API PUBL*333 95 🔳 0732290 0554309 6T3 🔳

GENERATION AND MANAGEMENT OF RESIDUAL MATERIALS

Petroleum Refining Performance

byright American Petroleum Institute wided by IHS under license with API

ithout license from IHS

One of the most significant long-term trends affecting the future vitality of the petroleum industry is the public's concerns about the environment. Recognizing this trend, API member companies have developed a positive, forward-looking strategy called STEP: Strategies for Today's Environmental Partnership. This program aims to address public concerns by improving our industry's environmental, health and safety performance; documenting performance improvements; and communicating them to the public. The foundation of STEP is the API Environmental Mission and Guiding Environmental Principles.

API ENVIRONMENTAL MISSION AND GUIDING ENVIRONMENTAL PRINCIPLES

The members of the American Petroleum Institute are dedicated to continuous efforts to improve the compatibility of our operations with the environment while economically developing energy resources and supplying high quality products and services to consumers. The members recognize the importance of efficiently meeting society's needs and our responsibility to work with the public, the government, and others to develop and to use natural resources in an environmentally sound manner while protecting the health and safety of our employees and the public. To meet these responsibilities, API members pledge to manage our businesses according to these principles:

- To recognize and to respond to community concerns about our raw materials, products and operations.
- To operate our plants and facilities, and to handle our raw materials and products in a manner that protects the environment, and the safety and health of our employees and the public.
- To make safety, health and environmental considerations a priority in our planning, and our development of new products and processes.
- To advise promptly, appropriate officials, employees, customers and the public of information on significant industry-related safety, health and environmental hazards, and to recommend protective measures.
- To counsel customers, transporters and others in the safe use, transportation and disposal of our raw materials, products and waste materials.
- To economically develop and produce natural resources and to conserve those resources by using energy efficiently.
- To extend knowledge by conducting or supporting research on the safety, health and environmental effects of our raw materials, products, processes and waste materials.
- To commit to reduce overall emission and waste generation.
- To work with others to resolve problems created by handling and disposal of hazardous substances from our operations.
- To participate with government and others in creating responsible laws, regulations and standards to safeguard the community, workplace and environment.
- To promote these principles and practices by sharing experiences and offering assistance to others who produce, handle, use, transport or dispose of similar raw materials, petroleum products and wastes.

Generation and Management of Residual Materials

Petroleum Refining Performance 1992 - 1993 Survey

Health and Environmental Affairs Department

API PUBLICATION NUMBER 333

PREPARED UNDER CONTRACT BY:

GAIL L. LEVINE DAVID N. RAMROTH SUMMATIONS WASHINGTON, D.C.

DIANNA KOCERUK TISCHLER/KOCERUK ROUND ROCK, TEXAS

WENDALL CLARK WC CONSULTANTS HOPEWELL JUNCTION, NY

FEBRUARY, 1995

API PUBL*333 95 🎟 0732290 0554312 198 🖿

FOREWORD

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state and Federal laws and regulations should be reviewed.

API is not undertaking to meet duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations under local, state, or Federal laws.

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letter patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Copyright © 1995 American Petroleum Institute

ACKNOWLEDGMENTS

The following people are recognized for their contributions of time and expertise during this study and the preparation of this report:

API STAFF

Barbara Bush, Health and Environmental Affairs Department Tim Sampson, Manufacturing, Distribution & Marketing Wendy Sams, Information Services

MEMBERS OF THE REFINING SURVEY WORKGROUP

Mark Hopkins (Chairman), Chevron Corporation

Gregory Bolner, Texaco, Inc. James Brosman, Amoco Corporation John Lemen, Texaco, Inc. Richard Lindstrom, Ashland Petroleum Company Gary Robbins, Exxon Corporation

THE REFINERS

At each refinery that participated in the survey, an individual(s) assumed the responsibility to complete the survey questionnaire. Their efforts deserve special recognition and thanks from the industry.

PREFACE

To improve the quality of the data collected, and its relevance to current developments, each year the American Petroleum Institute (API) reviews all data collected in this survey, and evaluates and revises, as necessary, the data collection forms and instructional materials. Consistent with this ongoing effort to promote the integrity of the survey findings and its utility to the industry, API is implementing a deliberate change in the terminology used in this survey. Henceforth, in this report and all future documents developed in conjunction with this survey, API will use "residual materials or residuals" to refer to what has previously been called "wastes and secondary materials." This change in terminology reflects industry practices--the use of many of these materials as feedstocks or for recycling, reuse, and reclamation. This change helps to reconcile the utilization of these materials in our industry with the regulatory usage of the term "waste."

TABLE OF CONTENTS

EXECUTIVE SUMMARY ES-1
INTRODUCTION
METHODOLOGY 2
Data Collection Forms 2
Data Analysis
RESULTS
Response Rate
Respondent Characteristics 10
Residual Generation
Pollution Prevention
Total Quantity of Residuals Managed 22
Management Practices for Residual Materials
Recycling
Treatment
Land Treatment
Disposal
Aqueous Residuals
Other Aqueous Residuals NOS
TC Wastewaters 37
DISCUSSION

APPENDIX A - Questionnaire

APPENDIX B - SAS Data Tables

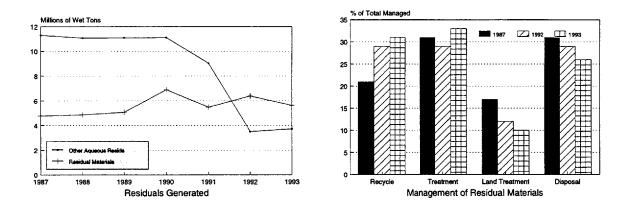
APPENDIX C - Trend Data on Generation and Management Practices (by Stream	n)
APPENDIX D - Summary of Pollution Prevention Initiatives (by Stream)	

•

API PUBL*333 95 🔳 0732290 0554316 833 🔳

LIST OF TABLES

Table 1 - Refining Residual Streams	3
Table 2 - Estimate of Residuals Generated by the U.S. Refining Industry: 1991	14
Table 3 - Number of Refineries Reporting Each Stream	15
Table 4 - Number of Refineries Reporting Each Pollution Prevention Activity	18
Table 5 - Summary of Pollution Prevention Activities	20
Table 6 - Estimates of Residual Materials Managed in 1992, 1993	23
Table 7 - Comparison of Residual Material Managed: 1993-1987	25
Table 8 - Summary of Recycling Practices	28
Table 9 - Estimated Quantities of Recycled Materials	29
Table 10 - Location of Recycling Activities	30
Table 11 - Summary of Treatment Methods	31
Table 12 - Estimated Quantities of Residuals Treated	32
Table 13 - Location of Treatment Activities	33
Table 14 - Estimated Quantities of Land Treated Residuals	34
Table 15 - Summary of Disposal Practices	34
Table 16 - Estimated Quantities of Wastes Eliminated by Disposal	35
Table 17 - Location of Disposal Activities	36


į

LIST OF FIGURES

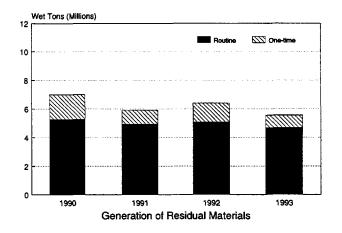
Figure A - Statistical Estimation Procedures	7
Figure B - Number of Respondents by Capacity Group	9
Figure C - Location of Participating Refineries	10
Figure D - Distribution of Respondents by NPDES Complexity Classification	11
Figure E - Distribution of Respondents by Refinery Age	11
Figure F - Generation of Residual Materials and Other Aqueous Residuals in the Petroleum Refining Industry: 1987 - 1993	12
Figure G - Residual Management Practices: 1993 - 1991	26
Figure H - Longitudinal Comparison of Residual Management Practices: 1987-1993	27
Figure I - Techniques Used to Manage TC Hazardous Wastewater	38
Figure J - Generation of Residual Materials and Other Aqueous Residuals in the Petroleum Refining Industry: 1987 - 1993	39
Figure K - Generation of Routine and One-time Residuals: 1990 - 1993	40
Figure L - Generation of RCRA K-Residuals: 1987 - 1993	41
Figure M - Pollution Prevention Continuum	43
Figure N - Recycling of Residual Materials: 1987 - 1993	45
Figure O - Comparison of Management Practices: 1987 and 1993	45

EXECUTIVE SUMMARY

The addition of 1992 and 1993 information to API's database on refining performance strongly suggests that residual generation patterns and management practices have changed significantly from those observed in the late 1980's. Generation of Other Aqueous Residuals has dropped 69 percent since API's survey began in 1987, while the amount of other residual streams has fluctuated since 1990, due largely to unusual, one-time events. Over the seven year period, the industry has increased its reliance on recycling to manage residual materials, with 40 percent more material recycled in 1993 than in 1987 (1.8 and 1.1 million wet tons, respectively). At the same time, less material is managed in land treatment units and by disposal.

These observations are based on the responses to questionnaires API mailed to the population of 169 domestic refineries operating in 1992 and the 161 that remained in operation in 1993. Fewer refineries participated in the survey activity than ever before: 91 and 90 respectively, for each year. However, because these respondents represented 63 percent of the refining capacity and spanned the full range of refinery capacity classes (i.e., <10,000 - >400,000 barrels per stream day), the models previously used to create industry-wide estimates retained their validity.

API's survey continues to document how the industry has achieved compliance with the land disposal restrictions on RCRA listed hazardous K-wastes (K048-K052). It has also begun to trace the influence of the Primary Sludge rule and new Toxicity Characteristic criteria under RCRA. For K-waste residual streams, pollution prevention activities implemented by the

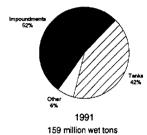

ES-1

API PUBL*333 95 🎟 0732290 0554319 542 📟

refiners should be credited with the 62 percent reduction in generation achieved: from approximately 760 thousand wet tons in 1987 to approximately 300 thousand wet tons in 1993. The types of pollution prevention activities performed include both those expected when such programs are initiated--procedural changes that quickly yielded substantial improvements--as well as secondary strategies to enhance recycling and sustain employee awareness.

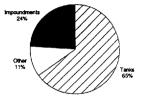
The three years of data on listed Primary Sludge wastes (F037) show an initial low generation quantity of 130 thousand wet tons in 1991 followed by successive increases to 209 and then 235 thousand wet tons in 1993. In 1992, refiners reported that one third of the amount generated was due to one-time events; this increased to over one half of the quantity reported in 1993. These spikes in generation are consistent with timing of variances EPA had provided to land ban requirements.

Similar spikes in generation have been noted for other residuals streams, such as **Contaminated soils/solids**, **Other inorganic residuals**, **Residual oils/spent solvents**, **Pond sediments**, and **Other residuals NOS**. Refiners have indicated that these reflect capital improvements (i.e., closure of units, construction and remediation activities). Such events occur infrequently, and as reported in the survey, are considered "one-time" incidences. The quantities of these residuals associated with these abnormal events are substantial, accounting for the increases in residuals noted since 1989, as well as the variability observed in residual generation between 1990 and 1993.



ES-2

API PUBL*333 95 🔳 0732290 0554320 264 📟


The pattern observed for TC wastewaters, however, was successive reductions, rather than increases in generation. The largest quantity was reported in 1991, followed by an 11 percent reduction for 1992, and a 24 percent drop by 1993 (based on the 41 refineries that provided TC data in all three survey cycles). The pie charts presented below illustrate the reduced reliance on surface impoundments to manage TC materials that has occurred over time.

Management of TC Wastewaters

1992 141 million wet tons

1993 121 million wet tons

ES-3

INTRODUCTION

This report presents information on the generation and management of residual material in the petroleum refining industry during 1992 and 1993. This study differs from previous survey cycles and respective reports in that two years of data were collected and analyzed simultaneously.

The American Petroleum Institute (API) employed this strategy for several reasons. First, collection of the 1992 data had been delayed to avoid conflict with the refiners' completion of the Environmental Protection Agency's (EPA) survey conducted under the authority of Section 3007 of the Resource Conservation and Recovery Act (RCRA). This mandatory survey went to the field in September 1993--exactly when API had planned to send out the forms for collection of its own 1992 data. Recognizing that completion of EPA's 142 page questionnaire would require a substantial manpower effort, API opted to delay administration of its survey.

API, however, was concerned that a delay in collecting the 1992 data could undermine the utility of these data within the refining industry. Refiners had already expressed concern that the three year lag time in publishing the data made it less useful to them. For example, because the 1991 data were published in 1994, information on the first year of land disposal restrictions was released when refiners already had three years of experience with the prohibitions. Thus, while API's survey reports are viewed as the most comprehensive and current source of data on industry practices by those *outside* the industry, to some intimately involved in day-to-day refining operations, the information was too dated to assist in timely management decisions.

After discussing the issue with company representatives on API's General Refining Committee and the Committee on Refining Environmental Controls (CREC), agreement was reached that the 1992 and 1993 data should be collected simultaneously, but the time required to analyze and report results should be reduced substantially. The refiners would therefore shoulder an increased reporting burden, while API, the respective committees involved in the survey, and the contractor would be obligated to expedite handling and review of the survey data.

This report represents the accomplishment of these goals. The survey materials were mailed to refineries in March, 1994, less than one year ago. Publication of this report with 1993 data represents a substantial reduction in the lag time to publication. The refiners part in this collaborative effort is noteworthy for it represents the efforts of front line workers in a time when corporate downsizing already made their jobs more demanding.¹

¹ Between 1992 and 1994 when the data was collected, the number of employees in refining dropped from 121.8 thousand to 108.5 thousand--an 11 percent reduction (U.S. Department of Labor, *Employment Hours and Earnings,* August 1993, June 1994). This reflects the closing of 22 refineries between 1991 and 1993 and reductions in staff at the remaining 161 operating refineries. At the same time, manufacturing increased, from 593 to 618 billion barrels.

METHODOLOGY

The survey procedures used for the 1992 and 1993 cycles were the same as previously employed. The census design was based on the listings of operating refineries in the Department of Energy's *Petroleum Supply Annual for 1992 and 1993*. Survey materials were mailed in March 1994. The six week interval originally adopted for form completion was extended to almost seven months to maximize the response rate. Contact was maintained with all refineries during the field administration, with follow-up calls placed to refineries to encourage participation and through a "HELP-line" staffed by a refining expert.

The sections that follow provide more detail on the data collection forms and the estimation procedures used in the study.

Data Collection Forms

The questionnaire was provided in both hard copy form and on an automated disk, written using Clipper, a commercially available compiler for dBase. A copy of the data collection form is presented in Appendix A.

The survey questionnaire had two sections. The first included nine short-answer questions that focused on refinery characteristics such as age, size, complexity of processing, and sewer configuration.

The second section of the questionnaire was a series of one-page "data sheets" that collect empirical information on:

- 1) the quantities of residual materials generated;
- 2) how they were **managed** (according to the waste management hierarchy steps of recycling, treatment, and disposal); and
- 3) the amount of materials that were reduced as a result of **pollution prevention** activities.

There were 30 of these *data sheets* for each year, one for each of the residual streams identified in Table 1. (Refer to Appendix A for an example of a data sheet).

The data sheets were virtually the same as used in the 1991 cycle of the survey. The two page format was retained, wherein codes for the management techniques and pollution prevention activities were printed on the back of the preceding page in a different color. The only modifications made to the forms were clarifications of various instructions, such as the inclusionary criteria for several streams (i.e., Residual oils and spent solvents, Spent acids, and High pH/low pH waters), and the selection of the most appropriate code for pollution prevention activities. These revisions were considered to be minor since edit checks had previously been performed on these same data elements.

Table 1Refining Residual Streams

Category	Constituents
Aqueous residuals	Biomass High pH/low pH waters Oil contaminated waters (not wastewaters)* Spent Stretford solution Spent sulfide solution TSD Leachate (F039)*** Other aqueous residues NOS**
Chemicals/inorganic residuals	Spent acids Spent caustics Residual amines Other inorganic residuals NOS**
Contaminated soils/solids	Contaminated soils/solids Heat exchanger bundle cleaning sludge*** Residual coke/carbon/charcoal Residual sulfur Other contaminated solids NOS**
Oily sludges/other organic residuals	API separator sludge*** DAF float*** Leaded tank bottoms*** Nonleaded tank bottoms Pond sediments Primary sludge (F037)*** Primary sludge (F038)*** Slop oil emulsion solids*** Residual oils/spent solvents Other oily sludges/organic residuals NOS**
Spent catalysts	Fluid cracking catalyst Hydroprocessing catalyst Other spent catalysts NOS**
Other residuals	Other wastes NOS**

* Does not include NPDES or POTW wastewaters.

** Not otherwise specified.

*** RCRA-listed hazardous wastes for petroleum refining.

API has used an equation on each data sheet as a quality control measure: the "inputs" of residual materials must balance the "outputs." Inputs include the quantities of residual material Generated plus Treatment Additives and the Net Removed from Storage (i.e., the total amount of material removed from storage minus the amount placed into storage) and constitute the "Total Quantity Managed." As depicted in the equation below, this is balanced by the quantities of the residual *recycled, treated, or disposed.*

Quantity Generated + Treatment Additives + Net From Storage = Total Quantity Managed

Total Quantity Managed = Quantity Recycled + Quantity Treated + Quantity Disposed

Each data sheet also contains a section to capture information on pollution prevention activities that have been performed. In addition to indicating the quantity of waste reduced, respondents are asked to classify the pollution prevention activity according to the codes displayed below and to then briefly describe the activity performed.

POLLUTION PREVENTION CODES

1 = Equipment or Technology Modifications
2 = Procedure Modifications
3 = Reformulation or Design of Products
4 = Substitution of Raw Materials
5 = Improved Housekeeping, Training, or Inventory Control

IN-PROCESS RECYCLE 6 = In refining process units (e.g., crude unit; coker; desalter)

7 = Recovering oil (& dewatering) by filter pressing/centrifugation

8 = Other recycle

OUT-OF-PROCESS RECYCLE 9 = Reuse/reclamation 10 = Other

Data Analysis

The data verification and estimation procedures used were similar to those used previously. Data verification included 28 automated consistency checks for the variables on each data sheet, as well as final range checks across respondents and comparisons with the data previously submitted by the respective refinery. In all cases, any questionable data were verified by direct contact with the facilities to ensure their accuracy.

For each survey cycle, regression analysis has been used to estimate the quantity of residuals generated by the entire industry, based on the information submitted by survey respondents. A critical assumption in this approach is that the factor(s) influencing waste generation for respondents do not differ from those for non-respondents.

Similar to the approach used in 1991, a regression procedure was used to estimate the quantities of 29 residual streams that are generated by most refineries. As before, the regression model used for 1992 and was of the form:

Total Generated Quantity = $[a + b(Capacity)]^2$

where a and b were estimated based on the data from responding refineries that were not statistical outliers.

API PUBL*333 95 🎟 0732290 0554325 846 🎟

A separate modeling step was used to estimate Other Aqueous Wastes NOS since the generation and management pattern for this stream is quite atypical (with only a few facilities generating this stream, but with several reports of extremely large quantities).

To validate the continued applicability of the model used to estimate the 29 residual streams, the previous model assumption of operating capacity versus the square root of residual generation was examined. Specifically, scatterplots of the 1992 and 1993 data were made. Based on the visual fit of the data and the calculated R² values of 0.65 for each year, the existing regression model was considered adequate.

To improve regression, outliers that tend to have too much influence on the regression line were deleted. Confidence bands were drawn on the scatterplots of the 1992 and 1993 data to aid in visually identifying outliers. A 99.99 percent confidence interval was arbitrarily chosen to show the widest possible band which would highlight the most extreme, or outlying points. Using this technique, three refineries were identified as outliers for 1992 and two additional refineries were considered outliers for 1993 (i.e., a total of five for 1993). After removing these cases, the final R² value for 1992 was 0.68, while the 1993 statistic remained 0.65. The final regression equations are

for 1992:

 $G = \sqrt{40.04 + 0.0009872C}$

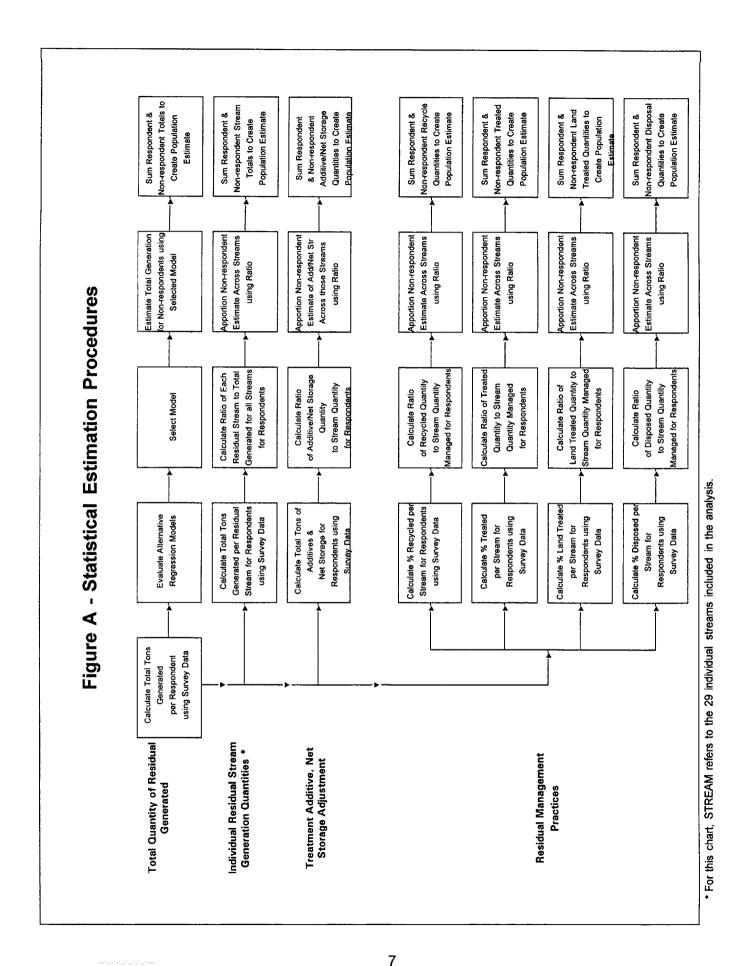
and for 1993:

 $G = \sqrt{46.55 + 0.0009799C}$

where, G = residual material generation (wet tons) and C = operating capacity (barrel per stream day).

This regression model was then used to estimate the total residual generated by each nonrespondent by inputting its capacity obtained from statistics maintained by the U.S. Department of Energy into the model, squaring the result and then applying a standard statistical procedure to adjust that number so that the final estimate is unbiased.

To estimate the <u>total</u> amount of residual materials generated for all U.S. refineries, estimates for non-respondent refineries were combined with the data obtained from the survey participants (including the outlier facilities). All residual generation and management data shown in this report are estimates for the population of operating refineries in each survey cycle.


After deriving the total quantity of generated residual, calculations were performed to estimate the generation quantities for each of the 29 residual streams. This is illustrated in the flow chart presented in Figure A. A summary of the procedure used follows:

API PUBL*333 95 📰 0732290 0554326 782 📰

- 1) The total reported quantity of residuals was determined by summing, for each stream, the generated quantities from all respondents.
- 2) The relative contribution of each stream to the total reported quantity was obtained by dividing the individual residual stream generation quantity calculated in (1) by the total quantity of residuals for all 29 streams generated by respondents.
- 3) Each proportion calculated in (2) was multiplied by the total estimated residual quantity for all non-respondents to get residual quantities, by stream, for non-respondents.
- 4) Estimated generated quantity for a stream was obtained by summing the corresponding respondent and non-respondent quantities from (1) and (3). This is depicted in the second row of the flow chart.

To obtain the managed quantity of residuals, the proportion of treatment additives and net quantity from storage to generated quantity in each stream was calculated. (Shown in the third row of Figure A.) These proportions were then multiplied by the non-respondent generated quantity for a stream to get estimated amounts of treatment additives and net from storage. Thus, the managed quantity of residuals was calculated by summing (a) generated quantity, (b) treatment additives and (c) net from storage for respondents and non-respondents. As depicted in the last four rows of the flow chart, a similar procedure was used to estimate the quantities of residuals recycled, treated and disposed.

To estimate the quantity of Other Aqueous Residuals generated, the simple ratio technique used in 1991 was employed. In 1992, 14 of the 91 respondents reported generating this stream, while only seven continued to report it in 1993. For each year, the quantity of this stream reported by these refineries was divided by the capacity represented by the group of refineries that responded to the survey. The resulting ratio was then applied to the capacity for all operating refineries.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS .

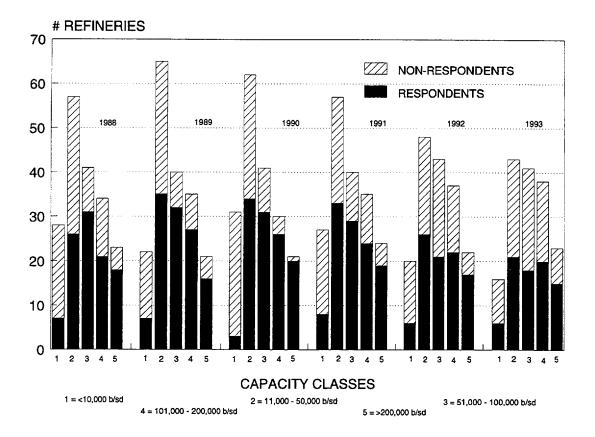
RESULTS

Response Rate

In 1992, 91 refineries participated in the survey and 89 refineries provided data for 1993. These were the lowest response counts observed since the survey began. The survey continued to maintain, however, a sizeable core group of 56 refineries that participated in all seven survey cycles.

When the raw count of survey respondents is reviewed in the context of the number of operating refineries, the response rates for 1992 and 1993 are in the ranges previously reported. The overall number of operating refineries in 1992 and 1993 dropped substantially, to 169 and 161, from the 183 observed for the three previous survey cycles. Thus, when the 1992 and 1993 respondents are looked at as part of the population of refineries, the response rates are 54 and 55 percent, respectively. This is within 10 percent of the 64 and 65 percent rates achieved in 1989 and 1988, and comparable to the 56 percent reported for 1990.

For both 1992 and 1993, the respondents represented 63 percent of the *domestic crude refining capacity* of 10.231 and 10.201 million barrels per stream day. This is lower than previously attained, but is still a substantial response and more than adequate to support the generation of reliable statistical estimates.²


This reduction in response rate for this survey appears to be related, in part, to the decrease in the number of operating refineries. The decrease in response between 1991 and 1993 was 21 percent, while the decrease in the number of operating refineries was 12 percent. However, the survey was administered in 1994, when even more closures and changes in operating status had taken place. Some refineries reported that they would not be able to participate because they were transitioning to new ownership and that attendent business issues took priority. Another related consideration is that refineries that closed in 1993 typically had no staff in place during 1994 and therefore could supply no data for 1992.

The closings of these facilities exerted some distinct changes on the distribution of refineries as illustrated in Figure B.

² Although the number of refineries has diminished over time, the quality of the model used to create population estimates continues to be quite good as seen by the t-statistic of 13.8. It is anticipated that even if additional refineries choose not to participate in future cycles of the survey, appropriate models could be developed, assuming that the participating refineries continue to adequately represent the full range of capacity classes.

API PUBL*333 95 ■ 0732290 0554329 491 ■

Note the substantial drop in the number of operating refineries (i.e., the combined area of both the respondent and non-respondent bars) in the 10 - 50 thousand barrels per stream day (b/sd) category and the increases, over time, in the two largest capacity classes. Given that no new refineries opened or were reactivated in 1992 and 1993, the increases in the number of operating refineries in the largest categories must reflect increases in capacity at existing facilities.

Regarding the participants in the survey, the graph shows that there were fewer responders in each capacity group, and that the greatest drop was in the 50 - 100 thousand b/sd capacity class. This observation comports with the information obtained during follow-up calls that some refineries and corporations decided not to respond because of the burden involved. In particular, a number of small refineries commented that they would be unable to participate because of the effort they had already devoted to complying with the RCRA 3007 survey. Several other companies, faced with the demands of downsizing, indicated that they could not complete the forms, especially since the two years of data increased the manpower effort required.

Respondent Characteristics

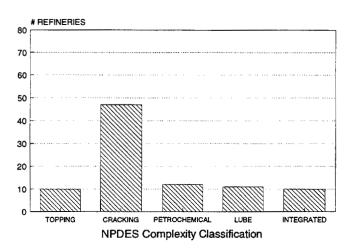
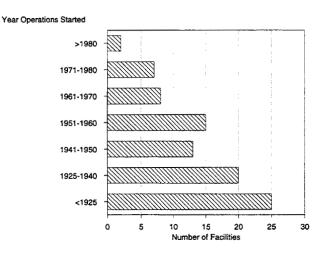

The location of the responding refineries is illustrated in Figure C. The only region with the same number of respondents as previously was PAD I. PAD II, with 20 refineries, had the greatest turnover in respondents, with 14 refineries that had participated in 1991 not participating in this survey. PAD III and PAD IV both had 3 fewer refineries participating, while the western PAD V had four less.

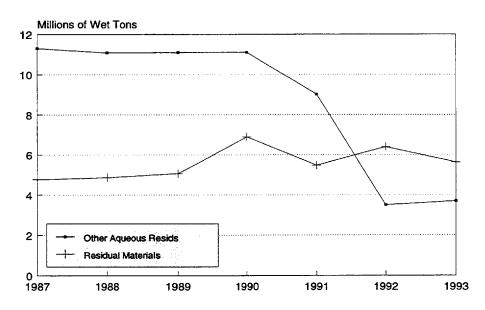
Figure C Location of Participating Refineries


To categorize the complexity of refineries, API uses the NPDES permit classifications that range from the simplest "Topping" type of processing to the more complex "Integrated" system. As shown in Figure D, the "cracking" refineries were the most predominant group, representing 52 percent of the respondents (n = 47). As depicted, the 43 other refineries were fairly evenly distributed across the other complexity categories.

As the distribution of respondents by the age of refinery shows, very few refineries are new (Figure E). Twenty-five refineries have been in operation for at least 70 years. Half of the refineries that participated in the 1992-93 survey began operations before 1940.

The final descriptive characteristic collected by the survey pertains to a refinery's sewer system and its separation of process water and stormwater. The majority of refineries (57 percent) that responded to the 1992/1993 survey have partially segregated sewer systems, while 23 percent have non-segregated systems and 19 percent have totally segregated systems.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


Residual Generation

As described earlier, separate population estimates are performed for the grouping of 29 streams of residual materials and for the amount of Other Aqueous Residuals. For 1992 and 1993, the estimated quantity of residual material generated was 6.398 and 5.547 million wet tons, respectively. The amount of Other Aqueous Residuals generated was 3.510 million wet tons for 1992 and 3.717 million for 1993.

As illustrated in Figure F, the generation estimate for the group of 29 residual streams peaked in 1990, and has fluctuated since then. The overall quantity of these residual materials has remained fairly constant over time, particularly when compared with the generation pattern exhibited by the Other Aqueous Residuals. This stream dropped dramatically in 1990 and appears to have plateaued at a new lower level.

Figure F

Generation of Residual Materials and Other Aqueous Residuals in the Petroleum Refining Industry: 1987 - 1993

From this graph it appears that 1990 was a pivotal year: the quantity of Other Aqueous Residuals has systematically dropped since then, while the quantity of Residual Materials, which was constant between 1987 and 1989, has fluctuated since it peaked in 1990. These trends can be explained, to a large extent, by regulatory requirements and planning activities undertaken in anticipation of other regulatory initiatives.

The drop in the generation of the Other Aqueous Residuals reflects the phasing out of deep well injection of these residuals by most refineries. EPA has approved a no-migration petition for one refinery that allows the continued use of deep well injection for the management of permitted liquid wastes. In addition, this same facility has dramatically reduced generation of these residuals to a level which is less than half the amount reported previously.

It should also be noted that the Other Aqueous Residual category was used to report a new type of material in 1992 and 1993: recovered groundwater from onsite remediation activity.

The fluctuations in the Residual Materials are contemporaneous with the 1990 RCRA land disposal restrictions for refinery K-wastes, the related specification of treatment standards for listed wastes, RCRA's new Toxicity Characteristic for determining characteristically hazardous wastes, and the Primary Sludge listings. As previously reported, the peak in 1990 was caused by one-time generation of **Contaminated soils and solids** and **Pond sediments**. Both of these materials are associated with site remediation and construction activities, such as the replacement of impoundments with tanks, undertaken by refiners as preparatory steps to comply with the Primary Sludge rule and BDAT standards.

The amount of Residuals reported 1990 included increased quantities of **Spent Caustics**--a trend which continued through 1991, and which has now extended through 1992, as shown in Table 2. The highest quantity of Spent Caustics--1436 thousand wet tons--was reported in 1993. This was more than twice the quantity reported in 1987 when the survey began. (Professional judgement within the industry maintains that this is not truly an increase in the generation of this material, but an improvement in the tracking and accounting of this material as more is reclaimed, regenerated, or sold for out-of-process recycling.)

Biomass also had a large quantity reported in 1993. The 801 thousand tons generated, however, was in the range previously reported. The three listed streams under RCRA, **Primary Sludges (F037 and F038)** and **TSD Leachate (F039)** edged upward in 1993.

The amount of **Contaminated soils and solids** generated in 1993 dropped substantially from its peak value of 1,063 thousand wet tons recorded in 1992 to 663 thousand wet tons. Over seventy percent of the material generated in 1992 was reported by 20 refineries that classified it as related to one-time events. The amount reported as due to abnormal events in 1993 dropped more than 300 thousand wet tons, but still constituted the majority of this material generated (58 percent).

In 1993, three of the residual streams that include RCRA K-wastes achieved the smallest generation quantity ever: **API Separator Sludge** at 175 thousand wet tons represented a 58 percent decrease from 1987; **Slop oil emulsion solids** decreased 74 percent from 1987 to 54 thousand wet tons; and three tons of **Leaded tank bottoms** were generated. The quantities of **DAF float** and **Heat exchanger bundle cleaning sludge** were within the ranges previously reported. It is important to note that **API separator sludge** remains one of the most frequently reported streams (n = 70 respondents as shown in Table 3), while the other K-waste streams are generated by less than half of the survey participants (e.g., DAF float was reported by 37 refineries). This suggests that the reduction in generation of API separator sludge is an industry-wide trend.

Table 2

Estimate of Residual Materials Generated by the U.S. Refining Industry: 1991 (thousands of wet tons)

Residual stream	1993	1992	1991	1990	1989	1988	1987
Spent Caustics	1,436	1,428	909	889	716	656	675
Biomass	801	716	855	782	642	786	757
Contaminated soils/solids	693	1063	809	920	512	240	165
DAF float	517	544	406	553	496	655	652
Other inorganic residuals NOS	251	364	397	451	440	213	325
Primary sludge (F037)	235	209	130				
FCC catalyst or equivalent	204	203	204	198	182	193	173
Other oily sludges/organic residuals	193	38	54	53	47	61	38
API separator sludge	170	178	210	251	419	355	400
Other residuals NOS	143	488	339	352	325	412	203
Pond sediments	138	388	372	1,017	313	266	337
Nonleaded tank bottoms	127	128	109	194	161	129	216
Residual amines	116	142	136	75	51	14	13
Primary sludge (F038)	67	54	177				
Residual coke/carbon/charcoal	54	53	138	92	129	67	43
Slop oil emulsion solids	54	77	165	291	272	224	208
Residual oils/spent solvents	48	33	21	115	31	7	4
Hydroprocessing catalysts	47	55	32	31	36	36	40
Residual sulfur	44	53	19	35	52	22	17
TSD Leachate (F039)	40	13	20				
Other contaminated soils NOS	39	32	37	69	53	68	82
Spent sulfite solution	29	33	9	1	8	40	42
Other spent catalysts NOS	29	27	23	39	33	37	33
Oil contaminated waters (not	27	22	67	8	29	36	28
Spent Stretford solution	26	31	25	29	42	49	35
High pH/low pH waters	9	16	54	105	91	138	144
Spent acids	5	7	88	336	8	149	126
Heat exchanger bundle cleaning sludge	4	3	3	13	2	5	3
Leaded tank bottoms	3	<1	1	3	4	8	9
Other separator sludges	NA	NA	NA	[`] 97	114	104	79
Total	5,547	6,398	5,809	6,999	5,508	4,968	4,868

(The SAS output containing the data for this table is presented in Appendix B, pages B-1 and B-21).

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table 3Number of Refineries Reporting Each Stream

Residual stream	1993	1992	1991	1990	1989	1988	1987
Total number of refineries participating	89	91	113	103	117	115	115
Contaminated soils/solids	80	84	90	87	88	77	77
API separator sludge	70	72	76	85	93	94	91
Other residuals NOS	69	74	83	85	89	85	92
Primary sludge (F037)	69	69	59				
Nonleaded tank bottoms	67	64	69	72	72	75	72
FCC catalyst or equivalent	63	69	76	79	84	86	85
Spent caustics	62	64	69	66	70	77	79
Other spent catalysts NOS	59	60	63	57	60	60	62
Residual oils/spent solvents	58	58	65	56	56	61	52
Other contaminated soils NOS	53	43	59	56	61	71	70
Hydroprocessing catalysts	55	58	57	52	65	60	57
Other oily sludges/organic residuals NOS	54	49	43	42	49	47	49
Heat exchanger bundle cleaning sludge	52	55	43	51	49	48	49
Residual coke/carbon/charcoal	51	51	55	50	51	47	48
Other inorganic residuals NOS	49	53	62	65	73	73	77
Biomass	45	44	45	44	44	45	47
Residual sulfur	40	37	43	37	42	47	41
DAF float	37	41	44	50	47	50	53
Slop oil emulsion solids	30	32	32	35	38	43	47
Residual amines	25	29	32	27	38	36	32
Leaded tank bottoms	15	12	20	27	31	37	38
Pond sediments	14	16	25	34	31	29	26
High pH/low pH waters	12	9	4	11	11	12	14
Primary sludge (F038)	11	11	14				
Spent acids	8	10	20	24	18	23	20
Other aqueous residues NOS	7	14	14	11	14	12	13
Oil contaminated waters (not wastewaters)	7	8	10	10	14	10	14
Spent Stretford solution	6	6	6	7	11	13	12
Spent sulfite solution	2	1	3	1	2	1	1
TSD Leachate	2	3	3				
Other separator sludges	NA	NA	NA	19	22	20	15

Several other streams had low values in 1993. **Pond sediments** and **Other residuals NOS** remained within the top ten streams based on generation quantities, although the quantities in 1993 were 64 and 71 percent less, respectively, than the reported quantities for 1992.

The reporting patterns for these streams were quite different (see Table 3). For **pond sediments**, the frequency count dropped to 14 in 1993, while **Other Residuals NOS** continued to be within the top three streams with 69 refiners reporting its generation. This suggests some different reasons for the reductions. Specifically, the reduction in the quantity of pond sediments may be linked to closure of a number of ponds used by the industry.

Reductions in the amount of **Other Residuals NOS** are harder to interpret, because this miscellaneous category is used to report a variety of lab wastes, used drums, batteries, barrels, PCBs, and asbestos. These reductions may reflect some of the progress made by pollution prevention activities. For example, refineries have instituted (and reported in previous survey cycles) programs to remove spent batteries and containers, replaced PCBs and asbestos with less hazardous or non-hazardous materials, and begun inventory controls with lab materials and office paper. It is therefore possible that the drop noted in 1993 reflects some of these activities.

Reductions observed in the reported amounts of **Spent acids** and **High pH/low pH waters** are likely due to the clarification in the inclusionary criteria for these streams which was placed directly on the respective data sheets. Previously, automated edit checks were performed to verify that materials reported in these categories were residuals that were intended to be captured by this survey. Specifically, in designing this survey, it was API's intention to exclude those materials that had specific exemptions under RCRA, such as spent acids targeted for regeneration and aqueous materials that are managed in accordance with other environmental statutes (e.g., NPDES permitted effluents). Use of automated edit checks in previous years enabled API to screen reports of the large quantities of these three streams, but not all reported quantities. Placing the instructions directly on the data sheets appears to have minimized the reporting of small amounts of these streams--the small quantities that it was not pragmatically possible to scrutinize previously.

As would be expected by the trend analysis previously performed with 1987 to 1991 data (published in the 1991 survey report), the quantities of **Hydroproccessing catalysts** continued to remain constant, while between-year fluctuations persisted in the generation of **Nonleaded tank bottoms, Residual coke/carbon/Charcoal, Residual sulfur**, and **Biomass**. Trend graphs that illustrate these patterns are presented in Appendix C.

Looking across all streams, these trend graphs enable the identification of a group of residual streams that have been reduced over time: **API Separator Sludge, Slop oil emulsion solids**, **Other contaminated soils**, and **High pH/low pH waters**. (DAF float had previously been identified as a member of this group, but the quantities in 1992 and 1993 suggest that the generation pattern may be more stable.)

There is also a group for which generation has increased since API's survey began: **Contaminated soils and solids, Spent caustics**, and **residual amines**. Another grouping worthy of mention are those streams that appear to be affected by periodic peaks, typically associated with abnormal events: **Pond sediments, Residual oils/spent solvents, Other oily sludges/organic residuals, Other contaminated soils, Oil contaminated water (not wastewater) and Spent Sulfite solution.**

Pollution Prevention

Pollution prevention refers to the reduction or elimination of pollutant discharges to air, water or land. It includes the development of more environmentally acceptable products, changes in processes and practices, source reduction, beneficial use and environmentally sound recycling.

For 1992 and 1993, approximately half of the survey participants reported at least one pollution prevention activity (44 and 46 refineries, respectively).³ They reported that 235 and 173 thousand wet tons of residuals were eliminated by source reduction activities or beneficial recycling activities.

Because no attempt is made to extrapolate the reports of pollution prevention activities to the population of refineries,⁴ these quantities must be reviewed in the context of the quantities of residuals *reported* by survey participants and <u>not</u> the estimated quantities for all U.S. refineries. In both survey years, the quantities attributed to pollution prevention represented 7 percent of the total amount of residual material generated.

Because the pollution prevention quantity is not a population estimate, it is also influenced by the reduced response rate for 1992 and 1993. Thus, it is difficult to interpret how the quantities reported by the 44 and 46 refineries in 1992 and 1993 compare with the 751 thousand wet tons reported by the 61 refineries in 1991.

³ One company that completed the forms centrally for all of its refineries did not complete the pollution prevention questions for 1993. Because most of these same refineries reported some pollution prevention activities in 1992, it is reasonable to assume that they probably would have continued such practices. Thus the number of refineries reporting pollution prevention activities and the amount of residual affected for 1993 is artificially low.

⁴ API has not developed a model to create industry-wide estimates of pollution prevention achievements because it is a relatively new concept for which there is little experience in tracking over time. Pollution prevention (including source reduction) have site specific considerations and are expected to vary significantly over time based on the implementation status of the individual facility (i.e., early efforts may achieve greater reductions than later incremental changes). In addition, API has noted substantial variability in the reporting patterns of these activities. Given these factors that complicate estimation, API has elected to present the reported values. Thus, it is clear that the information presented here underestimate the industry-wide pollution prevention achievements because coming from survey respondents only, they represent only a portion of the activities initiated by the industry.

API PUBL*333 95 🎟 0732290 0554338 4T4 🛚

Table 4 presents the frequency counts for each pollution prevention method. One similarity across years is that refiners report several pollution prevention activities, as indicated by the column totals. On average, refiners reported six pollution prevention activities in 1992 and 1993 compared with the five reported in 1991.

Table 4

Number of Refineries Reporting Each Pollution Prevention Activity

Pollution Prevention Activity	# 1993	Citation: 1992	s 1991
Equipment or Technology Modifications	20	14	24
Procedure Modifications	11	12	23
Reformulation or Design of Products	1	0	3
Substitution of Raw Materials	5	8	13
Improved Housekeeping, Training, or Inventory Control	22	24	43
IN-PROCESS RECYCLE In refining process units (e.g., crude unit; coker; desalter)	55	60	42
Recovering oil (& dewatering) by filter pressing/centrifugation	16	13	50
Other recycle	16	12	5
OUT-OF-PROCESS RECYCLE Reuse/reclamation	103	99	66
Other	14	22	10
TOTAL	263	264	279

The pollution prevention activities reported each year have varied. *Equipment and technology modifications* dipped in 1992, but still almost equalled the count observed in 1991, despite the small number of respondents in 1992. *Procedure modifications, substitution of raw materials,* and *improved housekeeping, training and inventory controls* have dropped with each successive cycle. Reciprocally, recycling in process units and out-of-process reclamation activities have both increased each year.

Tables 5a and 5b display the pollution prevention data, breaking it out across streams, providing the frequency counts for the number of times refineries indicated that they performed an activity, the quantity of residual that was affected by the activity, and showing the year that the activity was performed. **API separator sludge** had the highest number of citations in both years, followed by other K-wastes **DAF Float** and **Slop oil emulsion solids**, and other frequently reported streams, **Nonleaded tank bottoms** and **Contaminated soils and solids**.

The table entries for the quantities of residuals that were reduced at the source, recycled or otherwise reused or reclaimed range from extremely small values to many thousands of wet

tons. These actual reported values are presented here not to convey a sense of measurement precision, but to attest to the effort refiners devote to responding to this survey, and as an indicator of the refiner's attempts to provide accurate data.

In both 1992 and 1993, refiners reported the largest pollution prevention quantities for **biomass**. This was followed by **DAF float** and **spent caustics**. **Residual oils/spent solvents** and **Contaminated soils and solids** had large quantities reported in 1992 only. The amount of **Pond sediments** and **Primary sludge** in 1993 was larger than for 1992.

The right side of the table shows whether an activity was performed only in 1992, in 1993 or in BOTH years. As this display shows, most activities were performed by at least one refinery in both years, particularly the recycling procedures. The presentation also highlights the new activities begun in 1993.

A major short-coming of these empirical displays on pollution prevention is that they do not convey *what* is being done to reduce generation and improve handling of residual materials. The stream-by-stream tables presented in Appendix D accomplish this goal. Construction of these tables, a manual process of updating the 1991 tables, enables several general observations about the specific pollution prevention activities.

First, most of the pollution prevention activities reported in 1992 and 1993 were new, and not duplicative of previously reported activity. The exceptions to this pattern involved recycling to cokers and crude units which were sometimes repeated.

Refiners have shifted their creative energies to new streams, introducing procedural modifications with **Primary sludge**, substitution of materials with **Oily residuals** and **spent solvents**, and finding outside markets for materials previously considered worthless: **Contaminated soils, Other inorganic residuals, and Other Residuals NOS**. In particular, note that refiners are sending a variety of streams--not just RCRA regulated streams--to cement kilns for reuse as fuel or feedstock.

Some of the procedural changes seem to run counter to what one might typically consider pollution prevention innovations. For example, rather than routinely adding lime feed to adjust boiler and water softening operations that affect generation of **Other Inorganic Residuals**, one refinery has instituted a monitoring system, so that lime is now added only when test results dictate. Thus, returning to manual procedures, is a step in the right direction.

Another procedural change reported involved the use of treatment chemicals that enhance filtration. Their use has been curtailed by some refiners in an effort to reduce the volumes of residuals requiring further management.

	Activities
	Prevention
	f Pollution
Table 5a	Summary o

OUT-OF-PROCESS RECYCLE IN-PROCESS

					sc	SOURCE REDUCTION	REDL	JCTION	7	- <u>-</u>	IN-PROCESS		OUT-OF	OUT-OF-PROCES
Residual stream	÷	1993		1992	-	2	Э	4	5	9	7	8	6	10
API Separator Sludge	31	17,878	31	9,678	вотн	вотн			вотн	вотн	BOTH	вотн	вотн	
DAF Float	24	59,018	21	68,274	вотн	1993			1993	BOTH	BOTH	вотн	вотн	
Slop Oil Emuision Solids	18	10,884	18	10,069	1992				1992	вотн	BOTH	вотн	BOTH	
Leaded Tank Bottoms	5	96 9	-	25			1993						вотн	
Pond Sediments	3	49,266	2	13,508		1993			BOTH	вотн			1993	
Nonleaded Tank Bottoms	14	5,425	14	6,010	1993	1992				BOTH	BOTH	вотн	вотн	1992
Residual Oils/Spent Solvents	6	2,090	16	65,105	1993	1992		BOTH	1992	вотн			вотн	1992
Other Oily Sludges/Organic Wastes	10	2,342	9	3,776	BOTH					вотн			вотн	1992
Primary Sludge (F037)	18	20,562	13	16,278	вотн	вотн			BOTH	BOTH	1993		BOTH	
Primary Studge (F038)	4	4,965	9	8,441	1992	1992			1993	вотн	1992		BOTH	
Heat Exch Bundle Cleaning Sludge	9	53	5	358	1993	1993				BOTH	1992	1993	вотн	
Contaminated Soil/Solids	6	109	12	32,017		1992			BOTH			1992	1992	1992
Residual coke/Carbon/Charcoal	9	155	9	255	вотн			1992		1992			BOTH	вотн
Residual sulfur	2	9	3	109				1992				вотн	вотн	
Other contaminated soils	9	662	6	872						BOTH			1992	1992

POLLUTION PREVENTION CODES

OUT-OF-PROCESS RECYCLE

9 = Reuse/reclamation 10 = Other

(e.g., crude unit; coker; desalter) 7 = Recovering oil (& dewatering) by filter pressing/centrifugation 8 = Other recycle 6 = In refining process units **IN-PROCESS RECYCLE** 1 = Equipment or Technology Modifications 3 = Reformulation or Design of Products 4 = Substitution of Raw Materials
 5 = Improved Housekeeping, Training, 2 = Procedure Modifications

or Inventory Control

OUT-OF-PROCESS RECYCLE IN-PROCESS SOURCE REDUCTION

Residual stream		1993		1992	-	2	С	4	5	9	7	8	6	10
FCC Catalyst or Equivalent	13	17,026	15	13,455	1993			BOTH	BOTH	BOTH		1993	вотн	вотн
Hydroprocessing catalysts	13	9,488	15	19,269								вотн	вотн	1993
Other Spent Catalysts	9	649	14	1,096					1993				вотн	1993
Biomass	5	110,837	4	105,876						вотн		1993	вотн	
Oil contaminated water (not WW)	-	1	0	0										1993
High pH/low pH waters	0	0	0	0										
Other aqueous wastes NOS	0	0	-	17								1993	1992	
Spent Acids	2	120	0	0										
Spent caustics	11	22,676	17	45,868		вотн		вотн	1992	вотн		вотн	BOTH	BOTH
Residual amines	3	47	4	117	вотн					вотн			вотн	
Other inorganic residuals NOS	6	9,757	9	51,497	вотн	1993			вотн	1992	вотн	1993	BOTH	BOTH
Other residuals NOS	13	1,746	14	4,247		1993		1993	вотн	вотн			BOTH	вотн
TOTAL	26	476,217	264	345,681										

POLLUTION PREVENTION CODES

1 = Equipment or Technology Modifications

IN-PROCESS RECYCLE

2 = Procedure Modifications

3 = Reformulation or Design of Products 4 = Substitution of Raw Materials

5 = Improved Housekeeping, Training,

or Inventory Control

by filter pressing/centrifugation 7 = Recovering oil (& dewatering) 8 = Other recycle ____

(e.g., crude unit; coker; desalter) 6 = In refining process units

10 = Other

OUT-OF-PROCESS RECYCLE

9 = Reuse/reclamation

Total Quantity of Residuals Managed

API has coined the phrase *total quantity managed* to refer to the total amount of residual materials that refineries handle in a given calendar year. As indicated in the following equation, the total quantity managed equals the quantity generated plus treatment chemicals used to facilitate handling of some residuals and adjustments for materials that are placed into or removed from storage:

Total Quantity Managed = Quantity Generated + Treatment Additives + Net From Storage

In both 1992 and 1993, the total quantity managed was less than the amount generated. Specifically, in 1992, 6,398 wet tons were generated, but due to the amount placed into storage, refiners managed 6,130 wet tons. Similarly for 1993, the generated quantity was 5,547 wet tons, while the managed quantity was 5,451. (The SAS output containing these data is presented in Appendix B, pages B-1 and B-21).

As shown in Tables 6a and 6b, two streams had large quantities placed into storage in both years: **Contaminated soils and solids** and **Biomass**. In addition, refiners placed over 100 thousand wet tons of **Other residuals NOS** into storage in 1992.

In 1992, **Primary sludge (F037)** had the largest quantity removed from storage (28 thousand wet tons), while in 1993 nine thousand wet tons were placed into storage.

For the remaining streams, the quantities that were moved into or removed from storage were very small, usually less than one ton.

Use of Treatment Additives in 1992 followed the expectation set by the responses to the pollution prevention question. Refiners minimized their use of treatment additives to 30 thousand tons compared with the 55 and 72 thousand wet tons reported in 1987 and 1988. Treatment additives increased to 79 thousand wet tons in 1993; however, over 62 percent of this was reported by one refiner that had an abnormal peak in generation of **Other oily sludges/organic residuals**.

The total quantity of residuals managed for each of the seven survey cycles is displayed in Table 7. As the totals for the columns indicate, quantities managed in 1992 and 1993 were within the range previously observed. The 1992 quantity was the second highest reported, while the 1993 quantity was the second lowest.

Residual stream	Amounted Generated	Net From Storage	Treatment Additives	Total Amount Managed
Spent Caustics	1,428	(2)	0	1425
Contaminated soils/solids	1,063	(110)	0	953
Biomass	716	(79)	4	640
DAF float	544	(2)	5	546
Other residuals NOS	488	(107)	0	381
Pond sediments	388	0	3	391
Other inorganic residuals NOS	364	(5)	<1	359
Primary sludge (F037)	209	28	10	247
FCC catalyst or equivalent	203	(6)	0	197
API separator sludge	178	(8)	3	174
Residual amines	142	0	0	142
Nonleaded tank bottoms	128	<1	2	130
Slop oil emulsion solids	77	(4)	1	74
Hydroprocessing catalysts	55	(3)	0	51
Primary sludge (F038)	54	0	<1	54
Residual sulfur	53	(<1)	0	53
Residual coke/carbon/charcoal	53	<1	0	53
Other oily sludges/organic residuals NOS	38	<1	<1	38
Residual oils/spent solvents	33	. 0	0	33
Spent sulfite solution	33	0	0	33
Other contaminated soils NOS	32	(<1)	0	32
Spent Stretford solution	31	(<1)	0	31
Other spent catalysts NOS	27	(<1)	1	28
Oil contaminated waters (not wastewaters)	22	0	0	22
High pH/low pH waters	16	<1	0	16
TSD Leachate (F039)	13	0	0	13
Spent acids	7	0	<1	7
Heat exchanger bundle cleaning sludge	3	<1	<1	4
Leaded tank bottoms	<1	0	<1	<1

Table 6a

Estimates of Residual Materials Managed in 1992 (thousand wet tons)

Total

6,398

-298

30

6,130

API PUBL*333 95 🎟 0732290 0554344 7T& 📟

Estimates of Residual Materials Managed in 1993 (thousand wet tons)

Residual stream	Amounted Generated	Net From Storage	Treatment Additives	Total Amount Managed
Spent Caustics	1,436	(2)	0	1,434
Biomass	800	(83)	5	722
Contaminated soils/solids	693	(62)	<1	631
DAF float	517	(<1)	4	520
Other inorganic residuals NOS	251	(5)	1	247
Primary sludge (F037)	235	(9)	<1	226
FCC catalyst or equivalent	204	(6)	0	198
Other oily sludges/organic residuals NOS	193	0	49	242
API separator sludge	170	(7)	5	168
Other residuals NOS	143	(<1)	0	143
Pond sediments	138	О	7	145
Nonleaded tank bottoms	127	1	2	130
Residual amines	116	0	0	116
Primary sludge (F038)	67	(5)	0	62
Residual coke/carbon/charcoal	54	(<1)	3	57
Slop oil emulsion solids	54	1	1	56
Residual oils/spent solvents	48	0	0	48
Hydroprocessing catalysts	47	4	1	52
Residual sulfur	44	(<1)	<1	44
TSD Leachate (F039)	40	0	0	40
Other contaminated soils NOS	39	(<1)	<1	39
Spent sulfite solution	29			29
Other spent catalysts NOS	29	(<1)	1	29
Oil contaminated waters (not wastewaters)	27	0	0	27
Spent Stretford solution	26	0	0	26
High pH/low pH waters	9	0	<1	9
Spent acids	5	0	<1	5
Heat exchanger bundle cleaning sludge	3	<1	<1	4
Leaded tank bottoms	3	0	0	3
Total	5,547_	-175	79	5,451

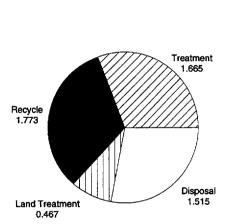
24

Table 7

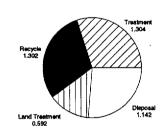
imparison of Residual Material Managed: 1993-1987 (Estimates in thousands of wet tons)	Aanaged: 1993-1987 (Estimates ir	
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	ons
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	et t
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	of w
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	ds (
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	san
Aanaged: 1993-1987 (Estimates ir	Aanaged: 1993-1987 (Estimates ir	hou
Aanaged: 199	Aanaged: 199	ц Ц
Aanaged: 199	Aanaged: 199	ites
Aanaged: 199	Aanaged: 199	time
Aanaged: 199	Aanaged: 199	Щ Ш
Aanaged: 199	Aanaged: 199	387
Aanaged:	Aanaged:	3-10
Aanaged:	Aanaged:	199
imparison of Residual Material Manage	Comparison of Residual Material Manage	:pa
mparison of Residual Material Mai	Comparison of Residual Material Mai	Jag
mparison of Residual Material	Comparison of Residual Material	Mai
mparison of Residual Mate	Comparison of Residual Mate	rial
mparison of Residual M	Comparison of Residual M	ate
imparison of Residua	Comparison of Residu	M IE
imparison of Resi	Comparison of Resi	ž
mparison of F	Comparison of F	Ō
mparison	Comparison	Resid
mparis	Comparis	of Resid
du	Comp	tion of Resid
	ŏ	arison of Resid
ŏ		omparison of Resid

Residual streams	1993	1992	1991	1990	1989	1988	1987
Spent caustics	1434	1425	908	894	716	656	675
Biomass	722	641	862	794	655	749	720
Contaminated soils/solids	631	953	785	915	496	242	186
DAF float	520	546	410	564	521	661	654
Other Inorganic residuals NOS	247	359	393	453	441	221	323
Other Oily sludges/organic residuals NOS	242	38	54	54	47	61	40
Primary Studge (F037)	226	247	133	NA	NA	NA	Na
FCC catalyst/equivalent	197	197	204	259	185	189	171
API separator sludge	167	174	214	260	425	430	564
Pond sediments	145	391	381	1,040	273	311	360
Other residuals NOS	143	381	339	353	325	412	203
Nonleaded tank bottoms	130	130	111	196	164	131	218
Residual amines	116	142	137	75	51	14	13
Primary Sludge (F038)	62	54	180	NA	NA	NA	NA
Residual coke/carbon/charcoal	57	53	138	92	137	67	43
Slop oil emulsion solids	56	74	160	295	262	214	212
Hydroprocessing catalysts	52	51	33	30	36	37	39
Residual oils/spent solvents	48	33	21	115	31	7	4
Residual sulfur	44	53	19	35	52	23	17
TSD Leachate (F039)	40	74	20	NA	AN	NA	NA
Other Contaminated soils NOS	39	33	37	69	53	77	88
Other spent catalysts	29	28	23	41	33	38	38
Spent sulfite solution	29	33	6		8	40	42
Oil contaminated waters (not wastewaters)	27	22	67	80	29	36	28
Spent Stretford solution	26	31	25	30	42	49	35
High pH/low pH waters	6	16	54	105	92	138	144
Spent acids	9	8	88	337	80	160	130
Heat exch bundle cleaning sludge	ŋ	4	m	13	2	5	e
Leaded tank bottoms	e	Ţ	-	e	4	10	6
Other separator sludges	NA	NA	NA	104	117	110	83
Total	5,451	6,130	5,808	7,134	5,206	5,086	5,043

.

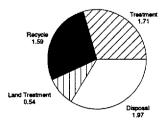

25

Management Practices for Residual Materials

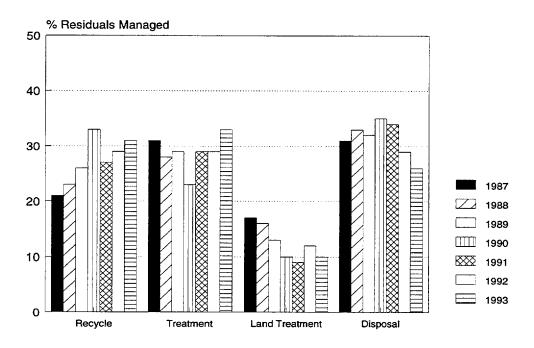

API adopted the framework of the waste management hierarchy to structure the accounting of the handling practices used with residual materials generated by the refining industry. Source reduction activities, a subset of pollution prevention practices, have already been described. This section of the report will provide information on how the industry eliminates the residuals generated--a dynamic interaction between recycling of valuable constituents in the residuals, treatment to reduce volumes and/or neutralize materials, and ultimate disposal of remaining materials.

The pie charts presented in Figure G show the quantity of residuals handled by recycling, treatment, land treatment, and disposal for the last three survey cycles. (The SAS output containing these data is presented in Appendix B, pages B-2 and B-22). As indicated, handling practices have remained quite stable. If one looks closely, however, it is apparent that the proportion of residuals recycled in 1993 was slightly greater than that reported in 1991, while the proportion of material that was disposed has also been reduced.

Figure G Residual Management Practices: 1993 - 1991 (Millions of wet tons)



1993


1992

These changes in handling practices are more pronounced when the data for each handling practice are displayed as a percentage of the total quantity managed in each survey cycle. As shown in Figure H, recycling has increased from just over 20 percent when the survey began to over 30 percent for 1993. Use of treatment has fluctuated, with a low observed in 1990 and a new peak in 1993. Land treatment decreased successively from 1987 to 1991, while disposal exhibited a similar step-wise decrease over the last three survey cycles.

Figure H Longitudinal Comparison of Residual Management Practices: 1987 - 1993

The following sections of the report provide more detailed information on each handling practice, and, by describing the contributions of individual streams to the overall management profile, help to explicate the patterns observed in Figure H above.

Recycling

Among the methods for recycling residuals, *reclamation/regeneration* has remained the most commonly used throughout the seven years this survey has been conducted. In 1993, it accounted for 41 percent, as displayed in Table 8. When the 12 percent of material used in the *coker* (consistent with previous years), and 8 percent recycled to the *crude units* are added to the other in-process methods (including recycling to crude unit), *in-process recycling* accounts for over almost 30 percent of recycled residuals. (The SAS output containing these data is presented in Appendix B, pages B-4 - B-9 and B-24 - B-29.)

In the 1992-1993 cycle, *out-of-process recycling* methods accounted for 20 percent of recycled materials. This was a notable increase from the 5 percent reported in 1991 (the first year in which the survey included this category). Reciprocally, there was a decrease in "not specified" in the 1992-1993 cycle compared with the 1991 cycle.

Table 8

Method of	1993	1992	1991	1990	1989	1988	1987
Recycling	Tons(%)	Tons(%)	Tons(%)	Tons(%)	Tons(%)	Tons(%)	Tons(%)
Coker	220 (12)	293 (16)	181 (11)	192 (10)	231 (17)	186 (16)	148 (14)
Crude unit	140 (8)	135 (7)	217 (14)	174(9)	125 (9)	85 (7)	68 (0)
Reclamation/regeneration	732 (41)	788 (43)	772 (49)	872 (46)	611 (44)	434 (38)	447 (42)
Other recycling				655 (35)	408 (30)	474 (41)	410 (38)
In-process*	151 (9)	96 (3)	60 (4)				
Out-of-process*	356 (20)	368 (20)					
Fuel use*	60 (3)						
Not specified*	115 (7)	86 (5)					
Total	1774	1827	1590	1,893	1,376	1,179	1,073

Summary of Recycling Practices(thousands of wet tons)

*These categories were new for 1991; data were not available for previous years.

Table 9 summarizes recycling methods by residual stream. As in other years, **Spent caustics** made the largest contribution to materials recycled by *reclamation/regeneration*, accounting for close to 90 percent. The 1992-1993 cycle continues the trend of increased amounts of spent caustics reclaimed/regenerated and decreased amounts of other streams. **Hydroprocessing catalysts** make the next largest contribution in 1993, followed by other spent catalysts and FCC catalysts. In 1992, **Residual oils/spent solvents** also contributed to the amount of residuals recycled by reclamation/regeneration, accounting for more than half of the All Other group.

Three streams made up the majority of residuals sent to the *coker* for in-process recycling: **Biomass, DAF float**, and **API separator sludge**. This was consistent with previous years, although the amounts from each stream show some variability, with more **Biomass** sent to the coker in 1992 than in 1993. These streams sent to the coker, however, still constitute only a small fraction, usually less than 5 percent, of the total coker feedstock.

Table 9

. _____

Estimated Quantities of Recycled Materials (thousands of wet tons)

Recycling Method/Residual Stream	1993	1992	1991	1990	1989	1988	1987
RECLAMATION/REGENERATION							
Spent caustics	637	674	486	535	459	243	262
Hydroprocessing catalysts	27	45	31	28	32	21	26
Other spent catalysts	16	6	6	11	8	15	
FCC catalyst or equivalent	11	12	6	7	27	11	
All others	41	51	248	299	85	136	212
Total	732	788	772	872	611	378	390
IN-PROCESS RECYCLE-Coker							
Biomass	75	177	67	56	59	27	25
DAF float	47	49	56	75	79	45	82
API separator sludge	23	24	31	8	55	73	14
All others	75	43	27	53	38	41	27
Total	220	293	181	192	231	186	148
Crude unit					_		
DAF float	52	75	72	22	34	19	16
API separator sludge	11	11	11	10	24	13	18
All others	77	49	134	142	67	53	34
Total	140	135	217	174	125	85	68
Other In-Process Recycle	151	96	60				
Out-of-Process Kiln	64	43	51				
Other Out-of-process							
Biomass	116	0	0	Т	hese recyc	le codes w	ere
Spent caustic	68	63	20				
Residual coke	41	37	0		ew for 1991	-	Ť
Residual sulphur	31	26	<1	comp	arable data	were not a	vailable
Other inorganic	5	49	7	f	or previous	survey cyc	les
Contaminated soils	3	74	1				
All Others	28	75	5				
Total	292	324	33				
Industrial Fuel	60	61	78				
Other*							
Spent caustics	33	21	137	123	138	254	232
Biomass	48	58	0	0	<1	0	0
All others	34	7	61	532	271	220	178
Total	115	86	198	655	409	474	410
Grand total	1,774	1,827	1,590	1,893	1,369	1,156	1,055

29

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

1

- -

DAF float was by far the largest component of residuals sent to the *crude unit* for recycling, accounting for one third of the material in 1993. **API separator sludge** has the second largest quantity sent to the crude unit, although significantly less than DAF float. The large amount of **Biomass** sent to the crude unit reported in 1991 was not maintained in this survey cycle. Other streams that reported significant quantities recycled via crude units in previous years -- **Nonleaded tank bottoms and Slop oil emulsion solids** -- did not have large quantities in this survey cycle.

The total amount of residuals recycled through *other out-of-process* methods in 1993 has increased significantly from the 1991 amount to about 292 thousand wet tons, approximately 16 percent of the total recycled. In 1993, **Biomass** accounted for 116 thousand wet tons, while the large contributors in 1992 were **Contaminated soils**, **Spent caustics**, and **Other inorganic residuals**.

Recycling methods that were not specified were reported for less than 6 percent of the recycled materials in 1992 and 1993, most coming from **Biomass**.

As shown in Table 10, activities performed on the ten recycled streams with the highest quantities are most often performed off-site. Exceptions are for oily residual materials: in 1993, **DAF float** with 68 percent performed on-site, and **API separator sludge** with 68 percent performed on-site.

1992 Residual Stream	Quantity	% On-Site	% Off-site
Spent caustics	764	48	52
Biomass	273	66	34
DAF float	173	72	28
FCC catalyst or equivalent ⁵	86	0	100
Contaminated Soils/Solids	74	0	100
Other inorganic residuals	65	3	97
API separator sludge	48	80	20
Hydroprocessing catalysts	45	1	99
Residual coke/carbon/charcoal	41	5	95
Slop oil emulsion solids	35	62	38
1993 Residual Stream	Quantity	% On-Site	% Off-site
1993 Residual Stream Spent caustics	739	51	49
Spent caustics Biomass	739 278	51 28	49 72
Spent caustics Biomass DAF float	739	51	49 72 32
Spent caustics Biomass	739 278 148 94	51 28 68 0	49 72 32 100
Spent caustics Biomass DAF float FCC catalyst or equivalent ⁵ API separator sludge	739 278 148 94 55	51 28 68	49 72 32 100 32
Spent caustics Biomass DAF float FCC catalyst or equivalent ⁵ API separator sludge Residual coke/carbon/charcoal	739 278 148 94 55 45	51 28 68 0 68 1	49 72 32 100 32 99
Spent caustics Biomass DAF float FCC catalyst or equivalent ⁵ API separator sludge Residual coke/carbon/charcoal Slop oil emulsion solids	739 278 148 94 55 45 36	51 28 68 0 68 1 62	49 72 32 100 32 99 38
Spent caustics Biomass DAF float FCC catalyst or equivalent ⁵ API separator sludge Residual coke/carbon/charcoal Slop oil emulsion solids Residual sulfur	739 278 148 94 55 45 36 34	51 28 68 0 68 1 62 0	49 72 32 100 32 99 38 100
Spent caustics Biomass DAF float FCC catalyst or equivalent ⁵ API separator sludge Residual coke/carbon/charcoal Slop oil emulsion solids	739 278 148 94 55 45 36	51 28 68 0 68 1 62	49 72 32 100 32 99 38

Table 10 Location of Recycling Activities (thousands of wet tons)

⁵ These data do not represent the continuous in-unit regeneration of catalyst that occurs throughout the refining process, but refer only to the location of recycling activities after the catalyst is spent.

Treatment

As in other years, *wastewater treatment* accounted for the largest quantity of residuals treated, with 87 percent in 1993. The 1992-1993 survey cycle continued the trend begun in 1990 and 1991 with increased quantities of Aqueous chemical wastes/inorganics undergoing wastewater treatment.

Consistent with previous years, *incineration* was next most commonly reported treatment method, but still it accounts for a very small quantity of residuals (8 percent in 1993). This profile is displayed in Table 11. After a significant decrease in 1991, quantities of residuals treated by *chemical/physical* methods increased, although not to the levels of surveys in years before 1991. (The SAS output containing these data is presented in Appendix B, pages B-10 - B-13 and B-30 - B-33.)

Table 11

Method of	1993	1992	1991	1990	1989	1988	1987
Treatment	Tons (%)	Tons (%)	Tons (%)	Tons (%)	Tons (%)	Tons (%)	Tons (%)
Wastewater Incineration Chemical/physical Stabilize/Fixation Other Total	1452 (87) 130 (8) 42 (3) 2 (<1) 39 (2) 1,665	7 (<1)	215 (13) 3 (<1) 3 (<1)	1,265 (68) 165 (9) 131 (7) 276 (15) 37 (2) 1,874	1,176 (78) 143 (9) 143 (9) 4 (<1) 45 (3) 1,511	1,045 (72) 131 (9) 148 (10) 5 (<1) 117 (8) 1,446	117 (7) <1 (<1)

Table 12 shows that **DAF float** remained the largest oily stream that was dewatered, but in general, other dewatered oily streams showed a decrease in their reliance on wastewater treatment compared with previous years. There was, however, a notable quantity, 107 thousand wet tons, of **Pond sediments** reported (in the "Others" category) in 1992, although this dropped to only 1 thousand wet tons in 1993. Among the aqueous chemical streams, **Spent caustics** increased sharply in its contribution to wastewater treatment. This increase in Spent caustics was accompanied by an equally sharp decrease in the volume of Biomass that was treated in refining wastewater treatment systems. Another difference reported in this survey cycle was the 22 thousand wet tons of **TSD leachate** that was wastewater treated in 1993.

Quantities of residuals treated through *incineration* continue to come primarily from three streams: **Biomass, DAF float**, and **API separator sludge**. As would be expected with incineration specified as BDAT, the slightly higher quantities of API separator sludge that occurred in 1991 were maintained in the 1992-1993 survey cycle. Compared to 1991, there was a notable decrease in **Pond sediments** and **Slop oil emulsion solids** quantities treated by incineration, although the 1993 quantities are similar to those reported before 1991.

The only stream that had a significant quantity treated by *chemical or physical* methods continues to be **API separator sludge**, returning in this survey cycle to quantities that were consistent with amounts compared with 1991. In three out of the seven survey years, including 1993, small quantities of **Biomass** were reported as being treated by chemical/physical methods.

Table 12

Estimated Quantities of Residuals Treated (thousands of wet tons)

Treatment Method/Residual stream	1993	1992	1991	1990	1989	1988	1987
Wastewater treatment							
From dewatered oily materials							
DAF Float	338	308	208	306	248	236	263
Primary Sludge (F037 & F038)*	83	56	197	51	53	48	32
API separator sludge	74	68	113	56	149	136	146
Slop oil emulsion solids	12	23	58	108	98	57	98
Others	20	114	110	29	10	472	161
Subtotal	527	589	576	559	633	529	700
Aqueous chemical wastes/inorganics							
Spent caustics	660	630	229	132	93	74	87
Residual amines	1 13	139	133	71	46	2	2
Other inorganic residuals NOS	39	39	70	50	23	39	33
Biomass	34	90	354	288	249	222	234
TSD Leachate (F039)	22	1					
Oil contaminated waters (not wastewaters)	21	21	59	1	19	35	26
Spent Stretford solution	21	22	18	16	29	39	17
All others	15	18	25	58	31	594	735
Total	1,452	1,547	1,464	1,265	1,176	1,045	1,167
Incineration							
Biomass	81	74	82	98	103	73	64
DAF float	24	54	58	32	26	47	35
API separator sludge	12	26	29	5	7	5	4
All others	13	21	46	29	7	6	4
Total	130	175	215	164	143	131	107
Chemical/physical							
API separator sludge	19	20	2	13	35	10	2
Biomass	12	0	ō	20	0	17	0
All others	11	13	<1	98	128	104	115
Total	42	33	3	131	143	131	117
Thermal/Heat							
Contaminated Soils	18	16	o	0	0	o	0
DAF float	6	6	1	o	0	0	0
Slop oil emulsion solids	5	7	1	o	0	0	0
Other	<1	7	5	2	6	0	0
Total	29	36	7	2	6	0	0
Stabilize/Fixation	2	7	3	276	4	0	<1
Weathering/Other							
Biomass	6	5	13	0	0	0	0
Others	4	_<1	.0	36	49	122	186
Total	10			36	49	122	186
Grand total	1,665	1,805	1,707	1,877	1,511	1,446	1,577

*Quantities reported for 1987 - 1990 were for Other Separator Sludge

Table 13 displays the location of treatment activities. As in previous years, most treatment of residuals is performed on-site. In fact, in 1993, all of the top ten streams contributing to residual treatment have 89 percent or more of the quantities processed on-site.

Table 13

Location of Treatment Activities (thousands of wet tons)

1992 Residuals Stream	Quantity	% On-Site	% Off-site
Spent caustics	632	98	2
DAF float	369	95	5
Biomass	168	80	20
Residual amines	140	100	0
API Separator sludge	122	80	20
Pond sediments	107	100	0
Other inorganic	48	88	12
Primary sludge (F037)	41	69	31
Slop oil emulsion	37	79	21
Nonleaded tank bottoms	25	99	1

1993 Residuals Stream	Quantity	% On-Site	% Off-site
Spent caustics	661	99	1
DAF float	369	96	4
Biomass	132	91	9
Residual amines	113	100	0
API Separator	106	89	11
Primary sludge (F037)	56	94	6
Other inorganic	40	98	2
Primary sludge (F038)	39	99	1
TSD leachate	22	100	0

Land Treatment

Land treatment appears on the survey data sheets as a treatment methodology, but is presented separately here because it is considered to occupy an intermediate status between residual treatment technologies and waste disposal practices.

Land treatment has been subjected to some of the land disposal restrictions that began in 1990 (i.e., wastes regulated as hazardous under Subtitle C of RCRA can no longer be land treated or disposed in landfills without meeting treatment standards or unless a no-migration variance has been granted). The decrease in the use of land treatment observed in 1991, continued in the 1992-1993 survey cycle. The 1992 amount was substantially higher than the 1991 amount, but in 1993 the amount returned to 497 thousand wet tons land treated. (The SAS output containing these data is presented in Appendix B, pages B-14 - B-16 and B-34 - B-36.)

Three residual streams make up the majority of this quantity: **Biomass, Contaminated soils,** and **F037 Primary sludge**. In 1992, when a peak in generation was reported, **Pond**

33

sediments also contributed to the land treated quantity. In fact, the difference in total quantity of residuals land treated between 1992 and 1993 can be attributed to the difference in the quantities of Pond sediments land treated (230 thousand wet tons in 1992 compared with only 20 thousand wet tons in 1993).

Estimated Quantities of Land T	reated Residua	Is (thou	sands (of wet to	ns)		
Residual stream	1993	1992	1991	1990	1989	1988	1987
Contaminated soils/solids	142	246	268	299	132	28	22
Biomass	143	144	201	267	187	259	236
Primary sludge (F037)	116	58	27	NA	NA	NA	NA
Pond sediments	20	230	11	349	127	64	67
All others	76	32	31	233	263	351	525
Total	497	710	538	1,148	709	832	850

Table 14

Disposal

ļ

Table 15 shows that the refining industry reported the smallest quantity of residuals eliminated by disposal in 1993--1,515 thousand wet tons. This continued the trend of decreased disposal quantities which followed the peak in that occurred in 1990. (The SAS output

containing these data is presented in Appendix B, pages B-17 - B-20 and B-37 - B-40.)

Table 15

Summary of Disposal Practices (thousands of wet tons)

Method of Disposal	1993 Tons (%)	1992 Tons (%)	1991 Tons (%)	1990 Tons (%)	1989 Tons(%)	1988 Tons(%)	1987 Tons (%)
Impoundment	43 (3)	51 (3)	110 (6)	129 (6)	113 (7)	245 (15)	280 (18)
Landfills	1,265 (84)	1,665 (93)	1,703 (84)	1,889 (84)	1,375 (85)	1,200 (73)	1,070 (69)
Landspread	170 (11)	33 (2)	66 (3)	174 (8)	95 (6)	160 (10)	109 (7)
Injection	36 (2)	36 (2)	35 (2)	36 (2)	15 (1)	30 (2)	40 (3)
Other	1 (<1)	3 (<1)	60 (3)	8 (<1)	21 (1)	1 (<1)	41 (3)
Total	1,515	1,788	1,974	2,236	1,619	1,636	1,540

As in all other survey years, landfills were used to handle the majority of the disposed residuals, accounting for 84 percent of the total 1,515 thousand wet tons disposed. The trend of decreasing quantities of residuals placed in disposal impoundments continued to an all time low in 1993. The quantity of residuals disposed by landspreading increased in 1993 to 170 thousand wet tons, a level comparable to that reported in 1990.

Table 16 displays the methods of disposal by residual streams. *Disposal impoundments* were used principally for handling **FCC catalyst** and **TSD leachate** in 1992 and 1993. The quantities of **Other inorganic residuals** placed in disposal impoundments decreased significantly from previous years.

API PUBL*333 95 🗰 0732290 0554355 583 🖿

As in other years, several residual streams have significant quantities disposed in *landfills*. **Contaminated soils/solids** remained the largest stream. The amount of **Pond sediments** fluctuated, with a low of 39 thousand wet tons in 1992 and 111 wet tons in 1993. Although there was an increase in the use of landfills for **Other residuals NOS** in 1992, it returned to an all time low in 1993. This was also true of **Primary sludge** (F037).

The increase in **Biomass** eliminated by *landspreading* in 1993 to 101 thousand wet tons accounts for almost 60 percent of the total landspread quantity, the largest amount in the seven survey years. **Contaminated soils/solids** account for another 34 percent landspread in 1993. The relatively small amount of residual disposed by deep well injection was primarily **Spent caustics**, as in all previous survey years.

Most disposal activity occurs off-site, as shown in Table 17. Two exceptions are disposed **Biomass** and **Spent caustics**. Two-thirds of the quantities of each are disposed on-site.

Table '	16
---------	----

Estimated Quantities of Wastes Eliminated by Disposal (thousands of wet tons)

Disposal Method/Residual stream	1993	1992	1991	1990	1989	1988	1987
Disposal impoundment							
FCC catalyst or equivalent	18	25	25	20	14	13	11
TSD Leachate (F039)	18	11	18	NA	NA	NA	NA
Other inorganic residuals NOS	5	7	53	86	65	25	56
All others	$\frac{2}{43}$	8	14	22	34	207	211
Total	43	<u> </u>	110	129	113	245	280
Landfill							
Contaminated soils/solids	343	592	480	497	317	189	141
Other inorganic residuals NOS	170	230	210	162	227	77	155
Other residuals NOS	133	356	272	336	315	384	195
Pond sediments	111	39	328	405	60	50	7
FCC catalyst or equivalent	81	83	118	117	104	115	123
Biomass	68	51	41	32	37	48	41
Nonleaded tank bottoms	61	70	75	82	45	42	53
Other contaminated soils NOS	24	20	31	46	38	69	82
Primary sludge (F037)	21	138	40	NA	NA	NA	NA
All others	253	84	108	218	212	_ 226	362
Total	1265	1665	1703	1889	1375	1200	1070
Landspread							
Biomass	101	5	23	26	15	48	51
Contaminated soils/solids	57	24	6	15	16	11	4
All others	<u> </u>	4	37	133	64	101	54
Total	170	33	66	174	95	160	109
Injection							
Spent caustics	34	29	32	32	14	24	33
All others	<u>2</u> 36	7	3	4	1	6	7
Total	36	36	35	36	15	30	40
Other methods							
Total	<u> </u>	3	60	8	21	2	41
Grand total	1515	1788	1974	2236	1619	1636	1540

Table 17 Location of Disposal Activities (thousands of wet tons)

1992 Residual Stream	Quantity	% On-site	% Off-site
Contaminated soils/solids	616	8	92
Other residual NOS	358	28	72
Other inorganic residuals NOS	238	8	92
Primary sludge (F037)	140	39	61
FCC catalyst or equivalent	109	39	61
Nonleaded tank bottoms	70	5	95
Biomass	56	28	72
Pond sediments	39	0	100
Spent caustics	30	66	34
Residual sulfur	27	1	99

1993 Residual Stream	Quantity	% On-site	% Off-site
Contaminated soils/solids	400	19	81
Other inorganic residuals NOS	176	9	91
Biomass	169	66	34
Other residual NOS	133	14	86
Pond sediments	111	0	100
FCC or equivalent	100	38	62
Nonleaded tank bottoms	65	9	91
Spent caustics	34	62	38
Other contaminated soils NOS	25	8	92
Primary sludge (F037)	23	8	92

Aqueous Residuals

API's survey does not attempt to capture extensive information on refinery wastewater treatment systems. Because many refinery wastewater treatment systems are regulated under the Clean Water Act NPDES permit system and are historically not subject to full regulation under RCRA, a decision was made during the development of the survey not to request information on these aqueous materials.

Since that time, RCRA rulemakings, in particular promulgation of the new Toxicity Characteristic (TC), have affected some refinery wastewaters. Accordingly, beginning with the 1991 cycle of the survey, API incorporated questions in its survey to obtain data on these residuals. The sections that follow provide data on these TC Wastewaters, as well as the miscellary of aqueous materials that constitute the category of **Other Aqueous Residuals**.

Other Aqueous Residuals NOS

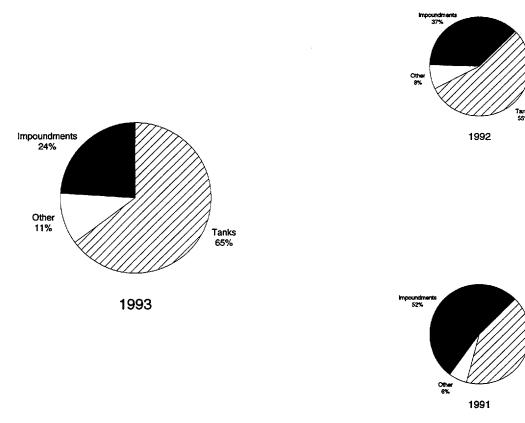
As described in the Methodology section, the data collected on this residual stream was not included in the modeling of the other 29 residual streams. Instead, because of the great variability in the generation quantities, a separate ratio model was used to develop the industry estimates.

In 1992, 14 of the 91 respondents reported generating **Other Aqueous Wastes NOS**, while only seven continued its generation in 1993. The industry wide estimates were 3.510 million wet tons for 1992 and 3.718 million wet tons for 1993. These estimates reflect the influence of one refinery that deep well injects sour waters resulting from processing high sulfur content crude oils. This refinery accounted for 97 percent of the amount of **Other Aqueous Wastes NOS** reported in 1992 and for 94 percent in 1993. Another refinery used this category to report groundwater recovered from site remediation activities, accounting for an additional 2 percent of 1992 quantity and 5 percent for 1993. Thus, the generation pattern previously observed for **Other Aqueous Residuals NOS** has persisted, with large quantities generated by just a few refineries.

The management practices have also remained constant over time, with deep well injection accounting for 99 percent of the material in 1992 and 97 percent in 1993.

TC Wastewaters

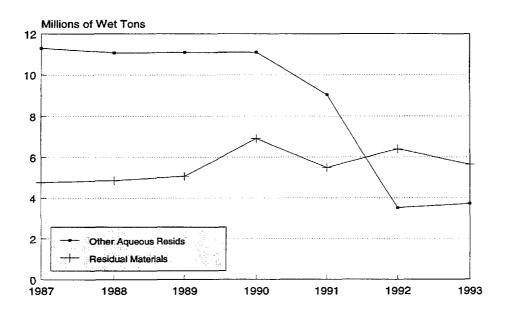
Question 8 in the first section of the questionnaire (refer to the copy of API's questionnaire in Appendix A) requests information on the amount of refinery wastewater that was identified as characteristically hazardous under RCRA. In 1992, 53 respondents reported that 157.75 million tons of their wastewater failed the Toxicity Characteristic Leachate Procedure (TCLP). Similarly, for 1993, 52 respondents reported 128.42 million wet tons.


Because these are reported quantities, and not nationally extrapolated estimates, one cannot compare the total quantities generated in 1992 and 1993 with that reported in 1991 without first controlling for the effect of the drop in overall survey response rates. Consequently, the cohort of 41 refineries that participated in all three survey cycles was examined to gain insight into the generation pattern for TC wastewater. This comparison revealed a systematic reduction over time: from 159 million wet tons in 1991, to 141 million wet tons in 1992, to 121 wet tons in 1993.

Similarly, the management of TC wastewaters has changed over time. As shown in Figure I, in 1991 over half of the material was handled in RCRA permitted surface impoundments, but by 1993, only one quarter was managed in this manner. A reciprocal shift has taken place in the proportion of TC wastewater managed in tanks: increasing from a low of 42 percent in 1991 to 65 percent in 1993.

Deep well injection of TC wastewaters is included in the "Other" management category. Use of this disposal method has remained very low, accounting for only 2 percent of the total amount of TC wastewater in 1992 and 3 percent in 1993.

Not for Resale

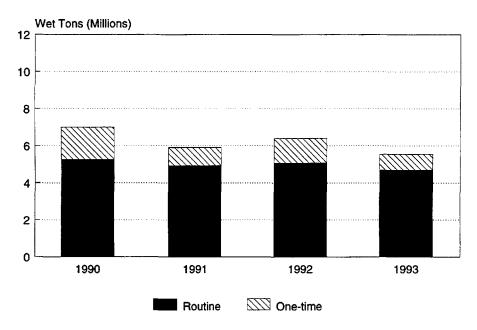


DISCUSSION

API's database on refinery residuals now spans seven years. The addition of data from 1992 and 1993 strongly suggest that residual generation patterns and management practices for the 1990's differ significantly from those observed during the late 1980's.

Although fluctuations in residual generation patterns were noted in 1990 and 1991, it was the graphic portrayal of the seven years of data that illustrated the differences between decades. As presented earlier in this report (as Figure F) and shown again below, the generation of Residual Materials and Other Aqueous Residuals was relatively static between 1987 and 1989. Since that time, generation of Residual Materials has fluctuated, while Other Aqueous Residuals has decreased, achieving an ultimate cumulative reduction of approximately 10 million tons or 69 percent.

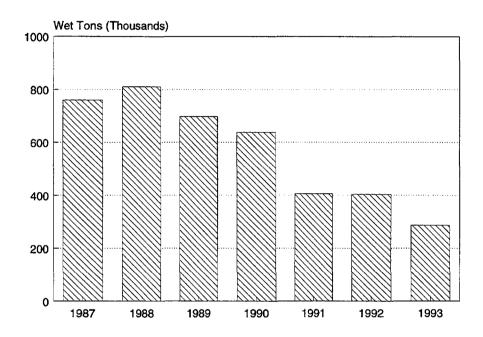
Figure J Generation of Residual Materials and Other Aqueous Residuals in the Petroleum Refining Industry: 1987 - 1993



To a large extent, the changes noted in the 1990's--both decreases and increases--reflect the influence of regulatory events. The decrease in Other Aqueous Residuals that began in 1991 coincides with the RCRA land disposal restrictions on refinery K-wastes. These restrictions also curtailed deep well injection of liquid hazardous wastes, unless the refinery had been granted a "no-migration" variance by EPA.

If land disposal restrictions resulted in a reduction in the generation of Other Aqueous Residuals, the logical follow-up question is, why doesn't the graph show a decrease in the generation of other refinery residuals?

Figure K helps to answer this question by contrasting the quantities of residuals generated on a routine basis and those quantities that result from unusual or "one-time" events. As illustrated, routine generation of residuals has dropped 11 percent over the four years, from 5.3 million wet tons in 1990 to 4.7 million wet tons in 1993. Moreover, the amount routinely generated is comparable to the quantity of Residual Materials estimated for 1987 to 1989, shown in Figure J above. Thus, it appears that the fluctuations in the generation rates noted for the last four survey cycles can be attributed to the one-time generation events.



This one-time category has been used to report several residual streams: **Contaminated Soils and Solids, Pond Sediments, Other Oily Sludges and Solids**, and in 1992 and 1993, **Primary Sludge** (F037). From the narrative comments that are provided when refiners designate residuals as being generated on an abnormal basis, it is known that these residuals often result from site remediation activities and changes undertaken in anticipation of new regulations, including construction of new refinery process and/or wastewater treatment units. For example, surface impoundments have been taken out of service to reduce the amount of oily sludges generated and potentially subject to the Primary sludge rulemaking. In addition, new tanks have been installed to handle TC wastewaters, and construction has begun to upgrade sewer systems. Thus it appears that refiners' activities to comply with regulatory initiatives can result in temporary increases in the overall amount of residuals generated, which obscure the trends in routinely generated residuals, specifically the significant reductions achieved in the generation of K-wastes.

How were these reductions achieved? Pollution prevention activities provide the best explanation. By comparing the responses with the pollution prevention question used since 1991 with the source reduction information collected in previous survey cycles, some general observations can be made. Two trends are apparent. First, refiners have prioritized their pollution prevention efforts by initially focusing on selected streams (such as API Separator Sludge) or on groups of streams of similar composition (such as oily sludges and residuals), rather than simultaneously tackling all refinery residuals. Second, this prioritization has resulted in each facility being at variable stages along the pollution prevention continuum, depending on the particular stream of focus.

For example, data indicate that refiners initially concentrated efforts on reducing the generation of K-waste containing residual streams.⁶ Figure L illustrates how the generation quantities have declined 62 percent since 1987.

Figure L Generation of RCRA K-Residuals: 1987 - 1993 (Dewatered Quantities)

Data from the 1990 and 1991 cycles of the survey indicate that substantial quantities of Kwaste residual streams were prevented through the use of good housekeeping procedures that minimized the entry of solids into the wastewater treatment system (e.g., dust control programs that included paving, planting, sweeping and basically, keeping dirt out of the sewer systems), equipment and procedure modifications that enhanced oil recovery (or segregated hazardous residuals from non-hazardous ones, and by the substitution of materials (phasedown of chromium-containing materials and replacement with less toxic phosphate-based compounds). These pollution prevention accomplishments have been considered the "low hanging fruit" of pollution prevention programs--simple, common sense changes that quickly achieve significant reductions without large developmental costs.

Subsequently, the reports of such source reduction activities performed on K-waste residual streams have been replaced by increased reporting of recycling activities, specifically

⁶ This includes materials that are hazardous wastes when disposed, as well as materials that are beneficially reused, including ongoing in-process recycling.

increased levels of in-process recycling to crude units and to cokers, as well as the off-site reuse as kiln feed.⁷

Within the last three years (1991-1993), refiners have reported shifts in both the types of streams undergoing pollution prevention reductions, and the types of pollution prevention procedures employed to reduce those streams. For example, the 1992 and 1993 data suggest that refiners have now directed their efforts toward additional streams: **Primary sludges** and large volume non-hazardous materials such as **Contaminated soils**, **Other inorganic residuals** and **Other residuals NOS**.

In addition, refiners are employing a variety of pollution prevention activities to these streams that appear to be more procedural changes than simply good-housekeeping practices. For example, in 1991 the amount of sand blast grit requiring disposal was reduced by using a recyclable steel grit with a containment procedure. In 1992 and 1993, to reduce generation of **Other Inorganic Residuals**, the addition of lime feed was modified to an as-needed basis, dependent on the monitoring of boiler feed and water softening test results. Other procedural changes reported included improved tank cleaning techniques to enhance oil recovery, reduced flow of water (1 percent per day) to minimize generation of **High pH/low pH waters**, and reduced use of caustics. In addition, there was a general expansion in the efforts to recover, reuse and recycle residuals: **Spent caustics** and chemicals were reused on-site or off-site at other refineries; external markets were identified for other residuals: cement kilns, fertilizer manufacturers, brick, cement, asphalt formulation, fuel use, and paper manufacture.

These types of pollution prevention activities are more information-dependent than the common sense strategies implemented previously. While they tend to rely on existing technologies, they take longer to implement and the changes are incremental. It is likely that some of these improvements can be attributed to the education programs reported by refiners that help employees to re-examine standard operating procedures and look for changes that optimize current practices.

Overall, the information refiners are providing on their pollution prevention progress is consistent with the conceptual stages of pollution prevention described in the Pollution Prevention Continuum, developed by Joel Hirschhorn, formerly of the Office of Technology

⁷ API's data do not suggest that refiners achieved the reductions in K-waste generation by reclassifying these streams. Because of acknowledged ambiguities in the determination of some process units targeted in the original K-waste listing, EPA promulgated the Primary Sludge rule to clarify the regulatory status of some residuals that had previously been reported as K-waste (e.g., residuals from Induced Air Flotation units or from corrugated plate separators). As a result of these clarifications, refiners are required to report these materials as Primary Sludge. Review of the reporting patterns by individual refineries indicate that this happened infrequently, and does not account for the drop in generation of K-wastes. The fact that the number of refineries reporting the K-wastes has remained constant (proportional to the overall response rate), as displayed in Table 3, provides further support. Also, as mentioned previously, the increase in F-wastes reported for 1992 and 1993 have been attributed to one-time events (clean-outs of tanks and impoundments); the remaining amounts of routinely generated material cannot account for the K-waste reductions.

Assessment of the U.S. Congress. The continuum divides pollution prevention into four stages and outlines the technology needs, response time, changes required, knowledge needs, and the return on the investment that occur at each stage. As presented in Figure M, there are four distinct stages of pollution prevention: those driven by common sense, information-dependent, analysis driven, and resulting from research and development activities.

STAGES

Figure M Pollution Prevention Continuum

		•		
·····	COMMON SENSE		ANALYSIS DRIVEN	R&D DRIVEN
TECHNOLOGY NEEDS	COMMON SENSE	EXISTING TECHNOLOGY	FORMAL ANALYSIS NEW TECHNOLOGY	R&D NEW PRODUCTS NEW PROCESSES
RESPONSE TIME	FAST RESULTS	MONTHS	MONTHS YEARS	YEARS
CHANGES	PROCEDURAL	MODIFICATION PROCESS	MAJOR CAPITAL	MAJOR CAPITAL
KNOWLEDGE NEEDS	AWARENESS	EDUCATION	OVERCOME MIND SET OF ALREADY OPTIMIZED	DESIGN & MARKET NEW PRODUCTS
RETURN ON INVESTMENT	HIGH	MEDIUM/LOW	UNCERTAIN	UNCERTAIN

Based on Hirschhorn, J. Cutting Production of Hazardous Waste, in Technology Review, April, 1988.

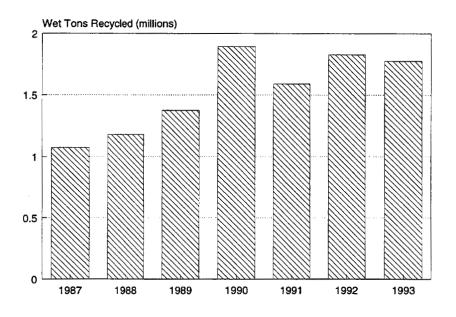
The message of the continuum is simple: when pollution prevention is first implemented, as long as awareness is high, there will be fast results for a minimal price. As more of the "low hanging fruit" is "picked," one must look elsewhere for additional opportunities. While still using existing technology, processes can be modified. More education on the consequences of modifications and results will take longer.

In the final two stages of the pollution prevention continuum, analyses of new technologies and the development of those technologies are required for additional progress. These stages can take months or years to implement and major capital is required, often with less certain return on the investment.

Where is the industry on this continuum? As noted previously, individual facilities can be at different stages of progress, depending on the particular residual stream. For K-wastes, many refineries have progressed through the common sense stage and are at least in the information dependent stage. For other streams, concurrent activities might place the same facility at two different stages of the continuum. For example, with catalysts, procedural modifications to extend the lifetime of the catalyst can be accomplished at the same time R&D effort is focused on identifying new types of catalysts.

43

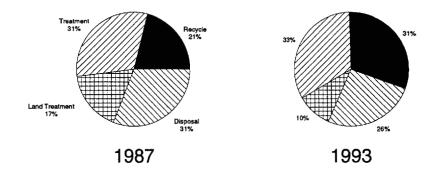
As the continuum suggests, pollution prevention progress can also be measured on the product side of an industry. Over the last 20 years the petroleum industry has implemented successive information and analysis-driven improvements to its fuels: almost all of the lead has been taken out of gasoline; 85 percent of the sulfur has been removed from diesel fuel; gasoline's tendency to evaporate has been reduced and consequently so has its contribution to smog; and oxygen has been added to gasoline to reduce carbon monoxide in many areas. Now, reformulated gasolines and other clean burning fuels exemplify an R&D driven pollution prevention innovation. The industry estimates that refiners will invest \$14 billion in the 1990's to equip their plants to produce these new fuels.


Perhaps the more important question is what does all of this mean with regard to evaluating the pollution prevention progress made by the industry, both now and in the future? First, it is important to recognize the achievements already made by the industry. Second, because industry resources are limited, pollution prevention efforts must be prioritized. Third, observers of the industry should realize that future pollution prevention achievements are likely to be less dramatic than the early successes and will require more resources to implement. Fourth, measures to promote technology transfer must be continued. Refiners must have access to information on the types of pollution prevention activities and technologies that are successful to ensure additional progress. Fifth, pollution prevention progress can be accompanied by temporary increases in residual generation. For example, construction of some of the new process units to produce reformulated gasolines are the exact activities that have resulted in increased amounts contaminated soils observed in this survey. Finally, recycling activities-both in-process and out-of-process--as recognized in API's pollution prevention policy, are vital components of pollution prevention. Recycling minimizes waste and disposal needs, and can sustain progress as pollution prevention efforts move beyond the early common sense strategies.

In viewing recycling within the conceptual framework of pollution prevention, its critical role as a component of the industry's strategy to *manage* residual materials should not be overlooked. As broadly recognized, recycling is the preferential manner of eliminating residual materials after source reduction. It is also the approach the petroleum industry has relied on to minimize its need for disposal capacity.

Since the first survey in 1987, the quantity of residuals recycled has increased from 1.073 to 1.774 million wet tons in 1993--a 40 percent increase. As shown in Figure N, the amount recycled showed systematic step-wise increases in the late 1980's when the total residual generation quantities remained constant. Residuals recycled during the 1990's appear to be influenced by the fluctuations in the generation of residuals noted earlier (see Figure J above). When recycling is looked at within this context of the total quantity of residual managed, there has been a 10 percent increase in the use of recycling since 1987.

44


Figure N Recycling of Residual Materials: 1987 - 1993

In addition to illustrating this increase in recycling activity, Figure O shows the changes in the other management practices since 1987.

Figure O

Comparison of Management Practices: 1987 and 1993

Treatment accounted for management of 31 percent of the residuals in 1987 and 33 percent in 1993, while land treatment and disposal each dropped at least five percent since 1987.

45

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

The 26 percent disposed in 1993 was the smallest proportion of residuals disposed in any survey cycle, while the 1993 land treatment proportion was similar to that reported in 1990, and slightly larger than reported in 1991.

These data on residual management suggest that industry practices have evolved over time: recycling has increased; land treatment and disposal have decreased; and treatment continues to account for close to a third of the residuals managed.

It should be noted, however, that this information on management practices includes both those quantities that are routinely generated and those that result from the abnormal one-time events. It should also be pointed out that the data collection forms are not structured to distinguish between the management of routinely generated material and that which results from unusual events. Consequently, these profiles of management practices are influenced by the large quantities of one-time residuals. Recall that over 50 percent of **Pond Sediments** were land treated in 1992 and 1993. For **Contaminated Soils**, over 20 percent was land treated and over 60 percent was disposed in each cycle. **Primary Sludges**, another stream with abnormal quantities, received treatment, as well as having large quantities disposed in 1992 and land treated in 1993. Thus, it is not unreasonable to postulate that the industry's reliance on land treatment and disposal for management of its routinely generated residuals is even lower than the 10 and 26 percent rates illustrated above.

Each new year of data added to API's database has provided more insights into the generation patterns of residual materials by the refining industry and how these materials are managed. While the 1992 and 1993 data have helped to more clearly trace the evolution of change across time, the data have also underscored how difficult it is to assess progress given the ever changing nature of the economic and regulatory milieu in which refineries exist.

It is clear that the generation of residuals has decreased. Reliance on land treatment and disposal technologies has diminished, due to pollution prevention achievements and assiduous efforts to recover and recycle oily materials and to develop new procedures and markets for other residuals.

This survey activity has also resulted in the creation of a valuable database that has been used by the industry, independent researchers, and Federal regulatory agencies. The quality of the database deserves mention. Consistency in the forms used, the edits performed and the analytic procedures employed vouch for the comparability of the estimates across the survey cycles.

Another indication of the quality of the data was achieved this year when API compared its survey responses with the data collected by EPA in its RCRA biennial survey. In its published report of 1991 data, EPA provided a listing, by facility, of the quantities reported by the largest generators. As would be expected, a number of refineries were included in this listing. API

compared the values reported to EPA by the group of refineries that had also responded to API's survey (n=14). The differences between the two data sets were remarkably small. The total quantity of residuals managed at each refinery was added to the quantity of TC wastewater it reported. This was compared to the quantities published by EPA. The amount of material reported to API compared well to that reported to EPA (i.e., 90.771 and 95.101 million wet tons, respectively). The difference was only 4.5 percent.

API's database has also helped the industry put EPA's biennial report numbers within a meaningful context. EPA's values are dominated by TC wastewater. Much of this is managed in tanks (42 percent in 1991) and the trend is towards additional tankage (65 percent managed in tanks in 1993), This should temper any initial reaction to the magnitude of the numbers reported. API's ability to track these refineries' generation quantities since 1991 is also useful. As previously observed for all survey respondents, the volumes of TC wastewaters reported by these 14 refineries drop systematically over time, from 79.3 million wet tons in 1991, to 64.0 million in 1992 to 46.4 million for 1993. This 41 percent reduction strongly suggests that the 1991 quantities represent a peak, not dissimilar to other unusual generation events noted in this report that tend to accompany regulatory initiatives.

These benefits of API's survey have not been achieved, however, without significant investments by the industry. The survey has been conducted very efficiently; API's direct expenditures for all seven annual cycles are less than one million dollars. The time and effort refiners devote to completing the forms, as well as that of API staff and member company representatives to direct the survey, are additional, significant, but less easily quantified, costs. Consequently, the industry is exploring ways to streamline future cycles of the survey, minimizing the respondent burden, while maintaining the quality of the data and maximizing its utility to the industry.

Not for Resale

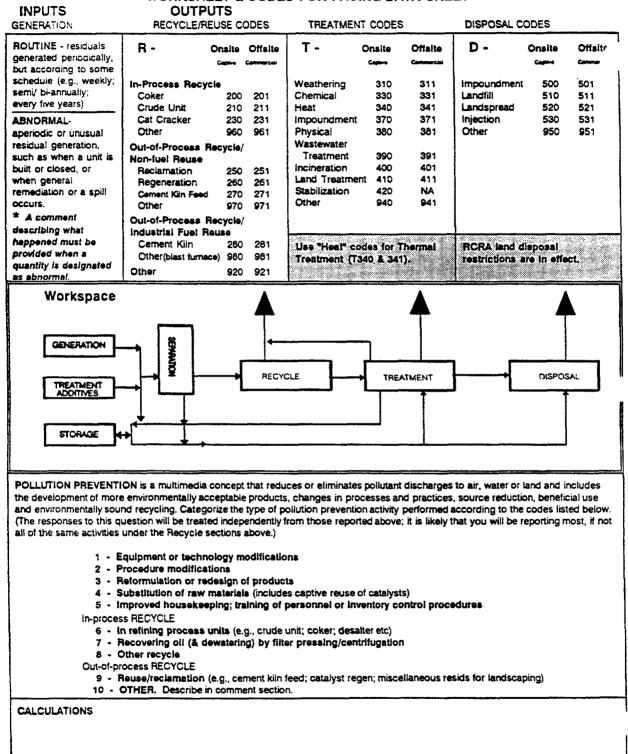
API PUBL*333 95 🖿 0732290 0554368 131 📟

APPENDIX A Questionnaire

API PUBL*333 95 🖿 0732290 0554369 078 📟

							API ID
	1)		•	proximate year 1 priate box.	his facility b	egan operations?	
1				Sefore 1925	D	1961 - 1970	
				925 - 1940		1971 - 1980	
			□ 1	941 - 1950		After 1980	
			D 1	951 - 1960			
	2)					tant Discharge Elimination best describes this refinery?	
		Check 1	the approp	oriate box			
			Topping	 Refinery uses thermal proc 		d catalytic reforming, but <u>no</u> cking.	<u>t</u>
			Cracking			nd cracking, but none of the the categories below.	9
			Petroche	least 15% of petrochemica olefins), or 2	refinery pro als and isom) the refinery als (e.g., alco	ng and cracking, and 1) <u>at</u> duction is first-generation erization products (e.g., BT / produces second-generation bhols, cumene), and 3) ther ing.	on
			Lube -	•		ing, and lube oil s, but <u>not</u> petrochemical	
			Integrate			cracking, lube oil, and ring processes.	
		Wenda				of these categories, ple the types of operations pl	
	3)	What ty	rpe of sew	ver system does	this facility t	nave? Check the appropriat	e box.
				Ion-segregated i	between pro	cess water & storm water	
			D F	Partially segregat	led between	process water & storm wat	er
			ים	otally segregate	d between p	rocess water & storm wate	r

.


1992 - 1993 AP	l Refining Res	idual Management	Survey		
					API ID
4)	•		mitting status and the regulator ategory that best describes this		
		Generator only; i stored or dispos	no RCRA permit required. (Hazar ed of on-site.)	dous waste is l	NOT treated,
		Part A filed (inte	nim status).		
		RCRA permit is:	sued.		
5)		is facility's operable (in the Oil & Gas Jou	crude oil capacity in BARRELS P Irnal?	ER STREAM (DAY
		For 1992,	Barreis per <u>Stream</u> Day	,	
		For 1993,	Barrels per Stream Day	/	
6)	What was th	e TOTAL AMOUNT	of crude processed (throughpu	t)?	
		For 1992,	Million Barrels		
		For 1993,	Million Barrels		
7)	On how man	iy days was crude c	harged?		
		For 1992,	Days		
		For 1993,	Days		
8)		below to report the aractersitic (TC) ar	amount of WASTEWATER (in V	VET TONS) th	at failed the
	· · · · · · · · · · · · · · · · · · ·			For 1992	For 1993
		v	LY in tanks exempt from RCRA		
тс			charge (TC Wastewater		
	, Izardous	of the following	nould NOT be reported in any categories)		
	astewater	•			
			nazardous waste in RCRA permi	itted	
		surface impound	Iment prior to discharge		
		- Deep well inject	ed	 	
		- Other			

ALL RESPONSES TO QUESTION 8 SHOULD BE MUTUALLY EXCLUSIVE (See Page 3 of the Instructions for directions on how to complete these questions.)

Page 3

A-2

WORKSHEET & CODES FOR FACING DATA SHEET

A-3

DID YOUR FACILITY GENERATE/MANAGE:	CODE 101	API SEPARATOR SLUDGE (K051)	-
• •		• •	

1992

(YES/NO)

					~			
INPUTS			007	PUTS				
GENERATION	WET TONS	SEPARATION TECHNIQUES	ELIMINATED	BY RECYCLE	ELIMINA TREAT		Dis	POSAL'
ROUTINE		Check sny performed	WET TONS	CODE	WET TONS	CODE	WET TONS	CODE
ABNORMAL *		Decenting		R	<u> </u>	T		D
HAVE THESE GET	PRIOR	Thickening		R		тт		D
DEWATERING?		Filtering		R		T		D
ADDITIVES				R		T		D
REMOVED FROM	·			R		T		D
	·		· ·		' <u></u>		<u> </u>	
		=			+	J	+	
		PLEASE CHE	CK TO MAK	E SURE EQ	UATION BAL	ANCES.	····	
POLLUTION F	PREVENTION	J						
No Use the listing your refinery c	n generated o Yes - of codes on t onducted this	r requiring dispos Enter amount rec he facing page to year. Circle only	sal this year? duced, dentify the C ONE code nu	wet tons	prevention cat tivity; choose t	he ONE cod	corresponds t	o the activ
No Use the listing your refinery c you did. Use	n generated o Yes - of codes on t onducted this the space for wentory control	r requiring dispos Enter amount rec he facing page to year. Circle only Activity 2 only if y	sal this year? duced, dentify the C ONE code nu	wet tons	prevention cat tivity; choose t	tegory that c	corresponds t	o the activ
No Use the listing your refinery c you did. Use and initiated in Co 1 2	n generated o Yes - of codes on t onducted this the space for wentory control	r requiring dispos Enter amount rec he facing page to year. Circle only Activity 2 only if y ols).	al this year? duced, o identify the C ONE code na ou conducted	wet tons. DNE pollution umber per ac another unit	prevention car tivity; choose t que activity (e.;	tegory that c he ONE cod g., recycled (corresponds t	o the activ
No Use the listing your refinery c you did. Use t and initiated in Co 1 2 6 7 1 1 2	 generated o Yes - of codes on t conducted this the space for a wentory control de 3 4 5 	r requiring dispose Enter amount rec he facing page to year. Circle only Activity 2 only if y bis). Description:	al this year? duced, o identity the C ONE code nu ou conducted	wet tons. DNE pollution umber per ac another unic	prevention ca tivity; choose t que activity (e.	tegory that c he ONE cod g., recycled	corresponds t le that best re oily material t	o the actin presents o the cok
No Use the listing your refinery c you did. Use and initiated in Co 1 2 6 7 1 1 2 6 7 1	Yes - of codes on t onducted this the space for a ventory contro de 3 4 5 8 9 10 3 4 5 8 9 10	r requiring dispos Enter amount rec he facing page to year. Circle only Activity 2 only if y bis). Description: Activity 1. Year	sal this year? duced, o identify the (ONE code na ou conducted 19 19 19 vent, and/or (wet tons. DNE pollution umber per ac another unit	prevention ca tivity; choose t que activity (e.;	tegory that c he ONE cod g., recycled (corresponds t le that best re oily material t	o the activ presents o the coke
No Use the listing your refinery c you did. Use and initiated in Co 1 2 6 7 1 1 2 6 7 1	r generated o Yes - of codes on t onducted this the space for a ventory contro de 3 4 5 8 9 10 3 4 5 8 9 10 a of ABNORM	r requiring dispos Enter amount rec he facing page to year. Circle only Activity 2 only if y ols). Description: Activity 1. Year Activity 2. Year At Generation e	sal this year? duced, o identify the (ONE code na ou conducted 19 19 19 vent, and/or (wet tons. DNE pollution umber per ac another unit	prevention ca tivity; choose t que activity (e.;	tegory that c he ONE cod g., recycled (corresponds t le that best re oily material t	o the actin presents o the cok
No Use the listing your refinery c you did. Use t and initiated in Co 1 2 6 7 1 1 2 6 7 1 1 2 6 7 1 1 2	r generated o Yes - of codes on t onducted this the space for a ventory contro de 3 4 5 8 9 10 3 4 5 8 9 10 a of ABNORM	r requiring dispos Enter amount rec he facing page to year. Circle only Activity 2 only if y ols). Description: Activity 1. Year Activity 2. Year At Generation e	sal this year? duced, o identify the (ONE code na ou conducted 19 19 19 vent, and/or (wet tons. DNE pollution umber per ac another unit	prevention ca tivity; choose t que activity (e.;	tegory that c he ONE cod g., recycled (corresponds t le that best re oily material t	o the activ presents o the coke

A-4

ļ.

API PUBL*333 95 🎟 0732290 0554373 5T9 📟

APPENDIX B SAS Data Tables

٠

SURVEY	
WASTE	1992
SOLID	•
API	

Estimated U.S. Total Waste Quantities

STREAM	Waste Stream	Total Estimated Generation	fotal Estimated Net Storage	Total Estimated Treatment Additives	Total Estimated Waste Input
101	API Separator Sludge (K051)	178,453	-7,539	3.236	174.150
102	Dissolved Air Flotation Float (K048)	543,857	-2,289	4.567	546, 135
103	Slop Oil Emulsion Solids (K049)	76,843	-3,915	925	73,854
04	Leaded Tank Bottoms (K052)	628	0	2	629
90	Pond Sediments	387,923	0	3,171	391,095
107	Nonleaded Tank Bottoms	128, 197	306	1,702	130,205
08	Residual Oils/Spent Solvents	32,875	0	•	32,875
6	Other Oily Sludges & Organic Wastes	38,374	-2	8	38,380
110	Primary Sludge (F037)	208,787	27,560	10,188	246,535
=	Primary Studge (F038)	54,052	0	57	54,109
10	Heat Exchanger Bundle Cleaning Sludge	3,330	190	246	3,766
02	Contaminated Soils/Solids	1063278	-110,101	•	953,177
03	Residual Coke/Carbon/Charcoal	53, 199	80	0	53,207
5	Residual Suffur	53,322	-442	0	52,880
3	Other Contaminated Soils NOS	32, 154	- 203	249	32,200
5	Fluid Cracking Catalyst or Equivalent	202,754	-6,023	0	196, 731
02	Hydroprocessing Catalysts	55,064	-3,669	0	51,395
03	Other Spent Catalysts NOS	26,569	-135	1,206	27,640
5	Biomass	716,392	- 79, 319	3,885	640,958
02	Oil Contaminated Waters NOT Wastewater	22,337	0	0	22,337
5	High pH/Low pH Waters	16,231	62	0	16,310
04	Spent Sulfite Solution	33, 152	•	•	33, 152
05	Spent Stretford Solution	31,131	-436	0	30,695
407	ISD Leachate (F039)	12,500	0	0	12,500
501	Spent Caustics	1427544	-2,468	0	1425076
02	Spent Acids	7,407	0	380	7,788
<u>8</u>	Residual Amines	142,410	0	0	142,410
04	Other Inorganic Residuals NOS	363,585	-4, 791	537	359,331
501	Other Residuals NOS	487,944	-107,174	0	380,770

₽

API PUBL*333 95 🗰 0732290 0554374 435 페

B-1

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

Estimated Residual Quantities By Management Techniques (wet tons)

Residual Stream	Total Manag e d	Recycled	Treated	Land Treated	Disposed
ADI Senarator Sludge (KO51)	174, 147	47.501	121,513	363	4,770
Discolved Air Flotation Float (K048)	546, 136	173,113	369,051	777	3,528
sion Oil Fmulsion Solids (K049)	73,855	35,119	37,412	•	1,324
Leaded Tank Bottoms (K052)	630	59	531	0	40
Pond Sadigents	391,095	15,487	106,708	230, 187	38,713
Nonireaded Tank Bottoms	130,205	22,896	25,404	11,612	70, 293
Residual Dits/Spent Solvents	32,877	31,939	42	103	262
Other Oilv Sludges & Organic Wastes	38,382	16,011	8,010	4,098	10, 263
Primary Studoe (F037)	246,534	7,838	40,675	57,988	140,033
Primary Studge (F038)	54,109	23,092	23,730	0	7,287
Heat Exchanger Bundle Cleaning Sludge	3,766	944	2,051	0	1,071
Contaminated Soils/Solids	953,179	74,243	16,584	245,922	616,430
Pesidial Coke/Carbon/Charcoal	53,208	41,152	210	1,215	10,631
Residual Sulfur	52,880	25,874	7	0	26,935
Other Contaminated Soils NOS	32,201	6,924	721	4,104	20,452
Fluid Cracking Catalyst or Equivalent	196, 732	85,536	56	1,647	1(09,523
Hvdroprocessing Catalysts	51,395	45,175	m	•	6,217
Other Spent Catalysts NOS	27,642	696'6	51	430	17, 192
Bionass	640,958	273,202	168,023	144,060	55,673
Oil Contaminated Waters NOT Wastewater	22,337	1,370	20,967	0	0
· Wich ph/low ph Waters	16,310	315	13,565	38	2,392
Spent Sulfite Solution	33, 152	33,152	0	•	0
Spent Stretford Solution	30,695	5,262	23,268	•	2,165
TSD Leachate (F039)	12,500	•	1,103	•	11,397
Spent Caustics	1,425,076	763,740	631,755	•	29,581
Spent Acids	7,787	95	4,530	•	3,162
Residual Anines	142,408	648	139,874	0	1, 88 6
Other Increanic Residuals NOS	359,331	64,924	48,276	8,100	2:38,031
Other Residuals NOS	380,769	21,434	1,371	21	3:57,943
				M 64 71 71 71 71 71 71 71 71 71	
	6,130,296	1,826,714	1,805,525	710,332	1,7637,725

API PUBL*333 95 🖿 0732290 0554375 371 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

Percentages of Residual Quantities Recycled, Treated, Land Treated and Disposed By Stream

Residual Stream	Percent Recycl ed	Percent Treated	Percent Land Treated	Percent Disposed
API Separator Sludge (KO51)	27	02	0	m
Dissolved Air Flotation Float (K048)	32	89	0	~
Stop Oil Emulsion Solids (K049)	87	51	0	2
Leaded Tank Bottoms (K052)	6	84	0	9
Pond Sediments	4	27	59	10
Nonieaded Tank Bottoms	18	20	0	54
Residual Oils/Spent Solvents	26	0	0	2
Other Oily Sludges & Organic Wastes	42	21	:	27
Primary Sludge (F037)	m	17	24	57
Primary Sludge (F038)	43	77	0	5
Heat Exchanger Bundle Cleaning Sludge	17	54	0	28
Contaminated Soils/Solids	ø	2	26	65
Residual Coke/Carbon/Charcoal	11	0	~	20
Residual Sulfur	67	0	0	51
Other Contaminated Soils NOS	22	2	13	2
Fluid Cracking Catalyst or Equivalent	43	•	-	56
Hydroprocessing Catalysts	88	0	0	12
Other Spent Catalysts NOS	-36	0	2	62
Biomass	43	26	22	6
Oil Contaminated Waters NOT Wastewater	9	56	0	0
High pH/Low pH Waters	2	83	0	5
Spent Sulfite Solution	100	0	0	•
Spent Stretford Solution	17	76	•	7
TSD Leachate (F039)	0	\$	•	91
Spent Caustics	54	77	•	2
Spent Acids	-	58	0	41
Residual Amines	0	98	0	-
	18	13	~	83
Other Residuals NOS	9	0	0	54

B-3

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

ļ

Estimated Residual Quantities Recycled and Percent Of Total Amount Managed By Stream

Residual Stream	Quantity Recycled (Tons)	Percent Recycled
API Separator Sludge (KO51) Dissolved Air Flotation Float (KO48) Slow Dil Emileion Solide (KO40)	47,501 173,113 35,110	27.28 31.70 27.55
Leaded Tank Bottoms (K052) Pond Sediments	15,487	9.37
Nonleaded Tank Bottoms Residual Oils/Spent Solvents	22,896 31,939	17.58 97.15
uther Uity stunges & Urganic Hastes Primary Studge (F037)	7,838	3.18
Frimary studge (russ) Heat Exchanger Bundle Cleaning Sludge	740°C2	17.10
Contaminated Soils/Solids Residual Coke/Carbon/Charcoal	74,243	7.79 77.34
Residual Sulfur Other Contaminated Soils NOS	25,874 6,924	48.93 21.50
Fluid Cracking Catalyst or Equivalent Hydroprocessing Catalysts	85,536 45,175	43.48 87.90
Other Spent Catalysts NOS Biomass	9,969	36.06
Oil Contaminated Waters NOT Wastewater High pH/Low pH Waters	1,370	6.13
Spent Sulfite Solution Spent Stretford Solution	33, 152 5, 262	100.00
TSD Leachate (F039)	07/2 17/2	0.00
Spent Acids	5	1.22
Residual Amines Other Inorganic Residuals NOS	64.924	0.46
SON	21,434	5.63
	LI 1'070'I	

Not for Resale

API PUBL*333 95 🖿 0732290 0554377 144 📟

Estimated Residual Quantity Handled by Recycle Techniques for Each Residual Stream (wet tons)

Residual Stream	Coker	Crude Unit	Desalter	Catalytic Cracker	Other In-Process Recycle	Cement Kiln-Out of Process
401 Severator Sludge (KOS1)	23,905	10.542	0	1,790	962	ድ
Dissolved Air Flotation Float (K048)	48.664	74,967	0	1,339	27,641	1, 191
ston Dil Emulsion Solids (KO49)	13,290	6,600	0	1,378	0	2,238
leaded Tank Bottoms (K052)	0		•	0	19	0
Pond Sediments	1,662	13,825	0	0	0	•
Nonieaded Tank Bottoms	3,049	14, 159	•	0	1,345	0
Residual Dils/Spent Solvents	1,493	362	•	0	14	127
Other Oily Sludges & Organic Wastes	349	1,335	•	1,315	3,435	0
Primary Studge (F037)	5,130	1,983	•	0	298	•
Primary Sludge (F038)	15,354	7,333	0	0	0	0
Heat Exchanger Bundle Cleaning Sludge	520	5	•	0	36	53
Contaminated Soils/Solids	22	0	•	•	0	433
Residual Coke/Carbon/Charcoal	38	0	•	0	0	0
Residual Sulfur	0	•	0	0	16	0
Other Contaminated Soils NOS	860	466	0	0	0	0
Fluid Cracking Catalyst or Equivalent	0	•	•	6,360	8,590	24,986
Hydroprocessing Catalysts	•	•	0	0	0	0
Other Spent Catalysts NOS	0	0	0	0	0	144
Biomass	177,394	1,035	•	0	35,621	0
Oit Contaminated Waters NOI Wastewater	0	587	•	0	761	•
High pH/Low pH Waters	0	0	0	0	315	
Spent Sulfite Solution		0	0	•		
Spent Stretford Solution	856	0	0	0 (•	5
TSD Leachate (F039)	0	0	0	•	0	5
Spent Caustics	•	1,199	0	1,429	2,808	0
Spent Acids	•	16	•	0	2	0
Residual Amínes	6	0	0	0	0	•
Other Incranic Residuals NOS	820	m	0	0	335	13,401
Other Residuals NOS	0	650	0	0	•	648
		N H H H H H H H H H H H H H H H H H H H		11 11 11 11 11 11 11 11 11 11 11 11 11		
	293,415	135,084	0	13,611	82,109	43,270

API PUBL*333 95 🖿 0732290 0554378 080 📟

Continued on Next Page

Not for Resale

Estimated Residual Quantity Handled by Recycle Techniques for Each Residual Stream (Continued) (wet tons)

Residual Stream	Other Out-of-Process	Cement Kiln-Industrial Fuel	Other Industrial Fuel	Reclamation	Regeneration	Other
	150	8,208	127	1,894	0	-
API Separator Studge (NUSI)	217	18.884	0	11	m	-
2		0 802	1.470	341	0	0
Slop Dil Emulsion Solids (KU47)		07		0	0	•
Leaded Tank Bottoms (KU22)		; -			0	0
Pond Sediments			2	• <u>¤</u>		3.414
Nonleaded Tank Bottoms	225	140		201 00	, <u>e</u>	14
Residual Oils/Spent Solvents	14	102	170	CO1 ' 67	5 4	ţ
Other Dilv Sludes & Oreanic Wastes	0	6,128	3,447	1 7	2	
Defenses findes (EAT)	0	427	•	0	0	.
Primary studge (rost)	c	09	0	345	•	0
		41	•	=	0	•
Heat Exchanger Burndle Lleaning Sludge	787	: ^	0	0	0	2
Contaminated Soils/Soilds	10,10	1 2 7	. c	0	3,400	385
Residual Coke/Carbon/Charcoal	012,70	, c	; c		0	1
Residual Sulfur	25,845	2	> <	3		: -
Other Contaminated Soils NOS	5,467	85		9 Q		2 240 0
Fluid Cracking Catalvst or Equivalent	22,186	8,901	0	0,042	0, 140	c in' 7
Hudronroresing Catalves	•	171	0	43, 122	1,8/6	2
ator of accessing cardinate MAC	3.350	33	0	5,885	516	15
Uther apent catalysts nus	0	0	•	1,312	0	57,840
Blondss all asstssicated listene MAT listalister		0	•	22	•	0
		. 0	0	0	0	0
HIGN PH/LOW PH WATERS	TT 152		0	0	0	0
Spent Sultite Solution				4.406	0	0
spent Stretford Solution	5 (G	0
TSD Leachate (F039)				LRL ORK	180 676	21.423
Spent Caustics	63,121		•			
Spent Acids	•	0	Ð			.
Residual Amines	m	0	27	004	<u> </u>	
Other Trornanic Residuals NOS	49,229	71	0	1,065	0	
other Designate MCS	10,130	1,638	96	7,208	252	812
	324,323	55,244	5,933	586,003	201,703	86,019
	•					

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Respondent Frequencies For Recycle Techniques For Each Residual Stream

Boolding Stream	Coker	Crude Unit	Desalter	Catalytic Cracker	Other In-Process Recvcle	Cement Kiln-Out of Process
				•		
API Separator Studge (K051)	17	24	0	2	r	-
Dissolved Air Flotation Float (K048)	15	17	0	-	m	m
Stop Oil Emulsion Solids (K049)	7	6	0	-	0	•
Leaded Tank Bottoms (K052)	0	0	0	0	•	0
Pond Sediments	-	-	•	0	0	0
Nonleaded Tank Bottoms	Ś	12	0	0	2	0
Residual Oils/Spent Solvents	2	හ	0	0	• :	• •
Other Oily Sludges & Organic Wastes	2	•0	0	•-•	m ,	0
Primary Sludge (f037)	~ '	12	0 (0 0	~ 0	0 0
Primary Sludge (f038)	'n	n i	0	-		
Heat Exchanger Bundle Cleaning Sludge	M	2	0	• •	- (. , .
Contaminated Soils/Solids		-	0	0 (- (
Residual Coke/Carbon/Charcoal	2	0	0	0	0,	• •
Residual Sulfur	0	0	Ö		(
Other Contaminated Soils NOS	-	м	0	0	01	0
Fluid Cracking Catalyst or Equivalent	0	0	0	in i	ŝ	5
Hydroprocessing Catalysts	0	0	0	0	0 0	9
Other Spent Catalysts NOS	•	0	0	0	. .	. , .
Biomass	m	m	0	0	, -	0
Oil Contaminated Waters NOT Wastewater	0	2	0	0		0 0
High pH/Low pH Waters	0	0	0	0	- 0	-
Spent Sulfite Solution	0	0	0 (-		5 0
Spent Stretford Solution	-	0	0	0	5	5 0
TSD Leachate (f039)	0	0	0	.	21	-
Spent Caustics	0	2	0	- 1	• له	
Spent Acids	•	-	0	0	- 1	
Residual Amines	2	-	0	0	-	
Other Inorganic Residuals NOS	m (- 1	0	•	~ 0	p
Other Residuals NOS	0	m	0	5	0	^
						11
	2	<u></u>	>	=	2	3

Continued on Next Page

API PUBL*333 95 📰 0732290 0554380 739 📖

Not for Resale

Respondent Frequencies for Recycle Techniques for Each Residual Stream (Continued)

Residual Stream	Other Out of Process	Cement Kiln-Industrial Fuel	Other Industrial Fuel	Reclamation	Regeneration	Other
API Separator Sludge (KO51)	-	21	-	2	0	-
Dissolved Air Flotation Float (K048)	-	12	0	-	e 1	- (
slop Oil Emulsion Solids (K049)	0	14	~	 .	0	0
Leaded Tank Bottoms (K052)	0	**	0	0	0	0
Pond Sediments	0	0	0	0	0	0
Nonleaded Tank Bottoms		m	4	~	0	• 1
Residual Oils/Spent Solvents	2	ñ	1 0	26	~	M
Other Dily Sludges & Organic Wastes	0	5	4	-	0	0
Primary Sludge (F037)	0	n	0	0	0	0
Primary Sludge (F038)	0	2	0	 1	0	• •
Heat Exchanger Bundle Cleaning Sludge	0	m	0	2	0 (••
Contaminated Soils/Solids	7	•	0	0	0	(
Residual Coke/Carbon/Charcoal	-	0	- 1	•	4	N
Residual Sulfur	m	0	Ċ,		0	(
Other Contaminated Soils NOS	4	2	0	1	. .	5 (
Fluid Cracking Catalyst or Equivalent	=	4	0	νí	4 (•	~ ~
Hydroprocessing Catalysts	o j		0 0	3:	2	- -
Other Spent Catalysts NOS	0	- (-	ų .	a (
Biomass	0	0	0	- •	-	- (
Oil Contaminated Waters NOT Wastewater	0	0	0	 (-	•
High pH/Low pH Waters	0	0	0	•		0 (
Spent Sulfite Solution	-	0	0	• •	-	5 0
Spent Stretford Solution	0	0	0	(0	•
TSD Leachate (F039)	0	0	0	0	0	0
Spent Caustics	24	0	0	21	o 1	2
Spent Acids	0	0	0	0	0	0
Residual Amines	-	0	-	m	~	0
Other Inorganic Residuals NOS	9	-	0	m	0	0
Other Residuals NOS	Ś	7	7	16	2	Ś
	78	86	22	163	22	21

The SAS System

API ANNUAL REFINING SURVEY 1992

Percent Recycled On-Site and Off-Site

Percent	Recycled	001+-
	Recycled	Tana

		,	I
		Percent	Percent
Waste Stream	Recycl ed Tons	Recycled On-Site	Recycled Off-Site
ADT Senarator Slindos (KOS1)	205 27	80	2
AT VERSION STORE (AVAIL)		3 5	2
DISSOLVED AIL FLOTATION FLOAT (KU40)		21	07
Slop Oil Emulsion Solids (K049)	35,118	62	38
Leaded Tank Bottoms (K052)	59	0	100
Pond Sediments	15,487	100	0
Nonleaded Tank Bottoms	22,895	67	33
Residual Dils/Spent Solvents	31,939	9	76
Other Oilv Sludges & Organic Wastes	16.010	19	81
Primary Studge (F037)	7,838	91	6
Primary Studge (F038)	23,091	100	o
Heat Exchanger Bundle Cleaning Sludge	643	82	18
Contaminated Soils/Solids	74.242	0	100
Residual Coke/Carbon/Charcoal	41, 151	ŝ	95
Residual Sulfur	25,874	0	100
Other Contaminated Soils NOS	6,925	19	81
Fluid Cracking Catalyst or Equivalent	85,535	0	100
	45,175	-	8
Other Spent Catalysts NOS	9,968	0	100
Biomass	273,202	33	34
Oil Contaminated Waters NOT Wastewater	1,370	43	57
High pH/Low pH Waters	315	0	100
Spent Sulfite Solution	33, 152	0	100
Spent Stretford Solution	5,262	16	2
TSD Leachate (F039)	0	0	0
Spent Caustics	763,740	87	52
Spent Acids	<u>ج</u>	17	83
Residual Amines	650	m	26
Other Inorganic Residuals NOS	64,923	m	26
Other Residuals NOS	21,434	m	76
	######## ############################		
	1,826,709		

API PUBL*333 95 🖿 0732290 0554382 501 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Estimated Residual Quantities Treated and Percent Of Total Amount Managed By Stream

Residual Stream	Quantity Treated (Tons)	Percent Treated
API Separator Sludge (K051) Dissolved Air Flotation Float (K048)	121,513 369.051	69.78 67.57
Slop Oil Emulsion Solids (K049)	37,412	50.66
Leaded Tank Bottoms (K052) Pond Sediments	531 106.708	84.29 27.28
Nonleaded Tank Bottoms	25,404	19.51
Residual Oils/Spent Solvents Other Dilv Sludges & Organic Wastes	42 8.010	0.15 20.87
Primary Sludge (F037)	40,675	16.50
Primary Sludge (F038)	23, 730	43.86
Heat Exchanger Bundle Cleaning Sludge Contaminated Softs/Solids	2,051 16.584	54.46 1.74
Residual Coke/Carbon/Charcoal	210	0.39
Residual Sulfur	7	0.13
Other Contaminated Soils NOS	721	2.24
Fluid Cracking Catalyst or Equivalent	26 3	0.01
nyaruprocessing Latalysis Other Spent Catalysts NOS	25	0.18
Biomass	168,023	26.21
Oil Contaminated Waters NOI Wastewater	20,967	93.87
High pH/Low pH Waters	13,565	83.17
Spent Sulfite Solution		- ²
Spent Strettord Solution Ish Larkata (5030)	1,103	8.82
Spent Caustics	631,755	44.33
Spent Acids	4,530	58.17
Residual Amines	139,874	98.22
Inorganic	45,276	13.43
Other Residuals NOS	176,1 Essesses	05.0
	1,805,525	

API PUBL*333 95 🔳 0732290 0554383 448 💻

Estimated Residual Quantity Handled By Treatment Techniques for Each Residual Stream (wet tons)

Pecitinal						Waste water		Stabilization and/or	
Stream	Weathering Chemical	Chemical	Heat	Impoundment	: Physical	Treatment	Heat Impoundment Physical Treatment Incineration	Fixation	Other
API Separator Sludge (K051)	0	0	7,531	0	20,110	68, 185	25,687	0	0
Dissolved Air Flotation Float (K048)	0	0	6,466	•	575	308,004	54,308	0	0
Slop Oil Emulsion Solids (K049)	•	0	6,897	•	224	22,589	7,702	0	0
Leaded Tank Bottoms (K052)	•	•	0	•	0	2	529	0	•
Pond Sediments	•	0	0	0	0	106,708	0	0	0
Nonleaded Tank Bottoms	0	106	0	0	209	18,718	81	6,290	0
Residual Oils/Spent Solvents	0	ŝ	0	0	•	80	24		0
Other Oily Studges & Organic Wastes	0	0	0	0	0	7,680	330	0	0
Primary Sludge (F037)	0	0	0	•	•	31,968	8,707	0	0
Primmery Sludge (F038)	0	0	0	0	•	23,509	221	•	0
Heat Exchanger Bundle Cleaning Sludge	0	0	0	0	0	231	1,788	32	0
Contaminated Soils/Solids	0	437	15,671	•	32	•	280	164	0
Residual Coke/Carbon/Charcoal	0	0	0	0	0	•	150	60	•
Residual Sulfur	0	2	•	0	0	0	0	•	0
Other Contaminated Soils NOS	m	294	18	0	•	•	98	308	•
Fluid Cracking Catalyst or Equivalent	•	0	0	0	0	13	0	13	•
Hydroprocessing Catalysts	0	m	•	•	•	0	0	•	•
Other Spent Catalysts NOS	0	0	0	•	0	0	5	0	•
Biomass	•	•	O,	0	0	89,505	73,916	0	4,602
Oil Contaminated Vaters NOT Wastewater	•	•	0	0	•	20,904	19	77	•
High pH/Low pH Waters	0	•	0	0	0	13,563	2	0	•
Spent Sulfite Solution	•	0	0	0	0	0	0	0	•
Spent Stretford Solution	0	•	0	1,743	•	21,525	0	0	0
TSD Leachate (F039)	0	•	0	0	0	1,103	0	0	0
Spent Caustics	0	1,667	0	0	0	630,088	o	0	0
Spent Acids	0	474	0	0	0	3,982	•	0	72
Residual Amines	0	412	0	0	0	139,460	2	0	0
Other Inorganic Residuals NOS	•	9, 137	0	0	0	39, 124	2	₽	0
Other Residuals NOS	0	0	0	0	0	24	1,336	=	0
		12,606	36,583	======================================	20,848	1546893	175,233	======================================	4,676

Respondent Frequencies for Treatment Techniques for Each Residual Stream

Residual Stream	Weathering Chemical	Chemi cal	Heat	Heat Impoundment Physical	Physical	Vastewater Treatment	s lastewater Treatment Incineration	Stabilization and/or Fixation	r Other
Abi Constatos Cludes (KOC1)	c	0	2	0	4	30	33	0	0
AFI Separator storys (NULT) Discolved Air Flotation Float (KULB)	• •	• •	•	0	· ~	20	16	0	0
ston Dit Emilsion Solids (K040)	• •	0	-	0	~	13	0	0	0
Leaded Tank Bottoms (K052)	• •	0	0	0	0	0	6	•	•
Pond Sediments	•	0	0	0	0	m	0	0	0
Nonleaded Tank Bottoms	•	-	•	0	-	16	7	2	•
Residual Oils/Spent Solvents	0	-	•	0	0	m	s	-	0
Other Oily Sludges & Organic Wastes	0	0	•	0	0	•0	\$	•	•
•	0	0	•	•	0	16	10	0	0
Primary Sludge (F038)	0	0	•	•	0	80	-	0	0
Heat Exchanger Bundle Cleaning Sludge	0	0	0	•	•	\$	36	•••	0
	0	ħ	~	0	-	0	9	-	0
Residual Coke/Carbon/Charcoal	0	0	•	0	•	0	4	-	0
Residual Sulfur	0	-	0	•	•	0	0	0	0
Other Contaminated Soils NOS	-	m		•	0	0	m	-	0
Fluid Cracking Catalyst or Equivalent	0	•	0	•	0	-	0		0
Hydroprocessing Catalysts	0	-	0	0	0	0	01	•	0 0
Other Spent Catalysts NOS	0	0	0	0	0	0	m -	0 1	
Biomass	0	0	•	0	0	•0	9	0	-
Oil Contaminated Waters NOT Wastewater	•	0	•	•	0	ŝ	-	-	0
High pH/Low pH Waters	•	0	•	0	0	ŝ		0	0
Spent Sulfite Solution	•	0	0	0	0	0	0	0 (•
Spent Stretford Solution	0	0	0		•	~	0 0	•	•
TSD Leachate (F039)	0	0	•	0	0	2	0	0	0
Spent Caustics	0	~	•	0	•	23	0	0	0
Spent Acids	0	-	•	0	•	\$	0	0	-
Residual Amines	0	-	•	0	•	₽	-	0	•
Other Inorganic Residuals NOS	0	2	•	0	0	2		-	•
Other Residuals NOS	0	0	•	0	•	-		-	
		assess 16	# c		10	195	######################################	r=====================================	2
	•	2)		2			:	ı

API ANNUAL REFINING SURVEY 1992

Percent Treated On-Site and Off-Site

Waste Stream	I reat e d Tons	Percent Treated On-Site	Percent Treated Off-Site
AP1 Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049)	121,513 369,051 37,412	80 26 26 26	20 21 21
Leaded Tank Bottoms (K052) Pond Sediments	531 106,708	<u>ہ</u> و	00,
Nonleaded lank Bottoms Residual Oils/Spent Solvents Creation Oilv Structors Incoros	404, C2 41 8 010	8 1 8	1 82 2
ounel only succes a digante master Primary Sludge (1037) Primary Sludge (1038)	40,675	288	. W.
Heat Exchanger Bundle Cleaning Sludge Contaminated Soits/Soiteds	2,051	11 86	89 14
Residual Coke/Carbon/Charcoal	210	58 C	22
	219	53.0	47
Fluid Cracking Catalyst or Equivalent Hydroprocessing Catalysts	26 26	80	0 <u>0</u>
Other Spent Catalysts NOS Biomass	51 168.023	0 08	100 20
011 Contaminated Waters NOT Wastewater Mich PM/1 ou Defers	20,967	9 5 5	00
Spent Sulfite Solution	0	0	• •
Spent Stretford Solution TSD Leachare (EDIO)	23,268	82 97	8 <u>7</u> ×
Spent Caustics	631, 755	86	2
Spent Acids Besidial Amires	4,531	98 1001	~ ~
Other Inorganic Residuals NOS Other Residuals NOS	48, 276	88	12 96
	1,805,523		2

API PUBL*333 95 🛲 0732290 0554386 157 페

Estimmated Residual Quantities Land Treated and Percent Of Total Amount Managed

•	
	By Stream
r.	
5	
	_
	8
	28
1	
1	-
	-
Ł	6
	~
•	~
	•
•	
١.	
1	
•	
,	
•	
•	
•	

Residual Stream	Quantity Land Treated (Tons)	Percent Land Treated
API Separator Sludge (K051)	363	0.21
Dissolved Air Flotation Float (K048)	777	0.08
slop Oil Emuision Solids (K049)	•	0.00
Leaded Tank Bottoms (K052)	0	0.00
Pond Sediments	230, 187	58.86
Nonleaded Tank Bottoms	11,612	8.92
Residual Oils/Spent Solvents	103	0.31
Other Oily Sludges & Organic Wastes	4,098	10.68
Primary Sludge (FU37) Doimany Sludge (FU38)	886,7c	22.22
HEAT Exchange Froud Heat Exchanger Bundle Cleaning Sludge		0.00
Contaminated Soils/Solids	245,922	25.80
Residual Coke/Carbon/Charcoal	1,215	2.28
Residual Sulfur	0	0.00
Other Contaminated Soils NOS	4,104	12.74
Fluid Cracking Catalyst or Equivalent	1,647	0.84
Hydroprocessing Catalysts	0	0.00
Other Spent Catalysts NOS	430	1.56
B i omass	144,060	22.48
Oil Contaminated Waters NOT Wastewater	0	0.00
High pH/Low pH Waters	80 G	0.23
spent sulfite solution spent stratford solution		8.0
TSD Leachate (F039)	• -	0.0
Spent Caustics	• •	0.00
	0	0.00
Residual Amines	•	0.00
	8,100	2.25
Other Residuals NOS	21	0.01
	710,332	

Respondent Frequencies For Land Treatment for Each Residual Stream

Land Treatment	5	. o 7 o	- 2 5	2 ~ M	- 15 2	80 ~~	123
Residual Stream	0 API Separator Siudge (KO51) Diasolved Air Flotation Float (KO48)	Pord Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents	Other Dily Sludges & Organic Wastes Primary Sludge (F037) Contaminated Soils/Solids	Residual Coke/Carbon/Charcoal Other Contaminated Soils NOS Fluid Cracking Catalyst or Equivalent	Other Spent Catalysts NOS Biomass High DH/Low DH Waters	Other Inorganic Residuals NOS Other Residuals NOS	

API PUBL*333 95 🎟 0732290 0554388 T2T 🖿

The SAS System

API ANNUAL REFINING SURVEY 1992

١

Percent Land Treated On-Site and Off-Site

Percent

		Percent	
	Land	Land	Percent Land
	Treated	Treated	Ireated
Waste Stream	Tons	On-Site	off-Site
AD1 Separator Sludge (KD51)	363	100	0
Dissolved Air Flotation Float (K048)	777	100	0
Sloo Oil Emulsion Solids (K049)	0	0	0
Leaded Tank Bottoms (K052)	0	0	0
Pond Sediments	230, 187	92	Ø
Nonleaded Tank Bottoms	11,612	95	ŝ
Residual Dils/Spent Solvents	103	100	0
Other Oily Sludges & Organic Wastes	4,098	8	-
Primary Sludge (F037)	57,988	16	0
Primery Studge (F038)	0	0	0
Heat Exchanger Bundle Cleaning Sludge	0	0	0
Contaminated Soils/Solids	245,922	98	~4
Residual Coke/Carbon/Charcoal	1,215	98	2
Residual Sulfur	•	0	0
Other Contaminated Soils NOS	4,104	81	19
Fluid Cracking Catalyst or Equivalent	1,647	4	96
Hydroprocessing Catalysts	•	0	0
Other Spent Catalysts NOS	430	100	0
Bionass	144,060	98	2
Oil Contaminated Waters NOI Wastewater	0	0	0
High pH/Low pH Waters	38	100	0
Spent Sulfite Solution	•	•	0
Spent Stretford Solution	0	•	0
TSD Leachate (F039)	0	•	0
Spent Caustics	0	0	•
Spent Acids	0	•	0
Residual Amines	0	0	0
Other Inorganic Residuals NOS	8,100	100	0
Other Residuals NOS	21	100	0
	# # # # # # # # # # # # # # # # # # # #		
	710,332		

Estimated Residual Quantities Disposed and Percent Of Total Amount Managed By Stream

Waste Stream	quantity Disposed (Tons)	Percent D i sposed
API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052) Pond Sediments	4,770 3,528 1,324 1,324 20 38,713	2.74 0.65 6.35 9.90
Wonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludges & Organic Wastes Primary Sludge (F038) Primary Sludge (F038) Heat Exchanger Bundle Cleaning Sludge	70,293 793 140,033 7,287	53.99 2.41 26.74 13.47 28.44
Contaminated Soils/Solids Residual Coke/Carbon/Charcoal Residual Sulfur Other Contaminated Soils NOS	616,430 10,631 26,935 20,452	64.67 19.98 50.94 63.51
Hydroprocessing Catalysts Other Spent Catalysts NOS Biomass Oil Contaminated Waters NOT Wastewater High pH/Low pH Waters	55,673 55,673 2,392	12.10 62.20 8.69 14.67
spent surfite solution Spent Stretford Solution TSD Leachate (F039) Spent Caustics Residual Amines	2,165 2,165 11,397 29,581 3,162 1,886	0 7.05 91.18 2.08 40.61
Other Inorganic Residuals NOS Other Residuals NOS	238,031 357,943 1,787,725	66.24 94.01

API PUBL*333 95 🖿 0732290 0554390 688 📟

SURVEY	
RESIDUALS	1992
REFINERY	
API	

Estimmated Residual Quantity Handled by Disposal Techniques for Each Residual Stream (wet tons)

Residual Stream	Disposal Impoundment	Landfill	Landspread	Injection	Other
API Senarator Sludge (KO51)	0	4.550	0	0	220
Dissolved Air Flotation Float (K048)	0	3,528	•	•	0
Ston Dit Emulsion Solids (K049)	0	1,105	0	0	219
Leaded Tank Bottoms (K052)	0	24	•	0	16
Pond Sediments	0	38,713	0	0	0
Nonleaded Tank Bottoms	0	70,261	20	0	12
Residual Oils/Spent Solvents	0	785	0	0	80
Other Oily Sludges & Organic Wastes	14	9,922	287	•	70
Primary Sludge (F037)	1,827	137,748	352	•	106
Primary Sludge (F038)	5,547	1,740	•	0	•
Heat Exchanger Bundle Cleaning Sludge	0	1,052	•	0	19
Conteminated Soils/Solids	0	592,397	24,031	•	~
Residual Coke/Carbon/Charcoal	0	10,595	36	•	•
Residual Sulfur	•	26,922	2	0	=
Other Contaminated Soils NOS	0	20,092	8	0	358
Fluid Cracking Catalyst or Equivalent	25,419	83, 253	851	0	0
Hydroprocessing Catalysts	0	6,175	•	•	42
Other Spent Catalysts NOS	0	17,101	•	0	91
Biomass	0	50,893	4,780	0	0
Oil Contaminated Waters NOT Wastewater	0	0	•	•	0
High pH/Low pH Waters	0	130	•	2,262	0
Spent Sulfite Solution	0	•	•	0	0
Spent Stretford Solution	•	2,165	0	0	0
TSD Leachate (F039)	11,397	•	0	0	•
Spent Caustics	0	•	•	29,057	524
Spent Acids	0	14	0	3,148	•
Residual Amines	4	309	•	1,569	4
Other Inorganic Residuals NOS	7,110	229,785	1,136	0	•
Other Residuals NOS	0	355,628	1,121	129	1,065
		10 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14			
	51,318	1,664,887	32,618	36, 165	2,737

Respondent Frequencies for Disposal Techniques for Each Residual Stream

Residual Stream	Disposal Impoundment	Landfill	Landspread	Injection	Other
API Separator Sludge (K051)	0	13	0	0	4
Dissolved Air Flotation Float (K048)	. 0			Ċ	Ċ
slop Oil Emulsion Solids (K049)	0	~	0	0	-
Leaded Tank Bottoms (K052)	0	-	0	0	-
Pond Sediments	0	10	•	0	0
Nonleaded Tank Bottoms	0	48		0	-
Residual Oils/Spent Solvents	0	•0	•	0	2
Other Oily Sludges & Organic Wastes	•	28	2	0	~
Primary Sludge (F037)	~	77	2	0	m
Primary Sludge (F038)	-	9	0	0	0
Heat Exchanger Bundle Cleaning Sludge	0	6	0	0	2
Contaminated Soils/Solids	0	R	9	0	
Residual Coke/Carbon/Charcoal	0	34	-	0	0
Residual Sulfur	0	30	-	0	-
Other Contaminated Soils NOS	0	39	-	0	-
Fluid Cracking Catalyst or Equivalent	-	97	2	0	0
Hydroprocessing Catalysts	0	18	0	0	-
Other Spent Catalysts NOS	0	42	•	0	-
B i omass	0	20	m	0	0
Oil Contaminated Waters NOT Wastewater	0	0	0	0	0
High pH/Low pH Waters	0	-	0	•	0
Spent Sulfite Solution	0	0	0	0	0
Spent Stretford Solution	0	** *	0	0	0
TSD Leachate (F039)	-	0	0	0	•
Spent Caustics	0	0	0	σ	-
Spent Acids	0	-	0	~	0
Residual Amines	-	~	0	m	2
Other Inorganic Residuals NOS	4	41	~	•	0
Other Residuals NOS	0	2	2	-	м
	*=====================================	======== 610	*********	**************************************	27

API PUBL*333 95 🖿 0732290 0554392 450 📟

.

The SAS System

API ANNUAL REFINING SURVEY 1992

Percent Disposed On-Site and Off-Site

Waste Stream	D i sposed Tons	Percent Disposed On-Site	Percent Disposed Off-Site
API Separator Sludge (K051)	4,771	0	100
Dissolved Air Flotation Float (K048)	3,528	0 0	100
Slop Oil Emulsion Solids (K049)	1,323	- 0	
Leaded Tank Bottoms (KU>2) Doud Sadimaats	28 713		001
Konleaded Tank Bottoms	70.294		5
Residual Oils/Spent Solvents	792	0	100
Other Dily Sludges & Organic Wastes	10,262	69	3
Primary Sludge (F037)	140,034	6 2	19 1
•	7,287	92 92	24
Heat Exchanger Bundle Cleaning Sludge	1/0/1	0 0	200
Contaminated Soils/Solids	010,429	αg	2 4
Residual Coke/Carbon/Charcoal	10,051	Ŋ,	28
Residual Sultur	CCV,02	- ٢	\$ 8
other Contaminated Soils NUS rivid Conching Continue on Equivalent	204,02	- 01	83
rturu urakking batalyst ur equivatent Wydroprocessing Catalysts	6.217	; ;=	68
Other Spent Catalysts NOS	17, 192	=	89
Biomass	55,673	28	2
Oil Contaminated Waters NOT Wastewater	0	0	0
High pH/Low pH Waters	2,392	Ś	<u>۶</u>
Spent Sulfite Solution	0	0	0
Spent Stretford Solution	2,165	0	100
TSD Leachate (F039)	11,397	100	0
Spent Caustics	29,581	38	*
Spent Acids	3, 162	0	100
Residual Amines	1,886	54	46
Other Inorganic Residuals NOS	238,032	80	92
Other Residuals NOS	357,944	28	22
	1,101,120		

API SOLID WASTE SURVEY 1993

Estimated U.S. Total Waste Quantities

Waste Stream
Dissolved Air Flotation Float (K048)
Slop Oil Emulsion Solids (K049)
Other Oily Sludges & Organic Wastes
Heat Exchanger Bundle Cleaning Sludge
Fluid Cracking Catalyst or Equivalent
Oil Contaminated Waters NOT Wastewater

API PUBL*333 95 🎟 0732290 0554394 223 🖿

16

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B-21

ļ

6441

Estimated Residual Quantities By Management Techniques (wet tons)

Residual Stream	Total Managed	Recycled	Treated	Land Treated	Disposed
API Separator Sludge (K051)	167,296	55,168	105,838	1,320	4,970
Dissolved Air Flotation Float (K048)	520,118	147,625	369,221	1,616	1,656
Slop Dil Emulsion Solids (K049)	55,555	36,270	18,782	•	503
Leaded Tank Bottoms (K052)	3, 127	1,769	1,283	0	5
Pond Sediments	144,661	11,563	1,296	20,488	111,314
Nonleaded Tank Bottoms	129,919	36, 759	13,472	14,215	65,473
Residual Oils/Spent Solvents	48,062	47,496	170	217	179
Other Oily Sludges & Organic Wastes	242,029	20,379	5,590	35,837	180,223
Primary Studge (F037)	225,885	30,304	55,978	116,192	23,411
Primary Studge (F038)	62,309	18, 120	39,153	0	5,036
Heat Exchanger Bundle Cleaning Sludge	4,817	1,726	1,379	0	1,712
Contaminated Soils/Solids	631, 122	64,721	24,543	141,872	399,986
Residual Coke/Carbon/Charcoal	56,872	45,078	2,584	107	9,103
Residual Sulfur	43,910	33,599	65	230	10,016
Other Contaminated Soils NOS	38,659	10, 731	- 746	2,141	25,041
Fluid Cracking Catalyst or Equivalent	197,292	93,901	17	3,816	99,558
Hydroprocessing Catalysts	51,694	27,580	190	0	23,924
Other Spent Catalysts NOS	- 29, 246	16,398	198	452	12,198
Biomass	722,425	278,489	132,239	142,826	168,871
Oil Contaminated Waters NOT Wastewater	26,563	20	21,326	220	4'66'5
High pH/Low pH Waters	8,978	84	7,924	35	935
Spent Sulfite Solution	29,317	29,317	•	•	0
Spent Stretford Solution	26, 177	2,088	21,233	•	2,856
TSD Leachate (F039)	39,582	0	21,829	•	17,753
Spent Caustics	1,434,128	739,098	660,646	•	34,384
Spent Acids	5,895	23	5,144	•	698
Residual Amines	115,632	1,374	113,176	•	1,082
Other Inorganic Residuals NOS	246,838	15,219	40,445	14,941	176,233
Other Residuals NOS	142,640	8,355	950	•	133,335
		10 11 12 12 12 12 12 12 12 12 12 12 12 12	10 11 11 10 10 10 10 10 10 10 10 10 10 1	*****	
	5,450,748	1, 773, 284	1,665,417	496,525	1,515,522

API PUBL*333 95 🔳 0732290 0554395 16T 🔳

B-22

Percentages of Residual Quantities Recycled, Treated, Land Treated and Disposed By Stream

Residual Stream	Percent Recycled	Percent Treated	Percent Land Treated	Percent Disposed
API Separator Sludge (K051) Discoluted Air Electricon Elect (K078)	33	63 71	 c	мc
Slop Oil Emulsion Solids (K049)	ç5 6	34	00	
Leaded Tank Bottoms (K052)	57	41	0	2
Pond Sediments	80	-	14	77
Nonleaded Tank Bottoms	28	10	11	50
Residual Oils/Spent Solvents	66	0	0	0
Other Dily Sludges & Organic Wastes	8	5	15	74
Primary Sludge (F037)	13	25	51	10
Primary Sludge (F038)	29	63	0	8
Heat Exchanger Bundle Cleaning Sludge	36	29	0	36
Contaminated Soils/Solids	10	4	22	63
Residual Coke/Carbon/Charcoal	62	ŝ	0	16
Residual Sulfur	22	0	-	23
Other Contaminated Soils NOS	28	2	9	65
Fluid Cracking Catalyst or Equivalent	48	0	2	50
Hydroprocessing Catalysts	53	0	0	46
Other Spent Catalysts NOS	56	-	2	42
Biomass	39	18	20	23
Oil Contaminated Waters NOT Wastewater	0	80	-	19
High pH/Low pH Waters	-	88	0	0
Spent Sulfite Solution	100	0	0	0
Spent Stretford Solution	80	81	0	=
TSD Leachate (F039)	0	55	0	45
Spent Caustics	52	46	0	2
Spent Acids	-	87	0	12
Residual Amines	-	98	0	-
Other Inorganic Residuals NOS	6	16	\$	71
Other Residuals NOS	¢	•	0	93

API PUBL*333 95 🎟 0732290 0554396 0T6 📟

Estimated Residual Quantities Recycled and Percent Of Total Amount Managed By Stream

Residual Stream	Quantity Recycled (Tons)	Percent Recycled
API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052) Pond Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludge (F037) Primary Sludge (F038) Heat Exchanger Bundle Cleaning Sludge Contaminated Soils/Solids Residual Coke/Carbon/Charcoal Residual Sulfur Other Contaminated Soils/Solids fluid Cracking Catalysts Other Spent Catalysts NOS Biomass Other Spent Catalysts NOS Biomass Other Spent Catalysts NOS Biomass Spent Suffie Solution Spent Suffie Solution Spent Catalysts NOS Biomass Spent Suffie Solution Spent Catalysts NOS Biomass Spent Suffie Solution Spent Catalysts NOS Spent Suffie Solution Spent Catalysts NOS Spent Suffie Solution Spent Catalysts NOS Spent Catalysts NOS Spent Suffie Solution Spent Catalyst Suffie Spent Spent Suffie Spent Spent Suffie Spent Spent Spent Suffie Spent Spent Spe	25, 168 36, 270 36, 270 36, 275 36, 759 36, 759 30, 759 30, 759 30, 731 33, 599 33, 599 34, 501 35, 501 36, 501 37, 501 37, 509 37, 509 38, 509 38, 509 38, 509 30, 501 37, 509 30, 501 37, 500 37, 500 38, 500 37, 50	32.98 28.29 56.57 70.28 28.29 28.29 28.29 35.25 70.25 35.57 70.25 38.50 70.00 0.94 0.00 7.98 0.00 0.94 0.00 0.94 0.00 0.08 51.55 515
Other Residuals NOS	8,355 1,773,284	5.86

API PUBL*333 95 🗰 0732290 0554397 T32 📼

Estimated Residual Quantity Handled by Recycle Techniques for Each Residual Stream

•	
	-
	Ñ
	tons
•	H
	(wet
	è
	Ĩ
	÷
•	
•	
•	
•	
•	
•	
•	
•	
•	
-	
•	
•	
•	

Cement Kiln-Out of Process	1,829 684 2,944	0 186 0 0 0 0 0 0 0	13 193 0 0 0	54,307 72 77 77 77 77 77 77 70 0 0 0 4,132 64,428	
Other In-Process Recycle	1,120 30,899 58	0 603 2 6,092 613 0	30 53,630 93 93	11,223 36,473 36,473 761 761 761 141.642	
Catalytic Gracker	200 14 0 0	0 0 2,744 0 0		6,548 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Desalter	00000				
Crude Unit	11,265 52,268 5,327 342	83 9,834 45,902 3,674 7,005 994	7 0 2 2 0 0 0 2 0 0 0	1,337 1,337 1,337 0 0 6 18 6 18 557 200 139,547	•
Coker	22,759 47,367 15,972	10,783 10,723 383 438 15,866 15,866	32 0 3,663	75,433 75,433 900 900 900 900 900 900 900 900 900 9	•
Residual Stream	API Separator Sludge (K051) Dissolved Air flotation float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052)	Pond sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludges & Organic Wastes Primary Sludge (F033) Primary Sludge (F038)	Heat Exchanger Bundle Cleaning Sludge Contaminated Soils/Solids Residual Coke/Carbon/Charcoal Residual Sulfur Other Contaminated Soils NOS	Fluid Cracking Catalyst or Equivalent Hydroprocessing Catalysts Other Spent Catalysts NOS Biomass Oil Contaminated Waters NOT Wastewater High pH/Low pH Waters Spent Sulfite Solution Spent Stretford Solution TSD Leachate (F039) Spent Caustics Spent Caustics Spent Caustics Spent Acids Residual Amines Other Inorganic Residuals NOS Other Residuals NOS	

Continued on Next Page

API PUBL*333 95 🖿 0732290 0554398 979 🚥

Estimated Residual Quantity Handled by Recycle Techniques for Each Residual Stream (Continued)

222	
2	_
	tons)
	(wet
5	
5	
2	
Ó	

Residual Stream	Other Out-of-Process	Cement Kiln-Industrial Fuel	Other Industrial Fuel	Reclamation	Regeneration	Other
API Separator Sludge (KO51)	127	14,086	492	3,212	· 76	2
Dissolved Air Flotation Float (K048)	349	14,062	1,098	111	121	0
Slop Oil Emulsion Solids (K049)	0	8,668	1,611	1,176	556	2
Leaded Tank Bottoms (K052)	0	2	0	1,360	0	0
Pand Sediments	0	269	0	0	0	0
Nonleaded Tank Bottoms	163	65	45	15,140	0	0
Residual Oils/Spent Solvents	20	146	692	293	46	12
Other Oily Sludges & Organic Wastes	17	6,660	240	2	0	2
Primary Sludge (F037)	0	5,293	2	1,525	0	0
Primary Sludge (F038)	0	329	0	2,292	0	0
Heat Exchanger Bundle Cleaning Sludge	0	86	10	1,548	0	0
Contaminated Soils/Solids	3,686	0	0	145	0	7,067
Residual Coke/Carbon/Charcoal	41,265	132	115	92	3,349	2
Residual Sulfur	31,306	0	0	2,193	0	2
Other Contaminated Soils NOS	6,569	25	58	50	0	366
Fluid Cracking Catalyst or Equivalent	10,022	375	0	6,188	4,782	456
Hydroprocessing Catalysts	0	153	0	25,490	1,835	0
Other Spent Catalysts NOS	517	30	0	15,402	357	15
Biomass	115,898	6 0	0	1,201	0	48,087
Oil Contaminated Waters NOT Wastewater	0	0	0	18	0	2
High pH/Low pH Waters	2	0	•	82	0	0
Spent Sulfite Solution	4,373	0	0	0	0	24,944
Spent Stretford Solution	0	•	0	1,188	0	0
TSD Leachate (F039)	0	0	0	0	0	0
Spent Caustics	67,871	0	0	472,203	164,809	32,836
Spent Acids	0	0	0	0	0	0
Residual Amines	0	23	0	654	33	53
Other Inorganic Residuals NOS	5,185	3,129	0	1,827	39	0
Other Residuals NOS	4,288	51	573	2,080	28	729
	22222222222222222222222222222222222222	EDECESCULUESUS 51 077	2222222222 5 276	<u>==========</u> 556 178	======================================	======== 114 587
	211,010					

API PUBL*333 95 🎟 0732290 0554399 805 📟

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B-26

Respondent Frequencies for Recycle Techniques for Each Residual Stream

Residual Stream	Caker	Crude Unit	Desalter	Catalytic Cracker	Other In-Process Recycle	Cement Kiln-Out of Process
API Separator Sludge (K051)	17	12	00	2	2	9
UISSOLVED AIF FLOTATION FLOAT (KU48)	11	13	0	0	2	M
Slop 011 Emulsion Solids (K049)	6	8	0	-	0	~
Leaded Tank Bottoms (K052)	-		0	0		0
Pond Sediments	4	2	0	0	0	0
Nonleaded Tank Bottoms	6	10	0	0	м	-
Residual Oils/Spent Solvents	r	1	0	0	-	0
Other Oily Sludges & Organic Wastes	S	7	0	2	ñ	~
Primary Sludge (F037)	6	10	0	0	-	0
Primary Sludge (F038)	4	4	0	0	0	0
Heat Exchanger Bundle Cleaning Sludge	4	2	0	0	-	m
Contaminated Soils/Solids	0	0	0	0	-	-
Residual Coke/Carbon/Charcoal		-	0	0	0	0
Residual Sulfur	0	0	0	0	2	0
Other Contaminated Soils NOS		0	0	0	0	0
Fluid Cracking Catalyst or Equivalent	0	0	0	9	6	20
Hydroprocessing Catalysts	-	0	0	0	0	2
Other Spent Catalysts NOS	0	0	0	0	0	2
Biomass	2	~	0	0	-	0
Oil Contaminated Waters NOT Wastewater	0	0	0	0	0	0
High pH/Low pH Waters	0	0	0	0	0	0
Spent Sulfite Solution	0	0	0	0	0	0
Spent Stretford Solution	-	0	0	0	0	0
TSD Leachate (F039)	0	0	0	0	0	0
Spent Caustics	0	-	0	0	4	0
Spent Acids	0	•	0	0	-	0
Residual Amines	m	2	0	0	0	0
Other Inorganic Residuals NOS	2	-	0	0	0	2
Other Residuals NOS	-	m	0	0	0	m
	1 4 4 4 1 4 4 4 4	1111	414466644			
	54	96	0	:	29	46

Continued on Next Page

API PUBL*333 95 🖿 0732290 0554400 357 🖿

B-27

Respondent Frequencies for Recycle Techniques for Each Residual Stream (Continued)

Residual Stream	Other Out of Process	Cement Kiln-Industrial Fuel	Other Industrial Fuel	Reclamation	Regeneration	Other
AP1 Separator Sludge (KO51)		25	2	ы	-	-
Dissolved Air Flotation Float (K048)	-	12		-	-	0
Slop Oil Emulsion Solids (K049)	0	12	-	2	-	-
	0	2	0	-	0	0
Pond Sediments	0	×	0	0	0	0
Nonleaded Tank Bottoms	-	4	-	-	0	0
Residual Oils/Spent Solvents	m	ŝ	2	26	9	2
Other Oily Sludges & Organic Wastes	-	2	м	7	0	- 1
Primary Studge (F037)	0	15	-		0 (0 0
Primary Sludge (F038)	0	m	0	7	0	0
Heat Exchanger Bundle Cleaning Sludge	0	m	 1	(0 0	01
Contaminated Soils/Solids	4	0	0	- 5	o ;	×1 •
Residual Coke/Carbon/Charcoal	m		4	- (14	•
Residual Sulfur	4	0	0	2 ·	0 (- •
Other Contaminated Soils NOS	4	-	F	e- 1	01	- •
Fluid Cracking Catalyst or Equivalent	6	5	0	~ 1	ΥΩ ;	- (
Hydroprocessing Catalysts	0	~	0	37	= '	э,
Other Spent Catalysts NOS	- 7		0	28		- •
B i omass	2	~	0		0	
Oil Contaminated Waters NOI Wastewater	0	0	0	- (- 0
High pH/Low pH Waters	-	0	0	~	-	
Spent Sulfite Solution	-	0	0 1		- 0	- (
Spent Stretford Solution	0	0	0	- 4	.	-
TSD Leachate (F039)	0	0	0		э ·)
Spent Caustics	21	0	0	22	4	n ·
Spent Acids	0	0	0	0	0	0
Residual Amines	0	•	0	~	.	- (
Other Inorganic Residuals NOS	m	2	0	2		0
Other Residuals NOS	7	9	2	18	-	m
);			
	67	102	22	162	46	25

API ANNUAL REFINING SURVEY 1993

Percent Recycled On-Site and Off-Site

Waste Stream	Recycled Tons	Percent Recycled On-Site	Percent Recycled Off-Site
API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052) Pond Sediments Nonleaded Tank Bottoms (K052) Pond Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludges & Organic Wastes Frimary Sludge (F033) Heat Exchanger Bundle Cleaning Sludge Contaminated Soils/Solids Residual Coke/Carbon/Charcoal Residual Sulfur Contaminated Soils NOS Fluid Cracking Catalyst or Equivalent Hydroprocessing Catalyst or Sent Contaminated Waters NOT Wastewater Hydroprocessing Catalysts Oil Contaminated Waters NOT Wastewater High pH/Low pH Waters Spent Sulfite Solution TSD Leachate (F039) Spent Acids Residual Amines Other Inorganic Residuals NOS Spent Anines Other Inorganic Residuals NOS	55, 169 36, 269 36, 269 1, 768 36, 758 30, 119 11, 563 30, 119 33, 599 33, 599 33, 599 33, 599 33, 598 20, 316 20, 732 20, 316 20, 318 20, 318	88338865558880000808008 5055 5555	жжж _{а а м} м 866 о 8 666 666 667 666 с 7 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	1,773,280		! •

SURVEY	
RESIDUALS	1993
REFINERY	
AP1	

Estimated Residual Quantities Treated and Percent Of Total Amount Managed By Stream

Residual Stream	Quantity Treated (Tons)	Percent Treated
API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052) Pond Sediments	105,838 369,221 18,782 1,283 1,296	63.26 70.99 33.81 41.03 0.90
Nonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludges & Organic Wastes Primary Sludge (F038) Primary Sludge (F038)	13,472 170 5,590 55,978 39,153 1,475	10.37 0.35 24.78 62.84 63.84
	24,543 2,584 65 746	3.89 4.54 0.15 1.93
	190 198 132,239 21,326 7,924	0.37 0.68 18.30 88.28 88.26
Spent Surfree Solution Spent Stretford Solution TSD Leachate (F039) Spent Acids Residual Amines Other Inorganic Residuals NOS	21,233 21,829 21,829 660,646 5,144 113,176 40,445 40,445	81.11 55.15 46.07 87.26 97.88 16.39 0.67
	1,665,417	

Estimated Residual Quantity Handled By Treatment Techniques For Each Residual Stream (wet tons)

Res idual						Waste		Stabilization and/or	
Stream	Weathering Chemica	Chemical	Heat	Heat Impoundment Physical	Physical	Treatment	Treatment Incineration	Fixation	Other
API Separator Sludge (K051)	0	0	662	0	19.138	74,073	11,965	0	0
Dissolved Air Flotation Float (K048)	0	0	6,145	0	329	338,268	24,479	0	0
Slop Oil Emulsion Solids (K049)	0	0	4,671	0	176	11,808	2,127	0	0
Leaded Tank Bottoms (K052)	0	•	0	0	0	1,025	258	0	0
Pond Sediments	0	•	0	0	0	1,246	50	0	0
Nonleaded Tank Bottoms	0	0	0	0	0	12,099	426	276	0
Residual Oils/Spent Solvents	22	0	0	0	ŝ	34	26	82	-
Other Oily Sludges & Organic Wastes	0	0	0	0	0	5,400	190	0	0
Primary Sludge (F037)	0	53	31	0	1,941	44,725	3,228	0	0
Primary Sludge (F038)	0	0	0	0	0	38,607	546	0	0
Heat Exchanger Bundle Cleaning Sludge	0	0	2	0	•	323	1,051	0	m
Contaminated Soils/Solids	25	141	17,593	0	0	0	3,168	274	3,342
Residual Coke/Carbon/Charcoal	0	43	0	0	0	2,516	15	10	0
Residual Sulfur	0	65	0	0	0	0	0	0	0
Other Contaminated Soils NOS	۶	40	0	0	0	0	658	43	2
Fluid Cracking Catalyst or Equivalent	0	•	0	0	•	17	0	0	0
Hydroprocessing Catalysts	0	0	0	0	o	•	188	0	2
Other Spent Catalysts NOS	0	165	0	0	0	0	33	0	•
B i omass	5,694	0	0	0	12,022	33,887	80,636	0	0
Oil Contaminated Waters NOT Wastewater	0	0	0	0	0	21,326	0	0	0
High pH/Low pH Waters	0	967	0	0	0	6,760	0	197	0
Spent Sulfite Solution	0	0	0	0	0	0	0	0	•
Spent Stretford Solution	0	0	0	0	0	21,233	0	0	•
TSD Leachate (f039)	0	0	0	0	0	21,829	0	•	0
Spent Caustics	0	27	0	0	0	660,292	20	0	307
Spent Acids	0	0	0	0	0	5,142	0	•	2
Residual Amines	0	•	0	0	0	112,973	203	0	0
Other Inorganic Residuals NOS	0	876	0	798	0	38,701	20	0	0
Other Residuals NOS	0	2	0	0	•	16	911	21	0
	5,744	2,379	29, 104	798	39,611	1452300	130,248	1,574	3,659

Respondent Frequencies For Treatment Techniques For Each Residual Stream

Residual Stream	Weathering Chemical		eat	Heat Impoundment Physical	Physical	Wastewater Treatment	S lastewater Treatment Incineration	Stabilization and/or Fixation	ר Other
API Separator Sludge (KO51)	0	0	2	0	M	24	27	0	Q,
Dissolved Air Flotation Float (K048)	0	0	•••	0	2	15	13	0	0
Slop Oil Emulsion Solids (K049)	0	0	2	0	-	12	15	0	0
Leaded Tank Bottoms (K052)	0	0	0	0	0	-	7	0	0
Pond Sediments	0	0	0	0	0	m	-	0	0
Nonleaded Tank Bottoms	0	0	0	0	0	14	10	•	0
Residual Oils/Spent Solvents		0	0	0	-	2	Ś		
Other Oily Sludges & Organic Wastes	0	0	0	0	0	2	13	0	0
Primary Studge (F037)	0	-	-	0	2	ũ	27	0	0
Primary Sludge (f038)	0	0	0	0	0	6	-	0	0
Heat Exchanger Bundle Cleaning Sludge	0	0	-	0	0	6	33	0	1
Contaminated Soils/Solids	•	-	4	0	0	0	~	-	M I
Residual Coke/Carbon/Charcoal	•	-	0	0	0	-	M	 1	0
Residual Sulfur	0	-	0	0	0	0	0	0	0
õ	-	-	0	0	0	0	<u>с</u> ,	-	4
Fluid Cracking Catalyst or Equivalent	0	0	0	0	0	-	0	0	0
Hydroprocessing Catalysts	0	0	0	0	0	0	 .	0	-
Other Spent Catalysts NOS	0	-	0	0	0	0	2	0	0
Biomass		0	0	0		4	4	0	0
Oil Contaminated Waters NOT Wastewater	•	0	0	0	0	t	0	0	0
High pH/Low pH Waters	0	Ś	0	0	0	5	0	- 1	0
Spent Sulfite Solution	0	•	0	0	0	0	0	0	0
Spent Stretford Solution	0	0	0	•	0	M ·	0	0	0
TSD Leachate (F039)	0	•	0	0	0	•	0	Ö	0
Spent Caustics	0	-	0	0	0	28	-	0	-
Spent Acids	0	0	0	•	0	\$	0	0	
Residual Amines	0	0	0	0	0	13	2	0	0
Other Inorganic Residuals NOS	0	2	0	-	0	Ŷ	4	0	0
Other Residuals NOS	0			0	0	-	30		
		15 15	11		10	176	215	7	

The SAS System

API ANNUAL REFINING SURVEY 1993

Percent Treated On-Site and Off-Site

Waste Stream	Treated Tons	Percent Treated On-Site	Percent Treated Off-Site
pparator Sl poil Emulsio Dil Emulsio Jank Bott Sediments aded Tank B alal Oils/Sp Oily Sludge (y Sludge (y Sludge (y Sludge (y Sludge (y Sludge (Jal Coke/Ca al Coke/Ca al Coke/Ca al Coke/Ca al Coke/Ca al Cotaminat Contaminated Spent Cata Ssent Cata Stretford Caustics Acids Inorganic	105 838 369 220 369 220 369 220 37 171 288 37 153 27 250 27 250 27 250 27 250 27 250 21 220 21 220 21 220 22 233 260 647 21 21 220 22 233 260 647 21 21 220 21 22 233 260 647 21 21 22 233 260 647 27 21 233 260 647 27 21 233 260 647 27 21 233 260 647 27 25 23 27 25 25 28 25	888888226386888888888888888888888888888	2428488844722888666666666666666666666666
Uther Kesiquals MUS	1,665,419	2	70

API PUBL*333 95 🖿 0732290 0554406 875 🖿

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Estimated Residual Quantities Land Treated and Percent Of Total Amount Managed By Stream

Residual Stream	Quantity Land Treated (Tons)	Percent Land Treated
API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Dit Emulsion Solids (K049)	1,320 1,616 0	0.79 0.31 0.00
Leaded Fark bottoms (KUD2) Pond Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents	20,488 14,215 217	14.16 10.94 0.45
Other Dily Sludges & Organic Wastes Primary Sludge (F037) Primary Sludge (F038)	35,837 116,192 0	14.81 51.44 0.00
Heat Exchanger Bundle Cleaning Sludge Contaminated Soils/Solids Residual Coke/Carbon/Charcoal Residual Sulfur	0 141,872 107 230	0.00 22.48 0.19 0.52
Other Contaminated Soils NOS Fluid Cracking Catalyst or Equivalent Hydroprocessing Catalysts Other Spent Catalysts NOS	2,141 3,816 0 142,826	5.54 1.93 0.00 1.55
oil Contaminated Waters NOT Wastewater High ph/Low ph Waters Spent Sulfite Solution Spent Stretford Solution	35 35 0	0.83 0.00 0.00
TSD Leachate (F039) Spent Caustics Spent Acids Residual Amines		0.00 0.00 0.00
Other Inorganic Residuals NOS Other Residuals NOS	14,941 0 496,525	6.05 0.00

Respondent Frequencies for Land Ireatment For Each Residual Stream

Land Ireatment	16 1	- 4 1 1	r 4 1 16	ω - ō	404		127
Residual Stream	0 API Separator Sludge (KO51) Dissolved Air Flotation Float (K048)	Pond Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents	Other Dily Sludges & Organic Wastes Primary Sludge (F037) Contaminated Soils/Solids	Residual Coke/Carbon/Charcoal Residual Sulfur Other Contaminated Soils NOS	Fluid Cracking Catalyst or Equivalent Other Spent Catalysts NOS Biomass	Oil Contaminated Waters NOT Wastewater High pH/Low pH Waters Other Inorganic Residuals NOS	

API PUBL*333 95 🗰 0732290 0554408 648 🎟

The SAS System

API ANNUAL REFINING SURVEY 1993

Percent Land Treated On-Site and Off-Site

API Separator Sludge (K051) 1,320 100 0 Dissolved Air Flotation Float (K048) 1,616 100 0 Eleded Tank Bottoms (K052) 0 0 0 Pond Sediments (K052) 20,488 100 0 Pond Sediments (K052) 20,488 100 0 Pond Sediments (K052) 20,488 100 0 Pond Sediments Solvents 3,17 100 0 Residual Dils/Spent Solvents 35,837 100 0 Primary Sludge (F037) 0 0 0 Residual Sulder (F037) 0 0 0 Primary Sludge (F037) 0 0 0 Residual Sulder Carbon/Charcoal 116,192 97 3 Primary Sludge (F037) 0 0 0 Residual Sulder Carbon/Charcoal 230 100 0 Residual Sulfur 230 100 0 0 Other Contaminated Soils NOS 2,141 97 3 Fluid Cracking Catalysts 0 100 0 0 Other Spent Catalysts NOT Wastewater 220 100 0 Biomass Istretford Solution 0 0 0 Spent Sulfite Solution 0 0 0 Spent Sulfite Solution 0 0 0 Cher Inorganic Residuals NOS 14,941 98 0 Other Inorganic Residuals NOS 14,941 98 0 Other Inorganic Residuals NOS 14,941 98 0 Other Inorganic Residuals NOS 14,94,525 0 Other Inorganic Residuals NOS 14,94,525	Waste Stream	Land Treated Tons	Percent Land Treated On-Site	Percent Land Treated Off-Site
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Separator Sludge (K051) solved Air Flotation Float (K048) n Dil Emulsion Solids (K040)	1,320 1,616 0	100 100 0	000
$\begin{array}{c} 212 \\ 14,215 \\ 35,217 \\ 116,192 \\ 35,817 \\ 100 \\ 141,872 \\ 2,141 \\ 3,816 \\ 3,816 \\ 2,141 \\ 2,141 \\ 97 \\ 2,141 \\ 97 \\ 3,816 \\ 0 \\ 3,816 \\ 0 \\ 100 \\ 3,816 \\ 0 \\ 1,220 \\ 3,816 \\ 0 \\ 0 \\ 1,220 \\ 100 \\ 35 \\ 100 \\ 0 \\ 0 \\ 0 \\ 14,941 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	ded Tank Bottoms (K052)	000	00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ld Sediments Neaded Tank Bottoms	20,488	100 82	0 81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sidual Oils/Spent Solvents Der Oilv Sludges & Organic Uastes	217	100	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	imary Sludge (F037)	116, 192	67 0	m c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	at Exchanger Bundle Cleaning Sludge	0	00	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ntaminated Soils/Solids	141,872	54	6
2,141 97 3,816 0 452 100 142,826 86 35 100 35 100 0 0 0 0 14,941 98 14,941 98 14,941 98	sidual Coke/Carbon/Charcoal sidual Sulfur	107 230	8 <mark>6</mark>	- 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	er Contaminated Soils NOS	2,141	79	м
142,825 142,826 35 100 35 100 100 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 14,941 100 100 100 100 100 100 100 1	uid Cracking Catalyst or Equivalent Aroncoressing Catalysts	3,816 0	00	100
142,826 86 220 100 35 100 0 0 0 0 14,941 98 496,525	her Spent Catalysts NOS	452	100	0
250 35 00 0 0 0 0 0 0 14,941 98 14,941 98 146,525	restanting to the second s	142,826	88 28	20
on 0 0 0 0 0 0 0 0 0 0 0 0 0 0 als NOS 14,941 98 ========= 496,525	h pH/Low pK Waters NUI Wastewater	99 55	<u>8</u> 6	00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 14,941 98 ====================================	ent Sulfite Solution	0	0	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ent Stretford Solution	0	0	0
0 0 0 0 0 0 0 0 NOS 14,941 98 NOS ====================================) Leachate (F039)	0	0	0
Residuals NOS 14,941 98 NOS ====================================	ent Caustics	00	00	00
Residuals NOS 14,941 98 NOS ====================================	sidual Amines	0	0	00
NOS 0 0 0 496,525	Residuals	14,941	98	5
496,525		0	0	0
		496.525		

Estimated Residual Quantities Disposed and Percent Of Total Amount Managed By Stream

Quantity Disposed Percent (Tons) Disposed		0 0 2,856 10.91 17,753 44.85 34,384 2.40 698 11.84 1,082 0.94 133,335 93.48 1,515,522
Waste Stream	API Separator Sludge (K051) Dissolved Air Flotation Float (K048) Slop Oil Emulsion Solids (K049) Leaded Tank Bottoms (K052) Pond Sediments Nonleaded Tank Bottoms Residual Oils/Spent Solvents Other Oily Sludges & Organic Wastes Primary Sludge (F038) Primary Sludge (F038) Heat Exchanger Bundle Cleaning Sludge Contaminated Solis/Solids Residual Coke/Carbon/Charcoal Residual Coke/Carbon/Charcoal Residual Sulfur Contaminated Soils NOS Fluid Cracking Catalysts or Equivalent Hydroprocessing Catalysts NOS Biomass Oil Contaminated Waters Nigh PH/Low PH Waters	spent Sulfite Solution Spent Stretford Solution TSD Leachate (F039) Spent Caustics Spent Acids Residual Amines Other Inorganic Residuals NOS Other Residuals NOS

.

SURVEY	
RESIDUALS	1993
REFINERY	
API	

Estimated Residual Quantity Handled by Disposal Techniques for Each Residual Stream (wet tons)

Residual Stream	Disposal Impoundment	Landfill	Landspread	Injection	Other
API Separator Sludge (KO51)	0	4,741	0	0	229
Dissolved Air Flotation Float (K048)	0	1,656	0	0	0
Stop Oil Emulsion Solids (K049)	0	480	0	0	23
Leaded Tank Bottoms (K052)	•	02	0	0	ŝ
Pond Sediments	0	111,314	0	0	0
Nonleaded Tank Bottoms	68	60,512	4,882	0	=
Residual Oils/Spent Solvents	32	142	0	0	5
Other Dily Sludges & Organic Wastes	0	180,221	0	0	2
Primary Sludge (F037)	1,602	21,343	92	0	390
Primary Sludge (F038)	0	5,014	0	0	22
Heat Exchanger Bundle Cleaning Sludge	0	1,705	0	0	2
Contaminated Soils/Solids	•	343,083	56,901	0	2
Residual Coke/Carbon/Charcoal	0	8,894	209	•	0
Residual Sulfur	0	10,015	¢	•	
Other Contaminated Soils NOS	0	24,433	608	•	0
Fluid Cracking Catalyst or Equivalent	18,017	81,098	410	0	33
Hydroprocessing Catalysts	105	23,786	0	0	33
Other Spent Catalysts NOS	0	12,198	•	0	0
Biomass	0	67,790	101,081	0	0
Oil Contaminated Waters NOT Wastewater	23	0	4,972	0	0
High pH/Low pH Waters	0	95	Ō	840	•
Spent Sulfite Solution	0	•	•	0	0
Spent Stretford Solution	0	2,856	o	0	0
TSD Leachate (F039)	17,753	0	•	0	0
Spent Caustics	0	0	0	33,908	476
Spent Acids	0	0	0	698	0
Residual Amines	4	132	0	938	æ
Other Inorganic Residuals NOS	276'7	170,046	1,240	0	0
Other Residuals NOS	0	133,275	60	0	0
	42,553	1,264,899	170,439	36,384	1,247

SURVEY	
RESIDUALS	1993
REFINERY	
API	

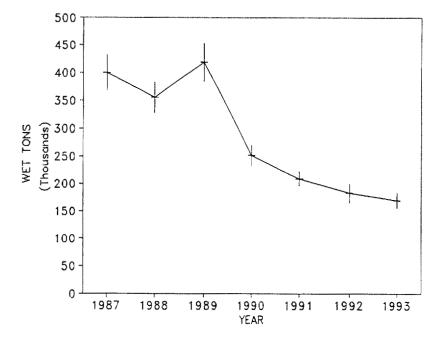
Respondent Frequencies for Disposal Techniques for Each Residual Stream

Residual Stream	Disposal Impoundment	Landfill	Landspread	Injection	Other
API Separator Sludge (K051)	0	15	0	0	4
Dissolved Air Flotation Float (K048)	0	4	0	0	. 0
Slop Oil Emulsion Solids (K049)	0	4	0	0	
Leaded Tank Bottoms (K052)	0	ž	0	0	-
Pond Sediments	0	8	0	0	. 0
Nonleaded Tank Bottoms	-	52		0	•
Residual Oils/Spent Solvents	-	2	0	0	• •
Other Oily Sludges & Organic Wastes	0	32	0	0	-
Primary Sludge (F037)	•	38	-	0	· M
Primary Sludge (F038)	0	6	0	0	-
Heat Exchanger Bundle Cleaning Sludge	0	80	0	0	· N
Contaminated Soils/Solids	0	20	4	0	
Residual Coke/Carbon/Charcoal	0	33	2	0	0
Residual Sulfur	0	30	0	0	
Other Contaminated Soils NOS	0	77	2	0	• 0
Fluid Cracking Catalyst or Equivalent	2	07	-	0	
Hydroprocessing Catalysts	-	18	0	0	-
Other Spent Catalysts NOS	0	75	0	0	0
B i omass	0	23	4	0	0
Oil Contaminated Waters NOT Wastewater		0	•	0	0
High pH/Low pH Waters	0	-	0	-	0
Spent Sulfite Solution	0	0	0	0	0
Spent Stretford Solution	0	m	0	0	0
TSD Leachate (F039)	-	0	0	0	0
Spent Caustics	0	0	0	80	-
Spent Acids	0	0	0	-	0
Residual Amines	-	4	0	2	2
Other Inorganic Residuals NOS	~	40	2	0	0
Other Residuals NOS	0	22	-	0	0

	11	592	19	12	22

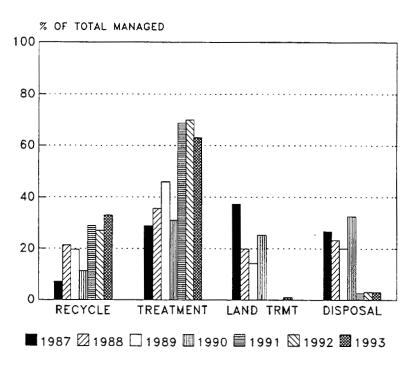
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

The SAS System

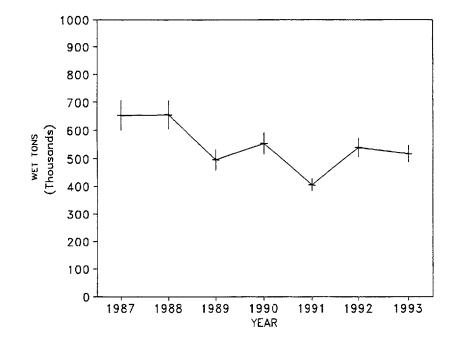

API ANNUAL REFINING SURVEY 1993

Percent Disposed On-Site and Off-Site

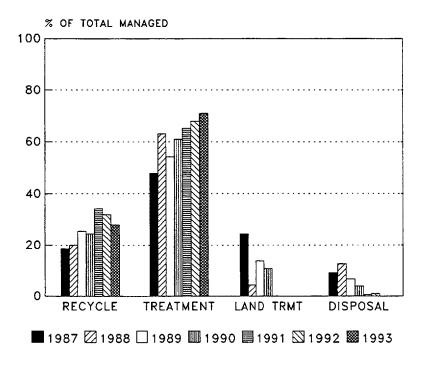
Waste Stream	D i sposed Tons	Percent Disposed On-Site	Percent Disposed Off-Site
	020	¢	001
AFI Separator Studge (AUSI)	4, 210	•	3
Dissolved Air Flotation Float (KU48)	٥ ٢ ٥, ٢	0	00t
Slop Oil Emulsion Solids (K049)	503	0	100
Leaded Tank Bottoms (K052)	75	0	100
Pond Sediments	111,314	0	100
Nonleaded Tank Bottoms	65,473	6	91
Residual Dils/Spent Solvents	178	18	82
Other Oily Sludges & Organic Wastes	180,223	98	2
Primary Sludge (F037)	23,412	80	92
Primary Sludge (F038)	5,036	86	14
Heat Exchanger Bundle Cleaning Sludge	1,711	0	100
Contaminated Soils/Solids	399,986	19	81
Residual Coke/Carbon/Charcoal	9,103	14	86
Residual Sulfur	10,016	2	98
Other Contaminated Soils NOS	25,041	Ø	92
Fluid Cracking Catalyst or Equivalent	99,558	38	62
Hydroprocessing Catalysts	23,924	21	62
Other Spent Catalysts NOS	12, 198	22	78
B i omass	168,870	6 6	34
Oil Contaminated Waters NOT Wastewater	4,997	100	0
High pH/Low pH Waters	935	0	100
Spent Sulfite Solution	•	0	0
Spent Stretford Solution	2,856	0	100
TSD Leachate (F039)	17,753	100	0
Spent Caustics	34,384	62	38
Spent Acids	698	0	100
Residual Amines	1,083	46	54
Other Inorganic Residuals NOS	176,232	0	91
Other Residuals NOS	133, 335	14	88
	81 91 81 81 81 81 81 81 81 81		
	1,515,520		


API PUBL*333 95 🎟 0732290 0554414 941 🖿

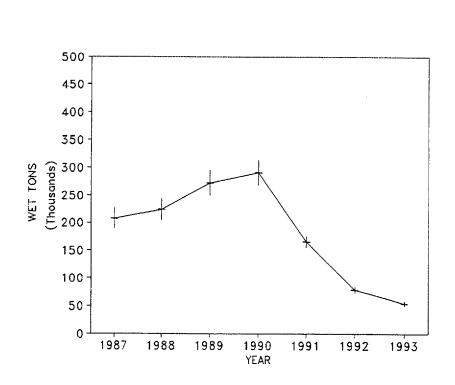
APPENDIX C Trend Data on Generation and Management Practices (by Stream)

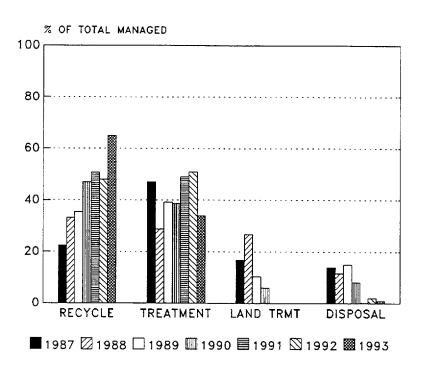

API Separator Sludge

Generation

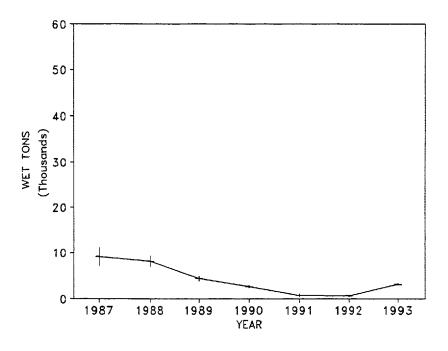


Management


Dissolved Air Flotation Float



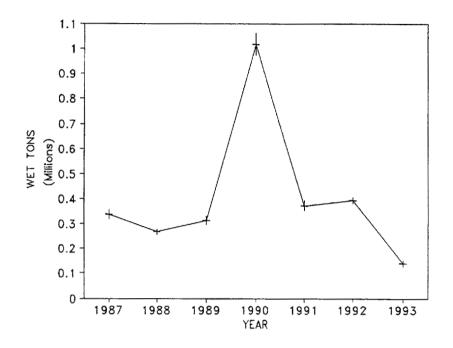
Management

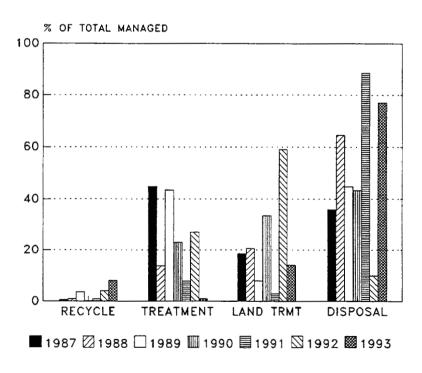


Slop Oil Emulsion Solids

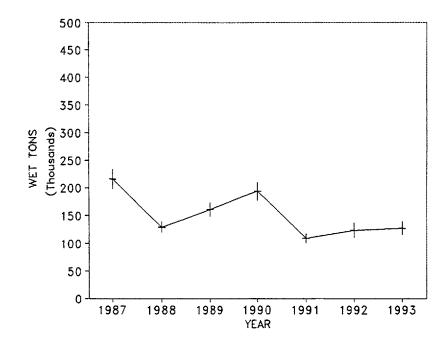
Generation

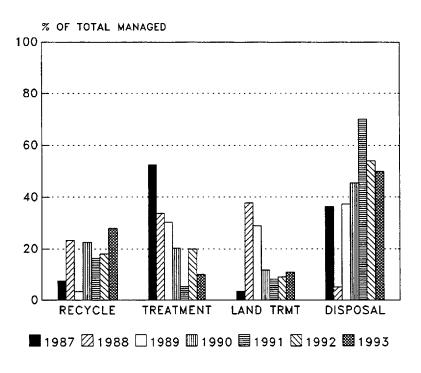
Leaded Tank Bottoms





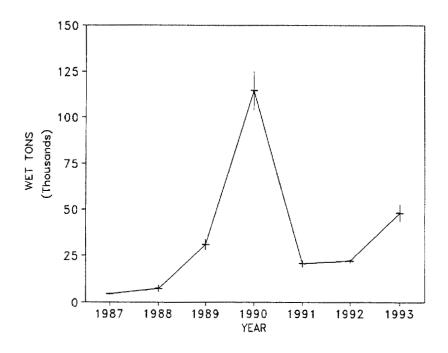
API PUBL*333 95 🔳 0732290 0554419 423 📟

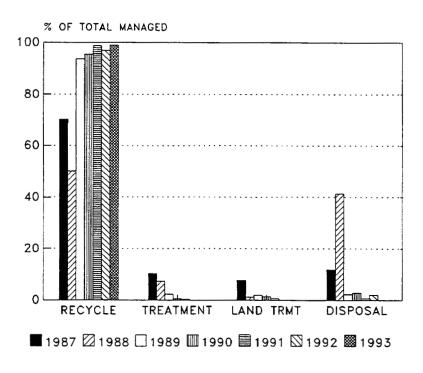

Generation


Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Nonleaded Tank Bottoms

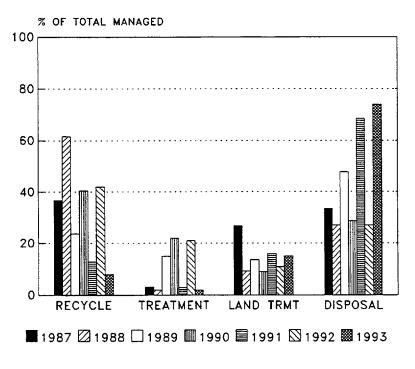

Generation


Management

C-6

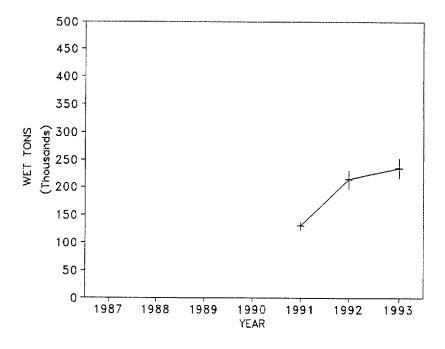
Residual Oils/Spent Solvents

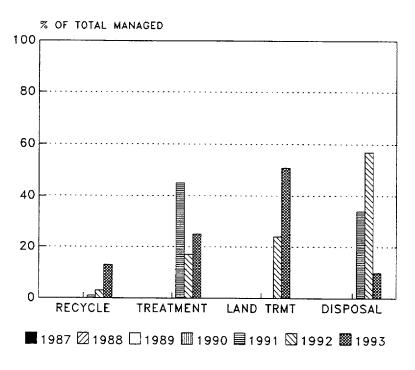
Generation


Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C-7

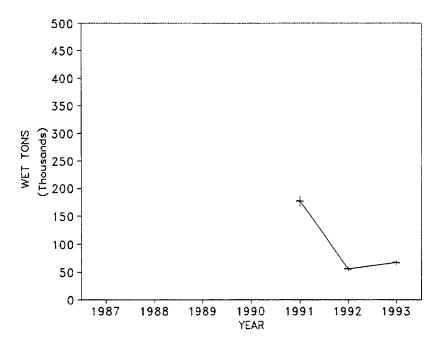
Other Oily Sludges and Organic Residuals

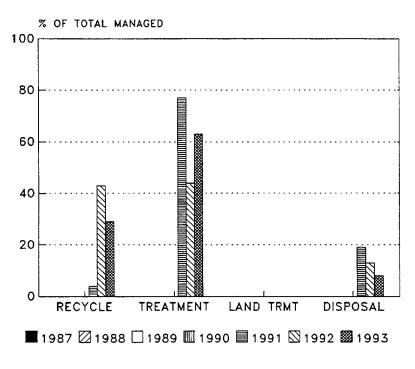

Generation


Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

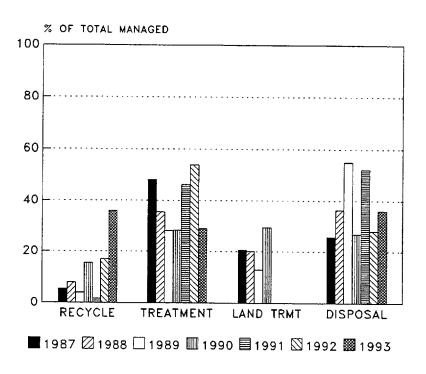
Primary Sludge (F037)




Management

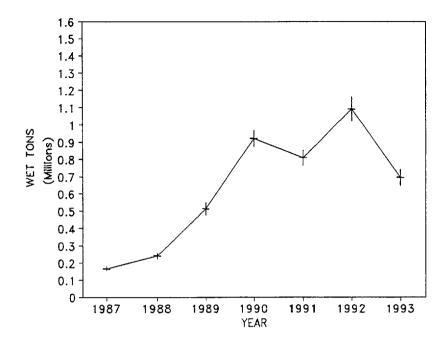
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

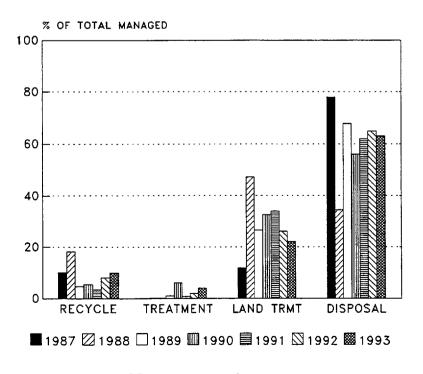
Primary Sludge (F038)



API PUBL*333 95 🚥 0732290 0554425 727 🛲

Heat Exchanger Bundle Cleaning Sludge

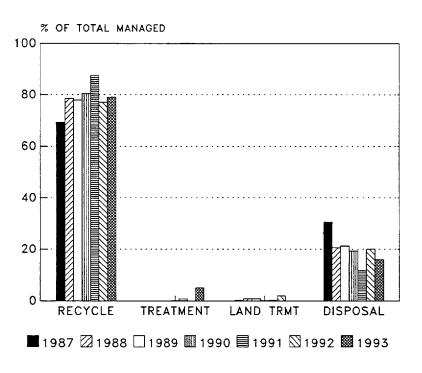

Generation


Management

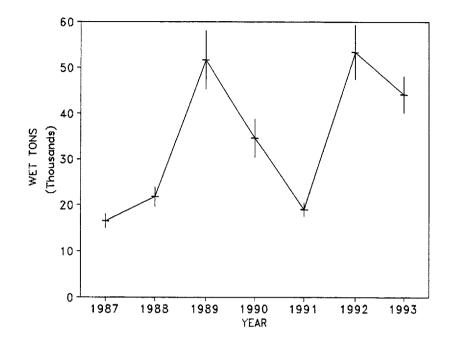
C-11

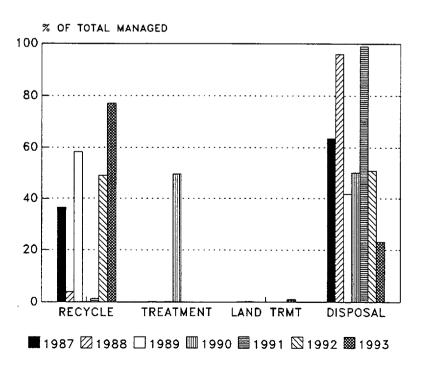
Contaminated Soil/Solids


Generation

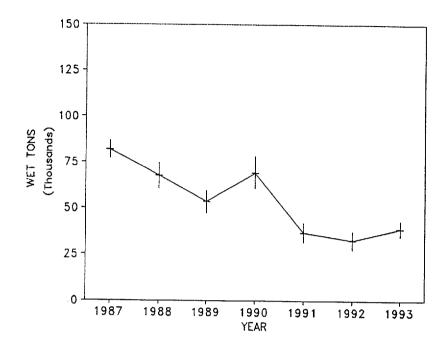

Management

C-12

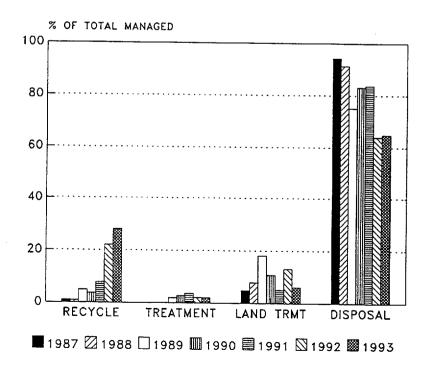

Residual Coke/Carbon/Charcoal


Generation

Residual Sulfur

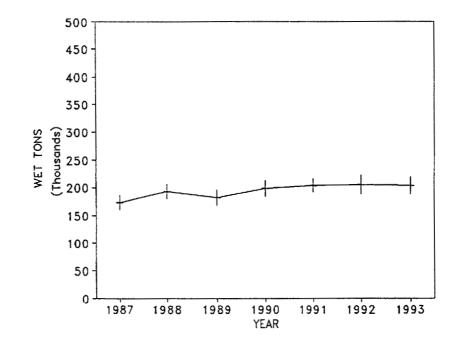


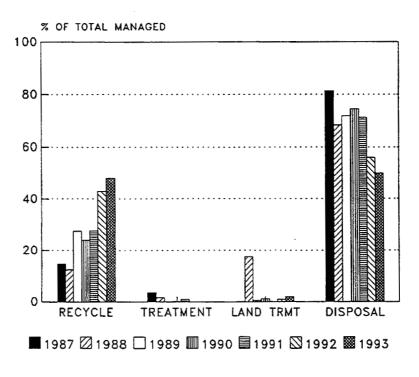
Generation



API PUBL*333 95 🗰 0732290 0554429 372 🛤

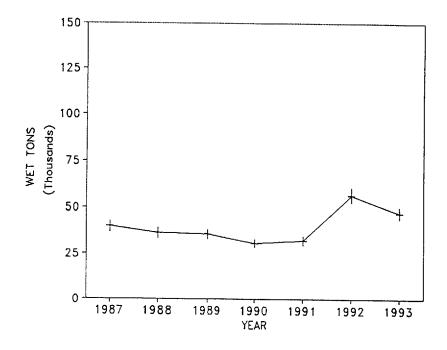
Other Contaminated Soils NOS



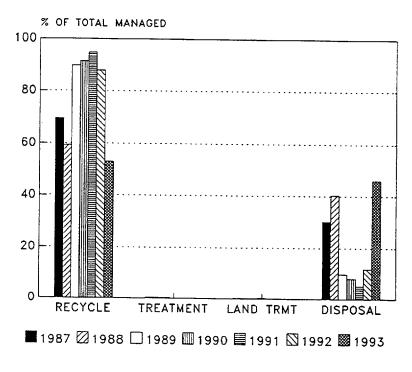


API PUBL*333 95 🔳 0732290 0554430 094 🔳

Fluid Cracking Catalyst or Equivalent

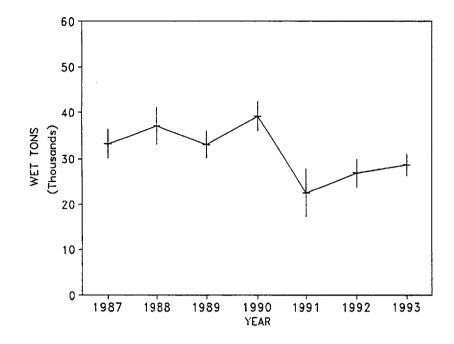


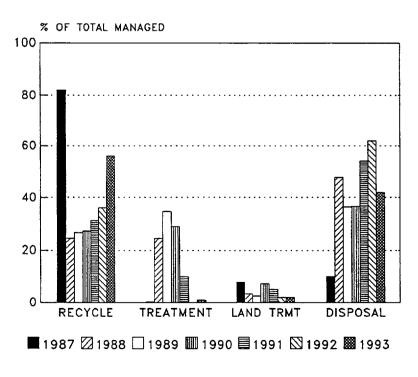
Generation



API PUBL*333 95 🖿 0732290 0554431 T20 💻

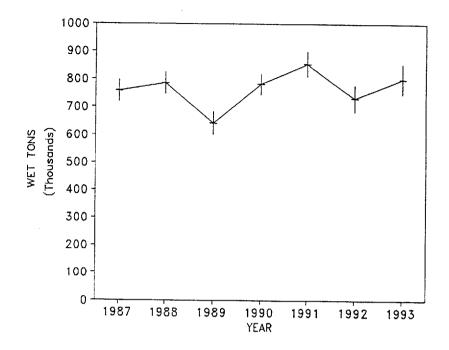
Hydroprocessing Catalysts



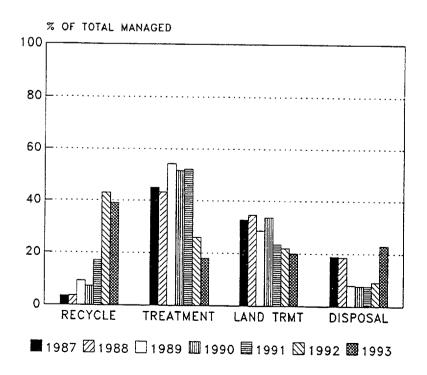


API PUBL*333 95 🖿 0732290 0554432 967 🎟

Other Spent Catalysts NOS

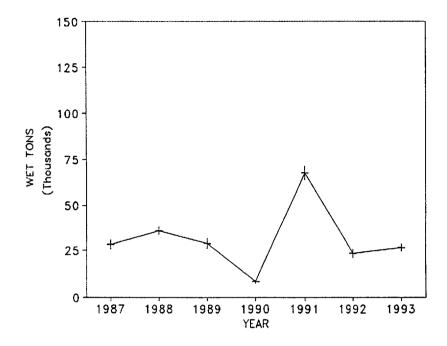

Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


C-18

API PUBL*333 95 🖿 0732290 0554433 8T3 🖿

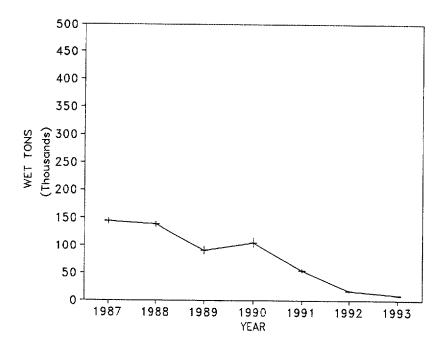
Biomass

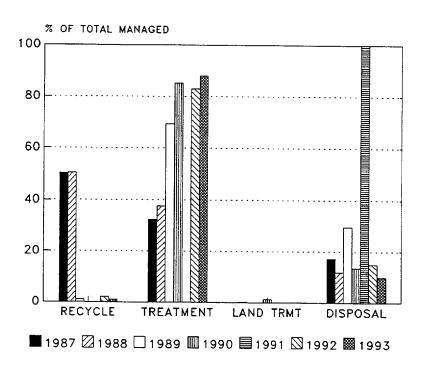

Generation

Management

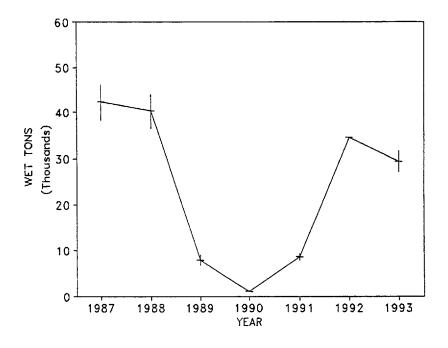
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS API PUBL*333 95 🖿 0732290 0554434 73T 🖿

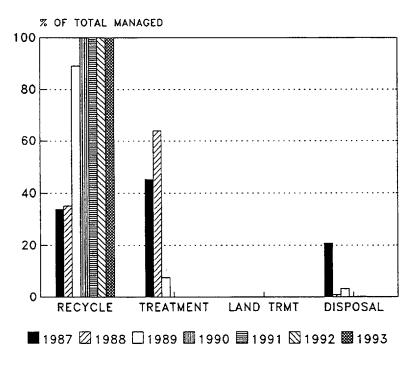
Oil Contaminated Water Not Wastewater


Generation

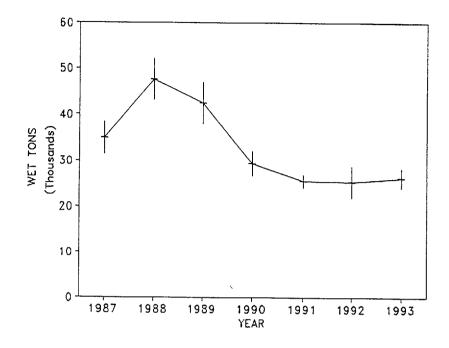

Management

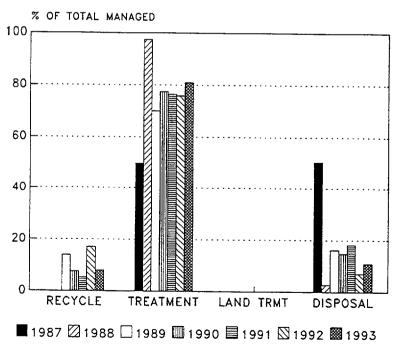
Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C-20 Not for Resale API PUBL*333 95 🗰 0732290 0554435 676 🖿


High pH/Low pH Waters


Generation

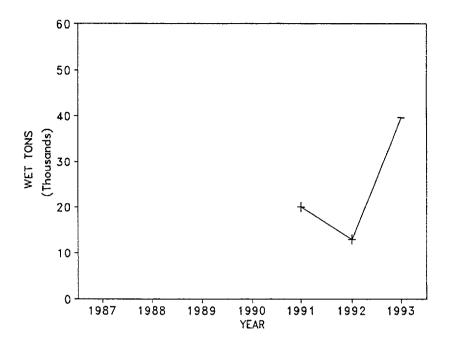
Spent Sulfite Solution


Generation

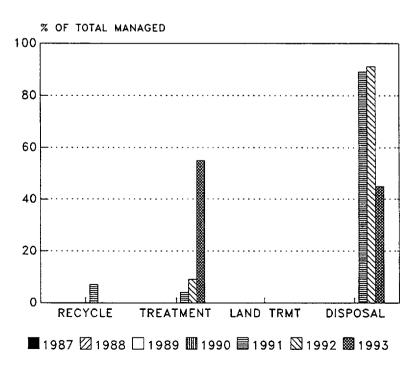

Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C-22

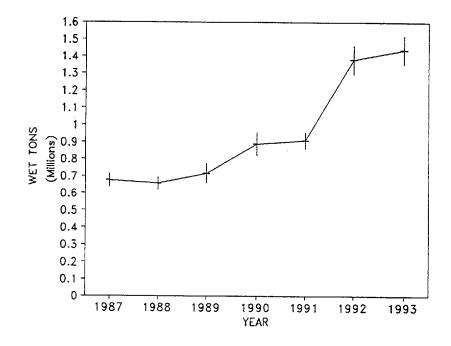
Spent Stretford Solution

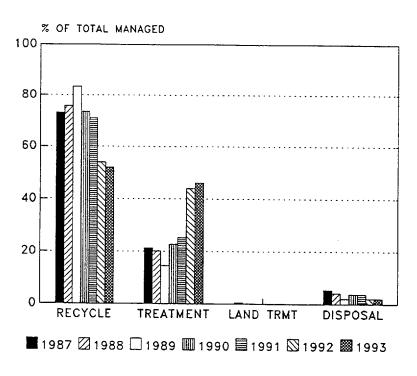


Generation

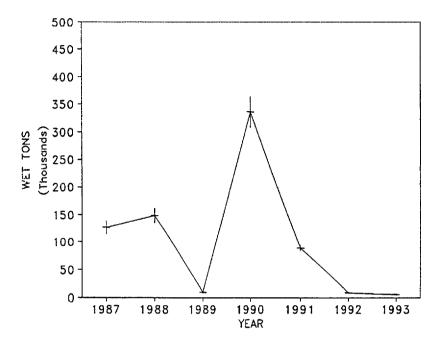


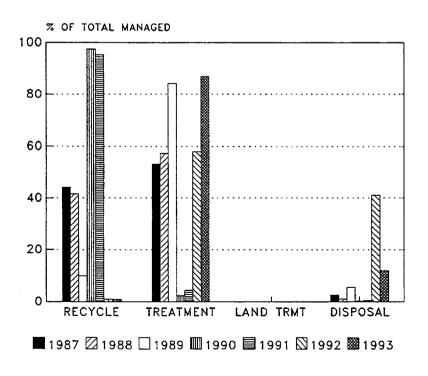
Management

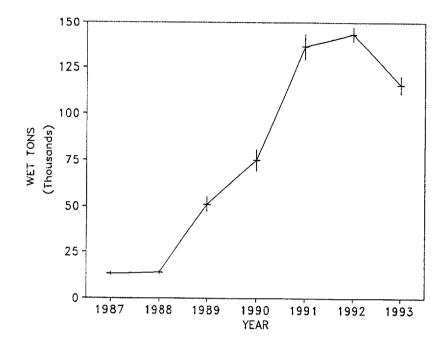




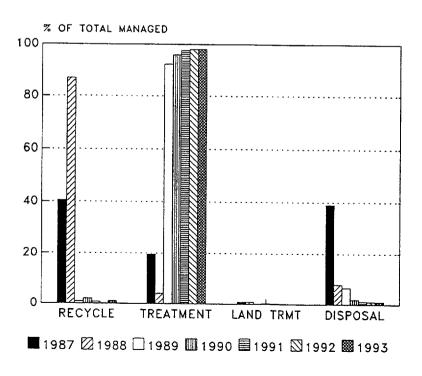
Management


Spent Caustics


Generation

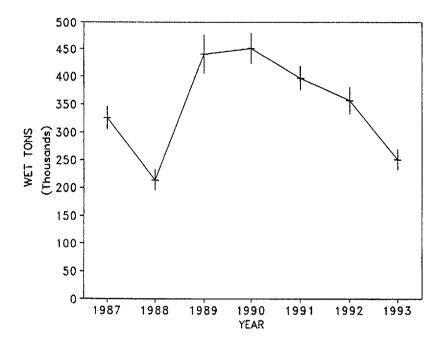


Management

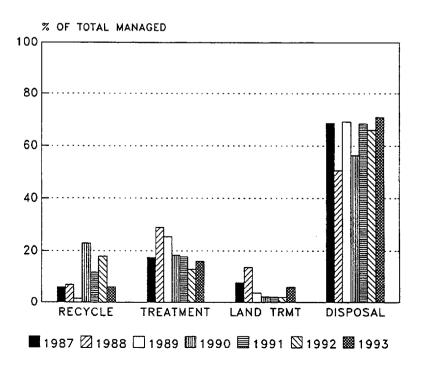

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C-26

API PUBL*333 95 🎟 0732290 0554441 97T 🞟

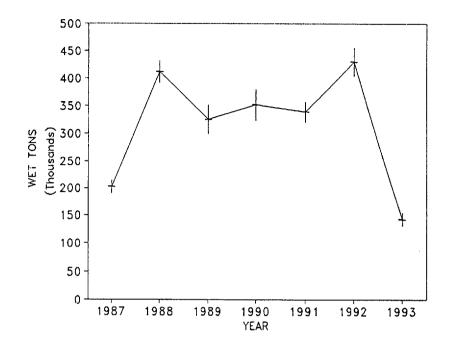
Residual Amines

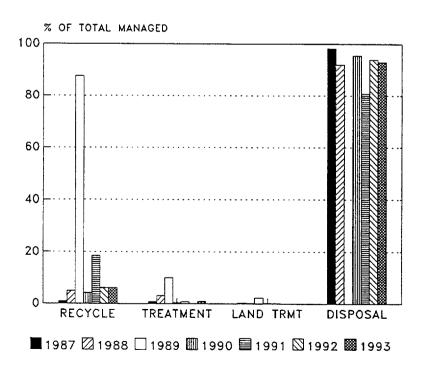


Generation



API PUBL*333 95 🎟 0732290 0554442 806 📟


Other Inorganic Residuals NOS


Generation

Other Residuals NOS

Generation

Management

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C-29

API PUBL*333 95 🎟 0732290 0554444 689 📟

APPENDIX D Summary of Pollution Prevention Initiatives (by Stream)

Sludge	
Separator	
AP	
ACTIVITIES	
IN PREVENTION /	
POLLUTION	

EQUIPMENT/TECHNOLOGY MODIFICATIONS

Equip/tech modification to reduce carbon carry over

PROCEDURE MODIFICATIONS

Used gravity thickening which eliminated lime additives Increase settling time to allow decant

REFORMULATION/REDESIGN OF PRODUCTS

SUBSTITUTION OF RAW MATERIALS

IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Improved cleaning, sweeping, housekeeping to reduce solids

entering wastewater system Paving process area to reduce dust Developed "awareness"/source reduction training program for employees

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS

Coker modified to accept API separator sludge Oil & sludge recycle to FCC Recycle oil to crude unit

RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION

Centrifuge Thermal drying use roll off box w/ filter screen to reduce liquid content Deoiling in pressure filter Change to centrifuge operation eliminating additive in final wash

OTHER RECYCLE

OUT-OF PROCESS RECYCLE REUSE/RECLAMATION

Reuse as kiln fuel after additional drying of wet centrifuge cake or blending of oil into cake from filter press

Not for Resale

D-1

\F Float	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS DAF float & sludge sent to coker DAF float sent to crude unit Recycle of belt filter press through coker quench cycle Gravity thickened sludge to delayed coker Inject DAF float to FCCU riser feed	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Centrifuge to reduce volume		OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Reuse as kiln fuel after additional drying of wet centrifuge cake or blending of oil into cake from filter press Increase BTU value of filter press feed Waste petroleum naphtha regenerated	
POLLUTION PREVENTION ACTIVITIES: DAF Float	AODIFICATIONS moval efficiency	PROCEDURE MODIFICATIONS Stopped use of DAF chemicals Segregate DAF from Biomass RECOVE	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Inventory control Bend Inventory control Nervente Inve	

D-2

POLLUTION PREVENTION ACTIVITIES: Slop Oil Emulsion Solids

IF.

EQUIPMENT/TECHNOLOGY MODIFICATIONS	IN REFINING PROCESS LIMITS
	Recycle to coker Delayed coking of emulsion Slop oil recycled to crude units
PROCEDURE MODIFICATIONS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Use shaker &/or centrifuge and filter press
REFORMULATION/REDESIGN OF PRODUCTS	OTHER RECYCLE
SUBSTITUTION OF RAW MATERIALS	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Reuse as kiln fuel after blending oil into cake from filter press
IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Improved inventory controls	OTHER
IN-PROCESS RECYCLE	

Leaded Tank Bottoms	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Used as cement kiln feed		OTHER	•
POLLUTION PREVENTION ACTIVITIES: Leaded Tank Bottoms	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS		

Not for Resale

D-4

POLLUTION PREVENTION ACTIVITIES: Pond Sediments

EQUIPMENT/TECHNOLOGY MODIFICATIONS PROCEDURE MODIFICATIONS	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Coker injection Recovery in crude unit
	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION
REFORMULATION/REDESIGN OF PRODUCTS	OTHER RECYCLE
SUBSTITUTION OF RAW MATERIALS	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION
IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	Use as cement kiln fuel
	ОТНЕЯ

D-5

ES: Non-leaded Tank Bottoms	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Reprocessed in coking unit Recycle separated tank bottoms oil to crude unit Liquify (heat & recirculate) tank bottoms & charge to RCC		RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Filter press heavy tank bottoms Improved oil recovery methods during tank cleaning	OTHER RECYCLE		OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Industrial fuel reuse Cement kiln Roadmix asphalt feed	OTHER
POLLUTION PREVENTION ACTIVITIES: Non-leaded Tank Bottoms	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS		SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS D-6

POLLUTION PREVENTION ACTIVITIES: Residual Oils/Spent Solvents

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Recycle lab & crude unit samples to recovered oil system Recycle to crude unit Shipped oil material off-site to be re-refined	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Solvents as fuel for cement kiln Waste oil/spent solvent to reclaimer Reused in fuel blending Waste petroleum naphtha used as fuel feedstock	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS Improve tank cleanings to recover more oil Use of water washer rather than solvents	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS Use of inorganic solvents other than TCE Removed chlorinated solvents in I&E shop Removed that can be recycled in refining slop oil system	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

D-7

L	POLLUTION PREVENTION ACTIVITIES: Ot	NTION ACTIVITIES: Other Oily sludges/Organic Residuals
	EQUIPMENT/TECHNOLOGY MODIFICATIONS Construction of butadiene saturation unit	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Reprocessed in coker Sent to RCC after neutralization ASO recycled Silky polymer used as feed to RCC after neutralization
	PROCEDURE MODIFICATIONS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION
	REFORMULATION/REDESIGN OF PRODUCTS	OTHER RECYCLE
	SUBSTITUTION OF RAW MATERIALS	OUT-OF PROCESS RECYCLE RELISE/RECI AMATION
<u></u>	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	Cement kiln fuel
		OTHER In-line neutralization to eliminate corrosive characteristic burned in process heater

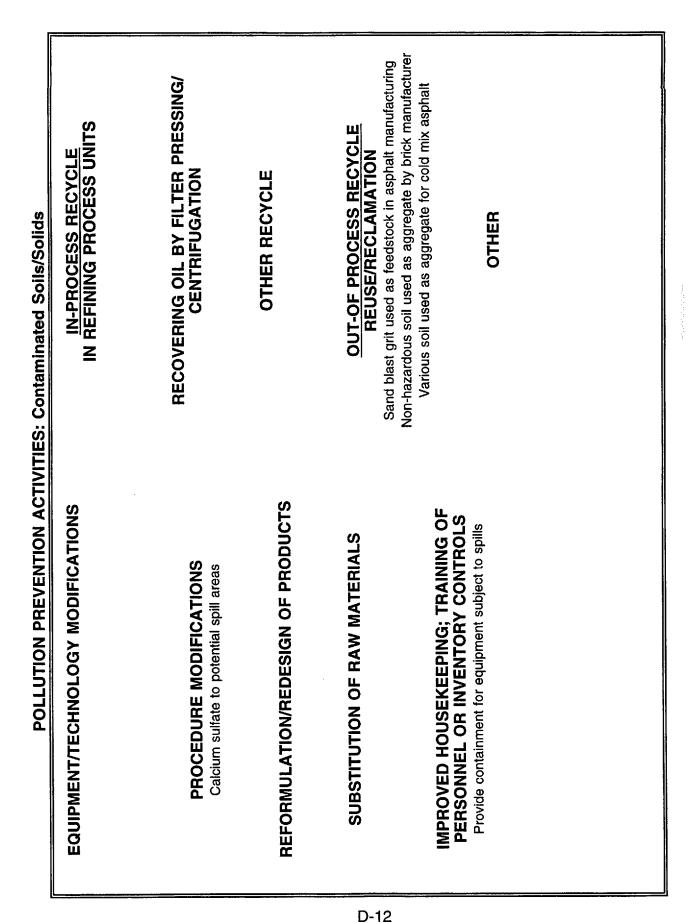
Not for Resale

D-8

POLLUTION PREVENTION ACTIVITIES: F037 Primary Sludge

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Initiated delayed coking Recycle to crude units	recovering oil by filter pressing/ centrifugation	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION	Cement kiln feed Recycled as industrial fuel	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS Discontinued use of sandbags for drain covers Segregate non-hazardous biosolids from primary solids	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Paving, curbing, replacing unlined conveyances w/ hard piping Lined ditches, erosion control Closed impoundment	Increase sweeping activities Implemented source control activities Eliminated coke fines from entering system

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS


ry Sludge	
3 Prima	
S: F038	
ACTIVITIE	
POLLUTION PREVENTION ACTIVITIES: F038 Primary Sludge	
POLLUTION	

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS To coker Recycle to crude unit	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Recover more oil & water by centrifugation (v. plate & filter press)	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Cernent kiln feed	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS Modification of equipment for Benzene NESHAP	PROCEDURE MODIFICATIONS Do not add solids to enhance filtering	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Improved operation & maintenance of API separators to minimize oily waste load Improved monitoring WTP to minimize polymer use

Cleaning Sludge	
it Exchanger Bundle	
/ENTION ACTIVITIES: Hea	
POLLUTION PREVE	

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Studge Coking	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Improved online exchanger cleaning method prior to bundle removal Thermal dewatering	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Cement kiln feed	Fuels blending	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Placed container barrier around slab	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Dal	
ŏ	
iha	
Š	
<u> </u>	
art	
Š	
Ř	
ŏ	
ual	
idu	
es	
<u>۳</u>	
ES	
Ē	
2	
5	
4	
ō	
REVENTIO	
Ē	
Ш	And in case of the local division of the loc
Ц	A REAL PROPERTY OF A REAL PROPER
NO	
E	
Ľ	
P 0	

EQUIPMENT/TECHNOLOGY MODIFICATIONS

			0732270 03344	
IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	ECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Reuse charcoal in commercial power plant as fuel	OTHER

PROCEDURE MODIFICATIONS

CENTRING OIL BY F COVERING OIL BY F COVERING OIL BY F CENTRIFUG

REFORMULATION/REDESIGN OF PRODUCTS

SUBSTITUTION OF RAW MATERIALS

IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

CTIVITIES: Residual Sulfur	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE Spilled sulfur & tank & pit cleanings melted & returned to sulfur storage	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Sulfur to fertilizer plant	OTHER	
POLLUTION PREVENTION ACTIVITIES: Residual Sulfur	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

Γ

Not for Resale

POLLUTION PREVENTION ACTIVITIES: Other Contaminated Soils NOS

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Contaminated asphalt/soils reheated to remove asphalt; returned to coker	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION	Molecular sleves used as reed in commercial asphait plant To cement kiln as super fuels Treater clay used in road mix asphalting program Spent alky alumina & bauxite toe commercial feedstock	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

Not for Resale

ITION PREVENTION ACTIVITIES: FCCU Catalyst	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Sold to other refineries as catalyst	Heuse in RCC unit	recovering oil by filter pressing/ centrifugation		OTHER RECYCLE		OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Used as feed for kiln Regenerated	OTHER	
POLLUTION PREVENTION AC	EQUIPMENT/TECHNOLOGY MODIFICATIONS VOP operating changes in FCCU	PROCEDURE MODIFICATIONS		REFORMULATION/REDESIGN OF PRODUCTS		SUBSTITUTION OF RAW MATERIALS Reused at another refinery	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS		

POLLUTION PREVENTION ACTIVITIES: Hydroprocessing Catalyst

ſ

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION	Regenerate spent desulfurization catalyst Precious/heavy metals recovery	OTHER	
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS		REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS Reuse at another refinery	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

sts	
talys	
t Ca	
TIVITIES: Other Spent	
ler S	
ES: Oth	
IES	
LIVIT	
AC.	
NO NO	
/EN]	
PREV	
JTION PREVENTION ACTIVI	
Ē	
POLLU ⁻	

EQUIPMENT/TECHNOLOGY MODIFICATIONS

IN REFINING PROCESS UNITS

RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION

PROCEDURE MODIFICATIONS

OTHER RECYCLE

OUT-OF PROCESS RECYCLE REUSE/RECLAMATION

SRU & zeolite to cement plant Metals reclaimed form spent reformer catalyst Fluorinated alumina catalyst recycled as feedstock Regenerated spent ion exchange resin Metals recovery Nickel Octowate catalyst to AMAX for nickel recovery

> IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS

SUBSTITUTION OF RAW MATERIALS

REFORMULATION/REDESIGN OF PRODUCTS

D-18

_

S: Biomass	
CTIVITIES	
POLLUTION PREVENTION AC	
OLLUTION P	

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Recycle ASU sludge oils to crude unit Recover in crude unit/coker	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE Recycled to re-seed refinery's biotreatment & landtreatment units	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION	OTHER	
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

TION ACTIVITIES: Oil Contaminated Water not Wastewater	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Sour water stripped at SRU & returned to process for reuse	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION		OTHER	
POLLUTION PREVENTION ACTIVITIES	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS		

NONE	
Waters	
Hd wol/Hd	•
High	
ACTIVITIES:	
ION PREVENTION ACTIVITII	
POLLUTION	

١

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	Recovering oil by filter pressing/ Centrifugation	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION		OTHER	
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS Cut use of water by 1% per day	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS		

TIES: Other Aqueous Waste NOS	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE	REUSE/RECLAMATION Hazardous liquids used in fuel blending by contract incinerator	OTHER	
POLLUTION PREVENTION ACTIVITIES: Other Aqueous Waste NOS	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS		REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

,

Not for Resale

POLLUTION PREVENTION ACTIVITIES: Spent Caustics

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Reuse at another caustic scrubber Recycle spent sulfidic (on-site) & phenolic (off-site)	recovering oil by filter pressing/ centrifugation	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Used in pulp and paper mill	Heuse for pH control off site Sent to Merchem for recycle ; crysillite & sulfide recovery	OTHER		
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS Use of caustics reduced	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS Used to regulate pH of wastewaters	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS			

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

TION PREVENTION ACTIVITIES: Residual Amines	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Recycle to coker/crude	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Regeneration Initiated use of amine waste in fuel program	OTHER	
POLLUTION PREVENTION ACT	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

.

ł

١Ē

Not for Resale

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS Recycle to coker/crude unit	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION Dewater and oil recovery OTHER RECYCLE	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION Raw material for cement kiln	OTHER
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS Decant water form sulfex sludge Better monitoring of boiler feed & water softening operations; lime feed based on test results	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS SUBSTITUTION OF RAW MATERIALS IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Monitor filter house bauxite regeneration system Monitor filter house bauxite regeneration system Improve the static regeneration system Blowndown liquid from scrubber only when needed & at minimum rate necessary

PREVENTION ACTIVITIES: Other Residuals NOS	IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	Recovering oil by filter pressing/ centrifugation other recycle	OUT-OF PROCESS RECYCLE REUSE/RECLAMATION	Batteries sent back to distributor for reuse Paint wastes to cement kiln Drums & batteries recycled off-site Scrap metal reclamation	Line sludge sent as raw materials to kin Drum reconditioning Paint recovery Waste concrete solid as fill Paper recycling	OTHER
POLLUTION PREVENTION ACTIVI	EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS	REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS Switched to portafeed containers for treatment chemicals	

POLLUTION PREVENTION ACTIVITIES:

IN-PROCESS RECYCLE IN REFINING PROCESS UNITS	RECOVERING OIL BY FILTER PRESSING/ CENTRIFUGATION	OTHER RECYCLE	OUT-OF PROCESS RECYCLE	HEUSE/RECLAMATION	OTHER	
EQUIPMENT/TECHNOLOGY MODIFICATIONS	PROCEDURE MODIFICATIONS		REFORMULATION/REDESIGN OF PRODUCTS	SUBSTITUTION OF RAW MATERIALS	IMPROVED HOUSEKEEPING; TRAINING OF PERSONNEL OR INVENTORY CONTROLS	

API PUBL*333 95 🗰 0732290 0554471 607 📾

API PUBL*333 95 🛲 0732290 0554472 543 🛲

RELATED API PUBLICATIONS...

Publ 300	The Generation and Management of Wastes and
	Secondary Materials in the Petroleum Refining Industry:
	1987–1988, February 1991

Publ 303 Generation and Management of Wastes and Secondary Materials: Petroleum Refining Performance, 1989 Survey, June 1992

Publ 324	Generation and Management of Waste and Secondary
	Materials: Petroleum Refining Performance, 1990 Survey,
	August 1993

Publ 329 Generation and Management of Residual Materials: Petroleum Refining Performance, 1991 Survey, May 1994

To order, call API Publications Department at 202/682-8375

Order No. 849-33300

05953C1P

API PUBL*333 95 📖 0732290 0554473 48T 🖿

-

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS Not for Resale

Strategies for Today's Environmental Partnership

American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005