

API BUL D10 Second Edition August 1973

PROCEDURE

For

SELECTING ROTARY DRILLING EQUIPMENT

OFFICIAL PUBLICATION

REG. U.S. PATENT OFFICE

AMERICAN PETROLEUM INSTITUTE Washington, D.C. 20006

•••

Issued by AMERICAN PETROLEUM INSTITUTE Division of Production 300 Corrigan Tower Building Dallas, Texas 75201_____

Copyright American Petroleum Institute

Provided by IHS under license with API
 No reproduction or networking permitted without license from IHS

nse from IHS ______ Not for Resale ______ Not for Resale ______

, LETAR CONTRACTOR CONTRACTOR FOR THE FOR THE FOR THE TAXABLE FOR THE TAXABLE FOR THE FOR T

American Petroleum Institute

TABLE OF CONTENTS

Page

Forev	vor	d	2
Sect.	1:	Job Rating the Well	3
Sect.	2:	Table, Formulae, and Graphs	6
Sect.	3:	Rating of the Rigs Several Components	16
Sect.	4:	Rig-rating Parameters	25
Sect.	5:	Glossary	27
Sect.	6:	Bibliography	29

PROCEDURE FOR SELECTING ROTARY DRILLING EQUIPMENT

n.

FOREWORD

a. This bulletin (First Edition, Dec. 1965) was prepared by a Subcommittee on Rating Capacity of Rotary Drilling Rigs, J. E. Hellinghausen, The Atlantic Refining Company, chairman, which functioned under the jurisdiction of the American Petroleum Institute's Steering Committee on Drilling and Production Practice. This edition supersedes the First Edition, was prepared by an ad hoc task group chaired by J. E. Hellinghausen, Atlantic Richfield Co., and was approved by the API Executive Committee on Drilling and Production Practice. Its purpose is to describe a system of analysis which will help to select a suitable rig for drilling a specific well, avoiding use of a rig that is either too large or too small.

b. This procedure presumes that depth ratings alone are not definitive, because wells in different areas require emphasis on different rig functions. For example, in drilling hard rock with frequent bit changes, hoisting capacity is of primary importance and hydraulic capacity needed to clean the bottom of the hole and circulate out cuttings is of lesser importance because of the low rate of penetration. In drilling soft formations the penetration rate is often limited by the effectiveness of bottom-hole scavenging, and the hydraulic energy available at the bit becomes very important. Since fewer bit changes are needed to drill soft formations, hoisting capacity is of lesser importance. Drill-string torque and rotarytable horsepower are also much greater with increased rates of penetration into soft formations.

c. Procedures outlined in the bulletin are divided into two categories, aims of which are:

- 1. To provide a plan of analysis which will be useful in determining the performance capabilities of the several rig functions which are *required* for the drilling of a specific well (Sections 1 and 2).
- 2. To prescribe a means of testing, demonstrating, or rating the performance capability of the components of a specific rig (Sections 3 and 4).

d. It is recognized that no existing rig will exactly fit the well requirements, and that compromise between the two will be necessary. This recommendation will permit those compromises to be reached intelligently.

e. It is also recognized that quality of supervision and rig personnel, and age and condition of rig equipment are of great importance in selecting a rig. These considerations are beyond the scope of this publication and are excluded from it.

be addressed to the Director, Division of Production,

300 Corrigan Tower Bldg., Dallas, Texas 75201.

Requests for permission to reproduce or translate all or any nart of the material published herein should Copyright American Petroleum Institute Provided by IHS under license with API

No reproduction or networking permitted without license from IHS

ŝ

BULL ⊅10-73

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

SECTION 1

JOB RATING THE WELL

To choose the best rig for drilling a particular well, it is necessary first to job rate the well. Anticipated well depth, geologic conditions, casing plan, and other data influence drilling-rig requirements, and an analysis of the well or drilling plan will assist materially in establishing rig needs. (See p. 4 and 5.)

A table, formulae, and graphs are included in Section 2 to help in completing API Form No. D10-A, Drilling-plan Analysis.* Form No. D10-A (see pages 4 and 5) provides for several depth intervals (or hole sections) of the well with the lowermost depth of each section being the controlling depth in making calculations. Formation drillability usually can be classified as very soft, soft, medium, hard, or very hard. Hole size, throughout the analysis, is presumed to equal the diameter of the bit used in drilling the hole.

Drill-collar weight, corrected for buoyancy, should at least equal the bit weight desired for the hole being drilled. The inside diameter of the drill pipe and the bore of the drill collars significantly affect the fluid pressure drop and hence the hydraulic horsepower spent inside the drill string. This loss inside the drill string may be minimized through use of drill strings of large internal diameter in combination with moderate circulation rates. (See Fig. 1, 2, 8, and 9.)

In the hoisting analysis, buoyancy is assumed to be offset by hole friction and may be disregarded. The desired safe working capacity of the derick ordinarily is a function of the maximum anticipated hook load and the number of lines strung; but under certain conditions, consideration must be given instead to the parting strengths of drill-pipe or casing strings. Dynamic braking requirements, if critical, should be determined and specified on Form No. D10-A, Drilling-plan Analysis.

All graphs in Section 2, relating to the hydraulic section of the analysis, are based on a mud density of 10 lb/gal (75 lb/cu ft). Corrected pressure losses (also hydraulic horsepower) for mud of densities other than these, may be readily calculated since relationships between friction head and density are essentially linear. Numerical values presented on the graphs are essentially the same as those in common use. The amount of hydraulic energy which can be usefully employed in the removal of cuttings from under the bit cannot be predicted accurately, since not all the factors that influence such needs have been evaluated. Currently, it is general practice to make an empirical approach to bit hydraulic needs by relating them to hole cross-sectional areas in amounts ranging from 1 or 2 bit hydraulic horsepower per square inch of hole area in the slowest of hard-rock drilling, to as much as 6 or 8 BHHP/sq in. in soft-formation drilling (see Fig. 4).

Pressure losses in the annulus are minor when considered only from the standpoint of energy consumed, but may become of major concern if loss of circulation is probable. This is true, in deep wells particularly, where formations are weak and where heavy muds are required. Rapid pipe movements also may contribute to loss of circulation since such movements produce significant down-hole pressure surges, which increase with length of pipe immersed. In areas where running-in rates of either the drill string or the casing must be restricted, the reduced velocity should be specified on Form No. D10-A, Drillingplan Analysis.

In the completion of the Drilling-plan Analysis, reasonable rig-performance capabilities for each of the several hole sections will be determined. However, the rig chosen for drilling the well may require accepting, for the sake of economy, less than preferred capabilities for some sections of the hole. Ordinarily, concessions in this respect should take into account rig days rather than the footage involved.

^{*}API Form No. D10-A, Drilling-plan Analysis (Pages 1 and 2), are available in pads of 50 sheets at \$1.00 per pad from API Division of Production, 300 Corrigan Tower Building, Dallas, Texas 75201. Forms illustrated in Section 8 herein are also available in pads of 50 sheets at \$1.00 per pad.

American Petroleum Institute

API FORM NO. D10-A* DRILLING-PLAN ANALYSIS

Lease Name & Well No		County or Parish	State				
API Well No							
Field or AreaTotal Depth							
Geological Forma- tion at Surface	At TD_	At TD					
HOLE AND CASING PLAN To depth of, ft							
Hole diameter, in.							
Formation drillability							
Casing to be run, OD, in.							
Lb/ft and API grade							
Amount, ft							
Lb/ft and API grade							
Amount, ft							
Lb/ft and API grade							
Amount, ft							
Weight of string in air, M lb							
Minimum parting load, M lb							
Weight of casing string in mud, M lb							
Required low running velocity, ft/min							
DRILL STRING — PREFERRED Drill-collar weight in air, M lb							
Bottom section, OD \times bore, in.							
Section length, ft							
Top section, $OD \times bore$, in.							
Section length, ft							
Drill pipe, OD, in.							
Lb/ft and API grade							
Amount, ft							
Weight, air, M lb							
Parting load, M lb							
Drill-string weight in air, M lb							
Minimum required hoisting velocity, ft/min							
Hook horsepower at maximum weight and minimum velocity							
Drill-string weight in mud, M lb							
Required low running velocity, ft/min							
DERRICK REQUIREMENTS Critical hook load, M lb							

*API Form No. D10-A, Drilling-plan Analysis (Pages 1 and 2), are available in pads of 50 sheets at \$1.00 per pad from API Division of Production, 300 Corrigan Tower Building, Dallas, Texas 75201.

0732290 0003311 4

5

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

API Form No. D10-A Drilling-plan Analysis — Continued API Well No.

Lease Name & Well No.____

		the second s			
HYDRAULIC NEEDS					
Density lh/cal lh/cu ft					·
Buoyanay faston					
Bit hydroylic horgenerical colocted					
Annular velocity gelected ft/min					
Circulation note and (min			·		
Norgle velocity ft (rec					
Nozzie velocity, it/ sec	<u> </u>				
Pressure losses (nominal) surface equipment,					
mhuanah daill nine nei					
Through drill collour nei					
A man hit manha ani					
Across bit nozzles, psi				L	
Driil-collar nole annulus, psi					
Drill-pipe hole annulus, psi					
Total pressure loss, nominal, psi					
Surface pressure, corrected, psi					·
Hydraulic horsepower at surface					
ROTARY NEEDS					
Rotary drive, type					
Table bore, in.		<u></u>			ļ
Static load capacity, M lb					
Rpm range, max-min		·			
Torque capacity, ft-lb					
Rotary horsepower		······			
AUXILIARY EQUIPMENT Blowout preventers, class					
Size, through bore, in.					· ·
Stack arrangement		· .			
Closing unit, accumulator capacity, gal-psi					
Number control outlets					
Number control stations					
Choke manifold, size/class		-			
MISCELLANEOUS					
· · · · · · · · · · · · · · · · · · ·					
		F			

American Petroleum Institute

SECTION 2

TABLE, FORMULAE, AND GRAPHS

TABLE 1 CIRCULATION RATE (Gal/min)

1	2	3	4	5	6	7	8	9	10	11	12	18	14	15	16	17
									. Walasit							
Hole Size, I	e Drill-pipe In. Size. In.	10	20	30	40		60	70	80	90	100	110	120	130	140	150
4%	286	7	14 12	21 17	28 28	35 29	41 35	48 41	55 47	62 52	69 58	76 64	83 70	90 76	97 82	104
5%	- 78 27/3 31/3	10 8	19 16	29 24	88 82	48 40	57 47	67 55	76 63	86 71	95 79	105 87	114 95	124 103	184 111	143 119
5%	27/2	11 9	21 18	32 27	43 86	54 45	64 55	75 64	86 73	96 82	107 91	118 100	129 109	139 118	$150 \\ 127$	161 136
6	81/2	10	19	29	39	48	58	68	78	87	97	107	116	126	136	145
61/3	81/2	10	21	81	41	52	62	72	82	93	103	113	124	134	144	155
6¼	81/2	11	22	33	44	55	66	77	88	98	109	120	131	142	158	164
6%	81/2	14	27	41	54	68	82	95	109	122	186	150	163	177	190	204
7%	81/2 41/2	19 15	87 81	$\begin{array}{c} 56\\ 46\end{array}$	75 62	94 77	112 98	131 108	150 124	169 139	187 155	206 170	225 186	243 201	262 216	281 232
71%	8½ 4½	20 17	41 84	61 51	81 68	102 85	122 102	142 119	$162 \\ 136$	183 153	203 170	223 187	244 204	264 222	284 239	805 256
8%	81⁄2 41⁄2	24 20	47 41	71 61	94 81	118 102	142 122	$165 \\ 142$	189 163	213 183	236 204	$\begin{array}{c} 260 \\ 224 \end{array}$	283 244	307 265	881 285	354 805
81⁄2	81/2 41/2	24 21	49 42	73 64	98 85	122 106	$147 \\ 127$	171 149	196 170	220 191	245 212	269 233	294 255	$318 \\ 276$	343 297	367 318
8%	31/2 41/2 5	25 22 20	51 44 40	76 66 60	101 88 81	127 110 101	152 133 121	177 155 141	203 177 161	228 199 181	254 221 202	279 243 222	804 265 242	330 287 262	355 309 282	880 881 802
8%	81/2 41/2 5	26 23 21	52 46 42	79 69 63	105 92 84	181 115 105	157 138 126	184 161 147	210 184 168	236 207 189	262 230 210	289 253 231	815 276 252	841 299 273	867 322 295	394 845 816
9	4½ 5	25 23	50 46	74 69	99 91	124 114	149 187	$174 \\ 160$	198 183	223 206	248 228	$278 \\ 251$	297 274	322 297	847 320	372 843
97%	41/2 5 51/2	32 30 27	68 59 55	95 89 82	126 118 110	158 148 187	189 178 165	221 207 192	252 287 220	284 266 247	815 296 274	847 325 302	378 355 329	410 385 357	441 414 384	473 444 412
10%	4½ 5 5½	88 86 84	76 72 67	113 108 101	151 148 185	189 179 169	227 215 202	265 251 236	802 287 270	840 323 303	878 359 337	416 894 371	454 430 405	491 466 438	529 502 472	567 538 506
11	4½ 5 5½	41 39 87	82 78 74	123 118 111	164 157 148	206 196 185	247 285 222	288 274 259	829 818 296	370 853 888	411 392 870	452 431 407	493 470 444	584 509 481	575 548 518	617 588 555
121/4	4½ 5 5¼ 6%	53 51 49 43	106 102 98 87	159 153 147 130	212 204 196 178	265 255 244 216	818 306 293 260	871 857 842 303	424 408 391 347	477 459 440 890	530 510 489 433	583 561 538 476	636 612 587 520	689 663 635 563	741 714 684 606	794 765 733 650
18%	41/3 5 51/3 6%	69 67 65 59	188 134 130 118	207 201 194 178	275 268 259 237	844 835 824 296	418 402 889 355	482 469 454 415	551 535 518 474	620 602 583 533	689 669 648 592	758 736 718 652	826 803 778 711	895 870 842 770	964 937 907 829	1,033 1,004 972 888
15	41 <u>/4</u> 51/4 65/8	84 79 74	$167 \\ 159 \\ 148$	251 238 222	334 318 296	418 897 869	501 477 443	585 556 517	668 636 591	752 715 665	885 795 789	919 874 818	1,002 953 887	1,086 1,033 961	1,170 1,112 1,035	1,253 1,192 1,108
171/2	41/3 51/3 65/8	117 113 107	238 225 214	850 888 821	467 450 428	583 563 535	700 676 642	817 788 749	983 901 856	1,050 1,013 963	1,167 1,126 1,070	1,284 1,289 1,177	1,400 1,351 1,285	1,517 1,464 1,892	1,684 1,576 1,499	1,750 1,689 1,606
26	41/2 51/2 6%8	268 268 258	535 527 516	803 790 774	1,070 1,054 1,032	1,338 1,817 1,289	1,605 1,581 1,547	1,878 1,844 1,805	2,140 2,108 2,063	2,408 2,371 2,321	2,675 2,635 2,579	2,943 2,898 2,837	8,211 3,162 3,095	8,478 8,425 8,853	8,746 3,688 8,611	4,013 3,952 3,868

7

1

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

TABLE 1 (Continued) CIRCULATION RATE (Gal/min)

1	2	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
								Annular	Velocit	y, Ft/mi	a.					
Hole Size, In	Drill-pipe Size, In.	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300
4%	2%	110	117	124	181	138	145	152	159	166	173	180	186	193	200	207
	2%	93	99	105	111	117	122	128	134	140	146	152	157	163	169	175
5%	21% 31⁄2	153 127	$162 \\ 134$	172 142	181 150	191 158	200 166	210 174	219 182	229 190	238 198	248 206	257 214	267 222	277 229	286 237
5%	21/2 31/2	$171 \\ 145$	$182 \\ 154$	$198 \\ 164$	203 173	214 182	225 191	236 200	246 209	257 218	268 227	278 236	289 245	300 254	311 263	321 273
6	81/2	155	165	174	184	194	203	213	223	233	242	252	262	271	281	291
61⁄8	81/2	165	175	186	196	205	216	227	237	247	258	268	278	289	299	809
6¼	81/2	175	186	197	208	219	230	241	252	263	273	284	2 95	306	317	32 8
6¾	31/2	217	231	245	258	272	285	299	813	326	840	853	367	381	394	408
7%	81/2 41/2	800 247	318 263	837 278	$356 \\ 294$	874 309	393 325	412 840	431 856	449 371	468 386	487 402	506 417	524 433	543 448	562 464
7%	8½ 4½	325 273	345 290	365 807	386 324	406 341	426 358	447 375	467 892	487 409	508 426	528 443	548 460	569 477	$589 \\ 494$	609 511
8%	31/2	378	402	425	449	472	496	520	543	567	590	614	638	661	685	709
	41/2	826	346	866	387	407	427	448	468	489	509	529	550	570	590	611
81⁄3	31/2	392	416	441	465	490	514	539	563	588	612	636	661	685	710	734
	41/2	339	361	382	403	424	446	467	488	509	530	552	573	594	615	686
8%	8½ 4½ 5	406 353 322	481 376 343	456 398 363	482 420 383	507 442 403	532 464 423	558 486 443	583 508 463	608 530 484	634 552 504	659 574 524	685 596 544	710 618 564	$735 \\ 641 \\ 584$	761 663 605
8 <u>%</u>	31/2	420	446	472	499	525	551	577	604	680	656	682	708	735	761	787
	41/2	368	891	414	437	460	482	505	528	551	574	597	620	643	666	689
	5	337	358	379	400	421	442	463	484	505	526	547	568	589	610	631
9	4½	397	421	446	471	496	521	545	570	595	620	644	669	694	719	744
	5	366	888	411	434	457	480	503	525	548	571	594	617	640	663	685
9%	4%	504	536	567	599	630	662	694	725	757	788	820	851	883	914	946
	5	473	503	583	562	592	621	651	680	710	740	769	799	828	858	888
	5%	489	467	494	521	549	576	604	631	659	686	714	741	768	796	823
10%	4½	605	643	680	718	756	794	832	869	907	945	983	1,021	1,058	1,096	1,184
	5	574	610	645	681	717	753	789	825	861	896	932	968	1,004	1,040	1,076
	5½	539	573	607	641	674	708	742	775	809	843	877	910	944	978	1,012
11	4½	658	699	740	781	822	863	904	945	987	1,028	1,069	1,110	1,151	1,192	1,233
	5	627	666	705	744	783	823	862	901	940	979	1,018	1,058	1,097	1,136	1,175
	5½	592	629	666	703	741	778	815	852	889	926	963	1,000	1,037	1,074	1,111
12¼	41⁄2	847	900	953	1,006	1,059	1,112	1,165	1,218	1,271	1,324	1,377	1,430	1,483	1,536	1,589
	5	816	867	918	969	1,021	1,072	1,123	1,174	1,225	1,276	1,327	1,378	1,429	1,480	1,581
	51⁄2	782	831	880	929	978	1,027	1,075	1,124	1,173	1,222	1,271	1,320	1,369	1,418	1,466
	65⁄8	693	736	780	823	866	910	953	996	1,040	1,083	1,126	1,170	1,213	1,256	1,800
13 <u>%</u>	41/2	1,102	1,171	1,240	1,809	1,877	1,446	1,515	1,584	1,653	1,722	1,791	1,860	1,928	1,997	2,066
	5	1,071	1,138	1,205	1,272	1,839	1,406	1,478	1,540	1,606	1,678	1,740	1,807	1,874	1,941	2,008
	51/2	1,037	1,102	1,166	1,231	1,296	1,861	1,425	1,490	1,555	1,620	1,685	1,749	1,814	1,879	1,944
	65/8	948	1,007	1,066	1,125	1,185	1,244	1,803	1,362	1,422	1,481	1,540	1,600	1,658	1,718	1,777
15	41%	1,837	1,420	1,504	1,587	1,671	1,754	1,838	1,921	2,005	2,088	2,172	2,256	2,389	2,423	2,506
	51%	1,271	1,351	1,430	1,510	1,589	1,669	1,748	1,828	1,907	1,986	2,066	2,145	2,225	2,304	2,384
	65%	1,182	1,256	1,330	1,404	1,478	1,552	1,626	1,700	1,773	1,847	1,921	1,995	2,069	2,143	2,217
171/2	41/2	1,867	1,984	2,100	2,217	2,834	2,450	2,567	2,684	2,800	2,917	3,034	3,151	3,267	3,384	3,501
	51/2	1,802	1,914	2,027	2,140	2,252	2,365	2,477	2,590	2,703	2,815	2,928	3,040	3,153	3,266	8,378
	65/8	1,713	1,820	1,927	2,034	2,141	2,248	2,855	2,462	2,569	2,676	2,783	2,890	2,997	3,104	3,211
26	41/2	4,281	4,548	4,816	5,083	5,351	5,618	5,886	6,154	6,421	6,689	6,956	7,224	7,491	7,759	8,026
	51/2	4,215	4,479	4,742	5,006	5,269	5,533	5,796	6,060	6,323	6,587	6,850	7,114	7,377	7,640	7,904
	65/8	4,126	4,384	4,642	4,900	5,158	5,416	5,674	5,932	6,190	6,447	6,705	6,963	7,221	7,479	7,737

American Petroleum Institute

FORMULAE

1. Buoyancy:

Weight in mud = weight in air \times buoyancy factor (See Fig. 1)

$$BF = 1 - \frac{\text{specific gravity, mud}}{\text{specific gravity, metal}}$$

2. Drill collars, round, weight in air:

$$W = 2.67 (D^{i}-d^{i})$$
 (See Fig. 2)

Wherein:

W =weight, lb/lineal foot D =outside diameter, in. d = ID or Bore, in. Specific gravity of steel = 7.857

3. Hook horsepower, hoisting:

$$HP = \frac{Wh \times V}{33,000}$$
 (See Fig. 3)

Wherein:

Wh = hook load, lbv = load velocity, ft/min 4. Hydraulic horsepower:

$$HHP = \frac{GPM \times \triangle P}{1,714}$$

Wherein:

$$GPM = gal/min$$

 $\Delta P = pressure difference, psi$

5. Pressure loss, correction for mud density:

$$\Delta Pc = \frac{\Delta P \times D}{10 \ (or \ 75)}$$

Wherein:

6. Rotary horsepower:

$$HP = \frac{2\pi T N}{33000} = \frac{T N}{5250}$$

Wherein:

T = torque, ft-lb Ñ

= table revolutions per minute

7. Average specific gravity of aluminum drill pipe with steel tool joints = 3.65

0732290 0003315 l 📕

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

~

Not for Resale

0732290 0003317 5

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

0732290 0003318 7

Provided by IHS under license with API No reproduction or networking permitted without license from IHS ---- PRESSURE DROP Not for ResaleGH 100 FT OF DRILL COLLARS

No reproduction or networking permitted without license from USEE DROP IN ANNULUN for Resair 100 FT OF DRILL COLLARS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

BULL ⊅10-73

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

Provided by IHS under license with API No reproduction or networking permitted without license from IHS

FIG. 14 Not for Resale

American Petroleum Institute

SECTION 3

RATING OF THE RIG'S SEVERAL COMPONENTS

Many individual rig components which are not readily subject to non-destructive performance tests are covered already by API specifications and rat-ings. In many instances, the only ratings for equip-ment are the manufacturers' recommended capacities. In general, these have been found to be reliable and possibly on the conservative side. This applies par-ticularly to the rated capacity of various items of

suspension equipment.

Performance capabilities of certain other rig components, however, are readily subject to demonstrable tests as prescribed in the schedules included herewith, D10-B, Rig-rating Check List, sample of which and which can be summarized on API Form No. D10-B, Rig-rating Check List, sample of which follows.

API FORM NO. D10-B*

RIG-RATING CHECK LIST

Intended Area of Rig Use						
Data Submitted by				Date		
		····				
A. CAPACITY FOR HANI (From Form No. D10-C,	LING CASIN Schedule A)	G OR D	RILL PIPE .		• •	
B. SUBSTRUCTURE LOAD (From Form No. D10-C,	D-SUPPORTIN Schedule B)	IG CAP	ACITY:			
1. Maximum pipe setbac	k capacity .	• • •				
2. Maximum rotary-tabl	e supporting c	apacity,	irrespective of	setback load	· ·	
3. Corner loading capaci	ty (for derrick	s only)			• • 	
C. HOISTING AND BRAE (From Form No. D10-D,	ING CAPABI Schedule C)	LITIES				
			Hook HP	Hook Load	Hook V	elocity
Observed hoisting perform	mance			M lb		ft/m
Auxiliary brake performs	ance		Max. hook loa	dM lb		ft/m
D. MUD PUMP PERFORM (From Form No. D10-E,	IANCE CAPA Schedule D)	BILITY	(OBSERVED)			
	High	-volume	Service	Hig	High-pressure Serv	
	gal/min	psi	HHP	gal/min	psi	HH
1. Main pump	<u> </u>			<u> </u>		
2. Stand-by						
3. Stand-by						
E. ROTARY-TABLE PERI	FORMANCE					
Continuous Rotating Spee	ed Range:					

16

No reproduction or networking permitted without license from IHS ting Check List (Pages 1-3) Not for Resale able in pads of 50 sheets at \$1.00 per pad from API Division of Production. 300 Corrigan Tower Building, Dallas, Texas 75201.

0732290 0003323 0

Bulletin D10: Proce	17			
3. Independent drive unit, make		Mode	1	<u></u>
4. Drive unit, engine or motor: Make			Model	
Cont. HP rating				
5. Table driven through drawworks:				
Ratio LRPM to	RPM	Ratio III	RPM to	RPM
Ratio IIRPM to	RPM	Ratio IV		RPM
F. DRILL-STRING SPECIFICATIONS				
Drill Pipe				
	String:	#1	#2	
Nominal size	· · · · 		in.	
Weight per foot			lb	
API grade	· · · ·		· · · · · · · · · · · · · · · · · · ·	
Length of string			ft	-
Tool-joint size and style	<u></u>			
Tool-joint OD			in	
Date of last inspection	••••			
Inspection method	· · · ·			
No. of joints by inspection	••••		<u></u>	$\frac{\text{CLASS}^*}{1}$
				PREMIUM
			<u></u>	2
				3
				Ū
Other drill-pipe condition information, such	as hardbanding	g, protectors, et	e:	
• <u> </u>				

Copyright American Petroleum Institute Provided by IHS under license with API and classification of used drill pipe are included in Section 9, API RP 7G: Drill Stem Design and Operating No reproduction or networking permitted without license from IHS 'roduction, 800 Corrigan Tox Not for Resale 1g, Dallas, Texas 75201.

18

0732290 0003324 2

American Petroleum Institute

Quantity		· · · · · ·		
Max. OD	(to nearest 1/16 in.)		<u> </u>
Min. bore	e (to nearest 1/16 in.)		
Average	length	••••		
Approx.	string weight	· · · · · ·		
Tool-join	t style and size \cdot .	••••••		<u> </u>
G. AUXILIARY Mud Tanks	EQUIPMENT		-	
Number		Size		Capacity Each
			<u> </u>	
Mud-mixing a. Pump	Equipment s			
Numb	er	Make	Туре	Size
b. Prime	Mover			
Numb	er	Make	Model	НР
Mud-agitatin	g Equipment — Desc	ribe:		
Shale Shaker	:	Make	М	odel
Desander:	Make	Model	_	Capacity, gal/min

Desander Pump:	Make	11000uite 101	Type	Trume Hadin	Capacity, gal/min		
Desander-pump Prime Mover:		Make		lel	НР		
Well-control Equipme Blowout Prevente No. Ma	ent ers ake	Model	API Flange Size	Bore	Working Pressure		
	······						
Choke Manifold — De	escribe:				······································		
Kelly Cock:		Make		Model			
Drill-pipe Safety Valv	/e:	Make		Model	<u> </u>		
Mud-Gas Separator – Blowout Preventer Cl	- Describe:_ osing Unit		N.	MOUCL	N 4		
Make		Model_	No. Outl	or ets	No. 01 Stations		
Accumulator volume	(liquid and g	gas)			<u></u>		
Precharge pressure ()	before addin	g liquid)]		
Final pressure (when	fully charge	ed with liquid)]		
opyright American Petroleum Institute rovided by IHS under license with API Lat lo reproduction or networking permitted wit	ting valve?	Yes	NoNot for Resale		-		

BULL 010-73

0732290 0003326 6

.

20	Americ	an Petroleum In	stitute	
Generators Number	Make	Model	Туре	Capacity, K
Generator Prime Mover Number	Make	9	Model	нр
Lighting System Vapor Proof: Yes Describe:		No		
Mud Storage — Describe:_				
Cement Storage Capacity:				
Fresh-water Storage Cap	Describe		····	

DII		D 1.	n_	77
80	ևև	ш	u –	1 -

8 752200 0003327 8

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

API FORM NO. D10-C*

SCHEDULE A

CAPACITY FOR HANDLING CASING OR DRILL PIPE

Hook-load capacity of any piece of equipmen the hoisting system is defined as that load in por that may be suspended by the hook which will the particular piece of equipment up to its AP	t in manufac inds the rig is load the least I or lowing r	turer's rated caps therefore limit such capacity. ig:	acity. Hook-load capacity of ed by that equipment having These data apply to the fol-
Rig identification:			·
Rig hook-load capacity, for drill string is	lb, as li	mited	
bybelo (weakest link)	w.		
Rig hook-load capacity, running casing is	lb, as li	mited	
bybelo	w.		
1. Mast or Derrick			Rating
Wind resistance with no drill-pipe setback	:		mph
Wind resistance withft of drill	-pipe setback		mph
Racking capacity ofin. drill pi	pe		ft
Static hook-load capacity (with	_lines strung to tr	aveling block)	M lb
2. Crown block(1) Make (2) Weight	(3) No. of §	Sheaves	tons
3. Traveling block(1) Make (2) Weight	(3) No. o	f Sheaves	tons
4. Hook			tons
5. Swivel		•••••	tons
6. Elevator links			•
7. Drill-pipe elevators		•••••	•tons
8. Casing elevators		• • • • • •	tons
9. Rotary drilling line (hook-load capacity)			M lb
Classification Size Grade Center	API breaking strength**	Safety No. factor Line	 S

*API Form No. D10-C (Schedules A and B) is available in pads of 50 sheets at \$1.00 per pad from API Division of Production, 300 Corrigan Tower Building, Dallas, Texas 75201.

Copyright American Petroleum Institute 11nal) for new wire ropes are shown in API Spec 9A: Specification for Wire Rope, available from API Provided by IHS under license with API 10 Corriean Tower Building, Dallas, Texas 752 11. No reproduction or networking permitted without license from IHS Not for Resale

American Petroleum Institute

API FORM NO. D10-C*

SCHEDULE B

SUBSTRUCTURE LOAD-SUPPORTING CAPACITY

Substructure: Make_

22

Model or type	
Floor height	ft
Width	ft
Length	ft
Height above ground to underside of rotary beams	ftin.
For use with derrick (or mast) having static hook load cap	pacity ofM lb
Maximum pipe setback capacity	Mlb
Maximum rotary-table supporting capacity irrespective of a	setback loadM lb
Corner loading capacity (for derricks only)	Mlb
Loads imposed by tensioning devices	M lb
Additional loads	, , , , ,Mlb

*API Form No. D10-C (Schedules A and B) is available in pads of 50 sheets at \$1.00 per pad from API Division of Production, 800 Corrigan Tower Building, Dallas, Texas 75201.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

0235540 0003354 T

23

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

API FORM NO. D10-D*

SCHEDULE C

HOISTING AND BRAKING CAPABILITIES

Hook-horsepower rating and auxiliary brake ca-pability are based on actual field performance, as measured by a standard test procedure. By this test ping operations, whereby the speed of the middle single of a stand is combined with concurrent weightindicator reading. The data submitted applies to the procedure, hook-horsepower and braking capability following rig: are determined from observations made during trip-Rig identification:____ Maximum hook-horsepower observed to be_____at hook load of_____lb as of_ at (Date) (Location) and observed by_____ Rig equipped as follows: Equipment Description (Type, Make, Model, Size, etc.) Drawworks . Auxiliary brake . . Engine-hoist transmission system . . Hoisting engines **Observed Test Data** — Hoisting Hook Load. Sec to Pull Hook Velocity, Drawworks Calculated Hook No. Lines M lb Middle Single ft/min Ratio Horsepower Strung **Observed Auxiliary Brake Performance** Sec to Hook No. of Lines Hook Load, Lower Velocity, to Traveling Middle Single M lb ft/min Block Remarks

Copyright American Petroleum Institute

Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Not for Resale

*API Form No. D10-D (Schedule C) is available in pads of 50 sheets at \$1.00 per pad from API Division of Production, 300 Corrigan Tower Building, Dallas, Texas 75201.

American Petroleum Institute

API FORM NO. D10-E*

SCHEDULE D

MUD PUMP PERFORMANCE CAPABILITY

Mud pump ratings are to be based on hydraulic horsepower they are capable of delivering continu-ously during normal drilling operations. Hydraulic horsepower is determined in the field by using stand-

ard test procedures, whereby pressure-gage observa-tions and either measured or calculated mud volumes are used to calculate pump hydraulic horsepower output.

Rig identification:____

Pump Specifications	(1) Main (2) Stand-by		Stand-by	(3) Stand-by		
Make (manufacturer)	•	<u> </u>		 		
Model designation	•					
Rated input horsepower	•			· · ·		
Rated RPM \times stroke length	×in.		×in.		×in.	
Service Conditions	High Volume	High	High	High	High	High
Liner sizes: Maxmin	······			Pressure		
Corresponding rated WP						
GPM displaced @ rated RPM	<u> </u>	·		·		
Observed Performance				2		
Dates tested						<u></u>
Engines connected to mud pumps**				_		<u> </u>
Do the same engines drive rotary?	<u> </u>	<u></u>		<u> </u>		
Max. no-load pump RPM	<u></u>	. <u></u>		<u> </u>	·	
Pump RPM during tests						
Engine RPM during test		·				
Liner sizes during tests					·	
Standpipe pressure, psi			·			
GPM, measured	<u> </u>					
GPM, calc. @% vol. eff		<u>.</u>		···· -		
Pump output, HHP	<u></u>		<u> </u>	<u> </u>		
**Engines supplying power to mud pumps:						
No. Make	Model		Manufacturer's Con at Owner's Go		inuous-duty verned Speed	Rating l
1		·		HP @		RPM
2		. .	`	HP @		RPM
8				HP @		RPM

A Copyright American Petroleum Institute Provided by HIS under license with API No reproduction or networking permitted without license from HES_dule D) is available in pads Not for Resale sets at \$1.00 per pad from API Division of Production, 300 Cor-rigan Towar Building, Dallas, Texas 75201.

 $\mathbf{24}$

0 LEEEDOD D62331 0

25

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

SECTION 4

RIG-RATING PARAMETERS

SAFE LOAD RATINGS

Manufacturers of derricks, masts, and substruc-tures, in cooperation with API, furnish the users of such equipment with applicable safe load ratings. If specified safe load ratings for given conditions are not exceeded, no failure is likely. If these ratings are exceeded, failure is possible. At greater overloads, failure is probable, and at some critical loading, failure is certain.

Derricks and Masts

Derricks and masts are designed to a static hookload capacity when using a specified number of lines and with an established position for the dead-line anchor. Any change in the number of lines strung or shift of the dead-line anchor position may ma-terially alter the static hook-load capacity.

Substructures

When substructures are used with derricks and masts, refer to API Std. 4E: Specification for Drilling and Well Servicing Structures*. API Std. 4E provides, among other things, that substructures carry name plates bearing specified information including:

Maximum pipe setback weight, pounds____

Maximum rotary-table loading, pounds____

Even though substructures are designed to sup-port these two loads "acting simultaneously", it should never be presumed that capacity not utilized in one of the areas may be transferred, in whole or in part, to the other area. Each such rating is maximum for its area irrespective of loading in the other area.

Wire Lines

Nominal breaking strengths for new wire rope are shown in API Spec. 9A: Specification for Wire Rope*, Tables 3.3 through 3.17.

Loads and safety factors: When a wire rope is reeved over a number of sheaves in a block-and-tackle system, the load on the fast line is greater than the total load divided by a number of parts of line, because of the loss caused by friction in the sheaves and in the bending of the rope around the sheaves. The efficiency factor of various parts of line for roller-bearing sheaves has been established as follows (see Section 6, Ref. 65):

- 6 parts of line, efficiency factor = 0.874
- 8 parts of line, efficiency factor = 0.84110 parts of line, efficiency factor = 0.841
- 12 parts of line, efficiency factor = 0.770

*Available from API Division of Production, 300 Corrigan Tower Building, Dallas, Texas 75201.

The maximum load on the fast line may be determined from the following formula:

$$P = \frac{W}{N \times E}$$

Wherein:

- P = load on fast line
- W = hook load, in pounds, including travelling block
- N = number of parts of line (lines strung to traveling block)
- E =efficiency factor

DETERMINATION OF HOOK HORSEPOWER

Hook horsepower may be determined during tripping operations by observing weight-indicator readings and timing with a stopwatch the hoisting of the middle singles of various stands and referring these values to Fig. 14, Section 2. This chart is based on the following standard equation, assuming the average length of a single to be 30 ft.

$$\frac{Load (lb) \times 30}{Time (sec) \times 550} = horsepower$$

The weight-indicator reading includes the weight of the block and hook and any pipe drag. Timing the middle single gives a steady condition and permits demonstration of maximum horsepower.

Because of the way in which governors affect engine performance, if it is desired to demonstrate the full horsepower of mechanical-drive internal-combustion engines it may be necessary to put the drawworks in the next higher gear several stands earlier than in usual operating practice to prevent the engines from coming up to governed speed. This is not true for torque-converter, electric, or steam drives.

The accuracy of the weight indicator may be checked from known values of equipment weight, weight of drill string, and mud buoyancy. The accuracy of stopwatch observation can be expected to be the same for start and stop as the tool joints pass the reference point. Altitude usually affects the maximum output of internal-combustion engines.

AUXILIARY BRAKES

For the primary purpose of reducing substantially one item of rig-operating expense, many drawworks incorporate some form of auxiliary brake which permits the lowering of heavy hook loads safely at retarded rates without incurring appreciable brake maintenance. Two general types of auxiliary brakes currently are in common use, viz: a, hydro-dynamic;

1 SEEE000 062335 T

Auxiliary-brake capabilities may be determined during tripping operations by observing weight-indicator readings and timing with a stopwatch the lowering of the middle single of a stand while carrying the load exclusively with the auxiliary brake.

The operating principles employed are as follows.

Hydro-dynamic Brakes

A hydro-dynamic brake is a hydraulic device that absorbs power by converting mechanical energy into heat. Resistance is created exclusively by agitation of water circulated between the veined pockets of the rotor and stator elements, with the conversion of mechanical energy into heat taking place directly within the water itself. The amount of mechanical energy that can be absorbed in this manner is dependent upon the quantity and velocity of the water in the working chamber.

With any specific quantity of water in the working chamber, the velocity of the water circulated is increased with increased revolving speed of the rotor, with resulting increase in fluid friction. In this manner the torque capacity of a hydro-dynamic brake increases approximately in proportion to the square of the speed. If the speed is doubled, the torque resistance is increased four times. The revolving speed limitation of the rotor is mechanical, but the torque capacity of the brake increases with speed in the foregoing ratio up to the maximum recommended safe operating speed for each size brake.

The primary function of the circulating system is to supply cool water through the inlet of the brake to displace the heated water and thus prevent the formation of steam within the brake; also to remove the heated water from the circulating system. The secondary function of the circulating system is to provide controls to permit the driller to vary the braking capacity to meet requirements. The capacity at any speed is adjustable by regulating the quantity of water being circulated between the verined pockets of the rotor and stators in the working chamber. The circulating system includes means for dissipating heat.

Many factors must be considered in determining proper size of brake for specific operating conditions. To simplify selection of brakes, performance charts are available from the manufacturers of hydro-dynamic brakes.

Eddy-current Brakes

An eddy-current brake is an electro-magnetic machine which includes primarily a driven element being an all-iron rotor, and a stationary member which provides a variable and controllable magnetic field in which the driven element revolves. Magnetic forces, induced in the rotor, tend to oppose accelerated rotary movement. Eddy currents, produced in the iron rotor as it is rotated within the electromagnetic field of the stator, generate heat which is transferred to a liquid medium circulating through the machine. Thus mechanical energy is converted into heat and then is dissipated by a liquid cooling system. Magnetic forces and eddy currents in the iron rotor increase with increases in intensity of the electro-magnetic field and, to a limited extent, with increases in the speed of rotation.

The stator's magnetic field is produced by coils, separately excited from an extraneous source of direct-current electricity. Within prescribed limits of the machine, regulation of the excitation current controls the relative counter torque or braking effect available at various rotational speeds of the rotor.

Performance data on machines of various capacities are available from manufacturers of eddy-current brakes.

27

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

SECTION 5

GLOSSARY

HORSEPOWER (HP): Force (lb) \times speed (ft/min) 33.000

The rate of doing work (transferring energy) equivalent to lifting 33,000 lb 1 ft/min (33,000 ftlb/min). This is also 550 ft-lb/sec.

Lifting a weight is a simple example of a force in motion. The same combination of force-times-speed in any direction-along the flat, on a slant, around a curve, or any combination-is the same horsepower. (Also, other transfers of energy may be stated as horsepower.)

HYDRAULIC HORSEPOWER (HHP):

$$\frac{Circulation}{rate (gpm)} \times \frac{differential}{pressure (psi)}$$
1,714

ELECTRIC HORSEPOWER (EHP): Kilowatts \times 0.746

THERMAL HORSEPOWER (THP): Btu/min 42.42

- INPUT HORSEPOWER: The horsepower that is put into an operating system.
- OUTPUT HORSEPOWER: The horsepower that is put out by an operating system.
- EFFICIENCY: The percentage relation of output to input.
- MECHANICAL EFFICIENCY: The percentage relation of mechanical power output to mechanical power input.
- HYDRAULIC EFFICIENCY: The percentage relation of hydraulic horsepower output to mechanical horsepower input. In some cases this may include mechanical efficiency.
- VOLUMETRIC EFFICIENCY: The percentage relation between the actual delivered capacity of a pump and the calculated displacement of the pump.
- TRANSMISSION LOSS: The difference between output horsepower and input horsepower. It may conveniently be expressed as percentage of input horsepower.
- BRAKE HORSEPOWER (BHP): The horsepower output of an engine or motor measurable by a special brake or a dynamometer.
- BIT HYDRAULIC HORSEPOWER (BHHP): The hydraulic horsepower equivalent of the gallons per minute and the pressure drop across the bit nozzles.

$$\frac{GPM \times psi}{1,714} = BHHP$$

BIT MECHANICAL HORSEPOWER: The horsepower required to rotate the bit only, not including that required to rotate the drill string contacting the walls.

$$\frac{Torque (ft-lb) \times rpm}{5,250} = RHP$$

TORQUE: The tangential force (pounds) times lever arm length.

HOOK HORSEPOWER (HOISTING HORSEPOWER):

Weight-indicator length of × middle joint (ft) reading (lb) Time to hoist middle joint (sec) \times 550

- PUMP INPUT HORSEPOWER: Mechanical horsepower put into the pump.
- PUMP OUTPUT HORSEPOWER: Hydraulic horsepower put out by pump.
- ENGINE HORSEPOWER (ENGINE RATING): Refer to API Std 7B-11C. This standard covers rating of internal combustion engines. The MAXIMUM rat-ing is not usable. The INTERMITTENT rating is applicable to hoisting. The CONTINUOUS rating is applicable to pumping.
- BRAKING CAPACITY: The load which the drawworks brake and auxiliary brake can retard to a constant reasonable speed, or hold.
- DRILL PIPE: A portion of the drill string which transmits power to the bit.
- DRILL COLLAR: Thick-walled pipe to provide stiffness and concentration of weight at the bit.
- DRILL STRING: A combination of drill pipe, drill collars, and accessory components.
- BIT PORT: A fluid-flow port in a bit.
- JET NOZZLE: A fluid-flow port in a jet bit.
- JET-TYPE BIT: A bit employing directed, rapid flow of fluid from a nozzle or nozzles.
- DRILLING HYDRAULICS: The employment of the sci-ence of the effects of fluid velocities and pressures and forces involved.
- ROTARY DRILLING RIG: Includes prime movers, hoisting, rotating, circulating, and auxiliary equipment necessary for well drilling.
- STEAM RIG: A rotary drilling rig with steam boilers and steam-driven equipment.
- ALL-ELECTRIC RIG: A rotary drilling rig using power from electric power line.
- DIESEL-ELECTRIC OR GAS-ELECTRIC RIG: A rotary drilling rig using self-generated electric power.
- MECHANICAL-ELECTRIC RIG: A rotary drilling rig using diesel or gas engines to drive pumps and generator.
- MECHANICAL RIG: A rotary drilling rig driven by diesel or gas engines.

STRAIGHT MECHANICAL DRIVE: Internal-combustion engines connected to leads by clutches which can Not for Resale ipped a moderate amount.

Copyright American Petroleum Institute Provided by IHS under license with APIER (RHP): The horsepower re-No reproduction or networking permitted without license from IHS; and the bit.

American Petroleum Institute

- FLUID DRIVE: Special pump-and-turbine unit connecting engine to load, permitting some slip and flexi-bility.
- HYDRAULIC DRIVE: A motor driven hydraulically by a pump.
- TORQUE CONVERTER: Fluid drive which increases torque and reduces rpm.
- REYNOLDS NUMBER (R_{\bullet}) : A dimensionless function that characterizes friction of fluid flow in pipes and is defined by the following:

$$R_{\bullet} = \frac{vd\rho}{N}$$

Wherein:

- v = mean velocity, ft/sec d = diameter of pipe, ft

- $\begin{array}{l} \rho = \mbox{ density, lb/cu ft} \\ N = \mbox{ absolute viscosity, lb/ft-sec} \\ = \mbox{ 0.000672 \times viscosity in centipoise} \end{array}$

Or, in oil-field engineering units:

$$R_{\bullet} = 928 \left(\frac{v d_{i} \rho_{i}}{N_{i}}\right)$$

Wherein:

$$v =$$
 mean velocity, ft/sec
 $d_i =$ diameter of pipe, in.

$$\rho_1 = \text{density, lb/gal}$$

$$N_1 =$$
 plastic viscosity, cp

or:

$$R_s = 379 \left(\frac{G \rho_l}{N_l d_l} \right)$$

Wherein:

$$G =$$
flow rate, gal/min

- $d_1 =$ diameter of pipe, in.
- $\rho_{I} = \text{density, lb/gal}$ $N_{I} = \text{plastic viscosity, cp}$

0732290 0003335 7

Bulletin D10: Procedure for Selecting Rotary Drilling Equipment

SECTION 6

BIBLIOGRAPHY FOR API COMMITTEE FOR RATING OF ROTARY RIGS

- 1. Modern Drilling Equipment, Rigs and Equipment, Petr. Engr., July (1961).
- 2. Moore, Preston L: How to Apply Hydraulic and Bit Horsepower, Oil Gas J., Jan. 23 (1961).
- 3. Stone, V. D: High-speed Drilling techniques in Southern Louisiana, API Drilling and Production Practice, 49 (1961).
- 4. How Humble Plans for Minimum Drilling Costs, Oil Gas J., Sept. 26 (1960).
- 5. What Weight and Speed Produce Lowest Drilling Costs?, Oil Gas J., Mar. 7 (1960).
- 6. Jersey Research Attacks Drilling Costs, Petr. Engr., Oct. (1960).
- 7. Variable Weight and Rotary Speed for Lowest Drilling Cost, AAODC paper, Sept. (1960).
- 8. Brantly, J. E: Rotary Drilling Handbook, Palmer Publications, New York, 1961, 6th Ed.
- 9. Peret, J. W. and Kastrop, J. E: Guide to Jobrating Well for Minimum Rig Horsepower in Jet Bit Drilling, *Petr. Engr.*, 32, Oct. (1960).
- Tables establish minimum horsepower requirements for pumping and hoisting.
- 10. More From Drilling Rig Engines, Oil Gas J., Sept. 26 (1960).
- 11. Williams, B. G: Which Hoisting System is Better?, World Oil, 148 [2] Feb. 1 (1959).
 - Load capacity of derrick, and design stresses of wire line.
- Stevenson, J. M: Equipment Management Key to Economical Operations, Petr. Engr., (1959).
- McGhee, E: Drawworks and Compounding Transmission, Oil Gas J., 56, 125, Oct. 6 (1958).
 Economy through right equipment selection.
- Hogwood, E. E: Drilling for Oil Electrically, Westinghouse Engr., 19 [2] Mar. (1959).
 - Discussion of electric drive systems for drilling rigs.
- Marsee, J: Get the Most from Your Drawworks, *Petr. Engr.*, 31, B112, Mar. (1959).
 Mechanical factors of drawworks rating.
- Crake, W. S: Lets Return to Central Power Plants, *Oil Gas J.*, 57, 40, Sept. 28 (1959).
 Evaluation of necessary horsepower on electric rigs.
- 17. Derricks, Mast, and Lines, Oil Gas J., 57, C16, Jan. 29 (1959).
- Rotary Rig Design; Panel Discussion, Oil Gas J., 57, 97, June 22 (1959).
- 19. API Std 7: Specification for Rotary Drilling Equipment, American Petroleum Institute, Dallas, Mar. 1965, 20th Ed.

- 20. Colebrook, R. W: How to Get Most Hydraulic Power at Bottom of Drill String in Rotary Drilling, ASME Paper No. 58, PET-6, Sept. (1958).
 - Discussion of probable future mud-pump requirements.
- Lackey, M. D: Proper Selection of Engine Compounds, World Oil, 147 [5] Oct. (1958).
 Factors for selection of proper compounds.
- 22. Colebrook, R. W: Maximum Horsepower Where it Counts, Petr. Engr., Oct. (1958).
- Moore, P. L: Five Factors that Affect Drilling Rate, Oil Gas J., Oct. 6 (1958).
- 24. Watson and Sullins: High Mud Pressures Increase Penetration, World Oil, Jan. (1958).
- 25. Lubinski, A: The Effects of Weight and Speed on Penetration, World Oil, Jan. (1958).
- Speer, J. W: A Method of Determining Optimum Drilling Techniques, API Drilling and Production Practice, 130 (1958); also World Oil, Mar. (1958).
- 27. Webb, G. W: Diesel Rig Drives, Drilling Contractor, April (1957).
- 28. Carr, J. R: New Designs in Offshore Drilling Rigs, Engr. W. 159, 54, Oct. (1953); 38, Oct. 24 (1957).
 - Description of advanced design and improvements of offshore rigs.
- 29. LaFave, V. A: Design Applications for Drilling Equipment, Petr. Engr., 28, B138, Oct. (1956); and Oil Gas J., 54, 113, Dec. 17 (1956).
- 30. Keating, T. W; Clift, W. D. and Cutrer, J: Hydraulics of Rotary Drilling, *Petr. Engr.*, 28, B38, April (1956).
 - Practical optimum limits for hydraulic horsepower.
- 31. Hohmann, H. M. and Busking, B. E: How Inertia Affects Rig Hoisting, World Oil, 142, 132, Mar. (1956).

Evaluating specific phases of rig performance.

 Colebrook, R. W: Hydraulic Couplings and Torque Converters in Big Rig Drives, *Petr. Engr.*, Oct. (1956).

Application to large rig drives, and mud pumps.

- 33. Wardroup and Cannon: What Factors are Contributing to Increased Drilling Rates, *World Oil*, May (1956).
- 34. Bobo and Hoch: Keys to Successful Competitive Drilling, World Oil, Nov. (1957).
- 35. Buzzini, A. P: Rig Selection, Petr. Engr., Nov. (1955).
- Fredhold, A. Jr: Crown and Traveling Blocks, *Petr. Engr.*, Dec. (1955).
- **E7. Walker, R. L: What's Ahead in Rig Design?** Oil Not for Resale! J., May 23 (1955).

Copyright American Petroleum Institute rements on drill stems, rotary Provided by IHS under license with API rements on drill stems, rotary No reproduction or networking permitted without license from IHS ish pumps.

P 3555000 062550

American Petroleum Institute

- Fairman, R. B: Electricity Drives Offshore Rigs; Diesel-Electric Power System, Oil Gas J., 54, 94, July 16 (1956).
- Fredhold, A. Jr: Power Transmission, Petr. Engr., 28, B28, Aug. (1956).
- 40. Helder, J. R: Design of a Slim Hole Rig, Petr. Engr., Oct. (1955).

Design of rig requirements.

41. Graham, G: Factors in Evaluating Drilling Rig, Oil Gas J., July (1955).

Evaluation of machinery, well site, well program, etc.

 Reichert, C. T: Rotary Drilling Rigs, J. Inst. Petr., Nov. (1954).

Selection of suitable components for a drilling rig.

- Pedersen, J. N: Drilling Equipment and Techniques, Petr. Engr., Ref. Ann. (1954).
- 44. Goodrich, J. D: Calculating Economical Hook Horsepower, World Oil, Aug. (1952).
 - Graphs and formula showing rig hoisting characteristics.
- 45. Hamaker, R. G: Check Your Hydraulic System to Cut Your Drilling Costs, World Oil, Mar. (1953).
- 46. Rose, W. F: Drilling-Equipment Report, Oil Gas J., Sept. 29 (1952).
- 47. Alcorn, C. H: New Drilling Equipment, World Oil, Feb. 15 (1953).
- Cooper, M. L: Torque Converters Supply Flexibility and Economy, World Oil, Nov. (1952).
- Payne, John M: Equipment and Techniques for 20,000-ft Drilling, Petr. Engr., June (1950).
- 50. Oberg, C. H: The Balanced Rotary Rig, AAODC, Sept. (1949).
- 51. Craig, R. W: Power Requirements for Rotarydrilling Operations, API Drilling and Production Practice, 103 (1949).

- 52. Payne, John M: A Study Group Investigation of Equipment and Techniques for 20,000-ft Drilling, API Drilling and Production Practice, 123 (1949).
- D'Arcy, Nicholas A., Jr: Application of Hydraulic Drives to Oil Field Equipment, AAODC (1949).
- 54. Crake, W. S: Application of Internal Combustion Engine Power to Rotary Drilling Rigs, ASME (1947); also Petr. Engr., Dec. (1947).
- 55. Today's Drilling Rigs, Oil Gas J., Oct. 7 (1948).
- 56. Mahan, Joseph R: Drilling Rigs for Deep Wells, ASME 1948 Paper No. 48, PET-20.

Analyzes loads encountered and power required.

- 57. Livermore, George P: Mechanical Analysis of Size of Prime Movers for Rotary Drilling Rigs, Oil Weekly, April 13 (1936).
- 58. Albrecht, A. H: Electrical Power Application to Rotary Drilling, Proc. Am. Pet. Inst., Sec. IV (Prod. Bul. 208) 121 (1931).
- 59. Alcorn, C. W: Electrical Power Application to Rotary Drilling, Proc. Am. Pet. Inst., Sec. IV (Prod. Bul. 208) 1959 (1981).
- Trax, David L. and Hawkins, R. R: Internal Combustion Engines for Rotary Drilling, Proc. Am. Pet. Inst., Sec. IV (Prod. Bul. 207) 122 (1931).
- 61. Gignoux, J. R. and March, R. A: Equipment Correlation for Steam Rotary Drilling, Proc. Am. Pet. Inst., Sec. IV (Prod. Bul. 204) 80 (1929).
- 62. Durward, E. Stanley: Power Rate Structure for Oil Fields, Oil Gas J., Sept. 5 (1929).
- 63. Jones, Wendell M: Choice of Equipment for Drilling Exploration Wells by the Rotary Method, *Proc. Am. Pet. Inst., Sec. III (Prod. Bul. 203)* 82 (1928).
- 64. Pigott, R. J. S: Mud Flow in Drilling, API Drilling and Production Practice, 91 (1941).
- 65. Wickwire Spencer, Div. Colorado Fuel & Iron Corp: Oil Field Handbook with Ton-Mile Tables.

Copyright American Petroleum Institute Provided by IHS under license with AP1 igan No reproduction or networking permitted without license from IHS 101, 4-101, 12gan 1.6M, 8-73, Egan

Not for Resale

-