Methanol Vehicle Emissions

API PUBLICATION 4262 DECEMBER 1990

> American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Methanol Vehicle Emissions

Thomas J. Lareau, Policy Analysis Department David H. Lax, Health and Environmental Sciences Department Paul A. Martino, Health and Environmental Sciences Department Willis E. Bush, Editorial and Special Issues Department

Refining Department

API PUBLICATION 4262 DECEMBER 1990

> American Petroleum Institute

Not for Res

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SPECIAL NOTES

1. API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

2. API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANU-FACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

3. INFORMATION CONCERNING SAFETY AND HEALTH RISKS AND PROPER PRECAUTIONS WITH RESPECT TO PARTICULAR MATERIALS AND CONDI-TIONS SHOULD BE OBTAINED FROM THE EMPLOYER, THE MANUFACTURER OR SUPPLIER OF THAT MATERIAL, OR THE MATERIAL SAFETY DATA SHEET.

4. NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

5. GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAF-FIRMED, OR WITHDRAWN AT LEAST EVERY FIVE YEARS. SOMETIMES A ONE-TIME EXTENSION OF UP TO TWO YEARS WILL BE ADDED TO THIS REVIEW CYCLE. THIS PUBLICATION WILL NO LONGER BE IN EFFECT FIVE YEARS AF-TER ITS PUBLICATION DATE AS AN OPERATIVE API STANDARD OR, WHERE AN EXTENSION HAS BEEN GRANTED, UPON REPUBLICATION. STATUS OF THE PUBLICATION CAN BE ASCERTAINED FROM THE API AUTHORING DEPART-MENT [TELEPHONE (202) 682-8000]. A CATALOG OF API PUBLICATIONS AND MATERIALS IS PUBLISHED ANNUALLY AND UPDATED QUARTERLY BY API, 1220 L STREET, N.W., WASHINGTON, D.C. 20005.

Not for Resale

thout license from IHS

API PUBL*4262 90 🖿 0732290 0095269 7 🖿

FOREWORD

This publication was prepared by members of the API Alternative Fuels Group, including Thomas J. Lareau, Policy Analysis Department; David H. Lax and Paul A. Martino, Health and Environmental Sciences Department; and Willis E. Bush, Editorial and Special Issues Department. The data in the report were provided by federal and state regulatory agencies and API member companies.

This report evolved from work initially undertaken by Paul Martino, who reviewed the emissions studies that comprise Appendix C. David Lax organized the emissions data from the various published studies and from many organizations into a spreadsheet. From this he created an initial set of emissions graphics for particular vehicle classes (the precursor to the second-level screening analysis). Thomas Lareau provided the first-level screening analysis and served as overall coordinator of the report in its later stages. Bill Bush provided editorial assistance throughout the process.

Many other API staff members contributed to the preparation and review of this report. In particular, Michael E. Canes, Ronald L. Jones, James E. Williams, and James Vail provided critical reviews and suggestions that clarified and extended the analysis in important ways. External reviews by Bruce Beyaert (Chevron), Sandra Minor (Unocal), B. D. Keller (Amoco), and James Macias (Shell) also served to improve the final version of this report. Finally, we would like to thank Constance Polite, who typed the original drafts of the report, and the API Refining Department editorial staff, who edited the final version and produced the book. The authors appreciate the efforts of all these individuals, without which this report would not have been as clear or technically sound.

Every effort has been made by the Institute to assure the accuracy and reliability of the data and analysis contained in this study. However, the contents of this publication are meant for the purposes of study and discussion of technical and regulatory issues and do not necessarily represent the views of the Institute or any of its members.

API PUBL*4262 90 🖿 0732290 0095270 3 📰

CONTENTS

	Page
SECTION 1-EXECUTIVE SUMMARY	1
SECTION 2	
DATA BASE	2
Methanol Emissions Studies	$\frac{-}{2}$
Rybauet Emissions Focus	2
Exitaust Etitissions rocus	2
rederal lest Procedule Conditions	2
Measurement Procedures	2
Test Vehicles	2
Two Emissions Data Bases	4
Determining Emissions Trends	4
SECTION 3-MEASURING METHANOL VEHICLE	-
EMISSIONS	6
Organic Material Hydrocarbon-Equivalent Emissions	7
Flame Ionization Detection	7
Measurement Bias	7
SECTION A METHANOL EMISSIONS TRENDS	7
SECTION 4	/
Analysis of All Emissions Data with Odometer Readings	ð
Formaldehyde	9
Nitrogen Oxides	10
Organics '	10
Carbon Monoxide	10
Classes of Vehicles Providing Data for Analysis	10
Dedicated M85 Vehicles (Older U.S. Auto Manufacturer Technology)	11
Dedicated M85 Vehicles (Older Foreign Auto Manufacturer Technology)	11
Dedicated M85 Vehicles (Recent U.S. Auto Manufacturer Technology)	11
Dedicated M85 Vehicles (Recent Foreign Auto Manufacturer Technology)	12
Dedicated M100 Vehicles	12
Elexible-Eucl Vehicles	12
Emissions Trends From Restricted Data	13
Formaldehyde Emissions	13
Nitrogen Ovide Emissions	14
Rittogen Oxide Emissions	14
	15
Organic Emissions	15
Analysis of Additional Methanol Emissions Data and Advanced	• •
Catalyst Research	30
Analysis of Prototype Vehicle Technology	30
Analysis of Advanced Catalyst Research	31
Evaporative Emissions Trends	31
SECTION 5—CONCLUSIONS	33
M85 Vehicles	33
M100 Vehicles	33
SECTION 6 REEPENCES	34
	54
APPENDIX AEXHAUST EMISSIONS DATA	37
APPENDIX B-EVAPORATIVE EMISSIONS DATA	67
APPENDIX C—SUMMARY OF METHANOL VEHICLE EMISSIONS	
STUDIES	77

Not for Resale

.

API PUBL*4262 90 🖿 0732290 0095271 5 🗰

Figures

1-Formaldehyde Emissions: Dedicated M85 Toyota Camry	4
2. Formaldehyde Emissions: 1081_1085 vs. 1986_1988 Models	8
3 Formaldehyde Emissions: M85 vs. M100	8
A NO Emissional 1021 1025 va 1026 1029 Modela	0
$4 - 100_x$ Emissions, 1761-1765 VS, 1760-1766 Mi0dels	9
$5 - NO_x$ Emissions: Miss vs. W100	9
6-OMHCE Emissions: 1981-1985 vs. 1986-1988 Models	9
7—OMHCE Emissions: M85 vs. M100	9
8—CO Emissions: 1981–1985 vs. 1986–1988 Models	10
9—CO Emissions: M85 vs. M100	10
10—Distribution of Maximum Mileage Accumulated	11
11Formaldehyde Emissions: Full vs. Subset Data	13
12—NO _x Emissions: Full vs. Subset Data	13
13—OMHCE Emissions: Full vs. Subset Data	13
14CO Emissions: Full vs. Subset Data	14
15—Formaldehyde Emissions: Five 1983 Carbureted Ford Escorts (M85)	14
16—Formaldehyde Emissions: Three 1983 Fuel-Injected Ford Escorts (M85)	15
17—Formaldehyde Emissions: Two 1981 Fuel-Injected Volkswagen	
Rabbits (M85)	15
18. Formaldehyde Emissions: Four Domestic Dedicated Vehicles (M85)	16
10 Formaldehyde Emissions: Four Dedicated Toyotas	16
19—Formaldehyde Emissions, Four Dedicated Toyotas	17
20-Formaldenyde Emissions: Four Dedicated Venicles (M100)	17
21—Formaldenyde Emissions: Seven 1987 Ford Crown victorias	17
(MIS) Flexible-Fuel venicles)	17
22—Formaldehyde Emissions: 1987 Ford Crown Victoria and	10
1988 Chevrolet Corsica (M85 Flexible-Fuel Vehicles)	18
23—NO _x Emissions: Five 1983 Carbureted Ford Escorts (M85)	18
24—NO _x Emissions: Three 1983 Fuel-Injected Ford Escorts (M85)	19
25—NO _x Emissions: Two 1981 Fuel-Injected Volkswagen Rabbits (M85)	19
26—NO _x Emissions: Four Domestic Dedicated Vehicles (M85)	20
27—NO _x Emissions: Four Dedicated Toyotas (M85)	20
28—NO _x Emissions: Four Dedicated Vehicles (M100)	21
29—NO _x Emissions: Seven 1987 Ford Crown Victorias	
(M85 Flexible-Fuel Vehicles)	21
30—NO, Emissions: 1987 Ford Crown Victoria and 1988 Chevrolet	
Corsica (M85 Flexible-Fuel Vehicles)	22
31—CO Emissions: Five 1983 Carbureted Ford Escorts (M85)	22
32—CO Emissions: Three 1983 Fuel-Injected Ford Escorts (M85)	23
33—CO Emissions: Two 1981 Fuel-Injected Volkswagen Rabbits (M85)	23
34—CO Emissions: Four Domestic Dedicated Vehicles (M85)	24
35	24
36_CO Emissions: Four Dedicated Vehicles (M100)	25
37_CO Emissions: Four Decleared Veneres (NTOO)	20
(M85 Elevible Euclides)	25
28 CO Emissions: 1087 Ford Crown Victoria and 1088 Chevrolet	40
Corresponded (M95 Elevible Evel Vehicles)	26
Consider (MAS) Flexible-Fuel vehicles)	20
39—OMHCE Emissions: Two 1983 Caroureted Ford Escorts (M85)	20
40—OMHCE Emissions: Three 1983 Fuel-Injected Ford Escorts (M85)	27
41—OMHCE Emissions: Two Domestic Dedicated Vehicles (M100)	27
42-OMHCE Emissions: Four Dedicated Toyotas (M85)	28
43—OMHCE Emissions: Dedicated Toyota Carina (M100)	28
44—OMHCE Emissions: Six 1987 Ford Crown Victorias	
(M85 Flexible-Fuel Vehicles)	29

API PUBL*4262 90 🔳 0732290 0095272 7 🖿

45—OMHCE Emissions: 1987 Ford Crown Victoria and 1988 Chevrolet
46—Total Organic Evaporative Emissions: Seven 1987 Ford Crown Victorias
(M85 Flexible-Fuel Vehicles)
47—Total Organic Evaporative Emissions: Three 1983 Fuel-Injected
Ford Escorts (M85)
48—Total Organic Evaporative Emissions: Two Dedicated Toyotas (M85)
ables
1—Summary of Emissions Studies
2-Distribution of Vehicles in the Exhaust Emissions Data Base
3—Mileage Dependence of Emissions
4-Dedicated M100 Vehicles
5—FTP Exhaust Emissions From Prototype M100 Vehicles
6—FTP Exhaust Emissions From Prototype Dedicated M85 Vehicles
A-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/
ECU: NFB
A-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/
ECU: NFB
A-3—'81 VW Rabbit/License No. 824/Mix Method: Fuel Injection/
ECU: FB
A-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/
ECU: FB
A-5—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/
ECU: FB
A-6—'81 Ford Escort/License No. 920/Mix Method: Carburetion/
ECU: NFB
A-7—'84 Ford Escort/License No. 154/Mix Method: Fuel Injection/
ECU: NFB
A-8—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/
ECU: FB
A-9'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/
ECU: FB
A-10—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/
ECU: FB
A-11—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/
ECU: FB
A-12'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/
ECU: FB
A-13—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/
ECU: FB
A-14—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/
ECU: FB
A-15—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/
ECU: FB
A-16-'87 Ford Crown Victoria/License No. 778/Mix Method: Fuel Injection/
ECU: FB
A-17—'87 Ford Crown Victoria/License No. 963/Mix Method: Fuel Injection/
ECU: FB
A-18—'83 Ford Escort/License No. 319/Mix Method: Carburetion/
ECU: NFB
A-19—'83 Ford Escort/License No. 893/Mix Method: Carburetion/
ECU: NFB

.

API PUBL*4262 90 🗰 0732290 0095273 9 🛤

A-20—'83 Ford Escort/License No. 570/Mix Method: Carburetion/	
ECU: NFB	50
A-21—'83 Ford Escort/License No. 571/Mix Method: Carburetion/	
ECU: NFB	50
A-22—'83 Ford Escort/License No. 778/Mix Method; Carburetion/	
ECU: NFB	50
A-23—'82 GM Citation/License No. 112/Mix Method: Fuel Injection/	
ECU: NFB	51
A-24—'87 Ford Crown Victoria/License No. 653/Mix Method: Fuel Injection/	
ECU: FB	51
A-25—'83 Ford Escort/License No. 484/Mix Method: Carburetion/	
ECU: NFB	52
A-26—'83 Ford Escort/License No. 485/Mix Method: Carburetion/	
ECU: NFB	52
A-27—'87 Ford Crown Victoria/License No. 610/Mix Method: Fuel Injection/	
ECII: FB	52
A-28—'88 GM Corsica/License No. AHU/Mix Method: Fuel Injection/	
ECII FB	53
A-29'87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/	55
ECII: FB	53
A-30_'87 Ford Crown Victoria/License No. 749/Mix Method: Fuel Injection/	55
FCU: ER	54
A-31-'86 Toyota Camry/License No. 311/Mix Method: Fuel Injection/	54
R-51— 60 Toyota Canny/Electise No. 511/Mix Method, 1 def hijection/	54
A 22 '28 GM Corsign/License No. WPS/Mix Method: Fuel Injection/	54
A-52 88 OW COISICA/LICENSE NO. WY S/WIX MEMOU. FUCH INJECTION/	54
A 22 '99 GM Carajaa/Licansa No. 045/Mix Mathad: Eval Injection/	54
A-55 — 88 OW COISICA/LICENSE NO. 945/WIX MICHOU, FUCI INJECTION/	51
A 24 '99 GM Corrigon / icones No. 044/Mix Method: Evel Injection/	54
A-54 68 OW COISICA/LACCIESE NO. 944/IVIX MICHOU. Fuch Injection/	51
A 25 CM Drototumo VEV/Mir Mathadi Eval Injection/ECUI EP	54 55
A-55—Ow Floidype VFV/Mix Method. Fuel injection/DCO. FD	55
A-50 — Prototype Operated by SOFIO	55
A-3/GW MIOU Prototype/Mix Method: Fuel Injection	33 EE
A-38 83 Ford Escort/Mix Method: Carburetion/ECU: NFB	33 50
A-39-83 Ford Escort/MIX Method: Carburetion	סכ
A-40—81 GM Citation/License No. 221/Mix Method: Carburetion/	50
EUU: FB	30
A-41—'81 GM Phoenix/License No. 616/Mix Method: Carburetion/	57
	50
A-42-81 Ford Escort/Mix Method: Carburetion/ECU: NFB	57
A-43—'81 VW Rabbit/Mix Method: Fuel Injection/ECU: FB	57
A-44—'81 Nissan 200SX/Mix Method: Fuel Injection/ECU: FB	57
A-45—778 Ford Pinto (3-Car Average)/Mix Method: Carburetion/ECU: FB	58
A-46—'83 Ford Escort/Mix Method: Carburetion/ECU: NFB	58
A-47—'83 Ford Escort/Mix Method: Carburetion/ECU: NFB	58
A-48—'87 Nissan Sentra/Mix Method: Fuel Injection	59
A-49—'86 Ford Crown Victoria/Mix Method: Fuel Injection/ECU: FB	59
A-50'86 Nissan Sentra/Mix Method: Fuel Injection/ECU: FB	59
A-51—'86 Toyota Carina/Mix Method: Fuel Injection/ECU: FB	60
A-52—'86 Chevrolet S-10/License No. ME-562/Mix Method: Fuel Injection/	
ECU: FB	61
A-53—'86 Chevrolet S-10/License No. ME-568/Mix Method: Fuel Injection/	
ECU: FB	61

Not for Resal

.

API PUBL*4262 90 🗰 0732290 0095274 0 🖿

Fuel Injection/ECU: ER	
	1
A-55—86 Ford Crown Victoria/License No. ME-574/Mix Method:	
Fuel Injection/ECU: FB6	1
A-56—'87 Buick Regal/License No. 9394/Mix Method: Fuel Injection/	
ECU: FB	1
A-57—'87 Buick Regal/License No. 9398/Mix Method: Fuel Injection/	
ECU: FB	2
A-58—'84 GM Citation/License No. E-753/Mix Method: Carburetion/	-
ECU: NFB 6	2
A-59—'84 GM Citation/License No. E-754/Mix Method: Carburetion/	-
FCU: NFB 6'	2
A-60'84 GM Citation/License No. E-755/Mix Method: Carburgtion/	2
ECU- NEP	n
A 61 '94 CM Citation / iconso No E 756/Mix Methods Carburation /	2
A-01 64 OWI Challon/License No. E-750/Whx Methou; Carbuletion/	`
EUU: NFD $(0, 1)$	Z
A-02— 84 GM Citation/License No. E-75//Mix Method: Carburetion/	~
ECU: NFB $(1, 1)$ $($	3
A-63—'88 GM Corsica/Mix Method: Fuel Injection/ECU: FB	3
A-64—'85 Ford Escort/License No. T020/Mix Method: Fuel Injection/	
ECU: NFB	3
A-65'85 Ford Escort/License No. T022/Mix Method: Fuel Injection/	
ECU: NFB	4
A-66—'87 Ford Crown Victoria/License No. T-500/Mix Method:	
Fuel Injection/ECU: FB 64	4
A-67—'87 Ford Crown Victoria/License No. T-520/Mix Method:	
Fuel Injection/ECU: FB6	5
Fuel Injection/ECU: FB 6	5
Fuel Injection/ECU: FB 65 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69	5 9
Fuel Injection/ECU: FB 65 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 65 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 65	5 9 9
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 64 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 64 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 64	5 9 9 9
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69	5 9 9 9 9
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Garburetion/ECU: NFB 69	5 9 9 9 9
Fuel Injection/ECU: FB63B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB69B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB69B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB69B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB69B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB69B-6—'83 Ford Escort/License No. 359/Mix Method: Carburetion/ECU: NFB69	5 9 9 9 9 9 9
Fuel Injection/ECU: FB 64 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Fuel Injection/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 FCU: FB 70	5 9 9 9 9 9 9
Fuel Injection/ECU: FB 64 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 64 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 64 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 64 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 64 B-5—'81 Ford Escort/License No. 920/Mix Method: Fuel Injection/ECU: NFB 64 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 64 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 64 B-7—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9
Fuel Injection/ECU: FB 64 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 64 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 64 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 64 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 64 B-5—'81 Ford Escort/License No. 989/Mix Method: Fuel Injection/ECU: FB 64 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 64 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 64 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 74 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 74	5 9 9 9 9 9 9 9 9
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8 '83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9 9 9 9 9 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 Ford Escort/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: NFB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-0 '295 Torute Commutation Participants 70	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: NFB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70	5 99 99 99 99 99 99 0 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 989/Mix Method: Carburetion/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9 9 9 9 9 9 0 0 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70	5 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0
Fuel Injection/ECU: FB 64 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 70	5 99 99 99 99 99 0 0 0 0
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carny/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 71 B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 71 BCU: FB 71	5 99999999 0 0 0 1
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 71	5 99 99 99 99 99 0 0 0 1
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 64 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 71 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 71	5 9999999 0 0 1 1 1
Fuel Injection/ECU: FB 6: B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 6: B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 6: B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 6: B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 6: B-5—'81 Ford Escort/License No. 989/Mix Method: Carburetion/ECU: NFB 6: B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 6: B-6—'83 Ford Escort/License No. 359/Mix Method: Carburetion/ECU: NFB 6: B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 7: B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 7: B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 7: B-9—'85 Toyota Carmy/License No. 444/Mix Method: Fuel Injection/ 7: B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 7: B-11—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 7: B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 7 B-12—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 7 B-13—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 7	5 999999 0 0 0 1 1
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Fuel Injection/ECU: NFB 69 B-6—'83 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Carburetion/ECU: NFB 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Camry/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 927/Mix Method: Fuel Injection/ 70 B-11—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 71 B-13—'87 For	5 999999 0 0 0 1 1 1
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 64 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 66 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 66 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 66 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 66 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 67 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 77 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 77 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 77 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 77 B-9—'85 Toyota Carma/License No. 444/Mix Method: Fuel Injection/ 77 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 77 B-10—'86 Toyota Carina/License No. 927/Mix Method: Fuel Injection/ 77 B-11—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 77 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 77 B-13—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 78 B-14—'87 Ford Crown	5 999999 0 0 0 1 1 1
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 920/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Carmy/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 927/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 928/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 71 B-13—'87 Ford Crown	5 999999 0 0 0 1 1 1 1 2
Fuel Injection/ECU: FB 63 B-1—'81 Ford Escort/License No. 276/Mix Method: Carburetion/ECU: NFB 69 B-2—'81 Ford Escort/License No. 882/Mix Method: Carburetion/ECU: NFB 69 B-3—'81 VW Rabbit/License No. 995/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 989/Mix Method: Fuel Injection/ECU: FB 69 B-4—'81 VW Rabbit/License No. 920/Mix Method: Fuel Injection/ECU: FB 69 B-5—'81 Ford Escort/License No. 920/Mix Method: Carburetion/ECU: NFB 69 B-6—'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ 69 B-7—'83 Ford Escort/License No. 365/Mix Method: Fuel Injection/ 70 B-7—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-8—'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ 70 B-9—'85 Toyota Carna/License No. 444/Mix Method: Fuel Injection/ 70 B-10—'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ 70 B-10—'87 Ford Crown Victoria/License No. 927/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 779/Mix Method: Fuel Injection/ 70 B-12—'87 Ford Crown Victoria/License No. 778/Mix Method: Fuel Injection/ 70 B-14—'87 Ford Crown Victoria/License No. 778/Mix Method: Fuel Injection/ 70 B-14—'87 Ford	5 999999 0 0 0 1 1 1 1 2

API PUBL*4262 90 🖿 0732290 0095275 2 📖

B-16—'83 Ford Escort/License No. 319/Mix Method: Carburetion/	
ECU: NFB	72
B-17—'83 Ford Escort/License No, 893/Mix Method: Carburetion/	
ECU: NFB	72
B-18—'83 Ford Escort/License No. 570/Mix Method: Carburetion/	
ECU: NFB	72
B-19'83 Ford Escort/License No. 778/Mix Method: Carburetion/	
ECU: NFB	73
B-20—'82 GM Citation/License No. 112/Mix Method: Fuel Injection/	
ECU: NFB	73
B-21—'87 Ford Crown Victoria/License No. 653/Mix Method: Fuel Injection/	
ECU: FB	73
B-22—'83 Ford Escort/License No. 484/Mix Method: Carburetion/	
ECU: NFB	73
B-23—'83 Ford Escort/License No. 485/Mix Method: Carburetion/	
ECU: NFB	73
B-24—'87 Ford Crown Victoria/License No. 610/Mix Method:	
Fuel Injection/ECU: FB	74
B-25—'88 GM Corsica/License No. AHU/Mix Method: Fuel Injection/	
ECU: FB	74
B-26—GM Prototype VFV/Mix Method: Fuel Injection/ECU: FB	74
B-27—Prototype Operated by SOHIO	74
B-28—GM M100 Prototype/Mix Method: Fuel Injection	74
B-29—'83 Ford Escort/Mix Method: Carburetion/ECU: NFB	75
B-30—'86 Toyota Carina/Mix Method: Fuel Injection/ECU: FB	75
B-31—'88 GM Corsica/Mix Method: Fuel Injection/ECU: FB	75

х

Not for Resale

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

5 ° 6 ° 6.

Methanol Vehicle Emissions

SECTION 1—EXECUTIVE SUMMARY

1

Not for Resale

This publication (a) identifies and presents empirical data on emissions from methanol vehicles and (b) compares and evaluates emissions trends among various types of methanol vehicles over time. These emissions data are necessary to assess the impact of methanol use on ozone levels.

Researchers have tested emissions from methanol vehicles since the early 1970s, but these data have not been fully and systematically compiled. This report provides a systematic, comprehensive compilation and analysis of these data, taken from every major study of methanol vehicles for at least the last 10 years. It includes emissions measurements for 69 vehicles and organizes the data into logical subgroups that permit analysis of important emissions hypotheses.

Many of the data collected are characterized by significant uncertainties. For example, different techniques were used to measure the same kind of emission. The data are accepted at face value, though there is some indication in the literature that measurement bias has been a problem for some test procedures. Also, the data were collected from vehicles that had received care beyond what vehicles in ordinary, everyday use would receive. For example, these vehicles were more reliably maintained and repaired. This often meant replacement of key engine and emission control components. For this reason, the emissions data reported in this publication probably reflect better performance from the methanol vehicles than would be expected in common, everyday use.

Some of the emissions data collected in this report were not accompanied by odometer readings. This was a key factor in the analysis, since a lack of odometer readings made understanding of the emissions data problematic. Thus, while all of the data collected are included in Appendixes A and B, only the data with odometer readings were analyzed. Tailpipe emissions data with odometer readings were available for 54 of the 69 vehicles. A subset of this data, covering 31 of the 54 vehicles, was also analyzed.

The subset of 31 vehicles included data that were more complete, uniform, and directly comparable. Vehicles were only included when organic emission species and nitrogen oxide (NO_x) emissions were measured, when vehicles were tested in their normal emission control configurations, when emissions were measured following catalyst stabilization, and when either M85 or M100 was used as the test fuel. By applying this more restrictive set of rules, we could learn more about the performance of subsets of vehicles classified by manufacturer, vintage, technology, and type of fuel used. We could also see relationships and trade-offs relating to the control of more than one kind of emission.

Despite the limitations of the data, our analysis supports several conclusions.

For M85 vehicles, those that operate on an 85-percent methanol/15-percent gasoline blend, there are sufficient recent data to characterize emissions. The data show some improvement in emissions performance for the secondgeneration M85 vehicles. This improvement offers encouragement that utilitarian M85 vehicles could be built that would satisfy most of the emissions criteria of the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). The data also indicate, however, that a number of emission problems and unanswered questions remain:

a. Even at low mileage, M85 vehicles almost always exceeded the 50,000-mile 1993 California tailpipe standard of 15 milligrams per mile for formaldehyde emissions. Average formaldehyde emissions were about three times higher than this standard. At various test mileages, the older, 1981–1985 models had measured formaldehyde emissions below the California standard level in only 6 percent of the tests. The newer, 1986–1988 models were only slightly better, meeting the standard level in about one of four tests.

b. M85 vehicles typically had nitrogen oxide emissions that were less than the 50,000-mile federal standard of 1.0 gram per mile, but they were only rarely able to meet the more stringent 50,000-mile California standard of 0.4 gram per mile, even at low mileage. Even the 1986–1988 models performed poorly, testing below the 0.4-gram-per-mile level just 10 percent of the time at various mileages.

c. There was substantial improvement in meeting the 50,000-mile federal tailpipe standard of 0.41 gram per mile for organic emissions. Although the 1981–1985 models met this level in only 40 percent of the tests, the 1986–1988 models did so 90 percent of the time. However, even these newer vehicles were able to meet the 50,000-mile 1993 California standard level of 0.25 gram per mile only 40 percent of the time. No methanol vehicle was able to meet the California standards for hydrocarbon and nitrogen oxide emissions simultaneously.

d. There was also substantial improvement in meeting the 50,000-mile federal standard for carbon monoxide of 3.4 grams per mile. The 1981–1985 models met the standard level about 40 percent of the time at various mileages. The 1986–1988 models met the standard level in more than 80 percent of the tests.

e. At the mileages tested, M85 vehicles were generally able to meet the 50,000-mile federal standard of 2 grams per test for total organic evaporative emissions.

For M100 vehicles, that is, methanol vehicles operating on pure methanol, the data are sparse and inadequate. Few **API PUBLICATION 4262**

M100 vehicles have been tested, and almost no data exist for M100 vehicles that performed acceptably or were driven more than 15,000 miles in fleet tests. What data exist do not show emissions benefits substantially in excess of those demonstrated on M85 vehicles. Thus, the benefits of a program substituting M100 for gasoline cars are entirely speculative. Further, the driveability and overall utility of dedicated M100 vehicles have yet to be demonstrated.

2

Very limited, recent data on the more advanced prototype M85 and M100 vehicles and catalysts were analyzed separately. They show very low organic emissions at low mileage. However, these data fail to answer questions about emissions control durability and continue to indicate difficulty in lowering organic and NO_x emissions simultaneously.

This report does not discuss a key question: whether future, practical methanol vehicles could reduce ozone-forming organic compounds more than future, practical gasoline vehicles. The question cannot be answered for M100 vehicles because of a lack of data from utilitarian prototypes. The data for M85 vehicles suggest that they could produce low levels of total organic emissions. However, today's most advanced gasoline vehicles also emit low levels of organic compounds—well below existing standards. Moreover, gasoline fuel reformulation will improve the emissions performance of 1990s gasoline vehicles. Thus, either future gasoline or future M85 vehicles could contribute substantially to pollution reduction.

The following sections present an analysis of methanol emissions data and measurement techniques. Section 2 discusses the methanol emissions data. Section 3 considers the issue of measurement of methanol vehicle emissions, Section 4 analyzes emission trends. Section 5 presents conclusions.

SECTION 2-METHANOL VEHICLE EMISSIONS DATA BASE

Methanol emissions data were collected from 28 studies conducted by federal and state government agencies and by the automobile and petroleum industries. Data from every major study for at least the last 10 years were included. Most of the studies were completed between 1987 and 1989. Two data bases were created from the data contained in the studies: one for exhaust emissions and one for evaporative emissions. No data were available for running losses.

Appendix C contains an annotated review of these studies and a bibliography of the literature on methanol vehicle emissions. Table 1 summarizes basic information about the studies. Appendix A presents the exhaust emissions data from the studies, and Appendix B presents the evaporative emissions data.

Methanol Emissions Studies

The studies reviewed involved the testing of many different types of vehicles. They employed many different test procedures and measurement methods. The lack of consistency partly reflects the varying objectives of the studies and partly the development of method and protocol. Many data are from the U.S. Department of Energy's (DOE's) methanol fleet demonstration program. The primary objective of this program was to evaluate methanol vehicles in terms of consumer acceptance, performance, and durability. Emissions were measured, but according to procedures established independently by the various national laboratories. In other cases—for example, the CARB test program—procedures and measurements were more uniform, and the emissions data are more comprehensive and comparable.

EXHAUST EMISSIONS FOCUS

Most studies have focused on exhaust emissions. There is much less information on evaporative losses and virtually no published data on refueling and running-loss emissions. This accounts for the much larger exhaust emissions data base.

FEDERAL TEST PROCEDURE CONDITIONS

Until recently, most researchers have measured emissions from vehicles operated over either the Federal Test Procedure (FTP) or the Highway Fuel Economy Test (HWFET) driving cycles. Few data are available on emissions collected under non-FTP temperature conditions or under urban driving conditions.

MEASUREMENT PROCEDURES

EPA and CARB have established procedures for measuring methanol vehicle emissions. However, the accuracy of methanol emissions measurement remains problematic. Measurement is discussed in Section 3.

TEST VEHICLES

Not for Resa

A variety of first-generation methanol vehicles have been tested for emissions. Most of these vehicles are conversions of existing gasoline-fueled engines and are carbureted, and some are not optimized to run on methanol. Furthermore, most incorporate emissions control equipment that does not represent state-of-the-art technology that will be used in future vehicles, particularly electronic engine management systems and fuel injection. The emissions data from these early vehicles, which generally show higher emissions than from later methanol vehicles, are of questionable use for estimating air quality impacts from future methanol vehicles.

More recent domestic prototype flexible-fuel vehicles (FFVs) have also been tested. Some of these automobiles have now been operated in normal service for more than 30,000 miles. Most are part of centrally managed fleets charMETHANOL VEHICLE EMISSIONS

Table 1—Summary of Emissions Studies

		No. of	Odomator		·	Exhaust Procee	lure	Evapor Proce	rative dure
Row 1 2 3 4 5 6 7 8 9 10 11 12 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ^b 35	Models	Vehicles	Range	Fuel Type	MeOH	нсно	THC	MeOH	THC
1	'81 Escort	3	50,111-115,590	M95, M90	GC	DNPH	GC	GC	GC
2	'83 Escort	10	503054,088	M90, M85	GC	DNPH	GC	GC	GC
3	'84 Escort	1	8580-8620	M100	GC	DNPH	GC	GC	GC
4	'81 Rabbit	2	5344-66,486	M85, M90, M95	GC	DNPH	GC	GC	GC
5	'82 Citation	ł	30,692-41,600	M85, M90	GC	DNPH	GC	GC	GC
6	'85 Camry	1	434-26,270	M85	GC	DNPH	GC	GC	GC
7	'86 Camry	1	22,438-22,474	M85	GC	DNPH	GC	GC	GC
8	'86 Carina	1	944-24,589	M85	GC	DNPH	GC	GC	GC
9	'87 Crown Victoria	7	177-26,682	M0, M25, M85, M90, M100	GC	DNPH	GC	GC	GC
10	'88 Corsica	3	3956-20,822	M0, M25, M50, M85, M100	GC	DNPH	GC	GC	GC
11	'87 Crown Victoria	2	2391-15.930	M85	GC	DNPH	GC	GC	GC
12	GM Prototype	3	NA	M0, M15, M50, M85, M90, M100	GC	DNPH	GC	GC	GC
13	'83 Escort	1	NA	M85	GC	DNPH	FID	ŇĂ	NA
14ª	'83 Escort	1	ŇA	M90	GC	DNPH	NA	NA	NA
15ª	'83 Escort	1	NA	M90, M100	NA	DNPH	NA	NA	NA
16	'81 Citation	1	28.597-28.669	M88	GC	DNPH	NA	NA	NA
17	'81 Phoenix	ī	2325	M88	GC	DNPH	NA	NA	NA
18	'81 Escort	ī	6006-6805	M100	GC-J	DNPH	NA	NA	NA
19	'81 Rabbit	1	1770-2360	M100	GC-I	DNPH	NA	NA	NA
20	'81 200 SX	1	14941641	M100	NA	DNPH	NA	NA	NA
21	'78 Pinto	3	1250-10.000	M100	NA	MBTH	NA	NA	NA
22	'83 Escort	Ĩ	55-850	M90, M100	GC-I	DNPH	NA	NA	NA
23	'83 Escort	1	180-13.299	M90, M100	NA	NA	NA	NA	NA
24	'87 Sentra	i	NA	M100	NA	NA	NA	NA	NA
25	'86 Crown Victoria	1	2500-3645	M85	NA	NA	NA	NA	NA
26	'86 Sentra	1	16.739-17.218	M85	FID	DNPH	FID	NA	NA
27	'86 Carina	1	NA	M85, M100	FID	DNPH	FID	NA	NÁ
28	'86 Carina	ī	1570-10.800	M100	FID	DNPH	FID	NA	NA
29	'86 S-10	2	288-8700	M85	FID	NA	FID	NA	NΔ
30	'86 Crown Victoria	2	793-32.800	M85	FID	NA	FID	NA	NΔ
31	'87 Regal	1	323-743	M85	FID	NA	FID	NA	NA
32	'84 Citation	5	NA	M0. M85	NA	NA	FID	NA	NΔ
33	'88 Corsica	ī	NA	M0, M25, M50, M85, M100	GC	DNPH	GC	60	60
34 ^b	'87 Crown Victoria	3	10,006-26,682	MO. M85	GC	DNPH	FID	NA	NA
35	'88 Corsica	Ī	10.184-20.822	M0.M85	GC	DNPH	GC	NA	NA
36	'87 Crown Victoria	2	NA ^c	M85, M100	FTIR	FTIR/DNPH	FID/FTIR	NA	NA NA
37	'85 Escort	2	NA	M0, M50, M85, M100	FTIR	FTIR/DNPH	FID/FTIR	NA	NA

Note: NA = not available; GC = gas chromatograph; DNPH = DNPH-impinger method followed by liquid chromatography; MBTH = MBTH-impinger method; FID = flame ionization detector with methanol subtraction. Sources are as follows: Row 1—California Air Resources Board (1986); Row 2—California Air Resources Board (1988); Row 3—California Air Resources Board ("Quarterly Summary," 12/88–2/89); Rows 4–11—California Air Resources Board ("Quarterly Summary," 6/88– 8/88); Row 12—Williams et al. (1990); Row 13—Stump and Braddock (1989); Row 14—Gabele et al. (1985); Row 15—Smuda (1984a); Rows 16 and 17—California Air Resources Board (1984); Rows 18 and 19—Smith (1985); Row 20—Smuda (1984b); Row 21—Edwards and Baisley (1981); Row 22—Smith (1984); Row 23—Mobil Research and Development Cor-

poration (1987); Row 24—Hellman (1989); Row 25—Piotrowski et al. (1987); Row 26—Blair (1988); Row 27—Piotrowski (1987) and Piotrowski and Murrell (1987); Row 28—Piotrowski (1989); Row 29—McGill, Hillis, West, and Hodgson (1989b); Row 30—McGill et al. (1989b); Row 31—McGill, Hillis, West, and Hodgson (1989a); Row 32—McGill et al. (1987); Row 33—Gabele (1990); Rows 34 and 35—Horn and Hoekman (1989); Rows 36 and 37—Nichols et al. (1988).

^aThe same '83 escort was tested in Gabele et al. (1985) and Smuda (1984a). ^bThe three Crown Victorias and the Corsica tested in Horn and Hoekman (1989) are also summarized in California Air Resources Board (1986; 1988; "Quarterly Summary," 6/88–8/88; and "Quarterly Summary," 12/88–2/89). "Tested with catalysts aged on the dynomometer.

acterized by levels of maintenance and care that exceed the attention given by the general public. Both domestic and foreign car manufacturers have tested some vehicles dedicated for use of either M85 or M100. These prototype vehicles have been operated in carefully maintained fleets and have accumulated up to 70,000 miles. However, of the vehicles dedicated to M100 fuel, none has accumulated more than 15,000 miles. CARB reports that some vehicles—despite high levels of maintenance—appeared to experience intermittent driveability problems caused by frequent fuel injector fouling and/or fuel filter plugging (California Air Resources Board, 1988; see Figure 1). However, design changes appear to have solved the problem of injector fouling. High levels of maintenance, which included modifications of the vehicle fuel systems in attempts to stabilize emissions performance,

3

API PUBLICATION 4262

as well as replacement of catalysts, raise questions about the emissions results and potential durability of emission control systems.

It should be noted that the same vehicle was sometimes tested in different studies. For example, vehicles tested in the CARB fleet program were often provided to other organizations cooperating with CARB. Also, the same vehicles were sometimes tested with different emission control configurations (for example, with and without the catalytic converter, with and without exhaust gas recirculation). Appendix A identifies the emission controls in place during the exhaust emissions tests.

Two Emissions Data Bases

From the studies, two emissions data bases were created. Approximately 1300 observations of carbon monoxide (CO), nitrogen oxides (NO_x), formaldehyde (HCHO), methanol (MeOH), total hydrocarbons (THC) and organic material hydrocarbon-equivalent emissions (OMHCE) were collected and tabulated to form an exhaust emissions data base (see Appendix A). The data spanned 69 vehicles across 14 model car lines. Other information was also tabulated when available. This included odometer readings, fuel metering system, emission control system configuration, fuel type, measurement procedures, and relevant information about the condition of the vehicle.

In addition, 86 observations of methanol and hydrocarbon evaporative emissions were entered into an evaporative emissions data base (see Appendix B). These measurements were taken on 30 vehicles representing 11 model car lines. As with the exhaust emissions data base, available information on fuel type, vehicle characteristics, and odometer reading was tabulated. No attempt was made to exclude data representing malperforming vehicles or vehicles subjected to extraordinary levels of maintenance. In the real world, the variability inherent in emissions data is not only a function of vehicleto-vehicle, test-to-test, and fuel-to-fuel differences; it is also highly dependent on the vehicle's state of maintenance. Thus, for example, some of the data in Appendix A reflect situations in which the emissions may have been affected by clogged fuel injectors, fouled fuel filters, and/or malperforming oxygen sensors in the test vehicle's emission control system. Also, many cars were tested immediately after maintenance or repairs were performed. Figure 1 shows formaldehyde emissions superimposed on maintenance events. Fuel injector replacement is not normal maintenance at low mileage.

Determining Emissions Trends

To track emissions trends, vehicle emissions data for a large number of vehicles of different vintage and technological refinement are desirable. Although we gathered a significant amount of data, most concerned exhaust emissions. Data on evaporative emissions are sparse.

Even the data for exhaust emissions were less than ideal. Data were collected using different measurement procedures. Many more data were recorded for some vehicles than others. And some of the data were recorded without odometer readings.

These limitations made interpretation of the data more difficult. In addition, emissions are influenced by many other variables. Emissions are particularly sensitive to vehicle vintage (emission control technology has improved over time), to age (emission control effectiveness deteriorates as mileage increases), and to fuel type.

Note: A = replaced fuel injectors; B = replaced second set of fuel injectors; C = replaced third set of fuel injectors: D = installed new ball-type fuel injectors and recalibrated computer for full stoichiometric operation.

Figure 1—Formaldehyde Emissions: Dedicated M85 Toyota Camry

4

METHANOL VEHICLE EMISSIONS

It can be difficult if not impossible to distinguish emissions trends without being able to hold some variables constant-either statistically or by screening the data. Screening the data involves a trade-off between the advantages of using all (or as many as possible) of the data and the benefits of clearly seeing emissions trends as a function of single variables. Screening required eliminating some (or sometimes a substantial amount) of the data, all of which are included in Appendix A.

To try to make sense of the data----to control for some of the confounding variability---we applied two screening procedures.

In the first level of screening, we developed frequency distributions. This involved partitioning averaged data (more than one emission measurement for a single vehicle at one mileage interval was averaged) by vintage (1981–1985 and 1986-1988 vehicles) and by fuel (M85 and M100), each as a function of mileage. As shown in Table 2, in the first screening process, observations on 15 of the 69 vehicles were discarded because of the absence of mileage readings.

Restricting analysis to data for which odometer readings were available was unavoidable. Too much is unknown when mileage goes unrecorded. For example, failure to record mileage often indicates that tests were performed to

gain engineering knowledge. Such emissions data may reflect unrealistic conditions of vehicle use or emission control configuration. Also, it is unlikely that data without odometer readings were taken from vehicles operated under on-theroad conditions. In the testing of one car (a 1986 Toyota Carina; see Appendix A), 32 test sequences were run without a recorded odometer reading. Test notations indicate that engineering tests were being performed on the vehicle, engine, and emission control systems.

Also, combining emissions data for which odometer readings do not exist with data for which odometer readings do exist raises problems. In the case cited above, the 32 test sequences were probably taken at low mileage. If these are treated as one averaged set of emissions measurements to avoid overrepresentation of low mileage measurements, the number of observations is reduced substantially, though the loss of truly independent data is probably minimal.

In the second level of screening, we applied a more re-· strictive set of rules to control more precisely for differences in performance among vehicle models. This enabled us to show emissions trends as a function of mileage, fuel, and vintage, one at a time.

Under the second screening process, the data had to satisfy four criteria:

Table 2—Distribution of	Vehicles	in the Exhaust	Emissions	Data Base
-------------------------	----------	----------------	-----------	-----------

	•	Obs		Observa	Observations		Pollutant Measured With M85 or M100			
Model	Technology/Test Fuels	No. of Vehicles	Odometer	Threshold ^a	M85 or M100	CO/NO _x	нсно	MeOH or THC	омнсе	In Second Analysis
'87 Crown Victoria '88 Corsica	FI, FFV, M0M100 FI, FFV/DED, M0M88	9 5	8 ⁶ 4	9 3	9 4	9 5	9 4	9 2	8 3	8 2
⁸⁵ Camry ⁸⁶ Carina ⁸⁶ Camry ⁸⁶ Sentra ⁸⁷ Sentra	FI, DED, M85 FI, DED, M85–M100 FI, DED, M85 FI, DED, M85 FI, DED, M85 FI, DED, M100	1 2 1 1 1	1 2 1 1 0	l 2 1 1 0	1 2 1 1	1 2 1 1 1	1 2 1 1	 2 	1 2 1 1 0	1 2 1 1 0
 '81 200SX '81 Rabbit '81 Phoenix '81 Citation '82 Citation '84 Citation '78 Pinto 	FI, DED, M100 FI, DED, M85–M100 CARB, DED, M88 CARB, DED, M88 FI, DED, M85–M90 CARB, DED, M0–M88 CARB, DED, M100	1 4 1 1 5 3	1 4 1 1 1 0 3	0 3 0 1 1 0 3	1 3 0 1 1 0 3	1 4 1 1 5 3	1 4 1 1 0 0 3	0 4 1 1 5 0	0 2 0 0 0 0 0 0	0 2 0 0 0 0 1
'86 Crown Victoria '87 Regal '86 S-10 GM Prototype	FI, DED, M85 FI, DED, M85 FI, DED, M85 FI, FFV, M0–100	5 2 2 3	5 2 2 0	5 0 2 0	5 2 2 2	5 2 2 3	3 0 0 3	5 2 2 3	4 2 2 3	3 0 0 0
'81 Escort '83 Escort '83 Escort '84 Escort '85 Escort	CARB, DED, M85–100 FI, DED, M85–M90 CARB, DED, M85–M100 FI, DED, M100 FI, DED, M0–M100	4 3 11 1 2	4 3 9 1 0 ^b	4 3 8 1 2	2 3 9 1 0	4 3 11 1 2	3 3 10 1 2	4 3 11 1 2	0 3 2 0 2	1 3 5 1 0
Totals		69	54	50	54	69	54	62	36	31

Note: FI = fuel injected; CARB = carbureted; FFV = flexible-fuel vehicle; DED = dedicated-fuel vehicle.

*Requires at least one measurement of emissions above 2500 miles.

^bOne Crown Victoria and two Escorts reported catalysts aged on a dynamometer (that is, the mileage listed is for the emissions system, not for the vehicle operated on the road).

opyright American Petroleum Institute ovided by IHS under license with API

roduction or networking permitte

Not for Re

API PUBL*4262 90 🗰 0732290 0095281 8 📟

API PUBLICATION 4262

a. At a minimum, CO, NO_x , and HCHO were measured for a vehicle more than once. This ensured that the data were not "tuned" to minimize one emission at the expense of another. It also provided a complete and uniform data base. As a result, different emissions for the same vehicle could be compared.

b. The vehicles were tested in their normal emission control configurations. This eliminated measurements taken with emission control equipment disconnected. Such measurements often yielded data outliers, which did not reflect onthe-road performance.

c. To allow for catalyst stabilization, at least one set of emissions data was recorded with mileage greater than 2500.

d. Either M85 or M100 was used as the test fuel. M25 and M50 are not relevant alternatives to gasoline, and fuels like M90 and M95 are not quite the same as M85 and M100. Thus, tests of M90 and M95 cannot be aggregated with tests of M85 and M100.

These rules provided a basis for the graphic depiction of emissions trends as a function of vintage, fuel, and mileage. In addition, the second screening process encouraged examining the emissions performance of individual vehicles, many of which—as it turned out—were equipped with recent-technology engines and emission control systems. The performance of such vehicles, in particular, may help indicate the future emissions potential of methanol vehicles. As shown below, screens of the type proposed above do not materially affect the distribution of emissions and do not bias the conclusions that can be derived from the more restricted data subset.

Following the criteria above, complete exhaust emissions data were available for 31 vehicles (see Table 2). Fifteen of the 69 vehicles in the exhaust emissions data base did not have odometer information. Four more sets of emissions

For a number of reasons, measuring emissions from methanol vehicles is different and more challenging than measuring emissions from gasoline vehicles:

a. The chemical composition of methanol vehicle exhaust organics is fundamentally different from that of exhaust organics in gasoline vehicle emissions. Methanol vehicle exhaust, unlike gasoline vehicle exhaust, contains significant amounts of oxygenated compounds, primarily methanol and formaldehyde. Because EPA believes that photochemical processes are carbon dependent, it has chosen to compare methanol and gasoline vehicle emissions by calculating a "hydrocarbon equivalent" for methanol organic emissions, in which the mass of oxygen is excluded for purposes of meeting the emission standard (*Federal Register*, 1989). Also, when flame ionization detection (FID)—the traditional data were discarded because they included no measurement above 2500 miles. Moreover, although all 69 vehicles were tested for CO and NO_x , only 62 were tested for methanol or total hydrocarbons, and only 54 were tested for formaldehyde. (As discussed in Section 3, the measurement of total hydrocarbons was confounded by measurement problems.) Finally, only 54 of 69 vehicles were tested on either M85 or M100. Simultaneous application of the four criteria accounts for substantial attrition of usable observations.

Only one complete data set existed for the latest generation of vehicles that were operated on pure methanol (M100), and this was not a vehicle that had been used in ordinary service.

The odometer information collected presented some special challenges in tabulating the data for graphic presentation. Logistical difficulties associated with vehicle availability, procurement, operation, and maintenance rarely allow emissions testing to be performed at fixed mileage intervals. To introduce a degree of clarity in the data presented in the figures accompanying the text and to eliminate overrepresentation of measurements at low mileage, arithmetic averages were calculated for all emissions tests on a single vehicle within a fixed mileage interval. For example, all emissions tests recorded on a given vehicle with less than 2500 accumulated miles were averaged, and the result was plotted at the zero-mile level. All tests between 2500 miles and 7500 miles were averaged and plotted at the midpoint of the range, the 5000-mile interval. This procedure was followed for the remaining data that fell within each successive 5000-mile increment. Without this averaging, graphs of emissions trends would look like Figure 1, in contrast with the subsequent figures.

Unadjusted data not subject to this simplifying step are presented in Appendixes A and B.

SECTION 3-MEASURING METHANOL VEHICLE EMISSIONS

method of measurement—is used, data are often adjusted to offset the insensitivity of the technique to methanol and formaldehyde. Some laboratories have used gas chromatographic and high-pressure liquid chromatographic techniques to measure methanol and formaldehyde more accurately.

b. Methanol emission test samples contain a high percentage of water vapor. If emission vapors condense, not all the emissions can be measured.

c. Methanol emission samples are more unstable, especially when sample lines are heated to reduce condensation, and degraded samples give false measurements.

d. Taking a single sample for measuring formaldehyde over the three-phase FTP provides a result that is different from what would be obtained by taking a sample during each phase of the FTP.

Copyright American Petroleum Institute Provided by IHS under license with AP METHANOL VEHICLE EMISSIONS

Organic Material Hydrocarbon– Equivalent (OMHCE) Emissions

To adjust for the contribution that oxygen makes to the mass emission rates of formaldehyde and methanol, EPA has developed an organic carbon exhaust standard for methanol vehicles, computed as follows (all emissions measured in grams per mile):

OMHCE = HC + (13.876/32.042)(MeOH) + (13.876/30.026)(HCHO)

The denominators of the coefficients are the molecular weights for methanol and formaldehyde, respectively. The numerators of the coefficients represent the molecular weight of the reference hydrocarbon fuel (carbon:hydrogen ratio of 1:1.85). The equation removes the contribution of oxygen and relates total organic emissions on a carbon basis. This allows total organic emissions from methanol-fueled vehicles to be compared with those from conventionally fueled cars on a carbon-equivalent basis.

Flame Ionization Detection

Until recently, there have been no standardized procedures for testing and evaluating emissions from methanol-fueled vehicles. Consequently, researchers in government, academia, and industry have adopted a variety of techniques for collecting, measuring, and reporting methanol vehicle emissions.

For years, FID was used to measure hydrocarbon emissions from both methanol and gasoline vehicles. However, FID has low sensitivity to oxygenated compounds in methanol emissions, and researchers have had to compensate for this insensitivity. Compensation is complicated because the correct adjustment depends on the levels of both methanol and formaldehyde in the sample.

Recently, a better test standard has been used. Methanol and formaldehyde are separated from vehicle emissions and measured independently by chromatographic and spectrophotometric analysis. Although this procedure is a major improvement, measurement error and bias have not been eliminated.

Measurement Bias

A paper by Horn and Hoekman (1989) concludes that use of the current EPA- and CARB-specified test procedures for methanol vehicles likely results in an underestimation of organic emissions for fuels containing methanol. This is because methanol exhaust emissions contain a high percentage of water vapor. Emission samples tend to condense and cannot be measured. This is not generally a factor in tests of conventionally fueled vehicles, where water vapor content is much lower.

It is difficult to assess the degree to which measurement bias is controlled, even for recent studies using chromatographic methods. Horn and Hoekman also compare the effects of obtaining samples in bags with those of acquiring samples continuously. The results for methanol indicate an increase of about 25 percent for continuous measurements, compared with bagged samples above 300 parts per million (0.03 percent). This result may be due to the condensation of samples on the walls of the sample bags or to the migration of methanol to the sampling bags' walls. Methanol condensation on the trap inlets of impingers is termed "significant," although no quantitative estimate of possible sample loss is given.

Carryover effects are reduced by the heating of the sample system. For formaldehyde, this error is reduced from 26 percent to less than 4 percent at a test temperature of 45°F and from 5 percent to less than 1 percent at a test temperature of 75°F. Stability of methanol samples appears to be sample dependent. Results ranged from excellent stability to complete loss of the sample over a period of 40 days. Degradation may be most severe at low methanol concentrations.

According to CARB, measurements of aldehyde emissions from reference methanol vehicles may vary by as much as 20 percent, depending on the number of samples collected during the FTP. Before June 1988, CARB measurements were based on single samples being taken during the FTP. However, taking samples during each phase of the FTP allows one to weight aldehyde emissions data in the same way the other exhaust emissions are weighted. In June 1988, CARB changed the formaldehyde procedure to require the taking of three samples, which matches the procedure used by EPA. CARB estimates that the current procedure gives results that are about 20 percent lower than those obtained using the former procedure.

SECTION 4-METHANOL EMISSIONS TRENDS

This section provides a more detailed analysis of methanol emissions and is divided into five parts. The first part looks at all of the exhaust data with odometer readings. The second part describes the vehicle technology classes represented within the restricted data subsets. The third part then analyzes the restricted data subsets (by vehicle classes, fuel, and so forth). The fourth part looks at subsidiary engineering data, including recent research involving prototype vehicles, advanced catalysts, and emissions measurements taken under non-FTP conditions. The fifth part looks at the evaporative emissions data.

Analysis of All Emissions Data With Odometer Readings

All of the emissions data associated with odometer readings were analyzed. The analysis included data for 54 of the 69 vehicles tested in the studies. As described above, for purposes of analysis and graphic display, the data were converted to average emissions levels per vehicle for each major mileage category (0, 5000, 10,000, and so on). Thus, if a vehicle had more than one emissions level observation within an interval of 5000 miles, those levels were averaged.

The data unaccompanied by odometer readings were not analyzed because, as discussed, these observations could not be compared in any meaningful way with measurements associated with odometer readings. Further, the significance of the observations lacking odometer readings is highly uncertain. Vehicles without odometer readings were often part of an engineering test program and were not operated under onthe-road conditions.

The data analyzed were considered first as a function of vehicle vintage—1981–1985 or 1986–1988 model cars and second as a function of fuel type—M85 or M100. Four frequency distribution tables were created for each emission type—formaldehyde (HCHO), nitrogen oxides (NO_x), carbon monoxide (CO), and organics (OMHCE)—showing the impact of the two vehicle vintages and the two fuel categories on emissions levels over 5000-mile intervals. (These tables are not included.) The tabular data are summarized in Figures 2–9, which show the relative frequency of various emission levels. Because mileage varies in the data presented in these bar graphs, it is not always clear whether observed differences by vintage or fuel are partly due to the association of higher mileage with higher emissions. Only a few of

Figure 3—Formaldehyde Emissions: M85 vs. M100

the data were recorded at high mileages. To examine the overall impact of mileage, the emissions performance for each of the four emissions components of all the vehicles (without respect to vintage or fuel) was averaged as a function of mileage. This analysis is presented in Table 3.

Vehicle vintage is important because newer vehicles tend to have emission control systems that use more advanced technology. These vehicles should therefore tend to have lower emissions. However, most of the data for the newer vehicles are for low mileage, so it is difficult to separate the effects of technology and mileage, as discussed below. Fuel type is also important because different fuels have different emission characteristics. Emission levels on M85 and M100 fuels were analyzed because proposals to substitute methanol for gasoline vehicles focus on these fuels.

Analyzing the data according to these two basic variables and with respect to mileage provided basic information about methanol emissions, but it also raised questions about interpretation of the results. One problem arose from the correlation of vehicle vintage and mileage. Both affect emissions. As shown by the mileage distribution in Figure 10, the data are concentrated at low mileages. In addition, the emissions measurements for newer vehicles are concentrated at lower mileages, whereas the opposite is true for older vehicles. The tests at mileages greater than 40,000 miles were all performed on 1981-1985 vehicles. When we compare emissions as a function of vintage, we are really observing vintage effects and high-mileage/high-emissions effects together. Another problem arose in part from comparisons and implicit aggregation across dissimilar models of vehicles. The analysis of the first-level screen, which used data with odometer readings for each emissions type, follows.

METHANOL VEHICLE EMISSIONS

Figure 5—NO_x Emissions: M85 vs. M100

Figure 6—OMHCE Emissions: 1981–1985 vs. 1986–1988 Models

Figure 7—OMHCE Emissions: M85 vs. M100

than 24 percent of the time (see Figure 2). Older cars were able to meet this emissions level less than 6 percent of the time, exceeding 60 milligrams per mile more than 40 percent of the time (see Figure 2). As noted above, some of this effect may be caused by the concentration of higher mileage (thus, higher emitting) vehicles in the older car class. At low mileages, formaldehyde emissions from M100 vehicles were lower than the standard more often than formaldehyde emissions from M85 vehicles, but M100 vehicles still only met the standard about 17 percent of the time. The number of instances in which the California standard was exceeded was substantial for all categories, with many exceedances at levels four times the standard or higher.

FORMALDEHYDE

The average formaldehyde emissions level for all vehicles through the 5000-mile interval was nearly triple the new 50,000-mile California formaldehyde standard of 15 milligrams per mile, and the average level increased to three to four times the standard at higher mileages (see Table 3).¹ In general, both older and newer cars operating on either fuel had difficulty meeting the California standard (see Figures 2 and 3).

Newer cars registered formaldehyde levels that met the new 50,000-mile standard of 15 milligrams per mile less

Not for Resale

9

Some of these data were gathered using the old formaldehyde procedure, which CARB believes gives results that could be overstated by 20 percent.

NITROGEN OXIDES

On average, at all mileage intervals, the test cars met the 50,000-mile federal NO_x standard of 1.0 gram per mile but not the California standard of 0.40 gram per mile (see Table 3). Older cars met the California NO_x standard level only about 18 percent of the time (see Figure 4). The newer cars showed about the same NO_x performance as the older vehicles, with emissions below the 0.40-gram-per-mile level only 10 percent of the time (see Figure 4). However, not all of the vehicles (new or old) were designed to meet a standard of 0.40 gram per mile.

As shown in Figure 5, M100 vehicles performed no better than did M85 vehicles in meeting the tighter California NO_x standard. In fact, the NO_x emissions performance of cars operating on M100 was essentially identical to that of cars operating on M85.

ORGANICS (OMHCE)

For all cars, the average level of organic emissions was less than the 50,000-mile federal standard of 0.41 gram per mile only through 15,000 miles and then rose slightly above it at the 20,000- and 25,000-mile intervals (see Table 3). A significant increase to more than double the standard level at 30,000 miles and above can be accounted for by two outlier observations that appreciably affected the averages. (Without these outlier measurements, average OMHCE emissions at 30,000 or more miles would be similar to the averages at lower mileages.)

The newer cars, tested only to about 25,000 miles, met the 50,000-mile federal OMHCE standard about 90 percent of the time (see Figure 6). About 40 percent of the time they met the tighter California standard level of 0.25 gram per

mile, which takes effect in 1993. Almost 60 percent of the time the older cars did not meet the 50,000-mile federal standard (see Figure 6). Again, this result may be partly attributable to the higher mileages accumulated by older, compared with newer, vehicles.

The performance of cars operating on M85 and M100 was similar (see Figure 7). However, M85 vehicles had organic emissions less than the 50,000-mile California standard level 33 percent of the time, but M100 vehicles (which included more older than newer vehicles tested on the fuel) had lower emissions only 23 percent of the time.

CARBON MONOXIDE

The average CO level for all cars was below the 50,000mile federal standard of 3.4 grams per mile through the 25,000-mile interval and then jumped more than 2.0 grams per mile above it at 30,000 miles and above (see Table 3). Newer cars met the 50,000-mile federal standard level 87 percent of the time—twice as frequently as did the older cars (see Figure 8). A greater proportion of lower mileage readings in new cars probably accounts for part of this difference. There was almost no difference in the performance of M100 and M85 vehicles (see Figure 9). Both met the federal standard about two-thirds of the time.

Classes of Vehicles Providing Data for Analysis

The 31 vehicles whose emissions data satisfied all of the data criteria can be grouped in several general classes. The idea was to group models using similar technology and to separate models using different technologies or different fuels. This reduces the scatter of emissions as a function of mileage and clarifies differences in performance for different

Figure 9—CO Emissions: M85 vs. M100

METHANOL VEHICLE EMISSIONS

		Emissions (g	rams per mile)	
Compound	05000 Miles	10,00015,000 Miles	20,00025,000 Miles	≥30,000 Miles
CO	3.05	3.17	3.41	5.92
NOx	0.63	0.68	0.74	0.77
OMHCE	0.35	0.36	0.43	1.04
HCHO	0.042	0.045	0.057	0.062

Table 3—Mileage Dependence of Emissions

^aStrongly influenced by two outliers.

kinds of methanol vehicles. These vehicle classes are described below.

DEDICATED M85 VEHICLES (OLDER U.S. AUTO MANUFACTURER TECHNOLOGY)

The dedicated M85 vehicles that used older U.S. auto manufacturer technology included eight model-year (MY) 1983 Ford Escorts, all designed to meet California exhaust emissions certification passenger car standards of 0.41 gram per mile HC, 7.0 grams per mile CO, and 0.4 gram per mile NO_x at 50,000 miles. Three MY 1981 Escorts were not included because they were operated on M90 or M95 fuels.

The eight MY 1983 1.6-liter Escorts included three that were equipped with multipoint electronic fuel injection, had increased compression ratios, and used a three-way closedloop catalyst system with exhaust gas recirculation (EGR) and air injection. The five carbureted MY 1983 Escorts also used a three-way catalyst system, EGR, and air injection but no feedback.² The MY 1983 Escorts had been operated pri-

²The results of emissions tests were confounded by the replacement of catalysts on some of the carbureted and fuel-injected Escorts. marily on M85, accumulating up to about 45,000 miles in California state government fleet service.

DEDICATED M85 VEHICLES (OLDER FOREIGN AUTO MANUFACTURER TECHNOLOGY)

The dedicated M85 vehicles that used older foreign auto manufacturer technology included two MY 1981 1.6-liter VW Rabbits designed to meet California certification standards of 0.41 gram per mile HC, 7.0 grams per mile CO, and 0.4 gram per mile NO_x . The Rabbits used multipoint fuel injection with high compression ratios, three-way catalysts, and closed-loop fuel control. They had been operated on fuels ranging from M95 to M85 in California state government fleet service, with one vehicle accumulating 70,000 miles.

DEDICATED M85 VEHICLES (RECENT U.S. AUTO MANUFACTURER TECHNOLOGY)

The dedicated M85 vehicles that used recent U.S. auto manufacturer technology included three MY 1986 Ford Crown Victorias and one MY 1988 GM Corsica. The three Crown Victorias were gasoline-fueled vehicles converted for

Figure 10—Distribution of Maximum Mileage Accumulated

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

12

API PUBLICATION 4262

operation on M85. They were equipped with 5.0-liter feedback-controlled sequentially fuel-injected V-8 engines with modified compression ratios. The MY 1988 GM Corsica was equipped with a 2.8-liter gasoline engine modified for operation on M85 only (by increasing the compression ratio, reprogramming for lean operation, and modifying the camshaft). These four vehicles had accumulated 5000– 30,000 miles of service.

DEDICATED M85 VEHICLES (RECENT FOREIGN AUTO MANUFACTURER TECHNOLOGY)

The dedicated M85 vehicles that used recent foreign auto manufacturer technology included three Toyotas for which sufficient odometer information was available: a MY 1985 Camry, a MY 1986 Camry, a MY 1986 Carina, and one MY 1986 Nissan Sentra. The two Camrys were both equipped with 2.0-liter engines and employed EGR, lean air-fuel ratio control (under some operating conditions), multipoint electronic fuel injection, high compression ratios, and three-way catalysts with closed-loop fuel control systems. Mileage accumulation on the Camrys ranged from 22,000 to 44,000 miles.

The MY 1986 Carina used a 2.0-liter engine, close-coupled catalyst, sequential electronic fuel injection, and high compression ratio and was designed for full-time lean operation to improve fuel economy. This vehicle had accumulated 26,000 miles in California state government fleet service.

DEDICATED M100 VEHICLES

The dedicated M100 vehicles included three older Ford vehicles—a MY 1981 Escort, a MY 1984 Escort, and a MY 1978 Pinto—and one second generation vehicle, a MY 1986 Toyota Carina. The exhaust emissions data base tabulated in Appendix A contains information on 11 non-flexible-fueled vehicles tested on M100. The data available on these vehicles are summarized in Table 4. As shown in the table, no emissions data are available on dedicated M100 vehicles at high mileage (that is, above 13,000 miles). In fact, only one dedicated M100 vehicle—the 1986 Toyota Carina—met the criteria for analysis by providing a complete spectrum of emissions (CO, NO_x, formaldehyde, methanol, total organics) data at several mileage increments up to 10,000 miles. Also, some of the tested vehicles ran very poorly. To date, there are no utilitarian vehicles in use dedicated for operation on M100.

FLEXIBLE-FUEL VEHICLES

Emissions data were analyzed for eight FFVs-MY 1987 Ford Crown Victorias-and one variable-fuel vehicle (VFV)-a MY 1988 GM Corsica. Seven of the Crown Victorias were being operated in fleet service for state and local government agencies in California. The remaining one was operated by Ford Motor Company. All of the Crown Victorias were equipped with 5.0-liter V-8 engines with closedloop controlled sequential port fuel injection. Emission controls included four three-way catalysts, air injection, and EGR. The seven California-based Crown Victorias were designed to meet California's emission standards of 0.41 gram per mile HC and 7.0 grams per mile CO and a NO_x emission level of 0.7 gram per mile. These vehicles had been operated on gasoline, methanol, ethanol, and combinations of these fuels. (Emission tests on ethanol blends are neither reported nor analyzed in this paper.) Most of the testing on these vehicles has focused on M85.

The variable-fuel Corsica was equipped with a 2.8-liter V-6 engine with sequential fuel injection, a three-way catalyst system, and EGR. It was operated by CARB in fleet service and was designed to meet California's emission standards of 0.41 gram per mile HC, 7.0 grams per mile CO, and 0.4 gram per mile NO_x using any mixture of gasoline and methanol.

Model		Emissions Data Recorded for					
	Range	ćo	NOx	НСНО	MeOH	OMHCE	
'84 Ford Escort ^a	8500-8600	Y	Y	Y	Y	Y	
GM Prototype	NA	Y	Y	Y	N	N	
'83 Ford Escort ^b	NA	Y	Y	Y	Y	Y	
'81 Ford Escort ^b	60007000	Y	Y	Y	Y	N	
'81 VW Rabbit ^a	1700-2400	Y	Y	Y	Y	N	
'81 Nissan 200 SXª	1500-1600	Y	Y	Ν	N	N	
'78 Ford Pinto	1250-10,000	Y	Y	Y	N	N	
'83 Ford Escort ^b	700-1000	Y	Y	· Y	N	Ν	
'80 Ford Escort ^b	400-13,000	Y	Y	N	N	Ν	
'87 Nissan Sentra ^a	NA	Y	Y	Y	Y	N	
'86 Tovota Carinaª	1500-10.000	Y	Y	Y	Y	Y	

Table 4—Dedicated M100 Vehicles

^aFuel injected. ^bCarbureted.

orking permitte

API PUBL*4262 90 🎟 0732290 0095288 0 🛾

METHANOL VEHICLE EMISSIONS

Emissions Trends From Restricted Data

More detailed analysis of the narrower subset of complete data (developed as a result of the second-level screening) provides insight into the performance of the specific methanol-fueled vehicles described above.

Before performing this analysis, however, we checked the validity of narrower subsets of the data in general by comparing distributionally the larger data set (all observations with mileage readings) with a second restricted subset of data (emission results for M85 and M100 fuels only). The second restricted subset of the data is close but not identical to the data base resulting from screening with the four criteria described above. The comparison of the large and small data bases is shown in Figures 11–14. The similar frequency distributions shown in these figures suggest that the more restrictive screening process did not introduce biases into our analysis.

Our analysis of the emissions from the 31 vehicles selected by the second-level screening is as follows.

FORMALDEHYDE EMISSIONS (SEE FIGURES 15-22)

Current-generation FFVs and dedicated M85 and M100 vehicles generally exceeded the 50,000-mile California tailpipe formaldehyde emissions standard level of 15 milligrams per mile (there is no federal standard), as shown in Figures 18–22. The exceptions were one dedicated M100 vehicle—a 1986 Toyota Carina shown in Figure 20^3 —and

³The reader is advised to look at the averages (denoted by solid lines) shown in the figures to gain an overall impression of emissions. At times the data are sparse, so the average tracks the data for only one vehicle as mileage accumulates. Obviously, such an average may not reflect a general trend. Figures 20, 28, and 36 each contain two lines, one for the average of the older Ford vehicles and one for the second-generation 1986 Toyota Carina.

Not for Resale

Copyright American Petroleum Institute

opyfignt American Petroleum manace rovided by IHS under license with API lo reproduction or networking permitted without license from IHS

Figure 12—NO_x Emissions: Full vs. Subset Data

one dedicated M85 vehicle—a different 1986 Toyota Carina shown in Figure 19. The dedicated M100 Toyota, an experimental vehicle, consistently tested below the 50,000-mile California standard of 15 milligrams per mile. However, this vehicle accumulated only 10,000 miles and did not meet the NO_x standard of 0.4 gram per mile. In some tests, it exceeded an NO_x level of 1.0 gram per mile. The dedicated M85 Toyota also tested below the California formaldehyde standard up to 10,000 miles but then exceeded it at 20,000 and 25,000 miles. Like the M100 Toyota, this was a leanburn vehicle and did not meet the California NO_x limits. Reducing catalysts do not function when the engine operates at a lean air–fuel ratio.

Figure 13—OMHCE Emissions: Full vs. Subset Data

13

API PUBLICATION 4262

Figure 14—CO Emissions: Full vs. Subset Data

The newer vehicles (see Figures 18–20) had considerably improved formaldehyde emissions performance, compared with the older carbureted and fuel-injected Ford Escorts (see Figures 15 and 16), including two dedicated M100 vehicles (see Figure 20), and the older fuel-injected VW Rabbits (see Figure 17). Whereas the older vehicles frequently emitted five and six times what the California standard permits, the newer vehicles emitted no more than three times that amount. Note, however, that formaldehyde emissions were tested in the older cars at mileages that were generally much higher. The superiority of the newer vehicles supports the same earlier finding based on analysis of all of the data for which odometer readings were available.

NITROGEN OXIDE EMISSIONS (SEE FIGURES 23–30)

Most vehicles tested below the 50,000-mile federal NO_x standard of 1.0 gram per mile most of the time but did not meet the new 50,000-mile California standard of 0.4 gram per mile, which will be fully implemented in 1994. The more stringent standard was met infrequently by a few cars. These included carbureted and fuel-injected Ford Escorts (primarily at low mileage and with new catalytic converters), two dedicated M85 Crown Victorias, and a flexible-fuel Chevrolet Corsica that was designed to meet the standard of 0.4 gram per mile (see Figures 24, 26, and 30).

In contrast with formaldehyde emissions performance, newer cars did not perform better than older cars with respect to NO_x control. This finding is consistent with the conclusions in the earlier analysis of the larger group of vehicles. Importantly, a few cars had trouble consistently meeting even the less stringent federal NO_x standard. These included recent-technology dedicated M85 and M100 Toyotas, particularly those with lean air-fuel ratios (see Figures 27 and 28). The two 1986 Toyota Carinas that were almost alone in meeting the California formaldehyde standard (see Figures 19 and 20) were among the vehicles with unacceptable NO_x performance. This is because at lean air-fuel ratios, a reduction catalyst is not effective in controlling NO_x emissions. These data suggest that meeting tighter NO_x emissions may involve sacrificing some of the organic emissions performance described below.

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 484 at 19,600 miles and on Escort 485 at 18,000 miles. The data in the figure are from the California Air Resources Board (1986; 1988; "Quarterly Summary," 12/88–2/89).

API PUBL*4262 90 🛲 0732290 0095290 9 🛲

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 359 at 27,000 miles, on Escort 365 at 27,600 miles, and on Escort 366 at 20,100 miles. (See Appendixes A and B for additional maintenance notations.) The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalyst was changed on Rabbit 995 at 68,000 miles. The data in the figure are from the California Air Resources Board (1988, 1989).

Figure 17—Formaldehyde Emissions: Two 1981 Fuel-Injected Volkswagen Rabbits (M85)

Not for R

CARBON MONOXIDE EMISSIONS (SEE FIGURES 31–38)

The analysis of the CO data presented graphically essentially parallels the earlier analysis of the distributional data. Average CO emission levels from the newer dedicated M85 and M100 vehicles and FFVs generally fell well below the 50,000-mile federal standard of 3.4 grams per mile (see Figures 34–38). This was a substantial improvement over the performance of the older vehicles, which often exceeded the standard (see Figures 31–33). However, some of the outliers in Figures 31–33 can be explained by equipment malfunction or maladjustment. Among the newer vehicles, there was little difference in the performance of M100 dedicated, M85 dedicated, and flexible-fuel vehicles (see Figures 34–38).

ORGANIC EMISSIONS (SEE FIGURES 39-45)

In general, the data for OMHCE emissions are more sparse, with fewer vehicles and fewer data points for a given vehicle. The newer vehicles performed well, with emissions at most mileages less than the 50,000-mile federal hydrocar-

(text continued on page 30)

opyright American Petroleum Institute rovided by IHS under license with API o reproduction or networking permitted wi

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88-2/89) and Piotrowski et al. (1987).

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from Blair (1988) and the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Figure 19—Formaldehyde Emissions: Four Dedicated Toyotas (M85)

API PUBL*4262 90 🗰 0732290 0095292 2 🖿

METHANOL VEHICLE EMISSIONS

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1986), Edwards and Baisley (1981), Piotrowski (1987), Piotrowski et al. (1987), Piotrowski and Murrell (1987), and Smith (1985).

Figure 20—Formaldehyde Emissions: Four Dedicated Vehicles (M100)

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 6/88–8/88; "Quarterly Summary," 12/88–2/89) and Horn and Hoekman (1989).

Figure 21—Formaldehyde Emissions: Seven 1987 Ford Crown Victorias (M85 Flexible-Fuel Vehicles)

API PUBL*4262 90 🖿 0732290 0095293 4 🔳

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 484 at 19,600 miles and on Escort 485 at 18,000 miles. The data in the figure are from the California Air Resources Board (1986; 1988; "Quarterly Summary," 12/88–2/89).

Mileage (x 1000)

Figure 23—NO_x Emissions: Five 1983 Carbureted Ford Escorts (M85)

orking per

oduction or net

API PUBL*4262 90 🖿 0732290 0095294 6 페

METHANOL VEHICLE EMISSIONS

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 359 at 27,000 miles, on Escort 365 at 27,600 miles, and on Escort 366 at 20,100 miles. (See Appendixes A and B for additional maintenance notations.) The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Figure.24—NO_x Emissions: Three 1983 Fuel-Injected Ford Escorts (M85)

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalyst was changed on Rabbit 995 at 68,000 miles. The data in the figure are from the California Air Resources Board (1988, 1989).

Figure 25—NO_x Emissions: Two 1981 Fuel-Injected Volkswagen Rabbits (M85)

19

API PUBL*4262 90 🗰 0732290 0095295 8 🛚

Figure 27-NO_x Emissions: Four Dedicated Toyotas (M85)

METHANOL VEHICLE EMISSIONS

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1986), Edwards and Baisley (1981), Piotrowski (1987), Piotrowski et al. (1987), Piotrowski and Murrell (1987), and Smith (1985).

Figure 28—NO_x Emissions: Four Dedicated Vehicles (M100)

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 6/88-8/88; "Quarterly Summary," 12/88-2/89) and Horn and Hoekman (1989).

Figure 29—NO_x Emissions: Seven 1987 Ford Crown Victorias (M85 Flexible-Fuel Vehicles)

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988, 1989), Horn and Hoekman (1989), and Nichols et al. (1988).

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 484 at 19,600 miles and on Escort 485 at 18,000 miles. The data in the figure are from the California Air Resources Board (1986; 1988; "Quarterly Summary," 12/88–2/89).

Figure 31—CO Emissions: Five 1983 Carbureted Ford Escorts (M85)

Not for Resa

king pern

API PUBL*4262 90 🖿 0732290 0095298 3 🔳

METHANOL VEHICLE EMISSIONS

23

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 359 at 27,000 miles, on Escort 365 at 27,600 miles, and on Escort 366 at 20,100 miles. (See Appendixes A and B for additional maintenance notations.) The data in the figure are from the California Air Resources Board (1988: 1989: "Quarterly Summary," 12/88–2/89).

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalyst was changed on Rabbit 995 at 68,000 miles. The data in the figure are from the California Air Resources Board (1988, 1989).

Figure 33—CO Emissions: Two 1981 Fuel-Injected Volkswagen Rabbits (M85)

API PUBL*4262 90 🗰 0732290 0095299 5 📰

24 **API PUBLICATION 4262** 2.5 '86 Crown Victoria (EPA) 2 0 '86 Crown Victoria 748 Grams per mile 1.5 '86 Crown Victoria 749 + '88 Corsica (CARB) 1 + Average 0.5 0 0 5 10 15 20 Mileage (x 1000)

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89) and Piotrowski et al. (1987).

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from Blair (1988) and the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Figure 35—CO Emissions: Four Dedicated Toyotas (M85)

API PUBL*4262 90 🖿 0732290 0095300 & 📰

METHANOL VEHICLE EMISSIONS

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1986), Edwards and Baisley (1981), Piotrowski (1987), Piotrowski et al. (1987), Piotrowski and Murrell (1987), and Smith (1985).

Figure 36—CO Emissions: Four Dedicated Vehicles (M100)

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 6/88-8/88; "Quarterly Summary," 12/88-2/89) and Horn and Hoekman (1989).

Figure 37—CO Emissions: Seven 1987 Ford Crown Victorias (M85 Flexible-Fuel Vehicles)

API PUBL*4262 90 🗰 0732290 0095301 T 🛾

API PUBLICATION 4262 26 3.5 50,000-mile federal standard of 3.4 grams per mile Crown Victoria T500 3 Corsica AHU 2.5 Grams per mile Average 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 Mileage (x 1000) Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988, 1989), Horn and Hoekman (1989), and Nichols et al. (1988). Figure 38—CO Emissions: 1987 Ford Crown Victoria and 1988 Chevrolet Corsica (M85 Flexible-Fuel Vehicles) 1 Escort 484 0.8 Escort 485 Grams per mile 0.6 Average 50,000-mile federal standard of 0.41 gram per mile 0.4 0.2 1993 50,000-mile California standard of 0.25 gram per mile 0 0 5 10 15 20 25 30

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 484 at 19,600 miles and on Escort 485 at 18,000 miles. The data in the figure are from the California Air Resources Board (1988; Quarterly Summary, 12/88–2/89).

Mileage (x 1000)

Figure 39—OMHCE Emissions: Two 1983 Carbureted Ford Escorts (M85)
API PUBL*4262 90 📖 0732290 0095302 1 📰

27

Note: Mileages are adjusted to the nearest 5000-mile interval. The catalysts were changed on Escort 359 at 27,000 miles, on Escort 365 at 27,600 miles, and on Escort 366 at 20,100 miles. (See Appendixes A and B for additional maintenance notations.) The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; "Quarterly Summary," 12/88–2/89).

Figure 41—OMHCE Emissions: Two Domestic Dedicated Vehicles (M100)

METHANOL VEHICLE EMISSIONS

API PUBL*4262 90 🗰 0732290 0095303 3 🖿

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from Blair (1988) and the California Air Resources Board (1988; 1989; "Quarterly Summary," 12/88–2/89).

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from Piotrowski (1987). Piotrowski (1989), and Piotrowski and Murrell (1987).

Figure 43—OMHCE Emissions: Dedicated Toyota Carina (M100)

king pe

luction or net

API PUBL*4262 90 📟 0732290 0095304 5 📟

METHANOL VEHICLE EMISSIONS

29

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; 1989; "Quarterly Summary," 6/88–8/88; "Quarterly Summary," 12/88–2/89) and Horn and Hoekman (1989).

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988, 1989), Horn and Hoekman (1989), and Nichols et al. (1988).

Figure 45—OMHCE Emissions: 1987 Ford Crown Victoria and 1988 Chevrolet Corsica (M85 Flexible-Fuel Vehicles)

API PUBLICATION 4262

bon standard of 0.41 gram per mile. Only slightly less frequently, emissions were less than California's soon-to-beimplemented 50,000-mile standard of 0.25 gram per mile. In addition, there was little evidence of deterioration of emissions performance up to 25,000 miles, the maximum mileage at which measurements were recorded (see Figures 41-45). The performance of the newer vehicles was much better than that of the older Ford Escorts, which exceeded the federal standard at most mileages (see Figures 39 and 40). The advantage of the newer vehicles was more pronounced than when the aggregated data set was analyzed.

Emissions results were available for only one dedicated M100 vehicle, a 1986 Toyota Carina. Emissions performance was extremely good, but observations were recorded only to the 10,000-mile interval. As pointed out in the discussion of NO_x emissions, low OMHCE emissions were achieved at the cost of relatively poor NO_x emissions performance. Clearly, more vehicle testing—particularly for M100 vehicles at higher mileages—is needed to investigate the ability to control organic and NO_x emissions at the same time.

Analysis of Additional Methanol Emissions Data and Advanced Catalyst Research

A number of studies that presented additional information about methanol vehicle emissions were also reviewed. This information included exhaust and evaporative emissions data from more advanced M100 and M85 prototype vehicles and information on advanced catalyst research. This information was limited and anecdotal (and did not meet the criteria for constituting useful fleet data for our purposes). However, it is important because it represents the latest available information on methanol emissions and because EPA has used this information in estimating emissions performance for future methanol vehicles. The information indicates that lower emissions than those demonstrated in fleet tests to date are possible, but it leaves unanswered questions about the durability of emissions control. The results also indicate the difficulty of lowering organic and NO_x emissions simultaneously.

In preparing this technical report, very limited information on methanol emissions obtained under non-FTP conditions was also reviewed. The information was generated by four studies: Gabele (1990), Snow et al. (1989), Williams et al. (1990), and Gabele et al. (1985). Gabele and Snow et al. suggested that lowering the ambient temperature increased formaldehyde emissions. Snow et al. showed that CO and methanol emissions were reduced at 40°F when an M85 fuel blended with high-volatility gasoline was used. Williams et al. found that the composition of the gasoline used to make up M85 fuel could significantly affect the amount and composition of exhaust and evaporative emissions. Finally, Snow et al. found that extended engine warm-up reduced CO, methanol, and total hydrocarbon emissions; increased formaldehyde; and had little impact on NO_x .

ANALYSIS OF PROTOTYPE VEHICLE TECHNOLOGY

Dedicated M100 Prototypes

Three studies conducted FTP exhaust emissions tests on three prototype M100 vehicles: Williams et al. (1990), Hellman (1989), and Piotrowski and Murrell (1987). The vehicles included a prototype GM vehicle with a production three-way catalytic converter with platinum, palladium, and rhodium noble metal loading and a 1988 Nissan Sentra and 1986 Toyota Carina, both with lean-burn combustion design for improved fuel economy and a catalytic converter closecoupled to the exhaust manifolds. The Carina was also tested with a dual catalytic converter and, at a different time, with a resistively heated catalyst in a dual-converter system.

As shown in Table 5, the vehicles tested below the federal standard levels for regulated pollutants at low mileage, but none were lower than California's NO_x standard of 0.4 gram per mile, and only the Carina was below the California formaldehyde standard of 15 milligrams per mile. With the dual catalytic converter, the Carina showed potential for reducing aldehydes to 5 milligrams per mile at low mileage, but at the expense of increasing NO_x above the federal standard. With the resistively heated catalyst in a dual-converter system, the Carina emitted very low aldehydes and NO_x at low mileage, relative to a single-converter system. However, EPA noted that condensation in the sampling system and/or carryover from previous tests may have contributed to the very low formaldehyde levels reported.

Dedicated M85 Prototypes

Four studies provided FTP exhaust emissions data for four dedicated M85 vehicles: Katoh et al. (1986), Blair (1988), Yasuda et al. (1989), and Piotrowski and Murrell (1987). The vehicles were as follows:

Table 5—FTP	Exhaust	Emissions	(Grams	per Mile)
From	I Prototy	pe M100 \	/ehicles	

Pollutant	GM Prototype	'88 Nissan Sentra	'86 Toyota Carina
	(2.5 mer)	(1.0 moi, mi 1)	(1.0 mer, 111)
THC	0.026	0.01	0.09
CO	2.48	0.43	0.75
NOx	0.70	0.57	0.65
HCHO	0.042	0.031	0.009
CH ₃ OH	0.569	0.38	0.31
OMHCE	0.27	0.19	0.15

Note: The data in this table are taken from Hellman (1989), Piotrowski and Murrell (1987), and Williams and Lipari (1989). Mileages were not available for the vehicles listed.

30

METHANOL VEHICLE EMISSIONS

a. A 1986 Nissan Sentra equipped with a turbocharged 1.3liter engine, closed-loop air/fuel ratio control with electronic fuel injection, and an oxidation catalyst.

b. Two 1986 Toyota Carinas, the same as the M100 Carina discussed above, except that the electronic control unit was replaced with one calibrated for M85 operation. (In addition, the Carina tested by EPA employed an 11.7:1 compression ratio, whereas the one evaluated by Toyota employed a 10.6:1 compression ratio.)

c. A 1987 Toyota Corolla that incorporated the Toyota Lean Combustion System—Methanol (TLCSM) used in the 1986 Carina, with several changes designed to meet the California NO_x standard of 0.4 gram per mile and to further reduce aldehyde emissions. These changes included the incorporation of an EGR system and the addition of a second underfloor converter along with the original manifold-type converter.

As shown in Table 6, the 1986 Sentra tested above the California organic emissions standard of 0.41 gram per mile and produced relatively high NO_x emissions (0.57 gram per mile) on FTP tests. Aldehyde emissions were about 25 milligrams per mile, and CO emissions, though below the standard, were also relatively high (3.02 grams per mile). These data should, however, be viewed with caution. Nissan had replaced the catalyst shortly before EPA tested the vehicle. The data may therefore reflect an unstabilized "green" catalyst.

Both the Carinas and the Corolla—the first- and secondgeneration lean-burn prototypes, respectively—were below the federal exhaust emissions standards for CO, NO_x, and organics at low mileages. However, the ability to achieve the NO_x standard of 0.4 gram per mile using lean burn remains an open question. A comparison of the Carinas tested by EPA and Toyota indicates the difficulty of controlling all emissions simultaneously. Toyota attempted to correct this problem in designing the second-generation methanol leanburn system used in the 1987 Corolla. The addition of EGR on the 1987 Corolla, however, reduced NO_x only marginally

Table 6—FTP Exhaust Emissions (Grams per Mile) From Prototype Dedicated M85 Vehicles

Pollutant	1986 Nissan Sentra (1.3 liter, EFI)	1986 Toyota Carina I	1986 Toyota Carina	1987 Toyota Corolla
	0.08	0.21	0.11	NR
CO	3.02	0,56	0.98	1.3
NO,	0.57	0.39	0.72	0.31
HCHO	0.025	0.003	0.007	0.098
CH ₃ OH	0.76	NR	0,26	NR
OMHCE	0.42	NR	0.14	0.15

Note: NR = not reported. The data in this table were taken from Blair (1988), Katoh et al. (1986), Piotrowski and Murrell (1987), and Yasuda et al. (1989).

Not for Resal

relative to the first-generation lean-burn Carina tested by Toyota and produced a marked deterioration in vehicle driveability.

Katoh et al. (1986) reported that a second underfloor catalytic converter produced a substantial reduction in formaldehyde emissions on the Carina. However, these data were also based on a "green" catalyst. According to Toyota, formaldehyde emissions measured on the first-generation Carina rose to about 75 milligrams per mile after 40,000 miles of operation. The company noted that the durability of formaldehyde emission control with a second-generation lean-combustion system remains unclear (Yasuda et al., 1989).

ANALYSIS OF ADVANCED CATALYST RESEARCH

Over the past several years, EPA/Ann Arbor has tested alternative catalysts for formaldehyde and NO_x emission control on low-mileage M100 vehicles. Emissions were measured from a 1981 VW Rabbit and a 1986 Toyota Carina (modified for operation on M100 in a lean-burn mode). The results have shown a wide range in CO and hydrocarbon conversion efficiencies for alternative catalyst noble and base metal loadings. Formaldehyde conversion efficiencies have also been demonstrated to be generally high (85–95 percent).

EPA tests have also shown that catalytic converters located next to the exhaust manifold may be more effective in controlling formaldehyde emissions than are underfloor converters, because of the closer proximity to the engine (Piotrowski, 1988). Again, however, the key issues are NO_x control and emission control durability. For example, excessive deterioration as a result of exposure to high temperatures that results from close coupling of converters to the exhaust manifold has been a problem. EPA tests on a Toyota M100 Carina have shown that some catalyst formulations may actually increase NO_x relative to baseline conditions (Piotrowski, 1988).

Evaporative Emissions Trends

The available data for evaporative emissions (see Appendix B) are sparse. However, for the data available, methanol-fueled vehicles generally met the 50,000-mile federal standard for total evaporative emissions of 2.0 grams per test. Figure 46 shows that the total organic evaporative emissions from seven 1987 flexible-fuel Crown Victorias were, at most mileages, below the federal standard and remained relatively constant throughout the first 25,000 miles of vehicle operation. (One FFV—Crown Victoria 927—exceeded the standard at zero mileage because of improper testing.) Similar results are illustrated in Figures 47 and 48 for three 1983 fuel-injected Ford Escorts and two dedicated M85 Toyotas.

Instances where the standard was exceeded probably indicate vehicle component failures rather than long-term dete-

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; "Quarterly Summary," 6/88-8/89; "Quarterly Summary," 12/88-2/89).

rioration in evaporative emission control. For example, in Figure 48, the 1986 Toyota Carina failed the standard at 5000 miles because of a leak in the test cap at the fuel tank filler neck.

Evaporative emissions from methanol vehicles were thought to be less than those from gasoline vehicles because of methanol's lower vapor pressure. Recently, however, Austin et al. (1989) reported increased evaporative emissions in some tests of methanol vehicles that, in their opinion, resulted from degraded performance of charcoal canisters with methanol fuel. In addition, if additives are used to enhance the volatility of methanol to assist cold starting, then evaporative emissions could increase. Finally, switching back and forth between gasoline and methanol in flexible-fuel vehicles would commingle the fuels in the tank, resulting in a mixture with a higher volatility (and hence potentially higher evaporative emissions) than that of either fuel alone.

API PUBL*4262 90 🗰 0732290 0095308 2 🔳

METHANOL VEHICLE EMISSIONS

Note: Mileages are adjusted to the nearest 5000-mile interval. The data in the figure are from the California Air Resources Board (1988; "Quarterly Summary," 12/88–2/89).

Figure 48-Total Organic Evaporative Emissions: Two Dedicated Toyotas (M85)

SECTION 5—CONCLUSIONS

Much more is known about M85 vehicles than about M100 vehicles. There are many more M85 vehicles, they have been in service longer and have recorded much higher mileages, they have been used in everyday service in fleets as opposed to being experimental test vehicles, and many more data are available on their emissions.

Although the M85 emissions data are less than ideal given the absence of standardized emission sampling and measurement procedures, they are sufficient to show improving exhaust emissions in late-model-year vehicles. Still, more data at higher mileages, more data on OMHCE emissions, and a better understanding of NO_x and organic emissions tradeoffs are clearly desirable. Much less is known about the emissions of M100 vehicles, and most of what is known relates to vehicles that incorporate older vehicle and emission control technology. Very few recent-technology M100 vehicles have actually been tested. None has accumulated substantial mileage in test fleets. Until more M100 vehicles are designed, built, operated at higher mileages, and thoroughly evaluated, they must be considered unknown quantities.

An evaluation of exhaust emissions data presented both distributionally and graphically by technology, vintage, and fuel classes supports the conclusions given below.

M85 Vehicles

FFV and dedicated M85 vehicles generally produced organic and CO exhaust emissions that were below the current 50,000-mile federal standards. However, no data were available for odometer readings beyond 40,000 miles (and for most of the vehicles, the highest mileage at which emissions were measured was much lower). This leaves in question whether such performance will be sustained so that compliance with the 50,000-mile standards is achieved.

33

FFVs and dedicated vehicles also generally tested below the existing federal standard for NO_x exhaust emissions but usually exceeded the more stringent California standard. The effectiveness of NO_x control is clearly a problem. In addition, most of the time both the dedicated and flexible-fuel M85 vehicles were unable to meet California's 50,000-mile tailpipe formaldehyde standard. The few vehicles that did meet the California formaldehyde standard often tested above the NO_x standard.

At most mileages, dedicated and flexible-fuel M85 vehicles had emissions that were below the 50,000-mile federal standard for total organic evaporative emissions.

M100 Vehicles

Exhaust organic emissions from one dedicated M100 vehicle were quite low, but testing was only done to 10,000 miles. M100 CO emissions were generally below the federal standard, but again, testing was only performed at low mileages. M100 NO_x emissions were generally lower than the federal standard but were higher than the 50,000-mile California standard. However, the most advanced vehicle tested (the 1986 Toyota Carina) exceeded even the current federal NO_x standard at the 10,000-mile interval, creating doubt about the practicality of the lean-burn approach it employed. In addition, like the M85 vehicles, all of the M100 vehicles except the Toyota Carina exceeded the 50,000-mile California formaldehyde standard at low mileages. An im-

Not for Resa

API PUBLICATION 4262

portant question remains about whether advanced M100 vehicles of this kind can simultaneously achieve low emissions across all of the principal emission groups.

The most recent research on dedicated M85 and M100 vehicles indicates that methanol vehicles have some potential

for improved emissions performance. However, this research, which is quite limited, has yet to answer questions about the durability of emissions control, the ability to meet the more stringent California standards, and the simultaneous control of all emissions.

SECTION 6—REFERENCES

- Alson, J. A., "The Emission Characteristics of Methanol and Compressed Natural Gas in Light Vehicles," Paper presented at the 81st Annual Meeting of the Association of Air Pollution Control and Hazardous Waste Management, Dallas, June 19–24, 1988.
- Austin, T., Dulla, A., Rubenstein, G., and Weaver, C., "Potential Emissions and Air Quality Effects of Alternative Fuels," Sierra Research, Sacramento, California, March 28, 1989.
- Beyaert, B., Hoekman, S. K., Jessel, A. J., Welstand, J. S., White, R. D., and Woycheese, J. E., "An Overview of Methanol Fuel: Environmental, Health, and Safety Issues," Paper presented at the meeting of the American Institute of Chemical Engineers, Philadelphia, August 22, 1989.
- Blair, D. M., "Evaluation of M85-Fueled 1987 Turbo Buick Regals" (EPA/AA/CTAB/87-07), U.S. Environmental Protection Agency, Ann Arbor, Michigan, December 1987.
- Blair, D. M., "Evaluation of a Methanol-Fueled (M85) Turbocharged Nissan Sentra" (EPA/AA/CTAB/88-03), U.S. Environmental Protection Agency, Ann Arbor, Michigan, May 1988.
- California Air Resources Board, "Emission and Fuel Economy Test of Two Bank of America Methanol Fueled Vehicles" (Report MS-84-001), October 1983.
- California Air Resources Board, "Alcohol Fueled Fleet Test . Program: Fourth Interim Report" (Report MS-84-000), March 1984.
- California Air Resources Board, "Alcohol Fueled Fleet Test Program: Sixth Interim Report" (Report MS-86-005), March 1986.
- California Air Resources Board, "Alcohol Fueled Fleet Test Program: Eighth Interim Report" (Report MS-88-05), June 1988.
- California Air Resources Board, "Alcohol-Fueled Vehicle Fleet Test Program: Ninth Interim Report" (Report ARB/MS-89-09), November 1989.
- California Air Resources Board, "Methanol-Fueled Fleet Quarterly Summaries" (memoranda), various dates.
- Deluchi, M., Johnston, R. A., and Sperling, D., "Methanol vs. Natural Gas Vehicles: A Comparison of Resource Supply, Performance, Emission, Fuel Storage, Safety, Costs and Transitions" (SAE Technical Paper 881656), Society

of Automotive Engineers, Warrendale, Pennsylvania, 1988.

- Dunlap, L. S., Cross, R. H., and Drachand, K. D., "The Air Resources Board Methanol Vehicle Emission Test Programs," Paper presented at the 82nd Annual Meeting of the Air & Waste Management Association, Anaheim, California, June 25–30, 1989.
- Edwards, C. F., and Baisley, W. H., "Emission Characteristics of Methanol Fueled Vehicles Using Feedback Carburetion and Three Way Catalysts" (SAE Technical Paper 811221), Society of Automotive Engineers, Warrendale, Pennsylvania, 1981.
- Federal Register, April 11, 1989, Volume 54, p. 14426.
- Gabele, P. A., "Characterization of Emissions from a Variable Gasoline/Methanol Fueled Car," *Journal of the Air & Waste Management Association*, March 1990, Volume 40, No. 3, pp. 296–304.
- Gabele, P. A., Baugh, J. O., Black, F., and Snow, R., "Characterization of Emissions from Vehicles Using Methanol and Methanol-Gasoline Blended Fuels," *Journal of the Air Pollution Control Association*, November 1985, Volume 35, No. 11, pp. 1168–1175.
- Gold, M. D., and Moulis, C. E. (U.S. Environmental Protection Agency), "Emission Factor Data Base for Prototype Light-Duty Methanol Vehicles" (SAE Technical Paper), Society of Automotive Engineers, Warrendale, Pennsylvania, 1987.
- Hellman, K. H., "Preliminary Test Results from the Nissan Sentra Methanol-Fueled Vehicle," Memorandum to C. L. Gray, Jr., U.S. Environmental Protection Agency, Ann Arbor, Michigan, July 6, 1989.
- Horn, J. C., and Hoekman, S. K. (Chevron Research Company), "Methanol-Fueled Light-Duty Vehicle Exhaust Emissions," Paper presented at the 82nd Annual Meeting of the Air & Waste Management Association, Anaheim, California, June 25–30, 1989.
- Katoh, K., Imamura, Y., and Inoue, T. (Toyota Motor Corporation), "Development of Methanol Lean Burn System" (SAE Technical Paper 860247), Society of Automotive Engineers, Warrendale, Pennsylvania, 1986.
- McGill, R. N., Hillis, S. L., and Wantland, J. L., "Results from the First Year of Operation of the Federal Methanol Fleet at Lawrence Berkeley Laboratory" (ORNL/TM-

34

API PUBL*4262 90 🛲 0732290 0095310 0 🛲

METHANOL VEHICLE EMISSIONS

10485), U.S. Department of Energy, Oak Ridge, Tennessee, August 1987.

- McGill, R. N., Hillis, S. L., and Larson, R. P., "Results from the First Year of Operation of the Federal Methanol Fleet at Argonne National Laboratory" (ORNL/TM-10816), U.S. Department of Energy, Oak Ridge, Tennessee, August 1989.
- McGill, R. N., Hillis, S. L., West, B. H., and Hodgson, J. W., "Results from the First Year of Operation of the Federal Methanol Fleet at Oak Ridge National Laboratory" (ORNL/TM-11229), U.S. Department of Energy, Oak Ridge, Tennessee, 1989. (a)
- McGill, R. N., Hillis, S. L., West, B. H., and Hodgson, J. W., "Results from the Second Year of Operation of the Federal Methanol Fleet at Argonne National Laboratory" (ORNL/TM-11230), U.S. Department of Energy, Oak Ridge, Tennessee, 1989. (b)
- Mobil Research and Development Corporation, "Methanol-Powered 1983 Ford Escort Program," Paulsboro, New Jersey, July 13, 1987.
- Nichols, R. J., Clinton, E. L., King, E. T., Smith, C. S., and Wineland, R. J., "A View of Flexible Fuel Vehicle Aldehyde Emissions" (SAE Technical Paper 881200), Society of Automotive Engineers, Warrendale, Pennsylvania, August 1988.
- Piotrowski, G. K., "Evaluation of Toyota LCS-M Carina: Phase II" (EPA/AA/CTAB/87-09), U.S. Environmental Protection Agency, Ann Arbor, Michigan, December 1987.
- Piotrowski, G. K., "Methanol Vehicle Catalyst Evaluation: Phase III" (EPA/AA/CTAB/88-10), U.S. Environmental Protection Agency, Ann Arbor, Michigan, November 1988.
- Piotrowski, G. K., "Durability Testing of a Toyota LCS-M Carina" (EPA/AA/CTAB/89-03), U.S. Environmental Protection Agency, Ann Arbor, Michigan, June 1989.
- Piotrowski, G. K., Heavenrich, R., Bruetsch, R., and Cheng, J., "Interim Report on the Evaluation of a Methanol-Fueled LTD Crown Victoria" (EPA/AA/CTAB/87-03), U.S. Environmental Protection Agency, Ann Arbor, Michigan, March 1987.
- Piotrowski, G. K., and Murrell, J. D., "Phase I Testing of Toyota Lean Combustion System (Methanol)" (EPA/

AA/CTAB/87-02), U.S. Environmental Protection Agency, Ann Arbor, Michigan, January 1987.

- Piotrowski, G. K., and Murrell, J. D., "Catalysts for Methanol Vehicles" (SAE Technical Paper 872052), Paper presented at the Society of Automotive Engineers International Fuels and Lubricants Meeting and Exposition, Toronto, November 1988.
- Singh, M. K., and Sekar, R. R., "Emission-Reduction Effects of Methanol Vehicles: State of Knowledge" (ANL/EES-TM-352), U.S. Department of Energy, Argonne, Illinois, July 1988.
- Smith, L. R., "Characterization of Exhaust Emissions from Alcohol-Fueled Vehicles" (CAPE-30-01), Report prepared for the Coordinating Research Council by the Southwest Research Institute, San Antonio, Texas, October 1984.
- Smith, L. R., "Characterization of Exhaust Emissions from Alcohol-Fueled Vehicles," Report prepared for the Coordinating Research Council by the Southwest Research Institute, San Antonio, Texas, May 1985.
- Smuda, W., "Methanol Escort Testing," Memorandum to P. A. Gabele, U.S. Environmental Protection Agency, Ann Arbor, Michigan, December 1984. (a)
- Smuda, W., "200 SX Baseline," Memorandum to C. L. Gray, Jr., U.S. Environmental Protection Agency, Ann Arbor, Michigan, December 1984. (b)
- Snow, R., Baker, L., Crews, W., Davis, C. O., Duncan, J., Perry, N., Siudak, P., Stump, F., Ray, W., and Braddock, J., "Characterization of Emissions from a Methanol Fueled Motor Vehicle," *Journal of the Air & Waste Management Association*, January 1989, Volume 39, No., 1, pp. 48–54.
- Stump, F., Ray, W., and Braddock, J. (U.S. Environmental Protection Agency), "Characterization of Emissions from a Methanol Fueled Vehicle," *Journal of the Air Pollution Control Association*, 1989, Volume 39, No. 1, pp. 48–54.
- Williams, R. L., Lipari, F., and Potter, R. A., "Formaldehyde, Methanol and Hydrocarbon Emissions from Methanol-Fueled Cars," *Journal of the Air & Waste Management* Association, May 1990, Volume 40, No. 5, pp. 747–756.
- Yasuda, A., Tsukasaki, Y., Ito, S., Nohiro, H., and Inona, T., "Development of the Second Generation Methanol Lean Burn System" (SAE Technical Paper 892060), Society of Automotive Engineers, Warrendale, Pennsylvania, September 1989.

Not for Resale

API PUBL*4262 90 🛲 0732290 0095311 2 🛲

APPENDIX A-EXHAUST EMISSIONS DATA

Not for Resale

API PUBL*4262 90 🖿 0732290 0095312 4 페

METHANOL VEHICLE EMISSIONS			
Catalyst inactive Catalyst replaced, disconnected vacuum hose Catalyst removed Catalyst removed Catalyst removed Sunken float Sunken float Sunken float As-received test, carburetor rich, EGR mal- function FB	Comments		
ECU N	OMHCE		
bu 18181838888888888888888888888888888888	THC Method	8888811881	
0.08 0.11 0.1 0.18 0.18 0.23 0.06 0.16 0.17 0.11 0.1 0.15 0.15 0.15 0.15 0.15 0.15	THC	0.08 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	
0.06 0.07 0.07 0.06 0.04 0.06 0.04 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Methane	0.06 0.07 0.07 0.08 0.09 0.09 0.09 0.09	
882/Mix	MeOH Method	8888811881	
0.3 0.78 0.15 0.15 0.42 0.65 0.29 0.29 0.29 0.29 NA NA NA NA NA NA NA NA NA NA NA NA NA	МеОН	0.285 0.272 3.462 4.219 0.785 NA 0.785 0.78 0.78 0.785 0.77 0.68	
DNPH DNPH DNPH DNPH DNPH DNPH DNPH DNPH	HCHO Method	HdNQ HdNQ HdNQ HdNQ HdNQ	
0.008 0.015 0.031 0.031 0.017 0.017 0.017 0.017 0.017 0.017 0.07 0.0	нсно	0.012 0.013 0.099 0.114 0.114 NA 0.15 0.12 0.13 0.13	
0.41 0.37 0.37 0.18 0.18 0.18 0.18 0.45 0.45 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	Ň	$\begin{array}{c} 0.24\\ 0.24\\ 1.02\\ 0.41\\ 1.29\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.44\\ \end{array}$	
4.77 4.77 4.79 4.43 3.41 3.41 3.41 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.1	8	6.21 7.04 50.1 52.1 8.31 5.8 6 7.34 7.34 7.34 7.34	
5178 5229 5229 5229 5335 14440 14521 14637 14637 14655 25315 25315 25315 25335 36978 36978 36978 36978 36978 36978 36978 36978 36978 36978 36978 36978 36978 50111 urces Boart	Odometer	4233 4257 4257 4282 4305 34860 34888 45369 45369 54058 54058 54088	
ri 15, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	Fuel	95 95 95 90 90 85 85 r Resou	
Air Air Air Air Air Air Air Air Air Air	Air	Air Air Air Air Air Air Air Air Air Air	
EGR EGR EGR EGR EGR EGR EGR EGR EGR EGR	EGR	EGR EGR EGR EGR EGR EGR EGR EGR EGR EGR	
TWC TWC TWC NCAT NCAT TWC TWC TWC TWC TWC TWC TWC TWC TWC TW	Catalyst	TWC TWC NCAT NCAT TWC TWC TWC TWC TWC TWC TWC TWC TWC	
Source So	Row	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 TWC EGR Air 95 5178 4.77 0.41 0.008 DNPH 0.3 CC 0.06 0.08 CC 0.03 DI D	1 TWC EGR Air 9 513 4.77 0.41 0.068 NRPH 0.35 CC 0.03 DVR 0.13 CC 0.03 DVR 0.13 CC 0.03 DVR 0.13 CC 0.03 DVR 0.03 DVR 0.03 DVR 0.03 DVR DVR <thdvr< th=""> DVR DVR <thd< td=""><td>1 Тутис Exist AI FUL COL DB PUL DS CUL DB DB</td></thd<></thdvr<>	1 Тутис Exist AI FUL COL DB PUL DS CUL DB DB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

39

Comments			Comments								vepraced radity coll, regapped spark plugs	Vew oxygen sensor	Replaced fuel and cold start injectors		ested as received; idle CO was 6%				Petrod as received adineted idle CO and mm	after test		ested with new O, sensor, fuel injectors.	spark plugs, fuel filter ested as received, fuel mixture control mal-	functioning	correction of the antice the production of caraityst		
OMHCE		i - L	OMHCE	0.2		1		I	I	-	-			1		I		I			10	5	3.32	[- 	ł	I
THC Method			THC Method	ပ္ပ	S	С С	l C	ÌI		с С		I	I	1		ļ	I		[]		ک	31	с С	ļ	I	I	1
THC		- L H	d: Fuel	0.041	0.118	0.087	0.078	l	1	0.153		1		1		I	١	I			- 10	<u> </u>	2.69	I	ł	I	ł
Methane			Methane	0.011	0.018	0.017	0.028	0.026		0.023	0.023	0.023	0.007	1		ļ		I	11		0.13	0.04	0.06	I	1	I	ł
MeOH Method	1818		MeOH Method	ß	S	с С		I		y I		I		I	l ß	!	ပ္ပ	ļ	l G		ا ئ	31	S	l	I	Ι	I
MeOH	NA 028 NA 125		Se NO.	0.34	1.28	1.65 N A	Υ Α Ζ	NA	NA 12	0./1 NA	NA	NA	AN NA	₹ ×	0.79	NA	0.74	AN N	0.78		063 063	NA	1.38	AN	NA	NA	ΝA
HCHO Method	Hdna Hdna Hdna		HCHO Method	HAND	HdNO	HdNO		I	I		ļ	I	HdND		Hand	HANO	HdND	HdNQ	HAND			HdNQ	HdNQ	I	I	I	HdNC
НСНО	0.047 0.027 0.073 0.077		HCHO	0.025	0.117	0.097	NA AN	NA	AN S	A N A	AN	ΥŊ	0.043	AN ANA	0.048	0.052	0.049	0.039 NA	0.075		0.065	0.051	0.07	NA	NA	NA	0.018
Ň	0.21 0.21 1.05 1.07		NO _x	0.79	2.15	2.09	1.04	1.46	0	126	1.35	0.88	0.92	U 1 73	1.14 1.14	1.12	1.2	1.26	1.86	, 1 0 <i>E</i>	6 1 1 0 1 0 1	1.08	0.8	0.77	0.8	0.82	0.92
8	1.33 1.29 12.62 12.62	~	C0 C0	0.95	7.53	6.1	1.79	1.59	0	1.04	2.03	1.62	1.89	ہ د م	2.45	2.08	2.46	257	3.7	00	2.88	2.91	25.26	18.24	1.62	1.52	1.34
Odometer	5269 5290 5311 5344	1986). Tahlo	Odometer	4507	4539	4004	22609	22644	23287	23395	24630	24645	24867	24690 30671	39696	39749	45320	45343 46500	56305	56355	59384	59463	66486	68025	68050	68078	68188
Fuel	95 95 95	3oard (.	Fuel	95	95	ሪ ይ	8	8	88	88	8	83	8 %	3 %	85	85	88	8 %	85	95	3 %	85	85	85	85	85	85
Air	No air No air No air No air	sources]	Air	No air	No air	No air No air	No air	No air	No air No air	No air	No air	No air	No air No air	Noair	No air	No air	No air	No air No air	No air	No air	No air	No air	No air	No air	No air	No air	No air
EGR	NEGR NEGR NEGR NEGR	ia Air Re	EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NECEK	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NECE	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR
Catalyst	TWC TWC NCAT NCAT	:: Californ	Catalyst	TWC	NCAT	TWC	TWC	TWC		Two	TWC	TWC			TWC	TWC	DWT	TWC	TWC	JWL	TWC	TWC	TWC	TWC	TWC	TWC	IWC
Row	н0 m 4	Source	Row		0 n	04	· v	v ر	<u>~ </u>	00	10	= 9	1 1	14	15	<u>9</u> i	/1 10	o 0	20	21	22	23	24	25	26	27	8

Not for Resale

API PUBL*4262 90 🛲 0732290 0095313 6 🛲

API PUBLICATION 4262

40

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

щ
77
Ы.
щ
2
7
-,≅
5
ō.
·š
2
_
Ð
Ē
LL.
$\vec{\mathbf{D}}$
ŏ
č
Ŧ.
Φ
5
×
Ξ
2
$\overline{\mathbf{a}}$
ž
~
0
0,
<u>0</u> .0
No. 0
e No. 9
se No. 9
nse No. 9
ense No. 9
cense No. 9
-icense No. 9
/License No. 9
it/License No. 9
bit/License No. 9
bbit/License No. 9
abbit/License No. 9
Rabbit/License No. 5
Rabbit/License No. 9
V Rabbit/License No. 9
W Rabbit/License No. 9
VW Rabbit/License No. 9
1 VW Rabbit/License No. 9
31 VW Rabbit/License No. 9
281 VW Rabbit/License No. 9
-'81 VW Rabbit/License No. 9
i'81 VW Rabbit/License No. 9
5
1-5
A-5'81 VW Rabbit/License No. 9
a A-5—'81 VW Rabbit/License No. 9
ile A-5'81 VW Rabbit/License No. 9
Ible A-5—'81 VW Rabbit/License No. 9
Table A-5'81 VW Rabbit/License No. 9

ß

Comments					ng set at wrong rpm					fuel and cold start injectors and other fuel	stem parts	oxygen sensor	cle refused to start, new spark plugs in-			
ω					Tim					New	S	New	Vehi st			
OMHCI	0.17	0.21	l	1	l	I	I	ļ	1	I		ł	I	l		
THC Method	g	ပ္ပ	I	1	ŀ	1	l	I				1	l	I	ł	
THC	0.03	0.03	۱	l	١	I	I	1		I		l	l	[l	
Methane	0.011	0.01	0.014	0.015	0.027	0.024	0.021	0.023	0.019	0.007		0.021		0.03	1	
MeOH Method	ပ္ပ	g	ပ္ပ	۱	g	1	I	l	1	ပ္ပ		ខ្ល	с С	I	I	
MeOH	0.3	0.4	1.57	NA	1.5	NA	NA	NA	ΑN	0.58		0.48	0.38	NA	0.55	
HCHO Method	HdNQ	HdNQ	I	HdNQ	I	l	1	I		HdND		I	HdND	HdNQ	I	
НСНО	0.017	0.00	NA	0.085	NA	NA	NA	NA	ΝĄ	0.014		NA	0.016	0.0034	NA	
NO	0.7	0.63	2.17	2.81	0.56	1.1	1.14	1.06	1.04	1.36		1.45	1.13	1.22	1.2	
8	1.13	1.16	7.02	7.09	2.7	2.62	2.76	2.79	2.75	2.78		2.32	4.65	4.71	3.9	1 (1988)
Odometer	4448	4490	4694	4713	21062	21597	21618	21640	21661	26237		26292	31869	35199	35235	urces Board
Fuel	95	95	95	95	90	8	8	8	8	85		85	85	85	85	ir Reso
Air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air		No air	No air	No air	No air	ifornia A
EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR		NEGR	NEGR	NEGR	NEGR	-14—Cali
Catalyst	TWC	TWC	NCAT	NCAT	TWC	TWC	TWC	TWC	TWC	TWC		TWC	TWC	TWC	TWC	e: Rows 1-
Row		2	m	4	ŝ	9	٢	∞	6	0		11	12	13	14	Sourc

Comments			3R repairs, vacuum line plugged			
			After E(
OMHCE	ſ	ł	l		1	
THC Method	ß	I	1	I	1	
THC	0.29	ΝA	NA	NA	NA	
Methane	0.1	0.09	0.09	NA	0.08	
MeOH Method	g	Ι	ĺ	ც	l	
MeOH	1.3	NA	NA	1.34	NA	
HCHO Method		l	1	HdNQ	l	
нсно	NA	NA	NA	0.104	ΝĄ	
Ň	1.01	1.03	0.47	0.38	0.37	
8	8.98	9.85	8.78	12.27	12.7	(1986).
Odometer	85341	85371	85430	115556	115590	rrces Board
Fuel	6	8	8	6	6	ir Resou
Air	Air	Air	Air	Air	Air	fornia A
EGR	EGR	EGR	EGR	EGR	EGR	5—Calii
Catalyst	TWC	TWC	TWC	TWC	TWC	: Rows 1-
Row	-	7	ς	4	5	Source

Table A-7---'84 Ford Escort/License No. 154/Mix Method: Fuel Injection/ECU: NFB

FID uncorrected for MeOH, MeOH by GC includes weight of O₂ FID uncorrected for MeOH, MeOH by GC in-cludes weight of O₂ Comments OMHCE THC Method FID FID Methane THC 0.3 0.4 0.01 0.01 MeOH Method g S MeOH 0.64 0.88 HCHO Method HdND HdND NO_x HCHO 1.09 0.77 0.111 0.96 0.81 0.084 8 Odometer 8620 8580 Fuel 100 100 Air Air Air EGR EGR EGR Catalyst TWC TWC Row 2

API PUBL*4262 90 🖿 0732290 0095314 8 🔳

METHANOL VEHICLE EMISSIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

Source: Rows 1 and 2-California Air Resources Board (1986).

42

API PUBLICATION 4262

Comments										ts after fuel injectors cleaned		ts after reprogrammed computer for leaner	peration				ts with new fuel injectors	•	ts after new fuel injectors installed	ts after new converter, O ₂ sensor, EGR	alve installed ted after ignition module replaced and com- uter rebuilt	
OMHCE		0.41	ł	I	0.38	1	1	l		- Te		0.46 Te	-	I	0.28	I	- Te	0.47	0.56 Te	0.41 Te	- E H	
THC Method	l	ပ္ပ	ĺ	I	ပ္ပ	ļ	I	I	I	l	I	S		1	ပ္ပ	1	ပ္ပ	0 0 0	ပ္ပ	S	l	
THC		0.05	I	1	0.06		ļ	I	I	I	I	0.21		۱	0.09	I	0.15	0.21	0.21	0.15	Ι	
Methane	0.03	0.03	ĺ	0.03	0.03	0.03	0.03	I	I	0.04	I	1		0.05	0.04	0.01	0.02	0.03	0.03	0.02	I	.(6
MeOH Method		g	ļ	I	S	I	[ļ	ပ္ပ	g	g	g		с С	ပ္ပ	<u></u> В	ပ္ပ	с С	ပ္ပ	g	l	30ard (1989
МеОН	AN	0.73	NA	NA	0.65	NA	NA	NA	0.86	1.22	0	0.54		0	0.34	0.53	0.51	0.48	0.69	0.52	NA	esources I
HCHO Method	DNPH	HdNQ	1	HUND	HdNQ	HdND	HdNQ	HAND	HdND	HANO	I	HdNQ		HdNQ	HANO	HdNQ		HdNQ	HAND	HdND	HdNQ	omia Air R
НСНО	0.06	0.1	NA	0.07	0.08	0.1	0.08	0.08	0.09	0.05	NA	0.03		0.08	0.09	0.13	NA	0.11	0.12	0.07	0.05	20-Calife
NOx	0.38	0.38	0	0.37	0.29	0.34	0.51	0.48	0.5	0.31	0	0.36		0.34	0.4	0.71	0.74	0.79	0.79	0.24	0.47), Row 2
8	3.36	2.74	0	3.88	4.44	3.13	3.32	5.14	7.68	19.2	0	3.53		3.21	2.56	1.71	1.68	1.63	4.03	3.08	3.92	d (1988
Odometer	109	138	167	208	230	5469	5516	11789	11828	13180	13584	15960		15987	16667	19390	20375	20394	25300	27050	30597	ources Boar
Fuel	6	90	6	6	60	85	85	85	85	85	85	85		85	85	85	85	85	85	85	85	Air Res
Aìr	Air	Air	Air	Air	Air	Aîr	Air	Air	Air	Aìr	Air	Air		Air	Air	Air	Air	Air	Air	Air	Air	lifornia .
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	1	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	–19—Ca
Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC		TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	ss: Rows 1
Row	1	2	ŝ	4	2	9	7	×	6	10	11	12		13	4	15	16	17	18	19	20	Source

Not for Res

Table A-8---'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ECU: FB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permittee

Ford Escort/License No. 365/Mix Method: Fuel Injection/ECU: FB	
able A-9'83	
Table A-9'83 F	

Row	Catalyst	EGR	Air	Fuel	Odometer	8	NOx	нсно	HCHO Method	MeOH	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
-	TWC	EGR	Air	6	43	3.73	1.29	0.03	HdNQ	0.9	8	0.03		I	1	15°BTDC timing, ported vacuum signal to
3	TWC	EGR	Air	90	85	3.99	1.13	0.012	HANG	0.76	gC	0,04	[ł	۱	15°BTDC timit resultatory 15°BTDC timits, ported vacuum signal to
ŝ	TWC	EGR	Air	90	114	4.84	0.73	0.08	HdNQ	NA	l	0.03	I	1	ļ	EOK (with resurctor) 10°BTDC timing, ported vacuum signal to ECR (with restrictor)
4	TWC	EGR	Air	90	213	15.05	0.48	0.09	HdNQ	1	S	0.05	I	Į	ł	10°BTDC timing, manifolded vacuum signal to EGR (with restrictor)
5	TWC	EGR	Air	85	422	2.39	0.35	NA	1	1.49	GC	0.03	0.22	gC	ł	10°BTDC timing, manifolded vacuum signal to EGR (without restrictor)
9	TWC	EGR	Air	85	742	17.4	0.34	NA	l	1.01	ß	0.05	0.28	ß	l	
1	TWC	EGR	Air	85	1443	1.24	0.43	NA	1	NA	ł	ł	I		l	Computer reprogrammed for leaner operation
∞	TWC	EGR	Air	85	8329	1.85	0.54	0.08	HdND	NA	I	I	I	ļ	1	
6	TWC	EGR	Air	85	8369	1.81	0.51	60.0	HdNQ	0.37	g	l	1	l	I	
10	TWC	EGR	Air	85	12265	NA	AN	NA	1	AN]	ļ	I	I	l	
Ξ	TWC	EGR	Air	85	14693	3.41	0.55	NA	I	0.71	ပ္ပ	0.04	0.33	g	I	
12	TWC	EGR	Air	85	21594	2.87	0.58	0.11	HdND	0.63	ပ္ပ	0.04	1	I	I	Replaced leaking EGR tube
13	TWC	EGR	Air	85	21621	2.64	0.53	0.11	HdNQ	NA	l	0.04	0.26	g	0.58	
14	TWC	EGR	Air	85	21789	4.03	0.79	0.14	HdNQ	0.79	ပ္ပ	0.04	I	1	l	Replaced fuel injectors
15	TWC	EGR	Air	85	21825	3.6	0.78	0.14	HdNO	NA	ł	0.04	0.39	ပ္ပ	0.8	
16	TWC	EGR	Air	85	24150	3.29	0.59	0.12	HdNQ	0.74	<u>8</u>	0.04	0.27	ပ္ပ	0.65	Running rough, tested as received
17	TWC	EGR	Air	85	25490	5.6	0.9	0.14	HdNQ	0.84	ပ္ပ	0.03	0.27	ပ္ပ	0.7	
18	TWC	EGR	Air	85	27554	3.26	0.5	0.11	HAND	0.54	S	0.02	0.18	S	0.46	Tested with new converter, EGR valve, O2 sen-
																sor
19	TWC	EGR	Air	85	34027	4.06	0.44	0.09	Hanq	0.83	S	0.04	0.26	g	0.66	Tested after spark plugs and air cleaner re- placed, idle speed and timing adjusted
20	TWC	EGR	Air	85	39209	47.91	0.22	0.11	HdND	2.79	С С	0.14	0.98	с С	2.24	Tested after oxygen sensor replaced
21	TWC	EGR	Air	85	39299	14.43	0.44	AN	l	NA	1	0.02	I	1	[
Source	es: Rows 1	–18—Cal	ifornia ∕	Air Resc	ources Board	(1988);	Row 19		nia Air Re	sources Bo	oard, "Quar	terly Sumn	ary" (12	;(88–2/89);	Rows 20 a	nd 21California Air Resources Board (1989).

METHANOL VEHICLE EMISSIONS

API PUBL*4262 90 🗰 0732290 0095316 1 🖿

43

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

API PUBL*4262 90 0732290 0095317 3 1

44

API PUBLICATION 4262

Row	Catalyst	EGR	Air	Fuel	Odometer	CO	NOx	НСНО	HCHO Method	МеОН	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
1	TWC	EGR	Air	90	76	3.07	0.48	0.08	HdND	0.66	В	0.02	0.04		950	Tested as received mrong ignition timing
6	TWC	EGR	Air	90	109	3.41	0.29	0.09	HUND	0.74	с С	0.03	0.05		0.41	Active as received, wrong ignition tilling
m	TWC	EGR	Air	8	137	NA	NA	NA	I	ΝĄ	.			3	5	
4	TWC	EGR	Air	8	139	3.17	0.3	0.12	HdNQ	NA	1	0.03			I	
ŝ	TWC	EGR	Air	85	262	3.97	0.35	0.09	HdND	0.82	ပ္ပ	0.01	I	I	1	
9	TWC	EGR	Air	85	291	3.97	0.33	0.06	HdND	0.91	С С	0.01	I	I	I	
7	TWC	EGR	Air	85	7493	2.29	0.39	0.08	HdND	NA	I	0.04	I	I	1	Tested as received idle sneed high
8	TWC	EGR	Air	85	7559	1.86	0.44	0.05	HdNQ	0.4	S	0.03	0.11	CC	0.31	Tested after idle sneed adiusted
6	TWC	EGR	Air	85	9409	ΝA	NA	ΝA		NA	I		1	:		
10	TWC	EGR	Air	85	9416	1.6	0.52	NA		NA	l	I	I	I		Tested after timing helt and heat valves re-
																placed
11	TWC	EGR	Air	85	11259	4.07	0.43	0.18	HANQ	0.35	0 0 0	0.03	0.09	СО	0.32	Tested after hroken distributor rotor venlaced
5	TWC	EGR	Air	85	15341	ÅΝ	NA	NA	I	AN	l	۱	I			
13	TWC	EGR	Air	85	14732	3.83	0.71	0.17	HdNQ	0.79	ပ္ပ	0.02	0.32	CC CC	0.74	
14	TWC	EGR	Air	85	19652	8.05	1.13	0.3	HdND	1.59	0 U U	0.04	0.54		1 37	
15	TWC	EGR	Air	85	20096	5.98	I.1	NA		NA		0.04		3	1	Tested with new pistons, rings, and fuel injec-
16	JWL	ара	∆ ir	20	20120	6 10	1 13									tors
2 5				29	06102	0.40	c1.1	AN S	ļ	AN S		0.04	1	Ί		Tested with new oxygen sensor
1		223	AIF	8	20149	cn-7	0.16	ΥA		ΨN	I	0.03		ļ		Tested with new converter
18	TWC	EGR	Air	85	20168	2.02	0.16	0.06	HdND	0.35	с С	0.03	0.14	ပ္ပ	0.32	
19	TWC	EGR	Air	85	25088	4.83	0.59	NA	1	1.39	с С	0.05	0.26	S		
20	TWC	EGR	Air	85	25113	4.87	0.55	0.048	HdND	NA	I	0.04	1	1	ļ	
21	TWC	EGR	Air	85	29699	5.25	0.48	0.056	HdNQ	0.69	S	0.04	0.15	ļ	0.47	
Source	s: Rows 1	-20C	alifornia	Air Res	ources Boar	i (1988)	, Row 2	1—Califo	mia Air Ro	sources B	oard (1989	à				

Not for Resa

Table A-10---'83 Ford Escort/License No. 366/Mix Method: Fuel Injection/ECU: FB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permittee

API PUBL*4262 90 🗰 0732290 0095318 5 🖿

METHANOL VEHICLE EMISSIONS

45

4

Comments					eplaced fuel injectors			eplaced fuel injectors				eplaced fuel injectors								eplaced fuel injector—full stoichiometric op-	eplaced fuel pump							
OMHCE	l	-	I	I	1	ł	I	2	1		I	œ	0.22	0.38	ΔA	1.76	AN	0.19	l	۲ ۲	يم ا	[0.2	0.18	I		ł	
THC Method	1	S	l	١		1		I	l	1	-	l	ß	ပ္ပ	I	ы С	l	с С	ł	I	1	с С	 .	S	gg	ပ္ပ	S	
THC	1	0.08	١	ł	I	I	I		l	l	I	1	0.07	0.23	NA	0.69	ΝA	0.07	I	1	l	0.08	1	0.09	0.06	0.06	0.07	
Methane	0.01	0.02	l	1	l	I	1		I	1	I	0.02	0.02	0.03	٩N	0.02	0.02	0.02	l	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.03	(1989).
MeOH Method	1	S	g	ł	ဗ္ပ		ပ္ပ	С С	I	l	ပ္ပ	ပ္ပ	ខ្ល	ပ္ပ		S	l	ខ្ល	ပ္ပ	I	CC	1	g	ပ္ပ	ပ္ပ	ပ္ပ]	rces Board
МеОН	NA	0.3	0.24	NA	0.25	NA	0.27	0.18	NA	NA	0.24	0.3	0.3	0.3	NA	2.1	NA	0.24	0.19	AN	0.25	NA	0.24	0.18	0.25	0.26	NA	Air Resou
HCHO Method	HdNQ	Į	HdND	HdND	HdNQ	HdND	HdNQ	HdNQ	HUND	HdNQ	HAND	HdND	HdNQ	HANO	ļ	HdND	l	HdNQ	HdNQ		1	}	HANO	HdND	1	HAND	HdNQ	California
нсно	0.011	NA	0.032	0.019	0.022	0.02	0.019	0.016	0.004	0.015	0.02	0.02	0.029	0.025	NA	0.194	NA	0.02	0.017	ΝA	AN	NA	0.027	0.025	ΑN	0.019	0.022	; 25–27—
NOx	0.73	0.71	0.98	0.94	0.68	1.62	1.54	0.7	0.65	0.67	0.68	1.39	1.43	0.27	2.68	2.65	1.2	1.25	2.02	0.39	0.38	0.84	0.69	1.16	0.99	0.96	1.62), Row
8	1.9	1.85	1.76	1.84	1.78	ŝ	1.92	1.13	1.59	1.32	2.27	3.22	2.7	6.29	6.93	7.22	3.17	3.34	1.56	1.37	1.68	1.67	1.98	1.91	1.86	1.56	2.61	d (1988
Odometer	434	473	3786	3812	4813	8508	8685	8953	0668	9016	10792	11431	11473	11506	11575	11608	11805	11844	15111	15561	15597	21544	21579	26270	37772	37799	43309	ources Boar
Fuel	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	. 85	85	85	85	85	85	85	85	Air Rest
Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	ifornia /
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	NEGR	NEGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	-24Cali
Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	NCAT	NCAT	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	es: Rows I
Row		6	e	4	ŝ	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	Source

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

API PUBLICATION 4262

Injection/ECU: FB
145/Mix Method: Fue
Carina/License No.
Table A-12'86 Toyota (

Row	Catalyst	EGR	Air	Fuel	Odometer	8	ŇŎ	нсно	HCHO Method	MeOH	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
-	8	NEGR	No air	85	944	0.62	1.05	0.014	HANG	0.12	с С	0.02	0.07	S	0.13	
0	8	NEGR	No air	85	066	0.78	0.94	NA	I	NA		0.016		I		
m	g	NEGR	No air	85	1006	0	0	ΝA	1	ΝA	I		I	I		
4	8 8	NEGR	No air	85	1272	1.55	0.75	0.009	HdND	0.12	ပ္ပ	0.025	0.09	ပ္ပ	0.15	Tested at 2500 lbs. I.W several driver errors
S	8 0	NEGR	No air	85	1326	1.19	0.53	NA		NA	I	0.022	I			Tested at 2500 lbs. I.W.
9	<u></u>	NEGR	No air	85	3544	1.68	0.94	0.01	HdNQ	0.12	ပ္ပ	0.021	0.07	ပ္ပ	0.13	Leak in test cap at filler neck
7	8	NEGR	No air	85	8648	1.66	0.52	0.013	HANO	0.12	ပ္ပ	0.021	0.07	С	0.13	Tested after fuel injector replaced and tested at
																2250 lbs. I.W.
œ	8	NEGR	No air	85	8799	1.72	0.59	0.011	HdNG	0.06	ပ္ပ	0.021	0.06	С С	0.09	Tested at 2500 lbs. I.W.
6	8 8	NEGR	No air	85	13012	1.18	0.96	0.017	HAND	0.12	С С	0.016	0.05	0 0 0	0.11	Tested at 2500 lbs. I.W.
10	8	NEGR	No air	85	20785	1.39	1.06	0.019	HANO	0.13	С С	0.015	0.04	С С	0.11	Tested at 2500 lbs. I.W.
Π	8 8	NEGR	No air	85	24589	1.36	1.75	0.036	HdND	NA	1	0.02	1		1	No. 3 fuel injector not working during test
12	8	NEGR	No air	85	24713	1.36	0.68	0.021	HdND	ΝA	I	ł	NA	ļ	I	0
Source	s: Rows l	-8-Cal	ifomia A	\ir Res	ources Board	(1988);	Rows 9	-11Cal	lifornia Ai	r Resource	s Board, "(Quarterly S	ummary	, (12/88–2	(89); Row	2-California Air Resources Board (1989).

Not for Resale

thout license from IHS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted

۰.			
1			
	1		

							lled									hicle oper-	nalysis not	•	malysis not	l tubing to								ard (1989).					
	Comments	Suspect leak in test connection					Tested after new fuel injectors instal									Between 20046 and 20199 miles vel	MeOH and THC measured but lab a	completed	MeOH and THC measured but lab a completed	Tested after replacing vacum contro solenoid valve								0-26California Air Resources Bo			CU: FB		
	OMHCE	0.16 0.32	1	I	1	l	l	0.2		0.24	1	ł	0.24	0.42	0.58	-			1	l	0.33		I	0.15	ł	1	I	/88)- Rows 2			ection/E0		
	THC Method	ဗ္ဗဗ္ဗ	ပ္ပ	G	I		I	S	ł	ပ္ပ	I	l	ဗ္ပ	ပ္ပ	с С	Į	1		I	I	l	I	1	I	ł	I]	rv" (6/88–8	· · · · · · · · · · · ·		: Fuel Inj		THC
	тнс	0.1 0.21	0.06	0.05	AN	NA	AN	0.08	NA	0.14	ΝA	ΝA	0.12	0.33	0.58	ΝA	ΝA		AN	ΑN	0.03	0.33	ΝA	0.09	NA	0.31	1.09	Summar			ethod		
	Methane	0.06 0.1	0.03	0.03	0.02	0.08	0.08	0.03	0.07	0.03	0.07	0.04	0.04	0.07	0.07	0.07	0.05		0.03	0.04	0.02	0.02	0.16	0.04	0.05	0.1	0.15	"Onarterly			8/Mix M		
20.001	MeOH Method	ဗ္ဗဗ္ဗ	I	ļ	ł	1	I	g	ပ္ပ ပ	ខ្ល	ខ្ល	ß	g	ပ္ပ	с С	С С	S		S	S	ß	ç	с С	ပ္ပ			I	, broard ,			No. 92		MeOH
י בולמוזאם	MeOH	0.12 0.25	NA	NA	NA	NA	NA	0.26	0	0.19	0.04	NA	0.26	0.2	Ϋ́́	ŇA	0.18		1.37	ΝA	0.7	٩Z	ΥA	0.12	I	٩N	NA	Air Resourc			'License	•	
	HCHO Method	Hdna	[Hand	DNPH	HdND	HdNQ	HdND	HANO	HANO	HdNQ	HUND	HdND	HUND	HANO	HANO	HANO		HdNQ	HdNQ	HdNQ	HdNO	HdNO	HdNQ	HdNQ	HdNQ	HdNQ	alifornia /			/ictoria/		HCHCH
	нсно	0.01 0.011	NA	0.022	0.019	0.007	0.003	0.023	0.005	0.029	0.003	0.032	0.026	0.015	0.006	0.028	0.027		0.034	NA	0.032	NA	NA	0.022	AN	0.036	0.012	0-10-C) , , , , , , , , , , , , , , , , , , ,		Crown \		
5	NOx	0.54 0.66	0.55	0.67	0.61	0.76	0.66	0.92	0.98	0.93	0.69	0.9	0.93	0.72	0.67	0.82	0.89		0.83	0.47	0.44	0.46	0.77	0.45	0.46	0.43	0.51	Rows 1			Ford (
6	8	0.66 0.88	1.05	0.53	0.46	0.51	8.16	2.7	6.4	3.32	5.99	5.13	3.93	6.55	6.6	8.73	7.06		8.83	2.11	1.4	1.35	3.56	1.01	1.34	3.39	3.09	(1988)-	~~~~		-'87		
16 7-10-	Odometer	177 195	305	5826	5852	5886	7985	8025	8104	13668	15111	19813	19878	19910	20046	20199	20358		20377	20469	21941	21959	22002	22045	22069	32446	32480	irces Roard i			le A-14-		
ษี	Fuel	50 50	85	85	85	0	0	85	0	85	22	85	85	50	0	85	85		100	85	100	100	0	85	85	85	3	ir Reco			Tab		
	Air	Air Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air		Air	Air	Air	Air	Air	Air	Air	Air	Air	ifornia Ai					
	EGR	EGR BGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR		EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	ileO—11-					
	Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC		TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	e. Rowe 1-					
	Row	- 9	m	4	ŝ	9	4	œ	6	10	11	12	13	14	15	16	17		18	19	20	21	5	53	24	25	56	Source	5 300			ĺ	

Not for Resale

Table A-13....'87 Ford Crown Victoria/License No. 927/Mix Method⁻ Firel Injection/FCLI: FB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

HCHO does not include 0.013 gram per mile acrolein Tested after new fuel injectors installed

||8||

HdNQ

0.59 0.79 0.74 0.66 1.28

0.87 0.74 1.08 0.72 2.41

244 262 5334 5375 6279

0 85 50 85 50 0

Air Air Air Air

EGR EGR EGR

TWC TWC TWC TWC

0 m 4 v

NA NA NA NA NA NA NA NA

NA NA 0.015 0.02 0.004 0.015

| |

[]

11

ЯI

HdNQ

0.65 0.79

0.61 0.76

6690 6742

85 0

Air Air

EGR

TWC

90

47

Source: Rows 1-7-California Air Resources Board (1988).

METHANOL VEHICLE EMISSIONS

CU: FB	Comments	New fuel injector, spark plugs, and fuel pres-	sure regulator at 3854 miles MeOH and THC measured but lab analysis not	completed MeOH and THC measured but lab analysis not	completed MeOH and THC measured but lab analysis not	completed MeOH and THC measured but lab analysis not	completed MeOH and THC measured but lab analysis not	completed MeOH and THC measured but lab analysis not	completed	nia Air Resources Board (1989). CU: FB	Comments	New fuel injectors, spark plues, and fuel pres-
ection/E(OMHCE	NA NA 0.14	AN NA	NA	NA	NA	NA	NA	0.14	88); Califon ection/EC	OMHCE	0.17
: Fuel Inj	THC Method	118		I	Ι	Ι	Ι	I	1	y" (6/88–8, Fuel Inj	THC Method	ទទទ
lethod:	THC	NA NA 0.08	AN NA	NA	NA	NA	ΝA	NA	0.08	Summar.	THC	0.07 0.09 0.08
9/Mix M	Methane	0.06 0.08 0.04	0.09 0.08	0.04	0.03	0.04	0.02	0.01	0.05	Quarterly 3/Mix M	Methane	0.04 0.05 0.04
No. 77	MeOH Method	၊၊မွ်		I	I		I	Ι	gC	s Board, " No. 776	MeOH Method	8 8
License	MeOH	NA NA 0.12	NA NA	NA	ŅĄ	NA	NA	NA	0.12	r Resource	MeOH	0.14 NA 0.17
/ictoria/	HCHO Method	Hơng Hơng	HdNQ	HdNQ	I	I	HdNQ	ļ	HdNQ	lifornia A) /ictoria/	HCHO Method	HdNQ
Crown \	НСНО	0.015 0.016 0.025	0.005 0.008	0.019	NA	NA	0.038	NA	0.016	5-10Ca Orown \	НСНО	NA NA 0.036
Ford	NOx	0.7 0.89 0.57	0.65 0.66	0.61	0.64	0.61	0.53	0.61	0.58	Ford (NOx	0.75 0.92 0.68
-,87	8	1.44 0.98 1.11	1.46 1.35	1.01	1.21	1.05	1.54	1.75	1.06	78°– 78°–	8	0.64 0.33 0.94
ole A-15	Odometer	187 205 7666	7696 10862	10888	10907	10925	10951	10962	20497	urces Board	Odometer	200 218 8584
Tal	Fuel	85 50 85	00	85	85	85	100	100	85	uir Reso Tat	Fuel	85 50 85
	Air	Air Air Air	Air Air	Air	Air	Air	Air	Air	Air	fornia A	Air	Air Air Air
	EGR	EGR EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	-4Cali	EGR	EGR EGR EGR
	Catalyst	TWC TWC TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	s: Rows I	Catalyst	TWC TWC TWC
	Row	- 0 m	4 v	9	7	~	6	10	П	Source	Row	- 11 m

Not for Resa

API PUBLICATION 4262

New fuel injectors, spark plugs, and fuel pres-sure regulator at 3318 miles

|||

188

0.08

0.08 0.04 0.09

A N N N N N

HdNQ HdNQ

0.007 0.022 0.01

0.8 0.75 0.72

0.85 1.29 0.99

8616 22155 22190

0 85 25

Air Air Air

EGR EGR

TWC TWC TWC

4 % 0

Sources: Rows 1-4-California Air Resources Board (1988), Rows 5 and 6-California Air Resources Board (1989).

API PUBL*4262 90 🛲 0732290 0095322 7 🖿

METHANOL VEHICLE EMISSIONS

				-
	Comments		Comments	
:cu: FB		E E		
jection/E	OMHCE	0.16 0.16 0.16 0.17 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23	OMHCE	
Euel In	THC Method	A A	THC Method	
lethod	THC	0.07 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	ТНС	
3/Mix M	Methane	0.04 0.05 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09	Methane	NA 0.09 0.14 0.03
: No. 96	MeOH Method	319/Mi	MeOH Method	8818
License	MeOH	NA NA NA NA NA NA NA 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	МеОН	0.5 0.32 NA 0.681
/ictoria/	HCHO Method	DNPH DNPH DNPH DNPH DNPH DNPH DNPH DNPH	HCHO Method	HdNQ
Crown \	нсно	0.008 0.017 0.017 0.017 0.017 0.018 0.016 0.016 0.005 0.0038 0.007 0.008 0.007 0.007 0.008 0.007 0.008 0.0016 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0016 0.0028 0.0009 0.0028 0.0009 0.0009 0.0008 0.0009 0.0008 0.0009 0.0009 0.0008 0.0009 0.0008 0.0009 0.0008 0.0009 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0008 0.0009 0.0008 00008 000008 00008 00008 000008 00008 00008 00008 00008 0000	нсно	NA NA 0.06 0.087
Ford	NOx	0.5 0.67 0.88 0.83 0.84 0.84 0.55 0.57 0.73 0.77 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	ŇŎ	0.55 0.43 0.44 0.43
-,87	8	0.51 0.37 0.42 0.42 0.32 0.37 0.56 1.41 1.12 1.05 0.67 0.65 0.73 0.65 0.95 1.03 0.95 0.73 0.65 0.95 1.03 0.95 0.73 0.67 0.65 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	S	4.12 3.46 5.03 5.41 (1986).
ble A-17	Odometer	242 261 8357 8357 8357 8351 8351 8786 10576 14983 15019 15139 15139 15139 15139 15139 15139 15139 15139 15133 15201 21174 21127 2112	Odometer	4553 9938 9967 16739 rces Board
Та	Fuel	85 85 85 85 85 85 85 85 85 85 85 85 85 8	Fuel	90 86 85 85 85 r Resou
	Air	Air Air Air Air Air Air Air Air Air Air	Air	Air Air Air Air Air
	EGR	EGR EGR EGR EGR EGR EGR EGR EGR EGR EGR	EGR	EGR EGR EGR EGR
	Catalyst	TWC TWC TWC TWC TWC TWC TWC TWC TWC TWC	Catalyst	TWC TWC TWC TWC : Rows 1-
	Row	Nource Source So	Row	1 2 3 4 Source

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

49

m
17
<u> </u>
~
-
~~
\circ
ш
5
Ę
0
÷
Ū.
<u> </u>

<u> </u>
U
O
T.
ĸ
2
÷
Ū.
Ň
~
~
.≏
5
<
ന
~
· • • •
8
ő
80.00
lo. 80
No. 89
» No. 89
se No. 89
ise No. 89
inse No. 89
ense No. 89
icense No. 89
License No. 89
/License No. 89
rt/License No. 89
ort/License No. 89
cort/License No. 89
scort/License No. 89
Escort/License No. 89
Escort/License No. 89
d Escort/License No. 89
ird Escort/License No. 89
ord Escort/License No. 89
Ford Escort/License No. 89
8 Ford Escort/License No. 89
3 Ford Escort/License No. 89
83 Ford Escort/License No. 89
-'83 Ford Escort/License No. 89
9—'83 Ford Escort/License No. 85
9
-19
A-19'83 Ford Escort/License No. 89
A-19-33 Ford Escort/License No. 89
e A-19
ile A-19-***********************************
ble A-19-***********************************
able A-19-***********************************

Dour	14400	000 1		-	ī	Ċ			НСНО		MeOH			THC		
	Catalyst	ECF.	АП	Luci	Uaometer	2	NC [*]	нсно	Method	MeOH	Method	Methane	THC	Method	OMHCE	Commen
-	TWC	EGR	Air	6	20245	3.58	0.64	0.062	DNPH	AN		AN				
2	TWC	EGR	Air	90	20267	3 65	0.67	0.070	DNPH	0.67	CC CC	120				
						2	10.0	112-20		70.0	2	7070	ł	I		
'n	TWC	EGR	Air	85	31790	6.96	0.67	0.08	HdNQ	0.611	ပ္ပ	0.61	0.52	S	I	
4	TWC	EGR	Air	85	31835	6.24	0.72	0.09	HdNC	AN N	ļ	NA				
												4 7 6 7				
Source	e Rouve 1_	4Calif	A cimo	ir Daeo	/ Poor Doord	1001										
					Unices Doald	1700).										

									HCHO		MeOH			THC		
Row	Catalyst	EGR	Air	Fuel	Odometer	8	Ň	нсно	Method	MeOH	Method	Methane	THC	Method	OMHCE	Comments
-	TWC	EGR	Air	6	4007	3 34	0.55	0.076	DUDU	NI N		- 0	NI N			
•)			2	コンント		3	07070			1	0.1	R Z	I	I	
6	TWC	EGR	Air	6	5030	2.64	0.57	0.024	HdNQ	0.51	g	0.09	0.11	ပ္ပ	[
Sourc	e: Rows 1 &	and 2-C	alifomi	a Air R	esources Boa	rd (1986	5									

Table A-21----'83 Ford Escort/License No. 571/Mix Method: Carburetion/ECU: NFB

Row	Catalvst	EGR	Air	la la	Odometer	ę	QN	OHUH	HCHO		MeOH			THC		(
						3	× ×		INTERIOO	INICOLI	INICIIION	Mernane	JEI	Method	UMHCE	Comments
I	TWC	EGR	Air	60	5437	2.56	0.52	0.034	HdNC	NA		0.06	V N			
ſ	Citt			8								00.0	ç	I		
1	זאר	252	AII	R	1500	2.28	45.0	0.035	HdND	0.459	СG	0.06	0.08	с С]	
Sourc	e: Rows 1 ¿	and 2-C	alifornia	a Air Re	esources Boar	rd (1980	().									

1									НСНО		MeOH			THC		
Row	Catalyst	EGR	Air	Fuel	Odometer	8	Ň	нсно	Method	MeOH	Method	Methane	THC	Method	OMHCE	Comments
-	TWC	EGR	Air	6	6044	2.63	0.8	NA		NA		0.03	V N			
¢	CIENT		:									2.22	ç		1	
4		ECK	Air	6	6062	3.07	0.92	0.082	HdNQ	0.37	С С	0.04	٩Z	ĺ		
¢							1	,)					
n	זאר	ËČK	AII	8	/426	3.14	0.82	0	DNPH	0.51	ပ္ပ	0.04	٩Z	I	[
4	UML UML	аСц	Δir	20	7420	2 00	220	NI A								
•			2	6	11.17	00.0	C/-0		I	AN A	I	10.0	۲Þ	ļ		
Courses	Down 1	A 0.155			-	10001										
5000	-1 SWON -1		OTHIA A.	IT Keso.	Irces board (1980).										

API PUBLICATION 4262

0732290 0095323 9

API PUBL*4262 90 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitter

Table A-23---'82 GM Citation/License No. 112/Mix Method: Fuel Injection/ECU: NFB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Comments	Mid-range GC not available so THC by GC not calculated			JU: FB	Comments										Indiana hara ali ali and and and and	New computer cmp, spark piugs, and optical sensor on 9/88.		-										
OMHCE				jection/EC	OMHCE	AN AN	0.45	NA	₹ X	4 Z Z	AN AN	NA	AN NA	AN .	AN C	17-0	V N	0.37	0.34	0.30	10.0	0.24	0.25	0.43	0.39			
THC Method	1			Fuel In	THC Method	000	38		Ð		<u>e</u>	FID	FID	Œ	0F	5	1	e (Ð	0H DE	26	Ē	FID	FID	FID	ပ္ပ	50	38
THC	NA	NA NA NA		ethod:	THC	0.1	0.24	NA	0.311	0.400	0.409	0.154	0.174	0.304	0.301	0.11	AN	0.361	0.327	0.293	0 155	0.018 100	0.22	0.418	0.382	V N	A 2	t N
Methane	0.02	0.03 0.01 0.03 0.03		3/Mix M	Methane	0.04	0.13	0.11]	l		1	ł	I	13	0.06	0.06			ļ	ŀ		ŀ	I	1	0.07	0.0	0.13
MeOH Method	ដ្ឋ	88888		No. 65	MeOH Method	ပ္ပ	၂ ပိ	I	ទទ	29	1	S	ß	ł	18	3	l	ទួ	ပ္ပ	e S S				3	I	I	١	
МеОН	0.2	0.55 0.38 0.351 0.26		License	МеОН	0.19 NA	0.36	NA	0.362	0.421	AN NA	0.03198	0.07887	NA	NA	0.19	NA	0.04518	0.04151	0.08602	0.0815	0.21776	0.21301	NA	NA	NA	A Z	AN AN
HCHO Method	HAND			Victoria/	HCHO Method		HdND	HAND	HANO	HdNO	HUNH	HAND	HdNQ	HdNQ	DNPH	HANO	HdNQ	HdNQ	HAND	Hand	HAND	HAND	HdNU	HANO	HdNO	HdNQ	Hand	HANO
нсно	0.039	A A A A X X X X X X X		Crown \	НСНО	AN NA	0.03	0.004	0.04248	0.03827	06600.0	0.02767	0.03119	0.01146	0.01154	0.04	NA	0.01887	0.01807	0.02607	5002010	0.041/4	0.05492	0.0125	0.01214	0.044	0.045	0.015
NO	0.63	0.87 0.8 0.68 0.83		Ford (Ň	0.51	0.52	0.7	0.388	0.47	90.0	0.696	0.73	0.903	0.948	0.63	0.63	0.943	0.844	0.817	0./08	0.097	0706	0.876	0.845	0.78	0.72	1.03 1.03
8	3.76	6.6 11.5 13.9 11	.1986).	-,87	8	0.65	5 7	1.18	2.278	2.057	1011	0.947	1.135	0.599	0.788	1.39	1.68	0.802	0.806	0.945	0.956	1.91	1 270	0.85	0.795	2.4	1.52	1.65
Odometer	30652	41547 41566 41593 41605	rces Board (ole A-24-	Odometer	388	400 7630	7663	10006	10026	10046	14126	14144	14169	14187	23186	23205	26049	26087	26112	26150	26175	01707	26281	26299	30321	30355	30395 30428
Fuel	8	85 85 85	r Resou	Tat	Fuel	88	У X	30	85	85	0 0	o 28	S5	0	0	85	85	25	25	ß	20	\$ 3	3 %	, c	0	85	85	<u>ິ</u> 10
Air	Air	Air Air Air	omia Ai		Air	Air	Air Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	AII <	Air	Air	Air	Air	Air Air
EGR	EGR	EGR EGR EGR	-5Calif		EGR	EGR	<u>3</u> 22	EGR EGR	EGR	EGR	EGR	A DE	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR		A D A	EGR	EGR	EGR	EGR
Catalyst	TWC	TWC TWC TWC	z: Rows 1-		Catalyst	TWC		TWC	TWC	TWC	TWC		TWC	TWC	TWC	TWC	TWC	TWC	TWC.	TWC	TWC	TWC		TWC	TWC	TWC	TWC	TWC
Row	-	0 m 4 n	Source		Row		n 1	0 4	S	9	r 0	× 0	01	Π	12	13	14	15	16	17	18	19	₹;	35	12	54	25	57 52

Not for Resale

METHANOL VEHICLE EMISSIONS

API PUBL*4262 90 🖿 0732290 0095324 0 🔳

51

Sources: Rows 1–4—California Air Resources Board (1988); Rows 5–12 and 15–23—Horn and Hoekman (1989); Rows 13 and 14—California Air Resources Board, "Quarterly Summary" (12/88–2/89); Rows 24–27—California Air Resources Board (1989).

•

VFB	Comments	Tested after carburetor repairs Tested with new converter and carburetor float	4FB	Comments	Tested with new converter and carburetor float	:CU: FB	Comments											
n/ECU: N	OMHCE	NA NA 0.61 0.38 NA	n/ECU: N	OMHCE	NA NA 0.68 0.62 NA). ljection/E	OMHCE	0.13	NA N	A N A N	NA 0.31	0.34	0.38	0.63 0.64	0.15	0.18 0.19	0.16 NA	A N N N N
rburetio	THC Method	ଟ । ଟିମ୍ବି ମ	2/88-2/89 buretio	THC Method	11881	^{2/88–2/89} Fuel In	THC Method	မ္မ	E	ÐÐ	EE		9E1		FID	UF (F	E S	ပ္ပ်ပ္ပ
od: Ca	THC	1.88 NA 0.3 0.24 0.21 NA	ımary" (I od: Cal	THC	NA NA 0.41 0.34 NA	mary" (1 lethod:	THC	0.07	0.367	0.168	0.171 0.307	0.334	0.373	0.624 0.624	0.14	0.175	0.144 0.1	0.45 NA
x Meth	Methane	0.17 NA 0.09 0.1 0.1	terly Sun x Meth	Methane	0.13 0.13 0.16 0.21 0.09	terly Sum D/Mix N	Methane	0.04	8			1 1	Ι		Ļ		0.03	0.08
484/Mi	MeOH Method	ଓ । ଓ ଓ ଓ ।	rrd, "Quai 485/Mi	MeOH Method	୧୧୧୫ ୧	ard, "Quar No. 61(McOH Method	g					 .		1			
inse No.	MeOH	4.83 NA 0.63 0.43 0.36 NA	sources Board	МеОН	0.73 0.55 0.57 0.57 NA	sources Bo License	МеОН	0.12 NA	NA	0.19698	A N N N	AN NA	A Z	A A N N	0.0918	0.13786	0.12967 NA	AN NA
ort/Lice	HCHO Method	HdNQ HdNQ HdNQ HdNQ	iia Air Re ort/Lice	HCHO Method	HdNQ	ia Air Re ∕ictoria/	HCHO Method	HdNQ	HdNQ	HAND	HdNQ	HdNQ	HdNQ	HAND	HdND	DNPH	Hand	Hdnq
ord Esc	нсно	NA 0.12 0.07 0.032 0.032 0.036		нсно	NA NA 0.043 0.073 0.1		нсно	0.026	0.00633	0.03165	0.03508 0.00716	0.00734	0.00641	0.00704	0.02733	0.03716	0.04087 0.03	0.017 0.006
-'83 F	NOx	0.64 0.69 0.76 0.55 0.66 0.41	Row 6- -'83 Fi	Ň	0.88 0.85 0.27 0.29 0.68	Ford (NOx	0.67	0.696	0.67	0.653 0.77	0.718 0.689	0.664	777.0	0.761	0.809	0.823 0.71	0.83 0.89
-25-	S	35.33 36.23 4.43 3.21 3.76 4.62	((1988)) 26	8	4.36 4.77 4.18 6.05 8.46	(8891) I	8	0.85	3.286	0.924	1.065 1.18	2.069 2.307	3.242	4.364	0.597	0.818	0.737	1.39 1.08
Table /	Odometer	17672 17705 17754 19594 24379 31377	urces Board Table A	Odometer	13480 13529 17984 22773 28378	ble A-27	Odometer	5984 6017	15263	15307	15326 15357	15377 15395	15413	21467	21492 21521	21549	21568 29178	29211 29249
	Fuel	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	vir Reso	Fuel	85 85 85 85 85 85	Air Resc Ta	Fuel	85 85	00	°25	85 0	00	00	00	85 85	28 28	88	0 52
	Air	Air Air Air Air	ifornia A	Air	Air Air Air Air	ifomia /	Air	Air Air	Air	Air	Air Air	Air Air	Air	Air	Air	Air	Air Air	Air Air
	EGR	EGR EGR EGR EGR EGR EGR EGR	-5Cal	EGR	EGR EGR EGR	-4Cal	EGR	EGR	EGR	EGR	EGR BGR	EGR	EGR	EGR	EGR EGR	EGR	EGR	EGR
	Catalyst	TWC TWC TWC TWC TWC	ss: Rows l	Catalyst	TWC TWC TWC TWC	s: Rows 1	Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC CWT	TWC	TWC	TWC
	Row	- 2 6 4 5 9	Source	Row	- 0 m 4 v	Source	Row	- 0	ς η	· 10	9	∞ σ	10	12	13 14	: 2 ;	11	18 19

API PUBL*4262 90 📟 0732290 0095325 2

API PUBLICATION 4262

Sources: Rows 1 and 2—California Air Resources Board (1988); Rows 3-16—Horn and Hoekman (1989); Rows 17-19—California Air Resources Board (1989).

52

API PUBL*4262 90 🖿 0732290 0095326 4 📟

C EN Air S SS ZA Out ODS Der NA C OL OL OL OL OL OL OL NA T NA	Cataly	st EG	k Air	Fuel	Table A	-28- 00	-,88 - NO _*	N Corsi HCHO	ica/Licel HCHO Method	nse No. MeOH	AHU/M MeOH Method	ix Metho Methane	Dd: Fu	el Injecti THC Method	on/ECU: FB OMHCE	Comments
B6R AI B5						3										
Bits Air S <td><i>r</i> •</td> <td>EG</td> <td>c Air</td> <td>85</td> <td>3956</td> <td>2.62</td> <td>0.47</td> <td>0.038</td> <td>HdNQ</td> <td>0.25</td> <td>ပ္ပ</td> <td>0.02</td> <td>0.13</td> <td>3</td> <td>0.26</td> <td></td>	<i>r</i> •	EG	c Air	85	3956	2.62	0.47	0.038	HdNQ	0.25	ပ္ပ	0.02	0.13	3	0.26	
EIG AII O	r۱	Ē	R Air	85	3990	2.97	0.47	0.036	HANO	NA	I	0.02	AN 2	l	NA	
BGR Att 9 473 253 04 0031 DNFH 0.6 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7	<i>r</i> >	БG	R Air	20	4044	3.17	4.0	0.031	HANG	AN S	I	40.0	A Z	1	NA NA	
Risk Air 9 413 213 614 014 015 055 011 011 055 011 011 055 011 011 055 011	r •	Ö	R Air	50	4075	3.25	0,4	0.017	Hand	NA I	1	0.04	Ϋ́		NA 200	
EIGR Air S 419 10.31 0.31 0.32 0.12 0.25 0.33 0.3		Ē	R Air	50	4133	2.93	4.0	0.031	HAND	0.18	3	0.04	0.17	36	07.0	
BIR Air S 400 117 0.44 0.035 DNH M C 0.03 CC 0.03		Б Ш	R Air	50	4191	1.31	0.41	0.031	HdND	0.12	с С	0.02	0.12	25	0.19	
EXR Air 6409 110 045 055 DNH 0.35 CC 0.03 CC <td></td> <td>EG</td> <td>۶ Air</td> <td>ŝ</td> <td>4225</td> <td>1.41</td> <td>0.41</td> <td>0.026</td> <td>HdNQ</td> <td>NA</td> <td>ł</td> <td>0.03</td> <td>AN</td> <td>I</td> <td>NA</td> <td></td>		EG	۶ Air	ŝ	4225	1.41	0.41	0.026	HdNQ	NA	ł	0.03	AN	I	NA	
ECR Arr 10 453 123 0.053 DXP 0.03 CC 0.23 EID NA ECR Arr 0 10203 2.34 0.012 DYPH NA C 0.23 FID NA ECR Arr 0 10203 2.34 0.13 DYPH NA C 0.23 FID NA ECR Arr 0 10700 2.34 0.13 DYPH NA C 0.23 DYPH NA DYPH NA C 0.23 DYPH	1.	EG	ک Air	85	4509	1.17	0.46	0.036	HdND	0.25	с С	0.02	0.11	ç	0.23	
EGR Ar 0 466 154 0.13 NA - NA N		БG	ک Air	100	4548	1.23	0.45	0.053	HdNQ	0.49	ပ္ပ	0	0.03	ပ္ပ	0.27	
FIG Mr 25 4(6) 13 0.03 NMH 0.03 FID NM EGR Mr 0 10194 1.2 0.013 NNH NA		EG	ک Air	0	4624	1.64	0.13	ΑN	1	AN	I	0.02	ΝA	I	NA	
EGR Air 0 1004 21 0.001 DNH NA 0.35 FID NA ECR Air 0 1034 21 0.0021 DNH NA 0.35 FID NA ECR Air 0 14602 243 0.0071 DNH NA 0.35 FID NA ECR Air 0 14601 243 0.0073 DNH NA 0.35 FID NA ECR Air 0 14601 243 0.0073 DNH NA 0.35 FID 0.38 ECR Air 0 14601 243 0.0073 DNH NA 0.35 FID 0.38 ECR Air 0 1470 0.0732 DNH NA 0.35 FID 0.38 ECR Air 0 200 DNH NA		EG	۶ Air	3	4666	1.3	0.2	0.013	HAND	0.02	ပ္ပ	0.02	0.24	ខ្ល	0.25	
EGR Air D 1023 2.3 0.20 DMH MA C 0.33 FD MA EGR Air 0 1460 2.54 0.0075 DNH NA		E.	Air Air	0	10194	2.1	0.2	0.0121	HdNQ	NA	1	l	0.35	FID	NA	
EGR Mi S 1027 147 0.53 0.0032 DNH NA EGR Air 0 14602 2.54 0.0032 DNH NA			Air Air	o c	10230	23	0.21	0.0094	HdNQ	NA	ł	I	0.35	Π	NA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		о С	Air	, 2	10257	1 47	0.5	0.0326	HUND	0.158	S	l	0.24	FID	NA	
Edr. Air 0 1460 2349 0.0075 DNH NA - 0.379 FID 0.38 ECR. Air 0 14600 2344 0.174 0.334 DNH NA - 0.375 FID 0.28 ECR. Air 0 14700 2364 0.0747 DNH NA - 0.375 FID 0.28 ECR. Air 0 2064 1348 0.3945 DNH NA - 0.375 FID 0.38 ECR. Air 8 20740 3.056 DNH NA - 0.375 FID 0.38 ECR. Air 8 2070 0.0375 DNH NA - 0.04 NA - 0.35 FID 0.38 ECR. Air 8 3148 2.77 0.43 NNH NA - NA NA NA ECR. Air 8 3174			Air Air	9 X	10275	163	0.54	0.0321	HdNQ	NA		I	0.23	FID	NA	
CIER Air 0 14700 2.344 0.114 0.0354 DNH 0.366 FID 0.33 <th< td=""><td></td><td>56</td><td>Air Air</td><td>3 <</td><td>14662</td><td>575 6</td><td>0.00</td><td>0.00782</td><td>HdNC</td><td>A Z</td><td></td><td> </td><td>0.379</td><td>FID</td><td>0.38</td><td></td></th<>		56	Air Air	3 <	14662	575 6	0.00	0.00782	HdNC	A Z			0.379	FID	0.38	
EXR. Air Ev 14300 1.638 0.324 0.2030 0.2031		32		,	70011			201000	DNDH	A N]	0 376		0 38	
Bit Air S 14380 1.036 0.035 FID 0.035 EGR Air 0 20043 0.03543 DNPH NA		5	AIT :	2	14/00	+		101000							0.03	
Edik Air 5 1438 2.041 0.354 FID 0.35 FID 0.35 Edik Air 0 2073 1034 0.254 FID 0.35 Edik Air 0 2073 1034 0.254 FID 0.35 Edik Air 0 2073 1346 0.355 0.00715 DNPH NA 0.355 FID 0.35 Edik Air 85 2060 1386 0.570 0.035 DNPH NA 0.355 FID 0.35 Edik Air 85 2163 0.370 0.57 0.038 DNPH NA 0.35 FID 0.35 Edik Air 85 3146 2.74 0.43 NNH NA NA NA NA NA Edik Air 83 3167 3.23 0.35 NA NA NA NA NA		5	AIL	\$:	14801	1.695	0.524	5605U.U 4	HAND	16022.0	20	I	007-0		(7.0 0 0	
EGR Air 0 2073 1314 0.23 0.0071 DNPH NA 0.375 FID 0.37 FID 0.31 FID 0.		EG	R Air	\$	14988	160.2	U.364	0.0.5248	HANG	106/5.0	5	1	407.0	1	07-0	
EGR Air 0 20742 1342 0.031 DNPH NA 0.315 FID 0.43 FID 0.43 FID 0.43 FID 0.43 FID 0.43 FID 0.43 FID 0.41 FI		Ē	۶ Air	0	20684	2.314	0.225	0.00779	HAND	AN	ŀ	I	0.262		15.0	
EGR Air 0 20740 3056 0.24 00073 DNPH NA 0.41 FID 0.41 EGR Air 55 20766 1488 0.3037 DNPH NA 0.24 FID 0.23 EGR Air 55 20822 1.86 0.525 0.0308 DNPH NA 0.25 FID 0.23 EGR Air 55 1047 NA DMPH NA 0.03 NA NA EGR Air 53 31617 5.23 0.45 NA DNPH NA NA NA EGR Air 53 1617 5.25 0.035 NA NA NA EGR Air 0 31743 4.00 0.35 NA NA NA EGR Air 0 31743 4.00		Ē	а Air	0	20722	1.942	0.235	11600.0	HdNQ	AN		l	0.375	ΗD	0.38	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		EG	۶ Air	0	20740	3.056	0.24	0.00763	HdNO	NA			0.41	FID	0.41	
EGR Air S2 20805 1886 0.525 0.03822 DNPH NA 0.256 FID 0.28 EGR Air 85 3158 1.36 0.502 0.03083 DNPH NA 0.25 FID 0.28 EGR Air 85 31617 5.23 0.45 NA DNPH NA 0.03 NA NA EGR Air 85 31617 5.23 0.45 NA DNPH NA 0.03 NA NA EGR Air 0 31743 4.00 0.35 NA NA EGR NA NA EGR Air 0 0.35 NA 0.03 NA NA 2 31743 4.00 0.35 NA 0.03 NA NA 2 31743 <td< td=""><td></td><td>EGI</td><td>۶ Air</td><td>85</td><td>20766</td><td>1.488</td><td>0.495</td><td>0.03197</td><td>HdNQ</td><td>0.28091</td><td>ပ္ပ</td><td>l</td><td>0.206</td><td>FID</td><td>0.23</td><td></td></td<>		EGI	۶ Air	85	20766	1.488	0.495	0.03197	HdNQ	0.28091	ပ္ပ	l	0.206	FID	0.23	
EGR Air 85 20822 1361 0.52 NNH NA 0.25 FID 0.28 EGR Air 85 3148 2.77 0.42 NA NA NA NA EGR Air 85 31617 5.23 0.45 NA DNPH NA 0.03 NA NA EGR Air 0 31743 5.40 0.41 NA 0.03 NA NA EGR Air 0 31743 4.00 0.35 NA NA NA EGR Air 0 31743 4.00 0.35 NA		EG	۶ Air	85	20805	1.886	0.525	0.02822	HdNQ	0.37907	ပ္ပ	I	0.256	FID	0.28	
EGR Air 85 31468 2.77 0.42 NA NA NA NA EGR Air 85 31610 2.68 0.41 NA NA 0.03 NA NA EGR Air 85 31610 2.68 0.41 NA DNPH NA 0.03 NA NA EGR Air 85 31725 3.64 0.34 NA 0.03 NA NA EGR Air 85 31725 3.64 0.34 NA 0.03 NA NA EGR Air 85 31743 4.00 0.35 NA NA NA 5I-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989); NA NA 5I-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989); NA NA 5I-11Cali		EG	۶ Air	85	20822	1.861	0.502	0.03088	HANO	AN	ł		0.25	FID	0.28	
EGR Air 85 31588 1.93 0.61 NA DNPH NA - 0.03 NA - NA EGR Air 85 31617 5.23 0.45 NA DNPH NA - 0.03 NA - NA EGR Air 85 31617 5.23 0.45 NA DNPH NA - 0.03 NA - NA EGR Air 85 31743 4.00 0.35 NA - 0.03 NA - NA EGR Air 0 31743 4.00 0.35 NA - 0.03 NA - NA \$FIII-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989). NA - NA - NA \$I-11-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989). - NA - NA Table A-29187 Ford Crown Victoria/License No.		ЮЩ	ک Air	85	31468	2.77	0.42	AN	HdND	NA	I	0.04	ΝA		NA	
EGR Air 85 31617 5.23 0.45 NA DNPH NA - 0.03 NA - NA EGR Air 85 31617 5.23 0.41 NA DNPH NA - 0.03 NA - NA EGR Air 85 31743 4.00 0.33 NA DNPH NA - 0.03 NA - NA 5 EGR Air 0 31743 4.00 0.33 NA DNPH NA - NA - NA 5 L-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989). NA - NA - NA 5 L-11California Air Resources Board (1988); Rows 12-25Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989). NA - NA - NA 7 Edit Air Fuel A-29''87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FB - THC THC Macon		EGF	ک Air	85	31588	1.93	0.61	AN	HdNQ	NA	1	0.03	NA		NA	
EGRAir85316802.680.41NADNPHNA-0.03NA-NAEGRAir85317434.000.35NADNPHNA-0.03NA-NA5BGRAir85317434.000.35NADNPHNA-0.03NA-NA5FILI-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA-NA5I-II-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA5I-II-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA5I-II-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA5I-II-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA5I-II-California Air Resources Board (1983); Rows 12-25-Horn and Hoekman (1989); Rows 26-31-California Air Resources Board (1989)NA6AirFuelOo,HCHOMeOHMeOHTHC7AirFuelOoNoHCHOMeOHMeOH6Air85159300.40.03DNPH0.12OAOAOA6Air85159300.4<	•	FGF	e Air	85	31617	5.23	0.45	Ϋ́	HdNQ	AN	l	0.08	AN	1	NA	
EGRAir85317253.640.34NADNPHNA-0.07NA-NA5J-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989).NA-NA-NA5J-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989)NA-NA5J-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989)NA-NA4Table A-29''87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FBTHCNA4EGRAirFuelOdometerC0NO,HCHOMeOHMeOHTHC5EGRAir8523910.70.340.022DNPH0.06GC0.040.07GC0.11Uncell dedicated M85 vehicle6EGRAir85159300.40.360.03DNPH0.12GC0.040.07GC0.11Uncell dedicated M85 vehicle			Air Air	85	31680	2.68	0.41	NA	HdND	AN	I	0.03	NA	۱	NA	
C EGR Air 0 31743 4.00 0.35 NA DNPH NA - 007 NA - NA Is 1-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989). - 0.07 NA - NA Is 1-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989). - NA - NA Is 1-11California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 26-31California Air Resources Board (1989). - NA Izable A-29'87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FB - - NA st EGR Air Fuel Odometer Co No, Hothod Method Method Method Method Method Method Comments c EGR Air 85 15930 0.4 0.03 DNPH 0.12 GC 0.04 0.09 GC 0.16 Unocal dedicated M85 vehicle			Air o	58	31775	3.64	034	ΝA	DNPH	٩Z	ļ	0.05	ΝA	ļ	NA	
Image: Signal sector of the	1		 Air 	30	31743	4.00	0.35	AN	HUND	NA	1	0.07	ΝA	I	NA	
 I-IICalifornia Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Kows 20-31California Air Resources Board (1989); Rows 12-25-Horn and Hoekman (1989); Rows 20-31California Air Resources Board (1989); Rows 12-25-Horn and Hoekman (1989); Rows 12-31California Air Resources Board (1989); Rows 12-25-Horn and Hoekman (1989); Rows 20-31California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 20-31California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 12-31California Air Resources Board (1988); Rows 12-25-Horn and Hoekman (1989); Rows 12-31California Air Resources Board (1988); Rows 12-31State Air Air Resources Board (1985); Rows 12-31State Air Air Resources Air Air Resources Air Air Resources Air Resources Air Air Resources Air Resourc		1			1		1					ie ve	: (-		
Table A-29—'87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FB with EGR Air Fuel Odometer CO NO _x HCHO Method Method Methane THC Method OMHCE CU: FB C EGR Air 85 2391 0.7 0.34 0.02 DNPH 0.12 GC 0.04 0.07 GC 0.11 Unocal dedicated M85 vehicle		s I–11–	Californi	a Air Re	sources Boal	rd (1988	3); Row	s 12–25—I	Horn and H	loekman (1	1989); Kov	vs 26-31-	-Califort	na Air Kes	ources board (1989).	
Table A-29—'87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FB vst EGR Air Fuel Odometer CO NO _x HCHO Method Method Method Method Method Method OMHCE OII Unocal dedicated M85 vehicle C EGR Air 85 15930 0.4 0.02 DNPH 0.12 GC 0.11 Unocal dedicated M85 vehicle																
Table A-29—'87 Ford Crown Victoria/License No. 748/Mix Method: Fuel Injection/ECU: FB with EGR Air Fuel Odometer CO NO _x HCHO Method Method Method Method Method OMHCE COMments C EGR Air 85 15930 0.4 0.02 DNPH 0.16 CO 0.11 Unocal dedicated M85 vehicle																
st EGR Air 85 15930 0.4 0.02 DNPH 0.06 GC 0.04 0.07 GC 0.11 Unocal dedicated M85 vehicle EGR Air 85 15930 0.4 0.36 0.012 DNPH 0.12 GC 0.04 0.07 GC 0.16 Unocal dedicated M85 vehicle				Ļ	00 0 014:	0, 10	С Ц		/intoria/	l iconeo	No 74	R/Miv M	athod.	Fiid Ini	action/ECU - ER	
st EGR Air Fuel Odometer CO NO _A HCHO Method Method </td <td></td> <td></td> <td></td> <td>ž</td> <td></td> <td>õ</td> <td>201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				ž		õ	201									
EGR Air 85 2391 0.7 0.34 0.022 DNPH 0.06 GC 0.07 GC 0.11 Unocal dedicated M85 vehicle EGR Air 85 15930 0.4 0.36 0.12 GC 0.04 0.09 GC 0.16 Unocal dedicated M85 vehicle		st EGF	د Air	Fuel	Odometer	8	NO	нсно	HCHO Method	MeOH	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
EGR Air 85 15930 0.4 0.36 0.03 DNPH 0.12 GC 0.04 0.09 GC 0.16 Unocal dedicated M85 vehicle		ECF	Air	85	1620	07	0.34	0.022	HANO	0.06	9	0.04	0.07	g	0.11 Unocal de	dicated M85 vehicle
			~ Air	3 23	15930	0.4	0.36	0.03	HdNQ	0.12	88	0.04	0.09	6	0.16 Unocal de	dicated M85 vehicle
t Automatic Att Automatic Att Automatic Att Beautives Roard "Outerterly Summan" (17/XX_7/X0)		1 C 1		,	11) based and	000), D.	C	منسمانات	A i- Decour	and Board	v[nather],	Cummun.	° (12/88	(08/6		

Not for Resale

METHANOL VEHICLE EMISSIONS

53

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

				Ц	ble A-30-	- 87	Ford (Crown	Victoria/	License	No. 745	9/Mix M∉	ethod:	Fuel Inj	ection/E	CU: FB
Row	Catalyst	EGR	Air	Fuel	Odometer	8	NOx	нсно	HCHO Method	MeOH	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
7 7	TWC	EGR	Aìr Air	85 85	2511 15420	0.9 0.4	0.37 0.32	0.017 0.028	HdNQ	0.04 0.06	ဗ္ဗဗ္ဗ	0.04 0.06	0.06 0.08	ខ្លួន	0.09 0.12	UNOCAL dedicated M85 vehicle UNOCAL dedicated M85 vehicle
Source	cRows 1 a	nd 2—Ca	alifornia	Aîr Re	sources Boar	т ў , ф	arterly St	ummary"	(12/88–2/	39).			·			
					<	2	H C	Ċ				:	L -	:	ļ	
					lable A-	5	20 20 20	/ota Ca		ense No	0. 311/M	IX Metho	od: Fu(el Injecti	on/ECU	: FB
Row	Catalyst	EGR	Air	Fuel	Odometer	8	NOx	НСНО	HCHO Method	MeOH	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
- 0	NCAT TWC	EGR	Air Air	88	22438 22474	9.09 2.11	1.95 0.46	0.132 0.021	Hand	NA 0.25	18	0.02	NA 0.08	GC I	NA 0.2	SWRI dedicated M85 vehicle SWRI dedicated M85 vehicle
Source	c Rows 1	and 2—C	alifornia	ı Air Re	sources Boa	nÒ,, 'pı	arterly S	ummary"	, (12/88–2/	89).						
					Table A-	32 –	88 GN	A Corsi	ca/Licer	Ise No.	WPS/M	ix Methc	ъd: Fue	i Injecti	on/ECU:	E
Row	Catalyst	EGR	Air	Fuel	Odometer	8	NOx	нсно	HCHO Method	МеОН	McOH Method	Methane	THC	THC Method	OMHCE	Comments
- ~	TWC	EGR BGR	Air Air	88	3967 4256	2.87 1.69	0.39 0.97	0.023	Hand	NA NA		0.03 0.04	NA NA		NA	CSUN MeOH Marathon vehicle
Source	s: Row 1-	Califor	iia Air R	esource	s: Board, "Q	uarterly	/ Summa	ury" (12/8	8–2/89); R	ow 2-Ca	difornia Ai	r Resource:	s Board (.(686).		
					- - -	:		(:						
					Table A	-33	-'88 G	M Cors	ica/Lice	nse No.	. 945/Mi:	x Metho	d: Fue	l Injectic	n/ECU:	FB
Row	Catalyst	EGR	Air	Fuel	Odometer	8	ŇOx	НСНО	HCHO Method	МеОН	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
- 7 n	TWC TWC TWC	EGR EGR	Air Air Air	25 85 0	1697 1754 1794	1.51 2.07 2.57	0.31 0.16 0.27	0.003 0.02 0.003	HdNQ HdNQ	N N N N N N N N N N N N N N N N N N N		0.06 0.002 0.008	0.12 0.09 0.23		0.15	
Source	c Rows 1-	-3—Calif	ornia Ai	r Resou	irces Board (.(6861										
					Table A	-34	-288 G	M Cors	ica/l ice	nse No	944/Min	r Methor	d. Fue	l Iniectic	n/ECU	ä
						5	8									2
Row	Catalyst	EGR	Air	Fuel	Odometer	8	NOx	нсно	HCHO Method	МеОН	MeOH Method	Methane	THC	THC Method	OMHCE	Comments
-	TWC	EGR	Air	25	6024	1.97	0.24	NA	HdNQ	NA	I	0.03	NA	 	1	
Source	: Row 1—	-Californi	a Air Re	source	s Board (198	9).										

Not for Resale

API PUBL*4262 90 🖿 0732290 0095327 6 🖿

API PUBLICATION 4262

54

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted

out license from IHS

API PUBL*4262 90 🖬 0732290 0095328 8 📰

	Comments										Comments					Comments				Comments	Refueling (0.05 MeOH/0.15 NMHC)	
J: FB	OMHCE	0.233	0.232	0.226	0.161	0.169	occ.U				OMHCE	0.362			F	OMHCE	0.292		FB	OMHCE	I	
tion/ECI	THC Method	UC UC	<u></u>	ပ္ပ	с С	88	5			0	THC Method	ß			Injectio	THC Method	ы		/ECU: N	THC Method	FID	
I Injec	THC	0.229	0.21	0.172	0.051	0.059	600.0			SOHIC	THC	0.097			l: Fuel	THC	0.026		iretion	THC	0.49	
od: Fue	Methane	0.036	0.016	0.02	0.014	0.012	700.0			tted by \$	Methane	0.046			Method	Methane	0.008		d: Carbu	Methane	0.16	
Aix Meth	MeOH Method	2 U	ß	ပ္ပ	ß	ပ္ပင္လ	z			e Opera	MeOH Method	ы			100/Mix	MeOH Method	ខ្ល		(Method	MeOH Method	GC-I	
e VFV/N	MeOH	0.001	0.038	0.106	0.215	0.202	10/-0			² rototyp	МеОН	0.559			otype M	МеОН	0.562		cort/Mix	МеОН	0.96	
rototype	HCHO Method	HdNC	HUND	HdNC	HdNQ	HdNG	HAND			A-36F	HCHO Method	HANO			IM Proto	HCHO Method	HdNQ		Ford Es	HCHO Method	HdNQ	
GM F	нсно	0.007	0.011	0.017	0.037	0.048	0.04			Table ,	НСНО	0.05			v-37—G	НСНО	0.042		8—'83	нсно	0.12	
A-35	NO	051	0.5	0.3	0.68	0.6	000				Ň	0.66			able A	Nox	0.7		e A-3	NOx	0.65	
Table	8	162	1.34	1.89	0.88	1.2	14.I				8	2.75			Ë	8	2.48		Tabl	8	7	
	Odometer	NA	AN	NA	AN	AN 2	NA	÷.			Odometer	NA				Odometer	NA			Odometer	NA	89).
	Fuel	c	15	50	85	85	ß	T. (1990			Fuel	8	(000	.066		Fuel	100	.(066		Fuel	85	lock (19
	Air	IINK	UNK	UNK	UNK	UNK	NN	ams et a			Air	UNK	at al (1	, CI al. (1		Air	UNK	et al. (1		Air	Air	nd Brado
	EGR	INK	UNK	UNK	UNK	CNK	NNN N	6—Willi			EGR	UNK	Williams			EGR	UNK	William		EGR	EGR	Stump a
	Catalyst	TWC	TWC	TWC	TWC	TWC	D M I	e: Rows 1-			Catalyst	UNK	e. Dour 1			Catalyst	UNK	e: Row I—		Catalyst	TWC	e: Row 1
	Row	-	· 0	m	4	ŝ	٥	Sourc			Row	-	Correct	SUBOC		Row	-	Sourc		Row		Source

4 . -Ľ -4 / / A 6. Į, 4 ÷ ċ Ĩ ц С . ļ

METHANOL VEHICLE EMISSIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

55 Not for Resale

55

API PUBL*4262 90 📟 0732290

API PUBLICATION 4262

Comments OMHCE | | | | |THC Method THC Methane MeOH Method MeOH 0.836 0.836 0.739 0.779 0.779 0.779 0.779 0.028 NA NA NA NA NA NA NA NA 0.98 0.098 0.098 0.098 0.098 0.071 0.071 0.071 0.07721 0.0771 0.07721 0.0770 0.0770 0.07721 0.0771 0.07721 0.077721 0.07 HCHO Method нсно 0.0811 NA NA NA NA NA NA NA NA 0.0391 0.0387 0.0387 0.0383 0.0383 0.0383 0.0383 0.0383 0.0383 0.0383 NA NA NA NA NA NA ő 0.99 1.12 0.97 0.94 0.95 0.83 0.83 0.91 0.72 0.75 0.75 0.65 0.65 1.12 1.21 1.21 1.1 8 Odometer Fuel

Sources: Rows 1-21-Gabele et al. (1985), Rows 22-27-Smuda (1984a).

0.053 0.055 0.027 0.023 0.026 0.026

0.67

AirAir

TWC

1.02

N NA N Ň MC

M

20

TWC

WC TWC

42352858585

NO N

TWC

	Comments				Comments	
n/ECU: FB	OMHCE	NA NA		on/ECU: FB	OMHCE	NA NA
arburetio	THC Method			arburetic	THC Method	
od: C	THC			od: Ç	THC	
lix Meth	Methane			lix Meth	Methane	
o. 221/N	MeOH Method	ទួន		o. 616/N	MeOH Method	ខ្លខ្ល
ense No	МеОН	0.26 0.44		ense No	МеОН	0.12 0.62
ation/Lic	HCHO Method	HdNQ		enix/Lic	HCHO Method	HdNQ
GM Cita	нсно	0.02 0.04		3M Pho	НСНО	0.013 0.017
-`81	Ň	0.79 0.74	14).	-'81 (NO	0.42 0.07
A-40-	8	3.2 7.69	ard (198	A-41-	CO	2.47 58.99
Table	Odometer	28597 28655	ssources Bo	Table	Odometer	2325 NA
	Fuel	88 88 88	a Air Re		Fuel	88 88
	Air	Air Air	Zaliforni		Air	Air Air
	EGR	EGR	and 2—(EGR	EGR
	Catalyst	TWC	e: Rows 1		Catalyst	TWC
	Row	7 1	Sourc		Row	- 6

Source: Rows 1 and 2-California Air Resources Board (1984).

0095329

Т

56

Table A-39—'83 Ford Escort/Mix Method: Carburetion

Air

EGR

Catalyst

Row

Copyright American Petroleum Institute Provided by IHS under license with API lo reproduction or networking permitte

DWT M N N N Ž M M

¢ ≱

NFB
ü
arburetion/E
Method: C
scort/Mix N
Ford
-42—'81
Table A

Comments	THC by FID without MeOH adjustment								
OMHCE	NA	AN	AN	NA	NA	ΝA	AN	NA	
THC Method		I	ļ		I	1		ł	
THC	l	ł	l	ł	I	l	1	I	
Methane		ł	1	I	1	I	I] .	÷
MeOH Method	GC-I	1-79 1-79	1-20	GC-I	ပ္ပံ	 25	59 1-79	GC-I	
МеОН	0.461	0.311	0.447	0.149	0.093	0.213	10.544	12.388	
HCHO Method	HdNQ	HdND	HdNQ	Hand	HdNQ	HdNQ	HdNQ	DNPH	
НСНО	0.043	0.024	0.031	0.003	0.003	0.003	0.358	0.354	
NO	0.37	0.42	0.4	0.4	0.31	0.34	0.66	0.56	
8	7.26	5.63	5.21	1.56	1.46	1.53	37.04	44.49	
Odometer	6006	6045	6072	6317	6343	6387	6770	6804	
Fuel	100	100	100	100	100	100	100	100	ä
Air	Air	Air	Air	Air	Air	Air	Air	Air	h (1985)
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	-8Smit
Catalyst	TWOC	TWOC	TWOC	TWOC	TWOC	TWOC	NCAT	NCAT	e: Rows 1-
Row	-	(1	m	4	ŝ	9	7	8	Sourc

Table A-43-781 VW Rabbit/Mix Method: Fuel Injection/ECU: FB

Comments	-								
OMHCE	NA	NA	NA	NA	NA	NA	NA	NA	
THC Method		1	ł		Ι		[I	
THC	I	ł	I	I	l	I	l	I	
Methane	1	Į	1		ł	l	1	I	
MeOH Method	GC-I	1- 29	с С	GC-I	GC-I	С. Ч	GC-I	GC-I	
MeOH	0.689	0.962	1.114	0.515	0.448	0.353	0.519	0.563	
HCHO Method	HdNQ	HdNQ	HdNQ	HdNQ	HdNQ	HdNO	HdNO	HdNO	
HCHO	0.046	0.053	0.046	0.011	NA	0.01	0.037	0.029	
ŇOx	1.72	1.71	1.83	0.66	0.64	0.72	1.45	1.58	
8	3.25	3.65	3.91	0.95	0.87	0.85	2.74	2.74	
Odometer	1770	1804	1829	1432	1457	1489	2334	2360	
Fuel	100	100	100	100	100	100	100	100	
Air	No air	No air	No air	No air	No air	No air	No air	No air	n (1985)
EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	-8Smit
Catalyst	TWC	TWC	TWC	I	I	1	TWC	TWC	e: Rows 1-
Row		6	m	4	ŝ	9	7	œ	Souro

Not for Resale

Table A-44-781 Nissan 200SX/Mix Method: Fuel Injection/ECU: FB

Comments														
OMHCE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
THC Method	[I	I	ł	I		I	!	I	١	I	I		
THC		I	I	1	١	I	I	I	1	1	1	I		
Methane	1	I	l	1	1	l	I	Ι	ł	1	I	١		
MeOH Method	1	[[1	I	ł	ļ	1	ł	1	1	ľ		
МеОН	NA	NA	NA	NA	NA	Ϋ́	ΝA	NA	NA	NA	NA	NA		
HCHO Method	HdNQ	HdNG	HdND	HdNQ	DNPH	HdNQ	HdND	HdNO	HdNQ	HdNQ	HdNQ	HdNQ		
НСНО	0.256	0.267	0.112	0.111	0.082	0.082	0.062	NA	AN	NA	AN	ΝA	ļ,	
NOx	0.56	0.54	0.95	0.95	1.18	1.17	1.23	1.01	1.3	1.26	0.47	0.43		
S	16.0	0.91	- 0.97	0.73	1.68	1.89	6.36	1.41	0.66	0.81	0.55	0.54	1	
Odometer	NA	AN	ΝA	٩N	AN	AN	٩N	AN	1494	1542	1641	1593		
Fuel	100	100	100	100	100	100	100	100	100	100	100	100		:4b).
Air	I	I	I	l	[I	l	1	Air	Air	Air	Air		ida (198
EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	EGR	EGR		-12Smu
Catalyst	8	8	8	S	8	8	8	TWC	8	8	ပ္ပ	8		a: Rows 1-
Row	-	6	ŝ	4	S	9	2	×	6	10	11	5		Source

METHANOL VEHICLE EMISSIONS

API PUBL*4262 90 🖿 0732290 0095330 6 페

57

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

58		1			API PUBLICATION 4262		
Ш	Comments	Total aldehydes reported as HCHO Total aldehydes reported as HCHO		Comments		Comments	
r/ECU: F	OMHCE	A N N N N N N N N N N N N N N N N N N N	Ë	OMHCE	B B B B B B B B B B B B B B B B B B B	OMHCE	
rburetio	THC Method		/ECU: N	THC Method		THC Method	ALVI I
od: Ca	THC		Iretion	THC		THC	000
ix Metho	Methane		d: Carbu	Methane	r: Carbu	Methane	
age)/Mi	MeOH Method		Method	MeOH Method	Methoo	MeOH Method	
bar Aver	МеОН	A A A A A A A A A A A A A A A A A A A	cort/Mix	Н0∍М	0.4 0.36 0.34 0.75 0.75 1.12 3.95 6.16 11.02 18.76	МеОН	N N
into (3-C	HCHO Method	MBTH MBTH MBTH MBTH MBTH MBTH MBTH MBTH	Ford Es	HCHO Method	DNPH DNPH DNPH DNPH DNPH DNPH DNPH DNPH	HCHO Method	
Ford Pi	нсно	0.02 0.025 NA 0.044 0.04 0.03	5—'83	нсно	0.019 0.02 0.033 0.033 0.033 0.034 0.242 0.203 0.203 0.203 0.203	НСНО	N N
-,78	Ň	0.76 0.64 0.73 0.73 0.63 0.61 0.61	e A-4	NOx	0.23 0.28 0.29 0.29 0.31 0.31 0.45 0.47 0.45 0.47	Ň	0.46
A-45	8	2.95 3.69 2.72 2.13 2.13 2.13 2.04 2.31	Tabl	8	3.41 3.48 3.46 3.47 2.87 2.87 2.87 30.71 30.71 30.93 31.65 31.65	8	10 0
Table	Odometer	1250 2050 3050 4825 7900 9200 10000	(1981).	Odometer	55 204 554 709 709 798 850 850	Odometer	180
	Fuel	001 100 100 100 100 100 100 100	Baisley	Fuel	÷	Fuel	8
	Air	Air Air Air Air Air Air	/ards and	Air	Air Air Air Air Air Air Air Air Air (1982	Air	Δir
	EGR	EGR EGR EGR EGR EGR	-7Edw	EGR	EGR EGR EGR EGR EGR EGR EGR EGR EGR	EGR	EGR
	Catalyst	TWC TWC TWC TWC TWC TWC	ce: Rows I-	Catalyst	TWC TWC TWC TWC TWC NCAT NCAT NCAT NCAT SCAT SCAT CAT NCAT SCAT SCAT SCAT SCAT SCAT SCAT SCAT S	Catalyst	TWC
ĺ	Row	-004000	Sourc	Row	- 0 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Row	

Not for Resale

API PUBL*4262 90 🖿 0732290 0095331 & 🔳

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted

thout license from IHS

Comments													
OMHCE	NA	NA	NA	AN AN	NA	NA	NA	NA	AN AN	NA	NA	AN	
THC Method	IINK	INK	INK	INK	INK	INK	INK	IINK	INK	IINK	IINK	UNK	
THC	0.23	032	0.74	101	0.76	0.75	0.30	040	0.94	0.81	0.84	. 6.0	
Methane		ł		I	ł	ļ	I	I	l	1	I		
MeOH Method]	۱	· [ł		۱	I	ł	I	ł	I	I	
МеОН	NA	NA	AN	NA	NA	NA	AN	AN	AN	AN	NA	NA	
HCHO Method		I	I	ĺ	I	I	I	١	I	I	ł	۱	
НСНО	NA	NA	NA	AN	ΥA	AN	AN	AN	AN	AN	ΝA	NA	(1987).
NOx	0.46	0.52	0.52	0.25	0.61	0.66	0.36	0.66	0.52	0.77	0.61	0.93	oration
8	2.94	3.25	2.95	2.16	2.83	3.19	3.56	3.06	6.37	5.41	4.65	5.15	ent Corj
Odometer	180	281	370	1161	2255	2474	3129	5234	13188	13220	13260	13299	l Developm
Fuel	6	8	100	100	100	6	6	8	6	6	100	100	arch and
Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Aìr	Air	oil Rese
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	-12—Moł
Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	TWC	:: Rows 1-
Row	-	7	ŝ	4	ŝ	9	7	×	6	10	Π	12	Source

Comments Dedicated M85 vehicle OMHCE ٨Z Table A-48---'87 Nissan Sentra/Mix Method: Fuel Injection Method UNK THC THC 0.01 Methane I Method MeOH UNK MeOH 0.38 HCHO Method UNK нсно 0.031 Š 0.57 0.43 8 Odometer ٨A Fuel <u>10</u> Source: Row 1-Hellman (1989) Air EGR 1 Catalyst Row

Tested at MVEL, HC method unknown Tested at ECS, HC method unknown Comments Tested at NYC OMHCE Method UNK UNK UNK UNK THC **UNK** UNK UNK UNK UNK UNK **UNK** 0.19 0.039 0.046 0.045 0.045 0.045 0.045 0.071 0.042 0.044 0.24 THC Methane 1 I MeOH Method l MeOH A A N A AN HCHO Method HdNQ HdNQ HdNO HdND HUNH HdND HdNO HANO I HCHO 0.045 0.032 0.026 0.03 0.027 0.027 0.026 NA 0.029 0.036 0.029 ٩Z ŐN N 0.82 0.67 0.71 0.72 0.68 0.71 0.68 0.69 0.68 0.63 0.66 0.7 $\begin{array}{c} 0.54 \\ 0.29 \\ 0.24 \\ 0.28 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.20 \\ 0.$ 8 0.28 3 Odometer 3438 3474 3532 3532 3569 3569 3607 3607 3625 3645 2500 3400 1 Fuel Air Air Air Air Air Air Air Air EGR EGR EGR EGR EGR EGR Catalyst TWC TWC TWC TWC TWC TWC N N N TWC Row 501000 2 3 4 0 12 1

Source: Rows 1-12-Piotrowski, Heavenrich, Bruetsch, and Cheng (1987).

Not for Resale

Table A-50-'86 Nissan Sentra/Mix Method: Fuel Injection/ECU: FB

Comments	Dedicated M85 vehicle								
OMHCE	0.41	0.38	0.34	0.45	0.45	0.51	2.78	2.58	2.36
THC Method	FID	FID	FID	ΗÐ	FID	FID	Π	FID	FID
THC	0.08	0.07	0.07	0.09	0.09	0.1	0.53	0.49	0.45
Methane	1	I	I	1	I	l	ļ	ł	
MeOH Method	FID	Π							
МеОН	0.73	0.68	0.6	0.81	0.81	0.93	4.88	4,52	4.13
HCHO Method	HdNQ	HdND	HďNQ	HUND	HUND	HUND	HdNO	HdNQ	HdND
нсно	0.025	0.026	0.024	0.03	0.024	0.025	0.289	0.293	0.277
ŇŎx	0.54	0.56	0.56	0.59	0.59	0.6	1.19	1.13	1.2
8	2.52	2.43	2.59	3.58	3.33	3.65	7.36	6.14	5.69
Odometer	16739	ΑN	AN	AN	AN	AN	AN	AN	17218
Fuel	85	85	85	85	85	85	85	85	85
Air		۱	I	ł	l	I	1	ŀ	l
EGR		I	l	1		I	۱	I	1
Catalyst	TWC	TWC	TWC	TWC	TWC	TWC	NCAT	NCAT	NCAT
Row		6	ę	4	ŝ	9	2	×	6

Source: Rows 1-9-Blair (1988).

METHANOL VEHICLE EMISSIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

'n
<u>.</u>
∵
N.
Z
ē
ಸ್ಥ
÷
Ξ
Р
ιĒ
ij
2
et
Σ
i,
≷
na
j,
ö
ğ
ē
ഉ
6
õ
Г.
Å
e
ģ
4

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted

without license from IHS

-	*****				_																								_											
	Comments	MeOH and OMHCE are estimates	Improved M100 best driving PROM	Manifold plus underfloor catalytic system	Manifold plus underfloor catalytic system	Manifold plus underfloor catalytic system	Higher inertia weight	Higher inertia weight	Higher aspect ratio tires	Higher aspect ratio tires	Original PROM, 75°F soak	Original PROM, 75°F soak	Original PROM, 75°F soak	Original FROM, 75 Soak Original PROM 75% soak	Original PROM. 75°F soak	Durability testing																								
	OMHCE	0.16	0.121	0.157	0.147	0.115	0.155	0.135	0.147	0.129	0.098	0.213	0.224	0.11	0.118	0.149	0.09	0.11	0.11	0.1	0.09	0.08	0.09	0.09	0.11	0.15	0.14	0.11	0.1	0.11	71.0	0.2	0.18	0.13	0.1	0.09	0.07	0.08	0.08	
	THC Method	FID	ŪF	FID	ΕŪ	ΕD	FID	FID	FID	FID	FID	ŪĿ	FID	ΗD	FID	FID	FID	FID	ΟH	FID	FID	FID	Π	FID	FID	FID	FID	Ð	<u> </u>			E	FID	FID	ΗD	FID	FID	FID	FID	
	THC	0.13	0.09	0.12	0.12	0.09	0.12	0.11	0.12	0.1	0.07	0.16	0.17	0.08	0.09	0.11	0.06	0.08	0.08	0.08	0.06	0.06	0.06	0.06	0.07	0.12	0.11	0.08	0.07	0.00	0.22	0.15	0.13	0.09	0.08	0.07	0.05	0.06	0.06	.(6
	Methane		I	I	I	1	ł	ļ	۱	I	1	I	[I			Ι	1	I	١	I	l	ļ	١	I	I	ł	Ι	I	1		١	I	.	ĺ	١	ļ		-	vski (198
	MeOH Method	FID	ЫIJ	FID	FID	FID	FID	FID	FID	FID	FID	FID	ЧD	FID	FID	Π	Ð	E E			DE OE	FID	FID	FID	FID	FID	FID	GC-FID	GC-FID	39-Piotrov										
	МеОН	0.295	0.217	0.291	0.266	0.207	0.28	0.243	0.267	0.235	0.195	0.44	0.463	0.219	0.242	0.3	0.17	0.22	0.22	0.2	0.18	0.16	0.18	0.18	0.21	0.31	0.29	0.22	7.0	77.0	0.61	0.41	0.37	0.25	0.19	0.16	0.12	0.14	0.12	Rows 33–;
	HCHO Method	HdND	HdNO	HdNO	HdNO	HdNQ	HdND	HdNQ	HdND	HdNQ	HdNQ	HdND	HdNQ	HdND	HdNQ	HdND	HdNQ	HdND	HdND	HdNQ	HdND	HdNQ	HdND	HdND	HdNO	HdNG	HdND	HANG		DNPH	HdNO	HdND	HdNQ	HdND	HdNQ	HdND	HdNO	HdNO	HdNQ	ci (1987), 1
	НСНО	NA	0.0079	ΝA	0.0058	0.0068	0.0088	0.0089	0.0052	0.0045	0.006	0.0065	0.0073	0.0137	0.0072	0.0129	0.0115	0.0131	0.0133	0.0104	0.005	0.006	0.005	0.012	0.012	0.015	0.014	0.0123	0400.0	0.02 NA	0.0197	0.0113	0.007	0.011	0.012	0.011	0.01	0.01	0.012	-Piotrows
	NOx	0.82	0.74	0.79	0.69	0.72	0.75	0.68	0.65	0.67	0.56	0.53	0.55	0.7	0.75	0.82	1.03	1.19	1.33	1.46	1.47	1.46	1.43	1.19	1.27	1.54	1.35	10.1 1	1.1	1 28	1.18	1.17	0.55	0.76	1.11	0.73	0.89	1.01	1.42	6-32-
	8	1.17	1.03	1.12	1.11	0.86	1.13	0.86	0.73	0.8	0.76	0.79	0.75	0.69	0.8	0.73	0.64	1.14	1.01	0.91	0.61	0.64	0.82	1.3	1.22	1.21	1.09	6/.0	76.0	960	1.25	1.11	0.77	0.74	0.93	1.84	-	1.22	0.92	Rows 1
	Odometer	NA	ΥA	ΑN	AN	ΥA	ΥA	AN	AN	AN	NA	AN	ΑN	ΔA	Ϋ́	AN	AN	NA	AN	NA	AN	NA	AN NA	AN N	Υ Z	AZ S	AN S	NA NA		AN AN	NA	NA	1570	1720	2055	3850	4450	7550	10800	rrell (1987),
	Fuel	85	85	85	85	85	85	85	85	85	100	100	100	100	100	10	100	100	100	100	100	100	100	100	8	001	22	3	36	80	100	100	100	100	00	100	100	100	100	and Mu
	Air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	No air	trowski
	EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGK	NECK	NECE	NECE	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	-15—Pio															
	Catalyst	oc	00	8	8	8	8	8	8	8	S	00	S	00	8	8	8	S	8	S	20	20	20	20		20	50	35	35	30	8	8	8	8	8			20	ပ္ဂ	s: Rows 1-
	Row		7	ŝ	4	ŝ	9	7	00	6	0	Π	12	13	14	15	16	17	18	19	20	21		57	4 v 7 v	۹ X	95	77	30	30	31	32	33	34	35	36	37	38	36	Source

Not for Resale

API PUBL*4262 90 🖿 0732290 0095333 1 🖿

API PUBLICATION 4262

60

Table A-52—'86 Chevrolet S-10/License No. ME-562/Mix Method: Fuel Injection/ECU: FB

Comments	OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol		CU: FB	Comments	OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol		ECU: FB	Comments	OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol		ECU: FB	Comments	OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol		Æ	Comments	OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol OMHCE calculated with "ORNL" protocol
OMHCE	0.16 0.72		ection/E(OMHCE	0.25 0.44		Injection/	OMHCE	0.18 0.7		Injection/	OMHCE	0.23 0.65		ion/ECU:	OMHCE	0.19 0.23 0.32 0.26
THC Method	E E		Fuel Inj	THC Method			d: Fuel	THC Method	11		d: Fuel I	THC Method	11		el Injecti	THC Method	
THC	AN NA		sthod:	THC	A A V A		Metho	THC	A N N A N		Vethoo	THC	AN NA		d: Fue	THC	A N A N A N A N A N A N A N A N A N A N
Methane	NA NA		8/Mix Me	Methane	NA NA		72/Mix I	Methane	NA NA		74/Mix N	Methane	AN NA		ix Metho	Methane	AN AN NAN
MeOH Method	OF		ME-568	MeOH Method	88		lo. ME-5	MeOH Method	FID FID		o. ME-5	MeOH Method	0F UF		9394/Mi	MeOH Method	E E E E
MeOH	0.4 1.28		nse No.	MeOH	0.55 0.82		cense N	MeOH	0.54 NA		cense N	МеОН	0.56 1.17		nse No.	МеОН	0.4 0.46 0.6 0.44
HCHO Method	11		-10/Lice	HCHO Method			ctoria/Li	HCHO Method			ctoria/Lic	HCHO Method	11		gal/Licer	HCHO Method	HdNQ
нсно	AN NA		rolet S-	НСНО	NA NA		rown Vie	НСНО	NA NA		own Vic	нсно	NA NA		lick Re	нсно	NA NA NA 0.033
NOx	0.51	1989b).	Chev	NOx	0.43 0.85	1989b).	ord Cı	NOx	0.62 0.44	1989b).	ord Cr	NOx	0.63 0.71	1989b).	'87 BL	Ň	1.18 1.18 1.19 1.18
8	0.74 8.27) uosâp		8	1.39 6.36) uosāp	-'86 F	8	0.76 1.44	dgson (-86 Fc	8	1.44 3.16	l) nosgb	-56	8	3.72 5.13 6 4.95
Odometer	381 7600	est, and Ho	ble A-53	Odometer	288 8700	ést, and Ho	e A-54 —	Odometer	793 32800	est, and Ho	e A-55	Odometer	418 26900	est, and Ho	Table A	Odometer	323 362 401 NA
Fuel	88	Hillis, W	ц	Fuel	85 85	tillis, W	Table	Fuel	85 85	fillis, W	Table	Fuel	88	(illis, W		Fuel	8 8 8 8 8 8 8 8
Air		lcGill, F		Air	11	lcGill, H		Air	Air Air	cGill, H		Air	Air Air	cGill, H		Air	Air Air Air
EGR		and 2-M		EGR	11	and 2M		EGR	EGR EGR	and 2M		EGR	EGR	and 2M		EGR	EGR EGR EGR
Catalyst		e: Rows 1		Catalyst	11	a: Rows I		Catalyst	TWC	: Rows I		Catalyst	TWC	: Rows I		Catalyst	TWC TWC TWC
Row	- 0	Source		Row	- 1	Source		Row	- 0	Source		Row	- 0	Source		Row	- 9 5 4

Not for Resale

API PUBL*4262 90 🖿 0732290 0095334 3 🖿

METHANOL VEHICLE EMISSIONS

61

Sources: Rows 1-3-McGill, Hillis, West, and Hodgson (1989a), Row 4-Blair (1987).

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Comments	OMHCE calculated with "ORNL" protocol	OMHCE calculated with "ORNL" protocol	OMHCE calculated with "ORNL" protocol		
OMHCE	0.2	0.21	0.2	0.22	
THC Method				1	
THC	AN	NA	ΝA	NA	
Methane	NA	AN	NA	AN	
MeOH Method	FID	ΕÐ	Ð	FID	
МеОН	0.42	0.43	0.41	0.37	
HCHO Method	1	I	I	HdNO	ir (1987).
нсно	NA	NA	NA	0.035	v 4—Bla
NOx	1.1	1.09	1.16	1.12	9a), Rov
8	2.51	3.02	2.89	2.81	son (198
Odometer	664	704	743	NA	t, and Hodg
Fuel	85	85	85	85	lis, West
Air	Aìr	Air	Air	Air	Gill, Hil
EGR	EGR	EGR	EGR	EGR	-3—Mc
Catalyst	TWC	TWC	TWC	TWC	es: Rows I
Row	1	6	m	4	Source

ЦЪ
~
Ŋ
- M
2
. <u>ō</u>
ē
Ę
-9
ပိ
÷
ğ
÷
÷
x
Ĭ
З
Ň
品
~
ž
Ð
ŝ
ø
Ĕ
2
<u>e</u> .
ta
ö
S
G
4
ĝ
28
Ł
Ð
ð
Ë,

Comments	Before MeOH conversion After MeOH conversion
OMHCE	NA NA
THC Method	OIF OIF
THC	0.39 0.98
Methane	NA NA
MeOH Method	
MeOH	NA NA
HCHO Method	
нсно	NA NA
NOx	0.79 0.66
S	2.23 1.87
Odometer	NA NA 87).
Fuel	0 88 tal. (19
Air	Air Air IcGill ei
EGR	EGR EGR and 2—M
Catalyst	TWC TWC
Row	1 2 Source

	Comments	efore MeOH conversion	ter MeOH conversion	
	OMHCE	NAB	NA A	
THC	Method	FID	FID	
	THC	0.21	0.59	
	Methane	NA	NA	
MeOH	Method	1	I	
	MeOH	NA	ΝA	
нсно	Method	I	ł	
	нсно	NA	NA	
	NOx	1.15	1.06	
	8	7.86	2.38	
	Odometer	NA	AN	87).
	Fuel	0	88	t al. (198
	Air	Air	Air	fcGill e
	EGR	EGR	EGR	and 2—N
	Catalyst	TWC	TWC	: Rows I
I	Row	1	6	Source

Not for Resa

Comments	Before MeOH conversion After MeOH conversion	NFB	
OMHCE	AN NA	n/ECU:	
THC Method	EE	arburetio	
THC	0.19 0.75	od: C	
Methane	NA NA	lix Meth	
MeOH Method		E-756/N	110-24
МеОН	NA NA	se No.	
HCHO Method		on/Licen	CIUCI
нсно	NA NA	A Citatio	
NO	0.94 0.8	84 GN	
8	2.32 2.27	- - - -	
Odometer	NA NA	^{87).} Table A	
Fuel	0 88	t al. (19	
Air	Air Air	fcGill e	
EGR	EGR	and 2—A	
Catalyst	TWC	e: Rows 1	
Row	- 0	Source	

1

Comments

Before MeOH conversion After MeOH conversion

A Z

OMHCE THC Method ÐÐ Methane THC 0.2 1.27 AN NA MeOH Method | | MeOH AN NA HCHO Method HCHO A N N Ő. 1.01 0.53 2.89 3.28 8 Fuel Odometer AN NA 0 % Air Air Air EGR EGR Row Catalyst TWC 2

Source: Rows 1 and 2-McGill et al. (1987).

62

API PUBLICATION 4262

					ts at					es for	ss for	s for	s for	s for	ę				
Comments	Before MeOH conversion After MeOH conversion			Comments	Emissions data are averages of three tes	Emissions data are averages of three tes 75°F			NFB	Comments	Emissions data are multiple-test average	Emissions data are multiple-test average	aged catarysts Emissions data are multiple-test average	Emissions data are multiple-test average	aged catalysis Emissions data are multiple-test average	aged catalysts			
OMHCE	AN NA		FB	OMHCE	0.32	0.28	0.27	0.24	0.42			on/ECU:	OMHCE	0.365	0.384	0.423	0.786	0.795	
THC Method	FID		on/ECU:	THC Method	S	GC	С С	G	С С			el Injectio	THC Method	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	
ТНС	0.44 0.74		Injectic	THC	0.32	0.22	0.17	0.11	0.04			od: Fue	THC	0.358	0.309	0.146	0.273	0.293	
Methane	NAN		d: Fuel _	Methane		I	1	ļ	I			x Metho	Methane	NA	NA	NA	NA	NA	
MeOH Method			(Metho	MeOH Method	S	gc	.g	. g	gC			rozo/Mi	MeOH Method	FTIR	FTIR	FTIR	FTIR	FTIR	
MeOH	NA NA		sica/Mi>	МеОН	0	0.11	0.21	0.29	0.82			se No.	МеОН	0.014	0.149	0.591	1.128	1.096	
HCHO Method	11		GM Cor	HCHO Method	HdNQ	HANQ	HdNQ	HANO	DNPH			rt/Licen	HCHO Method	FTIR	FTIR	FTIR	FTIR	FTIR	
нсно	NA NA		3'88 (НСНО	0.005	0.009	0.014	0.027	0.041			rd Esco	НСНО	0.001	0.024	0.046	0.053	0.059	
Ň	0.96 0.29		e A-6	Ň	0.22	0.24	0.26	0.26	0.27			85 Fo	NOx	0.44	0.41	0.43	0.26	0.54	
8	15.91 1.55		Tabl	8	2.62	2.45	2.9	7	3.06			64—,	8	2.94	2.7	2.47	4.64	4.59	
Odometer	NA NA	37).		Odometer	NA	NA	NA	NA	NA			Table A-	Odometer	4000	4000	4000	4000	5000	
Fuel	0 88	al. (198		Fuel	0	25	50	85	100			-	Fuel	0	50	85	100	85	
Air	Air Air	AcGill et		Air	Air	Air	Air	Air	Air	le (1990)			Air	Air	Air	Air	Air	Air	•
EGR	EGR EGR	nd 2N		EGR	EGR	EGR	EGR	EGR	EGR	5—Gabe			EGR	EGR	EGR	EGR	EGR	EGR	
Catalyst	TWC	:: Rows 1 2		Catalyst	TWC	TWC	TWC	TWC	TWC	: Rows 1-			Catalyst	TWC	TWC	TWC	TWC	TWC	
Row	- 0	Source		Row .	-	6	ŝ	4	ŝ	Source			Row	-	7	ŝ	4	5	`

Not for Resale

METHANOL VEHICLE EMISSIONS

•

API PUBL*4262 90 🗰 0732290 0095336 7 페

Source: Rows 1-6-Nichols et al. (1988).

63

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Comments	Emissions data are multiple-test averages for	"aged" catalysts Emissions data are multiple-test averages for	"aged" catalysts					
OMHCE	0.652	0.357	0.359	0.444	0.543	1.189	1.435	
THC Method	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	
THC	0.124	0.354	0.273	0.183	0.203	0.435	0.226	
Methane	NA	NA	NA .	NA	NA	NA	NA	
MeOH Method	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR	
MeOH	1.173	0.005	0.166	0.553	0.711	1.547	2.53	
HCHO Method	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR	
нсно	0.042	0.003	0.031	0.048	0.069	0.181	0.244	
NOx	0.45	0.82	0.89	0.65	0.55	2.74	2.57	
S	2.59	1.89	2.09	2.66	3.19	12.68	13.08	
Odometer	4000	50000	50000	5000	50000	5000	50000	
Fuel	100	0	50	85	100	85	100	
Air	Air	Air	Air	Air	Air	Air	Air	
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR	
Catalyst	TWC	TWC	TWC	TWC	TWC	NCAT	NCAT	
Row	-	3	ŝ	4	v	9	7	

Table A-65---'85 Ford Escort/License No. T022/Mix Method: Fuel Injection/ECU: NFB

Source: Rows 1-7---Nichols et al. (1988).

Not for Resale

Injection/ECU: FB
l: Fuel
Methoo
T-500/Mix
No.
Victoria/License
Crown
ord
7 F
able A-66—'5
μË

nents	tiple-test averages tiple-test averages tiple-test averages tiple-test averages tiple-test averages
Comr	Emissions data are mul Emissions data are mul Emissions data are mul Emissions data are mul Emissions data are mul
OMHCE	NA NA 0.349 NA 0.185
THC Method	FTIR/FID FTIR/FID FTIR/FID
THC	NA NA 0.171 NA 0.132
Methane	A A A A A A A A A A A A A A A A A A A
MeOH Method	FTIR FTIR FTIR FTIR FTIR
MeOH	0.047 NA NA NA NA 0.093
HCHO Method	HANQ HANQ HANQ HANQ
НСНО	0.005 0.027 0.022 0.031 0.032
NOx	0.52 0.59 0.59 0.64 0.65
8	0.35 0.79 0.93 1.02 0.84
Odometer	7599 11690 15834 19931 24389
Fuel	85 85 85 85 85
Air	Air Air Air Air
EGR	EGR EGR EGR
Catalyst	TWC TWC TWC TWC
Row	-0 ~ 4 ~

Source: Rows 1-5--Nichols et al. (1988).

API PUBLICATION 4262

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted

Comments	Emissions data are multiple-test averages for	aged catarysts Emissions data are multiple-test averages for	aged catarysts Emissions data are multiple-test averages for	ageu catatysts Emissions data are multiple-test averages for "	aged catarysts Emissions data are multiple-test averages for "	Emission catalysts Emissions data are multiple-test averages for	aged catarysts Emissions data are multiple-test averages for "aged" catalysts
OMHCE	0.148	2.904	0.213	0.21	0.813	3.608	0.802
THC Method	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID	FTIR/FID
ТНС	0.085	1.144	0.107	0.122	0.169	0.542	0.227
Methane	NA	NA	NA	NA	NA	NA	NA
MeOH Method	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR	FTIR
MeOH	0.125	3.549	0.219	0.155	1.452	6.359	1.288
HCHO Method	HANC	HANC	HdNQ	HdNQ	HAND	HdNQ	HdNQ
НСНО	0.018	0.443	0.026	0.043	0.035	0.647	0.044
NOx	0.7	1.4	0.75	0.79	0.45	1.1	0.53
S	0.55	15.18	1.04	0.96	3.37	17.05	3.89
Odometer	3000	3000	12500	18000	3000	3000	3000
Fuel	85	85	0	85	100	100	100
Air	Air	Air	Air	Air	Air	Air	Air
EGR	EGR	EGR	EGR	EGR	EGR	EGR	EGR
Catalyst	TWC	NCAT	TWC	TWC	TWC	NCAT	TWC
Row	-	7	ŝ	4	Ś	9	7

Source: Rows 1-7---Nichols et al. (1988).

65

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4262 90 🗰 0732290 0095339 2 📰

APPENDIX B-EVAPORATIVE EMISSIONS DATA

.

			-															
Comments	FID evap HC data uncorrected for MeOH response FID evap HC data uncorrected for MeOH response		U: NFB	Comments			SU: FB	Comments	Evap HC species for C2-C5 only Evap HC species for C2-C5 only		cu: FB	Comments	New fuel, cold start injectors, and other fuel system	ci ind		U: NFB	Comments	
Running Losses	NA NA		tion/EC	Running Losses	NA NA		ction/E(Running Losses	A N N N N N N N N N N N N N N N N N N N		ection/E	Running Losses	NA	NA		stion/EC	Running Losses	11
Refueling	NA NA		: Carbure	Refueling	NA NA		Fuel Inje	Refueling	N N N N N N N N N N N N N N N N N N N		Fuel Inje	Refueling	NA	NA		: Carbure	Refueling	
Total Organics			Method	Total Organics			Method:	Total Organics	2.77 1.08		Method:	Total Organics	l	0.59		Method	Total Organics	
Total MeOH			32/Mix	Total MeOH	3.3 6.01		95/Mix I	Total MeOH	5.54 1.4 2.31 1.46		39/Mix I	Total McOH	1.39	1.21		20/Mix	Total MeOH	4.46 NA
Total HC	2.36 1.42		No. 8	Total HC	0.36 0.66		No. 99	Total HC	0.37		No. 98	Total HC		0.07		No. 9	Total HC	0.35 NA
Hot Soak MeOH			-icense	Hot Soak MeOH	3.05 5.46		icense l	Hot Soak MeOH	1.83 1.22 1.82 1.21		icense l	Hot Soak MeOH	1.21	1.21		License	Hot Soak MeOH	4.27 12.29
Hot Soak HC	2.23 1.27		Escort/I	Hot Soak HC	0.33		Rabbit/L	Hot Soak HC	0.08 0.08 0.07 0.27		Rabbit/L	Hot Soak HC	I	0.39		Escort/	Hot Soak HC	0.33 NA
Diumal MeOH		6).	81 Ford	Diumal MeOH	0.25 0.55	().	'81 VW	Diumal MeOH	3.71 0.18 0.49 0.25		'81 VW	Diumal MeOH	0.18	0		81 Ford	Diumal MeOH	0.19 NA
Diumal HC	0.13 0.15	ard (1986	B-2 –,	Diumal HC	0.03 0.59	ard (198	В-3 —	Diumal HC	0.29 0.06 0.18 0.18	1 (1988).	B-4—	Diumal HC		0.05	ard (198	B-5-	Diumal HC	0.02 NA
Odometer	25336 36978	esources Bo	Table	Odometer	34888 45369	esources Bo	Table	Odometer	23287 24896 46500 59384	ources Board	Table	Odometer	26237	35428	esources Bc	Table	Odometer	85371 115590
Fuel	<u> 8</u> 8	a Air R		Fuel	88	a Aìr R		Fuel	<u> </u>	Air Reso		Fuel	85	85	a Air R		Fuel	88
Air	Air Air	Californi		Air	Air Air	Californi		Air	No air No air No air No air	lifomia /		Air	No air	No air	Californi		Air	Air Air
EGR	EGR	and 2—1		EGR	EGR	and 2—1		EGR	NEGR NEGR NEGR NEGR	-4Ca		EGR	NEGR	NEGR	and 2—1		EGR	EGR
Catalyst	TWC	:: Rows 1		Catalyst	TWC	:: Rows 1		Catalyst	TWC TWC TWC TWC	:: Rows 1		Catalyst	TWC	TWC	: Rows 1		Catalyst	TWC
Row	- 4	Source		Row	- 4	Source		Row	-064	Source		Row	-	7	Source		Row	- 0

Not for Resale

METHANOL VEHICLE EMISSIONS

69

Source: Rows 1 and 2-California Air Resources Board (1986).

TWC

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table B-6--'83 Ford Escort/License No. 359/Mix Method: Fuel Injection/ECU- F

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

ECU: FB		Continuents	Evap HC species for C-C, only				Tests after new converter, O ₂ sensor, EGR valve in-	stalled		cU: FB	c	Comments	15°BTDC timing; ported vacuum signal to EGR	(with restrictor)		Replaced leaking EGR tube	lested with new converter, EGR valve, O_2 sensor		CU: FB		Comments		Vacuum hose not connected to canister purge line			CU: FB			درار evap HC species only	Replaced fuel pump	
jection/E	Running Losses		NA	NA	ΝA	NA	NA			ection/E	Running	FUSSES	NA	NA	NA	NA NA	AN AN	2/89).	sction/E(Running	Losses	NA	A A A	AN NA		ection/E	Running Losses	VIV	A A	A A A N N N	
: Fuel In	Refueling	0	ΝA	NA	NA	NA	NA			: Fuel Inj	Refuelino	Summer	NA	NA	NA	AN NA	AN AN	ry" (12/88	Fuel Inje		Kefueling	NA	A N N	A AN		: Fuel Inj	Refueling	NA	A N	A N N N N N N N	
(Method	Total Organics	,	0.18	1	0.39	0.26	0.24			Method	Total Organics	0	0.33	I	1	0.5	0.55	riy Summa	Method:	Total	Urganics	1 1	1.71	1.51		Method	Total Organics	-	I	0.69 0.39 0.17	
359/MI	I Total MeOH		0.3	0.42	0.36	0.21	0.18			365/Mix	Total MeOH		0.62	0.42	0.48	0.43	0.8	d, "Quarte	66/Mix	Total	MeOH	0.49	0.92 0.48	2.63		144/Mix	Total MeOH	0.43	1	0.5 0.21 0.24	
NO.	k Tota HC		0.05		0.23	0.17	0.16			No.	Total	200	c0.0	1		0.17	0.19	es Boar	No. 3	Total	2	3 43	1.47 0.29	0.34		No. 4	Total HC	1		0.47 0.3 0.06	
/Licens(Hot Soa MeOH		0.24	0.50	47 O	17-0	00.0			License	Hot Soak MeOH	0.47	0.40	0.3	0.3	0.24	0.43	vir Resourc	License	Hot Soak	TIONTAT	0.24	0.36	2.44		License	Hot Soak MeOH	0.24	0.5	0.31 0.02 0.18	
	Hot Soak HC	100	10.0		C7-0	+I-0	1-0			d Escort/	Hot Soak HC	100	10.0	0.19	0.02	0.02	0.03	California A	Escort/	Hot Soak HC	2	0.02 0.67	0.02	0.16		a Camry/	Hot Soak HC	0.17	0.21	0.22 0.14 0.06	
	I Diumal MeOH	0.04	0.06	01.0	11.0	, CT O	71.0			-'83 For	Diumal MeOH	0.10	(110)	0.12	0.18	0.12	0.37	Row 6—1	83 Ford	Diumal MeOH		0.25 0.43	0.49 0.12	0.19		5 Toyota	Diurnal MeOH	0.19	0.25	0.19 0.19 0.06	
	Diuma HC	1000	5	0.003	0.03	0.06	0000	(1988)		B-7-	Diumal HC	0.04		8	0.03	0.1	0.16	I (1988);	B-8	Diumal		0.06 2.76	1.45 0.09	0.18	(1988).	-978	Diumal HC	0.13	0.01	0.16	1988).
	Odometer	167	208	13584	20394	27050		ources Board		Table	Odometer	85	1	8329	21594	27554	34027	ources Board	Table	Odometer		137 262	9409 15341	25088	irces Board	Table B] Ddometer	473	3812	02597 15597 26270	rces Board (
	Fuel	06	806	85	85	85	}	Air Reso			Fuel	8		85 85	3 23	85	85	Air Res		Fuel	8	90 85	85 85	85	ir Resou		Fuel (85 22	c8 28	85 85	r Resou
	Air	Air	Air	Air	Air	Air		ifomia			Air	Air		Air Air	Air	Air	Air	lifornia .		Air		Air Air	Air	Air	omia A		Air	Air	Air	Air Air	omia Ai
	EGR	EGR	EGR	EGR	EGR	EGR		-5Cal	-		EGR	EGR		EGR R	EGR	EGR	PGK	-5-Ca		EGR	909	EGR E	EGR	ECK	5—Calit		EGR	EGR	EGR EGR	EGR	5—Calif(
	Catalyst	TWC	TWC	TWC	TWC	TWC		: Rows I			Catalyst	TWC		TWC	TWC	TWC		s: Rows 1		Catalyst	UNT	TWC	DWT DWT		Rows 1-		Catalyst	TWC	DWC	TWC	Rows 1–5
	Row	-	6	m	4	ŝ		Source			Row	1	(r1 m	4	ŝ	•	Source		Row (-	-01	ν4 v	-	Source:		Row C	c	1 (1)	4 v	Source:

Not for Resale

API PUBL*4262 90 🖿 0732290 0095341 0 🖿

API PUBLICATION 4262

Table B-10---'86 Toyota Carina/License No. 145/Mix Method: Fuel Injection/ECU: FB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Comments	Leak in test cap at filler neck Test after fuel injector replaced and tested at 2250 lbs. IW	Tested at 2500 lbs. IW		on/ECU: FB	Comments	Suspect leak in test connection			:		on/ECU: FB	Comments			on/ECU: FB	Comments	New fuel injector, spark plugs, fuel pressure regula- tor at 3854 mi
Running Losses	AN NA NA	ΨN	-2/89).	el Injecti	Running Losses	AN NA	AN S	A A Z Z	ΝA	(6/88–8/88	el Injecti	Running Losses	A A A A A A A A A A A A		el Injecti	Running Losses	NA
Refueling	NA NA NA	NA	ıry" (12/88-	thod: Fue	Refueling	A N N N	AN	A A Z Z	NA	Summary"	thod: Fu	Refueling	AN AN AN AN		thod: Fue	Refueling	NA
Total Organics	0.5 2.69 0.29	0.39	erly Summa	/Mix Me	Total Organics	2,15	0.37	15.0 12.0	1,44	"Quarterly	/Mix Me	Total Organics	0.91 1.26 1.09 0.57		/Mix Me	Total Organics	0.6
Total MeOH	0.42 0.97 0.49	0.61	d, "Quarte	Jo. 927	Total MeOH	1.53 0 97	0.43	0.28 0.66	0.67	es Board,	Jo. 928	Total MeOH	0.68 0.8 0.85 0.48		lo. 779	Total MeOH	0.67
Total HC	0.31 2.25 0.07	0.12	es Boar	ense N	Total HC	1.49 0.73	0.18	0.39	1.14	Sesource	snse N	Total HC	0.6 0.89 0.7 0.35		ense N	Total HC	0.3
Hot Soak MeOH	0.24 0.37 0.49	0.49	vir Resourc	oria/Lice	Hot Soak MeOH	1.22	0.29	0.22 0.54	0.42	îornia Air I	oria/Lice	Hot Soak MeOH	0.43 0.61 0.67 0.36		oria/Lice	Hot Soak MeOH	0.61
Hot Soak HC	0.13 0.22 0.06	0.09	California A	own Vict	Hot Soak HC	0.27	0.12	0.28	0.2	ıd 6Calîı	own Vict	Hot Soak HC	0.23 0.46 0.42 0.21		own Vict	Hot Soak HC	0.18
Diurnal MeOH	0.18 0.62 0	0.12	Row 40	Ford Cre	Diurnal MeOH	0.31 0.49	0.14	0.06	0.25	Rows 5 an	Ford Cro	Diurnal MeOH	0.25 0.19 0.28 0.12		⁻ ord Cro	Diurnal MeOH	0.06
Diurnal HC	0.18 2.03 0.01	0.03	i (1988);		Diumal HC	1.22	0.06	0.1	0.94	t (1988);		Diumal HC	0.37 0.43 0.28 0.14	(1988).		Diurnal HC	0.12
Odometer	1006 3544 8648	13012	ources Board	tble B-11	Odometer	177	5826	8057 19878	01661	ources Board	ble B-12	Odometer	244 262 5334 6724	urces Board	ble B-13	Odometer	7666
Fuel	888	85	Air Reso	Ц Ц	Fuel	85 50	8.8	<u> </u>	50	Air Rest	Та	Fuel	8 8 8 8	ir Reso	Та	Fuel	85
Air	No air No air No air	No air	ifornia /		Air	Air Air	Air	Air	Air	ifomia /		Air	Air Air Air	omia A		Air	Air
EGR	NEGR NEGR NEGR	NEGR	-3Cali		EGR	EGR	EGR	EGR BGR	EGR	-4—Cal		EGR	EGR EGR EGR	4 - Calif		EGR	EGR
Catalyst	888	8	s: Rows I-		Catalyst	TWC	TWC	TWC	TWC	s: Rows I-		Catalyst	TWC TWC TWC	: Rows 1-		Catalyst	TWC
Row	- 0 m	4	Source		Row	- ~	1 m .	4 v	9	Source		Row	- 0 m 4	Source		Row	

Not for Resale

METHANOL VEHICLE EMISSIONS

71

Source: Row 1-California Air Resources Board (1988).

API PUBL*4262 90 🖿 0732290 0095342 2 🎟

		oula-	-Suia-																
CU: FB	Comments	fuel injector, spark plugs, fuel pressure re-	at 3318 mi	CU: FB	Commante	CONTRACTS		8	Commante	000000		æ	, married	COMMINGUES		B		COMMEnts	
ction/E	сь сь х	New	tor	ction/E	60 %			icu: N	60			CU: NF				CU: NF			
uel Inje	Runni	A N N N N N N N N N N N N N N N N N N N		lel Inje	Runnir Losse	NA NA NA	NA	etion/E	Runnin Losses	AN		etion/E	Running Losses	NA	I	tion/E(Running	MA	F N
ethod: Fi	Refueling	NA NA NA		thod: Fu	Refueling	NA NA NA	EN1	: Carbur	Refueling	NA		Carbure	Refueling	NA		Carbure	Refueling	NA NA	
8/Mix Me	Total Organics	0.71 1.27 0.21		3/Mix Me	-Total Organics	0.58 0.76 0.66	71.0	Method	Total Organics			Method:	Total Organics			Method:	Total Drganics 1	,	
No. 77	Total MeOH	0.37 0.68 0.36		Vo. 963	Total MeOH	0.92 0.49 0.6		19/Mix	Total MeOH	2.69		33/Mix	Total MeOH	4.5 4.28		0/Mix	Total MeOH	9.53	
sense	k Total HC	0.54 0.97 0.05		ense ľ	Total HC	0.18 0.55 0.4 3.37		No. 3	Total HC	NA		No. 8(Total HC	NA 7.28		No. 57	Total HC	NA	4
toria/Lic	Hot Soal MeOH	0.18 0.37 0.24		oria/Lic	Hot Soak MeOH	0.55 0.37 0.42 0.42		License	Hot Soak MeOH	2.44		license	Hot Soak MeOH	4.2 2.43		icense	Hot Soak MeOH	5.95	
rown Vic	Hot Soak HC	0.1 0.16 0.02		own Vict	Hot Soak HC	0.002 0.27 0.23 0.396		d Escort/	Hot Soak HC	0.34		Escort/I	Hot Soak HC	NA 1.92		Escort/L	Hot Soak H HC	NA	
Ford C	l Diumal MeOH	0.19 0.31 0.12		Ford Cr	Diurnal MeOH	0.37 0.12 0.18 0.37		'83 Forc	Diurnal MeOH	0.25		83 Ford	Diurnal MeOH	0.3 1.85	Ċ	83 Ford	Diumal H MeOH	3.58	
4—'87	Diuma HC	0.44 0.81 0.03	1 (1988).		Diumal HC	0.18 0.28 0.17 2.97	l (1988).	3-16	Diumal HC	NA	86).	3-17	Diumal HC	NA 5.36	ırd (1986	-18	Diurnal HC	NA	6).
able B-1	Odometer	200 218 8584	ources Board	able B-19	Odometer	242 261 8391 15019	urces Board	Table I	Odometer	4553	s Board (19	Table E	Odometer	20267 31835	sources Boa	Table B	l Jdometer	5030	Board (198
	Fuel	50 55 55	Air Reso	1 21	Fuel	52 22 <u>2</u> 2 23	vir Reso	i i	Fuel	90	esource		Fuel (90 85	AirRe		Fuel C	90	sources
	Air	Air Air Air	ifomia /		Air	Air Air Air	fornia A		Air	Air	ia Air R		Air	Air Air	alifornia		Air	Air	Air Re
	EGR	EGR EGR	-3—Cal		EGR	EGR EGR EGR	-4Cali		EGR	EGR	Californ		EGR	EGR	nd 2—Ca		EGR	EGR	alifomia
	Catalyst	TWC	a: Rows I-		Catalyst	TWC TWC TWC	: Rows 1-		Catalyst	TWC	Row I-		Catalyst	TWC	Rows 1 ai		atalyst	TWC	Row 1(
	Row	- 0 m	Source		Row	- 0 m 4	Source		Row	-	Source:		Row (- ~	Source:		Row C	-	Source: I

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBL*4262 90 MM 0732290 0095343 4 MM

API PUBLICATION 4262

Source: Row 1--California Air Resources Board (1988).

Row	Catalyst	EGR	Air	Fuel	Odometer	Diumal HC	Diumal MeOH	Hot Soak HC	Hot Soak MeOH	Total HC	Total MeOH	Total Organics	Refueling	Running Losses	Comments
1	TWC	EGR	Air	85	22773	0.18	0.19	0.95	3.05	1.13	3.24	2.57	ΝA	NA	
Course	· Dow 1	Californ	in Air D	0011000	" Board (10	1990									

						Comments		
NA	NA	NA	NA	/89).	tion/ECU: NFB	Running Losses	NA	
AN	٩N	AN	NA	ry" (12/88–2	: Carbure	Refueling	NA	
0.7	1.36	0.52	0.42	erly Summa	<pre>K Method</pre>	Total Organics	2.26	
0.67	0.86	0.54	0.49	l, "Quart	84/Mi>	Total MeOH	2.14	
0.41	0.99	0.29	0.2	es Board	No. 4	Total HC	1.31	
0.49	0.49	0.42	0.37	vir Resourc	'License	Hot Soak MeOH	1.77	
0.19	0.3	0.19	0.13	California /	d Escort	Hot Soak HC	1.03	
0.18	0.37	0.12	0.12	; Row 4—	-'83 For	Diurnal MeOH	0.37	
0.22	0.69	0.1	0.07	d (1988)	B-22–	Diumal HC	0.28	88).
388	406	7630	23205	ources Boar	Table	Odometer	17672	ss Board (19
. 85	50	85	85	Air Res		Fuel	85	lesource
Air	Air	Air	Air	lifornia		Air	Air	ıia Air F
EGR	EGR	EGR	EGR	-3—Ca		EGR	EGR	-Califorr
TWC	TWC	TWC	TWC	ces: Rows 1		Catalyst	TWC	e: Row 1–
1	6	m	4	Sourc		Row	-	Sourc

Table B-19-33 Ford Escort/License No. 778/Mix Method: Carburetion/ECU: NFB

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Comments Running Losses Refueling Total Organics I Total McOH 2.05 Diurnal Diurnal Hot Soak Hot Soak Total HC MeOH HC MeOH HC ٨N 1.81 NA 0.24 ΑN Source: Row 1-California Air Resources Board (1986). Fuel Odometer 6044 8 Air Air EGR EGR Catalyst TWC Row -

Table B-20—'82 GM Citation/License No. 112/Mix Method: Fuel Injection/ECU: NFB

Row	Catalyst	EGR	Air	Fuel	Odometer	Diumal HC	Diumal MeOH	Hot Soak HC	Hot Soak MeOH	Total HC	Total MeOH	Total Organics	Refueling	Running Losses	Comments
-	TWC	EGR	Air	8	30652	NA	0.12	NA	0.54	NA	0.66	I	NA	NA	Midrange GC not available, so THC by GC not cal-
Sourc	e: Row 1—	-Californ	ia Air R	esource	es Board (19	986).									

Table B-21---'87 Ford Crown Victoria/License No. 653/Mix Method: Fuel Injection/ECU: FB

METHANOL VEHICLE EMISSIONS

Comments

Running

Losses

Refueling

Organics Total

Total MeOH

Total HC

Hot Soak MeOH

Hot Soak HC

Diumal MeOH

Diumal HC

Odometer

Fuel

Air

EGR

Catalyst

Row

2

œ		Comments				Comments			
<pre>rel lnjection/ECU: Fi</pre>	Running	NA			Running	Losses	NA NA	NA NA	NA
ethod: Ft	Refuelino	NA	ין. בויסן וי		: 4	Kerueling	A A N Z	AN NA	NA
0/Mix M	Total Organics	0.4	ix Metho		Total	Organics	.0.89 1.81	c7.1 1.29	Ι
No. 61	Total MeOH	0.42	MUHV		Total		0.36	0.36	0.43
ense	c Total HC	0.22	No. A		Total		0.73 1.46	1.13	1
IOLIA/LIC	Hot Soal MeOH	0.3	License		Hot Soak MeOH		0.24	0.24	0.18
	Hot Soak HC	0.13	Corsica/		HOT SOak HC	0.05	0.5	0.33	70.0
	Diumal MeOH	0.12	'88 GM	Dim.	MeOH	012	0.37	0.12 0.12	
5	Diumal	0.09 88).	-25-	Diumal	HC	0.38	0.96	0.8	
	Odometer	5984 es Board (19	Table E		Odometer	3990	4133 4191	4509 4548	
	Fuel	85 Resourc			Fuel	8	50	100 85	
	Air	Air mia Air j			Air	Air	Air Air	Air Air	
	EGR	EGR Califor			EGR	EGR	EGR EGR	EGR	Californ
	Catalyst	TWC e: Row I-			Catalyst	TWC	DWT DWT	TWC	Row 1
	Row	Sourc		ſ	Kow	0	1 M 4	5.	Source

API PUBLICATION 4262

Comments

Running Losses

Refueling

Organics

Total

Total MeOH

Total HC

Hot Soak MeOH

Hot Soak HC

Diurnal Diurnal HC MeOH

Odometer

Fuel

Air

EGR UNK

Catalyst

Row

Table B-26—GM Prototype VFV/Mix Method: Fuel Injection/ECU: FB

Source: Row 1-California Air Resources Board (1988).

Evap in grams per test Evap in grams per test

111

0

0732290 0095345

Evap in grams per test Evap in grams per test; Howell EEE fuel Evap in grams per test; Amoco 91 fuel Evap in grams per test

111

0.707 0.925 1.246 1.701 1.108

1.462 1.265 0.978 0.426 0.559 0.148

11111

0 85 85 100 85 85 100

UNK UNK

UNK UNK UNK

9 ŝ

UNK

JNK

TWC TWC TWC TWC TWC

|||

|||

8

Table B-27—Prototype Operated by SOHIO Source: Rows 1-6-Williams et al. (1990)

Comment.	Evap in grams per test; isocrackate
Runnir Losse	
Refueling	1
Total rganics	
otal cOH O	804
otal T IC Me	308 3.
Hot Soak T MeOH H	ور ا
Hot Soak J HC	1
Diurnal MeOH	l
Diumal HC	1
Ddometer	Å
Fuel	.(066
Air	et al. (19
EGR	Villiams
atalyst UNK	Row I-V
Row C	Source:]

Table B-28—GM M100 Prototype/Mix Method: Fuel Injection

Comments Running Losses Refueling 1 Total Total MeOH Organics I 0.087 0.144 0.024 Total HC Hot Soak MeOH I Hot Soak HC J Diumal MeOH I Diurnal НС 1 Odometer ٩N Fuel 100 Source: Row 1-Williams et al. (1990). UNK Air UNK EGR Catalyst UNK Row 15

API PUBL*4262 90 1 Table B-29—'83 Ford Escort/Mix Method: Carburetion/ECU: NFB

Comments	Refueling: (0.05 MeOH/0.15 NMHC)	
Running Losses	l	
Refueling	0.2	
Total Organics	I	
Total MeOH	0.31	
Total HC	0.17	
Hot Soak MeOH	1	
Hot Soak HC	1	
Diumal MeOH		
Diurnal HC	ł	
Odometer	NA	(1989).
Fuel	85	ddock (
Air	Air	and Bra
EGR	EGR	-Stump :
Catalyst	TWC	e: Row I-
Row	-	Sourc

Table B-30-'86 Toyota Carina/Mix Method: Fuel Injection/ECU: FB

Comments	MeOH and OMHCE are estimates	-					
Running Losses	NA	NA	ΝA	ΝA	AN	NA	
Refueling	NA	ΑN	NA	٩N	٩N	NA	
Total Organics	AN	٩N	NA	NA	NA	NA	
Total MeOH	NA	AN	NA	NA	NA	NA	
Total HC	0.52	0.7	0.91	0.32	0.26	0.22	
Hot Soak MeOH	NA	AN	NA	NA	NA	NA	
Hot Soak HC	0.2	0.21	0.25	0.19	0.16	0.13	
Diumal MeOH	NA	AN	AN	NA	NA	NA	
Diumal HC	0.32	0.49	0.66	0.13	0.1	0.09	
Odometer	NA	NA	NA	AN	AN	NA	rell (1987).
Fuel	85	85	85	100	100	10	ad Mur
Air	No air	No air	No air	No air	No air	No air	owski ai
EGR	NEGR	NEGR	NEGR	NEGR	NEGR	NEGR	6—Piotr
Catalyst	8	8	8	8	8	8	:: Rows 1-
Row	-	6	m	4	Ś	9	Source

Not for Resale

Comments	Emissions data are averages of 3 tests at 75°F	Emissions data are averages of 3 tests at 75°F	Emissions data are averages of 3 tests at 75°F	Emissions data are averages of 3 tests at 75°F	Emissions data are averages of 3 tests at 75°F
Running Losses	AN	NA	ΝA	AN	NA
Refueling	NA	AN	AN	ΑN	NA
Total Organics	0.82	1.45	0.59	0.64	0.4
Total MeOH	0	0.26	0.28	0.25	0.58
Total HC	0.82	1.34	0.46	0.49	0.12
Hot Soak MeOH	NA	NA	NA	NA	NA
Hot Soak HC	NA	AN	AN	AN	NA
Diumal MeOH	NA	NA	AN	NA	NA
Diumal HC	NA	NA	NA	ΝA	AN
Odometer	NA	AN	AN	AN	NA
Fuel	0	25	50	85	100
Air	Air	Air	Air	Air	Air
EGR	EGR	EGR	EGR	EGR	EGR
Catalyst	TWC	TWC	TWC	TWC	TWC
Row	1	6	m	4	5

Source: Rows 1-5-Gabele (1990).

METHANOL VEHICLE EMISSIONS

API PUBL*4262 90 🖿 0732290 0095346 T 페

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

APPENDIX C—SUMMARY OF METHANOL VEHICLE EMISSIONS STUDIES

This appendix summarizes relevant methanol vehicle emissions studies. These summaries focus on emission results and do not indicate the entire scope or objectives of the studies.

Alson (1988)

Alson (1988) identified emissions reductions that were possible from the use of methanol and compressed natural gas in light-duty vehicles. Emission factors from those fuels were compared with emission factors from gasoline vehicles. Alson presented data showing that emissions from new gasoline cars had been reduced 84-98 percent between the years 1966 and 1986. Average emissions from current-technology methanol vehicles for CO and NO_x were higher than zero-mile emissions from current gasoline vehicles. He therefore did not expect CO and NO_x emissions to be affected by the use of methanol vehicles.

Blair (1988)

copyright American Petroleum Institute Provided by IHS under license with API Io reproduction or networking permitted without license from IHS

Blair (1988) described emissions testing conducted at EPA's Motor Vehicle Emissions Laboratory on a turbocharged Sentra that was designed by Nissan to use M85 fuel. The vehicle's chassis was a late-1986 model, and the engine was a 1983 1.3-liter design. The Sentra was supplied by Nissan to EPA for purposes of evaluating the manufacturer's methanol technology. The Sentra was tested after the fuel injectors were replaced because of faulty operation as a result of corrosion of the injectors' fuel inlet side. Exhaust emissions of hydrocarbons, NO_x, CO, CO₂, and formaldehyde were measured. The reported hydrocarbon emission values were based on calculations because methanol emissions were not measured by EPA at the time the tests were conducted. Therefore, the reported results were computed with an FID response factor of 0.75 and an assumed hydrocarbons-to-methanol factor of x/0.85, where x was the fraction, in parts per million, of methanol in a methanolgasoline blend. Blair reported that formaldehyde emission levels were 286 milligrams per mile during engine-out tests and 26 milligrams per mile with the catalyst installed. It was noted that the gas chromatograph readings for formaldehyde emissions were in error (+15 percent) because of mechanical problems with the analytical instrumentation during part of the test program.

Blair concluded that work was needed in the design of more methanol-tolerant fuel system components or possibly fuel additives to improve the Sentra's injector life. He recommended that more work be done on the Sentra's evaporative emissions system, because FID-measured hydrocarbon and CO tailpipe emissions increased significantly when a diurnal heat-build test was conducted before the FTP driving cycle. He also recommended that a more effective catalyst system be developed, allowing quicker light-off during cold starting conditions.

California Air Resources Board (1983)

The California Air Resources Board (1983) evaluated a 1981 Chevrolet Citation and a 1983 Pontiac Phoenix. Exhaust emissions for city and highway cycles were reported for formaldehyde, methanol, and nonoxygenated hydrocarbons. Evaporative emissions, including nonoxygenated hydrocarbons, were measured by gas chromatograph.

California Air Resources Board (1988)

In a cooperative program with the California Energy Commission (CEC), CARB has been periodically testing methanol-fueled fleet vehicle emissions since October 1980. The "Eighth Interim Report" summarizes all test data for each test vehicle from October 1980 to June 1988. (A "Ninth Interim Report" has subsequently been released.) Sixteen vehicles were tested. The fuel tested was primarily M85, but M100 was used in a few tests with FFVs. CARB reported that only the Ford Escorts were able to meet the California NO, standard, They reported that all of the vehicles (except the Ford Crown Victorias) experienced deterioration of driveability and emission control because of fuel injector fouling, fuel filter clogging, or both. These problems were more severe with vehicles at relatively low mileage. Several fuel pump failures in both the Escorts and the Crown Victorias caused Ford Motor Company to perform extensive testing on more durable replacements. Toyota installed new ball fuel injectors after fuel injector fouling was experienced. Initial tests indicated NO_x levels below the California standard, but after 10,000 miles, NO_x emissions were above the standard. CARB reported that the 1981 Volkswagen accumulated the most mileage (66,900 miles) of any vehicle in the fleet with "generally good driveability." However, during the last 10,000 miles the 1981 Volkswagen experienced "difficult cold starts, rough running and stalling." High hydrocarbon and CO emissions were observed at 66,486 miles.

CARB used two analytical instruments to test for total hydrocarbons in the exhaust. This was done because FID, which is used to analyze hydrocarbons, cannot distinguish between hydrocarbons and methanol, which are both present in the exhaust from methanol-fueled vehicles. FID measures the combined amount of hydrocarbons and methanol in the exhaust. This combined measurement underestimates the total amount of these species because FID only partially responds to methanol. Because FID can miss 15–25 percent of the methanol, some researchers divide FID results by a correction factor of 0.8, and others rely on more accurate results

78

API PUBLICATION 4262

from gas chromatography. Consequently, CARB conducted a separate gas chromatographic analysis to properly quantify methanol and hydrocarbon in the exhaust.

DeLuchi, Johnston, and Sperling (1988)

DeLuchi, Johnston, and Sperling (1988) conducted a comparative analysis of methanol, compressed natural gas, and liquefied natural gas as automotive fuels. In their paper, they summarized emissions data on methanol vehicles from several authors. A total of 15 vehicles using methanol fuels ranging from M50 to M100 were analyzed. DeLuchi et al. pointed out that one serious problem with methanol use is the difficulty of starting and driving the car in cold weather. It was their belief that if methanol vehicles continued to have difficulty starting, they might produce more CO than would gasoline vehicles during the cold transient cycle. Their analyses of available data indicated decreased NO_x emissions from dual-fuel vehicles. However, emissions from dedicated methanol vehicles were generally higher than those from gasoline vehicles. They agreed with EPA's claims that NO, emissions from methanol vehicles were not likely to be much lower than those from gasoline vehicles.

Their data analysis showed that formaldehyde emissions from methanol vehicles were higher than those from gasoline vehicles. They reported that properly operating gasoline vehicles with three-way catalysts emitted only 0-10 milligrams per mile of formaldehyde, whereas current-technology methanol vehicles emitted about 10-80 milligrams per mile.

Evaporative emissions from methanol vehicles were less than those from gasoline vehicles because methanol is less volatile than gasoline. However, the authors pointed out that if volatility enhancers were added to methanol to assist cold starting, evaporative emissions could increase. They concluded that the benefits from methanol use may range from insignificant to substantial.

Dunlap, Cross, and Drachand (1989)

Dunlap, Cross, and Drachand (1989) presented an overview of current CARB methanol vehicle emissions testing. They discussed data from light-duty methanol vehicle fleet test programs and described recent formaldehyde emission standards promulgated by CARB. Although CARB has been conducting emission testing since 1985 on Ford Pintos, Ford Escorts, Volkswagen Rabbits, a Toyota Camry, a Toyota Carina, and Ford Crown Victorias, this paper focused on emissions from three vehicles—the Toyota Camry, the Toyota Carina, and a flexible-fuel Ford Crown Victoria. These vehicles were modified for methanol use. For example, the Toyota Camry used a three-way catalyst, exhaust gas recirculation, multipoint electronic fuel injection, and a modified head for high (10:1) compression, with a swirl control valve, an oxygen sensor, and loop control. Even with

these modifications, the Camry experienced driveability problems (plugged fuel injectors) and high NO_x emissions. The authors reported CARB's difficulty in analyzing emission trends from these vehicles as a result of of intermittent fouling of the fuel injectors, causing variability in the emissions data. They recommended that improvements be made to the design of the fuel injectors for use with methanol fuel. In addition, they pointed out that to gain benefits in air quality, advancements in catalyst design are needed to achieve low formaldehyde and NO, emissions from methanol cars. They indicated that methanol-fueled vehicles emit higher levels of ozone-forming formaldehyde than do gasoline- or diesel-fueled vehicles. Emission test data showed that formaldehyde emissions from methanol-fueled light-duty vehicles typically ranged from 30 to 70 milligrams per mile using current-technology emission controls. In contrast, current gasoline-fueled light-duty vehicles emitted formaldehyde at a maximum of 15 milligrams per mile. Despite the poor driveability reported in the maintenance data, they concluded that overall driveability and performance was very good. However, they stated that all the vehicles (except the Ford FFVs) experienced occasional driveability problems because of fuel injector fouling.

Edwards and Baisley (1981)

Edwards and Baisley (1981) assessed the performance of a Ford three-way catalyst feedback control system when neat methanol fuel was used. The carburetors of three 1979 Ford Pinto 2.3-liter vehicles were modified to reflect differences in stoichiometric conditions between methanol and gasoline combustion. The modifications required precise attention to the fuel/air ratio over all speed and load changes.

The data indicated that CO emissions were about the same for neat methanol and Indolene. Methanol and NO_x emissions were reduced to one-half and two-thirds of the Indolene emission levels, respectively. Aldehydes were reported to increase by a factor of three with neat methanol fuel, and most of the aldehyde emissions were emitted during the cold treatment test phase.

Fuel economy for methanol and Indolene were reported to be comparable. Edwards and Baisley's data indicated that urban fuel economy was slightly lower for methanol than for Indolene. The highway fuel economy of the methanol vehicles was shown to be higher than that of the gasoline vehicles.

Emissions data over a 10,000-mile, 18-month test period indicated no emissions control system problems, but tests were terminated after 12,000 miles because of severe upper cylinder wear.

Gabele, Baugh, Black, and Snow (1985)

Gabele, Baugh, Black, and Snow (1985) examined exhaust and evaporative emissions from vehicles fueled both

with M90 and with a blend consisting of 90-percent gasoline, 5-percent methanol, and 5-percent tertiary butyl alcohol. The test vehicles used in this study were a 1984 Ford Mustang, a 1984 Chevrolet Cavalier, and a 1983 Ford Escort. The Ford Escort was a modified version of its gasolinefueled counterpart. Its compression ratio was increased to 11.4:1, and its carburetor was recalibrated to deliver larger quantities of fuel. Ignition timing was optimized to account for changes in the compression ratio and methanol's higher flame speed. The Cavalier and Mustang were used to test baseline emissions from premium gasoline fuel.

When the Mustang was run on baseline gasoline, regulated exhaust emissions (HC, CO, and NO_x) exceeded 1984 emission standards (0.41 gram per mile for hydrocarbons, 3.4 grams per mile for CO, and 1.0 gram per mile for NO_x). Emission levels from the Cavalier were lower than those from the Mustang. Regulated exhaust emission rates were reported to be about the same for both baseline and blended fuels. Exhaust methanol emissions were not detected. Gabele et al. assumed, however, that methanol emissions were less than 2 milligrams per mile from the blended fuels. Aldehyde emissions from blended fuel were reported to be twice as high as those from baseline fuels, with most of them being formaldehyde. No significant differences in fuel economy were observed between the baseline and the blended fuels.

The data on methanol emissions from the Ford Escort indicated that CO emissions exceeded the standard of 3.4 grams per mile. Methanol emission rates were reported to be three times higher than nonmethanol hydrocarbon emission rates. Aldehyde emissions an order of magnitude higher than those from gasoline-fueled automobiles were reported. Hydrocarbon emissions from the methanol Ford Escort were reported to be similar in composition to those from gasoline vehicles. It was assumed that these hydrocarbons were a result of combustion products from the gasoline fraction of the blended fuel. The average hydrocarbon composition was 65 percent paraffins, 25 percent aromatics, and 10 percent olefins. The Ford Escort's methanol evaporative emissions, comprising diurnal and hot-soak emissions, were 40 percent and 65 percent, respectively.

Gold and Moulis (1987)

Gold and Moulis (1987) compiled exhaust and evaporative emissions data for methanol-fueled vehicles from a number of different sources into three different data bases (exhaust city and highway, exhaust idle, and evaporative emissions). Their paper describes each data base and presents the results of a limited statistical evaluation of the data. The statistical evaluation calculated mean values of pollutant variables for each vehicle (CO, NO_x, formaldehyde, and methanol). The mean values for all the vehicles were averaged and reported, along with other relevant statistics. The authors made no attempt to compare the emission results with similar data from gasoline vehicles.

Gold and Moulis stated that "the data for methanol vehicles are not yet sufficient to allow for correlation of emission levels versus mileage." Their exhaust data base did not differentiate among fuel types (that is, by the methanol content of the fuel). They believed that the data might be sufficient for making general predictions of in-use methanol vehicle emissions but recognized a need for more data. They reported that "it would be useful to have data from an experiment designed specifically to evaluate the impact of fuel type, vehicle type and mileage accumulation on the ratios of organic emissions over the city and highway cycles."

Hellman (1989)

Hellman (1989) reported the results of emission testing of a prototype Nissan Sentra designed to run on M100 fuel. EPA conducted both emission and fuel economy tests. Hydrocarbon emissions were 0.01 gram per mile, methanol emissions were 0.38 gram per mile, formaldehyde emissions were 0.031 gram per mile, CO emissions were 0.43 gram per mile, and NO_x emissions were 0.57 gram per mile. The results of the fuel economy tests, expressed as gasoline-equivalent miles per gallon, were 37 miles per gallon in the city and 52 miles per gallon on the highway. During EPA's evaluation of the M100 Nissan Sentra, a cold transient driveability problem developed, and despite replacement of some parts, the problem was not solved. EPA plans to continue working with Nissan to resolve the problem. EPA compared fuel economy results from the M100 Nissan Sentra with those from a gasoline-fueled Nissan Pulsar, which had the same type of engine and transmission. In one comparison, EPA modified the M100 Sentra so that it would have the same final drive gear ratio as the gasoline-fueled Pulsar. Therefore, the ratio of engine speed, in revolutions per minute, to vehicle speed, in miles per hour (N/V), would be the same for both vehicles. Nissan has recommended that EPA modify another gasoline-fueled Pulsar to match the Sentra's N/V. EPA plans to follow Nissan's recommendation and will procure another Pulsar from Nissan.

Horn and Hoekman (1989)

Not for Resale

Horn and Hoekman (1989) discussed the difficulty of making a comprehensive comparison of methanol- and gasoline-fueled vehicle emissions because of discrepancies in available data. These discrepancies include "inadequate emissions sampling and quantification techniques for methanol vehicles, lack of data from advanced technology methanol-fueled vehicles, and lack of emissions data from intermediate and high mileage methanol-fueled vehicles." The authors conducted tests following the EPA 1975 FTP for exhaust emissions and the Highway Fuel Economy Test (HFET) for highway fuel economy. CO, NO_x , carbon dioxide, and formaldehyde measurements were made for the

API PUBLICATION 4262

Ford Crown Victoria and Chevrolet Corsica vehicles using a range of methanol fuels from gasoline to M85. Their data show that formaldehyde levels with M85 fuel are about three to five times greater than those for the same vehicles with gasoline fuel. They noted that great care must be taken when collecting methanol and formaldehyde samples because sample condensation sometimes occurs, even when heated lines are used. When condensation droplets form, a significant amount of alcohol is trapped, leading to an underestimation of emissions. They pointed out that the tests are of prototype vehicles and do not represent future production models. Also, the vehicles are part of a well-controlled fleet and receive maintenance and care that probably exceed those provided by the general public.

McGill, Hillis, and Larson (1988)

McGill, Hillis, and Larson (1988) reported results from 2 years of operation of the Federal Methanol Fleet at Lawrence Berkeley Laboratory (LBL). Ten 1984 Chevrolet Citations were operated for DOE's Federal Methanol Fleet Project. Five cars were methanol fueled, and five cars were gasoline fueled. More than 100,000 miles were accumulated on the ten cars without serious disruption in service. The fuel consisted of 88 percent methanol and 12 percent gasoline. Emissions of CO and NO_x were shown to be lower from methanol than from gasoline vehicles, whereas hydrocarbon emissions were higher from methanol than from gasoline vehicles. Hydrocarbon emissions were apparently estimated from FID measurements and calculated as the mass of nonoxygenated hydrocarbons plus the mass of methanol minus the mass of oxygen in the methanol.

In addition to measuring emissions, LBL sampled the lubricating oil every 1000 miles and determined the wearmetal content by laboratory analysis. They reported higher engine wear rates in methanol vehicles but did not consider them to be "alarmingly high." The iron content of the lubricating oil samples was highest, followed by lead, silicon, and copper. Maintenance data collected by LBL showed that methanol vehicles required substantially more service than did gasoline vehicles.

McGill, Hillis, West, and Hodgson (1989a)

McGill, Hillis, West, and Hodgson (1989a) reported results from the first year of operation (which ended December 31, 1988) of the Federal Methanol Fleet at Oak Ridge National Laboratory (ORNL). Ten 1987 Buick Regal Coupes with 3.8-liter V-6 engines and turbochargers were operated for DOE's Federal Methanol Fleet Project. Five cars were methanol fueled, and five cars were gasoline fueled. The methanol fuel used at ORNL was M85. The methanol component of the M85 fuel was produced from coal feedstock by Eastman Chemical Products. Emissions of CO and NO_x were shown to be higher from methanol-fueled vehicles than from vehicles using Indolene. In addition, calculated OMHCE emission levels for methanol vehicles were higher than hydrocarbon emissions from Indolene vehicles. Formaldehyde emissions from the methanol-fueled vehicles were reported to be 34 milligrams per mile. Methanol emissions in the exhaust were not measured. Consequently, the exhaust methanol values used to compute OMHCE were inferred from FID results by employing the known methanol response factor of the analyzer and assuming the relative amounts of nonoxygenated hydrocarbons and unburned methanol in the exhaust based on the percentage of methanol in the blended fuel.

In addition to measuring emissions, ORNL reported fuel consumption data and sampled lubricating oil every 1000 miles to determine the wear-metal content by laboratory analysis. Energy consumption for the five methanol cars was reported to be slightly higher than that of the five gasoline cars. McGill et al. reported higher accumulation rates of iron and lead in the oil of the methanol cars than in the oil of the gasoline cars but were not concerned with the level of contamination. The iron and lead content in the lubricating oil was three times higher than the copper content.

McGill et al. reported that the ten cars "accumulated a total of nearly 100,000 miles with very little difficulty." The authors said, however, that winter starting of methanol cars was reliable down to temperatures of only 20°F and became difficult around 15°F. Starting was extremely difficult, requiring very long cranking times, at temperatures around 10°F and lower.

McGill, Hillis, West, and Hodgson (1989b)

McGill, Hillis, West, and Hodgson (1989b) reported results from two years of operation of the Federal Methanol Fleet at the Argonne National Laboratory (ANL). Nineteen vehicles were operated for the U.S. Department of Energy's (DOE's) Federal Methanol Fleet Project. Ten of the vehicles were 1986 Chevrolet S-10 pickup trucks, five of which had been converted to operate on methanol, and nine of the vehicles were 1986 Ford Crown Victorias, five of which had been converted for methanol use. DOE was directed by the U.S. Congress to initiate a methanol fleet program in a cold climate. Because of ANL's location near Chicago, DOE selected ANL to operate the fleet. The methanol vehicles were equipped with special cold-starting systems to allow them to start and drive at temperatures as low as $-20^{\circ}F$.

Exhaust emissions were measured according to the FTP. Test results were estimated by assuming that unburned fuel in the exhaust had the same composition as the fuel. FIDmeasured hydrocarbons were reported as the mass of the nonoxygenated hydrocarbons plus the mass of the methanol minus the mass of the oxygen in the methanol. Emissions from the Chevrolet methanol vehicles were slightly higher

than those from their gasoline counterparts. McGill et al. believed that the higher CO emissions from methanol vehicles could be attributed to less effective catalyst performance and that the slightly higher NO_x emissions might be caused by the methanol vehicles' higher compression ratios. The Ford methanol vehicles showed similar results.

In addition to measuring emissions, ANL sampled the lubricating oil every 1000 miles and determined the wearmetal content by laboratory analysis. The wear-metal accumulation rates in the methanol vehicles were found to be much higher than those in the gasoline vehicles. Iron was the largest contributor to lubricating oil contamination, and aluminum was the smallest. Lead and copper were at levels between iron and aluminum. Major vehicle maintenance included replacement of plugged fuel injectors and replacement of molybdenum piston rings with chrome piston rings.

Mobil Research and Development Corporation (1987)

A Mobil Research and Development Corporation (1987) memorandum discussed the results of Mobil's evaluation of a methanol-fueled 1983 Ford Escort. The discussion related mostly to driveability problems, particularly cold starting problems associated with M85 fuel. Extended cranking times were required to start the vehicle at an ambient temperature range of 10°F–15°F. It was reported that the vehicle would not start below 10°F with M85 fuel.

The methanol vehicle was tested in accordance with the FTP for both M90 and M100 fuels. The memorandum reported that at low mileage, the methanol-fueled Escort met 1983 EPA emissions standards for gasoline-fueled vehicles. The vehicle's city fuel economy was reported to be about 14 miles per gallon on M90 and 13 miles per gallon on M100, compared with an EPA rating of 27 miles per gallon for gasoline-fueled Escorts. The lower fuel economy of the methanol vehicle reflected the difference in volumetric energy content between methanol and gasoline and did not indicate greater energy consumption. The better fuel economy for the M90 blend relative to M100 fuel was reported to be the result of M90's higher energy content.

Piotrowski (1987)

Piotrowksi (1987) reported emissions and fuel economy results for a lean-burn combustion system on a Toyota Carina operating on M100 fuel.

The Carina's driveability was improved by adjustment of its idle to run 8 percent léaner. NO_x and CO emissions increased when the improved calibration was used, but aldehyde and hydrocarbon emissions remained the same.

Two catalytic converters (an underfloor converter and the original manifold converter) were installed on the Toyota Carina for the emission tests. Hydrocarbon, CO, and aldehyde emissions decreased substantially with the double catalytic converter system—formaldehyde levels were reported to be only 5 milligrams per mile. However, NO_x emissions increased to 1.45 grams per mile, well above the federal standard of 1.0 gram per mile. The vehicle was also tested with higher aspect ratio tires, simulating the use of a vehicle with a larger chassis. Emission-level efficiencies decreased by 16–50 percent with the use of the higher aspect ratio tires.

The lowest temperature at which the Toyota Carina could reliably start and run on M100 fuel was 55°F.

The inertia weight of the Carina was increased from 2250 to 2625 pounds, and the car was tested using the FTP and HFET cycles. There were few changes in emission levels, except for CO levels, which increased from 0.93 gram per mile to 1.26 grams per mile.

Three separate air/fuel ratios were used, and pollutant emissions were measured. Hydrocarbon, NO_x , and formalde-hyde levels at idle were similar among the three air/fuel ratios.

Piotrowski (1989)

Piotrowski (1989) described emissions, fuel economy, and oil-sample analysis of an M100-fueled vehicle that had accumulated 6000 miles. EPA decided to test a methanol vehicle for an additional 6000 miles after discussions with industry suggested that late-model cars experience a significant change in emission levels in the 5000–15,000 mile range. Piotrowski reported that emissions of hydrocarbons, OMHCE, methanol, CO, and formaldehyde "did not substantially change" during the durability test. However, NO_x emissions did increase over the first 3000 miles, from 0.89 to 1.01 grams per mile. On completion of the test, NO_x had increased to a higher level of 1.42 grams per mile. An oil sample taken after the first 15,000 miles showed wear-metal levels twice as high as those in samples taken during the remaining part of the mileage accumulation test.

Piotrowski and Murrell (1987)

Piotrowski and Murrell (1987) evaluated Phase I testing of a Toyota lean-combustion system for methanol fuel. This system was designed to improve fuel economy and driving performance while reducing pollutant emissions. EPA reported that fuel economy improved slightly when the vehicle was operating on M85 instead of M100 fuel. The test vehicle was a 1986 Toyota Carina, which is sold in Japan but not in the United States. The vehicle had a four-cylinder, overheadcamshaft engine with a displacement of 1587 cubic centimeters. The engine was modified for lean-burn mode by provision of a lean-mixture sensor, a swirl control valve, and a timed sequential fuel injection system.

Exhaust hydrocarbon emissions were measured using FID, with no attempt to adjust for FID's partial response to methanol. NO_x emissions were measured using the chemilu-

API PUBLICATION 4262

minescent technique, and CO was measured using an infrared analyzer. Exhaust formaldehyde was measured using the dinitrophenylhydrazine technique.

Piotrowski and Murrell reported that hydrocarbon emissions from the Toyota Carina operating on M85 or M100 fuel were about one-half those from gasoline vehicles. However, CO emissions were only slightly lower than those from gasoline vehicles. NO_x emission levels measured during M100 tests were about the same as those measured during tests of a Toyota Tercel operating on gasoline. Piotrowski and Murrell reported that no attempt was made to analyze the cause of differences in emission levels between gasoline and methanol vehicles, such as vehicle weight and type of catalytic converter. They did acknowledge that these differences could be significant.

Piotrowski, Heavenrich, Bruetsch, and Cheng (1987)

Piotrowski, Heavenrich, Bruetsch, and Cheng (1987) evaluated a methanol-fueled 1986 Ford Crown Victoria, a prototype vehicle (used in a taxicab fleet sponsored by the New York City Department of Environmental Protection). The vehicle, powered by a 5-liter fuel-injected engine, was equipped to operate on both M85 and gasoline fuel.

A total of 17 tests were run on M85 fuel from two different fuel suppliers (Celanese and Howell Hydrocarbon). Seven of these tests were FTPs, four were highway tests, three were evaporative FTP tests, and three were New York City cycle tests. Both exhaust and evaporative (diurnal and hot-soak) emissions were measured. Hydrocarbon emission results were calculated using an FID response factor of 0.75 and an assumed hydrocarbons-to-methanol factor of x/0.85, where x was the fraction, in parts per million, of methanol in a methanol-gasoline blend. Piotrowski et al. assumed the amount of methanol in the exhaust because at the time the tests were conducted, EPA did not measure methanol emissions. Their data indicated that average formaldehyde emissions were about double the proposed California standard of 15 milligrams per mile. They reported that the variation in the data was caused by the fuel used, the age of the catalyst, and differences among drivers (with respect to car stalling).

Singh and Sekar (1988)

Singh and Sekar (1988) evaluated the emissions from a variety of methanol vehicle types and qualitatively assessed the potential effects of methanol fuel use on air quality. The methanol vehicles in the data set included 36 operated by the California Energy Commission and 21 others. Singh and Sekar concluded that CO emissions are reduced with neat methanol and methanol blends. However, they reiterated EPA's belief that the data are inconclusive. They found NO_x emissions to be increased with methanol blends and reduced with neat methanol. They reported that EPA does not expect

ithout license from IHS

neat methanol vehicles (M100) to have lower NO_x emissions than will gasoline-fueled vehicles. The authors believe it is too early to determine the effect of FFVs on NO_x emissions. They noted that tests have shown that exhaust hydrocarbons are reduced by methanol blends, but they reported that some measurement procedures underestimate methanol emissions. In some studies, they could not tell whether only nonoxygenated hydrocarbons or both nonoxygenated hydrocarbons and methanol were being reported.

They concluded that "methanol-fueled vehicles have not yet shown the increased reliability and durability expected of them." Their conclusion was based on federal fleet demonstrations of methanol automobiles and light trucks, which experienced fuel injector plugging, causing poorly controlled combustion and higher CO and hydrocarbon emissions. Catalyst overheating and failure, leading to excessive CO, hydrocarbon, and NO_x emissions, also contributed to the problems. The authors stated, "Such emission control failures could affect the emission deterioration rates of methanol-fueled vehicles over time." Despite these limitations, they believed that optimized vehicles could show greater emission benefits. "However," they said, "even assuming emission benefits, methanol (as neat methanol or in FFV use) is not a panacea for the near-term ozone problem affecting many of the nation's cities."

Smith (1985)

Smith (1985) evaluated exhaust emissions from a methanol-fueled Ford Escort for the Coordinating Research Council. Testing was conducted with M90 and M100 fuels in accordance with the FTP. When the cold- and hot-start segments of the FTP test cycle were compared, cold starts resulted in higher exhaust emissions. For vehicles without catalytic converters, methyl nitrite exhaust concentrations were detected when high concentrations of NO_x and methanol were present. Compared with M90, M100 yielded higher hydrocarbon, NO_x , methanol, and formaldehyde emissions and lower CO, formic acid, and methane emissions.

Smuda (1984b)

Smuda (1984b) discussed an EPA study of a 1981 Datsun 200SX with a Nissan NAPZ engine. Formaldehyde emissions were measured for city and highway cycles using the 2,4-dinitrophenylhydrazine method. No attempt was made to measure nonoxygenated hydrocarbons or methanol. Evaporative emissions were not measured.

Stump, Ray, and Braddock (1989)

Stump, Ray, and Braddock (1989) examined exhaust, evaporative, and refueling emissions from a methanol-fueled Ford Escort operated with M85 and M100 fuels. Exhaust and evaporative emissions were examined as a function of sum-

Not for Resa

mer and winter ambient temperatures, and refueling emissions were examined at typical summer temperatures. CO, methanol, hydrocarbon, and formaldehyde exhaust emissions increased substantially when the vehicle was operated at low temperatures. Exhaust NO_x emission rates indicated little sensitivity to temperature. Diurnal hydrocarbon evaporative emissions decreased as temperature decreased. Methanol refueling emissions did not vary with changes in either fuel tank temperatures or fuel type.

Williams, Lipari, and Potter (1989)

Williams, Lipari, and Potter (1989) reported emissions data from an experimental 2.5-liter variable-fuel vehicle developed by General Motors Corporation. Methanol, formaldehyde, and hydrocarbon emissions were reported from both exhaust and evaporative emissions tests that used mixtures of methanol and gasoline as fuel. Emissions from current and developmental gasoline cars were reported for comparison.

Williams et al. reported that the largest contributor to total emissions from methanol vehicles (ranging from 50 to 80 percent) was cold-start exhaust emissions. Their data show that formaldehyde emissions increase from 7 milligrams per mile for gasoline to about 40 milligrams per mile for M100. On the other hand, exhaust hydrocarbons were highest with gasoline fuel, and values decreased to less than one-tenth those rates when vehicles were operated on M100. Evaporative emission rates for hydrocarbons were highest when M15 and M50 fuels were used. For M100 fuel, evaporative emission rates for hydrocarbons decreased to near zero.

The emissions from the variable-fuel vehicle and dedicated methanol car had similar compositions—85–90 percent methanol, 5–7 percent formaldehyde, and 3–9 percent hydrocarbons. Order No. 822-42620

API PUBL*4262 90 🛲 0732290 0095355 0 🛲

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005

Not for Resale

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS