
Design of Flat Plate Structures
API BULLETIN 2V
THIRD EDITION, JUNE 2004

ERRATA, MARCH 2008





Design of Flat Plate Structures
API BULLETIN 2V
THIRD EDITION, JUNE 2004

ERRATA, MARCH 2008



 

SPECIAL NOTES

 

API publications necessarily address problems of a general nature. With respect to partic-
ular circumstances, local, state, and federal laws and regulations should be reviewed.

API is not undertaking to meet the duties of employers, manufacturers, or suppliers to
warn and properly train and equip their employees, and others exposed, concerning health
and safety risks and precautions, nor undertaking their obligations under local, state, or fed-
eral laws.

Information concerning safety and health risks and proper precautions with respect to par-
ticular materials and conditions should be obtained from the employer, the manufacturer or
supplier of that material, or the material safety data sheet.

Nothing contained in any API publication is to be construed as granting any right, by
implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or prod-
uct covered by letters patent. Neither should anything contained in the publication be con-
strued as insuring anyone against liability for infringement of letters patent.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every
five years. Sometimes a one-time extension of up to two years will be added to this review
cycle. This publication will no longer be in effect five years after its publication date as an
operative API standard or, where an extension has been granted, upon republication. Status
of the publication can be ascertained from the API Standards department telephone (202)
682-8000. A catalog of API publications, programs and services is published annually and
updated biannually by API, and available through Global Engineering Documents,  15 Inv-
erness Way East, M/S C303B, Englewood, CO 80112-5776. 

This document was produced under API standardization procedures that ensure appropri-
ate notification and participation in the developmental process and is designated as an API
standard. Questions concerning the interpretation of the content of this standard or com-
ments and questions concerning the procedures under which this standard was developed
should be directed in writing to the Director of the Standards department,  American Petro-
leum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to
reproduce or translate all or any part of the material published herein should  be addressed to
the Director, Business Services.

API standards are published to facilitate the broad availability of proven, sound engineer-
ing and operating practices. These standards are not intended to obviate the need for apply-
ing sound engineering judgment regarding when and where these standards should be
utilized. The formulation and publication of API standards is not intended in any way to
inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking
requirements of an API standard is solely responsible for complying with all the applicable
requirements of that standard. API does not represent, warrant, or guarantee that such prod-
ucts do in fact conform to the applicable API standard.

 

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or 
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, 

without prior written permission from the publisher. Contact the Publisher, 
API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005.

 

Copyright © 2004 American Petroleum Institute



 

FOREWORD

 

This Bulletin is under jurisdiction of the API Subcommittee on Offshore Structures.

This Bulletin provides guidance for the design of steel flat plate structures. Used in con-
junction with API RP 2T or other applicable codes and standards, this Bulletin will be help-
ful to engineers involved in the design of offshore structures which include flat plate
structural components.

The buckling formulations and design considerations contained herein are based on the
latest available information. As experience with the use of the Bulletin develops, and addi-
tional research results become available, it is anticipated that the Bulletin will be updated
periodically to reflect the latest technology.

API publications may be used by anyone desiring to do so. Every effort has been made by
the Institute to assure the accuracy and reliability of the data contained in them; however, the
Institute makes no representation, warranty, or guarantee in connection with this publication
and hereby expressly disclaims any liability or responsibility for loss or damage resulting
from its use or for the violation of any federal, state, or municipal regulation with which this
publication may conflict.

Suggested revisions are invited and should be submitted to API, Standards Department,
1220 L Street, NW, Washington, DC 20005
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Section 1-Nomenclature and Glossary 

 
1.1 Nomenclature 
 
Note: The terms not defined here are uniquely defined in the sections in which they are used. 
 
1.1.1 Material Properties 
 E = modulus of elasticity, [ksi]. 
 G = shear modulus, [ksi]. 
 v = Poisson’s ratio. 
 Fy = minimum specified yield stress of material, [ksi]. 
 τy = 3/yF  yield stress in shear, [ksi]. 
 Fp = proportional limit stress in compression, [ksi]. 
 pr = Fp / Fy stress ratio defining the beginning of nonlinear effects in 

compression. 
 
1.1.2 Plate Geometry and Related Parameters 
 a = plate length or larger dimension, [in.] 
 b = plate width or shorter dimension, [in. ] 
 D = Et3/[12 (1 - v2)] plate flexural rigidity, [kips-in]. 
 t = plate thickness, [in.] 
 α = a/b ≥  1 aspect ratio 
 β = EFtb y /)/( slenderness ratio 
 
1.1.3 Stiffener Geometry and Related Parameters 
 A = cross sectional area, [in.2] 
 Aw = web area, [in.2] 
 b = spacing between stiffeners, [in.] 
 be = effective width of attached plating, [in.] 
 bf = flange total width, [in.] 
 Cw = warping constant (see formulas in Table 4.4-1), [in.6] 
 d = web depth, [in]. 
 I = minimum moment of inertia, [in.4]
 Ic = polar moment of inertia about centroid, [in.4]
 Is = polar moment of inertia about shear center, [in.4] 
 Il = moment of inertia of symmetric I-section in the plane of minimum 

stiffness, [in.4] 
 I2 = moment of inertia of symmetric I-section in the plane of maximum 

stiffness, [in.4] 
 J = torsion constant (see formulas in Table 4.4-1), [in.4]
 K = effective length ratio, normally taken as unity. 
 L = unsupported length, [in.] 
 Lb = bracing distance, [in.] 
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 Ly = length at which there is a transition between elastic and plastic limit 
state moments for lateral buckling, [in.] 

 r = A  / I  radius of gyration, [in.] 
 S = section modulus for bending of symmetric I-section in the plane of 

maximum stiffness, [in.3] 
 s = spacing between tripping brackets, [in.] 
 t = attached plate thickness, [in.] 
 tf = flange thickness, [in.] 
 tw = web thickness, [in.] 
 λ = EFrKL y /)]/([ π stiffener slenderness ratio. 
 
1.1.4 Stiffened Panel Geometry and Related Parameters 
 A = entire panel length, [in.] 
 A2 = area of flange in stiffened plating (zero in the case of flat bar 

stiffeners), in.2
 As = stiffener area, [in.2]  
 B = entire stiffened panel width in the case of a stiffened panel (see Figure 

5.1-1), or distance between webs for effective flange breadth 
calculations (see Figure 5.2-1), [in.] 

 2b = plate breadth, or distance between webs, [in.] (See Figure 5.6-1) 
 bef = effective breadth, [in.] 
 d = spacing between stiffeners = 2b, [in.] 
 h = one half web depth, [in.] 
 Is = moment of inertia of one stiffener about an axis parallel to the plate 

surface at the base of the stiffener, [in.4]
 L = length, [in.] 
 cL = distance between points of zero bending moment, [in.] 
 n = number of sub-panels (individual plates). 
 t = plate thickness, [in.] 
 tf = flange thickness, [in.] 
 tw = web thickness, [in.] 
 α = aspect ratio of whole panel 
 γ =   )/()1(12 32 dtIv s−
 δ = As/(Bt) 

 λ  = )/()1(12)/( 22 kEvFtB y π− , modified slenderness ratio for uniaxially 
stiffened panels, where k is the buckling coefficient. 

 Ix, Iy = moment of inertia of the stiffeners with effective plating extending in 
the x- or y-direction,  
respectively, [in.4] 

 Ipx, Ipy = moment of inertia of the effective plating alone associated with 
stiffeners extending in the x- or y-direction, respectively, about the 
neutral axis of the entire section, [in.4] 

 sx, sy = spacing of the stiffeners extending in the y- or x-direction, 
respectively, [in.] 
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 tx, ty = equivalent thickness of the plate and the stiffeners (diffused) extending 
in the x-direction or y-direction, respectively, [in.] 

 Mx, My = moment per unit length that produces a stress fx or fy, respectively, 
[kips] 

 ra, rb = bending lever arm associated with fx or fy, respectively, i.e., distance 
from the neutral axis of the stiffener with the effective breadth of plate 
to the outer fiber of the flange (for the flange stress) or of the plate (for 
the plate field stress), [in.] 

 
1.1.5 Deep Plate Girder Geometry and Related Parameters 

Af = flange cross-sectional area, [in.2] 
 a = spacing between transverse web stiffeners, [in.] 
 ah = web opening height, [in.] 
 Bf = width of unstiffened flange in a beam with only one web, or half the 

distance between successive longitudinal stiffeners or webs, together 
with any adjacent outstand, [in.] (See Fig. 6.1-4.) 

 b = spacing between longitudinal web stiffeners, [in.] (See Fig. 6.3-1.) 
 be = effective plate flange width attached to web stiffeners, [in.] 
 bh = web opening length, [in.]  (See Fig. 6.3-1) 
 ds = spacing between web longitudinal stiffeners, [in.] 
 dw = web depth, [in.] 
 Rf  = flange radius of curvature, [in.] 
 sh = clear distance along the longitudinal direction between web openings, 

[in.] 
 tf = flange thickness, [in.] 
 tw = web thickness, [in.] 
 θ = slope of web to horizontal. 
 
1.1.6 Stresses 
1.1.6.1 Normal Stresses: 
 f = normal stress, [ksi]. 
 fx , fy = normal stress directed along the x and y axis, [ksi]. 
 fxy = in-plane shear stress, [ksi] 
 fse = elastic serviceability limit state stress, [ksi]. 
 fsp = plastic serviceability limit state stress, [ksi]. 
 fu = ultimate limit state stress, [ksi]. 
 fxse = normal stress fse when the plate is compressed in the x direction alone, 

[ksi] 
 fyse = normal stress fse when the plate is compressed in the y direction alone, 

[ksi]. 
 fxyse = edge shear stress fse when the plate is loaded in pure shear, [ksi]. 

fxysp = edge shear stress fsp when the plate is loaded in pure shear, [ksi]. 
 fxyu = edge shear stress fu when the plate is loaded in pure shear, [ksi]. 
 fxl = limit state normal stress in the x direction when the plate is 

compressed in the x direction, [ksi]. 
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 fyl = limit state normal stress in the y direction when the plate is 
compressed in the y direction, [ksi]. 

 fxyl = limit state shear stress when the plate is loaded in pure shear, [ksi]. 
 
1.1.6.2 Shear Stresses: 
 fxy = in-plane shear stress, [ksi]. 
 fxyse = elastic serviceability limit state stress, [ksi]. 
 fxysp = plastic serviceability limit state stress, [ksi]. 
 fxyu = ultimate limit state stress, [ksi]. 
 
1.1.7 Plate Lateral Deflections 
 Wa = maximum allowable deflection, [in.] 
 We = maximum elastic deflection, [in.] 
 Wp = plastic set (maximum permanent plastic deflection), [in.] 
 
1.1.8 Plate Lateral Pressures 
 p = uniform lateral pressure, [ksi]. 
 pu = ultimate limit state pressure, [ksi]. 
 
1.1.9 Stiffener Axial Loads 
 P = applied axial force, [kips]. 
 Py = fully plastic axial force = A Fy , [kips]. 
 PEe = column elastic ultimate state axial force, [kips]. 
 PEp = column plastic ultimate state axial force, [kips]. 
 PTe = column torsional elastic ultimate state axial force, [kips]. 
 PT p  = column torsional plastic ultimate state axial force, [kips]. 
 PTFe = column torsional/flexural elastic ultimate state axial force, [kips]. 
 PTF p  = column torsional/flexural plastic ultimate state axial force, [kips]. 
 
1.1.10 Stiffener Lateral Distributed Loads 
 q = uniform lateral load per unit length, kips per [in.] 
 qa = load q per unit length on stiffener of length a, kips per [in.] 
 qb = load q per unit length on stiffener of length b, [kips per in.] 
 qu = ultimate load, [kips per in.] 
 
1.1.11 Stiffener Bending Moments 
 M = applied bending moment, [in-kips]. 
 Mo = fully plastic bending moment, [in-kips]. 
 M1 = smaller end moment in the plane of bending, [in-kips]. 
 M2 = larger end moment in the plane of bending, [in-kips]. 
 Mfy = moment at which the flanges are fully plastic, [in-kips]. 
 My = moment at which yield first occurs in the flanges, [in-kips]. 
 Mu = ultimate limit state M, [in-kips]. 
 Mue = elastic ultimate limit state M, [in-kips]. 
 Mup = plastic ultimate limit state M, [in-kips]. 
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1.1.12 SI Metric Conversion Factors 
 in x 25.4 = mm 
 ksi x 6.894757 = MPa 
 
1.2 GLOSSARY 
1.2.1 chord: Deep plate girder flange. 
 
1.2.2 deep plate girder: Deep plate girder with the web stiffened in both the longitudinal and 
transverse directions and satisfying the requirements of 6.1.1. See also 6.1.2. 
 
1.2.3 design variables: Quantities that define for the purpose of structural design or analysis 
a structural component and material, its state of stress, and the applied loads. 
 
1.2.4 distortion energy theory: Failure theory defined by the following equation, where the 
applied stresses are positive for tension and negative for compression: 

2222 3 yxyyyxx Ffffff =++−  

 
1.2.5 effective flange breadth: The reduced breadth of a plate subjected to bending and/or 
tensile load, which, with an assumed uniform stress distribution, produces the same effect on 
the behavior of a structural member as the actual breadth of the plate with its non-uniform 
stress distribution. While the effective flange width applies to a member under compression, 
the effective flange breadth applies to a member under bending and/or tensile loading, and is 
associated with shear lag effects. See 5.6. 
 
1.2.6 effective flange width: The reduced width of a plate subjected to compressive load, 
which, with an assumed uniform stress distribution produces the same effect on the behavior 
of a structural member as the actual width of the plate with its non-uniform stress 
distribution. See 4.1.2. 
 
1.2.7 panel: See stiffened panel. 
 
1.2.8 plate: In Bulletin 2V this term refers to a flat thin rectangular plate, see 3.1.2. 
 
1.2.9 global stresses: Stresses resulting from global deformation of the structure. 
 
1.2.10 proportional limit stress (Fp): Stress above which the stress-strain curve is no longer 
linear and which represents the onset of plastic behavior. If no specific value for the steel 
being used is available Fp can be taken as 0.60 Fy , where Fy is the yield stress. 
 
1.2.11 residual stresses: The stresses that remain in an unloaded member after it has been 
formed and installed in a structure. Some typical causes are forming, welding and corrections 
for misalignment during installation in the structure. 
 
1.2.12 panel stresses: Stresses on stiffened panels resulting from local applied pressures or 
transverse loads. 
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1.2.13 serviceability limit state: Function of design variables which defines a condition at 
which a member no longer satisfies functional requirements, although it is still capable of 
carrying additional loads before reaching an ultimate limit state. See 2.4.3. 
 
1.2.14 shear lag: Shear effects on beams that cause a non-uniform distribution of 
longitudinal bending stresses across the flange. 
 
1.2.15 stiffened panel: Structural component comprising one or two sets of equally spaced 
uniform stiffeners of equal cross section supporting a thin plate. If there is only one set of 
stiffeners the panel is uniaxially stiffened, and if there are two the panel is orthogonally 
stiffened. See 5.1.2. 
1.2.16 stiffener: Straight and slender thin-walled member of uniform cross which serves as a 
stiffening element for a flat plate structure. See 4.1.2. 
 
1.2.17 plate stresses: Stresses on a thin rectangular plate resulting from lateral pressure. 
 
1.2.18 tripping: Torsional buckling of stiffener. 
 
1.2.19 ultimate limit state: Function of design variables that defines the resistance of a 
member to failure (i.e., its maximum load carrying capacity at failure), see 2.4.2. 
 
1.2.20 yield stress: The yield stress of the material determined in accordance with ASTM 
A307. 
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Section 2-General 
 
2.1 SCOPE 
 
2.1.1 Bulletin 2V provides guidance for the design of steel flat plate structures. These often 
constitute main components of offshore structures. When applied to Tension Leg Platforms 
(TLPs) this Bulletin should be viewed as a complement to API RP 2T. The Bulletin 
combines good practice considerations with specific design guidelines and information on 
structural behavior. As such it provides a basis for taking a “design by analysis” approach to 
structural design of offshore structures. 
 
2.1.2 Flat plate structures include thin plates, stiffened panels and deep plate girders, and they 
can constitute the main component of decks, bulkheads, web frames and flats. The external 
shell of pontoons or columns can also be made of flat stiffened panels if their cross section is, 
for example, square or rectangular, rather than circular. 
 
2.1.3 Bulletin 2V is not a comprehensive document, and users have to recognize the need to 
exercise engineering judgment in actual applications, particularly in the areas that are not 
specifically covered. 
 
2.1.4 Plates are discussed in Section 3, stiffeners in Section 4, stiffened panels in Section 5, 
and deep plate girders in Section 6. Limit states are given for each relevant load and load 
combination, and design requirements are also defined. Figure 2.1-1 summarizes the 
structural components and the limit states covered in Bulletin 2V. 
 
2.2 REFERENCES 
Background and references on the contents of Bulletin 2V are included in a Commentary 
given in the Appendix. Reference is made to API RP 2T, Recommended Practice for Design 
of Tension Leg Platforms, and API RP 2A, Recommended Practice for Planning, Designing, 
and Constructing Fixed Offshore Platforms, American Petroleum Institute, and to the 
American Institute of Steel Construction, Specification for the Design, Fabrication and 
Erection of Structural Steel for Buildings, latest edition. 
 
2.3 RANGE OF VALIDITY AND LIMITATIONS 
 
2.3.1 The formulations given apply only to members made of structural steel used for 
offshore structures, as defined in API RP 2T. 
 
2.3.2 Structural components must comply with the dimensional tolerance limits defined in  
API RP 2T. Members not complying with these requirements should be given special 
consideration, given the potential negative impact dimensional imperfections can have on 
structural performance. 
 
2.3.3 The formulations for the limit states given may be replaced by more refined analyses, 
or model tests, taking into account the real boundary conditions, the actual load distribution, 
geometrical imperfections, material properties, and residual stresses. 
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Stiffened Panels
Uniaxially Stiffened	 	 5.2
Orthogonally Stiffened	 5.3
Stiffener Proportions	 5.4
Tripping Brackets	 	 5.5
Effective Flange	 	 5.6
Other Design Requirements	 5.8

Stiffeners
Column Buckling	 	 4.2
Beam-Column Buckling	 4.3
Torsional/Flexural Buckling	 4.4
Plastic Bending	 	 4.5

Rectangular Plates
Uniaxial Compression and	 3.2
     In-Plane Bending
Shear	 	 	 3.3
Lateral Pressure	 	 3.4
Biaxial Compression and	 3.5
     Shear
In-Plane and Lateral Loads	 3.6

Deep Plate Girders

Limit States
Par. 2.4

Limit States	 	 6.2
Design	 	 	 6.3

Factors of Safety
Par. 2.5.1

Allowables
Par. 2.5.2

Figure 2.1-1—Structural Components and Limit States Covered in this Bulletin
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2.3.4 Ultimate limit states associated with failure due to material fracture are not considered. 
Provisions have to be made to ensure that this type of failure is properly addressed in the 
design. 
 
2.3.5 Ultimate limit states associated with accidental loads such as collisions, dropped 
objects, fire, explosion, or flooding are not considered. Design criteria for these loads have to 
be established, and provisions have to be made to ensure structural adequacy under such 
conditions. 
 
2.4 LIMIT STATES 
 
2.4.1 Working Stress Design 
 
2.4.1.1 The design basis adopted in this Bulletin is the working stress design method, 
whereby stresses in all components of the structure cannot exceed specified allowable values. 
Allowable stresses are associated with two basic structural requirements: resistance to failure 
(ultimate limit states); and stiffness and strength criteria (serviceability limit states).  
 
2.4.1.2 In addition to specifying allowable stress values, certain limits on non-dimensional 
parameters can be defined. Examples are upper limits on web depth to thickness ratio, or 
flange width to thickness ratio for I-section stiffening elements, which are in general defined 
to limit the possibility of buckling of the web or flange. These limits on cross sectional 
proportions are normally associated with good design practice. 
 
2.4.2 Ultimate Limit States 
 
2.4.2.1 Ultimate limit states correspond to the maximum load carrying capacity of a member 
at failure. Thus, if an ultimate limit state is reached, the structure collapses and loses its load 
carrying capacity. Failure may be due to: 

1. Material plastic flow, 
2. Material fracture, 
3. Collapse due to local or general instability. 
 

2.4.2.2 The ultimate limit states considered here include only failure due to material 
plasticity, and collapse due to local or general instability. 
 
2.4.2.3 In identifying material plastic failure as an ultimate limit state it is necessary to 
distinguish those cases where the material yields, but there is no plastic mechanism and as 
such no collapse, and those cases where a plastic mechanism leads to structural instability. If 
material yielding does not lead to collapse, failure is not an ultimate limit state but a 
serviceability limit state. This distinction is important, since by designing for limited and 
controlled material yield a more weight efficient design can possibly be achieved. The 
designer must use critical judgment in identifying those areas and components where plastic 
design can be adopted. 
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2.4.2.4 Local instability refers to the type of failure whereby only a localized portion or 
subcomponent of the structure fails. In a rectangular panel stiffened by two sets of stiffeners 
intersecting at right angles, such as a transverse bulkhead or flat, the buckling of a single 
rectangular plate spanning between consecutive stiffeners is an example of local instability. 
The tripping of a single stiffener over a single span is another example of local instability. If 
the complete panel buckles as a whole, the mode of failure is general instability. 
 
2.4.3 Serviceability Limit States 
 
2.4.3.1 Serviceability limit states correspond to loads at which a member no longer satisfies 
functional requirements, although it is capable of carrying additional loads before reaching 
an ultimate limit state. Serviceability limit states include: 

1. Material yield; 
2. Local instability; 
3. Deformation; 
4. Vibration. 
 

2.4.3.2 Material plastic flow should not adversely affect the structure’s appearance or 
efficiency, and should not lead to excessive deformations. The same applies to local 
instability, such as the buckling of an individual plate, or the local tripping of a secondary 
stiffener in a stiffened panel. 
 
2.4.3.3 The deformation of the structure or any of its parts resulting from the normal 
operating conditions or from damage should not adversely affect its appearance or efficiency, 
violate minimum specified clearances, or cause drainage difficulties. Damage occurring in 
specific parts of the structure which might entail excessive maintenance or lead to excessive 
deformation or corrosion, and hence adversely affect the structure’s appearance or efficiency, 
should be limited.  
 
2.4.3.4 Where there is a likelihood of the structure being subjected to vibration from causes 
such as wind forces, equipment or other transient loads, measures should be taken to prevent 
discomfort or alarm, or impairment of a proper function. 
 
2.4.3.5 Serviceability limit states associated with local damage or vibration are not 
considered in Bulletin 2V. Provisions have to be made by the designer to ensure that these 
are properly accounted for in the design process. 
 
2.5 VERIFICATION OF STRUCTURAL ADEQUACY  
 
2.5.1 Factors of Safety 
 
2.5.1.1 A design is considered satisfactory if the structure has an adequate margin against 
failure, or reserve strength, for all applicable limit states. The margin against failure to be 
adopted in the design is defined in terms of allowable values for the stresses, or other 
relevant design variables (e.g., pressure, axial load, etc.). The allowables are obtained by  
dividing limit state values by factors of safety, as described in more detail in 2.5.2. The 
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factors of safety recommended for design are as follows: 
F.S. = 1.67 for serviceability limit states 

 F.S. = 1.67ψ for ultimate limit states 
 
2.5.1.2 The effects of imperfections are very significant in the elastic range but have little 
effect in the yield and strain hardening ranges of the material. Therefore, a partial factor of 
safety, ψ, dependent on the buckling stress is recommended for ultimate limit states. The 
value of ψ is 1.20 when the buckling stress is elastic, 1.00 when the buckling stress equals 
the yield stress and varies linearly between these limits. 
 
2.5.1.3 A 1/3 increase in allowable stresses may be used where appropriate. The structure 
should be designed so that all components are proportioned for basic allowable stresses 
specified by API RP 2A, API RP 2T, or by the AISC Specification for the Design, 
Fabrication and Erection of Structural Steel for Buildings, latest edition. Where the 
structural element or type is not covered by the above, a rational analysis should be used to 
determine the basic allowable stresses, with factors of safety equivalent to those defined. 
Alternative methods for verifying structural adequacy may also be acceptable, as defined in 
2.5.6. 
 
2.5.1.4 In determining structural adequacy two types of load conditions have to be 
considered: a single load acting on the structure and multiple loads (or load combinations). 
 
2.5.2 Single Load Limit States 
 
2.5.2.1 Each limit is defined in terms of a design variable Qi. Depending on the particular 
limit state, this design variable can be, for example, a stress component, a pressure, or a 
deflection. When a limit state is satisfied: 

u
ii QQ =      (2.5-1) 

where 
Qi = actual value of the relevant design variable (stress, pressure, 

deflection, etc.), 

  = limit state value of Q
u
iQ

i, as defined by the formulas in this Bulletin. 
 
2.5.2.2 Given a particular limit state, a design is considered satisfactory if the associated 
design variable does not exceed an allowable value given by: 

..SF
Qu

i  

where F.S. is the appropriate factor of safety. 
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2.5.3 Combined Load Limit States 
 
When n loads Q1, …, Qn act on a structure a limit state is defined in this Bulletin in terms of 
an interaction equation: 

1...
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  (2.5-2) 

where , is the limit state value of Qu
iQ i when Qi is the only load acting on the structure. 

 
Interaction equations are in most cases of an empirical nature, with the exponents mi being 
determined on the basis of a best fit of experimental data. 
 
2.5.3.1 Given a particular limit state, a design is considered satisfactory if the relevant design 
variables do not exceed allowable values given by Q u

1  /F.S., Q u
2  /F.S., … Q /F.S., where Q  

… Q u  are the limit state design variables satisfying the interaction equation above, and F.S. 
is the appropriate factor of safety. 

u
n

u
1

n

 
2.5.3.2 The interaction equations and the formulations for the limit state values of the 
relevant design variables given in this Bulletin reflect serviceability and ultimate limit states. 
In using them for specific applications the designer must ensure that the appropriate factors 
of safety (F.S.’s) are adopted, as prescribed in 2.5.1, 2.5.2, and 2.5.3. 
 
2.5.4 Governing Limit State 
 
In general, both serviceability and ultimate limit states are defined for each mode of failure. 
Either of these limit states can govern the design by imposing a lower allowable value on the 
design variable Qi. However, the allowable values for Qi resulting from serviceability and 
ultimate limit state considerations should be close for an efficient design. A design is 
considered satisfactory if the design variables do not exceed their allowable values for all the 
applicable limit states. 
  
Note: formulations given in this Bulletin for the ultimate limit state sometimes yield lower values than the 
serviceability limit state. This is a function of the plate geometry and material properties. 
 

2.5.5 Other Limit States 
 
To ensure that a structure is adequate, it is necessary to consider other modes of failure not 
treated in Bulletin 2V. These include failure due to material fracture or fatigue, and failure 
caused by accidental loads. 
 
2.5.6 Alternative Methods for Verifying Structural Adequacy 
 
2.5.6.a General. The formulations for the limit states included in Bulletin 2V may be 
replaced by more refined analyses, or model tests, taking into account the real boundary 
conditions, the actual load distribution, geometrical imperfections, material properties and 
residual stresses. In adopting these alternative methods it is necessary to ensure that the 
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structure is correctly modeled, and that all relevant limit states are considered. In particular if 
weight savings and increased structural efficiency are necessary, more refined methods of 
analysis should be explored. 
 
2.5.6.b Methods of Analysis. The methods of analysis that are adequate for considering the 
ultimate limit states include elastic methods, and plastic or yield-line methods. Elastic 
methods (in which P-delta effect is included and all failure modes are accounted for by 
appropriate stress limits, but plastic load redistribution does not occur) are acceptable as 
lower bound collapse solutions, and they will also lead to solutions less likely to violate 
serviceability criteria. Elastic methods imply that a valid yield criterion is adopted to ensure, 
together with equilibrium, the static admissibility of the solution. 
Plastic or yield-line methods may be adopted when appropriate to the structural 
configuration. Plastic methods or other procedures for permitting redistribution of moments 
and shears may be used only when: 

a. The structural configuration and the materials have an adequate plateau of 
resistance under the appropriate ultimate conditions, and are not prone to 
deterioration of strength due to shakedown under repeated loading; 

 
b. The development of bending plasticity does not cause an indeterminate 

deterioration in shear, torsional or axial strength, when relevant; 
 
c. The supports or supporting structures are capable of withstanding reactions 

calculated by elastic methods. 
 
The methods of analysis that are adequate for considering the serviceability limit states are in 
general elastic methods. Linear methods may be used when changes in geometry do not 
significantly influence the structure’s performance. Nonlinear methods may be adopted with 
appropriate allowances for loss of stiffness, and should be used where geometric changes 
significantly modify the structure’s performance. The method used should at all times satisfy 
equilibrium requirements and compatibility of deformations. 
 
The mathematical idealization of the structure should reflect the nature of its response. The 
boundaries assumed in such an idealization should either calculate accurately the stiffness of 
adjacent parts, or be sufficiently remote from the part under consideration, for the stresses to 
be insensitive to the boundary assumptions. 
 
2.5.6.c Model Analysis and Testing. Model analysis and testing may be used either to 
define the load effects in a structure, or to verify a proposed theoretical analysis. The models 
used should be capable of simulating the response of the structure appropriately, and the 
interpretation of the results should be carried out by engineers having the relevant 
experience. Model tests are particularly important in those cases where the geometry being 
proposed is novel, or not proven for the specific application under consideration. 
 
The reliability of the test results depends upon the accuracy or knowledge of several factors, 
such as: 

a. Material properties (model and prototype); 
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b. Methods of measurement; 
c. Methods used to derive load effects from measurements; 
d. Loading and reactions. 
 

In interpreting results, the load effects to be used in design should exceed those derived from 
the test data by a margin dependent upon: 

e. Number of tests; 
f. Method of testing; 
g. An assessment of a., b., and c. above. 
 

In all cases the interpreted results should satisfy equilibrium and compatibility. 
 
Where prototype testing is adopted as a basis for proving the resistance of a component, the 
test loading should adequately reproduce the range of stress combinations to be sustained in 
service. A sufficient number of prototypes should be tested to enable a mean value and 
standard deviation of resistance to be calculated for each critical stress condition. A particular 
aspect of structural behavior that may not be modeled correctly in small scale testing is 
residual stresses. It is important that this factor be accounted for in interpreting results, and in 
extrapolating to full scale. 
 
The material strengths to be specified for construction of the model should have mean values 
and coefficients of variation compatible with those in the prototypes. Tolerances and 
dimensions should be similarly prescribed so that the models are compatible with the 
prototypes. 
 
2.6 STRUCTURAL COMPONENT LOADS AND LOAD COMBINATIONS  
 
2.6.1 General 
The loads and load combinations that are to serve as a basis of design are defined in 
appropriate documents such as API RP 2T, API RP2FPS, etc. 
 
2.6.2 Primary Loads 
 
2.6.2.1 Primary loads and load combinations for structural component design, such as 
stiffened panels or deep girders, result in general from global platform analysis, to be 
discussed in 2.7. These primary loads can typically be classified as follows: 

• axial tension or compression; 
• shear; 
• bending; 
• twisting; 
• lateral loading (distributed or concentrated). 

Typical load combinations that are relevant for design include, for example: 
• axial compression and shear; 
• axial compression and bending; 
• biaxial bending; 
• bending and torsion. 
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2.6.2.2 The most relevant loads and load combinations for structural component analysis are 
treated in Bulletin 2V. The structural components considered are thin rectangular plates, 
stiffeners, stiffened panels and deep plate girders. However, the treatment is not 
comprehensive, and the designer should use other methods to ensure structural adequacy for 
those loads or load combinations not treated in the Bulletin. In particular, no consideration is 
given to concentrated loads on plates. 
 
2.6.3 Secondary Loads 
 
2.6.3.1 For most commonly encountered load cases, secondary loads do not directly affect 
the limit states, but the designer should ensure that they are included, when appropriate. 
 
2.6.3.2 Examples of secondary loads include: 

• shrinkage forces due to welding; 
• stresses due to construction tolerances; 
• thermal loads. 

 
2.6.3.3 In cases controlled by fire considerations, thermal loads should be treated as primary 
loads. 
 
2.6.4 Accidental Loads 
 
As indicated in 2.3, accidental loads, such as those caused by collisions, dropped objects, 
fire, explosion, or flooding, are not considered. Some of these loads can lead to the rapid loss 
of strength of the primary structure and bring about an ultimate limit state. The designer 
should use acceptable methods to assess the adequacy of the structure to withstand such 
loads. 
 
2.7 GENERAL APPROACH TO STRUCTURAL ANALYSIS  
 
2.7.1 General 
 
General principles regarding analysis methods, modeling, stress analysis and fatigue analysis 
for structures are covered in API RP 2T. 
 
2.7.2 Global, Panel, and Plate Stresses 
 
2.7.2.1 The structural analysis of a stiffened plate structure requires the consideration of 
several models. Global behavior can be represented through the use of a 3-D finite element 
model describing the whole structure. A more precise definition of stress distribution requires 
the consideration of smaller models, representing main structural components, or more 
localized areas of the structure, such as stiffened panels. Finally, main structural components 
can be further subdivided into the most basic elements, which are thin plates and stiffeners. 
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2.7.2.2 The 3-D finite elements model leads to stress distributions over gross cross sections 
of the structure, such as the columns or pontoons. These stresses resulting from deformation 
of the structure are global stresses. In the case of a pontoon of rectangular cross section, for 
example, the global stresses result from axial load, shear, biaxial bending and torsion. 
Assuming that the members in the space frame model are slender the global stresses can be 
obtained from simple beam theory, with corrections for shear, if necessary. 
 
2.7.2.3 The next main structural component is the stiffened panel. The main stresses are 
generally due to bending and transverse shear, and are a result of local applied pressures or 
transverse loads. These stresses can be called panel stresses, and can be derived on the basis 
of orthotropic plate or grillage theory. 
 
2.7.2.4 A single rectangular plate is the most basic component of flat plate structures. If the 
plate behavior between stiffeners under lateral pressure is considered, the resulting stresses 
are the plate stresses. These can be derived on the basis of thin plate theory. 
 
2.7.2.5 Typical global longitudinal bending stress distributions for a pontoon cross section 
are sketched in Figure 2.7-1. They vary linearly across the depth of the cross section. Typical 
panel stresses for the pontoon bottom are also shown. They vary linearly across the depth of 
the stiffened panel, reaching maximum values at the extreme fiber of the stiffener flange, or 
at the shell plate. Plate bending stresses vary linearly across the plate thickness and are zero 
at its middle surface. 
 
2.7.2.6 Given this breakdown of stresses into the three main categories, global, panel and 
plate, it becomes possible to use linear superposition to assess the resulting stress in different 
components of the structure, assuming elastic material properties and small deformations.  
 
2.7.2.7 This classification of stresses is practical in those areas where the structure can easily 
be subdivided into global (space frame), panel (stiffened panel), and plate (plate) functions. 
In areas such as the nodes (where the columns and pontoons intersect), more refined stress 
analysis methods become necessary, such as the finite element method (Ref. APPENDIX B). 
 
2.7.3 Dimensional Imperfections 
 
Dimensional imperfections, such as out-of-straightness of stiffeners or out-of-flatness of 
plates, can have a strong impact on structural performance. Structural analysis has to account 
for dimensional imperfections in case these are beyond the tolerances established in 10.2.3 of 
API RP 2T.  Numerical methods, such as the finite element method, are usually required to 
study the implications of imperfections on performance. 
 
2.7.4 Residual Stresses and Weld Shrinkage Forces 
 
2.7.4.1 Residual stresses can have some impact on structural performance. There are no 
simple analytical ways of determining how they affect the structure. Weld shrinkage forces 
can only be estimated on the basis of empirical equations, but they depend on many factors 
that cannot be controlled by the designer. 
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2.7.4.2 Examples of factors that can affect residual stresses and weld shrinkage forces are the 
assembly sequence, the welding procedure and the use of temporary bracing. 
 
2.7.4.3 The designer should use engineering judgment in deciding how relevant residual 
stresses and weld shrinkage forces can be for a particular application. 
 
2.8 GENERAL APPROACH TO STRUCTURAL DESIGN  
 
2.8.1 General 
 
Structural design is an iterative process through which the layout and scantlings for a 
structure are determined, such that it meets all the requirements of structural adequacy. The 
overall configuration results from a synthesis of all design requirements, which are in general 
dictated by non-structural considerations, such as volume and space requirements, global 
stability, safety, etc. Thus, structural design is assumed here to concentrate on the choice of 
an appropriate structural layout and scantlings, or cross-sectional dimensions, of structural 
components. 
 
2.8.2 Major Structural Design Steps 
 
2.8.2.1 There is no unique way of designing a structure, but in general terms the major steps 
that are involved can be summarized as follows: 

a. Identify loads and load combinations acting on the structure as a whole, or on its 
main subcomponents. 

b. Select initial structural layout and scantlings. In general this is based on past 
experience with similar structures. In those cases where some limits on 
proportions are specified, these should be respected in the initial configuration. 
Examples are stiffener proportions, such as maximum web depth to thickness 
ratio. Absolute minimum or maximum scantlings result in general from practical 
considerations related to constructability, weldability, etc. 

c. Identify structure’s main components, and determine through structural analysis 
the loads and load combinations acting on each component. Structural analysis 
would normally start with a global space frame analysis and would then move 
into specific components, such as stiffened panels and single plates. For selected 
areas of the structure, global, panel and plate stresses can be computed and 
combined using linear superposition. In those areas where the structural 
arrangement is complex, a numerical method of analysis, such as the finite 
element method, may have to be adopted in order to obtain an accurate picture of 
the stress distributions. 

d. Identify relevant limit states and associated factors of safety. 
e. Check structural adequacy. If any limit state is violated, adjust scantlings and 

repeat the analysis and the structural checks. Perform the iterations required to 
converge to a structurally adequate design. Exercise engineering judgment in  
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those cases where the design is governed by serviceability, see 2.5.4. Investigate 
structural adequacy with alternative acceptable methods, in case limit state checks 
are perceived to lead to structural inefficiency. 

f. Check other limit states, such as fatigue, which requires the selection of main 
structural detail configurations. Also check the adequacy of the design against 
accidental loads. If the structure is found to be inadequate, then new design 
iterations have to be conducted. 

g. “Optimize” structural design. Once an adequate design has been achieved it is in 
general possible to “optimize” it for a given objective. The objective depends on 
the structure’s intended use, and can be, for example, the structural weight or the 
cost of fabrication and installation. Thus, once a new configuration and set of 
scantlings are derived, structural adequacy (Step e) has to be checked again, in an 
iterative fashion. 

 
2.8.2.2 Structural “optimization” as a tool of structural design has to be considered with some 
caution, since proper balance between all desirable features, such as weight efficiency and 
cost, is in general very difficult to attain. However, it is important that the iterative nature of 
the design be recognized, and that possible and practical improvements be explored at the 
design stage. It is also important to note that special attention should be given to a weight 
engineering function. 
 
2.8.3 Structural Details 
 
2.8.3.1 The importance of good structural details must be emphasized. These have a great 
impact on structural efficiency and ensure that the structure will perform adequately. 
 
2.8.3.2 The design of structural details requires a coordinated effort between designer, 
fabricator and installer to ensure constructability. Whenever possible, details should be made 
uniform, and advantage should be taken of repeatability. 
 
2.8.3.3 Considerations regarding the design of structural details are not provided herein. 
However, the designer must ensure that good engineering practice is followed in designing 
details. 
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Section 3-Plates 
 

3.1 GENERAL 
 
3.1.1 Scope 
 
3.1.1.1 Flat thin rectangular plates, where the thickness is very small as compared to the 
other plate dimensions, are considered. It is assumed that normal stress in the direction 
transverse to the plate surface can be disregarded. 
 
3.1.1.2 The provisions in this Bulletin are not valid when the plate thickness is not small, in 
which case more refined analyses have to be conducted. 
 
3.1.2 Definitions 
 
3.1.2.1 Thin rectangular plates are the simplest component of flat stiffened plate structures. 
Each plate is usually supported around the four edges by stiffeners. When considering an 
individual rectangular plate the edge stiffeners are assumed to be sufficiently strong to 
remain essentially straight under loading. 
 
3.1.2.2 If the plate slope at the edges is fixed, as happens with plating under uniform lateral 
pressure over continuous supports, the edges can be taken as perfectly clamped. If the edges 
rotate freely about the supports simply supported conditions govern the plate behavior. The 
plate edges should in general be assumed simply supported, unless it can be shown that other 
conditions apply. In particular partial fixity (degree of restraint between fully clamped and 
simply supported) should be examined, if engineering judgment indicates it is a better 
representation of the actual structural arrangement. 
 
3.1.2.3 In the case of plate deflections that are not small in comparison with the thickness it is 
necessary to distinguish between immovable edges and edges free to move in the plane of the 
plate. This distinction can have a considerable impact on the magnitude of deflections and 
stresses. If the plate edges are fully prevented from moving in the plane of the plate, 
membrane effects can significantly affect its carrying capacity, and could be included 
provided the deflection limits are not exceeded. 
 
3.1.2.4 The following nomenclature will be adopted here:  The long plate dimension or 
length is parallel to the x-axis or longitudinal direction and is labeled a. The small plate 
dimension or width is parallel to the y-axis or transverse direction and is labeled b. Thus the 
plate’s aspect ratio, = a/b, is always equal to or larger than unity. The plate thickness is t. 
 
3.1.3 Loads and Load Combinations 
 
3.1.3.1 A rectangular plate can be subjected to a variety of primary and secondary loads and 
load combinations. 
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3.1.3.2 The following loads can be classified as primary loads, as shown in Figure 3.1-1.  
• In-plane longitudinal tension or compression; 
• In-plane transverse tension or compression; 
• In-plane longitudinal bending; 
• In-plane transverse bending; 
• In-plane shear; 
• Twisting; 
• Lateral pressure. 

 
3.1.3.3 In addition to these primary loads the plate can also be subjected to secondary loads 
as follows: 

• Shrinkage forces due to welding; 
• Stresses due to construction tolerances; 
• Loads due to thermal effects. 

 
3.1.3.4 The following loads and load combinations are considered in Bulletin 2V: 

• Uniaxial (longitudinal or transverse) compression; 
• In-plane bending; 
• In-plane edge shear; 
• Uniform lateral pressure; 
• Biaxial compression with or without edge shear; 
• Uniform lateral pressure and in-plane biaxial loading. 

 
3.1.3.5 If other load types or load combinations are known to be acting on the plate, special 
consideration will have to be given to their treatment, since they are not covered by the 
provisions in this Bulletin. This applies in particular to the case of concentrated loads. 
 
3.1.4 Stress Analysis 
 
3.1.4.1 The stresses in a thin plate can be calculated on the assumption that plane sections 
remain plane, following the approach adopted in classical thin plate theory. 
 
3.1.4.2 Finite element or other type of numerical analysis can be used in those cases where 
the applied loads and/or boundary conditions require a more refined treatment, or when the 
thin plate assumptions are no longer acceptable. 
 
3.1.5 Stress Distributions 
 
3.1.5.1 For an in-plane load P applied uniformly across the plate’s edges the corresponding 
stress is f = P/Ae, where Ae. is the edge area. Similarly, for an in-plane shear load V the 
average shear stress is fxy = V/Ae. 
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Px, Py: in-plane tension or compression
Mxx, Myy: in-plane bending
Mxy: Twisting
V: in-plane shear
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Figure 3.1-1—Primary Loads Acting on a Rectangular Plate

Figure 3.2-1—Long Rectangular Plate

Figure 3.2-2—Wide Rectangular Plate
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3.1.5.2 In the case of lateral loads the bending stresses are zero at the mid-surface and vary 
linearly across the thickness of the plate, with a maximum at the surface given by: 

2max
6

t
Mf x

x =       (3.1-1) 

2max

6
t
M

f y
y =       (3.1-2) 

  
where Mx is the bending moment per unit length for bending about the y axis, and My is 
the bending moment per unit length for bending about the x-axis. The shear stress 
resulting from a twisting moment per unit length Mxy is also zero at the plate’s mid-
surface and varies linearly across the thickness, with a maximum at the surface given by: 

2max

6
t
M

f xy
xy =      (3.1-3) 

  
3.1.5.3 The shear stresses fxz and fyz can be determined by assuming that they are distributed 
across the plate thickness according to a parabolic law, as in simple beam theory. Thus the 
maximum values are: 

t
Qf x

xz 2
3

max =      (3.1-4) 

t
Q

f y
yz 2

3
max =      (3.1-5) 

  
where Qx and Qy are the transverse shear force per unit length along the edges parallel to 
the y and x axis, respectively. 

 
3.2 UNIAXIAL COMPRESSION AND IN-PLANE BENDING 
 
3.2.1 Definitions 
 
Two types of plates are considered. Figure 3.2-1 shows long plates under longitudinal 
compression stress (fa) and in-plane bending stress (fb), where the load is applied to the 
shorter edges. Figure 3.2-2 shows wide plates, or plates under transverse compression stress 
(fa) and in-plane bending stress (fb), where the load is applied to the larger edges. 
 
The serviceability limit state is reached when the applied in-plane compressive stress, f, 
equals the appropriate limiting stress.  The limit stress is fse when f is in the elastic range, or 
fsp when f is in the inelastic or plastic range. Specifically, elastic serviceability limit f  
applies for long plates, and f applies for wide plates. Likewise, the plastic serviceability 
limit f applies for long plates, and f  for wide plates.  The ultimate limit state is reached 

when f equals f

xse

yse

xsp ysp

xu for long plates, or fyu for wide plates, respectively. The allowable stress is 
obtained by dividing the limit state stress fse, fsp, or fu by the appropriate factor of safety F.S. 
The wide plate formulas should be used for square plates. 
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3.2.2 Serviceability Limit State 
 

a. Long Plates (Figure 3.2-1) 
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The expression above is based on the assumption that the plate edges are simply 
supported. If other boundary conditions apply the buckling coefficient k can be 
determined from Figure 3.2-3.  
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b. Wide Plates (Figure 3.2-2) 
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Elastic Range (fyse < Fp): 

fysp  =  fyse      (3.2-5) 

Plastic Range ( ):  pyse Ff ≥
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Figure 3.2-3—Buckling Coefficients for Plates in
Uniaxial Compression1

Figure 3.4-1—Coefficients for Computing Plate
Deflections2

Figure 3.5-1—Rectangular Plate Under
Biaxial Compression

Figure 3.4-2—Stresses in Plates Under Uniform
Lateral Pressure3

Maximum Stress in Simply Supported Plates

Maximum Stress in Clamped Plates

1From D.O. Brush and B.O. Almroth, "Buckling of Bars, Plates and Shells," McGraw-Hill, 1975.
2From O. Hughes, "Ship Structural Design: A Rationally Based Computer-Aided, Optimization Approach," Wiley Interscience, 1983.
3From S.P. Timoshenko and S. Woinowski-Krieger, "Theory of Plates and Shells," McGraw-Hill, 1959.
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yse

pyp
yysp f

FFF
Ff

)( −
−=      (3.2-6) 

  
3.2.3 Ultimate Limit State 
 

a. Long Plates (Figure 3.2-1) 

1,12
2 ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= β

ββyxu Ff     (3.2-7) 

1, <= βyxu Ff      (3.2-8) 
where 

E
F

t
b y=β  

 
These apply when the plate edge stress reaches yield before the stiffener fails. Otherwise, the 
following formulas should be used: 

1,1
≥= β

βyxu Ff      (3.2-9) 

1, <= βyxu Ff      (3.2-10) 
  

b. Wide Plates (Figure 3.2-2) 

yyyu FCFf ≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −+=

2

2

111110.01
βαα

 (3.2-11) 

1,12
2 ≥−= β

ββ
C  

1,1 <= βC  

where 
1/ ≥= baα  

 
3.3 EDGE SHEAR 
 
3.3.1 Definitions 
 
The serviceability limit state is reached when the applied edge shear stress fxy equals fxyse or 
fxysp. The limit fxyse applies in the elastic range, while fxysp applies in the plastic range. The 
ultimate limit state is reached when fxy equals fsyu. The allowable stress is obtained by 
dividing the limit state stress (fxyse, fxysp or fsyu) by the appropriate factor of safety F.S. 
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3.3.2 Serviceability Limit State 
2

2

2

)1(12
⎟
⎠
⎞

⎜
⎝
⎛

−
=

b
t

v
Ekf xyse

π
    (3.3-1) 

2

434.5
α

+=k  

  
The result given is based on the assumption that the plate edges are simply supported. If the 
plate edges can be considered clamped the buckling coefficient k takes the form: 

2

60.598.8
α

+=k  

  

Elastic range  ( 3/pxyse Ff < ): 
 fxysp  = fxyse      (3.3-2) 
Plastic range ( 3/pxyse Ff ≥ ): 

2

2

3)(
3

xysepyp

xysey
xysp fFFF

f
f

+−
=

τ
    (3.3-3) 

  
3.3.3 Ultimate Limit State 

( xyspyxyspxyu fff −
++

+= τ
αα 212

3 )   (3.3-4) 

where fxysp is the serviceability limit state shear stress defined in 3.3.2. 

where )(
3

1
yy F=τ  

 
3.4 UNIFORM LATERAL PRESSURE 
 
3.4.1 Definitions 
a. Serviceability Limit State. The serviceability limit state is based on a deflection criterion 
and a stress criterion. 
 
b. Deflection Criterion. The deflection criterion is associated with a maximum allowable 
deflection Wa. Two cases have to be considered: (1) no permanent plastic deformations 
allowed, so that Wa is an elastic deflection; (2) permanent plastic deformation or plastic set 
allowed, so that Wa is a plastic deformation. No specific guidelines can be given on the 
allowable deflection, and whether it should remain purely elastic or become a permanent 
plastic set, since it depends on the type of service intended for the structure. In general the 
deflection should not be such as to adversely affect the structure’s appearance or its 
performance requirements. In those cases where in-plane compressive loads are not present, 
and where specific operational requirements do not rule against it, a permanent plastic set Wp 
can be allowed. If as a result of a permanent set membrane effects are induced in the plate its 
capacity to carry in-plane tensile loads and structural efficiency are improved. 
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The designer has to use engineering judgment in establishing a maximum allowable 
deflection, and deciding if a permanent plastic set is acceptable. 
 
If an absolute value cannot be specified, a criterion based on the maximum span and/or 
thickness can be adopted, such as the maximum of Wa = C1 x (span) and Wa = C2 x 
(thickness), where C1 and C2 are non-dimensional parameters (such as C1 = 1/360 and C2 = 
1). If a permanent plastic set is allowed a criterion for determining its magnitude is given in 
3.4.2. 
 
Expressions for estimating the maximum elastic deflection in a rectangular plate subjected to 
uniform lateral pressure are given in 3.4.2. 
 
c. Stress Criterion. The serviceability limit state stress criterion implies that the plate’s 
material must remain in the elastic range, and it is expressed in the form of a yield criterion, 
defined in 3.4.2. In cases where a permanent plastic set is allowed this stress criterion does 
not apply. 
 
d. Ultimate Limit State. The ultimate limit state is reached when the lateral pressure equals 
ρu, as defined in 3.4.3. 

 
3.4.2 Serviceability Limit State 
 
a. Deflection Criterion. If no permanent plastic set is allowed a maximum allowable elastic 
deflection Wa must be selected by the designer, given the particular application being 
considered (see discussion in 3.4.1). The computed maximum elastic deflection Wa must 
satisfy: 

ae WW ≤       (3.4-1) 
 
We can be estimated from the following expressions: 

D
pbkWe 384

5 4

1= , simply supported edges  (3.4-2) 

D
pbkWe 384

4

2= , clamped edges   (3.4-3) 

 
where D is the plate’s flexural rigidity 

)1(12 2

3

v
EtD

−
=         

and the coefficients k1 and k2 can be found from the graphs in Figure 3.4-1. 
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If a permanent plastic set is allowed (again, the designer has to take into consideration all 
aspects of performance requirements, as discussed in 3.4.1), it should be limited to:     

E
F

bW y
p 2.0≤           (3.4-4) 

 
b. Stress Criterion. If no permanent plastic set is allowed the plate’s material must remain in 
the elastic regime, so that the maximum stresses fx and fy must satisfy the following relation: 

222
pyxyx Fffff ≤−+      (3.4-5) 

where tensile stresses are taken as positive and compressive stresses as negative. 
 
The maximum stresses fx and fy can be estimated from the following expression:  

fx or fy

2

⎟
⎠
⎞

⎜
⎝
⎛=

t
bkp        (3.4-6) 

where the coefficient k can be found from the graphs in Figure 3.4-2 for simply supported 
and clamped edge conditions. 

 
If a permanent plastic set is allowed the stress criterion is not applicable. 
 
3.4.3 Ultimate Limit State 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

t
W

b
tFp p

yu αα
2162

   (3.4-7) 

where Wp is the permanent set (see 3.4.2). If no permanent set is allowed Wp = 0. These 
formulas are restricted to plates with aspect ratio 51 ≤≤ α .  The allowable pressure is 
obtained by dividing the limit state pressure pu by the appropriate factor of safety F.S. 

 
3.5 BIAXIAL COMPRESSION WITH OR WITHOUT EDGE SHEAR 
 
3.5.1 Definitions 
 
The limit state (serviceability or ultimate) is reached if the combination of the applied 
compressive stresses due to axial compression only, in the x and y directions, or fx and fy 
respectively, Figure 3.5-1, and the edge shear stress fxy are equal to the limit state stresses, fxl, 
fyl and fxyl, respectively, that satisfy the interaction formulas defined in 3.5.2 and 3.5.3. 
 
3.5.2 Serviceability Limit State 
 
Elastic range:  

( ) ( ) ( )[ ]( ) ( ) 0.1//// 2/2
=+++ ye

cc
xysexyl

c
yseyl

c
xsexl Ffffffff  (3.5-1) 

where  
 c = 0.1,/12 ≥− αα  

 fe = limit state von Mises stress 
  = ( )  

2/1222 3 xylylxlylxl fffff +−+
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and fxse is given in 3.2.2a considering axial compression only, fyse is given in 3.2.2b 
considering axial compression only, and fxyse is given in 3.3.2.  

 
The allowable stresses are obtained by dividing these limit state stresses, fxl , fyl and fxyl , by 
the appropriate factor of safety F.S. 
 
3.5.3 Ultimate Limit State 
 

( ) ( )( ) ( ) ( ) 1///// 22 =++− xyuxylyuylyuylxuxl
A

xuxl ffffffffff η  (3.5-2) 
 

where fxu is given in Par. 3.2.3a, fyu is given in Par. 3.2.3b, fxyu is given in Par. 3.3.3 and 
A = 1,  η  = 0.25,  for 3≥α  

A = 2,  η =   for ,22.3 35.0 −− βe 1=α  

 

For 1< α < 3 and for a given value of the ratio , the corresponding values of 
and  can be found by linear interpolation between the values of A and 

yuyl ff /

xuxl ff / xyuxyl ff /
η obtained for α = 3 and for α = 1. 
 
The allowable stresses are obtained by dividing these limit state stresses, fxl,  fyl, and fxyl, by 
the appropriate factor of safety F.S. 
 
3.6 COMBINED IN-PLANE AND LATERAL LOADS 
 
3.6.1 Definitions 
 
The serviceability or ultimate limit state is reached if the combination of applied axial 
stresses in the x and y directions, or fx and fy, respectively, edge shear stress fxy, and pressure 
p, satisfy the interaction formulas defined in 3.6.2 and 3.6.3. 
 
3.6.2 Serviceability Limit State 
 
The serviceability limit state shall be checked if a permanent set is not allowed. 
 

• fx compression,  fy compression: 
( ) ( ) ( ) 1//// 222 =+++ sxyspxyyspyxspx ppffffff    (3.6-1) 

 
where p = applied pressure, ps = collapse pressure calculated assuming zero permanent 
plastic set and fxsp, fysp, and fxysp are the serviceability limit state stresses defined in 3.2.2 
and 3.3.2. 

 

• fx tension,  fy compression: 
( ) ( ) ( ) 1//// 222 =+++ sxyspxyyspyyx ppffffFf    (3.6-2) 
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• fx tension,  fy,tension: 

( ) ( )[ ] 1/// 2
122 =++− xyspxyyyyx ffFfFf     (3.6-3) 

 
• fx compression,  fy tension: 

( ) ( ) 1/// 22 =++ sxyspxyxspx ppffff      (3.6-4) 
 
A von Mises based yield criterion is also applied in all quadrants but does not control for 
compression-compression: 

( ) ( )( ) ( ) ( ) 1/3//// 222 =++− xycrxyycryycryxcrxxcrx ffffffffff  (3.6-5) 
 

3.6.3 Ultimate Limit State: 
 

• fx compression,  f  compression: y

( ) ( )[ ] ( ) 1/// 22
12'2' =++ xyuxyyuyxux ffff σσ     (3.6-6) 

In this case,  and are reduced from the API Bulletin 2V values due to the presence 
of lateral pressure: 

xu
'σ yu

'σ

( )( )184.08.0' 2

// ++= QQ
yuyu FfFσ  

where , p = applied pressure. 2/ yFpEQ =
 

• fx tension,  fy compression: 
( ) ( ) ( ) 1//// 222 =+++ uxyuxyyuyyx ppffffFf    (3.6-7) 

 
where p = applied pressure,  pu =  ultimate pressure under pressure loading only. 

 

• fx tension,  fy tension: 

( ) ( )[ ] 1/// 2
122 =++− xyuxyyyyx ffFfFf     (3.6-8) 

 

• fx compression, fy tension: 
( ) ( ) 1/// 22 =++ uxyuxyxux ppffff      (3.6-9) 

 
A von Mises based yield criterion is also applied in all quadrants but does not control for 
compression-compression: 

( ) ( )( ) ( ) ( ) 1/3//// 222 =+′+′′−′ xyuxyyyyyxxxx ffffff σσσσ  

where: 
( )( ) 2

1
/1 λσ uyx QQF −=′  

( )( ) 2
1

/1 λλσ uyy QQF −=′   
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xbyb ff /=λ , bending stress ratio 

( ) 2
121 −

+−= λλλ  
2/ yFpEQ =  

2/ yuu FEpQ =  

 
3.7 DESIGN CONSIDERATIONS 
 
When a thin rectangular plate of a given material is subjected to compressive stresses it can 
fail by instability, and the strength depends primarily on the type of loads and/or load 
combinations, the boundary conditions and the geometry (dimensions, aspect ratio). 
 
The plate is in general part of a stiffened panel, such as in a deck or bulkhead, and it is 
supported by stiffeners. The stiffener spacing should be selected so as to limit the plate 
geometry and aspect ratio to dimensions and proportions that can provide the necessary 
strength. The designer must change the plate proportions and thickness until all applicable 
limit states are satisfied. If necessary, additional stiffeners might have to be introduced in the 
design. The minimum stiffener spacing should be based on fabrication considerations. 
 
When the plate is primarily subjected to lateral loading, the tensile membrane effects 
substantially improve its carrying capacity. In designing the supports, full in-plane fixity 
should be provided whenever possible in order to take advantage of membrane effects. 
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Section 4-Stiffeners 
 
4.1 GENERAL 
 
4.1.1 Scope 
 
Straight and slender thin-walled members of uniform cross section containing at least one 
plane of symmetry and thin-walled angles that serve as stiffening elements for flat plate 
structures are considered. 
 
4.1.2 Definitions 
 
Stiffeners are used to strengthen plates and to increase their load carrying capacity. In most 
cases they are made of a thin-walled web welded to the plate and a flange. Thus, when 
determining the cross sectional properties, account should be given to the attached plating 
acting with the stiffener as an effective flange. When the stiffeners are subjected to axial 
compressive loads the effective plate flange width b e , when the maximum edge stress 
reaches the yield stress, is 

y

u
e F

fbb =        (4.1-1) 

where fu (f or f ) is determined from 3.2.3. When the stiffeners are subjected to lateral 
or tensile loading alone, the effective plate flange is governed by shear lag effects and 
should be determined from 5.6. 

xu yu

 
The following ultimate limit states will be considered: 

• column buckling; 
• beam-column buckling; 
• torsional/flexural buckling; 
• plastic bending. 

 
4.1.3 Loads and Load Combinations 
 
A plate stiffener can be subjected to a variety of primary and secondary loads and load 
combinations. 
 
The following loads can be classified as primary loads: 

• axial tension or compression; 
• bending about the axis of maximum moment of inertia; 
• bending about the axis of minimum moment of inertia; 
• lateral distributed load; 
• lateral concentrated loads. 
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In addition to these primary loads the plate can also be subjected to secondary loads as 
follows: 

• shrinkage forces due to welding; 
• stresses due to construction tolerances; 
• loads due to thermal effects. 

 
The following loads and load combinations are considered here: 

• axial compression; 
• axial compression and lateral load; 
• lateral load. 

 
If other load types or load combinations are known to be acting on the plate special 
consideration will have to be given to their treatment, since they are not covered by the 
provisions of this Bulletin. 
 
4.1.4 Stress Analysis 
 
The stresses in a slender thin-walled stiffener can be calculated on the assumption that plane 
sections remain plane, following the approach adopted in classical beam theory. 
 
Finite element or other type of numerical analysis can be used in those cases where the 
applied loads and/or boundary conditions require a more refined treatment, or when the 
classical beam theory assumptions are no longer acceptable. 
 
4.1.5 Stress Distributions 
 
As a result of conventional beam theory, the longitudinal bending stresses in a stiffener vary 
linearly across the depth. If the section is subjected to both compression and bending, the 
stress distribution is given by: 

efI
yM

A
Pf +=        (4.1-2) 

where P is the compressive load, A is the cross sectional area, M is the applied bending 
moment, y is the distance to the neutral axis and Ief is the effective moment of inertia 
about the neutral axis. In computing Ief the effective flange should be used, as prescribed 
in 4.1.2. If the stiffener is subjected to lateral or tensile load alone, the effective flange is 
governed by shear lag effects and should be determined from 5.6. 

 
The shear stress distribution can be obtained from: 

It
VQf xy =        (4.1-3) 

where V is the shear force, Q is the moment of the area above the point where shear stress 
is being determined about the neutral axis, I is the moment of inertia about the neutral 
axis, and t is the thickness at the point under investigation. 
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For webs with constant thickness the shear stress can be approximated by: 

w
xy A

Vf =        (4.1-4) 

where Aw is the web area. 
 
4.2 COLUMN BUCKLING 
 
4.2.1 Definitions 
 
The ultimate limit state is reached when the applied axial load P equals PEe or PEp. The limit 
PEe applies in the elastic range, while PEp applies in the plastic range. The allowable axial 
load is obtained by dividing the limit state axial load (PEe or PEp) by the appropriate factor of 
safety F.S. 
 
4.2.2 Ultimate Limit State 

2λ
yP

P =   
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π
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F
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       (4.2-1) 

 

Elastic range ( ): yr PpP <
PEe = P        (4.2-2) 

 

Plastic range ( ): yr PpP ≥
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4.3 BEAM-COLUMN BUCKLING 
 
4.3.1 Definitions 
 
The ultimate limit state is reached when the applied axial load P and bending moment M 
satisfy the interaction curve specified in 4.3.2. 
 
4.3.2 Ultimate Limit State 

11 =+
uu M

MB
P
P

      (4.3-1) 

where Pu is equal to PEe or PEp, as given in 4.2.2, depending on whether the material is in 
the elastic or inelastic range, respectively, and Mu = Mfy, and where the amplification 
reduction factor Cm is defined in AISC. 
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0.1
/11 ≥

−
=

Ee

m

PP
CB         

 
The allowable axial load and bending moment are obtained by dividing the limit state axial 
load P and bending moment M by the appropriate factor of safety F.S. 
 
4.4 TORSIONAL/FLEXURAL BUCKLING 
 
4.4.1 Definitions 
 
The following properties of a cross section are particularly related to stiffener 
torsional/flexural buckling, as well as lateral buckling: the location of the shear center, the 
torsion constant J, and the warping constant Cw. Expressions for determining the value of 
these parameters for a number of thin-walled open cross sections are listed in Table 4.4-1. 
 
Two cases have to be considered when dealing with stiffener torsional/flexural buckling. If 
the stiffener shear center and centroid coincide (as happens with doubly symmetric sections 
such as equal flanged I-sections), buckling by twisting, with the longitudinal axis through the 
centroid remaining straight, can occur. In such cases twisting and flexure are decoupled, and 
the ultimate limit state discussed here is determined by torsional buckling only. If the shear 
center and the centroid do not coincide (as happens with sections containing only one plane 
of symmetry such as unequal flanged I-sections), the ultimate limit state is governed by a 
combination of twisting and bending, since these two actions cannot be decoupled. 
 
In the case of doubly symmetric sections the limit state is reached when the applied axial 
compressive load P equals PTe or PT p .  The limit PTe applies in the elastic range, while PT p  
applies in the plastic range. 
 
In the case of sections containing only one plane of symmetry the limit state is reached when 
the applied axial compressive load equals PTFe or PTF p , which correspond to the elastic and 
inelastic ranges, respectively. The allowable axial compressive load is obtained by dividing 
the limit state load (PTe, PT p , PTFe, or PTFp) by the appropriate factor of safety F.S. 
 
Sections containing no plane of symmetry, such as angle stiffeners, shall meet the compact 
section criteria of 4.4.4a. 
 
4.4.2 Ultimate Limit State for Doubly Symmetric Sections 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2
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L
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I
AP w

s
T

π
      (4.4-1) 

where I  is the polar moment of inertia about shear center s
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TRIPPING BRACKET
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1From S.P. Timoshenko, "Theory of Elastic Stability," McGraw-Hill, 1961

Figure 4.4-1—Design Lateral Load for Tripping Bracket

Table 4.4-1—Properties of Thin-Walled Open Cross Sections1
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Elastic range ( ): pT AFP <

TTe PP =        (4.4-2) 
 

Plastic range ( ): pT AFP ≥
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11      (4.4-3) 

 
4.4.3 Ultimate Limit State for Sections With a Single Plane of Symmetry 
 
PTF is the smallest root of the following quadratic equation: 

( ) 02 =++− TeEeEeTeTFTF
s

c PPPPPP
I
I

    (4.4-4) 

where PEe is the buckling load for buckling normal to the plane of symmetry, as given in 
4.2.2, and PTe is the torsion buckling load given in 4.4.2. 

 
Elastic range ( ): pTF AFP <

TFTFe PP =        (4.4-5) 
 

Plastic range ( ): pTF AFP ≥
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4.4.4 Stiffener Proportions 
 
In order to avoid the possibility of torsional/flexural buckling, the stiffener proportions 
should satisfy certain requirements, depending on whether the section is compact or non-
compact. If the section is compact and homogeneous, local buckling will not occur before the 
full plastic moment is reached. 
 

a. Compact Sections 
 

1. The compression flange must be continuously connected to the beam web. 
2. The width/thickness ratio of unstiffened elements of the compression flange must 
satisfy the following requirement: 

yf

f

F
E

t
b

75.0≤       (4.4-7) 
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3. The width/thickness ratio of stiffened elements of the compression flange must 
satisfy the following requirement: 
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10.1≤        (4.4-8) 

4. The web depth/thickness ratio must satisfy the following requirements: 
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where P is the computed axial load. 
 
5. The laterally unsupported length of the compression flange of members other than 
circular or box members shall not exceed either of the following two distances: 

y
f F

EbL 44.01 =       (4.4-11) 
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L 05.12 =       (4.4-12) 

The compression flange must be adequately braced if the unsupported length does not 
meet the above criteria. The bracing distance Lb is the lesser of the two distances L1 
and L2. 

 
b. Non-Compact Sections.  
 
Unstiffened elements subject to axial compression due to bending shall be considered 
as fully effective when the ratio of width to thickness is not greater than: 
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Stiffened elements subject to axial compression or to uniform compression due to 
bending shall be considered as fully effective when the ratio of width to thickness is 
not greater than: 
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4.4.5 Tripping Brackets  
 
The possibility of overall stiffener tripping can be minimized by means of tripping brackets. 
The spacing s between tripping brackets should not exceed: 

yf F
E

b
s 44.0=       (4.4-15) 

  
The design lateral load on the flange for tripping bracket sizing can be taken as the 
compressive stress in the flange, f, multiplied by 2% of the combined area of the flange plus 
one-third of the web area, see Figure 4.4-1 or: 
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4.5 PLASTIC BENDING 
 
4.5.1 Definitions 
 
For a stiffener subjected to a uniform distributed lateral load, or line load q, the plastic limit 
state in bending is reached when q equals qu. 
 
When the lateral load on the stiffener is the result of a uniform pressure p acting on a plate 
stiffened by two orthogonal sets of stiffeners with uniform spacings a and b for each set, with 
a > b the line load on each stiffener component can be found from 
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pbqb =        (4.5-2) 

 
4.5.2 Ultimate Limit State 
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where  when the stiffener is not subjected to axial load. When the stiffener is 
subjected to both bending and axial tension or compression P, 
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The allowable axial load and bending moment are obtained by dividing the limit state axial 
load P and bending moment M ′ by the appropriate factor of safety F.S. 
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4.5.3 Stiffener Proportions 
 
The ultimate limit state in 4.5.2 can be used as a basis for design if the stiffener proportions 
satisfy the following compactness requirements: 
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4.6 DESIGN CONSIDERATIONS 
 
4.6.1 Stiffener proportions satisfying the requirements in 4.4.4 should be selected. In case the 
design is based on plastic methods the proportions in 4.5.3 should govern the design. Cross 
section dimensions satisfying the proportion requirements should then be chosen to meet the 
required section modulus (or plastic modulus). 
 
4.6.2 Normally the stiffener length is determined by functional requirements (such as main 
dimensions of a stiffened panel). Thus the main variables that can be selected by the designer 
are the cross sectional dimensions. These will have to be refined through several iterations 
until all the applicable limit states are satisfied. There are obviously many cross sections that 
can meet a given set of strength requirements, and the designer must make a selection that 
will contribute to the overall structure’s weight and cost efficiency. 
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Section 5-Stiffened Panels 

 
5.1 GENERAL 
 
5.1.1  Scope 
 
Flat stiffened panels, comprising one or two sets of equally spaced uniform stiffeners of 
equal cross section, supporting a thin plate, are considered (see Figure 5.1-1). If there are two 
sets, they intersect each other at right angles. 
 
5.1.2 Definitions 
 
5.1.2.1 If there is only one set of stiffening elements the panel is uniaxially stiffened, while if 
there are two the panel is orthogonally stiffened. All the stiffeners in each set are slender, 
straight, and of uniform cross section, and they all have the same cross sectional dimensions. 
The entire panel length is A, and the entire panel width is B. 
 
5.1.2.2 The ultimate limit state is defined for the case of uniaxially stiffened panels under end 
compression, and orthogonally stiffened panels under uniaxial compression, biaxial 
compression and uniform lateral load. The serviceability limit state is also defined for 
orthogonally stiffened panels under uniform lateral load. Requirements for avoiding stiffener 
local instabilities and stiffener tripping are included in  5.4 and 5.5. Design charts for 
determining the effective flange breadth are given in 5.6. The minimum stiffener inertia 
required for panels to reach their ultimate shear strength is given in 5.7. Requirements for 
avoiding the interaction of buckling modes in stiffened panels are included in  5.8. 
 
5.1.2.3 In determining the cross sectional properties of stiffeners account should be taken of 
the attached plating acting with the stiffener as an effective flange, as defined in 4.1 and 5.6. 
 
5.1.3 Loads and Load Combinations 
 
5.1.3.1 A stiffened panel can be subjected to a variety of primary and secondary loads and 
load combinations. These can be classified in the same basic categories adopted for a thin 
rectangular plate, see 3.1.3. 
 
5.1.3.2 The following loads and load combinations are considered in Bulletin 2V: 

a. Uniaxially stiffened panels under end compression; 
b. Orthogonally stiffened panels under uniaxial and biaxial compression, and 

uniform lateral pressure.  
 
5.1.3.3 If other load types or load combinations are known to be acting on the plate, special 
consideration should be given to their treatment, since they are not covered by the provisions 
in this Bulletin. 
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Figure 5.1-1—Flat Stiffened Panel

Figure 5.2-1—Uniaxially Stiffened Panel in
                     End Compression
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5.1.4 Stress Analysis 
 
5.1.4.1 The stresses in a stiffened panel can be calculated on the assumption that plane 
sections remain plane. Individual stiffeners with attached effective breadth or width of 
plating can be analyzed on the basis of the principles established for stiffeners in 4.1.2 and 
5.6. Single thin rectangular plates supported by stiffeners can be analyzed on the basis of thin 
plate theory, as indicated in 3.1.4. 
 
5.1.4.2 A more refined approach to stiffened panel analysis, where the orthotropic nature of 
the structure is retained, can be provided by thin orthotropic plate theory. Grillage analysis 
can also be used. Neither one of these two methods is in general conducive to simple hand 
calculations, and in those cases where the applied loads and/or boundary conditions require a 
more refined treatment, numerical methods, such as the finite element method, might be 
preferred. 
 
5.1.5 Stress Distributions 
 
The stress distributions across the stiffener and thin rectangular plate cross sections can be 
derived on the basis of the same general methods proposed in 4.1.5 and 3.1.5, respectively. 
 
5.2 UNIAXIALLY STIFFENED PANELS IN END COMPRESSION 
 
5.2.1 Definitions 
 
A uniaxially stiffened panel subjected to an applied in-plane compressive stress acting in the 
same direction as the stiffeners is considered here, see Figure 5.2-1. The ultimate limit state 
is reached when the applied in-plane compressive stress f equals fu, as defined in 5.2.2. The 
allowable in-plane compressive stress is obtained by dividing the limit state stress fu by the 
appropriate factor of safety F.S.  
 
5.2.2 Ultimate Limit State 

5.0, ≤= λyu Ff       (5.2-1) 
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=α  aspect ratio of whole panel, 
=sI  mome nt of inertia of one stiffener about the axis parallel to the plate surface 

at the base of the stiffener, 
=t  plate thickness, 
=d   spacing between stiffeners 

 

5.3 ORTHOGONALLY STIFFENED PANELS 
 
5.3.1 Definitions 
 
5.3.1.1 Limit states for the entire stiffened panel including both longitudinal and transverse 
stiffeners are considered. 
 
5.3.1.2 The serviceability limit state for a panel subjected to uniaxial compression is reached 
when the axial stress f reaches the value f se or fsp  defined in 5.3.2. The limit fse applies in the 
elastic range, while the limit fsp applies in the plastic range. The serviceability limit state for a 
panel subjected to biaxial compression is reached when the equations in 5.3.3 are satisfied. 
The case of lateral pressure is defined in 5.3.4. 

 

5.3.2 Uniaxial Compression 
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Figure 5.3-1—Deflection Coefficient for Orthogonally Stiffened Panels
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The allowable in-plane compressive stress is obtained by dividing the limit state stress (fse or 
fsp) by the appropriate factor of safety F.S. 
 
5.3.3 Biaxial Compression 
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See 5.3.2 for definition of symbols. 
 
A trial procedure can be used to determine the values of fxl, fyl , m and n (these represent the 
integer number of half waves in which the panel buckles in the x and y directions, 
respectively). 
 
Elastic range: The serviceability limit state is elastic if the stresses fxl and fyl obtained from 
the expressions above satisfy the following criterion: 

222
pylylxlxl Fffff <+−  

  
If this criterion is satisfied the stresses fxl and fyl are the elastic serviceability limit state 
stresses fxse and fyse, respectively. The allowable stresses are obtained by dividing fxse and fyse 
by the appropriate factor of safety F.S. 
 
Plastic range: 

222
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Bulletin 2V--Design of Flat Plate Structures

48



1
22

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ysp

yl

xsp

xl

f
f

f
f

     (5.3-6) 

 
where fxsp and fysp are given in 5.3.2. The allowable stresses are obtained by dividing the 
limit state stresses fxl and  fyl by the appropriate factor of safety F.S. 

 
5.3.4 Uniform Lateral Load 
 
a. Serviceability Limit State 
 
As with rectangular plates, shown in 3.4, a deflection criterion and a stress criterion can be 
defined. The deflection criterion is associated with a maximum allowable deflection, while 
the stress criterion implies that the panel must remain in the elastic range. Expressions for 
computing the maximum elastic deflection and the stresses are given below. 
 
The maximum elastic deflection at the center of a simply supported cross stiffened plate can 
be calculated from: 

yD
pBw

4

δ=       (5.3-7) 

where the non-dimensional coefficient δ depends on the virtual aspect ratio ρ as shown in 
Figure 5.3-1. 

 
In order to ensure that the panel will not suffer any plastic deformations the distribution of 
plate stresses fx and fy should be determined from linear elastic theory. Elastic behavior is 
ensured if the stresses satisfy the following relation: 
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The stresses should be checked at both a stiffener’s free flange and in the plate field, and may 

be determined at the panel’s center according to the following formulas:  
 
Stiffener’s free flange: 
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Plate field: 
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The stresses fx and fy  are determined from: 
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where r , r  = bending lever arm associated with f or  f  respectively, i.e. distance from 
the neutral axis of the stiffener with the effective breath of plate to the outer fiber of the 
flange (for the flange stress) or of the plate (for the plate field stress). 

a b x y

  

The non-dimensional coefficients α and β  depend on the virtual aspect ratio ρ  and the 
torsional coefficient η as shown in Figure 5.3-2.  
 
b. Ultimate Limit State  
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A
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u
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where 
 A = length of longitudinal stiffeners, 
 n = number of transverse stiffeners, 

  = a parameter of dimension load/length to be determined according to 
the following equations: 
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The values of the interaction forces between the longitudinal and transverse stiffeners Rc are 
given by: 
 for n = even 
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 for n = odd 

 Rc = ( ) lM
An 1

8
+

     (5.3-16) 

where 

  = ultimate uniform pressure, up

 Mt = plastic moment of transverse stiffener at center, 
 Ml = plastic moment of longitudinal stiffener at center, 
 A = length of longitudinal stiffener, 
 B = length of transverse stiffener, 
 m = number of longitudinal stiffeners, 
 n = number of transverse stiffeners. 
 
In determining Ml and Mt the effect of in-plane loads should be taken into account, as 
suggested in 4.5.2. 
 
The allowable pressure is obtained by dividing the limit state pressure  by the appropriate 
factor of safety F.S. 

up

 
5.4 STIFFENER PROPORTIONS 
 
In order to limit the possibility of local instability such as torsional/flexural buckling, or 
lateral buckling, the stiffener proportions should satisfy the requirements in 4.4.4. 
 
If the design is based on plastic methods, the stiffener proportions should satisfy the 
requirements in 4.5.3. 
 
5.5 TRPPING BRACKETS 
 
The overall tripping of stiffeners can be avoided by means of tripping brackets. These should 
satisfy the requirements of 4.4.5. 
 
5.6 EFFECTIVE FLANGE 
 
5.6.1 Definitions 
 
5.6.1.1 Data for effective flange calculations in plate girders and box girders subjected 
primarily to bending type loads is given. The approach followed leads to the effective 
breadth ratio , where is the effective half flange breadth and b is the half flange 
breadth.  Note that for this section only, the term b is defined as one-half of the flange 
breadth (see Figure 5.6-1).  

bbef / efb

 
5.6.1.2 Three cases are considered, as sketched in Figure 5.6-1:  

Case I: Single web, symmetrical flange with free sides; 
Case II: Double web, flange bounded by webs; 
Case III: Multiple webs. 
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Figure 5.6-1—Cases for Effective Flange Calculations
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Figures 5.6-2 through 5.6-4 give in a graphical form the effective breadth ratio for the 
three cases described above, and for a number of load conditions. 

bbef /

 
The non-dimensional coefficient depends on the cross sectional shape. For identical lower 
and upper flanges: 
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and for stiffened plating: 
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where t is the flange thickness, tw is the web thickness, h is the half web depth, b is the 
half breadth and A2 is the lower flange area (zero in the case of flat bar stiffeners). The 
remaining symbols in Figures 5.6-2 through 5.6-4 are defined as follows:  

 B = distance between webs, 
 cL = distance between points of zero bending moment. 
 
5.6.2 Stress Distribution Across Flange 
 
In computing the effective section modulus Sef for the purpose of stress calculations, the 
effective flange breadth bef determined by the approach in 5.6.1 should be used (in place of 
the actual flange breadth b). Then the stress at the flange web junction fmax is given by: 

efS
Mf =max       (5.6-3) 

where M is the bending moment acting on the cross section. 
 
Across the flange breadth the actual stress distribution can be approximated by the following 
quartic equation: 
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where x is the distance measured across the flange breadth, as shown in Figure 5.6-5. 
 
5.6.3 Calculation of Deflections 
 
The effective flange breadth bef determined by the approach in 5.6.1 should be used to find 
the effective moment of inertia Ief of the cross section. This effective moment of inertia Ief 
multiplied by the modulus of elasticity E gives the bending rigidity EIef, which should be 
used in computing girder deflections. 
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Figure 5.6-2—Effective Breadth Ratio for Case I (Single Web)*

Figure 5.6-3—Effective Breadth Ratio for Case II (Double Web)*

Figure 5.6-4—Effective Breadth Ratio for Case III (Multiple Webs)*

*From H.A. Schade, "The Effective Breadth of Stiffened Plating Under Bending Loads," SNAME Transactions, Vol. 59, 1951.
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Figure 5.6-5—Stress Distribution Across Flange

Figure 5.7-1—Geometry of Stiffened Panels Subjected to In-Plane Shear
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5.7 STIFFENER REQUIREMENT FOR IN-PLANE SHEAR 
 
The moment of inertia of stiffeners in panels subjected to edge shear should satisfy the 
following requirement: 

γbtI 309.0>       (5.7-1) 
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where fxy is the design in-plane shear stress in the plate, fxyu is given in 3.3.3, and the 
plate’s geometry is shown in Figure 5.7-1. I is the moment of inertia of the stiffener’s 
web plus flange about an axis coinciding with the surface of the plate at the plate/web 
intersection.  

 
5.8 OTHER DESIGN REQUIREMENTS 
 
Good design practice dictates a sufficient separation of local plate and stiffened panel 
buckling modes.  Therefore, the stiffened panel design should ensure that the elastic buckling 
stresses in the panel longitudinal and transverse direction exceed the associated elastic 
buckling stresses for each plate panel by at least 20 percent.  For uniaxially stiffened panels, 
only elastic buckling stresses in the direction of the stiffening must meet this 
recommendation. 
 
Where the appropriate elastic stress is not specified in this bulletin, it may be determined 
from: 
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where fcr is the determined stiffened panel limit state stress under consideration. 
where fcr < Fy

 
5.9 DESIGN CONSIDERATIONS 
 
5.9.1 The most relevant step in the design of a stiffened panel involves a proper choice of the 
stiffening system, to provide an adequate overall strength, and to limit the plate dimensions 
and proportions to values that will prevent plate failure by instability. Many choices for the 
stiffening system are available, and no specific guidelines can be given, since the optimum 
configuration depends on dimensions, loads and boundary conditions. 
 
5.9.2 Typically, a stiffened panel would be orthogonally stiffened, with the set of primary 
stiffeners or girders providing the main support structure for the whole panel, and the set of 
secondary stiffeners providing local plating support. The large number of stiffener 
intersections justifies a careful detail design of the stiffener crossings. 
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5.9.3 In general a weight efficient structure would make use of a high density of stiffeners in 
both directions, but the cost implications could be adverse. Since stiffened plates are 
important components of TLP and other floating structures, and contribute to a large share of 
the structural weight, the designer should perform several iterations with alternative stiffener 
arrangements in order to reach an efficient design. 
 
5.9.4 Important aspects of stiffened panel design are the selection of stiffener cross sectional 
dimensions, and the rectangular plate aspect ratio, discussed in 4.6 and 3.7, respectively. 
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Section 6-Deep Plate Girders 
 

6.1 GENERAL 
 
6.1.1 Scope 
 
Deep plate girders with the web stiffened in both the longitudinal and transverse directions 
are considered. The requirements given apply specifically to the case where the transverse 
stiffener spacing is not larger than 1.5 times the girder depth, and the ratio of the clear 
distance between flanges to the web thickness exceeds ww td /

yF
E75.11       (6.1-1) 

  
When the girder web is not stiffened, or the depth to thickness ratio is smaller than the value 
above, the design should comply with the AISC Specification for Structural Steel Buildings. 
 
6.1.2 Definitions 
 
6.1.2.a Deep Plate Girders. Deep plate girders, sometimes also referred to as bulkhead 
girders, are in general orthogonally stiffened. They may form the main support structure for 
platform decks and they may be arranged as a grillage, hence dividing the deck structure into 
discrete compartments. A typical arrangement is shown in Figure 6.1-1. The orthogonal 
stiffening can be single or double sided.  
 
The girders can span between points of support with continuous or intermittent lateral 
restraint for the compression flange. Flanges can be single or multiple, thick, unstiffened 
plates or thinner, stiffened plates, which can also function as a deck. See Figure 6.1-2. The 
girder webs will, in some circumstances, form part of a fire wall and/or boundary of a 
hazardous area. For some floating structures the deck girders may be utilized as part of the 
reserve buoyancy, and must also be designed for lateral pressure. 
 
6.1.2.b Flanges. The girder flanges, sometimes also referred to as chords, are the upper and 
lower girder flanges of the plate girders. The primary function of the flanges is to provide 
sufficient area at the extremities of the girder to resist bending moment. During fabrication 
the flanges may act alone in resisting bending moment, but in service they are integrated with 
the deck plate, which contributes to the plate girder resisting moment. 
Depending on the geometry and loading the girder compression flange may have to be 
longitudinally and/or transversely stiffened. The stiffening arrangement also provides 
adequate strength to resist local concentrated loads. Continuous or intermediate lateral 
restraint at, or remote from, the compression flange, might also be required. 
 
6.1.2.c Girder Web. The girder web transmits the shear loads to the joints, with the plating 
in consequence carrying shear, axial and bending stresses. In some cases the web might also 
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Figure 6.1-1—Typical Deep Plate Girder Structural Arrangement

Figure 6.1-2—Primary Loads Acting on Plate Girder

Figure 6.1-3—Stress Distribution Across Section Due to Concentrated Load Applied at the Flange Level
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be subjected to directly applied lateral loads due to hydrostatic pressure. To prevent buckling, 
the webs are divided into panels by longitudinal (horizontal) and transverse (vertical) 
stiffeners. A web panel is defined as an area of web plate bounded on each edge by a 
stiffener, diaphragm, or girder flange. An ‘outer panel’ is a web panel adjacent to the girder 
flange. 
 
The orthogonal stiffening arrangement for the girder web has to be selected to achieve 
maximum structural efficiency. This requires a balanced choice of panel aspect ratios and 
stiffener proportions. The design of the outer panel connection to the girder flange requires 
special consideration to ensure adequate shear transfer. Openings in the web may be required 
for operational reasons. If these cannot be completely avoided, web reinforcement may be 
required, and special consideration has to be given to the geometry of the openings. 
 
6.1.2.d Primary Transverse Stiffeners. Primary transverse (or vertical) stiffeners support 
the flanges for tension field action, serve as stiffening elements for the girder web plate, and 
also connect with the deck girders. The connection between deck girders and stiffeners 
provides full continuity, and leads to frame action. Transverse stiffeners may also be required 
to support concentrated loads, such as transportation loads, deck/hull mating loads, etc. 
 
6.1.2.e Secondary Transverse Stiffeners. Secondary transverse (or vertical) stiffeners span 
the full height of the girder, stiffen the web plate, and support the flanges for tension field 
action. 
 
6.1.2.f Longitudinal Stiffeners. Longitudinal (or horizontal) stiffeners in the compression 
zone of the web increase the buckling resistance of the web plate between transverse 
stiffeners by limiting the unsupported panel sizes. Their spacing should be chosen to ensure 
continuity of stiffening between interconnecting girders. The longitudinal stiffeners also 
contribute to the girder bending resistance, and as such must be designed to carry axial loads 
due to applied bending/axial forces, and possibly also lateral loads due to hydrostatic 
pressure. 
 
6.1.3 Loads and Load Combinations 
 
6.1.3.a Primary Loads. Primary loads are obtained from three-dimensional space frame 
action. Five main types of primary loads act on girders, as shown in Figure 6.1-2:  

• Longitudinal tension or compression; 
• Transverse tension or compression; 
• Bending; 
• In-plane shear; 
• Lateral load. 

 
6.1.3.b Secondary Loads. Secondary loads consist of the following categories: 

• Shrinkage forces due to welding; 
• Stresses due to construction tolerances; 
• Vertical load on the web due to a slope change in the undeformed flange; 
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• Vertical load on the web due to concentrated load applied to the upper and lower 
flange level; 

• Secondary bending, redistribution of primary bending and shear in the vicinity of web 
openings; 

• Local vertical forces on bearing surfaces; 
• Loads due to deck girder connections; 
• Thermal loads. 

 
The combined effect of the above loads should be accounted for in designing the girder 
components. 
 
6.1.4 Stress Analysis 
 
6.1.4.1 The stresses in a plate girder can be calculated on the assumption that plane sections 
remain plane, provided the girder unsupported span to depth ratio is larger than 5. The cross 
sectional properties required to determine longitudinal bending stresses must take account of 
shear lag effects, as prescribed in 5.6.  However, shear lag effects may be neglected when 
considering the ultimate limit state. 
 
6.1.4.2 The transverse shear stresses can also be derived on the basis of simple beam theory, 
but allowance must be made for web openings when computing the shear stress distribution 
across the web. 
 
6.1.4.3 Finite element or other type of numerical analysis can be used to obtain a more exact 
stress distribution, if required for the particular geometry and load conditions, or if simple 
beam theory is no longer valid (as for very short, stocky girders). 
 
6.1.5 Stress Distribution 
 
6.1.5.a Longitudinal Stress. If simple beam theory is applicable the longitudinal bending 
stress distribution across the girder depth is given by 

ef
x I

yMf =       (6.1-2) 

where M is the applied bending moment, y  is the distance to the neutral axis, and  is 
the effective moment of inertia of the cross section about the neutral axis. In computing 

 the effective flange should be used, as prescribed in 5.6. 

efI

efI
 
The distribution of longitudinal bending stresses across the flange width can be obtained by 
following the approach described in 5.6.2. 
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6.1.5.b Shear Stresses. The shear stress distribution can be obtained from: 

It
VQf xy =       (6.1-3) 

where V is the shear force, Q is the moment of the area above the point where shear stress 
is being determined about the neutral axis, I is the moment of inertia about the neutral 
axis, and t is the thickness at the point under investigation. 

 
For webs with constant thickness the average shear stress can be approximated by 

w
xy A

Vf =       (6.1-4) 

where Aw is the web area. When the web has openings the web area should be computed 
on the basis of , where dhw ad − w is the depth of the web plate between flanges and ah is 
the height of the opening. 

 
6.1.5.c Transverse Stresses in Webs Due to Local Vertical Forces. The transverse stress in 
the plane of the web due to load applied to a flange may be calculated on the assumption that 
the load is dispersed uniformly. It can be assumed that the load decreases linearly from its 
point of application to zero at the extremity of the opposite flange. Also, it is assumed that 
the stress disperses inside the flange at a 60° angle and inside the web at a 45° angle, as 
shown in Figure 6.1-3. 
 
6.1.5.d Transverse Stresses in Webs Due to Flanges Curved in Elevation. The edge of a 
web attached to a portion of a flange curved in elevation, Figure 6.1-4, should be considered 
to be subjected to a force per unit length Fcf, acting in the plane of the web, given by:  

θsinf

fff
cf R

tBf
F =       (6.1-5) 

where ff is the flange longitudinal stress, Bf is the width of an unstiffened flange in a beam 
having only one web (or half the distance between successive longitudinal stiffeners or 
webs, together with any adjacent outstand), θ is the slope of the web to the horizontal, tf 
is the flange thickness in the panel being considered, and Rf is the radius of curvature of 
the flange. 

 
6.2 LIMIT STATES 
 
6.2.1 General 
 
The serviceability and ultimate limit states governing deep girder structural performance are 
defined for each girder main component, namely the flanges, web plates, and their stiffeners. 
 
6.2.2 Girder Flanges  
 
6.2.2.1 If girder flanges are longitudinally and/or transversely stiffened, each individual 
rectangular plate should be considered. The serviceability and ultimate limit states that apply, 
for the appropriate loads and load combinations, are given in Section 3. 
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6.2.2.2 The serviceability and ultimate limit states that apply to the stiffeners are given in 
Section 4. In particular the stiffener proportions should follow the requirements in 4.4.4. 
 
6.2.3 Girder Web 
 
6.2.3.1 The serviceability and ultimate limit states that govern the strength of the individual 
rectangular web plates supported by stiffeners are given in Section 3. 
 
6.2.3.2 The serviceability and ultimate limit states that apply to the longitudinal and 
transverse stiffeners are given in Section 4. In particular the stiffener proportions should 
follow the requirements in 4.4.4. 
 
6.2.3.3 The girder web is also subjected to in-plane bending. In general, when treating this 
particular loading condition the guidelines described below can be followed, but the designer 
should exercise engineering judgment in applying them. 
 
6.2.3.4 Under in-plane bending the longitudinal bending stress varies linearly across the plate 
transverse edge (of length b). For an individual plate if this variation is small the applied 
stress should be assumed uniform and equal to the average stress acting across the transverse 
edge. If the individual rectangular plate is close to the girder neutral axis and the average 
stress is very small, it should be assumed that it is subjected to a uniform compressive stress 
equal to the maximum stress acting across its edge. 
 
6.3 DESIGN CONSIDERATIONS 
 
6.3.1 Girder Flanges 
 
6.3.1.1 The design of girder flanges should comply with the AISC Specification for Structural 
Steel Buildings. The thickness of outstanding parts of flanges should conform with the 
requirements of 4.4.4. 
 
6.3.1.2 The effect of shear lag must be considered, as prescribed in 5.6. 
 
6.3.1.3 Where possible compact sections should be used, thus allowing the whole section to 
be effective without requiring stiffening. 
 
6.3.2 Web Panels 
 
6.3.2.a General. The girder web is divided into rectangular plates by longitudinal and 
transverse stiffeners. In general these web plates are subjected to longitudinal and transverse 
loads, as well as in-plane shear. Lateral loads can also be present. 
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In choosing the stiffener spacing, serviceability and ultimate limit states associated with 
rectangular plate instability, due to compressive longitudinal and transverse loads and in-
plane shear, must be considered. 
 
The longitudinal web stiffeners are designed to allow the adjacent web panels to reach their 
required load capacity, without premature stiffener failure by buckling or yielding. The 
stiffeners must have sufficient rigidity to enforce nodal lines on the web in conjunction with 
the transverse stiffeners. The longitudinal and transverse web stiffeners must be designed as 
beam-columns for flexural and axial loads due to web panel buckling and lateral pressure. 
 
The vertical spacing of the longitudinal stiffeners should be such that the web panels between 
the compression flange and the first longitudinal stiffener are capable of reaching yield in 
shear, or combined compression and shear, before reaching the critical buckling load. 
 
When (where  is the web depth and  is the web thickness), at least one 
longitudinal stiffener should be provided and placed between the neutral axis and 
compression flange. Additional longitudinal stiffeners should be provided to restrict the 
ratios of b/t of the web panels to values which can adequately prevent limit states associated 
with plate buckling. Adjacent to internal supports in continuous spans, where the lower part 
of the web can be overstressed due to concentration of shear stress, additional intermediate 
longitudinal stiffeners should be provided, for a distance of at least  on each side of the 
support. These stiffeners should terminate on transverse stiffeners. They should restrict the 
proportions of all the web plate panels to acceptable values. Longitudinal stiffeners should 
extend between and be attached to transverse stiffeners. 

ww td 180> wd wt

wd

 
6.3.2.b Webs With Openings. In general, web openings are subject to special investigation 
for stress concentration, buckling around the opening perimeter, or fatigue. These 
considerations could be effectively satisfied if the design of openings complies with the 
following recommendations: 
 
a. In the absence of special framing around the opening, its overall dimension should be 
limited to [see Figure 6.3-1(a)]: 

ha or wh db
10
1

≤      (6.3-1) 

 
b. The overall dimension of an opening in longitudinally stiffened webs should be limited to 
[see Figure 6.3-1(b)]: 

ha  or bbh 3
1

≤       (6.3-2) 

 
c. Openings should be spaced horizontally with a clear distance between them of at least sh 
[see Figure 6.3-1(a)]: 

ha  or hh sb
3
1

≤      (6.3-3) 
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d. No more than one opening is recommended at any one web cross section between 
longitudinal stiffeners. 
 
e. Cutouts in webs for the connection of transverse stiffeners should be welded over at least 
1/3 of the opening perimeter. 
 
f. Openings should be designed with adequate corner radius, or reinforcing, to avoid stress 
concentration. 
 
In cases where the web opening dimensions are large and/or do not comply with the 
requirements in items a through f above, the following requirements apply: 
 
g. Each opening should be reinforced by longitudinal and transverse stiffeners (Figure 6.3-2). 
Sufficient corner radius should be provided at each opening to reduce the stress 
concentration. 
 
h. Diagonally opposite openings should be bounded by at least two common orthogonal 
stiffeners (Figure 6.3-2). 
 
i. In line openings should be bounded by at least two parallel stiffeners. 
 
j. The height of openings should be limited to a maximum of one-third (1/3) the web depth. 
 
k. To the extent possible openings should be away from points of load concentration. 
 
l The stiffeners adjacent to openings should have a minimum cross sectional area equal to the 
area of the opening in each direction. Furthermore, the stiffener should provide adequate 
strength to resist the primary, as well as secondary, axial loads and bending moment. 
 
m. A detailed finite element analysis is recommended to obtain the load and stress 
distribution around an opening. 
 
6.3.3 Longitudinal Web Stiffeners 
 
Stiffener proportions should comply with the requirements in 4.4.4. Longitudinal stiffeners 
should extend between and be attached to transverse stiffeners. 
 
The longitudinal stiffener bending stiffness necessary to ensure that a stiffened plate can 
reach the ultimate strength of the web panel between stiffeners is greater than that required to 
develop maximum local buckling stress. The moment of inertia Is of the stiffener cross 
section about the neutral axis should be larger than the following value. 

34 ws atI =       (6.3-4) 
where a is the spacing between transverse stiffeners and tw is the web thickness. 
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6.3.4 Transverse Web Stiffeners 
 
6.3.4.a General. Transverse (vertical) stiffeners provide adequate support for the web and 
longitudinal stiffeners. A transverse stiffener should be included at the junction with cross 
beams, and at sloping flange locations. 
 
Transverse stiffeners should be shaped to allow space for weld material connecting the web 
to the flange, with a clearance not exceeding 4 tw, as shown in Figure 6.3-3. The stiffener 
should extend over the whole remaining depth of the web. 
 
A primary transverse stiffener should be fitted to the flange near each point of concentrated 
load application.  
 
Where cutouts are provided in transverse stiffeners to allow passage of longitudinal 
stiffeners, at least 1/3 of the cutout perimeter should be welded to the longitudinal stiffeners. 
 
6.3.4.b Effective Stiffener Section. The effective stiffener section should include the 
stiffener plus a portion of the web plate on each side of the stiffener, as shown in Figure 6.3-
3. The effective plate flange width b  is given in 4.1.2. e

 
6.3.4.c Design Load for Transverse Stiffeners. The following loads should be considered 
when designing transverse stiffeners, as applicable:  

• axial force due to tension field action, see 6.3.4d; 
• axial force assumed in preventing web buckling, see 6.3.4e; 
• axial force due to vertical distribution of load through a cross frame; 
• axial force due to load applied at the girder chord level; 
• axial force due to initial flange curvature, see 6.3.4.f; 
• axial force due to change in chord girder slope; 
• bending moment about an axis in or parallel to the plane of the web, arising from 

eccentricity of axial force, or from flexure of a cross-frame or deck. 
 
6.3.4.d Axial Force Due to Tension Field Action. Tension field action should be assumed 
to occur in the web plate, and to act in the mid-plane of the web, when the average shear 
stress in the web plate, fxy, is greater than oτ to given by: 
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where a is the plate length or spacing between transverse stiffeners, b is the plate width or 
spacing between longitudinal stiffeners, tw is the web thickness, and  f1 is the average 
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longitudinal stress in the web panel, to be taken as positive when compressive. In 
computing  f1 it is assumed that the bending moment and/or axial force are not 
redistributed to the flanges. 

 
The tension field action should be assumed to cause a compressive force Ftw in the adjacent 
transverse stiffener over its entire length equal to the smaller of the two values: 

( ) atfF woxytw τ−=      (6.3-7) 
( ) swoxytw ltfF τ−=      (6.3-8) 

where  is the clear distance between the flanges of the girder. sl
 
When Ftw is different on the two sides of a transverse stiffener the average value may be 
taken. If there are longitudinal stiffeners, Ftw for one side of the transverse stiffener should be 
taken as the average of the two smallest values of Ftw occurring in the web panels, on that 
side of the transverse stiffener. 
 
6.3.4.e Axial Force Assumed in Preventing Web Buckling. In order to resist buckling of 
the web plate the effective stiffener section should be assumed to carry, along its centroidal 
axis, a compressive force Fwi given by: 

Rsw
s

wi fkt
a
lF
max

2

=      (6.3-9) 

where  is the clear distance between the flanges of the girder,  a sl max is the maximum 
spacing of transverse stiffeners, tw is the web thickness and ks is a coefficient given in 
Figure 6.3-4. The coefficient ks is a function of the slenderness parameter λ: 
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where rse is the radius of gyration of the effective stiffener section about the maximum 
moment of inertia axis through the centroid. 

 

The stress  is defined by: Rf
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where Rτ  is equal to fxy or oτ (as defined in 6.3.4d), whichever is less, is the sum of 
the cross sectional areas of all the longitudinal stiffeners not including any adjacent web 
plate. f

sA∑

1 is the average longitudinal stress in the web, taken as positive when compressive, 
calculated without any redistribution to the flanges (see Figure 6.3-5), and fb is the 
maximum value of the stress in the web due to bending alone, calculated without any 
redistribution of moment to the flanges, and always taken as positive (see Figure 6.3-5).  
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For a longitudinally stiffened web, the force Fwi should be factored by ns

 
where 
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sI∑  is the sum of the moments of inertia of the effective section of all the 
longitudinal web stiffeners in depth , sl

 I is the moment of inertia of the effective section of the transverse stiffener 
 
6.3.4.f Axial Force Due to Initial Flange Curvature. The effective web included in the 
effective stiffener section should be considered to be subjected to an axial force, due to initial 
flange curvature, Fcf, given by 

θsinf

eff
cf R

bAf
F =       (6.3-12) 

where 
  = flange longitudinal stress, ff
  = flange radius of curvature, fR
  = flange cross-sectional area, fA

 θ  = slope of web to the horizontal, 
  = effective web acting with stiffener =16teb w or a/2, whichever is less, 

unless a larger value is demonstrated by analysis. 
 
6.3.4.g Axial Loading Distribution Within a Stiffener. The force in a stiffener due to load 
applied at the flange level, or due to curvature or change of slope of a stressed flange, or due 
to transfer of load through a cross frame, should be assumed to vary uniformly along the 
length of the stiffener, from the value at the point of application, to zero at the remote end of 
the stiffener. 
 
The force due to tension field action or restraint of web buckling should be assumed constant 
over the length of the stiffener. 
 
6.3.4.h Yielding of Vertical Stiffener. The maximum stress in the stiffener itself at every 
point along its length, due to all the relevant forces and moments listed in 6.3.4.c, except the 
axial force assumed in preventing web buckling should not exceed Fys = 0.66Fy.  A one-third 
increase is allowed for extreme load conditions. In areas where cutouts are provided an 
appropriate reduced section should be taken. 
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Where the end of a stiffener is fitted closely to the flange of a girder, the bearing stress over 
the area in contact should not exceed 1.33 Fys .  In calculating this stress, the effective 
bearing area should be taken to consist of only those portions of the area of the stiffener and 
web plate that satisfy all of the following: 

a. In contact with the flange; 
b. Clear of the weld or root fillet at the web flange junction; 
c. Within the dispersal lines drawn at 60° from the line of application, at any local load 
through the thickness of a flange plate.  

 
6.3.4.i Load Bearing Support Stiffeners. At each support position, or beneath concentrated 
loads carried by plate girder flanges, load bearing stiffeners are required. 
 
The section of a bearing stiffener should be symmetrical about the mid-plane of the web. 
When this condition is not met, the effect of the resulting eccentricity should be taken into 
account. 
 
The bearing stiffener ends should be adequately connected to both flanges, and particular 
attention should be given to the detail design of bearing stiffener intersections with 
longitudinal stiffeners. 
 
Where cut-outs are provided in bearing stiffeners to allow the passage of longitudinal 
stiffeners, at least one side of the opening in the bearing stiffener should be cleated to the 
longitudinal stiffener by full perimeter welding of the cleat, or at least one-third of the 
perimeter of the cut-out should be connected to the longitudinal stiffener by welding. 
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APPENDIX A—COMMENTARY 
 

Note: The section, figure and table numbers in this Appendix correspond directly with those found in the 
main body of the document (i.e., C1.2 provides commentary on section 1.2) 
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C1 INTRODUCTION 
 
This Commentary provides background information on the formulations and the design 
guidance given in Bulletin 2V. Whenever applicable, references are provided, and the 
rationale for the recommendations made is discussed in some detail. 
 
The objective of this Commentary is to help the designer understand some of the 
fundamental principles of structural engineering that form the basis of the Bulletin. Rather 
than applying design formulas that are difficult to interpret, and as such mean very little, a 
broader understanding of their background can lead to a more efficient design process. 
 
The Commentary follows the same format as the Bulletin. Paragraph numbers are the same 
as in the Bulletin but are preceded by the letter C. In most cases the same nomenclature is 
adopted, and where there are changes these are indicated in the text when new symbols are 
defined. 
 
C2 GENERAL 
 
The design basis adopted in Bulletin 2V is the working stress method, whereby stresses are 
not allowed to exceed specified values. Allowable stresses are associated with two basic 
structural requirements: resistance to failure (ultimate limit states); and stiffness and strength 
criteria (serviceability limit states). The distinction between ultimate and serviceability limit 
states is used by several codes of practice, such as the British Standard BS5400 Steel, 
Concrete and Composite Bridges, Reference 2.1. 
 
The approach to design implied in Bulletin 2V is deterministic, and the uncertainties in loads 
and resistance or strength are not specifically addressed. Uncertainties are lumped into 
factors of safety defined in API RP 2T. The factors of safety depend on the design case, 
which is associated with the project phase, the system condition and the environment. Factors 
of safety also depend on the type of limit state. 
 
The classification of relevant modes of failure into limit states gives the designer some more 
insight into structural behavior. Rather than defining a procedure and a set of ’blind’ 
formulas, the designer has a better understanding of the implications of each formulation, and 
is asked to exercise good engineering judgment in following what may be considered a 
‘design by analysis’ approach. The definition of limit states also paves the way to an eventual 
adoption of probabilistic or reliability based methods, such as the load and resistance factor 
design (LRFD) method. The LRFD approach is already adopted in several codes of practice, 
see References 2.2 through 2.6. The LRFD approach requires a statistical description of the 
design variables which define loading and resistance. It is then possible to account for those 
uncertainties that have a stronger impact on performance, such as: 

a.  Sensitivity of the structural element resistance to residual stresses and initial 
geometric imperfections; 

b.  Uncertainty in procedures used to convert loads to load effects; 
c.  Unfavorable deviations of the loads from their calculated values allowing for 

unforeseen action; 
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d.  Deviation in material strengths from those used to calculate resistance; 
e.  Reduced probability that components of loading combinations will act 

simultaneously at their full levels; 
f.  Accuracy of theory used to calculate the characteristic resistance of a section. 

 
Extensive research has been conducted in the area of reliability based design, see References 
2.7 through 2.10. A simple assessment of safety can be done on the basis of approximate 
Level II reliability methods, which provide a systematic way of deriving partial safety 
factors. Level II methods make use of the safety or reliability index, which is related to a 
notional probability of failure. Important steps in such a procedure include the definition of 
limit state functions, and the derivation of partial safety factors for a given target reliability 
level. 
 
First-order second-moment methods are based on a first-order (linear) approximation of the 
failure variables, and the only required information regarding the probabilistic description of 
the random variables is their mean and variance, which makes these methods attractive from 
the design point of view. First-order second-moment methods are very simple to implement, 
see for example Reference 2.11, and the designer might wish to use them in checking the 
reliability level of the structure’s main components. 
 
If a reliability approach to design is adopted, partial safety factors reflecting uncertainties in 
different load and resistance design variables can be derived. For a limit state representing a 
combination of loads several partial safety factors would be used, rather than the single factor 
of safety F.S. 
 
In future revisions and refinements of Bulletin 2V the adoption of a probabilistic approach to 
safety should be considered. This would contribute to a more efficient and balanced design, 
and would follow the path already established by existing and well-established codes of 
practice. 
 
C2.5.1 Factors of safety 
 
The first edition of API Bulletin 2V specifies a basic factor of safety of 1.67 for the 
serviceability limit state and 2.0 for the ultimate limit state. DNV’s working stress method is 
based on usage factors, the minimum being 0.6 for the serviceability limit state and 0.6 for 
the ultimate limit state. This corresponds to a basic factor of safety of 1.67 for the 
serviceability and ultimate limit states. Clearly, there is a major discrepancy in the basic 
premise behind the working stress design philosophy. API Bulletin 2V is clearly too 
conservative with respect to the ultimate limit state and needs revision and clarification. 
  
It is unclear how the Bulletin 2V (first edition) factors of safety were originally developed. 
The first edition Commentary makes specific reference to API RP 2T but does not quantify 
the factors of safety. The quantification occurs in the body of RP 2T but its commentary 
makes no reference to this quantification either. The 2T Commentary does make reference to 
the safety factors used in API RP 2A, which are basically 1.67 to 2.0 for longitudinal stress 
and 2.0 for pressure which, in the context of Bulletin 2V, is not directly related to limit state. 
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Hence, among RPs 2A and 2T, Bulletins 2U and 2V and DNVDNV, there are a multitude of 
safety factor formulations, all of which are somewhat inconsistent with each other. 
 
Factors of safety should be set to provide consistent reliability of all structure components 
considering analysis and design unknowns or variabilities. Since Bulletins 2U and 2V cover 
similar types of structure (i.e., orthogonally stiffened cylinders and flat plate structures), it is 
logical that both bulletins should have a similar basis for factors of safety. Bulletin 2U, with 
its partial factors of safety, is more in line with RP 2A, at least for longitudinal stresses. 
 
For orthogonally stiffened structures, it is unclear why a factor of safety of 2.0 should always 
apply, especially in the inelastic range, considering that most of the applied pressure is static 
and well defined for floating structures, especially at depth (this applies to API RP 2A also). 
API RP 2A’s higher factor of safety for external pressure is based on the sensitivity of 
cylindrical shells to geometric imperfections at D/t less than 300. For orthogonally stiffened 
cylindrical shells designed with a hierarchical order of buckling mode instability, geometrical 
imperfections have a negligible effect on critical buckling stresses. Relative to cylindrical 
plate panels, flat plate panels have increased post-buckling strength; hence, the higher safety 
factor of 2.0 may not be warranted for orthogonally stiffened flat plate configurations. 
 
In order to maintain consistency with Bulletin 2U, it is recommended that the factor of safety 
for the ultimate limit state in Bulletin 2V be revised to 1.67 times a partial safety factor that 
varies from 1.2 at the proportional limit to 1.0 at the yield stress. The safety factor for the 
serviceability limit state should remain at 1.67. This revision brings the safety factor 
formulation in line with that of DNV for serviceability limit states and provides a more 
conservative design for ultimate limit states in the elastic range, a design range that is 
undesirable and inefficient. 
 
C3 PLATES 
 
C3.2 UNIAXIAL COMPRESSION AND IN-PLANE BENDING 
 
C3.2.2 Serviceability Limit State  
 
Elastic Behavior. The elastic buckling of simply supported rectangular plates uniformly 
compressed in one direction, Figure C3-1, is a classical structures problem first solved by 
Bryan in 1891, and well-documented in several textbooks, e.g. References 3.1, 3.2, 3.3. In 
this solution the common assumptions of perfect material and geometry are adopted, namely 
the material is linear elastic, isotropic and homogeneous, the plate is thin and perfectly flat, 
the load is applied on the mid-plane of the plate, the deformations are small, shear effects are 
disregarded, and the direct stresses normal to the plate’s through thickness direction are zero. 
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The critical stress fcr is given by: 
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where m is the integer number of half-waves in which the plate buckles, a is the plate’s 
length (its dimension along the direction of loading), b is the plate’s width (the dimension 
of its loaded edges), t the plate’s thickness, E the modulus of elasticity and v is Poisson’s 
ratio. 

 
For a given plate the critical stress can be determined from equation (C3-1) by choosing the 
value of m which makes fcr a minimum, and this can easily be accomplished by using a 
graphical representation. As shown in Reference 3.1, the transition from m to m+1 half-
waves occurs for the following value of the aspect ratio a/b: 
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For long plates ( ) it can easily be shown that the following bound applies: 1/ ≥ba
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Thus for practical purposes when considering long plates it is reasonable to adopt the value 
4.0 for the term in parenthesis in equation (C3-3), since it represents a lower bound to the 
exact critical value. For wide plates (a/b < 1) m = 1 always applies independently of the exact 
value of the aspect ratio a/b. 

 
On the basis of the foregoing discussion the following expressions are proposed for 
computing the critical stress of simply supported rectangular plates uniformly compressed in 
one direction: 
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These equations are adopted in Bulletin 2V to define the serviceability limit state in the 
elastic range for uniform compression. Note that the expression for k for wide plates in 
Bulletin 2V is slightly different, because the aspect ratio is always assumed to be larger than 
unity, as in Figure C3-1. 
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For future reference it is convenient to express equation (C3-4) in terms of the plate 
slenderness or width factor β: 

E
F

t
b y=β        (C3-5) 

 
where Fy is the material yield stress. Then equation (C3-4) takes the form: 
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The above formulas apply in the linear elastic range, defined by the material proportional 
limit Fp. For fcr > Fp inelastic effects have to be taken into consideration. 
 
The above solution applies to the case where the plate is simply supported around the four 
edges. It is obvious that in a real case the boundary conditions can significantly depart from 
this ideal situation, since in general surrounding stiffeners will give the plate a varying 
degree of rotational restraint. However, from the design point of view, assuming simple 
support conditions is reasonable, since the results lie on the conservative side. Also, in most 
practical situations the plate geometry is such that failure will be determined by plastic 
effects and imperfections, so that the exact form of the elastic buckling equation is not very 
relevant. It should be noted that the approach suggested here is the one proposed by DNV, 
equation (C2-1) in Reference 3.4. 
 
In Bulletin 2V buckling coefficients k for boundary conditions other than simply supported 
are also given, to be used if other conditions are known to govern the design. Figure 3.2-3 in 
Bulletin 2V was adapted from Reference 3.3. 
 
For the second edition, expressions for k were revised to include the effect of in-plane 
bending. Neglecting the effect of in-plane bending is unconservative while including the 
bending stress as uniform compression is unduly conservative. The revised expressions are 
based on classical solutions and follow those of DNV (Reference 3.30). 
 
Inelastic Behavior. When the critical stress fcr as given by equation (C3-4) exceeds the 
proportional limit, inelastic effects have to be taken into consideration. The approach which 
is normally suggested in the literature implies using the equations which apply in the elastic 
range, with the modulus of elasticity E replaced by the tangent modulus Et, or a function of 
Et, Reference 3.5. 
 
There is no unique way of defining an appropriate value for Et. Bleich, Reference 3.5, 
suggests a quadratic parabolic approximation which is often referred to as the Ostenfeld-
Bleich quadratic parabola, Reference 3.6: 
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where fc is the ultimate average stress. Equation 3-7 seems to be quite adequate for 
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materials having a well defined yield plateau. In this approximation the stress strain curve 
is assumed to be a straight line up to the proportional limit Fp, and a quadratic parabola 
from the proportional limit Fp to the yield point. 

 
For strain-hardening materials the Ramberg-Osgood three parameter stress-strain relation is 
usually adopted, Reference 3.6: 
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where n is an empirical constant derived from curve fitting. 

 
In Reference 3.7, Bleich suggests the following expression for the inelastic critical stress for 
a rectangular plate under uniaxial compression: 
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where all the parameters have been defined, except η, which is a modulus factor, or 
characteristic of the plate material, equal to unity when fcr is equal to or below the 
proportional limit, and smaller than unity, varying with fcr, when the critical stress 
exceeds the proportional limit. 

 
For long plates ( ) Bleich, Reference 3.7, suggests the following value for η: 1/ ≥ba

E
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with given by equation (C3-7). Then, combining equations (C3-4), (C3-9), (C3-
10), and (C3-7) the following expression for f

EEt /
c can be obtained: 
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fcr is the elastic buckling stress given by equation 3-4. The stress ratio  defines the 
beginning of inelastic effects in compression, and a typical value for welded ship panels 
is 0.5, Reference 3.6. For = 0.5 the inelastic buckling stress becomes: 

rp

rp
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DNV proposes the following expression for fc [using the notation adopted here, see Reference 
3.4, equation (C2-1)]: 

( )ycry

c

FfF
f

/4
11−=       (C3-13) 

 
Equations (C3-12) and (C3-13) are plotted in Figure C3-2 as a function of the plate 
slenderness ratio β, for v = 0.3 and k = 4. It can be concluded that DNV’s formula is slightly 
more conservative than Bleich’s equation (C3-12). In Bulletin 2V, equation (C3-11) is 
adopted to define the serviceability limit state for long plates in the plastic range.  

 
For wide plates (a/b < 1/2) Bleich suggests that the collapse stress is again given by equation 
(C3-9) with η  now defined as 

E
Et=η        (C3-14) 

 
with Et /E again given by equation (C3-7). Combining equations (C3-4), (C3-9), (C3-14), 
and (C3-7) the following expression for fc can be obtained: 
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where fcr is given by equation (C3-4) with k defined by equation (C3-4b). In the range 1/2 
< a/b < 1, Bleich suggests that the critical stress may be calculated from the interpolation 
formula. 
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where  is found from equation (C3-11) and  from equation (C3-15). Comparing 
equations (C3-11) and (C3-15) for  = 0.5, it can easily be concluded that they give 
results which are quite close, with equation (C3-11) lying roughly less than 7% above 
equation (C3-15). Thus in practical applications there does not seem to be a need for 
using the linear interpolation scheme expressed by equation (C3-16). 

1cf 2cf

rp

 
In Bulletin 2V equation (C3-15) is adopted to define the serviceability limit state for wide 
plates in the plastic range. 

 
It is interesting to note that DNV’s equation (C2-1), Reference 3.4, which is suggested for 
both long and wide plates, corresponds to equation (C3-15) with = 0.5. This is a 
reasonable way of representing by a single expression the inelastic buckling of both long and 
wide plates. 

rp
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C3.2.3 Ultimate Limit State 
 
Long Plates. The concept of effective width is widely used in structural engineering to 
estimate the ultimate strength of rectangular plates. An extensive review of the subject is 
given in Reference 3.8. The effective span of plating required for computing section 
properties, as discussed in Reference 3.8, is given by: 
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where fe is the edge stress in the plating, fa the average stress, and b the plate element 
width over which uniform compression strain is applied. If it is postulated that the 
maximum post-buckling load the plate can sustain occurs when the edge stress fe reaches 
the yield stress, then we have from equation (C3-17): 
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In Reference 3.8, the following empirical formula for the effective width ratio of simply 
supported plates is proposed: 
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This expression has been found to provide excellent agreement with strut-panel test data and 
with recent box-girder bridge reviews. In Bulletin 2V it is adopted to define the ultimate limit 
state for long plates. The generalized form of this equation for use in the restricted range 0.7 
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In Reference 3.8, Faulkner also defines a reduced effective width eb′ , or tangent width, which 
is intended to take account of a possible stiffener failure before the edge stress in the plate 
elements has reached the yield stress. In the case of simply supported plates the reduced 
effective width for 1≥β is given by: 
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and if the edge stress fe is smaller than Fy we have  
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In the case where the longitudinal stiffeners in a panel are torsionally strong, or where the 
lateral pressure is sufficiently large (say larger than ), clamped boundary conditions 
for the plate might be more appropriate, Reference 3.8. The following expressions then apply 
for 
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Wide Plates. Several formulations have been proposed for the ultimate strength of wide 
plates, and these will now be briefly discussed. For convenience a different notation will be 
used, as indicated in Figure C3-3. Now the length of the loaded edges is a, and a /b > 1.  

 
In Reference 3.6 Faulkner refers to the following formula proposed by Bureau Veritas for 
simply supported wide plates: 
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where the aspect ratio is α = a/b > 1. 

 
As reported also in Reference 3.8 Schnadel proposes the following formula for simply 
supported wide plates: 
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In Reference 3-5 Bleich proposed the following formula resulting from an extension of 
Marguerre’s theory: 
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where the ratio fE/Fy is again given by equation (C3-29). As indicated in Reference 3.8, 
for large values of α the results given by equations (C3-28) and (C3-30) practically 
coincide. 
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Figure C3-3—Wide Rectangular Plate

Figure C3-4—Comparison of Formulations for the Ultimate Strength of Wide Plates with a/b = 3
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In Reference 3.9 Evans proposes the following wide plate ultimate strength formula: 
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and in terms of the plate slenderness parameter β this can be recast in the form: 
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In Reference 3.10 Valsgard proposes the following formula for the transverse compression of 
simply supported and unrestrained plates: 
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      (C3-33b) 

 
Equations (C3-27), (C3-28), (C3-30), (C3-32), and (C3-33) are plotted in Figure C3-4 for α= 
3. Equation (C3-32) provides the most conservative prediction, a fact which is discussed and 
explained in Reference 3.6. Valsgard’s curve intersects equation (C3-32), but it lies below 
the remaining curves. This curve also appears in DNV Classification, Note 30.1 with the 
“0.08” coefficient revised to “0.10.”  Since this information is based on a study in which 
extensive numerical analysis and correlation with experimental data were performed, it is 
thought to be the most adequate, and it is adopted with the revised 0.10 coefficient in Bulletin 
2V to represent the ultimate limit state.  

 
C3.3 EDGE SHEAR 
 
C3.3.2 Serviceability Limit State 
 
Elastic Behavior. The elastic buckling of simply supported rectangular plates subjected to 
uniform edge shear is well documented in several textbooks, e.g., References 3.1, 3.2, 3.3. 
The critical stress can be written in the following form: 
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where k can be approximated by: 
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As a result of symmetry the above formula applies to both long and wide plates, and the sides 
should always be labeled a and b, such that 1/ ≤ab . Equation (C3-34) is adopted in the DNV 
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Rules, equation (C2-1), Reference 3.4. It is also adopted in Bulletin 2V to represent the 
serviceability limit state in the elastic range. 

 
Plates built-in along all edges have been studied by Budiansky and Conner, Reference 3.11, 
who computed values of k by the Lagrange multiplier method. An approximate parabolic 
curve, fitting the results, is 
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This equation is also adopted in Bulletin 2V. 
 

In terms of the slenderness factor β equation (C3-34) can be written in the following form: 
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For future reference it is convenient to write equation (C3-34) in non-dimensional terms as 
follows: 
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where the slenderness ratio λ  is given by 
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The foregoing results are valid when the applied stress remains in the elastic range, or  
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Inelastic Behavior. Following an approach similar to the one adopted for plates under 
uniaxial compression, as suggested by Bleich in Reference 3.15, the critical shear stress now 
takes the form: 
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and k is the buckling coefficient for elastic buckling, given by equations (C3-35) or (C3-
36), depending on the boundary conditions. Combining equations (C3-34), (C3-41), and 
(C3-42) we obtain the following expression for fxyc, 

E
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Again using the Ostenfeld-Bleich quadratic parabola, equation (C3-7), with 
xycc ff 3= (implying the von Mises yield criterion), the following expression for fxyc can be 

obtained: 
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and where as defined earlier ypr FFp /= .  Equation (C3-44) is valid when the proportional 

limit of the material is exceeded, or when ryxycr pFf >/3 . This equation is adopted in 
Bulletin 2V to represent the serviceability limit state in the plastic range. 

 
DNV proposes the following expression for fxyc (using the notation adopted here, equation 
(C2-1) in Reference 3.4): 
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It is interesting to note that equations (C3-44) and (C3-46) are formally identical to equations 
(C3-11) and (C3-13), respectively. Thus, as discussed earlier, for pr = 0.5 these two 
formulations (the one due to Bleich and represented by equation (C3-44), and the one 
suggested by DNV, equation (C3-46), are quite similar. 

 
It is useful, for comparison purposes to express equations (C3-44) and (C3-46) in terms of 
the slenderness ratio defined by equation (C3-39). Equation (C3-44) becomes: 
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and equation (C3-46) becomes: 
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In Reference 3.12 Ostapenko proposes the following expression for the collapse shear stress 
in the inelastic range: 
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Equations (C3-47), (C3-48), (C3-49), and (C3-50) are plotted in Figure C3-5 for pr = 0.5, 
which indicates that Bleich’s curve, equation (C3-47) is less conservative. It is felt, however, 
that it is quite adequate for design purposes, since it provides the possibility of adopting a 
proportional limit ratio pr different from 0.5.  

 
 
C3.3.3 Ultimate Limit State 
 
The ultimate shear capacity of flat plates has been the subject of extensive research, 
particularly in the context of the design of plate girders loaded in shear. 
 
The AISC Specification, Reference 3.13, uses Basler’s approach, References 3.14 and 3.15, 
which leads to the following equation for the allowable shear stress: 
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In Reference 3.16 Basler’s theory is discussed, and it is pointed out that equation (C3-51) 
does not actually represent the true resistance of the Basler model, which is correctly given 
by: 
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where 1≥α is the plate’s aspect ratio. In non-dimensional form equation (C3-52) can be 
written as follows: 
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In Balser’s solution it is assumed that the edge girder flanges have insufficient flexural 
rigidity to resist diagonal tension, which is consequently reacted by the transverse stiffeners. 
As a result the transverse stiffeners are subject to compressive loading. 
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Figure C3-5—Comparison of Formulations for the Inelastic Buckling of Rectangular Plates Under Edge Shear

Figure C3-6—Model for the Ultimate Strength of
Rectangular Plates in Shear

Bulletin 2V--Design of Flat Plate Structures

89



3  fxyu /Fy

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

(3-57)  α = 3
(3-53)  α = 3

(3-57)  α
 = 1

(3-53)  α
 = 1

3  fxycr /Fy

Figure C3-7—Comparison of Formulations for the Ultimate Strength of Rectangular Plates in Shear

Bulletin 2V--Design of Flat Plate Structures

90



p/[Fy (t/b)2]

10.0

12.0

8.0

6.0

4.0

2.0

1 2 3 4 5

(3-62)

(3-63)

(3-60)

(3-61)

(3-59)

(3-70)

(3-58)

α

a

b

y

x

fx

fy

Figure C3-8—Comparison of Formulations for the Ultimate Strength of Rectangular Plates Under Lateral Pressure

Figure C3-9—Rectangular Plate Under
Biaxial Compression

Bulletin 2V--Design of Flat Plate Structures

91



In Reference 3.16 a model which takes into account the carrying capacity of the edge 
stiffeners is developed. It leads to the following equations: 
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where Mp is the full plastic moment of the flange. The geometry related parameters θd, b, 
and d are defined in Figure C3-6. The angle θ is the inclination of the tensile membrane 
stress field ft in the web. This angle is unknown and has to be found numerically, such 
that the maximum value of fxyu is obtained. In most cases θ lies in the range θd /2 < θ < 
π/4.  

 
Ostapenko, Reference 3.12, also suggests a model which follows along the lines of Basler’s 
model, since it does not recognize the formation of the internal plastic hinges in the flanges. 
It leads to the following result: 
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Figure C3-7 shows plots of equations (C3-53) and (C3-57), indicating that Ostapenko’s 
model leads to more conservative results. 
 
When designing stiffened plate structures it is obviously important to consider the strength of 
the stiffeners as well as the strength of the plate elements. If the stiffener’s ultimate capacity 
is taken into account, it is reasonable to treat the plate independently, and it is recommended 
that the design be based on equation (C3-53). This equation is adopted in Bulletin 2V to 
represent the plate’s ultimate limit state in shear. 
 
C3.4 UNIFORM LATERAL PRESSURE 
 
C3.4.2 Serviceability Limit State 
 
The expression suggested in Bulletin 2V for estimating plate deflections in the elastic range 
can be derived from thin plate theory, as shown for example in Reference 3.17. The same 
applies to the maximum elastic stresses. The graphs in Bulletin 2V for computing elastic 
deflections and stresses (Figures 3.4-1 and 3.4-2) were adopted from Reference 3.18. 
 
C3.4.3 Ultimate Limit State 
 
There are many studies in the literature on the ultimate capacity of rectangular plates under 
uniform lateral pressure. In practice when considering rectangular plates which are supported 
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by orthogonal stiffening elements, the plate edges have a certain degree of in-plane axial and 
rotational restraint. If there is axial in-plane restraint the plate is able to resist lateral pressure 
by membrane action, and this provides a very large degree of reserve strength. The ultimate 
strength is in such cases primarily determined by fracture. Membrane action is to a large 
extent a function of lateral deflections, and as such it is reasonable to design plates on the 
basis of a certain allowable permanent set. A permanent set is desirable if lateral pressure 
acts alone, while it is in general undesirable if in-plane compression is also present, since 
then the buckling mode can easily be triggered. 
 
In Reference 3.19 the following load/permanent set curves are suggested, based on a curve 
fitting study of Clarkson’s experimental data in Reference 3.20: 
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These expressions are restricted to rectangular steel plates with aspect ratios falling in the 
range 1 to 5. It should be noted that these two equations show a discontinuity for β= 2.5, with 
equation (C3-59) leading to larger values of p when the remaining parameters stay the same. 
No obvious explanation for this discontinuity is available. 
 
An upper bound to the collapse pressure of clamped rectangular plates has been proposed by 
Johansen. It is an upper bound in the context of the Theorems of Limit Analysis, so that the 
plate’s material is considered to be rigid-perfectly plastic, Reference 3.21. The collapse 
pressure is given by: 
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A lower bound associated with the Johansen yield curve, as given in Reference 3.21, is 
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If the plate boundaries are simply supported the collapse pressure is one-half the value given 
by equation (C3-60), or: 
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As discussed in Reference 3.21 a lower bound is in this case given by: 
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As discussed earlier, membrane effects play an important role in the behavior of rectangular 
plates under uniform lateral pressure. Jones and Walters, Reference 3.22, developed 
expressions for the collapse pressure when finite plastic deflections are taken into account. 
These are based on the material rigid plastic assumption, and follow an approach similar to 
the upper bound method adopted in the derivation of equations (C3-60) and (C3-62). 
However, it should be noted that the results given by Jones and Walters cannot in a strict 
sense be considered as an upper bound, since the Theorems of Limit Analysis are only valid 
in the case of infinitesimal deflections. 
 
For fully clamped boundaries the pressure versus deflection curve is given by: 
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where ζ  is given by 
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The pressure versus deflection curves for simply supported boundaries are given by: 

( ) ( )
2
1,

3
23

3
41

/6 22

22

2

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−+

⎟
⎠
⎞

⎜
⎝
⎛+=

t
W

t
WbtF

p y

ζ
ζζ

αζ
  (C3-67) 

( ) ( )
2
1,

12
1

3
21

/24
2

2

22

2

≥⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

+=
t

W
W
t

t
WbtF

p y

ζ
ζζ

αζ
 (C3-68) 

 
In the DNV rules [equation (C2-2)], Reference 3.4, there is a minimum thickness requirement 
for plates subjected to lateral pressure. In the absence of other loads and using the notation 
adopted here, this requirement takes the form: 
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where p is the design hydrostatic pressure. This requirement implies a collapse pressure 
which can be obtained from equation (C3-69) by solving for p: 
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Equations (C3-58) through (C3-63) and (C3-70) are plotted in Figure C3-8. It can be 
concluded from this figure that equations (C3-58), (C3-62), (C3-63), and (C3-70) show a 
reasonable agreement, while equations (C3-59) and (C3-61) also show a reasonable 
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agreement, lying above the previous ones. Equation (C3-60), corresponding to the collapse 
load of a perfectly clamped plate, gives a pressure which lies consistently above the values 
given by all the previous curves.  
 
In a real case the support conditions lie somewhere between the extreme cases of simple 
supports and clamped supports. For continuous plating under uniform lateral pressure resting 
on stiffeners, support conditions might be close to clamped, since the edge slopes are not 
very different from zero. On the other hand the degree of axial restraint is difficult to predict, 
but it also has a great influence on the collapse pressure, particularly beyond initial collapse. 
Thus, referring to Figure C3-8, it is understandable that equation (C3-60) provides a 
nonconservative estimate, since it is based on the assumptions of fully clamped and axially 
restraining supports. The other rigid-plastic upper and lower bound solutions equations (C3-
61), (C3-62), and (C3-63) are very attractive and are quite convenient for design purposes. 
However, their major limitation is that they are based on support conditions which are not 
realistic. 
 
Since all the curves under consideration have their own limitations, it is suggested that 
equation (C3-58) be selected, since it is based on credible experimental evidence, it agrees 
reasonably well with equations (C3-62), (C3-63) and (C3-70), and it allows for the 
consideration of plastic set. 
 
The permanent set or maximum plastic deformation suffered by a plate largely depends on 
the degree of in-plane axial restraint at the boundaries. Equations (C3-64) through (C3-68) 
assume that the edges do not move inwards, a situation which is not likely to be encountered 
in practice. In fact, as discussed for example in Reference 3.23, the pressures associated with 
even modest values of permanent set for plates with rigidly held edges are so high that if the 
plate element boundaries are supported by stiffeners, these would collapse at much lower 
pressures. At the other extreme, equations (C3-58) and (C3-59) are based on tests where the 
plate edges are free to slide inwards, which is a more reasonable and conservative 
assumption. It is convenient to specify in establishing design guidance a certain magnitude of 
permissible permanent set, in the absence of in-plane compression, since this can lead in 
general to a more weight efficient structure. For example, in Reference 3.24 and for naval 
ship design, the value W/t = 0.25 is suggested for bottom plating and strength deck, and the 
value W/t = 0.5 for other decks, bulkheads and remaining structure. In Reference 3.15 for 
example, in the design of icebreaker shell plating, the maximum acceptable permanent set is 
related to panel width, and the value of 0.3 percent of panel width seems to be acceptable. 
For a mild steel with Fy = 36,000 psi this corresponds to W/t = 0.1β, and for a higher strength 
steel with Fy = 50,000 psi this corresponds to W/t = 0.07β, and these are smaller than the 
values suggested in Reference 3.24. The value W/t = 0.2β is suggested here as an acceptable 
maximum permanent set value. 
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C3.5 BIAXIAL COMPRESSION WITH OR WITHOUT EDGE SHEAR BIAXIAL 
COMPRESSION ALONE 
 
C3.5.2 Serviceability Limit State 
 
Elastic Behavior. The elastic buckling of simply supported rectangular plates compressed in 
two perpendicular directions, Figure C3-9, is treated by Timoshenko in Reference 3.1. The 
critical stresses satisfy the following relation:  
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where m and n are the number of half waves in which the plate buckles in the x and y 
directions, respectively, and 
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As suggested in Reference 3.2 it is convenient to recast equation (C3-71) in the following 
form: 
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where R is the load ratio: 
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y

f
f

R =        (C3-74) 

 
For given values of the load ratio R and plate aspect ratio a/b, the values of m and n may be 
chosen by trial to give the smallest eigenvalue fxcr. Alternatively equations (C3-71) and (C3-
72) can be used, and this is the approach adopted in Bulletin 2V. 

 
Equation (C3-73) can be recast in a non-dimensional form similar to equation (C3-6) as 
follows: 
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Inelastic Behavior. When fx and/or fy exceed the proportional limit plasticity effects have to 
be considered. Note that strictly speaking, plasticity effects are governed by a combination of 
stresses, as given for example by the von Mises yield criterion, and not by individual stress 
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components. Thus, rather than stating that plasticity effects must be considered when either fx 
or fy or both exceed the proportional limit, it is more rigorous to say that plasticity must be 
considered when the equivalent stress, defined in the context of the von Mises yield criterion, 
for example, exceeds the proportional limit. 

 
Plasticity effects can conceptually be included for design purposes by adopting an approach 
similar to the one used for combined uniaxial compression and edge shear. However, there is 
really no theoretical justification for such a procedure in the case of biaxial compression, so 
this approach is not recommended here. It seems more reasonable to adopt an interaction 
type of relationship between fx and fy, and the form suggested in Reference 3.15 is 
reasonable: 
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      (C3-76) 

 
This interaction equation was adopted in the first edition of Bulletin 2V, but was eliminated 
in the second edition as the formulation was assumed unconservative relative to the 
recommendations of Section 3.5 for biaxial compression and edge shear. An alternative form 
for this interaction has been proposed by Faulkner, Reference 3.6: 
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      (C3-77) 

 
C3.5.3 Ultimate Limit State 
 
Valsgard, Reference 3.10, has recently conducted a detailed study on the ultimate strength of 
plates in biaxial in-plane compression. The interaction curves proposed in this study are 
recommended here and adopted in Bulletin 2V. 
 
For plates with an aspect ratio equal to or larger than 3, Valsgard proposes the following 
interaction curve: 

125.0 22 =+− yyxx RRRR      (C3-78) 
 

where and are the plate longitudinal and transverse strength 
ratios, respectively. 

xuxx ffR /= yuyy ffR /=

 
For square plates (aspect ratio equal to unity) the following interaction curve is suggested in 
Reference 3.10, based on a study conducted by Frieze et al. in Reference 3.26: 

122 =+− yyxx RRRR η       (C3-79) 
where 

22.3 35.0 −= − βη e       (C3-80) 
  

and β is the plate slenderness parameter defined by equation (C3-5). 
 

Bulletin 2V--Design of Flat Plate Structures

99



For plates with aspect ratios lying between 1 and 3, for a given value of Ry the corresponding 
value of Rx can be found by linear interpolation. 
 
The set of equations (C3-78) and (C3-79) is adopted in Bulletin 2V to represent the ultimate 
limit state of plates in biaxial compression.  
 
Biaxial Compression with Edge Shear.  In the case of a rectangular plate under combined 
biaxial compression and edge shear, an exact treatment of the interaction problem becomes 
very difficult, if not impossible, as discussed in Reference 3.23. DNV (Reference 3.30) 
adopts a spherical interaction surface based on a combination of elastic and von Mises 
stresses.  This formulation has been rewritten and recommended for Bulletin 2V for the 
serviceability limit state: 
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where 

c = 0.1,12 ≥− α
α

 

fe = limit state von Mises stress 
= ( )( ) 2

1222 3 xylylxlylxl fffff +−+  

 
C3.6 COMBINED IN-PLANE AND LATERAL LOADS 
 
The influence of lateral pressure on the behavior of plates subjected to in-plane loads is a 
complex problem, which has been studied by several authors (e.g., References 3.27, 3.28, 
and 3.29). At present a clear understanding of this problem is lacking, and additional testing 
seems necessary to clarify some of the aspects involved, Reference 3.23. In Reference 3.28, 
for example, experiments appear to have demonstrated negligible influence of normal 
pressure upon uniaxial longitudinal compressive strength. The same may be said of biaxial 
strength for b/t = 50 or less. However, for greater b/t ratios the pressure can have a negative 
impact on biaxial strength. Thus, in order to quantify the exact influence of lateral pressure 
on ultimate strength an extensive experimental program seems necessary. Attempting to 
postulate a linear interaction for wide plate collapse, as discussed in Reference 3.23, also 
seems premature, given the lack of data available on the subject. 
 
Reference 3.30 provides an explicit formulation for combined in-plane and lateral loads 
based on yield-line theory, a reduced moment capacity along the yieldlines based on von 
Mises’ equivalent stresses. This formulation may be appropriate when support conditions 
produce tensile membrane effects in the plate under combined in-plane and lateral loads. This 
formulation will probably have only a minor impact on design for typical offshore 
installations. 
 
Another interaction formulation for this condition (Reference 3.31), developed for some Gulf 
of Mexico TLP designs, uses the API Bulletin 2V formulations for component critical 
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stresses. This formulation may be appropriate when support conditions are unable to produce 
tensile membrane effects in the plate under combined inplane and lateral loads. At present, 
this buckling interaction takes the following form (shown for the ultimate limit state; the 
serviceability limit state is similar): 
 
( xσ  compression, yσ  compression): 

( ) ( )[ ] ( ) 1/'/'/ 22
122 =++ uyuyxux ττσσσσ  

In this case, xu'σ and yu'σ  are reduced from the API Bulletin 2V values due to the 
presence of lateral pressure: 

( ) 1*84.02^*8.0//' ++= QQ
yuyu FF σσ  

where  
Q = , 2/ yFpE
p = applied pressure. 

 
( xσ  tension, yσ  compression): 

( ) ( ) ( ) 1//// 222 =+++ uuyuyyx ppF ττσσσ  

where 
p = applied pressure,  
pu = ultimate pressure under pressure loading only. 

 
( xσ  tension, yσ  tension): 

( ) ( )[ ] 1/// 2
122 =++− uyyyx FF ττσσ  

 

( xσ  compression, yσ  tension): 

( ) ( ) 1/// 22 =++ uuxux ppττσσ  

  
A von Mises based yield criterion is also applied in all quadrants but does not control for 
compression-compression: 

( ) ( )( ) ( ) 1//// 22 =′+′−′ yyyyxxxx σσσσσσσσ  

where 
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The above formulations will have an impact on design relative to the present API Bulletin 2V 
and DNV recommendations, especially for compression-compression biaxial stress states. 
 
The DNV 1995 and the above ultimate limit state formulations are compared on Figures C3-
10 and C3-11 for a 50 ksi yield steel plate with aspect ratio of 2.0 and a breadth to thickness 
of 40 and 20, respectively. The effect of edge shear is eliminated for simplification. The 
above formulations are generally more conservative over the tension-tension and 
compression-compression quadrants of the interaction curve, as compared with the DNV 
pressure interaction formulations. This is especially true in the compression-compression 
range (the lower left-hand quadrant of the plots), which is a very typical biaxial stress state 
for floating structures. Three critical pressure ratios are plotted (25, 50 and 70 psi). 
 
The figures also plot biaxial interaction without pressure per DNV and API Bulletin 2V 
formulations. Looking at the compression-compression quadrant of the figures, the DNV 
curve without pressure appears to control over the DNV curves with pressure, converging as 
the b/t ratio decreases. This implies that the DNV pressure interaction curve never controls 
design for biaxial compression-compression. For API Bulletin 2V, the opposite is true. 
Another observation is that DNV and Bulletin 2V will be closer in agreement as the 
configurations become more elastic since the DNV biaxial interaction is based on elastic 
buckling stress, whereas Bulletin 2V is based on critical buckling stress. However, the 
addition of pressure will always result in a more conservation design using API Bulletin 2V 
and the above formulations than using DNV formulations.     
 
 
C4 STIFFENERS 
 
C4.2 COLUMN BUCKLING 
 
For a perfectly straight column made of a linear elastic material under an axial concentric 
load, elastic buckling is governed by the well-known Euler formula, Reference 4.1: 

( )2

2

KL
EIPE

π
=        (C4-1) 

 
where L is the unsupported column’s span and I is the moment of inertia of the cross 
section. K is a coefficient which defines the effective length KL, and depends on the 
boundary conditions. For example, for a column perfectly clamped at both ends K = 0.5, 
while for a column pinned at both ends K = 1.0. K is normally taken in the range 0.7 to 
1.0, but sometimes other values are suggested, see for example Reference 4.2. 
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It is convenient to rewrite equation (C4-1) in the following non-dimensional form: 
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F
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       (C4-2) 

where the slenderness ratio λ is given by: 
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r
KL y

π
λ 1

=       (C4-3) 

 
In equation (C4-3) r is the radius of gyration of the cross section, or ( ) 2

1
/ AIr =  where A is 

the cross sectional area and I has already been defined. 
 
Equation (C4-2) is valid in the linear elastic range, where ryE pFf ≤/ , or rp/1≥λ . For 

plastic effects have to be considered, and the column buckling problem can be 
treated in a way similar to the approach used for plates under uniaxial compression, using the 
Ostenfeld-Bleich quadratic parabola, equation (C3-7). The following result can be obtained: 

ryE pFf >/

( )
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rr
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c
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pp

F
f 1,11 2 ≤−−= λλ      (C4-4) 

 
With = 0.5 we obtain from equations (C4-2) and (C4-4) the values of  adopted by 
AISC, Reference 4.3. 

rp yE Ff /

 
Since these formulas are to be applied to stiffener design, in determining the cross section 
properties the attached effective plating should be considered. The effective width of plating 
be can be determined by using the formulas presented in C3.2.3. 
 
C4.3 BEAM-COLUMN BUCKLING 
 
The behavior of beam-columns has been the subject of considerable research, as reviewed for 
example in Reference 4.4. In this reference the following design formula is proposed, which 
closely follows the expression given in Part 2 of the AISC Specification, Reference 4.3: 

0.11 ≤+
uu M

MB
P
P

      (C4-5) 

where 
P = axial force, 
M = end moment, 
Mu = maximum moment that can be resisted by the member in the absence  
  of axial loads.  

For minor axis bending, lateral torsional buckling does not exist, so 
that Mu = Mp, where Mp is the full plastic moment of the cross section, 

Pu = ultimate axial load of the column as given by fcA, 
Py = axial yield load = FyA, 
B1 = amplification factor given by 
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PE = AfE with fE given by equation (C4-2), 

Cm = 4.04.06.0
2

1 ≥+
M
M

     (C4-7) 

M1/M2 = ratio of the smaller to larger end-moments in the plane of bending, 
 positive for single curvature bending, and negative for double 

curvature bending. 
 
The above beam-column interaction equation has been criticized by several researchers, 
Reference 4.4, and some nonlinear interaction equations have been suggested as being more 
adequate, e.g., Reference 4.5. Equation (C4-5) is recommended for Bulletin 2V, with the 
understanding that future studies will be required to determine a more suitable formulation. 
 
C4.4 TORSIONAL/FLEXURAL BUCKLING 
 
C4.4.2 Ultimate Limit State for Doubly Symmetric Sections 
 
Torsional buckling refers to the case where a thin-walled bar subjected to uniform axial 
compression buckles torsionally, while its longitudinal axis remains straight. 
 
The elastic torsional buckling stress (axial compressive stress) for a thin walled prismatic 
member is derived in various textbooks, e.g., References 4.1, 4.6, and 4.7. For a built-in 
section with the ends fixed against rotation and not free to warp, if the shear center and 
centroid coincide, the buckling stress is equal to: 
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π
     (C4-8) 

where 
Io = polar moment of inertia about the shear center, 
G = shear modulus, 
J = torsional constant. For thin-walled open sections consisting of n flat  
  elements of width b and thickness t, 

3/3∑=
n

i
iitbJ  

Cw = warping constant. For uniform thickness I section, web width b, and  
  moment of inertia Iy about an axis coincident with the middle line of 

the web, , 4/2
yw IbC =

L = member length. 
 
Formulas giving the constants J and Cw for a number of typical thin-walled open cross 
sections are included in Table 4.4-1, Section 4.4.1, Bulletin 2V. 
 
In the DNV rules [equation (C2-16), Reference 4.8] equation (C4-8) is adopted for the 
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torsional buckling of flanged profiles, with , where h4/2
ysw IhC = s is the distance from the 

stiffener toe to the shear center. 
 
If the calculated value of the elastic critical stress exceeds the elastic limit of the material, 
inelastic buckling will occur at a stress lower than the value predicted by equation (C4-8). 
Inelastic buckling can again be taken into consideration by using the concept of the tangent 
modulus. However, both E and G now affect the critical stress, and there is little information 
about the correct reduced modulus to be used in place of G. As discussed in Reference 4.6, 
the usual assumption is to take the reduced modulus for G as GEt /E, and the approximation 
is accepted on the grounds that, in most torsional buckling problems, the shearing stresses 
play only a minor part. By following this approach the term Et /E can be factored out, and if 
equation (C3-7) is used the following result can be obtained: 
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−=       (C4-9) 

where fcr is given by equation (C4-8). Note that this equation as exactly the same form as 
equation (C3-15) which applies to rectangular plates under uniaxial compression. 

 
A possible approach to design is to specify that the elastic buckling stress given by equation 
(C4-8) should be much higher than the yield stress. For example DNV (equation C2-16), 
Reference 4.8), specifies that fcr should be 2.5 times larger than Fy . 
 
Equations (C4-8) and (C4-9) are adopted in Bulletin 2V. 
 
C4.4.3 Ultimate Limit State for Sections with a Single Plane of Symmetry 
 
When the shear center and the centroid do not coincide the section can buckle by a 
combination of twisting and bending. This is the case of an I-section with unequal flanges, 
for which there is only one axis of symmetry. 
 
As derived for example in Reference 4.6, the critical axial load P for a simply supported 
section with one axis of symmetry, with the ends free to warp but fixed against rotation, can 
be found from the following quadratic equation: 

( ) 02 =++− θθ PPPPPP
I
I

xx
o

c     (C4-10) 

where 
Ic = polar moment of inertia about the centroid, 
Px = = Euler buckling load for buckling normal to the plane of  22 / LEI xπ
  symmetry, 

 Pθ = ( )( )22 // LECGJIA wo π+  is the buckling load in pure torsion. 
 
The quadratic equation (C4-10) gives two solutions for the critical load P, one of which is 
smaller than either Px or Pθ, while the other is larger than either. The smaller of these roots, 
or the Euler load for buckling in the plane of symmetry, represents the critical load for the 
column. 
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As discussed in the case of torsional buckling, when the critical stress exceeds the elastic 
limit inelastic effects have to be taken into consideration. This implies that the inelastic 
buckling load becomes P Et /E, where P is the elastic solution with the shear modulus G 
replaced by GEt /E. 
 
C4.4.4 Stiffener Proportions 
 
The possibility of occurrence of different forms of local stiffener instability, such as torsional 
buckling or web crippling, can to a large extent be minimized if certain local slenderness 
ratios are respected. These usually involve the flange width/thickness ratio d/t. 
 
The AISC Specification, Reference 4.3, gives the following requirements for local ratios of 
compact sections. If the section is compact local buckling will not occur before the full 
plastic moment is reached. As a result, the AISC Specification, Reference 4.3, increases the 
allowable bending stress for compact members from 0.60 Fy to 0.66 Fy. 
 
For compact sections the width/thickness ratio of unstiffened projecting elements of a 
compression flange must satisfy (see Reference 4.3, 1.5.1.4.1): 
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≤        (C4-11) 

with Fy expressed in kips/in2. 
 
The depth/thickness ratio of the web must satisfy: 
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where fa = computed axial stress. 
 
The compression flange shall be supported laterally at intervals s satisfying: 
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≤        (C4-14) 

where 
d = depth of girder, 
Af = area of compression flange. 
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It is convenient to express the foregoing ratios in terms of yFE /  . For psi 
equations (C4-11) through (C4-13) can be rewritten as follows: 

61030xE =
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≤

y

a

y F
f

F
E

t
d 74.3170.3      (C4-16) 
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s 44.0≤        (C4-17) 

 
For non-compact sections the AISC Specification, Reference 4.3, 1.9.1.2 and 1.9.2.2, gives 
some stiffener proportions that allow the design to proceed with no reduction in allowable 
stress, while preventing local buckling. In this case the maximum ratio for unstiffened 
compression elements is given by 
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In the case of stiffened compression elements the following ratio applies: 
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DNV [equations (C2-15) and (C2-17), Reference 4.8] proposes the following limits: 
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Comparing equations (C4-15) and (C4-20), and (C4-16a) and (C4-21), it can be concluded 
that the AISC requirements for compact sections and the DNV requirements are similar. 
 
In References 4.9 and 4.10 the following limit for the depth to thickness ratio of flat bars is 
proposed: 
 

yF
E

t
d 37.0≤        (C4-22) 

corresponding to the limit fTE > 2.5 Fy, where fTE is the elastic buckling stress in torsion. This 
limit on d/t is comparable to the limit on b/tf given by DNV, equation (C4-20). 
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It is recommended that the limits proposed by AISC be adopted in Bulletin 2V, since they 
agree reasonably well with the limits proposed by other sources. 
 
C4.5 PLASTIC BENDING 
 
The plastic collapse load for a fully clamped beam of span a, subjected to a uniform 
distributed load is given by Reference 4.11: 

2

16
a
Mq o=        (C4-23) 

where Mo is the plastic moment of the cross section. Equation (C4-23) assumes the 
supports can withstand the full plastic moment Mo, and that no shear and axial effects 
influence the structural behavior. 

 
As shown in Reference 4.12, for a symmetric I section the plastic moment Mo is given by: 
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where b is the flange width, t the flange thickness, h the depth and s the web thickness. 
 
For thin-walled sections (t << h) the following approximation is acceptable: 
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In the presence of axial force N the bending capacity of the cross section decreases. The 
moment/axial force interaction for an I section takes the following form, Reference 4.12: 
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where No = AFy = plastic axial capacity, A is the total cross sectional area, and  Aw = web 
area. These interaction equations are adopted in Bulletin 2V. 

 
The European Recommendations Steel Construction, Reference 4.13, give two formulas for 
the moment/axial force interaction, for both strong axis bending and weak axis bending. For 
strong axis bending for I beams the suggested interaction curve is linear and compares well 
with the results of equations (C4-25) and (C4-26). 
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In the presence of shear force the bending capacity of beams also decreases. For thin-walled I 
beams loaded in the plane of the web it is reasonable to assume that the maximum carrying 
capacity in shear Vo is: 

3
y

wo

F
AV =        (C4-27) 

 
Shear influences bending in extreme cases, when the length/depth ratio for the beam is very 
small, and this is not likely to occur in practical situations of interest here. As suggested in 
Reference 4.14 a possible shear and bending moment interaction is: 
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      (C4-28) 

 
For a plated structure consisting of a plate stiffened by orthogonally intersecting stiffeners, 
and subjected to a uniformly distributed lateral pressure p, the line loads on the stiffeners can 
be estimated from the following formulas suggested by Faulkner in Reference 4.15: 
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11pbqa       (C4-29) 

2
pbqb ≅        (C4-30) 

where qa is the line load on the stiffener of length a, qb is the line load on the stiffener of 
length b, and α is the plate aspect ratio. These two equations are adopted in Bulletin 2V. 

 
C4.5.3 Stiffener Proportions 
 
Requirements for stiffener proportions in members under lateral load and axial compression, 
to ensure that plastic hinges develop, are discussed here. 
 
AISC, Reference 4.3, gives in a tabular form the maximum values for the ratio as a 
function of the yield stress (kips/in

ff tb 2/
2), as shown in the first two columns below: 

 
Fy     ff tb 2/ ( ) yff FEtb ///  

36      8.5    0.59 
42      8.0    0.60 
45      7.4    0.57 
50      7.0    0.57 
55      6.6    0.56 
60      6.3    0.56 
65      6.0    0.56 
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The third column contains the constant which when multiplied by yFE /  (for E = 30 x 106 

psi) gives the ratio .  Thus if the smallest value of the constant is selected the 
requirement for takes the following form: 

ff tb /

ff tb /
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56.0≤       (C4-31) 

 
Regarding the depth/thickness ratio of webs the following requirements are given in 
Reference 4.3: 
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where Py = plastic axial load = FyA 

 
For E = 30 x 106 psi equations (C4-32) and (C4-33) take the form: 
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The equivalent requirements proposed by DNV (equations (C2-18) and (C2-20), Reference 
4.8) are: 
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The AISC and DNV requirements agree reasonably well. The AISC requirements are adopted 
in Bulletin 2V. 
 
C5 STIFFENED PANELS 
 
A very wide range of papers have been published in the literature on the structural behavior 
of stiffened panels, see for example References 5.1 and 5.2. Due to the large number of 
parameters required to fully define a stiffened panel it is difficult to develop simple design 
formulas. The DNV rules, Reference 5.3, give guidelines for plate, stiffener and girder 
design, but do not include any specific recommendations regarding the overall design of 
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stiffened panels or grillages. Some possible ways of treating this problem and the difficulties 
involved will now be discussed. 
 
C5.2 UNIAXIALLY STIFFENED PANELS IN END COMPRESSION 
 
In Reference 5.12 an approach for deriving the average failure stress of uniaxially stiffened 
plate panels in end compression is given. In this approach interaction between adjacent 
stiffener fields is neglected, it is assumed that flexural failure is plate induced, and simple 
support conditions at the transverse edges are assumed. The average failure stress is given 
by: 

( )btAF
tbAf

F
f

sy

es
e

y

w

+
+

==φ      (C5-1) 

( ) yre
y

ce
rr

y

e Fpf
E
F

r
app

F
f

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ,11

2

π
   (C5-2) 

tbA
Ir

es

e
ce +

′
=2        (C5-3) 

pyr FFp =        (C5-4) 
where 

eIE ′  = buckling flexural rigidity of the stiffener plus the effective width be of  
  plating, 
be = effective width, 
As = stiffener area, 
t = plate thickness, 
Fp = proportional limit stress. 
 

Both widths be and should be reduced by the product Reb′ rRyRxy for the effects of any other 
in-plane stresses fr, fy, and fxy. The reduction factors Rr, Ry, and Rxy are given by: 
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The subscript m for f denotes the maximum or ultimate stress for the plate, as discussed in 
C3.2.3. 
 
Since be and are both functions of the required plate edge stress feb′ e, an iterative procedure is 
needed in order to find φ. However, as indicated in Reference 5.4, experience shows that only 
a few iterations are required for convergence.  
 
In Reference 5.5 some studies on the ultimate strength of simply supported uniaxially 
stiffened panels (equally spaced and sized stiffeners) under edge compression are given. A 
design criterion is discussed, which seems easy to apply in practical design situations, and 
which will now be described. For uniform compression a maximum plate width/thickness 
ratio is suggested as follows: 
 
plane plate (no stiffener): 

yF
E

t
b 33.1≤        (C5-12) 

 
panel with one stiffener: 
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E

t
b 66.2≤        (C5-13) 

 
panel with more than two equally spaced stiffeners: 
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t
b 33.1≤       (C5-14) 

 
where n = number of sub-panels (individual plates). 

 
In case the compressive edge stress f1 is less than the ultimate compressive stress fu, the 
thickness can be reduced to uff /1  times the values given above. 
 
The moment of inertia of any type of stiffener shall not be less than 

γ3

11
1 btI =        (C5-15) 

where 
I = required moment of inertia of stiffener, 
b = entire plate width, 
t = plate thickness, 
γ = required flexural rigidity ratio given by: 
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The parameter  is the maximum width/thickness ratio of the entire plate as specified 
by equations (C5-12) through (C5-14), and 

( )otb/
( )stb / is the actual  width/th ickness ratio of the 

entire plate. The parameter γm is given by: 
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bt
As=δ  

where 
As = area of stiffener, 
α = aspect ratio of a whole panel, 
ko = buckling coefficient = 4, 
kreq = n2

. 

 
Reference 5.5 also gives ultimate strength curves ref lecting the influence of residual stresses, 
initial geometric imperfections , and inelastic behavior. Th e ultimate stress f or multiple 
stiffened plates under pure compression takes the f ollowing form: 
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 The buckling coefficient k is given by: 
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where I s is the moment of inertia of one stiffener about an axis parallel to  the plate surface at 
the base of the stiffener, and D is the plate flexural rigidity. 
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C5.3 ORTHOGONALLY STIFFENED PANELS 
 
Grillage and orthotropic plate theory have been suggested for the analysis of cross stiffened 
plates by several authors, e.g., References 5.4 through 5.7. The Rules for the Classification 
and Construction of Seagoing Steel Ships published by Germanisher Lloyd, Reference 5.7 for 
example, define the buckling strength of cross stiffened panels, in terms of orthotropic plate 
theory. There is no doubt that these methods provide a powerful tool for studying the strength 
of cross stiffened panels, as demonstrated for example in Reference 5.6. A possible 
shortcoming of these methods is the difficulty of giving an exact definition for the flexural 
rigidities of the orthotropic panel, or the rigidities of grillage elements. Also, in the case of a 
grillage it is difficult to establish how the applied loads should be distributed among the 
various grillage components. 
 
The limit states given in Bulletin 2V for orthogonally stiffened panels under uniaxial and 
biaxial compression and lateral load are based on the work of Mansour, References 5.4 and 
5.6. In particular the graphs in Figures 5.3-1 and 5.3-2 are adapted from Reference 5.4. 
 
C5.4 STIFFENER PROPORTIONS 
 
The torsional and lateral buckling of stiffeners has been covered in C4.4.3. Some additional 
guidelines can be given in order to prevent the possibility of tripping. The DNV rules, for 
example [equation (C2-24), Reference 5.3] state that overall tripping of the girder should be 
avoided by means of tripping brackets, and that the spacing between these should not exceed: 

y
f F

Ebfs ⋅=        (C5-28) 

 
where f = 0.4 for symmetric flanges, and f = 0.8 for one-sided flanges. This result 
compares reasonably well with the AISC requirement for lateral support of the 
compression flange, Reference 5.8, as expressed by equation (C4-17). 

 
Requirements for tripping brackets and stiffener proportions are also suggested in References 
5.9 and 5.10 on the basis of U.S. Navy practice. More recent work on the subject is given in 
Reference 5.11. 
 
As mentioned in Reference 5.12, a possible basis for design includes two requirements: 

i) the elastic torsional buckling stresses are kept well above yield; 
ii) the stiffener outer-fiber stresses under compressive load, allowing for residual 

stresses and initial flexural and torsional deformations, are kept below yield 
by an appropriate margin. 

 
The margin and deformations are not specified in Reference 5.12. In the DNV rules, for 
example (equation (C2-16) Reference 5.3), there is a requirement that for flanged profiles the 
elastic torsional buckling stress be larger than 2.5 times the yield stress, and this seems to be 
reasonable. For the outer fiber stress the DNV rules do not contain an explicit requirement, 
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but they give a minimum value for the girder’s moment of inertia [equation (C2-25)]. 
 
C5.6  EFFECTIVE FLANGE 
 
The concept of effective breadth is normally adopted in the design of flange structures, such 
as box girders, in order to take the shear lag phenomenon into account. The problem has been 
studied by several authors, and is briefly reviewed in Reference 5.13. In naval architecture 
applications, Schade, Reference 5.14, performed the pioneer work in the area and his design 
curves are suggested here, until a more thorough review of more recent literature can be 
conducted, e.g., References 5.15, 5.16, and 5.17. 
 
Schade’s approach is based on simple plane-stress solutions, and thus, as mentioned in 
Reference 5.13, does not take into account the following effects: 

a. normal deflections, such as initial distortion, or those caused by lateral load; 
b. residual stresses; 
c. plate buckling; 

 
The DNV rules (section 5, in Reference 5.3) also contain design curves for effective breadth 
calculations, probably based on Reference 5.15, and further study should be conducted on 
comparing these with Schade’s curves, and other approaches available in the literature. 
 
The three Schade design curves, Reference 5.14, are reproduced here in Figures 5.6-2 to 5.6-
4. The first figure applies to a single web, the second to double webs and the third to multiple 
webs. The following nomenclature is used: 

B = plate breadth, or distance between webs, 
b = half breadth, 
L = length, 
cL = distance between points of zero bending moment, 
bef = effective breadth. 

 
The parameter β is a non-dimensional coefficient to be computed as follows. For a box girder 
with identical lower and upper flanges: 
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where 
h = one-half the depth of the web, 
t = flange thickness, 
tw = web thickness. 
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For stiffened plating 
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where A2 is the area of the lower flange (zero in the case of flat bar stiffeners). As 
suggested in Reference 5.18 the stress distribution across the breadth of a flange can be 
approximated by the following quartic equation: 
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where, as shown in Figure 5.6-5, fmax is the maximum stress occurring at the web 
intersection. Equation (C5-31) is adopted in the DNV rules (Section C5.5.1.1, Reference 
5.3). 

 
C5.7 STIFFENER REQUIREMENTS FOR IN-PLANE SHEAR 
 
The ultimate strength of plates loaded in shear depends to a large extent on the rigidity of the 
surrounding stiffeners. In order to study this problem the non-dimensional parameter γ is 
usually defined: 

( )
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Iv
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3

2112 −
==γ       (C5-32) 

where d is the spacing between stiffeners, I is the stiffener cross section’s moment of 
inertia about an axis coinciding with the surface of the plate, and t is the plate thickness. 

 
In Reference 5.19 it is shown that γ does not need to be larger than the limiting ratio γo, in 
order to ensure that the shear stress reaches its maximum or critical value, and where γo is 
given by: 

( )574 2 −= αγ o       (C5-33) 
 

db /=α is the plate’s aspect ratio. Combining equations (C5-32) and (C5-33) we get for I: 
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For v = 0.3 equation (C5-34) can be rewritten in the following form: 
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The DNV rules (equation (C2-22), Reference 5.3), give the following requirement for I, 
where I is the moment of inertia of the stiffener with full plate width (using the present 
notation): 
 

γbtI 31.0>        (C5-37) 
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where dτ is the design in-plane shear stress in the plate and is the maximum shear 
resistance of the plate. Comparing equations (C5-36) and (C5-39) we can conclude that the 
DNV requirements seem conservative, which is partly due to a different definition for I. It 
should be noted that no inelastic effects are included in equation (C5-36), and this can be 
achieved in simple terms, as in the DNV approach, by multiplying γ by the ratio 

dRτ

dd Rττ / . 
 
C5.8 OTHER DESIGN CONSIDERATIONS 
 
It is possible, to develop a stiffened panel with relatively small stiffening that will meet the 
recommendations of Bulletin 2V with elastic stress ratios that are insufficient to ensure a 
reasonable hierarchy of failure modes.  At loads close to the structure’s ultimate capacity, 
local instability could trigger progressive collapse.  Thus, an explicit hierarchy check is 
needed in the bulletin for stiffened panel design. 
 
For uniaxially stiffened panels in end compression, the bulletin first edition formulations 
cover ultimate (critical) buckling stresses only.  A similar problem occurs for orthogonally 
stiffened panels under biaxial compression when the resultant critical stress is in the material 
plastic range.  Elastic buckling stresses are not directly computed and are not available for 
use in an elastic stress hierarchy check.  This problem is overcome by back-calculating the 
equivalent elastic stress (a similar procedure is used in API Bulletin 2U(first edition), Section 
4.5.2b).  However, the back-calculation is complicated by the fact that that Bulletin 2V 
proposes various plasticity reduction factors for various buckling modes and the appropriate 
reduction factor for back-calculation of elastic stresses is not immediately clear.  A single 
plasticity reduction factor formulation would be preferable and development of such a 
formulation should be considered for future work.  Meanwhile, since the long plate plasticity 
reduction equation produces the lowest elastic stress for a give critical stress, this formulation 
is rewritten for elastic stress calculation and used in the hierarchy check. 
 
 
C6 DEEP PLATE GIRDERS 
 
C6.1.1 Scope 
 
Plate girder design is covered in the AISC Specification for the Design, Fabrication and 
Erection of Structural Steel for Buildings, Reference 6.1. However, AISC limits the web 
depth to thickness ratio, and this excludes the very deep girders, or bulkhead girders, that can 
potentially be used in offshore structure decks. This limitation prompted the inclusion of this 
topic in Bulletin 2V, and the basic approach that has been adopted follows in some aspects 
the philosophy of BS5400, Reference 6.2. Thus Bulletin 2V recommends that the AISC 
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Specification be used, but in those cases where the web depth to thickness ratio exceeds the 
AISC limit, Bulletin 2V Section 6.0 should guide the design. It is worthwhile noting that 
other sources of relevant information on deep girder design are the Specifications for 
Highway Bridges (AASHTO), Reference 6.3, and the Specifications for Steel Railway Bridges 
(AREA), Reference 6.4. 
 
C6.1.5.d Transverse Stresses in Webs Due to Flanges Curved in Elevation. The 
transverse load transmitted to the web as a result of flange curvature can easily be obtained 
from equilibrium. The transverse loads on the web are simply the components of the flange 
force along the transverse direction. The formula in Bulletin 2V is identical to that in 
BS5400, Par. 9.5.7.2, Reference 6.2, except that the slope is referenced to the horizontal. 
 
C6.2 LIMIT STATES 
 
The web plate in a deep girder is normally subjected to a combination of longitudinal and 
transverse compression or tension, in-plane bending and shear. Lateral loads can also be 
present. Thus, ideally each single rectangular plate component should be examined for a 
combination of all these loads. However, limit states involving such a combination are not 
available. It, therefore, becomes necessary to assess structural performance in order to 
compare the relative importance of the several stress components. It can be assumed, for 
example, that the flexural stresses in the web are effectively shed to the girder flanges, and in 
this case the web plate can be designed for shear alone. For the deep girders being 
considered, where a number of longitudinal stiffeners is used, the in-plane bending stresses 
are almost uniform across each individual rectangular plate, so that a combination of shear 
and uniform edge compression can be adopted in the design. Where significant transverse 
stresses due to flange curvature or transversely applied loads are present, a load combination 
involving biaxial compression and shear would be adequate. However, as discussed in C3.5, 
there are no widely accepted methods to deal with the problem of combined biaxial 
compression and shear, and the same applies to the case where lateral pressure acts together 
with these loads. Engineering judgment must be used to address such cases. 
 
 
C6.3 DESIGN CONSIDERATIONS 
 
C6.3.2.b Webs With Openings. Openings can obviously affect the web strength, since its 
ability to carry shear is reduced as a result of the decreased web area. Also, stress 
concentrations occur around openings, particularly at the corners, and good detail design is 
required to ensure an adequate level of performance. Extensive surveys of ship structural 
details, as reported in References 6.5, 6.6, and 6.7, have shown that serious structural failures 
can occur if openings are not properly designed. If openings cannot be avoided in highly 
stressed areas, detailed analysis using, for example, the finite element method might be 
required. 
 
The guidelines given in Bulletin 2V on the subject of webs with openings are of an empirical 
nature, and are associated with good design practice. The impact of plate openings has been 
extensively studied in the context of different applications. The impact on ship structures is 
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discussed for example in Reference 6.8. Specific detail design guidelines on openings in ship 
hull structures are given in Reference 6.5. These include in particular the case of long 
openings or groups of long openings all in the same section, such as discussed in Bulletin 2V. 
 
C6.3.3 Longitudinal Web Stiffeners 
 
The minimum moment of inertia Is of the stiffener cross section in Bulletin 2V is  

34atI s =        (C6-1) 
 
The minimum value specified by AASHTO, Reference 6.3, is 
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This formula is valid for a/b smaller than unity, where a is the spacing between transverse 
web stiffeners, and b is the spacing between longitudinal web stiffeners. 
 
In order to compare these two formulas it is convenient to normalize Is with respect to the 
moment of inertia of the web plate about its own mid-surface, or ( ) 3

12
1 bt . This leads to the 

following non-dimensional parameter: 

b
aI s 48=′        (C6-3) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛= 13.04.212

2
'

b
aI s      (C6-4) 

 
These two formulas are compared in Figure C6-1, and it can be concluded that 

provides a more conservative requirement. An alternative expression for the 
minimum stiffener inertia, where the full attached plate width is included, is provided by 
DNV, Reference 6.9:  

34atI s =

( ) EFbtAaI ys /25.0 3 +>      (C6-5) 
 
where As is the stiffener cross sectional area, excluding any attached plating. Comparisons of 
equations (C6-1), (C6-2), and (C6-5) for a typical girder arrangement indicate that they all 
lead to similar results. 
 
C6.3.4.d Axial Force Due to Tension Field Action. The AISC Specification, Chapter G, 
G3, Reference 6.1, provides a formulation for deriving the axial force on transverse stiffeners 
due to tension field action. The AISC formulation was based on extensive tests for girders 
with multiple transverse stiffeners, as discussed in Reference 6.10. In the present application 
the webs are intended to be both longitudinally and transversely stiffened, and the treatment 
in BS5400, Reference 6.2, is preferred. The formulations in Par. 6.3.4.d of Bulletin 2V are 
identical to those in Par. 9.13.3.2 of BS5400. 
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Figure C6-1—Comparison of Minimum Longitudinal Stiffener Stiffness Requirements
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C6.3.4.e Axial Force Assumed in Preventing Web Buckling. The formulation in Bulletin 
2V is identical to the one given in Par. 9.13.3.3 of BS5400, Reference 6.2. The coefficient ks 
was redefined in a form that is consistent with the nomenclature adopted in Bulletin 2V. 
 
C6.3.4.f Axial Force Due to Curvature. The formula given in 6.5.4.f is similar to the one in 
6.1.5.d of Bulletin 2V. Some comments on its basis are given in C6.1.5.d. 
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B1 BACKGROUND 
 
The first edition of API Bulletins 2U and 2V were published in 1987.  At that time, most 
offshore structures were analyzed and designed based on three-dimensional space frame 
structural models.  Thus, the applied load and stress formulations in the bulletins were 
written assuming load and stress results from these space frame models. 
 
Since 1987, the use of partial or full finite element plate and/or shell modeling of offshore 
structures has increased dramatically.  Determination of applied stresses from such models 
for use in bulletin formulations is presently left up to the analyst or designer.  Actual values 
of these applied stresses are a function of model complexity and mesh definition, individual 
element capability, and interpretation of analysis results.  Because of this and the additional 
expertise required to properly perform a finite element analysis of complex structures such as 
offshore platforms, a general guideline for the minimum requirements of such an analysis is 
needed to ensure that the bulletin formulations remain commensurate with the analysis 
results and the bulletin’s intent. 
 
In 1996, Basu et al (Ship Structure Committee Paper No. SSC-387) developed a systematic 
and practical methodology to assess the validity of FEA results based on the selected analysis 
procedure, type of elements, model size, boundary conditions, load application, etc.  Models 
and analyses that meet their assessment should produce response results appropriate for use 
with API bulletin formulations.  The more important aspects are extracted and summarized in 
the following, which may serve as guidance for the minimum requirements of a finite 
element model and analysis in determining the structural response for use with API bulletin 
formulations. 
 
 
B2 BULLETIN INTENT 
 
The major purpose of the API 2V and 2U bulletins is to provide guidance for the design of 
stiffened steel flat plate or cylindrical shell structures.  The guidance takes the form of 
buckling formulations and design considerations with respect to strength and, in the case of 
Bulletin 2V, serviceability.  Working stress design methods are assumed with sufficient 
factors of safety to ensure that the material remains in the linear range under design loads.  
The bulletin formulations also account for the normal fabrication residual stresses and 
geometric imperfections that need not be modeled in an analysis for the purposes of bulletin 
evaluation. 
 
In order to implement the bulletin buckling formulations, average applied stresses need to be 
determined at or near the center of each plate panel, assuming a more or less uniform stress 
gradient across the plate panel.  Likewise, yielding considerations require additional stress 
determination along the edges of each plate panel.  Assuming a generally uniform stress 
gradient, this establishes the minimum number of locations for applied stress determination 
for a quadrilaterally shaped plate at nine (9), namely at the center, four corners and midspan 
at the four edges of the quadrilateral plate.  Similarly, stiffener stresses should be determined 
at each support and at midspan at the associated extreme fibers of the stiffener.  Of course, 
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the stress gradient should be reviewed to determine if evaluation at additional locations is 
needed at specific plate panel locations. 
 
B3 BULLETIN USE 
 
Assuming an appropriate finite element model and analysis, the analysis results may be used 
to determine the applied stresses for use with the bulletin buckling stress formulations.  
Generally, this may be done by integrating the FEA stress results along the edges and 
centerlines of each plate panel.  The in-plane directional axial and shear stresses are 
determined as the average stress along each line of integration and the in-plane bending 
stresses are determined from the variation of stress from its associated average normal stress.  
Out-of-plane stresses due to lateral pressure may also be determined from the element 
stresses assuming the element types that are used accurately predict the out-of-plane 
response. 
 
Once these applied stresses are determined, they may be used directly in the bulletin buckling 
stress formulations and checked against the bulletin allowables.  Plate buckling checks are 
performed for applied stresses at, or near, the center of the plate.  Plate yielding checks are 
performed for applied stresses at all locations.  This is most easily done by determining the 
von Mises equivalent stress at each location and comparing it against the specified limit 
criterion. 
 

 
B4 FINITE ELEMENT ANALYSIS GUIDELINES 
 
It is important that the finite element analysis accurately models the intended loading and 
structural response.  This is accomplished by selecting a model size, element mesh, element 
types and boundary conditions that are commensurate with the area of interest.  In most cases 
these parameters are inter-related and the proper selection for all these parameters requires an 
experienced analyst.  Lack of experience should be supplemented by supervision and review 
by others with appropriate levels of finite element analysis experience with similar types of 
offshore structures of structural components. 
 
B5 MODEL 
 
Prior to modeling, it is useful to have a general idea of the anticipated behavior of the 
structure.  This knowledge serves as a useful guide in several modeling decisions that need to 
be made in developing the model.  For example, stiffened plate structure that is subject 
primarily to in-plane loads rather than transverse loads is better modeled using membrane 
elements rather than plate/shell elements.  However, if the analysis of the stiffened plate 
structure is local in nature, or the loading is transverse, shear effects may be significant and 
certain element formulations may not account for shear, or such an option must be 
specifically selected by the analyst. 
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B6 MESH 
 
Mesh design is one of the most critical tasks in finite element modeling and is often a 
difficult one.  Mesh density, mesh transitions and the ratio of stiffness of adjacent elements 
must all be considered when developing a finite element mesh.  As a general rule, a finer 
mesh is required in areas of higher stress gradient.  Of course, a finer mesh could be used for 
the entire model but this approach sacrifices computational economy and increases the 
possibility of manipulation errors.  For these reasons, variations in mesh density are often 
used. 
 
The mesh density depends on the element type used, distribution of applied load and purpose 
of the analysis.  In general, the mesh should be finest in regions of steepest stress gradients.  
Thus, where stresses show a sharp variation between adjacent elements, the mesh should be 
refined and the analysis rerun.  Mesh density also depends on the type of analysis (i.e., linear, 
non-linear, or dynamic) and the number and type of element integration points. 
 
B7 ELEMENT TYPE 
 
At present, linear stress field elements are the most commonly used.  This is due, in part, to 
the requirement that the order of the stress function should properly match the stress gradient, 
and this is easy to visualize for linear stress elements in a properly sized mesh.  For most 
portions of structures, a mesh of linear stress elements can provide a good description of the 
stress state.  Even in areas of discontinuities or in areas of non-linearity, linear elements in a 
relatively fine mesh can give excellent results.  Thus, the use of properly meshed linear stress 
elements is appropriate for structure components covered by the bulletin formulations.  The 
use of higher order stress fields may be appropriate for coarser meshes although free surface 
stress prediction can be in error. 
 
B8 ELEMENT SHAPE 
 
Element performance is affected by element shape, where element shape is a function of the 
element aspect ratio, element skewness and element warping. 
 
A general rule of thumb is to limit the aspect ratio of membrane and bending elements to 3 
for good stress results.  The best shape for quadrilateral and triangular elements is square and 
equilateral, respectively.  Thus, the use of square and/or equilateral elements is particularly 
desirable in areas of the highest stress gradients.  However, higher order elements will be less 
sensitive to deviations from the ideal aspect ratio than lower order elements. 
 
Element performance also degrades with element skewness.  For quadrilateral elements, 
vertex angels greater than 135° or less than 45° are not recommended and the quadrilateral 
element will perform better if its shape is that of a parallelogram.  For triangular elements, 
vertex angels should remain in the range of 45° to 90°. 
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Element warping occurs when the element nodes are not coplanar.  The degradation in 
element performance depends on the element formulation.  Triangular elements may be used 
in place of warped quadrilateral elements where curvature is high. 
 
 
B9 STIFFENED PLATE STRUCTURE MODELING 
 
Based on the above, the following guidance is provided for modeling typical stiffened plate 
structure for offshore structures.  Minimum requirements are summarized on Table B-1. 
 
Individual plate panels should be modeled with linear stress membrane elements, where 
transverse load effects are negligible, or bending elements where transverse load effects are 
important. 
 
Since most plate panels are rectangular, or at least quadrilateral in shape, elements should be 
generally quadrilateral and as nearly square as possible.  The minimum number of elements 
on any one side of a plate panel should be two if the element stress formulations adequately 
predict stresses at the element nodes.  If element prediction is inadequate at the element 
nodes but acceptable at the element center, then the minimum number of elements modeling 
any one side of a plate panel should be three (figure B-1).  In any case, the model should be 
developed such that accurate stress predictions are obtained at each corner, midspan along 
each edge and at the center of the plate.  This may require acceptable node stress prediction 
from the elements unless an acceptable interpolation technique is developed to obtain the 
stresses at the edges of the plate. 
 
Stiffener flanges and webs may be modeled similar to plate panels or as single beam 
elements with structural properties accounting for the associated plate effective width and 
offset of the stiffener.  The first approach has the advantage of being easier to visualize, 
provides more local results that may be of interest, but suffers from an increase in 
computational time and increased volume of data to manipulate.  The second approach is 
more common because of the inherent computational efficiency.  Care should be taken that 
the stiffener plate effective width is not double counted in the model; software capabilities in 
this area vary with each program. 
 
B10 APPLIED STRESSES FOR BULLETIN CODE CHECKS 
 
The purpose of this section is to provide a minimum FEA guideline for determining the 
average applied stresses compatible with those locations shown on Figure B-3 and the critical 
stresses obtained from Bulletin 2V formulations.  When a very fine mesh is use, peaked 
stress concentrations should not be used in conjunction with stresses computed from Bulletin 
2V formulations. 
 
The specific procedure for a rectangular plate or stiffened panel is as follows: 
 

1) Assuming relatively constant stress gradients across the plat or panel spans, 
determine the FEA stresses at locations 1 through 9 as shown on Figure B-3.  
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Where stress gradients vary, determine FEA stresses at additional appropriate 
locations and adjust the remaining procedure accordingly. 

 
2) Determine the applicable in-plane longitudinal axial average stress, fxa, maximum 

bending stress, fxb, and average in-plane shear stress, τxy, along the two short 
edges (lines 1-4-7 and 3-6-9) and the plate midspan (line 2-5-8).  For example, 
along line 2-5-8: 
 

852258 25.05.025.0 xxxxa ffff ++=  

 

( )[ ])(,max 82582258258 xxaxxaxb ffabsffabsf −−=  

 

852258 25.050.025.0 xyxyxyxyT τττ ++=  

 
3) Determine the applicable in=plane longitudinal axial average stress, fxa,  

maximum bending stress, fxb, and average in-plan shear stress, Txy, along the two 
long edges (lines 1-2-3 and 7-8-9) and the plate midspan (line 4-5-6).  For 
example, along line 4-5-6: 

 

654456 25.050.025.0 yyyya ffff ++=  

 

( ) ( )[ ]64564456456 ,max yyayyayb ffabsffabsf −−=  

 

654456 25.050.025.0 xyxyxyxy ττττ ++=  

 
4) For Bulletin 2V only, if lateral pressure is present, the plate panel out-of-plane 

stress effects should be similarly determined from FEA element stresses, if 
available, or explicitly calculated based on the plate panel geometry, thickness 
and applied pressure. 

 
5) Use the axial (fxa, fya) and bending (fxb, fyb) stresses computed above in the 

appropriate Bulletin 2V code checking formulations, in accordance with Table B-
2.  The applied stresses fxa258, fxb258, fya456, fyb456, and the absolute maximum of 
τxy258 and τxy456 should be used in the bulletin uniaxial and biaxial compression 
buckling checks, with or without additional effects due to lateral pressure.  All 
locations (e.g., 1 through 9) should be checked against yield or the appropriate 
tension interaction equations. 

 
Again, the above procedure assumes that the stress gradient is relatively constant.  If this is 
not true, stresses at additional locations should be determined in a similar manner so that a 
more accurate stress state for the plate or panel may be determined. 
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MINIMUM FEA REQUIREMENTS FOR  
STIFFENED FLAT PLATE STRUCTURE 

Item Coarse Mesh Fine Mesh 

Model Purpose Strength Analysis  
Bulletin Code Check 

Fatigue Analysis  
Stress Concentration 

Element Model for Plate 
In-Plane Load: Linear Stress Membrane Elements  

Transverse Load: Linear Stress Membrane Element 
w/ Shear lag Capability 

Element Mesh for Plate Max. Aspect Ration = 3.0  
Max. Element Dimension = 10t 

Max. Aspect Ratio = 3.0  
Max. Element Dimension = 2t 

Element Shape for Plate 4-Node Quadrilateral, Vertices 45 to 135 deg, Square Optimal  
3-Node Triangular, Vertices 45 to 90 deg, Equilateral Optimal 

Element Model for Stiffeners Beam or Spar or Linear Stress Membrane Elements 
Element Mesh for Stiffeners Same as Plate 
Element Shape for Stiffeners 2-Node Beam or Spar or Same as Plate 

 
 
 

MINIMUM FEA REQUIREMENTS FOR  
STIFFENED CYLINDRICAL PLATE STRUCTURE 

Item Coarse Mesh Fine Mesh 

Model Purpose Strength Analysis  
Bulletin Code Check 

Fatigue Analysis  
Stress Concentration 

Element Model for Plate In-Plane Load: Linear Stress Membrane Elements  
Transverse Load: Linear Stress Shell Element w/ Shear lag Capability 

Element Mesh for Plate Max. Aspect Ration = 3.0  
Max. Element Dimension = 10t 

Max. Aspect Ratio = 3.0  
Max. Element Dimension = 2t 

Element Shape for Plate 4-Node Quadrilateral, Vertices 45 to 135 deg, Square Optimal  
3-Node Triangular, Vertices 45 to 90 deg, Equilateral Optimal 

Element Model for Stiffeners Beam or Spar or Linear Stress Membrane Elements 
Element Mesh for Stiffeners Same as Plate 
Element Shape for Stiffeners 2-Node Beam or Spar or Same as Plate 
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Applicable Applied Stresses from FEA for Code Check 
FEA Stress 

Location In-Plane fxa, 
fxb 

In-Plane fya, 
fyb In-Plane Txy 

Out-of-Plane 
Due To 

Pressure 

Comment 

1 fx1 fy1 Txy1 None Yield check 

2 
fx2 

fxa258 
fxb258 

fy2 
fya123 
fyb123 

Txy2 
Txy123 
Txy258 

fzb2 
Buckling 

checks optional 

3 fx3 fy3 Txy3 None Yield check 

4 
fx4 

fxa147 
fxb147 

fy4 
fya456 
fyb456 

Txy4 
Txy147 
Txy456 

fzb4 
Buckling 

checks optional 

5  
(Center of  

plate or panel) 

fx5 
fxa258 
fxb258 

fy5 
fya456 
fyb456 

Txy5 
Txy258 
Txy456 

fxb258 
fxb456 

Buckling 
checks 

required 

6 
fx6 

fxa369 
fxb369 

fy6 
fya456 
fyb456 

Txy6 
Txy369 
Txy456 

fzb6 
Buckling 

checks optional 

7 fx7 fy7 Txy7 None Yield check 

8 
fx8 

fxa258 
fxb258 

fy8 
fya789 
fyb789 

Txy8 
Txy258 
Txy789 

fzb8 
Buckling 

checks optional 

9 fx9 fy9 Txy9 None Yield check 
 
Notes: 
This table presents the minimum stress components for bulletin code checking at each stress location. 
Additional locations may be needed for plates or panels with varying stress gradients or large aspect ratios. 
See Figure B-3 for FEA stress locations. 

Average stresses are used for uniaxial and biaxial interaction buckling checks. Point stresses are used for 
von Mises stress determination. Where more than one shear stress result is available, the largest value shall 
be used. 

This table does not apply for locations of local stress concentration. 
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