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FOREWORD

ThisBulletinis under jurisdiction of the APl Subcommittee on Offshore Structures.

This Bulletin provides guidance for the design of sted flat plate structures. Used in con-
junction with APl RP 2T or other applicable codes and standards, this Bulletin will be help-
ful to engineers involved in the design of offshore structures which include flat plate
structural components.

The buckling formulations and design considerations contained herein are based on the
latest available information. As experience with the use of the Bulletin develops, and addi-
tiona research results become available, it is anticipated that the Bulletin will be updated
periodicaly to reflect the latest technology.

API publications may be used by anyone desiring to do so. Every effort has been made by
the Institute to assure the accuracy and reliability of the data contained in them; however, the
Institute makes no representation, warranty, or guarantee in connection with this publication
and hereby expressly disclaims any liability or responsibility for loss or damage resulting
fromits use or for the violation of any federa, state, or municipal regulation with which this
publication may conflict.

Suggested revisions are invited and should be submitted to API, Standards Department,
1220 L Street, NW, Washington, DC 20005
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Bulletin 2V--Design of Flat Plate Structures

Section 1-Nomenclature and Glossary
1.1 Nomenclature
Note: The terms not defined here are uniquely defined in the sections in which they are used.

1.1.1 Material Properties

E = modulus of elasticity, [Kksi].

G = shear modulus, [ksi].

Vv = Poisson’s ratio.

Fy = minimum specified yield stress of material, [ksi].

1y, = F, /\/3 yield stress in shear, [ksi].

Fo = proportional limit stress in compression, [ksi].

Pr = Fo I Fy stress ratio defining the beginning of nonlinear effects in

compression.

1.1.2 Plate Geometry and Related Parameters

plate length or larger dimension, [in.]

plate width or shorter dimension, [in. ]

Et*/[12 (1 - v¥)] plate flexural rigidity, [Kips-in].
plate thickness, [in.]

a/b = 1 aspect ratio

(b/t),/F, / E slenderness ratio

™ Q tTgo

1.1.3 Stiffener Geometry and Related Parameters

A = cross sectional area, [in.%]

Aw = web area, [in.%]

b = spacing between stiffeners, [in.]

be = effective width of attached plating, [in.]

by = flange total width, [in.]

Cw = warping constant (see formulas in Table 4.4-1), [in.%]

d = web depth, [in].

I = minimum moment of inertia, [in.’]

lc = polar moment of inertia about centroid, [in.*]

Is = polar moment of inertia about shear center, [in.*]

f = moment of inertia of symmetric I-section in the plane of minimum
stiffness, [in.’]

I = moment of inertia of symmetric I-section in the plane of maximum
stiffness, [in.’]

J = torsion constant (see formulas in Table 4.4-1), [in."]

K = effective length ratio, normally taken as unity.

L = unsupported length, [in.]

Ly = bracing distance, [in.]
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length at which there is a transition between elastic and plastic limit
state moments for lateral buckling, [in.]

NI/ A radius of gyration, [in.]

section modulus for bending of symmetric I-section in the plane of
maximum stiffness, [in.%]

spacing between tripping brackets, [in.]

attached plate thickness, [in.]

flange thickness, [in.]

web thickness, [in.]

[KL/(rx)],/F, / E stiffener slenderness ratio.

1.1.4 Stiffened Panel Geometry and Related Parameters

A
A;

As
B

2b

LR Qs D

L 1y

IDX’ Ipy

S Sy

entire panel length, [in.]

area of flange in stiffened plating (zero in the case of flat bar
stiffeners), in.?

stiffener area, [in.?]

entire stiffened panel width in the case of a stiffened panel (see Figure
5.1-1), or distance between webs for effective flange breadth
calculations (see Figure 5.2-1), [in.]

plate breadth, or distance between webs, [in.] (See Figure 5.6-1)
effective breadth, [in.]

spacing between stiffeners = 2b, [in.]

one half web depth, [in.]

moment of inertia of one stiffener about an axis parallel to the plate
surface at the base of the stiffener, [in.*]

length, [in.]

distance between points of zero bending moment, [in.]

number of sub-panels (individual plates).

plate thickness, [in.]

flange thickness, [in.]

web thickness, [in.]

aspect ratio of whole panel

12(1-v?)1, /(t3d)

Ad/(Bt)

(B/t)\/Fylz(l—vz)/(Enzk) , modified slenderness ratio for uniaxially

stiffened panels, where k is the buckling coefficient.

moment of inertia of the stiffeners with effective plating extending in
the x- or y-direction,

respectively, [in.*]

moment of inertia of the effective plating alone associated with
stiffeners extending in the x- or y-direction, respectively, about the
neutral axis of the entire section, [in."]

spacing of the stiffeners extending in the y- or x-direction,
respectively, [in.]
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equivalent thickness of the plate and the stiffeners (diffused) extending
in the x-direction or y-direction, respectively, [in.]

moment per unit length that produces a stress fy or f,, respectively,
[kips]

bending lever arm associated with f, or f,, respectively, i.e., distance
from the neutral axis of the stiffener with the effective breadth of plate
to the outer fiber of the flange (for the flange stress) or of the plate (for
the plate field stress), [in.]

1.1.5 Deep Plate Girder Geometry and Related Parameters

As

1.1.6 Stresses

flange cross-sectional area, [in.’]

spacing between transverse web stiffeners, [in.]

web opening height, [in.]

width of unstiffened flange in a beam with only one web, or half the
distance between successive longitudinal stiffeners or webs, together
with any adjacent outstand, [in.] (See Fig. 6.1-4.)

spacing between longitudinal web stiffeners, [in.] (See Fig. 6.3-1.)
effective plate flange width attached to web stiffeners, [in.]

web opening length, [in.] (See Fig. 6.3-1)

spacing between web longitudinal stiffeners, [in.]

web depth, [in.]

flange radius of curvature, [in.]

clear distance along the longitudinal direction between web openings,
[in.]

flange thickness, [in.]

web thickness, [in.]

slope of web to horizontal.

1.1.6.1 Normal Stresses:

f

fx, fy
fxy
fSE

fsp

fu

fxse
fyse

fxyse
fXVSP
fxyu

fxi

normal stress, [ksi].

normal stress directed along the x and y axis, [Ksi].

in-plane shear stress, [ksi]

elastic serviceability limit state stress, [Ksi].

plastic serviceability limit state stress, [ksi].

ultimate limit state stress, [ksi].

normal stress fse when the plate is compressed in the x direction alone,
[ksi]

normal stress fs. when the plate is compressed in the y direction alone,
[ksi].

edge shear stress f,e when the plate is loaded in pure shear, [ksi].

edge shear stress fs, when the plate is loaded in pure shear, [ksi].

edge shear stress f, when the plate is loaded in pure shear, [ksi].

limit state normal stress in the x direction when the plate is
compressed in the x direction, [ksi].
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fyi = limit state normal stress in the y direction when the plate is
compressed in the y direction, [ksi].
fxyl = limit state shear stress when the plate is loaded in pure shear, [ksi].

1.1.6.2 Shear Stresses:

Ty = in-plane shear stress, [ksi].

fyyse = elastic serviceability limit state stress, [ksi].
fysp = plastic serviceability limit state stress, [ksi].
fou = ultimate limit state stress, [ksi].

1.1.7 Plate Lateral Deflections

W, = maximum allowable deflection, [in.]
We = maximum elastic deflection, [in.]
W, = plastic set (maximum permanent plastic deflection), [in.]

1.1.8 Plate Lateral Pressures
p uniform lateral pressure, [ksi].
Pu ultimate limit state pressure, [ksi].

1.1.9 Stiffener Axial Loads

P = applied axial force, [Kips].

Py = fully plastic axial force = A Fy, [Kips].

Pee = column elastic ultimate state axial force, [Kips].

Pep, = column plastic ultimate state axial force, [kips].

Pre = column torsional elastic ultimate state axial force, [Kips].

Pt o = column torsional plastic ultimate state axial force, [Kips].

Prre = column torsional/flexural elastic ultimate state axial force, [Kips].
Pre = column torsional/flexural plastic ultimate state axial force, [kips].

p

1.1.10 Stiffener Lateral Distributed Loads

q = uniform lateral load per unit length, kips per [in.]

Qa = load g per unit length on stiffener of length a, kips per [in.]
db = load g per unit length on stiffener of length b, [kips per in.]
Qu = ultimate load, [kips per in.]

1.1.11 Stiffener Bending Moments

M = applied bending moment, [in-Kips].

M, = fully plastic bending moment, [in-Kips].

M; = smaller end moment in the plane of bending, [in-Kips].

M, = larger end moment in the plane of bending, [in-kips].

My = moment at which the flanges are fully plastic, [in-Kips].

My = moment at which yield first occurs in the flanges, [in-kips].
My = ultimate limit state M, [in-Kips].

Me = elastic ultimate limit state M, [in-kips].

Myp = plastic ultimate limit state M, [in-Kips].
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1.1.12 SI Metric Conversion Factors

inx25.4 = mm
ksi x 6.894757= MPa
1.2 GLOSSARY

1.2.1 chord: Deep plate girder flange.

1.2.2 deep plate girder: Deep plate girder with the web stiffened in both the longitudinal and
transverse directions and satisfying the requirements of 6.1.1. See also 6.1.2.

1.2.3 design variables: Quantities that define for the purpose of structural design or analysis
a structural component and material, its state of stress, and the applied loads.

1.2.4 distortion energy theory: Failure theory defined by the following equation, where the
applied stresses are positive for tension and negative for compression:

f2—ff,+f>+3f,° =F’

1.2.5 effective flange breadth: The reduced breadth of a plate subjected to bending and/or
tensile load, which, with an assumed uniform stress distribution, produces the same effect on
the behavior of a structural member as the actual breadth of the plate with its non-uniform
stress distribution. While the effective flange width applies to a member under compression,
the effective flange breadth applies to a member under bending and/or tensile loading, and is
associated with shear lag effects. See 5.6.

1.2.6 effective flange width: The reduced width of a plate subjected to compressive load,
which, with an assumed uniform stress distribution produces the same effect on the behavior
of a structural member as the actual width of the plate with its non-uniform stress
distribution. See 4.1.2.

1.2.7 panel: See stiffened panel.

1.2.8 plate: In Bulletin 2V this term refers to a flat thin rectangular plate, see 3.1.2.

1.2.9 global stresses: Stresses resulting from global deformation of the structure.

1.2.10 proportional limit stress (Fy): Stress above which the stress-strain curve is no longer
linear and which represents the onset of plastic behavior. If no specific value for the steel
being used is available F, can be taken as 0.60 Fy , where Fy is the yield stress.

1.2.11 residual stresses: The stresses that remain in an unloaded member after it has been
formed and installed in a structure. Some typical causes are forming, welding and corrections

for misalignment during installation in the structure.

1.2.12 panel stresses: Stresses on stiffened panels resulting from local applied pressures or
transverse loads.
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1.2.13 serviceability limit state: Function of design variables which defines a condition at
which a member no longer satisfies functional requirements, although it is still capable of
carrying additional loads before reaching an ultimate limit state. See 2.4.3.

1.2.14 shear lag: Shear effects on beams that cause a non-uniform distribution of
longitudinal bending stresses across the flange.

1.2.15 stiffened panel: Structural component comprising one or two sets of equally spaced
uniform stiffeners of equal cross section supporting a thin plate. If there is only one set of
stiffeners the panel is uniaxially stiffened, and if there are two the panel is orthogonally
stiffened. See 5.1.2.

1.2.16 stiffener: Straight and slender thin-walled member of uniform cross which serves as a
stiffening element for a flat plate structure. See 4.1.2.

1.2.17 plate stresses: Stresses on a thin rectangular plate resulting from lateral pressure.
1.2.18 tripping: Torsional buckling of stiffener.

1.2.19 ultimate limit state: Function of design variables that defines the resistance of a
member to failure (i.e., its maximum load carrying capacity at failure), see 2.4.2.

1.2.20 yield stress: The yield stress of the material determined in accordance with ASTM
A307.
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Section 2-General

2.1 SCOPE

2.1.1 Bulletin 2V provides guidance for the design of steel flat plate structures. These often
constitute main components of offshore structures. When applied to Tension Leg Platforms
(TLPs) this Bulletin should be viewed as a complement to APl RP 2T. The Bulletin
combines good practice considerations with specific design guidelines and information on
structural behavior. As such it provides a basis for taking a “design by analysis” approach to
structural design of offshore structures.

2.1.2 Flat plate structures include thin plates, stiffened panels and deep plate girders, and they
can constitute the main component of decks, bulkheads, web frames and flats. The external
shell of pontoons or columns can also be made of flat stiffened panels if their cross section is,
for example, square or rectangular, rather than circular.

2.1.3 Bulletin 2V is not a comprehensive document, and users have to recognize the need to
exercise engineering judgment in actual applications, particularly in the areas that are not
specifically covered.

2.1.4 Plates are discussed in Section 3, stiffeners in Section 4, stiffened panels in Section 5,
and deep plate girders in Section 6. Limit states are given for each relevant load and load
combination, and design requirements are also defined. Figure 2.1-1 summarizes the
structural components and the limit states covered in Bulletin 2V.

2.2 REFERENCES

Background and references on the contents of Bulletin 2V are included in a Commentary
given in the Appendix. Reference is made to APl RP 2T, Recommended Practice for Design
of Tension Leg Platforms, and APl RP 2A, Recommended Practice for Planning, Designing,
and Constructing Fixed Offshore Platforms, American Petroleum Institute, and to the
American Institute of Steel Construction, Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings, latest edition.

2.3 RANGE OF VALIDITY AND LIMITATIONS

2.3.1 The formulations given apply only to members made of structural steel used for
offshore structures, as defined in API RP 2T.

2.3.2 Structural components must comply with the dimensional tolerance limits defined in
APl RP 2T. Members not complying with these requirements should be given special
consideration, given the potential negative impact dimensional imperfections can have on
structural performance.

2.3.3 The formulations for the limit states given may be replaced by more refined analyses,
or model tests, taking into account the real boundary conditions, the actual load distribution,
geometrical imperfections, material properties, and residual stresses.
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Stiffeners

Column Buckling
Beam-Column Buckling
Torsional/Flexural Buckling
Plastic Bending

Stiffened Panels

Uniaxially Stiffened 5.2
Orthogonally Stiffened 5.3
Stiffener Proportions 5.4
Tripping Brackets 5.5
Effective Flange 5.6
Other Design Requirements 5.8
Rectangular Plates
Uniaxial Compression and 3.2
In-Plane Bending
Shear 3.3
Lateral Pressure 3.4
Biaxial Compression and 3.5
Shear
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Limit States 6.2
Design 6.3
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Figure 2.1-1—Structural Components and Limit States Covered in this Bulletin
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2.3.4 Ultimate limit states associated with failure due to material fracture are not considered.
Provisions have to be made to ensure that this type of failure is properly addressed in the
design.

2.3.5 Ultimate limit states associated with accidental loads such as collisions, dropped
objects, fire, explosion, or flooding are not considered. Design criteria for these loads have to
be established, and provisions have to be made to ensure structural adequacy under such
conditions.

2.4 LIMIT STATES
2.4.1 Working Stress Design

2.4.1.1 The design basis adopted in this Bulletin is the working stress design method,
whereby stresses in all components of the structure cannot exceed specified allowable values.
Allowable stresses are associated with two basic structural requirements: resistance to failure
(ultimate limit states); and stiffness and strength criteria (serviceability limit states).

2.4.1.2 In addition to specifying allowable stress values, certain limits on non-dimensional
parameters can be defined. Examples are upper limits on web depth to thickness ratio, or
flange width to thickness ratio for I-section stiffening elements, which are in general defined
to limit the possibility of buckling of the web or flange. These limits on cross sectional
proportions are normally associated with good design practice.

2.4.2 Ultimate Limit States

2.4.2.1 Ultimate limit states correspond to the maximum load carrying capacity of a member
at failure. Thus, if an ultimate limit state is reached, the structure collapses and loses its load
carrying capacity. Failure may be due to:

1. Material plastic flow,

2. Material fracture,

3. Collapse due to local or general instability.

2.4.2.2 The ultimate limit states considered here include only failure due to material
plasticity, and collapse due to local or general instability.

2.4.2.3 In identifying material plastic failure as an ultimate limit state it is necessary to
distinguish those cases where the material yields, but there is no plastic mechanism and as
such no collapse, and those cases where a plastic mechanism leads to structural instability. If
material yielding does not lead to collapse, failure is not an ultimate limit state but a
serviceability limit state. This distinction is important, since by designing for limited and
controlled material yield a more weight efficient design can possibly be achieved. The
designer must use critical judgment in identifying those areas and components where plastic
design can be adopted.
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2.4.2.4 Local instability refers to the type of failure whereby only a localized portion or
subcomponent of the structure fails. In a rectangular panel stiffened by two sets of stiffeners
intersecting at right angles, such as a transverse bulkhead or flat, the buckling of a single
rectangular plate spanning between consecutive stiffeners is an example of local instability.
The tripping of a single stiffener over a single span is another example of local instability. If
the complete panel buckles as a whole, the mode of failure is general instability.

2.4.3 Serviceability Limit States

2.4.3.1 Serviceability limit states correspond to loads at which a member no longer satisfies
functional requirements, although it is capable of carrying additional loads before reaching
an ultimate limit state. Serviceability limit states include:

1. Material yield;

2. Local instability;

3. Deformation;

4. Vibration.

2.4.3.2 Material plastic flow should not adversely affect the structure’s appearance or
efficiency, and should not lead to excessive deformations. The same applies to local
instability, such as the buckling of an individual plate, or the local tripping of a secondary
stiffener in a stiffened panel.

2.4.3.3 The deformation of the structure or any of its parts resulting from the normal
operating conditions or from damage should not adversely affect its appearance or efficiency,
violate minimum specified clearances, or cause drainage difficulties. Damage occurring in
specific parts of the structure which might entail excessive maintenance or lead to excessive
deformation or corrosion, and hence adversely affect the structure’s appearance or efficiency,
should be limited.

2.4.3.4 Where there is a likelihood of the structure being subjected to vibration from causes
such as wind forces, equipment or other transient loads, measures should be taken to prevent
discomfort or alarm, or impairment of a proper function.

2.4.3.5 Serviceability limit states associated with local damage or vibration are not
considered in Bulletin 2V. Provisions have to be made by the designer to ensure that these
are properly accounted for in the design process.

2.5 VERIFICATION OF STRUCTURAL ADEQUACY

2.5.1 Factors of Safety

2.5.1.1 A design is considered satisfactory if the structure has an adequate margin against
failure, or reserve strength, for all applicable limit states. The margin against failure to be
adopted in the design is defined in terms of allowable values for the stresses, or other

relevant design variables (e.g., pressure, axial load, etc.). The allowables are obtained by
dividing limit state values by factors of safety, as described in more detail in 2.5.2. The

10
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factors of safety recommended for design are as follows:
FS. = 1.67 for serviceability limit states
FS. = 1.67vy for ultimate limit states

2.5.1.2 The effects of imperfections are very significant in the elastic range but have little
effect in the yield and strain hardening ranges of the material. Therefore, a partial factor of
safety, v, dependent on the buckling stress is recommended for ultimate limit states. The
value of vy is 1.20 when the buckling stress is elastic, 1.00 when the buckling stress equals
the yield stress and varies linearly between these limits.

2.5.1.3 A 1/3 increase in allowable stresses may be used where appropriate. The structure
should be designed so that all components are proportioned for basic allowable stresses
specified by APl RP 2A, APl RP 2T, or by the AISC Specification for the Design,
Fabrication and Erection of Structural Steel for Buildings, latest edition. Where the
structural element or type is not covered by the above, a rational analysis should be used to
determine the basic allowable stresses, with factors of safety equivalent to those defined.
Alternative methods for verifying structural adequacy may also be acceptable, as defined in
2.5.6.

2.5.1.4 In determining structural adequacy two types of load conditions have to be
considered: a single load acting on the structure and multiple loads (or load combinations).

2.5.2 Single Load Limit States

2.5.2.1 Each limit is defined in terms of a design variable Qi. Depending on the particular
limit state, this design variable can be, for example, a stress component, a pressure, or a
deflection. When a limit state is satisfied:

Q=Q (2.5-1)
where
Qi = actual value of the relevant design variable (stress, pressure,
deflection, etc.),
Q = limit state value of Q;, as defined by the formulas in this Bulletin.

2.5.2.2 Given a particular limit state, a design is considered satisfactory if the associated
design variable does not exceed an allowable value given by:

Q/
F.S.
where F.S. is the appropriate factor of safety.

11
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2.5.3 Combined Load Limit States

When n loads Qq, ..., Qnact on a structure a limit state is defined in this Bulletin in terms of
an interaction equation:

[Qljl-i-{sz 2+...+(Q”] u=1 (2.5-2)
) \Q Q

where Q/, is the limit state value of Q;when Q; is the only load acting on the structure.

Interaction equations are in most cases of an empirical nature, with the exponents m; being
determined on the basis of a best fit of experimental data.

2.5.3.1 Given a particular limit state, a design is considered satisfactory if the relevant design
variables do not exceed allowable values given by Q! /F.S., Q; /F.S., ... Q. /F.S., where Q;

... Q7 are the limit state design variables satisfying the interaction equation above, and F.S.
is the appropriate factor of safety.

2.5.3.2 The interaction equations and the formulations for the limit state values of the
relevant design variables given in this Bulletin reflect serviceability and ultimate limit states.
In using them for specific applications the designer must ensure that the appropriate factors
of safety (F.S.’s) are adopted, as prescribed in 2.5.1, 2.5.2, and 2.5.3.

2.5.4 Governing Limit State

In general, both serviceability and ultimate limit states are defined for each mode of failure.
Either of these limit states can govern the design by imposing a lower allowable value on the
design variable Q;. However, the allowable values for Q; resulting from serviceability and
ultimate limit state considerations should be close for an efficient design. A design is
considered satisfactory if the design variables do not exceed their allowable values for all the
applicable limit states.

Note: formulations given in this Bulletin for the ultimate limit state sometimes yield lower values than the
serviceability limit state. This is a function of the plate geometry and material properties.

2.5.5 Other Limit States

To ensure that a structure is adequate, it is necessary to consider other modes of failure not
treated in Bulletin 2V. These include failure due to material fracture or fatigue, and failure
caused by accidental loads.

2.5.6 Alternative Methods for Verifying Structural Adequacy
2.5.6.a General. The formulations for the limit states included in Bulletin 2V may be
replaced by more refined analyses, or model tests, taking into account the real boundary

conditions, the actual load distribution, geometrical imperfections, material properties and
residual stresses. In adopting these alternative methods it is necessary to ensure that the

12
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structure is correctly modeled, and that all relevant limit states are considered. In particular if
weight savings and increased structural efficiency are necessary, more refined methods of
analysis should be explored.

2.5.6.b Methods of Analysis. The methods of analysis that are adequate for considering the
ultimate limit states include elastic methods, and plastic or yield-line methods. Elastic
methods (in which P-delta effect is included and all failure modes are accounted for by
appropriate stress limits, but plastic load redistribution does not occur) are acceptable as
lower bound collapse solutions, and they will also lead to solutions less likely to violate
serviceability criteria. Elastic methods imply that a valid yield criterion is adopted to ensure,
together with equilibrium, the static admissibility of the solution.
Plastic or vyield-line methods may be adopted when appropriate to the structural
configuration. Plastic methods or other procedures for permitting redistribution of moments
and shears may be used only when:
a. The structural configuration and the materials have an adequate plateau of
resistance under the appropriate ultimate conditions, and are not prone to
deterioration of strength due to shakedown under repeated loading;

b. The development of bending plasticity does not cause an indeterminate
deterioration in shear, torsional or axial strength, when relevant;

C. The supports or supporting structures are capable of withstanding reactions
calculated by elastic methods.

The methods of analysis that are adequate for considering the serviceability limit states are in
general elastic methods. Linear methods may be used when changes in geometry do not
significantly influence the structure’s performance. Nonlinear methods may be adopted with
appropriate allowances for loss of stiffness, and should be used where geometric changes
significantly modify the structure’s performance. The method used should at all times satisfy
equilibrium requirements and compatibility of deformations.

The mathematical idealization of the structure should reflect the nature of its response. The
boundaries assumed in such an idealization should either calculate accurately the stiffness of
adjacent parts, or be sufficiently remote from the part under consideration, for the stresses to
be insensitive to the boundary assumptions.

2.5.6.c Model Analysis and Testing. Model analysis and testing may be used either to
define the load effects in a structure, or to verify a proposed theoretical analysis. The models
used should be capable of simulating the response of the structure appropriately, and the
interpretation of the results should be carried out by engineers having the relevant
experience. Model tests are particularly important in those cases where the geometry being
proposed is novel, or not proven for the specific application under consideration.

The reliability of the test results depends upon the accuracy or knowledge of several factors,

such as:
a. Material properties (model and prototype);

13
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b. Methods of measurement;
C. Methods used to derive load effects from measurements;
d. Loading and reactions.

In interpreting results, the load effects to be used in design should exceed those derived from
the test data by a margin dependent upon:

e. Number of tests;
f. Method of testing;
g. An assessment of a., b., and c. above.

In all cases the interpreted results should satisfy equilibrium and compatibility.

Where prototype testing is adopted as a basis for proving the resistance of a component, the
test loading should adequately reproduce the range of stress combinations to be sustained in
service. A sufficient number of prototypes should be tested to enable a mean value and
standard deviation of resistance to be calculated for each critical stress condition. A particular
aspect of structural behavior that may not be modeled correctly in small scale testing is
residual stresses. It is important that this factor be accounted for in interpreting results, and in
extrapolating to full scale.

The material strengths to be specified for construction of the model should have mean values
and coefficients of variation compatible with those in the prototypes. Tolerances and
dimensions should be similarly prescribed so that the models are compatible with the
prototypes.

2.6 STRUCTURAL COMPONENT LOADS AND LOAD COMBINATIONS

2.6.1 General
The loads and load combinations that are to serve as a basis of design are defined in
appropriate documents such as APl RP 2T, APl RP2FPS, etc.

2.6.2 Primary Loads

2.6.2.1 Primary loads and load combinations for structural component design, such as
stiffened panels or deep girders, result in general from global platform analysis, to be
discussed in 2.7. These primary loads can typically be classified as follows:
axial tension or compression;
e shear;
bending;
twisting;
lateral loading (distributed or concentrated).
Typical load combinations that are relevant for design include, for example:
e axial compression and shear;
axial compression and bending;
biaxial bending;
bending and torsion.

14
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2.6.2.2 The most relevant loads and load combinations for structural component analysis are
treated in Bulletin 2V. The structural components considered are thin rectangular plates,
stiffeners, stiffened panels and deep plate girders. However, the treatment is not
comprehensive, and the designer should use other methods to ensure structural adequacy for
those loads or load combinations not treated in the Bulletin. In particular, no consideration is
given to concentrated loads on plates.

2.6.3 Secondary Loads

2.6.3.1 For most commonly encountered load cases, secondary loads do not directly affect
the limit states, but the designer should ensure that they are included, when appropriate.

2.6.3.2 Examples of secondary loads include:
e shrinkage forces due to welding;
e stresses due to construction tolerances;
e thermal loads.

2.6.3.3 In cases controlled by fire considerations, thermal loads should be treated as primary
loads.

2.6.4 Accidental Loads

As indicated in 2.3, accidental loads, such as those caused by collisions, dropped objects,
fire, explosion, or flooding, are not considered. Some of these loads can lead to the rapid loss
of strength of the primary structure and bring about an ultimate limit state. The designer
should use acceptable methods to assess the adequacy of the structure to withstand such
loads.

2.7 GENERAL APPROACH TO STRUCTURAL ANALYSIS
2.7.1 General

General principles regarding analysis methods, modeling, stress analysis and fatigue analysis
for structures are covered in APl RP 2T.

2.7.2 Global, Panel, and Plate Stresses

2.7.2.1 The structural analysis of a stiffened plate structure requires the consideration of
several models. Global behavior can be represented through the use of a 3-D finite element
model describing the whole structure. A more precise definition of stress distribution requires
the consideration of smaller models, representing main structural components, or more
localized areas of the structure, such as stiffened panels. Finally, main structural components
can be further subdivided into the most basic elements, which are thin plates and stiffeners.
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Figure 2.7-1—Global, Panel, and Plate Stresses
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2.7.2.2 The 3-D finite elements model leads to stress distributions over gross cross sections
of the structure, such as the columns or pontoons. These stresses resulting from deformation
of the structure are global stresses. In the case of a pontoon of rectangular cross section, for
example, the global stresses result from axial load, shear, biaxial bending and torsion.
Assuming that the members in the space frame model are slender the global stresses can be
obtained from simple beam theory, with corrections for shear, if necessary.

2.7.2.3 The next main structural component is the stiffened panel. The main stresses are
generally due to bending and transverse shear, and are a result of local applied pressures or
transverse loads. These stresses can be called panel stresses, and can be derived on the basis
of orthotropic plate or grillage theory.

2.7.2.4 A single rectangular plate is the most basic component of flat plate structures. If the
plate behavior between stiffeners under lateral pressure is considered, the resulting stresses
are the plate stresses. These can be derived on the basis of thin plate theory.

2.7.2.5 Typical global longitudinal bending stress distributions for a pontoon cross section
are sketched in Figure 2.7-1. They vary linearly across the depth of the cross section. Typical
panel stresses for the pontoon bottom are also shown. They vary linearly across the depth of
the stiffened panel, reaching maximum values at the extreme fiber of the stiffener flange, or
at the shell plate. Plate bending stresses vary linearly across the plate thickness and are zero
at its middle surface.

2.7.2.6 Given this breakdown of stresses into the three main categories, global, panel and
plate, it becomes possible to use linear superposition to assess the resulting stress in different
components of the structure, assuming elastic material properties and small deformations.

2.7.2.7 This classification of stresses is practical in those areas where the structure can easily
be subdivided into global (space frame), panel (stiffened panel), and plate (plate) functions.
In areas such as the nodes (where the columns and pontoons intersect), more refined stress
analysis methods become necessary, such as the finite element method (Ref. APPENDIX B).

2.7.3 Dimensional Imperfections

Dimensional imperfections, such as out-of-straightness of stiffeners or out-of-flatness of
plates, can have a strong impact on structural performance. Structural analysis has to account
for dimensional imperfections in case these are beyond the tolerances established in 10.2.3 of
API RP 2T. Numerical methods, such as the finite element method, are usually required to
study the implications of imperfections on performance.

2.7.4 Residual Stresses and Weld Shrinkage Forces

2.7.4.1 Residual stresses can have some impact on structural performance. There are no
simple analytical ways of determining how they affect the structure. Weld shrinkage forces
can only be estimated on the basis of empirical equations, but they depend on many factors
that cannot be controlled by the designer.
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2.7.4.2 Examples of factors that can affect residual stresses and weld shrinkage forces are the
assembly sequence, the welding procedure and the use of temporary bracing.

2.7.4.3 The designer should use engineering judgment in deciding how relevant residual
stresses and weld shrinkage forces can be for a particular application.

2.8 GENERAL APPROACH TO STRUCTURAL DESIGN

2.8.1 General

Structural design is an iterative process through which the layout and scantlings for a
structure are determined, such that it meets all the requirements of structural adequacy. The
overall configuration results from a synthesis of all design requirements, which are in general
dictated by non-structural considerations, such as volume and space requirements, global
stability, safety, etc. Thus, structural design is assumed here to concentrate on the choice of
an appropriate structural layout and scantlings, or cross-sectional dimensions, of structural
components.

2.8.2 Major Structural Design Steps

2.8.2.1 There is no unique way of designing a structure, but in general terms the major steps
that are involved can be summarized as follows:

a. ldentify loads and load combinations acting on the structure as a whole, or on its
main subcomponents.

b. Select initial structural layout and scantlings. In general this is based on past
experience with similar structures. In those cases where some limits on
proportions are specified, these should be respected in the initial configuration.
Examples are stiffener proportions, such as maximum web depth to thickness
ratio. Absolute minimum or maximum scantlings result in general from practical
considerations related to constructability, weldability, etc.

c. Identify structure’s main components, and determine through structural analysis
the loads and load combinations acting on each component. Structural analysis
would normally start with a global space frame analysis and would then move
into specific components, such as stiffened panels and single plates. For selected
areas of the structure, global, panel and plate stresses can be computed and
combined using linear superposition. In those areas where the structural
arrangement is complex, a numerical method of analysis, such as the finite
element method, may have to be adopted in order to obtain an accurate picture of
the stress distributions.

d. [ldentify relevant limit states and associated factors of safety.

e. Check structural adequacy. If any limit state is violated, adjust scantlings and
repeat the analysis and the structural checks. Perform the iterations required to
converge to a structurally adequate design. Exercise engineering judgment in
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those cases where the design is governed by serviceability, see 2.5.4. Investigate
structural adequacy with alternative acceptable methods, in case limit state checks
are perceived to lead to structural inefficiency.

f. Check other limit states, such as fatigue, which requires the selection of main
structural detail configurations. Also check the adequacy of the design against
accidental loads. If the structure is found to be inadequate, then new design
iterations have to be conducted.

g. “Optimize” structural design. Once an adequate design has been achieved it is in
general possible to “optimize” it for a given objective. The objective depends on
the structure’s intended use, and can be, for example, the structural weight or the
cost of fabrication and installation. Thus, once a new configuration and set of
scantlings are derived, structural adequacy (Step €) has to be checked again, in an
iterative fashion.

2.8.2.2 Structural “optimization” as a tool of structural design has to be considered with some
caution, since proper balance between all desirable features, such as weight efficiency and
cost, is in general very difficult to attain. However, it is important that the iterative nature of
the design be recognized, and that possible and practical improvements be explored at the
design stage. It is also important to note that special attention should be given to a weight
engineering function.

2.8.3 Structural Details

2.8.3.1 The importance of good structural details must be emphasized. These have a great
impact on structural efficiency and ensure that the structure will perform adequately.

2.8.3.2 The design of structural details requires a coordinated effort between designer,
fabricator and installer to ensure constructability. Whenever possible, details should be made
uniform, and advantage should be taken of repeatability.

2.8.3.3 Considerations regarding the design of structural details are not provided herein.

However, the designer must ensure that good engineering practice is followed in designing
details.
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Section 3-Plates

3.1 GENERAL
3.1.1 Scope

3.1.1.1 Flat thin rectangular plates, where the thickness is very small as compared to the
other plate dimensions, are considered. It is assumed that normal stress in the direction
transverse to the plate surface can be disregarded.

3.1.1.2 The provisions in this Bulletin are not valid when the plate thickness is not small, in
which case more refined analyses have to be conducted.

3.1.2 Definitions

3.1.2.1 Thin rectangular plates are the simplest component of flat stiffened plate structures.
Each plate is usually supported around the four edges by stiffeners. When considering an
individual rectangular plate the edge stiffeners are assumed to be sufficiently strong to
remain essentially straight under loading.

3.1.2.2 If the plate slope at the edges is fixed, as happens with plating under uniform lateral
pressure over continuous supports, the edges can be taken as perfectly clamped. If the edges
rotate freely about the supports simply supported conditions govern the plate behavior. The
plate edges should in general be assumed simply supported, unless it can be shown that other
conditions apply. In particular partial fixity (degree of restraint between fully clamped and
simply supported) should be examined, if engineering judgment indicates it is a better
representation of the actual structural arrangement.

3.1.2.3 In the case of plate deflections that are not small in comparison with the thickness it is
necessary to distinguish between immovable edges and edges free to move in the plane of the
plate. This distinction can have a considerable impact on the magnitude of deflections and
stresses. If the plate edges are fully prevented from moving in the plane of the plate,
membrane effects can significantly affect its carrying capacity, and could be included
provided the deflection limits are not exceeded.

3.1.2.4 The following nomenclature will be adopted here: The long plate dimension or
length is parallel to the x-axis or longitudinal direction and is labeled a. The small plate
dimension or width is parallel to the y-axis or transverse direction and is labeled b. Thus the
plate’s aspect ratio, = a/b, is always equal to or larger than unity. The plate thickness is t.

3.1.3 Loads and Load Combinations

3.1.3.1 A rectangular plate can be subjected to a variety of primary and secondary loads and
load combinations.
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3.1.3.2 The following loads can be classified as primary loads, as shown in Figure 3.1-1.
e In-plane longitudinal tension or compression;

In-plane transverse tension or compression;

In-plane longitudinal bending;

In-plane transverse bending;

In-plane shear;

Twisting;

Lateral pressure.

3.1.3.3 In addition to these primary loads the plate can also be subjected to secondary loads
as follows:

e Shrinkage forces due to welding;

e Stresses due to construction tolerances;

e Loads due to thermal effects.

3.1.3.4 The following loads and load combinations are considered in Bulletin 2V:
e Uniaxial (longitudinal or transverse) compression;
e In-plane bending;

In-plane edge shear;

Uniform lateral pressure;

Biaxial compression with or without edge shear;

Uniform lateral pressure and in-plane biaxial loading.

3.1.3.5 If other load types or load combinations are known to be acting on the plate, special
consideration will have to be given to their treatment, since they are not covered by the
provisions in this Bulletin. This applies in particular to the case of concentrated loads.

3.1.4 Stress Analysis

3.1.4.1 The stresses in a thin plate can be calculated on the assumption that plane sections
remain plane, following the approach adopted in classical thin plate theory.

3.1.4.2 Finite element or other type of numerical analysis can be used in those cases where
the applied loads and/or boundary conditions require a more refined treatment, or when the
thin plate assumptions are no longer acceptable.

3.1.5 Stress Distributions
3.1.5.1 For an in-plane load P applied uniformly across the plate’s edges the corresponding

stress is f = P/A,, where A.. is the edge area. Similarly, for an in-plane shear load V the
average shear stress is fyy = V/A..
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Px, Py: in-plane tension or compression
Mxx, Myy: in-plane bending

Myy: Twisting

V: in-plane shear

p: lateral pressure

Figure 3.1-1—Primary Loads Acting on a Rectangular Plate

fa+fb fa+fb

L..

fa_fb|

a | fa_fb
[

Figure 3.2-1—Long Rectangular Plate

f,+f,

fa_fb

fa_fb

fo+f,
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3.1.5.2 In the case of lateral loads the bending stresses are zero at the mid-surface and vary
linearly across the thickness of the plate, with a maximum at the surface given by:

6M,

fmax o (3.1-1)
6M,

fymax :t—2 (31‘2)

where My is the bending moment per unit length for bending about the y axis, and My is
the bending moment per unit length for bending about the x-axis. The shear stress
resulting from a twisting moment per unit length M,y is also zero at the plate’s mid-
surface and varies linearly across the thickness, with a maximum at the surface given by:
6M,,
=— (3.1-3)

Xy max t2

3.1.5.3 The shear stresses fy, and f, can be determined by assuming that they are distributed
across the plate thickness according to a parabolic law, as in simple beam theory. Thus the
maximum values are:

f><zma>< :%% (31_4)
fyzmax = %% (31-5)

where Qyx and Qy are the transverse shear force per unit length along the edges parallel to
the y and x axis, respectively.

3.2 UNIAXIAL COMPRESSION AND IN-PLANE BENDING

3.2.1 Definitions

Two types of plates are considered. Figure 3.2-1 shows long plates under longitudinal
compression stress (f,) and in-plane bending stress (fp), where the load is applied to the
shorter edges. Figure 3.2-2 shows wide plates, or plates under transverse compression stress
(f2) and in-plane bending stress (f,), where the load is applied to the larger edges.

The serviceability limit state is reached when the applied in-plane compressive stress, f,
equals the appropriate limiting stress. The limit stress is f,e when f is in the elastic range, or
fsp when f is in the inelastic or plastic range. Specifically, elastic serviceability limit f

applies for long plates, and f__ applies for wide plates. Likewise, the plastic serviceability

limit f

yse

applies for long plates, and f , for wide plates. The ultimate limit state is reached

Xsp

when f equals fy, for long plates, or f,, for wide plates, respectively. The allowable stress is
obtained by dividing the limit state stress fs, fsp, or fy by the appropriate factor of safety F.S.
The wide plate formulas should be used for square plates.
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3.2.2 Serviceability Limit State

a. Long Plates (Figure 3.2-1)

2 2
Froe =Ko Ez [lj (3.2-1)
12(1-v°)\b

k=84/1.1+r),0<r<1
=7.6-6.4r+10r*~1<r<0

where
r=(f,—f,)/(f,+ 1) f, 20

The expression above is based on the assumption that the plate edges are simply
supported. If other boundary conditions apply the buckling coefficient k can be
determined from Figure 3.2-3.

Elastic range (fxse < Fp):

] fxsp = fxse (32'2)
Plastic range ( f,, > F,):
I:y fxse2
fp = (3.2-3)

2
F(F,-F)+f

b. Wide Plates (Figure 3.2-2)

2 2
free = k%&j (3.2-4)
-V

k=(+(/a)*)?2.1/QA.1+r) 0<r<1

=(1+(b/a)*)*(2.1/1.1)(1+r)

- , —1l<r<0 and a/b<15
+10r(L+r)(b/a)° —24r(b/a)

=1+ (b/a)?)?(2.1/1.1)1+r)
+10r(1+r)(b/a)? ~1<r<0and a/b>15
_r[2+16(b/a)? +8(b/a)*]

where
r=(f,—-f)/(f,+f)f >0

Elastic Range (fyse < Fp):
fysp = fyse (3.2-5)

Plastic Range ( f,,, > F)):

yse =
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Figure 3.2-3—Buckling Coefficients for Plates in
Uniaxial Compression1

1.0

L= S

/,/ — p—

0.6
/ / Simply supported .
kq,k _ 5pb
1 2o4 / winex = k13845 | | ] a DR b
/ Clamped — ~—
_ pb4 —_— B ——
0.2 Wmax = kozgz5 || - )
3 —_— e E—
_ Et
D =131 —w2) -
0 I I
1.0 1.2 1.4 1.6 1.8 2.0
a
b
Figure 3.4-1—Coefficients for Computing Plate Figure 3.5-1—Rectangular Plate Under
Deflections? Biaxial Compression

"From D.O. Brush and B.O. Almroth, "Buckling of Bars, Plates and Shells," McGraw-Hill, 1975.

2From O. Hughes, "Ship Structural Design: A Rationally Based Computer-Aided, Optimization Approach,” Wiley Interscience, 1983.

3From S.P. Timoshenko and S. Woinowski-Krieger, "Theory of Plates and Shells," McGraw-Hill, 1959.
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F(F,-F))
fysp = y - fy i (32-6)
yse
3.2.3 Ultimate Limit State
a. Long Plates (Figure 3.2-1)
2 1
fxu =F|—=—-— 7ﬂ21 (32_7)
y[ﬂ ﬁz)
fo=F,B<1 (3.2-8)
where
b |F,
= tVE

These apply when the plate edge stress reaches yield before the stiffener fails. Otherwise, the
following formulas should be used:

£, =F, % B>1 (3.2-9)

fo=F, B<l (3.2-10)

b. Wide Plates (Figure 3.2-2)

2
f, = Fyllc +0.10(1—%(1+%J }< F, (3.2-11)
o o

c=2_1 p>1

g B
C=1p<1
where
a=alb>1

3.3 EDGE SHEAR
3.3.1 Definitions

The serviceability limit state is reached when the applied edge shear stress f, equals fyyse or
fyysp- The limit fyyse applies in the elastic range, while f,y, applies in the plastic range. The
ultimate limit state is reached when fy, equals fs,. The allowable stress is obtained by
dividing the limit state stress (fxyse, fxysp OF fsyu) Dy the appropriate factor of safety F.S.
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3.3.2 Serviceability Limit State

2 2
Foe = Koo & > (lj (3.3-1)
12(1-v°)\b
k =5.34+i2
(94

The result given is based on the assumption that the plate edges are simply supported. If the
plate edges can be considered clamped the buckling coefficient k takes the form:

k=8.98+ >0
a

Elastic range ( f, <F, 133):
fxysp = fxyse (3.3'2)
Plastic range ( f,, > F, /3):

31y fxf,se
b = F F.) 1312 (3:3-3)
p y p

Xxyse

3.3.3 Ultimate Limit State
f =f

xyu Xysp +L(‘[y o fxysp)
2Vl+a+a?
where fyysp IS the serviceability limit state shear stress defined in 3.3.2.
1

ﬁ(Fy)

3.4 UNIFORM LATERAL PRESSURE

(3.3-4)

where T, =

3.4.1 Definitions
a. Serviceability Limit State. The serviceability limit state is based on a deflection criterion
and a stress criterion.

b. Deflection Criterion. The deflection criterion is associated with a maximum allowable
deflection W,. Two cases have to be considered: (1) no permanent plastic deformations
allowed, so that Wj, is an elastic deflection; (2) permanent plastic deformation or plastic set
allowed, so that W, is a plastic deformation. No specific guidelines can be given on the
allowable deflection, and whether it should remain purely elastic or become a permanent
plastic set, since it depends on the type of service intended for the structure. In general the
deflection should not be such as to adversely affect the structure’s appearance or its
performance requirements. In those cases where in-plane compressive loads are not present,
and where specific operational requirements do not rule against it, a permanent plastic set W,
can be allowed. If as a result of a permanent set membrane effects are induced in the plate its
capacity to carry in-plane tensile loads and structural efficiency are improved.
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The designer has to use engineering judgment in establishing a maximum allowable
deflection, and deciding if a permanent plastic set is acceptable.

If an absolute value cannot be specified, a criterion based on the maximum span and/or
thickness can be adopted, such as the maximum of W, = C; x (span) and W, = C, X
(thickness), where C; and C, are non-dimensional parameters (such as C; = 1/360 and C, =
1). If a permanent plastic set is allowed a criterion for determining its magnitude is given in
3.4.2.

Expressions for estimating the maximum elastic deflection in a rectangular plate subjected to
uniform lateral pressure are given in 3.4.2.

c. Stress Criterion. The serviceability limit state stress criterion implies that the plate’s
material must remain in the elastic range, and it is expressed in the form of a yield criterion,
defined in 3.4.2. In cases where a permanent plastic set is allowed this stress criterion does

not apply.

d. Ultimate Limit State. The ultimate limit state is reached when the lateral pressure equals
pu, as defined in 3.4.3.

3.4.2 Serviceability Limit State

a. Deflection Criterion. If no permanent plastic set is allowed a maximum allowable elastic
deflection W, must be selected by the designer, given the particular application being
considered (see discussion in 3.4.1). The computed maximum elastic deflection W, must
satisfy:

W, <W, (3.4-1)

W, can be estimated from the following expressions:
S5pb* .
W, =k, ———, simply supported edges 3.4-2
e =Kigg g SIMPIY supp g (34-2)

4

pb
W, =k, ——, clamped edges 3.4-3
2 384D p g (3.4-3)

e

where D is the plate’s flexural rigidity
3
D-_EU
12(1-v?)
and the coefficients k; and k, can be found from the graphs in Figure 3.4-1.
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If a permanent plastic set is allowed (again, the designer has to take into consideration all
aspects of performance requirements, as discussed in 3.4.1), it should be limited to:

Fy
W, <0202 (3.4-4)

b. Stress Criterion. If no permanent plastic set is allowed the plate’s material must remain in
the elastic regime, so that the maximum stresses fyand fy must satisfy the following relation:

f24f2—f,f, <FZ (3.4-5)

X'y —
where tensile stresses are taken as positive and compressive stresses as negative.

The maximum stresses fyand f, can be estimated from the following expression:

b 2
fyor fy= kp(?j (3.4-6)

where the coefficient k can be found from the graphs in Figure 3.4-2 for simply supported
and clamped edge conditions.

If a permanent plastic set is allowed the stress criterion is not applicable.
3.4.3 Ultimate Limit State

2 w
m:F{%ji%@+§7%J (3.4-7)

where W, is the permanent set (see 3.4.2). If no permanent set is allowed W, = 0. These
formulas are restricted to plates with aspect ratio 1<« <5. The allowable pressure is
obtained by dividing the limit state pressure p, by the appropriate factor of safety F.S.
3.5 BIAXIAL COMPRESSION WITH OR WITHOUT EDGE SHEAR
3.5.1 Definitions

The limit state (serviceability or ultimate) is reached if the combination of the applied
compressive stresses due to axial compression only, in the x and y directions, or f, and f,
respectively, Figure 3.5-1, and the edge shear stress f, are equal to the limit state stresses, fy,
fyrand fyy1, respectively, that satisfy the interaction formulas defined in 3.5.2 and 3.5.3.

3.5.2 Serviceability Limit State

Elastic range:

(Fa 7 0+ (6,18 F+(f, 1 £ F[ +(f,1F, F =10 (3.5-1)
where
c = 2-1/a,a21.0
fe = limit state von Mises stress

(F2+ 6211, +362 )"

xl "yl xyl
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and fye is given in 3.2.2a considering axial compression only, fy is given in 3.2.2b
considering axial compression only, and fyyse is given in 3.3.2.

The allowable stresses are obtained by dividing these limit state stresses, fu , fyi and fy, , by
the appropriate factor of safety F.S.

3.5.3 Ultimate Limit State
(fxl / fxu )A _7_7(fo / f><u)(fyl / fyu)_i_(fyl / fyu )2 +(fxyl / fxyu )2 =1 (35'2)

where fy, is given in Par. 3.2.3a, fy, is given in Par. 3.2.3b, fy, is given in Par. 3.3.3 and
A=1 71=025 fora>3
A=2 7=32"%_2 fora=1

For 1< o < 3 and for a given value of the ratio f,/f
falf,and f,
77 obtained for o = 3 and for o = 1.

. the corresponding values of

/f,, can be found by linear interpolation between the values of A and

The allowable stresses are obtained by dividing these limit state stresses, fy, fy, and fxy, by
the appropriate factor of safety F.S.

3.6 COMBINED IN-PLANE AND LATERAL LOADS

3.6.1 Definitions

The serviceability or ultimate limit state is reached if the combination of applied axial
stresses in the x and y directions, or fy and f,, respectively, edge shear stress f,, and pressure
p, satisfy the interaction formulas defined in 3.6.2 and 3.6.3.

3.6.2 Serviceability Limit State

The serviceability limit state shall be checked if a permanent set is not allowed.

o f, compression, f, compression:
(F, 18 P+ (F, 15 P +(F, 7 ff+pIP, =1 (3.6-1)

where p = applied pressure, ps = collapse pressure calculated assuming zero permanent
plastic set and fysp, fysp, and fyysp are the serviceability limit state stresses defined in 3.2.2
and 3.3.2.

o fytension, f, compression:
(], /F, P+ (f, /£, F+(f, 1 f f+p/p, =1 (3.6-2)
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e fytension, fy,tension:
R p (s, R P 4 8, 16, =1 (3.6-3)

o fycompression, f, tension:
(F 7 1 f (£ 1 £+ 01 p, =1 (3.6-4)

A von Mises based yield criterion is also applied in all quadrants but does not control for
compression-compression:

(f 0 0 = (f 1 8 NE, 1 f 0 )+ (F 18, Fa3(f, 1, =1  (365)
3.6.3 Ultimate Limit State:

e fycompression, f, compression:

[(fx Io'w ) +(f, 10w )Z]yz +(f, 1f,F =1 (3.6-6)

In this case, o w and @ ™ are reduced from the API Bulletin 2V values due to the presence
of lateral pressure:

cul Fy = (fu / Fy )(0-8Q2+0.84Q+1)
where Q = pE/F,”, p = applied pressure.

e fytension, f, compression:
(f, /8, F+(f, 18, F+(f, 1t F+plp, =1 (3.6-7)

where p = applied pressure, py, = ultimate pressure under pressure loading only.

e fytension, f, tension:
(e E P (e, 0 P 28, 08, =1 (3.6-8)

e fycompression, f tension:
(f, 1 £, +(f, 11, +p/p, =1 (3.6-9)

A von Mises based yield criterion is also applied in all quadrants but does not control for
compression-compression:

(f, 10, = (f 1o, \f, 1o))+(f, 1o F +3(f, 1 f . f =1
where:

o, =F,1-(Q/Q)7)"
&, =F,0-(Q/Q,)72)?
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A= f,1f,, bending stress ratio

T=0-2+2)"
Q=pE/F/]
Q, = p,E/F;

3.7 DESIGN CONSIDERATIONS

When a thin rectangular plate of a given material is subjected to compressive stresses it can
fail by instability, and the strength depends primarily on the type of loads and/or load
combinations, the boundary conditions and the geometry (dimensions, aspect ratio).

The plate is in general part of a stiffened panel, such as in a deck or bulkhead, and it is
supported by stiffeners. The stiffener spacing should be selected so as to limit the plate
geometry and aspect ratio to dimensions and proportions that can provide the necessary
strength. The designer must change the plate proportions and thickness until all applicable
limit states are satisfied. If necessary, additional stiffeners might have to be introduced in the
design. The minimum stiffener spacing should be based on fabrication considerations.

When the plate is primarily subjected to lateral loading, the tensile membrane effects

substantially improve its carrying capacity. In designing the supports, full in-plane fixity
should be provided whenever possible in order to take advantage of membrane effects.
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Section 4-Stiffeners

4.1 GENERAL
4.1.1 Scope

Straight and slender thin-walled members of uniform cross section containing at least one
plane of symmetry and thin-walled angles that serve as stiffening elements for flat plate
structures are considered.

4.1.2 Definitions

Stiffeners are used to strengthen plates and to increase their load carrying capacity. In most
cases they are made of a thin-walled web welded to the plate and a flange. Thus, when
determining the cross sectional properties, account should be given to the attached plating
acting with the stiffener as an effective flange. When the stiffeners are subjected to axial
compressive loads the effective plate flange width b_, when the maximum edge stress

reaches the yield stress, is

f
e F ( )

y
where f, (f,,or f, ) is determined from 3.2.3. When the stiffeners are subjected to lateral

or tensile loading alone, the effective plate flange is governed by shear lag effects and
should be determined from 5.6.

e

The following ultimate limit states will be considered:
e column buckling;
e beam-column buckling;
e torsional/flexural buckling;
e plastic bending.

4.1.3 Loads and Load Combinations

A plate stiffener can be subjected to a variety of primary and secondary loads and load
combinations.

The following loads can be classified as primary loads:

axial tension or compression;

bending about the axis of maximum moment of inertia;
bending about the axis of minimum moment of inertia;
lateral distributed load,;

lateral concentrated loads.
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In addition to these primary loads the plate can also be subjected to secondary loads as
follows:

¢ shrinkage forces due to welding;

e stresses due to construction tolerances;

e loads due to thermal effects.

The following loads and load combinations are considered here:
e axial compression;
e axial compression and lateral load;
e lateral load.

If other load types or load combinations are known to be acting on the plate special
consideration will have to be given to their treatment, since they are not covered by the
provisions of this Bulletin.

4.1.4 Stress Analysis

The stresses in a slender thin-walled stiffener can be calculated on the assumption that plane
sections remain plane, following the approach adopted in classical beam theory.

Finite element or other type of numerical analysis can be used in those cases where the
applied loads and/or boundary conditions require a more refined treatment, or when the
classical beam theory assumptions are no longer acceptable.

4.1.5 Stress Distributions

As a result of conventional beam theory, the longitudinal bending stresses in a stiffener vary

linearly across the depth. If the section is subjected to both compression and bending, the

stress distribution is given by:

f :E+w
A g,

where P is the compressive load, A is the cross sectional area, M is the applied bending
moment, Y is the distance to the neutral axis and Il is the effective moment of inertia
about the neutral axis. In computing l¢s the effective flange should be used, as prescribed
in 4.1.2. If the stiffener is subjected to lateral or tensile load alone, the effective flange is
governed by shear lag effects and should be determined from 5.6.

(4.1-2)

The shear stress distribution can be obtained from:
vQ
Xy ? (41-3)
where V is the shear force, Q is the moment of the area above the point where shear stress
is being determined about the neutral axis, | is the moment of inertia about the neutral
axis, and t is the thickness at the point under investigation.
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For webs with constant thickness the shear stress can be approximated by:

V
f,=— 4.1-4
vy ( )

where Ay, is the web area.
4.2 COLUMN BUCKLING
4.2.1 Definitions
The ultimate limit state is reached when the applied axial load P equals Pge or Pgp. The limit
Pee applies in the elastic range, while Pgy applies in the plastic range. The allowable axial
load is obtained by dividing the limit state axial load (Pge or Pgp) by the appropriate factor of
safety F.S.

4.2.2 Ultimate Limit State

— PV
2
F
where A = 1 (&j - (4.2-1)
T\ r E
Elastic range (P < p,P,):
Pe. =P (4.2-2)

Plastic range (P > p,P,):

Py, = P{1—M}

P/P,

F
wherep, =—";P = AF (4.2-3)

Fy y y
4.3 BEAM-COLUMN BUCKLING

4.3.1 Definitions

The ultimate limit state is reached when the applied axial load P and bending moment M
satisfy the interaction curve specified in 4.3.2.

4.3.2 Ultimate Limit State
P M
4B - -1 4.3-1
P, M (4.3-1)

where Py is equal to Pge or Pgp, as given in 4.2.2, depending on whether the material is in
the elastic or inelastic range, respectively, and My = My, and where the amplification
reduction factor Cy, is defined in AISC.
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C, >1.0

B=— " >
1-P/P,

The allowable axial load and bending moment are obtained by dividing the limit state axial
load P and bending moment M by the appropriate factor of safety F.S.

4.4 TORSIONAL/FLEXURAL BUCKLING
4.4.1 Definitions

The following properties of a cross section are particularly related to stiffener
torsional/flexural buckling, as well as lateral buckling: the location of the shear center, the
torsion constant J, and the warping constant C,. Expressions for determining the value of
these parameters for a number of thin-walled open cross sections are listed in Table 4.4-1.

Two cases have to be considered when dealing with stiffener torsional/flexural buckling. If
the stiffener shear center and centroid coincide (as happens with doubly symmetric sections
such as equal flanged I-sections), buckling by twisting, with the longitudinal axis through the
centroid remaining straight, can occur. In such cases twisting and flexure are decoupled, and
the ultimate limit state discussed here is determined by torsional buckling only. If the shear
center and the centroid do not coincide (as happens with sections containing only one plane
of symmetry such as unequal flanged I-sections), the ultimate limit state is governed by a
combination of twisting and bending, since these two actions cannot be decoupled.

In the case of doubly symmetric sections the limit state is reached when the applied axial
compressive load P equals Pre or PTp . The limit Pre applies in the elastic range, while Pt )

applies in the plastic range.

In the case of sections containing only one plane of symmetry the limit state is reached when
the applied axial compressive load equals Prge Or Pre 0 which correspond to the elastic and

inelastic ranges, respectively. The allowable axial compressive load is obtained by dividing
the limit state load (Pre, Pt 0 Prre, OF Prrp) by the appropriate factor of safety F.S.

Sections containing no plane of symmetry, such as angle stiffeners, shall meet the compact
section criteria of 4.4.4a.

4.4.2 Ultimate Limit State for Doubly Symmetric Sections

2
P, = Iﬁ(ea 7 ECJ (4.4-1)

where |  is the polar moment of inertia about shear center

S
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Ar

TRIPPING BRACKET

_._t\‘_._

Figure 4.4-1—Design Lateral Load for Tripping Bracket

Table 4.4-1—Properties of Thin-Walled Open Cross Sections'

0 = shear center

J = torsion constant

Cw = warping constant

Co= 12 B+ b3

3
[} —| =t _’V J= M Ifl.‘fz ty =t
¢ f " 2p3 3
t h/2 = Ith -
Jf _L l Cy >4 J= 3(2b+h)
! b
| bi b3 Iftp=ty, =1
e=h ——F—= i
=, b3+ by’
oo by + by) 173 + hiy3 B
1 h j= (br+b)tg7 + hty J= (b +by +h)
y | ’
|::: - _th? b3by3

Q
]
o
)
<

3b2t,
6bts + ht,,

J= 2bt£3;- ht,,3

Co = trb3h2  3bty 4 2hty,

Ifoy=t,=1

32
T 6b+h

— B oben
J=-—502b+h)

O — sin 0L COS O

X |:OC3 6 (sin oL — oL cos o )2

Yo 12 Gbiy+ hiy, th3h2 3b + 2h
w= 72 6b+h
b
g_ J= 2btg3 + ht,’ Iftp=1,=1:
o 3 3
ty iy ‘ 1= p+n
ol h b3h2

f Cp=—-mo—
If h/2 Y1226 + h)2 h3h2 b+ 2h
| X [2t7 (b2 + bh + h2) + 3t,,bh] w= 712 2b+h

4,
sin oL — 0oL cos O If2o0=m:
e = Z(X —_—
/\ Ol —sIn O COS O e:ﬂ szxﬁ
a t J= 2a012 T 3
A R 3 o . 2w (n_3 _ 1_2)
o o 2tas w 3 8 T
Cw= "3
=0.0374ta5
e

1From S.P. Timoshenko, "Theory of Elastic Stability," McGraw-Hill, 1961
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Elastic range (P, < AF):
P.=P (4.4-2)

Plastic range (P, > AF,):

PTp _ Py 1— pr(l_ pr) (44_3)
P /P,

4.4.3 Ultimate Limit State for Sections With a Single Plane of Symmetry

P is the smallest root of the following quadratic equation:

:_c PTf: — P (PTe + PEe)+ PeePre =0 (4.4-4)

where Pge is the buckling load for buckling normal to the plane of symmetry, as given in
4.2.2, and Pre is the torsion buckling load given in 4.4.2.

Elastic range (P < AF):
Pree = Pre (4.4-5)

Plastic range (P> AF,):

1-—
I:)TFp = py|:1_ pI;( /F?r)} (4.4-6)
TF y

4.4.4 Stiffener Proportions

In order to avoid the possibility of torsional/flexural buckling, the stiffener proportions
should satisfy certain requirements, depending on whether the section is compact or non-
compact. If the section is compact and homogeneous, local buckling will not occur before the
full plastic moment is reached.

a. Compact Sections

1. The compression flange must be continuously connected to the beam web.
2. The width/thickness ratio of unstiffened elements of the compression flange must

satisfy the following requirement:
b, E
<075 |— (4.4-7)
t, F,
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3. The width/thickness ratio of stiffened elements of the compression flange must
satisfy the following requirement:

b
% <110 | E (4.4-8)
t, F,

4. The web depth/thickness ratio must satisfy the following requirements:

is3.70 E 1-374 | 2 <016 (4.4-9)
t, P, P,
ti / E —>0 16 (4.4-10)

where P is the computed axial load.

5. The laterally unsupported length of the compression flange of members other than
circular or box members shall not exceed either of the following two distances:

L —0.44p, |E (4.4-11)
Fy

b,t
L, =1.05 B
d F

y
The compression flange must be adequately braced if the unsupported length does not
meet the above criteria. The bracing distance L, is the lesser of the two distances L;
and L.

(4.4-12)

b. Non-Compact Sections.

Unstiffened elements subject to axial compression due to bending shall be considered
as fully effective when the ratio of width to thickness is not greater than:

1
2P E

<0.56 |— (4.4-13)
t, Fy

Stiffened elements subject to axial compression or to uniform compression due to
bending shall be considered as fully effective when the ratio of width to thickness is
not greater than:

b, E
— <149 |— (4.4-14)
t, Fy
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4.4.5 Tripping Brackets

The possibility of overall stiffener tripping can be minimized by means of tripping brackets.
The spacing s between tripping brackets should not exceed:

S _ou|E (4.4-15)

b, F,

The design lateral load on the flange for tripping bracket sizing can be taken as the
compressive stress in the flange, f, multiplied by 2% of the combined area of the flange plus
one-third of the web area, see Figure 4.4-1 or:

P= o.oz(Af +%Jf (4.4-16)

45 PLASTIC BENDING
4.5.1 Definitions

For a stiffener subjected to a uniform distributed lateral load, or line load g, the plastic limit
state in bending is reached when g equals qu.

When the lateral load on the stiffener is the result of a uniform pressure p acting on a plate
stiffened by two orthogonal sets of stiffeners with uniform spacings a and b for each set, with
a > b the line load on each stiffener component can be found from

. = pb[l—i) (4.5-1)
2a
b
q = p? (4.5-2)
4.5.2 Ultimate Limit State
16M’
qu = |_2 (45-3)

where M =M when the stiffener is not subjected to axial load. When the stiffener is
subjected to both bending and axial tension or compression P, M’ is determined from:

2
M {ﬂ}%ﬂ,ﬂsﬁ @54
MO Py ZAW_(AN Py A
A A
Mo f1- B Jrizl,izi (4.5-5)
M, 2A) P, P, A

The allowable axial load and bending moment are obtained by dividing the limit state axial
load P and bending moment M’ by the appropriate factor of safety F.S.
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4.5.3 Stiffener Proportions

The ultimate limit state in 4.5.2 can be used as a basis for design if the stiffener proportions
satisfy the following compactness requirements:

b

% 056 |5 (4.5-6)
t, F,

94 23| El1-14P7 P o027 (4.5-7)
w Fy Py Py

i<1.48 £,£>0.27 (4.5-8)
t, F,'P,

4.6 DESIGN CONSIDERATIONS

4.6.1 Stiffener proportions satisfying the requirements in 4.4.4 should be selected. In case the
design is based on plastic methods the proportions in 4.5.3 should govern the design. Cross
section dimensions satisfying the proportion requirements should then be chosen to meet the
required section modulus (or plastic modulus).

4.6.2 Normally the stiffener length is determined by functional requirements (such as main
dimensions of a stiffened panel). Thus the main variables that can be selected by the designer
are the cross sectional dimensions. These will have to be refined through several iterations
until all the applicable limit states are satisfied. There are obviously many cross sections that
can meet a given set of strength requirements, and the designer must make a selection that
will contribute to the overall structure’s weight and cost efficiency.
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Section 5-Stiffened Panels

5.1 GENERAL
5.1.1 Scope

Flat stiffened panels, comprising one or two sets of equally spaced uniform stiffeners of
equal cross section, supporting a thin plate, are considered (see Figure 5.1-1). If there are two
sets, they intersect each other at right angles.

5.1.2 Definitions

5.1.2.1 If there is only one set of stiffening elements the panel is uniaxially stiffened, while if
there are two the panel is orthogonally stiffened. All the stiffeners in each set are slender,
straight, and of uniform cross section, and they all have the same cross sectional dimensions.
The entire panel length is A, and the entire panel width is B.

5.1.2.2 The ultimate limit state is defined for the case of uniaxially stiffened panels under end
compression, and orthogonally stiffened panels under uniaxial compression, biaxial
compression and uniform lateral load. The serviceability limit state is also defined for
orthogonally stiffened panels under uniform lateral load. Requirements for avoiding stiffener
local instabilities and stiffener tripping are included in 5.4 and 5.5. Design charts for
determining the effective flange breadth are given in 5.6. The minimum stiffener inertia
required for panels to reach their ultimate shear strength is given in 5.7. Requirements for
avoiding the interaction of buckling modes in stiffened panels are included in 5.8.

5.1.2.3 In determining the cross sectional properties of stiffeners account should be taken of
the attached plating acting with the stiffener as an effective flange, as defined in 4.1 and 5.6.

5.1.3 Loads and Load Combinations

5.1.3.1 A stiffened panel can be subjected to a variety of primary and secondary loads and
load combinations. These can be classified in the same basic categories adopted for a thin
rectangular plate, see 3.1.3.

5.1.3.2 The following loads and load combinations are considered in Bulletin 2V:
a. Uniaxially stiffened panels under end compression;
b. Orthogonally stiffened panels under uniaxial and biaxial compression, and
uniform lateral pressure.

5.1.3.3 If other load types or load combinations are known to be acting on the plate, special

consideration should be given to their treatment, since they are not covered by the provisions
in this Bulletin.
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Figure 5.1-1—Flat Stiffened Panel
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Figure 5.2-1—Uniaxially Stiffened Panel in
End Compression
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5.1.4 Stress Analysis

5.1.4.1 The stresses in a stiffened panel can be calculated on the assumption that plane
sections remain plane. Individual stiffeners with attached effective breadth or width of
plating can be analyzed on the basis of the principles established for stiffeners in 4.1.2 and
5.6. Single thin rectangular plates supported by stiffeners can be analyzed on the basis of thin
plate theory, as indicated in 3.1.4.

5.1.4.2 A more refined approach to stiffened panel analysis, where the orthotropic nature of
the structure is retained, can be provided by thin orthotropic plate theory. Grillage analysis
can also be used. Neither one of these two methods is in general conducive to simple hand
calculations, and in those cases where the applied loads and/or boundary conditions require a
more refined treatment, numerical methods, such as the finite element method, might be
preferred.

5.1.5 Stress Distributions

The stress distributions across the stiffener and thin rectangular plate cross sections can be
derived on the basis of the same general methods proposed in 4.1.5 and 3.1.5, respectively.

5.2 UNIAXIALLY STIFFENED PANELS IN END COMPRESSION

5.2.1 Definitions

A uniaxially stiffened panel subjected to an applied in-plane compressive stress acting in the
same direction as the stiffeners is considered here, see Figure 5.2-1. The ultimate limit state
is reached when the applied in-plane compressive stress f equals f,, as defined in 5.2.2. The
allowable in-plane compressive stress is obtained by dividing the limit state stress f, by the
appropriate factor of safety F.S.

5.2.2 Ultimate Limit State

f,=F,,A<05 (5.2-1)
f,=F,[L5-2)05<2<10 (5.2-2)
05) -
f, = Fy(7}z >1.0 (5.2-3)
_ F .2
where 1 :(Eji S lad-y
t)zVE k
k =min.(kq, k)
ke, = 4n’

where n = number of sub-panels (individual plates)

. [L+a? !2+n}/ v
= aS(1+n;/)4

a2(1+n5) ’

44



Bulletin 2V--Design of Flat Plate Structures

A

where ¢ =—
Bt

2
 Z2TT) gy
1+ny
1201 vA)( 1)
h S
where e d)

a = aspect ratio of whole panel,
I, = moment of inertia of one stiffener about the axis parallel to the plate surface

at the base of the stiffener,
t=plate thickness,
d = spacing between stiffeners

5.3 ORTHOGONALLY STIFFENED PANELS
5.3.1 Definitions

5.3.1.1 Limit states for the entire stiffened panel including both longitudinal and transverse
stiffeners are considered.

5.3.1.2 The serviceability limit state for a panel subjected to uniaxial compression is reached
when the axial stress f reaches the value f or f, defined in 5.3.2. The limit f, applies in the
elastic range, While the limit fs, applies in the plastic range. The serviceability limit state for a
panel subjected to biaxial compression is reached when the equations in 5.3.3 are satisfied.
The case of lateral pressure is defined in 5.3.4.

5.3.2 Uniaxial Compression

WK = (5.3-1)

where t, =equivalent thickness of the plates and stiffeners (diffused), extending in the x
direction.

For A/IB>1:K=40

(1 )
For A/IB<1:K = - +217+ p?
\p

5 El __E
" syil v Y s 1 v?

A(D, Y (1,1,
p:— — , ]7: _
B\ D, ) KIX Iy}

Elastic range (f_ <F,):
foo = fo (5.3-2)
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Figure 5.3-2—Coefficients for Computing Stresses for Orthogonally Stiffened Panels
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Plastic range ( f,, > F)):

se —

C.F
fo= v Ay (5.3-3)
C, +1'B
1 A
fsp = Fy —C—S,E <1 (53‘4)
2 f 47*(D,D, )2
S = o e
p\Uly  Tp p\ly — Tp X
1 f
f=| =+2n+p°|—=
s (,02 n pj4

The allowable in-plane compressive stress is obtained by dividing the limit state stress (fs or
fsp) by the appropriate factor of safety F.S.

5.3.3 Biaxial Compression

f 4
fx,[ m? + -4 n? =m—2+277m2n2 + p?n? (5.3-5)
f><I fyI P
fa<F,
._#’(o,p,)"
f’: — 7Z-Z(DXD}/)}é
y! 2
t,A

See 5.3.2 for definition of symbols.

A trial procedure can be used to determine the values of fy, f, , m and n (these represent the
integer number of half waves in which the panel buckles in the x and y directions,
respectively).

Elastic range: The serviceability limit state is elastic if the stresses fy and fy obtained from
the expressions above satisfy the following criterion:

fo—fof, +f1<F;
If this criterion is satisfied the stresses fy and fy are the elastic serviceability limit state

stresses fyse and fyse, respectively. The allowable stresses are obtained by dividing fyse and fyse
by the appropriate factor of safety F.S.

Plastic range:

fo—fafy+f1>F;
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f 2 f 2
(—'J + (—y'] =1 (5.3-6)
fxsv fysn
where fys, and fysp are given in 5.3.2. The allowable stresses are obtained by dividing the
limit state stresses fy and fy; by the appropriate factor of safety F.S.

5.3.4 Uniform Lateral Load

a. Serviceability Limit State

As with rectangular plates, shown in 3.4, a deflection criterion and a stress criterion can be
defined. The deflection criterion is associated with a maximum allowable deflection, while
the stress criterion implies that the panel must remain in the elastic range. Expressions for
computing the maximum elastic deflection and the stresses are given below.

The maximum elastic deflection at the center of a simply supported cross stiffened plate can
be calculated from:

4
w:§pB

(5.3-7)

y
where the non-dimensional coefficient 6 depends on the virtual aspect ratio p as shown in
Figure 5.3-1.

In order to ensure that the panel will not suffer any plastic deformations the distribution of
plate stresses fy and fy should be determined from linear elastic theory. Elastic behavior is
ensured if the stresses satisfy the following relation:

2
f2-f,f,+f2<F,

The stresses should be checked at both a stiffener’s free flange and in the plate field, and may
be determined at the panel’s center according to the following formulas:

Stiffener’s free flange:

D %

M, :a[ ] pB° (5.3-8)
Dy

M, = fpB’ (5:3-9)

Plate field:
(b

M, :a'[ J pB’ (5.3-10)
Dy

M, = 3'pB? (5.3-11)
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~ _ (b
where a':a+0.3(Dx] y/j

y

y
F:E+0.3(BX] 5

y

The stresses f, and f, are determined from:
. M,s, I,
X IX
_ Mys,r,
,=—1
Iy
wherer, r, =bending lever arm associated with f, or f  respectively, i.e. distance from

the neutral axis of the stiffener with the effective breath of plate to the outer fiber of the
flange (for the flange stress) or of the plate (for the plate field stress).

(5.3-12)

f (5.3-13)

The non-dimensional coefficients « and B depend on the virtual aspect ratio p and the
torsional coefficient 7 as shown in Figure 5.3-2.

b. Ultimate Limit State

n+1
= P0+1) (5.3-14)
A
where
A = length of longitudinal stiffeners,
n = number of transverse stiffeners,
Pe = a parameter of dimension load/length to be determined according to
the following equations:
2
o, = 8(m+1) th+m+1Rc
m(m+2)B B
form = even
or
8 m+1
pC = ? M t + T RC
form = odd

The values of the interaction forces between the longitudinal and transverse stiffeners R are

given by:
forn = even
R¢ = M | (5.3-15)
n(n+2)A
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forn = odd
8
Rc (n+DA M, (5.3-16)
where
Py = ultimate uniform pressure,
M = plastic moment of transverse stiffener at center,
M = plastic moment of longitudinal stiffener at center,
A = length of longitudinal stiffener,
B = length of transverse stiffener,
m = number of longitudinal stiffeners,
n = number of transverse stiffeners.

In determining M; and M; the effect of in-plane loads should be taken into account, as
suggested in 4.5.2.

The allowable pressure is obtained by dividing the limit state pressure p, by the appropriate
factor of safety F.S.

5.4 STIFFENER PROPORTIONS

In order to limit the possibility of local instability such as torsional/flexural buckling, or
lateral buckling, the stiffener proportions should satisfy the requirements in 4.4.4.

If the design is based on plastic methods, the stiffener proportions should satisfy the
requirements in 4.5.3.

5.5 TRPPING BRACKETS

The overall tripping of stiffeners can be avoided by means of tripping brackets. These should
satisfy the requirements of 4.4.5.

5.6 EFFECTIVE FLANGE
5.6.1 Definitions

5.6.1.1 Data for effective flange calculations in plate girders and box girders subjected
primarily to bending type loads is given. The approach followed leads to the effective
breadth ratio b, /b, where b, is the effective half flange breadth and b is the half flange

breadth. Note that for this section only, the term b is defined as one-half of the flange
breadth (see Figure 5.6-1).

5.6.1.2 Three cases are considered, as sketched in Figure 5.6-1:
Case I: Single web, symmetrical flange with free sides;
Case I1: Double web, flange bounded by webs;
Case I11: Multiple webs.
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Figure 5.6-1—Cases for Effective Flange Calculations
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Figures 5.6-2 through 5.6-4 give in a graphical form the effective breadth ratio b, /b for the
three cases described above, and for a number of load conditions.

The non-dimensional coefficient depends on the cross sectional shape. For identical lower
and upper flanges:
1ht
— - w 5.6-1
B T (5.6-1)

and for stiffened plating:
4b t 3A, +2ht,
where t is the flange thickness, t,, is the web thickness, h is the half web depth, b is the
half breadth and A; is the lower flange area (zero in the case of flat bar stiffeners). The
remaining symbols in Figures 5.6-2 through 5.6-4 are defined as follows:
B distance between webs,
cL distance between points of zero bending moment.

5.6.2 Stress Distribution Across Flange

In computing the effective section modulus Ses for the purpose of stress calculations, the
effective flange breadth be; determined by the approach in 5.6.1 should be used (in place of
the actual flange breadth b). Then the stress at the flange web junction frax is given by:

fra =— (5.6-3)
where M is the bending moment acting on the cross section.

Across the flange breadth the actual stress distribution can be approximated by the following
quartic equation:

* [5lb, /b)-1 !
f=f (EJ n Slo 10)-1 1-(% (5.6-4)
b 4 b
where X is the distance measured across the flange breadth, as shown in Figure 5.6-5.
5.6.3 Calculation of Deflections
The effective flange breadth bes determined by the approach in 5.6.1 should be used to find
the effective moment of inertia l¢s of the cross section. This effective moment of inertia lg

multiplied by the modulus of elasticity E gives the bending rigidity Elg, which should be
used in computing girder deflections.
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*From H.A. Schade, "The Effective Breadth of Stiffened Plating Under Bending Loads," SNAME Transactions, Vol. 59, 1951.
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Figure 5.7-1—Geometry of Stiffened Panels Subjected to In-Plane Shear
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5.7 STIFFENER REQUIREMENT FOR IN-PLANE SHEAR

The moment of inertia of stiffeners in panels subjected to edge shear should satisfy the
following requirement:

I >0.09t% (5.7-1)
P
y=8-"2 ,Eﬁl
foo d
_ -
7 =10 28224 i,9>1
d b)f,'d

where f,, is the design in-plane shear stress in the plate, fy, is given in 3.3.3, and the
plate’s geometry is shown in Figure 5.7-1. | is the moment of inertia of the stiffener’s
web plus flange about an axis coinciding with the surface of the plate at the plate/web
intersection.

5.8 OTHER DESIGN REQUIREMENTS

Good design practice dictates a sufficient separation of local plate and stiffened panel
buckling modes. Therefore, the stiffened panel design should ensure that the elastic buckling
stresses in the panel longitudinal and transverse direction exceed the associated elastic
buckling stresses for each plate panel by at least 20 percent. For uniaxially stiffened panels,
only elastic buckling stresses in the direction of the stiffening must meet this
recommendation.

Where the appropriate elastic stress is not specified in this bulletin, it may be determined

from:
F.(F,-F,)]"

where fe is the determined stiffened panel limit state stress under consideration.
where fer < Fy

5.9 DESIGN CONSIDERATIONS

5.9.1 The most relevant step in the design of a stiffened panel involves a proper choice of the
stiffening system, to provide an adequate overall strength, and to limit the plate dimensions
and proportions to values that will prevent plate failure by instability. Many choices for the
stiffening system are available, and no specific guidelines can be given, since the optimum
configuration depends on dimensions, loads and boundary conditions.

5.9.2 Typically, a stiffened panel would be orthogonally stiffened, with the set of primary
stiffeners or girders providing the main support structure for the whole panel, and the set of
secondary stiffeners providing local plating support. The large number of stiffener
intersections justifies a careful detail design of the stiffener crossings.
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5.9.3 In general a weight efficient structure would make use of a high density of stiffeners in
both directions, but the cost implications could be adverse. Since stiffened plates are
important components of TLP and other floating structures, and contribute to a large share of
the structural weight, the designer should perform several iterations with alternative stiffener
arrangements in order to reach an efficient design.

5.9.4 Important aspects of stiffened panel design are the selection of stiffener cross sectional
dimensions, and the rectangular plate aspect ratio, discussed in 4.6 and 3.7, respectively.

57



Bulletin 2V--Design of Flat Plate Structures

Section 6-Deep Plate Girders

6.1 GENERAL
6.1.1 Scope

Deep plate girders with the web stiffened in both the longitudinal and transverse directions
are considered. The requirements given apply specifically to the case where the transverse
stiffener spacing is not larger than 1.5 times the girder depth, and the ratio of the clear
distance between flanges to the web thickness d, /t, exceeds

11.75 /E (6.1-1)
Fy

When the girder web is not stiffened, or the depth to thickness ratio is smaller than the value
above, the design should comply with the AISC Specification for Structural Steel Buildings.

6.1.2 Definitions

6.1.2.a Deep Plate Girders. Deep plate girders, sometimes also referred to as bulkhead
girders, are in general orthogonally stiffened. They may form the main support structure for
platform decks and they may be arranged as a grillage, hence dividing the deck structure into
discrete compartments. A typical arrangement is shown in Figure 6.1-1. The orthogonal
stiffening can be single or double sided.

The girders can span between points of support with continuous or intermittent lateral
restraint for the compression flange. Flanges can be single or multiple, thick, unstiffened
plates or thinner, stiffened plates, which can also function as a deck. See Figure 6.1-2. The
girder webs will, in some circumstances, form part of a fire wall and/or boundary of a
hazardous area. For some floating structures the deck girders may be utilized as part of the
reserve buoyancy, and must also be designed for lateral pressure.

6.1.2.b Flanges. The girder flanges, sometimes also referred to as chords, are the upper and
lower girder flanges of the plate girders. The primary function of the flanges is to provide
sufficient area at the extremities of the girder to resist bending moment. During fabrication
the flanges may act alone in resisting bending moment, but in service they are integrated with
the deck plate, which contributes to the plate girder resisting moment.

Depending on the geometry and loading the girder compression flange may have to be
longitudinally and/or transversely stiffened. The stiffening arrangement also provides
adequate strength to resist local concentrated loads. Continuous or intermediate lateral
restraint at, or remote from, the compression flange, might also be required.

6.1.2.c Girder Web. The girder web transmits the shear loads to the joints, with the plating
in consequence carrying shear, axial and bending stresses. In some cases the web might also
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be subjected to directly applied lateral loads due to hydrostatic pressure. To prevent buckling,
the webs are divided into panels by longitudinal (horizontal) and transverse (vertical)
stiffeners. A web panel is defined as an area of web plate bounded on each edge by a
stiffener, diaphragm, or girder flange. An ‘outer panel’ is a web panel adjacent to the girder
flange.

The orthogonal stiffening arrangement for the girder web has to be selected to achieve
maximum structural efficiency. This requires a balanced choice of panel aspect ratios and
stiffener proportions. The design of the outer panel connection to the girder flange requires
special consideration to ensure adequate shear transfer. Openings in the web may be required
for operational reasons. If these cannot be completely avoided, web reinforcement may be
required, and special consideration has to be given to the geometry of the openings.

6.1.2.d Primary Transverse Stiffeners. Primary transverse (or vertical) stiffeners support
the flanges for tension field action, serve as stiffening elements for the girder web plate, and
also connect with the deck girders. The connection between deck girders and stiffeners
provides full continuity, and leads to frame action. Transverse stiffeners may also be required
to support concentrated loads, such as transportation loads, deck/hull mating loads, etc.

6.1.2.e Secondary Transverse Stiffeners. Secondary transverse (or vertical) stiffeners span
the full height of the girder, stiffen the web plate, and support the flanges for tension field
action.

6.1.2.f Longitudinal Stiffeners. Longitudinal (or horizontal) stiffeners in the compression
zone of the web increase the buckling resistance of the web plate between transverse
stiffeners by limiting the unsupported panel sizes. Their spacing should be chosen to ensure
continuity of stiffening between interconnecting girders. The longitudinal stiffeners also
contribute to the girder bending resistance, and as such must be designed to carry axial loads
due to applied bending/axial forces, and possibly also lateral loads due to hydrostatic
pressure.

6.1.3 Loads and Load Combinations

6.1.3.a Primary Loads. Primary loads are obtained from three-dimensional space frame
action. Five main types of primary loads act on girders, as shown in Figure 6.1-2:

e Longitudinal tension or compression;

e Transverse tension or compression;

e Bending;

e In-plane shear;

e Lateral load.

6.1.3.b Secondary Loads. Secondary loads consist of the following categories:
e Shrinkage forces due to welding;
e Stresses due to construction tolerances;
e Vertical load on the web due to a slope change in the undeformed flange;
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e Vertical load on the web due to concentrated load applied to the upper and lower
flange level;

e Secondary bending, redistribution of primary bending and shear in the vicinity of web
openings;

e Local vertical forces on bearing surfaces;

e Loads due to deck girder connections;

e Thermal loads.

The combined effect of the above loads should be accounted for in designing the girder
components.

6.1.4 Stress Analysis

6.1.4.1 The stresses in a plate girder can be calculated on the assumption that plane sections
remain plane, provided the girder unsupported span to depth ratio is larger than 5. The cross
sectional properties required to determine longitudinal bending stresses must take account of
shear lag effects, as prescribed in 5.6. However, shear lag effects may be neglected when
considering the ultimate limit state.

6.1.4.2 The transverse shear stresses can also be derived on the basis of simple beam theory,
but allowance must be made for web openings when computing the shear stress distribution
across the web.

6.1.4.3 Finite element or other type of numerical analysis can be used to obtain a more exact
stress distribution, if required for the particular geometry and load conditions, or if simple
beam theory is no longer valid (as for very short, stocky girders).

6.1.5 Stress Distribution

6.1.5.a Longitudinal Stress. If simple beam theory is applicable the longitudinal bending
stress distribution across the girder depth is given by
f, =¥ (6.1-2)
where M is the applied bending moment, y is the distance to the neutral axis, and | is

the effective moment of inertia of the cross section about the neutral axis. In computing
I, the effective flange should be used, as prescribed in 5.6.

ef

The distribution of longitudinal bending stresses across the flange width can be obtained by
following the approach described in 5.6.2.
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6.1.5.b Shear Stresses. The shear stress distribution can be obtained from:
vVQ
Xy ? (61-3)
where V is the shear force, Q is the moment of the area above the point where shear stress
is being determined about the neutral axis, I is the moment of inertia about the neutral
axis, and t is the thickness at the point under investigation.

For webs with constant thickness the average shear stress can be approximated by

V
f,=— (6.1-4)
TOA
where A,, is the web area. When the web has openings the web area should be computed
on the basis of d, —a,, where dy, is the depth of the web plate between flanges and ay is

the height of the opening.

6.1.5.c Transverse Stresses in Webs Due to Local Vertical Forces. The transverse stress in
the plane of the web due to load applied to a flange may be calculated on the assumption that
the load is dispersed uniformly. It can be assumed that the load decreases linearly from its
point of application to zero at the extremity of the opposite flange. Also, it is assumed that
the stress disperses inside the flange at a 60° angle and inside the web at a 45° angle, as
shown in Figure 6.1-3.

6.1.5.d Transverse Stresses in Webs Due to Flanges Curved in Elevation. The edge of a
web attached to a portion of a flange curved in elevation, Figure 6.1-4, should be considered
to be subjected to a force per unit length F, acting in the plane of the web, given by:

f Bt

= f -f f (6.1-5)

R;sin@
where f; is the flange longitudinal stress, Bsis the width of an unstiffened flange in a beam
having only one web (or half the distance between successive longitudinal stiffeners or
webs, together with any adjacent outstand), 0 is the slope of the web to the horizontal, t;

is the flange thickness in the panel being considered, and Rsis the radius of curvature of
the flange.

6.2 LIMIT STATES
6.2.1 General

The serviceability and ultimate limit states governing deep girder structural performance are
defined for each girder main component, namely the flanges, web plates, and their stiffeners.

6.2.2 Girder Flanges

6.2.2.1 If girder flanges are longitudinally and/or transversely stiffened, each individual
rectangular plate should be considered. The serviceability and ultimate limit states that apply,
for the appropriate loads and load combinations, are given in Section 3.
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6.2.2.2 The serviceability and ultimate limit states that apply to the stiffeners are given in
Section 4. In particular the stiffener proportions should follow the requirements in 4.4.4.

6.2.3 Girder Web

6.2.3.1 The serviceability and ultimate limit states that govern the strength of the individual
rectangular web plates supported by stiffeners are given in Section 3.

6.2.3.2 The serviceability and ultimate limit states that apply to the longitudinal and
transverse stiffeners are given in Section 4. In particular the stiffener proportions should
follow the requirements in 4.4.4.

6.2.3.3 The girder web is also subjected to in-plane bending. In general, when treating this
particular loading condition the guidelines described below can be followed, but the designer
should exercise engineering judgment in applying them.

6.2.3.4 Under in-plane bending the longitudinal bending stress varies linearly across the plate
transverse edge (of length b). For an individual plate if this variation is small the applied
stress should be assumed uniform and equal to the average stress acting across the transverse
edge. If the individual rectangular plate is close to the girder neutral axis and the average
stress is very small, it should be assumed that it is subjected to a uniform compressive stress
equal to the maximum stress acting across its edge.

6.3 DESIGN CONSIDERATIONS
6.3.1 Girder Flanges
6.3.1.1 The design of girder flanges should comply with the AISC Specification for Structural

Steel Buildings. The thickness of outstanding parts of flanges should conform with the
requirements of 4.4.4.

6.3.1.2 The effect of shear lag must be considered, as prescribed in 5.6.

6.3.1.3 Where possible compact sections should be used, thus allowing the whole section to
be effective without requiring stiffening.

6.3.2 Web Panels
6.3.2.a General. The girder web is divided into rectangular plates by longitudinal and

transverse stiffeners. In general these web plates are subjected to longitudinal and transverse
loads, as well as in-plane shear. Lateral loads can also be present.
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In choosing the stiffener spacing, serviceability and ultimate limit states associated with
rectangular plate instability, due to compressive longitudinal and transverse loads and in-
plane shear, must be considered.

The longitudinal web stiffeners are designed to allow the adjacent web panels to reach their
required load capacity, without premature stiffener failure by buckling or yielding. The
stiffeners must have sufficient rigidity to enforce nodal lines on the web in conjunction with
the transverse stiffeners. The longitudinal and transverse web stiffeners must be designed as
beam-columns for flexural and axial loads due to web panel buckling and lateral pressure.

The vertical spacing of the longitudinal stiffeners should be such that the web panels between
the compression flange and the first longitudinal stiffener are capable of reaching yield in
shear, or combined compression and shear, before reaching the critical buckling load.

When d,, >180t, (where d, is the web depth and t, is the web thickness), at least one

longitudinal stiffener should be provided and placed between the neutral axis and
compression flange. Additional longitudinal stiffeners should be provided to restrict the
ratios of b/t of the web panels to values which can adequately prevent limit states associated
with plate buckling. Adjacent to internal supports in continuous spans, where the lower part
of the web can be overstressed due to concentration of shear stress, additional intermediate
longitudinal stiffeners should be provided, for a distance of at least d, on each side of the

support. These stiffeners should terminate on transverse stiffeners. They should restrict the
proportions of all the web plate panels to acceptable values. Longitudinal stiffeners should
extend between and be attached to transverse stiffeners.

6.3.2.b Webs With Openings. In general, web openings are subject to special investigation
for stress concentration, buckling around the opening perimeter, or fatigue. These
considerations could be effectively satisfied if the design of openings complies with the
following recommendations:

a. In the absence of special framing around the opening, its overall dimension should be
limited to [see Figure 6.3-1(a)]:

(6.3-1)

w

1
a. orb <—d
h h 10

b. The overall dimension of an opening in longitudinally stiffened webs should be limited to
[see Figure 6.3-1(b)]:

a, or b, <=b (6.3-2)

Wl

c. Openings should be spaced horizontally with a clear distance between them of at least sy,
[see Figure 6.3-1(a)]:

a, or b, s%sh (6.3-3)
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d. No more than one opening is recommended at any one web cross section between
longitudinal stiffeners.

e. Cutouts in webs for the connection of transverse stiffeners should be welded over at least
1/3 of the opening perimeter.

f. Openings should be designed with adequate corner radius, or reinforcing, to avoid stress
concentration.

In cases where the web opening dimensions are large and/or do not comply with the
requirements in items a through f above, the following requirements apply:

g. Each opening should be reinforced by longitudinal and transverse stiffeners (Figure 6.3-2).
Sufficient corner radius should be provided at each opening to reduce the stress
concentration.

h. Diagonally opposite openings should be bounded by at least two common orthogonal
stiffeners (Figure 6.3-2).

i. In line openings should be bounded by at least two parallel stiffeners.

J. The height of openings should be limited to a maximum of one-third (1/3) the web depth.

k. To the extent possible openings should be away from points of load concentration.

| The stiffeners adjacent to openings should have a minimum cross sectional area equal to the
area of the opening in each direction. Furthermore, the stiffener should provide adequate

strength to resist the primary, as well as secondary, axial loads and bending moment.

m. A detailed finite element analysis is recommended to obtain the load and stress
distribution around an opening.

6.3.3 Longitudinal Web Stiffeners

Stiffener proportions should comply with the requirements in 4.4.4. Longitudinal stiffeners
should extend between and be attached to transverse stiffeners.

The longitudinal stiffener bending stiffness necessary to ensure that a stiffened plate can
reach the ultimate strength of the web panel between stiffeners is greater than that required to
develop maximum local buckling stress. The moment of inertia I of the stiffener cross
section about the neutral axis should be larger than the following value.
I, =4at} (6.3-4)
where a is the spacing between transverse stiffeners and t,, is the web thickness.
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6.3.4 Transverse Web Stiffeners

6.3.4.a General. Transverse (vertical) stiffeners provide adequate support for the web and
longitudinal stiffeners. A transverse stiffener should be included at the junction with cross
beams, and at sloping flange locations.

Transverse stiffeners should be shaped to allow space for weld material connecting the web
to the flange, with a clearance not exceeding 4 t,, as shown in Figure 6.3-3. The stiffener
should extend over the whole remaining depth of the web.

A primary transverse stiffener should be fitted to the flange near each point of concentrated
load application.

Where cutouts are provided in transverse stiffeners to allow passage of longitudinal
stiffeners, at least 1/3 of the cutout perimeter should be welded to the longitudinal stiffeners.

6.3.4.b Effective Stiffener Section. The effective stiffener section should include the
stiffener plus a portion of the web plate on each side of the stiffener, as shown in Figure 6.3-
3. The effective plate flange width b is given in 4.1.2.

6.3.4.c Design Load for Transverse Stiffeners. The following loads should be considered
when designing transverse stiffeners, as applicable:
e axial force due to tension field action, see 6.3.4d;
e axial force assumed in preventing web buckling, see 6.3.4¢;
e axial force due to vertical distribution of load through a cross frame;
e axial force due to load applied at the girder chord level;
axial force due to initial flange curvature, see 6.3.4.f;
axial force due to change in chord girder slope;
e bending moment about an axis in or parallel to the plane of the web, arising from
eccentricity of axial force, or from flexure of a cross-frame or deck.

6.3.4.d Axial Force Due to Tension Field Action. Tension field action should be assumed
to occur in the web plate, and to act in the mid-plane of the web, when the average shear
stress in the web plate, fyy, is greater than z_to given by:

2 2 2
7, =3.6E 1+(9j (tl] -l [P (6.3-5)
a) b 2.9E(t,
t 2
fl<2.9E(—Wj
b

2
r,=0,f > Z.QE[%W) (6.3-6)

where a is the plate length or spacing between transverse stiffeners, b is the plate width or
spacing between longitudinal stiffeners, t, is the web thickness, and f; is the average
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longitudinal stress in the web panel, to be taken as positive when compressive. In
computing f; it is assumed that the bending moment and/or axial force are not
redistributed to the flanges.

The tension field action should be assumed to cause a compressive force Fy, in the adjacent
transverse stiffener over its entire length equal to the smaller of the two values:

Fu = (f,, — 7,2 (6.3-7)
Fu = (fy =70 ks (6.3-8)
where |, is the clear distance between the flanges of the girder.

When Fy, is different on the two sides of a transverse stiffener the average value may be
taken. If there are longitudinal stiffeners, Fy, for one side of the transverse stiffener should be
taken as the average of the two smallest values of Fy, occurring in the web panels, on that
side of the transverse stiffener.

6.3.4.e Axial Force Assumed in Preventing Web Buckling. In order to resist buckling of
the web plate the effective stiffener section should be assumed to carry, along its centroidal
axis, a compressive force Fy; given by:

2
Fui = I;twks fq (6.3-9)

max

where | is the clear distance between the flanges of the girder, a max is the maximum

spacing of transverse stiffeners, t, is the web thickness and ks is a coefficient given in
Figure 6.3-4. The coefficient ks is a function of the slenderness parameter A:

L [F
A= 24r—51/Ey (6.3-10)

where rg is the radius of gyration of the effective stiffener section about the maximum
moment of inertia axis through the centroid.

The stress f is defined by:
fo=14 + l+z—AS f, +i (6.3-11)
Lt, 6
where 7 is equal to fyy or 7, (as defined in 6.3.4d), whichever is less, X A, is the sum of

the cross sectional areas of all the longitudinal stiffeners not including any adjacent web
plate. f; is the average longitudinal stress in the web, taken as positive when compressive,
calculated without any redistribution to the flanges (see Figure 6.3-5), and f, is the
maximum value of the stress in the web due to bending alone, calculated without any
redistribution of moment to the flanges, and always taken as positive (see Figure 6.3-5).
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For a longitudinally stiffened web, the force F,;; should be factored by n

where
1

d

21, is the sum of the moments of inertia of the effective section of all the
longitudinal web stiffeners in depth |,
I is the moment of inertia of the effective section of the transverse stiffener

6.3.4.f Axial Force Due to Initial Flange Curvature. The effective web included in the
effective stiffener section should be considered to be subjected to an axial force, due to initial
flange curvature, F, given by

ffAf be
o = . (6.3-12)
R;sin@
where
f, = flange longitudinal stress,
R, = flange radius of curvature,
A = flange cross-sectional area,
0 = slope of web to the horizontal,
b, = effective web acting with stiffener =16t or a/2, whichever is less,

unless a larger value is demonstrated by analysis.

6.3.4.g Axial Loading Distribution Within a Stiffener. The force in a stiffener due to load
applied at the flange level, or due to curvature or change of slope of a stressed flange, or due
to transfer of load through a cross frame, should be assumed to vary uniformly along the
length of the stiffener, from the value at the point of application, to zero at the remote end of
the stiffener.

The force due to tension field action or restraint of web buckling should be assumed constant
over the length of the stiffener.

6.3.4.h Yielding of Vertical Stiffener. The maximum stress in the stiffener itself at every
point along its length, due to all the relevant forces and moments listed in 6.3.4.c, except the
axial force assumed in preventing web buckling should not exceed Fys = 0.66F,. A one-third
increase is allowed for extreme load conditions. In areas where cutouts are provided an
appropriate reduced section should be taken.
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Where the end of a stiffener is fitted closely to the flange of a girder, the bearing stress over
the area in contact should not exceed 1.33 Fys . In calculating this stress, the effective
bearing area should be taken to consist of only those portions of the area of the stiffener and
web plate that satisfy all of the following:

a. In contact with the flange;

b. Clear of the weld or root fillet at the web flange junction;

c¢. Within the dispersal lines drawn at 60° from the line of application, at any local load

through the thickness of a flange plate.

6.3.4.1 Load Bearing Support Stiffeners. At each support position, or beneath concentrated
loads carried by plate girder flanges, load bearing stiffeners are required.

The section of a bearing stiffener should be symmetrical about the mid-plane of the web.
When this condition is not met, the effect of the resulting eccentricity should be taken into
account.

The bearing stiffener ends should be adequately connected to both flanges, and particular
attention should be given to the detail design of bearing stiffener intersections with
longitudinal stiffeners.

Where cut-outs are provided in bearing stiffeners to allow the passage of longitudinal
stiffeners, at least one side of the opening in the bearing stiffener should be cleated to the
longitudinal stiffener by full perimeter welding of the cleat, or at least one-third of the
perimeter of the cut-out should be connected to the longitudinal stiffener by welding.
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C1INTRODUCTION

This Commentary provides background information on the formulations and the design
guidance given in Bulletin 2V. Whenever applicable, references are provided, and the
rationale for the recommendations made is discussed in some detail.

The objective of this Commentary is to help the designer understand some of the
fundamental principles of structural engineering that form the basis of the Bulletin. Rather
than applying design formulas that are difficult to interpret, and as such mean very little, a
broader understanding of their background can lead to a more efficient design process.

The Commentary follows the same format as the Bulletin. Paragraph numbers are the same
as in the Bulletin but are preceded by the letter C. In most cases the same nomenclature is
adopted, and where there are changes these are indicated in the text when new symbols are
defined.

C2 GENERAL

The design basis adopted in Bulletin 2V is the working stress method, whereby stresses are
not allowed to exceed specified values. Allowable stresses are associated with two basic
structural requirements: resistance to failure (ultimate limit states); and stiffness and strength
criteria (serviceability limit states). The distinction between ultimate and serviceability limit
states is used by several codes of practice, such as the British Standard BS5400 Steel,
Concrete and Composite Bridges, Reference 2.1.

The approach to design implied in Bulletin 2V is deterministic, and the uncertainties in loads
and resistance or strength are not specifically addressed. Uncertainties are lumped into
factors of safety defined in API RP 2T. The factors of safety depend on the design case,
which is associated with the project phase, the system condition and the environment. Factors
of safety also depend on the type of limit state.

The classification of relevant modes of failure into limit states gives the designer some more
insight into structural behavior. Rather than defining a procedure and a set of ’blind’
formulas, the designer has a better understanding of the implications of each formulation, and
is asked to exercise good engineering judgment in following what may be considered a
‘design by analysis’ approach. The definition of limit states also paves the way to an eventual
adoption of probabilistic or reliability based methods, such as the load and resistance factor
design (LRFD) method. The LRFD approach is already adopted in several codes of practice,
see References 2.2 through 2.6. The LRFD approach requires a statistical description of the
design variables which define loading and resistance. It is then possible to account for those
uncertainties that have a stronger impact on performance, such as:
a. Sensitivity of the structural element resistance to residual stresses and initial
geometric imperfections;
b. Uncertainty in procedures used to convert loads to load effects;
c. Unfavorable deviations of the loads from their calculated values allowing for
unforeseen action;
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d. Deviation in material strengths from those used to calculate resistance;

e. Reduced probability that components of loading combinations will act
simultaneously at their full levels;

f. Accuracy of theory used to calculate the characteristic resistance of a section.

Extensive research has been conducted in the area of reliability based design, see References
2.7 through 2.10. A simple assessment of safety can be done on the basis of approximate
Level 11 reliability methods, which provide a systematic way of deriving partial safety
factors. Level 11 methods make use of the safety or reliability index, which is related to a
notional probability of failure. Important steps in such a procedure include the definition of
limit state functions, and the derivation of partial safety factors for a given target reliability
level.

First-order second-moment methods are based on a first-order (linear) approximation of the
failure variables, and the only required information regarding the probabilistic description of
the random variables is their mean and variance, which makes these methods attractive from
the design point of view. First-order second-moment methods are very simple to implement,
see for example Reference 2.11, and the designer might wish to use them in checking the
reliability level of the structure’s main components.

If a reliability approach to design is adopted, partial safety factors reflecting uncertainties in
different load and resistance design variables can be derived. For a limit state representing a
combination of loads several partial safety factors would be used, rather than the single factor
of safety F.S.

In future revisions and refinements of Bulletin 2V the adoption of a probabilistic approach to
safety should be considered. This would contribute to a more efficient and balanced design,
and would follow the path already established by existing and well-established codes of
practice.

C2.5.1 Factors of safety

The first edition of API Bulletin 2V specifies a basic factor of safety of 1.67 for the
serviceability limit state and 2.0 for the ultimate limit state. DNV’s working stress method is
based on usage factors, the minimum being 0.6 for the serviceability limit state and 0.6 for
the ultimate limit state. This corresponds to a basic factor of safety of 1.67 for the
serviceability and ultimate limit states. Clearly, there is a major discrepancy in the basic
premise behind the working stress design philosophy. APl Bulletin 2V is clearly too
conservative with respect to the ultimate limit state and needs revision and clarification.

It is unclear how the Bulletin 2V (first edition) factors of safety were originally developed.
The first edition Commentary makes specific reference to APl RP 2T but does not quantify
the factors of safety. The quantification occurs in the body of RP 2T but its commentary
makes no reference to this quantification either. The 2T Commentary does make reference to
the safety factors used in APl RP 2A, which are basically 1.67 to 2.0 for longitudinal stress
and 2.0 for pressure which, in the context of Bulletin 2V, is not directly related to limit state.
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Hence, among RPs 2A and 2T, Bulletins 2U and 2V and DNVDNYV, there are a multitude of
safety factor formulations, all of which are somewhat inconsistent with each other.

Factors of safety should be set to provide consistent reliability of all structure components
considering analysis and design unknowns or variabilities. Since Bulletins 2U and 2V cover
similar types of structure (i.e., orthogonally stiffened cylinders and flat plate structures), it is
logical that both bulletins should have a similar basis for factors of safety. Bulletin 2U, with
its partial factors of safety, is more in line with RP 2A, at least for longitudinal stresses.

For orthogonally stiffened structures, it is unclear why a factor of safety of 2.0 should always
apply, especially in the inelastic range, considering that most of the applied pressure is static
and well defined for floating structures, especially at depth (this applies to APl RP 2A also).
API RP 2A’s higher factor of safety for external pressure is based on the sensitivity of
cylindrical shells to geometric imperfections at D/t less than 300. For orthogonally stiffened
cylindrical shells designed with a hierarchical order of buckling mode instability, geometrical
imperfections have a negligible effect on critical buckling stresses. Relative to cylindrical
plate panels, flat plate panels have increased post-buckling strength; hence, the higher safety
factor of 2.0 may not be warranted for orthogonally stiffened flat plate configurations.

In order to maintain consistency with Bulletin 2U, it is recommended that the factor of safety
for the ultimate limit state in Bulletin 2V be revised to 1.67 times a partial safety factor that
varies from 1.2 at the proportional limit to 1.0 at the yield stress. The safety factor for the
serviceability limit state should remain at 1.67. This revision brings the safety factor
formulation in line with that of DNV for serviceability limit states and provides a more
conservative design for ultimate limit states in the elastic range, a design range that is
undesirable and inefficient.

C3 PLATES
C3.2 UNIAXIAL COMPRESSION AND IN-PLANE BENDING

C3.2.2 Serviceability Limit State

Elastic Behavior. The elastic buckling of simply supported rectangular plates uniformly
compressed in one direction, Figure C3-1, is a classical structures problem first solved by
Bryan in 1891, and well-documented in several textbooks, e.g. References 3.1, 3.2, 3.3. In
this solution the common assumptions of perfect material and geometry are adopted, namely
the material is linear elastic, isotropic and homogeneous, the plate is thin and perfectly flat,
the load is applied on the mid-plane of the plate, the deformations are small, shear effects are
disregarded, and the direct stresses normal to the plate’s through thickness direction are zero.
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Figure C3-1—Rectangular Plate Under
Uniaxial Compression
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(3-13)
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Figure C3-2—Comparison of Inelastic Buckling Formulations for
Rectangular Plates Under Uniaxial Compression
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The critical stress f.; is given by:
b 1a ? 7°E t 2
f ={m—+—— — C3-1
“ ( a mbj 12il—v2i(b] ( )

where m is the integer number of half-waves in which the plate buckles, a is the plate’s
length (its dimension along the direction of loading), b is the plate’s width (the dimension
of its loaded edges), t the plate’s thickness, E the modulus of elasticity and v is Poisson’s
ratio.

For a given plate the critical stress can be determined from equation (C3-1) by choosing the
value of m which makes f;r a minimum, and this can easily be accomplished by using a
graphical representation. As shown in Reference 3.1, the transition from m to m+1 half-
waves occurs for the following value of the aspect ratio a/b:

2~ -+’ (C3-2)

For long plates (a/b 21y it can easily be shown that the following bound applies:

b 1a)
40<|m=—+—=| <449 (C3-3)
a mhb

Thus for practical purposes when considering long plates it is reasonable to adopt the value
4.0 for the term in parenthesis in equation (C3-3), since it represents a lower bound to the
exact critical value. For wide plates (a/b < 1) m = 1 always applies independently of the exact
value of the aspect ratio a/b.

On the basis of the foregoing discussion the following expressions are proposed for

computing the critical stress of simply supported rectangular plates uniformly compressed in
one direction:

7%E t 2
f, = kj—)lz v (Ej (C3-4)

k=40 for % >1 (C3-4a)
a b a

k=] —+—| for —<1 (C3-4b)
b a b

These equations are adopted in Bulletin 2V to define the serviceability limit state in the
elastic range for uniform compression. Note that the expression for k for wide plates in
Bulletin 2V is slightly different, because the aspect ratio is always assumed to be larger than
unity, as in Figure C3-1.
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For future reference it is convenient to express equation (C3-4) in terms of the plate
slenderness or width factor B:

_b\/?y C3-5
=g (C3-5)

where Fy is the material yield stress. Then equation (C3-4) takes the form:
fC

C_k n? 1
- 2\ p2
F, 12il—v ),B (C3-6)

The above formulas apply in the linear elastic range, defined by the material proportional
limit Fp. For for > F, inelastic effects have to be taken into consideration.

The above solution applies to the case where the plate is simply supported around the four
edges. It is obvious that in a real case the boundary conditions can significantly depart from
this ideal situation, since in general surrounding stiffeners will give the plate a varying
degree of rotational restraint. However, from the design point of view, assuming simple
support conditions is reasonable, since the results lie on the conservative side. Also, in most
practical situations the plate geometry is such that failure will be determined by plastic
effects and imperfections, so that the exact form of the elastic buckling equation is not very
relevant. It should be noted that the approach suggested here is the one proposed by DNV,
equation (C2-1) in Reference 3.4.

In Bulletin 2V buckling coefficients k for boundary conditions other than simply supported
are also given, to be used if other conditions are known to govern the design. Figure 3.2-3 in
Bulletin 2V was adapted from Reference 3.3.

For the second edition, expressions for k were revised to include the effect of in-plane
bending. Neglecting the effect of in-plane bending is unconservative while including the
bending stress as uniform compression is unduly conservative. The revised expressions are
based on classical solutions and follow those of DNV (Reference 3.30).

Inelastic Behavior. When the critical stress f,; as given by equation (C3-4) exceeds the
proportional limit, inelastic effects have to be taken into consideration. The approach which
is normally suggested in the literature implies using the equations which apply in the elastic
range, with the modulus of elasticity E replaced by the tangent modulus E;, or a function of
E:, Reference 3.5.

There is no unique way of defining an appropriate value for E;. Bleich, Reference 3.5,
suggests a quadratic parabolic approximation which is often referred to as the Ostenfeld-
Bleich quadratic parabola, Reference 3.6:

5_ fc(Fy - fc)

- (C3-7)
E F(F,-F,)

where f; is the ultimate average stress. Equation 3-7 seems to be quite adequate for
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materials having a well defined yield plateau. In this approximation the stress strain curve
is assumed to be a straight line up to the proportional limit Fy, and a quadratic parabola
from the proportional limit F, to the yield point.

For strain-hardening materials the Ramberg-Osgood three parameter stress-strain relation is
usually adopted, Reference 3.6:

5[1+3_”[LJ ] (C3-8)
E 7|F

where n is an empirical constant derived from curve fitting.

In Reference 3.7, Bleich suggests the following expression for the inelastic critical stress for
a rectangular plate under uniaxial compression:

7%E t)
f = kﬂl—_vz)(ﬁ) (C3-9)

where all the parameters have been defined, except n, which is a modulus factor, or
characteristic of the plate material, equal to unity when f. is equal to or below the
proportional limit, and smaller than unity, varying with f,, when the critical stress
exceeds the proportional limit.

For long plates (a/b >1) Bleich, Reference 3.7, suggests the following value for n:

n=\¢ (C3-10)

with E, /Egiven by equation (C3-7). Then, combining equations (C3-4), (C3-9), (C3-
10), and (C3-7) the following expression for f. can be obtained:

L:L (C3-11)
Fy 1+C
where
f IE f
Cc—\o v) (C3-11a)
pr(l_ pr)
=_r C3-11b
P =F ( )

fer 1s the elastic buckling stress given by equation 3-4. The stress ratio p, defines the
beginning of inelastic effects in compression, and a typical value for welded ship panels
is 0.5, Reference 3.6. For p, = 0.5 the inelastic buckling stress becomes:
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f o Alf, /F,f

C

== C3-12
F, 1+4(f, /F,) (€312

DNV proposes the following expression for f. [using the notation adopted here, see Reference
3.4, equation (C2-1)]:
f 1

e o (C3-13)
F, ~ 4(f,/F)

Equations (C3-12) and (C3-13) are plotted in Figure C3-2 as a function of the plate
slenderness ratio 3, for v = 0.3 and k = 4. It can be concluded that DNV’s formula is slightly
more conservative than Bleich’s equation (C3-12). In Bulletin 2V, equation (C3-11) is
adopted to define the serviceability limit state for long plates in the plastic range.

For wide plates (a/b < 1/2) Bleich suggests that the collapse stress is again given by equation
(C3-9) with 1 now defined as

=t C3-14
== ( )

with E; /E again given by equation (C3-7). Combining equations (C3-4), (C3-9), (C3-14),
and (C3-7) the following expression for f, can be obtained:

L:l— p.(1-p,) (C3-15)
F f./F,

y

where fg, is given by equation (C3-4) with k defined by equation (C3-4b). In the range 1/2
< a/b <1, Bleich suggests that the critical stress may be calculated from the interpolation

formula.
fo_offa_foja ,fo fo (C3-16)
F F, F, )b " F, F

y y y y y

where f, is found from equation (C3-11) and f_, from equation (C3-15). Comparing

equations (C3-11) and (C3-15) for p, = 0.5, it can easily be concluded that they give

results which are quite close, with equation (C3-11) lying roughly less than 7% above
equation (C3-15). Thus in practical applications there does not seem to be a need for
using the linear interpolation scheme expressed by equation (C3-16).

In Bulletin 2V equation (C3-15) is adopted to define the serviceability limit state for wide
plates in the plastic range.

It is interesting to note that DNV’s equation (C2-1), Reference 3.4, which is suggested for
both long and wide plates, corresponds to equation (C3-15) with p,= 0.5. This is a

reasonable way of representing by a single expression the inelastic buckling of both long and
wide plates.

81



Bulletin 2V--Design of Flat Plate Structures

C3.2.3 Ultimate Limit State

Long Plates. The concept of effective width is widely used in structural engineering to
estimate the ultimate strength of rectangular plates. An extensive review of the subject is
given in Reference 3.8. The effective span of plating required for computing section
properties, as discussed in Reference 3.8, is given by:
f
b, =f—a (C3-17)

e

where f, is the edge stress in the plating, f, the average stress, and b the plate element
width over which uniform compression strain is applied. If it is postulated that the
maximum post-buckling load the plate can sustain occurs when the edge stress f. reaches
the yield stress, then we have from equation (C3-17):

2t (C3-18)

In Reference 3.8, the following empirical formula for the effective width ratio of simply
supported plates is proposed:

b _2_ 1 ps1 (C3-19)

F, b B B

This expression has been found to provide excellent agreement with strut-panel test data and
with recent box-girder bridge reviews. In Bulletin 2V it is adopted to define the ultimate limit
state for long plates. The generalized form of this equation for use in the restricted range 0.7
F,<f,<Fand g>11is:

F F
fa b _2 /5 105 (C3-20)
i, b p\f. pLt

In Reference 3.8, Faulkner also defines a reduced effective width b;, or tangent width, which

is intended to take account of a possible stiffener failure before the edge stress in the plate
elements has reached the yield stress. In the case of simply supported plates the reduced

effective width for 7 =1is given by:

k_1 (C3-21)
b p
and if the edge stress fe is smaller than Fy we have
/ F
b, _1 /5 (C3-22)
b B\
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In the case where the longitudinal stiffeners in a panel are torsionally strong, or where the
lateral pressure is sufficiently large (say larger than Fy2 | EB?), clamped boundary conditions

for the plate might be more appropriate, Reference 3.8. The following expressions then apply
for £>1.25 and0.7F < f <F:

E:E_1.56225 (C3-23)
b g B

F F
b_e = E _y_ 1'56225 Yy (C3-24)
b pg\Nf. B~ f
b _12 (C3-25)
b B
, F
b_ez% ¥ (C3-26)
b g \f

Wide Plates. Several formulations have been proposed for the ultimate strength of wide
plates, and these will now be briefly discussed. For convenience a different notation will be
used, as indicated in Figure C3-3. Now the length of the loaded edgesisa, anda /b > 1.

In Reference 3.6 Faulkner refers to the following formula proposed by Bureau Veritas for
simply supported wide plates:

LJ’—'?+£[1—%J (C3-27)
S AN

where the aspect ratio is = a/b > 1.

As reported also in Reference 3.8 Schnadel proposes the following formula for simply
supported wide plates:

g:%(m%) (C3-28)

y y
where

f ! 1)
y

In Reference 3-5 Bleich proposed the following formula resulting from an extension of
Marguerre’s theory:

4 4
L e 2ol (C3-30)
F, 1+3a"  1+3a | F,

y

where the ratio fe/Fy is again given by equation (C3-29). As indicated in Reference 3.8,
for large values of a the results given by equations (C3-28) and (C3-30) practically
coincide.
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Figure C3-3—Wide Rectangular Plate
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Figure C3-4—Comparison of Formulations for the Ultimate Strength of Wide Plates with a/b =3
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In Reference 3.9 Evans proposes the following wide plate ultimate strength formula:

72'2E 1 1.25 t 15

f,=0.175 += — C3-31

’ 120-v? i(“ aj (a) (C3-3D)

and in terms of the plate slenderness parameter 3 this can be recast in the form:
| b

f 7 1Y* 1 (E
—++=0.175 +=| —— = C3-32
Fy lZil—v2 i(a aj at® e Fy ( )

In Reference 3.10 Valsgard proposes the following formula for the transverse compression of
simply supported and unrestrained plates:

2
fo_ 1 +o.08(1_1j 1+ | <10 (C3-33)
Fy a a
Xl = E_iz ! ﬂ >1
BB (C3-33a)
Cu=10p<1 (C3-33b)

Equations (C3-27), (C3-28), (C3-30), (C3-32), and (C3-33) are plotted in Figure C3-4 for a=
3. Equation (C3-32) provides the most conservative prediction, a fact which is discussed and
explained in Reference 3.6. Valsgard’s curve intersects equation (C3-32), but it lies below
the remaining curves. This curve also appears in DNV Classification, Note 30.1 with the
“0.08” coefficient revised to “0.10.” Since this information is based on a study in which
extensive numerical analysis and correlation with experimental data were performed, it is
thought to be the most adequate, and it is adopted with the revised 0.10 coefficient in Bulletin
2V to represent the ultimate limit state.

C3.3 EDGE SHEAR

C3.3.2 Serviceability Limit State

Elastic Behavior. The elastic buckling of simply supported rectangular plates subjected to
uniform edge shear is well documented in several textbooks, e.g., References 3.1, 3.2, 3.3.
The critical stress can be written in the following form:

2B (tY
T — = C3-34
wer = (1 v2 i(b} ( )

where k can be approximated by:
b b

2
k=5.34+ 4(-) —<1 (C3-35)
a a

As a result of symmetry the above formula applies to both long and wide plates, and the sides
should always be labeled a and b, such that b/a <1. Equation (C3-34) is adopted in the DNV
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Rules, equation (C2-1), Reference 3.4. It is also adopted in Bulletin 2V to represent the
serviceability limit state in the elastic range.

Plates built-in along all edges have been studied by Budiansky and Conner, Reference 3.11,
who computed values of k by the Lagrange multiplier method. An approximate parabolic
curve, fitting the results, is

a
This equation is also adopted in Bulletin 2V.

2
k :8.98+5.6(bj b (C3-36)
a

In terms of the slenderness factor 3 equation (C3-34) can be written in the following form:

3f 2
Wy or® L (C3-37)
F, 12(1-v?) g
For future reference it is convenient to write equation (C3-34) in non-dimensional terms as
follows:
3f
P L (C3-38)
F A

y

where the slenderness ratio A is given by

b [F
A= 0-8;1/é (C3-39)

The foregoing results are valid when the applied stress remains in the elastic range, or
\/gfxycr
F

y

<p (C3-40)

r

Inelastic Behavior. Following an approach similar to the one adopted for plates under
uniaxial compression, as suggested by Bleich in Reference 3.15, the critical shear stress now
takes the form:

it (C3-41)

Xyc \/g

2 2
f ok " EJ§2 (lj JE (C3-42)
12‘1—v ) b E
and k is the buckling coefficient for elastic buckling, given by equations (C3-35) or (C3-
36), depending on the boundary conditions. Combining equations (C3-34), (C3-41), and
(C3-42) we obtain the following expression for fyyc,
— f Et

Xyc xycr E

where

(C3-43)
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Again using the Ostenfeld-Bleich quadratic parabola, equation (C3-7), with
f. = \/§nyC (implying the von Mises yield criterion), the following expression for f,y. can be
obtained:

J3f,., ¢
y
where
2
3f. IF
C= (\/;(Xf—ipy)) (C3-45)

and where as defined earlier p, =F /F,. Equation (C3-44) is valid when the proportional

limit of the material is exceeded, or when \/§fxycr/Fy > p,. This equation is adopted in
Bulletin 2V to represent the serviceability limit state in the plastic range.

DNV proposes the following expression for f,, (using the notation adopted here, equation
(C2-1) in Reference 3.4):
3f
VBl ;1 (C3-46)
F, a3t IF,)

It is interesting to note that equations (C3-44) and (C3-46) are formally identical to equations
(C3-11) and (C3-13), respectively. Thus, as discussed earlier, for p, = 0.5 these two
formulations (the one due to Bleich and represented by equation (C3-44), and the one
suggested by DNV, equation (C3-46), are quite similar.

It is useful, for comparison purposes to express equations (C3-44) and (C3-46) in terms of
the slenderness ratio defined by equation (C3-39). Equation (C3-44) becomes:
3f i
%= b+ 2p, - p,)]" (C3-47)

y

and equation (C3-46) becomes:

3f 2
% _1- % (C3-48)

y

In Reference 3.12 Ostapenko proposes the following expression for the collapse shear stress
in the inelastic range:

J3f,,

y

\/§fxyc

y

=1,1<0.58=1/+/3 (C3-49)

=1-0.618(1-0.58)"*°, 0.58<1<1.41 (C3-50)
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Equations (C3-47), (C3-48), (C3-49), and (C3-50) are plotted in Figure C3-5 for p, = 0.5,
which indicates that Bleich’s curve, equation (C3-47) is less conservative. It is felt, however,
that it is quite adequate for design purposes, since it provides the possibility of adopting a
proportional limit ratio p, different from 0.5.

C3.3.3 Ultimate Limit State

The ultimate shear capacity of flat plates has been the subject of extensive research,
particularly in the context of the design of plate girders loaded in shear.

The AISC Specification, Reference 3.13, uses Basler’s approach, References 3.14 and 3.15,
which leads to the following equation for the allowable shear stress:

1-C
f =06r,C,+ y <0.7r (C3-51)
' y[ 1.15«/1+(a/b)2} '
where
F
y
T, =—F
’ 3
fX cr
C,=—" when C, <0.8
T

y

Ty

Y
C, = O.Q[ﬂJ when C, > 0.8

In Reference 3.16 Basler’s theory is discussed, and it is pointed out that equation (C3-51)
does not actually represent the true resistance of the Basler model, which is correctly given

by:

F f
fou = Frer + y 1-22 (C3-52)
’ ’ 2vl+a+0£2 [ z-y J
where a >1is the plate’s aspect ratio. In non-dimensional form equation (C3-52) can be
written as follows:

\/éfxyu _ \/gfxycr n \/§ 1— \/gfxycr
I:y I:y 2‘\/l+a+a2 F

y
In Balser’s solution it is assumed that the edge girder flanges have insufficient flexural
rigidity to resist diagonal tension, which is consequently reacted by the transverse stiffeners.
As a result the transverse stiffeners are subject to compressive loading.

(C3-53)

88



Bulletin 2V--Design of Flat Plate Structures

/3 Fiyp /Fy

3-49
1.0 G

0.8

0.6

02

| | | | | | J N
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure C3-5—Comparison of Formulations for the Inelastic Buckling of Rectangular Plates Under Edge Shear
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Figure C3-6—Model for the Ultimate Strength of
Rectangular Plates in Shear
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Figure C3-7—Comparison of Formulations for the Ultimate Strength of Rectangular Plates in Shear
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Figure C3-8—Comparison of Formulations for the Ultimate Strength of Rectangular Plates Under Lateral Pressure
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Figure C3-9—Rectangular Plate Under
Biaxial Compression
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In Reference 3.16 a model which takes into account the carrying capacity of the edge
stiffeners is developed. It leads to the following equations:

o = 2% f sin?@+ f sin” 6(cotd —cotd, )+ f,, (C3-54)
M V2

e 2™ 1 occ<h (C3-55)

d sing| ftd

f=-2f s 2y 2 |(3sin2, | -3 C3-56

t__E xycrsmed+ I:y + Tayer Esm 9d - ( -5)

where My is the full plastic moment of the flange. The geometry related parameters &, b,
and d are defined in Figure C3-6. The angle @is the inclination of the tensile membrane
stress field f; in the web. This angle is unknown and has to be found numerically, such
that the maximum value of f,y, is obtained. In most cases @ lies in the range 6; /2 < 6<
/4.

Ostapenko, Reference 3.12, also suggests a model which follows along the lines of Basler’s
model, since it does not recognize the formation of the internal plastic hinges in the flanges.
It leads to the following result:

3f 3f 1-v3f,, /F
\/_ yu o _ \/_ xycr n \/_ xycr y (C3_57)

F, F, 2+/1.6 + &2

Figure C3-7 shows plots of equations (C3-53) and (C3-57), indicating that Ostapenko’s
model leads to more conservative results.

When designing stiffened plate structures it is obviously important to consider the strength of
the stiffeners as well as the strength of the plate elements. If the stiffener’s ultimate capacity
is taken into account, it is reasonable to treat the plate independently, and it is recommended
that the design be based on equation (C3-53). This equation is adopted in Bulletin 2V to
represent the plate’s ultimate limit state in shear.

C3.4 UNIFORM LATERAL PRESSURE

C3.4.2 Serviceability Limit State

The expression suggested in Bulletin 2V for estimating plate deflections in the elastic range
can be derived from thin plate theory, as shown for example in Reference 3.17. The same
applies to the maximum elastic stresses. The graphs in Bulletin 2V for computing elastic
deflections and stresses (Figures 3.4-1 and 3.4-2) were adopted from Reference 3.18.

C3.4.3 Ultimate Limit State

There are many studies in the literature on the ultimate capacity of rectangular plates under
uniform lateral pressure. In practice when considering rectangular plates which are supported
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Figure C3-10—Combined In-Plane and Lateral Loads (b/t = 40)
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Figure C3-11—Combined In-Plane and Lateral Loads (b/t = 20)
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by orthogonal stiffening elements, the plate edges have a certain degree of in-plane axial and
rotational restraint. If there is axial in-plane restraint the plate is able to resist lateral pressure
by membrane action, and this provides a very large degree of reserve strength. The ultimate
strength is in such cases primarily determined by fracture. Membrane action is to a large
extent a function of lateral deflections, and as such it is reasonable to design plates on the
basis of a certain allowable permanent set. A permanent set is desirable if lateral pressure
acts alone, while it is in general undesirable if in-plane compression is also present, since
then the buckling mode can easily be triggered.

In Reference 3.19 the following load/permanent set curves are suggested, based on a curve
fitting study of Clarkson’s experimental data in Reference 3.20:

_6F,(t/b) (. 2w

P=—"1 (1+ " ] <25 (C3-58)
_6F,(t/b) (4 2w

P=—"1 (§+ " j =25 (C3-59)

These expressions are restricted to rectangular steel plates with aspect ratios falling in the
range 1 to 5. It should be noted that these two equations show a discontinuity for = 2.5, with
equation (C3-59) leading to larger values of p when the remaining parameters stay the same.
No obvious explanation for this discontinuity is available.

An upper bound to the collapse pressure of clamped rectangular plates has been proposed by
Johansen. It is an upper bound in the context of the Theorems of Limit Analysis, so that the
plate’s material is considered to be rigid-perfectly plastic, Reference 3.21. The collapse
pressure is given by:

oo 12F, (t/b)’ e’

V3a® +1-1

A lower bound associated with the Johansen yield curve, as given in Reference 3.21, is

p=4F, [%j (1+i2j (C3-61)

o

(C3-60)

If the plate boundaries are simply supported the collapse pressure is one-half the value given
by equation (C3-60), or:
_ 6F,(t/b)a?

(C3-62)
V3a? +1-1
As discussed in Reference 3.21 a lower bound is in this case given by:
tY(, 1 1
p=2F, (—j (1+—+—2j (C3-63)
b a o
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As discussed earlier, membrane effects play an important role in the behavior of rectangular
plates under uniform lateral pressure. Jones and Walters, Reference 3.22, developed
expressions for the collapse pressure when finite plastic deflections are taken into account.
These are based on the material rigid plastic assumption, and follow an approach similar to
the upper bound method adopted in the derivation of equations (C3-60) and (C3-62).
However, it should be noted that the results given by Jones and Walters cannot in a strict
sense be considered as an upper bound, since the Theorems of Limit Analysis are only valid
in the case of infinitesimal deflections.

For fully clamped boundaries the pressure versus deflection curve is given by:

p:M{lﬁ[wﬂM}}wﬂ (ca-64)

SPal 3\t 3-¢ t
p= 250N 2ﬂ[1+ ¢@2-¢ )(1 t _1ﬂ,ﬂ21 (C3-65)
Ca? | 3-¢ (3W t

where ¢ is given by

;=L (aa?+1-1) (C3-66)

2
(24

The pressure versus deflection curves for simply supported boundaries are given by:

pzw{ﬁ@ M}wgz (C3.67)

a 3t 3-¢ t 2

D ZMV_\/{“ 5(5—2)[1_ t’ zﬂﬂzi (C3-68)
St 3-¢ W2 [t 2

In the DNV rules [equation (C2-2)], Reference 3.4, there is a minimum thickness requirement
for plates subjected to lateral pressure. In the absence of other loads and using the notation
adopted here, this requirement takes the form:

t> E{0.771{1+ (9)2} 2 (C3-69)
2 p a

where p is the design hydrostatic pressure. This requirement implies a collapse pressure
which can be obtained from equation (C3-69) by solving for p:

p=F, [8 3.08[1+i2j (C3-70)

(24

Equations (C3-58) through (C3-63) and (C3-70) are plotted in Figure C3-8. It can be
concluded from this figure that equations (C3-58), (C3-62), (C3-63), and (C3-70) show a
reasonable agreement, while equations (C3-59) and (C3-61) also show a reasonable
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agreement, lying above the previous ones. Equation (C3-60), corresponding to the collapse
load of a perfectly clamped plate, gives a pressure which lies consistently above the values
given by all the previous curves.

In a real case the support conditions lie somewhere between the extreme cases of simple
supports and clamped supports. For continuous plating under uniform lateral pressure resting
on stiffeners, support conditions might be close to clamped, since the edge slopes are not
very different from zero. On the other hand the degree of axial restraint is difficult to predict,
but it also has a great influence on the collapse pressure, particularly beyond initial collapse.
Thus, referring to Figure C3-8, it is understandable that equation (C3-60) provides a
nonconservative estimate, since it is based on the assumptions of fully clamped and axially
restraining supports. The other rigid-plastic upper and lower bound solutions equations (C3-
61), (C3-62), and (C3-63) are very attractive and are quite convenient for design purposes.
However, their major limitation is that they are based on support conditions which are not
realistic.

Since all the curves under consideration have their own limitations, it is suggested that
equation (C3-58) be selected, since it is based on credible experimental evidence, it agrees
reasonably well with equations (C3-62), (C3-63) and (C3-70), and it allows for the
consideration of plastic set.

The permanent set or maximum plastic deformation suffered by a plate largely depends on
the degree of in-plane axial restraint at the boundaries. Equations (C3-64) through (C3-68)
assume that the edges do not move inwards, a situation which is not likely to be encountered
in practice. In fact, as discussed for example in Reference 3.23, the pressures associated with
even modest values of permanent set for plates with rigidly held edges are so high that if the
plate element boundaries are supported by stiffeners, these would collapse at much lower
pressures. At the other extreme, equations (C3-58) and (C3-59) are based on tests where the
plate edges are free to slide inwards, which is a more reasonable and conservative
assumption. It is convenient to specify in establishing design guidance a certain magnitude of
permissible permanent set, in the absence of in-plane compression, since this can lead in
general to a more weight efficient structure. For example, in Reference 3.24 and for naval
ship design, the value W/t = 0.25 is suggested for bottom plating and strength deck, and the
value W/t = 0.5 for other decks, bulkheads and remaining structure. In Reference 3.15 for
example, in the design of icebreaker shell plating, the maximum acceptable permanent set is
related to panel width, and the value of 0.3 percent of panel width seems to be acceptable.
For a mild steel with F, = 36,000 psi this corresponds to W/t = 0.1p, and for a higher strength
steel with F, = 50,000 psi this corresponds to W/t = 0.078, and these are smaller than the
values suggested in Reference 3.24. The value W/t = 0.2 is suggested here as an acceptable
maximum permanent set value.
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C3.5 BIAXIAL COMPRESSION WITH OR WITHOUT EDGE SHEAR BIAXIAL
COMPRESSION ALONE

C3.5.2 Serviceability Limit State

Elastic Behavior. The elastic buckling of simply supported rectangular plates compressed in
two perpendicular directions, Figure C3-9, is treated by Timoshenko in Reference 3.1. The
critical stresses satisfy the following relation:

2
fm®+f.n? 22—f m2+n2a—2 (C3-71)
X y b e bz

where m and n are the number of half waves in which the plate buckles in the x and y
directions, respectively, and

7’E t)°
fe :7_)121_V2 (gj (C3'72)

As suggested in Reference 3.2 it is convenient to recast equation (C3-71) in the following
form:

2 2 2 2
£ :E(iiz)(lj Hm_bj +n2] S S (C3-73)
-V b a mb 2
(aj +Rn

where R is the load ratio:

f
R=-" (C3-74)

For given values of the load ratio R and plate aspect ratio a/b, the values of m and n may be

chosen by trial to give the smallest eigenvalue fy. Alternatively equations (C3-71) and (C3-
72) can be used, and this is the approach adopted in Bulletin 2V.

Equation (C3-73) can be recast in a non-dimensional form similar to equation (C3-6) as
follows:

f_ 7t 1

(C3-75)

Inelastic Behavior. When f, and/or f, exceed the proportional limit plasticity effects have to
be considered. Note that strictly speaking, plasticity effects are governed by a combination of
stresses, as given for example by the von Mises yield criterion, and not by individual stress
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components. Thus, rather than stating that plasticity effects must be considered when either f,
or fy or both exceed the proportional limit, it is more rigorous to say that plasticity must be
considered when the equivalent stress, defined in the context of the von Mises yield criterion,
for example, exceeds the proportional limit.

Plasticity effects can conceptually be included for design purposes by adopting an approach
similar to the one used for combined uniaxial compression and edge shear. However, there is
really no theoretical justification for such a procedure in the case of biaxial compression, so
this approach is not recommended here. It seems more reasonable to adopt an interaction
type of relationship between fy and fy, and the form suggested in Reference 3.15 is

reasonable:
Y (Y
|4l =1 (C3-76)
fXCI’ fycr

This interaction equation was adopted in the first edition of Bulletin 2V, but was eliminated
in the second edition as the formulation was assumed unconservative relative to the
recommendations of Section 3.5 for biaxial compression and edge shear. An alternative form
for this interaction has been proposed by Faulkner, Reference 3.6:

: +(—y] =1 (C3-77)

C3.5.3 Ultimate Limit State

Valsgard, Reference 3.10, has recently conducted a detailed study on the ultimate strength of
plates in biaxial in-plane compression. The interaction curves proposed in this study are
recommended here and adopted in Bulletin 2V.

For plates with an aspect ratio equal to or larger than 3, Valsgard proposes the following
interaction curve:

R?-0.25R,R, +R? =1 (C3-78)

where R, =f,/f,,and R =f /f are the plate longitudinal and transverse strength
ratios, respectively.

For square plates (aspect ratio equal to unity) the following interaction curve is suggested in
Reference 3.10, based on a study conducted by Frieze et al. in Reference 3.26:

RZ-7RR, +RZ =1 (C3-79)
where

— -0.358

7=32e770 =2 (C3-80)

and B is the plate slenderness parameter defined by equation (C3-5).
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For plates with aspect ratios lying between 1 and 3, for a given value of R, the corresponding
value of R, can be found by linear interpolation.

The set of equations (C3-78) and (C3-79) is adopted in Bulletin 2V to represent the ultimate
limit state of plates in biaxial compression.

Biaxial Compression with Edge Shear. In the case of a rectangular plate under combined
biaxial compression and edge shear, an exact treatment of the interaction problem becomes
very difficult, if not impossible, as discussed in Reference 3.23. DNV (Reference 3.30)
adopts a spherical interaction surface based on a combination of elastic and von Mises
stresses. This formulation has been rewritten and recommended for Bulletin 2V for the
serviceability limit state:

%

c c c 2
f f
[iJ +(—V'J J{ XV'J J{LJ =1.0 (C3-81)
fxse f yse f Xyse Fy
where
c = 2 —l,a >1.0
a
fe = limit state von Mises stress

(F2+12-1,(f,)+313)"
C3.6 COMBINED IN-PLANE AND LATERAL LOADS

The influence of lateral pressure on the behavior of plates subjected to in-plane loads is a
complex problem, which has been studied by several authors (e.g., References 3.27, 3.28,
and 3.29). At present a clear understanding of this problem is lacking, and additional testing
seems necessary to clarify some of the aspects involved, Reference 3.23. In Reference 3.28,
for example, experiments appear to have demonstrated negligible influence of normal
pressure upon uniaxial longitudinal compressive strength. The same may be said of biaxial
strength for b/t = 50 or less. However, for greater b/t ratios the pressure can have a negative
impact on biaxial strength. Thus, in order to quantify the exact influence of lateral pressure
on ultimate strength an extensive experimental program seems necessary. Attempting to
postulate a linear interaction for wide plate collapse, as discussed in Reference 3.23, also
seems premature, given the lack of data available on the subject.

Reference 3.30 provides an explicit formulation for combined in-plane and lateral loads
based on yield-line theory, a reduced moment capacity along the yieldlines based on von
Mises’ equivalent stresses. This formulation may be appropriate when support conditions
produce tensile membrane effects in the plate under combined in-plane and lateral loads. This
formulation will probably have only a minor impact on design for typical offshore
installations.

Another interaction formulation for this condition (Reference 3.31), developed for some Gulf
of Mexico TLP designs, uses the APl Bulletin 2V formulations for component critical
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stresses. This formulation may be appropriate when support conditions are unable to produce
tensile membrane effects in the plate under combined inplane and lateral loads. At present,
this buckling interaction takes the following form (shown for the ultimate limit state; the
serviceability limit state is similar):

(o, compression, o, compression):

[(GX lo', )2 +(0'y lo', )z]yz -‘r(T/Tu )2 =1
In this case, o',,and o', are reduced from the API Bulletin 2V values due to the
presence of lateral pressure:

Ulu / Fy _ (Ju / Fy )0.8*Q"2+0.84*Q+1

where

pE/F?,
applied pressure.

p

(o, tension, o, compression):
(ax / Fy)2 +(0'y /ayu)2 +(clz, )V +plp, =1
where

applied pressure,
ultimate pressure under pressure loading only.

p
Pu

(o, tension, o, tension):

—[(UX / Fy)2 +(0'y / Fy)z]}/2 +7l7, =1
(o, compression, o, tension):

(oxlo) +(lz,f +plp, =1

A von Mises based yield criterion is also applied in all quadrants but does not control for
compression-compression:

(Gx /0';)2 - ((TX /0;)(Gy /O'y)+ (ay /(7'y)2 =1
where

oy = Fy(l—(O'/O'u)Z)%
= Fy(l—(alau)le)%
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The above formulations will have an impact on design relative to the present APl Bulletin 2V
and DNV recommendations, especially for compression-compression biaxial stress states.

The DNV 1995 and the above ultimate limit state formulations are compared on Figures C3-
10 and C3-11 for a 50 ksi yield steel plate with aspect ratio of 2.0 and a breadth to thickness
of 40 and 20, respectively. The effect of edge shear is eliminated for simplification. The
above formulations are generally more conservative over the tension-tension and
compression-compression quadrants of the interaction curve, as compared with the DNV
pressure interaction formulations. This is especially true in the compression-compression
range (the lower left-hand quadrant of the plots), which is a very typical biaxial stress state
for floating structures. Three critical pressure ratios are plotted (25, 50 and 70 psi).

The figures also plot biaxial interaction without pressure per DNV and API Bulletin 2V
formulations. Looking at the compression-compression quadrant of the figures, the DNV
curve without pressure appears to control over the DNV curves with pressure, converging as
the b/t ratio decreases. This implies that the DNV pressure interaction curve never controls
design for biaxial compression-compression. For API Bulletin 2V, the opposite is true.
Another observation is that DNV and Bulletin 2V will be closer in agreement as the
configurations become more elastic since the DNV biaxial interaction is based on elastic
buckling stress, whereas Bulletin 2V is based on critical buckling stress. However, the
addition of pressure will always result in a more conservation design using API Bulletin 2V
and the above formulations than using DNV formulations.

C4 STIFFENERS

C4.2 COLUMN BUCKLING

For a perfectly straight column made of a linear elastic material under an axial concentric
load, elastic buckling is governed by the well-known Euler formula, Reference 4.1:
7°El
P — C4-1
E (KL)2 ( )

where L is the unsupported column’s span and | is the moment of inertia of the cross
section. K is a coefficient which defines the effective length KL, and depends on the
boundary conditions. For example, for a column perfectly clamped at both ends K = 0.5,
while for a column pinned at both ends K = 1.0. K is normally taken in the range 0.7 to
1.0, but sometimes other values are suggested, see for example Reference 4.2.
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It is convenient to rewrite equation (C4-1) in the following non-dimensional form:

fe 1
—=— C4-2
F, 2 ( )
where the slenderness ratio A is given by:
F
a-LiKL 5 (C4-3)
T r VE

In equation (C4-3) r is the radius of gyration of the cross section, or r = (I /A)}/2 where A is
the cross sectional area and | has already been defined.

Equation (C4-2) is valid in the linear elastic range, where f./F <p, or A>1/,/p, . For
fe /F, > p, plastic effects have to be considered, and the column buckling problem can be

treated in a way similar to the approach used for plates under uniaxial compression, using the
Ostenfeld-Bleich quadratic parabola, equation (C3-7). The following result can be obtained:

%:1— p.(1- pr)ﬂf,/lsi (C4-4)

y r

With p, = 0.5 we obtain from equations (C4-2) and (C4-4) the values of f_/F, adopted by
AISC, Reference 4.3.

Since these formulas are to be applied to stiffener design, in determining the cross section
properties the attached effective plating should be considered. The effective width of plating
be can be determined by using the formulas presented in C3.2.3.

C4.3 BEAM-COLUMN BUCKLING

The behavior of beam-columns has been the subject of considerable research, as reviewed for
example in Reference 4.4. In this reference the following design formula is proposed, which
closely follows the expression given in Part 2 of the AISC Specification, Reference 4.3:

P M

- < -
P +B, M. <1.0 (C4-5)
where
P = axial force,
M = end moment,
My = maximum moment that can be resisted by the member in the absence
of axial loads.
For minor axis bending, lateral torsional buckling does not exist, so
that My = M,, where M, is the full plastic moment of the cross section,
Pu = ultimate axial load of the column as given by fA,
Py = axial yield load = FyA,
B1 = amplification factor given by
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C—’“21.0 (C4-6)
1-P/P:
Pe = Afe with fg given by equation (C4-2),
Cnm = 0.6+0.4%2 0.4 (C4-7)
2
Mi/M; = ratio of the smaller to larger end-moments in the plane of bending,

positive for single curvature bending, and negative for double
curvature bending.

The above beam-column interaction equation has been criticized by several researchers,
Reference 4.4, and some nonlinear interaction equations have been suggested as being more
adequate, e.g., Reference 4.5. Equation (C4-5) is recommended for Bulletin 2V, with the
understanding that future studies will be required to determine a more suitable formulation.

C4.4 TORSIONAL/FLEXURAL BUCKLING
C4.4.2 Ultimate Limit State for Doubly Symmetric Sections

Torsional buckling refers to the case where a thin-walled bar subjected to uniform axial
compression buckles torsionally, while its longitudinal axis remains straight.

The elastic torsional buckling stress (axial compressive stress) for a thin walled prismatic
member is derived in various textbooks, e.g., References 4.1, 4.6, and 4.7. For a built-in
section with the ends fixed against rotation and not free to warp, if the shear center and
centroid coincide, the buckling stress is equal to:

1 47*EC,,
T

0

f {GJ + (C4-8)

where

polar moment of inertia about the shear center,

shear modulus,

torsional constant. For thin-walled open sections consisting of n flat

elements of width b and thickness t,
J=>bt’/3

Cw = warping constant. For uniform thickness | section, web width b, and
moment of inertia Iy about an axis coincident with the middle line of
the web, C, =b’l, /4,

L = member length.

“®s
TR

Formulas giving the constants J and C,, for a number of typical thin-walled open cross
sections are included in Table 4.4-1, Section 4.4.1, Bulletin 2V.

In the DNV rules [equation (C2-16), Reference 4.8] equation (C4-8) is adopted for the
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torsional buckling of flanged profiles, with C, = hszly /4, where hs is the distance from the
stiffener toe to the shear center.

If the calculated value of the elastic critical stress exceeds the elastic limit of the material,
inelastic buckling will occur at a stress lower than the value predicted by equation (C4-8).
Inelastic buckling can again be taken into consideration by using the concept of the tangent
modulus. However, both E and G now affect the critical stress, and there is little information
about the correct reduced modulus to be used in place of G. As discussed in Reference 4.6,
the usual assumption is to take the reduced modulus for G as GE; /E, and the approximation
is accepted on the grounds that, in most torsional buckling problems, the shearing stresses
play only a minor part. By following this approach the term E; /E can be factored out, and if
equation (C3-7) is used the following result can be obtained:

L_l pr(l_ pr) (C4_9)

F, ( fo I F, )
where f;, is given by equation (C4-8). Note that this equation as exactly the same form as

equation (C3-15) which applies to rectangular plates under uniaxial compression.

A possible approach to design is to specify that the elastic buckling stress given by equation
(C4-8) should be much higher than the yield stress. For example DNV (equation C2-16),
Reference 4.8), specifies that f,. should be 2.5 times larger than Fy .

Equations (C4-8) and (C4-9) are adopted in Bulletin 2V.
C4.4.3 Ultimate Limit State for Sections with a Single Plane of Symmetry

When the shear center and the centroid do not coincide the section can buckle by a
combination of twisting and bending. This is the case of an I-section with unequal flanges,
for which there is only one axis of symmetry.

As derived for example in Reference 4.6, the critical axial load P for a simply supported
section with one axis of symmetry, with the ends free to warp but fixed against rotation, can
be found from the following quadratic equation:

:—C P?-P(P,+P)+PP, =0 (C4-10)

0

where

lc

polar moment of inertia about the centroid,

Px = 7?El /> = Euler buckling load for buckling normal to the plane of
symmetry,
Pp = (A/1,)GI +EC, 2%/ L2) is the buckling load in pure torsion.

The quadratic equation (C4-10) gives two solutions for the critical load P, one of which is
smaller than either P4 or Py, while the other is larger than either. The smaller of these roots,
or the Euler load for buckling in the plane of symmetry, represents the critical load for the
column.
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As discussed in the case of torsional buckling, when the critical stress exceeds the elastic
limit inelastic effects have to be taken into consideration. This implies that the inelastic
buckling load becomes P E; /E, where P is the elastic solution with the shear modulus G
replaced by GE; /E.

C4.4.4 Stiffener Proportions

The possibility of occurrence of different forms of local stiffener instability, such as torsional
buckling or web crippling, can to a large extent be minimized if certain local slenderness
ratios are respected. These usually involve the flange width/thickness ratio d/t.

The AISC Specification, Reference 4.3, gives the following requirements for local ratios of
compact sections. If the section is compact local buckling will not occur before the full
plastic moment is reached. As a result, the AISC Specification, Reference 4.3, increases the
allowable bending stress for compact members from 0.60 F, to 0.66 F.

For compact sections the width/thickness ratio of unstiffened projecting elements of a
compression flange must satisfy (see Reference 4.3, 1.5.1.4.1):

bf<65

2

with Fy expressed in kips/in®.

(C4-11)

The depth/thickness ratio of the web must satisfy:

d 64001 g74fa|facg16 (C4-12)
F,JF

y

IA

ﬁ\ﬂ =

t
d f— >0.16 (C4-12a)
t 'F,

axial stress.

Q_

where f, = compute

The compression flange shall be supported laterally at intervals s satisfying:

by
(C4-13)
JF
< 20,000 (C4-14)
d
. Fy
Af
where
d = depth of girder,
Ay = area of compression flange.
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It is convenient to express the foregoing ratios in terms of /E/F, . For E =30x10° psi
equations (C4-11) through (C4-13) can be rewritten as follows:

b

% 075 | E (C4-15)
t, F,

9370 El1-374 e (C4-16)
t F, F,

9148 /E (C4-16a)
t F,

S<o44|= (C4-17)
b F

y

For non-compact sections the AISC Specification, Reference 4.3, 1.9.1.2 and 1.9.2.2, gives
some stiffener proportions that allow the design to proceed with no reduction in allowable
stress, while preventing local buckling. In this case the maximum ratio for unstiffened
compression elements is given by

b
2t <055 | £ (C4-18)
2t, F

y

In the case of stiffened compression elements the following ratio applies:

b, E
<146 |— (C4-19)
t, F,

DNV [equations (C2-15) and (C2-17), Reference 4.8] proposes the following limits:
b, E
—<0.8 |— (C4-20)
t, F

y

d.14E (Ca-21)
t Fy

Comparing equations (C4-15) and (C4-20), and (C4-16a) and (C4-21), it can be concluded
that the AISC requirements for compact sections and the DNV requirements are similar.

In References 4.9 and 4.10 the following limit for the depth to thickness ratio of flat bars is

proposed:
d <0.37 £ (C4-22)
t F,

corresponding to the limit frg > 2.5 Fy, where fre is the elastic buckling stress in torsion. This
limit on d/t is comparable to the limit on b/t;given by DNV, equation (C4-20).
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It is recommended that the limits proposed by AISC be adopted in Bulletin 2V, since they
agree reasonably well with the limits proposed by other sources.

C4.5 PLASTIC BENDING

The plastic collapse load for a fully clamped beam of span a, subjected to a uniform
distributed load is given by Reference 4.11:
_16M,
aZ
where M, is the plastic moment of the cross section. Equation (C4-23) assumes the
supports can withstand the full plastic moment M,, and that no shear and axial effects
influence the structural behavior.

(C4-23)

As shown in Reference 4.12, for a symmetric | section the plastic moment M, is given by:
2
M, = {bt(h —t)+ s(%—t} }Fy (C4-24)
where b is the flange width, t the flange thickness, h the depth and s the web thickness.
For thin-walled sections (t << h) the following approximation is acceptable:

sh®
M 0 = bth +T Fy (C4‘24a)

In the presence of axial force N the bending capacity of the cross section decreases. The
moment/axial force interaction for an | section takes the following form, Reference 4.12:

ﬂ%l} {zﬂ_(iﬂ N A (C4-25)
M, N, [T A LA N, A
ﬂ[l—i}ﬁ:l,ﬁzﬂ (C4-26)
M. 2A) N, N, A

where N, = AFy = plastic axial capacity, A is the total cross sectional area, and A, = web
area. These interaction equations are adopted in Bulletin 2V.

The European Recommendations Steel Construction, Reference 4.13, give two formulas for
the moment/axial force interaction, for both strong axis bending and weak axis bending. For
strong axis bending for | beams the suggested interaction curve is linear and compares well
with the results of equations (C4-25) and (C4-26).
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In the presence of shear force the bending capacity of beams also decreases. For thin-walled |
beams loaded in the plane of the web it is reasonable to assume that the maximum carrying
capacity in shear V, is:

V, = A, % (C4-27)

Shear influences bending in extreme cases, when the length/depth ratio for the beam is very
small, and this is not likely to occur in practical situations of interest here. As suggested in
Reference 4.14 a possible shear and bending moment interaction is:

(ﬂ) N [LJ 1 (C4-28)
M (o] V 0

For a plated structure consisting of a plate stiffened by orthogonally intersecting stiffeners,
and subjected to a uniformly distributed lateral pressure p, the line loads on the stiffeners can
be estimated from the following formulas suggested by Faulkner in Reference 4.15:

q, = pb(l—zij (C4-29)
(04
pb
q, = 7 (C4'30)

where g, is the line load on the stiffener of length a, gy is the line load on the stiffener of
length b, and « is the plate aspect ratio. These two equations are adopted in Bulletin 2V.

C4.5.3 Stiffener Proportions

Requirements for stiffener proportions in members under lateral load and axial compression,
to ensure that plastic hinges develop, are discussed here.

AISC, Reference 4.3, gives in a tabular form the maximum values for the ratio b, /2t; as a
function of the yield stress (kips/in?), as shown in the first two columns below:

Fy b, /2t b, 1t, )1 JETF,
36 8.5 0.59
42 8.0 0.60
45 7.4 0.57
50 7.0 0.57
55 6.6 0.56
60 6.3 0.56
65 6.0 0.56
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The third column contains the constant which when multiplied by JE/F, (for E = 30 x 10°
psi) gives the ratio b, /t,. Thus if the smallest value of the constant is selected the
requirement for b, /t, takes the following form:

b
% <056 |5 (C4-31)
t, F

y

Regarding the depth/thickness ratio of webs the following requirements are given in
Reference 4.3:

) [1_1.43],330.27 (Ca-32)
P,|P

d
t y) 'y
d
t

<2 Pﬂ >0.27 (C4-33)

.b
'|'|U1 T
< <

where Py = plastic axial load = F/A

For E = 30 x 10° psi equations (C4-32) and (C4-33) take the form:

9 <2.38 [1 147 ] P 027 (C4-34)
\/ P, | P,
/ E

9148 ~ 5027 (C4-35)

The equivalent requirements proposed by DNV (equations (C2-18) and (C2-20), Reference

4.8) are:
b
% <06 |E (C4-36)
t, F,
E

915 E (C4-37)
t F,

The AISC and DNV requirements agree reasonably well. The AISC requirements are adopted
in Bulletin 2V.

C5 STIFFENED PANELS

A very wide range of papers have been published in the literature on the structural behavior
of stiffened panels, see for example References 5.1 and 5.2. Due to the large number of
parameters required to fully define a stiffened panel it is difficult to develop simple design
formulas. The DNV rules, Reference 5.3, give guidelines for plate, stiffener and girder
design, but do not include any specific recommendations regarding the overall design of
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stiffened panels or grillages. Some possible ways of treating this problem and the difficulties
involved will now be discussed.

C5.2 UNIAXIALLY STIFFENED PANELS IN END COMPRESSION

In Reference 5.12 an approach for deriving the average failure stress of uniaxially stiffened
plate panels in end compression is given. In this approach interaction between adjacent
stiffener fields is neglected, it is assumed that flexural failure is plate induced, and simple
support conditions at the transverse edges are assumed. The average failure stress is given

by:

b= % _f, —FAS - be; (C5-1)
, F(A+bt)
2
f a ) F
e —1-p(1- — | L, f. >pF C5-2
3 P, ( p,)(mcej = f.2 PF, (C5-2)
T (C5-3)
A +Db,t
pF, =F, (C5-4)
where
El. buckling flexural rigidity of the stiffener plus the effective width b, of
plating,
be = effective width,
As = stiffener area,
t = plate thickness,
Fo = proportional limit stress.

Both widths be and b;should be reduced by the product R,RyRyy, for the effects of any other
in-plane stresses f;, fy, and fy,. The reduction factors Ry, Ry, and Ry are given by:

R = r C5'5
L (€55
f 2n
—= =45 C5-6
F, bit-27"" (c5-%)
%;%Z(ﬂ—l),ls,b’sZ.S (C5-7)
%;1, B>25 (C5-8)
%; 0,8<1 (C5-9)
R, =1—(f,/f,f (C5-10)
R, =fi-(t, /7, F]? (C5-11)
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The subscript m for f denotes the maximum or ultimate stress for the plate, as discussed in
C3.2.3.

Since b, and b, are both functions of the required plate edge stress f;, an iterative procedure is

needed in order to find ¢. However, as indicated in Reference 5.4, experience shows that only
a few iterations are required for convergence.

In Reference 5.5 some studies on the ultimate strength of simply supported uniaxially
stiffened panels (equally spaced and sized stiffeners) under edge compression are given. A
design criterion is discussed, which seems easy to apply in practical design situations, and
which will now be described. For uniform compression a maximum plate width/thickness
ratio is suggested as follows:

plane plate (no stiffener):

b33k (C5-12)
t F,

panel with one stiffener:

b o6 |E (C5-13)
t F,

panel with more than two equally spaced stiffeners:

b _qam [E (C5-14)
t F,

where n = number of sub-panels (individual plates).

In case the compressive edge stress f; is less than the ultimate compressive stress f,, the
thickness can be reduced to / f, / f, times the values given above.

The moment of inertia of any type of stiffener shall not be less than

1 .3
I 11bt % (C5-15)
where
I = required moment of inertia of stiffener,
b = entire plate width,
t = plate thickness,
Y = required flexural rigidity ratio given by:
5 kreq (b/t)j
=k { b el (C5-16)

112



Bulletin 2V--Design of Flat Plate Structures

The parameter (b/t)0 is the maximum width/thickness ratio of the entire plate as specified
by equations (C5-12) through (C5-14), and (b/t). i the actual width/thickness ratio of the
entire plate. The parameter yyis given by:

2+1
Yn=4da’n(l+ns) (a i )2 a<a, (C5-17)
n
4
Vm= a°n 1,0!> a, (C5-18)
a =4/2n2+ns) 1 (C5-19)
A
o=
bt
where
As = area of stiffener,
o = aspect ratio of a whole panel,
Ko = buckling coefficient = 4,
k =

req

Reference 5.5 also gives ultimate strength curves reflecting the influence of residual stresses,
initial geometric imperfections, and inelastic behavior. The ultimate stress for multiple

stiffened plates under pure compression takes the following form:

1.0,1 <05
;—”:415 A05<72<10 (C5-21)
* 105/4,4>10
where
— b [R121 V°
7-0 [y ) C5-22
t Ex’k ( )
The buckling coefficient k is given by:
k = min(ke, ke ) (C5-23)
ke = 4n (C5-24)
1+0¢2)2 +ny 1
ky = ( L a<inyn (C5-25)
" o (1+ no)
5=
Bt
Y
k.= 2fL+(1ny) a> (L+ny) (C5-26)
1+ ny
El
= _s C5-27
=D ( )

where |sis the moment of inertia of one stiffenerabout an axis parallel to the plate suface at
the base of the stiffener, and D is the plate flexural rigidity.
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C5.3 ORTHOGONALLY STIFFENED PANELS

Grillage and orthotropic plate theory have been suggested for the analysis of cross stiffened
plates by several authors, e.g., References 5.4 through 5.7. The Rules for the Classification
and Construction of Seagoing Steel Ships published by Germanisher Lloyd, Reference 5.7 for
example, define the buckling strength of cross stiffened panels, in terms of orthotropic plate
theory. There is no doubt that these methods provide a powerful tool for studying the strength
of cross stiffened panels, as demonstrated for example in Reference 5.6. A possible
shortcoming of these methods is the difficulty of giving an exact definition for the flexural
rigidities of the orthotropic panel, or the rigidities of grillage elements. Also, in the case of a
grillage it is difficult to establish how the applied loads should be distributed among the
various grillage components.

The limit states given in Bulletin 2V for orthogonally stiffened panels under uniaxial and
biaxial compression and lateral load are based on the work of Mansour, References 5.4 and
5.6. In particular the graphs in Figures 5.3-1 and 5.3-2 are adapted from Reference 5.4.

C5.4 STIFFENER PROPORTIONS

The torsional and lateral buckling of stiffeners has been covered in C4.4.3. Some additional
guidelines can be given in order to prevent the possibility of tripping. The DNV rules, for
example [equation (C2-24), Reference 5.3] state that overall tripping of the girder should be
avoided by means of tripping brackets, and that the spacing between these should not exceed:

s=f-b, /FE (C5-28)
y

where f = 0.4 for symmetric flanges, and f = 0.8 for one-sided flanges. This result
compares reasonably well with the AISC requirement for lateral support of the
compression flange, Reference 5.8, as expressed by equation (C4-17).

Requirements for tripping brackets and stiffener proportions are also suggested in References
5.9 and 5.10 on the basis of U.S. Navy practice. More recent work on the subject is given in
Reference 5.11.

As mentioned in Reference 5.12, a possible basis for design includes two requirements:
1) the elastic torsional buckling stresses are kept well above yield;
i) the stiffener outer-fiber stresses under compressive load, allowing for residual
stresses and initial flexural and torsional deformations, are kept below yield
by an appropriate margin.

The margin and deformations are not specified in Reference 5.12. In the DNV rules, for
example (equation (C2-16) Reference 5.3), there is a requirement that for flanged profiles the
elastic torsional buckling stress be larger than 2.5 times the yield stress, and this seems to be
reasonable. For the outer fiber stress the DNV rules do not contain an explicit requirement,
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but they give a minimum value for the girder’s moment of inertia [equation (C2-25)].

C5.6 EFFECTIVE FLANGE

The concept of effective breadth is normally adopted in the design of flange structures, such
as box girders, in order to take the shear lag phenomenon into account. The problem has been
studied by several authors, and is briefly reviewed in Reference 5.13. In naval architecture
applications, Schade, Reference 5.14, performed the pioneer work in the area and his design
curves are suggested here, until a more thorough review of more recent literature can be
conducted, e.g., References 5.15, 5.16, and 5.17.

Schade’s approach is based on simple plane-stress solutions, and thus, as mentioned in
Reference 5.13, does not take into account the following effects:

a. normal deflections, such as initial distortion, or those caused by lateral load;

b. residual stresses;

C. plate buckling;

The DNV rules (section 5, in Reference 5.3) also contain design curves for effective breadth
calculations, probably based on Reference 5.15, and further study should be conducted on
comparing these with Schade’s curves, and other approaches available in the literature.

The three Schade design curves, Reference 5.14, are reproduced here in Figures 5.6-2 to 5.6-
4. The first figure applies to a single web, the second to double webs and the third to multiple
webs. The following nomenclature is used:

B = plate breadth, or distance between webs,

b = half breadth,

L = length,

cL = distance between points of zero bending moment,
Det = effective breadth.

The parameter gis a non-dimensional coefficient to be computed as follows. For a box girder
with identical lower and upper flanges:
1ht,

b1 (C5-29)
where
h = one-half the depth of the web,
t = flange thickness,
tw = web thickness.
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For stiffened plating
_1ht, 4A, +2ht,
P=4nt 3mc om,
where A is the area of the lower flange (zero in the case of flat bar stiffeners). As

suggested in Reference 5.18 the stress distribution across the breadth of a flange can be
approximated by the following quartic equation:

e R 6] I

where, as shown in Figure 5.6-5, fnax IS the maximum stress occurring at the web
intersection. Equation (C5-31) is adopted in the DNV rules (Section C5.5.1.1, Reference
5.3).

(C5-30)

C5.7 STIFFENER REQUIREMENTS FOR IN-PLANE SHEAR

The ultimate strength of plates loaded in shear depends to a large extent on the rigidity of the
surrounding stiffeners. In order to study this problem the non-dimensional parameter vy is
usually defined:
Bl 120-2)
Dd td
where d is the spacing between stiffeners, | is the stiffener cross section’s moment of
inertia about an axis coinciding with the surface of the plate, and t is the plate thickness.

(C5-32)

In Reference 5.19 it is shown that y does not need to be larger than the limiting ratio 5, in
order to ensure that the shear stress reaches its maximum or critical value, and where y, is
given by:

7o =M7a? -5) (C5-33)

a =b /d is the plate’s aspect ratio. Combining equations (C5-32) and (C5-33) we get for I:
1

| = E(mtgd 4(7a% -5) (C5-34)

For v = 0.3 equation (C5-34) can be rewritten in the following form:
| =0.092t°b y (C5-35)

b .d
=10 2.8—-2= C5-36
y ( 5 bj ( )
The DNV rules (equation (C2-22), Reference 5.3), give the following requirement for I,
where | is the moment of inertia of the stiffener with full plate width (using the present

notation):

| >0.1t°b » (C5-37)
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y=12554 P 4
Rq d (C5-38)
yo2g 252 09| % By
d bR, d

(C5-39)

where z,is the design in-plane shear stress in the plate and R, is the maximum shear

resistance of the plate. Comparing equations (C5-36) and (C5-39) we can conclude that the
DNV requirements seem conservative, which is partly due to a different definition for I. It
should be noted that no inelastic effects are included in equation (C5-36), and this can be
achieved in simple terms, as in the DNV approach, by multiplying y by the ratio z, /R ;.

C5.8 OTHER DESIGN CONSIDERATIONS

It is possible, to develop a stiffened panel with relatively small stiffening that will meet the
recommendations of Bulletin 2V with elastic stress ratios that are insufficient to ensure a
reasonable hierarchy of failure modes. At loads close to the structure’s ultimate capacity,
local instability could trigger progressive collapse. Thus, an explicit hierarchy check is
needed in the bulletin for stiffened panel design.

For uniaxially stiffened panels in end compression, the bulletin first edition formulations
cover ultimate (critical) buckling stresses only. A similar problem occurs for orthogonally
stiffened panels under biaxial compression when the resultant critical stress is in the material
plastic range. Elastic buckling stresses are not directly computed and are not available for
use in an elastic stress hierarchy check. This problem is overcome by back-calculating the
equivalent elastic stress (a similar procedure is used in API Bulletin 2U(first edition), Section
4.5.2b). However, the back-calculation is complicated by the fact that that Bulletin 2V
proposes various plasticity reduction factors for various buckling modes and the appropriate
reduction factor for back-calculation of elastic stresses is not immediately clear. A single
plasticity reduction factor formulation would be preferable and development of such a
formulation should be considered for future work. Meanwhile, since the long plate plasticity
reduction equation produces the lowest elastic stress for a give critical stress, this formulation
is rewritten for elastic stress calculation and used in the hierarchy check.

C6 DEEP PLATE GIRDERS
C6.1.1 Scope

Plate girder design is covered in the AISC Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings, Reference 6.1. However, AISC limits the web
depth to thickness ratio, and this excludes the very deep girders, or bulkhead girders, that can
potentially be used in offshore structure decks. This limitation prompted the inclusion of this
topic in Bulletin 2V, and the basic approach that has been adopted follows in some aspects
the philosophy of BS5400, Reference 6.2. Thus Bulletin 2V recommends that the AISC
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Specification be used, but in those cases where the web depth to thickness ratio exceeds the
AISC limit, Bulletin 2V Section 6.0 should guide the design. It is worthwhile noting that
other sources of relevant information on deep girder design are the Specifications for
Highway Bridges (AASHTO), Reference 6.3, and the Specifications for Steel Railway Bridges
(AREA), Reference 6.4.

C6.1.5.d Transverse Stresses in Webs Due to Flanges Curved in Elevation. The
transverse load transmitted to the web as a result of flange curvature can easily be obtained
from equilibrium. The transverse loads on the web are simply the components of the flange
force along the transverse direction. The formula in Bulletin 2V is identical to that in
BS5400, Par. 9.5.7.2, Reference 6.2, except that the slope is referenced to the horizontal.

C6.2 LIMIT STATES

The web plate in a deep girder is normally subjected to a combination of longitudinal and
transverse compression or tension, in-plane bending and shear. Lateral loads can also be
present. Thus, ideally each single rectangular plate component should be examined for a
combination of all these loads. However, limit states involving such a combination are not
available. It, therefore, becomes necessary to assess structural performance in order to
compare the relative importance of the several stress components. It can be assumed, for
example, that the flexural stresses in the web are effectively shed to the girder flanges, and in
this case the web plate can be designed for shear alone. For the deep girders being
considered, where a number of longitudinal stiffeners is used, the in-plane bending stresses
are almost uniform across each individual rectangular plate, so that a combination of shear
and uniform edge compression can be adopted in the design. Where significant transverse
stresses due to flange curvature or transversely applied loads are present, a load combination
involving biaxial compression and shear would be adequate. However, as discussed in C3.5,
there are no widely accepted methods to deal with the problem of combined biaxial
compression and shear, and the same applies to the case where lateral pressure acts together
with these loads. Engineering judgment must be used to address such cases.

C6.3 DESIGN CONSIDERATIONS

C6.3.2.b Webs With Openings. Openings can obviously affect the web strength, since its
ability to carry shear is reduced as a result of the decreased web area. Also, stress
concentrations occur around openings, particularly at the corners, and good detail design is
required to ensure an adequate level of performance. Extensive surveys of ship structural
details, as reported in References 6.5, 6.6, and 6.7, have shown that serious structural failures
can occur if openings are not properly designed. If openings cannot be avoided in highly
stressed areas, detailed analysis using, for example, the finite element method might be
required.

The guidelines given in Bulletin 2V on the subject of webs with openings are of an empirical

nature, and are associated with good design practice. The impact of plate openings has been
extensively studied in the context of different applications. The impact on ship structures is
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discussed for example in Reference 6.8. Specific detail design guidelines on openings in ship
hull structures are given in Reference 6.5. These include in particular the case of long
openings or groups of long openings all in the same section, such as discussed in Bulletin 2V.

C6.3.3 Longitudinal Web Stiffeners

The minimum moment of inertia |5 of the stiffener cross section in Bulletin 2V is
I, = 4at® (Ce6-1)

The minimum value specified by AASHTO, Reference 6.3, is
2
1, :bt{ZA(%} —0.13} (C6-2)

This formula is valid for a/b smaller than unity, where a is the spacing between transverse
web stiffeners, and b is the spacing between longitudinal web stiffeners.

In order to compare these two formulas it is convenient to normalize Is with respect to the
moment of inertia of the web plate about its own mid-surface, or (%2)3t3. This leads to the

following non-dimensional parameter:

r_ E _
1] =8 (C6-3)
| = 12{2.4(%) _ 0.13] (C6-4)

These two formulas are compared in Figure C6-1, and it can be concluded that
I, = 4at®provides a more conservative requirement. An alternative expression for the

minimum stiffener inertia, where the full attached plate width is included, is provided by
DNV, Reference 6.9:

| >0.25a°(A, +bt)F, /E (C6-5)

where A is the stiffener cross sectional area, excluding any attached plating. Comparisons of
equations (C6-1), (C6-2), and (C6-5) for a typical girder arrangement indicate that they all
lead to similar results.

C6.3.4.d Axial Force Due to Tension Field Action. The AISC Specification, Chapter G,
G3, Reference 6.1, provides a formulation for deriving the axial force on transverse stiffeners
due to tension field action. The AISC formulation was based on extensive tests for girders
with multiple transverse stiffeners, as discussed in Reference 6.10. In the present application
the webs are intended to be both longitudinally and transversely stiffened, and the treatment
in BS5400, Reference 6.2, is preferred. The formulations in Par. 6.3.4.d of Bulletin 2V are
identical to those in Par. 9.13.3.2 of BS5400.
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Figure C6-1—Comparison of Minimum Longitudinal Stiffener Stiffness Requirements
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C6.3.4.e Axial Force Assumed in Preventing Web Buckling. The formulation in Bulletin
2V is identical to the one given in Par. 9.13.3.3 of BS5400, Reference 6.2. The coefficient ks
was redefined in a form that is consistent with the nomenclature adopted in Bulletin 2V.

C6.3.4.f Axial Force Due to Curvature. The formula given in 6.5.4.f is similar to the one in
6.1.5.d of Bulletin 2V. Some comments on its basis are given in C6.1.5.d.
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B1 BACKGROUND

The first edition of API Bulletins 2U and 2V were published in 1987. At that time, most
offshore structures were analyzed and designed based on three-dimensional space frame
structural models. Thus, the applied load and stress formulations in the bulletins were
written assuming load and stress results from these space frame models.

Since 1987, the use of partial or full finite element plate and/or shell modeling of offshore
structures has increased dramatically. Determination of applied stresses from such models
for use in bulletin formulations is presently left up to the analyst or designer. Actual values
of these applied stresses are a function of model complexity and mesh definition, individual
element capability, and interpretation of analysis results. Because of this and the additional
expertise required to properly perform a finite element analysis of complex structures such as
offshore platforms, a general guideline for the minimum requirements of such an analysis is
needed to ensure that the bulletin formulations remain commensurate with the analysis
results and the bulletin’s intent.

In 1996, Basu et al (Ship Structure Committee Paper No. SSC-387) developed a systematic
and practical methodology to assess the validity of FEA results based on the selected analysis
procedure, type of elements, model size, boundary conditions, load application, etc. Models
and analyses that meet their assessment should produce response results appropriate for use
with API bulletin formulations. The more important aspects are extracted and summarized in
the following, which may serve as guidance for the minimum requirements of a finite
element model and analysis in determining the structural response for use with API bulletin
formulations.

B2 BULLETIN INTENT

The major purpose of the API 2V and 2U bulletins is to provide guidance for the design of
stiffened steel flat plate or cylindrical shell structures. The guidance takes the form of
buckling formulations and design considerations with respect to strength and, in the case of
Bulletin 2V, serviceability. Working stress design methods are assumed with sufficient
factors of safety to ensure that the material remains in the linear range under design loads.
The bulletin formulations also account for the normal fabrication residual stresses and
geometric imperfections that need not be modeled in an analysis for the purposes of bulletin
evaluation.

In order to implement the bulletin buckling formulations, average applied stresses need to be
determined at or near the center of each plate panel, assuming a more or less uniform stress
gradient across the plate panel. Likewise, yielding considerations require additional stress
determination along the edges of each plate panel. Assuming a generally uniform stress
gradient, this establishes the minimum number of locations for applied stress determination
for a quadrilaterally shaped plate at nine (9), namely at the center, four corners and midspan
at the four edges of the quadrilateral plate. Similarly, stiffener stresses should be determined
at each support and at midspan at the associated extreme fibers of the stiffener. Of course,
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the stress gradient should be reviewed to determine if evaluation at additional locations is
needed at specific plate panel locations.

B3 BULLETIN USE

Assuming an appropriate finite element model and analysis, the analysis results may be used
to determine the applied stresses for use with the bulletin buckling stress formulations.
Generally, this may be done by integrating the FEA stress results along the edges and
centerlines of each plate panel. The in-plane directional axial and shear stresses are
determined as the average stress along each line of integration and the in-plane bending
stresses are determined from the variation of stress from its associated average normal stress.
Out-of-plane stresses due to lateral pressure may also be determined from the element
stresses assuming the element types that are used accurately predict the out-of-plane
response.

Once these applied stresses are determined, they may be used directly in the bulletin buckling
stress formulations and checked against the bulletin allowables. Plate buckling checks are
performed for applied stresses at, or near, the center of the plate. Plate yielding checks are
performed for applied stresses at all locations. This is most easily done by determining the
von Mises equivalent stress at each location and comparing it against the specified limit
criterion.

B4 FINITE ELEMENT ANALYSIS GUIDELINES

It is important that the finite element analysis accurately models the intended loading and
structural response. This is accomplished by selecting a model size, element mesh, element
types and boundary conditions that are commensurate with the area of interest. In most cases
these parameters are inter-related and the proper selection for all these parameters requires an
experienced analyst. Lack of experience should be supplemented by supervision and review
by others with appropriate levels of finite element analysis experience with similar types of
offshore structures of structural components.

B5 MODEL

Prior to modeling, it is useful to have a general idea of the anticipated behavior of the
structure. This knowledge serves as a useful guide in several modeling decisions that need to
be made in developing the model. For example, stiffened plate structure that is subject
primarily to in-plane loads rather than transverse loads is better modeled using membrane
elements rather than plate/shell elements. However, if the analysis of the stiffened plate
structure is local in nature, or the loading is transverse, shear effects may be significant and
certain element formulations may not account for shear, or such an option must be
specifically selected by the analyst.
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B6 MESH

Mesh design is one of the most critical tasks in finite element modeling and is often a
difficult one. Mesh density, mesh transitions and the ratio of stiffness of adjacent elements
must all be considered when developing a finite element mesh. As a general rule, a finer
mesh is required in areas of higher stress gradient. Of course, a finer mesh could be used for
the entire model but this approach sacrifices computational economy and increases the
possibility of manipulation errors. For these reasons, variations in mesh density are often
used.

The mesh density depends on the element type used, distribution of applied load and purpose
of the analysis. In general, the mesh should be finest in regions of steepest stress gradients.
Thus, where stresses show a sharp variation between adjacent elements, the mesh should be
refined and the analysis rerun. Mesh density also depends on the type of analysis (i.e., linear,
non-linear, or dynamic) and the number and type of element integration points.

B7 ELEMENT TYPE

At present, linear stress field elements are the most commonly used. This is due, in part, to
the requirement that the order of the stress function should properly match the stress gradient,
and this is easy to visualize for linear stress elements in a properly sized mesh. For most
portions of structures, a mesh of linear stress elements can provide a good description of the
stress state. Even in areas of discontinuities or in areas of non-linearity, linear elements in a
relatively fine mesh can give excellent results. Thus, the use of properly meshed linear stress
elements is appropriate for structure components covered by the bulletin formulations. The
use of higher order stress fields may be appropriate for coarser meshes although free surface
stress prediction can be in error.

B8 ELEMENT SHAPE

Element performance is affected by element shape, where element shape is a function of the
element aspect ratio, element skewness and element warping.

A general rule of thumb is to limit the aspect ratio of membrane and bending elements to 3
for good stress results. The best shape for quadrilateral and triangular elements is square and
equilateral, respectively. Thus, the use of square and/or equilateral elements is particularly
desirable in areas of the highest stress gradients. However, higher order elements will be less
sensitive to deviations from the ideal aspect ratio than lower order elements.

Element performance also degrades with element skewness. For quadrilateral elements,
vertex angels greater than 135° or less than 45° are not recommended and the quadrilateral
element will perform better if its shape is that of a parallelogram. For triangular elements,
vertex angels should remain in the range of 45° to 90°.
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Element warping occurs when the element nodes are not coplanar. The degradation in
element performance depends on the element formulation. Triangular elements may be used
in place of warped quadrilateral elements where curvature is high.

B9 STIFFENED PLATE STRUCTURE MODELING

Based on the above, the following guidance is provided for modeling typical stiffened plate
structure for offshore structures. Minimum requirements are summarized on Table B-1.

Individual plate panels should be modeled with linear stress membrane elements, where
transverse load effects are negligible, or bending elements where transverse load effects are
important.

Since most plate panels are rectangular, or at least quadrilateral in shape, elements should be
generally quadrilateral and as nearly square as possible. The minimum number of elements
on any one side of a plate panel should be two if the element stress formulations adequately
predict stresses at the element nodes. If element prediction is inadequate at the element
nodes but acceptable at the element center, then the minimum number of elements modeling
any one side of a plate panel should be three (figure B-1). In any case, the model should be
developed such that accurate stress predictions are obtained at each corner, midspan along
each edge and at the center of the plate. This may require acceptable node stress prediction
from the elements unless an acceptable interpolation technique is developed to obtain the
stresses at the edges of the plate.

Stiffener flanges and webs may be modeled similar to plate panels or as single beam
elements with structural properties accounting for the associated plate effective width and
offset of the stiffener. The first approach has the advantage of being easier to visualize,
provides more local results that may be of interest, but suffers from an increase in
computational time and increased volume of data to manipulate. The second approach is
more common because of the inherent computational efficiency. Care should be taken that
the stiffener plate effective width is not double counted in the model; software capabilities in
this area vary with each program.

B10 APPLIED STRESSES FOR BULLETIN CODE CHECKS

The purpose of this section is to provide a minimum FEA guideline for determining the
average applied stresses compatible with those locations shown on Figure B-3 and the critical
stresses obtained from Bulletin 2V formulations. When a very fine mesh is use, peaked
stress concentrations should not be used in conjunction with stresses computed from Bulletin
2V formulations.

The specific procedure for a rectangular plate or stiffened panel is as follows:

1) Assuming relatively constant stress gradients across the plat or panel spans,
determine the FEA stresses at locations 1 through 9 as shown on Figure B-3.
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Where stress gradients vary, determine FEA stresses at additional appropriate
locations and adjust the remaining procedure accordingly.

Determine the applicable in-plane longitudinal axial average stress, fxa, maximum
bending stress, fx, and average in-plane shear stress, zy, along the two short
edges (lines 1-4-7 and 3-6-9) and the plate midspan (line 2-5-8). For example,
along line 2-5-8:

fXa258 =0.25 fx2 +0.5 fx5 +0.25 fx8
fxb258 = max[abs(fxazss - fx2 )’ abs( fxa258 - fx8)]

Ty = 0.257,, +0.507, ¢ +0.257, 4

Xy5

Determine the applicable in=plane longitudinal axial average stress, fxa,
maximum bending stress, fx,, and average in-plan shear stress, Ty, along the two
long edges (lines 1-2-3 and 7-8-9) and the plate midspan (line 4-5-6). For
example, along line 4-5-6:

foaass = 0.25F,, +050f ( +0.25f ¢

fyb456 = maxlabs(fya456 - fy4 )’ a‘bs(fya456 - fyG )J

Toyase = 0.257,, +0.507, 5 + 0.257, ¢

xy4 Xy5
For Bulletin 2V only, if lateral pressure is present, the plate panel out-of-plane
stress effects should be similarly determined from FEA element stresses, if
available, or explicitly calculated based on the plate panel geometry, thickness
and applied pressure.

Use the axial (fxa, fya) and bending (fw, fyb) Stresses computed above in the
appropriate Bulletin 2V code checking formulations, in accordance with Table B-
2. The applied stresses fyaoss, fxvoss, fyasse, fyoase, and the absolute maximum of
Twye2ss and zyase should be used in the bulletin uniaxial and biaxial compression
buckling checks, with or without additional effects due to lateral pressure. All
locations (e.g., 1 through 9) should be checked against yield or the appropriate
tension interaction equations.

Again, the above procedure assumes that the stress gradient is relatively constant. If this is
not true, stresses at additional locations should be determined in a similar manner so that a
more accurate stress state for the plate or panel may be determined.
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Out-Of-Plane Bending Stress Evaluation at the
Center of the Panel

=@=— S3 (2 triang. for a square)
== S4 (4 integr. points)
== S4R (1 integ. point)
=>&= S4R5 (1 integ., 5 dof)

=g= S4 (0odd Panels)
=@=S4R (odd Panels)

10 20 30

40 50 60

Number of Nodes Across Short Span

Figure B-1—Panel Weak Axis Bending Stress Evaluation at Center of Panel
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Out-Of-Plane Bending Stress Evaluation at the
Center of the Longitudinal Edge of the Panel

T |

=@=— S3 (2 triang. for a square)
== S4 (4 integr. points)
== S4R (1 integ. point)
=>&= S4R5 (1 integ., 5 dof)

=g= S4 (0odd Panels)
=@=S4R (odd Panels)
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Figure B-2—Panel Weak Axis Bending Stress Evaluation at Center of Longitudinal Edge
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MINIMUM FEA REQUIREMENTS FOR
STIFFENED FLAT PLATE STRUCTURE

Item Coarse Mesh Fine Mesh
Strength Analysis Fatigue Analysis
Model Purpose Bulletin Code Check Stress Concentration

Element Model for Plate

In-Plane Load: Linear Stress Membrane Elements
Transverse Load: Linear Stress Membrane Element
w/ Shear lag Capability

Element Mesh for Plate

Max. Aspect Ration = 3.0
Max. Element Dimension = 10t

Max. Aspect Ratio = 3.0
Max. Element Dimension = 2t

Element Shape for Plate

4-Node Quadrilateral, Vertices 45 to 135 deg, Square Optimal
3-Node Triangular, Vertices 45 to 90 deg, Equilateral Optimal

Element Model for Stiffeners

Beam or Spar or Linear Stress Membrane Elements

Element Mesh for Stiffeners

Same as Plate

Element Shape for Stiffeners

2-Node Beam or Spar or Same as Plate

MINIMUM FEA REQUIREMENTS FOR
STIFFENED CYLINDRICAL PLATE STRUCTURE

Item Coarse Mesh Fine Mesh
Strength Analysis Fatigue Analysis
Model Purpose Bulletin Code Check Stress Concentration

Element Model for Plate

In-Plane Load: Linear Stress Membrane Elements
Transverse Load: Linear Stress Shell Element w/ Shear lag Capability

Element Mesh for Plate

Max. Aspect Ration = 3.0
Max. Element Dimension = 10t

Max. Aspect Ratio = 3.0
Max. Element Dimension = 2t

Element Shape for Plate

4-Node Quadrilateral, Vertices 45 to 135 deg, Square Optimal
3-Node Triangular, Vertices 45 to 90 deg, Equilateral Optimal

Element Model for Stiffeners

Beam or Spar or Linear Stress Membrane Elements

Element Mesh for Stiffeners

Same as Plate

Element Shape for Stiffeners

2-Node Beam or Spar or Same as Plate

Table B-1—Minimum FEA Requirements for Stiffened Plate Structure
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Applicable Applied Stresses from FEA for Code Check

FEA Stress Out-of-Plane
Location In-Plane f,,, In-Plane f,, In-Plane T, Due To Comment
o fyo ) Pressure
1 fu i Ty None Yield check
b2 f T2 Buckling
2 fxa258 fi al23 TX 123 fzb2 .
Y Y checks optional
fivass fyo123 Tiyoss
3 fs fi3 Tyys None Yield check
fa fya Tya Buckling
4 fra147 fyaase Tayia7 Fons checks optional
fip1a7 fibas6 Tiyass
5 fx5 fy5 TxyS f Buckling
(Center of fLanss f456 Tyyoss f"bzs 8 checks
plate or panel) faass fb456 Tyase xb456 required
fi fye Ty Buckling
6 fxa369 fya456 Txy369 fzbé checks Optional
fxb369 fyb456 Txy456
7 fi7 fy7 T None Yield check
fis fys T Buckling
8 fxa258 fya789 Txy258 fzb8 checks optional
fxb258 fyb789 Txy789
9 fyo fyo Tiyo None Yield check

Notes:

This table presents the minimum stress components for bulletin code checking at each stress location.
Additional locations may be needed for plates or panels with varying stress gradients or large aspect ratios.
See Figure B-3 for FEA stress locations.

Average stresses are used for uniaxial and biaxial interaction buckling checks. Point stresses are used for
von Mises stress determination. Where more than one shear stress result is available, the largest value shall

be used.

This table does not apply for locations of local stress concentration.
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