Manual of Petroleum Measurement Standards Chapter 8.4

Standard Practice for Sampling and Handling of Fuels for Volatility Measurement

THIRD EDITION, MARCH 2014

Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given situation. Users of this standard should consult with the appropriate authorities having jurisdiction.

Users of this standard should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.

Where applicable, authorities having jurisdiction should be consulted.

Work sites and equipment operations may differ. Users are solely responsible for assessing their specific equipment and premises in determining the appropriateness of applying the instructions. At all times users should employ sound business, scientific, engineering, and judgment safety when using this standard.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, nor undertaking their obligations to comply with authorities having jurisdiction.

All rights reserved. No part of this work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, NW, Washington, DC 20005.

Copyright © 2014 American Petroleum Institute

Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Shall: As used in a standard, "shall" denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, "should" denotes a recommendation or that which is advised but not required in order to conform to the specification.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.

Contents

	Pa	age
1	Scope	. 1
2	Referenced Documents	. 1
3	Terminology	. 1
4	Summary of Practice	. 2
5	Significance and Use	. 2
6	General Comments	. 2
7	Specific Sampling Procedures	. 3
8	Special Precautions and Instructions	. 6
9	Keywords	. 6
Sum	nmary of Changes	. 7
Figu	roc	
1 190 1	Nozzle Extension for Nozzle Sampling with 4 oz Bottle	3
2	Slotted Stand Pipe	
3	Assembly for Bottle Sampling	
4	Tank Sampling Depths	
- 5	Assemblies for Tap Sampling	
6	Cooling Bath for Reid Equivalent Vapor Pressure Sampling	
7	Probes for Line Sampling	
8	Spacer for Nozzle Sampling	
9	Extension for Nozzle Sampling	
10	Assembly for Nozzle Sampling	
Tabl	es	
1	Summary of Gasoline Sampling Procedures and Applicability	. 2

Designation: D5842 - 14

Manual of Petroleum Measurement Standards (MPMS) Chapter 8.4

Standard Practice for Sampling and Handling of Fuels for Volatility Measurement¹

This standard is issued under the fixed designation D5842; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This practice covers procedures and equipment for obtaining, mixing, and handling representative samples of volatile fuels for the purpose of testing for compliance with the standards set forth for volatility related measurements applicable to light fuels. The applicable dry vapor pressure equivalent range of this practice is 13 to 105 kPa (2 to 16 psia).
- 1.2 This practice is applicable to the sampling, mixing, and handling of reformulated fuels including those containing oxygenates.
- 1.3 The values stated in SI units are to be regarded as the standard except in some cases where drawings may show inch-pound measurements which are customary for that equipment.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

D4057 Practice for Manual Sampling of Petroleum and Petroleum Products (API *MPMS* Chapter 8.1)

D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products (API *MPMS* Chapter 8.2)

D5854 Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products (API *MPMS* Chapter 8.3)

D7717 Practice for Preparing Volumetric Blends of Denatured Fuel Ethanol and Gasoline Blendstocks for Laboratory Analysis

2.2 API Standards:³

MPMS Chapter 8.1—Practice for Manual Sampling of Petroleum and Petroleum Products (ASTM Practice D4057)
MPMS Chapter 8.2—Practice for Automatic Sampling of Petroleum and Petroleum Products (ASTM Practice D4177)

MPMS Chapter 8.3—Practice for Mixing and Handling of Liquid Samples of Petroleum and Petroleum Products (ASTM Practice D5854)

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *bottom sample*, n—a sample obtained from the material at the bottom of the tank, container, or line at its lowest point.
- 3.1.1.1 *Discussion*—In practice the term bottom sample has a variety of meanings. As a result, it is recommended that the exact sampling location (for example, 15 cm [6 in.] from the bottom) should be specified when using this term.
- 3.1.2 *dead legs*, *n*—sections of pipe that, by design, do not allow for the flow of material through them.
- 3.1.2.1 *Discussion*—Dead legs are not suitable for obtaining representative samples.
- 3.1.3 *relief lines, n*—sections of pipe that lead to a pressure/vacuum relief valve.
- 3.1.3.1 *Discussion*—Relief lines are not suitable for obtaining representative samples.
- 3.1.4 *stand pipes*, *n*—vertical sections of pipe or tubing extending from the gaging platform to near the bottom of tanks that are equipped with external or internal floating roofs. Stand pipes also may be found on ships and barges.
- 3.1.4.1 *Discussion*—Stand pipes which are not slotted or perforated will not yield representative samples. Further information on proper stand pipe design is given in 6.4.3.

*A Summary of Changes section appears at the end of this standard

¹ This practice is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and the API Committee on Petroleum Measurement, and is the direct responsibility of Subcommittee D02.02 /COMQ on Hydrocarbon Measurement for Custody Transfer (Joint ASTM-API). This practice has been approved by the sponsoring committees and accepted by the Cooperating Societies in accordance with established procedures. This practice was issued as a joint ASTM-API standard in 1995.

Current edition approved Jan. 15, 2014. Published January 2014. Originally approved in 1995. Last previous edition approved in 2009 as D5842–04 (2009). DOI: 10.1520/D5842-14.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American Petroleum Institute (API), 1220 L. St., NW, Washington, DC 20005-4070, http://www.api.org.

3.1.5 Other sample definitions are given in Practice D4057/ API *MPMS* Chapter 8.1.

4. Summary of Practice

4.1 It is necessary that the samples be representative of the fuel in question. The basic principle of each sampling procedure involves obtaining a sample in such a manner and from such locations in the tank or other container that the sample will be representative of the fuel. A summary of the sampling procedures and their application is presented in Table 1. Each procedure is suitable for sampling a material under definite storage, transportation, or container conditions. The precautions required to ensure the representative character of the samples are numerous and depend upon the tank, carrier, container, or line from which the sample is being obtained, the type and cleanliness of the sample container, and the sampling procedure that is to be used.

5. Significance and Use

5.1 The dry vapor pressure equivalent (DVPE) of volatile motor fuels is regulated by federal and state air pollution control agencies. In order to meet the letter of these regulations, it is necessary to sample, handle, and test these products in the precise manner as prescribed in this practice.

6. General Comments

- 6.1 Sample Containers:
- 6.1.1 Sample containers are clear or brown glass bottles, fluorinated high-density polyethylene bottles, or metal cans. The clear glass bottle is advantageous because it is easily examined visually for cleanliness, and also makes visual inspection of the sample for free water or solid impurities possible. The brown glass bottle affords some protection from light. The only cans acceptable are those with the seams soldered on the exterior surface.
- 6.1.2 Cork stoppers, or screw caps of plastic or metal, are used for glass bottles; screw caps with inserted seals only are used for cans to provide a vapor-tight closure seal. Corks must be of good quality, clean, and free from holes and loose bits of cork. Never use rubber stoppers. Contact of the sample with the cork can be prevented by wrapping tin or aluminum foil around

TABLE 1 Summary of Gasoline Sampling Procedures and Applicability

Type of Container	Procedure	Paragraph
torage tanks, ship and barge tanks, tank cars, tank trucks	all-levels sampling	7.2.1.2
	running sample	7.2.1.2
	upper, middle and lower samples	7.2.1.2
	top sample	7.2.1.2
	grab sampling	7.5
Storage tanks with taps	tap sampling	7.2.2
Pipes and lines	line sampling	7.3
	automatic sampling	7.4
	time proportional	7.4.1
	flow proportional	7.4.2
	grab sampling	7.5
Retail outlet and wholesale purchaser-consumer facility storage tanks	nozzle sampling	7

the cork before forcing it into the bottle. Screw caps must be protected by a cork disk faced with tin or aluminum foil, an inverted cone polyseal or other material that will not affect petroleum or petroleum products. The fluorinated bottles are supplied with polypropylene screw caps.

- 6.1.3 Sample size is dictated by the test method to be used. One litre (32 oz) bottles or cans are generally used for manual vapor pressure testing. Some vapor pressure methods may allow a smaller sample size to be taken, such as in a 125 mL (4 oz) bottle. See Fig. 1.
- 6.1.4 All sample containers must be absolutely clean and free of foreign matter. Before reusing a container, wash it with strong soap solution, rinse it thoroughly with tap water, and finally with distilled water. Dry completely and stopper, or cap, the container immediately.
- 6.2 Sampling Apparatus—Sampling apparatus is described in detail under each of the specific sampling procedures. Clean, dry, and free all sampling apparatus from any substance that might contaminate the material. If necessary, use the clean procedure described in 6.4.
 - 6.3 Time and Place of Sampling:
- 6.3.1 *Storage Tanks*—When loading or discharging fuels, take samples from both shipping and receiving tanks, and from the pipelines if required.
- 6.3.2 *Ship or Barge Tanks*—Sample each product after the vessel is loaded or just before unloading.
- 6.3.3 *Tank Cars*—Sample the product after the car is loaded or just before unloading.

NOTE 1—Time, place, and other details of sampling not covered in this practice are normally determined by contractual agreement or regulatory requirements.

- 6.4 Obtaining Samples:
- 6.4.1 Directions for sampling cannot be made explicit enough to cover all cases. Extreme care and good judgment are necessary to ensure samples that represent the general character and average condition of the material. Use lint-free wiping cloths to prevent contaminating samples.
- 6.4.2 Many petroleum vapors are toxic and flammable. Avoid breathing them or igniting them from an open flame or a spark. Follow all safety precautions specific to the material being sampled.
- 6.4.3 Do not sample dead legs or relief lines. Do not sample stand pipes that are not slotted or perforated. Fig. 2 is an example of an adequately slotted stand pipe. At a minimum, the stand pipe should have two rows of slots slightly staggered in the vertical plane.
- 6.4.4 Rinse or flush sample containers with product and allow it to drain before drawing the sample. If the sample is to be transferred to another container (for testing other than DVPE), the sampling apparatus also is rinsed with some of the product and drained. When the sample is emptied into this container, upend the sampling apparatus into the opening of the sample container.

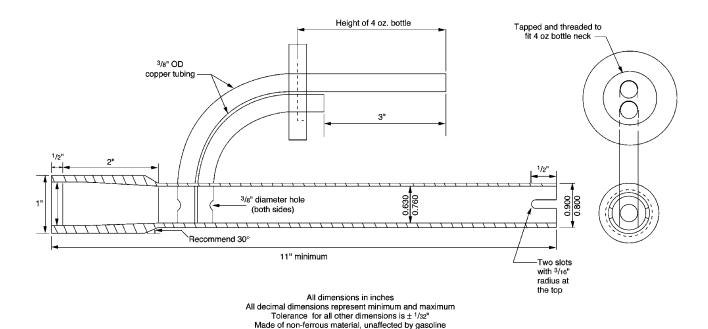


FIG. 1 Nozzle Extension for Nozzle Sampling with 4 oz Bottle

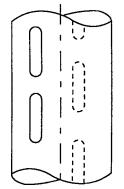
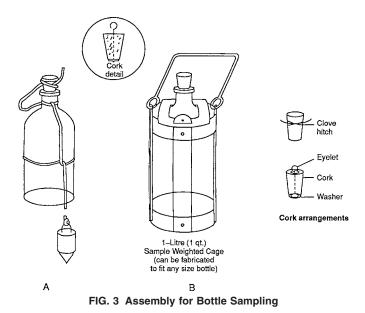


FIG. 2 Slotted Stand Pipe

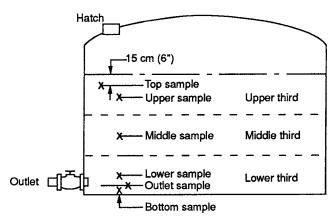
6.5 Handling Samples:

- 6.5.1 Protect all samples of light fuels from evaporation. The sampling apparatus is the sample container for vapor pressure. Keep the container tightly closed after the sample is collected. Leaking sample containers are not suitable for testing. Cool volatile samples to 0 to 1°C (32 to 34°F) after delivery to the laboratory and before opening the container. Maintain at this temperature throughout transfer and handling, if at all possible.
- 6.5.2 Never completely fill a sample container. Fill the container to 70 to 85 % capacity to allow adequate room for expansion. Subsequent testing for vapor pressure requires this level of container fill.
- 6.5.3 The first sample aliquot removed is for vapor pressure testing. The remaining sample in the container is not suitable for a vapor pressure determination but is suitable for other testing.
- 6.6 Shipping Samples—To prevent loss of liquid and vapors during shipment, place internal seals in the metal containers,

screw the caps down tightly and check for leakage. Observe all shipping regulations applying to the transportation of flammable liquids.


- 6.7 Labeling Sample Containers—Label the container immediately after a sample is obtained. Use waterproof and oilproof ink or a pencil hard enough to dent the tag, since soft pencil and ordinary ink markings are subject to obliteration from moisture, product, smearing, and handling. Typical label information includes the following information:
- 6.7.1 Date and time (the period elapsed during continuous sampling),
 - 6.7.2 Name of the sample (location),
- 6.7.3 Name or number and owner of the vessel, car, or container,
 - 6.7.4 Brand and grade of material; and
 - 6.7.5 Reference symbol or identification number.
- 6.7.6 Labeling should conform to all applicable federal, state, and local labeling regulations.

7. Specific Sampling Procedures


7.1 Sampling Procedures—The standard sampling procedures described in this practice are summarized in Table 1. Alternative sampling procedures can be used if a mutually satisfactory agreement has been reached by the party(ies) involved and such agreement has been put in writing and signed by authorized officials.

7.2 Tank Sampling:

- 7.2.1 *Bottle Sampling*—The bottle sampling procedure is applicable for sampling fuels of 105 kPa (16 psia) Reid equivalent vapor pressure or less in tank cars, tank trucks, shore tanks, ship tanks, and barge tanks.
- 7.2.1.1 *Apparatus*—A suitable sampling bottle as shown in Fig. 3 is required. Recommended diameter of the opening in the bottle or sample thief is 19 mm (¾ in.).

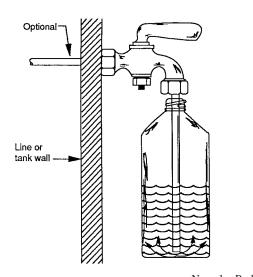
- 7.2.1.2 *Procedure:* (a) *All-levels Sample*—Lower the weighted, stoppered bottle (see Fig. 3) as near as possible to the draw-off level, pull out the stopper with a sharp jerk of the cord or chain and raise the bottle at a rate so that it is 70 to 85 % full as it emerges from the liquid.
- (b) Running Sample—Lower the stoppered container (with a hole or slot in the stopper) at a uniform rate as near as possible to the level of the bottom of the outlet connection or swing line and immediately raise the bottle to the top of the fuel at a rate of speed such that it is 70 to 85 % full when withdrawn from the liquid.
- Note 2—Running or all-level samples are not necessarily representative because the tank volume may not be proportional to the depth and because the operator may not be able to raise the sampler at the required rate.
- (c) Upper, Middle, and Lower Samples—Lower the weighted, stoppered bottle to the proper depths (Fig. 4) as follows:

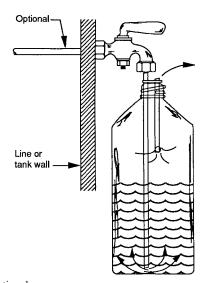
Note 1—The outlet sample location shown applies only to tanks with side outlets. It does not apply when the outlet comes from the floor of the tank or turns down into a sump.

FIG. 4 Tank Sampling Depths

upper sample middle sample lower sample middle of upper third of the tank contents

middle of the tank contents


middle of the lower third of the tank contents


At the selected level, pull out the stopper with a sharp jerk of the cord or chain and allow the bottle to fill completely, as evidenced by the cessation of air bubbles. When full, raise the bottle, pour off a small amount (15 to 30 %), and stopper immediately.

- (d) Top Sample—Obtain this sample (Fig. 4) in the same manner as specified for an upper sample but at 150 mm (6 in.) below the top surface of the tank contents.
- (e) Handling—Cap and label bottle samples immediately after taking them, and deliver to the laboratory in the original sampling bottles. Multiple samples must be tested individually for vapor pressure. A composite sample is acceptable for other analytical tests. Inverting the sample container can aid in leak detection. The sample may be placed in ice immediately for cooling, if practical.
- 7.2.2 Tap Sampling—The tap sampling procedure is applicable for sampling liquids of 105 kPa (16 psia) DVPE, or less, in tanks that are equipped with suitable sampling taps or lines. This procedure is recommended for volatile stocks in tanks of the breather and balloon roof type, spheroids, floating roof tanks, and so forth. The assembly for tap sampling is shown in Fig. 5.

7.2.2.1 Apparatus:

- (a) Tank Taps—Equip the tank with at least three sampling taps placed equidistant throughout the tank height. A standard ½ in. pipe with a suitable valve is satisfactory. A sufficient number of sample taps are needed on the tank to make sampling possible at various levels.
- (b) Tube—Use a delivery tube that will not contaminate the product being sampled and is long enough to reach to the bottom of the sample container to allow submerged filling.
- (c) Tube Chiller Assembly (Optional)—If a sampling chiller is used, it is a coil of tubing immersed in an ice bath to chill a fuel sample as it is dispensed into the sample container.
- (d) Sample Containers—Use clean, dry glass bottles of convenient size and strength or metal containers to receive the samples.
- 7.2.2.2 Procedure—Before a sample is drawn, flush the sample tap and tube until approximately three times its volume has been purged. When sampling for Reid equivalent vapor pressure, the container must be chilled to a temperature as low as the material in the tank or to 0°C (32°F), whichever is greater (see sample chilling apparatus in Fig. 6). Filling the container and emptying it three times will meet this temperature requirement. Draw upper, middle, or lower samples directly from the respective taps after the flushing operation. Stopper or seal and cap, label the sample container immediately after filling and deliver it to the laboratory.
- 7.3 Line Sampling—The continuous sampling procedure is applicable for sampling liquids of 105 kPa (16 psia) Reid equivalent vapor pressure or less and semi-liquids in pipelines, filling lines, and transfer lines. The line sampling may be done manually or by using automatic devices. In order to take a representative sample from a line, the contents are mixed to

Note 1—Probes are optional. FIG. 5 Assemblies for Tap Sampling

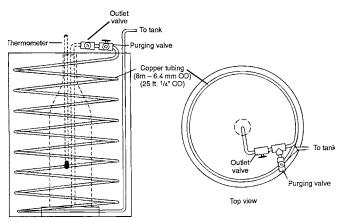
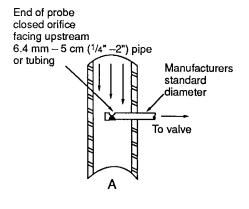



FIG. 6 Cooling Bath for Reid Equivalent Vapor Pressure Sampling

ensure uniform distribution of all components and contaminants across the line. If it is necessary to condition the line, this is done four to six pipe diameters upstream of the sample point. 7.3.1 *Apparatus:*

- 7.3.1.1 Sampling Probe—The function of the sampling probe is to allow withdrawal of a representative portion of liquids. The apparatus assembly for dynamic line sampling is shown in Fig. 7. A probe is recommended for the sampling of static systems but it is not required. Probe designs that are commonly used are as follows:
 - (a) A tube beveled at a 45° angle (Fig. 7c).
- (b) A long-radius forged elbow or pipe bend with the end of the probe reamed to give a sharp entrance edge (Fig. 7b).
- (c) A closed-end tube with a round orifice spaced near the closed end (Fig. 7a).
- 7.3.1.2 *Probe Location*—The probe inlet is extended into the pipe to the center one-third of the pipeline cross-sectional area. The probe is inserted perpendicular to the direction of flow with the sample opening facing upstream. The sampling lines are kept as short as practicable and purged completely before any samples are taken.
- 7.3.1.3 *Valves*—To control the rate at which the sample is withdrawn, the probe or probes are fitted with ball, gate, needle, or large port valves.

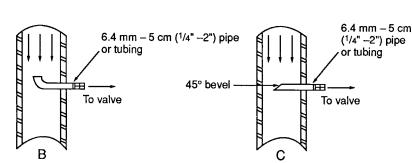
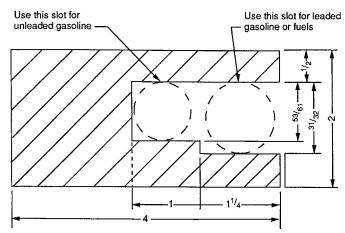



FIG. 7 Probes for Line Sampling

- 7.4 Automatic Samplers—An automatic sampler includes not only the automatic sampling device that extracts the samples from the line, but also a suitable probe, connecting lines, auxiliary equipment, and a container in which the sample is collected. It must maintain sample integrity. Refer to Practice D4177/API MPMS Chapter 8.2. Automatic samplers are classified as follows:
- 7.4.1 Continuous Sampler, Time Cycle (Nonproportional) Type—A sampler designed so that it transfers equal increments of liquid from the pipeline to the sample container at uniform time increments.
- 7.4.2 *Continuous Sampler, Flow-Responsive (Proportional) Type*—A sampler designed to automatically adjust the sampling rate to be proportional to the flow rate of the stream.
- 7.4.3 Calibration—Prior to initial operation, the sample bite size must be verified to be within ± 5 % of the specification using an acceptable calibration procedure. Additionally, the required sample volume must be obtained during any sampling period so that the manufacturer's sampling interval is not exceeded.
- 7.4.4 Container—The container must be a clean, dry container of convenient size to receive the sample. All connections from the sample probe to the sample container must be free of leaks. The container is constructed in such a manner that it prevents evaporation loss. The construction must allow cleaning, interior inspection, and complete mixing of the sample prior to removal. A fixed volume type container is equipped with a pressure-relief device.
- 7.5 Grab or Spot Sampling—Purge approximately three volumes of product through the sample tap and tubing. Divert the sample stream to the sampling container to provide a quantity of sample that will be of sufficient size for analysis.
- 7.6 *Nozzle Sampling*—The nozzle sampling procedure is applicable for sampling light fuels from a retail type dispenser.
- 7.6.1 *Apparatus*—Sample containers conforming with Section 6 should be used. A spacer, if appropriate, and a nozzle extension as shown in Fig. 8 and Fig. 9 are used when nozzle sampling.
- 7.6.2 *Procedure*—Immediately after fuel has been delivered from the pump and the pump has been reset, attach a spacer (Fig. 8), if needed, to the pump nozzle (vapor recovery type). Insert the nozzle extension (Fig. 9) into the previously chilled sample container and insert the pump nozzle into the extension with slot over the air bleed hole. Fill the sample container slowly through the nozzle extension to 70 to 85 % full (Fig. 10). Remove the nozzle extension. Insert the seal and cap or

Note 1-Make from 1/4 in. flat non-ferrous metal.

Note 2-All dimensions are in inches.

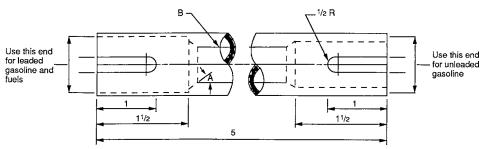
Note 3—Break all edges and corners.

FIG. 8 Spacer for Nozzle Sampling

stopper into the sample container at once. Check for leaks. If a leak occurs, discard the sample container and resample. If the sample container is leak tight, label the container and deliver it to the laboratory.

8. Special Precautions and Instructions

8.1 *Precautions*—Vapor pressures are extremely sensitive to evaporation losses and to slight changes in composition. When obtaining, storing, or handling samples, observe the necessary precautions to ensure the samples are representative of the product and satisfactory for Reid equivalent vapor pressure tests. Refer to Practice D7717.


NOTE 3—Make certain that containers that are to be shipped by common carrier conform to applicable federal, state, and local regulations.

NOTE 4—When flushing or purging lines or containers, observe the pertinent regulations and precautions against fire, explosion, and other hazards. Collect all line flushes and bottle rinses for proper recovery or disposal.

8.2 Sample Containers—Use containers of sufficient strength to withstand the pressures to which they can be subjected, and of a type that will permit replacement of the cap or stopper with suitable connections for transferring the sample to the gasoline chamber of the vapor pressure apparatus.

9. Keywords

9.1 dry vapor pressure; fuels; gasoline; gasoline sampling; petroleum products; sampling; sample handling; sampling of volatile products; vapor pressure; volatility

Note 1—Use ¾ in. Schedule 80 non-ferrous pipe.

Note 2-All dimensions are in inches.

Note 3—All tolerances are $\pm \frac{1}{120}$ in.

FIG. 9 Extension for Nozzle Sampling

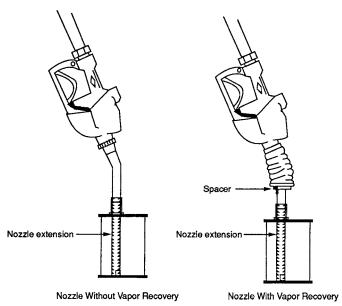


FIG. 10 Assembly for Nozzle Sampling

SUMMARY OF CHANGES

Committee D02.02 has identified the location of selected changes to this standard since the last issue (D5842–04 (Reapproved 2009)) that may impact the use of this standard. (Approved January 15, 2014)

(1) Revised 5.1. (2) Revised 8.1.

^A Recommend 30°.

^B Inside diameter schedule 80 non-ferrous pipe.

1220 L Street, NW Washington, DC 20005-4070 USA

202-682-8000

Additional copies are available online at www.api.org/pubs

Phone Orders: 1-800-854-7179 (Toll-free in the U.S. and Canada)

303-397-7956 (Local and International)

Fax Orders: 303-397-2740

Information about API publications, programs and services is available on the web at www.api.org.

Product No. xxxxxxx