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FOREWORD

APl PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A
GENERAL NATURE. WITH RESPECT TO PARTICULAR
CIRCUMSTANCES, LOCAL, STATE AND FEDERAL LAWS AND
REGULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS,
MANUFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN
AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED,
CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR
UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR
FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE
CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR
OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY
METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT.
NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE
CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR
INFRINGEMENT OF LETTERS PATENT.
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EXECUTIVE SUMMARY

The ubiquity and toxicity of ambient air O; is well documented. Because
0; is an omnipresent air pollutant that affects both human health and
vegetation, the U.S. Environmental Protection Agency (EPA) has established
both primary and secondary standards. There is no requirement that the
primary and secondary standards be identical, nor is there any requirement
that only a single expression of the standard be used (i.e., an average
concentration for a single time period versus multiple exceedances or
integrated exposures). Any effort to propose a secondary standard, whose form
is different than the current form of the primary and secondary standard,
implies that either (1) the current form is inappropriate for protecting the
public welfare or (2) a more restrictive value of the current form of the
standard is required.

There have been indications reported in the Titerature that the current
form of the standard may not be appropriate for protecting vegetation from O,
exposures. The purpose of this report is to identify and review some of the
key issues related to assessing the effects of O; on vegetation. Our report
has reviewed the available information on (1) components of O; exposure that
elicit adverse effects on vegetation, (2) ways to describe these components in
the form of O; exposure indices that may be useful in the standard-setting
process for protecting vegetation, (3) the change in nonattainment status that
may occur should the existing 0; standard be modified, and (4) the need for
future research efforts to explore the development of a multi-parameter index
to protect vegetation from O; exposure.

Our results, using a select set of National Crop Loss Assessment Network

(NCLAN) experimental data, tend to support the finding, suggested in the

S-1
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literature, that the repeated occurrence of hourly average O; concentrations
of 0.10 ppm and higher result in adverse effects on vegetation. Although the
hourly average concentrations below 0.10 ppm may be important in affecting
crop yield, the NCLAN program was not developed to identify and quantify the
specific exposure regimes that are responsible for the observed effects. In
our analysis, we have presented exposure statistics to provide a variety of
choices that allow investigators the opportunity to develop indices that are
most relevant in predicting vegetation effects.

It has been assumed by some investigators that the 0; exposures that
occurred in the NCLAN chambers during the fumigation period were greater than
those received during the remaining part of each day. For example, it has
been assumed that the number of hourly average concentrations > 0.06 ppm was
much greater during the daylight hours than the late afternoon, evening, and
early morning hours. For 22 sets of NCLAN experiments, over the entire
exposure period, we have compared the SUMO6 value calculated over the daily
exposure period (e.g., 7 and 12 hours) with the SUMO6 value calculated over a
24-h period. Assuming that the ambient hourly average concentrations reported
for each experiment represented the exposure the crops received during those
periods when fumigation did not occur, we combined these data with the
fumigation-period information reported by the investigators for each chamber.

In most cases, the 24-h SUM0O6 values for the lower exposure chambers
were more influenced by hourly average concentrations > 0.06 ppm that occurred
outside the daily fumigation period than the 24-h SUM06 values for the higher
0; exposure treatments. The value calculated for the SUMO6 index over the
exposure period did not necessarily represent the 24-h SUM06 value. Thus, if

one ignores the hourly average concentrations > 0.06 ppm that occurred outside

S-2
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the fumigation period, exposure-response equations developed using only
fumigation-period air quality data, would at times, appear to overestimate
yield reductions. Thus, there is some degree of uncertainty associated with
using the SUM0O6 exposure index and therefore, inferences based on the
published exposure-response results should be used with caution.

The problems associated with using long-term seasonal average
concentrations, such as 7-h seasonal values, as surrogates for dose are well
documented. Any 0; exposure index used to describe those regimes that cause
vegetation effects must be able to characterize adequately the upper tail of
the hourly average distribution curve. The cumulative exposure indices, SUM06
(i.e., the sum of all hourly average concentrations > 0.06 ppm) and W126
(i.e., the sum of all hourly average concentrations where the higher
concentrations receive greater weight than the lower values), have shown much
promise in relating O; exposure with vegetation effects.

However, even if one is found to characterize the most important
components of exposure (e.g., the upper tail of the hourly average
distribution curve), a consistent relationship between an 0; exposure index
and vegetation effects may not always occur. We know, based on published
résu]ts in the literature, that the occurrences of elevated 0; hourly
ébncentrations are important for eliciting adverse effects on agricultural
crops. However, in addition to concentration, the (1) amount and chemical
form of the pollutant that enters the target organism, (2) length of the
exposure within each episodic event, (3) time between exposures (i.e., the
respite or recovery time), and (4) sensitivity of the target organism are
important factors that affect vegetation. When predicting vegetation effects,

it is unclear how important these four factors are in an overall weighting

S-3
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scheme. However, at this time, given the current state of knowledge,
concentration should be weighted more heavily than either sensitivity or
actual dose.

For protecting vegetation from O; exposures, an important aspect that
requires further attention is the use of experimental results obtained at low-
elevation sites to predict 0; vegetation effects that may occur at high-
elevation locations. Ozone exposures that occur at high-elevation sites are
often different from those that occur at lower elevation locations. Exposure
regimes used in experiments performed at Tow-elevation locations should mimic
those that occur at the high-elevation sites. In addition, the use of mole
fraction (e.g., ppm) or absolute concentration (e.g., micrograms per cubic
meter) to describe exposure is an important consideration. Exposure-response
relationships developed using results obtained at low-elevation Tocations may
require pressure adjustments when attempting to use air quality data obtained
at high-elevation monitoring sites to predict vegetation effects. When
concentrations of gases are defined in terms of mole fraction (i.e., units of
ppm), the resulting term is invariant to temperature and pressure. However,
if exposures measured at low-elevation sites are compared with those
experienced at high-elevation sites, the variation of concentration (in units
of micrograms per cubic meter) as a function of altitude may be significant.
Given the same parts-per-million value experienced at both high- and Tow-
elevation sites, the absolute concentrations (i.e., micrograms per cubic
meter) at two elevations are different. Temperature decreases inversely
relative to elevation and therefore, the change in absolute concentration
would be less than estimated when only pressure changes are considered.

However, temperature differences do not usually compensate for the pressure

S-4
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effect. The biological consequences of high-elevation exposures to the
reduced absolute concentration of 0; that are disguised by the use of mole
fraction units of concentration need to be further investigated.

Because of the concern that the current form of the standard may not
protect vegetation from 0O, effects, we have explored the effects on
nonattainment status by lowering or modifying the current form. When
exploring the effects on nonattainment status when the current form of the
standard was changed from 0.12 ppm to either 0.10 or 0.08 ppm for the 1987-89
and 1986-88 periods, we found the greatest increase in nonattainment areas
occurred when the standard was Towered to 0.10 ppm. The application of a
ﬁrevised standard for 0O, would mainly increase the number of nonattainment
?areas (i.e., CMSA, MSA, and non-MSA) that are not near the current existing
areas. In other words, rather than growth occurring near existing
nonattainment areas, it would occur at new locations removed from the current
nonattainment areas.

Except for the Plains States, the major growth on a regional basis would
be dramatic for all regions across the United States. The most dramatic
differences would be in regions where states were completely in attainment
with the current standard. For example, Oregon and Washington were in
attainment for the 1987-89 period. However, if a standard of 0.10 ppm were
applied, the Seattle/Tacoma, Portland, and Eugene areas would be classified as
nonattainment. Al1]l Rocky Mountain states, other than the Salt Lake area of
Utah, are currently in attainment. A revised standard would classify the
Denver, Phoenix, and Las Cruces areas into nonattainment status.

As indicated, results reported in the literature indicate that the

second highest daily maximum concentration appears to be an inappropriate

S-5
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index to use to protect vegetation from elevated 0; exposures. As an
alternative to the current form of the standard, it has been suggested that
~ the SUMO6 O; exposure index could be used as the form of a secondary standard
; to protect agricultural crops. It has been reported in the literature that a
i 3-month SUMO6 value of 24.4 ppm-h was estimated to cause a 10% yield loss in
some NCLAN experiments.

Accordingly, we identified those areas in the United States that
experienced a SUM0O6 value of 24.4 ppm-h or higher over a 3-month period for
the years 1987, 1988, and 1989. We explored whether there might exist a
relationship between the current form of the standard, lowered to either 0.10
or 0.08 ppm, and the SUM06 3-month cumulative index. Based on our results,
lowering the current form of the standard to either 0.10 or 0.08 ppm did not
appear to guarantee that a specific monitoring site would achieve a SUM06 3-
month cumulative value of 24.4 ppm-h or lower.

In addition, we found that the occurrence of 3-month SUMO6 values of
24.4 ppm-h or higher was not correlated with‘elevated hourly average
concentrations and concluded that the application of the SUM0O6 index as a
secondary standard would result in inconsistent protection for vegetation.
Using 1989 hourly averaged 0O, data, we found that no strong relationship
appeared to exist between the number of occurrences of high hourly average 0,
and a maximum uncorrected 3-month SUM06 value > 24.4 ppm-h. Several O
monitoring sites that violated the current standard experienced a 3-month
SUM06 value < 24.4 ppm-h. Similarly, we found that several 0; monitoring
sites that did not violate the current standard experienced a maximum

uncorrected 3-month SUM06 value > 24.4 ppm-h.

S-6
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As indicated, we found that a strong correlation between peak
concentrations and the value of the SUM06 index did not necessarily occur
under ambient conditions. However, as reported in the literature, the SUM06
index has performed well, using NCLAN data, in relating O; exposure and yield
reduction. We found, at the 20% yield reduction level, that there were 0
distributions (of hourly average concentrations) which contained a sufficient
number of high hourly average concentrations. The NCLAN experimental protocol
applied incremental and proportional additions that resulted in many of the
treatments experiencing elevated 0O; exposures; many of the artificial regimes
used by NCLAN contained the elevated hourly average concentrations that were
kef]ected in the determination of the absolute values of the cumulative
indices. Therefore, at many of the treatment levels, the magnitude of the
SUM06 index, calculated using NCLAN protocols, appeared to be influenced by
the peak exposures that correlated well with the observed growth reductions.

A major concern about the use of any exposure index (e.g., cumulative or
seasonal average concentration) is whether the value of the index can be
linked to a specific exposure regime. The absolute value of the index
reflects only the mathematical calculation performed using hourly average O,
concentrations. If we assume that the distribution of the highest hourly
average concentrations (i.e., the upper tail of the distribution) is an
important factor in affecting vegetation, then a single-parameter exposure
index, such as the SUMO6 or W126, in some instances, may not be specific
enough to describe those important distributions that cause an O;-related
effect.

Although difficulties may exist for linking experimental exposure-

response relationships with ambient air for predicting vegetation effects,

S-7
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single-parameter exposure indices have been used successfully for describing
regional O; exposure in the United States. Yet, given the fact that we have
shown that the magnitude of cumulative exposure indices, such as the W126 or
SUM06 exposure index, is not necessarily strongly associated with the
occurrence of high hourly average O; concentrations, why is it possible to
successfully describe regional exposures using single-parameter cumulative
indices?

The 0; exposures experienced at each site are influenced by a multitude
of factors. The elevation of a specific site, its ground cover (i.e.,
sorptive capacity), as well as its latitude, may influence O; production and
destruction of the absolute 0; exposure value experienced at a specific site.
Many of the O; monitors used in the kriging analyses were situated near urban-
oriented locations. Thus, the distribution of the hourly average
concentrations may have been similar. For example, most of the urban-oriented
monitoring sites may experience similar scavenging processes that result in
30% or more of the hourly average concentrations occurring below 0.015 ppm.
In addition, the maximum hourly average concentrations experienced at many of
these sites were similar. Thus, with similar hourly average distribution
patterns, it would be assumed that the magnitude of a cumulative exposure
index, such as the W126 or SUMO6, would order itself properly, with the higher
value corresponding to the higher exposure. This appears to be what occurred.

In addition to using cumulative exposure indices to describe regional O
exposures, a cumulative exposure index has been used in trends analysis.
Trends for O; exposures over 5- and 10-year periods (i.e., 1984-1988 and 1979-
1988) have been summarized for rural locations in the United States. The

evidence for trends at each monitoring location was explored. Evidence for
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regional trends was based on studying the individual time trends observed for
each of the sites in the region. The seasonal W126 cumulative exposure index
was used to investigate trends. The results reported in the literature were
consistent with the findings reported by the U.S. Environmental Protection
Agency.

The explanation for the successful application of the cumulative index
in the trends analysis was similar to the one given for the kriging analysis.
For a specific monitoring site, the hourly average distribution pattern was
similar over the years studied. The scavenging processes remained the same
over time at a specific site. Thus, the difference in magnitude of the W126
index, at any one site over time, was reflected in changes in the distribution
curve of the hourly average O; concentrations. Changes that occurred at the
upper end of the distribution curve were reflected in the magnitude of the
W126 index.

For some purposes, the single-parameter index appears to work
appropriate]y. However, the predictive power involving exposure-response
réjationships that use single-parameter exposure indices may not be as strong
as desired. A multiple-parameter index may be necessary to adequately
describe distribution patterns of hourly average concentrations.

To improve the predictive capability that depends upon linking experimental
exposure-response relationships with ambient air quality, it appears that
indices, such as the SUMO6 or W126, will have to be combined with other
exposure parameters in order to mathematically define unique distribution
patterns of hourly average concentrations.

Although moderate success has been achieved using the SUMO6 and W126

exposure indices, consistency is important so that experimental exposure-
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response relationships can be strongly linked with ambient exposures. If this
consistency is not present, then it will be difficult to use any exposure
index in the development of a secondary standard.

For developing a secondary standard to protect vegetation, the combined
exposure statistics should be selected based on the observation that high
concentrations are expected to cause greater impact on vegetation than lower
concentrations. It has been shown, when high hourly average concentrations
are present in an exposure regime, that single-parameter cumulative indices
can be used to relate 0; exposures with vegetation growth reductions.

However, when attempting to Tink experimental models with ambient air quality,
it appears that the application of a single-parameter exposure index, in the
form of a standard for protecting vegetation, will provide inconsistent
results. This does not imply that all currently used cumulative exposure
indices are not appropriate for describing 0; exposure. Rather, it appears
that cumulative indices, such as the SUMO6 and W126 indices, will have to be
combined with other parameters to quantify accurately the occurrence of the
high hourly average concentrations.

The possible combination of exposure parameters, such as the
(1) sigmoidally-weighted exposure index or (2) SUMO6 index, with other indices
should provide sufficient means to describe those unique distribution curves
that have the potential for eliciting an adverse effect. Our reanalysis of
the NCLAN data provided us with evidence that summaries of distribution
patterns provide important information concerning the relationships between
exposure and response. Future research efforts in this area point to the
quantification of the distribution of the hourly average concentrations. The

percentile distribution of the hourly average concentrations offers a way to
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characterize both high and low 0; concentrations. With high confidence, from
the percentile distribution of 05, one can infer that the values in the tail
of the distribution represent peaks in the time plots of hourly 0O,

: concentrations.

In addition, percentile distributions offer the opportunity to
differentiate exposures experienced at remote or isolated sites from exposures
experienced at sites influenced by urban sources. Monitoring sites under the
influence of local urban sources experience approximately 50-70 percent of
their hourly average 0; concentrations above 0.015 ppm.

Although we have discussed the possible combinations of parameters to
better link experimental exposure-response models with ambient air quality for
predicting possible impacts on vegetation, at this time, information is not
available to identify the specific parameters that should be combined.
However, the results of the NCLAN experiments provide researchers with the
opportunity to better understand the level of exposures that result in
agricultural yield reduction. We have summarized the distribution of the
hourly average concentrations that occurred in some of the NCLAN experiments.
The characterized distributions reflected the importance of the upper end of
the distribution curve in affecting crop yield reductions. We believe this
additional information should assist researchers in identifying a multi-
parameter exposure index that will properly relate ambient exposure to
response.

A strong case has been made for selecting multi-parameter exposure
indices for establishing a secondary standard to protect vegetation from high
levels of 0; exposure. However, caution is urged. Although we believe that

an effort should be made to identify multi-parameter indices, it is important
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to note that a consistent relationship between multi-parameter exposure

indices and vegetation effects may not always exist. Based on the analysis
described in this report, at this time, we believe that further research is
required before any single-parameter exposure index is used in the standard-

setting process to protect vegetation from O; exposure.

S-12

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBL*305 91 EE 0732290 0554173 737 M

CHAPTER 1
INTRODUCTION
1.1 BACKGROUND

The Clean Air Act requires the Administrator of the U.S. Environmental
Protection Agency to establish national ambient air quality standards. These
standards are designed to protect the public health and welfare from any known
or anticipated adverse effects associated with the presence of criteria air
pollutants. Primary air quality standards are promulgated to prevent adverse
effects on human health, while secondary air quality standards are established
to prevent adverse welfare effects (e.g., effects on vegetation, animals,
deterioration of property materials, and visibility).

The ubiquity and toxicity of ambient air O; is well documented (EPA,
1986, 1988a). Because O; is an omnipresent air pollutant that affects both
human health and vegetation, the U.S. Environmental Protection Agency (EPA)
has established both primary and secondary standards.

On April 30, 1971, in the Federal Register (36 FR 8186), the
Environmental Protection Agency promulgated National Ambient Air Quality
Standards (NAAQS) for photochemical oxidants. The scientific, technical, and
medical bases for these standards were contained in the air quality criteria
documents for photochemical oxidants, published by the U.S. Department of
Health, Education, and Welfare in March 1970. Both the primary and secondary
standards were set at an hourly average level of 0.08 ppm, not to be exceeded
more than once per year.

Based on a reassessment of the available data, in 1979, EPA revised both
the primary and secondary standards for photochemical oxidants (i.e., 05).

The revised form of the standard (1) raised the primary standard to 0.12 ppm,
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(2) raised the secondary standard to 0.12 ppm, and (3) changed the definition
of the point at which the standard is attained to "when the expected number of
days per calendar year with maximum hourly average concentrations above 0.12
ppm is equal to or less than one." The phrase "expected number of days per
calendar year" differed from the previous NAAQS for photochemical oxidants,
which simply stated a particular concentration "not to be exceeded more than
once per year." The federal standard for O; is based on the second daily
occurrence of a maximum hourly average concentration above 0.12 ppm and is
designed to protect both human health and welfare effects.

There is no requirement that the primary and secondary standards be
identical, nor is there any requirement that only a single expression of the
standard be used (i.e., an average concentration for a single time period
versus multiple exceedances or integrated exposures). Any effort to propose a
secondary standard, whose form is different than the current form of the
primary and secondary standard, implies that either (1) the current form is
inappropriate for protecting the public welfare or (2) a more restrictive
value of the current form of the standard is required.

There have been indications reported in the literature (Lefohn et al.,
1989; Lee et al., 1991) that the current form of the standard may not be
appropriate for protecting vegetation from 0; exposures. Lee et al. (1991)
reported that, although no single exposure index was best in describing the
exposure-response relationship for 49 case studies, the performance of the
current form of the U.S. Federal standard was considerably worse than other
exposure indices used in their analysis. The authors reported that the

current form of the standard did not perform adequately because it (1) was
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poorly related to plant growth, (2) ignored exposure duration, and (3) placed
too much emphasis on a single peak 1-h concentration.

Should one want to develop an 0O; standard that provides an adequate
measure of protection to vegetation, it would be necessary to define, in as
precise terms as possible, the relationship between 0; exposures and the
potential for adverse effects on vegetation. Although the form of the
standard should be made as simple as possible, it is essential that the
standard be related directly or indirectly to identifiable adverse effects.
The U.S. EPA (1988b) has made a distinction between the relative importance of
foliar injury to vegetation and reduced crop yield. Greater emphasis has been
placed on damage or yield loss than on injury, where injury encompasses all
measurable plant reactions, such as reversible changes in metabolism, reduced
phbtosynthesis, leaf necrosis, leaf drop, altered quality, or reduced growth,
thét do not influence agronomic yield or reproduction and damage includes all
effects that reduce the intended human use or value of the plant or ecosystem
(Tingey et al., 1990).

The purpose of this report is to identify and review some of the key
issues related to assessing the effects of 0; on vegetation. Our report has
reviewed the available information on (1) components of O; exposure that
elicit adverse effects on vegetation, (2) ways to describe these components in
the form of O; exposure indices that may be useful in the standard-setting
process for protecting vegetation, (3) the change in nonattainment status that
may occur should the existing 0; standard be modified, and (4) the need for
future research efforts to explore the development of a muiti-parameter index

to protect vegetation from O; exposure.
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CHAPTER 2
EXPOSURES THAT RESULT IN VEGETATION GROWTH REDUCTION
2.1 INTRODUCTION

For assessing the efficacy of a standard to protect vegetation from O,
the actual pollutant Tevels below which plants will be protected must be
identified. Guderian et al. (1985) have pointed out that during chronic
exposures, injury increases with increasing concentration and that plant
growth is influenced more by concentration than exposure duration, when
similar products of concentration and time are used. Similar results have
been published relating O; exposure to vegetation growth reduction.

The importance of high hourly average 0; concentrations affecting
vegetation growth has been documented (U.S. EPA, 1986). Short-term, high
concentrations have been identified as being more important than long-term,
low concentrations (Heck et al., 1966; Heck and Tingey, 1971; Bicak, 1978;
Henderson and Reinert, 1979; Nouchi and Aoki, 1979; Reinert and Nelson, 1879;
Bennett, 1979; Stan et al., 1981; Musselman et al., 1983, 1986; Ashmore, 1984;
Amiro et al., 1984; Tonneijck, 1984; Hogsett et al., 1985a). Similarly, for
trees, high concentrations appear to be an important factor (Hayes and Skelly,
1977; Mann et al., 1980; Hogsett et al., 1985b).

Although all plants are capable of being adversely affected by exposure
to phytotoxic gases and particulates in polluted air, the nature of the
response can be extremely variable. Runeckles and Wright (1988) have
indicated the following features play important roles in determining target
sensitivity:

- the species of plant;

» the stage of development of the plant;
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« the nature of the pollutant or mix of pollutants;

« the pattern of exposure to the pollutant(s), which involves
consideration of the concentration and durations of exposure;

« environmental conditions in the soil, such as water
availability and nutrition;

« environmental conditions in the ambient air, such as light
intensity, temperature, humidity, and air movement; and

» biological factors, such as the occurrence of pests and

diseases, and competitive stresses exerted by individual
plants on their neighbors.

For estimating levels that are required to protect vegetation from O,
exposures, it is necessary to take into consideration the large variability in
response. This chapter discusses the ranges of 0; exposures that result in
injury and damage to vegetation, as well as exposure indices that warrant

further consideration as possible surrogates for dose in the standard-setting

process.

2.2 O0ZONE EXPOSURES THAT AFFECT YIELD REDUCTION

Guderian et al. (1985) have proposed maximum acceptable 0y
concentrations for the protection of vegetation. The authors’ numerical
values are based on the limiting values proposed by Jacobson (1977) and the
exposure-response values for definite injury levels developed by Heck and
Brandt (1977). In general, the recommendations made by Guderian et al. (1985)
appear to reinforce the belief that hourly average concentrations of 0.10 ppm
and higher are required to elicit adverse effects on vegetation.

The one exception to the recommendations made by Guderian et al. (1985)
was for the protection of sensitive species. The authors recommended that
sensitive vegetation should not be exposed for more than 4 hours to hourly
average concentrations of 0.05 ppm. 0zone hourly average concentrations of
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0.05 ppm routinely occur at many "clean" site locations in the world (Lefohn
et al., 1990a). The occurrence of hourly average concentrations of 0.05 ppm
are not necessarily associated with anthropogenic sources and thus, using a
threshold of 0.05 ppm may not be realistic for protecting sensitive species.
Table 2-1 summarizes the recommendations made by the authors for hourly
average concentrations for durations of exposures of 0.5, 1, 2, and 4 hours.
The information in the table provides an indication that long-term exposures
consisting only of lower hourly average O; concentrations will not necessarily
produce adverse effects on vegetation.

The National Crop Loss Assessment Network (NCLAN) program represents one
of the most extensive data bases in existence for identifying 0; exposure
regimes that may elicit an adverse effect on crops. NCLAN was initiated and
sponsored by the U.S. Environmental Protection Agency to evaluate the effects
of O3 on the productivity of major regional crops under field conditions.
Open-top chambers were used to introduce artificial O; exposures. For the
period 1980 through 1986, NCLAN investigators exposed several different crops
to 0; exposures to identify levels at which crop reduction occurred. Table
2-2 summarizes the different crops and periods of exposure.

The limitations of the NCLAN methodologies have been described elsewhere
(Lefohn and Runeckles, 1987; Krupa and Kickert, 1987; Lefohn et al., 1988; Lee
et al., 1988; Heuss, 1982; Krupa, 1985; Brennan et al., 1987; Smith et al.,
1987; Ashmore, 1988; Runeckles and Wright, 1988). Some of the more important
limitations summarized by Lefohn et al. (1989) are

o Even though high ambient hourly O; concentrations are observed

during 1200-2000h at agricultural sites in much of the U.S.
during the crop growth season, the NCLAN experiments were
designed with exposures to added 0, in the open-top chambers
between 0900-1559h or, in the finai years of the program,

0900-2059h. When the 0900-1559h, 7-h period was used,
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frequent high 0, ambient exposures beyond 1559h were excluded
from ca]cu]at1ons of exposure indices, although the crops
received these ambient exposures;

e The relative differences between the 0, exposure treatments
were always constant. In most cases, 6 was added to the
chambers when the hour]y average concen{rat1on exceeded 0.03
ppm. Thus, the plants in the higher Oy treatments were given
little opportunity to recover from stress Under actual
ambient conditions, O; concentrations vary in time and space
and periods occur when exposures are both high and Tow
(Runeckles and Wright, 1988);

o In the exposure treatments with highest 05, in the cases
examined, the frequency distribution of hour]y 0; within the
chambers showed a bimodal distribution (Lefohn et al., 1988)
or even a polymodal distribution (Heagle et al. 1986)
Ambient O; follows a unimodal distribution;

e In some cases, infrequent sampling of 0; within a given hour
has resulted in uncertainty and controversy regarding the
accuracy of the published hourly average O; values;

e In analyzing NCLAN data and establishing cause-and-effect
relationships, a number of exposure parameters and models were
tested (refer to Heck et al., 1988). In the end, the Weibull
function was selected as providing the most suitable empirical
exposure-response model. Since experimental results were
obtained first and the model fitted afterwards, concern may be
raised as to whether the best-fit model is a product of the
specific NCLAN experimental design. The Weibull model
performed differently at different NCLAN sites. Furthermore,
it was unable to explain one set of independent results
(Brennan et al., 1987; Smith et al., 1987);

The 7-h (0900-1559h) average, calculated over an experimental period,
was used to summarize O, exposures by the NCLAN program (Heck et al., 1982).
The 7-h daily daylight period was selected by NCLAN because the parameter was
believed to correspond to the period of greatest plant susceptibility to O,
pollution. In addition, the 7-h period of each day (0900-155%h) was assumed
to correspond to the time that the highest hourly O; concentrations would
occur. In later years, the 12-h average, calculated over an experimental

period, was used to describe 0; exposures. In the published Titerature, the

2-4

1 Copyright American Petroleum Institute

Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx305 91 WM 0732290 0554181 803 mu

majority of NCLAN’s experiments were summarized using the 7-h experimental-
period average and other long-term average concentration statistics.

In retrospective studies using NCLAN data, attempts were made to explore
the efficacy of alternative O; exposure statistics in describing the
relationship between exposure and response (Lefohn et al., 1988; Lee et al.,
1988, 1989, 1991). Because the retrospective studies mainly focused on the
adequacy of mathematical parameters to relate exposure with growth reduction,
no attempt was made to describe the specific 0; exposure regimes that elicited
an adverse effect on vegetation. It was assumed that the mathematical
parameters adequately correlated with the important components of exposure
that elicit an adverse effect. As will be discussed in a later chapter, the
absolute value associated with an exposure index does not necessarily
correlate with the important components of exposure. Therefore, we
investigated the O; exposures that occurred in the NCLAN experiments for which
a specific level of growth reduction was observed.

Lee et al. (1991), using vegetation effects data obtained from 31 field
experiments (involving 12 crops), mostly operated by the NCLAN program,
evaluated the efficacy of four O; exposure indices. Based on a review of the
efficacy of the four O; exposure indices evaluated by Lee et al. (1991),
Tingey et al. (1991) recommended that the SUM06 O; exposure index could be
applied as the form of a secondary standard to protect agricultural crops.
The authors reported that a 3-month SUMO6 value of 24.4 ppm-h was estimated to
cause a 10% yield loss in half the cases they investigated.

As a part of their analysis, the investigators developed, using the
SUM06 index (the sum of all hourly average concentrations >0.06 ppm over the

exposure period), exposure-response models that predicted yield reduction. In
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most cases, Lee et al. (1991) used only the artificial fumigation period
(e.g., 7- and 12-h periods) to determine the SUMO6 value. The investigators
assumed that the period outside the fumigation window (i.e., the 17 and 12
hours, respectively) did not contribute greatly to the SUM06 value. Based on
the Lee et al. (1991) equations, Table 2-3 summarizes the predicted yield
loss, using the SUM06 value of 24.4 ppm-h.

Lee et al. (1991) assumed a SUMO6 value of 0.00 ppm-h at 100% yield. We
explored the validity of using a 3-month cumulative SUMO6 value of 0.00 ppm-h.
Lefohn and Foley (1991) have characterized O; hourly average concentration
data collected at several national park locations and have compared these data
with several "clean" O; monitoring sites (Lefohn et al., 1990a). Using hourly
average 0; data from six national park sites (Glacier, Great Sand Dunes,
Yellowstone, Badlands, Theodore Roosevelt, and Arches) and two national forest
locations (Custer and Ochoco), the SUMO6 3-month cumulative value was
determined over a 24-h window period (Table 2-4). The average 3-month
cumulative SUMO6 value over the 16 site-years was 3.07 ppm-h. This value was
used in the equations developed by Lee et al. (1991) and the results compared
with the predicted yield loss that resulted when an assumed SUM06 value of
0.00 ppm-h was used at the 100 yield point. As indicated in Table 2-3, the
"correction factor" is small and therefore, an assumed SUMO& value of 0.00
ppm-h for “clean" site locations does not result in large discrepancies when
compared with the predicted yield losses when a SUMO6 value of 3.07 ppm-h is
used.

As indicated above, Lee et al. (1991) assumed that the SUMO6 value was
not greatly influenced by the O; exposures that occurred outside the 7- and

12-h daylight period when fumigation occurred. The investigators assumed that
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the number of hourly average concentrations > 0.06 ppm was much greater during
the daylight hours than the late afternoon, evening, and early morning hours.
For 22 sets of NCLAN experiments, over the entire exposure period, we have
compared the SUMO6 value calculated over the daily exposure period (e.g., 7
and 12 hours) with the SUMO6 value calculated over a 24-h period. Assuming
that the ambient hourly average concentrations reported for each experiment
represented the exposure the crops received during those periods when
fumigation did not occur, we combined these data with the fumigation-period
information reported by the investigators for each chamber.

As anticipated, in most cases, the 24-h SUM06 values for the lower-
exposure chambers were more influenced by hourly average concentrations > 0.06
ppm that occurred outside the daily fumigation period than the 24-h SUMO06
values for the higher 0; exposure treatments (Table 2-5). The value
calculated for the SUMO6 index over the exposure period did not necessarily
represent the 24-h SUMO6 value. Thus, if one ignores the hourly average
concentrations > 0.06 ppm that occurred outside the fumigation period, the
exposure-response equations developed by Lee et al. (1991), at times, appear
to overestimate yield reductions. Because, in most cases, the form of the
mode] used by Lee et al. (1991) is dependent on several variables, it is
unclear if the overestimation would affect the entire range of 0; exposures or
only the lower exposures.

We have summarized the O; exposures, by treatment level, that occurred
in 22 NCLAN experiments (Table 2-6). Because the exposures within each
chamber, at a specific treatment, were similar within an experiment, we have
presented one chamber per treatment per experiment in order to summarize the

exposure statistics. No attempt was made to combine similar treatments within
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an experiment and pool the results. The exposure statistics were determined
over a 24-h time frame during the exposure period.

Although there were inaccuracies associated with using the exposure-
response models developed by Lee et al. (1991), we applied the models to
obtain rough estimates of yield reduction. The exposure-response models were
used to calculate SUMO6 cumulative exposures that produced 10%, 20%, and 30%
yield reductions for a subset of the NCLAN experiments (Table 2-7). The
values of the SUMO6 cumulative exposures that produced a specific yield
reduction (i.e., 10%, 20% and 30%) were compared with the treatment levels
that occurred within each experiment to identify those exposure regimes that
may have been responsible for the crop reduction (see Tables 2-6 and 2-7).
Because of the uncertainty associated with the yield predictions, we
summarized the exposure statistics for those treatments that predicted
approximately 20% yield reduction (Table 2-8), recognizing that the yield
reduction would more than likely be less than the 20% predicted. In most
cases, the SUMO6 value listed in Table 2-7 in the 20% reduction column could
not be matched with the SUM06 value experienced in a specific treatment.
Therefore, the summary statistics from the treatment that experienced the
SUM06 value closest to the value listed in Table 2-7 were used in Table 2-8.
Most of the identified exposure regimes were associated with treatments where
0; had been incrementally or proportionally added into the chamber. In
approximately 85% of the cases, the SUMO6 cumulative exposure value used,
which was determined over the fumigation period, represented more than 85% of
the actual value experienced over the 24-h period.

In general, repeated exposures of hourly average concentrations > 0.10

ppm occurred in most of the treatments identified in Table 2-8. Similar to
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the results reported by Lee et al. (1991), soybean data predominated the
analysis. Reviewing the results for soybean, we found, in most cases, that at
least 5% of the hourly concentrations in the identified exposure regimes were
> 0.10 ppm in the NCLAN open-top chambers. The frequency of occurrence > 0.10
ppm ranged from 5 to 517 and the maximum hourly average concentrations in the
experiments ranged from 0.123 ppm to 0.292 ppm.

For wheat, an inconsistent result occurred. Because Vona wheat is
extremely sensitive to O; exposures (EPA, 1986), ambient O; exposures were
predicted to cause a 20% yield reduction. However, as noted in Table 2-5, 54%
and 40% of the SUM06 values experienced in the NF treatments in 1982 and 1983,
respectively, occurred outside the 7-h exposure period window. Thus, the
application of the SUMO6 model determined by Lee et al. (1991) would result in
an overestimate of yield reduction. For Abe and Arthur, we found that NCLAN
experimental exposures with large numbers of hourly average concentrations >
0.10 ppm (i.e., 186) resulted in a predicted 20% yield reduction.

Tobacco and peanut appeared to be more sensitive to O; exposure than
cotton (Table 2-8). In addition, corn and sorghum appeared to be highly
resistant to O; exposure.

Our results, using a select set of NCLAN experimental data, tend to
support the finding suggested by Guderian et al. (1985) that the repeated
occurrence of hourly average O; concentrations of 0.10 ppm and higher result
in adverse effects on vegetation. In our analysis, we subjectively used a 20%
yield reduction threshold. We believe that using a lower yield reduction
threshold would not be appropriate at this time because of all the
uncertainties mentioned previously. Although the hourly average

concentrations below 0.10 ppm may have been important in affecting crop yield
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in the experiments, the NCLAN program was not developed to identify and
quantify the specific exposure regimes that are responsible for the observed
effects. Thus, at this time, we believe that the approach we have used makes
it possible for those who are interested to establish secondary standards that
will protect vegetation from O; exposures. The exposure statistics presented
in Table 2-8 provide a variety of choices that allow investigators the
opportunity to develop indices that are most relevant in predicting vegetation

effects.

2.3 SELECTING APPROPRIATE EXPOSURE INDICES

In the previous section, the discussion focused on the components of O,
exposure that elicit adverse effects on vegetation. In this section, the
focus turns toward ways to accurately describe these components in the form of
exposure indices that may be useful in the standard-setting process for
protecting vegetation.

As discussed in the previous section, there are a number of ways in
which hourly O; concentrations can be summarized. The selection of suitable
measures for defining the "dose" term in exposure/dose-response relationships
is an important aspect that has received considerable discussion (U.S. EPA,
1986; Hogsett et al., 1988; Lefohn et al., 1989; Lefohn et al., 1990b). Any
index that is selected as a surrogate for "dose" should (1) describe the most
important exposure characteristics that elicit an adverse effect and (2) order
itself properly when comparing the absolute value experienced in an
experiment, with the value calculated under actual ambient conditions.

Exposure indices are important because they form the 1linkage between air

quality standards that are promulgated to protect specific targets and the

2-10

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx305 91 EE 0732290 0554147 221 WM

actual dose that is responsible for eliciting an effect. Results have been
reported in the literature relating O; exposure with vegetation effects.
Although the perfect exposure index that can serve as a surrogate for dose
does not exist, there are some O; exposure indices that do relate fairly well
with vegetation effects (Lefohn et al., 1988; Lefohn et al., 1990b; Lee et
al., 1988, 1989, 1991).

For almost seventy years, air pollution specialists have explored
alternative mathematical approaches for summarizing ambient air quality
information in a form that can serve as a surrogate for dose. For assessing
the possible effects of O; on agricultural crop and forest, researchers have
focused on characterizing 1-h average values in "biologically meaningful"
forms. Obtaining a definition of "biologically meaningful” from several
different effects researchers is a difficult task. However, based on
biological evidence, it is clear that any parameter used as a dose surrogate
for predicting vegetation effects should focus on the upper tail (i.e., the
highest hourly average concentrations) of the distribution curve.

For vegetation, there has been considerable effort to identify ways to
describe 0; exposures that elicit adverse effects (EPA, 1986; Lefohn and
Runeckles, 1987; Krupa and Kickert, 1987; Hogsett et al., 1988; EPA, 1988a;
Lefohn et al., 1989; Lefohn et al., 1990b). Since the early 1980s, there has
been much discussion concerning the importance of the higher hourly average
concentrations in relationship to the lower concentrations (EPA, 1986; Lefohn
and Runeckles, 1987; Lefohn et al., 1989; Lefohn et al., 1990b). Several
different types of exposure indices have been proposed.

A 6-h long-term seasonal average O; exposure parameter was used by

Heagle et al. (1974). Also, Heagle et al. (1979) reported the use of a 7-h
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experimental-period average. As indicated earlier in this chapter, the 7-h
(0900-1559h) average, calculated over an experimental period, was adopted as
the statistic of choice by the U.S. EPA’s National Crop Loss Assessment
Network (NCLAN) program (Heck et al., 1982). Toward the end of the program,
NCLAN redesigned its experimental protocol and applied proportional additions
of 0; to its crops for 12-h periods. The expanded 12-h window reflected
NCLAN’s desire to capture more of the daily O; exposure.

In the 1980s, concerns about the use of a long-term average to summarize
exposures of O; appeared in the Titerature (Lefohn and Benedict, 1982; Tingey,
1984; Lefohn, 1984; Lefohn and Tingey, 1985). Long-term seasonal average
concentrations (e.g., 7-or 12-h average concentrations) did not correlate
strongly at most O; monitoring sites with the components of exposure regimes
that were most important in affecting vegetation. EPA (1986) noted that the
weight of evidence appeared to suggest that long-term averages, such as the
7-h seasonal average, were not adequate indicators for relating O; exposure
and plant response. EPA (1988b) pointed out that repeated peak concentrations
appeared to be the most critical element in determining plant response, and
the Agency indicated that exposure indicators which emphasize peak
concentrations and accumulate concentrations over time, probably provide the
best biological basis for standard setting.

Searching for an alternative to the long-term average concentration
parameter, Lefohn and Benedict (1982) introduced an exposure parameter based
on the hypothesis that if the higher 0; concentrations were more important in
eliciting adverse effects on agricultural crops than the lower values, then
the higher hourly mean concentrations should be given more weight than the

lower values. This integrated exposure parameter summed all hourly
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concentrations equal to and above a threshold level (i.e., 0.10 ppm). The
exposure parameter was similar to that used by Oshima (1975), where the
difference between the value above 0.10 ppm and 0.10 was summed.

In the Tate 1980s, the focus turned from the use of long-term seasonal
averages to cumulative indices (e.g., exposure parameters that sum the
products of concentrations multiplied by time over an exposure period).
Besides the cumulative indices proposed by Oshima et al. (1976) and Lefohn and
Benedict (1982), other cumulative indices, such as (1) the number of
occurrences of daily maximum hourly averaged concentrations greater than a
threshold level (Ashmore, 1984) and (2) the use of exponential functions
(Nouchi and Aoki, 1979; Larsen and Heck, 1984) to assign unequal weighting to
0; concentrations were suggested.

The use of the integrated exposure index, as defined by Oshima (1975)
and Lefohn and Benedict (1982), had limitations. The parameter ignored the
lower hourly mean concentrations. Early evidence for testing cumulative
indices came from results reported by Oshima et al. (1976). Similarly, Lefohn
and Benedict (1982), applying their cumulative integrated exposure index,
reported fairly good agreement between exposures of 0; and predicted
agricultural yield loss in California. The two exposure indices apparently
performed well because of the frequent occurrence of high hourly mean O,
concentrations (e.g., > 0.10 ppm) and possibly, the short period between
episodes. The high frequency of such concentrations was responsible for the
magnitude of the cumulative index, as well as the impacts on agricultural
crops, and thus, a favorable correlation existed between the index and the

agricultural effect.
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NCLAN data offered the opportunity to test the hypothesis that
cumulative indices that describe 0; exposures may adequately serve as a dose
surrogate for describing exposure/dose-response relationships for agricultural
crops. Retrospective studies were performed using NCLAN data (Lefohn et al.,
1988; Lee et al., 1988, 1989, 1991).

Lefohn et al. (1988), using wheat and soybean data sets summarized by
Kohut et al. (1986, 1987), compared the use of several exposure indices in
describing the relationship between 0, and reduction in agricultural crop
yield. Two of the indices used by Lefohn et al. (1988) were determined using
a sigmoidally-weighted function, as proposed by Lefohn and Runeckles (1987).
The sigmoidally-weighted function focused on the higher hourly average
concentrations, while retaining the lower and less biologically-effective
concentrations. The sigmoidal weighting function was of the form:

w, = 1/[1+M x exp (-A x ¢;)]

1

where: M and A are arbitrary positive constants

n

W.

; weighting factor for concentration i

I}

C.

; concentration i (in ppm)

The arbitrary positive constants M and A were 4403 and 126 ppm*,
respectively. Their values were subjectively determined to develop a
weighting function that (1) focused on hourly average concentrations as Tow as
0.04 ppm, (2) had an inflection point near 0.065 ppm, and (3) had an equal
weighting of 1 for hourly average concentrations at approximately 0.10 ppm and
above.

Unlike the seasonal average index, the cumulative indices performed well
when data were combined over a two-year period. Lefohn et al. (1988) reported

that while none of the exposure indices consistently provided a best fit with
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the models tested, their analysis indicated that exposure indices that weight
peak concentrations of O; differently than lower concentrations of an exposure
regime could be used in the development of exposure-response functions.

In a more extensive analysis of NCLAN data, Lee et al. (1988) fitted
more than 600 exposure indices to response data from seven crop studies. For
most of the NCLAN experiments used in their analyses, they characterized the
daily hourly mean O; concentrations that were recorded over the 7-h period
(0900-155%h) by the original experimenters. The alfalfa experiments described
by Hogsett et al. (1985a) collected exposure data over a 24-h period and these
data were included in the analysis of Lee et al. (1988). Using mostly the 7-h
windowed data provided by the NCLAN investigators, the "best" exposure indices
were those that applied a general phenologically weighted, cumulative-impact
(GPWCI) index with a sigmoid weighting on concentration and a gamma weighting
function as a surrogate for changes in plant sensitivity over time.

Cumulative indices with various threshold values performed as well as the
GPWCIs. Lee et al. (1988) reported that mean indices (e.g., 7-h exposure-
period means) did not perform well. The authors concluded that the top-
performing indices were those whose form (1) accumulated the hourly O
concentrations over time, (2) used a sigmoid weighting scheme, which
emphasized concentrations of 0.06 ppm and higher, and (3) phenologically
weighted the exposure. The authors suggested that lower concentrations should
be included, but given lesser weight, in the calculation of the exposure
index. In a subsequent analysis using NCLAN data, Lee et al. (1989) reported
that the phenologically weighted cumulative impact indices, as well as the
sigmoidally-weighted integrated index, centered at 0.062 ppm, and the

cumulative censored indices that integrated hourly average concentrations of
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0.06 and 0.07 ppm or higher, performed at near optimal levels. The results
reported by Lefohn et al. (1988) and Lee et al. (1988, 1989) demonstrated that
some cumulative indices could be used in relating O; exposure to vegetation
effects.

Research results reported by the U.S. EPA and other investigators have
illustrated that cumulative exposure indices appear to provide more promise
than long-term average concentration exposure indices in relating exposures
with vegetation effects (U.S. EPA, 1988b; Lefohn et al., 1990b). Although
cumulative indices offer the advantage of focusing on the higher hourly
average concentrations, not all cumulative indices achieve this goal. For
example, Lefohn et al. (1989) pointed out that the cumulative exposure index
that sums all hourly average concentrations (SUMO) weights the Tower
concentrations more than the higher ones. As indicated above, biological
results reported in the literature indicate that an appropriate exposure index
should emphasize the higher hourly average concentrations.

In Section 2.2, we found that the NCLAN results support the observation
that the occurrence of high hourly average concentrations results in
measurable yield reduction. In Section 2.3, we found that the use of long-
term average concentrations as dose surrogates does not provide sufficient
focus on the high hourly average concentrations and that cumulative exposure
indices appear to perform well in the development of exposure-response
relationships. Based on evidence published in the literature, as well as
special analytical studies sponsored by EPA (1988a, b), the use of cumulative
indices to describe exposures of O; for predicting agricultural crop effects
appears to be a more rational approach than the use of long-term seasonal

averages.
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Although the appeal of a single number, such as a single exposure index,
to describe ambient O; pollutant exposure is undeniable, there are problems
associated with condensing data to such a point that the identification of the
important components of exposure are eliminated. The problems associated with
using long-term seasonal average concentrations as surrogates for dose were
mentioned above. In addition, it is important to point out that a consistent
relationship between an 0; exposure index and vegetation effects may not
occur, even if one is found to characterize the most important components of
exposure (e.g., the upper tail of the hourly average distribution curve). We
know, based on published results in the literature, that the occurrences of
elevated 0, hourly concentrations are important for eliciting adverse effects
on agricultural crops. However, in addition to concentration, the (1) amount
and chemical form of the pollutant that enters the target organism, (2) Tength
of the exposure within each episodic event, (3) time between exposures (i.e.,
the respite or recovery time), and (4) sensitivity of the target organism are
important factors that affect vegetation. When predicting vegetation effects,
it is unclear how important these four factors are in an overall weighting
scheme. If both sensitivity and the actual dose that enters the organism are
as important as ambient concentration in the weighting scheme, then a given
pollutant exposure will elicit varying biological responses at different times
for the same crop, as conjectured by Krupa and Teng (1982). However, at this
time, given the current state of knowledge, concentration should be weighted

more heavily than either sensitivity or actual dose.
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2.4 LINKING EXPERIMENTAL RESULTS WITH HIGH-ELEVATION OZONE EXPOSURES

For protecting vegetation from O; exposures, an important aspect that
requires further attention is the use of experimental results obtained at Tow-
elevation sites to predict 0; vegetation effects that may occur at high-
elevation locations. It is important to note that O; exposures at high-
elevation sites are often different from those that occur at lower elevation
locations. At some high-elevation sites, the highest O; exposures occur in
the Tate evening or early morning hours (Berry, 1964; Lefohn and Mohnen,
1986), which produce a diurnal pattern that is distinctly different from that
observed at lower elevation sites (Berry, 1964; Stasiuk and Coffey, 1974;
Mohnen et al., 1977; Miller et al., 1986; Lefohn and Jones, 1986; Lefohn and
Mohnen, 1986). A flat diurnal pattern, which is observed at some high-
elevation sites, is usually interpreted as indicating a lack of efficient
scavenging of O; and/or a lack of photochemical precursors.

It is important to pay specific attention to the types of exposure
indices used to describe high-elevation 0; exposures. Many times the high-
elevation diurnal patterns are different from those at the lower elevation
sites, because the lowest 0; hourly average concentrations at many high-
elevation sites are near 0.04 ppm (Lefohn and Jones, 1986). The calculated
value determined for exposure indices that focus on the Tower hourly average
concentrations (e.g., SUMO index) tends to overstate the potential effects of
0; on vegetation (Lefohn et al., 1992). The absolute value of the SUMO
exposure index is influenced by the large number of values in the mid-
concentration range. The mid-concentration range appears not to be as
biologically significant as the infrequent occurrence of the higher

concentrations.
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In addition to the selection of specific exposure indices that are
useful for describing O; exposures that occur at high-elevation locations, the
use of mole fraction (e.g., ppm) or absolute concentration (e.g., micrograms
per cubic meter) to describe exposure is an important issue. Lefohn et al.
(1990c) have pointed out that exposure-response relationships developed using
results obtained at Tow-elevation locations may require pressure adjustments
when attempting to use air quality data obtained at high-elevation monitoring
sites to predict vegetation effects. When concentrations of gases are defined
in terms of mole fraction (i.e., units of ppm), the resulting term is
invariant to temperature and pressure. However, if exposures measured at low-
elevation sites are compared with those experienced at high-elevation sites,
the variation of concentration (in units of micrograms per cubic meter) as a
function of altitude may be significant. Given the same parts-per-million
value experienced at both high- and low-elevation sites, the absolute
concentrations (i.e., micrograms per cubic meter) at two elevations are
different. Temperature decreases inversely relative to elevation and
therefore, the change in absolute concentration would be less than estimated
when only pressure changes are considered. However, temperature differences
dé not usually compensate for the pressure effect (Lefohn et al., 1990c).

| In considering the effect of pressure changes on concentration, EPA
(1978) indicated that moles of gaseous pollutant per liter of air was the most
useful parameter when considering health effects caused by exposure to air
pollution. The same should be true when considering effects of air pollution
on vegetation. There are numerous environmental factors that affect the
relationship between exposure and response. For example, the amount of O,

entering the stomata, as well as temperature, relative humidity, cloud cover,

2-19

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx305 91 WMR 0732290 055419k 234 W

and moisture status may influence the actual dose the plant experiences
(Runeckles, 1987). However, assuming that the sensitivity of the biological
target is nearly identical at both Tow and high elevations, some adjustment
should be necessary when attempting to link experimental data obtained at low-
elevation sites with air quality data monitored at high-elevation stations.
Lefohn et al. (1990c), using Boyle’s Law as a first approximation, found that
the value of cumulative exposure indices that use a threshold concentration
can vary substantially as a function of pressure. The authors pointed out
that although the magnitude of adjustment to each hourly average concentration
was less than 20%, the cumulative effect of applying a number of small

corrections, that were biased in the same direction, to an exposure index with

a threshold, resulted in potentially large adjustments.

Responding to Lefohn et aJ. (1990c), Larson and Vong (1990) discussed
the Timitations of the use of O; concentration as mass per unit volume and
derived a correction for temperature and pressure changes. The authors’
approach was based upon a theoretical evaluation of the 0; flux relative to
its value at standard conditions. Temperature and pressure were allowed to
vary but wind speed and tree dimensions were held constant. The relative
change in the flux to the intercellular air space of the foliage at the top of
the forest canopy was estimated as a function of temperature and pressure.
Larson and Vong (1990) subdivided the overall resistance to mass transfer into
three components: the stomatal resistance, the needle/branch boundary layer
resistance, and the turbulent air resistance at the top of the canopy. Based
on their theoretical calculation, the authors concluded that if identical 0,
mass concentrations were measured at two sites separated by 2000 m elevation,

the 0; flux at the Tower site would exceed the flux at the higher site by 4-
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8%, due to temperature and pressure effects on both air volume and 0O
deposition velocity.

Larson and Vong (1990) considered deposition instead of concentration in
their analysis. Although, at this time, there is no parameter that links
deposition with direct vegetation effects, if an index were developed and
exhibited cumulative properties with a threshold deposition value, an
adjustment, perhaps similar to the magnitude described by Lefohn et al.
(1990c), still appears to be required. Using the range of adjustments
suggested by Larson and Vong (1990), we explored the effect on cumulative
indices by applying adjustment in the range of 1-10% to each of the hourly
average concentrations. We compared the values of the cumulative indices,
SUM0O6, SUMO7, and W126, after the hourly concentrations were adjusted, with
the values of the cumulative indices that were based on unadjusted hourly
average concentrations.

The results of the comparison are provided in Tables 2-9 through 2-11.
The tables summarize the percentage differences between adjusted and
unadjusted integrated exposures as a function of the percent changes made to
each of the hourly average concentrations. A review of the tables shows,
depending upon the adjustment factor selected, that substantial differences
occur between the unadjusted and adjusted cumulative index. For example, in
1987, for the high-elevation Whiteface Mountain 1 site, if the effect of
temperature and pressure resulted in an adjustment factor of 10%, a 47.9%
reduction in the SUMO7 cumulative value would have been experienced (Table
2-10). Therefore, assuming that the exposure-response models were developed
using hourly average data reported in parts per million at a low-elevation

location, the concentration information would have to be changed to absolute
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concentration units (e.g., micrograms per cubic meter) and adjustments made to
reflect the Tower exposures experienced at the high-elevation site.

Additional experimental research is required to clarify this important
issue (Lefohn et al., 1990c; Lefohn and Lucier, 1991). Neither target
sensitivity nor temperature considerations were integrated into the adjusted
cumulative exposure values described above. As indicated above, temperature
is not considered an important ameliorating factor when actual ambient
temperatures are used. However, the sensitivity of the target organism may be
an important consideration. Unfortunately, the relationship of target
organism sensitivity to O; and to elevation and temperature has not been
evaluated. In the absence of such information, the biological consequences of
high-elevation exposures to the reduced absolute concentration of 0;, that are
disguised by the use of mole fraction units of concentration, need to be
further investigated. For biological purposes, concentration should be
converted to micrograms per cubic meter units, based upon ambient pressures
and temperatures. Only then will it be possible to compare the results of
biological investigations conducted at Tow- and high-elevation sites,
particularly if these involve the generation of exposure-response

relationships based upon cumulative threshold-sensitive indices.
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Table 2-4. June-August percentile distribution of hourly 0, concentrations and values for the SUM06 values calculated for a
24~h window for "clean” sites in the United Sta%es with data capture 2 75% for the 3-month pericd.
Concentraticons are in ppm units.

Percentiles
Site/AIRS ID Year Min. 10 30 50 70 a0 g5 ] Max No. of SUM0S
Obs. {ppm-h)

Glacier NP, MT 1989 000  .005 .015 .026 .036 .046 .050 .056 .085 2125 .86

300238001

Great Sand Dunes NM, CO 1989 011 .030 .036 .040 .043 .048 .050 .055 .060 1924 0.24

080030002

Yellowstone NP, WY 1989 .003  .029 .030 .038 .044 .051 .055 .060 .06 2016 1.90

560391010

Badlands NP, SD 1989 009  .025 .033 .040 .046 .054 .056 .065 .071 2093 3.07

460711001

Theodore Roosevelt NP,ND 1984 000  .019 .029 .036 .042 .050 .055 .063 .068 2017 2.71

380530002 1386 .004  .019 .028 .034 .039 .046 .043 ,053 .059 2180 0.00
1989 .005  .024 .033 .041 .047 .056 .062 .067 .073 2193 9.88
1890 005  .019 .028 .034 .040 .043 .054 .063 .070 2190 2.92

Arches NP, UT 1989 .000  .034 .041 .046 .051 .058 .060 .066 .080 1836 6.74

430130101

Custer NF, MT 1978 .000  .015 .030 .035 .040 .050 .055 .055 .085 2106 0.85

300870101 1979 .010  .030 .035 .040 .045 .050 .055 .060 .065 2109 1.76
1380 015 .030 .040 .045 .050 .055 .060 .065 .070 1839 10.52
1981 010 .025 .035 .040 .045 .045 .045 .050 .070 1828 0.61
1983 010 .030 .035 .040 .045 .050 .055 .060 .065 2181 4.18

Ochoco NF, OR 1982 010 .025 .035 .040 .045 .050 .055 .060 .065 1994 1.87

410130111 1983 .010  .025 .030 .035 .040 .050 .050 .055 .060 2107 0.96
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Table 2-5. Comparison of SUM06 (exposure window) cumulative exposure values
with the SUM06 (24-h window) values and percentage of 24-h
cumulative value that occurred during the exposure window.
Cumulative values are in units of ppm-h.

Site/ SUM06 SUM06 Length of

Treatment (Exposure Period) (24-h) % Exposure (Hours)
SOYBEAN
ARGONNE 1980 (CORSOY)
CF 0.3 2.7 11 7
AA 5.2 7.6 68 7
NF 5.4 7.7 70 7
NF + 0.03 18.8 21.1 89 7
NF + 0.06 32.5 34.8 93 7
NF + 0.09 43.0 45.3 95 7
ARGONNE 1983 (CORSOY/AMSOY)
CF 0.3 5.2 6 7
AA 12.9 17.9 72 7
NF 12.4 17.4 71 7
NF + 0.03 34.5 39.2 88 7
NF + 0.06 52.5 57.4 92 7
ARGONNE 1983 (PELLA/WILLIAMS)
CF 0.3 5.3 6 7
AA 13.0 17.9 72 7
NF 11.7 16.6 70 7
NF + 0.03 33.4 37.9 88 7
NF + 0.06 52.3 57.2 91 7
ARGONNE 1985 (CORSOY_79)
CF -D 0.5 2.1 26 12
CF - W 0.3 1.8 14 12
AA - W 16.5 18.0 91 12
NF - D 13.6 15.2 90 12
NF - W 13.5 15.1 90 12
NF x 1.33 -D 32.1 33.7 95 12
NF x 1.33 - W 34.4 36.0 96 12
NF x 1.67 - D 50.0 51.6 97 12
NF x 1.67 - W 52.7 54.3 97 12
NF x 2.00 - D 68.0 69.6 98 12
NF x 2.00 - W 71.6 73.2 98 12
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Table 2-5. (Continued).

Site/ SUMO06 SUM06 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)
ARGONNE 1986 (CORSOY_79)
CF -D 0.0 0.9 0 12
CF - W 0.0 0.9 0 12
AA - D 9.8 10.6 92 12
AA - W 11.4 12.2 93 12
NF - D 8.9 9.9 90 12
NF - W 10.0 10.9 92 12
NF x 1.5 -D 44.5 45.4 98 12
NF x1.5-W 46.3 47.2 98 12
NF x2.0-0D 67.1 68.0 99 12
NF x2.0-W 68.4 69.3 99 12
NF x 2.5 -D 91.5 92.4 99 12
NF x 2.5 - W 93.2 94.1 99 12
BELTSVILLE 1983 (CORSOY 79/Williams_79)
CF -D 0.1 3.7 3 7
CF - W 0.0 3.6 0 7
AA - D 12.2 15.7 78 7
AA - W 12.3 15.8 78 7
NF - D 11.6 15.1 77 7
NF - W 9.5 13.1 75 7
NF + 0.03 - D 27.8 31.3 89 7
NF + 0.03 - W 27.2 30.7 89 7
NF + 0.06 - D 42.7 46.2 92 7
NF + 0.06 - W 42.6 46.2 92 7
NF + 0.09 - D 51.6 55.2 94 7
NF +0.09 - W 51.6 55.2 94 7
BTI 1981 (HODGSON)
CF 0.1 0.6 11 7
AA 0.2 0.7 29 7
NF 0.5 1.1 45 7
NF + 0.03 9.4 10.0 94 7
NF + 0.06 26.7 27.2 98 7
NF + 0.09 41.3 41.8 99 7
RALEIGH 1981 (DAVIS)
CF 0.6 7.1 8 7
AA 21.0 27.5 76 7
NF 24.8 31.3 79 7
NF + 0.02 44.6 51.1 87 7
NF + 0.03 62.8 69.3 91 7
NF + 0.05 79.2 85.7 92 7
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Table 2-5. (Continued).

Site/ SUMO06 SUMO06 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)
NF + 0.07 94.2 100.7 94 7
RALEIGH 1982 (DAVIS)
CF 0.4 5.7 7 7
AA 14.0 19.2 73 7
NF 11.4 16.7 68 7
NF + 0.02 32.4 37.7 86 7
NF + 0.04 51.6 56.8 91 7
NF + 0.06 67.2 72.5 93 7
NF x 1.3 32.4 37.7 86 7
NF x 1.6 45.2 50.5 90 7
NF x 1.9 52.6 57.9 91 7
RALEIGH 1983 (DAVIS)
CF -D 1.4 13.0 11 7
CF - W 1.0 12.6 8 7
AA - D 25.1 36.8 68 7
AA - W 24.9 36.6 68 7
NF - D 19.5 31.2 62 7
NF - W 18.0 29.7 61 7
NF + 0.02 -D 47.6 59.3 80 7
NF + 0.02 - W 47.6 59.3 80 7
NF + 0.04 - D 68.5 80.2 85 7
NF + 0.04 - W 71.5 83.2 86 7
RALEIGH 1984 (DAVIS)
CF -D 0.4 5.0 8 7
CF - W 0.4 5.0 8 7
AA 14.6 19.2 76 7
NF - D 12.3 16.9 73 7
NF - W 10.1 14.7 69 7
NF + 0.015 - D 35.0 39.6 88 7
NF + 0.015 - W 36.1 40.7 89 7
NF + 0.030 - D 49.9 54.5 92 7
NF + 0.030 - W 52.8 57.4 92 7
NF + 0.045 - D 61.4 66.0 a3 7
NF + 0.045 - W 59.1 63.7 a3 7
NF + 0.060 - D 71.6 76.2 94 7
NF + 0.060 - W 72.9 77.5 94 7

2-38

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBLx305 91 WMR 0732290 0554215 TlbL HE

Table 2-5. (Continued).

Site/ SUMO6 SUM06 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)

RALEIGH 1986 (YOUNG)

CF -D 1.1 1.2 85 12
CF - W 0.3 0.4 85 12
AA - W 16.3 16.4 99 12
NF - D 16.3 16.3 100 12
NF - W 12.7 12.7 100 12
NF x 1.3 -D 54.3 54.4 100 12
NF x 1.3 - W 51.5 51.5 100 12
NF x 1.6 - D 75.3 75.4 100 12
NF x 1.6 - W 72.9 72.9 100 12
NF x1.9-0D 94.3 94.4 100 12
NF x 1.9 - W 91.9 91.9 100 12
NF x 1.3* 57.4 57.4 100 12
NF x 1.6* 72.6 72.6 100 12
NF x 1.9* 98.1 98.2 100 12

*Rain Exclusion Cap

SORGHUM

ARGONNE 1982 (DEKALB)
CF .0 2.6 1 7
AA 5.6 8.2 69 7
NF 6.1 8.7 70 7
NF + 0.02 21.7 24.3 89 7
NF + 0.04 40.9 43.4 94 7
NF + 0.07 59.9 62.5 96 7
NF + 0.10 76.1 78.7 97 7

WHEAT

ARGONNE 1982 (ABE/ARTHUR 71)
CF 0.1 1.9 7 7
AA 3.8 5.4 70 7
NF 4.0 5.7 70 7
NF + 0.03 21.8 23.5 93 7
NF + 0.06 36.1 37.9 95 7
NF + 0.09 47.3 49.0 96 7
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Table 2-5. (Continued).

Site/ SUMO6 SUMO6 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)

ARGONNE 1983 (ABE/ARTHUR_71)

CF 0.2 3.6 5 7
AA 6.2 9.5 65 7
NF 5.4 8.8 62 7
NF + 0.02 15.7 19.0 82 7
NF + 0.04 25.8 29.1 88 7
NF + 0.06 33.8 37.2 91 7

BTI 1982 (VONA)
CF 0.1 0.9 11 7
AA 4.4 8.3 53 7
NF 3.2 7.0 46 7
NF + 0.03 17.5 21.4 82 7
NF + 0.06 29.4 33.6 88 7
NF + 0.09 40.8 44.6 92 7

BTI 1983 (VONA)
CF 1.0 2.2 46 7
AA 8.4 13.3 63 7
NF 7.6 12.6 60 7
NF X 1.5 16.2 21.1 77 7
NF X 2.0 22.4 27.3 82 7

CORN

ARGONNE 1981 (PAG 397/PIONEER 3780)
CF 0.2 2.0 10 7
AA 9.0 10.9 83 7
NF 8.0 9.9 81 7
NF + 0.03 35.7 37.6 95 7
NF + 0.06 56.6 56.8 100 7
NF + 0.09 74.3 76.1 98 7
NF + 0.12 90.1 91.9 98 7

COTTON

RALEIGH 1982 (STONEVILLE)
CF 0.6 9.3 6 6
CF* 0.1 8.8 2 6
AA 17.2 25.9 66 6
NF 21.6 30.3 71 6
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Table 2-5. (Continued).

Site/ SUMO6 SUMO06 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)
NF* 24.2 32.9 74 )
NF + 0.02 42.7 51.4 83 6
NF + 0.04 56.8 65.5 87 6
NF + 0.06 71.6 80.3 89 6
NF + 0.02% 36.6 45.3 81 6
NF + 0.04% 58.8 67.5 87 6
NF + 0.06% 65.0 73.7 88 6

* Frustum Doses

RALEIGH 1985 (McNAIR)

CF -D 0.3 0.7 44 12
CF - W 0.3 0.7 44 12
CF* 0.9 1.3 70 12
AA 29.6 30.0 99 12
AA - D 21.6 22.0 98 12
AA - W 25.5 25.9 98 12
NF -D 19.1 19.5 98 12
NF - W 19.3 19.7 98 12
NF x 1.33 - D 43.2 43.6 99 12
NF x 1.33 - W 41.0 41.4 99 12
NF x 1.33*% 42.4 42.8 99 12
NF x 1.66 - D 67.1 68.0 99 12
NF x 1.66 - W 63.4 63.8 99 12
NF x 1.99 - D 89.5 89.9 100 12
NF x 1.99 - W 83.6 84.0 100 12
NF x 1.99* 87.4 87.8 100 12

*Rain Exclusion Cap

PEANUT

RALEIGH 1980 (NC-6)
CF 0.5 3.2 16 8
AA 25.8 28.4 91 8
NF + 0.015 26.1 28.8 91 8
NF + 0.045 57.5 60.2 94 8
NF + 0.075 84.7 87.4 97 8
NF + 0.105 108.1 110.8 98 8
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Table 2-5. (Continued).

Site/ SUM06 SUMO6 Length of
Treatment (Exposure Period) (24-h) % Exposure (Hours)

TOBACCO
RALEIGH 1983 (McNAIR 944)

CF 1.1 3.1 36 12

AA 43.2 45.2 96 12

NF 28.5 30.5 94 12

NF + 0.02 49.2 51.2 96 12

NF + 0.04 58.2 60.2 97 12

NF + 0.06 67.8 69.8 g7 12

NF x 1.3 38.8 53.1 73 )

NF x 1.3 71.4 73.4 97 12

NF x 1.6 48.7 62.9 77 6

NF x 1.6 86.6 88.6 98 12

NF x 1.9 71.8 73.8 81 6

NF x 1.9 105.5 107.5 98 12
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Table 2-9. The effect of pressure and temperature changes on the SUMO6 cumulative exposure index.

Percent Reduction

Site Year Index Value 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
HF 1 HOWLAND FOREST 1 87 S06 9024 -1.0 -12.9 -13.8 -25.6 -37.3 -37.9 -49.5 -56.3 -56.7 -63.4
MM 1 MOUNT MITCHELL 1 86 S06 69969 -1.0 -6.6 -7.6 -13.1 -18.7 -19.5 -25.0 -29.0 -29.8 -33.8
MM 1 MOUNT MITCHELL 1 87 S06 98550 -1.0 -10.8 -11.7 -21.4 -31.0 -31.8 -41.3 -46.0 -46.5 -51.1
MM 2 MOUNT MITCHELL 2 86 S06 7262 -1.0 -18.5 -19.4 -36.6 -53.9 -54.3 -71.3 -77.1 -77.4 -83.1
MM 2 MOUNT MITCHELL 2 87 sS06 85324 -1.0 -9.5 -10.4 -18.8 -27.2 -28.0 -36.2 -42.1 -42.7 -48.5
NS 1 MOOSELAUKE 1 85 $S06 1590 -1.0 -3.5 -4.5 -6.9 -9.4 -10.3 -12.7 -18.1 -19.0 -24.3
MS 1 MOOSELAUKE 1 87 S06 72743 -1.0 -8.0 -9.0 -15.9 -22.8 -23.6 -30.5 -34.6 -35.3 -39.5
SH 1 SHENANDOAH 1 87 S06 96988 -1.0 -7.8 -8.7 -15.5 -22.2 -23.0 -29.6 -34.2 -35.0 -39.5
SH 2 SHENANDOAH 2 87 S06 10248 -1.0 -8.3 -9.2 -16.4 -23.6 -24.4 -31.5 -36.6 -37.3 -42.4
SH 3 SHENANDOAH 3 87 S06 40351 -1.0 -9.2 -10.1 -18.1 -26.1 -26.9 -34.8 -40.4 -41.0 -46.4
WF 1 WHITEFACE MOUNTAIN 1 86 S06 35560 -1.0 -11.8 -12.7 -23.4 -34.1 -34.8 -45.2 -50.7 -51.3 -56.6
WF 1 WHITEFACE MOUNTAIN 1 87 S06 91360 -1.0 -8.4 -9.3 -16.6 -23.9 -24.7 -31.9 -35.5 -36.2 -39.7
WF 3 WHITEFACE MOUNTAIN 3 87 S06 80948 -1.0 -6.3 -7.2 -12.4 -17.6 -18.5 -23.6 -27.8 -28.6 -32.8
WF 4 WHITEFACE MOUNTAIN 4 87 S06 40112 -1.0 -8.4 -9.3 -16.6 -23.9 -24.7 -31.8 -35.9 -36.6 -40.7
WT 1 WHITETOP 1 87 S06 218032 -1.0 -7.6 -8.5 -15.0 -21.4 -22.2 -28.6 -32.4 -33.2 -36.9
230090003 ACADIA NP 87 S06 30574 -1.0 -9.1 -10.0 -17.9 -25.9 -26.7 -34.5 -37.1 -37.8 -40.4
2300900031  ACADIA NP 86 S06 22857 -1.0 -9.4& -10.3 -18.6 -26.9 -27.6 -35.8 -39.6 -40.3 -44.1
360310002 ESSEX CO(WFM) 87 S06 94232 -1.0 -8.4 -9.3 -16.6 -23.9 -24.7 -31.9 -35.5 -36.2 -39.7
3603100022 ESSEX CO(WFM) 86 S06 44146 -1.0 -12.4 -13.3 -24.5 -35.6 -36.3 -47.3 -51.9 -52.5 -57.0
360310005 ESSEX CO(HUNT) 87 S06 36528 -1.0 -8.7 -9.7 -17.3 -24.9 -25.7 -33.2 -37.2 -37.9 -41.7
3603100051  ESSEX CO(CHUNT) 86 S06 23739 -1.0 -9.4 -10.3 -18.6 -26.9 -27.7 -35.8 -39.7 -40.3 -44.1
482890002N05 SHEN, DICKEY RIDGE 83 S06 236002 -1.0 -2.0 -21.9 -22.7 -23.5 -24.3 -25.1 -26.0 -26.8 -61.6
482890002N05 SHEN, DICKEY RIDGE 84 S06 146030 -1.0 -2.0 -42.4 -43.0 -43.6 -44.2 -44.7 -45.3 -45.9 -46.5
482890002N05 SHEN, DICKEY RIDGE 85 S06 121139 -1.0 -2.0 -48.1 -48.6 -49.1 -49.7 -50.2 -50.7 -51.3 -51.8
482890003N05 SHEN, BIG MEADOWS 83 S06 178618 -1.0 -2.0 -23.5 -24.3 -25.1 -25.9 -26.7 -27.4 -28.2 -69.6
482890003N05 SHEN, BIG MEADOWS 84 S06 161555 -1.0 -2.0 -52.5 -52.9 -53.4 -53.9 -54.4 -54.9 -55.4 -55.9
482890003N05 SHEN, BIG MEADOWS 85 S06 68256 -1.0 -2.0 -65.5 -65.9 -66.2 -66.6 -67.0 -67.3 -67.7 -68.0
482890004N05 SHEN, SAWMILL RUN 83 S06 129124 -1.0 -2.0 -23.1 -23.9 -24.7 -25.5 -26.3 -27.1 -27.9 -57.8
482890004N05 SHEN, SAWMILL RUN 84 S06 110343 -1.0 -2.0 -47.1 -47.6 -48.2 -48.7 -49.3 -49.8 -50.3 -50.9
482890004N05 SHEN, SAWMILL RUN 85 S06 64274 -1.0 -2.0 -57.6 -58.1 -58.5 -58.9 -59.4 -59.8 -60.2 -60.7
510150004 SHEN, SAWMILL RUN 86 S06 93186 -1.0 -2.0 -56.2 -56.6 -57.1 -57.5 -58.0 -58.4 -58.9 -59.4
510150004 SHEN, SAWMILL RUN 87 S06 116714 -1.0 -8.1 -9.0 -16.0 -23.0 -23.8 -30.7 -34.6 -35.3 -39.2
511130003 SHEN, BIG MEADOWS 85 S06 95743 -1.0 -2.0 -62.7 -63.1 -63.5 -63.8 -64.2 -64.6 -65.0 -65.4
511130003 SHEN, BIG MEADOWS 87 S06 187009 -1.0 -7.9 -8.9 -15.7 -22.5 -23.4 -30.1 -34.1 -34.8 -38.8
511870002 SHEN, DICKEY RIDGE 86 S06 77973 -1.0 -2.0 -65.1 -65.4 -65.8 -66.2 -66.5 -66.9 -67.2 -67.6
511870002 SHEN, DICKEY RIDGE 87 S06 180598 -1.0 -6.5 -7.5 -12.9 -18.4 -19.2 -24.6 -28.2 -29.0 -32.6
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Table 2-10. The effect of pressure and temperature changes on the SUMO7 cumulative exposure index.
Percent Reduction

Site Year Index Value 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
HF 1 HOWLAND FOREST 1 87 s07 1553 -1.0 -14.3 -27.6 -28.3 -41.3 -54.2 -63.6 -72.8 -73.1 -82.1
MM 1 MOUNT MITCHELL 1 86 S07 41353 -1.0 -7.9 -14.7 -15.6 -22.3 -29.0 -34.9 -40.7 -41.3 -47.1
MM 1 MOUNT MITCHELL 1 87 sSO7 36798 -1.0 -10.3 -19.6 -20.4 -29.5 -38.6 -43.5 -48.5 -49.0 -53.9
MM 2 MOUNT MITCHELL 2 87 s07 30835 -1.0 -11.6 -22.1 -22.9 -33.2 -43.5 -49.1 -54.8 -55.3 -60.8
MS 1 MOOSELAUKE 1 8 s07 1070 -1.0 -4.6 -8.1 -9.0 -12.5 -16.0 -22.0 -28.0 -28.8 -34.6
MS 1 MOOSELAUKE 1 87 s07 38524 -1.0 -7.0 -12.9 -13.8 -19.6 -25.4 -31.9 -38.2 -38.9 -45.1
SH 1 SHENANDOAH 1 87 SO07 48107 -1.0 -10.6 -20.1 -20.9 -30.3 -39.6 -45.6 -51.5 -52.1 -57.9
SH 2 SHENANDOAH 2 87 s07 46093 -1.0 -10.9 -20.8 -21.7 -31.4 -41.1 -47.0 -53.0 -53.5 -59.3
SH 3 SHENANDOAH 3 87 sO7 15934 -1.0 -10.9 -20.8 -21.6 -31.3 -40.9 -47.2 -53.5 -54.0 -60.1
WF 1 WHITEFACE MOUNTAIN 1 86 s07 10131 -1.0 -12.5 -24.0 -24.7 -36.0 -47.2 -55.3 -63.4 -63.8 -71.7
WF 1 WHITEFACE MOUNTAIN 1 87 s07 49161 -1.0 -8.4 -15.7 -16.6 -23.8 -31.0 -36.5 -41.9 -42.6 -47.9
WF 3 WHITEFACE MOUNTAIN 3 87 sO07 48616 -1.0 -6.6 -12.2 -13.1 -18.6 -24.1 -29.0 -34.0 -34.7 -39.5
WF & WHITEFACE MOUNTAIN 4 87 s07 20411 -1.0 -8.7 -16.3 -17.2 -24.7 -32.2 -37.4 -42.5 -43.1 -48.1
Wr 1 WHITETOP 1 87 S07 121735 -1.0 -8.8 -16.5 -17.4 -25.0 -32.6 -38.0 -43.4 -44.1 -49.4
230090003 ACADIA NP 87 s07 17157 -1.0 -8.4 -15.7 -16.6 -23.8 -31.0 -34.6 -38.1 -38.8 -42.3
2300900031 ACADIA NP 86 s07 11109 -1.0 -7.4 -13.8 -14.7 -21.0 -27.2 -30.2 -33.2 -33.9 -36.8
360310002 ESSEX CO(WFM) 87 807 50640 -1.0 -8.4 -15.7 -16.6 -23.8 -30.9 -36.4 -41.8 -42.4 -47.7
3603100022 ESSEX CO(WFM) 86 S07 13362 -1.0 -14.3 -27.5 -28.2 -41.2 -54.1 -59.9 -65.6 -66.0 -71.7
360310005 ESSEX CO(HUNT) 87 s07 18052 -1.0 -10.8 -20.5 -21.3 -30.9 -40.4 -46.5 -52.5 -53.0 -59.0
3603100051 ESSEX CO(HUNT) 86 SO7 11454 -1.0 -8.2 -15.4 -16.2 -23.3 -30.3 -34.4 -38.4 -39.1 -43.1
482890002N05 SHEN, DICKEY RIDGE 83 s07 100739 -1.0 -33.0 -33.7 -34.4 -35.1 -35.8 -36.4 -37.1 -37.8 -38.5
482890002N05 SHEN, DICKEY RIDGE 84 SO7 86755 -1.0 -31.2 -31.9 -32.6 -33.3 -34.0 -34.7 -35.4 -60.2 -60.6
482890002N05 SHEN, DICKEY RIDGE 85 s07 64870 -1.0 -28.8 -29.6 -30.3 -31.0 -31.7 -32.5 -33.2 -56.0 -56.4
482890003805 SHEN, BIG MEADOWS 83 S07 60365 -1.0 -42.6 -43.2 -43.8 -44.4 -45.0 -45.6 -46.2 -46.7 -47.3
482890003N05 SHEN, BIG MEADOWS 84 S07 79195 -1.0 -38.7 -39.3 -39.9 -40.6 -41.2 -41.8 -42.4 -69.0 -69.4
482890003N05 SHEN, BIG MEADOWS 85 807 24250 -1.0 -52.3 -52.8 -53.3 -53.8 -54.3 -54.7 -55.2 -72.0 -72.3
482890004N05 SHEN, SAWMILL RUN 83 S07 60566 -1.0 -28.7 -29.4 -30.2 -30.9 -31.6 -32.3 -33.1 -33.8 -34.5
482890004N05 SHEN, SAWMILL RUN 84 sS07 60205 -1.0 -33.0 -33.6 -34.3 -35.0 -35.7 -36.4 -37.1 -65.8 -66.2
482890004N05 SHEN, SAWMILL RUN 85 sS07 28083 -1.0 -40.6 -41.2 -41.8 -42.4 -43.0 -43.6 -44.2 -67.1 -67.5
510150004 SHEN, SAWMILL RUN 86 S07 42087 -1.0 -43.7 -44.3 -44.8 -45.4 -46.0 -46.6 -47.1 -76.8 -77.1
510150004 SHEN, SAWMILL RUN 87 sS07 61605 -1.0 -9.4 -17.8 -18.6 -26.8 -35.0 -40.7 -46.4 -47.0 -52.6
511130003 SHEN, BIG MEADOWS 86 SO07 36828 -1.0 -47.8 -48.3 -48.8 -49.4 -49.9 -50.4 -51.0 -75.9 -76.2
511130003 SHEN, BIG MEADOWS 87 S07 99216 -1.0 -9.2 -17.3 -18.2 -26.2 -34.2 -39.6 -45.0 -45.6 -50.9
511870002 SHEN, DICKEY RIDGE B6 sO07 28076 -1.0 -52.8 -53.3 -53.7 -54.2 -54.7 -55.2 -55.7 -82.3 -82.5
511870002 SHEN, DICKEY RIDGE 87 SO07 111669 -1.0 -7.4 -13.8 -14.7 -21.0 -27.3 -32.4 -37.6 -38.2 -43.3

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS

2-56

Not for Resale



API PUBLx*305 91 BN (0732290 0554233 T31 WA

Table 2-11. The effect of pressure and temperature changes on the W126 cumulative exposure index.
Percent Reduction

Site Year Index Value 1% 2% 3% 4% 5% &% 7% 8% 9%  10%
HF 1 HOWLAND FOREST 1 87 w126 11913 -5.6 -11.0 -16.2 -21.1 -25.8 -30.3 -34.5 -38.6 -42.5 -46.1
MM 1 MOUNT MITCHELL 1 86 wWi26 58319 -3.9 -7.8 -11.6 -15.4 -19.0 -22.7 -26.2 -29.7 -33.1 -36.4
MM 1 MOUNT MITCHELL 1 87 W126 82432 -4.8 -9.4 -13.9 -18.3 -22.6 -26.7 -30.7 -34.5 -38.2 -41.8
MM 2 MOUNT MITCHELL 2 86 W126 10014  -6.0 -11.8 -17.2 -22.4 -27.4 -32.0 -36.5 -40.7 -44.6 -48.3
MM 2 MOUNT MITCHELL 2 87 w126 71150 -4.8 -9.6 -14.1 -18.6 -22.9 -27.1 -31.1 -35.0 -38.7 -42.3
MS 1 MOOSELAUKE 1 86 W126 2161 -4.4 -8.7 -12.9 -16.9 -20.9 -24.7 -28.4 -32.0 -35.5 -38.8
MS 1 MOOSELAUKE 1 87 W126 66671 -4.3 -8.6 -12.7 -16.7 -20.7 -24.5 -28.2 -31.8 -35.4 -38.8
SH 1 SHENANDOAH 1 86 W126 183  -4.7 -9.3 -13.6 -17.7 -21.6 -25.4 -28.9 -32.3 -35.6 -38.7
SH 1 SHENANDOAR 1 87 W126 76878 -4.3 -8.5 -12.7 -16.7 -20.7 -24.6 -28.4 -32.0 -35.6 -39.1
SH 2 SHENANDOAH 2 87 W126 79978 -4.4 -8.8 -13.0 -17.2 -21.2 -25.2 -29.0 -32.7 -36.3 -39.8
SH 3 SHENANDOCAK 3 86 W126 48 -5.1 -9.9 -14.5 -18.9 -23.1 -27.0 -30.8 -34.3 -37.7 -40.9
SH 3 SHENANDOAH 3 87 W126 34788 -4.8 -9.4 -13.9 -18.3 -22.5 -26.6 -30.6 -34.4 -38.1 -41.7
WF 1 WHITEFACE MOUNTAIN 1 86 Wi126 31226 -5.2 -10.3 -15.1 -19.8 -24.4 -28.7 -32.9 -37.0 -40.8 -44.5
WF 1 WHITEFACE MOUNTAIN 1 87 wi26 78491 -4.2 -8.3 -12.3 -16.3 -20.1 -23.9 -27.5 -31.1 -34.6 -38.0
WF 3 WHITEFACE MOUNTAIN 3 87 Wi126 70254 -3.8 -7.5 -11.1 -14.7 -18.2 -21.6 -25.0 -28.3 -31.6 -34.7
WF &4 WHITEFACE MOUNTAIN 4 87 W126 35242 -4.3 -8.4 -12.5 -16.5 -20.3 -24.1 -27.7 -31.3 -34.8 -38.1
WT 1 WHITETOP 1 87 w126 163524 -3.8 -7.6 -11.3 -14.9 -18.6 -22.1 -25.6 -29.0 -32.4 -35.7
230090003 ACADIA NP 87 w126 32320 -4.2 -8.3 -12.3 -16.1 -19.8 -23.4 -26.9 -30.2 -33.5 -36.6
2300900031  ACADIA NP 86 W126 26301 -4.5 -8.9 -13.1 -17.2 -21.%1 -24.9 -28.5 -32.1 -35.4 -38.7
340310002 ESSEX CO(WFM) 87 w126 80429 -4.2 -8.3 -12.3 -16.2 -20.1 -23.8 -27.5 -31.0 -34.5 -37.9
3603100022 ESSEX CO(WFM) 86 W126 41256 -5.2 -10.3 -15.2 -19.9 -24.4 -28.8 -32.9 -37.0 -40.8 -44.4
360310005 ESSEX COCHUNT) 87 w126 32339 -4.5 -8.9 -13.2 -17.3 -21.4 -25.3 -29.2 -32.9 -36.5 -39.9
3603100051 ESSEX CO(CHUNT) 86 W126 25114 -4.6 -9.1 -13.4 -17.5 -21.6 -25.5 -29.2 -32.9 -36.4 -39.8
482890002N05 SHEN, DICKEY RIDGE 83 w126 156856 -3.9 -7.8 -11.6 -15.4 -19.1 -22.7 -26.2 -29.7 -33.1 -36.4
482890002N05 SHEN, DICKEY RIDGE 84 W126 103905 -4.0 -7.8 -11.7 -15.4 -19.1 -22.8 -26.3 -29.8 -33.2 -36.5
482890002N05 SHEN, DICKEY RIDGE 85 w126 83067 -4.0 -7.9 -11.7 -15.5 -19.2 -22.8 -26.4 -29.8 -33.2 -36.5
482890003N05 SHEN, BIG MEADOWS 83 w126 110120 -4.3 -8.5 -12.7 -16.8 -20.7 -24.6 -28.4 -32.1 -35.6 -39.1
482890003N05 SHEN, BIG MEADOWS 84 W126 107591 -4.4 -8.8 -13.0 -17.2 -21.2 -25.2 -29.0 -32.7 -36.4 -39.9
482890003N05 SHEN, BIG MEADOWS 85 W126 48696 -5.1 -10.0 -14.7 -19.3 -23.7 -27.9 -32.0 -35.9 -39.7 -43.3
482890004N05 SHEN, SAWMILL RUN 83 w126 90847 -3.7 -7.4 -11.0 -14.6 -18.1 -21.5 -24.8 -28.1 -31.3 -34.4
482890004N05 SHEN, SAWMILL RUN B4 W126 76420 -4.2 -8.3 -12.3 -16.3 -20.1 -23.9 -27.6 -31.2 -34.8 -38.2
482890004N05 SHEN, SAWMILL RUN 85 W126 44179 -4.6 -9.1 -13.5 -17.7 -21.8 -25.8 -29.7 -33.4 -37.0 -40.5
510150004 SHEN, SAWMILL RUN 86 W126 64309 -4.7 -9.4 -13.9 -18.2 -22.5 -26.6 -30.6 -34.4 -38.2 -41.8
510150004 SHEN, SAWMILL RUN 87 w126 90748 -4.1 -8.0 -12.0 -15.8 -19.6 -23.3 -26.9 -30.4 -33.9 -37.3
511130003 SHEN, BIG MEADOWS 86 w126 65046 -5.0 -9.8 -14.4 -19.0 -23.3 -27.6 -31.6 -35.5 -39.3 -42.9
511130003 SHEN, BIG MEADOWS 87 W126 144365 -4.1 -8.1 -12.0 -15.9 -19.7 -23.4 -27.0 -30.6 -34.1 -37.5
511870002 SHEN, DICKEY RIDGE 86 w126 56349 -5.1 -10.1 -14.9 -19.5 -23.9 -28.2 -32.3 -36.3 -40.1 -43.7
511870002 SHEN, DICKEY RIDGE 87 w126 145031 -3.6 -7.2 -10.8 -14.3 -17.8 -21.2 -24.6 -27.9 -31.1 -34.3
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CHAPTER 3
THE EFFECTS ON NONATTAINMENT STATUS IF THE CURRENT STANDARD WERE CHANGED
3.1 INTRODUCTION

Given the concern that the current form of the 0; standard may not be
appropriate for protecting vegetation (Lee et al., 1991; Tingey et al., 1991),
we have explored the effects on nonattainment status by Towering or modifying
the current form.

The interpretation of the current form of the O; standard is relatively
straightforward. In general, the average number of days per year above the
level of the standard must be less than or equal to 1. In its simplest form,
the number of exceedances each year would be recorded and then averaged over
the past 3 years to determine if this average is less than or equal to 1.
Most of the complications that arise are associated with accounting for
incomplete sampling or changes in emissions.

| The key terms used in this discussion are defined as follows:

e Hour is interpreted as clock hour.

e Day (i.e., daily) is interpreted as calendar day.

e Air quality data are examined on a site-by-site basis and each

individual site must meet the standard. Data from several
different sites are not normally combined or averaged when

assessing compliance.

e "A daily maximum value" refers to the maximum hourly O; value for a
day.

e "A valid daily" maximum means that at least 75% of the hourly values
from 9:01 A.M. to 9:00 P.M. (Local Standard Time) were measured or
at Teast one hourly value exceeded the level of the standard.

o The word "exceedance" is used to describe a daily maximum O;
measurement that is above the level of the standard. The
phrase "expected number of exceedances" is equivalent to "the
expected number of daily maximum O; values above the level of
the standard."
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3.2 LOWERING THE CURRENT FORM OF THE SECONDARY OZONE STANDARD FROM 0.12 PPM
TO 0.10 AND 0.08 PPM

For the current form of the standard, EPA uses the following two methods
to determine the average number of exceedances of 0; in a year:

e The Design Value method; and

o The Estimated Exceedance method.
In general, a complete year of data is a year in which at least 75 percent of
the required monitoring days in the O; season have recorded daily maximum
values. In some cases, compliance can be determined with less than 75 percent
data capture. Using the data from such cases, however, is always approached
with caution and efforts are made to Took more closely at the data to obtain a

better picture of air quality.

3.2.1 DESIGN VALUE

Using the design value is the easiest way of evaluating nonattainment.
The design value is the daily maximum value over a set of complete monitoring
years that will deliver an average number of exceedances greater or less than
1.0. For example, if the fourth highest value in 3 compléte years of data is
greater than the standard, then there will be four exceedances in three years
and the site will be in nonattainment because the average number of
exceedances is greater than 1.0. Likewise, if the fourth highest value does
not exceed the standard, then the site has no more than three exceedances in 3
years and is in compliance with the standard. It follows that if only 2
complete years of data are available, the third highest value in the period
will determine the compliance with the standard, and with only 1 complete year
of data available, the second highest value in that year, if it exceeds the
standard, will place the site in nonattainment.
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In conjunction with the design value determination, then, it is possible
to have 3 monitoring years of data but only 2 years with 75 percent or more of
the daily maximums recorded. In this instance, according to the procedure,
the third highest value would be used to determine nonattainment. In order to
ensure, however, that valid daily maximums in an incomplete year are not
ignored, the daily maximums for all 3 years are considered when determining
the design value.

In some cases, no complete years of data are available (i.e., no years
have 75 percent of daily maximums recorded). Accordingly, if there are fewer
than 90 days of data for the monitoring period, then compliance will be
determined on a case-by-case basis. However, if there are at least 90 days of
data in the 3-year period, the design value can be determined as follows:
Divide the number of valid daily maximums during the 3-year period by the
required number of monitoring days per year, and add 1.0 to the above total,
then use the integer portion of the result as the rank of the design value.

The first part of this formula delivers a number that reflects the
number of complete years of data that would result if all the valid daily
maximums were recorded in one monitoring season. Since the rank of the design
value is determined by the number of complete years of data, 1.0 must be added
to this total to deliver the rank of the design value that, if greater than
the standard, would cause the average number of exceedances in a year to be
greater than 1.0. The integer portion is taken for the obvious reason that a
rank must be a whole number.

Although the design value can be used in most cases, it is important to
carefully evaluate the effects of missing data. Some sites actually in

nonattainment might appear to be in attainment if the design value
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determination is used alone. For example, if monitoring were to occur for 200
days at a specific site which appeared to be in attainment, it is impossible
to ascertain unequivocally the nonattainment status, using the design value
method, if the O; season for that site was defined as 214 days. It is
possible that the maximum values that were experienced during the 14 days,
when monitoring did not occur, might have exceeded the standard and therefore,
placed the site in nonattainment by increasing the average exceedances to more
than one per year. This consideration is especially important when only one

more exceedance for the year would place the site in nonattainment.

3.2.2 ESTIMATED EXCEEDANCE

When the validity of using the design value is in question due to
missing data, the number of exceedances in a year is estimated by
mathematically compensating for the missing days through the use of the
estimated exceedance formula.

The following formula is used to estimate the number of exceedances per

year:
e=v+({(v/n)*((N-n-2)
Where v = the number of daily values above the level of the standard.
n = the number of valid daily maximums.
N = the number of required monitoring days in a season.
z = the number of days assumed to be less than the standard level.
e = the estimated number of exceedances for the year.

The estimated number of exceedances, e, is rounded to one decimal place, with

fractions containing 0.05 rounded up.
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The 75 percent data criterion is desirable when using the estimated
exceedance formula. It is possible to use years that do not meet this
criterion. However, caution is exercised when using data from years with less
than 75 percent data capture. In particular, a monitor with 50 percent or
lTess data capture is looked at very closely.

The estimated exceedances over all monitoring years are averaged to
determine if the site has more or less than an average of one exceedance per
year. With this in mind, the following guidelines were used in our analysis:

. If a year had at least 75% data capture and at least one

exceedance (v > 1), then the data from that year were
used with complete validity;

. If a year had at Teast 75% data capture but no exceedances (v
= 0), then e = 0. The data from that year were used in the
final averaging;

. If a year had less than 75% data capture and no exceedances (v
= 0), then e =0. The data from that year were not used in
the final averaging;

. If a year had less than 75% data capture and at least one

exceedance (v > 1) then e > 1. The data from that year were

used in the final averaging. However, sites with extremely
poor data capture were closely examined.

3.2.3 LOWERING THE STANDARD TO 0.10 AND 0.08 PPM

Use of the two methods described above usually determined compliance
with the 0; standard. However, there are some exceptions. For example, sites
with inadequate data capture or sites without monitors but in the vicinity of
a nonattainment area, require a subjective determination of nonattainment
status by proper authorities (i.e., the states or the EPA).

Ozone hourly average concentrations from each site for 1986, 1987, 1988,
and 1989 in the EPA’s AIRS database were reviewed, using the guidelines
provided by the U.S. Environmental Protection Agency (EPA, 1979; EPA, 1990).
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Those sites found to be in nonattainment were organized into either (1)
Metropolitan Statistical Areas (MSA), (2) Consolidated Metropolitan
Statistical Areas (CMSA), or (3) non-MSA subdivisions (Bureau of the Census,
1988). The results of the analysis, using the current form of the standard
(i.e., 0.12 ppm), were compared with EPA’s list of nonattainment areas for the
periods 1986-1988 and 1987-1989.

In a few instances, EPA identified counties as being in nonattainment
even though (1) the monitoring data showed no exceedances or (2) there were no
0; monitoring sites in the county. Two counties in Maine (Lincoln and Waldo)
are two examples where 0; was not monitored but the counties were included in
the nonattainment 1ist for both 1986-1988 and 1987-1989. Upon further
discussion with EPA, we learned that either the state or EPA has the option to
place a county in nonattainment, if areas around the county have been
designated as being in nonattainment. Thus, in our analysis using the 0.12
ppm form of the standard, we have included those areas that have been
subjectively determined by either the state or EPA as being in nonattainment,
even though monitoring data did not justify such a designation. However, for
the 0.10 and 0.08 ppm analyses, areas are designated as being in nonattainment
only when monitoring data support the designation. Therefore, a small number
of areas designated as being in nonattainment for the 0.12 ppm analysis are
not identified as being in nonattainment when the 0.10 and 0.08 ppm thresholds
are applied.

Tables 3-1 to 3-3 summarize the nonattainment areas for the years 1986-
1988, using threshold values of 0.12, 0.10, and 0.08 ppm, respectively.
Figures 3-1 to 3-3 show the nonattainment areas for the period. The gray-

shaded areas identify counties not located in any specific MSA or CMSA. For

3-6

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBL*305 91 EE 0732290 D554240 171 WH

the period 1986-1988, there were 101 areas that did not meet the NAAQS for O
(Table 3-1). When a threshold of 0.10 ppm was applied, there were 180 areas
in nonattainment for the same period (Table 3-2). When a threshold of 0.08
ppm was used, there were 220 areas in nonattainment (Table 3-3). As indicated
previously, those areas designated as nonattainment, using the 0.10 and 0.08
ppm thresholds, are based solely on monitoring data. The states and the EPA
might identify additional sites in nonattainment, based on subjectively
determined criteria.

Tables 3-4 to 3-6 summarize the nonattainment areas for the years 1987-
1989, using threshold values of 0.12, 0.10, and 0.08 ppm, respectively.
Figures 3-4 to 3-6 show the areas in nonattainment. For this period, there
were 96 areas that did not meet the NAAQS for O; (Table 3-4). EPA had
previously announced that there were 96 areas in nonattainment; however,
Fayette County, Tennessee, is also in nonattainment, although apparently not
%dentified by the EPA. However, EPA has decided recently to include this
éounty in the Memphis MSA. Table 3-7 summarizes the compliance schedules set
by the Clean Air Act for the 96 areas now violating federal health standards
for O;. When a threshold of 0.10 ppm was applied, there were 181 areas in
nonattainment for the same period (Table 3-5). When a threshold of 0.08 ppm
was used, there were 231 areas in nonattainment (Table 3-6). As indicated
previously, those areas designated as nonattainment, using the 0.10 and 0.08
ppm thresholds, are based solely on monitoring data.

For both the 1986-1988 and 1987-1989 periods, 0, data collected by the
State of Nevada were not included. EPA believes that some of the data are

questionable and therefore, the Agency decided not to use the information.
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Because 0; exposures in 1989 were lower in many areas of the United
States when compared with exposures in 1988, there were fewer areas in
nonattainment, using the current form of the standard (i.e., 0.12 ppm), for
the period 1987-1989 when compared with the period 1986-1988 (96 versus 101
areas). The following areas designated as being in nonattainment for 1986-
1988 were in attainment for the period 1987-1989:

ANDERSON, SC
COLUMBIA, SC
HUNTSVILLE, AL
JACKSONVILLE, FL
LAFAYETTE-WEST LAFAYETTE, IN
PHOENIX, AZ
PORTLAND-VANCOUVER, OR-WA
TULSA, OK

Evansville (IN-KY), Johnson City-Kingsport-Bristol (TN-VA), and Smyth Co (VA)
were in nonattainment for 1987-1989, but not for the period 1986-1988.

As indicated in the results section, using a threshold of 0.10 ppm,
there were 180 nonattainment areas in 1986-1988, compared with 181
nonattainment areas in 1987-1989. Using the 0.10 ppm threshold, the
following areas that were in nonattainment for 1986-1988 were in attainment
for the period 1987-1989:

BLOOMINGTON-NORMAL, IL
GADSDEN, AL
GREELEY, CO

JEFFERSON CO, KS
MEDFORD, OR
ODESSA, TX

SALEM, OR
WICHITA, KS
WICOMICO CO, MD

The following areas were in nonattainment in 1987-1989, but in attainment in
1986-1988:
DAVENPORT-ROCK ISLAND-MOLINE, IA-IL
DODGE CO, WI
DOOR CO, WI
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GILES CO, TN
HOUMA-THIBODAUX, LA
SAN LUIS OBISPO CO, CA
ST. MARY PAR (CO.), LA
TYLER CO, TX
VICTORIA, TX
WAUSAU, WI

When the 0.08 ppm threshold was applied, there were 220 nonattainment
areas in 1986-1988, compared with 231 nonattainment areas in 1987-1989. Using
the 0.08 ppm threshold, the following areas that were in nonattainment for
1986-1988 were in attainment for the period 1987-1989:

GADSDEN, AL
MESA CO, CO
ODESSA, TX
SPOKANE, WA
WILLIAMSON CO, IL

The following areas were in nonattainment in 1987-1989, but in attainment in
1986-1988:

ALEXANDRIA, LA
ANDERSON, 1IN
APACHE CO, AZ
CHITTENDEN CO, VT
DOOR CO, WI
FORT MYERS-CAPE CORAL, FL
HOUMA-THIBODAUX, LA
MARIPOSA CO, CA
OCONEE CO, SC
PITTSFIELD, MA
ST MARY PAR (CO.), LA
TUOLUMNE CO, CA
TYLER CO, TX
VICTORIA, TX
WASHINGTON CO, ME
YUKON-KOYUKUK CO, AK

Several of the areas listed in the nonattainment tables for 1986-1988 were in

attainment for 1987-1989 because these areas did not violate the standard in

1989. In some cases, areas listed in nonattainment for the 1987-1989 period

were in attainment in 1986-1988 because insufficient monitoring data existed

during the earlier period. Other areas, having monitored during 1986, did not
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monitor during the 1987-1989 period. In other cases, the loss or gain of
monitoring years changed either the design value or expected exceedances, with
the result that sites would either be added or deleted from the nonattainment
list.

As indicated previously, when the validity of using the design value is
in question due to missing data, the number of exceedances in a year was
estimated by mathematically compensating for the missing days through the use
of an estimated exceedance formula. EPA has calculated, for the current form
of the standard, the value for "z" (the number of days assumed to be less than
the standard level over the number of missing days). For estimating
nonattainment using the 0.10 and 0.08 ppm thresholds, we assumed z = 0. The
result of assuming z = 0 is that for the cases where nonattainment status for
a specific site is based on the "estimated exceedance method," we may have
overestimated the number of exceedances.

To estimate the overall effect of setting z = 0, we reviewed the 0; data
for those sites in nonattainment, using the 0.10 and 0.08 ppm thresholds. We
then evaluated which of the two methods (i.e., design value or estimated
exceedance) was used to determine the nonattainment status. For the period
1987-1989, 97.4% of the nonattainment classifications, using the 0.10 ppm
threshold, were based on the "design value" method. For the 0.08 ppm
threshold, 99.8% of the nonattainment classifications were based on the
"design value" method. Therefore, the effect of assuming z = 0 for the 1987-
1989 data, for classifying nonattainment, did not have a major impact on the
final results. We assume that a similar conclusion would result if the 1986-

1988 data were re-evaluated.
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In summary, when exploring the effects on nonattainment status when the
current form of the standard was changed from 0.12 ppm to either 0.10 or 0.08
ppm for the 1987-89 and 1986-88 periods, we found the greatest increase in
nonattainment areas occurred when the standard was lowered to 0.10 ppm. The
major growth in nonattainment areas consisted of an increase in the number of
areas versus an expansion of existing nonattainment areas. The application of
a revised standard for O; would mainly increase the number of nonattainment
areas (i.e., CMSA, MSA, and non-MSA) that are not near the current existing
areas. In other words, rather than growth occurring near existing
nonattainment areas, it would occur at new locations removed from the current
nonattainment areas.

Except for the Plains States, the major growth on a regional basis would
be dramatic for all regions across the United States. The most dramatic
differences would be in regions where states were completely in attainment
with the current standard. For example, Oregon and Washington were in
attainment for the 1987-89 period. However, if a standard of 0.10 ppm were
épp]ied, the Seattle/Tacoma, Portland, and Eugene areas would be classified as
ﬁonattainment. A1l Rocky Mountain states, other than the Salt Lake area of
Utah, are currently in attainment. A revised standard would classify the

Denver, Phoenix, and Las Cruces areas into nonattainment status.
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3.3 MODIFYING THE CURRENT FORM OF THE SECONDARY STANDARD
3.3.1 INTRODUCTION

Published evidence shows that the current form of the standard appears
to be inappropriate for protecting vegetation (Lefohn et al., 1989; Lee et
al., 1991; Tingey et al., 1991). Lee et al. (1991), using vegetation effects
data obtained from 31 field experiments (involving 12 crops), mostly operated
by the NCLAN program, evaluated the efficacy of the following four O; exposure
indices:

e The sum of all hourly average concentrations using a
sigmoidally-weighted function (SIGMOID);

e The sum of all hourly average concentrations > 0.06 ppm
(SUMO06) ;

e The 7-h average concentration calculated over the experimental
period; and

e The second highest daily maximum concentration (the current
form of the standard).

The authors concluded that although no single exposure index was best in
describing the exposure-response relationship for the 49 case studies, the
performance of the second highest daily maximum concentration exposure index,
the current form of the standard, was considerably worse than the other three
jndices. The SIGMOID, SUM06, and 7-h average concentration indices were
nearly equivalent in performance, with a slight preference for the two
cumulative indices (i.e., SIGMOID and SUMO06).

Lee et al. (1991) reported that the current form of the standard did not
perform adequately because it (1) poorly related to plant growth, (2) ignored
exposure duration, and (3) placed too much emphasis on a single peak 1-h
concentration. As indicated in Chapter 2, the high hourly average

concentrations are more important than the Tower values. The results of Lee
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et al. (1991) show that the correlation between the current form of the
standard and the occurrences of these elevated hourly average concentrations
is weak and therefore, the second highest daily maximum concentration appears
to be an inappropriate index to use to protect vegetation from elevated 0O
exposures.

As discussed by Lee et al. (1991), exposure regimes can experience
similar second highest daily maximum concentrations but exhibit exposure
patterns of widely diverse characteristics that contain from two to many peak
concentrations. As an alternative to the current form of the standard, the
authors suggested that the SUM06 O; exposure index be used as the form of a
secondary standard to protect agricultural crops. The value of the SUM06
exposure parameter, as determined by Tingey et al. (1991), was calculated by
summing hourly average concentrations across a fixed 3-month period (i.e.,
April-June, May-July, June-August, July-September, and August-OcZober).
Tingey et al. (1991) reported that a 3-month SUMO6 value of 24.4 ppm-h was

festimated to cause a 10% yield loss in half the cases they investigated.

Based on the results of Tingey et al. (1991), we identified those areas
in the United States that experienced a SUM06 value of 24.4 ppm-h or higher
over a 3-month period for the years 1987, 1988, and 1989. We subsequently
explored whether the occurrence of 3-month SUMO6 values of 24.4 ppm-h or
higher is correlated with elevated hourly average concentrations to establish
whether the application of the index as a secondary standard would result in
consistent protection for vegetation.

As discussed in the introduction of this chapter, using the current form
of the standard, the definition of nonattainment is straightforward. However,

no guidelines exist as to what the definition of nonattainment would be if a
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SUMO6 secondary standard were promulgated. Given the lack of guidelines, we
focused our analysis on those areas that experienced one or more 3-month SUM06
values > 24.4 ppm-h for a particular year.

Ozone hourly average concentrations from each site in the EPA’s AIRS
database, as well as the EPA’s National Dry Deposition Network (NDDN) and
Mountain Cloud Chemistry Program (MCCP), were characterized by summing, by
month, all hourly average concentrations > 0.06 ppm. For the period April-
October, those sites found to experience a 3-month SUM06 cumulative value of
24.4 ppm-h or higher were organized into (1) Metropolitan Statistical Areas
(MSA), (2) Consolidated Metropolitan Statistical Areas (CMSA), or (3) non-MSA
subdivisions.

To explore how those areas, which experienced SUMO6 values of 24.4 ppm-h
or higher, compared with areas designated as being in nonattainment by EPA, we
compared the results of the 1987 and 1988 SUM06 analysis with EPA’s 1ist of
nonattainment areas for the period 1986-1988 and results of the 1989 SUMO06
analysis with the EPA’s list of nonattainment areas for 1987-1989. Using the
SUMO6 index, we identified the "problem" areas and compared them with those
areas that previously had been identified as being in nonattainment. The 1987
and 1988 SUM06 results were compared with the 1986-1988 nonattainment list
because the nonattainment areas for 1986-1988 represent a "worst case"
scenario (in comparison to the 1987-1989 period). The 1989 SUMO6 results were
compared with the 1987-1989 nonattainment 1ist because this was the only
period in which the 1989 data were included.

One of the most important issues we reviewed was whether there was a

consistent relationship between the SUM06 index and the occurrence of high

hourly average concentrations. For example, we investigated whether (1) those

3-14

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBL*305 91 WM 0732290 0554248 4bke M

sites experiencing SUMO6 3-month cumulative values equal to or greater than
24.4 ppm-h identified exposure regimes that contained high hourly average O;
concentrations and (2) those sites that exhibited SUMO6 values less than 24.4
ppm-h over a 3-month period experienced exposure regimes that contained high
hourly average concentrations. This part of the analysis involved both urban,
as well as rural monitoring sites. We believed that any exposure index that
is used in establishing a secondary standard should be applied to all 0,
monitoring sites, independent of land use characterization.

Because the value of any cumulative exposure index is sensitive to data
capture, we explored the effect of missing data on our analysis. For any
month with > 75% data capture over the period through November, the SUM06
value for that specific month was divided by the data capture for the month.
This scaled the SUMO6 value to 100% for the month. Using these values, if any
month had < 75% data capture and if the two adjacent months both experienced >
75% data capture, the average of the adjacent months was used to calculate a
predicted SUM0O6 value for the month with < 75% data capture. For the case of
< 75% data capture for a month and, if at least one of the adjacent months had
a data capture < 75%, the SUM06 value was set to missing. For those sites
with < 75% data capture, we compared the interpolated value with the
calculated value and selected the larger of the two (n.b., a missing value is
less than any number).

Table 3-8 Tists the 133 areas in 1987 where the SUMO6 value for a 3-
month period was > 24.4 ppm-h. When the correction for missing data was
applied, 23 of the 357 0; monitoring sites (6%), which previously had not
experienced SUMO6 values > 24.4 ppm-h, were affected. The following five

areas would have been added to the previously described 133 areas: Kansas
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City (MO-KS), San Antonio (TX), Beaumont-Port Arthur-Orange (TX), Rockford
‘(IL), and Muhlenberg County (KY). Of the 133 areas, there were 52 that were
not identified previously as being in nonattainment for the 1986-1988 period.
Table 3-9 1ists the 52 areas that experienced SUM06 values > 24.4 ppm-h for a
3-month period for 1987 but were in attainment for the 1986-1988 period.
There were 20 areas that were identified as being in nonattainment for the
1986-1988 period whose monitoring sites did not experience a SUM0O6 value »
24.4 ppm-h over a 3-month period.

Table 3-10 lists the 183 areas in 1988 where the SUM06 value for a 3-
month period was > 24.4 ppm-h. When the correction for missing data was
applied, 12 of the 196 0; monitoring sites (6%), which previously had not’
experienced SUMO6 values > 24.4 ppm-h, were affected. The following five
areas would have been added to the previously described 183 areas: Mobile
(AL), Phoenix (AZ), Dickinson County (MI), Burlington (VT), and Union County
(SC). Of the 183 areas, there were 90 that were not identified previously as
being in nonattainment for the 1986-1988 period. Table 3-11 lists the 90
areas that experienced SUMO6 values > 24.4 ppm-h for a 3-month period for
1988, but were in attainment for the 1986-1988 period. There were 8 areas
that were identified as being in nonattainment for the 1986-1988 period whose
monitoring sites did not experience a SUM0O6 value > 24.4 ppm-h over a 3-month
period.

Table 3-12 1ists the 98 areas in 1989 where the SUM0O6 value for a 3-
month period was > 24.4 ppm-h. When the correction for missing data was
applied, 34 of the 555 0; monitoring sites (6%), which previously had not
experienced SUMO6 values > 24.4 ppm-h, were affected. The following eight

areas would have been added to the previously described 98 areas: Coconino
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County (AZ), Tucson (AZ), Tuolumne County (CA), Sussex County (DE), Edmonson
County (KY), Providence-Pawtucket-Fall River (RI-MA), Johnson City-Kingsport-
Bristol (TN-VA), and Austin (TX). Of the 98 areas, there were 44 that were
not identified previously as being in nonattainment for the 1987-1989 period.
Table 3-13 lists the 44 areas that experienced SUMO6 values > 24.4 ppm-h for a
3-month period for 1989 but were in attainment for the 1987-1989 period. In

1989, there were 42 areas that were identified as being in nonattainment for

the 1987-1989 period whose monitoring sites did not experience a SUMO6 value

v

24.4 ppm-h over a 3-month period.

As indicated in Section 3.2, using 0.10 and 0.08 ppm as possible levels,
the greatest change in nonattainment status occurred when the current standard
of 0.12 ppm was lowered to 0.10 ppm. We explored whether there might exist a
relationship between the current form of the standard, lowered to 0.10 ppm,
and the SUMO6 3-month cumulative index. If the current form of the standard
were lowered to 0.10 ppm, for the period 1986-1988, there were a total of 180
nonattainment areas. In 1987, 50 (28%) of these nonattainment areas did not
exceed the threshold 3-month SUM06 value. During this year, the SUMO6 value
of 24.4 ppm-h was exceeded in 133 areas; 13 (10%) of these areas would not
have violated the 0.10 ppm standard. In 1988, 28 (16%) of the 1986-1988
nonattainment areas did not exceed the 3-month SUM06 threshold. In 1988, the
SUM06 value of 24.4 ppm-h was exceeded in 183 areas; 31 (17%) of these areas
would not have violated the 0.10 ppm standard. For 1987-1989, if the current
form of the standard were lowered to 0.10 ppm, there would have been 181
nonattainment areas. In 1989, 106 (59%) of these nonattainment areas did not
exceed the 3-month SUMO6 threshold. In 1989, the SUM06 value of 24.4 ppm-h

was exceeded in 98 areas; 23 (24%) of these areas would not have violated the
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0.10 ppm standard. Based on the above results, lTowering the current form of
the standard to 0.10 ppm did not appear to guarantee that a specific
monitoring site would achieve a SUM06 3-month cumulative value of 24.4 ppm-h
or lower.

We further explored whether a correlation between the current form of
the standard, lowered to 0.08 ppm, and the SUMO6 3-month cumulative index
existed. If the current form of the standard were lowered to 0.08 ppm, for
the period 1986-1988, there would be a total of 220 nonattainment areas. In
1987, 94 (43%) of these nonattainment areas did not exceed the 3-month SUM06
value of 24.4 ppm-h. During this year, the SUM0O6 value of 24.4 ppm-h was
exceeded in 133 areas; 7 (5%) of these areas would not have violated the 0.08
ppm standard. 1In 1988, 52 (24%) of the 1986-1988 nonattainment areas did not
exceed the 3-month SUMO6 value of 24.4 ppm-h. In 1988, the SUM06 value of
24.4 ppm-h was exceeded in 183 areas; 15 (8%) of these areas would not have
violated the 0.08 ppm standard. For the 1987-1989 period, if the current form
of the standard were lowered to 0.08 ppm, there would have been 231
nonattainment areas. In 1989, 148 (64%) of these nonattainment areas did not
exceed the 3-month SUMO6 value of 24.4 ppm-h. In 1989, the SUM0O6 value of
24.4 ppm-h was exceeded in 98 areas; 15 (15%) of these areas would not have
violated the 0.08 ppm standard. Based on the above results, if the current
form of the standard were lowered to 0.08 ppm, 57% (1987), 76% (1988) and 36%
(1989) of those sites that would be in nonattainment would also exceed the 3-
month SUM06 value of 24.4 ppm-h. Thus, a weak relationship exists between the
current form of the standard and the SUM06 index.

We have explored whether the magnitude of the SUMO6 index calculated

over a 3-month period correlated with the occurrence of high hourly average
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concentrations. Using a subset of the data, Table 3-14 1ists the percentiles
of the hourly average concentrations over the April-October period for some
sites that experienced (1) a second hourly maximum concentration > 0.125 ppm
and {2) a maximum uncorrected, 3-month SUM06 value < 24.4 ppm-h. Although the
sites listed in the table violated the current standard, most of the sites
experienced (1) few hourly average concentrations > 0.125 ppm and (2) 5% or
less of the hourly average concentrations > 0.06 ppm. This type of exposure
regime resulted in a 3-month SUMO6 value < 24.4 ppm-h.

Table 3-15 Tists the percentiles of the hourly average concentrations
over the April-October period for some sites that experienced (1) a second
hourly maximum concentration < 0.125 ppm and (2) a maximum uncorrected, 3-
month SUMO6 value > 24.4 ppm-h. Although none of the sites listed in the
table violated the current standard, most of the sites experienced
approximately 10% or more of the hourly average concentrations > 0.06 ppm and
thus, experienced a 3-month SUM06 value > 24.4 ppm-h.

The results summarized in Tables 3-14 and 3-15 show that a cumulative 3-
month SUM06 value at a specific monitoring site will not necessarily relate to
the occurrence or absence of high hourly average 0O; concentrations. A SUM06
value of 24.4 ppm-h or greater indicates only that there are a large number of
hourly average concentrations > 0.06 ppm. On the contrary, a low SUM0O6 value
indicates a small number of hourly average concentrations > 0.06 ppm.

In our analysis, we have identified those areas in the United States
that experienced a SUM06 value of 24.4 ppm-h or higher over a 3-month period
for the years 1987, 1988, and 1989. In addition, we have explored whether the
occurrence of 3-month SUMO6 values of 24.4 ppm-hr or higher was correlated

with elevated hourly average concentrations. Our analysis has shown that the
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application of the SUMO6 O; exposure index for use in defining a secondary
standard may result in inconsistent protection for vegetation. Using 1989
hourly averaged 0; data, we found that no strong relationship appeared to

exist between the number of occurrences of high hourly average 0O; and a

maximum uncorrected 3-month SUMO6 value > 24.4 ppm-h. Several O; monitoring
sites that violated the current standard experienced a 3-month SUM06 value <
24.4 ppm-h. Similarly, we found that several O; monitoring sites that did not
violate the current standard experienced a maximum uncorrected 3-month SUMO06

value > 24.4 ppm-h.
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Table 3-7. Compliance schedules set by the clean air bill for the 96 areas
violating federal health standards for ozone (1987-1989).

EXTREME - Deadline for compliance 2010
LOS ANGELES-ANAHEIM-RIVERSIDE, CA

SEVERE 2 - Deadline 2007

BALTIMORE, MD
HOUSTON-GALVESTON-BRAZORIA, TX

NEW YORK CITY-NEW JERSEY-LONG ISLAND

SEVERE 1 - Deadline 2005

CHICAGO-GARY, IN

MILWAUKEE-RACINE, WI

MUSKEGON, MI

PHILADELPHIA-WILMINGTON, DE,-TRENTON, NJ
SAN DIEGO, CA

SERIOQUS - Deadline 1999

‘ATLANTA, GA

"BAKERSFIELD, CA

“BATON ROUGE, LA

'BEAUMONT-PORT ARTHUR, TX
BOSTON-LAWRENCE, MA,-SALEM, NH

EL PASO, TX

FRESNO, CA

HARTFORD-NEW BRITAIN-MIDDLETOWN, CT
HUNTINGTON, WV- ASHLAND, KY, AND OHIO SUBURBS
PARKERSBURG, WV,-MARIETTA, OH
PORTSMOUTH, MAINE,-DOVER-ROCHESTER, NH
PROVIDENCE-PAWTUCKET-FALL RIVER, RI
SACRAMENTO, CA

SHEBOYGAN, WI

SPRINGFIELD, MA

WASHINGTON, BC, VA, MD

MODERATE - Deadline 1996

ATLANTIC CITY, NJ

CHARLESTON, WV

CHARLOTTE-GASTONIA, NC,- ROCK HILL, SC
CINCINNATI, OH

CLEVELAND, OH

DALLAS, TX

DAYTON-SPRINGFIELD, OH

DETROIT, MI

EDMONSON COUNTY, KY

GRAND RAPIDS, MI

GREENSBORO- WINSTON-SALEM-HIGH POINT, NC
JEFFERSON COUNTY, NY

KEWAUNEE COUNTY, WI

KNOX COUNTY, ME
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Table 3-7. (Continued)

LOUISVILLE, KY, IN

MEMPHIS, TN, AND ARKANSAS AND MISSISSIPPI SUBURBS
MIAMI-FORT LAUDERDALE, FL

MODESTO, CA

NASHVILLE, TN

PITTSBURGH-BEAVER VALLEY, PA
PORTLAND, ME

RALEIGH-DURHAM, NC

READING, PA

RICHMOND-PETERSBURG, VA

SALT LAKE CITY-OGDEN, UT

SAN FRANCISCO-OAKLAND-SAN JOSE, CA
SANTA BARBARA-SANTA MARIA-LOMPOC, CA
SMYTH COUNTY, VA

ST. LOUIS

TOLEDO, OH
VISALIA-TULARE-PORTERVILLE, CA
WORCESTER, MA

MARGINAL - Deadline 1993

ALBANY -SCHENECTADY-TROY, NY
ALLENTOWN-BETHLEHEM, PA

ALTOONA, PA

BIRMINGHAM, AL

BUFFALO-NIAGARA FALLS, NY
CANTON, OH

COLUMBUS, OH

ERIE, PA

ESSEX COUNTY, NY

EVANSVILLE, IN, AND KENTUCKY SUBURBS
FAYETTEVILLE, NC

GREENBRIER COUNTY, WV
GREENVILLE-SPARTANBURG, SC
HANCOCK COUNTY, ME
HARRISBURG-LEBANON- CARLISLE, PA
INDIANAPOLIS, IN

JOHNSON CITY-KINGSPORT-BRISTOL, TN
JOHNSTOWN, PA

KANSAS CITY, MO, KS

KNOXVILLE, TN

LAKE CHARLES, LA

LANCASTER, PA

LEWISTON-AUBURN, ME
LEXINGTON-FAYETTE, KY

LINCOLN COUNTY, ME

LIVINGSTON COUNTY, KY
MANCHESTER, NH

MONTGOMERY, AL
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Table 3-7. (Continued)

NORFOLK-VIRGINIA BEACH-NEWPORT NEWS, VA
OWENSBORO, KY

POUGHKEEPSIE, NY
SCRANTON-WILKES-BARRE, PA

SOUTH BEND-MISHAWAKA, IN

STOCKTON, CA

SUSSEX COUNTY, DE

TAMPA-ST. PETERSBURG-CLEARWATER, FL
WALDO COUNTY, ME

YORK, PA

YOUNGSTOWN- WARREN, OH
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CHAPTER 4
SINGLE- VERSUS MULTIPLE-PARAMETER INDEX APPLICATIONS
4.1 INTRODUCTION

As indicated in Chapter 3, a strong correlation between peak
concentrations and the value of the SUMO6 index does not necessarily occur
under ambient conditions. However, lLee et al. (1991) have reported that the
SUM06 index has performed well, using NCLAN data, in relating O; exposure and
yield reduction. In Chapter 2, using the NCLAN results, we found, at the 20%
yield reduction level, that there were O; distributions (of hourly average
concentrations) which contained a sufficient number of high hourly average
concentrations. The NCLAN experimental protocol applied incremental and
proportional additions that resulted in many of the treatments experiencing
elevated O; exposures; many of the artificial regimes used by NCLAN contained
the elevated hourly average concentrations that were reflected in the
determination of the absolute values of the cumulative indices calculated by
Lee et al. (1991). Therefore, at many of the treatment levels, the magnitude
of the SUM06 index, calculated using NCLAN protocols, appeared to be
influenced by the peak exposures that correlated well with the observed growth
reductions.

A major concern about the use of any exposure index (e.g., cumulative or
seasonal average concentration) is whether the value of the index can be
Tinked to a specific exposure regime. The absolute value of the index
reflects only the mathematical calculation performed using hourly average Oy
concentrations. If we assume that the distribution of the highest hourly
average concentrations (i.e., the upper tail of the distribution) is an

important factor in affecting vegetation, then a single-parameter exposure
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index, such as the SUM06 or W126, in some instances, may not be specific
enough to describe those important distributions that cause an O;-related
effect.

Our results indicate that under ambient conditions, the use of the SUM06
exposure index did not relate well with the occurrences of elevated hourly
average concentrations. To improve the predictive capability that depends
upon linking experimental exposure-response relationships with ambient air
quality, it appears that indices, such as the SUMO6 or W126 indices, will have
to be combined with other exposure parameters in order to mathematically
define unique distribution patterns of hourly average concentrations.

Lefohn et al. (1989) have discussed the merits of applying indices for
the purposes of summarizing exposure and have suggested that the index
selected adequately focus on the important parts of the 0; exposure regime
that are thought to be responsible for affecting crops adversely. In
addition, an important goal should be that the exposure index selected be
consistent so that a Tow value indicates relatively low risk to agricultural
crops, while a high value represents a high risk. Although moderate success
has been achieved using the SUM06 and W126 exposure indices, consistency is
important so that experimental exposure-response relationships can be strongly
linked with ambient exposures. If this consistency is not present, it will be
difficult to use any exposure index in the development of a secondary

standard.

4.2 SUCCESSFUL APPLICATIONS OF THE SINGLE-PARAMETER INDEX
Although difficulties may exist for linking experimental exposure-

response relationships with ambient air for predicting vegetation effects,

4-2
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single-parameter exposure indices have been used successfully for describing
regional O; exposure in the United States (Lefohn et al., 1987; Lefohn et al.
1990a). Figure 4-1 shows the results of interpolating characterized hourly
average O; data, using kriging of the W126, 7-month seasonal O; exposure index
in 1/2 x 1/2 degree grids for the eastern Uniteq\fﬁftes. Ozone exposures in
the East were higher in 1987 than in the two previous years, 1985 and 1986.
Trends analysis performed by the U.S. EPA (1991} confirms this observation.
Yet, given the fact that we have shown that the magnitude of cumulative
exposure indices, such as the W126 or SUM06 exposure index, is not necessarily
strongly associated with the occurrence of high hourly average 0y
concentrations, why is it possible to successfuily describe regional exposures
using single-parameter cumulative indices?

The O; exposures experienced at each site are influenced by a multitude
of factors. The elevation of a specific site, its ground cover (i.e.,
sorptive capacity), as well as its lTatitude, may influence O; production and
destruction of the absolute 0; exposure value experienced at a specific site.
‘Many of the 0; monitors used in the kriging analyses were situated near urban-
3oriented locations (Lefohn et al., 1990a). Thus, the distribution of the
hourly average concentrations may have been similar. For example, most of the
urban-oriented monitoring sites may experience similar scavenging processes
that result in 30% or more of the hourly average concentrations occurring
below 0.015 ppm. In addition, the maximum hourly average concentrations
experienced at many of these sites were similar. Thus, with similar hourly
average distribution patterns, it would be assumed that the magnitude of a

cumulative exposure index, such as the W126 or SUM06, would order itself

4-3
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properly, with the higher value corresponding to the higher exposure. This
appears to be what occurred.

In addition to using cumulative exposure indices to describe regional O,
exposures, a cumulative exposure index has been used in trends analysis.
Lefohn and Shadwick (1991) summarized trends for O; exposures over 5- and 10-
year periods (i.e., 1984-1988 and 1979-1988) for rural locations in the United
States. The investigators explored the evidence for trends at each monitoring
location. Evidence for regional trends was based on studying the individual
time trends observed for each of the sites in the region. The seasonal W126
cumulative exposure index was used to investigate trends. The results
reported by Lefohn and Shadwick (1991) were consistent with the findings
reported by the U.S. EPA (1990).

The explanation for the successful application of the cumulative index
in the trends analysis was similar to the one given for the kriging analysis.
For a specific monitoring site, the hourly average distribution pattern was
similar over the years studied by Lefohn and Shadwick (1991). The scavenging
processes remained the same over time at a specific site. Thus, the
difference in magnitude of the W126 index, at any one site over time, was
reflected in changes in the distribution curve of the hourly average 0,
concentrations. Changes that occurred at the upper end of the distribution

curve were reflected in the magnitude of the W126 index.

4.3 ALTERNATIVE APPROACHES FOR USING INDICES TO DESCRIBE EXPOSURE-RESPONSE
RELATIONSHIPS

For some purposes, the single-parameter index appears to work
appropriately. However, as indicated above, the predictive power involving
exposure-response relationships that use single-parameter exposure indices may
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not be as strong as desired. A multiple-parameter index may be necessary to
adequately describe distribution patterns of hourly average concentrations.

For developing a secondary standard to protect vegetation, the combined
exposure statistics should be selected based on the observation that high
concentrations are expected to cause greater impact on vegetation than lower
concentrations. The following important factors, summarized by Lee et al.
(1991), may be important when selecting an appropriate standard to protect
vegetation:

« Peak concentrations are more important than low concentrations
in determining plant response;

» Ozone effects are cumulative (i.e., increasing the duration of
the exposure period is expected to cause greater biological
response);

o Exposure cannot be characterized as the unweighted product of
concentration and time because the effect of 0; on vegetation
yield depends on the cumulative impact of high concentrations
during the growing season;

» Plant sensitivity is not constant, but varies according to
stage of development.

Lefohn et al. (1988) and Lee et al. (1988, 1989, 1991) have shown, when
high hourly average concentrations are present in an exposure regime, that
single-parameter cumulative indices can be used to relate O; exposures with
vegetation growth reductions. However, when attempting to link experimental
models with ambient air quality, it appears that the application of a single-
parameter exposure index in the form of a standard for protecting vegetation
will provide inconsistent results. This does not imply that all currently
used cumulative exposure indices are not appropriate for describing Oy
exposure. Rather, it appears that cumulative indices, such as the SUMO6 and
the W126 indices, will have to be combined with other parameters to quantify
accurately the occurrence of the high hourly average concentrations. As
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indicated previously, the combination of exposure parameters (i.e., multiple
indices) used to describe those regimes that cause vegetation effects must
adequately characterize the upper tail of the hourly average distribution
curve.

The estimated ranges of O; exposures that result in injury and damage
effects to vegetation, published by Guderian et al. (1985), provide us with an
indication that hourly average concentrations of 0.10 ppm and higher are
important in eliciting adverse effects on vegetation. This does not mean that
concentrations below 0.10 ppm are not important. In general, however, the
recommendations of Guderian et aJ. (1985) tend to support the hypothesis that
hourly average concentrations > 0.10 ppm may have to be experienced before
serious injury or damage to vegetation can occur. This generalization appears
to be supported by our reanalysis of some of the NCLAN data as discussed in
Chapter 2.

Recognizing that some of the lower hourly average 0, concentrations may
contribute to adverse vegetation effects, it is important to attempt to
subjectively define a lower 1imit. Ozone hourly average concentrations of
0.05 ppm routinely occur at many "clean" site locations in the world (Lefohn

et al., 1990b), including several Class I areas in the United States (Lefohn
é'and Foley, 1991). In addition, occasional occurrences of hourly average
1’concentrations near 0.08 ppm are experienced at these "clean" monitoring
locations. Lefohn and Foley (1991) report that in almost all cases, none of
the "clean" 0, monitoring sites experienced hourly average concentrations
> 0.08 ppm and the maximum hourly average concentrations were in the range
from 0.060 to 0.075 ppm. In addition, the results reported by Lefohn et al.
(1988) and Lee et al. (1988, 1989, 1991) support the concept that hourly

4-6

Copyright American Petroleum Institute
Provided by IHS under license with API
No reproduction or networking permitted without license from IHS Not for Resale



API PUBL*305 91 EE 0732290 0554300 47 WM

average 0; concentrations > 0.06 ppm are important in the growth reduction of
agricultural crops. However, at this time, we know little about the relative
importance of the hourly average concentrations between 0.06 ppm and 0.10 ppm,
when compared to those hourly average values > 0.10 ppm.

The possible combination of exposure parameters, such as the
(1) sigmoidally-weighted exposure index (as proposed by Lefohn and Runeckles,
1987) or (2) SUMO6 index (as recommended by Lee et al., 1991), with other
indices should provide sufficient means to describe those unique distribution
curves that have the potential for eliciting an adverse effect. Additional
insight may be gained from the work of Krupa and Nosal (1989), who discussed
the use of multi-parameter indices to describe the relationships between 0,
exposure and crop growth.

In Chapter 2, our reanalysis of the NCLAN data provided us with evidence
that summaries of distribution patterns provide important information
concerning the relationships between exposure and response. Future research
efforts in this area point to the quantification of the distribution of the
hourly average concentrations. The percentile distribution of the hourly
average concentrations offers a way to characterize both high and low 0,
concentrations. Experience with hourly average concentration O; data has
revealed both seasonal and daily patterns in time plots of O; concentrations.
Ozone tends to be episodic on a short time basis (i.e., time frames of days or
weeks). The occurrence of high 0; values tends to be relatively close in
time, as determined by meteorological events. The regularity in the time
structure of high 0; concentrations gives the appearance of peaks in time

plots of hourly O; concentrations. With high confidence, from the percentile
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distribution of 05, one can infer that the values in the tail of the
distribution represent peaks in the time plots of hourly 0; concentrations.

In addition, percentile distributions offer the opportunity to
differentiate exposures experienced at remote or isolated sites from exposures
experienced at sites influenced by urban sources (Lefohn and Jones, 1986;
Lefohn et al., 1990). Monitoring sites under the influence of local urban
sources experience approximately 50-70 percent of their hourly average Oy
concentrations above 0.015 ppm.

Techniques other than indices that accumulate exposures over time and
percentile distributions have been used to investigate varying exposure
~patterns. Investigators have utilized diagrams that illustrate composite

diurnal patterns as a means to describe qualitatively the differences of O
exposures between sites (Lefohn and Jones, 1986; Bohm et al., 1991). Although
it might appear that composite diurnal pattern diagrams could be used to
quantify the differences of O; exposures between sites, Lefohn and Benkovitz
(1990) caution their use for this purpose. The composite diurnal patterns are
derived from long-term average calculations of the hourly concentrations and
the resulting diagram cannot adequately identify, at most sites, the presence
of high hourly average concentrations and thus, may not adequately be able to
distinguish 0; exposure differences among sites.

Although we have discussed the possible combinations of parameters to
better link experimental exposure-response models with ambient air quality for
predicting possible impacts on vegetation, at this time, information is not
available to identify the specific parameters that should be combined.
However, the results of the NCLAN experiments provide researchers with the

opportunity to better understand the level of exposures that result in
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agricultural yield reduction. We have summarized the distribution of the
hourly average concentrations that occurred in some of the NCLAN experiments.
The characterized distributions reflected the importance of the upper end of
the distribution curve in affecting crop yield reductions. We believe this
additional information should assist researchers in identifying a multi-
parameter exposure index that will properly relate ambient exposure to
response.

A strong case has been made for selecting multi-parameter exposure
indices for establishing a secondary standard to protect vegetation from high
levels of 0; exposure. However, caution is urged. Although we believe that
an effort should be made to identify multi-parameter indices, it is important
to note that a consistent relationship between multi-parameter exposure
indices and vegetation effects may not always exist. As indicated in Chapter
2, the (1) amount and chemical form of the pollutant that enters the target
organism, (2) length of the exposure within each episodic event, (3) time
between exposures (i.e., the respite or recovery time), and (4) sensitivity of
the target organism are important factors that affect our ability to predict
0; effects on vegetation. Showman (1991) reported indications that
sensitivity may be an important factor. For field surveys in the midwestern
United States, in 1988, 0, levels were high but injury to vegetation was Tow
due to drought stress. 1In 1989, O; exposures were much lower than in 1988 and
optimum growing conditions resulted in greater foliar injury. Overall, it is
unclear how important these four factors are in an overall weighting scheme
when predicting vegetation effects. Given the current state of knowledge, and
based on research in the South Coastal Basin, where extremely high 04

exposures occur (Oshima, 1975; Oshima et al., 1976; Thompson et al., 1976;
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Lefohn and Benedict, 1982), at this time, concentration should be the focus,
jnstead of either sensitivity or actual dose, for the standard-setting

process.
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