	: 0.00								
YCRDSW (Km)									
XSIZE (km)									
YSIZE (km) NTIME									
ITIME (S)	•	700	300	900	300	700	700	700	700
NSCURC									
NREC		7	7	7	5	6	7	10	7
XREC (km)		0.071	0.071	0.071	0.071	0.071	0.040	0.040	0.040
YREC (km) IREC (m)		2 100	0.400	0.400	0.400	0.400	0.400	0.400	0.400
IREC (m) XREC (km)		0.400 0.100	0.100	0.100	0.150	0.100	0.050	0.060	0.060
YREC (km)									
IREC (m)		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km)		0.150	0.150	0.141	0.200	0.224	0.071	0.070	0.071
YREC (km)									
IREC (m)		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km)		0,180	0.200	0,180	0.361	0.316	0,100	0.080	0.100
YREC (km) ZREC (m)		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0,400
XREC (km)		0.224	0.364	0.100	0.500	0.361	0.141	0.100	0.224
YREC (km)									
ZREC (m)		0.400	0.400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (km)		0.361	0.412	0.316	-0.100	0,412	0.224	0,200	0.361
YREC (km)									
ZREC (m)		0.400	0_400	0.400	0.400	0.400	0.400	0.400	0.400
XREC (Xm) YREC (Xm)		0.500	0.510	0.503	-0.100	-0,100	0.500	0.224	0.583
ZREC (m)		0.400	0.400	0.400	0.400	0,400	0.400	0.400	0.400
XREC (km)		-0.100	-0.100	-0.100	-0.100	-0.100	-0.100	0.300	-0.100
YREC (km)									
ZREC (m)		0,400	0.400	0.400	0.400	0.400	.0.400	0.400	0.400
XREC (km)		-0.100	-0.100	-0.100	-0.100	-0.100	-0.100	0.400	-0.100
YREC (Xm) ZREC (m)		0 400	0.400	0 400	0.400	0.400	0 400	0 400	0.400
ZREC (m) XREC (km)		0.400 -0.100	0,400 -0,100	0.400 -0.100	0.400 -0.100	-0,100	0.400 -0.100	0.400 0.510	-0.100
YREC (km)		-0.100	-0.200	-0.100		-0.200	-0,100	0.010	-01200
IREC (m)		0,400	0.400	0.400	0.400	0.400	0.400	0,400	0.400
LDWSH									
1310									
LDEPS									
LU7LRS LCCBPF									
ISTEP (S)	T -1								
ISAMPL (S)		1	1	1	1	1	1	1	1
	. 0	-	-	-	-	-	-	-	-
SDCMBN	1.00								
	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	270.0	2.44						7 10	<i></i>
	: 2.80 : 9999.	3.40	2.40	1.70	2.50	7.30	5.00	7.40	6.40
	: 9999.	6	4	7	6	4	4	4	5
	-9.900	5	1	<i>'</i>	5	1	•	Ŧ	5
SGTH (rad)	-9.900								
	291.83	290.46							286.47
	. 0.071	0.071	0.071	0.071	0.071	0.071	0.040	0.040	0.040
	: 0.000								
	: 0.000 : 100	100	100	100	100	100	100	100	100
	: 5	100		-00					-00
	: 0.00		-	-	-				
SVV (Cm/s)	: 0.00								
								0.554E+06	
	: 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	: 300.00								
	: 1.00 : 0.00								
	: 0.00								
	: 4.74	5.15	5.74	5.43	5.56	3.48	3.94	3.25	3.38
3ZC2 (m)	: 4.74	5.15							
SDIR (deg)	: 270.								
	: 0.00			au					
ALL FOLLOWING SOURCE	EMISSION RECO	RDS HAVE 1	ERO EMISSI	UN RATE					

	: Burro : Liquefied natural jas	46 92 MM 0732290 0505719 562 MM
MEASURED TEMPERAJURE (X) MEASUREMENT HEIDNT (m) MEASUREMENT HEIDNT (X) MEASUREMENT HEIDNT (X) 12-20 TEMP DIFFERENCE (F) ENIOSION RATE (XG/3)	: 311.27 307.75 339.35 : 1.3 1.3 1.3 : 310.22 306.33 307.37 : 10.3 10.3 10.3 : -1.18 -2.29 -1.52 : 86.1000 37.3800 36.3600	114.27 512.67 306.36 306.32 308.52 1.0 1.3 1.3 1.0 1.0 313.28 311.64 306.33 306.23 308.42 10.3 10.0 10.3 10.3 10.0 -1.47 -1.55 -3.75 3.55 -3.27 31.2500 32.2200 39.4600 116.3300 135.3300
33/DG INPUT DATA FOR Chemical Released	: Coyoté : Liquefied natural gas	Methane is at least 86% in c
MEASURED TEMPERATURE (X) MEASUREMENT HEIGHT (M) MEASURED TEMPERATURE (X) MEASUREMENT HEIGHT (M) 16-2M TEMP DIFFERENCE (F) EMISSION RATE (XG/S)	: 311.45 301.49 297.26 : 1.0 1.0 1.0 : 310.38 300.29 297.46 : 4.0 4.0 4.0 : -2.13 -2.55 0.58 : 100.6700 129.3200 123.3300	
ob/dg input data for Chemical Released		
MEASURED TEMPERATURE (X) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (X) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	: 302.03 303.63 307.07 : 0.8 0.8 0.8 : 303.31 304.31 307.05 : 16.2 16.2 16.2 : 1.67 0.87 -0.38 : 79.7000 111.5000 130.7000	305.63 0.8 306.30 16.2 1.75 96.7000
CB/DG INPUT DATA FOR Chemical released	: Goldfish : Hydrogen fluoride	
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/S)	: 310,40 309.38 307.61 : 2.0 2.0 2.0 : 310,33 309.41 308.96 : 16.6 16.6 16.6 : 0.94 0.06 2.36 : 27.6700 10.4600 10.2700	
ob/dg input data for Chemical released	: Hanford (continuous) : Xrypton-85	
MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE (K) MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F) EMISSION RATE (KG/3)	: 290.87 285.43 288.93 : 1.5 0.9 0.9 : 292.19 284.71 237.54 : 6.1 15.0 15.0 : 6.10 -0.97 -1.33 : 0.0117 0.0120 0.0278	286.65 278.32 0.9 0.9 284.65 279.32 15.0 15.0 -2.38 0.68 0.0388 0.0171

SB/DG INPUT DATA FOR	-	Maolin Sands				0732290 0505720 284 🔳
INEMICAL RELEASED MEASURED TEMPERATURE (K)		Liquified Nat	289.30	298.40	289.30	API PUBL*4546 92
MEASUREMENT HEIGHT (M) MEASURED TEMPERATURE (K)	:	1.9	289.24	298.26	289.30	
MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE (F)	:	10.1	10.1	10.1 -0.30	10.1	
EMISSION RATE (KG/S)	:	23.2100	29.1600	21.3100	27.0900	

CB/DG INPUT DATA FOR CHEMICAL RELEASED		Maplin Sands Liquified Pr							
MEASUREMENT HEIGHT (m)	(K)	 291.50 1.9 291.49 10.1 -0.38 20.3700	290.20 1.9 290.12 10.1 -0.25 19.2000	291.90 1.9 291.36 10.1 -0.16 23.3700	290.60 1.9 290.57 10.1 -0.13 32.5700	286.30 1.9 286.71 10.1 3.47 16.7100	283.60 1.9 283.56 10.1 0.98 35.3900	285.00 1.9 285.05 10.1 0.06 44.2500	281.60 1.9 281.63 10.1 0.02 19.2000

•

OB/DG INPUT DATA FOR CHEMICAL RELEASED		:	Prairie Grass, set l Sulfur dioxide								
MEASUREMENT HEIGHT (m)	(K) (K) (F)	::	305.15 2.0 303.55 16.0 -2.88 0.0899	305.15 2.0 303.95 16.0 -2.16 0.0911	301.15 2.0 299.55 16.0 -2.58 0.0920	304.15 2.0 302.15 16.0 -3.60 0.0921	293.15 2.0 295.05 16.0 3.42 0.0611	295.15 2.0 294.05 16.0 -1.98 0.0955	301.15 2.0 300.15 16.0 -1.80 0.0930	300.15 2.3 300.65 16.0 0.90 0.0565	

OB/DG INPUT DATA FOR CHEMICAL RELEASED		: :		Island (continuous) of Freen-12 and Nitrogen
MEASURED TEMPERATURE MEASUREMENT HEIGHT (m) MEASURED TEMPERATURE MEASUREMENT HEIGHT (m) 16-2m TEMP DIFFERENCE EMISSION RATE (KG/S)	(K)	: . : :	286.25 2.0 -99.90 -99.9 0.54 10.6700	287.45 2.0 -99.30 -99.9 0.45 10.2200

273

PHAST DATA FOR : JNEMICAL RELEASED :	API	PUBL*4	1546 98	2 📖 🛛	732290	05057	51 110 📷
JHAST DATA FOR : JNEMICAL RELEASED :	Burro Liquefied natural :	jas					
*** STUDY DATA METRIC UN	1723 ***						
WIND SPEED J 10m .m/s):	6.0 5.3	10.3	3.4	10.4	9.7	2.6	5.7
STAB CLASS (A=1, F=0) :	3. 3.	3.		3.	··· ·	s., s.,	··· ⁴ ·
PRESSURE V/mars	311.3 JU/.3 37927 3484C	309.0	314.3	312.7	30710	200.0	308.5
SURFACE TEMP (X)	311.3 307.3	309.0	314.3	312.7	307.0	306.0	10301
RELATIVE HUMIDITY	0.071 0.052	3.327	3.359	0.351	0.374	3.045	0.144
WIND SPEED J 10m .m/s): STA9 CLASS (A=1,F=6) : TEMPERATURE (X) PRESSURE M/m^C) : SURFACE TEMP (X) : RELATIVE MUMIDITY : SURFACE ROUGHNESS PAR :	0.03697 0.03697	3.33697	0.03697	0.03697	0.03697	3.23697	0.03697
TRIAL DESCRIPTION : B	U2	1U4 SC	15 30	6 30	57 BU-	55 8	9
REC. DISTANCE (m) :	57.0 57.0	57.0	57.0	57.0	57.0	57.0	57.0
REC. DISTANCE (M) :		140.0	:40.3	140.0	10.0	140.0	140.0
REC. DISTANCE (m)		-39.3	-39.9	-30 3	400.0	200.0	800.0
CONC OF INTEREST (DDM):	100.00 100.00	100.00	100.00	100.00	100.00	100.00	100.00
MATERIAL NUMBER :	32 32	32	32	32	32	32	32
TRIAL DESCRIPTION : B REC. DISTANCE (M) : REC. DISTANCE (M) : NATERIAL NUMBER : INVENTORY (kg) :	14980.0 14712.0	15221.0	15444.0	11888.0	17289.0	12453.3	10730.0
*** RELEASE DATA ***							
"Ise Reactive Liquid Method	(specify evap rate)						
STORAGE TEMP. (K) :	111.6 111.6	111.5	111.5	111.6	111.5	111.5	111.5
EMISSION RATE (Kg/s) :	96.10 47.38	36.96	31.25	92.22	99.46	116.93	135.98
CHIS KATE (KG/S/M"2)		0.3850	3.3859	0.0850	0,0850	J.3850	0.0850
STERAGE TEMP. (K) : EMISSION RATE (Kg/s) : EMIS RATE (Kg/s/m ² ) : DURATION (s) : FCOL AREA (m ² ) :	1012.79 1034.91	1022.97	956.07	1085.11	1170.21	1375.56	1599.63
PHAST DATA FOR : CHEMICAL RELEASED :	Coyota			eboon is a		L (	
			1 64	Citerine 73 e	15 TRANC 30.	1 14 G	
*** STUDY DATA (METRIC UN	ITS) ***						
WIND SPEED 3 10m (m/s);	6.7 11,0	5.7					
TEMPERATURE (K)	377 5 201 4	707 1					
PRESSURE (N/m^2)	93624, 93928,	94232					
SURFACE TEMP (K)	311.5 301.5	297.3					
RELATIVE HUMIDITY :	0.113 0.221	0.228					
*** STUDY DATA (METRIC UN WIND SPEED 3 10m (m/s); STAB CLASS (A=1,7=6) ; TEMPERATURE (K) ; PRESSURE (N/m^2) ; SURFACE TEMP (K) ; RELATIVE HUMIDITY ; SURFACE ROUGHNESS PAR ;	0.03697 0.03697	0.03697					
TRIAL DESCRIPTION : C REC. DISTANCE (m) : REC. DISTANCE (m) : REC. DISTANCE (m) : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : INVENTORY (kg) :							
TRIAL DESCRIPTION : C		06					
REC. DISTANCE (m)	200.0 200.0	200.0					
REC. DISTANCE (m)	300.0 300.0	300.0					
REC. DISTANCE (m)	-99.9 400.0	400.0					
CONC OF INTEREST (ppm) :	100.00 100.00	100.00					
MATERIAL NUMBER :	32 32	32					
INVENTORY (KG) :	6532.0 12676.0	10139.0					
*** RELEASE DATA ***							

*** RELEASE DATA ***				
Use Reactive Liquid Me	thod	(specify	evap zace)	
STORAGE TEMP. (K)	:	111.5	111.6	::1.5
EMISSION RATE (kg/s)	:	100.57	129.02	123.03
IMIS RATE (kg/s/m^2)	:	<b>0.0850</b>	0.3850	0.0850
DURATION (s)	1	65.00	98.00	32.00
POOL AREA (m^2)	:	1184.20	1517.77	:447.48

THAST DATA FOR	: Desert Ta	ostoise	API	PUBL	*4546	92		0732290	0505722
CHEMICAL RELEASED			7						
STUDY DATA (METR	IC UNITS) ·	••							
WIND SPEED 3 10m .m/	s):	9.7	7.5	3.3	5.2				
STAB CLASS (A=1, F=6)	:	÷.	· ·	••••	÷.				
TEMPERATURE (K)	: 30	2.3	303.5	307.1	305.5				
FRESSORE (N/H-2)	: 908	89.	30390.	76600.	30201.				
SUMPAGE LEVE (A)	:	14.3	1175	204.3	204.3				
WIND SPEED 3 10m (m/ STAB CLASS (A+1,F-6) TEMPERATURE (X) PRESSURE (N/m^2) SURFACE TEMP (X) RELATIVE HUMIDITY SURFACE ROUGHNESS PAI	R: 0.04	931 0	.24931	0.04931	3.34931				
TRIAL DESCRIPTION	· 071	777	57	<b>د د</b>	- <u>-</u>				
REC. DISTANCE (m)	: 10	0.0	100.0	100.2	100.0				
REC. DISTANCE (m)	: 30	0.0	900.0	300.0	300.0				
CONC OF INTEREST (DD	a): 100	. 00	100.00	100.00	100.00				
MATERIAL NUMBER	:	5	5	5	5				
TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (pp: MATERIAL NUMBER INVENTORY (kg)	: 1004	2.2 2	8432.5	21696.2	36842.7				
Use Padded Liquid Vest and Liquid Lear () STORAGE TEMP. (K) STORAGE PRESS. (bar-	sel								
STORAGE TEMP. (K)	: 29	4.7	293.3	295.3	297.3				
STORAGE PRESS. (bar-	g}: 10.00	000 11	.02000	11.23000	11.54000				
DIKE AREA (m ² ) 1-wet,2=dry,4=water HOLE DIAMETER (mm) RELEASE HT. (m) DIRECTION (Up/Hor.)	:	0.0	0.0	0.0	0.0				
1-Wet, 2=dry, 1-Water	:	4	4		~ ²				
ACLE DIAMETER (mm)		51.	95.	35.					
ALLEASE AL. (II)			0.19	0.19	5.19				
DIRECTION (OD/NOLL)	•	а	а		••				
PHAST DATA FOR CHEMICAL RELEASED	: Goldf : Hydro	ish gen flu	oride						
	-	-							
*** STUDY DATA (METR)	C UNITS) .		e .						
WIND SPEED & IUM (M/	5):	7.3	5.4	7.3					
STAB CLASS (A=1,2=6)	:	4.	300 4	÷.					
PRESERVE (N)	: 31	.0.4	309.4	307.8					
FRESSURE (N/m-2)	: 904	83.	90078.	90585.					
SURFACE TEMP (K)	: 31	0.4	309.4	307.5					
WIND SPEED & 10m (M/: STAB CLASS (A=1,Z=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ROUGHNESS PAN	R: 0.04	931 0	.04931	0.04931					
TRIAL DESCRIPTION	: GE1	G7 7	67	3					
REC. DISTANCE (m)	: 30	0.0	300-0	300.0					
REC. DISTANCE (m)	: 100	0.0	1000-0	1000.0					
REC. DISTANCE (m)	: 300	0.0	-99.9	3000.0					
CONC OF INTEREST (DD	n): 30	.00	30.00	30.00					
MATERIAL NUMBER	:	27	27	27					
TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (pp: MATERIAL NUMBER INVENTORY (kg)	: 345	9.0	3766.0	3697.0					
*** RELEASE DATA ***									
Use Padded Liquid Ves									
and Liquid Leak ()									
STORAGE TEMP. (K)	: 31	3.2	311.2	312.2					
STORAGE PRESS. (bar-	J): 6.80	1000 7	.35000	7.48000					
DIKE AREA (m^2)	:	0.0	0.0	0.0					
DIKE AREA (m^2) 1-wet, 2-dry, 4-water HOLE DIAMETER (mm) RELEASE HT. (m)	:	2	2	2					
HOLE DIAMETER (mm)		42.	24.	24.					
RELEASE HT. (m)	: 1		1.00	1.00					
DIRECTION (Up/Hor.)	:	н	H	н					
Vary the storage pre EMISSION RATE (kg/s)	ssure or the sure or the second se	e hole 1.57	diameter 10.46	to obtai 10.27	n the acti	cai em	ission	race:	

_

057 🔳

			APT	DIRI ¥U	5UL 92	<b>n</b> 17	19229N	0505723	TPA	
PHAST DATA FOR : Chemical Released :	Hanford ( Krypton-8	continuous S	3	UDG * 1		<b></b> 01		0000120	1.12	
<pre>*** STUDY DASA METRIC : WIND SPEED 3 10m m/s1: STAB CLASS (A=1,F=D) : TEMPERATURE (X) PRESSURE N/m^21 : SURFACE TEMP (X) : RELATIVE HOWIDITY : SURFACE TEMP (X) :</pre>	SNITS) *** 3.4	1.6	:0.3	5.4	4.2					
STAB CLASS (A=1, F=5) :	5.	3.	з.	3.	5.					
TEMPERATURE (X)	290.9	285.4	238.)	296.5	178.3					
SURFACE TEMP (X)	290.3	285.4	:38.3	196.5	279.3					
RELATIVE HUMIDITY :	0.200	3.200	0.200	2.200	0.200					
SURFACE ROUGHNESS FAR :	0.06886	3.36886	3.35886	2.36886	3.36886					
TRIAL DESCRIPTION	****	10 н	<b>C</b> 3	HC 4	:05					
REC. DISTANCE (m) :	200.0	200.0	200.3	200.0	200.3					
REC. DISTANCE (m) :	300.0	800.0	300.0	300.0	300.0					
CONC OF INTEREST (ppm):	0.10	0.10	J.10 66	9.10	0.10					
TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : (66-MO with m.w29.0) INVENTORY (kg) :										
INVENTORY (Xq) :	10.9	10.9	23.3	22.5	20.4					
Use Pressurized Gas Vess	<b>a</b> 1									
and Vapor Leak (sport	line)									
STORAGE TEMP. (K) : STORAGE PRESS. (bar-g):		-30 90000		- 49 - 40,000	- 49 - 40000					
DIXE AREA (m^2)	3.0	0.0	0.0	0.0	0.0					
1-wet, 2-cry, 4-water :	2	2	2	2	:					
HOLE DIAMETER (mm) :	106.	59. 1 00	57.	105.	56.					
DINE AREA (m^2) : l=wet,2=nzy,4=water : HOLE DIAMETER (mm) : RELEASE HT. (m) : DIRECTION (Up/Hor.) :	2.00 H	н	H	H	H					
Vary the storade pressu	ce or the hol	le diamere	r to obta	in the acts	al emissio					
EMISSION RATE (kg/s) :	0.01	0.01	0.03	0.04	0.02					
PHAST DATA FOR :	Hanford (	instantane	ous)							
PHAST DATA FOR : CHEMICAL RELEASED :	Hanford () Krypton~8	instantane 5	ous)							
				20.4	6.4	2.3	)			
				10.4	6.4	2.5	9			
				10.4 3. 288.3	6.4 3. 285.6	2.2 5. 277.5	9			
				10.4 3. 288.3 101325. 288.3	6.4 3. 285.6 101325. 285.6	2.2 5. 277.8 101328 277.8	9			
•••• STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1, f=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : DELINIE UNITETY	JNITS) *** 3.6 6. 291.5 101325, 291.5 0.202	6.0 4. 285.1 101325. 285.1	11.1 3. 288.7 101325. 288.7	10.4 3. 288.3 101325. 288.3 0.200	6.4 3. 285.6 101325. 285.6 0.200	2.2 5. 277.8 101325. 27.2 0.203	9 1 3			
PHAST DATA FOR : CHEMICAL RELEASED : *** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,f=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR :	JNITS) *** 3.6 6. 291.5 101325, 291.5 0.202	6.0 4. 285.1 101325. 285.1	11.1 3. 288.7 101325. 288.7	10.4 3. 288.3 101325. 288.3 0.200 0.06886	6.4 3. 285.6 101325. 285.6 0.200 0.06886	2.5 277.8 101325. 277.8 0.200 0.06886				
WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HOMIDITY : SURFACE ROUGHNESS PAR :	UNITS) *** 3.6 291.5 101325. 291.5 0.200 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886							
WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HOMIDITY : SURFACE ROUGHNESS PAR :	UNITS) *** 3.6 291.5 101325. 291.5 0.200 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886							
WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HOMIDITY : SURFACE ROUGHNESS PAR :	UNITS) *** 3.6 291.5 101325. 291.5 0.200 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886							
WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HOMIDITY : SURFACE ROUGHNESS PAR :	UNITS) *** 3.6 291.5 101325. 291.5 0.200 0.06886	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886							
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTANCE (m) : REC. DISTANCE (m) : CONC OF INTEREST (ppm):	UNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66	6.0 4. 285.1 101325. 285.1 0.200 0.06886	11.1 3. 288.7 101325. 288.7 0.200 0.06886							
WIND SPEED 3 10m (m/s): STAB CLASS (A=1, f=6) : TEMPERATURE (K) : PRESSURE (M/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR :	JNITS) *** 3.6 6. 291.5 101325, 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66	6.0 4. 285.1 01325, 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56	11.1 3. 288.7 101325. 288.7 0.200 0.06886 115 200.0 800.0 0.10 66	HI6 200.0 800.0 0.10 66	417 200.0 800.0 9.10 56	118 200.0 800.0 0.10 66				
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE NUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66-NO with m.w.=29.0) INVENTORY (Kg) :	JNITS) *** 3.6 6. 291.5 101325, 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66	6.0 4. 285.1 01325, 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56	11.1 3. 288.7 101325. 288.7 0.200 0.06886 115 200.0 800.0 0.10 66	HI6 200.0 800.0 0.10 66	417 200.0 800.0 9.10 56	118 200.0 800.0 0.10 66				
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m ² ) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTANCE (m) : REC. DISTANCE (m) : CONG OF INTEREST (ppm) : MATERIAL NUMBER : '66=NO with m.w.=29.0) INVENTORY (Kg) :	UNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 H: 200.0 800.0 0.10 66 10.0 81	6.0 4. 285.1 101325, 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56	11.1 3. 288.7 101325. 288.7 0.200 0.06886 115 200.0 800.0 0.10 66	HI6 200.0 800.0 0.10 66	417 200.0 800.0 9.10 56	118 200.0 800.0 0.10 66				
*** STUDY DATA (METRIC ( WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE NUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : (56=NO with m.w.=29.0) INVENTORY (kg) : *** RELEASE DATA *** Cse Pressurized Gas Vesso and Caleastrophic Budy	UNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 H: 200.0 800.0 0.10 66 10.0	6.0 4. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 200.0 500.0 500.0 500.0 500.0 500.0 10.0	HI6 200.0 800.0 0.10 66 10.0	417 200.0 900.0 0.10 56 10.0	118 200.0 300.2 0.10 60				
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66=NO with m.w.=29.C) INVENTORY (KG) : *** RELEASE DATA *** CS0 Pressurized Gas Vess and Catastrophic Rupy STORAGE TEMP. (K) :	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ei cure 291.5 291.5	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.06886 10.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 298.0	417 200.0 500.0 0.10 56 10.0	118 200.0 300.0 0.20 50 10.0	3			
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66=NO with m.w.=29.C) INVENTORY (KG) : *** RELEASE DATA *** CS0 Pressurized Gas Vess and Catastrophic Rupy STORAGE TEMP. (K) :	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ei cure 291.5 291.5	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.06886 10.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 298.0	417 200.0 500.0 0.10 56 10.0	118 200.0 300.0 0.20 50 10.0	3			
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66=NO with m.w.=29.C) INVENTORY (KG) : *** RELEASE DATA *** CS0 Pressurized Gas Vess and Catastrophic Rupy STORAGE TEMP. (K) :	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ei cure 291.5 291.5	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.06886 10.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 298.0	417 200.0 500.0 0.10 56 10.0	118 200.0 300.0 0.20 50 10.0	3			
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66=NO with m.w.=29.C) INVENTORY (KG) : *** RELEASE DATA *** CS0 Pressurized Gas Vess and Catastrophic Rupy STORAGE TEMP. (K) :	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ei cure 291.5 291.5	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.06886 10.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 298.0	417 200.0 500.0 0.10 56 10.0	118 200.0 300.0 0.20 50 10.0	3			
*** STUDY DATA (METRIC ( WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66=NO with m.w.=29.C) INVENTORY (KG) : *** RELEASE DATA *** CS0 Pressurized Gas Vess and Catastrophic Rupy STORAGE TEMP. (K) :	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ei cure 291.5 291.5	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 66 10.0	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 0.06886 10.0 0.10 66 10.0	HI6 200.0 800.0 0.10 66 10.0 298.0	417 200.0 500.0 0.10 56 10.0	118 200.0 300.0 0.20 50 10.0	3			
<pre>*** STUDY DATA (METRIC ( WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE NUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66-NO with m.w.=29.0) INVENTORY (Kg) : *** RELEASE DATA *** Use Pressurized Gas Vess and Catastrophic Rup STORAGE TEMP, (K) : STORAGE TEMP, (K) : STORAGE TEMP, (K) : STORAGE TEMP, (K) : NATERIAL (m^2) DIKE AREA (m^2) : HOLE DIAMETER (mm) : RELEASE HT. (m) : DIRECTION (UP/Hor.) :</pre>	JNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 99.90000 0.0 221.5 -99.90000 0.0 0.0 0.0 0.0 0.0 0.0	6.0 4. 285.1 101325. 285.1 0.200 0.06886 10.0 800.0 0.10 66 10.0 285.1 -99.90000 0.0 2738. 0.00 y	11.1 3. 288.7 101325. 288.7 0.200 0.06886 300.0 300.0 566 10.0 66 10.0 500.0 300 2288.7 -99.90000 3.0 22750. 0.00 0	HI6 200.0 800.0 0.10 66 10.0 238.3 -99.90000 0.0 2748. 0.00 y	417 200.0 \$00.0 0.10 66 10.0 285.6 -99.30000 0.0 2740. 0.00 7	418 200.0 300.2 0.20 56 10.0 277.3 -99.90000 0.1 2714 0.00	3			
<pre>*** STUDY DATA (METRIC ( WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m²) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '56=HO with m.w.=29.0) INVENTORY (Kg) : *** RELEASE DATA *** Use Pressurized Gas Vess: and Catastrophic Rup STORAGE TEMP. (K) : STORAGE PRESS. (bar-g): DIKE AREA (m²) : H-wet, 2-Gry, 4-water : HOLE DIAMETER (mm) : DIRECTION (Up/Hor.) : 'ary the storage pressure 'ary the storage pressure</pre>	UNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ai 291.5 -99.90000 0.0 2758. 0.00 UT re or the ho	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56 10.0 285.1 -99.90000 0.0 27738. 0.00 30 27738.	11.1 3. 288.7 101325. 288.7 0.200 0.06886 200.0 300.0 0.10 56 10.0 288.7 -99.90000 0.0 22750. 0.00 0.00 0.00 0.00	HI6 200.0 800.0 0.10 66 10.0 238.3 -99.90000 0.0 2748. 0.00 3 10 Che act	417 200.0 500.0 9.10 56 10.0 285.6 -99.30000 0.0 2740. 0.00 7 341 emissio	418 200.0 300.0 0.10 50 10.0 2774.1 -99.90000 0.1 2714.1 0.0 2714.1 0.1 2714.1 0.1 271.1 0.1 271.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1				
<pre>*** STUDY DATA (METRIC ( WIND SPEED @ 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE NUMIDITY : SURFACE ROUGHNESS PAR : *** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : CONC OF INTEREST (ppm): MATERIAL NUMBER : '66-NO with m.w.=29.0) INVENTORY (Kg) : *** RELEASE DATA *** Use Pressurized Gas Vess and Catastrophic Rup STORAGE TEMP, (K) : STORAGE TEMP, (K) : STORAGE TEMP, (K) : STORAGE TEMP, (K) : NATERIAL (m^2) DIKE AREA (m^2) : HOLE DIAMETER (mm) : RELEASE HT. (m) : DIRECTION (UP/Hor.) :</pre>	UNITS) *** 3.6 6. 291.5 101325. 291.5 0.200 0.06886 HI2 HI 200.0 800.0 0.10 66 10.0 ai 291.5 -99.90000 0.0 2758. 0.00 UT re or the ho	6.0 4. 285.1 101325. 285.1 0.200 0.06886 13 H 200.0 800.0 0.10 56 10.0 285.1 -99.90000 0.0 27738. 0.00 30 27738.	11.1 3. 288.7 101325. 288.7 0.200 0.06886 200.0 300.0 0.10 56 10.0 288.7 -99.90000 0.0 22750. 0.00 0.00 0.00 0.00	HI6 200.0 800.0 0.10 66 10.0 238.3 -99.90000 0.0 2748. 0.00 3 10 Che act	417 200.0 500.0 9.10 56 10.0 285.6 -99.30000 0.0 2740. 0.00 7 341 emissio	418 200.0 300.0 0.10 50 10.0 2774.1 -99.90000 0.1 2714.1 0.0 2714.1 0.1 2714.1 0.1 271.1 0.1 271.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1				

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

THAST DATA FOR : THEMICAL BELEASED :	Maplin Sands	Furni Cor	API P	UBL*45	16 95	07	32290	0505724	42T 🛛	
STUDY DATA METRIC	UNITS)									
ATAD SELLS 3 LUM (M/S)	: :	· • •	3.3	9.6						
		7907	· • • •	·• • • • •						
PRESSURE (N/m^2)	· 101325.	101325.	101375.	101175						
SURFACE TEMP (X)	: 288.3	290.0	289.0	289.3						
RELATIVE HUMIDITY	: 0.530	0.710	3.900	3.770						
WIND SPEED 1 10m (m/s) STAB CLASS (A-1, F-6) TEMPERATURE (K) PRESSURE (N/m^C) SURFACE TEMP (K) RELATIVE NUMIDITY SURFACE ROUGHNESS PAR	: 0.03841	0.03841	0.03841	0.03841						
CASE DATA										
TRIAL DESCRIPTION	: MS27	MS29 5	1534	MS35						
REC. DISTANCE (m)	: 59.0	58.0	87.0	129.0						
REC. DISTANCE (m)	: 131.0	90.0	179.0	250.0						
REC. DISTANCE (m)	: 324.3	130.0	- 39. 3	406.0						
REC. DISTANCE (m)	: 400.0	182.0	- 99.9	~99.9						
REC. DISTANCE (m)	: 650.0	252.0	-99.9	-99.9						
REC. DISTANCE (m)		324.3		-99.9						
CONC OF INTEREST (DOM)	100 10	100.00	100 0	100 10						
MATERIAL NUMBER		100.00	100.00	100.00						
TRIAL DESCRIPTION REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) REC. DISTANCE (m) CONC OF INTEREST (ppm) MATERIAL NUMBER INVENTORY (kg)	: 3714.4	6561.3	2043.6	3657.7						
*** RELEASE DATA ***										
Use Reactive Lightd Mer	hod (specify	evap racel								
STORAGE TEMP. (X) EMISSION RATE (kg/s) EMIS RATE (kg/s/m^2) DURATION (s) POOL AREA (m^2)	: 111.7	111.7	111.7	111.7						
EMISSION RATE (kg/s)	: 23.21	29.16	21.51	27.09						
EMIS RATE (kg/s/m^2)	: 0.0854	0.0850	0.0845	0.0854						
DURATION (S)	: 160.00	225.00	95.00	135.00						
POOL AREA (m^2)	: 271.72	343.07	254.47	317.31						
PHAST DATA FOR : CHEMICAL RELEASED :	Liquified Pr	opane Gas								
*** STUDY DATA (METRIC	UNTTS) ***									
WIND SPEED & IOM (m/s) STAB CLASS (A=1,7=6) TEMPERATURE (K) PRESSURE (N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SUBFACE SOUCHTES BAD	: 4.0	5.8	8.3	6.2	5.5	7 9	. 7	4 3.7		
STAB CLASS (A=1,7=6)	: 4.	4.	4.	4-	4.	4.	4.	- 4.		
TEMPERATURE (K)	291.5	290.2	291 9	290.6	286.5	283.6	i 285.0	281.6		
PRESSURE (N/m^2)	: 101325.	101325.	101325.	101325.	101325.	101325.	101325	101325.		
SURFACE TEMP (K)	: 291.7	292.1	290.5	290.3	286.2	283.1	285.1	282.6		
RELATIVE HUMIDITY	: 0.800	0.800	0.710	0.780	0.880	0.790	0.630	0.850		
SURFACE ROUGHNESS PAR	: 0.03841	0.03841	0.03841	0.03841	0.03841	0.03841	0.03843	1 0,03841		
*** CASE DATA ***										
TRIAL DESCRIPTION	: MS42	MS43 M	IS46	MS47 MS	49 }	4550	MS52	MS54		
REC. DISTANCE (m)	: 28.0	88.0	34.0	90.0	90.0	59.0	61.:	55.0		
REC. DISTANCE (m)	: 53.0	129.0	91.0	128.0	129.0	93.0	95.0	35.0		
REC. DISTANCE (m)	: 83.0	249.0	130.0	182.0	180.0	182.0	178.0	178.0		
REC. DISTANCE (m)	: 123.0	400.0	182.0	250.0	250.0	400.0	249.0	247.0		
REC. DISTANCE (m) REC. DISTANCE (m)	: 179.0	-99.9	250.0	321.0	322.9	-99.9	398.	-99.9		
SEC. DISTANCE (M)	. 247.0	-99.9	322.0	400.0	400.0	-99.9	650.0	J -99.9		
CONC OF INTEREST (DOM!	1 100.00	100 00	100 00	100 00	100 00	-99.9				
MATERIAL NUMBER	. 100.00	100.00	100.00	100.00	100.00	100100	100.00			
CONC OF INTEREST (ppm) MATERIAL NUMBER INVENTORY (kg)	: 3756.6	6336.0	8413.2	6839.7	1503.9	5742.4	6195.	3456.0		
TT RELEASE DATA										
Use Reactive Liquid Mer	hod (specify	evap sate)								
STORAGE TEMP. (K)	: 231.1	231.	231.1	231.1	231 - 1	231 . 1	231	231.1		
EMISSION RATE (kg/s)	: 20.37	19.20	23.37	32.57	16.71	35.89	44.2	5 19.20		
EMIS RATE (kg/s/m^2)	: 0.1197	0.1195	0.1207	0,1199	0.1203	0.1202	0.119	6 0,1195		
STORAGE TEMP. (K) EMISSION RATE (kg/s) EMIS RATE (kg/s/m^2) DURATION (s) FOOL AREA (m^2)	: 180.00	330.00	360.00	210.00	90,00	160.00	140.0	0 180.00		
FOOL AREA (m^2)	: 174.37	160.61	193.59	271.72	138.93	298.65	369.8	4 150.61		

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

			API	PUBL*4	546 92		92290	0505725	866
PHAST DATA FOR : Chemical Released :	Prairie Je Sulfur alo	ass, jec Xide	:						
WIND SPEED } 10m (m/s) STAB CLASS (A-1,F-6) TEMPERATURE (K) PRESSURE N/m^2) SURFACE TEMP (K) RELATIVE HUMIDITY SURFACE ACUGHNESS PAR	UNITS) *** 305.1 101325. 305.2 305.2 0.25392	5.9 305.1 101325. 305.1 0.200 0.05392	3.4 3. 101.1 101325. 201.2 2.200 0.25352	5.4 2. 304.1 101325. 304.1 3.200 0.35392	2.7 5. 293.1 10125 293.1 0.200 0.05392	4.0 295.1 101325. 295.1 0.200 0.05392	3.7 101.1 101225. 301.1 301.1 9.200 0.05392	4.5 4. 101325. 300.1 0.200 0.05392	
5									
TRIAL CESCRIPTION REC. DISTANCE (m) REC. DISTANC	PG7 PG S0.0 100.0 200.0 400.0 800.0 1.00 49 53.3	8 50.0 100.0 200.0 400.0 800.0 1.00 49 54.7	G9 50.0 200.0 400.0 900.0 1.00 49 55.2	FG10 50.0 100.0 200.0 400.0 800.0 1.00 49 55.3	2G13 2 400.3 -99.3 -99.3 -99.3 -99.9 1.30 49 36.7	50.0 100.0 200.0 400.0 800.0 1.00 49 57.3	PG16 50.0 100.0 200.0 400.0 800.0 1.00 49 55.3	2617 50.0 200.0 400.0 800.0 1.00 49 33.9	
THE RELEASE DATA THE Use Pressurized Jas Vess	el								
and Vador Leax (shor STORAGE TEMP. (X) STORAGE PRESS. (bar-g): DIXE AREA (m^2) Lawer. 2 entry, lawarar	305,1						361.1 -99.90000 0.0		
DIKE AREA (m^2) L=wet,2=dry,4=water HOLE DIAMETER (mm) RELEASE NT. (m) DIRECTION (Up/Hor.)	51. 0.45 H	51. 0.45 X	51. 0.45 H	51. 0.45 H	51. 0.45 H	51. 0.45 H	51. 0.45 H	51. 0.45 H	
Vary the storage pressu EMISSION RATE (kg/s) :									
PHAST DATA FOR : CHEMICAL RELEASED : *** STUDY DATA (METRIC WIND SPEED & 10m (m/s): STAB CLASS (A=1,F=6) : TEMPERATURE (K) : PRESSURE (N/m^2) : SURFACE TEMP (K) : RELATIVE HUMIDITY : SURFACE ROUGHNESS PAR :			tinuous) and Nitro	ogen .					
*** CASE DATA *** TRIAL DESCRIPTION : REC. DISTANCE (m) : REC. DISTAN	90.5 112.0 158.0 250.0 335.0 472.0 100.00	250.0 335.0 472.0 -99.9 -99.9 -99.9 100.00 62							
<pre>*** RELEASE DATA *** Use Pressurized Gas Vess and Vapor Leak (snor STORAGE TEMP. (X) : STORAGE PRESS. (bar-g): DIKE AREA (m^2) : i*wet,2-dry,4-water : HOLE DIAMETER (mm) : RELEASE HT. (m) : </pre>	E line) 256.3 -99.90000 - 0.0 2 2000. 0.00	287.5 99.90000 0.0 2 2000. 0.00							
DIRECTION (Up/Hor.) ; Vary the storage pressu EMISSION RATE (Xg/s) ;	re or the hold		r to opta:	in the actu	al emissio	n rate:			

278

								<u>רידיי</u> ור	
PHAST DATA FOR :	Thorney	Island (ins	scantaneou.	S )		14440	02027	26 7T2	
CHEMICAL RELEASED :	Mixcure (	of Freon-12	and Nizz	ogen			·		
STUDY DATA (METRIC U	NITS) ···						API	PUBL*4	546 92
WIND SPEED 3 10m (m/s);	2.3	3.4	2.4	1.7	2.5	7.3	5.0	7.4	5.4
3738 CLASS (A-1,7-6) :	4.	5.	4.				4.	÷.	4.
TEMPERATURE (K) :	291.3	290.5	290.7					289.7	236.5
PRESSURE (N/m^2)	101325.	102136.	102237.				100813.	100717.	100616.
SGALACE INTER (K)	293 8	290.9	291.5	291 5					286.1
RELATIVE HUMIDITY :	0.748	0.307	3.376	0.373	0.66Z	0.741	0.940	0.313	0.348
	0.06329	0.06329	0.05948	0.05609					0.35791
*** CASE DATA ***									
	716	r <b>17</b> 7		TI9	TI12	7213	7117	7118	7119
REC. DISTANCE (m) :	71.0		71.0	71.0					
REC. DISTANCE (m) :	141.0	100.0	100.0	100.0	150.0	100.0			60.0
REC. DISTANCE (m) :	180.0	150.0	150.0	141.0	200.0	224.0	71.0	70.0	71.0
REC. DISTANCE (m) :	283.0	180.0	200.0	180.0	361.0	316.0	100.0	C.08	100.0
REC. DISTANCE (m) :	424.0	224.0	364.0	224.0	500.0	361.0	141.0	100.0	224.0
REC. DISTANCE (m) :	-99.9	361.0	412.0	316.3	-99.9	412.0	224.0	200.0	361.0
REC. DISTANCE (m) :	-99.9	500.0	510.0	503.0	-99.9	-99.9	500.0	224.0	583.0
REC. DISTANCE (m) :	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	-99.9	300.0	-99.9
REC. DISTANCE (m) :	-99.9	-39.9	- 79.9	-99.9	-99.9	-99.3	-99.9	400.0	-99.9
REC. DISTANCE (m) :	-99.9 -99.9	-99.9	-99.9	- 79,9	-99.9	-99.9	-99.9	510.0	-99.9
CONC OF INTEREST (ppm) :	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
MATERIAL NUMBER :	57	58	59	60	61	52	63	54	65
INVENTORY (kg)	3147.0	4249.0	3958.0	3866.0	5736.0	4800.0	\$711.0	3881.0	5477.0
*** RELEASE DATA ***									
Use Pressurized Gas Vesse									
and Cacastrophic Rupt	ura								
STORAGE TEMP. (K) :		290.5	Z90.7	291.5	283.3				
STORAGE PRESS. (bar-g):	-99.90000	-99,90000	-99,90000	-99,90000			-99.90000	-99,90000	-99,90000
DIKE AREA (m^2) :	0.0	0.0	0_0	0.0	0.0	0.0	0.0	0.0	0.0
1-wet, 2-dry, 4-water :	2	2	2	2	2	2	2	2	2
HOLE DIAMETER (mm) :	14000.	14000.	14000.	14000.	14000.				14000.
RELEASE HT. (m) :	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
DIKE AREA (m^2) : 1-wet,2-dry,4-water : HOLE DIAMETER (mm) : RELEASE HT. (m) : DIRECTION (Up/Hor.) :	a	υ	σ	U	U	α	0.00 U	σ	σ
Vary the storage pressur	e or the h	ole diamete							
EMISSION RATE (kg/s) :	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00

•

SLAB INPUT DATA FOR : BUTTO API CHEMICAL RELEASED : LIQUEFIED ADURAL SAS THE SPILL ID GODE .IDSPL, HAS THE FOLLOWING KEY: I: EVAPORATING FOOL I: HORIGONIAL JET 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	302 3	<b>U3 3</b>	U4 3	<b>U</b> 5	306	337	303 3	09
IDSPL	:	:	:	:	:		. 1	:	:
NCALC (sub-step mult.)	:	:	:	1	:	:	. 1	:	:
MOL. WT. (kg/mol)	:	0.31746	0.01726	0.31705	0.01708	0.01724	0.01822	0.01912	0.01282
Cp-gas (J/kg-K)	:	2238.0	2238.0	2238.0	2238.3	2238.3	2238.0	2238.3	2238.3
NORMAL BOILING PT (K)	:	111.6	111.5	:11.6	111.5	111.6	111.5	111.5	111.5
LIQ MASS FRACTION	:	1.000	1.000	1.300	1.000	1.000		1.000	1.000
HEAT OF VAP. (J/kg)	:	511900.	511300.	511900.	511900.				511900.
LIQ HEAT CAP (J/kg-K)	:	3348.5	3348.5	3348.5	3348.5	3348.5	3348.5	3348.5	3348.5
LIQ DENSITY (kg/m^3)	:	434.1	432.7	431.2	431.4	432.3	438.3	438.5	443.4
B VAP PRESS CONST	:	983.39	983.89	983.39	983.39	983.35	983.39	983.39	983.39
C VAP PRESS CONST	:	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
CAS TEMPERATURE (K)	:	111.5	111.5	111.5	111.5	111.6	111.5	111.5	111.5
MASS EMIS RATE (kg/s)	:	\$6.10	87.98	36.36	81.25				135.98
SOURCE AREA (mr2)		1012.79	1034.91	1022.37	956.37				1599.53
SOURCE DURATION (S)		173.	167.	175.	190.				-9.
TOTAL MASS (kg)	1	14980.0	14712.0	15221.3	15444.3				10730.0
SOURCE HEIGHT (m)	-	0.00	0.00	0.00	0.00				0.00
CONC AVG TIME (S)			100.	80.	:30.				50.
MAX DIST (m)		640.	640.	640.	640.				1300.
REC HEIGHT (m)	1	2.0	1.0	1.0	1.0				1.3
REC HEIGHT (m)	÷	0.0	0.0	0.0	ē.s				5.5
REC HEIGHT (m)	÷	0.0	0.0	0.0	0.0				0.0
REC HEIGHT (m)	-	0.0	0.0	5.0	0.0				0.0
ROUGHNESS LENGTH (m)	-	0.00020	0.00020	0.00020	0.00020				0.00020
MET SENSOR HT (m)	-	2.0	2.0	2.0	2.0				2.0
WIND SPEED (m/s)	÷	5.4	5.4	9.0	7.4				5.7
TEMPERATURE (K)	-	311.3	307.5	309.0	314.3				308.5
REL HUMID (4)	-	7.1	5.2	2.7	5.9				14.4
SPECIFIC CONC (ppm)		100.	100.	100.	100.				100.
STAB CLASS (A=1, Z=6)		0.	0.	0.	0.			0.	100.
1/MONIN-OBUKHOV (1/m)	;	-0.0772	-0.1720	-0.0203	-0.0281				-0.0004
ENDING RECORD		-1.	-1.	-0.0203	~V.UZDI ~l.	-0.0107			-0.0004
	•				~				-1.

-

SLAB INPUT DATA FOR : CHEMICAL RELEASED : THE SPILL ID CODE (ID) 2: EVAPORA 2: HORIZON 3: VERTICAL 4: INSTANTA	SP FI FX L	l) has the Ng 700l L Jet Jet	: following	xey:
TRIAL		CO3	CO5	C06
IDSPL	1	03		400
NCALC (sub-step mult.)	. 1		1 1	
MOL. WT. (kg/moi)		0 0105	1 0.02019 0 2238.0	
MOL. WT. (kg/moi) Cp-gas (J/kg-K) NORMAL BOTLING PT (K)	:	0.0195	0.02015	0.01909
		22.38.	0 2238.0	2238.0
				) 414.0
LIQ MASS FRACTION HEAT OF VAP. (J/kg) LIQ HEAT CAP (J/kg-K) LIQ DENSITY (kg/m^3) B VAP PRESS CONST C VAP PRESS CONST	-	1.00	0 1.000	1.000
HEAT OF VAP. (J/KG)	:	511900	. 511900.	511900.
JIQ HEAT CAP (J/KG K)	:	3348.	5 3348.5	
LIQ DENSITY (XC/m ⁻³ )	:	447.	4 452.7	
B VAP FRESS CONST		983.8	983.89	983.89
C VAP PRESS CONST	:	0.1	.0 0.10	0,10
GAS TEMPERATURE (K)	:	111.	6 111.6	111.6
C VAF PRESS CONST GAS TEMPERATURE (K) MASS EMIS RATE (Kg/s) SOURCE AREA (m^2) SOURCE CURATION (S)	:	100.8	129.02	123.03
SOURCE AREA (M^2)	;	1184.2	0 1517.77	1447.48
SOURCE CURATION (S)	:	65 6532.	. 98.	52.
104600 10100 1097			.v ÷÷ü7/∪∎u	
SOURCE HEIGHT (m)	:	o.0	0 0.00	
CONC AVG TIME (S)	:	50	. 90.	
MAX DIST (m)	:	0.0 50 800	900.	
REC HEIGHT (m)		1.	0 1.0	
REC HEIGHT (m)	:	ο.		
REC HEIGHT (m)	:	٥.		
REC HEIGHT (m)	- 2		0 0.0	
RCUGHNESS LENGTH (m)	:	0,0002		
MET SENSOR HT (m)	:		.0 2.0	
WIND SPEED (m/s)	:	5.	0 9.7	
Temperature (X)	:	311.	.5 301.3	297.3
REL HUMID (%)		11.	.3 22.3	
SPECIFIC CONC (ppm)	:	11	). 100.	100.
STAB CLASS (A=1, 7=6)	:	:	). 3.	÷.
STAB CLASS (A=1, F=6) L/MONIN-CBUKHOV (1/m)	:	-0.082	0 -0.0316	5 0.0178
ENDING RECORD	:	-1		-1.

. Mathane is at least 86% in c

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

### API PUBL*4546 92 🎟 0732290 0505728 575 📟

.

JLAB INPUT DATA FOR : Desert Fortoise API INEMICAL RELEASED : Annyorous Ammonia THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY: 1: EVAPORATING POOL 2: HORIZONTAL JET 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	<b>DT1</b>	DT2 -		<b>T</b> i
IDSPL	:	2		2	2
SCALC (Sub-step mult.)		1	1	-	
MOL. WT. (kg/mol)	:	0.01703	0.01703	0.01703	0.01703
Co-gas (J/kg-K)		2190.0	2190.0	2190.0	
NORMAL BOILING 2T (X)	:	239.7	239.7	239.7	239.7
LIQ MASS FRACTION	:	0.313	0.317	0.911	3.304
HEAT OF VAP. (J/kg)	:	1370000.	1370000.	1370000.	1370000.
LIQ HEAT CAP (J/kg-K)	:	4490.0	4490.0	4490.0	4490.0
LIQ DENSITY (kg/m^3)	:	682.3	682.3	682.9	682.5
B VAP PRESS CONST	:	2132.52	2132.52	2132.52	2132.52
C VAP PRESS CONST	:	-32.36	-32.96	-32.96	-32.96
GAS TEMPERATURE (K)	:	294.7		295.3	297.3
MASS EMIS RATE (kg/s)	:	79.70	111.50	130.70	96.70
SOURCE AREA (m^2)	:	0.34	1.12	1.16	1.21
SOURCE DURATION (S)	:	126.	255.	166.	381.
TOTAL MASS (kg)	:	10042.2	28432.5	21696.2	36842.7
SOURCE HEIGHT (m)	:	0.79	0.79	3.79	0.79
CONC AVG TIME (s)	:	80.	160.	120.	300.
MAX DIST (m)	:	1300.	1300.	1300.	1300.
REC HEIGHT (m)	:	1.0	1.0	1.0	1.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0.00300	0.00300	0.00300	0.00300
MET SENSOR HT (m)	:	2.0	2.0	2.0	2.0
WIND SPEED (m/s)	:	7.4	5.8	7.4	4.5
TEMPERATURE (K)	:	302.0	303.6	307.1	305.6
REL HUMID (*)	:	13.2	17.5	14.3	21.3
SPECIFIC CONC (ppm)	:	100.	100.	100.	100.
STAB CLASS (A=1,2-6)	:	٥.	٥.	0.	٥.
1/MONIN-OBUKHOV (1/m)	:	0.0107	0.0119	0.0012	0.0244
ENDING RECORD	:	-1.	-1.	-1.	-1.

SLAB INPUT DATA FOR : CHEMICAL RELEASED :	Goldfish Hydrogen fluoride
THE SPILL ID CODE (IDSPL)	
1: EVAPORATING	
2: HORIZONTAL	JET
3: VERTICAL JES	F
	· · · · · · · · · · · · · · · · · · ·

.

4:	INSTANTANEOUS	OR	SHORT	DURATION

TRIAL	•	GF1	GF2	GF3
TOSPL	;	2	2	2
NCALC (sub-step mult.)		1	1	1
MOL. WT. (kg/mol)	÷	0.02001	0.02001	0.02001
Cp-gas (J/kg-K)	÷	1450.0		1450.0
NORMAL BOILING PT (K)	:	292.7		292.7
LIQ MASS FRACTION	:	0.840		
HEAT OF VAP. (J/kg)		373000.		
LIQ HEAT CAP (J/kg-K)	÷	2528.0		2528.0
LIQ DENSITY (kg/m^3)	÷	987.0		987.J
B VAP PRESS CONST	÷	3404.51		
C VAP PRESS CONST	:	15.12		
GAS TEMPERATURE (K)	:	313.2	311.2	312.2
MASS EMIS RATE (kg/s)	:	27.67	10.46	10.27
SOURCE AREA (m^2)	:	0.29	0.09	0.09
SOURCE DURATION (S)	:	125.	360.	360.
TOTAL MASS (kg)	:	3459.0	3766.0	3697.3
SOURCE HEIGHT (m)	:	1.00	1.00	1.00
CONC AVG TIME (s)	:	88.	38.	38.
MAX DIST (a)	:	3500.	1500.	3500.
REC HEIGHT (m)	:	1.0	1.0	1.0
REC HEIGHT (m)	:	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0,00300	0.00300	0.00300
MET SENSOR HT (m)	:	2.0	2.0	2.0
WIND SPEED (m/s)	:	5.5	4.2	5.4
TEMPERATURE (K)	:	310.4	309.4	307.5
REL HUMID (3)	:	4.9	10.7	17.7
SPECIFIC CONC (ppm)	:	30.	30.	30.
STAB CLASS (A=1, 2=6)	:	з.	э.	э.
1/MONIN-OBUKHOV (1/m)	:	0.0099	0.0058	3.3244
ENDING RECORD	:	-1.	-1.	-1.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

281

:

ALAS INPUT DATA FOR : Hanforg continuous) CHEMICAL RELEASED : Stypton-45 THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY: 1: EVAPORATING FOOL 2: HORICONTAL JET 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	HCl	HC2		HCC	HC 4	;	:05
:03PL	:	:		2		2	2	2
.CALC (SUD-STED MULT.)	::	:					:	:
MOL. WT. (kg/mol)	:	3.02900	) ),	32900	0.02900	) 0.0	2900	0.02900
Jp-qas (J/kq-K)	1	249.0	)	249.0	249.0	) 2	49.0	249.0
NORMAL BOILING PT (K)	:	120.3	1	120.3	120.3	1	20.3	:20.3
LIG MASS FRACTION	:	0.000	)	0.000			.000	0,000
HEAT OF VAP. (J/kg)	:	115800,	11	5800.	115800.	. 115	800.	115800.
LIQ HEAT CAP (J/kg-K)	:	~99. <u>9</u>	)	-99.9	-99.5	) -	99.9	- 39. 3
LIQ DENSITY (kg/m^3)	:	-99.9	)	-99.9	-99.9	) -	99.9	-99.9
B VAP PRESS CONST	:	-1.00		-1.00	-1,00		1.00	-1.00
C VAP PRESS CONST	:	0.00	)	0.00	0.00		0.00	0.00
GAS TEMPERATURE (K)	:	290.9	)	285.4	298.9	2	86.6	278.3
MASS EMIS RATE (kg/s)	:	0,01		0.01	0.03		0.04	0.02
SOURCE AREA (M^2)	:	0.01		0.00	0.00	)	0.01	0.01
SOURCE DURATION (S)	:	928.		905.	355.		598.	1191.
TOTAL MASS (kg)	:	10.3	)	10.9	23.8		22.3	20.4
SOURCE HEIGHT (m)	:	1.00	1	1.00	1,00		1.00	1.00
CONC AVG TIME (s)	:	461.		345.	269.		269.	538.
MAX DIST (m)	:	1300.		:300.	1300.	1	300.	1300.
REC HEIGHT (m)	:	1.5		1.5	1.5		1.5	1.5
REC HEIGHT (m)	:	0.3	1	0.0	0.0	)	0.0	0.0
REC HEIGHT (m)		0.0	1	0.0	0.0	1	0.0	0.0
REC HEIGHT (m)	:	0.0	1	0.0	0.0	1	0.0	3.5
ROUGHNESS LENGTH (m)		0.03000	0.	03000	0.03000	0.0	3000	0.03000
MET SENSOR HT (m)	1	1.5		1.3	1.5		1.5	1.5
WIND SPEED (m/s)	1	1.3		3.9	7.1		3.9	2.5
TEMPERATURE (K)	:	290.9	)	285.4	288.9	2	86.6	278.3
REL HUMID (%)	1	20.0	•	20.0			20.0	20.0
SFECIFIC CONC (ppm)		٥.		0.			Ö.	0.
STAB CLASS (A=1, Z=6)		ō.		ō.	-		<u>.</u>	ó.
1/MONIN-OBUKHOV (1/m)	÷	0.1455		.0089			0375	0.0142
ENDING RECORD	ì	-1.		-1.			-1.	-i.

SLAB INPUT DATA FOR : Hanford (instantaneous) CHEMICAL RELEASED : Krypton-45 THE SPILL LD CODE (IDSPL) HAS THE FOLLOWING KEY: 1: EVAPORATING POOL 2: HORIZONTAL JET 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	HI2	HI3		HIS		HI6		HI7		HI 8	
IDSPL	1	4		- 4		4		4		4		4
NCALC (sub-step mult.)	:	1		1		1		1		1		1
MOL. WT. (kg/mol)		0.02900	(	0.02900	(	.02900		0,02900	(	0.02900	(	0.02900
Cp-gas (J/kg-K)	:	249.0		249.0		249.0		249.0		249.0		249.0
NORMAL BOILING PT (K)	:	120.3		120.3		120.3		120.3		:20.3		120.3
LIQ MASS FRACTION	:	0.000		0.000	1	0.000		0.000		0.000		0.000
HEAT OF VAP. (J/kg)	:	115800.		115800.	2	15800.		115800.		15800.		115800.
LIQ HEAT CAP (J/kg-K)	1	-99.9		-99.9	ł	-99.3		- 99, 9		-99.9		-99.9
LIQ DENSITY (kg/m^3)	:	-99.9		-99.9	)	-99.9		-99.9		-99.9		-99.9
3 VAP PRESS CONST	:	-1.00		~1.00		-1.00		-1.00		-1.00		-1.00
C VAP PRESS CONST	:	0.00		0.00		0.00		0.00		0.00		0.00
GAS TEMPERATURE (K)	:	291.5		285.1		288.7		288.3		285.6		277.8
MASS EMIS RATE (kg/s)	1	0.00		0.00		0.00		0.00		0.00		0.00
SOURCE AREA (m^2)	:	5.98		5.89	,	5.94		5.93		5.89		5,79
SOURCE DURATION (S)		٥.		٥.		٥.		Э.		٥.		٥.
TOTAL MASS (kg)		10.0		10.0		10.0		10.0		10.0		10.0
SOURCE HEIGHT (m)	:	0,00		0.00	1	0.00		0.00		0.00		0,00
CONC AVG TIME (s)		5.		5.		5.		5.		5.		5.
MAX DIST (m)	-	1300.		: 300		1300.		1300.		1300.		1300.
REC HEIGHT (m)		1.5		1.3		1.5		1.5		1.5		1.5
REC HEIGHT (m)	-	0.0		0.0		5.5		0.0		0.0		0.0
REC HEIGHT (n)		0.0		0.0		0.0		0.0		0.0		0.0
REC HEIGHT (m)		0.0		0.0		5.5		5.5		0.0		0.0
ROUGHNESS LENGTH (m)		0.03000		0.03000		0.03000		2.03000		0.03000		0.03000
MET SENSOR HT (m)		1.5				:.5		1.5		1.5		1.3
WIND SPEED (m/s)	-	1.3		4.3		7.5		7.2		4.5		1.5
TEMPERATURE (K)	-	291.5		285.3		288.7		288.3		235.6		277.3
REL HUMID (4)	-	20.0		20.0		20.0		20.0		20.0		20.0
SPECIFIC CONC (ppm)		3.		3.		2.		5.		Ĵ.		0.
STAB CLASS (A=1, Z=5)	:	э. Э.		5.				÷.		5.		5.
1/MONIN-OBUCKHOV (1/m)		0.1742		-0.0038		-0.0046		).0064		-0.0157		2.3367
ENDING RECORD	:	-1.		-1.		-1.		-7.0004		-1.		-1.
21107110 3000FU	•			- 44		~		- 4 4				~ 4 4

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

282

SLAB INPUT DATA FOR : Maplin Janes AP. CHEMICAL RELEASED : Liquified Natural Jas THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY: 1: EVAPORATING POOL 2: HORIDONTAL JET 3: VENTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	MS27	MS 2 9	MS34	MS35
IDSPL	:	3	<u>.</u>	1 :	: :
NCALC (sub-step mult.)	):	1	<u>1</u>	-	1
MOL. WT. (kg/mol)	:	0.01711	0.0162	6 0.0166	5 0.01639
Co-gas (J/kg-K)	:	2238.0	2238.	0 2238.3	2238.0
NORMAL BOILING PT (K)	:	111.7	111.	7 111.1	111.7
LIQ MASS FRACTION	:	1.000			
HEAT OF VAP. (J/kg)		509880.			509880.
LIQ HEAT CAP (J/kg-K)	:				
LIQ DENSITY (kg/m^3)	:	435.2			
B VAP PRESS CONST	:	597.34			
C VAP PRESS CONST	:	-7.20			-7.20
GAS TEMPERATURE (K)	:	111.7			
MASS EMIS RATE (kg/s)	:				27.09
SOURCE AREA (m^2)	:	271.72		7 254.47	
SCURCE DURATION (S)	:	160.	225		
TOTAL MASS (kg)	:	3714.4	6561.		3657.7
SOURCE HEIGHT (m)	:	0.00	) 0.00	0.00	0.00
CONC AVG TIME (s)	:	3.		. 3.	. 3.
MAX DIST (m)	:	1150.	903.	. 679.	. 906.
REC HEIGHT (m)	:	0.3	) o.s	9 0.3	0.9
REC HEIGHT (m)	:	0.0	0.0	) 0.3	0.0
REC HEIGHT (m)	:	0.0	) 0.0	0.0	) 0.0
REC HEIGHT (m)	:	0.3	0_0	0.0	0.0
ROUGHNESS LENGTH (m)	:	0.00030	0.00030	0.00030	0.00030
MET SENSOR HT (m)	:	10.0	10.0	10.0	10.0
WIND SPEED (m/s)	:	5.6			
TEMPERATURE (K)	:	288.1	. 289.3	3 288.4	289.3
REL HUMID (%)	:	53.0	) 71.0	90.0	77.0
SPECIFIC CONC (ppm)		100.	100.	. 100.	100.
STAB CLASS (A=1, F=6)		٥.	. 0.	. 0.	0.
1/MONIN-OBUKHOV (1/m)	:	-0.0271	0,0008	3 -0.0097	-0.0123
ENDING RECORD	:	-1.	-1.	-1.	-1.

SLAB INPUT DATA FOR : Maplin Sands CHEMICAL RELEASED : Liquified Propane Gas THE SPILL ID CODE (IDSPL) HAS THE FOLLOWING KEY: 1: EVAPORATING POOL 2: HORIZONTAL JET

- 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL	:	MS42 M	543	<b>%</b> \$46	<b>MS47</b>	<u>¥</u> 549	MS \$0	MS	52 3	<u>(</u> \$\$4
IDSPL	:	1	1		1	1	1	1	1	:
NCALC (sub-step mult.)	:	1	1		1	1	1	1	1	1
MOL. WT. (kg/mol)	:	0.04393	0.04393	0.043	95 0.043	84 0.0	4376 0.	04393	0.04387	0.04394
Cp-gas (J/kg-K)	:	1678.0	1678.0	1678			78.0	678.0	1678.0	1578.0
NORMAL BOILING PT (K)	;	231.1	231.1	231	.1 231	.1 2	31.1	231.1	231.1	231.1
LIQ MASS FRACTION	:	1.000	1.000	1.0	00 1.0	00 1		1.000	1.000	1,000
HEAT OF VAP. (J/kg)			425740.	42574	). 42574	0. 425	740. 42	25740.	425740	425740.
LIQ HEAT CAP (J/kg-K)	:	2520.0	2520.0	2520	.0 2520	.0 25	20.0	2520.0	2520.0	2520.0
LIQ DENSITY (kg/m^3)	:	500.9	500.9	500	.a 501	.) 5	01.2	500.9	501.0	500.3
B VAP PRESS CONST	:	1872.46	1872.46	1872.	46 1872.	46 187	2.46 18	372.46	1872.46	1372,46
C VAP PRESS CONST	:	-25.17	-25.17	-25.	17 -2S.	17 -2	5.17 -	-25.17	-25.17	-25.17
GAS TEMPERATURE (K)	:	231.1	231.1	231	.: 231	.1 2	31.1	231.1	231.1	231.1
MASS EMIS RATE (kg/s)	:	20.87	19.20	23	37 32.	57 1	6.71	35.89	44.25	19,20
SOURCE AREA (m^2)	:	174.37	160.61	. 193	59 271.	72 13	8.93	298.65	369.84	160.61
SOURCE DURATION (s)	:	180.	330.	36	). 21	ο.	90.	160.	140.	180.
TOTAL MASS (kg)	:	3756.6	6336.0	9413	.2 6839	.7 19	03.9 5	742.4	6195.0	1456.0
SOURCE HEIGHT (m)	:	0.00	0.00	0.	co o.	00	0.00	0.00	0.00	0.00
CONC AVG TIME (s)	:	3.	3.			3.	з.	з.	з.	3.
MAX DIST (m)	:	898.	900.	90	1. 90	٥.	900.	900.	1150.	747.
REC HEIGHT (m)	:	0,9	0.9	0	.) 0	.9	0.9	0.9	0.9	0.5
REC HEIGHT (m)	:	0.0	0.0	0	.) 0	.0	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	0	0	.0	0.0	0.0	0.0	0.0
REC HEIGHT (m)	:	0.0	0.0	· C	0	.0	0.0	0.0	0.0	0.0
ROUGHNESS LENGTH (m)	;	0.00030	0.00030	0,000	30 0,000	30 0.0	0030 0.	.00030	0.00030	0.00030
MET SENSOR HT (m)	:	10.0	10.0	10	.0 10	.0	10.0	10.0	10.0	10.0
WIND SPEED (m/s)	:	4.0	5.3	: 3	.1 é	. 2	5.5	7.9	7.4	3.7
TEMPERATURE (K)	:	291.5	290.2	291	.9 290	.5 2	286.5	283.5	285.0	231.5
REL HUMID (3)	:	30.0	30.3	71	.0 78	.0	38.0	79.0	53.0	35.0
SPECIFIC CONC (ppm)	:	100.	100.	10	0. 10	0.	100.	100.	100.	100.
STAB CLASS (A-1, 2-6)			ς.		э.	э.	э.	ο.	5.	з.
1/MONIN-GBUKHOV (1/m)	:	0.0100	0.0000	) 0.00	13 0.00	34 0.	.0144	0.0048		2.3147
ENDING RECORD	:	-1.	-1.		i	1.	-:.	-1.	-1.	-1.

TRAL	:	207 2	G3	2G9	PG10	2G13	2015	7 <b>G</b> 15	2017
10321	:	2	2		2 ;	2 2	1 :	2 2	2
SCALC (sup-scep mult.)	):	:	1		:		. :	1	:
MOL. WT. (kg/mol)	:	0.26400	0.06400	0.0640	0 0.36400	0.06400	0.06400	3.36400	0.06400
Cp-gas (J/kg-K)	:	522.5	522.5	522.			622.	5 522.5	522.5
NORMAL BOILING PT (K)	:	263.1	253.1	263.	2 63.	263.1	263.3	263.1	263.1
LIQ MASS FRACTION	:	0.000	0.000	0.00	0 0,000	) 0.000	0.000	0.000	0.000
HEAT OF VAP, (J/kg)	:	396500.	386500.	386500	. 386500,			. 386500.	386500.
LIQ HEAT CAP (J/kg-K)	;	1331.0	1331.0	:331.	) 1331.3	) 1331.3	1331.0	) 1331.0	:331.0
LIQ DENSITY (kg/m^3)	:	1462.0	1462.0	:462.	0 1462.3	1462.3	1462.0	1462.0	1462.0
B VAP PRESS CONST	:	-1.00	~1.30	-1.0	0 -1.00	) -1.00	-1.00		-1.00
C VAP PRESS CONST	:	0.00	0.00	0.0	0 0.00	) 0,00	0.00	) 0.00	0.00
CAS TEMPERATURE (K)	:	305.1	305.1	301.	1 304.3	293.2	295.3	301.1	300.1
MASS EMIS RATE (kg/s)	:	0.09	0.09	0.0	9 0.09	0.06	i 0.10	0.09	0.06
SOURCE AREA (m^2)	:	0.00	0.00	0.0	0 0.00	) 0.00	0.00	0.00	0.00
SOURCE OURATION (S)	:	500.	<b>600</b> .	500	. 500.	600.	50C.	. 600.	600.
TOTAL MASS (kg)	;	53.9	54.7	55.	2 55.3	36.7	57.3	55.9	33.9
SOURCE HEIGHT (m)	:	0.45	0.45	0.4	5 0.45	j 0.45	0.45	5 0.45	0.45
CONC AVG TIME (s)	:	600.	600.	500					600.
MAX DIST (m)	:	1300.	1300.	1300	1300.	1300.	1300.		1300.
REC HEIGHT (m)	1	1.5	1.5	1					1.5
REC HEIGHT (m)		0.0	0.0						5.0
REC HEIGHT (m)	1	0.0	0.0	0.	0.0	0.0			0.0
REC HEIGHT (m)		0.0	0.0						0.0
ROUGHNESS LENGTH (m)	:	0.00600	0,00600	0.0060	0.00600	0.00500	0,00600	0.00600	0.00600
MET SENSOR HT (m)		2.0	2.0	2.					2.0
WIND SPEED (m/s)	i	4.2	4.9						3.3
TEMPERATURE (K)		305.1	305.1						300.1
REL HUMID (%)	:	20.0	20.0	20.0					20.0
SPECIFIC CONC (ppm)	1	1.	1.	1.					1.
STAB CLASS (A=1, 2=6)		0.	õ.	Õ.					õ.
1/MONIN-OBUKHOV (1/m)		-0.1223	-0.0485						0.0201
ENDING RECORD	:	-1.	-1.	-1.			-1.		-1.

SLAB INPUT DATA FOR : CHEMICAL RELEASED :		Island (continuous) of Freon-12 and Mitrogen
THE SPILL ID CODE (IDSPL)	HAS THE	FOLLCWING KEY:
1: EVAPORATING	FOOL	

2: HORIZONTAL JET 3: VERTICAL JET 4: INSTANTANEOUS OR SHORT DURATION

TRIAL		TC45	TC47	
IDSPL	:		2	
NCALC (sup-step mult.)				2
MOL. WT. (kg/mol)		0.0578	- - -	.05780
Co-gas (J/kg-K)	:	610.		510.0
NORMAL BOILING PT (K)	:	243.		243.4
LIQ MASS FRACTION	1	0.00		0.000
HEAT OF VAP. (J/kg)	÷	165000		65000.
LIQ HEAT CAP (J/kg-K)	÷	970.		970.0
LIQ DENSITY (kg/m^3)	÷	1520.		1520.0
B VAP PRESS CONST	:	-1.0		-1.00
C VAP PRESS CONST	:	0.0		0.00
GAS TEMPERATURE (K)	;	286.		287.5
MASS EMIS RATE (kg/s)	;	10.5	2	10.22
SOURCE AREA (m^2)	÷	3.1		3.14
SOURCE DURATION (s)		455.		465.
TOTAL MASS (Kg)	:	4855.		4752.0
SOURCE HEIGHT (m)	i	0.0		0.00
CONC AVG TIME (s)	1	30		30.
MAX DIST (m)	:	972		972
REC HEIGHT (m)	:	0.		0.4
REC HEIGHT (m)	:	0.0		0.0
REC HEIGHT (m)	;			0.0
REC HEIGHT (m)	1	0.		0.0
ROUGHNESS LENGTH (m)	;	0.0100		.01000
MET SENSOR HT (m)	÷	10.		10.0
WIND SPEED (m/s)	:	2.		1.5
TEMPERATURE (K)	÷			287.5
REL HUMID (%)	:	100.		37.4
SPECIFIC CONC (ppm)	:	100		100.
STAB CLASS (A=1, F=5)	1	200		
1/MONIN-OBUKHOV (1/m)	1	3.346		2.3923
ENDING RECORD	1	-1	-	-1.
ANDANG ANGUAD	•		•	

	Thorney Island (instantaneous) Mixture of Freon-12 and Mitrogen
THE SPILL ID CODE (IDSPL)	HAS THE FOLLOWING KEY:
1: EVAPORATING	PCOL
2: HORIIONTAL .	727
3: VERTICAL JES	
4: INSTANTANECU	IS OR SHORT DURATION

### 📖 0732290 0505732 TTG 페 API PUBL*4546 92

TRIAL	:	TI 6	TI7	TI8	729	7112	7113	1117	7118	7119
IDSPL	:	4	4	I	4 4		4 4	1 4	4 4	(
MCALC (sub-step mult.)	:	1	. 1		1 1		1 1		. :	
MOL. WT. (kg/mol)	:	0.04769	0.05058	0.0471	1 0.04624	0.0684	9 0.05780	0.12139	3 0.05404	0.0512
Co-gas (J/kg-K)	:	610.3	610.0	610.	0 610.0	510.	o 610.0	) 510.3	510.3	510.
NORMAL BOILING PT (K)	:	243.4	243.4	243.	4 243.4	243.	4 243.4	243.4	4 243.4	243.
LIQ MASS FRACTION	:	0.000		0.00	0 0.000	00.00	0.000	0.000	0.000	0.00
		165000.	165000.	165000	. 165000.	165000			. 165000.	. 165000
LIQ HEAT CAP (J/kg-K)		970.0			0 970.C	970.	0 970.0	970.0		
LIQ DENSITY (kg/m^3)	:	1520.0								
B VAP PRESS CONST	:	-1.00								
C VAP PRESS CONST	:	0.00								
GAS TEMPERATURE (K)	:	291.9								
MASS EMIS RATE (kg/s)	:	0.00								
SOURCE AREA (m^2)	:	153.94								
SOURCE DURATION (S)	:	٥.								
TOTAL MASS (kg)	:	3147.0								
SOURCE HEIGHT (m)	:	0.00		0.0	0_00	0,0				
CONC AVG TIME (s)	:	1.								
MAX DIST (m)	:	924.								
REC HEIGHT (m)	:	0.4							4 0.4	0.
REC HEIGHT (m)	:	0.0		) a.:	0.0	0_	0.0	0.0	0.0	) 0.:
REC HEIGHT (m)	:	0.0		0.0	o o.o	0.1	0.0	0.0	0.0	> 0.:
REC HEIGHT (m)	:	0.0				Q.:	0 0.0	) 0.0	0.0	) 0.:
ROUGHNESS LENGTH (m)	:	0.01800	0.01800	0.0120	0.00800	0,0180	0.01000	0.01800	0,00500	0.0100
MET SENSOR HT (m)	:	10.0	10.0	10.	0 10.0	10.0	0 10.0	10.3	0 10.0	) 10.0
WIND SPEED (m/s)	:	2.3	3.4	2.	4 1.7	2.	5 7.3	5.0	7.4	6.
TEMPERATURE (K)	:	291.8	290.5	290.	7 291.5	283.	3 286.9	289.2	2 289.7	286.
REL HUMID (%)	:	74.8	80.7	87.	6 87.3	66.	2 74.1	. 94.0	81.3	94.:
SPECIFIC CONC (ppm)	:	100.	100.	100	. 100.	100	. 100.	. 100.	. 100.	. 100
STAB CLASS (A-1, F-6)		0.		0.	. 0.			0.		
1/MONIN-OBUKHOV (1/m)	:	0,0000		-0.110	0.6500	0.100	-0.0110	-0.0050	-0.0230	0.003
ENDING RECORD	:	-1.	-1.	-1	l.	-1	1.	-1.	-1.	-1

.

							000000		_
TRACE INPUT DATA FOR JHEMICAL RELEASED TRIAL HAME JHEMICAL NO. (999-M2 WICH M.W29.0)	: Buzzo	API P	108C*43	046 9d	🔳 Ur	36690	050573	3 736	
JHEMICAL RELEASED	: Liques:	log nacural	i jas						
CHEMICAL NO.	: 302 51	EC3 51	804 g 51	IUS 1 51	906 3 51	107 11	5U3 61	BU 9 5 1	
(999-N2 with m.w29.0)				••	•••				
RELEASE TYPE: 1-CONT., 2-INS	T., J=TRANS.	•					•		
(999-M2 WICH M.W29.0) RELEASE TYPE: 1-CONT., 2-ENS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	2-GAS	•	•	•	•	-	•	-	
SETTAGE SATE Stores	: 26 1000	27 3800	36 3600	21 2500	22 2200	20 1600	1	125 2000	
RELEASE DURATION (s)	: 173.00	167.00	175.00	190.30	129.00	174.00	107,00	79.00	
TEMP. OF CHEMICAL (K)	: 111.60	111.50	111.50	:11.30	111.60	111.30	111.50	111.50	
VERTICAL VELO. (M/S)	: 0.30	3.50	J.30	J.30	3.90	5.00	3.00	0.00	
HORIZONAL VELC. (M/S)	: 0.00			_					
AIR/CHEMICAL MOLE RATIO (INI	: 17.9550 TIAL DILUTION	19.1500	18.0450	17.4450	18.5850	19.3000	20.9250	22.5650	
· · · · · · · · ·	. 0.000	0.000	0.000	0.000	0.000	0.300	0.000	0.000	
	: 2642.080	2642.380							
ALBEDO OF POOL	0.150								
AEROSOL FORMATICN: 1-MANUAL,	2-DEFAULT	•	2	-	1	•			
AEROSOL/FLASH MASS RATIO	: 0.0000	<b>ວ</b> ,ວວວວົ	0.000	0.0000	0.000	0.000	0.000	<b>3.</b> 000	
AEROSOL AIR ENTRAINMENT: 1-M	ANUAL, 2-DEFA	ULT						_	
AIR/CHEMICAL MASS RATIO	: 0.0000	2.000	2,000	2	2 0,000	2	2 0.000	2	
SUBSTRATE: 0-W, 1-C, 2-Aso11	, 3=5Dsoil, 4	-SMSO11							
SUBSTRATE TEMP. (K)	: 0	0 207.75	309.05	134 27	312 67	106 96	306.02	0 209 52	
WIND SPEED (m/s)	: 5.40	5.40	9.00	7.40	9.10	8.40	1.30	5.70	
HORZ. STAB.	: 3	3	3	3	3	4	5	4	
TEMP. (K)	311.27	307.75	309.05	314.27	312.67	306.96	306.02	308.52	
HUMIDITY (FRACTION)	: 0.07	0.05	0.03	0.06	0.05	0.07	0.05	0.14	
SURFACE ROUGHNESS (m)	: 0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	0.00020	
M-O LENGTH (m)	: -12.947	-5.814	-49.310	-35.634	-53.393	-148.633	15.478	-2288.323	
CEILING HT. (m)	: 2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
UPPER LEVEL STAB.	: 3	3	3	3	3	4	5	4	
SIMULATION TIME (S)	: 625.93	625.93	615.56	618.92	615.38	647.62	1044.44	740-35	
MAX. DOSAGE DISTANCE (m)	: 140.	140.	140.	140.	140.	400.	800.	800.	
CONC. AVG. TIME (s)	: 40.00	100.00	80.00	130.00	70.00	140.00	80.00	50.00	
MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATICN: 1-MANUAL, AEROSOL FORMATICN: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-W, 1-C, 2-ASO11 SUBSTRATE: 0-W,									
TRACE INPUT DATA FOR	: Coyota	ed			Veshave	1			
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Coyota : Liquefi : CO3 C	ed natural	. gas :06	:	Methane i	s ac least	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Coyota : Liquefi : CO3 C	ed nacural	. gas :06		Mathane i	s at 16231	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Coyota : Liquefi : CO3 C	ed nacural	. gas :06	:	Methane i	s at least	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Coyota : Liquefi : CO3 C	ed nacural	. gas :06	:	Methane i	s at least	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyota : Liqueii : CO3 C : 61 T., 3-TRANS. : 1 2-GAS	ed natural 25 0 61	. <b>Gas</b> :26 61 1	:	Methane i	s at least	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyota : Liqueii : CO3 C : 61 T., 3-TRANS. : 1 2-GAS	ed natural 25 0 61	. <b>Gas</b> :26 61 1	:	Methane i	s at least	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyota : Liqueii : CO3 C : 61 T., 3-TRANS. : 1 2-GAS	ed natural 25 0 61	. <b>Gas</b> :26 61 1	:	Methane i	s at least	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyota : Liqueii : CO3 C : 61 T., 3-TRANS. : 1 2-GAS	ed natural 25 0 61	. <b>Gas</b> :26 61 1	:	Methane i	s at least	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Coyota : Liqueii : CO3 C : 61 T., 3-TRANS. : 1 2-GAS	ed natural 25 0 61	. <b>Gas</b> :26 61 1	:	Methane i	s at least	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE CURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s)	: Coyots : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 0.00	ed nacural 25 C 61 1 129.9200 98.00 111.60 0.00 21.800	. qas 506 61 123.0300 32.00 111.60 0.00	:	Methane i	S 20 10251	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE CURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s)	: Coyots : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 1 : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 0.00	ed nacural 25 C 61 1 129.9200 98.00 111.60 0.00 21.800	. qas 506 61 123.0300 32.00 111.60 0.00	:	Methane i	5 3C 18231	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: Coyots : Liquefi : CO3 C : 61 T., 3~TRANS. : 1 2~GAS : 100.6700 : 65.00 : 0.00 : 0.00 : 0.30 : 0.30 : 19.4150 TIAL DILUTION	ed natural () () () () () () () () () ()	. gas 505 51 123.0300 121.60 0.00 21.4650	:	Methane i	5 30 18231	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: Coyots : Liquefi : CO3 C : 61 T., 3~TRANS. : 1 2~GAS : 100.6700 : 65.00 : 0.00 : 0.00 : 0.30 : 0.30 : 19.4150 TIAL DILUTION	ed natural () () () () () () () () () ()	. gas 505 51 123.0300 121.60 0.00 21.4650	:	Methane i	S 2C 10231	: 864 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE RATE (kg/s) RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Coyots : Liquefi : CO3 C : 61 T., 3"TRANS. : 12"GAS : 100.6700 : 6500 : 100.6700 : 0.00 : 0.00 : 0.00 : 19.4150 TIAL DILUTION : 0.000 : 2642.980 : 0.150	ed natural () (1) (1) (129.0200 98.00 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2	. qas 506 61 123.0300 32.00 11.60 0.00 21.4650 0.000 2642.080	:	Methane i	S 2C 16251	: 864 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE RATE (kg/s) RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Coyots : Liquefi : CO3 C : 61 T., 3"TRANS. : 12"GAS : 100.6700 : 6500 : 100.6700 : 0.00 : 0.00 : 0.00 : 19.4150 TIAL DILUTION : 0.000 : 2642.980 : 0.150	ed natural () (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2	. qas 506 61 123.0300 32.00 11.60 0.00 21.4650 0.000 2642.080	:	Methane i	s ac least	: 864 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1=MANUAL,	: Coyots : Liquefi : CO3 C : 61 T., 3-TRANS. : 1 2-GAS : 100.6700 : 65.00 : 111.60 : 0.00 : 0.00 : 0.00 : 19.4150 TIAL DILUTION : 0.000 : 2642.080 : 0.150 2-0EFAULT : 2 : 2000	ed nacural 55 61 1 129.0200 98.00 21.9800 21.9800 2642.080	. gas 506 61 1 123.0300 32.00 111.60 0.00 21.4650 0.000 2642.080	:	Methane i	s at least	: 86% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	s at least	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 16251	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 16251	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 10281	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 10281	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (S) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 20 10251	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 20 Le281	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 10251	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 10251	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 10251	: 96% in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S at least	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 16251	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE CORATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL 'ZELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1=M	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C 16251	: 964 in c		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. FOOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1=MANUAL,	: Coyots : Liquefi : CO3 C : CO3 C	ed natural () (1) (29.0200 98.00 11.00 0.000 21.9800 () 0.000 0.000 0.2000	. gas 505 51 123.0300 121.60 0.000 21.4650 0.000 2642.080 2.0000 2	:	Methane i	S 2C Le281	: 964 in c		

286

TRACE INPUT DATA FOR	· Desert Tort	<b>5158</b>			073229	10 0505734	879	
TRACE INPUT DATA FOR CHEMICAL RELEASED	: Annyarous A	m.m.0.1.2						
TRIAL NAME	: 271 _ 2	72 _ 2	T3 _ 3	74	API	PUBL*4546	92	
CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-M2 With m.W29.0)	: 44	-1	42	- 22				
(399-M2 WITH M.W29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	T., 3-TRANS.							
PHASE OF CHENTCALL 1 HE TOUTD	: 1	1	1	÷ .				
FINE OF CHERICAL, 1-SIGUE,	: 1	:	:	:				
RELEASE RATE (kg/s)	: 79.7000	:11.5000	130.7000	96.7000				
RELEASE DURATION (S)	: 126.00	255.00	166.30	381.00				
RELEASE ELEVATION (m)	: 0.79	0.79	2,79	0.79				
VERTICAL VELO. (m/s)	: 0.00							
HORIZONAL VELO. (m/s)	: 0.00	0 2079						
AIR/CHEMICAL MOLE BATIO (INT	: 0.5185 TIAL DILUTION	2.2911	0.0089	0.6210				
AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (1^2)	; 0.000	0.000	0.000	0.000				
MAX. POOL AREA (122)	: 10000.000	10000.000	10000.000	10000.000				
MIN. FOOL DEFTH (m) Albedo of fool	· 0.010							
AEROSOL FORMATION: 1-MANUAL,	0 0.000 MIT 0							
	: 1	1	1	1				
AEROSOL/FLASH MASS RATIO	: 10000.00001	0000.00001	0000.00001	000.0000				
ALKODON AIK LAIMAMALIII I-A	: 2	2	2	2				
AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: 0.0000	0.0000	0.000	0.0000				
SUBSTRATE: J=W, 1=C, 2=Asoil	, 3-SDsoil, 4	-SMSO11	,	-				
SUBSTRATE TEMP. (K)	. 304_80	303-80	4 304-80	304.00				
WIND SPEED (m/s)	: 7.40	5.30	7.40	4.50				
HORZ. STAB.	: 4	4	4	5				
TEMP. (K)	· · · · · · · · · · · · · · · · · · ·	303 63	307 07	305 63				
HUMIDITY (FRACTION)	: 0.13	0.17	0.15	0.21				
SOLAR RAD. (w/m^2)	: 300.00							
SURFACE ROUGHNESS (m)	: 0.00300	0.00300	0.00300	0.00300				
WIND MEAS. HT. (m)	: 2.00	2.00	2.00	2.00				
CEILING HT. (m)	: 10000.							
UPPER LEVEL STAB.	: 4	4	4	5				
TLV HT. (m)	: 1.00	1.00	1.00	1,00				
MAX. DOSAGE DISTANCE (m)	: 800.	800.	800.	800.				
CONC. AVG. TIME (s)	: 80.00	160.00	120.00	300.00				
AIR/CHEMICAL MASS RATIO SUBSTRATE: J-W, 1-C, 2-Aso11 SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTICN) SOLAR RAD. (w/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. (m) CEILING HT. (m) CEILING HT. (m) UPFER LEVEL STAB. SIMULATION TIME (s) TLV HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)								
TRACE INPUT DATA FOR	: Goldfis	h		•				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME	: Goldfis : Hydroge	h n fluori⊴e F7		:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Goldfis : Hydroge : GF1 G : 17	h n fluori⊴a F2 G 17	F3 17					
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0)	: Goldfis : Hydroge : GF1 G : 17	h n fluori⊴a F2 G 17	F3 17	•				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS.	h n fluori⊴a F2 G 17 1	F3 17	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS.	h n fluori⊴a F2 G 17 1	F3 17	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID,	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1	h n fluorida F2 G 17 1	<b>F3</b> 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, PELEASE RATE (KG/S)	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 : 27, 5700	h n fluoride F2 G 17 1 1	F3 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, PELEASE RATE (KG/S)	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 : 27, 5700	h n fluoride F2 G 17 1 1	F3 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, PELEASE RATE (KG/S)	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 : 27, 5700	h n fluoride F2 G 17 1 1	F3 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, PELEASE RATE (KG/S)	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 : 27, 5700	h n fluoride F2 G 17 1 1	F3 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2=GAS : 1 : 27.6700 : 125.00 : 313.20 : 1.00 : 0.90 : 0.3041	h n fluoride F2 G 17 1 10.4600 360.00 311.20 1.30	F3 17 1	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE SLEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 : 27.6700 : 125.00 : 313.20 : 313.20 : 0.00 : 0.3041 TIAL DILUTION	h fluoride F2 G 17 1 10.4600 360.00 311.20 1.30 0.1689	F3 17 1 10.2700 360.00 312.20 1.00 0.1717	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 27.6700 : 125.00 : 313.20 : 1.00 : 0.00 : 0.3041 TIAL DILUTION	h n fluorida F2 G 17 1 10.4600 360.00 311.20 1.00 0.1689 ) 0.000	F3 17 1 19.2700 360.00 312.20 1.00 0.1717	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 27.6700 : 125.00 : 313.20 : 1.00 : 0.00 : 0.3041 TIAL DILUTION	h n fluorida F2 G 17 1 10.4600 360.00 311.20 1.00 0.1689 ) 0.000	F3 17 1 19.2700 360.00 312.20 1.00 0.1717	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE SLEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 27.6700 : 125.00 : 125.00 : 313.20 : 0.00 : 0.00 : 0.3041 TIAL DILUTION : 0.000 : 0.000 : 0.010 : 0.150	h n fluorida F2 G 17 1 10.4600 360.00 311.20 1.00 0.1689 ) 0.000	F3 17 1 19.2700 360.00 312.20 1.00 0.1717	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (k) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 27.6700 : 125.00 : 313.20 : 0.00 : 0.00 : 0.00 : 0.000 : 0.010 : 0.150 2-05FMUT	h n fluorida F2 G 17 1 10.4600 360.00 311.20 1.00 0.1689 0.000 10000.000	F3 17 1 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 125.00 : 313.20 : 1.000 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.150 2-DEFAULT : 10000.0000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE SLEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FLASH MASS RATIO AEROSOL FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 27.6700 : 125.00 : 313.20 : 313.20 : 0.00 : 0.00 : 0.00 : 0.3041 TIAL DILUTION : 0.000 : 0.010 : 0.150 2-DEFAULT : 10000.00001 ANUAL 2-0EFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 1.30 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 1.00 0.1717 0.000 10000.000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 ANUAL, 2-DEFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 ANUAL, 2-DEFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 : 0.000	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 ANUAL, 2-DEFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 ANUAL, 2-DEFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M	: Goldfis : Hydroge : GF1 G : 17 T., 3-TRANS. : 1 2-GAS : 125.00 : 125.00 : 125.00 : 313.20 : 0.900 : 0.900 : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 TIAL DILUTION : 0.3041 IIAL DILUTION : 0.3041 IIAL DILUTION : 0.150 2-DEFAULT : 10000.00001 : 10000.00001 : 0.150 2-DEFAULT : 10000.00001 ANUAL, 2-DEFA	h n fluorida F2 G 17 1 10.4600 360.00 311.20 0.1689 0.000 10000.000 10000.000	F3 17 1 10.2700 360.00 312.20 0.1717 0.000 10000.000 0000.0000	:				

287

•

					172780	00000		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. 999-N2 Silf M.K29.3)	: fanfor	a Jonsiau	ous)		'JEE7U	<b>U</b> 5U5 (	95 705	
Chemical Released Trial Name	: Arypto: : HCl	n-45 KC2	XC3	4C 4	RCS	API	PUBL*45	16
JHEMICAL NO.	: 399	399	999	999	399			
-999-N2 #101 m.#.=29.3) RELEASE TYPE: 1=CONT., 2=INS PHASE OF CHEMICAL: 1=LICUID, RELEASE CURATION (S) RELEASE CURATION (S) TEMP. OF CHEMICAL (X) RELEASE ELEVATION (m) VERTICAL VELO. (m/S) HORIZONAL VELO. (m/S) INIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI MAX. PCOL AREA (m^2) MIN. PCOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1=MANUAL,	T., 3-TRANS.							
PHASE OF CHEMICAL: 1-LIQUID,	: 1 2-GAS	-	-	2	:			
	:		3 3273	2	2			
RELEASE DURATION (S)	: 328.30	205.30	355.00	398.00	1191.00			
TEMP. OF CHEMICAL (X)	: 290.37	285.43	288.33	236.55	278.32			
VERTICAL VELO. (m/s)	: 0.00		- • • • •					
HORIZONAL VELO. (m/s) INIT, BADIUS m)	: 0.00	3,0296	0.0337	0.0532	0.0431			
AIR/CHEMICAL MOLE RATIO (INI	TIAL DILUTION	{}						
MAX. PCOL AREA (m^2)	: 10000.000	10000.000	10000.000	10000.000	10000.000			
MIN. POOL DEPTH (m)	: 0.010							
ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL,	2=DEFAULT							
AFROSOL/FTASH MASS PATTO	1 2	2	2	0.0000	2			
AEROSOL AIR ENTRAINMENT: 1-M	ANUAL, 2-DEF	ULT		110000	11000			
ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL FORMATION: 1-MANUAL, AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-W, 1-C, 2-ASOII SUBSTRATE: 0-W, 1-C, 2-ASOII SUBSTRATE TEMP. (K) 4INO SPEED (m/s) 4ORZ. STAB. 7ERT. STAB. 7	: 0.0000	2 0.0000	2 0.0000	2 0,000	2 0.0000			
SUBSTRATE: 0-W, 1-C, 2-Asoil	, 3=SDS011,	H=SMSOIL						
SUBSTRATE TEMP. (K)	290.37	285.43	288.93	286.65	278.32			
TIND SPEED (m/s)	: 1.30	3.90	7.10	3.90	2.50			
VERT. STAB.	: 6	3	3	3	5			
TEMP, (K) HUMIDITY (FRACTION)	: 290.87	285.43	288.93	286.65	278.82			
SOLAR RAD. (W/m^2)	: 300.00	0120		~~~~	~~20			
SURFACE ROUGHNESS (m) M-O LENGTH (m)	: 0.03000	0.03000	0.03000	0.03000 -26.653	0.03000			
WIND MEAS. HT. (m)	1.50	1.50	1.50	1.50	1.30			
CEILING HT. (M) OPPER LEVEL STAB.	: 10000.	3	3	3	5			
SIMULATION TIME (S)	: 1215.38	805.13	712.68	805.13	907.69			
MAX, DOSAGE DISTANCE (m)	: 800.	800.	800.	800.	\$00.			
CONC. AVG. TIME (S)	: 460.80	844.80	268.80	268.80	537,60			
TRACE INPUT DATA FOR	: Hanford	i (instant:	ineous)					
TRACE INPUT DATA FOR CHEMICAL RELEASED	: Hanford : Krypton	i (instant: 1-85	ancous)					
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Hanford : Krypton : HI2 I : 999	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 j 999	117 I 999	<b>118</b> 999	9	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Hanford : Krypton : HI2 I : 999	i (instant: 1-85 113 - 1 999	aneous) HIS : 999	116 1 999	117 I 999	(II 8 99)	9	
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 WITH m.W29.0) RELEASE TYPE: 1=CONT., 2=INS	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO.	: Hanford : Krypton : HI2 I : 999 T., 3-TRANS	i (instant: 1-85 113 ! 999	aneous) HIS : 999	116 I 999	117 I 999	118 99		

ملاه

92

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

288

-

						050577	36 641	
TRACE INPUT DATA FOR DHEMICAL RELEASED TRIAL NAME DHEMICAL NO. 1999-M2 WICH A.W29.01	: Maplin Sand : Liquified S	os Nacural Ja:	8		36670			
TRIAL NAME	: MS27	4529	- 4534 :	4535	API	: PUBL	*4546	92
	: 51	51	51	<b>61</b>		• • • - ·		
RELEASE TYPE: 1-CONT., 2-INS	T., J-TRANS.							
.999-M2 WITH H.W19.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HINT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	: 1 2-GAS	1	2	1				
RELEASE BATE (KC/S)	: <u>1</u>	29.1600	1	1 0065 75				
RELEASE DURATION (S)	: 160.00	225.00	95.00	135.00				
TEMP. OF CHEMICAL (K)	: 111.70	111.70	111.70	111.70				
RELEASE ELEVATION (m)	: 0.00	0,00	0.00	0.00				
VERTICAL VELO. (M/S)	: 0.00							
INIT. RADIUS (m)	9,3000	10.4500	9.0000	10.0500				
MAR/CHEMICAL MOLE RATIO (INF MAX. FOOL AREA (m^2) MIN. FOOL DEPTH (m) ALBEDO OF FOOL	TIAL DILUTION	(7						
	: 0.000	0.000	0.000	0.000				
MIN. POOL REPTH (#1)	. 10000,000	100001000	10000.000	10000.000				
ALBEDO OF POOL	: 0.150							
AEROSOL FORMATION: 1-MANUAL,	2-Default							
AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO	: 2	2	2	2				
AEROSOL ATE ENTRAINMENT: 1-M	: 0.0000 ANDAL: 7=0EFI		5.5000	5,0000				
AEROSOL AIR ENTRAINMENT: 1-44 AIR/CHEMICAL MASS RATIO	: 2	2	2	2				
AIR/CHEMICAL MASS RATIO	: 0.0000	0.0000	0.000	0.0000				
AIR/CHEMICAL MASS RATIO SUBSTRATE: )=W, 1=C, 2=Asoil WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTION) SOLAR RAD. (w/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s) TLV HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)	, 3=SDsoil, 4	4-SMSO11	-	-				
SUBSTRATE TEMP (K)	- 0 • 288.90	290.00	0 789 00	280 80				
WIND SPEED (m/s)	: 5.60	7.40	209.00	9,60				
HORZ. STAB.	: 4	4	4	4				
VERT. STAB.	: 4	4	4	4				
HUMIDITY (FRACTION)	288.10	0د.وي 17 0	258.40	289.30				
SOLAR RAD. (W/m-2)	: 300.00	V.11	4.30	4.11				
SURFACE ROUGHNESS (m)	: 0.00030	0.00030	0.00030	0.00030				
M-O LENGTH (m)	: ~36.953	1220.632	-102.720	-81.578				
CEILING HT. (m)	10000	10,00	10.00	10,00				
UPPER LEVEL STAB.	: 4	4	4	4				
SIMULATION TIME (S)	: 716.07	654.46	621.06	642.29				
TLV HT. (M) MAX DOSAGE DISTANCE (m)	: 0.90	0.90	0.90	0.90				
CONC. AVG. TIME (s)	: 3.00	3.00	3.00	3.00				
						1550 N 132	<b>4552</b> }	<b>£554</b> 132
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-02 with T.K. =23 0)	: Maplin Sand : Liquified S : MS42 } : 132	is Propane Gas 1943 - 1 132	3 1546 132	1547 F 132	1549 X 132	1550 N 132	4552 ¥ 132	<b>1554</b> 132
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-02 with T.K. =23 0)	: Maplin Sand : Liquified S : MS42 } : 132	is Propane Gas 1943 - 1 132	3 1546 132	1547 F 132	1549 X 132	1550 f 132	4552 } 132	<b>4554</b> 132
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-02 with T.K. =23 0)	: Maplin Sand : Liquified S : MS42 } : 132	is Propane Gas 1943 - 1 132	3 1546 132	1547 F 132	1549 X 132	1550 } 132 1	4552 <u>}</u> 132 1	<b>1554</b> 132 1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS ² PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified S : MS42 N : 132 T., 3=TRANS. : 1 2=GAS : 10 10	13 Propane Gas 1543 } 132 1	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS ² PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified S : MS42 N : 132 T., 3=TRANS. : 1 2=GAS : 10 10	13 Propane Gas 1543 } 132 1	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS ² PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified S : MS42 N : 132 T., 3=TRANS. : 1 2=GAS : 10 10	13 Propane Gas 1543 } 132 1	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS ² PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified S : MS42 N : 132 T., 3=TRANS. : 1 2=GAS : 10 10	13 Propane Gas 1543 } 132 1	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS ² PHASE OF CHEMICAL: 1-LIQUID,	: Maplin Sand : Liquified S : MS42 N : 132 T., 3=TRANS. : 1 2=GAS : 10 10	13 Propane Gas 1543 } 132 1	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE OF CHEMICAL: 1-LIQUID, RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) ENIT. RADIUS (m)	: Maplin Sand : Liquified S : MS42 : 132 T., 3-TRANS. : 1 2-GAS : 20.2700 : 180.00 : 231.10 : 0.00 : 0.00 : 7.4500	13 Propane Ca: 4543 132 1 19.2000 330.00 231.10 0.00 7.1500	3 1546 132 1	1547 } 132	1549 k 132 1	1	:	1
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADICS (m)	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 20.8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500	13 Propane Ga: 132 132 1 19.2000 330.00 231.10 0.00 7.1500	3 1546 132 1 23.3700 360.00 231.10 0.00 7.9500	1547 5 132 1 32.5700 210.00 231.10 0.90 9.3000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500	1 35.8900 160.00 231.10 0.00 9.7500	144.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADICS (m)	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 20.8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500	13 Propane Ga: 132 132 1 19.2000 330.00 231.10 0.00 7.1500	3 1546 132 1 23.3700 360.00 231.10 0.00 7.9500	1547 5 132 1 32.5700 210.00 231.10 0.90 9.3000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500	1 35.8900 160.00 231.10 0.00 9.7500	144.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADICS (m)	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 20.8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500	13 Propane Ga: 132 132 1 19.2000 330.00 231.10 0.00 7.1500	3 1546 132 1 23.3700 360.00 231.10 0.00 7.5500	1547 5 132 1 32.5700 210.00 231.10 0.90 9.3000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500	1 35.8900 160.00 231.10 0.00 9.7500	144.2500 140.00 231.10 0.00	1 19.2000 180.00 231.10 0.00 7.1500
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/S) HORIZONAL VELO. (m/S) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Maplin Sand : Liquified S : MS42 : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 1 2-GAS : 0.20 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 : 0.000 : 10000.000 : 0.010 : 0.150	45 45 45 45 45 45 45 45 45 45	3 1546 132 1 23.3700 360.00 231.10 0.00 7.3500 0.000 10000.000	1547 5 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.300 10000.000	1 44.2500 140.00 231.00 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE CONTRACTOR (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/S) HORIZONAL VELO. (m/S) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: Maplin Sand : Liquified S : MS42 : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 1 2-GAS : 0.20 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 : 0.000 : 10000.000 : 0.010 : 0.150	45 45 45 45 45 45 45 45 45 45	3 1546 132 1 23.3700 360.00 231.10 0.00 7.3500 0.000 10000.000	1547 5 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.000	1 35.8900 160.00 231.10 0.00 9.7500 0.300 10000.000	1 44.2500 140.00 231.00 0.00 10.8500 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE CONTROL (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. FOOL AREA (m~2) MIN. FOOL DEFTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL FORMATION: 1-MANUAL,	: Maplin Sand : Liquified S : MS42 * : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 1 2-GAS : 0.20 : 231.10 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 0.000 : 0.000 : 0.000 : 0.150 2-DEFAULT : 2.0.000	43 Propane Ga: 4543 132 1 19.2000 330.00 231.10 0.000 7.1500 10000.000 2 0.000	<b>1546 1</b> 32 <b>1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000000 100000000 10000000000</b>	1547 132 1 1 32_5700 210.00 231.10 0.00 9.3000 0.000 10000.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.3500 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE CONTROL (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. FOOL AREA (m~2) MIN. FOOL DEFTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL FORMATION: 1-MANUAL,	: Maplin Sand : Liquified S : MS42 * : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 1 2-GAS : 0.20 : 231.10 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 0.000 : 0.000 : 0.000 : 0.150 2-DEFAULT : 2.0.000	43 Propane Ga: 4543 132 1 19.2000 330.00 231.10 0.000 7.1500 10000.000 2 0.000	<b>1546 1</b> 32 <b>1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 10000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000.000 100000000 100000000 10000000000</b>	1547 132 1 1 32_5700 210.00 231.10 0.00 9.3000 0.000 10000.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200	1 35.8900 160.00 231.10 0.00 9.7500 0.000 10000.000	1 44.2500 140.00 231.10 0.00 10.3500 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 0.010 : 0.010 : 0.000 : 0.0000 : 0.000 : 0.000 : 0.0	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.000 9.3000 0.000 10000.000 20.0000 20.0000 20.0000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 0.010 : 0.010 : 0.000 : 0.0000 : 0.000 : 0.000 : 0.0	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.000 9.3000 0.000 10000.000 20.0000 20.0000 20.0000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 0.010 : 0.010 : 0.000 : 0.0000 : 0.000 : 0.000 : 0.0	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.000 9.3000 0.000 10000.000 20.0000 20.0000 20.0000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.000 9.3000 0.000 10000.000 20.0000 20.0000 20.0000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 N 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 0.000 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 0.00 : 1000.000 : 0.010 : 0.010 : 0.010 : 0.000 : 0.010 : 0.000 ANUAL, 2-DEFX	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999=N2 with m.w.=29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) INIT. RADICS (m) AIR/CHEMICAL MOLE RATIO (INIT MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO AEROSOL AIR ENTRAINMENT: 1-M	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 0.010 : 0.010 : 0.000 : 0.00	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 180.00 231.10 0.00 7.1500 10000.000
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (9999-N2 with m.w29.0) RELEASE TYPE: 1-CONT., 2-INS' PHASE OF CHEMICAL: 1-LIQUID, RELEASE CONTROL (S) TEMP. OF CHEMICAL (K) RELEASE DURATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) NIT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI: MAX. FOOL AREA (m~2) MIN. FOOL DEFTH (m) ALBEDO OF FOOL AEROSOL FORMATION: 1-MANUAL, AEROSOL FORMATION: 1-MANUAL,	: Maplin Sand : Liquified S : MS42 M : 132 T., 3-TRANS. : 1 2-GAS : 1 2-GAS : 20,8700 : 231.10 : 0.00 : 0.00 : 0.00 : 7.4500 TIAL DILUTION : 0.000 : 10000.000 : 0.010 : 0.010 : 0.000 : 0.00	43 Propane Ga: 4543 132 1 1 19.2000 330.00 231.10 0.00 7.1500 10000.000 10000.000 22 0.0000 AULT 2	3 1546 132 1 23.3700 360.00 231.10 0.000 7.3500 0.000 10000.000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	1547 1 132 1 32.5700 210.00 231.10 0.00 9.3000 0.000 10000.000 20.000	1549 k 132 1 16.7100 90.00 231.10 0.00 6.6500 0.000 10000.200 2 0.0000	1 35.8900 231.20 9.7500 0.300 10000.000 2 0.000	144.2500 140.00 231.10 0.000 10.85C0 0.000 10000.000	1 19.2000 231.10 0.00 7.1500 10000.000

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 289

					1 0792	290 05	n 2 3 3 7	
TRACE INPUT DATA FOR	: ?rairi	e Jrass, s	BC :					
CHEMICAL RELEASED TRIAL HAME CHEMICAL NO. .399-N2 with m.w29.0)	: Jaifur : PG7	310×14 <b>0</b> 208	209	PG10	2013	7615	PG16	2017
CHEMICAL NO.	: 33	33	33	33	33	33	33	33
RELEASE TYPE: 1-CONT., 2-INS	T., 3-TRANS.							
		:	1	:	:	:	:	:
.)999-M2 With m.w19.0) RELEASE TYPE: 1-CONT., 2-INS PHASE OF CHEMICAL: 1-LIQUID, RELEASE RATE (kg/s) RELEASE DURATION (s) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) HORIZONAL VELO. (m/s) NUT. RADIUS (m) AIR/CHEMICAL MOLE RATIO (INI	2-GAS : 2	:	2	2	2	2	2	2
RELEASE RATE (kg/s)	. 0.0899	3.3911	3.3920	0.0921	0.0611	0.0955	0.0930	0.0565
TEMP. OF CHEMICAL (X)	: 305.15	305.15	301.15	204.15	193.15	295.15	300.00	300.35
RELEASE ELEVATION :m)	: 0.45	0.45	J.45	0.45	0.45	3.45	0.45	3.45
YERTICAL VELO. (M/S) HORIZONAL VELC. (M/S)	: 0.00							
INIT, RADIUS (m)	: 0.0254	0.0254	0.0254	0.0254	0.0254	0.0254	0.0254	0.0254
AIR/CHEMICAL MOLE RATIO (INI	TIAL DILUTICS	0.000	0.000	3.000	0.000	0.000	0.000	0.000
AIR/CHEMICAL MOLE RATIO (INI MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: 10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000	10000.000
MIN. POOL DEPTH (m)	: 0.010							
AEROSOL FORMATION: 1-MANUAL,	2-DEFAULT							
APPOSOL/FLASH MASS PATTO	t 2 • 0.000	2 0000	2.0000	9,0000	2 0.000	0.000	0.0000	2
AEROSOL AIR ENTRAINMENT: 1-M	ANUAL, 2-DEF	ULT				0.0000		0,0000
TD/CUPUTCAT WARE SATTA	: 2	2 0000	2 2 2 2	0 0000	2 2000	0 0000	2	2
SUBSTRATE: 0-W, 1-C, 2-Asoil	, 3=5Dsoil, 4	i≠SMsoil	3.0000	0.0000	0.0000	0.0000	5.0000	3.0000
	: 2	2	2	2	2 2 2 2	2	2	2
WIND SPEED (m/s)	: 305.15	4.90	6,90	4.60	293.15	295.15	301.13	3.30
HORZ. STAB.	: 2	3	3	2	6	1	1	4
TEMP. (K)	: 305.15	305.15	301.15	304.15	293.15	295.15	301.15	300.15
HUMIDITY (FRACTION)	. 0.20	0.20	0.20	0.20	0,20	0.20	0.20	0.20
SOLAR RAD. (W/m^2) SURFACE ROUGHNESS (m)	: 300.00 : 0.00600	0.00600	0.00600	0.00600	0_00600	0.00600	0.00600	0,00600
M-O LENGTH (m)	-3.178	-20.611	-34.123	-7.452	6.014	-7,736	-7,834	49.806
WIND MEAS. HT. (m)	: 2.00 · 10000.	2.00	2.00	2.00	2.00	2.00	2.00	2.00
UPPER LEVEL STAB.	: 2	3	3	2	6	1	1	4
SIMULATION TIME (S)	: 790.48	763.27	715.94	773.91	1215.38	835.29	850.00	842.42
MAX. DOSAGE DISTANCE (m)	: 800.	\$00.	300.	800.	500.	800.	800.	800.
ALBEDO OF POOL AEROSOL FORMATION: :-MANUAL, AEROSOL FORMATION: :-MANUAL, AEROSOL AIR ENTRAINMENT: :-M AIR/CHEMICAL MASS RATIO SUBSTRATE: 0-W, :-C, 2=Aso11 SUBSTRATE: 0-W, :-C, 2=Aso11 SUBSTR	: 600.00	600.00	600.00	600.00	600.00	600,00	600,00	600.00
403.00 THOMA NAME 200		· Taland //						
TRACE INPUT DATA FOR CHEMICAL RELEASED TRIAL NAME CHEMICAL NO. (999-N2 With m.W29.0)	: Mixcure	of Freen-	-12 and Nit	zogen .				
TRIAL NAME	: TC45 1	tC47						
(999-N2 with m.w29.0)	; 945	297						
	T., 3-TRANS. : 1							
PHASE OF CHEMICAL: 1-LIQUID,	2 <b>GAS</b>							
		2						
RELEASE DURATION (s)	: 455.00	465.00						
RELEASE RATE (kg/s) RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: 286.25	287.45						
VERTICAL VELO. (M/S)	: 0.00	1.10						
HORIZONAL VELO. (m/s)	: 0.00							
	: 0.000	0.000						
MAX. POOL AREA (M~2) MIN. 2001 CEPTH (m)	: 10000.000	10000-000						
MAX. POOL AREA (m^2) MIN. POOL DEPTH (m) ALBEDO OF POOL	: 0,150							
AEROSOL FORMATIONS IMMANUAT.	2moff101.T							
AEROSOL/FLASH MASS RATIO	0.0000	0.000						
AEROSOL AIR ENTRAINMENT: 1-M AIR/CHEMICAL MASS RATIO	ANUAL, 2-DEF7 : 2	<b>ULT</b> 2						
AIR/CHEMICAL MASS RATIO	0.0000	0.000						
SUBSTRATE: U=W, 1=C, 2=Aso11	, 3=SDSO11, 4 : 2	l=SMsoil 2						
SUBSTRATE TEMP. (K)	285.95	287.65						
HORZ, STAB.	1 2.30 1 5	1.30						
VERT. STAB.	: 5	5						
HUMIDITY (FRACTION)	: 286.25	287.45						
SOLAR RAD. (W/mcc)	: 300.00							
SURFACE ROUGHNESS (m) M-0 length (m)	: 0.01000 : 21.670	3.01000						
WIND MEAS. HT. m)	10.00	10.00						
CEILING HT. m) UPPER LEVEL MAR	: 10000.	-						
SIMULATION TIME (3)	: 305.22	, 314.57						
TLY HT. (m)	: 3.40	2.40						
SUBSTRATE: 0-W, 1-C, 2-ASO11 SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTION) SOLAR RAD. (W/m^2) SURFACE ROUGHNESS (m) M-O LENGTH (m) WIND MEAS. HT. m) CETLING HT. m) UPPER LEVEL STAB. SIMULATION TIME (s) TLY HT. (m) MAX. DOSAGE DISTANCE (m) CONC. AVG. TIME (s)	: 30.00	10.10						

290

TRACE INPUT DATA FOR CHEMICAL RELEASED	: Thorney	y Island (	instantane	045)	0738	2290 0.	505738	414 🔳	
		s of steon-	-the such as	-todeu					
TRIAL NAME THEMICAL NO.	: 716				7222	7213			7219
INEMICAL NO.	: 306	907	9CS	309	<del>3</del> 12	913	<b>317</b>	<b>J1S</b>	919
1999-N2 WITH T.W. #29 CY									
RELEASE TYPE: 1-CONT., 2-INS	ST., J-TRANS.								
	: 2	2	2	2	2	2	2	2	2
PHASE OF CHEMICAL: 1-LIQUID,	2 GAS						_		
	: 2	2	2	2		2	2		-
TOTAL MASS RELEASED (kg)	: 3147,00	4249.00	3958.00	3866.00	5736.00	4800.30	3711.00	3881.00	5477.00
RELEASE DURATION (s) TEMP. OF CHEMICAL (K) RELEASE ELEVATION (m) VERTICAL VELO. (m/s) HORIZONAL VELO. (m/s) INIT. RADIUS (m)	: 0.00	0.00	0.00	0.00	3.00	3.30	0.00	0.00	0.00
TEMP. OF CHEMICAL (K)	: 291.33	290.46	290.58	291.45	283.29	286,38	289.21	289.56	286.17
RELEASE ELEVATION (m)	: 0.00	0.00	0.00	0.00	0.00	0,00	0.00	3.00	0.00
VERTICAL VELO. (m/s)	: 0.00								
HCRIZCNAL VELO. (m/s)	: 0.00				-				
INIT. RADIUS (m)	: 7.0000	7.0000	7.0000	7,0000	7,0000	7,0000	7,000	7.0000	7.0000
AIR/CHEMICAL MOLE RATIO (INI	TIAL DILUTION	()							
	: 0.000					0.000			
MAX. POOL AREA (m^2)	: 10000.000	10000.000	10000.000	10000,000	10000.200	10000.000	10000.000	100001000	10000.000
MIN. POOL DEPTH (m) ALBEDO OF POOL	: 0.010								
ALBEDO OF POOL	: 0.150								
AEROSOL FORMATION: 1-MANUAL, AEROSOL/FLASH MASS RATIO	2-DEFAULT	_	_		_	-			_
	: 2	2	2	2	Z	2	2	2	2
AEROSOL/FLASH MASS RATIO	: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000
AEROSOL AIR ENTRAINMENT: 1-	IANUAL, 2-DEFA	ULT	-	2					
	: 2	2	2	0,0000	2 0.0000	2 0.0000			
	: 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SUBSTRATE: 0-W, 1-C, 2-Asoil	., 3-SDsoil, 4	-SMS011	_	-	-	-	-	-	_
SUBSTRATE TEMP. (K) WIND SPEED (m/s) HORZ. STAB. VERT. STAB. TEMP. (K) HUMIDITY (FRACTION) SUBM DEP.	: 2	2	2	2			2		
SUBSTRATE TEMP. (K)	: 291.83	290.85	291.55						
WIND SPEED (m/s)	: 2.80	3.40	2.40			7.30			
HURL STAB.	: 4	5	4	6 6	5 5	4	4	4	4
VERT. STAB.	: 4	5	4						
TEMP. (K)	: 291.83	290,46	290.68						
AUMIDITY (FRACTICN)	: 0.75	0.81	0.88	0.87	0.66	0.74	0.94	0.81	0.95
SULAR SAD, (W/m ⁻ 2)	: 300.00								
SURFACE ROUGHNESS (m) M-O LENGTH (m)	: 0.01800	0.01800							
M-O LEAGTH (m)	: 9999.000	90.909	-9.091	1.538	10.000	-90.909	-200.000	-43.478	333.333
WIND MEAS. HT. (m)	: 10.00	10,00	10.00	10.00	10,00	10.00	10,00	10.00	10.00
WIND MEAS. HT. (m) CEILING HT. (m) UPPER LEVEL STAB. SIMULATION TIME (s) TIM HT. (m)	: 10000.	-			-				-
UPPER LEVEL STAB.	: 4	5	4	6	5	4	4	4	4
SIMULATION TIME (3)	: 751.43	747.06	812.50	895.88	800.00	656.44	700.00	668.92	691.09
TLV HT. (m)		0.40	0.40	0.40	0.10	0.40	v. 10	0.10	V. 1V
MAX. DOSAGE DISTANCE (m)	: 424. : 0.60	500.	510.						583.
CONC. AVG. TIME (S)	: 0.60	0,60	0.60	0.60	0,60	0.60	0.60	0.60	0.60

291

### API PUBL*4546 92 🔳 0732290 0505739 350 📕

#### APPENDIX C

· · ·

.

# TABULATION OF THE OBSERVED AND PREDICTED CLOUD-WIDTHS AND CONCENTRATIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS 293

APPENDIX C-1

.

THE OBSERVED AND PREDICTED MAXIMUM CONCENTRATION (PPM) FOR THE LONGEST AVAILABLE AVERAGING TIME

295

TKACE	155400 112200	96360 11600	134400 104600	190200 115900	225500 120000	1/0600 111200 18150	344200 200800 101000 41620	413800 214300 125900 33770	007.011 002.011 012.02011	386300 312900 234800 171800	171800 60400 151900	54020 6816	71200 11080
1.k		-	~~										
<b>AALS</b>	252400 102300	180400 32850	162800 70190	198500 84290	169500 74920	196300 94440 20960	230600 117700 42030 14900	323300 181600 48010 1470	96880 52230 21670	68040 42830 22690 13560	179100 126600 75140 48960	151100 6134	198700 10100
PIIAST	441000 286000	440000 287000	428000 56400	452000 100000	525000 65900	467000 257000 29800	387000 291000 62000 27100	469000 320000 109000	292000 98100 35600	78600 35000 15000 8360	309000 242000 160000 111000	4 8 1 0 0 8 4 8 0	51100 12100
ຸກປາກ	252700 55390	174300 35300	241000 52180	248300 54170	261100 57720	355500 87290 12200	27050 27050 27050	486100 140900 20730 5450	40030 20380 9347	36560 18580 8512 4872	175100 95760 45830 26680	335800 8690	334000 8618
AANANI	114100 33740	115200 33560	83790 21730	91400 24780	85930 22810	164900 55310 11480	492300 256500 82440 30300	239600 88320 20210 6962	31790 18150 9786	24540 13760 7016 4382	96210 60340 34060 22420	101300 177E	157300 6676
IIEGADAS	500200 123300	406500 45100	371500 124000	372800 131700	376000 132000	472600 160500 32150	1000000 734200 136600 40540	769400 245200 67500 18550	134700 59970 16690	129200 68700 26500 12940	296200 182300 112000 77880	71590 6235	0688 9930
GASTAR	274800 179600	266500 173400	165600 107400	204600 129700	167300 110400	176900 119600 40430	258900 123200 63510 42300	341700 234800 69390 21780	171100 122600 75800	97650 75360 50950 35830	270500 188800 108200 68660	170300 9958	138500 8847
Mad	155400 45880	142000 40560	105400 27840	108600 28900	110300 29560	162600 50570 9850	515300 281300 89410 34530	261700 97200 21640 7395	42280 23870 12010	30260 16730 8262 4940	97130 60070 33370 21590	100600 3519	141900 5420
FOCUS	972300 554900	975500 685400	979400 789300	979600 503900	976300 107700	869800 479700 76040	959300 731900 163100	949300 361500 71040 17930	391000 200700 104200	927000 927000 927000 600200	351700 170900 27880 67730	133400 9047	139700 9559
DEGADIS	649800 251000	625200 242700	399900 167800	486300 195700	410800 175800	449400 189800 41980	806900 374400 138200 25430	751900 323000 67380 21500	248200 149200 77310	176200 113300 64230 41620	325700 197200 110600 69290	285300 7421	449000 14240
CIIARM	299000 112000	296000 107000	291000 125000	264000 113000	303000 134000	302000 124000 14200	504000 240000 74000 19100	317000 113000 28400 7100	99100 56100 27200	150000 85800 42600 22200	124000 82600 46100 29100	20900 2340	27300 3260
B4M	432400 112100	441700 115900	314500 98400	344500 100000	324500 100000	342500 100000 22940	700000 100000 14300 3624	500800 142600 16260 5561	106700 40520 18450	100000 76450 42890 24120	147100 54100 28080 16610	70290 2084	78780 5099
XOI'HI A	310900 181400	311300 182600	193100 103000	229600 129500	212000 11110v	212700 129500 22590	561200 551000 241100 71520	401800 299100 81410 26060	239600 160000 71100	86730 36240 11830 8700 .	251300 240300 98810 76960	308900 2725	312500 8873
ALTOX	289300 76090	279000 72830	362800 118900	266300 72150	379100 126500	367900 120800 22360	874000 540500 176500 63650	730200 433600 124700 42830	204000 106800 57180	145700 105800 39400 24970	247300 152500 82500 51940	1 90400 6889	270700 10790
OHS.	86956 30013	16763 16763	85519 40292	68925 49913	127460 36656	144140 44183 23467	244060 162250 29160 20896	34205 65218 22920 11006	54229 23253 6959	32808 24713 7201 6311	82544 45342 21935 17277	49943 884 <b>3</b>	83203 10804
×	140	57 140	7.5 011	140	140	004 041	57 110 110 100 800	5.7 110 800	110 200 300	340 200 300	140 200 300 400	100	100 800
TRIAL	2011	608	សបត	ដលម	13U 6	1.08	81191	• (181	Fob	CO3	COÓ	E LA	1,1,2

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

297

.

•

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🗰 0732290 0505742 945 🛤

	TRACE	80730 10630	84800	12800	12520	276.0	6716	988	6,209	835	118.3	51.83	4.072	5.5	0.2680	é	0.472	15.45	1.176	21.44 -	1.678	7095	290.8	0 1922	114.00		10.13		1.302	CO. 10	1723	64.57		51 12 101 7
		210000 8545	192500	06811	13020 1678	207.9	6208	118	6808	942	2.2ci	110.30	13.210	3.38	0.2550	6.12	0.467	6,78	0.150	25,44	17.1	1583	87.8	\$30.5	14.61	386	16.11	Ì	376		329	10.58	705	29.99
5000		12700	44500	nnent	31700	92.0	36000	943	9800	563	0.10	32.40	052.0	1,83	0-1430	4.10	0.320	7.55		22.60		3900	136.0	429.0	11.20	141	3.39		3.42		F	3 <b>.</b> 39	1100	31.60
OBDG		-	392500 11080			147.7	3290	315	<i>E113</i>	245 29 2		47.49 3.181		2.79	0.1865	65°F	197.0	3.92 0.262		8.83 0.592						******							******	
INPUFF	152700	6261	256600 14170	7055	1063	150.4	1919	1	3106	62 0	:	69.21 7.530		2.37	20 5	222.0		0.625	60 FC	2.281		2010	, , ,	152.0	-	111	-	• • • • • •	-					• [["[[
HEGADAS	87870	8631	95000 11770	12860	2685	C.070	7065		2157	322.2	00 CQ	12.320		2.34	4.19	0.227	5 30	961-0	21.78	2.306		*******								******			*******	
GÀSTAR	136600	8357	16140	25190	2830		12500		9601	129.2	01 252	29.280	5	7111-0	7.04	0.263	7.75	0.165	41.85	3.712	866 *	-		90.8		130		128	-	129 **			352 AF	
СРМ	140400	7552 245220	11360	7284	978 179.7		3792	C 10C	378	68.8	86.66	7.662	2.14	0.1465	3.46	0.237	8.71	0.598	23.65	1.875		*******	*******				•	******			******		*******	
FOCUS	151900	138400	15540	35330	174.0	03666	118 118	18860	114	59.3	52.37	3.017	1.49	0.0941	3.13	161-0	11.6	0.506	17.47	1.123	-	-				_						*******		
DEGADIS	408800 12520	54000	17900	16270	396.5	8126	1132	7260	1077	2.021	51.00	3.564	3.97	0.2847	6.45	105-0	15.85	C51-1	19.19	c/5-1		-						-						
CIIARM	30100 3330	55900	8110	3210 812	188.0	1380	322	1060	224	0.20	351.00	D01-01	26.60	0-6190	56.20		56.20		197.00 5 780		3100		128.0 44	-		2.97 **				122	-		30.20 ***	
WJB	82120 4111	82540	9546	14340	149.4	8337	728	1689	729		******						******		******		******				*****			******				******	******	
ALRTOX	331000 6103	401000	02612	623	8"66	3766	319	166I	34.7		2, 83				2.46		5.64 • 0.373 •		1.139		20°2		140.6 ·		44 E63			2.91		2.89		723		
AF TOX	686L 000/.22	379500	09602	1728	319.4	2951	338	5251	120.8	20 C	0, 750		0.2800		5.00 0.460		7.30	12 40	1.200	0003	166.7		796.2 22 10		800	05.22	789	22.30	575	15.00		1094		
OBS.	1801. 18891	57300 16678		3098	0-115	19396	2662	2492	224.0	32 04	2.630	61 C	0.1900		4.54		0.430	6.13	0.970	LYE	38.4		7.39		172 6 81	10.0	189	1.54	173	2.00		551		
×	100 800	100 800	300	1000	חחחר	0001		0001	3000	200	800	200	800	į	007 8007	unt,	800	200	800	200	800	000	800		200 800		200	009	200	000	000	800		
IN I MI.	BT3	BT4	CI. ]		i	7	645	n ya		NCI		HC2				lic4		RC5		701		813			C 14		3116		111		818			

ThACE	111000 133100 130800 112800 51880	196300 152300 139160 129200 89520 58630 40070	212900 156400	120700 45540 18000	3209 7497 12330 17440 17440 12870 7043	19520 20240 12360 6585	115000 27750 21910 116570 116600 8217 6139	28300 27380 21630 11130 8128
SL,AB	61550 33250 6348 4350 1808	135400 92640 62530 62530 10470 25470 17230 17230	440'/0 16990	25330 9575 4318	4952 26060 36800 31690 22500 15160 8024	36940 23670 8772 4015	71090 34740 22130 13490 8172 5430 3749	52590 37150 23420 14730 9940 6937
PIIAST	168000 71600 9640 6240 2360	301000 128000 58000 27000 13500 8050 5270	66600 15200	32500 8690 3450	242000 180000 130000 90900 58000 33400 13700	101000 59300 17800 3790	241000 88000 50000 17300 3160 2220	128000 87000 51200 28700 17000 11000
OBDG	48030 23190 4045 2686 1044	169500 79720 40570 21470 11500 7076 4635	46550 11820	23960 6710 2618	193300 64590 27990 13200 6393 3422 1353	21170 10160 2838 1128	150400 25290 12780 6671 3603 2203 1437	35990 18440 9368 5066 3118 2032
<b>J</b> JN ani	42780 24460 5881 4106 1858	73930 42740 24710 14870 8871 5914 4162	29340 9796	18600 6494 2926	101900 48380 25950 14400 7785 4735 2144	15990 8796 2968 1354	49800 13070 7488 4391 2623 1724 1724	23100 13620 7892 4653 3119 2136
HEGADAS	94160 56800 10290 6486 2200	188200 104200 51830 39870 31900 24780	<b>83140</b> 28800	56060 18100 6524	691000 336100 167200 83910 42100 22840 2479	92220 47800 14270 5935	302000 75100 41780 23500 23550 13560 8760 8760	135100 75060 40730 23030 14700 9893
GASTAR	144500 92470 25060 18510 8437	169300 124600 88210 60420 39602 27100 19660	98160 45480	68750 31640 14370	376800 252200 148400 46290 46290 25620 25520	75080 44750 115280 7199	112900 55710 36700 22120 15020 9992 6895	91120 60000 38520 23740 15310 11060
GPM	76470 44040 10620 7531 3412	132800 15570 14710 26790 16000 10660 7472	55710 18370	34310 11950 5369	192600 92600 49730 27320 14940 14940 8769 3942	31480 17070 2525	107800 26760 15020 8543 4973 3224 2216	44320 25780 14610 8639 5685 3930
FOCUS	552600 244100 27280 21670 12750	773900 447300 454100 415200 363200 363200 309200 170400	370000 876500	288100 81650 35810	1000000 843600 337900 491230 13270 13270 5315	69550 205100 88210 6939	2461 5586 9408 13170 13370 13340 13340	207800 230400 192200 12190 7968
DEGADIS	161600 96580 25480 18510 7669	278000 164300 103400 66900 42290 29120 21010	121500 52470	84340 36350 18130	613800 355900 193300 42700 22220 8717	93060 40280 13360 5618	287900 1850 10570 22450 13180 8490 5805	144900 78920 39400 21760 13610 9112
CIIARM	118000 73000 12500 6580 2180	214000 145000 56800 59900 32100 23400 12600	163000 35600	123000 22100 6690	161000 85000 32200 32200 18200 7410 2220	61400 39100 15000 4090	175000 50500 33100 20900 14500 1560	71000 47000 29800 17700 8720 4400
Mael	100000 74270 15620 8652 4073	168000 100000 68640 41170 19880 14000 9406	79370 21630	46080 13090 5226	467600 196900 100000 67080 34820 17820 8588	92350 55870 16610 7979	247700 77290 46510 24680 14300 9171 6488	100000 79260 46520 24760 15970 11060
AIRTOX	140900 89840 6963 5059 1608	28700 14830 4873 2520 1448 941 645	01710 6122	8155 1688 723	82210 60750 41560 20720 2638 2638 2644 1149	22580 13990 2481 866	29180 13600 4795 2895 1576 966 633	28550 20830 13010 6404 2618 1446
AFTOX	123200 68990 15570 10870 4720	219300 122800 70800 41380 24170 15820 15820	83920 29260	51990 17520 7681	270400 136800 72870 39510 21380 12450 5516	43330 23510 7822 3475	139900 26010 20270 11580 6767 4390 3010	64620 37140 20840 12220 7987 5478
OBS.	123100 94900 35600 29100 5700	141500 61900 61900 54300 26400 16500 13500	118100 45500	77400 30700 22800	113200 110900 66700 41500 21700 21800 21800	56500 35100 18900	97600 57200 37600 26100 18500 16700	00400 31300 15500 14400 9500
×	89 131 324 400 650	58 50 130 252 252 403	6 L T	129 250 406	28 53 24 29 24 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	88 129 219 400	91 91 282 250 222 401	90 128 182 250 321 400
TK IAI.	1.7 SN	62.55 V	FUSM	¢t, sn	.42	C that	M 55 4 6.	1154

API PUBL*4546 92 🖿 0732290 0505743 881 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

TRACE	121000 98900 63250 385900 25220 25220	58150 58150 20040	7357 26620 29700 29700 115290 1992	37750 41100 23720	113.5 44.47 24.47 24.24	1.1680 162.0 63.1 5.71 5.71	106.1 44.18 13.54 3.865	109.7 43.56 13.80 4.011	42,5 12,93
SLAB	339/0 24990 17220 11270 8081	72020 49560 21620	6312 81700 58640 27800 16800 8115	80460 60500 26100	152.3 52.3 11.86 2.76 0.688	26.9 26.9 5.66 1.74	57.8 25.96 6.64 1.761	43.0 9.64 2.22 0.551	78.2 27.85
PILAST	91800 54600 32000 16100 7040	178000 110000 110000	192000 192000 55900 29900 6560	166000 121000 55100	71.2 18.07 1.240	123.4 31.5 8.30 2.30 0.620	88.3 22.27 5.85 1.580 0.440	66.9 16.96 4.39 1.170 0.3200	44.8 12.68
OBDG	24640 12370 6496 3434 2099	91970 40030 11140	104200 46760 14210 7438 2994	54790 25050 6042 3149	46.8 12.11 3.13 0.811	76.2 29.7 5.10 1.32 0.342	47.3 12.23 3.16 0.819 0.212	28.3 7.32 1.89 0.490 0.1269	12.0 3.10
3.40 dNI	14040 7993 4683 2708 1785	36090 38700 6564 1817	43040 23790 8975 5181 2400	44960 24750 7766 4628	43.1 12.69 3.66 1.002	77.9 23.9 7.05 2.04	55.9 17.02 4.98 1.402 0.414	40.0 11.85 3.41 0.931 0.2389	54.9 17.90
REGADAS	85680 45890 25360 14300 9200 6410	215200 108400 35320 9120	258200 134000 47120 26100 11450 4980	312000 158900 40970 21990	65.1 12.82 2.34 0.408 0.691	129.0 28.8 5.21 1.05 0.182	105.4 25.08 5.34 1.028 0.186	57.3 11.18 2.03 0.3526	92_9 41.96
GASTAR	69180 42970 25620 14930 9215 6869	94080 67540 31140 10090	107200 78220 37780 25150 12040 5346	245700 149300 42150 23050	251.2 39.09 5.08 0.710 0.710	319.0 71.4 12.36 1.93 0.278	305.3 81.81 10.72 1.869 0.295	204.1 29.72 4.22 0.609	60.1 18.49
MdD	28100 28100 9005 5149 3340 2306	71250 36750 12550 3340	83470 44590 16690 4394 1945	85150 46930 14590 8465	53.0 13.72 3.48 0.882 0.2250	96.3 25.9 6.70 1.74 0.459	68.4 18.37 4.75 1.228 0.325	49.4 12.80 3.25 0.822 0.2098	59.5 17.36
FOCUS	106200 68520 24830 10690 7338	73280 53530 28950 6337	243700 91990 57260 27800 7155 2555	514400 473000 340100 241500	68.5 13.94 3.18 0.773 0.1962	141.5 27.3 6.09 1.46 0.368	108.7 19.96 4.36 1.036 0.260	65.7 13.18 2.99 0.725 0.1836	29.7 7.58
DECADIS	87900 44650 23920 12740 8108 5500	205100 111700 32880 8302	272400 138200 45250 24220 10420	326700 179500 12410 21330	76.1 18.66 4.61 1.210 0.3139	122.7 34.4 9.12 2.58 0.730	90.0 24.38 6.88 1.935 0.546	66.8 17.47 4.42 1.143 0.2953	39.7 13.72
CHARM	46300 31100 11700 2290 1430	127000 80500 32900 3760	123000 76700 31700 18900 8050 1530	73000 47400 16400 5980	40.4 7.38 2.01 0.788 0.2520	46.1 10.7 3.24 1.45 0.466	44.7 8.32 2.10 0.883 0.342	40.3 7.23 1.75 0.771 0.2130	54.3 20.20
B£M	86490 51980 28570 9929 7363 5165	146900 97700 41470 9834	175200 100000 53290 29450 12810 4880	179200 100000 33940 17390			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		* * * * *
AIRTOX	6416 3326 1943 557 557	27 <b>4</b> 20 16120 3796 717	34910 24740 8323 3525 1120 471	50410 31830 3939 1978	203.9 17.37 3.39 0.790 0.1952	346.9 30.7 6.43 1.54 0.395	79.8 33.65 4.31 1.040	187.7 ** 16.08 ** 3.14 ** 0.737 **	30.2 ** 8.45 **
AF TOX	58360 21230 12410 6997 4539 3126	101900 52090 17540 4596	125600 66110 24150 13760 6229 2674	130500 69900 20950 12030	60.0 13.10 2.50 0.500 0.0960	160.1 58.3 18.50 15.60 1.600	112.4 40.90 12.90 3.900 1.100	74.8 22.20 6.20 1.700 0.4600	43.5 14.00
OBS.	72100 46700 43500 25000 14800 14800	103300 57100 30800 11900	56300 33800 26000 11200 11800 7500	226900 120000 53400 49500	36.3 8.50 1.60 0.300 0.0300	154.9 41.8 9.30 1.50 0.260	71.7 20.30 5.00 1.000 0.190	66.2 15.80 1.000 1.000 0.0600	46.7 37.07
×	90 129 250 322 400	59 93 182 400	61 95 178 249 398 650	56 85 178 217	50 200 800	50 200 400 800	500 200 800	200 200 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 800
TR I AL	6 t SN	OCSIN	MS 52	PS24	7.94	6410	694	0194	613

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

300

TRAUE	100.7 39.00 12.52 3.541 3.541	107.7 40.81 40.81 3.789	241.3 241.3 93.6 29.85 8.67 2.412	21.2 21.2 2.1 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	141.4 2.141.4 2.141.5 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1 1.141.1	130.1 68.37 22.64 6.568 1.8290	110.2 47.13 14.91 41.4	94.7 42.77 13.55 13.55 19.05 1.097	90.3 38.17 12.08 3.508 0.977
SI.AB	63.6 14.12 3.23 0.802 0.2039	68.8 15.25 3.49 0.864	212.0 98.6 29.62 8.59 2.426	296 119.4 28.1 11.57	21.2 31.5 7.97 2.105 0.559	90.9 24.40 6.28 1.676 0.4496	117.7 36.87 10.29 2.88 0.798	104.5 32.78 9.14 2.56 0.709	94.2 29.39 8.20 2.295 0.635
T'2All9	47.1 12.16 2.98 0.750 0.1900	46.6 12.00 2.94 0.750 0.1900	203.3 50.8 13.61 3.75 1.060	366 94.2 25.7 7.18 2.07	114.7 29.3 7.73 2.090 0.580	160.4 40.60 10.93 3.020 0.8600	108.1 26.80 7.14 1.96 0.560	69.0 20.40 6.14 1.69 0.490	83.7 21.32 5.76 1.590 0.450
OBDC	86.3 22.35 5.78 1.497 0.38/4	95.7 24.77 6.41 1.659 0.4294	235.0 60.8 15.74 4.07 1.055	539 139-6 36.1 9.35 2.42	75.2 19.5 5.03 1.303 0.337	20.3 5.26 1.36 0.352 0.0912	180.7 46.77 12.10 3.13 0.611	170.7 44.17 11.43 2.96 0.766	130.7 33.84 8.76 2.267 0.587
INPUEF	31.2 8.81 2.30 0.529 0.0782	32.2 9.35 2.45 0.567 0.0818	149.0 50.3 15.69 4.80 1.436	217 81.1 26.6 8.53 2.75	75.6 22.2 6.53 1.882 0.540	100.3 35.80 11.40 3.524 1.0570	73.4 24.69 7.64 2.33 0.725	67.0 22.25 6.91 2.09 0.645	59.0 20.21 6.20 1.889 0.584
HEGADAS	58.7 11.28 2.04 0.351 0.0595	62.7 12.10 2.17 0.375 0.0634	370.2 117.0 37.00 11.84 3.648	485 169.8 55.8 18.48 6.16	133.8 31.3 6.50 1.228 0.219	139.6 34.96 7.69 1.510 0.2748	141.0 44.28 13.52 4.14 1.284	126.4 39.50 32.02 3.67 1.134	114.0 35.44 10.80 3.274 1.012
GASTAR	312.5 33.25 4.84 0.679 0.0892	308.0 43.83 5.66 0.772 0.1034	571.8 137.7 28.72 7.24 2.088	1076 250.9 71.8 23.41 8.27	326.3 71.4 13.51 2.318 0.363	880.3 104.10 23.58 6.671 1.5020	470.8 60.51 17.11 3.73 1.072	523.2 59.08 15.01 3.58 0.997	437.0 54.94 12.67 3.538 0.771
GPM	30.1 7.66 1.93 0.489 0.1247	31.8 8.08 2.04 0.516 0.1316	153.9 44.7 12.35 3.50 1.049	265 97.8 28.3 7.78 2.22	90.1 24.2 6.27 1.622 1.622 0.429	108.6 31.50 8.70 2.461 2.461	76.0 22.01 6.07 1.72 0.515	68.5 19.83 5.47 1.55 0.463	62.0 17.94 4.95 1.399 0.419
Focus	41.5 8.85 2.06 0.504 0.1287	44.3 9.39 2.18 0.535 0.1363	264.0 54.2 12.34 2.99 0.757	571 107.7 23.4 5.55 1.39	139.0 26.1 5.73 1.366 1.366 0.344	298.3 50.59 10.66 2.491 0.6196	180.1 31.94 6.84 1.61 0.402	161.4 28.75 6.16 1.45 0.362	139.3 25.49 5.53 1.310 0.328
DEGADIS	80.9 22.75 5.77 1.504 0.3892	96.3 23.45 6.15 1.591 0.4094	235.0 73.9 21.60 6.59 2.070	335 320.2 37.7 11.65 3.86	114.6 32.1 8.61 2.438 0.690	151.1 53.23 15.53 4.744 1.4890	133.5 39.64 12.17 3.68 1.153	126.0 37.29 11.34 3.44 1.079	110.3 35.68 10.57 3.249 1.022
CIIARM	28.6 5.15 1.48 0.325 0.0514	28.7 5.24 1.74 0.347 0.0502	62.5 14.1 8.07 3.30 1.030	128 50.6 21.1 8.93 2.79	49.3 10.3 2.59 1.300 0.400	76.0 14.60 2.78 1.220 0.6050	49.0 9.69 2.31 1.13 0.483	46.4 9.16 2.02 1.12 0.414	42.0 8.36 2.11 0.868 0.430
H 3 El	* * * * * * * * * * * * * * * * * * *						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		* * * * * *
AIRTOX	96.4 7.46 1.81 0.431 0.1041	85.6 8.16 1.88 0.456 0.1116	517.9 47.6 9.91 2.61	1018 22.2 5.48 1.51	278.1 47.7 6.36 1.443 0.367	97.2 57.14 8.55 2.106 2.106	93.1 35.45 4.70 4.70 1.35 0.395	78.9 33.51 4.60 1.21 0.357	79.9 27.31 3.94 1.101 1.101 0.326
AFTOX	160.3 52.20 15.50 4.500 1.3000	94.1 27.20 7.40 2.000 0.5400	244.7 110.3 39.80 13.10 4.200	233 107.5 39.1 12.90 4.10	120.7 40.9 12.40 3.600	110.0 41.70 13.50 4.100 1.2000	108.6 46.20 16.20 5.20 1.600	107.1 47.60 17.10 5.60 1.800	80.7 33.30 11.40 3.600 1.100
. SHO	147.0 38.80 7.80 1.700 0.2000	67.4 12.70 2.30 0.200 0.0200	235.4 98.2 30.80 9.50 3.480	231 24.8 35.1 1.70 2.17	7.87 19.7 4.70 0.700 0.130	61.9 19.10 5.60 1.200 0.2800	104.2 36.20 10.80 3.30 1.170	85.2 30.80 10.10 3.20 0.910	63.4 22.00 6.90 2.200 0.740
×	50 200 800 800	50 100 800 800 800 800	50 100 400 800	50 200 400 800	200 200 800 800	50 200 800 800	50 200 800 800	50 200 800 800	50 200 800 800
14141.	4194	PG16	1 194	PGIB	6424	1/620	1254	2704	દરગ્ર
					2.04				

,

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

301

API PUBL*4546 92 🎟 0732290 0505745 654 📟

	85.8 36.78 11.64	3.381 0.942 132.9 52.40 17.00	4.965 1.3740 222 92.2 32.0	9.82 2.82 161.3 64.7 64.7 20.70	6.03 1.682 69.7	6.01 6.01 63.8 21.05	6.11 1.700 113.4 62.0 20.76	6.02 1.676 537 230 77.9	23.12 6.45 49.06 15.9] 1.307
ST AR	89.3 27.83 7.74	25.72 25.72 5.97	1.496 0.3832 274 117.8 39.5	201.3 201.3 74.4 22.73	6.70 1.921 94.4	119.06 34.1 34.1	2.48 0.674 116.2 33.4 8.91	2,43 0,660 317 190 80.8	29.59 8.73 129.4 42.10 11.94 3.39 0.945
PRAST	82.8 20.75 5.56	0.430 56.3 34.61	0.900 0.2400 372 92.6 24.9	136.2 34.0 5.10	2.51 0.210 56.5 16.6	37.1 37.1 9,97	0.280 144.1 36.3 9.74	280 280 73.4	20.94 6.26 108.2 26.83 7.15 1.97 1.97 0.560
OBIJG	131.2 33.97 8.79 2.276	0.589 36.59 9.47	254 254 65.7 17.0	234.9 60.8 15.74	124.6	8.35 97.8 6.55	0.439 90.7 6.08 6.08	120.407 123 28.3	1.90 151.4 39.18 10.18 2.62 0.679
Janani	57.5 19.20 5.94 1.796	0.560 39.1 11.58 3.06	0.1009 206 78.4 26.2 8.36	2.68 98.6 34.7 10.82 3.37	0.999 64.8 21.5	6.93 23.3 0.61	0,993 94.4 32.9 10.38	0.972 480 201 72.7 24.56	8.05 74.8 7.87 7.87 2.38 0.730
HEGADAS	107.8 33.60 10.18 3.082	0.946 90.2 17.54 3.19 0.556	0.0944 465 182.2 58.0 18.98	6.33 257.0 83.9 8.86 8.86	2.914 146.8 62.8	19.64 156.0 43.6 10.92 2.48	0.515 152.8 12.6 10.72 2.44	0.506 671 295 129.8 57.86	18.54 156.4 49.86 15.64 1.574
GASTAR	378.8 47.10 13.39 2.978	0.835 555.1 79.60 9.56 1.287	0.1702 883 257.1 75.0 23.50	7.86 395.3 88.3 21.34 4.80	1.403 230.7 56.9	530.5 530.5 5.71 5.71	1.453 527.0 90.3 22.60 5.50	1.516 1124 393 105.4 45.54	18.61 418.6 81.61 15.33 15.33 15.33 0.968
Ю	59.2 17.14 4.73 1.336	39.2 39.2 2.52 2.52	0.1624 258 95.3 27.5 7.59	306.3 30.8 30.8 2.45	0.722 81.7 24.1 7 01	101.2 29.4 8.10 2.29	0.687 99.0 28.7 7.92 2.24	0.672 383 383 250 90.79 26.79	7.79 77.7 22.50 6.21 1.75 0.526
Focus	134.0 24.45 5.29 1.249 0.313	53.1 2.67 2.67	0.1671 508 99.8 22.1 5.27	284.9 37.1 2.01	55.7 55.7 13.2	274.8 46.4 9.75 2.28	234.9 45.8 9.54 2.22	1374 1374 295 66.7 16.00	4.03 150.1 29.43 2.57 1.58 0.396
DEGADIS	112.4 36.64 10.58 3.202	112.2 27.48 7.25 1.898	539 539 46.8 11.01	170.4 55.8 16.02 4.85	85.5 21.0 5.20	162.1 50.8 14.57 4.50	144.2 49.9 14.64 1.44	850 253 82.9 24.25	3.00 125.5 41.02 12.18 3.79 1.177
CHARM	41.5 8.24 1.92 0.959 0.377	32.9 5.04 2.74 0.583	24.8 24.8 24.8 8.79 2.53	48.9 10.0 5.78 2.55	100.0 30.3 8.00	71.8 13.8 2.64 1.17 5.81	72.4 13.8 2.65 1.07	730 298 114.0 33.60	43.3 8.73 3.27 1.40 0.624
BEM	*****								
AIRTOX	71.8 28.09 3.76 1.055 0.310	41. 10.2 2.2 0.55 0,142	8 38 2 8 1 5 2 8	186.2 26.9 6.26 1.70 0.501	51.1 13.2 3.65	86.7 51.6 7.74 1.90	77.5 + 48.5 + 7.36 + 1.82 + 0.543 +	1043 ** 259 ** 61.9 ** 15.98 **	
AFTOX	79.0 32.90 11.30 3.600 1.100	99.9 22.40 4.50 0.890 0.1700	186 79.8 28.1 9.10 2.90	122.9 49.3 16.50 5.20 1.600	54.9 18.6 5.90	89.7 32.0 10.00 3.00 0.830	99.9 37.9 3.70 3.70	253 135 52.1 17.50 5.60	104.5 43.60 15.00 4.80 1.500
OBS.	56.1 18.20 6.00 2.000 0.680	109.4 14.70 2.30 0.500 0.0800	184 73.0 22.0 7.90 3.19	86.6 32.8 10.20 3.40 0.960	100.1 42.1 20.55	75.3 23.1 6.90 1.40 0.270	72.8 24.9 6.90 1.80 0.460	299 195 12.4 22.80	83.5 29.10 8.40 2.70 0.770
×	50 200 200 800 800	50 200 800 800	50 200 800 800	50 200 400 800	200 400 800	50 200 400 800	50 200 400 800	50 200 400 800	50 200 800 800
TRIAI.	PG24	6294	PG26	PG.29	ru 32	PG 33	PG34	9F Dd	PG37

302

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

## API PUBL*4546 92 🛲 0732290 0505746 590 🛲

TRACE	133.7 54.88 16.44 5.56 1.580	193.3 73.3 23.0 6.62 1.837	126.5 53.4 16.90 4.91 1.367	6.164.5 62.9 19.21 5.508 5.508	146.8 58.2 17.83 5.10 5.10 1.409	221.4 95.4 30.26 8.79 2.449	227.2 9.29 9.132 9.41 9.41 2.673	117.0 72.6 23.63 6.86 1.910	127.9 52.08 15.95 4.558 1.260
SLAB	158.0 51.47 14.55 4.10 1.141	174.5 64.5 19.7 5.85 1.685	138.7 43.9 12.32 3.46 0.959	100.2 24.8 6.10 1.586 0.416	108.8 27.8 6.94 1.82 0.481	201.5 59.1 15.81 4.32 1.173	240.2 93.6 26.30 7.37 2.037	122.7 34.4 9.06 2.45 0.663	90.6 23.14 5.78 1.516 0.401
PIIAST	139.8 34.36 9.12 2.50 0.690	232.9 59.1 16.0 4.47 1.290	84.6 28.0 7.62 2.15 0.620	132.1 33.9 8.98 2.430 0.670	118.8 30.3 8.02 2.17 2.17 0.600	213.1 54.8 14.85 4.12 4.12 1.170	229.7 59.3 16.11 4.47 1.270	166.3 42.2 11.36 3.14 0.940	105.4 26.78 7.06 1.910 0.530
OBDG	144.1 37.31 9.66 2.50 0.647	321.5 83.2 21.5 5.58 1.443	213.2 55.2 14.29 3.70 0.957	66.1 17.1 1.42 1.145 0.296	60.2 15.6 4.03 1.04 0.270	195.7 50.7 13.11 3.39 0.878	389.6 100.9 26.11 6.76 1.749	83.6 21.6 5.60 1.45 0.375	40.0 10.36 2.68 0.694 0.180
INPUEF	95.0 31.90 9.89 3.01	130.1 49.0 16.2 5.16 1.648	82.7 28.4 8.70 2.66 0.810	81.7 25.6 7.54 2.189 0.615	78.2 22.9 6.74 1.93 0.561	146.9 50.5 16.09 4.96 1.530	168.4 58.8 18.79 5.75 1.750	111.4 37.7 12.01 3.69 1.122	64.3 20.20 5.92 1.720 0.486
HEGADAS	197.0 61.80 19.16 5.97 1.884	269.0 90.7 30.1 10.00 3.318	165.8 52.4 16.24 5.02 1.574	129.0 28.1 5.47 0.985 0.169	128.6 29.1 5.85 1.08 0.189	255.6 72.6 19.08 4.63 1.042	355.6 111.0 34.30 10.64 3.358	168.6 45.3 10.82 2.33 0.455	109.8 24.68 4.94 0.910 0.158
GASTAR	317.9 79.41 20.66 5.51 1.219	655.5 143.5 40.5 13.75 4.609	634.7 67.5 19.36 4.37 1.203	328.3 73.7 11.72 1.678 0.270	317.2 65.8 12.35 1.99 0.311	539.7 136.4 33.73 8.76 2.301	702.3 143.3 34.85 9.93 2.290	848.1 108.1 24.69 6.70 1.736	624.3 81.21 10.38 1.588 0.245
GPM	98.0 28.41 7.84 2.22 0.665	159.6 58.9 17.0 4.68 1.332	86.7 25.1 6.93 1.96 0.588	103.1 27.7 7.18 1.858 0.492	93.1 25.0 6.47 1.68 0.443	153.0 44.4 12.26 3.48 1.043	175.5 51.0 14.11 3.99 1.198	114.6 33.2 9.18 2.60 0.779	81.8 21.99 5.68. 1.471 0.389
Focus	182.7 36.77 8.30 2.00 0.504	383.1 69.3 14.8 3.48 0.863	185.4 34.8 7.61 1.81 0.453	153.7 29.5 6.57 1.573 0.396	150.4 27.5 6.01 1.43 0.357	366.4 66.2 14.28 3.38 0.845	363.6 69.3 15.29 3.65 0.915	275.8 50.3 10.88 2.56 0.641	124.4 23.62 5.22 1.248 0.314
DEGADIS	159.9 48.48 14.76 4.47 1.403	215.3 81.3 24.5 7.61 2.468	147.4 44.1 13.36 4.06 1.272	124.9 35.9 9.74 2.738 0.773	109.9 32.8 9.06 2.52 0.710	221.3 68.1 20.64 6.38 2.012	238.9 80.3 23.68 7.27 2.287	167.7 53.8 16.39 1.99 1.567	106.2 28.12 7.91 2.238 0.633
CIIARM	48.3 9.78 4.39 1.94 0.676	82.8 32.7 15.8 5.90 1.670	52.0 10.3 2.66 1.16 0.584	49.7 11.4 3.36 1.530 0.493	50.1 10.5 2.68 1.33 0.417	82.0 16.1 3.81 2.02 0.913	84.4 16.7 5.18 2.46 1.200	76.1 14.6 2.81 1.39 0.694	48.3 9.52 2.40 1.160 0.423
, Mae		* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *						
AIRTOX	177.5 26.06 6.11 1.68 0.501	710.0 67.5 13.9 3.48 0.944	111.5 37.5 5.47 1.53 0.446	365.9 32.7 7.03 1.655 0.426	294.4 39.8 6.63 1.50 0.380	426.4 126.5 11.54 3.01 0.854	511.7 79.1 13.00 3.23 0.922	110.0 60.9 8.98 2.20 0.638	236.8 64.87 5.65 1.339 0.336
At"FOX	167.4 78.89 28.90 9.60 3.000	146.9 69.3 25.4 8.40 2.700	122.9 52.3 18.30 5.90 1.800	125.2 41.5 3.600 3.600	105.7 34.5 30.30 3.00 0.860	155.1 58.8 19.00 5.80 1.700	177.3 67.2 21.80 6.70 2.000	115.8 43.9 14.20 4.30 1.300	104.2 34.90 10.50 3.100
. 280	132.8 57.00 19.00 6.90 2.380	164.4 69.0 21.5 8.90 3.580	100.4 36.8 11.50 2.90 0.780	89.4 20.7 5.80 0.900 0.190	69.0 18.2 5.20 1.10	131.8 41.5 14.40 3.10 1.020	203.3 72.2 21.90 7.50 2.280	H0.7 23.6 6.10 1.70 0.470	77.12 24.10 6.70 1.200 0.210
×	50 200 200 800	50 100 200 800	50 200 400 800	50 200 400 800	50 200 800	50 200 400 800	50 100 100 100 800	50 200 800 800	500 200 800 800
ינא ו איז.	មសារ	PG41	PG42	6693	10044	2404	1.046	10.18	PG19

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

303

API PUBL*4546 92 🖿 0732290 0505747 427 🖿

222.0 1.251 1.251 2.22.0 2.22.0 2.22.0 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 1.251 2.455 2.455 1.251 2.455 2.455 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.2588 2.2588 2.2588 2.2588 2. IKACE 115.7 2.53 2.53 2.53 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 LAB 26.102.8 26.10 6.88 56.88 56.8 15.42 15.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 81.35 81.25 81.35 81.35 81.25 81.35 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 BDG 512.5 19.92 1.66 1.66 1.66 1.66 1.66 1.67 1.66 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 1.6.14 TAPUEF 600.4 98.39 12.25 2.27 2.28 2.43 2.43 2.43 2.45 13.45 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 ASTAR 21.65 21.65 21.65 21.65 21.45 21.32 21.32 21.32 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22.55 22 Mag 130.5 23.69 5.74 5.74 5.75 3.49 5.67 14.66 3.49 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.7 Sucus EGADIS 28.12 28.12 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 BCM VIRTOX AF TOX 385. 070 651 6633 7C34 6655 1.50 3 658 655

API PUBL*4546 92 📖 0732290 0505748 363 /

304

Not for Resal

Copyright American Petroleum Institute Provided by IHS under license with API

No reproduction or networking permitted without license from IHS

TRIAL

TRACE	107.9 45.22 14.66 4.31	151.0 74.6 74.78 7.047	2.2. 21.21 21.21 21.21	2009 2008 2008 2008 2000 2000 2000 2000	57490 24380 24380 24380 17980 9487	000191 61210 02132 02132 02232	241000 154800 75620 50800 31270 31270 5317	211 (66) 135,700 38120 3915 7448 7848
SLAB	122.1 40.47 11.65 3.32 0.930	106.4 28.8 7.44 1.555 0.535	38.9 9.19 2.59 163.0	77400 59590 33590 33590 26140 16910 9297 6456 6456	73340 44290 14160 10960 6924 3958	43060 17800 12530 6306 3255	47670 32160 19430 15310 11320 5657 3394	14050 7765 4008 2496 898 716 481
PHAST	91.9 23.46 6.35 1.76 0.500	172.5 43.8 11.82 3.270 0.980	32.8 8.69 2.35 0.650	371000 376000 246000 211000 155000 36700 36700 36700	101000 70000 39800 34500 23000	89500 48700 38700 16753 6880	100000 78900 55600 44576 33000 14800 7290	89100 69900 19365 13200 13200 10200 6230
OBDG	187.3 48.48 12.55 3.25 0.840	41.4 10.7 2.78 0.718 0.186	27.5 7.13 1.85 0.478	57960 19180 12500 12500 12500 1723 1723 500	35320 11500 2184 1585 896 460			
J.JO ANI	68.0 23.35 7.23 2.18 0.672	114.5 30.8 12.34 3.790 1.153	25.2 7.42 2.11 0.606	74020 54550 54550 25050 11050 5226 3304 1928	129900 68180 21120 16580 10550 6243	226200 89210 56510 22570 9217	361300 250400 157600 117900 81180 32750 32750	246300 156100 82380 49340 14770 11270 7000
HEGADAS	146.0 47.12 15.02 4.78 1.542	157.4 40.3 9.02 1.810 0.333	37.4 7.88 1.51 0.271	311000 174200 481720 481720 29220 29220 14150 5865 3498 3498	553500 106100 12060 8479 4719 2504	* * * * * * * * * * * * * * * * * * *		
GASTAR	409.8 89.55 14.66 3.67 0.992	840.1 108.1 28.04 6.556 1.842	80.9 16.36 2.94 0.452	233000 141500 55020 55020 37620 18990 8510 8510 8510 2701	141700 69360 18610 14910 9182 5167	35730 15150 10420 5102 2430	38760 26450 15900 12150 8692 4045 2283	36960 26070 16080 10710 3871 3195 2168
МЯЭ	70.9 20.53 5.66 1.60 0.480	117.7 34.2 9.43 2.669 0.800	27.4 7.08 1.83 0.485	144900 101500 47580 33820 19280 8804 5281 2892	248900 130900 39570 30620 19160 10910	* * * * * * * * * * * * * * * * * * * *		
FOCUS	144.0 27.28 6.00 1.43	312.3 54.0 11.45 2.661 0.667	28.7 6.38 1.53	302700 219200 144400 102000 70190 36570 36570 15020 4868	240300 121600 32640 24150 16020 10520	163300 87590 65460 28950 11280	90130 90130 86030 73050 62180 42680 15520 7268	178800 92850 92850 119800 12800 18020 18020 6890
DEGADIS	130.4 38.54 31.56 3.53 1.109	170.3 54.8 16.75 5.083 1.595	35.8 9.67 2.72 0.769	272400 219200 92310 52460 52460 23350 7321 3770 1858	145000 145000 67210 41660 16290 5747	161000 70650 46820 21230 9604	164000 123000 68380 50830 36360 15440 15440	147000 121000 72870 44000 15780 12400 8089
CHARM	42.7 8.59 2.91 1.21 0.557	77.7 14.9 2.87 1.420 0.710	11.2 3.16 1.47 0.474	26500 19600 13500 13500 11000 8280 8280 3010 1960	52800 30200 13200 11200 8170 5820	34400 17200 13100 6520 2850	25000 17600 11500 7300 3910 2570	29300 20900 13700 9990 3620 2950 2950
អទព		<pre>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	* * * * * * * * * * * * * * * * * * * *	264800 170300 93700 65230 43630 21580 10240 7152 3859	253800 60700 13340 9869 6882 3253	100000 46570 29940 13900 6615	100000 100000 48290 36200 21700 11310 5567	100000 100000 45860 25110 7372 4462
AIRTOX	104.6 15.92 1.26 1.20 0.356	116.4 63.5 9.34 2.286 0.658	30.4 7.09 1.61 0.410	11040 10800 10540 9617 9617 8290 2886 1689	377400 102300 14230 11210 7539 4799	85740 24530 13180 5410 2903	136800 79590 36880 28560 20490 8048 4769	100700 54270 19610 9829 3689 3091 2277
AFTOX	109.4 48.30 17.30 5.70 1.800	96.7 33.6 10.40 3.100 0.910	69.9 22.60 6.90 2.100	123300 6223 50300 50300 524400 13680 13680 3775 3775 2088	125700 50840 12180 9192 5561 3077	495700 214800 111800 57740 23420	441400 295600 156400 71960 25020 11530	573400 428200 259000 163200 19850 37940 23330
. 2810	109.9 42.50 15.50 5.30 2.160	70.3 20.1 6.00 1.500 0.340	40.9 11.50 2.80 0.720	2000000 89000 62000 37900 26200 26200 26200 26200 26200 26200 26000	17000 74000 11700 6700 4800 2400	90400 36700 26200 5290	132000 59200 33800 25400 19900 11900	92500 61100 40300 28100 10800 6920 4260
×	50 200 200 800 800	200 200 800 800 800	100 200 400 800	4 9 7 9 7 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 7 9 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50 90 212 250 2350 2355	171 171 283 283	71 100 150 150 224 261 261	71 200 200 364 812 510
Tik I A I.	9080	PG61	PC62	4001	1647	2 1	117	TLU

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

305

## API PUBL*4546 92 🎟 0732290 0505749 2TT 📟

306

**BUI** 

No reproduction or networking permitted without license fro

LF TOX

.sac

T& LAL

119

2013

1113

Not for Resale

117

## API PUBL*4546 92 🗰 0732290 0505750 TLL

API PUBL*4546 92 🔳 0732290 0505751 958 📟

APPENDIX C-2

THE OBSERVED AND PREDICTED MAXIMUM CONCENTRATION (PPM) FOR THE SHORTEST AVERAGING TIME AVAILABLE FOR BURRO, COYOTE, DESERT TORTOISE, AND HANFORD (CONTINUOUS)

					0 0	000	0000					e c	00
TRACE	155400	96360 111600	134400	15900	225500 120000	170800 111200 48150	344200 200800 101000 41620	413800 214300 125900 33770	186700 170200 131200	386300 312900 234000 171800	1718UU 160400 151900 103100	02082 9 ( 99	77200 11080
er.is	256400 105800	192400 0627E	166800 74590	204500 90890	172500 78970	200300 100300 24160	230600 118900 43420 15410	325300 183600 51170 16760	100800 55100 24020	72160 46510 25390 15610	1801JU 132800 84640 57800	152500 6621	199700
PIIAST	441000 286000	440000 287000	428000 56400	452000 100000	525000 65900	467000 257000 29800	387000 291000 62000 27100	469000 320000 109000 16000	292000 98100 35600	78.600 35.000 15.000 83.60	309000 242000 160000 111000	48100 8480	51100 12100
oung	252700 55390	174300 35300	241000 52180	248300 54170	261100 57720	355500 87290 12200	554000 177200 27050 7145	486100 140900 20730 5450	40030 20380 7429	36560 18580 8512 \$875	175100 95760 45830 26680	0638 0638	334000 8618
3.3N J NI	120400 35070	121500 35440	83230 23050	93050 26030	86150 23160	166700 57060 11970	521400 269600 85290 31600	249100 94330 20860 6926	33090 18400 2665	25420 14300 7329	101500 62450 36310 23130	103200 3868	165700 6876
IEGADAS	500200 123300	406500 45100	371500 124000	372800 131700	376000 132000	472600 160500 32150	1000000 734200 136600 40540	769400 245200 67500 18550	134700 59970 16690	129200 68700 26500 12910	296200 182300 112000	71590 6235	88890 9930
GASTAR	269000 175900	270500 177300	156200 101000	195500 124300	158000 103500	176900 119700 41520	195900 108500 58820 40950	341700 234600 69390 21930	167000 120300 71570	92690 71950 49580 35730	270700 189000 108000 68650	170300 9958	138500 8847
Нad	220200 76110	223700 77510	170700 53630	184300 59570	174500 55450	258400 99170 23030	621200 398700 158400 69070	347800 153300 40450 14840	72920 43470 23010	58800 34390 17880 11000	159400 105700 63050 42590	182100 8052	268200 13950
Focus	972300 554900	975500 685400	979400 789300	979600 507400	976300 <b>4</b> 77600	958000 622500 76140	959300 731900 163100 31730	949300 397200 71080 15460	391000 200700 98180	920900 914800 904700 650300	369000 171000 52130 06773	001001 10370	0960I
DEGADIS	649400 245800	624000 239800	397900 166000	464100 192000	<b>1</b> 10200 173600	448400 189800 41770	806700 369800 137600 21930	750300 322000 67140 21540	249200 146800 77130	174800 112200 63860 41510	322000 196400 109600 69100	285300 7420	449300 14240
CILARM	299000 112000	296000 107000	291000 125000	264000	0001E1	302000 124000 14200	504000 240000 74000 19100	317000 113000 28400 7100	99100 56100 27200	150000 85800 42600 22200	124000 82600 46100 29100	20900 2340	27300 3260
Мэв	432400 112100	<b>44</b> 1700 115900	314500 98400	344500 100000	324500 100000	342500 100000 22940	700000 100000 14300 3624	500800 142600 16260 5561	106700 40520 18450	100000 76450 42890 24120	147100 54100 28080 16610	70290 2084	78780 5099
AIRTOX	310900 181400	311300 182600	103000	229600 129500	212000 111100	212700 129500 22590	581200 551000 241100 71520	401600 299100 81410 26060	239600 160000 71100	86730 36240 11830 8700	251300 240300 98810 76960	308900 2725	312500 8873
AFTOX	269300 76090	299200 79920	375400 124900	296100 82990	385900 129900	405800 139500 26340	883700 \$\$6100 184900 67140	730200 433600 124700 42830	204000 106800 57180	139600 125900 42540 27050	252900 156400 84830 53470	1 99000 7292	309800 13090
. Stio	152540 55000	224380 69850	177030 71620	190410 96000	178690 60970	179390 1320 38560	558740 164110 35810 21160	72800 105560 139640 13950	106820 48620 19050	115330 80920 31740 23040	126980 85000 41830 32910	63260 10950	109580 18590
×	57 140	57 140	57 140	57 140	57 140	57 140 400	57 140 400 800	140 140 100	140 200 300	140 200 300	140 200 300	100 800	100 800
TRIAL	5 U A	បុកទ	£ Nព	¢ປເສ	BUG	1 111	R LLU R	មករ	CU1	ç00	c.u e	111	1512

API PUBL*4546 92 🖿 0732290 0505752 894 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

309

· · · · · · ·

÷		2		*6	28		<u>(</u> ) 29
TRACE		100	128		0.26		21.176 1.176 21.44 1.678
SLAB	211000	1919	06ESL	21.39	0.4700	0.686	0.714 25.65 2.146
TSAII4	56300	12700	10900 32.4	3.23	0.1430	0.320	0.592 22.60 1.940
OUDG	275400	6545 392500	11080 47,5	3.18 2.79	23855 3-99	0.267	0.262 8.83 0.592
JADANI	154700	6389 269900	14330 70.6	7.48 2.46	0.1969 3.10	0.256 7.99	0.638 22.63 2.281
liegadas	87870	95000	11770	19.64	0.2066 6.03	0.332 7.63	0.285 34,48 3,638
GASTAR	136600	000291	225.4	1.09	5,99	0.121	0.362 86.10 9.139
Ю	256600 13030	482900 32000	141.9	16.51 19.52	5.12	12.64	40.00 3.176
FOCUS							49.47
DEGADIS	407900 12500	539000 17890	82.4 5.69	7.35	9.51 0.688	23.29 1.688	32.33 2.3 <b>58</b>
CIIARH	30100 3330	55 <i>3</i> 00 8110	351.0 10.40	26.60 0.6190	56.20 1.380	56.20 1.330	197.00 5.780
ਮਾਜ	82120 4111	82540 9546	******	******			****
AIRTOX	331000 6103	401000 21570	30.4 2.83	1.63	2.46		15.45 • 1.139 •
AFTOX	251400 9161	454100 28660	9.11 01.1	5.20 0.4800	6.70 0.620	9.80 0.830	19.30 2.000
.280	97250 15630	84260 20910	49.7 3.39	4.90 0.4200	1.24	14.03 1.170	13.81 1.950
×	100 800	100 800	200 800	200 800	200 800	200 800	200
TK I AI.	E T Q	FLQ	10I	IICZ	lic 3	F.C.F	11C5

310

API PUBL*4546 92 🗰 0732290 0505753 720 🛤

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4546 92 🖿 0732290 0505754 667 💻

APPENDIX C-3

.

. *.* 

THE OBSERVED AND PREDICTED CLOUD-WIDTHS  $(\sigma_{\gamma})$  (M)

### API PUBL*4546 92 🖿 0732290 0505755 5T3 💻

-

. . .

TRIAL	x	085.	AFTOX	AIRTOX	CEGADIS	GASTAR	GPM	HEGADAS	PHAST	SLAB
303	57	20.0	4.7	20.3	23.7	30.2	7.2	34.1	17.5	19.5
BU4	57	14.9	3.0	15.9	18.5	23.0	6.4	23.6	7.2	14.5
BU5	57 140	13.2 10.1	4.1 9.0	17.0 24.0	19.7 28.6	24.6 31.9	7.0 13.6	26.5 36.2	12.1 14.9	15.0 21.4
306	140	20.3	6.3	20.4	26.6	29.1	12.2	32.3	15.0	19.5
307	140	20.9	7.2	23.1	30.2	33.8	10.6	35.2	21.0	21.2
BUS	57 400	27.1 84.2	2.1 11.4	35.7 120.4	41.7	33.1	7.8	112.6	44.0	81.2
5//0					139.9	190.5	21.1	185.6	112.0	134.2
BU9	57 140	22.1 26.7	1.8 3.7	19.1 29.4	28.3 42.3	33.7	6.1	42.5	17.7	21.8
	400	44.6	9.3	52.8	42.3 67.9	52.6 77.8	10.0 22.3	53.6 89.0	33.4 62.3	31.3 51.7
	800	57.1	17.1	76.7	87.1	84.5	40.5	118.7	66.3	73.5
C03	140	23.5	6.1	24.8	38.3	45.0	12.0	48.1	30.4	28.0
C06	140	15.4	6.3	30.6	46.1	55.7	10.6	64.0	37.0	39.0
	200	17.1	8.6	36.4	53.7	64.8	13.7	71.7	43.9	45.1
DT1	100	11.8	4.8	14.4	41.3	27.5	6.9	74.2	12.0	16.6
	800	61.8	30.5	52.7	169.9	167.5	42.7	202.2	89.2	69.1
DT2	100	14.7	5.5	22.1	57.3	26.5	8.3	97.2	13.9	20.7
	800	88.2	35.0	76.3	255.4	213.5	49.3	288.8	116.8	93.6
DT3	100	15.2	5.7	18.9	46.8	23.5	7.8	86.8	12.7	16.8
	800	73.4	36.1	57.4	202.4	175.2	46.6	236.4	103.3	81.3
DT4	100	15.7	4.4	26.3	70.8	32.5	7.5	110.9	14.8	25.5
	800	36.0	28.0	103.8	335.9	327.5	42.4	353.1	132.4	112.0
GF1	300	25.1	13.2	20.1	57.6	53.5	17.3	69.8	41.0	25.0
	1000	63.0	38.8	70.1	96.5	96.6	53.1	124.0	88.3	57.0
	3000	113.9	104.1	204.6	153.6	174.0	144.4	219.7	160.4	128.2
GF2	300	29.9	18.4	20.0	55.9	59.2	17.0	65.0	42.5	24.6
	1000	54.7	54.2	70.0	93.6	98.4	52.8	117.8	81.3	57.6
gf3	300	25.1	13.2	21.5	41.0	35.1	16.9	52.6	32.2	20.5
	1000	49.8	38.8	74.0	68.2	66.1	52.7	95.0	54.2	48.9
	3000	75.2	104.1	208.5	138.8	150.6	144.1	195.1	170.2	112.8
HC1	200	15.6	15.9	7.9	7.6	7.5	7.6	11.9	6.1	6.3
	800	70.7	54.9	30.8	26.2	29.1	29.3	37.6	19.0	23.4

### API PUBL*4546 92 MM 0732290 0505756 437 MM

.

. .

TRIAL	x	OBS.	AFTOX	AIRTOX	DEGADIS	gastar	gpm	HEGADAS	PHAST	SLAB
HC2	200	15.1	20.1	21.3	26.5	23.3	23.4	37.4	20.0	17.4
	800	36.2	69.7	94.7	92.1	90.7	90.7	127.8	70.0	65.4
HC3	200	13.7	16.0	21.8	21.0	18.5	18.6	30.1	20.0	13.3
	800	38.7	55.5	84.7	73.6	72.1	72.1	102.0	70.0	50.3
HC4	200	19,6	19.9	21.8	21.1	18.6	18.6	30.1	20.0	17.8
	608	55.2	69.1	84.7	73.1	72.1	72.2	102.0	70.0	67.2
HC5	200	15.5	12.2	11.9	11.8	11.6	11.7	17.4	9.4	12.7
	800	37.8	42.3	46.2	40.9	45.2	45.2	57.5	32.4	47.7
PG7	50	6.2	10.2	6.8	10.6	8.0	8.0	15.9	9.3	7.9
	100	12.0	18.9	14.7	19.7	15.9	16.0	28.6	18.3	15.9
	200	22.0	35.2	30.5	37.0	31.7	31.7	51.9	35.5	31.8
	400	39.0	65.5	61.6	68.8	62.8	62.8	94.3	67.9	62.7
	800	71.0	122.2	122.0	128.7	123.2	123.2	171.6	128.2	120.6
PG8	50	6.6	4.3	4.5	7.1	5.5	5.5	10.9	6.0	5.3
	100	12.0	7.8	9.9	13.2	11.0	11.0	19.4	11.9	10.7
	200	21.0.	14.4	20.8	24.7	21.8	21.8	35.2	23.2	21.4
	400	41.0	26.8	42.2	46.1	43.2	43.2	64.6	44.7	42.2
	800	. 86.0	49.8	83.7	86.1	84.7	84.7	. 119.6	85.1	81.2
PG9	50	9.0	4.3	5.5	7.1	5.5	5.5	10.9	6.0	4.6
	100	18.0	7.8	10.9	13.3	10.9	11.0	19.3	11.9	9.3
	200	33.0	14.4	21.8	24.8	21.8	21.8	35.1	23.2	18.6
	400	63.0	26.8	43.1	46.1	43.1	43.2	64.6	44.6	36.8
	800	116.0	49.8	84.7	86.1	84.6	84.7	119.5	85.1	70.8
PG10	50	12.3	7.0	6.6	10.6	8.0	8.0	15.9	9.3	8.3
	100	20.0	12.9	14.6	19.7	15.9	16.0	28.6	18.3	16.8
	200	35.0	23.9	30.4	36.8	31.7	31.7	51.9	35.5	33.4
	400	61.0	44.5	61.5	68.8	62.8	62.8	94.3	67.9	66.0
	800	97.0	83.0	121.9	128.5	123.2	123.2	171.6	128.2	127.4
PG15	50	8.6	5.3	9.7	10.6	11.0	11.0	21.8	13.4	8.1
	100	16.0	9.8	20.6	19.7	21.9	22.0	39.9	26.1	16.5
	200	26.0	18.1	42.3	36.9	43.6	43.6	72.8	49.7	32.9
	400	45.0	33.6	85.1	68.8	86.3	86.3	132.6	93.3	64.6
	800	92.0	62.6	168.2	128.1	169.4	169.4	241.7	173.6	124.6
PG16	50	13.7	7.7	9.8	10.6	11.0	11.0	21.8	13.5	8.1
	100	26.0	14.2	20.7	19.7	21.9	22.0	39.9	26.1	16.4
	200	49.0	26.4	42.4	36.8	43.6	43.6	72.8	49.7	32.7
	400	72.0	49.1	85.1	68.7	86.3	86.3	132.7	93.4	64.4
	800	116.0	91.5	168.2	128.2	169.3	169.4	241.7	173.6	124.0
PG19	50	8.7	4.8	4.2	7.1	5.5	5.5	10.9	6.0	4.8
	100	16.0	8.8	9.7	13.3	11.0	11.0	19.4	11.9	9.7
	200	32.0	16.4	20.5	24.7	21.8	21.8	35.2	23.2	19.4
	400	55.0	30.4	41.9	46.2	43.2	43.2	64.6	44.6	38.1
	300	85.0	56.6	83.5	36.1	84.6	84.7	119.5	95.1	73.8

### API PUBL*4546 92 🎟 0732290 0505757 376 📟

•

• •

TRIAL	x	CBS.	AFTOX	AIRTOX	DEGADIS	GASTAR	G2%	HEGADAS	PHAST	SLAB
PG20	50	7.9	4.0	4.0	4.6	4.0	4.0	7.6	3.9	4.5
	100	14.0	7.4	7.9	8.6	8.0	3.0	13.0	7.7	9.2
	200	27.0	13.7	15.8	16.0	15.9	15.9	23.1	15.1	18.3
	400	49.0	25.4	31.4	29.3	31.4	31.4	42.1	29.2	36.0
	800	90.0	47.2	61.6	55.7	61.6	61.6	77.3	55.8	69.5
2G25	50	16.2	10.0	10.0	10.6	11.1	12.0	21.3	13.5	7.2
	100	36.0	18.5	20.9	19.7	22.0	22.0	39.9	26.1	14.6
	200	72.0	34.3	-2.6	36.9	43.6	43.6	72.5	49.7	29.1
	400	134.0	64.0	35.3	68.9	86.3	86.3	132.7	93.4	57.3
	800	214.0	119.3	168.4	128.7	169.3	169.4	241.7	173.7	110.3
₽G43	50	10.5	5.1	4.5	7.1	5.5	5.5	10.9	6.0	5.6
	100	21.0	9.3	9.9	13.3	11.0	11.0	19.4	11.9	11.4
	200	40.0	17.2	20.8	24.7	21.8	21.8	35.2	23.2	22.7
	400	89.0	32.0	42.1	46.1	43.1	43.2	64.6	44.7	44.6
	800	200.0	59.6	83.7	86.1	84.7	84.7	119.6	85.1	86.4
PG44	50	11.4	5.3	4.3	7.1	5.5	5.5	10.9	6.0	5.1
	100	22.0	9.7	9.7	13.2	11.0	11.0	19.4	11.9	10.4
	200	43.0	17.9	20.6	24.7	21.8	21.8	35.2	23.2	20.7
	400	73.0	33.3	42.0	.46.1	43.2	43.2	64.6	44.7	40.6
	800	126.0	62.1	83.6	86.0	84.7	84.7	119.5	85.1	78.8
PG49	50	8.9	4.9	4.1	7.1	5.5	5.5	10.9	6.0	5.2
	100	17.0	9.1	9.6	13.2	10.9	11.0	19.3	11.9	10.5
	200	35.0	16.8	20.4	24.7	21.8	21.8	35.1	23.2	21.0
	400	72.0	31.2	41.8	46.1	43.2	43.2	64.6	44.7	41.4
	800	118.0	58.1	83.4	86.1	84.7	84.7	119.5	85.1	80.0
PG50	50	8.2	4.5	4.0	7.1	5.5	5.5	10.9	6.0	4.6
	100	15.0	8.3	9.5	13.3	10.9	11.0	19.3	11.9	9.4
	200	28.0	15.4	20.4	24.8	21.8	21.8	35.1	23.2	18.7
	400	55.0	28.6	41.7	46.1	43.1	43.2	64.6	44.7	36.9
	800	115.0	53.2	83.3	86.2	84.7	84.7	119.5	85.1	71.3
PG51	50	9.6	4.5	3.0	4.6	4.0	4.0	7.7	3.9	4.8
	100	18.0	8.2	7.0	8.6	8.0	8.0	13.1	7.7	9.6
	200	32.0	15.2	14.9	16.0	15.9	15.9	23.2	15.1	19.2
	400	60.0	28.3	30.5	29.8	31.4	31.4	42.2	29.2	37.7
	800	77.0	52.7	60.7	55.8	61.5	61.6	77.9	55.8	73.0
PG61	50	10.4	4.6	4.0	4.6	4.0	4.0	7.6	3.9	4.4
	100	19.0	8.4	3.0	8.6	8.0	8.0	13.0	7.7	8.9
	200	35.0	15.5	15.8	16.0	15.9	15.9	23.1	15.1	17.8
	400	65.0	28.3	31.4	29.9	31.4	31.4	42.2	29.2	34.9
	800	109.0	53.7	61.6	55.8	61.5	61.6	77.3	55.8	67.3

315

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS .

API PUBL*4546 92 🖿 0732290 0505758 202 🖿

.

APPENDIX D

TABULATION OF THE PERFORMANCE MEASURES AND THE RESULTS OF CONFIDENCE LIMITS ANALYSIS

### API PUBL*4546 92 🎟 0732290 0505759 149 🛲

#### APPENDIX D-1

. .

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES. THE SHORTEST AVAILABLE AVERAGING TIME WAS USED.

\$7

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), SHORT AVERAGING TIME, ALL X'S.

.

• •

.

	ervations,		(N= 124)			
model OBS.	mean 10.44	sigma 1.25	bias 0.00	vg 1.00	fa2 1.000	.ng 1.000
AFTOX	10.35	1.70	0.10	1.78	0.661	1.100
AIRTOX B4M	9.48 10.36	2.13 1.62	0.96 0.08	17.68 1.53	0.242	2.623
CHARM	10.05	1.71	0.40	2.49	0.613	1.485
DEGADIS FOCUS	10.83 11.19	1.66 1.99	-0.39 -0.75	1.84 6.51	0.629	0.677
gPM	10.07	1.64	0.37	2.14	0.419 0.524	0.474 1.450
GASTAR HEGADAS	10.60	1.41	-0.16	1.28	0.815	0.356
INPOFF	10.59 9.47	1.60 1.58	-0.15 0.97	1.58 4.63	0.742 0.242	0.862 2.628
OBDG	9.54	1.82	0.90	4.98	0.290	2.468
PHAST SLAB	10.58 10.10	1.72 1.41	-0.13 0.34	2.14	0.492	0.874
TRACE	10.47	1.47	-0.03	1.68 2.35	0.702	1.408 0.973
Block	1: BURRO	_ * _	(N- 21)			
model OBS.	mean 11.38	sigma 0.85	bias 0.00	v <del>g</del> 1.00	fa2 1.000	mg 1.000
AFTOX	12.13	0.93	-0.75	2.56	0.476	0.471
AIRTOX B&M	12.02 11.53	0.83 1.47	-0.64	2.08	0.571	0.530
CHARM	11.68	1.12	-0.15 -0.30	1.95 1.44	0.667 0.762	0.857 0.744
DEGADIS	12.29	1.03	-0.91	2.91	0.238	0.401
focus GPM	12.90 11.64	1.22 0.92	-1.52 -0.26	15.81 1.47	0.238 0.810	0.219 0.771
GASTAR	11.72	0.69	-0.34	1.49	0.810	0.712
HEGADAS INPUFF	12.11 11.01	1.09 1.06	-0.73	2.41	0.476	0.481
OBDG	11.30	1.32	0.37 0.08	1.77 1.61	0.476 0.762	1.451 1.081
PHAST	12.06	1.08	-0.68	2.31	0.476	0.505
SLAB TRACE	11.45 11.75	0.88 0.60	-0.07 -0.37	$1.31 \\ 1.59$	0.857 0.667	0.931 0.689
<b>D1</b> 1-						
Block	2: COYOTE		(N= 11)			
model	mean	sigma	bias	, ⊽g	fa2	mg
model OBS. AFTOX	mean 10.89 11.44	sigma 0.64 0.66		v <del>g</del> 1.00 1.46	fa2 1.000 0.727	1.000
model OBS. AFTOX AIRTOX	mean 10.89 11.44 11.23	0.64 0.66 1.10	bias 0.00 -0.56 -0.34	1.00 1.46 2.39	1.000 0.727 0.182	1.000 0.574 0.712
model OBS. AFTOX AIRTOX B&M CHARM	mean 10.89 11.44 11.23 10.75	0.64	bias 0.00 -0.56	1.00 1.46 2.39 1.10	1.000 0.727 0.182 1.000	1.000 0.574 0.712 1.141
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 10.89 11.44 11.23 10.75 10.97 11.69	0.64 0.66 1.10 0.71 0.62 0.60	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80	1.00 1.46 2.39 1.10 1.03 2.08	1.000 0.727 0.182 1.000 1.000 0.273	1.000 0.374 0.712 1.141 0.919 0.447
model OBS. AFTOX AIRTOX B&M CHARM	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70	0.64 0.66 1.10 0.71 0.62 0.60 1.02	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66	1.00 1.46 2.39 1.10 1.03 2.08 42.16	1.000 0.727 0.182 1.000 1.000 0.273 0.091	1.000 0.574 0.712 1.141 0.919 0.447 0.190
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455	1.000 0.374 0.712 1.141 0.919 0.447
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.27 1.72 1.38	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.57 0.88 1.01	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59	1.00 1.46 2.39 1.10 1.03 2.08 42.16 1.72 1.72 1.38 3.32	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636 0.455	$1.000 \\ 0.574 \\ 0.712 \\ 1.141 \\ 0.919 \\ 0.447 \\ 0.190 \\ 1.203 \\ 0.554 \\ 0.764 \\ 2.527 $
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.57 0.88 1.01 1.15	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35	1.00 1.46 2.39 1.10 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37	$\begin{array}{c} 1.000\\ 0.727\\ 0.182\\ 1.000\\ 1.000\\ 0.273\\ 0.091\\ 0.818\\ 0.455\\ 0.636\\ 0.455\\ 0.364\\ 0.182 \end{array}$	$1.000 \\ 0.574 \\ 0.712 \\ 1.141 \\ 0.919 \\ 0.447 \\ 0.190 \\ 1.203 \\ 0.554 \\ 0.554 \\ 2.527 \\ 2.019 \\ 0.705 \\ 0.705 \\ 0.705 \\ 0.705 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.900 \\ 0.90$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.57 0.88 1.01	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.59 -0.27 0.93 0.70	1.00 1.46 2.39 1.10 2.08 42.16 1.27 1.72 1.38 3.32 2.49	$\begin{array}{c} 1.000\\ 0.727\\ 0.182\\ 1.000\\ 1.000\\ 0.273\\ 0.091\\ 0.818\\ 0.455\\ 0.636\\ 0.455\\ 0.364\\ 0.182\\ 0.909 \end{array}$	1.000  0.574  0.712  1.141  0.919  0.447  0.190  1.203  0.554  0.564  2.527  2.019  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.900  0.9000  0.9000  0.9000  0.9000  0.9000  0.9000
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8)	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.38 3.32 2.49 2.37 1.19 6.40	$\begin{array}{c} 1.000\\ 0.727\\ 0.182\\ 1.000\\ 1.000\\ 0.273\\ 0.091\\ 0.818\\ 0.455\\ 0.536\\ 0.455\\ 0.364\\ 0.182\\ 0.909\\ 0.273\\ \end{array}$	$1.000 \\ 0.574 \\ 0.712 \\ 1.141 \\ 0.919 \\ 0.447 \\ 0.190 \\ 1.203 \\ 0.554 \\ 0.764 \\ 2.527 \\ 2.019 \\ 0.705 \\ 0.936 \\ \end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.49 2.37 1.19 6.40	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.909 0.273 fa2	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 2.527 2.019 0.705 0.936 0.288
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX	<pre>mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01</pre>	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8)	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.72 1.38 3.32 2.37 1.19 6.40	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.364 0.182 0.909 0.273 fa2 1.000	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 2.527 2.019 0.705 0.936 0.288
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX	<pre>mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83</pre>	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.38 2.49 2.37 1.19 6.40 vg0 2.34 3.91	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 2.019 0.705 0.936 0.288 0.288
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX	<pre>mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01</pre>	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.38 3.32 2.49 2.37 1.19 6.40 1.004 3.39 1.39	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.536 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.273	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 0.554 2.527 2.019 0.705 0.936 0.288 1.000 0.619 0.743 1.985
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.72 1.32 2.37 1.19 6.40 1.00 2.34 1.00 2.34 3.51	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 2.019 0.705 0.936 0.288 0.288
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N- 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10	1.00 1.46 2.39 1.03 2.08 42.16 1.27 1.38 2.49 2.37 1.39 6.40 vg00 2.34 1.23 40 2.34 3.39 1.20 40 2.34 3.32 2.39 4 3.32 2.39 4 3.32 2.39 1.20	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125 0.500 0.125 0.500 0.875	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 2.527 2.019 0.705 0.936 0.288 1.000 0.619 0.743 1.985 3.429 0.524 0.902
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65	1.00 1.46 2.39 1.03 2.08 42.16 1.272 1.382 2.49 2.379 1.39 42.16 1.272 1.382 2.49 2.379 1.00 42.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.39 1.00 2.391 2.39 2.39 2.331 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.32 2.39 2.32 2.39 2.39 2.39 2.32 2.39 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.20 2.39 2.20 2.39 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.364 0.182 0.364 0.182 0.364 0.182 0.273 fa2 1.000 0.273 fa2 1.000 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.2500 0.273 0.2500 0.2500 0.2500 0.2500 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.275 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.500000000	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.764 2.527 2.019 0.705 0.936 0.288 1.000 0.619 0.743 1.985 3.429 0.524 0.902 0.583
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	<pre>mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22</pre>	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35 1.14	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N- 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.07 0.30	1.00 1.46 2.39 1.03 42.16 1.27 1.73 2.49 2.37 1.19 6.4 1.004 3.324 1.004 3.39 5.351 2.209 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.536 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.750 1.000	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 0.288 1.000 0.619 0.705 0.743 1.985 3.429 0.524 0.524 0.524 0.583 0.936 1.354
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.38 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N= 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.27 0.30 0.10	1.00 1.46 2.39 1.03 42.16 1.27 1.32 2.37 1.19 6.4 V.004 3.919 1.20 2.34 1.19 0.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.34 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.32 1.20 2.30 1.20 2.30 1.20 2.30 1.20 2.30 1.32 1.20 2.30 1.32 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.875 0.500 0.750 1.000 0.500	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 2.527 2.019 0.705 0.936 0.288 1.000 0.619 0.743 1.985 3.429 0.524 0.902 0.5836 1.354 1.02
model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22 10.43 10.89 10.06	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.23 1.53 1.35 1.14 1.63 1.83 0.77	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N- 8) bias 0.00 -0.48 -0.30 0.65 -0.10 -0.54 -0.54 -0.50 0.10 -0.36 0.47	1.00 1.46 2.39 1.03 42.16 1.272 1.382 2.37 1.382 2.37 1.382 2.37 1.382 2.37 1.382 2.37 1.20 42.16 1.272 1.382 2.37 1.20 1.20 1.382 2.37 1.20 1.20 1.382 2.37 1.20 1.20 1.382 2.37 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.382 2.37 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1.000 0.727 0.182 1.000 0.273 0.091 0.818 0.455 0.636 0.455 0.364 0.182 0.364 0.182 0.364 0.182 0.273 fa2 1.000 0.500 0.125 0.500 0.125 0.500 0.875 0.500 0.750 1.000 0.250 0.250 0.250 0.250 0.250 0.250 0.250	1.000 0.574 0.712 1.141 0.919 0.447 0.190 1.203 0.554 0.554 0.288 1.000 0.619 0.705 0.743 1.985 3.429 0.524 0.524 0.524 0.583 0.936 1.354
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	<pre>mean 10.89 11.44 11.23 10.75 10.97 11.69 12.54 10.70 11.48 11.15 9.96 10.18 11.23 10.95 12.13 3: DESERT mean 10.53 11.01 10.83 9.84 9.30 11.17 10.63 11.07 10.59 10.22 10.43 10.89</pre>	0.64 0.66 1.10 0.71 0.62 0.60 1.02 0.75 0.57 0.95 0.88 1.01 1.15 0.72 0.36 TORTOISE sigma 0.87 1.62 1.97 1.48 1.13 1.77 1.48 1.13 1.77 1.48 1.13 1.35 1.14 1.63 1.83	bias 0.00 -0.56 -0.34 0.13 -0.08 -0.80 -1.66 0.18 -0.59 -0.27 0.93 0.70 -0.35 -0.07 -1.24 (N- 8) bias 0.00 -0.48 -0.30 0.69 1.23 -0.65 -0.10 -0.54 -0.30 0.10 -0.36	1.00 1.46 2.39 1.03 42.16 1.27 1.32 2.37 1.32 2.37 1.32 2.37 1.40 42.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.35 2.34 2.35 2.34 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	1.000 0.727 0.182 1.000 1.000 0.273 0.091 0.818 0.455 0.364 0.182 0.909 0.273 fa2 1.000 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.125 0.500 0.750 1.000 0.250	1.000 0.574 0.712 1.141 0.919 0.447 0.1903 0.554 0.764 2.527 2.019 0.705 0.288 1.000 0.619 0.743 1.985 3.429 0.583 0.9364 1.354 0.902 0.583 0.9364 1.354

#### API PUBL*4546 92 🗰 0732290 0505761 8T7 🛤

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE JAS RELEASES (BURRO, COYCTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), SHORT AVERAGING TIME, ALL X'S.

.

. .

Elock model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	7.56 6.70 7.75 7.75 6.98 7.31 7.30 7.31	sigma 1.66 1.50 1.74 1.79 1.20 1.53 2.18 1.50 1.73 1.58 1.58 1.58 1.50 1.53 1.53 1.52	(N= 8) bias 0.00 1.06 1.81 1.06 1.92 0.59 0.56 1.42 0.37 0.36 1.40 1.13 0.81 0.82 0.30	Vg 1.00 4.44 31.25 3.355 1.95 8.48 1.23 1.55 4.46 2.77 2.08 2.05	fa2 1.000 0.500 0.125 0.000 0.500 0.500 0.500 0.000 0.125 0.500 0.500 0.500 0.375	mg 0007 2.397 6.3855 2.5855 1.1447 1.4444 3.097 2.268 2.2268 2.2268
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	5: MAPLIN mean 10.66 10.37 8.53 10.22 10.49 10.86 12.13 9.96 10.73 10.35 9.36 9.50 9.99 9.90 11.48	SANDS, LNG sigma 0.88 1.06 1.54 1.09 1.29 0.94 1.29 1.02 0.85 1.14 1.02 1.33 1.39 1.16 0.64	(N= 17) bias 0.00 0.29 2.13 0.44 0.17 -0.21 -1.47 0.70 -0.07 0.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	$\begin{array}{r} \mathbf{v_{9}} \\ 1.00 \\ 1.27 \\ 244.50 \\ 1.47 \\ 1.51 \\ 1.16 \\ 22.67 \\ 1.89 \\ 1.11 \\ 1.67 \\ 6.05 \\ 2.43 \\ 2.72 \\ 2.79 \end{array}$	fa2 1.000 0.824 0.118 0.706 0.941 0.176 0.9471 1.000 0.765 0.059 0.235 0.353 0.412 0.471	1.000 1.331 8.354 1.185 0.814 0.230 2.029 1.357 3.677 8.1950 2.126 0.441
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	6: MAPLIN 3 mean 10.34 9.89 8.58 10.49 9.96 10.56 10.59 9.54 10.45 10.58 8.89 9.15 10.46 9.82 9.84	SANDS, LPG sigma 0.87 1.21 1.49 1.15 1.28 1.31 1.65 1.19 1.06 1.27 1.17 1.38 1.35 0.88 0.83	(N- 44) bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 1.45 1.19 -0.12 0.52 0.50	Vg 1.00 1.66 48.56 2.02 1.36 2.54 4.34 2.54 1.21 1.50 10.72 7.30 1.64 1.80 2.47	fa2 1.000 0.614 0.136 0.795 0.659 0.795 0.364 0.818 0.773 0.364 0.205 0.636 0.727 0.636	mg 005570 1.532570 0.48780 2.289254 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.2892 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.2
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPCFF OEDG PHAST SLAB TRACE	7: THORNEY mean 10.04 9.76 9.32 10.21 9.28 10.50 10.72 10.37 10.16 10.04 9.77 3.43 11.03 9.33 9.97	ISLAND sigma 1.46 1.31 1.28 1.44 0.85 1.53 1.53 1.28 1.28 1.24 1.34 1.34 1.34 1.57 1.57 1.57 1.57 1.22 0.99 0.31	(N- 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61 -0.99 0.21 0.08	Vg 1.00 1.18 1.07 3.90 1.78 1.78 1.76 1.14 1.23 1.14 1.23 1.14 1.23 1.33 2.21	fa2 1.000 0.467 1.000 0.400 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.267 0.267 0.733 0.533	mg 1.000 2.060 0.843 2.137 0.629 0.723 0.306 5.019 1.306 5.019 1.239 1.371 1.306 5.019 1.371 1.378 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

APPENDIX D-2

.

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES. THE LONGEST AVAILABLE AVERAGING TIME WAS USED.

#### API PUBL*4546 92 🔳 0732290 0505763 67T 🔳

.

• •

.

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), LONG AVERAGING TIME, ALL X'S.

model	ervations, mean	sigma	(N= 124) bias		£a2	
OBS.	10.25	1.20	0.00	vg 1.00	1.000	1.000
AFTOX	10.32	1.69	-0.07	2.44	0.540	0.931
AIRTOX	9.48	2.13	0.78	22.77	0.202	2.172
3&M	10.36	1.62	-0.10	1.81	0.645	0.900
CHARM	10.05	1.71	0.21	2.93	0.492	1.230
DEGADIS	10.83	1.55	-0.58	2.92	0.589	0.560
FOCUS	11.18	1.99	-0.93	13.60	0.387	0.396
GPM	9.87	1.55	0.38	2.11	0.556	1.464
gastar Hegadas	10.61 10.59	1.41 1.60	-0.35	1.72	0.694	0.703
INPUFF	9.46	1.57	-0.34 0.79	2.07 4.08	0.637 0.355	0.714
OBDG	9.54	1.82	0.71	5.04	0.298	2.201 2.044
PHAST	10.58	1.72	-0.32	2.78	0.476	0.724
SLAB	10.08	1.41	0.17	1.93	0.581	1.187
TRACE	10.47	1.47	-0.22	3.53	0.516	0.806
Block	1: BURRO		(N- 21)			
model	mean	sigma	(N= 21) bias		6-2	
OBS.	10.88	0.77	0.00	vg 1.00	fa2 1.000	mg 1.000
AFTOX	12.08	0.95	-1.20	6.27	0.143	0.301
AIRTOX	12.02	0.83	-1.13	4.86	0.190	0.322
Bem	11.53	1.47	-0.65	4.06	0.238	0.521
CHARM	11.68	1.12	-0.79	2.80	0.381	0.452
DEGADIS	12.30	1.03	-1.42	10.92	0.143	0.242
FOCUS	12.90	1.20	-2.02	111.47	0.095	0.133
gPM Gastar	11.10 11.76	1.07	-0.22	1.55	0.857	0.802
HEGADAS	12.11	0.70 1.09	-0.88 -1.23	2.98	0.333	0.416
INPUFF	10.97	1.06	-0.09	6.89 1.49	0.190 0.810	0.292
OBDG	11.30	1.32	-0.42	2.29	0.524	0.914 0.657
PHAST	12.06	1.08	-1.18	6.58	0.333	0.307
SLAB	11.40	0.91	-0.52	1.97	0.571	0.594
TRACE	11.75	0.60	-0.87	2.89	0.429	0.418
Block	2: COYOTE		(N= 11)			
Block model	2: COYOTE mean	signa	(N= 11) bias	va	fa2	mer
	mean 9.98	sigma 0.82	(N= 11) bias 0.00	vg 1.00	fa2 1.000	
model OBS. AFTOX	mean 9.98 11.41	0.82 0.68	bias		fa2 1.000 0.000	mg 1.000 0.240
model OBS. AFTOX AIRTOX	mean 9.98 11.41 11.23	0.82 0.68 1.10	bias 0.00 -1.43 -1.25	1.00 8.29 7.05	1.000	1.000
model OBS. AFTOX AIRTOX B&M	mean 9.98 11.41 11.23 10.75	0.82 0.68 1.10 0.71	bias 0.00 -1.43 -1.25 -0.78	1.00 8.29 7.05 2.40	1.000 0.000 0.273 0.545	1.000 0.240 0.287 0.460
model OES. AFTOX AIRTOX B&M CHARM	mean 9.98 11.41 11.23 10.75 10.97	0.82 0.68 1.10 0.71 0.62	bias 0.00 -1.43 -1.25 -0.78 -0.99	1.00 8.29 7.05 2.40 3.24	1.000 0.000 0.273 0.545 0.364	1.000 0.240 0.287 0.460 0.371
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 9.98 11.41 11.23 10.75 10.97 11.70	0.82 0.68 1.10 0.71 0.62 0.60	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72	1.00 8.29 7.05 2.40 3.24 21.27	1.000 0.000 0.273 0.545 0.364 0.000	1.000 0.240 0.287 0.460 0.371 0.179
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49	0.82 0.68 1.10 0.71 0.62 0.60 1.12	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51	1.00 8.29 7.05 2.40 3.24 21.27 3561.70	1.000 0.000 0.273 0.545 0.364 0.000 0.091	1.000 0.240 0.287 0.460 0.371 0.179 0.081
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 9.98 11.41 11.23 10.75 10.97 11.70	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05	0.82 0.68 1.10 0.71 0.62 0.60 1.12	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 0.000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76	1.000 0.000 0.273 0.345 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.081\\ 0.928\\ 0.219\\ 0.308\\ 1.053\end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.381\\ 0.928\\ 0.219\\ 0.308\\ 1.053\\ 0.814\\ 0.284\\ 0.411 \end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.081\\ 0.928\\ 0.219\\ 0.308\\ 1.053\\ 0.814\\ 0.284\\ 0.411 \end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.87 1.01 1.15 0.75 0.36	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.381\\ 0.928\\ 0.219\\ 0.308\\ 1.053\\ 0.814\\ 0.284\\ 0.411 \end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.081\\ 0.928\\ 0.219\\ 0.308\\ 1.053\\ 0.814\\ 0.284\\ 0.411\\ 0.116\end{array}$
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	1.000 0.000 0.273 0.345 0.364 0.000 0.000 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.182 0.000	$\begin{array}{c} 1.000\\ 0.240\\ 0.287\\ 0.460\\ 0.371\\ 0.179\\ 0.381\\ 0.928\\ 0.219\\ 0.308\\ 1.053\\ 0.814\\ 0.284\\ 0.411 \end{array}$
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.000 0.727 0.182 0.000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308 1.053 0.814 0.284 0.214 0.116
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.83</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.200 fa2 1.000 0.500 0.375	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.219 0.308 1.053 0.814 0.284 0.284 0.411 0.116
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX S&M	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.000 4.200 0.500 0.375 0.750	1.000 0.240 0.287 0.460 0.371 0.928 0.928 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.49 11.5 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N- 8) bias 0.00 -0.70 -0.66 0.32 0.87	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 2.45	1.000 0.000 0.273 0.345 0.364 0.000 0.000 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182	1.000 0.240 0.287 0.460 0.371 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX S&M	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 2.45 5.36	1.000 0.000 0.273 0.345 0.364 0.000 0.000 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375	1.000 0.240 0.287 0.460 0.371 0.928 0.219 0.381 0.928 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.58 4.33 1.14 1.23 6.32 208.97 1.00 2.74 4.77 1.55 2.45 5.36 1.42	1.000 0.000 0.273 0.345 0.364 0.000 0.000 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.500 0.375 0.750 0.125 0.500 0.750	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 0.364
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 2.45 5.36 1.42 1.35	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.000 0.500 0.500 0.375 0.550 0.125 0.555	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.219 0.308 1.053 0.814 0.284 0.284 0.411 0.116 1.000 0.497 0.517 1.381 0.364 0.364 0.377
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX S&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.59 10.22</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43	1.00 8.29 7.05 2.40 3.24 21.27 3661.70 1.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 2.45 5.36 1.42 5.36 1.42 1.51	$\begin{array}{c} 1.000\\ 0.000\\ 0.273\\ 0.545\\ 0.364\\ 0.000\\ 0.091\\ 1.000\\ 0.000\\ 1.000\\ 0.000\\ 1.000\\ 0.727\\ 0.182\\ 0.182\\ 0.182\\ 0.000\\ 0.727\\ 0.182\\ 0.500\\ 0.750\\ 0.550\\ 0.550\\ 0.555\\ 0.555\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.$	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 9.3377 0.651
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22 10.40</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67 1.35 1.14	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N- 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.43 -0.43 -0.24	1.00 8.29 7.05 3.24 21.27 3661.70 11.09 11.58 4.33 1.14 1.23 6.76 2.32 208.97 1.00 2.74 4.77 1.55 5.36 1.42 5.36 1.42 1.351 1.59 1.73	1.000 0.000 0.273 0.545 0.364 0.000 0.000 1.000 0.000 1.000 0.727 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.500 0.500 0.505 0.750 0.125 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.125 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.2550 0.255 0.2550 0.2550 0.25500 0.25500 0.25500 0.25500 0.255000 0.255000 0.255000 0.255000 0.2550000000000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.219 0.308 1.053 0.814 0.284 0.284 0.411 0.116 1.000 0.497 0.517 1.381 0.364 0.364 0.377
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX BLOCK MODEL OBS. AFTOX AIRTOX S&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS IMPUFF OEDG	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.22 10.22 10.20 40 10.39</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.48 1.13 1.77 1.27 1.65 1.14 1.62 1.33	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13 -0.43 -0.13 -0.24 -0.24 -0.72	1.00 8.29 7.05 2.40 21.27 3661.70 11.58 4.33 1.14 1.236 2.8.97 1.555 2.46 1.27 208.97 1.555 5.342 5.345 1.3519 1.578 1.579 2.40 2.74 4.555 2.456 1.3519 2.40 2.70 2.74 2.70 2.74 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70	$\begin{array}{c} 1.000\\ 0.000\\ 0.273\\ 0.545\\ 0.364\\ 0.000\\ 0.091\\ 1.000\\ 0.000\\ 1.000\\ 0.000\\ 1.000\\ 0.727\\ 0.182\\ 0.182\\ 0.182\\ 0.000\\ 0.727\\ 0.182\\ 0.500\\ 0.750\\ 0.550\\ 0.550\\ 0.555\\ 0.555\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.750\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.555\\ 0.$	1.000 0.240 0.287 0.460 0.371 0.928 0.928 0.928 0.928 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 0.364 0.377 0.651 0.342 0.342 0.3487
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.59 10.22 10.39 10.06</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.27 1.67 1.35 1.14 1.25 1.33 0.77	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13 -0.43 -0.24 -0.24 -0.24 -0.72 0.11	1.00 8.29 7.05 3.24 21.27 3661.70 11.58 1.14 1.23 6.76 2.32 208.97 1.00 2.74 1.55 5.36 1.351 9.1.55 1.51 1.59 1.52 1.52 1.52 1.52 1.531 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.5	1.000 0.000 0.273 0.545 0.364 0.000 0.091 1.000 0.000 1.000 0.727 0.182 0.000 0.727 0.182 0.000 0.500 0.375 0.500 0.375 0.500 0.750 0.505 0.550 0.555 0.550 0.555 0.550 0.555 0.550 0.555 0.550 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.5550 0.555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5555 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.5550 0.55500 0.55500 0.55500 0.55500 0.555000 0.555000 0.555000 0.55500000000	1.000 0.240 0.287 0.460 0.371 0.179 0.081 0.219 0.308 1.053 0.814 0.284 0.284 0.284 0.411 0.116 1.000 0.497 0.517 1.381 0.364 0.364 0.364 0.377 0.651 0.342 0.378 0.377 0.651 0.342 0.377 0.542 0.377 0.551 0.342 0.377 0.542 0.377 0.411 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.287 0.381 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.381 0.284 0.284 0.284 0.381 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.3814 0.284 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.3814 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.364 0.377 0.5517 0.3848 0.3848 0.364 0.3788 0.3848 0.3487 0.3848 0.3648 0.3487 0.3487 0.3487 0.3484 0.3464 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3477 0.5511 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487 0.3487
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX BLOCK MODEL OBS. AFTOX AIRTOX S&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS IMPUFF OEDG	<pre>mean 9.98 11.41 11.23 10.75 10.97 11.70 12.49 10.05 11.49 11.15 9.93 10.18 11.23 10.87 12.13 3: DESERT mean 10.16 10.86 10.83 9.84 9.30 11.17 10.60 10.30 10.22 10.22 10.20 40 10.39</pre>	0.82 0.68 1.10 0.71 0.62 0.60 1.12 0.83 0.57 0.95 0.87 1.01 1.15 0.75 0.36 TORTOISE sigma 0.96 1.64 1.97 1.48 1.13 1.77 1.48 1.13 1.77 1.27 1.65 1.14 1.62 1.33	bias 0.00 -1.43 -1.25 -0.78 -0.99 -1.72 -2.51 -0.08 -1.52 -1.18 0.05 -0.21 -1.26 -0.89 -2.15 (N= 8) bias 0.00 -0.70 -0.66 0.32 0.87 -1.01 -0.43 -0.13 -0.43 -0.13 -0.24 -0.24 -0.72	1.00 8.29 7.05 2.40 21.27 3661.70 11.58 4.33 1.14 1.236 2.8.97 1.555 2.46 1.27 208.97 1.555 5.342 5.345 1.3519 1.578 1.579 2.40 2.74 4.555 2.456 1.3519 2.40 2.70 2.74 2.70 2.74 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70	1.000 0.000 0.273 0.545 0.364 0.000 0.000 1.000 0.000 0.727 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.550 0.1550 0.5500	1.000 0.240 0.287 0.460 0.371 0.928 0.928 0.928 0.928 0.928 0.219 0.308 1.053 0.814 0.284 0.411 0.116 1.000 0.497 0.517 1.381 2.384 0.364 0.364 0.377 0.651 0.342 0.342 0.3487

. .

.

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), LONG AVERAGING TIME, ALL X'S.

.

. .

Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	4: GOLDFISH mean sigma 8.11 1.66 7.05 1.50 6.30 1.74 7.06 1.79 6.19 1.20 7.52 1.53 7.56 2.18 6.70 1.50 7.75 1.19 6.72 1.58 6.98 1.70 7.31 2.20 7.30 1.53 7.31 1.52	(N= 8) bias 0.00 1.06 1.81 1.06 1.92 0.59 0.56 1.42 0.37 0.36 1.40 1.13 0.81 0.82 0.80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	5: MAPLIN SANDS, ING mean sigma 10.66 0.88 10.37 1.06 8.53 1.54 10.22 1.09 10.49 1.29 10.86 0.94 12.13 1.29 9.96 1.02 10.73 0.85 10.35 1.14 9.36 1.02 9.50 1.33 9.99 1.39 9.90 1.16 11.48 0.64	(N= 17) bias 0.00 0.29 2.13 0.44 0.17 -0.21 -1.47 0.70 -0.07 0.30 1.30 1.16 0.67 0.75 -0.82	vg fa2 mg 1.00 1.000 1.000 1.27 0.824 1.331 244.60 0.118 8.396 1.47 0.706 1.554 1.51 0.765 1.185 1.16 0.941 0.814 22.67 0.176 0.230 1.89 0.471 2.021 1.11 1.000 0.929 1.67 0.765 1.357 6.30 0.059 3.677 6.05 0.235 3.198 2.43 0.353 1.950 2.72 0.412 2.126 2.79 0.471 0.441
Block model OBS. AFTOX AIRTOX B4M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPOFF OBDG PHAST SLAB TRACE	6: MAPLIN SANDS, LPG mean sigma 10.34 0.87 9.89 1.21 8.58 1.49 10.49 1.15 9.96 1.28 10.56 1.31 10.59 1.65 9.54 1.19 10.45 1.06 10.58 1.27 8.89 1.17 9.15 1.38 10.46 1.35 9.82 0.88 9.84 0.83	(N= 44) bias 0.00 0.45 1.76 -0.15 0.38 -0.22 -0.25 0.80 -0.11 -0.24 1.45 1.19 -0.12 0.52 0.50	vg fa2 mg 1.00 1.000 1.000 1.66 0.614 1.575 48.56 0.136 5.325 1.36 0.795 0.357 2.02 0.659 1.460 1.54 0.795 0.306 4.34 0.477 0.780 2.54 0.364 2.233 1.21 0.818 0.392 1.50 0.773 0.785 10.72 0.091 4.254 7.30 0.205 3.297 1.64 0.636 0.888 1.30 0.727 1.638 2.47 0.636 1.651
Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	7: THORNEY ISLAND mean sigma 10.04 1.46 9.76 1.31 9.32 1.28 10.21 1.44 9.28 0.35 10.50 1.53 10.72 1.28 10.37 1.24 10.37 1.24 10.16 1.34 10.04 1.75 9.77 1.17 3.43 1.57 11.03 1.21 9.83 0.99 9.97 0.31	(N= 15) bias 0.00 0.29 0.72 -0.17 0.76 -0.46 -0.67 -0.32 -0.12 0.00 0.27 1.61 -0.99 0.21 0.08	Vg fa2 mg 1.00 1.000 1.000 1.18 1.000 1.331 6.68 0.467 2.060 1.07 1.000 0.343 3.80 0.400 2.137 1.92 0.733 0.529 1.78 0.733 0.509 1.76 0.733 0.723 1.14 0.867 0.384 1.23 0.933 1.001 1.70 0.400 1.306 14.07 0.000 5.019 3.86 0.267 0.371 1.33 0.723 1.239 2.21 0.533 1.078

326

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from HSI PUBL*4546 92 MM ロッコンフタロ 0505764 506 MM

#### API PUBL*4546 92 📖 0732290 0505765 442 📖

APPENDIX D-3

.

. .

### THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE INSTANTANEOUS DENSE GAS RELEASE (THORNEY ISLAND), INCLUDING ALL DOWNWIND DISTANCES.

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR INSTANTANEOUS DENSE GAS RELEASE (THORNEY ISLAND), ALL X'S.

.

THORNEY	ISLAND		(N- 61)				
model	mean	sigma	blas	va	fa2	mc	
OBS.	10.08	1.14	0.00	1.00	1.000	1.000	
AFTOX	11.36	1.08	-1.78	36.83	0.033	0.169	
AIRTOX	10.14	1.37	-0.06	1.23	0.869	0.944	
B&M	10.34	1.20	-0.25	1.20	0.934	0.772	
CHARM	9.42	1.13	0.67	2.45	0.541	1.948	
DEGADIS	10.34	1.75	-0.26	11.22	0.344	0.771	
FOCUS	10.89	1.19	-0.81	2.29	0.410	0.445	
GASTAR	9.53	1.06	0.55	1.66	0.557	1.736	
INPUFF	11.20	1.24	-1.12	4.16	0.180	0.327	
PHAST	10.53	0.97	-0.45	1.58	0.770	0.637	
SLAB	9.40	1.26	0.68	2.33	0.689	1.979	
TRACE	10.77	1.53	-0.69	2.92	0.459	0.502	

329

____

#### API PUBL*4546 92 🗰 0732290 0505767 215 🛲

APPENDIX D-4

.

THE PERFORMANCE MEASURES FOR THE PREDICTED CONCENTRATIONS FOR THE CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, AND THORNEY ISLAND), FOR DOWNWIND DISTANCES ≥ 200M ONLY. THE SHORTEST AVAILABLE AVERAGING TIME WAS USED.

.

#### API PUBL*4546 92 🔳 0732290 0505768 151 🔳

_

PERFORMANCE MEASURES FOR CONCENTRATIONS FOR CONTINUOUS DENSE GAS RELEASES (BURRO, COYOTE, DESERT TORTOISE, GOLDFISH, MAPLIN SANDS, THORNEY ISLAND), SHORT AVERAGING TIME, X >- 200M.

•

All obse	rvations,		(N <b>-</b> 58)			
model	mean	sigma	bias	٧g	fa2	mg
OBS.	9.48	1.08	0.00	1.00	1.000	1.000
AFTOX	9.16	1.48	0.33	2.03	0.569	1.389
AIRTOX	8.22	1.92	1.26	36.35	0.155	3.543
Bem	9.02	1.24	0.46	1.79	0.603	1.591
CHARM	8.78	1.50	0.70	3.70	0.517	2.013
					0.690	0.924
DEGADIS	9.56	1.39	-0.08	1.57		
FOCUS	9.93	1.85	-0.45	4.38	0.534	0.640
GPM	8.92	1.44	0.56	3.01	0.379	1.752
GASTAR	9.56	1.29	-0.07	1.29	0.810	0.929
HEGADAS	9.33	1.22	0.15	1.45	0.793	1.162
INPUFF	8.37	1.30	1.11	6.85	0.190	3.047
OBDG	8.16	1.31	1.32	8.52	0.172	3.744
PHAST	9.30	1.53	0.19	2.52	0.431	1.208
SLAB	9.09	1.23	0.39	1.65	0.724	1.483
	9.78	1.60	-0.30	2.49	0.534	0.743
TRACE	3.10	1.00	-0.20	4.74	0.001	
Block	1: BURRO		(N= 5)			
		ai	bias	٧đ	fa2	mg
model	mean	sigma		1.00	1.000	1.000
OBS.	10.23	0.41	0.00			0.392
AFTOX	11.16	0.70	-0.94	3.85	0.200	
AIRTOX	11.01	0.86	-0.79	3.54	0.400	0.455
Bem	9.22	0.70	1.00	3.23	0.200	2.725
CHARM	9.95	0.78	0.28	1.52	0.600	1.319
DEGADIS	10.74	0.68	-0.51	1.59	0.800	0.600
FOCUS	10.89	0.81	-0.66	1.93	0.800	0.518
GPM	10.67	0.83	-0.45	2.17	0.600	0.639
GASTAR	10.68	0.40	-0.45	1.27	1.000	0.639
	10.75		-0.52	1.69	0.800	0.592
HEGADAS		0.68			0.400	1.282
INPUFF	9.98	0.86	0.25	1.89		2.273
OBDG	9.41	0.61	0.82	2.18	0.400	0.714
PHAST	10.56	0.67	-0.34	1.34	0.800	
SLAB	10.20	0.49	0.03	1.10	1.000	1.031
TRACE	11.02	0.52	-0.80	2.10	0.400	0.452
<b>m1</b> 1	0. 000000		()] ())			
Block	2: COYOTE		(N= 8)		6-0	
model	mean	sigma	bias	٨đ	fa2	mor
model OBS.	mean 10.59	0.51	bias 0.00	1.00	1.000	1.000
model OBS. AFTOX	mean 10.59 11.17	0.51 0.56	bias 0.00 -0.57	1.00 1.50	1.000 0.625	1.000 0.564
model OBS.	mean 10.59	0.51	bias 0.00	1.00 1.50 2.85	1.000 0.625 0.000	1.000 0.564 0.729
model OBS. AFTOX	mean 10.59 11.17	0.51 0.56	bias 0.00 -0.57	1.00 1.50	1.000 0.625	1.000 0.564 0.729 1.200
model OBS. AFTOX AIRTOX B&M	mean 10.59 11.17 10.91 10.41	0.51 0.56 1.11	bias 0.00 -0.57 -0.32	1.00 1.50 2.85	1.000 0.625 0.000	1.000 0.564 0.729
model OBS. AFTOX AIRTOX B&M CHARM	mean 10.59 11.17 10.91 10.41 10.69	0.51 0.56 1.11 0.50 0.47	bias 0.00 -0.57 -0.32 0.18 -0.10	1.00 1.50 2.85 1.13 1.03	1.000 0.625 0.000 1.000	1.000 0.564 0.729 1.200
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 10.59 11.17 10.91 10.41 10.69 11.43	0.51 0.56 1.11 0.50 0.47 0.47	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83	1.00 1.50 2.85 1.13 1.03 2.20	1.000 0.625 0.000 1.000 1.000 0.250	1.000 0.564 0.729 1.200 0.909 0.435
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32	0.51 0.56 1.11 0.50 0.47 0.47 1.08	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73	1.00 1.50 2.85 1.13 1.03 2.20 70.27	1.000 0.625 0.000 1.000 1.000 0.250 0.125	1.000 0.564 0.729 1.200 0.909 0.435 0.178
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27	1.000 0.625 0.000 1.000 1.000 0.250 0.125 0.750	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.67 0.87 0.87	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91	1.00 1.50 2.85 1.13 1.03 70.27 1.27 1.91 1.41 3.27	1.000 0.625 0.000 1.000 1.000 0.250 0.750 0.375 0.625 0.500	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.80 0.90	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.500 0.375	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.502 2.487 2.096
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.500 0.375 0.500 0.375	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.500 0.375 0.125 0.125	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.500 0.375 0.500 0.375	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.43 12.32 10.44 11.43 10.81 9.68 9.85 10.89 10.71 12.05	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.80 0.90 1.11 0.66 0.32	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.500 0.375 0.125 0.125	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.59 11.17 10.91 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N= 4)	1.00 $1.50$ $2.85$ $1.13$ $1.03$ $2.20$ $70.27$ $1.91$ $1.41$ $3.27$ $2.60$ $2.57$ $1.22$ $10.14$	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.125	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.44 11.28 9.68 9.85 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.500 0.375 0.125 0.875 0.125 0.125	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N= 4)	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.500 0.375 0.125 0.875 0.125 0.125 fa2 1.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.44 11.28 9.68 9.85 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.375 0.375 0.375 0.125 0.125 0.125 fa2 1.000 1.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS.	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N= 4) bias 0.00	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.500 0.375 0.125 0.875 0.125 0.125 fa2 1.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138
model OBS. AFTOX BEM CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N= 4) bias 0.00 0.24 0.76	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 vg 1.00 1.18	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.375 0.125 0.125 0.125 fa2 1.000 1.000 0.250	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M	mean 10.59 11.17 10.91 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 Vg 1.00 1.18 2.32 5.51	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.375 0.125 0.125 0.125 fa2 1.000 1.000 0.250 0.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.24	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 Vg 1.00 1.18 2.32 5.51 8.80	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.375 0.375 0.375 0.125 0.125 0.125 0.125 fa2 1.000 1.000 0.250 0.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM DEGADIS	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.44 11.28 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46 0.32	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.25 1.22 1.25 1.22 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.55 1.58 1.08 1.08 1.08	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.625 0.500 0.375 0.125 0.125 0.125 0.125 fa2 1.000 1.000 0.250 0.000 0.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46 0.32 0.16	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N= 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.21 1.41 3.27 2.57 1.22 10.14 VG 1.00 1.18 2.32 5.51 8.80 1.08 1.11	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.500 0.375 0.125 0.125 0.125 fa2 1.000 1.000 0.250 0.000 0.000 0.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.89 10.89 10.89 10.89 10.89 10.89 10.89 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.41 9.60	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.45 0.32 0.16 0.50	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 VG 1.00 1.18 2.32 5.51 8.80 1.08 1.01 1.11 1.10	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.375 0.125 0.125 0.125 0.125 1.000 1.000 0.250 0.000 0.000 1.000 1.000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.091
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLock model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR	mean 10.59 11.17 10.91 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41 9.60 9.25	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46 0.32 0.16 0.50 0.50 0.26	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.27 1.27 1.27 1.21 1.41 3.27 2.60 2.57 1.22 10.14 Vg 1.00 1.18 2.32 5.51 8.80 1.08 1.11 1.10 1.29	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.250 0.375 0.625 0.500 0.375 0.125 0.125 0.125 fa2 1.000 1.000 0.250 0.000 0.250 0.000 1.000 1.000 0.750	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.091 1.538
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE Block model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41 9.60 9.25 9.09	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46 0.32 0.16 0.50 0.26 0.23	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59	1.00 1.50 2.85 1.13 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 Vg 1.00 1.18 2.32 5.51 8.80 1.08 1.11 1.10 1.29 1.42	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.375 0.375 0.125 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.000 0.0000 1.0000 0.0000 1.0000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.538 1.803
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41 9.60 9.25 9.09 8.86	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.54 0.46 0.32 0.16 0.50 0.23 0.47	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59 0.83	1.00 1.50 2.85 1.13 2.20 70.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.22 1.27 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.375 0.375 0.125 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.747 0.893 0.234 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.091 1.538 1.803 2.286
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK MODEL OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41 9.60 9.25 9.09 8.86 9.06	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.52 0.74 0.54 0.45 0.32 0.16 0.50 0.23 0.47 0.23 0.47 0.23 0.47	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59 0.83 0.63	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 vg 1.00 1.18 2.32 5.51 8.80 1.08 1.11 1.10 1.29 1.41 3.27 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.375 0.375 0.125 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.000 0.0000 1.0000 0.0000 1.0000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.538 1.803
model OBS. AFTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF	mean 10.59 11.17 10.91 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.41 9.60 9.25 9.09 8.86 9.30	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.666 0.32 TORTOISE sigma 0.24 0.52 0.74 0.52 0.74 0.52 0.74 0.45 0.32 0.16 0.50 0.26 0.23 0.47 0.19 0.16	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59 0.83 0.63 0.39	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.21 1.41 3.27 2.60 2.57 1.22 10.14 VG 1.00 1.18 2.32 5.51 8.80 1.00 1.29 1.42 1.29 1.22 1.22 10.14 1.22 10.14 1.22 10.14 1.22 1.22 10.14 1.22 10.14 1.22 1.22 10.14 1.22 1.22 10.14 1.22 1.22 10.14 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.375 0.375 0.125 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.747 0.893 0.234 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.091 1.538 1.803 2.286
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK MODEL OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG	mean 10.59 11.17 10.91 10.41 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.43 9.41 9.60 9.25 9.09 8.86 9.06	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.66 0.32 TORTOISE sigma 0.24 0.52 0.74 0.52 0.74 0.54 0.45 0.32 0.16 0.50 0.23 0.47 0.23 0.47 0.23 0.47	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59 0.83 0.63	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.91 1.41 3.27 2.60 2.57 1.22 10.14 vg 1.00 1.18 2.32 5.51 8.80 1.08 1.11 1.10 1.29 1.41 3.27 2.57 1.22 10.14	1.000 0.625 0.000 1.000 0.250 0.750 0.375 0.125 0.500 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.747 0.893 0.234 mg 1.000 1.276 2.138 3.554 4.239 1.295 1.319 1.091 1.538 1.803 2.286 1.871
model OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST SLAB TRACE BLOCK MODEL OBS. AFTOX AIRTOX B&M CHARM DEGADIS FOCUS GPM GASTAR HEGADAS INPUFF OBDG PHAST	mean 10.59 11.17 10.91 10.69 11.43 12.32 10.44 11.28 10.81 9.68 9.85 10.89 10.89 10.71 12.05 3: DESERT mean 9.68 9.44 8.92 8.42 8.24 9.41 9.60 9.25 9.09 8.86 9.30	0.51 0.56 1.11 0.50 0.47 0.47 1.08 0.67 0.49 0.87 0.80 0.90 1.11 0.666 0.32 TORTOISE sigma 0.24 0.52 0.74 0.52 0.74 0.52 0.74 0.45 0.32 0.16 0.50 0.26 0.23 0.47 0.19 0.16	bias 0.00 -0.57 -0.32 0.18 -0.10 -0.83 -1.73 0.15 -0.69 -0.22 0.91 0.74 -0.29 -0.11 -1.45 (N- 4) bias 0.00 0.24 0.76 1.27 1.44 0.26 0.28 0.09 0.43 0.59 0.83 0.63 0.39	1.00 1.50 2.85 1.03 2.20 70.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.21 1.41 3.27 2.60 2.57 1.22 10.14 VG 1.00 1.18 2.32 5.51 8.80 1.00 1.29 1.42 1.29 1.22 1.22 10.14 1.22 10.14 1.22 10.14 1.22 1.22 10.14 1.22 10.14 1.22 1.22 10.14 1.22 1.22 10.14 1.22 1.22 10.14 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	1.000 0.625 0.000 1.000 0.250 0.125 0.750 0.375 0.625 0.375 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	1.000 0.564 0.729 1.200 0.909 0.435 0.178 1.163 0.502 0.802 2.487 2.096 0.747 0.893 0.234 1.000 1.276 2.138 3.554 1.295 1.319 1.091 1.538 1.803 2.286 1.871 1.471

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

٠.

API PUBL*4546 92 📖 0732290 0505769 098 📟

Order No. 841-45460

API PUBL*4546 92 🖿 0732290 0505770 80T 🛲

.

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005 -

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS