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FOREWORD 

o 

This publication covers statistical concepts and procedures used in bulk oil 
measuremen t. 

Suggested revisions are invited and should be submitted to the director of the 
Measurement Coordination Department, American Petroleum Institute, 1220 L 
Street, N.W., Washington, D.C. 20005. 
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Chapter 13-Statistical Aspects of Measuring and Sampling 

SECTION 1-STATISTICAL CONCEPTS AND PROCEDURES IN MEASUREMENT 

13.1 .O Introduction 
The nature of physical measurements makes it impos- 

sible to measure a physical variable without error. Abso- 
lute accuracy is only achievable when i t  is possible to 
count the objects or events: even then. when large num- 
bers are involved. it may be necessary to approximate. 
With the best equipment and directions. the potential 
for errors in fluid volume measurements involving large 
amounts of material is large. 

Mini mizing errors. estimating the remaining errors. 
and keeping all parties informed of errors is increasingly 
important to the petroleum industry. Equally important 
is an understanding of the size and significance of errors. 
Providing estimates of errors and statements concerning 
errors in a standard form can help avoid disputes and 
dispel delusions of accuracy in statements of quantity. 

Chapter 13 of the MutiiruI of Perroleirni Meusurenierit 
StuiidurdT is designed to help those who make measure- 
ments of bulk oil quantities improve the value of their 
result statement by making proper estimates of the un-  
certainty or probable error involved in measurements. 
During the development of Chapter 13. I .  reference was 
iiiadr: to Part XIV. Section 1 (Tentative) of the Perroleirni 
A.letr.ciirenierir Muiiirul published by the Institute of Pe- 
troleum. London. England. 

13.1.1 Scope 
This chapter covers the basic concepts involved in es- 

timating errors by statistical techniques and ensuring 
that results are quoted in the most meaningful way. The 
statistical procedures that should be followed in estiniat- 
iiig a true quantity from one or more measurements and 
in deriving the range of uncertainty of the results are dis- 
cussed. Sources of error are examined and examples are 
provided showing how a statement of the overall uncer- 
tainty in  completed measurements is derived. 

The subsequent sections ( i n  preparation at the time 
this section was published) of Chapter 13 will deal with 
the application of the concepts discussed in Section 1 to 
various methods for bulk oil measurement widely used 
i n  the petroleum industry. Chapter 13.1 is a reference 
document explaining theory and the application of sta- 
tistical procedures whereas subsequent sections will pro- 
vide statistical equations and typical examples for 
various types of measurement. 

13.1.2 Definitions 
The following terms are used throughout Chapter 13. 
Acciiraq. is the ability to indicate values closely ap- 

proximating the true value of the measured variable. 
Bias is any influence on a result that produces an i i i -  

correct approximation of the true value of the variable 
being measured. Bias is the result of a predictable sys- 
tematic error. 

Corijîdence intervul or rutige of i4ticertuiiit.s. C. is the 
range or interval within which the true value is expected 
to lie with a stated degree of confidence. 

Corijîdence level is the degree of confidence that may 
be placed on an estimated range of uncertainty. 

Degrees of freedoiv is the number of independent re- 
sults used in estimating the standard deviation. 

Direct nieusurenierit is a measurement that produces a 
final result directly from the scale on an instrument. 

Error is the difference between true and observed 
values. 

Indirect nieusurement is a measurement that produces 
a final result by calculation using results from one or 
more direct measurements. 

Meuti, 4. is the average of two or more observed 
values. 

Meusirrenietit is a procedure for determining a value 
for a physical variable. 

Nort?iul (Guirssiuti) distribution (see Appendix A). 
The ohserved vuliie is the result obtained from a 

ineasurement. 
An outlier is a result that differs considerably from the 

main body of results in  a set. 
Purunieters are the values that characterize and sum- 

marize the essential features of measurements. 
Precision is  the degree to which data within a set clus- 

ter together. 
A ruiiúim error is an error that varies in an unpredict- 

able manner when a large nuniber of measurements of 
the same variable are made under effectively identical 
conditions. 

Rutige, M'. is the region between the limits within 
which a quantity is measured. 

Repc~uruhilif~*. r. is a measure of the agreement be- 
tween the results of successive measurements of the 
same variable carried o u t  by the same method. with the 
sanie instrument. at the same location. and within a 
short period of time. 

1 
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2 CHAPTER 13-STATiSTlCAL ASPECTS OF MEASURING AND SAMPLING 

Rpproducihilir~~ is a measure of the agreement between 
the results of measurements of the same variable where 
individual measurements are carried out by the same 
methods. with the same type of instruments. but by dif- 
ferent observers. at direrent locations. and after a long 
period of time. 

A r~ , . s~ /r  is the observed value of a variable determined 
by a single measureiiient. 

A .spwious error is a gross error in procedure (for ex- 
ample. human errors o r  machine malfunctions). 

Stundurú deviation, s, is the root mean square devia- 
tion of the observed value from the average. 

Srandurd normal deviate (see Appendix A). 
Studenr’s I is a statistical function that varies in mag- 

nitude with degrees of freedom. 
A svsrenratic error, e, is one that, in the course of a 

number of measurements made under the same condi- 
tions. on material having the same true value of a vari- 
able. either remains constant in absolute value and sign 
or varies in a predictable manner. Systematic errors re- 
sult in a bias. 

True value, X ,  is the correct value of a variable. 
Vuriunce, V or Y, is the measure of the dispersion or 

scatter of the values of the random variable about the 
mean p. 

13.1.3 Nomenclature 
The following algebraic symbols are used throughout 

’ ! 3 .  Chanter 

A 

“‘-Y-” 

U 

B 

h 
C 

D 
e 
n 

tn 

P 

c 

P. Q 
r 
S 
S 

t 
V 
1’ 

U’ 

True limit of range of uncertainty for 
random errors. 
Estimate of A .  
True limit of range of uncertainty for 
systematic errors. 
Estimate of B. 
True total limit of range of uncertainty. 
Estimate of C. 
Conversion factor (used to derive s from lv). 
Estimate of systematic error. 
Number of repeated measurements. 
Number of quantities incorporated in a final 
indirect quantity measurement. 
Number of independent sources of 
systematic error. 
Constants. 
Estimate of repeatability. 
True value of standard deviation. 
Estimate of standard deviation. 
Value of Student’s r distribution. 
True variance, S2. 
Estimate of variance, s’. 
Range of a set of data. 

True value of a variable. 
Observed mean value of a set of data. 
Observed value of a variable. 
Observed mean value corrected for bias. 
Observed value of a variable corrected for 
bias. 
Mean of Gaussian normal distribution. 
Standard deviation of a Gaussian normal 
distribution. 
Degrees of freedom. 

Sta ti st ¡cal Control 
Proper use of statistical techniques requires that the 

measurement process be in a state of statistical control. 
Unless this is achieved, any statement concerning the es- 
timate of the true value of the quantity being measured, 
and the statistical uncertainty associated with it, is not 
strictly valid and may even be meaningless. A measure- 
ment process that is under statistical control will, i f  
measurements on the same quantity are repeated by the 
same method and under essentially the same conditions, 
show stability of the mean value and regular scatter of 
individual results (see also 13.1.7). 

Repeatability and reproducibility, when properly es- 
tablished, can be used to monitor statistical control on a 
routine basis (see 13.1.7.1 and 13.1.7.2). 

Strict statistical control is usually very difficult to en- 
sure. An important step in establishing any measure- 
ment procedure is to decide which variables should be 
used to monitor statistical control and to establish target 
values required to maintain an appropriate degree of 
consistency. Some essential elements in statistical con- 
trol are listed here. 

I .  The entire measurement procedure and instructions 
Iiiust be clearly defined and closely îollowed. 
7 .  Independeiit procedures for checking and maintain- 
ing equipment must be available. 
3. Means for detecting and eliminating equipment 
1ii:iIfunctions and human mistakes (leading to spurious 
errors) should be incorporated (see 13. I .6.1). 

These features of the measurement procedure must be 
adhered to at all times. Furthermore. control charts and 
other records of equipment performance, maintenance, 
and calibration checks must be used as an integral part 
of statistical control procedures. 

13.1.5 Measurements 
13.1.5.1 TRUE VALUE 

One primary assumption is made; that is, an exact or 
true value exists for any variable, valid for the condi- 
tions that exist at the moment when the result is deter- 
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3 SECTION 1 -STATISTICAL CONCEPTS AND PROCEDURES 

mined. Generally. the true value X cannot be 
determined. but a valid estimate X can be obtained by 
rigorous application of the appropriate method of meas- 
urement using the specified instruments. By statistical 
analysis of the various errors involved. it is possible to 
use observed values to obtain an estimate of the true 
value and to quantify the reliability of that estimate. In 
any set of measurements. the best estimate of X will be 
the mean X after rejecting outliers and correcting for sys- 
tematic errors. 

13.1 S.2 UNCERTAINTY OF MEASUREMENT 

The usefulness of a result is greatly increased when i t  
is accompanied by a statement of its reliability. The sta- 
tistical calculations provided in this chapter give a range 
or interval within which the true value of the variable 
can be expected to lie with a stated degree of confidence. 
The statistical term for such an interval is the corifidence 
intervul (also referred to as the range of uncertaitify of the 
measurement). The limits of a confidence interval about 
an estimate X are expressed as E +C(X): the magnitude 
of ZC(.U) depends on the random variability of the 
measurements, unknown systematic errors. and the con- 
fidence level. As an example. consider the following 
statement: I O "  t 1 " C .  In this statement. the estimate 2 
is IO"  and the confidence interval is i 1 O .  

13.1 S.3  CONFIDENCE LEVEL 

Setting absolute limits to a range of uncertainty is 
rarely possible. I t  is more practical to give an indication 
of the degree of confidence that may be placed on an 
estimated range of uncertainty. This degree of confi- 
dence. or confidence level, indicates the probability that 
the range quoted will include the true value of the quan- 
tity being measured. The most common statistical prac- 
tice is to use the 95 percent confidence level. This level 
implies that there is a 95 percent probability (19 chances 
in 20) that the true value will lie within the stated range. 
The 95 percent level is recommended for all commercial 
applications in petroleum measurement and will be used 
throughout this chapter. In  certain limited circum- 
stances, a different degree of confidence may be 
required. 
NOTE: Strictly, a confidence level or confidence interval can only be 
used to account for Gaussian random errors or errors that may be so 
treated. Systematic errors must be accounted for before the confidence 
level and interval are applied. and substantial contributions to the to- 
tal uncertainty should be separately recorded. 

13.1.5.4 REPORTING RESULTS 

All results should be reported so that the estimate of 
the true value. and the limits within which the true value 
is expected to lie with a given level of confidence. can be 

seen at a glance. Results should be written as follows: 
f-C(.$ 95. I I  (95 percent confidence level. t i  measure- 

ments) from which the following relevant information 
can be obtained: 

I .  -7 i.s il mean value of ti measurements. is corrected for 
all known systematic errors. and is the estimate of the 
true value. 
7 .  There is 95 percent probability that the true value 
lies betwen .T - C<.Ti and .T + C(Tì. 
3. There is 95 percent probability that a n y  further sin- 
%le measurenient will lie uithin 

- 

? = C(.T)/ti''.'. 

Expanding on the example, assume that the following 
temperature measurements were taken for a delivery 
batch of crude oil: 10, 8. 1 I .  9. and 12°C; and the confi- 
dence interval was determined to be & 2°C.  Then = 

10, ti = 5 and the result statement would be: I O "  ? 2°C 
(95 percent confidence level. 5 measurements). 

13.1.6 Types of Errors 
The difference between the observed value of a vari- 

able and its true value includes all errors associated with 
the person actually taking and recording the results, in- 
strument errors. procedure errors. and errors resulting 
from sampling procedures or changes in conditions dur- 
ing the period of measurement. There are three basic 
types of errors that must be considered: spurious errors. 
systematic errors, and random errors. 

13.1.6.1 SPURIOUS ERRORS 
Spurious errors are gross errors, such as misapplica- 

tion of method. incorrect reading or recording, and in- 
strument malfunction. These errors cannot be incor- 
porated into any statistical analysis and lhe results must 
be discarded. 

There are statistical methods of testing for outliers 
(see Appendix B), but these methods should only be ap- 
plied if there is good reason to believe that spurious er- 
rors exist. Data should not be discarded lightly. and the 
observer should record what information has been dis- 
carded and state the reasons. 

13.1.6.2 SYSTEMATIC ERRORS 
A systematic error is one that. in the course of a 

number of measurements made under the same condi- 
tions on the same variable, remains constant or varies 
predictably. Thus, systematic errors cause bias in the re- 
sults. The bias can be positive or negative, leading to 
over- or underestimation of the true value of the variable 
being measured. In many liquid measurement applica- 
tions, systematic errors may make a larger contribution 
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4 CHAFER 13-STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

to the overall uncertainty of a result than random errors 
(see 13.1.6.3). Systematic errors must be identified and 
either eliminated or compensated for before interpreting 
overall results statistically (see note in 13.1.5.3). 

ideally, bias could be considered as constant for all 
measurements made by the same operator and equip- 
ment. Unfortunately, assessment of bias is complicated 
by the fact that some contributions to bias do vary with 
time. For example, knowledge and control of test condi- 
tions may be inadequate or an instrument may wear pro- 
gressively. Such factors will probably not change 
significantly during the course of one set of measure- 
ments but could change both in magnitude and sign over 
a longer period. 

Assessment of systematic errors by experimental 
means is difficult, especially when variation with time is 
involved. Errors introduced by the observer or by 
changes in operating conditions are probably easiest to 
identify, but any experimental evaluation of systematic 
error may involve a complete change of equipment, 
which is often not feasible. The alternative to experimen- 
tation is to make a subjective assessment on the basis of 
experience and knowledge of the instruments involved. 

In  any event. if the conditions of measurement are un- 
changed, increasing the number of .measurements wiil 
not reduce the effects of systematic error. 

All conceivable sources of error must be identified, ex- 
amined methodically, and assessed quantitatively to es- 
tablish whether they make a significant contribution to 
bias. 

13.1.6.3 RANDOM ERRORS 

Random errors are caused by small independent influ- 
ences that prevent a repeated measurement from giving 
an identical result, although the true value of the vari- 
able involved remains the same. Results that contain 
only random errors are amenable to statistical analysis. 
Random errors are assumed to follow a normal (Gaus- 
sian) distribution, described in Appendix A. Provided 
that all systematic errors can be accounted for, the cor- 
rected mean value! and the range of uncertainty &C(j)  
can be calculated. Increasing the number of measure- 
ments reduces the value of C(3) and hence improves the 
reliability of the final estimate .V. 

13.1.7 Accuracy and Precision 
A set of measurements subject to the smallest system- 

atic errors will be expected to have their mean closest to 
the true value, and this is said to give the most accurate 
set. I t  is also evident that the set of measurements sub- 
ject to the smallest random errors will be expected to be 
clustered closest together, and so form the most precise 

set. Within these rather narrow statistical definitions. 
precise measurements are not necessarily accurate. since 
they could cluster about a point that is not the true 
value. Conversely. i t  is possible to have a set of measure- 
ments that are accurate taken as a group although 
widely scattered and of doubtful reliability when taken 
singly. 

This distinction is important since any statement con- 
cerning reliability must account for both systematic er- 
rors and random errors, as statistically defined. in 
practice, accuracy in measurement cannot exist without 
precision, so every effort must be made to satisfy both 
criteria of reliability. 

The precision of a method of measurement can be de- 
termined quantitatively and is conventionally expressed 
as repeatability and reproducibility. 

13.1.7.1 REPEATABILITY 

The repeatability of a method of bulk measurement i s  
a quantitative measure of the random error associated 
with a single operator at a given location, obtaining suc- 
cessive measurements on the same body of material over 
a short time interval, with the same measuring devices, 
and under constant operating conditions. Repeatability 
is defined as the difference between two such measure- 
ments that would be exceeded in the long run in 1 case 
in  20 in the normal and correct operation of the method 
of measurement. Repeatability is the range of uncer- 
tainty (95 percent confidence level) for the difference be- 
tween two measurements obtained under the same 
conditions. 

The short time interval between measurements is es- 
sential to ensure that external conditions are kept as 
nearly constant as practicable. The time interval should 
be of the same order of magnitude as the duration of a 
single measurement. For example, if a measurement 
takes 5 minutes to carry out, the interval before a second 
measurement should not exceed I O  minutes. 

13.1.7.2 REPRODUCIBILITY 

The reproducibility of a bulk measurement method is 
a quantitative expression of the random error associated 
with different operators working in different locations 
with different instruments, with each operator obtaining 
single measurements on the same body of material by 
using the same method and the same types of measuring 
devices. I t  is defined as the difference between two such 
single and independent measurements that would be ex- 
ceeded in the long run in only 1 case in 20 in  the normal 
and correct operation of the method of measurement. 
Reproducibility is the range of uncertainty (95 percent 
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5 SECTION 1 -STATISTICAL CONCEPTS AND PROCEDURES 

confidence level) for the difference between two meas- 
urements obtained under the same conditions. 

Good reproducibility indicates that random errors are 
acceptably small (good repeatability) and that system- 
atic errors other than those inherent in the method are 
probably also very limited in size and number. Repro- 
ducibility conditions as defined, can rarely be met in 
quantitative bulk oil measurement because the identity 
of a body of oil is almost invariably lost during its move- 
ment from one place to another (the only possible excep- 
tion being measurement by gage or weighing of a vehicle 
or ship). However, a close approximation to reproduc- 
ibility conditions could be achieved for measurements 
such as gaging a storage tank if two operators each set 
up their own apparatus for the prescribed method of 
measurement at the same location. 

13.1.7.3 APPLICATION OF PRECISION TO A 
SINGLE MEASUREMENT 

As stated previously, reproducibility of a measure- 
ment method. strictly defined. is not a concept that can 
often be utilized. The application of repeatability is also 
limited in normal commercial transfer measurement, 
since the second measurement required to establish a 
difference between two results is not a practical proposi- 
tion in everyday work using meters. 

In practice it  is necessary to conduct a special exercise 
and obtain repeated determinations of the result with 
the apparatus that is to be used at a given site and to use 
these determinations to estimate the random error of a 
single measurement. This random error is expressed as 
the range of uncertainty about a single measurement 
rather than the range for the difference between two 
measurements as would be the case for repeatability and 
reproducibility. This estimate of the range of uncertainty 
is then used for all routine measurements until such time 
as il complete re-check of the apparatus and method is 
undertaken (usually at prescribed regular intervals). 

The estimated range of uncertainty so obtained would 
cover errors both from the instruments used and from 
the calibration system employed. It should also be noted 
that. without repeated measurements, it is impossible to 
use the range of uncertainty as a means of monitoring 
statistical control on a short-term basis, as was the case 
with repeatability (see 13.1.7.1). 

13.1.8 Statistical Procedures 
True value and range of uncertainty are two impor- 

tant characteristics describing the measurement of any 
physical variable. There are characteristics that describe 
other features of the results. such as random error. stan- 
dard deviation. and bias. and these are called the param- 

eters of the population of observed variables. Parameters 
are ali assumed to have true values. The procedures de- 
scribed in this section are used to derive estimates of the 
parameters, known as statistics. from the set of measure- 
ments obtained. Parameters will be represented algebrai- 
cally either by Greek letters (for example, p and a) or 
true values by capital Roman letters, and observed val- 
ues will be represented by lowercase Roman letters. 

in general, the result in question will be a function of 
one or more intermediate results, each of which could 
contribute to both the final result estimate and its range 
of uncertainty. The statistics for each intermediate result 
should be established first. Intermediate results will be 
combined to give the statistics that relate to the final 
result. 

13.1.8.1 STATISTICAL PROCEDURE FOR A 
SINGLE SET OF DATA 

Statistics are derived from a single set of I I  repeated 
measurements .Y,. for i = 1 to 17. Each measurement will 
he an estiinate of A'. the true value of the variable but 
will he subject to both systematic and random errors 
(>er 13.1.6). All known sources of systematic error 
should he accounted for before the true value and range 
of uncertainty are estimated. i n  the interest of clarity. i t  
is good practice to record the source and magnitude of 
each error separately. 

Random errors are assumed to follow the normal 
(Gaussian) distribution (see 13.1.6.3 and Appendix A). 
bvhich is fully determined i f  its parameters p (mean) and 
n (>tandard deviation) are determined. These two pa- 
rameters are estimated from the measurements obtained. 
The possible sources and magnitudes of the systematic 
errors to be found in measuring systems are given in de- 
tail in 13.1.8.1.1 through 13.1.8.1.7. 

13.1.8.1.1 Number of Repeated Measurements 
Required 

There is no fixed value for the optimum number of 
measurements required to establish a true value and a 
range of uncertainty. On the one hand, t7. the number of 
repeated measurements, has no bearing on the determi- 
nation of systematic errors that are present to the same 
extent in all measurements made under the same operat- 
ing conditions (see 13.1.7.2). On the other hand, the sta- 
tistics relating to random errors (for example, mean and 
standard deviation) are not independent of n, since the 
larger n becomes, the closer estimates will approach ' 

their true values and the smaller will be the range of un- 
certainty (see 13.1.7.3). 

Very often i t  is only practical to obtain from five to 
ten measurements in the field. This is perfectly accepta- 
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6 CHAPTER 13-STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

ble for the day-to-day estimate of a mean value, but 
greatet reliability is required for a statistic that is to be 
used as a standard measure. This is the case for 
repeatability (see 13.1.7.1), which should be estimated 
from at least 20 and preferably 30 or more repeated 
measurements. A similar argument applies when esti- 
mating the range of uncertainty for single measurements 
(see 13.1.7.3). 

13.1.8.1.2 Outlying Results 

Results that are subject to spurious errors (see 
13.1.6.1 ) may differ considerably from the remaining re- 
sults in the set. These are called outlying results. If a re- 
sult is suspected to be an outlier but is not easily 
identifiable, then the set of results should be tested for 
outliers according to the procedures given in Appendix 
B. The suspect result should be discarded if the test 
proves significant. It should be stressed, however, that a 
good reason is required before a result is rejected, and 
that reason should be clearly stated. 

When the repeatability of the method of measurement 
has been established, i t  is possible to make a preliminary 
check for outliers by the range test illustrated in 
13.1.8.1.7. Note that constant systematic errors cannot 
be detected in an outlier test because they are present to 
the same extent in all results of the quantity in question 
(we 13.1 .6.2). 

13.1.8.1.3 Correcting for Bias 

If a constant systematic error e is known to exist, for 
example, a depth gage is known to give a consistent bias 
1 millimeter above the true reading due to faulty calibra- 
tion, then each of the measurements .Y, should be ad- 
justed accordingly. The adjusted results, y , ,  will then be 
the most accurate available (see 13.1.7) and are given by 
the expression: 

(1) .v, = x ,  - e 

Note that the systematic error could be level dependent, 
that is, a constant function (for example, percentage) of 
the measurement itself: 

e = f(x) (2) 
An example of this would be a direct reading meter 
known from experience to give a consistent bias 1 per- 
cent above the true value. In that case, Equation l 
becomes: 

y ,  = x, - f(x,) (3) 

There are times, however, when the systematic error is 
unknown in magnitude and/or sign, usually due to vari- 
ations in operating conditions over a long interval (see 

13.1.6.2). I n  that case, the average systematic error 2 
should be estimated, taking into account the conditions 
that affect the measurements at the time. Very often the 
only way to estimate the average is to calculate the mean 
range in which the errors could lie. If the errors were 
estimated to range from e, to e:. the average systematic 
error would be: 

(4) e = ( e ,  + e , ) /2  

Individual measurements should then be adjusted by the 
mean value ë as in Equation 5: 

- 

( 5 )  
- 

y ,  = .x, - e 

Note that when the systematic error takes positive or 
negative values up to the same maximum (e, = - e 2 )  no 
correction will be made. Note also that unknown sys- 
tematic errors will contribute to the range of uncertainty 
for the true value estimate (see 13.1.8.1.6.3). 

13.1.8.1.4 Estimating True Value 

The resultsy, (xl corrected for bias) are now subject to 
random errors and unknown systematic errors. As previ- 
ously stated. the measurements J ,  are assumed to follow 
the normal distribution with mean p and standard devia- 
tion u. The estimate of the mean that is most likely to be 
correct, or the ‘‘maximum likelihood” estimate of p, is 
the average j of the set of corrected measurements: 

If  only one result is available, the result is the estimate of 
the true value. 

13.1.8.1.5 Estimating Standard Deviation 

Tlic standard deviation u (J.) describes the randoin er- 
ror oí‘ a single measurement. 

The iiiiix i m u  ni I i keli hood est i nia te .(.(I.) of the s taiidard 
de\siiitioii is calculated from the set of corrected results 
( , I . , )  LIS fnllol\.s: 

o r  

I l  -.> n v-  
r r - 1  . I I -  1 (7)  2 y , ?  - - 

I =  1 

.A less coiiiplicated but more approximate estirnate is: 
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7 SECTION 1 -STATISTICAL CONCEPTS AND PROCEDURES 

Where: 

M’ = the range of the set of measurements (for n 
< 12). 

DOI)  = a conversion factor (see Table I ) .  

A further approximation can be made by replacing D(II )  
by ( i 7 ) O i .  I t  should be stressed, however, that Equation 8 
is approximate since it should theoretically apply to the 
average range G of a number of sets of I I  measurements. 
A more reliable estimate would be obtained from the av- 
erage range of six pairs of results than from the range of 
a single set of twelve repeated results. For this reason, 
the equation should only be used as a quick check to 
monitor statistical control and not for data interpreta- 
t i o n  (see 13.1.4). 

The standard deviation of the average of n repeated 
results can be calculated as: 

(9) 

I n  terms of estimates, the standard deviation. or as i t  
is more commonly called. the standard error. of the aver- 
age becomes: 

As the number of measurements increases. the stan- 
dard error of the average will decrease. Therefore. an av- 
erage based on a large number of measurements would 
in this sense be more reliable than one based on a small 
number of measurements (see 13.1.8.1. I) .  Furthermore. 
since the distribution of any average tends toward the 
normal as n becomes larger, Equation 10 would still hold 
true i f  the distribution of individual results deviated 
from the normal distribution. 

13.1.8.1.6 Estimating Range of Uncertainty 

For a measurement function. here called G. the limit 
C(G)  of the range of uncertainty (see 13.1.5.2) consists of 
two parts, the limit A(@ due to random errors and the 
limit B(G) due to unknown systematic errors (see 
13.1.8.1.3). The estimation of A, B, and C depends to a 
large extent on the nature of G, be it a single measure- 
ment or an average, and on the nature of the errors pre- 
sent. (In this section, the expression “limit of the range 
of uncertainty” will often be referred to in shortened 
form as “limit of uncertainty” or’ “uncertainty limit.”) 

Table 1 -Range Conversion Factor 
Number of Conversion Number of Conversion 

Measurements. Factor, Measurements. Factor, 
n Din) n D(n) 

2 1.128 8 2.847 
3 1.693 9 2.970 
4 2.059 10 3.078 
5 2.326 I I  3.173 
6 2.534 12 3.258 
7 2.704 

SOURCE: Davies. O. L., Siarrsfical Merhods in Research and Producrion. 
2nd Edition. Longman, 1984. 

13.1.8.1.6.1 

The limit AC,>) of the range of uncertainty due t o  ran- 
dom errors about a single measurement y is simply the 
product of the standard deviation a(),) and the standard 
normal deviate (see Appendix A). For 95 percent 
probability, the standard normal deviate has a value of 
1.96. that is, 

Uncertainty Due to Random Errors 

A(?, )  = 1.96 u(),) ( 1 1 )  

i n  general. the standard deviation will be estimated 
from Equation 7 as s ( ~ ) .  To take this into account, the 
limit of random uncertainty calculated from so.) should 
be based not on the standard normal deviate, but on a 
value known as Student’s t .  which varies in magnitude 
with the degree of freedom. For the purpose of this doc- 
ument, degrees of freedom may be regarded as the 
number of independent measurements used in estimat- 
ing the standard deviation, which for I I  measurements 
will be 17 - 1 ( 1  degree of freedom having been used in 
calculating the average). The limit of the range of uncer- 
tainty f o r  single measurements (see 13.1.7.3). will. i n  this 
CASC‘. be estimated as: 

the value of the t-distribution for (n - 1)  
degrees of freedom and for a two-sided 
probability of 95 percent (two-sided since 
the range of uncertainty covers both sides 
of the true quantity estimate). 

Values of the t-function are given in Table 2 .  Once 
again, by using Equation IO,  the limit for an average will 
become: 

4 . Y )  = ( f a , - , .  “ . , I  x S(.F) 

(13) 
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8 CHAPTER 1 +STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

Table 2-t-Distribution Values for 95 Percent 
Probability (DoubIeSided) 

Degrees Degrees 
of Freedom of Freedom 

9 tu,.. Q 9 (.DL Q 
I 12.706 18 2.101 
2 4.303 19 2.093 
3 3. I82 20 2.086 
4 2.776 21 2.080 
5 2.57 I 22 2.074 
6 2.447 23 2.069 
7 2.365 24 2.064 
8 2.306 25 2.060 
9 2.262 26 2.056 
10 2.228 27 2.052 
1 1  2.201 28 2.048 
12 2.179 29 2.045 
13 2.160 30 2.042 
14 2.145 40 2.02 1 
15 2.131 60 2.000 
16 2.120 120 1 ,980 
17 2.1 10 -_ 1.960 

SOURCE: Fisher and Yates. Statistical Tables for Biological, Agricul- 
turd, and Medical Research. 

Thus. combining Equations 12 and 13: 

-_il 
u(.) = 

I t  is worth noting that as n becomes very large, so the 
1-value approaches the standard normal deviate. and the 
standard deviation estimate s(y)  approaches the true 
V d I U C  o ( r i .  ..-I .-  

13.1.8.1.6.2 Uncertainty Due to Systematic Errors 

Systematic errors can aíïect results by creating a bias, 
an uncertainty. or both (see 13.1.6.2). When the errors 
are known, be they level dependent or not. the bias can 
be removed according to 13.1.8.1.3 and no uncertainty 
will exist. On the other hand, when the errors are un- 
known in  sign and/or magnitude and even though bias 
can be allowed for according to Equation 4. there will 
still be an uncertainty as to the true value of the variable. 
Nor is i t  theoretically possible, due to the very nature of 
systematic errors, to express the true limit B in terms of 
the measurements obtained. it is necessary. therefore, to 
estimate the limit for each source of systematic error by 
calculating the absolute value by which the corrected re- 
sults could deviate from their true value with 95 percent 
confidence. Assuming that systematic errors are uni- 
formly distributed and using the symbols defined in 
13.1.8.1.3. this means that: 

(15) 

Note that h( j * )  is the limit of a range of uncertainty. and 
should not be confused with the maximum value ( e ,  or 
e,)  that a systematic error could take. if the error takes 
positive or negative values up to the same maximum ( e ,  
= e , )  then: 

4.r) = 0.95 I e, I = 0.95 I e, I í 16) 

Noir. also that since systematic errors are present t o  the 
wiie extent Tor all measurements made under the sanie 
conditions (see 13.1.6.2). the limit of the range of uncer- 
tainty about an average resu1t.T will be identical. that is: 

4.7) = Ny) 
Although i t  is difficult to handle systematic errors 

with theoretical justification. this should not detract 
from their importance in measuring systems. in many 
cases, systematic errors create greater uncertainty than 
random errors. and for this reason, great care should be 
taken in their identification and estimation. 

13.1.8.1 -6.3 Combining Random and Systematic 
Uncertainties 

I n  attempting to allow for systematic uncertainties, 
difficulties will arise because systematic errors are often 
variable with time and cannot be identified from a single 
set of measurements obtained under constant operating 
conditions (see 13.1.6.2). This is not to say that system- 
atic errors cannot be estimated at all since good esti- 
mates can be derived from calibration exercises or from 
experience with and knowledge of the measuring system 
involved. A combination of uncertainties is required be- 
cause i t  is of great value to state the range in which a 
true value is expected to lie. 

There are two schools of thought on how uncertainty 
limits should be combined: ( 1 )  by simple addition or (2) 
by a method called root sum square. The latter method 
is theoretically correct i f  only random uncertainty limits 
are to be combined (see 13.1.8.2.2). but gives a narrower 
range and. therefore, a more optimistic view than the 
former method. in choosing between the two methods, 
consideration must be given not only to theoretical im- 
plications, but also to the manner in which errors are 
found to behave in practice. 

Consider first a set of measurements of the same 
quantity subject to p independent sources of systematic 
crror. :ill of which are unknown but have heen estimated 
according to 13.1 .X. 1.3. Since the errors afìect the same 
meaaurement. they tend to cancel each other out. at least 
to a certain extent. With this in mind. i t  would be sensi- 
ble to take the more optimistic view and combine the 
syateinatic uncertainty limits by the root sum square 
method. Assuming that systematic errors follow a uni -  
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SECTION 1 -STATISTICAL CONCEPTS AND PROCEDURES 9 

form distribution-that there is an equal probability that 
the error lies anywhere throughout its full range-there 
would be a theoretical justification for this choice. As a 
general rule, the total limit of the range of uncertainty 
due to systematic errors should be calculated as: 

M y )  = \ /b12(y) + bl'(y) + ... + b,2(y) (18) 

In this equation. the systematic uncertainties have 
been combined in exactly the same manner as random 
uncertainties (see 13.1.8.2.2). On a theoretical basis, sys- 
tematic and random uncertainties should be combined 
in the same fashion. There is further justification for this 
approach in practical terms. since systematic and ran- 
dom errors would be expected to average each other out 
to a certain extent. This leads to the root sum square 
method for combining systematic and random uncer- 
tainties. which. in terms of average measurements. is: 

4-F) = &(?) + by?) ( 1% 

Note that u(!)  becomes smaller as 17 becomes larger 
(see 13.1.8. I .  1 ). whereas h(.T) will remain unchanged. 
The total limit c(.F) will approach the limit h(.F) as t i  in- 
creases. This shows the need for care in estimating sys- 
teiiiatic errors. regardless of the number of repeated 
iiieiisurenieiits obtained (see 13.1.6.2). Note also that by 
using Equations 14 and 17. the limit of the range of un-  
certaintv for any further single measurement (see 
13. I .5.4) becomes: 

(20) c(y) = d n a y y )  + b y v )  

13.1.8.1.7 Estimating Repeatability 

Since repeatability is defined as the range of uncer- 
tainty due to random errors for the difference between 
two measurements (see 13.1.7.1), it can be estimated di- 
rectly from Equation 12. In this case, the standard devia- 
tion relates to the absolute difference between two 
repeated measurements, yl  and .r2, and for a normal dis- 
tribution of errors this is: 

(21) 

(22) 

U ( I L  - yJ) = d? u(yr) = dj U(.V?) = &(>.) 

S(.V! - .Y2) = f i s  (y) 

In  terms of estimates this becomes: 

Substituting Equation 22 into Equation 12. the estimate 
r of repeatability will be given by: 

r = (rm. " - 1 )  [fi N!)l (23) 
t!,.,. ,,.¡ is described in 13.1.8.1.6. This esrimate can be 
compared with a predetermined repeatability value for 
control purposes. If r were excessively great, i t  would 
imply that measurements were subject to unusually large 
errors. Note that a repeatability estimate that is to be 
used as a standard measure should be based on as many 

results as possible. at least 20 and preferably 30 or more 
(see 13.1.8.1.1) and would normally be calculated at the 
end of a carefully controlled study. 

Repeatability is most commonly used as a range test 
of the difference between two repeated measurements 
(see 13.1.4 and 13.1.7.1). It can also be used to  construct 
a test on the range of three or more measurements. By 
combining Equations 23 and 8, the range can be repre- 
sented by: 

By substituting a previously determined repeatability 
value into this expression, a critical value can be calcu- 
lated for the range of a set of n measurements. However. 
i t  is advisable not to use this as a formal outlier test. 
Because the range represents only a part of the informa- 
tion on the variability within a set of measurements (that 
is, the smallest and largest values). the test will only be 
approximate. Nevertheless, i t  can be used to monitor 
statistical control within a set of measurements (see 
13.1.4 and 13.1.6.2) and flag the need for rigorous 
analysis. 

13.1.8.2 STATISTICAL PROCEDURE FOR TWO 
OR MORE SETS OF DATA 

In some cases. the quantity in question is obtained in- 
directly from m intermediate and independent results, 
each of which will have been estimated from a separate 
set of data according to the procedures in 13.1.8.1. In 
this section. procedures are given in which the estimates 
for the intermediate quantities are combined to give 
those relating to the final quantity. 

13.1.8.2.1 Estimating True Value 

tion F of the m intermediate quantities XI. X 2  . . . X",. 
The value X of the final result is assumed to be a func- 

Algebraically. this can be represented by: 

X = F(X,, X2.  ... X , )  (25) 

The maximum estimate of X is obtained simply by 
substituting into Equation 25 the appropriate estimates 
for XI, X?.  . . . X,. In terms of measurements corrected 
for bias (see 13.1.8.1.3). the estimate of the true vari- 
able will become: 

y = F(jl ,  .T?, ... y,) (26 )  
- - 
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10 CHAPTER 1 3-STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

P a i i d  Q are known constants. The estimate of the f i n a l  
quantity. according to Equation 26. is then: 

(28)  

Note that the calculation resulting from such an equa- 
tion could give rise to a further source of systematic er- 
ror (see 13.1.8.2.3). This would be the case. for example. 
i n  estimating the volume of a tank from tables of liquid 
depth. The intermediate results would include assumed 
values for tank dimensions. with further assumptions on 
environmental conditions, and these could all contribute 
t o  unknown systematic errors. 

- 
y = Pjl  L;? + Qj, 

13.1.8.2.2 Combining Random Uncertainties 

Random error is represented statistically by the stan- 
dard deviation (sometimes called standard error) associ- 
ated with a particular measurement function (see 
i 3. I .8.1 S) .  1 t is useful when combining random errors to 
consider another parameter called variance. Standard 
deviation a is simply the square root of the variance V: 

V ( x )  = a?(X) (29) 

I i i  tcriiis of estimates corrected for bias: 

.Any o l  the esprexsioiis dealing Lvith standard devia- 
t ion iiiiry he converted to the corresponding rxpre~iions 
l o r  viiriance by substituting Equation 29 or 30. 

No\\ .  coiisidcr the random errors associated with the 
m iiiteriiiediate quantities. The variaiice of the indirect 
n i r a m r e i i i e n t s  of t he  final quantity is given approsi- 
iiiatrly by the expression: 

a F / n X ,  represents the partial differential coefficient of F 
with respect to A,. and F i s  Equation 25. oF/oX, may be 
regarded as the change in F brought about by unit 
change i n  X , .  Equation 31 only holds true. however. if 
the quantities XI. ,Y:. . . . X,, are independent of each 
other. Furthermore. the equation leads to the root sum 
square method of combining random uncertainty limits 
(see 13. I .8.1.6.3), for by substituting into i t  Equations 11 
and 29. i t  becomes: 

The corresponding equation in ternis of estimates \vil1 
he: 

(33) 

13.1.8.2.3 Combining Systematic Uncertainties 

As previously stated, there are theoretical difficulties 
when attempting to combine systematic uncertainties 
(see 13.1.8.1.6). The choice is between the arithmetic and 
root sum square methods of combining and should take 
into account the manner in which the errors behave in 
practice. This is sometimes difficult to judge, particularly 
for the multiplicative terms in a relationship (see Equa- 
tion 27). Assuming a uniform distribution of systematic 
errors, however, i t  is theoretically correct to combine the 
systematic errors in a multiplicative function by the root 
sum square method. This, coupled with the fact that sys- 
tematic errors combined in an  additive fashion are ex- 
pected to cancel each other out to a certain extent, leads 
to the choice of the root sum square method as applica- 
ble in the general case. The appropriate formula is iden- 
tical in form to Equation 33 but with random 
uncertainty limits replaced by the corresponding system- 
atic limits: 

(34) 

The point to remember when combining systematic 
uncertainties is that the relationship between quantities 
(see Equation 25) may only be approximate (see 
13.1.8.2. I). In that case, a further unknown systematic 
error could be present, and the corresponding uncer- 
tainty limit should be estimated according to Equation 
15. This should be included as another squared term in 
the uncertainty expression (Equation 34). 

13.1.8.2.4 Estimating Total Uncertainty 

For the reasons already explained in 13.1.8.1.6.3, the 
random and systematic components of the total uncer- 
tainty should be combined by quadrature according to 
Equation 19. In this case, however, a ( j )  will be esti- 
mated from Equation 33 and bCy) from Equation 34. 

13.1.8.3 ROUNDING STATISTICAL ESTIMATES 

When applying the procedures of 13.1.8.1 and 
13.1.8.2, it is important to consider the effect of round- 
ing on the statistical estimates derived. Rounding that is 
too coarse will become a significant source of error. Any 
particular result will be reported to the smallest unit of 
measure of the instrument involved, and the statistics 

Copyright American Petroleum Institute 
Reproduced by IHS under license with API Licensee=Ecopetrol/5915281003 

Not for Resale, 07/06/2005 04:28:46 MDTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
`
,
,
`
,
`
,
,
`
,
`
,
`
,
`
`
,
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



11 SECTION 1 -STATISTICAL CONCEPTS AND PROCEDURES 

that relate to that result should reflect this level of accu- 
racy and should be rounded accordingly. For example, a 
gage reading would be reported to the nearest millimeter 
i f  that was the scale unit of the tape measure. Estimates 
of the mean gage, standard deviation, and the limit of 
the range of uncertainty should also be rounded to the 
nearest millimeter. and the calculations leading up to 
those estimates should include a sufficient number of 
digits to achieve this. 

Particular care should be taken when considering 
more complicated functions, such as would be found in 
the indirect estimation of a parameter from a number of 
intermediate calculations. I t  is useful to relate the calcu- 
lations to the units in which the final estimate is to be 
reported. In a root sum square estimate, for example, 
which is to be reported to two decimal places, the 
squared terms should be calculated to at least four deci- 
mal places to achieve the required level of accuracy. 
From the opposite viewpoint, in terms of a root sum 
square estimate. if one or more of the squared terms 
were calculated to only two decimal places, i t  would be 
incorrect to report the final estimate to any greater accu- 
racy than one decimal place. 

All estimates, except repeatability, should be rounded 
up or down to the smallest unit of measure (rounding 
unit) .  As a result of its definition (see 13.1.7.1). a 
repeatability estimate should always be rounded up to 
the nearest rounding unit. 

13.1.8.4 EXAMPLE 

Consider the indirect measurement of the volume at 
standard temperature of liquid in a tank. This is to be 
estimated from a set of repeated gage readings, a calibra- 
tion table. a set of repeated temperature measurements, 
and a temperature correction formula. Each set of direct 
measurements (gage readings and temperatures) will be 
considered separately according to 13.1.8.1. and the ap- 
propriate statistics will be derived. These will then be 
combined to give estimates in terms of the liquid volume 
corrected for expansion in the tank resulting from non- 
standard temperature. 

For the purpose of this example, the procedures of 
13.1.8.1 will only be described in detail with respect to 
the set of gage readings. Statistics for the set of tempera- 
ture data will be given. Note that statistics that are to be 
used at a later stage in the calculations will be stated to a 
greater level of accuracy (one or !wo more decimal 
places) than that achieved in the corresponding meas- 
urements. This is to ensure that the final estimate of vol- 
ume includes no rounding errors. Note also that the 
figures used in the example were chosen strictly for illus- 
trative purposes, and are not necessarily typical of those 
to be found in practice. 

13.1.8.4.1 Direct Measurements 

I n  this section. the procedures of 13.1.8.1 will be ap- 
plied to the single set of tank gage measurements. This 
can be considered as separate steps as follows: 

Step l-Information available. 

Sis gage measurements .I-,. for i = 1 to 6 (see 13.1.8.1) 
\vere recorded to the nearest millimeter: 6534. 6544. 
6542. 6540. 6543, and 6544. Unknown systematic errors 
were expected as a result of sludge at the bottom of the 
t a n k  and inaccuracy in the tank gage tape. These errors 
(see 1 3.1 .X. I . 3 )  recorded i n  millimeters as: 

Source of Maximum Range of Error 
Systematic Error e,  e, 

~ 

Sludge - 4  O 
Tape - 1  + I  

I t  is also known from an independent study that the 
repeatability for tank gaging was 7 millimeters. 

Step 2-Outlying results. 

The first gage reading differs from the others by what 
appears to be an appreciable amount. As a quick check 
on  its validity, the critical range for the set of measure- 
ments. rounded to the nearest millimeter. is calculated 
from Equation 24 as: 

D(n)r 
H' = fl x ([!I;. ".J 

Where: 

ti = 6. 

r = 7. 
D(6) = 2.543 (see Table I ) .  

I,,:,.:, = 2.571 (see Table 2 ) .  

Therefore: 

B(h),. ,,' = ~ 

\E f,\.>. -, 
- 2.534 x 7 - 

I x 2.571 
= 5 millimeters 

The observed range of I O  exceeds this value. so Dixon's 
outlier test was applied (see Appendix B). The appropri- 
ate Dixon ratio for six measurements and for testing a 
low value is: 

6540 - 6534 
R1o  = 6544 - 6534 

= 0.6 

which exceeds the critical ratio at the 95 percent 
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12 CHAPTER  STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

probability level. The first measurement was rejected as 
a faulty reading (outlier), and all following calculations 
disregard it. 

Step 3-Correcting for bias. 

According to Equation 4, the average systematic error 
due to tape inaccuracy is zero, but that for sludge is 
given by: 

e =  - (m 
2 

-4  + o 
' 2  

- - 

= -2  millimeters 

The results xi must be adjusted according to Equation 
1 to give the corrected measurements Yi, for i = 1 to 5: 
6546, 6544, 6542,6545, and 6546. 

Step 4-Estimating true gage reading. 

bias (Equation 5), that is: 
This will be the average 7 of the results corrected for 

- 6546 + 6544 + ... + 6546 
.Y = 5 

= 6544.6 millimeters 

Step 5-Estimating standard deviation. 

c m  be estimated both from Equation 7 as: 
The standard deviation of corrected measurements 

.Y(.\.) = !d( l .42  + 0.6' + 2.6' + 0 .4  + 1,42), 
= 1.67 

and from Equation 8 as: 

4 
2.326 

- -  - 

= 1.72 

Statistics derived from the second and more approxi- 
mate estimate will be given in parentheses for compara- 
tive purposes. 

Step 6-Estimating range of uncertainty. 

By substituting the standard deviation estimates into 
Equation 13, the limit of the range of uncertainty due to 
random errors becomes: 

- 2.776 x 1.67 

= 2.07 (2.14) millimeters 
\/s 

- 

Since there are two unknown sources of systematic er- 
ror, the corresponding limits of uncertainty will be esti- 
mated for each according to Equations 15 and 16, 
respectively, as: 

limit due to sludge b,(y) = 0.95 X p+!q 
= 1.9 millimeters 

= 0.95 millimeter 
limit due to tape b,(y) = 0.95 X I - 1 I 

Combining the systematic limits by the root sum 
square method (Equation 18) gives the total limit for 
systematic errors: 

= d l . 9 2  + 0.9Y 

= 2.12 millimeters 

The limits for systematic and random uncertainties 
should be combined in a similar manner (Equation 19) 
to give: 

C(.Y) = d u y y ,  + by.;) 
- - d2.072 = 2.12' 
= 2.96 (3.01) millimeters 

Step 7-Estimating repeatability. 

I o compare the variabiiity within the set of measure- 
ments to that expected in practice, the repeatability can 
be estimated from Equation 23 as: 

= 2.776 X \/2 x 1.67 
= 6.6 (6.7) millimeters 

- 

I' = (L;,.,) x d2 x s(y) 

Rounding up to the nearest unit of measure of 1 milli- 
meter (see 13.1.8.3), the repeatability estimates would 
become 7 millimeters. This is identical to the value de- 
rived from the independent study. 

Step &Stating the result. 

The estimate of the true gage reading should be stated 
after rounding to the nearest unit of measure (see 
13.1.5.4): 

C'(y) = 2.96 - 3 

The result statement thus becomes: 

True gage reading = 6545 2 3 millimeters (95 
percent confidence level, 5 
measurements) 

NOTE: One further result is rejected as a faulty reading (outlier). 
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SECTION 1-STATISTICAL CONCEPTS AND MEASURES 1 3  

Table 3-Derived Statistics for Example 

Gage Reading, Thermometer 
Value millimeters Reading. "C 

n 5 9 

U@) 2.07 1.362 
&Y) 2.12 0.500 

- 
v 6544.6 23.38 

Table &Symbols for Example 
~~ ~ ~ 

Estimate 
Measurement True Value Corrected for Bias 
Depth X, YI 
Absolute volume X? .vz 
Temperature X, Y1 
Corrected volume X, Y4 

13.1.8.4.2 Measuring Volume 

Next, the statistics derived from the two sets of direct 
measurements are combined according to the proce- 
dures of 13.1.8.2 as follows: 

Step l-Information available. 

The information corresponding to the direct measure- 
ments can be summarized in the form of derived statis- 
tics as in Table 3. Let us also assume that the symbols 
allocated to each quantity are as listed in Table 4. 

The calibration table, by which a gage reading in mil- 
limeters can be converted to a volume in liters. was ob- 
tained from an unknown function of tank dimensions. 
No random error is created in the use of such a table, 
but an unknown systematic error is expected resulting 
from the approximate nature of the function. This was 
assumed to be level dependent, and the corresponding 
limit of uncertainty is estimated to be: 

h(X:) = 0.2% x2 

Finally. the function (see Equation 25)  used to correct 
the volume for temperature and expansion in the tank 
is: 

X, = F(X. X , )  
= f(X:,) x, [ I  + o.ooo022 ( X ,  - i5)] 

Table 5-Volume Measurement Statistics for 
Example 

Gage Reading. Volume Measurement. 
Value milliliters liters 
I I  5 5 
1' 6544.ó 17016 

h,(i .)  2.12 6 

- 

.'lC) 1.07 5 

Where: 

f(X,) = a factor (read from tables) corresponding 
to a temperature X,. 

Step 2-Estimating absolute volume. 

The calibration table may be regarded as a means of 
converting a liquid depth measurement (gage reading) in 
millimeters to a liquid volume measurement in liters and 
may be represented by the function: 

x2 = PX, 
P is nearly constant in this example. The statistics that 
relate to volume results should, therefore, be read di- 
rectly from the table. In this case, they are assumed to be 
those in Table 5 .  

The systematic error brought about by inaccuracies in 
the table should be considered at this point. In terms of 
results corrected for bias, the corresponding limit of un- 
certainty will be estimated as: 

h(-F.,) = 0.2% y? 
= 0.002 x 17016 
= 34 liters 

The two limits for systematic errors that affect volume 
results are then combined by the root sum square 
method (Equation 18) to give: 

My,) = db,z ( y 2 )  + b2L (y,) - - d m  
= 35 liters 

Step 3-Estimating corrected volume. 

According to Equation 26, the estimate of correct vol- 
ume will be obtained by substituting estimates directly 
into the appropriate equation. If we assume that the 
temperature factor f(x:,) is read from tables as: 

f(F:J = f(23.38) 
= 0.98 (given) 

Then the true corrected volume is estimated to be: 

i, = 0.98 X 17016 [ i  + 0.000022(23.38 - is)] 
= 16678.9 liters 

Step 4-Estimating random uncertainty limit. 

The random errors for volume and temperature mea- 
surements are combined according to Equation 33. In 
our case, the derivatives of the function are: 

CXF - = 0.98 [ I  + 0.000022 ( X ,  - i5)] 
a x> 

and 
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1 4  CHAPTER 18-STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

= 0.98 x X ,  x 0.000022 
ax: 

Substituting the estimated values, 

7 ,  = 23.38 (Table 3) 
v2 = 17016 (Table 5) - 

For X ;  and X,, respectively, gives: 

= 0.98018 
a X 2  

aiF = 0.36638 
ax, 

The total limit of random uncertainty will then be given 
by: 

a(y') = 4(0.98018 X 5)2 + (0.36686 X 1.362)' 
= 4.9 liters 

Step !%Estimating systematic uncertainty limit. 

Systematic uncertainty limits should be combined in a 
fashion similar to random uncertainty limits according 
to Equation 34. The total limit of systematic uncertainty 
will be: 

h (V,) = d(0.98018 x 35>2 + (0.36686 X 0.5)' 

- - d34.30362 + O. 1 83432 
= 34.3 liters 

Note that the systematic error in temperature mea- 
surements makes only a small contribution compared 
with that created by inaccuracies in the calibration table. 

Step 6-Stating the resuit. 

Combining the random and systematic components of 
uncertainty by quadrature (Equation 19), the total un- 
certainty limit becomes: 

c(,T,) = da2 (*VI) + h2(.Tl) 
= \/4.9' + 34.3' 
= 34.6 liters 

Rounding to the nearest unit of measurement, which 
from the calibration table was 1 liter, the final statement 
will be: 

True corrected volume = 16,679 I 35 liters (95 
percent confidence level, 
5 gage measurements, 
9 temperature 
measurements). 

NOTE: One further gage reading is rejected as a faulty reading. 
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APPENDIX A 
NORMAL (GAUSSIAN) DISTRIBUTION 

Consider a set of I I  repeated measurements x,. lying in 
the range u to h so that u 5 .Y, I b. I f  the total range is 
split into p equal subranges of length d - ~  = ( h  - a ) / p ,  a 
frequency histogram can be drawn. The histogram (see 
Figure A - I )  consists of a series of p contiguous rectan- 
gles. with base equal to the subrange dx and height pro- 
portional to the number of measurements falling in that 
range. 

The height of each rectangle could just as easily repre- 
sent the proportion of the total number falling in the 
subrange or the relative frequency. The total area of the 
histogram would then be i ,  and the area in each rectan- 
gle would become the probability of a measurement fall- 
ing in the subrange. 

N o w  consider the number of measurements 17 becom- 
ing very large. and the length dx of each subrange be- 
coming very small. A continuous line drawn through the 
midpoint of the tops of each rectangle. which represents 
the relative frequency of measurements, would give a 
heil-shaped curve similar to Figure A-2. 

For the normal distribution. the curve is symmetrical 
about the mean and has the formula: 

1 (.Y -p)? f(x) = - 
UV% exp (T)  

A 

Where : 

u = standard deviation. 

The area under the curve once again represents 
probability. Each of the shaded regions shown has an 
area of: 

p-' + m  

-03 P+' 
P = j- f(x) dx = j- f(x) d.u 

WIien c = 1.96~. the probability P (one shaded area) 
will be 0.025. or 2 x  percent of the total area under the 
curve. 

Now if  measurements x, follow the normal distribu- 
tion with mean p and standard deviation u, then values 
p ,  will follow a normal distribution with zero mean and 
unit standard deviation where: .. 

The value p,  is termed the standard norniul deviute. and 
has been tabulated for different probabilities P. For a 

RANGE OF MEASUREMENTS B 

Figure A-1 -Frequency Histogram 

15 
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1 6  CHAPTER 13-STATISTICAL ASPECTS OF MEASURING AND SAMPLING 

Figure A-2-Bell-Shaped Curve 

probability P = 0.05, however, the standard normal de- 
viate has a value 1.96. This probability is represented by 
both shaded areas in the distribution (Figure A-2) and 

includes all values of x which differ from the mean p by 
more than 1.96~. 
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APPENDIX B 
DIXON'S TEST FOR OUTLIERS 

The following steps should be followed (see 
Table B-I) to use Dixon's test for outliers. 

1. Arrange the set of measurements x,  in ascending or- 
der of magnitude x,. x2, . . . x.. 
2. Choose the appropriate test criterion, depending on 
the value of I I  and whether the measurement in  question 
i s  low or high. 
3. Calculate the Dixon R ratio. If this exceeds the criti- 
cal ratio at the 5 percent probability level (P = 0.95), 
then the measurement in question is highly suspect and 
could possibly be rejected. 

I f  the critical ratio at the 1 percent probability level (P 
= 0.99) is exceeded, then the measurement in question 
should be discarded. 

When a measurement is rejected, the outlier test 
should be repeated. 

NOTE: The two suffixes in the Dixon ratio refer to the differences in 
the numerator and denominator respectively. 

Table B-1-Dixon's Test for Outliers 

Number of Critical Values Test criterion 
Values. n P = 0.95 P = 0.99 Low Values High Values 

3 0.941 0.988 

.x>-x, .Y"-X".! or - 0.780 R,,, - x,,-x, 

4 0.765 0.889 
5 0.642 
6 0.560 0.698 X" -.y, 

7 0.507 0.637 
8 0.554 0.683 
9 0.512 
IO 0.477 0.597 
1 1  0.576 0.679 
12 0.546 0.642 R2, = 
13 0.521 0.6 15 

x2-x, x.-x.., or ~ 

,Y..,-,Y, x.-x2 

x,-x. x -x".: or x..,-x, x.-x, 

0.635 R,, = - 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.546 0.64 1 
0.525 0.616 
0.507 0.595 
0.490 0.577 
0.475 0.561 
0.462 0.547 xx-x, or x. -x".? R.?> = 

x..:-x, x.-x, 0.450 0.535 
0.440 0.524 
0.430 0.514 
0.42 1 0.505 
0.413 0.497 
0.406 0.489 

SOURCE: Biometrics, Vol. 9, p. 89, 1953. 

17 
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Order No. 852-30321 

1-1700- tj:85-1 5M 
1-170: .10/89- 3C f2Aì  
1-1700- 3’91-25c f5Dl C 
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American Petroleum Institute 
1220 L Street. Northwest 

11) Washington. D C.  20005 
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