Date of Issue: June 1994 Affected Publication: API Chapter 19.1D, Documentation File for API Manual of Petroleum Measurement Standards Chapter 19.1D—Evaporative Loss from Fixed Roof Tanks [API Bulletin 2518], First Edition, March 1993 (first printing)

ERRATUM

The corrected Table of Contents is shown on the following page:

API PUBLICATION 2518 DOCUMENTATION FILE

CONTENTS

SECTION	DESCRIPTION	PAGE
	INTRODUCTION	. 1
	STANDING STORAGE LOSS	
Α.	Development of Vapor Space Expansion Factor, K _E	. Al
В	Development of Vented Vapor Saturation Factor, Ks	. B1
C	Development of Vapor Space Temperature Factor, K_{T}	. C1
D	Development of Solar Insolation Parameters	. D1
Ε	Development of Paint Solar Absorptance, α	. El
F	Development of Liquid Surface Temperature Equations	. F1
G	Sensitivity Analysis of Standing Storage Loss Equation	. G1
Ħ	Comparison of Standing Storage Loss Equation with Test Data	. H1 [.]

REFERENCES...... R1

.

.

Documentation File for API Manual of Petroleum Measurement Standards Chapter 19.1—Evaporative Loss From Fixed Roof Tanks [API Bulletin 2518]

API PUBLICATION CHAPTER 19.1D FIRST EDITION, MARCH 1993

American Petroleum Institute

1220 L Street, Northwest Washington, D.C. 20005

Ф

Documentation File for API Manual of Petroleum Measurement Standards Chapter 19.1—Evaporative Loss From Fixed Roof Tanks [API Bulletin 2518]

Measurement Coordination API PUBLICATION CHAPTER 19.1D FIRST EDITION, MARCH 1993

> American Petroleum Institute

SPECIAL NOTES

1. API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED.

2. API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MANU-FACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

3. INFORMATION CONCERNING SAFETY AND HEALTH RISKS AND PROPER PRECAUTIONS WITH RESPECT TO PARTICULAR MATERIALS AND CONDI-TIONS SHOULD BE OBTAINED FROM THE EMPLOYER, THE MANUFACTURER OR SUPPLIER OF THAT MATERIAL, OR THE MATERIAL SAFETY DATA SHEET.

4. NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANU-FACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COV-ERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABIL-ITY FOR INFRINGEMENT OF LETTERS PATENT.

5. GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAF-FIRMED, OR WITHDRAWN AT LEAST EVERY FIVE YEARS. SOMETIMES A ONE-TIME EXTENSION OF UP TO TWO YEARS WILL BE ADDED TO THIS REVIEW CYCLE. THIS PUBLICATION WILL NO LONGER BE IN EFFECT FIVE YEARS AF-TER ITS PUBLICATION DATE AS AN OPERATIVE API STANDARD OR, WHERE AN EXTENSION HAS BEEN GRANTED, UPON REPUBLICATION. STATUS OF THE PUBLICATION CAN BE ASCERTAINED FROM THE API AUTHORING DEPART-MENT [TELEPHONE (202) 682-8000]. A CATALOG OF API PUBLICATIONS AND MATERIALS IS PUBLISHED ANNUALLY AND UPDATED QUARTERLY BY API, 1220 L STREET, N.W., WASHINGTON, D.C. 20005.

Copyright © 1993 American Petroleum Institute

FOREWORD

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict.

Suggested revisions are invited and should be submitted to the director of the Measurement Coordination, Industry Services Department, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005.

API PUBLICATION 2518 DOCUMENTATION FILE

CONTENTS

SECTION	DESCRIPTION	E
	INTRODUCTION 1	
	STANDING STORAGE LOSS	
A	Development of Vapor Space Expansion Factor, KE Al	
В	Development of Vented Vapor Saturation Factor, Ks	
C	Development of Vapor Space Temperature Factor, K_T C1	•
D	Development of Solar Insolation Parameters	
Ε	Development of Paint Solar Absorptance, a El	
F	Development of Liquid Surface Temperature Equations F1	
G	Sensitivity Analysis of Standing Storage Loss Equation G1	
Ĥ	Comparison of Standing Storage Loss Equation with Test Data	
	WORKING LOSS	
I	Development of Working Loss Equation	
J	Development of Turnover Factor, K _N J1	
К	Development of Product Factor, Kp Kl	
L	Comparison of Working Loss Equation with Test Data Ll	
	REFERENCESR1	

API PUBLICATION 2518 DOCUMENTATION FILE

INTRODUCTION

This document is the Documentation File to API Publication 2518, Second Edition [A7]*.

The purpose of the Documentation File is to present detailed technical information related to the development of API Publication 2518 that includes: (1) the development of theoretical equations; (2) comparisons with test data; (3) a sensitivity analysis of the loss equation; and (4) other pertinent information that was developed during the preparation of API Publication 2518.

The Documentation File is divided into two main parts: Sections A through H pertain to the standing storage loss, and Sections I through L pertain to the working loss.

The <u>standing storage loss equation</u> in the Second Edition [A7] is different then that in the First Edition [A6]. Sections A through H present the development of the new standing storage loss equation.

The working loss equation in the Second Edition [A7] is the same as that in the First Edition [A6]. Sections I through L contain development information that originally appeared in the First Edition.

Section R contains a list of important <u>References</u> that were reviewed in developing the Second Edition. These references are cited in various sections of the Documentation File.

^{*} Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION A

DEVELOPMENT OF VAPOR SPACE EXPANSION FACTOR, KE

API PUBLICATION 2518 DOCUMENTATION FILE SECTION A

CONTENTS

SECTION	DESCRIPTION	PAGE
Ļ	NOMENCLATURE	A3
A1.0	INTRODUCTION	A4
A2.0	VAPOR SPACE VOLUME CHANGE	. A4
A3.0	VAPOR SPACE EXPANSION FACTOR	. A9
A4.0	SIMPLIFIED EQUATIONS FOR THE VAPOR SPACE	ρA
A4.1 A4.2	Neglecting the Term P _B p Replacement of Tv1 With Tra	. A9 . A9
A4.3 A4.4	Replacement of Pv2 With PvA Use of a Simplified Equation for the Vapor Pressure	. A10
A4.5	Range, ΔP_V	. A10 . A11
A5.0	CONCLUSION.	. A12

TABLES

A1	Value of the Variables at the Maximum and Minimum
	Conditions A5

FIGURES

A1	Schematic of the Tank Vapor Space Heating Process and the Resulting Volume Expansion Due to the Thermal
	Breathing A13

API PUBLICATION 2518 DOCUMENTATION FILE SECTION A

NOMENCLATURE

DESCRIPTION

UNITS

.

Α	Vapor pressure function constant	dimensionless
В	Vapor pressure function constant	٥R
κ _E	Vapor space expansion factor	dimensionless
n	Number of moles	mole
Ρ.	Pressure	psi
ΔP	Pressure change	psi
R	Ideal gas constant (10.731)	psia ft ³ /1bmole ^o R
т	Temperature	٥ _R
ΔT	Temperature change	°R .
v	Volume	ft ³
ΔV	Volume change	ft ³
у	Mole fraction in the vapor phase	mole fraction

SUBSCRIPTS

Α	Air
ATM	Atmospheric
В	Breather Vent
BP	Breather Vent Pressure Setting
BV	Breather Vent Vacuum Setting
L	Liquid
LA	Liquid Average
т	Total
v	Stock Vapor
VA	Vapor Average
1	Initial Condition or Minimum Condition
2	Final Condition or Maximum Condition

-

+

+

SYMBOL

.

A1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, contains a derivation of the equation for the vapor space expansion factor, K_E . This equation is derived from the ideal gas law and from the pressure, temperature and volume conditions that exist in the vapor space of a fixed-roof tank containing a volatile liquid stock.

<u>Section A2</u> presents a derivation of the vapor space volume change due to thermal breathing. This derivation closely follows that originally derived by Boardman $[1]^*$ and that presented at the API "Symposium on Evaporation Loss" of Petroleum from Storage Tanks" November 10, 1952 [2].

Section A3 defines the vapor space expansion factor, K_E , and develops the equation that may be used to calculate this factor.

<u>Section A4</u> describes various simplifications that can be made to the equation for the vapor space expansion factor to permit ease of calculation with little loss in accuracy.

A2.0 VAPOR SPACE VOLUME CHANGE

Copyright American Petroleum Institute Provided by IHS under license with API

o reproduction or networking permitted without license from IHS

Figure Al is a schematic illustrating the tank vapor space thermal breathing process in a fixed-roof tank that is partially filled with a volatile liquid stock and equipped with a pressure-vacuum vent.

During the thermal breathing process, the pressure, volume and temperature vary from minimum condition 1 to maximum condition 2. At conditions 1 and 2, the total absolute pressure in the vapor space is P_1 and P_2 , respectively, where:

$$P_1 = P_{ATM} + P_{BV} \tag{A-1}$$

 $P_2 = P_{ATM} + P_{BP}$ (A-2)

• Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

A4

During the thermal breathing process, the pressure, volume and temperature vary from a certain combination of values at the minimum condition to be certain combination of values at the maximum condition. At the minimum condition 1, it is assumed that all of the variables are simultaneously at their minimum values; and at the maximum condition 2, it is assumed that all of the variables are simultaneously at their maximum values. The value of the variables at the minimum condition 1 and maximum condition 2 are listed in Table A1.

Table Al -	Value	of	the	Variables	at	the	Minimum	and	Maximum	Conditions
------------	-------	----	-----	-----------	----	-----	---------	-----	---------	------------

Variable	Units	Minimum Condition 1	Maximum Condition 2
Gas space total pressure	psia	P1	P2
Atmospheric pressure	psia	PATM	PATM
Gas space gage pressure	psig	PBV	PBP
Stock vapor pressure	psia	Pv1	Pv2
Air partial pressure	psi	PAI	P _{A2}
Gas volume	ft ³	v ₁	٧ ₂
Gas temperature	or	Т1	T ₂
Liquid surface temperature	٥R	TL1	T _{L2}

From the ideal gas law, the total number of moles of gas, n_T , in an enclosed volume, V, at temperature, T, and pressure, P, is given by:

$$n_{\rm T} = \frac{P V}{R T}$$
(A-3)

Assume that the gas mixture in the tank vapor space is a two-component mixture consisting air and stock vapor. The mole fraction of air, y_A , and the mole fraction of stock vapor, y_Y , may be determined by Eqs (A-4) through (A-7):

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS A5

$$y_{A} = \frac{n_{A}}{n_{T}}$$
(A-4)

$$y_{A} = \frac{P_{A}}{P}$$
(A-5)

$$y_{V} = \frac{n_{V}}{n_{T}}$$
 (A-6)

$$y_{V} = \frac{P_{V}}{P}$$
(A-7)

The mole fraction of air, y_A , may be expressed in terms of the mole fraction of vapor, yy, as follows:

$$y_{A} = 1 - y_{V} \tag{A-8}$$

During the thermal breathing process of the tank vapor space, the number of moles of air, ng, in the volumes, V_1 and V_2 , is assumed to remain the same. This assumption may be expressed as follows:

(A-9) $n_{A1} = n_{A2}$

We may substitute Eq (A-4) into Eq (A-9) to yield:

$$y_{A1} n_{T1} = y_{A2} n_{T2}$$
(A-10)

We may substitute Eq (A-3) into Eq (A-10) to yield:

$$y_{A1} \left(\frac{P_1 V_1}{R_1} \right) = y_{A2} \left(\frac{P_2 V_2}{R_2} \right)$$
(A-11)

Copyright American Petroleum Institute rovided by IHS under license with API lo reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

......

Solving for V_2 and using Eq (A-8), we may write:

$$V_{2} = V_{1} \left(\frac{y_{A1}}{y_{A2}}\right) \left(\frac{P_{1}}{P_{2}}\right) \left(\frac{T_{2}}{T_{1}}\right)$$
(A-12)

$$V_{2} = V_{1} \left(\frac{1 - y_{V1}}{1 - y_{V2}} \right) \left(\frac{P_{1}}{P_{2}} \right) \left(\frac{T_{2}}{T_{1}} \right)$$
(A-13)

We may substitute Eq (A-7) into Eq (A-13) to yield:

$$V_{2} = V_{1} \left(\frac{1 - \frac{P_{V1}}{P_{1}}}{1 - \frac{P_{V2}}{P_{2}}} \right) \left(\frac{P_{1}}{P_{2}} \right) \left(\frac{T_{2}}{T_{1}} \right)$$

$$V_{2} = V_{1} \left(\frac{P_{1} - P_{V1}}{P_{2} - P_{V2}} \right) \left(\frac{T_{2}}{T_{1}} \right)$$
(A-14)

Using Eq (A-14), the volume change due to thermal breathing, ΔV , may be determined as follows:

 $\Delta V = V_2 - V_1 \tag{A-15}$

$$\Delta V = V_1 \left[\left(\frac{P_1 - P_{V1}}{P_2 - P_{V2}} \right) \left(\frac{T_2}{T_1} \right) - 1 \right]$$
(A-16)

We may substitute Eqs (A-1) and (A-2) into Eq (A-16) to yield:

$$\Delta V = V_{1} \left[\left(\frac{P_{ATM} + P_{BV} - P_{V1}}{P_{ATM} + P_{BP} - P_{V2}} \right) \left(\frac{T_{2}}{T_{1}} \right) - 1 \right]$$
(A-17)

$$\Delta V = V_1 \left[\left(1 + \frac{(P_{V2} - P_{V1}) - (P_{BP} - P_{BV})}{P_{ATM} + P_{BP} - P_{V2}} \right) \left(1 + \frac{(T_2 - T_1)}{T_1} \right] - 1 \right]$$
(A-18)

It is a convenient to define the terms $\triangle Py$, $\triangle Pg$ and $\triangle Ty$ as follows:

$$\Delta P_V = P_{V2} - P_{V1} \tag{A-19}$$

$$\Delta P_{B} = P_{BP} - P_{BV} \tag{A-20}$$

$$\Delta T_{V} = T_{2} - T_{1} = T_{V2} - T_{V1}$$
 (A-21)

We may substitute Eqs (A-19), (A-20) and (A-21) into Eq (A-18) and expand the terms to yield:

$$\Delta V = V_{1} \left[\left[1 + \frac{\Delta P_{V} - \Delta P_{B}}{P_{ATM} + P_{BP} - P_{V2}} \right] \left[1 + \frac{\Delta T_{V}}{T_{V1}} \right] - 1 \right]$$
(A-22)

$$\Delta V = V_1 \left[1 + \left(\frac{\Delta T_V}{T_{V1}} \right) + \left(\frac{\Delta P_V - \Delta P_B}{P_{ATM} + P_{BP} - P_{V2}} \right) + \left(\frac{(\Delta P_V - \Delta P_B) \Delta T_V}{P_{ATM} + P_{BP} - P_{V2}} \right) - 1 \right]$$
(A-23)

Since the terms $(\Delta T_V/T_{V1})$ and $(\Delta P_V - \Delta P_B)/(P_{ATM} + P_{BP} - P_{V2})$ are small, their product can be considered negligable. Thus, the product term in Eq (A-23) can be neglected. Eq (A-23) then simplifies to the following:

$$\Delta V = V_1 \left[\frac{\Delta T_V}{T_{V1}} + \frac{\Delta P_V - \Delta P_B}{P_{ATM} + P_{BP} - P_{V2}} \right]$$
(A-24)

opyngin American Petiolean Instance rovided by IHS under license with API o reproduction or networking permitted without license from IHS

Copyright American Petroleum Institute

A3.0 VAPOR SPACE EXPANSION FACTOR

The vapor space expansion factor, K_E , is defined as the ratio of the volume change, ΔV , to the initial volume, V_1 , as follows:

$$K_{\rm E} = \frac{\Delta V}{V_1} \tag{A-25}$$

Substituting Eq (A-24) into (A-25) we obtain:

$$K_{E} = \frac{\Delta T_{V}}{T_{V1}} + \frac{\Delta P_{V} - \Delta P_{B}}{P_{ATM} + P_{BP} - P_{V2}}$$
(A-26)

A4.0 SIMPLIFIED EQUATIONS FOR THE VAPOR SPACE EXPANSION FACTOR

Eq (A-26) may be simplified for ease of calculation. Sections A4.1 through A4.4 present various simplifications that can be made.

A4.1 Neglecting the Term PBP

It should be noted that PBp is small (about 0.03 psi) compared to P_{ATM} (about 14.7 psia) and can be neglected in the denomination of Eq (A-26) to yield:

$$K_{E} = \frac{\Delta T_{V}}{T_{V1}} + \frac{\Delta P_{V} - \Delta P_{B}}{P_{ATM} - P_{V2}}$$
(A-27)

A4.2 Replacement of Tv1 With TLA

In the first term of Eq (A-27), the minimum vapor space temperature, Ty₁, is close to the daily average liquid surface temperature, T_{LA} , since both are absolute temperatures. Thus, for ease of calculation, we can replace Ty₁ with T_{LA} in Eq (A-27) to yield:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS A9

API MPMS*19.10 93 🗰 0732290 0511454 153 🗰

$$K_{E} = \frac{\Delta T_{V}}{T_{LA}} + \frac{\Delta P_{V} - \Delta P_{B}}{P_{ATM} - P_{V2}}$$
(A-28)

A4.3 Replacement of Pv2 With PvA

For low vapor pressure stocks, the stock vapor pressure, P_V , is small compared to atmospheric pressure, P_{ATM} . Thus, we may replace the stock vapor pressure at the minimum liquid surface temperature, P_{V2} , with the stock vapor pressure at the daily average liquid surface temperature, P_{VA} , in Eq (A-28) to yield:

$$K_{E} = \frac{\Delta T_{V}}{T_{LA}} + \frac{\Delta P_{V} - \Delta P_{B}}{P_{ATM} - P_{VA}}$$
(A-29)

Eq (A-29) appears as Eq 4 in Ref. A7.

A4.4 Use of a Simplified Equation for the Vapor Pressure Range, APy

The vapor pressure of the stock may be determined from Eq (A-30), where the vapor pressure function constants A and B must be selected for the particular stock [see Tables 4 and 5 in Ref. A7].

 $P_{y} = \exp [A - (B/T_{1})]$ (A-30)

We can determine the slope of the vapor space pressure function by taking its derivative with respect to the liquid surface temperature, T_L , as follows:

$$\frac{dP_V}{dT_L} = \frac{B}{T_L^2} \frac{P_V}{T_L^2}$$
(A-31)

Eq (A-31) can be written in differential form as follows:

A10

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

$$\Delta P_{V} = \frac{B}{T_{L}^{2}} \Delta T_{L}$$
 (A-32)

Eq (A-32) gives the vapor pressure range, ΔPy , in terms of the liquid surface temperature range, ΔT_i .

For most hydrocarbon liquids, the liquid surface temperature range, ΔT_L , may be related to the vapor temperature range, ΔT_V , as follows (see Eq (F-16) in Section F):

$$\Delta T_{\rm L} = 0.50 \ \Delta T_{\rm V} \tag{A-33}$$

Substituting Eq (A-33) into Eq (A-32), we obtain the following simplified equation for the vapor pressure range:

$$\Delta P_{V} = \left(\frac{0.50 \text{ B } P_{V}}{T_{L}^{2}}\right) \Delta T_{V} \qquad (A-34)$$

Eq (A-34) may be substituted into Eq (A-29) to yield:

$$K_{E} = \left(\frac{\Delta T_{V}}{T_{LA}}\right) \left[1 + \left(\frac{0.50 \text{ B}}{T_{LA}}\right) \left(\frac{P_{VA}}{P_{ATM} - P_{VA}}\right)\right] - \frac{\Delta P_{B}}{(P_{ATM} - P_{VA})} \right]$$
(A-35)

A4.5 Neglecting the Term APR

For most atmospheric storage tanks, the breather vent pressure and vacuum settings are typically +0.03 psi and -0.03 psi, respectively. Thus, the term $\Delta P_B/(P_{ATM} - P_{VA})$ is small (about 0.002 for low vapor pressure stock) compared to the term $\Delta T_{V}/T_{LA}$ (about 0.040 for $\Delta T_{V} = 20^{\circ}F$ and $T_{LA} = 520^{\circ}R$). For these cases, the last term in Eq (A-35) may be neglected to yield:

A11

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

$$K_{E} = \left(\frac{\Delta T_{V}}{T_{LA}}\right) \left[1 + \left(\frac{0.50 \text{ B}}{T_{LA}}\right) \left(\frac{P_{VA}}{P_{ATM} - P_{VA}}\right)\right]$$
(A-36)

In comparing Eq (A-36) to Eq (A-26), we can see that the calculation process is greatly simplified because it is not necessary to determine all of the variables, T_{L1} , T_{L2} , T_{LA} , P_{V1} , P_{V2} and P_{VA} , but only the variables T_{LA} and P_{VA} .

A5.0 CONCLUSION

Equation (A-29) was selected for use in calculating the vapor space expansion factor, K_E , in API Publication 2518, Second Edition [A7]. This equation was derived from the ideal gas law and from the pressure, temperature, and volume conditions that exist in the vapor space of a fixed-roof tank containing a volatile liquid stock. Equation (A-29) was developed from a more complete expression, Eq (A-26), by incorporating several simplifications that make the calculations more user friendly, with little loss in accuracy.

<u>NOTE</u>: This document is part of the API standards development process and is intended for use by API committees <u>ONLY</u>. It shall not be reproduced or circulated or quoted, in whole or in part, outside of the cognizant API committee(s) except with the written approval of API. This draft API standard will be formatted and edited prior to API publication. Copyright ()1990.

A12

Figure A1 - Schematic of the Tank Vapor Space Heating Process and the Resulting Volume Expansion Due to Thermal Breathing

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION B

.

DEVELOPMENT OF VENTED VAPOR SATURATION FACTOR, KS

API PUBLICATION 2518 DOCUMENTATION FILE SECTION B

CONTENTS

SECTION	DESCRIPTION	PAGE
	NOMENCLATURE	. B3
B1.0	INTRODUCTION	. B5
B2.0 B2.1 B2.2 B2.3 B2.4	VENTED VAPOR SATURATION FACTOR MODEL Model Description Vented Vapor Saturation Factor Definition Saturation Parameter Vented Vapor Saturation Factor Development	. 85 . 85 . 87 . 88 . 810
B3.0 B3.1 B3.2 B3.3	VENTED VAPOR SATURATION FACTOR CORRELATION Summary of API, EPA and WOGA Test Data Saturation Factor Correlation of API and EPA Test Data Saturation Factor Correlation of API, EPA and WOGA Test Data	. B11 . B12 . B13 . B13
B4.0	CONCLUSION	. B15

TABLES

B1	Saturation Factor, K _S , for API Test Data [38]Bl	6
B2	Summary of EPA Tests [20] Selected	17
83	Saturation Factor, Ks, for EPA Test Data [20] Bl	8
B4	Summary of WOGA Tests [17] Selected B1	9
85	Saturation Factor, Ks, for WOGA Test Data [17] B2	!1
B6	Summary of Test Data Used to Develop the Vented Vapor	
	Saturation Factor Correlation	:3

FIGURES

B1	Schematic of the Tank Vapor Space for the Vented Vapor	
	Saturation Factor Analysis B2	24
B2	Saturation Factor, Ks, Versus PyAHy for the API and EPA	
	Test Data	25
83	Saturation Factor, Ks, Correlation	26
B4	Saturation Factor, KS, Versus PyAHy for the API, EPA	
-	and WOGA Test Data B2	27

API PUBLICATION 2518 DOCUMENTATION FILE SECTION B

NOMENCLATURE

DESCRIPTION

UNITS

A	Constant in the vapor pressure equation psia		
AL	Area of the stock liquid surface ft ²		
a	Defined by Eq (B-15) dimensionless		
В	Constant in the vapor pressure equation OR		
b	Defined by Eq (B-16) dimensionless		
Cy	Average vapor concentration in the vented gas	oncentration in the vented gas lbm/sft ³	
D	Tank diameter	ft	
Ε	Evaporation loss	lbm/day	
EC	Evaporation loss calculated	lbm/day	
EM	Evaporation loss measured	1bm/day	
Hγ	Tank vapor space outage	ft	
К	Overall mass transfer coefficient between	/ lbmole)	
	the liquid surface and the vented vapor	(ft ² hr mole frac.)	
Kc	Vapor space expansion factor	dimensionless	
Ke	Vented vapor saturation factor	dimensionless	
Mv	Stock vapor molecular weight	lbm/lbmole	
 ການ	Moles of stock vapor vented	lbmole	
Раты	Atmospheric pressure DSia		
Pva	Stock vapor pressure determined at TLA DSia		
0	Vented gas volume outflow sft ³ /day		
R	Ideal gas law constant, (10.731)	/ft ³ psia \	
		$\left(\frac{1}{1+\alpha^2}\right)$	
010			
KYP	Reta vapor pressure	psi dimensionloss	
-	Saturation parameter, defined by Eq (6-4)		
	Average daily ambient temperature of or or		
	Average daily liquid surface temperature of or or		
AV I	Average daily vapor space temperature of or or		
ΔΙΑ	Daily ambient temperature range OF or OR		
ΔΙγ	Daily vapor space temperature range	νr or ^ν κ	
to	Time of a daily period hr		
VV	Volume of the tank vapor space	tt ³	

SYMBOL

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

B3

.

API PUBLICATION 2518 DOCUMENTATION FILE SECTION B

NOMENCLATURE (Continued)

SYMBOL	DESCRIPTION	UNITS
۸۸	Volume of gas vented during a single daily thermal breathing cycle	ft ³
уу	Daily average stock vapor concentration in the vented vapor	mole fraction
уγо	Daily average saturated stock vapor concentration	mole fraction
PG	Gas density	lbmole/ft ³

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, contains the development of the vented vapor saturation factor, K_S .

The "Vented Vapor Saturation Factor", K_S, is defined as the ratio of the daily average stock vapor concentration in the vented gas, yy, to the stock vapor concentration, yy^0 , in equilibrium with the stock liquid surface at the daily average liquid surface temperature.

<u>Section B2</u> presents the derivation of a theoretical equation for estimating the vented vapor saturation factor that is based on an analytical model of the daily thermal breathing process.

<u>Section B3</u> presents the development of a correlation for estimating the vented vapor saturation factor that is based on test data.

B2.0 VENTED VAPOR SATURATION FACTOR MODEL

B2.1 Model Description

Figure B1 is a schematic of a fixed-roof tank that is partially filled with a volatile liquid stock and equipped with a pressure-vacuum vent. During the daily thermal breathing cycle, the gas mixture in the tank vapor space is initially heated from its minimum condition to its maximum condition (see Section A of this Documentation File for additional detail). Vapor is vented from the tank vapor space when the pressure increases to the pressure setting of the pressure-vacuum vent. As the gas mixture in the tank vapor space is cooled from its maximum condition back to its minimum condition, air is admitted to the tank vapor space when the pressure decreases to the vacuum setting of the pressurevacuum vent.

Evaporation of stock occurs from the liquid surface as the stock tries to saturate the air that was admitted to the tank vapor space. Test data indicates that there is a region at the top of the tank vapor space under the pressurevacuum vent where there is a significant concentration gradient.

B5

During the daily thermal breathing cycle, the moles of stock vapor that are expelled from the tank vapor space, my, may be estimated by Eq (B-1):

$$m_{\rm Y} = \rho_{\rm G} \Delta V \ y_{\rm Y} \tag{B-1}$$

where the term ΔV represents the volume vented during a single thermal breathing cycle (see Section A2, Eq (A-24)).

The vented gas contains less stock vapor per unit volume than the gas near the liquid surface. The daily average stock vapor concentration in the vented vapor is yy (unsaturated), and the daily average stock vapor concentration near the liquid surface is yy^0 (saturated).

During the daily thermal breathing cycle, stock vapor evaporates and rises upward from the area near the liquid surface to replace the stock vapor lost as gas is vented from the tank vapor space. Stock will continue to evaporate as it tries to establish a saturation condition at the top of the tank vapor space.

The moles of stock that evaporate during a daily thermal breathing cycle may be estimated by Eq (B-2):

 $m_{y} = K A_{1} t_{D} (y_{y}^{0} - y_{y})$ (B-2)

where K is the overall mass transfer coefficient between the liquid surface and the vented vapor.

After a series of repeated daily thermal breathing cycles where the same meteorological conditions occur, the stock vapor concentration in the vented vapor will vary during each thermal breathing cycle in a repeated manner, and the daily average stock vapor concentration in the vented vapor, yy, will achieve a steady value. This concentration value depends upon the rate at which the stock vapor lost from the tank vapor space is replaced by stock evaporated from the liquid surface.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

The steady value of the daily average stock vapor concentration in the vented vapor, yy, may be determined by equating Eq (B-1) with Eq (B-2) and solving for yy as follows:

$$\rho_{G} \Delta V y_{V} = K A_{L} t_{D} (y_{V}^{o} - y_{V})$$

$$y_{V} \left(\frac{\rho_{G} \Delta V}{K A_{L} t_{D}} \right) = (y_{V}^{o} - y_{V})$$
(B-3)

It is useful to define the saturation parameter, S, as follows:

$$S = \left(\frac{\rho_{G} \Delta V}{K A_{L} t_{D}}\right)$$
(B-4)

Using this defined saturation parameter, Eq (B-3) may be written as:

$$y_V S = (y_V^{o} - y_V)$$
 (B-5)

Eq (B-5) may now be solved for yy to yield:

$$y_{V} = y_{V}^{0} \left(\frac{1}{1+S} \right)$$
(B-6)

82.2 Vented Vapor Saturation Factor Definition

The vented vapor saturation factor, K_S , is defined by Eq (B-7) as the ratio of the daily average stock vapor concentration in the vented vapor, yy, to the daily average saturated stock vapor concentration, yy^0 .

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

$$K_{S} = \begin{pmatrix} y_{V} \\ y_{V}^{0} \end{pmatrix}$$
(B-7)

When $K_S = 1$, the vented gas is completely saturated; when $K_S = 0$, the vented gas contains no stock vapor.

B2.3 Saturation Parameter

The saturation parameter, S, as defined by Eq (B-4) may be written in terms of other evaporation loss parameters. First, note Eqs (B-8) through (B-11) as follows:

$$\rho_{G} = \begin{pmatrix} \frac{P_{ATM}}{R_{T_{VA}}} \end{pmatrix}$$

$$A_{L} = \begin{pmatrix} \frac{\pi D^{2}}{4} \end{pmatrix}$$

$$A_{L} = V_{V} K_{E} \qquad (see Eq (A-25) in Section A) \qquad (B-10)$$

$$V_{V} = \left(\frac{\pi D^{2} H_{V}}{4}\right)$$
(B-11)

Substituting Eqs (B-8) through (B-11) into Eq (B-4), we obtain:

$$S = \begin{pmatrix} P_{ATM} \\ R T_{VA} \end{pmatrix} \begin{pmatrix} H_{V} \\ K t_{D} \end{pmatrix} K_{E}$$
(B-12)

B8

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

The vapor space expansion factor, K_E , may be expressed in the following simplified form (see Eq (A-36) in Section A5):

$$K_{E} = \left(\frac{\Delta T_{V}}{T_{LA}}\right) \left[1 + \left(\frac{0.50 \text{ B}}{T_{LA}}\right) \left(\frac{P_{VA}}{P_{ATM} - P_{VA}}\right)\right]$$
(B-13)

Substituting Eq (B-13) into Eq (B-12) and replacing TyA with T_{LA} (since both are absolute temperatures), we obtain:

$$S = \left(\frac{P_{ATM}}{R_{T_{LA}}}\right) \left(\frac{H_{V}}{K_{t_{D}}}\right) \left(\frac{\Delta T_{V}}{T_{LA}}\right) \left[1 + \left(\frac{0.50 \text{ B}}{T_{LA}}\right) \left(\frac{P_{VA}}{P_{ATM} - P_{VA}}\right)\right]$$
(B-14)

It is convenient to define the following dimensionless parameters a and b:

$$a = \begin{pmatrix} P_{ATM} & H_V & \Delta T_V \\ R & t_D & K & T_{LA}^2 \end{pmatrix}$$
(B-15)

$$b \equiv \left(\frac{0.50 \text{ B}}{T_{\text{LA}}}\right) \tag{B-16}$$

We also know that the daily average saturated stock vapor concentration, yy^0 , can be expressed as follows:

$$y_{V}^{O} = \begin{pmatrix} P_{VA} \\ P_{ATM} \end{pmatrix}$$
(B-17)

Substituting Eqs (B-15), (B-16) and (B-17) into Eq (B-14), we obtain:

$$S = a \left[1 + b \left(\frac{y_V^0}{1 - y_V^0} \right) \right]$$
(B-18)

82.4 Vented Vapor Saturation Factor Development

Substituting yy from Eq (B-6) into Eq (B-7) we obtain:

$$K_{S} = \left(\frac{1}{1+S}\right)$$
(B-19)

Equation (B-19) shows that as the saturation parameter, S, increases, the vented vapor saturation factor, K_S , decrease toward 0. Conversely, as S decreases, the value of K_S increases toward 1.

Using Eq (B-18), the vented vapor saturation factor, K_S, may be written as:

 $K_{S} = \frac{1}{1 + a \left[1 + b \left(\frac{y_{V}^{0}}{1 - y_{V}^{0}} \right) \right]}$ (B-20)

Equation (B-20) shows that the vented vapor saturation factor, K_S, depends upon only 3 parameters: a, b and yy^{0} .

Inserting the expressions for a, b and yy^0 from Eqs (B-15), (B-16) and (B-17), we obtain the following final expression which contains all of the variables:

B10

$$K_{S} = \frac{1}{1 + \left(\frac{P_{ATM} H_{V} \Delta T_{V}}{Rt_{D} K T_{LA}^{2}}\right) \left\{1 + \left(\frac{0.50 B}{T_{LA}}\right) \left[\frac{\left(\frac{P_{VA}}{P_{ATM}}\right)}{1 - \left(\frac{P_{VA}}{P_{ATM}}\right)}\right]\right\}}$$
(B-21)

It should be noted that K_S will tend toward 1 as Hy tends toward 0. Also, K_S will tend toward 0 as P_{VA} tends toward P_{ATM} .

Insufficient information is currently available to determine the overall mass transfer coefficient, K, and thus Eq (B-21) was used only as a guide to show the dependancy of K_S on PyA, Hy and the other variables.

Although it is possible to improve the above simplified analysis to develop a theoretical relation for the vented vapor saturation factor, K_S , it was decided instead to develop a correlation for K_S based on actual test data, as described in Section B3. However, the above simplified analysis was used as a guide in selecting the analytical form for the correlation equation and in selecting the parameters to include in the correlation.

B3.0 VENTED VAPOR SATURATION FACTOR CORRELATION

This section summarizes the development of a correlation for estimating the vented vapor saturation factor, K_S .

<u>Section B3.1</u> summarizes the saturation factors that were calculated from the API[38]^{*}, EPA[20] and WOGA[17] test data. The API test data showed that the vented gas was near saturation conditions at all times. The EPA and WOGA Test Data, however, showed that the vented gas was not saturated, with the degree of saturation being less with increasing product vapor pressure, P_{VA} , and increasing vapor space outage, Hy.

^{*} Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

The fact that the vented gas is not saturated with stock vapor reflects the effect of mass transfer rate limitations from the liquid surface to the area below the pressure-vacuum vent. As the vapor space outage increases, the distance that the stock vapor must travel from the liquid surface to the vent is lengthened. This lengthened distance decreases the mass transfer rate and thus the concentration in the vented gas. For high vapor pressure stocks, since the amount of stock vapor lost in each daily thermal breathing cycle is larger, a higher rate of evaporation from the liquid surface is required to replenish the stock vapor that is lost. Mass transfer rate limitations, however, limit the ability of the stock to replenish the vented vapor at these higher vapor pressures and thus reduce the degree of saturation in the vented gas.

<u>Section B3.2</u> presents the development of a correlation for the vented vapor saturation factor based on only the API and EPA test data. This correlation showed trends that are similar to those predicted by the theoretical analysis (see Eq (B-19)) in that the saturation factor approaches 1 as the vapor pressure or the outage approach 0, and the saturation factor becomes small as the vapor pressure or outage increase.

<u>Section 3.3</u> presents the development of a correlation for the vented vapor saturation factor based on the combined set of API, EPA and WOGA test data. This correlation showed the same trends as the correlation that was based on only the API and EPA test data, but there was more scatter of the WOGA test data from the correlation.

B3.1 Summary of API, EPA and WOGA Test Data

Copyright American Petroleum Institute Provided by IHS under license with AP

No reproduction or networking permitted without license from IHS

Table B1 summarizes the 10 API tests [38] along with the calculated saturation factor, K_S . The saturation factor for the API test data are very close to 1, with an average value for the 10 tests of 0.964.

Table B2 summarizes the 15 EPA tests [20]. It was found that all of the EPA test data was suitable for use in calculating a saturation factor, with the exception of Tests EPA-4A, EPA-4B and EPA-4C. The reason for rejecting these tests is stated at the bottom of Table B2.

API MPMS*19.1) 93 🗰 0732290 0511470 3T6 🖿

Table B3 summarizes the EPA test data along with the calculated saturated factor, K_S , for those tests which were selected in Table B2. Since the average liquid surface temperature was not measured during the EPA tests, the equation indicated in Note 5 at the bottom of Table B3 was used to estimate the average liquid surface temperature.

Table B4 summarizes the 44 WOGA tests [17]. Out of the total of 44 tests, 21 were found suitable to calculate a saturation factor. The reasons for rejecting the other tests is noted at the bottom of Table B4.

Table B5 summarizes the suitable WOGA test data and the calculated saturation factor, K_S . Only the crude oil tests were used to calculate a saturation factor. The vapor pressure at the daiTy average liquid surface temperature was calculated utilizing the equations noted at the bottom of Table B5. No such relationships were available for the distillate and fuel oil products used in the WOGA test program.

B3.2 Saturation Factor Correlation of API and EPA Test Data

In general, it was found that there was a higher quality in the API test data [38] and EPA test data [20] than in the WOGA test data [17]. The combined set of API and EPA test data were used to develop a saturation factor correlation.

Figure B2 presents the correlation, where the saturation factor, K_S, was found to be related to the product of the vapor pressure, P_{VA} , and the vapor space outage, Hy. The vapor pressure characteristics of the stock used in the EPA tests were readily known because they were single component stocks.

B3.3 Saturation Factor Correlation of API, EPA and WOGA Test Data

The correlation of the API and EPA test data shown in Figure B2 is satisfactory, but is based only on test data from fuel oil (API test data) and single component liquid stocks (EPA test data).

API MPMS*19.10 93 🗰 0732290 0511471 232 🗰

Although it was found that, in general, the API and EPA test data were of higher quality than the WOGA test data, it was decided to develop a single correlation which was fit to the combined set of API, EPA and WOGA test data. This combined data set includes 34 data points that extend up to a PVAHy value of about 78 psia ft. and include WOGA test data on crude oil.

Table B6 summarizes the 34 data points which were used to develop the saturation factor correlation from the combined set of API, EPA and WOGA test data.

Figure B3 is a plot of $((1/K_S) - 1)$ versus PVAHy for the API, EPA and WOGA test data. The test data were fit with a least squares linear correlation, as noted on Figure B3. The correlation coefficient, r^2 , was 0.76. Eq (B-22) is the resulting correlation.

$K_{S} = \frac{1}{1 + 0.0525 P_{VA}H_{V}}$	(8-22)
--	--------

Figures B3 and B4 illustrate that the WOGA test data has more scatter in comparison to the API and EPA test data. Part of this scatter is believed to be due to the more uncertain vapor pressure characteristics of the stocks used in the WOGA tests and the fact that only a few vapor samples were taken during each WOGA test.

Figure B4 illustrates the results of the correlation developed in Figure B3, where the saturation factor is plotted versus Py_AHy . The correlation indicates that the saturation factor approaches 1 as the vapor pressure or the vapor space outage approach 0. The correlation also shows that the saturation factor becomes small as the vapor pressure or the vapor space outage increase. These trends are in agreement with those that are predicted by Eq (B-21) of the theoretical analysis.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B14

B4.0 CONCLUSION

Equation (B-22) was selected for use in calculating the vented vapor saturation factor, K_S , in API Publication 2518, Second Edition [A7]. This equation was developed from a correlation of the API, EPA and WOGA test data, and exhibits the same trends with varying PVA and HVO that were exhibited by Eq (B-21) of the theoretical analysis.
Table B1 - Saturation Factor, KS, for API Test Data [38]

	•	Ŋ	44	ħ	T _M	1,L	<	•	PVA at TLA	ł	Pvahv	кs Г
Test No.	(1) (ft ³ /day)	(1tm/ft ³)×10 ⁻³	(1) (1bm/day)	(II) (II)	(1) (⁰ F)	(1) (⁰ F)	£:	(1) (a)	(3) (psta)	(1) (1bm/1bmole)	(pala ft)	££
AP1-1	139	0.109	0.0152	8.85	45.4	55.3	14.348	10,082	0.00536	110.0	0.0474	1.025
AP1-2	157	0.108	0.0170	8.85	51.9	56.9	14.348	10.082	0.00569	110.0	0.0504	0.958
AP1-3	188	0.115	0.0216	B. 85	52.2	58.3	14.348	10,082	0.00600	110.0	0.0531	0.967
AP1-4	185	0.118	0.0219	8.85	50.4	58.7	14.348	10,082	0.00609	110.0	0.0539	0.983
2-14V	159	0.113	0.0179	8.85	49.2	57.8	14.348	10,082	0.00589	110.0	0.0521	0.965
AP1-6	82	0.101	0.0079	8.85	47.8	54.9	14.348	10,082	0.00528	110.0	0.0467	0.963
AP1-7	202	0.165	0.0334	8.85	54.8	65.0	9.260	7,287.2	0.00977	110.0	0.0865	0.866
8-14V	210	0.239	0.0502	8.85	65.0	3.6	9.260	7.287.2	0.0142	110.0	0.126	0.884
AP1-9	207	0.231	0.0478	8.85	57.1	74.8	9.260	7.287.2	0.0126	110.0	0.111	0.958
AP1-10	185	0.238	0.0441	8.85	60.6	72.9	9.260	7,287.2	0.0120	110.0	0.106	1.033
										Average -	0.0733	0.960

Notes: (1) Measured value from test data.

P_{VA}- exp[A - [8/T_{LA}]], where T_{LA} is in ^oR. Ks - [Cv/(P_{VA}Mv/RT_{LA})], where T_{LA} is in ^oR.

CV=E/Q (2) Calculated value. ((3) Calculated value. 1(4) Calculated value. 1

Test	Product Type	Insulated Tank (Yes/No)	Selected	Reasons for Rejection
EPA-1A	Isopropanol	. N	Y	
EPA-1B	Isopropanol	N .	Y	
EPA-2A	Ethanol	N	Y	
EPA-2B	Ethanol	N	Y	
EPA-2C	Ethanol	N	Y	
EPA-3A	Glacial Acetic Acid	N	Y	
EPA-3B	Glacial Acetic Acid	N	Y	
EPA-4A	Formaldehyde	Y	N	1
EPA-4B	Formaldehyde	Y	N	1
EPA-4C	Formaldehyde	Y	N	ŀ
EPA-5A	Ethyl Benzene	N	Y	
EPA-5B	Ethyl Benzene	N	Y	
EPA-6A	Cyclohexane	N	Y	
EPA-6B	Cyclohexane	N	Y	
EPA-6C	Cyclohexane	N		

Table B2 - Summary of EPA Tests [20] Selected

Reasons for Rejection: (1) Tank is insulated.

Table B3 - Saturation Factor, KS, for EPA Test Data [20]

	0	č	w	¥	T _M	1 ₈	Shell	8	Ŧ	1LA	<	6 0	PVA at TLA	ł	PVAHV	×s
Test	(1) (11)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) (1bm/day)	33	(1) (°F)	(C) (°F)	(-) (-)	ê î-	(1) (Btu/ft ² day)	(5) (⁰ F)	:	(1) (a)	(6) (psia)	(1) (1tm/1tmole)	(psia ft)	: -
NO. EPA-LA EPA-LA EPA-28 EPA-28 EPA-28 EPA-36 EPA-48 EPA-46 EPA-64 EPA-64 EPA-64 EPA-64 EPA-64	3.824 3.824 4.248 1.313 790 1.435 9.508 18.934 25,000 22,000 22,000 2.526 3.740 2.965	3.93 4.06 4.50 4.50 2.33 2.33 2.33 2.33 1.00 1.00 1.00 1.00 1.00 5.50 5.50	15.0 17.2 5.91 3.41 5.15 21.2 25.0 25.0 24.0 25.0 22.0 22.0 11.4 11.4 11.4	27.1 27.1 11.4 11.4 11.4 11.4 26.7 26.7 26.7 26.7 27.9 27.9 27.9 27.9 27.9 11.9 11.9 11.9	65.4 69.1 77.7 75.4 75.4 66.3 66.3 70.0 74.0 78.8 80.5 80.5 80.2 80.2	70.0 70.3 71.4 70.4 69.9 69.8 149.6 143.9 81.7 81.7 79.0	white white white white white Gray Gray Gray White white white	0.17 0.17 0.17 0.17 0.17 0.17 0.54 0.54 0.54 0.17 0.17	2470 2290 1700 2320 1730 2400 2400 2400 2400 2410 2410 2410 241	71.3 72.7 75.8 76.3 70.9 78.3 78.3 78.3 78.3 78.3 78.3 78.3 78.3	16.7667 16.7687 16.3801 16.3801 16.3801 14.8028 14.0362 13.6969 13.6969	9113.6 9113.6 8760.7 8760.7 8591.1 8591.1 8591.1 8423.3 8423.3 8423.3 7091.7 7091.7	0.674 0.705 1.020 1.036 0.877 0.273 0.273 0.273 0.273 0.273 0.273 0.273	60.10 60.10 46.02 46.02 46.02 30.03 30.03 30.03 30.03 30.03 84.16 84.16	18.26 19.11 11.63 11.81 10.00 7.29 8.32 8.32 2.69 33.15 33.15	0.553 0.551 0.551 0.506 0.779 0.779 0.779 0.779 0.779 0.779 0.737 0.779 0.737 0.779 0.737 0.779 0.737 0.779 0.737
EPA-6C	2,980	4.82	14.4	17.8	82.0	78.7	white	0.1	2160(4)	63.0	13. 6969	/180/	1.0/0			

Measured value from test data. Calculated value. E=QCy Ξ Notes:

Value determined from Table ES in Section E of this Documentation File. 202303

Assumed value. Based on the average of the M_H values for the other EPA tests.

Calculated value. $f_{LA} = 0.437f_{AA} + 0.563f_{B} + 0.007890H_{H}$ Calculated value. $P_{VA} = \exp[A - (B/T_{LA})]$, where T_{LA} is in OR . Calculated value. $K_{S} = [C_V/(P_{VA}M_V/RT_{LA})]$, where T_{LA} is in OR .

B18

.

Test No.	Product Type	RVP (psi)	Insulated Tank (Yes/No)	Vapor Outflow (sft ³ /d a y)	Selected (Yes/No)	Reasons for Rejection
No. WOGA-1A WOGA-1B WOGA-2A WOGA-2A WOGA-2B WOGA-2B WOGA-3A WOGA-3B WOGA-3B WOGA-4A WOGA-4B WOGA-4B WOGA-6 WOGA-7A WOGA-7A WOGA-7A WOGA-7A WOGA-7A WOGA-7B WOGA-7A WOGA-88 WOGA-88 WOGA-88 WOGA-88 WOGA-80 WOGA-90 WOGA-100 WOGA-10A WOGA-11A WOGA-11B	Type Crude Oil Crude Oil Crude Oil Crude Oil Crude Oil Distillate Distillate Crude Oil Fuel Oil Distillate Crude Oil Crude Oil	(psi) 1.8 1.8 1.8 0.8 0.8 0.8 1.3 1.3 1.3 3.4 3.4 3.4 1.2 1.2 1.2 5.3 5.3 5.3 5.3 5.3 5.3	Tank (Yes/No) N N Y Y Y Y Y N N N N N N N N N N N N	$\begin{array}{c} \text{Outflow}\\ (\text{sft}^3/\text{day})\\ \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	(Yes/No) Y Y N N N Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N N N N N	for Rejection 1,4 1,4 1,2 1,2 1,2 2 1,2 2 2 2 1,4 1,4 1,4
WOGA-12 WOGA-13A WOGA-13B WOGA-14 WOGA-15	Crude Oil Crude Oil Crude Oil Distillate Crude Oil	15.1 0.5 0.5 3.0	N N N N	430 18,300 18,320 7,675 1,800	N N N Y	3 4 4 2

Table B4 - Summary of WOGA Tests [17] Selected

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

-- II. ------

- 11

Ę

Test No.	Product Type	RVP (psi)	Insulated Tank (Yes/No)	Vapor Outflow (sft ³ /day)	Selected (Yes/No)	Reasons for Rejection
WOGA-16A WOGA-16B WOGA-16C WOGA-17A WOGA-17B WOGA-18A WOGA-18B WOGA-18C WOGA-19A WOGA-19B WOGA-20B WOGA-21A WOGA-21B	Crude Oil Crude Oil Distillate Distillate	5.2 5.2 5.5 5.5 0.4 0.4 0.4 3.0 3.0 4.1 4.1	N N N N N N N N N N N	4,029 5,857 5,454 17,058 16,059 0 0 284 173 0 284 173 0 0 27,210 25,680	Y Y Y Y Y Y Y Y Y Y N N	4 4 4 2 2

Table B4 - Summary of WOGA Tests [17] Selected (Continued)

Reasons for Rejection:

- Tank is insulated. (1)
- Product is a distillate or fuel oil. The vapor pressure versus (2) temperature behavior of these stock types was not well established in these tests.
- (3) The liquid sample may not be representative of the tank stock during the test.
- (4) The RVP was less than 1.0 psi, and the stock vapor pressure is, theretherefore, questionable.(5) The vented gas volume outflow, Q, appears to be in error.

B20

VAHV KS (7) 11a Ft) (-)	9.11 1.416	7.65 1.976	6.72 1.842	8.61 1.160	8.28 1.203			6.65 0.725	6.29 0.763			78.26 0.211	75.53 0.218	76.80 0.214	21.11 0.513 20 60 0 834	20.80 0.826	02.23 0.496	04.65 0.486	03.53 0.495				0.42 1.64	0.45 1.53	0.79 6.74	7.96 2.87	6.86 3.63	1
My (1) (ps	68.3	67.0	64.5	41.9	41.9	52.2	52.2	67.7	67.7	124.4	95.9	69.0	0.69	69.0	60./	66.7	55.0 1	55.0 1	55.0 1	120.3	120.3	120.3	29.2	29.2	50.4	63.9	64.4	103.8
Pva at. T _{LA} (6) (psie) (1.469	1.234	1.084	0.925	0.890	:		0.536	0.507			1.976	1.907	1.939	0.566	0.558	4.406	4.511	4.462	:	-		0.209	0.225	0.104	0.222	0.192	
E () ()	6546	6546	6546	7532	7532	-	-	6942	6942			5773	5773	5773	7039	7039	5233	5233	5233	!	!	1	9217	9217	8375	8104	8104	
∀ (9) €	12.25	12.25	12.25	13.04	13.04	ļ		12.57	12.57	ł	1	11.64	11.64	11.64	12.64	12.64	11.21	11.21	11.21	!	:	:	14.38	14.38	13.71	13.49	13.49	į
RVP (1) (pat)	1.8	1.8	9.1	8.0	8.0		1	1.3	1.3		1	3.4	3.4	3.4	1.2	1.2	5.3	5.3	5.3			•	0.2	0.2	••	0.5	0.5	!
€. 2012	92.0	84.0	78.2	114.5	112.8	111.6	116.0	66.5	64.3	131.7	19.4	67.1	65.4	66.2	73.2	72.6	78.3	3.6	0.67	62.9	63.9	62.5	118.3	121.0	64.7	80.8	75.5	64.3
HH (1) (Btu/ft ² day) (1415(4)	1415(4)	1415(4)	1415(4)	1415(4)	940	1310	1415(4)	1415(4)	1415(4)	1570	1415(4)	933	1415(4)	1780	(*)eT*(1415(4)	2050	2050	1850	1415(4)	1450	1570	1080	1415(4)	1415(4)	1400	1610	1415(4)
8 E .	0.39	0.39	0.39	0.54	0.54	0.60	0.60	0.68	0.68	0.68	0.34	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.34	0.34	0.34	0.68	0.68	0.17	0.17	0.17	1 0.17
Paint Condition (1) (-)	Good	Good	Good	Good	Good	Good	Good	Poor	Poor	Poor	Good	Good	Good	. Good	6000	600d 600d	Good	Good	Good	Good	Good	Good	Poor	Poor	Good	Good	Good	Good
<u>⊢</u>			•		¥	ff.	Iff.	Iff.	Iff.	olff.		ed.	.	ed.	Med.	Med.	Med.	led.	led.	_	ach	ch	Diff.	Iff.		_		•
Shell Color (1) (-)	Alum., Spec.	Alum., Spec.	Alum., Spec	Gray, Ligh	Gray, Ligi	Alum. Di	Alum. D	Alum. D	Alum. 0	Alum.	Peach	Gray, H	Gray. Me	Gray. P	Gray.	Gray, Grav,	Gray.	Gray. P	Gray. 1	Peact	<u> </u>	Ped	Alum.,	Alum. D	Vhit	White	Ĭ	1
T _B She11 (1) Color (1) (0F) (-)	113 Alum., Spec.	98 Alum., Spec.	90 Alum., Spec	150 Gray, Ligh	150 Gray. Ligi	150 Alum., D	150 Alum., D	55 Alum., D	55 Alum. 0	180 Alum (90 Peach	56 Gray. M	56 Gray. Me	56 Gray, M	65 Gray,	65 Gray.	73 Gray.	73 Gray.	73 Gray. P	60 Peact	60 Pe	60 Pe4	158 Alum.,	158 Alum., D	72 White	92 White	B3 White	i ss i uhu
TAA TB Shell (1) (1) Color (1) (or) (or) (-) (-)	55 113 Alum., Spec.	56 98 Alum., Spec.	53 90 Alum., Spec	55 150 Gray, Ligh	51 150 Gray, Ligh	52 150 Alum. D	58 150 Alum., D	64 55 Alum., D	59 55 Alum., D	52 180 Alum (1 56 90 Peach	i 64 56 Gray, M	i 66 56 Gray. Me	i 62 56 Gray. M	1 62 65 Gray.	64 65 65 6ray.	60 73 Gray.	63 73 Gray.	2 64 73 Gray, 1	5 58 60 Peact	5 60 60 Pe	5 56 60 Pet	0 54 158 Alum.	0 56 158 Alum. D	5 51 72 White	3 62 92 White	9 61 83 Whit	1 59 65 Vh1
Hy TA TB Shell (1) (1) (1) (1) Color (1) (ft) (0F) (0F) (-)	6.2 55 113 Alum., Spec.	6.2 56 98 Alum., Spec.	6.2 53 90 Alun., Spec	9.3 55 150 Gray, Ligh	9.3 51 150 Gray, Ligh	4.0 52 150 Alum., D	4.0 58 150 Alum., D	12.4 64 55 Alum., D	12.4 59 55 Alum. D	3.3 52 180 Alum.	8.5 56 90 Peach	39.6 64 56 Gray, M	39.6 66 56 66 Gray, Me	39.6 62 56 Gray, M	37.3 62 65 Gray.	37.3 64 65 6Fay.	23.2 60 73 Gray.	23.2 63 73 Gray.	23.2 64 73 Gray. 1	3.6 58 60 Peact	3.6 60 60 Pe	3.6 56 60 Pet	2.0 54 158 Alum.	2.0 56 158 Alum., D	7.6 51 72 White	35.8 62 92 White	35.8 61 83 Whit	140.11 59 1 65 1 Whit
E Hy TAA TB Shell (2) (1) (1) (1) Color (1) (1bm/day) (ft) (0F) (0F) (-)	0 6.2 55 113 Alum., Spec.	0 6.2 56 98 Alum., Spec.	0 6.2 53 90 Alum Spec	0.226 9.3 55 150 Gray, Ligh	0.307 9.3 51 150 Gray. Ligi	0 4.0 52 150 Alum., D	0 4.0 58 150 Alum., D	0 12.4 64 55 Alum., D	0 12.4 59 55 Alum0	8.14 3.3 52 180 Alum.	0 8.5 56 90 Peach	77.7 39.6 64 56 Gray. H	148. 39.6 66 56 Gray, Me	80.3 39.6 62 56 Gray, P	80.3 37.3 62 65 Gray.	103. 37.3 64 65 6ray.	99.1 23.2 60 73 Gray.	121. 23.2 63 73 Gray. P	121. 23.2 64 73 Gray. 1	0 3.6 58 60 Peact	0 3.6 60 60 Pe	0 3.6 56 60 Pea	0.0515 2.0 54 158 Alum.	0.0109 2.0 56 158 Alum.	2.71 7.6 51 72 White	129. 35.8 62 92 White	143. 35.8 61 83 Whit	1 1 22 140.11 59 1 65 1 UNI
$ \begin{array}{c c} C_V & E & H_V & \Gamma_{AA} & T_B & Shell \\ (1) & (2) & (1) & (1) & (1) & (01) \\ (1bm/aft^3) \times 10^{-3} & (1bm/day) & (ft) & (0f) & (0f) & (-) \\ \end{array} $	24.0 0 6.2 55 113 Alum., Spec.	28.0 0 6.2 56 98 Alum., Spec.	22.3 0 6.2 53 90 Alum., Spec	7.30 0.226 9.3 55 150 Gray, Ligh	7.30 0.307 9.3 51 150 Gray, tig	0.814 0 4.0 52 150 Alum. D	0.814 0 4.0 58 150 Atum., D	4.66 0 12.4 64 55 Alum., D	4.66 0 12.4 59 55 Alum., 0	0.790 8.14 3.3 52 180 Alum.	0.822 0 8.5 56 90 Peach	5.08 77.7 39.6 64 56 Gray, M	5.08 148. 39.6 66 56 Gray, Me	5.08 80.3 39.6 62 56 Gray, P	5.38 80.3 37.3 62 65 Gray.	5.38 103. 37.3 64 65 Gray.	2.0 9.1 23.2 60 73 Gray.	20.9 121. 23.2 63 73 Gray. P	20.9 121. 23.2 64 73 Gray. 1	0.311 0 3.6 58 60 Peact	0.311 0 3.6 60 60 Pe	0.311 0 3.6 56 60 Pea	1.56 0.0515 2.0 54 158 Alum.	1.56 0.0109 2.0 56 158 Alum.	6.30 2.71 7.6 51 72 White	7.05 129. 35.8 62 92 White	7.80 143. 35.8 61 83 White	I nise I is an is the factor
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 24.0 0 6.2 55 113 Alum., Spec.	0 28.0 0 6.2 56 98 Alum., Spec.	0 22.3 0 6.2 53 90 Alum. Spec	31 7.30 0.226 9.3 55 150 Gray, Ligh	42 7.30 0.307 9.3 51 150 Gray, Ligi	0 0.814 0 4.0 52 150 Alum., D	0 0.814 0 4.0 58 150 Alum., D	0 4.66 0 12.4 64 55 Alum., D	0 4.66 0 12.4 59 55 Alum. 0	1,030 0.790 8.14 3.3 52 180 Alum.	0 0.822 0 8.5 56 90 Peach	15,300 5.08 77.7 39.6 64 56 Gray, H	29,200 5.08 148. 39.6 66 56 Gray. Me	15,800 5.08 80.3 39.6 62 56 Gray.	14,930 5.38 80.3 37.3 62 65 Gray.	19,220 5.38 103. 37.3 64 65 6rav	4.740 20.9 99.1 23.2 60 73 Gray.	5,800 20.9 121. 23.2 63 73 Gray.	5,800 20.9 121. 23.2 64 73 Gray. 1	0 0.311 0 3.6 58 60 Peac	0 0.311 0 3.6 60 60 Pe	0 0.311 0 3.6 56 60 Pea	33 1.56 0.0515 2.0 54 158 Alum.	7 1.56 0.0109 2.0 56 158 Atum. D	430 6.30 2.71 7.6 51 72 White	18.300 7.05 129. 35.8 62 92 White	16.320 7.80 143. 35.8 61 83 White	is a set a set is a set a set white

Table B5 - Saturation Factor, KS, for WOGA Test Data [17]

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

API MPMS*19.10 93 🖿 0732290 0511478 697 📟

(Continued)
[1]
Data
Test
NOGA
for
Ks,
Factor,
Saturation
•
B5
Table

-	ر 1	, ,	Shell	Paint	8	Ŧ	T _{LA}	RVP	<	<u>6</u> 8	A at Tu	£	PVAHV	s; S
	₹E 6	° E §	Color (1) (-)	condition (1) (-)	(e) (-)	(ï) (Btu/ft ² day)	(S)	E	9 9 1	ତ୍ତ ଛି	(6) (psia)	(1) (1bm/1bmole)	(psia ft)	£ :
+	:										.	61.0	7 43	A GER
	69	3	White	600	0.17	1020	2	2.6	11.23	1020	3.630			
		3		Good	0.17	984	63.4	5.2	11.23	5257	3.255	63.9	7.49	0.661
	2 3	3 2			0.17	1415(4)	61.4	5.2	11.23	5257	3.132	63.9	7.20	0.685
2.4	5 3	ŝ			21 o	2050	68.2	5.5	11.17	5189	3.620	52.4	26.36	0.959
	8	8	MULTE:			1850	6 93	5.5	11.17	5189	3.892	52.4	26.85	0.943
6.0	2	8	MIN TO			1415/4)	0.83	4.0	13.71	9375	0.115	21.4	0.21	3.790
	0	2	White Marke			(1)(1)(1)	2		13.71	8375	0.106	21.4	0.19	4.080
	50 (2	WIN1 CG		0.17	1415(4)	66.7		13.71	8375	0.111	21.4	0.20	3.932
1.0	N 4	6	White			(1)(1)(1415(A)	5.79 1	3.0	11.76	5926	1.681	53.4	4.20	1.456
2.5		2 3	AILL C			1415(4)	69.3	3.0	11.76	5926	1.746	53.4	4.37	1.406
2.5		2;				811	72.1	1.4	11.46	5546	2.804	60.9	11.22	0.775
	5	: :	Green			1080	71.2		11.46	5546	2.755	60.9	11.02	0.788
	8 3		Green Black		8610	881	88		:			37.2	-	
	88	89	Black	0000	6.0	1420	72.2			1		37.2		

Measured value from test data. Ξ Notes:

Value taken from Tables E3 and E5 in Section E of this Documentation File. Calculated value. E = QCy

Value determined from the average M_H measured in all of the WOGA tests.

Calculated value. $I_{LA} = 0.437I_{AA} + 0.563T_{B} + 0.007890H_{H}$. Calculated values. A = 12.82 - 0.9672 ln(RVP)

B = 7261 - 1216 ln(RVP)

 $P_{VA} = exp[A - (B/T_{LA})]$, where T_{LA} is in OR . K_S = [C_V/(P_{VA}M_V/RT_{LA})], where T_{LA} is in OR .

(7) Calculated value.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

B22

Test No.	Ks (-)	[(1/K _S)-1] (-)	PvAHv (psia ft)
API-1	1.025	0.0424	0.0474
API- 2	0.958	0.0434	0.0504
API- 3	0.907	0.0338	0.0539
API- 4	0.905	0.0363	0.0521
APT- 6	0.963	0.0380	0.0467
API- 7	0.866	0.154	0.0865
API- 8	0.884	0.131	0.126
API-9	0.958	0.0442	0.111
API-10	1.033		0.106
C04 14	0.552	0.000	10.26
CPA-IA	0.333	0.003	19 11
EPA-10	0.54/	0.816	11.63
EPA-2R	0.531	0.918	11.81
FPA-2C	0.506	0.975	10.00
EPA-3A	0.779	0.284	7.29
EPA-3B	0.737	0.356	8.32
EPA-5A	1.062		2.77
EPA-5B	0.933	0.0716	2.69
EPA-6A	0.240	3.17	34.79
EPA-6B	0.204	3.90	33.15
EPA-6C	0.178	4.62	33.39
WOGA-1A	1.416		9.11
WOGA-1B	1.976		7.65
WOGA-1C	1.842		6.72
WOGA-4A	0.725	0.379	6.65
WOGA-4B	0.763	0.311	6.29
WOGA-7A	0.211	3.74	78.26
WOGA-7B	0.218	3.59	/5.53
WUGA-7C	0.214	3.0/	/0.8U 21 11
WUGA-8A	0.015	U.22/ 0 100	21.11
WUGA-00	0.034	0.133	20.00
WOGA-OL	1 522	V.211	5,18
WOGA-164	0.666	0.502	7.43
WOGA-16B	0.661	0.513	7.49
WOGA-16C	0.685	0.460	7.20
WOGA-17A	0.959	0.0428	26.36
WOGA-17B	0.943	0.0604	26.85
WOGA-19A	1.456		4.20
WOGA-19B	1.406		4.37
WOGA-20A	0.775	0.290	11.22
WOGA-20B	0.780	0.282	11.02

Table B6 - Summary of Test Data Used to Develop the Vented Vapor Saturation Factor Correlation

Figure B2 - Saturation Factor, K_S , Versus $P_{VA}H_V$ for the API and EPA Test Data

B25

Figure B3 - Saturation Factor, KS, Correlation

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS B26

527 Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

Figure 84 - Saturation Factor, KS, Versus PvAHv for the API, EPA and WOGA Test Data

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION C

DEVELOPMENT OF VAPOR SPACE TEMPERATURE FACTOR, KT

.

API PUBLICATION 2518 DOCUMENTATION FILE SECTION C

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
	NOMENCLATURE	C4
C1.0	INTRODUCTION	C6
C2.0	HEAT TRANSFER MODEL DESCRIPTION	C8
C3.0 C3.1 C3.2 C3.3 C3.4 C3.5 C3.6	HEAT BALANCES. Roof Heat Balance. North Shell Heat Balance. South Shell Heat Balance. Fas Space Heat Balance. Heat Transfer Equations. Tank Element Temperature Equations.	C9 C9 C9 C10 C10 C10 C11
C4.0 C4.1 C4.2 C4.3 C4.4 C4.5 C4.5 C4.6 C4.7 C4.8 C4.9	VAPOR SPACE TEMPERATURE FACTOR. Gas Space Temperature Equation. Maximum Gas Space Temperature. Minimum Gas Space Temperature. Average Gas Space Temperature. Gas Space Temperature Change. Ambient Temperature Range Factor. Area Equations. Gas Space Temperature Change Equation. Vapor Space Temperature Factor.	C13 C13 C15 C15 C15 C16 C16 C18 C19 C20
C5.0	TWO COLOR TANK	C20
C6.0	TYPICAL SOLAR INSOLATION PARAMETERS	C23
C7.0	ONE COLOR TANK	C26
C8.0	TYPICAL HEAT TRANSFER COEFFICIENTS AND TYPICAL VAPOR SPACE ASPECT RATIO	. C27
C9.0	TYPICAL METEOROLOGICAL PARAMETERS AND TYPICAL PAINT SOLAR ABSORPTANCE	. C29
C10.0	CONCLUSION	. C30

TABLES

C1	Annual Average Meteorological Data for Selected	
	U.S. Locations [22,35]	C31

C2

API PUBLICATION 2518 DOCUMENTATION FILE SECTION C

.

TABLE OF CONTENTS (Continued)

SECTION	DESCRIPTION	PAGE
	FIGURES	
C1	Schematic of Energy Flows and Temperatures	C33
C2	Sinusoidal Daily Ambient Temperature Variation	C34
C3	Vapor Space Temperature Factor, K_T , for a Heat Transfer Coefficient Ratio, G, of 0.1	C35
C4	Vapor Space Temperature Factor, K_T , for a Heat Transfer Coefficient Ratio, G, of 0.25	C36
C5	Vapor Space Temperature Factor, K _T , for a Heat Transfer Coefficient Ratio, G, of 0.5	C37
C6	Vapor Space Temperature Factor, K_T , for a Heat Transfer Coefficient Ratio, G, of 1.0	C38
C7	Effect of Heat Transfer Coefficient Ratio, h_I/h_0 , on th Average Difference of Estimated Emissions	e C39
C8	Effect of Heat Transfer Coefficient Ratio, h _I /h _O , on th Standard Deviation in Average Difference of Estimated Emissions	e C40
C9	ΔT_A Versus H _H for Selected U.S. Locations	C41
C10	$H_{H}/\Delta T_{A}$ Versus H_{H} for Selected U.S. Locations	C42

API PUBLICATION 2518 DOCUMENTATION FILE SECTION C

NOMENCLATURE

DESCRIPTION

UNITS

A	Area	ft ²
В	Defined by Eq (C-35)	B/hr ft ²
C	Ambient temperature range factor, defined by Eq (C-44)	dimensionless
c	Heat capacity	B/1bm ^o F
D	Diameter	ft
Ε	Vapor space aspect ratio, defined by Eq (C-77)	dimensionless
e	Defined by Eqs (C-19), (C-20) and (C-21)	dimensionless
F	Solar insolation factor, defined by Eq (C-78)	dimensionless
f	Defined by Eqs (C-22), (C-23) and (C-24)	dimensionless
G	Heat transfer coefficient ratio, defined by Eq (C-79)	dimensionless
g	Defined by Eqs (C-25), (C-26) and (C-27)	٥F
Н	Height	ft
н _н	Daily total solar insolation on a horizontal surface	B/day ft ²
h	Heat transfer coefficient	B/hr ft ² °F
I	Solar insolation intensity	B/hr ft ²
J	Solar absorptance ratio, defined by Eq (C-80)	dimensionless
K _{SN}	Defined by Eq (C-68)	dimensionless
КŢ	Vapor space temperature factor, defined by Eq (C-60)	dimensionless
M	Mass	lbm
q	Heat transfer rate	B/hr
rgd	Solar reflectivity of the ground	dimensionless
rн	Ratio of I _H to H _H , defined by Eq (C-71)	day/hr
T	Temperature	oF
ΔT	Temperature change	oF
t	Time	hr
U	Overall heat transfer coefficient	B/hr ft ² ^o F
θ	Zenith angle, or the angle between the sun and the normal to a horizontal surface	deg.
α	Solar absorptance	dimensionless
7	Atmospheric solar transmittance	dimensionless

SYMBOL

C4

SUBSCRIPTS

Α	Ambient (or air)
AV	Average
В	Beam component of solar insolation
D	Diffuse component of solar insolation
G	Gas
GD	Ground
Н	Horizontal surface solar insolation
I	Inside
L i	Liquid
MN	Minimum
MX	Maximum
N	North shell (or the half of the tank shell
	facing away from the sun)
NI	North shell inside
NO	North shell outside
0	Outside
R	Roof
RI	Roof inside
RO	Roof outside
S	South shell (or the half of the tank shell
	facing toward the sun)
SI	Sourn shell inside
SN	Solar noon
S0	South shell outside
Т	Temperature

.

C1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, presents the development of the equation for the vapor space temperature factor, K_T , which is defined as the ratio of the gas space temperature range, ΔT_G , to the ambient temperature range, ΔT_A .

<u>Section C2</u> describes the heat transfer model. The major assumptions used in the model development are:

o Assumption 1

The gas space is fully mixed (i.e. it is at a uniform temperature and composition).

o Assumption 2

The liquid space is fully mixed (i.e. it is at a uniform temperature and composition), and remains at a constant temperature during the daily cycle.

o Assumption 3

The tank wall in the gas space can be treated as three (3) separate elements: (1) the roof; (2) the half of the tank wall facing away from the sun; and (3) the half of the tank wall facing the sun. Each tank wall element can be characterized by a single temperature, which varies during the daily cycle.

o Assumption 4

The affects of rain and snow precipitation are not included in the model.

These assumptions are the same as those upon which the API Computer Model is based [30, 38]*.

Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

API MPMS*19.10 93 🗰 0732290 0511491 020 🛲

Section C3 presents the heat balance differential equations for each of the tank wall elements and the gas space (see Eqs (C-1), (C-3), (C-5) and (C-7)). These ordinary differential equations are essentially the same as those used in the API Computer Model [30, 38], where they are solved by stepwise numerical integration.

A sensitivity analysis [30] of the API Computer Model showed that the gas and tank wall heat capacity terms in the differential equations have a negligible affect on the computed results. Thus, the following additional assumption was made:

<u>Assumption 5</u>
 The heat capacity terms in the energy balance equations can be neglected in comparison to the other heat transfer terms.

With this assumption, the differential equations reduce to a set of four (4) simultaneous algebraic equations (see Eqs (C-16), (C-17), (C-18) and (C-29)).

<u>Section C4</u> presents the solution to these simultaneous equations by solving for the gas temperature, T_G (see Eq (C-36)), and gas temperature range, ΔT_G (see Eqs (C-58) and (C-59)).

<u>Section C5</u> presents the vapor space temperature factor equation for the general case of a two color fixed-roof tank, where the roof and shell are painted different colors (see Eqs (C-74) through (C-80)).

<u>Section C6</u> presents the vapor space temperature factor equation for the simplified case of a two color fixed-roof tank where typical solar insolation parameters are used (see Eqs (C-89) through (C-94)).

Sections C7, C8 and C9 present the vapor space temperature factor equation for progressively simplified cases where more typical information is used instead of detail information for a particular tank (see Eqs (C-97), (C-106), (C-110) and (C-115)). As less detail information is used for the calculation of K_T , the estimation equations become simpler, but the estimated value of K_T becomes less accurate for a specific tank.

C2.0 HEAT TRANSFER MODEL DESCRIPTION

Figure C1 is a schematic of the energy flows and temperatures for a fixedroof tank. The gas space tank wall is divided into three (3) tank wall elements:

- o the roof,
- o the half of the gas space tank shell that faces away from the sun (referred to herein as the "north shell"), and
- o the half of the gas space tank shell that faces toward the sun (referred to herein as the "south shell").

Each of these tank wall elements is characterized by a single, different temperature, T_R , T_N and T_S , respectively. The temperature of each wall element varies with time over the course of the daily cycle in response to a heat balance on the wall element.

The elements exchange heat on both their inside and outside surfaces. The inside of each element exchanges heat with the gas, which is characterized by a single temperature, T_G , by natural convention heat transfer. Heat transfer on the inside surface by long wave length thermal radiation, however, is neglected because the magnitude of this heat transfer rate is small in comparison to the natural convection heat transfer rate.

The outside of each element exchanges heat with the ambient air by convection due to the wind. In addition, the outside of each element receives solar insolation due to beam solar insolation (except the north shell), diffuse solar insolation, and ground reflected solar insolation. Each wall element also exchanges heat by long wave length thermal radiation with the tank surroundings. This last mode of heat transfer is incorporated in the outside heat transfer coefficient for each element, h_{RO} , h_{NO} and h_{SO} , respectively.

It should be noted that the thermal resistance of any thermal insulation material applied to the outside surface of the roof and shell elements can be incorporated in the outside heat transfer coefficients h_{RO} , h_{NO} and h_{SO} .

The gas space exchanges heat by natural convection with the wall elements and the liquid surface, which is assumed to be at a constant liquid temperature, T_L , during the daily cycle. The gas space is assumed to be fully mixed, so that it can be characterized by a single temperature, T_G .

C3.0 HEAT BALANCES

Sections C3.1 through C3.4 describe the heat balances that can be written for each of the four elements.

C3.1 Roof Heat Balance

$$q_{RO} + q_{RI} = m_R c_R \left(\frac{dT_R}{dt}\right)$$
(C-1)

The term on the right hand side of Eq (C-1), which represents the heat capacity effect of the roof, will be neglected because its magnitude at most times during the course of the daily heating cycle is small in comparison to the other terms. Eq. (C-1) then reduces to:

$$q_{RO} + q_{RI} = 0 \tag{(C-2)}$$

C3.2 North Shell Heat Balance

 $q_{NO} + q_{NI} = m_N c_N \left(\frac{dT_N}{dt}\right)$ (C-3)

The term on the right hand side of Eq (C-3) will again be neglected because its magnitude is small in comparison to the other terms. Eq (C-3) then reduces to:

$$q_{\rm NO} + q_{\rm NI} = 0 \tag{(C-4)}$$

C3.3 South Shell Heat Balance

$$q_{SO} + q_{SI} = m_{S}c_{S} \left(\frac{dT_{S}}{dt}\right)$$
(C-5)

The term on the right hand side of Eq (C-5) will again be neglected because its magnitude is small in comparison to the other terms. Eq (C-5) then reduces to:

 $q_{SO} \bullet q_{SI} = 0 \tag{(C-6)}$

C3.4 Gas Space Heat Balance

$$q_{RI} + q_{NI} + q_{SI} + q_{L} = -m_{G}c_{G} \left(\frac{dT_{G}}{dt}\right)$$
(C-7)

The term on the right hand side of Eq (C-7) will again be neglected because its magnitude is small in comparison to the other terms. Eq (C-7) then reduces to:

 $q_{RI} + q_{NI} + q_{SI} + q_{L} = 0 \tag{(C-8)}$

C3.5 Heat Transfer Equations

Copyright American Petroleum Institute

rovided by IHS under license with API

lo reproduction or networking permitted without license from IHS

Eqs (C-9) through (C-15) are the heat transfer equations for each of the terms q_{RO} , q_{RI} , q_{NO} , q_{NI} , q_{SO} , q_{SI} and q_L that are used in Eqs (C-1) through (C-8).

$$q_{RO} = h_{RO}A_R (T_A - T_R) + \alpha_R (A_RI_B \cos \theta + A_RI_D)$$
(C-9)

$$q_{RI} = h_{RI}A_R (T_G - T_R)$$
(C-10)

$$q_{NO} = h_{NO}A_N (T_A - T_N) + \alpha_N \left[\frac{1}{2} A_N I_D + \frac{1}{2} A_N r_{GD} (I_B \cos \theta + I_D) \right]$$
 (C-11)

$$q_{NI} = h_{NI}A_N (T_G - T_N)$$
(C-12)

$$q_{SO} = h_{SO}A_S (T_A - T_S) + \alpha_S \left[DH_G I_B \sin \theta + \frac{1}{2} A_S I_D + \frac{1}{2} A_S r_{GD} (I_B \cos \theta + I_D) \right]$$
(C-13)

$$q_{SI} = h_{SI}A_{S} (T_{G} - T_{S})$$
(C-14)

$$q_{L} = h_{L}A_{L} (T_{G} - T_{L})$$
 (C-15)

C3.6 Tank Element Temperature Equations

Eqs (C-9) through (C-15) can be substituted into the tank element energy balance relations, Eqs (C-2), (C-4), and (C-6), to result in the following tank element temperature equations, Eqs (C-16) through (C-18).

$$T_R = e_R T_G + f_R T_A + g_R$$
 (C-16)

$$T_{N} = e_{N}T_{G} + f_{N}T_{A} + g_{N}$$
(C-17)

$$T_{S} = e_{S}T_{G} + f_{S}T_{A} + g_{S}$$
 (C-18)

where e_R , e_N , e_S , f_R , f_N , f_S , g_R , g_N and g_S are defined by Eqs (C-19) through (C-27).

$$e_{R} = \left(\frac{h_{RI}}{h_{RI} + h_{RO}}\right)$$
(C-19)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C11

$$e_{N} = \left(\frac{h_{NI}}{h_{NI} + h_{NO}}\right)$$
(C-20)

$$\mathbf{e}_{S} = \left(\frac{\mathbf{h}_{SI}}{\mathbf{h}_{SI} + \mathbf{h}_{SO}}\right) \tag{C-21}$$

$$f_{R} = \left(\frac{h_{RO}}{h_{RI} + h_{RO}}\right)$$
(C-22)

$$f_{N} = \left(\frac{h_{NO}}{h_{NI} + h_{NO}}\right)$$
(C-23)

$$f_{S} = \left(\frac{h_{SO}}{h_{SI} + h_{SO}}\right)$$
(C-24)

$$g_{R} = \left[\frac{\alpha_{R} (I_{B} \cos \theta + I_{D})}{h_{RI} + h_{RO}}\right]$$
(C-25)
$$g_{N} = \left[\frac{\alpha_{N} \left[\frac{1}{2} I_{D} + \frac{1}{2} r_{GD} (I_{B} \cos \theta + I_{D})\right]}{h_{NI} + h_{NO}}\right]$$
(C-26)

.

$$g_{S} = \left[\frac{\alpha_{S} \left[\frac{2}{\pi} I_{B} \sin \theta + \frac{1}{2} I_{D} + \frac{1}{2} r_{GD} (I_{B} \cos \theta + I_{D})\right]}{h_{SI} + h_{SO}}\right]$$
(C-27)

C4.0 VAPOR SPACE TEMPERATURE FACTOR

C4.1 Gas Space Temperature Equation

The gas space temperature equation can be developed from the gas space energy balance equation, Eq (C-8). Substituting Eqs (C-10), (C-12), (C-14) and (C-15) into Eq (C-8), we obtain:

Eq (C-28) may be rewritten as follows:

$$T_{G} (h_{RI}A_{R} + h_{NI}A_{N} + h_{SI}A_{S} + h_{L}A_{L}) - T_{R} (h_{RI}A_{R}) - T_{N} (h_{NI}A_{N}) - T_{S} (h_{SI}A_{S}) - T_{L} (h_{L}A_{L}) = 0$$
(C-29)

Eqs (C-16), (C-17) and (C-18) may now be substituted into Eq (C-29) for the terms T_R , T_N and T_S , respectively. The resulting equation may be rearranged by factoring out the temperatures T_G , T_A and T_L to obtain:

$$T_{G} [h_{RI}A_{R} (1 - e_{R}) + h_{NI}A_{N} (1 - e_{N}) + h_{SI}A_{S} (1 - e_{S}) + h_{L}A_{L}] = T_{A} (h_{RI}A_{R}f_{R} + h_{NI}A_{N}f_{N} + h_{SI}A_{S}f_{S}) + T_{L} (h_{L}A_{L}) + (h_{RI}A_{R}g_{R} + h_{NI}A_{N}g_{N} + h_{SI}A_{S}g_{S})$$
(C-30)

Substituting the expressions for e_R , e_N , e_S , f_R , f_N , f_S , g_R , g_N and g_S found in Eqs (C-19) through (C-27), the above Eq (C-30) becomes:

C13

$$T_{G} (U_{R}A_{R} + U_{N}A_{N} + U_{S}A_{S} + h_{L}A_{L}) =$$

$$T_{A} (U_{R}A_{R} + U_{N}A_{N} + U_{S}A_{S}) + T_{L} (h_{L}A_{L}) + BA_{L}$$
(C-31)

where U_R , U_N , U_S and B are defined by Eqs (C-32) through (C-35).

$$U_{R} = \left(\frac{h_{RI}h_{RO}}{h_{RI} + h_{RO}}\right)$$
(C-32)

$$U_{N} = \left(\frac{h_{NI}h_{NO}}{h_{NI} + h_{NO}}\right)$$
(C-33)

$$U_{S} = \left(\frac{h_{SI} h_{SO}}{h_{SI} + h_{SO}}\right)$$
(C-34)

$$B = \left[\begin{pmatrix} U_{R} \\ h_{RO} \end{pmatrix} \begin{pmatrix} A_{R} \\ A_{L} \end{pmatrix} \alpha_{R} (I_{B} \cos \theta + I_{D}) + \\ \begin{pmatrix} U_{N} \\ h_{NO} \end{pmatrix} \begin{pmatrix} A_{N} \\ A_{L} \end{pmatrix} \alpha_{N} \begin{bmatrix} \frac{1}{2} I_{D} + \frac{1}{2} r_{GD} (I_{B} \cos \theta + I_{D}) \end{bmatrix} + \\ \begin{pmatrix} U_{S} \\ h_{SO} \end{bmatrix} \begin{pmatrix} A_{S} \\ A_{L} \end{pmatrix} \alpha_{S} \begin{bmatrix} \frac{2}{\pi} I_{B} \sin \theta + \frac{1}{2} I_{D} + \frac{1}{2} r_{GD} (I_{B} \cos \theta + I_{D}) \end{bmatrix} \right]$$
(C-35)

Eq (C-31) may now be solved for $T_{\rm G}$ to obtain:

$$T_{G} = \frac{T_{A}(U_{R}A_{R} + U_{N}A_{N} + U_{S}A_{S}) + T_{L}(h_{L}A_{L}) + BA_{L}}{(U_{R}A_{R} + U_{N}A_{N} + U_{S}A_{S} + h_{L}A_{L})}$$
(C-36)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS _____

API MPMS*19.10 93 🖿 0732290 0511499 311 🖿

C4.2 Maximum Gas Space Temperature

The maximum gas space temperature, $T_{G,MX}$, will generally occur at Solar Noon. Eq (C-36) then becomes:

$$T_{G,MX} = \frac{T_{A,SN}(U_RA_R + U_NA_N + U_SA_S) + T_L(h_LA_L) + B_{SN}A_L}{(U_RA_R + U_NA_N + U_SA_S + h_LA_L)}$$
(C-37)

where B_{SN} represents Eq (C-35) with the terms I_B , I_D and θ evaluated at Solar Noon.

C4.3 Minimum Gas Space Temperature

The minimum gas space temperature, $T_{G,MN}$, will occur in the night at the time of minimum ambient temperature, $T_{A,MN}$, when there is no solar insolation (i.e. when B = 0). Eq (C-36) then becomes:

$$T_{G,MN} = \frac{T_{A,MN}(U_RA_R + U_NA_N + U_SA_S) + T_L(h_LA_L)}{(U_RA_R + U_NA_N + U_SA_S + h_LA_L)}$$
(C-38)

C4.4 Average Gas Space Temperature

Copyright American Petroleum Institute Provided by IHS under license with API

roduction or networking permittee

The average gas space temperature, $T_{G,AV}$, is defined by Eq (C-39):

$$T_{G,AV} = \frac{T_{G,MX} + T_{G,MN}}{2}$$
(C-39)

Substituting Eqs (C-37) and (C-38) into Eq (C-39), we obtain:

$$T_{G,AV} = \frac{T_{A,AV} (U_R^A + U_N^A + U_S^A + U_S^A) + T_L(h_L^A + \frac{1}{2} + \frac{1}{2$$

C4.5 Gas Space Temperature Change

The gas space temperature change, ΔT_G , may be determined by subtracting Eq (C-38) from Eq (C-37) to yield:

$$\Delta T_{G} = (T_{G,MX} - T_{G,MN}) \tag{C-41}$$

$$\Delta T_{G} = \frac{\Delta T_{A,SN} (U_{R}^{A}R + U_{N}^{A}N + U_{S}^{A}S) + B_{SN}^{A}L}{(U_{R}^{A}R + U_{N}^{A}N + U_{S}^{A}S + h_{L}^{A}L)}$$
(C-42)

where $\Delta T_{A,SN}$ is are defined as follows:

$$\Delta T_{A,SN} = (T_{A,SN} - T_{A,MN})$$
(C-43)

C4.6 Ambient Temperature Range Factor

It is convenient to define the ambient temperature range factor, C, as follows:

$$C = \frac{\Delta T_{A,SN}}{\Delta T_{A}}$$
(C-44)

or

Copyright American Petroleum Institute

Provided by IHS under license with API No reproduction or networking permitted without license from IHS

$$\Delta T_{A, SN} = C \Delta T_{A}$$
 (C-45)

where ΔT_A is defined as follows:

 $\Delta T_{A} \equiv (T_{A,MX} - T_{A,MN}) \tag{C-46}$

Figure C2 depicts a sinusoidally varying daily ambient temperature. The ambient temperature varies from its minimum value, $T_{A,MN}$, at time t_{MN} to its maximum value, $T_{A,MX}$, at time t_{MX} . This sinusoidal variation is described by Eq (C-47).

API MPMS*19.10 93 🖿 0732290 0511501 8TT 🗰

$$T_{A} = T_{A,AV} + \frac{\Delta T_{A}}{2} \sin \left[\left(\frac{360}{24} \right) (t - t_{MX} + 6) \right]$$
(C-47)

It is common for the maximum ambient temperature to occur about 2 hr after Solar Noon, or at 14:00 hrs. For this reason, we will select:

$$t_{MX} = 14 \text{ hr} (\text{or } 14:00 \text{ hrs})$$
 (C-48)

With this value for t_{MX} , Eq (C-47) becomes:

.

$$T_{A} = T_{A,AV} + \frac{\Delta T_{A}}{2} \sin \left[\left(\frac{360}{24} \right) (t - 8) \right]$$
(C-49)

Solar Noon occurs at t_{SN}:

.

$$t_{SN} = 12 hr (or 12:00 hrs)$$
 (C-50)

The ambient temperature at Solar Noon, TA, SN, from Eq (C-49) is:

$$T_{A,SN} = T_{A,AV} + \frac{\Delta T_A}{2} \sin \left[\left(\frac{360}{24} \right) (12 - 8) \right]$$
$$T_{A,SN} = T_{A,AV} + 0.433013 \Delta T_A \qquad (C-51)$$

We can now calculate C from Eq (C-44) using Eqs (C-43) and (C-51) as follows:

$$C = \frac{\Delta T_{A,SN}}{\Delta T_{A}}$$

C17

$$C = \frac{T_{A,SN} - T_{A,MN}}{\Delta T_{A}}$$

$$C = \frac{T_{A,AV} + 0.433013\Delta T_{A} - T_{A,MN}}{\Delta T_{A}}$$

$$C = \frac{T_{A,MN} + 0.5\Delta T_{A} + 0.433013\Delta T_{A} - T_{A,MN}}{\Delta T_{A}}$$

$$C = \frac{T_{A,MN} + 0.5\Delta T_{A} + 0.433013\Delta T_{A} - T_{A,MN}}{\Delta T_{A}}$$

$$C = 0.933013$$
(C-52)

C4.7 Area Equations

Τ

т

For a fixed-roof tank with a flat roof, the areas $A_{\rm R},~A_{\rm N},~A_{\rm S}$ and $A_{\rm L}$ may be determined from Eqs (C-53) through (C-56).

$$A_{\rm R} = \frac{\pi D^2}{4}$$
(C-53)

 $A_{\rm N} = \frac{\pi D H_{\rm G}}{2}$ (C-54)

$$A_{\rm S} = \frac{\pi D H_{\rm G}}{2}$$
(C-55)

$$A_{L} = \frac{\pi D^2}{4}$$
 (C-56)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C18

C4.8 Gas Space Temperature Change Equation

Using the area relationships of Eqs (C-53) through (C-56) and Eq (C-45), we may rewrite Eqs (C-40), (C-42) and (C-35), respectively as follows:

$$T_{G,AV} = \frac{T_{A,AV} \left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) \right] + T_{L}h_{L} + \frac{1}{2}B_{SN}}{\left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) + h_{L} \right]}$$

$$\Delta T_{G} = \frac{\Delta T_{A}C}{\left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) \right] + B_{SN}}{\left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) + h_{L} \right]}$$

$$B_{SN} = \left[\left(\frac{U_{R}}{h_{RO}} \right) \alpha_{R} \left(I_{B} \cos \theta + I_{D} \right) + \left(\frac{U_{N}}{h_{NO}} \right) \left(\frac{2H_{G}}{D} \right) \alpha_{N} \left[\frac{1}{2} I_{D} + \frac{1}{2} r_{GD} \left(I_{B} \cos \theta + I_{D} \right) \right] + \left(\frac{U_{S}}{h_{SO}} \right) \left(\frac{2H_{G}}{D} \right) \alpha_{S} \left[\frac{2}{\pi} I_{B} \sin \theta + \frac{1}{2} I_{D} + \frac{1}{2} r_{GD} \left(I_{B} \cos \theta + I_{D} \right) \right] \right]_{SN}$$

$$(C-59)$$

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C19

API MPMS*19.10 93 🖿 0732290 0511504 509 🖿

The SN at the end of Eq (C-59) indicates that the terms IB, ID and θ are evaluated at Solar Noon.

C4.9 Vapor Space Temperature Factor

The vapor space temperature factor, K_T , is defined as the ratio of ΔT_G to ΔT_A , as follows:

$$K_{T} = \left(\frac{\Delta T_{G}}{\Delta T_{A}}\right)$$
(C-60)

Using Eq (C-58), KT becomes:

$$C \left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) \right] + \frac{B_{SN}}{\Delta T_{A}}$$

$$K_{T} = \frac{1}{\left[U_{R} + U_{N} \left(\frac{2H_{G}}{D} \right) + U_{S} \left(\frac{2H_{G}}{D} \right) + h_{L} \right]}$$
(C-61)

where B_{SN} is determined from Eq (C-59).

C5.0 TWO COLOR TANK

If the tank roof is painted a different color than the tank shell, then the solar absorptance of the roof is α_R and the solar absorptance of the shell is α_S , where:

 $\alpha N = \alpha S$

(C-62)

To simplify Eqs (C-57), (C-59) and (C-61), we will assume that:

$$h_0 = h_{R0} = h_{N0} = h_{S0}$$
 (C-63)

$$h_{I} = h_{RI} = h_{SI} = h_{L}$$
(C-64)

$$U = U_{\rm R} = U_{\rm N} = U_{\rm S} \tag{C-65}$$

Using these simplifications, Eqs (C-57) and (C-61) reduce to:

 $2 + 4 \left(\frac{H_G}{D} \right) + \frac{h_I}{h_0}$

$$C \left[1 + 4\left(\frac{H_{G}}{D}\right)\right] + K_{SN}$$

$$K_{T} = \frac{1}{\left[2 + 4\left(\frac{H_{G}}{D}\right) + \frac{h_{I}}{h_{0}}\right]}$$

$$T_{A,AV} \left[1 + 4\left(\frac{H_{G}}{D}\right)\right] + T_{L} \left[1 + \frac{h_{I}}{h_{0}}\right] + \frac{1}{2}K_{SN} \Delta T_{A}$$

$$T_{A,AV} \left[1 + 4\left(\frac{H_{G}}{D}\right)\right] + T_{L} \left[1 + \frac{h_{I}}{h_{0}}\right] + \frac{1}{2}K_{SN} \Delta T_{A}$$

$$(C-67)$$

.

where:

TG,AV *

$$K_{SN} = \frac{B_{SN}}{U \Delta T_{A}}$$

(C-68)

$$K_{SN} = \left(\frac{\alpha_{S}}{h_{0}\Delta T_{A}}\right) \left\{ \left[\left[\frac{\alpha_{R}}{\alpha_{S}}\right] + 2r_{GD}\left[\frac{H_{G}}{D}\right] \right] (I_{B} \cos \theta + I_{D}) + 2\left[\frac{H_{G}}{D}\right] \left[\frac{2}{\pi} I_{B} \sin \theta + I_{D}\right] \right\}_{SN} \right\}$$
(C-69)

It is convenient to rewrite Eq (C-69) in terms of I_H and I_D instead of I_B and I_D . Note the following relation, Eq (C-70), between I_H , I_B and I_D , and the relation, Eq (C-72), between I_H and H_H .

$$I_{H} = I_{B} \cos \theta + I_{D}$$
(C-70)

$$r_{\rm H} = \frac{I_{\rm H}}{H_{\rm H}}$$
(C-71)

$$I_{\rm H} = r_{\rm H} H_{\rm H}$$
 (C-72)

Using Eqs (C-70) and (C-72), Eq (C-69) may be rewritten as follows:

$$K_{SN} = \left(\frac{\alpha_{S}r_{H}H_{H}}{h_{0}\Delta T_{A}}\right) \left\{ \left[\left(\frac{\alpha_{R}}{\alpha_{S}}\right) + 2r_{GD}\left(\frac{H_{G}}{D}\right) \right] + 2\left[\frac{H_{G}}{\mu}\right] \left[\left(\frac{2}{\pi}\right) \left[\left(\frac{1}{\pi}\right) \left[\left(\frac{1}{\pi} - \frac{I_{D}}{I_{H}}\right) - T_{An}\theta + \frac{I_{D}}{I_{H}}\right] \right]_{SN} \right] \right\}$$

$$(C-73)$$

It is convenient to define the dimensionless parameters E, F, G and J as described by Eqs (C-77), (C-78), (C-79) and (C-80), respectively. Using these defined parameters, Eqs (C-66), (C-67) and (C-73) may be rewritten as follows for the case of a two color fixed-roof tank.

C22

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API MPMS*19.10 89. 0792290 0511507 218 🛲

C6.0 TYPICAL SOLAR INSOLATION PARAMETERS

The expression for K_{SN} , Eq (C-76), may be simplified for the case of the typical solar insolation parameters used to generate the API Computer Data Base [39]. These typical solar insolation parameters are developed in Section D of this Documentation File and are based on the following assumed conditions:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C23

API MPMS*19.10 93 🖿 0732290 0511508 154 🛤

o Ground reflectivity, rgp, of 0.1,

o Tank site latitude is 35 deg. north,

o Tank site elevation is 2000 ft. above sea level, and

o The year day number is 105 (April 15).

For the entire API Computer Data Base, parameters τ_D , τ_B , r_H and θ are the following constant parameters (see Table D2):

 $\tau_{\rm D} = 0.0767938$ (C-81)

 $\tau_{\rm B} = 0.660790$ (C-82)

$$r_{\rm H} = 0.133277$$
 (C-83)

 $\theta = 25.5848 \text{ deg.}$ (C-84)

The ratio I_D/I_H can be expressed in terms of τ_D and τ_B as follows:

$$\frac{I_{D}}{I_{H}} = \left(\frac{\tau_{D}}{\tau_{B} + \tau_{D}}\right)$$
(C-85)

Using the values of τ_D and τ_B listed by Eqs (C-81) and (C-82), we can calculate the ratio ID/IH from Eq (C-85) as follows:

$$\frac{I_{D}}{I_{H}} = \left(\frac{0.0767938}{0.660790 + 0.0767938}\right)$$

= 0.104115 (C-86)

Substituting the above values for I_D/I_H , rgp, rH and θ into Eqs (C-76) and (C-78), we obtain:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS
$$K_{SN} = F (J + 0.954378 E)$$
 (C-87)

$$F = \left(\frac{0.133277 \alpha_{\rm S} H_{\rm H}}{h_0 \Delta T_{\rm A}}\right)$$
(C-88)

Eqs (C-52) and (C-87) may be substituted into Eqs (C-74) and (C-75) to yield the following result of K_T and $T_{G,AV}$ for the case of a two color fixed-roof tank with typical solar insolation parameters:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from II C25

C7.0 ONE COLOR TANK

If the roof and shell of the fixed-roof tank are painted the same color, the solar absorptance of the roof and shell paint can be represented by the same value, α :

$$\alpha = \alpha_{\rm S} = \alpha_{\rm R} \tag{C-95}$$

Substituting these values into Eq (C-94), we see that:

$$J = 1$$
 (C-96)

Eqs (C-95) and (C-96) may be substituted into Eqs (C-89) and (C-90) to give the following result of K_T and $T_{G,AV}$ for the case of a one color fixed-roof tank with typcial solar insolation parameters:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C26

API MPMS*19.10 93 🗰 0732290 0511511 749 🛲

Thus, the vapor space temperature factor, K_T , depends <u>only</u> on the three dimensionless parameters, E, F and G.

Figures C3 through C6 illustrate the dependency of K_T on E, F and G.

C8.0 TYPICAL HEAT TRANSFER COEFFICIENTS AND TYPICAL VAPOR SPACE ASPECT RATIO

Figures C7 and C8 show the effect of heat transfer coefficient ratio, G, on the average percent difference of estimated emissions compared to the API Computer Data Base [39] and the API Test Data [33]. These figures show that the following average value may be selected for G:

G = 0.45 (C-102)

This value of G corresponds to the following average values for the inside and outside heat transfer coefficients, h_I and h_0 , respectively:

 $h_{I} = 0.65 \text{ B/hr ft}^{2} \text{ oF}$ (C-103)

 $h_0 = 1.45 \text{ B/hr ft}^2 \text{ or}$ (C-104)

Figure C5, which is for a value of G = 0.50, shows that K_T depends little on the value of the vapor space aspect ratio, E, as the insolation factor, F, varies from 1 to 10. An average value of E may be selected as follows:

E = 1.0 (C-105)

Substituting the typical values of G, h_I, h_O, and E listed in Eqs (C-102) through (C-105) into Eqs (C-89) through (C-94) for a two color fixed-roof tank, we obtain the following results for K_T, Δ Ty and T_{G,AY}:

Two Color Fixed-Roof Tank With Typical Solar Insolation Parameters, Typical Heat Transfer Coefficients, and <u>Typical Vapor Space Aspect Ratio:</u> $K_T = 0.723 + 0.0279 \left(\frac{\alpha H_H}{\Delta T_A} \right)$ (C-106) $\Delta T_V = 0.723\Delta T_A + 0.0279\alpha H_H$ (C-107) $T_{G,AV} = 0.775T_{A,AV} + 0.225T_L + 0.0140\alpha H_H$ (C-108) where: $\alpha = \frac{\alpha_S + \alpha_R}{2}$ (C-109)

Substituting the typical values of G, h_I, h_O and E listed in Eqs (C-102) through (C-105) into Eqs (C-97) through (C-101) for a one color fixed-roof tank, we obtain the following results for K_T , ΔT_V and T_G , AV:

One Color Fixed-Roof Tank With Typical Solar Insolation Parameters, Typical Heat Transfer Coefficients, and <u>Typical Vapor Space Aspect Ratio:</u> $K_T = 0.723 + 0.0279 \left(\frac{\alpha H_H}{\Delta T_A}\right)$ (C-110) $\Delta T_V = 0.723 \Delta T_A + 0.0279 \alpha H_H$ (C-111) $T_{G,AV} = 0.775T_{A,AV} + 0.225T_L + 0.0140\alpha H_H$ (C-112)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

C28

API MPMS*19.10 93 🖿 0732290 0511513 511 🛲

C9.0 TYPICAL METEOROLOGICAL PARAMETERS AND TYPICAL PAINT SOLAR ABSORPTANCE

Figure C9 is a plot of the ambient temperature range, ΔT_A , as a function of the daily total solar insolation on a horizontal surface, H_H, for the selected U.S. locations listed in Table C1 [the meteorological data are from Table 6 in Ref. A7]. Figure C10 is a plot of the ratio (H_H/ ΔT_A) as a function of ΔT_A for the same locations presented in Figure C9. For these locations, the average annual value of (H_H/ ΔT_A) is:

$$\frac{H_{H}}{\Delta T_{A}} = 66.0 \text{ B/ft}^2 \text{ day }^{O}\text{F}$$
(C-113)

If specific information is not available on the tank paint color and paint condition, a white shell and white roof, with the paint in good condition, may be assumed. For this assumed condition, the following value of paint solar absorptance may be used:

 $\alpha = 0.17$ (C-114)

Substituting the typical values for $(H_H/\Delta T_A)$ and α from Eqs (C-113) and (C-114) into Eqs (C-110) through (C-112), we obtain the following typical result for K_T, ΔT_V and T_{G,AV}.

One Color Fixed-Roof Tank With Typical Solar Insolation Parameters,	
Typical Heat Transfer Coefficients,	
Typical Vapor Space Aspect Ratio,	
Typical Meteorological Conditions, and	
Typical Paint Solar Absorptance:	
$K_{T} = 1.04$	(C-115)
ΔΤγ = 1.04 ΔΤΑ	(C-116)
$T_{G,AV} = 0.775T_{A,AV} + 0.225T_{L} + 0.157\Delta T_{A}$	(C-117)

C29

C10.0 CONCLUSION

In <u>summary</u>, Equations (C-61), (C-74), (C-89), (C-97), (C-106), (C-110) or (C-115) may be used to estimate K_T , depending upon the level of detail in the information available for a specific tank. As less information is available, the equation used for the calculation of K_T becomes simpler, but the calculated value of K_T will be less accurate for the specific tank.

Equation (C-107) was selected for use in calculating the daily vapor temperature range, $\Delta T \gamma$, in API Publication 2518, Second Edition [A7]. This equation is based on a comprehensive analytical heat transfer model of the tank vapor space during a daily heating cycle. Equation (C-107) was developed from a more complete expression, Eq (C-58), by incorporating several simplifications that make the calculations more user friendly, with little loss in accuracy.

	TA, MX	T _{A, MN}	Нн	TA,AV	ΔΤΑ	$\left(\frac{H_{H}}{\Delta T_{A}}\right)$
Location	(°F)	(°F)	(B/day ft ²)	(°F)	(°F)	(B/day ft ² °F)
Birmingham, AL Montgomery, AL Homer, AK Phoenix, AZ Tucson, AZ Fort Smith, AZ Little Rock, AR Bakersfield, CA Long Beach, CA Long Beach, CA Los Angeles, CA Sacramento, CA San Francisco, CA Santa Maria, CA Denver, CO Grand Junction, CO Wilmington, DE Atlanta, GA Savannah, GA Honolulu, HI Chicago, IL Springfield, IL Indianapolis, IN Wichita, KS Louisville, KY Baton Rouge, LA Lake Charleston, LA	73.20 75.90 43.20 85.10 81.70 72.50 72.90 77.70 74.20 70.10 73.40 64.90 63.30 64.30 65.70 63.50 71.30 76.70 84.20 58.70 62.66 62.00 67.60 66.10 78.00 77.60	51.10 53.90 29.50 57.30 54.20 49.00 50.80 53.30 53.50 55.00 47.80 48.30 45.30 36.20 39.60 44.50 51.10 55.10 69.70 39.70 42.50 42.20 45.10 46.20 57.00 58.30	1345 1388 838 1869 1872 1404 1404 1404 1749 1598 1594 1643 1553 1608 1568 1659 1208 1345 1365 1639 1215 1302 1302 1302 1302 1302 1302	62.15 64.90 36.35 71.20 67.95 60.75 61.85 65.50 63.85 62.55 60.60 56.60 56.60 56.60 56.60 56.60 56.25 52.65 52.65 54.00 61.20 65.90 76.95 52.55 52.10 56.35 56.15 67.50 67.95	22.10 22.00 13.70 27.80 27.50 23.50 23.50 22.10 24.40 20.70 15.10 25.60 16.60 23.00 28.10 26.10 19.00 20.20 21.60 14.50 19.00 20.10 19.80 22.50 19.90 21.00 19.30	60.860 63.091 61.168 67.230 68.073 59.745 63.529 71.680 77.198 105.563 64.180 93.554 69.913 55.801 63.563 63.579 66.584 63.194 113.034 63.947 64.776 65.758 66.756 61.106 65.667 70.725 75.632
Detroit, MI Grand Rapids, MI Minneapolis, MN	58.20 57.20 54.20	38.90 37.70 35.20	1437 1120 1135 1170	48.55 47.45 44.70	19.00 19.30 19.50 19.00	58.031 58.205 61.579

Table C1 - Annual Average Meteorological Data for Selected U.S. Locations [22,35]

.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

C31

	TA,MX	TA, MN	нн	T _{A,AV}	ΔTA	$\left(\frac{H_{H}}{\Delta T_{A}}\right)$
Location	(⁰ F)	(°F)	(B/day ft ²)	(ºF)	(°F)	(B/day ft ² °F)
Location Jackson, MS Billingsw, MT Las Vegas, NV Newark, NJ Roswell, NM Buffalo, NY New York, NY Cleveland, OH Columbus, OH Toledo, OH Oklahoma City, OK Tulsa, OK Astoria, OR Portland, OR Philadelphia, PA Providence, RI Columbia, SC Sioux Falls, SD Memphis, TN Corpus Ch., TX Houston, TX Midland-Od., TX	(0F) 76.30 57.90 79.60 62.50 75.30 55.80 61.00 58.50 61.50 58.80 71.20 71.30 58.10 62.00 63.40 59.50 59.30 75.30 56.70 71.60 81.60 79.10 77.00	(°F) 52.90 35.40 52.80 45.90 47.50 39.30 47.50 40.70 41.80 38.30 48.60 49.20 43.10 44.00 45.10 40.70 41.20 51.20 33.90 51.90 62.50 57.40 49.90	(B/day +t-) 1409 1325 1864 1165 1810 1034 1171 1091 1123 1133 1461 1373 1000 1067 1169 1069 1112 1380 1290 1366 1521 1351 1802	(°r) 64.60 46.65 66.20 54.20 61.40 47.55 54.25 49.60 51.65 48.55 59.90 60.25 50.60 53.00 54.25 50.30 54.25 50.30 54.25 63.25 63.25 63.25 63.25 63.45	23.40 22.50 26.80 16.60 27.80 16.50 13.50 17.80 19.70 20.50 22.60 22.10 15.00 18.00 18.00 18.00 18.10 24.10 22.80 19.70 19.10 21.70 27.10	60.214 58.889 69.552 70.181 65.108 62.667 86.741 61.292 57.005 55.268 64.646 62.127 66.667 59.278 63.880 55.677 61.436 57.261 56.579 69.340 79.634 62.258 66.494
Salt Lake, UT Richmond, VA Seattle, WA Charleston, WV Hungtinton, WV Cheyenne, WY	64.00 68.80 58.90 65.50 65.30 58.30	39.30 46.50 43.90 44.00 45.00 33.10	1603 1248 1053 1123 1176 1491	51.65 57.65 51.40 54.75 55.15 45.70	24.70 22.30 15.00 21.50 20.30 25.20	64.899 55.964 70.200 52.233 57.931 59.167

Table C1 - Annual Average Meteorological Data for Selected U.S. Locations [22,35] (Continued)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Figure C1 - Schematic of Energy Flows and Temperatures

Figure C2 - Sinusoidal Daily Ambient Temperature Variation

C34

Vapor Space Temperature Factor, K_T (dimensionless)

C35

NOTE: This document is part of the API standards development process and is intended for use by API committees <u>ONLY</u>. It shall not be reproduced or circulated or quoted, in whole or in part, outside of the cognizant API committee(s) except with the written approval of API. This draft API standard will be formatted and edited prior to API publication. Copyright (1990.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Figure C4 - Vapor Space Temperature Factor, KT, for a Heat Transfer Coefficient Ratio, G, of 0.25

Vapor Space Temperature Factor, KT, (dimensionless)

יייין היינה להיין הייין לייין להיינה להייל היינה איניים אוניים אוניים אוניים אוניים אוניים אוניים אוניים אוניי אוניים אוניים

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Vapor Space Temperature Factor, K_T, (dimensionless)

Figure C5 - Vapor Space Temperature Factor, K_T, for a Heat Transfer Coefficient Ratio, G, of 0.5

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C37

Figure C6 - Vapor Space Temperature Factor, K_T , for a Heat Transfer Coefficient Ratio, G, of 1.0

API MPMS*19.10 93 🗰 0732290 0511522 524 🖿

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

C38

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS C40

(⁰F) Ambient Temperature Difference, ∆^TA

C41

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST Solar Insolation, H_H (Btu/day ft²)

Figure C10 - $H_{\text{H}}/\Delta T_{\text{A}}$ Versus H_{H} for Selected U.S. Locations

•

C42

API MPMS*19.10 99 🎟 0732290 0511527 006 🖿

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION D

DEVELOPMENT OF SOLAR INSOLATION PARAMETERS

D1

API PUBLICATION 2518 DOCUMENTATION FILE SECTION D

CONTENTS

PAGE DESCRIPTION SECTION NOMENCLATURE..... D3 INTRODUCTION..... D4 01.0 SOLAR INSOLATION EQUATIONS..... D4 D2.0 Declination, δ D4 02.1 Zenith Angle at Solar Noon, θ_{SN} D5 D2.2 Sunset Hour Angle, w..... D5 D2.3 Atmospheric Transmittance for Beam Solar Insolation D2.4 at Solar Noon, 7B, SN..... D5 Atmospheric Transmittance for Diffuse Solar Insolation D2.5 D2.6 Horizontal Surface at Solar Noon, rH.SN...... D7 Hourly Total Solar Insolation on a Horizontal Surface D2.7 at Solar Noon, I_H, _{SN}..... D7 Diffuse Solar Insolation at Solar Noon, ID, _{SN}..... D7 D2.8 D2.9 SAMPLE CALCULATIONS..... D8 D3.0 Calculate & From Eq (D-1)..... D9 D3.1 Calculate θ_{SN} From Eq (D-2)..... D9 D3.2 D3.3 D3.4 Determine ro, r1 and rk From Table D1..... D9 D3.5 Calculate and, ai and k From Eqs (D-7) through (D-9).... D10 D3.6 D3.7 D3.8 D3.9 D3.10 D3.11 D3.12 D3.13 D4.0

TABLES

D1	Correction Factors for Climate Type	D6
D2	Summary of Sample Problem Results	D12

D2

API PUBLICATION 2518 DOCUMENTATION FILE SECTION D

NOMENCLATURE

SYMBOL

DESCRIPTION

UNITS

A	Altitude	ft
a	Defined by Eq (D-12)	•••
ao	Defined by Eq (D-7)	
a0*	Defined by Eq (D-4)	
al	Defined by Eq (D-8)	
a]*	Defined by Eq (D-5)	
b	Defined by Eq (D-13)	
HH	Daily total solar insolation on a horizontal surface	B/day ft ²
IB, SN -	Beam solar insolation at solar noon	B/nr ft ²
ID, SN	Diffuse solar insolation at solar noon	B/hr ft ²
IH, SN	Hourly total solar insolation on a horizontal surface at solar noon	B/hr ft ²
k	Defined by Eq (D-9)	
k*	Defined by Eq (D-6)	
n	Year day number	• - •
ro	Correction factor for climate type from Table D1	
r 1	Correction factor for climate type from Table D1	
rĸ	Correction factor for climate type from Table D1	
rh, sn	Ratio of I _{H,SN} to H _H	*
δ	Declination angle	deg.
8 _{SN}	Zenith angle at solar noon	deg.
τB,SN	Atmospheric transmittance for beam solar insolation at solar noon	
τD,SN	Atmospheric transmittance for diffuse solar insolation at solar noon	
ø	Latitude	deg.
ω	Sunset hour angle	deg.
	Subscripts:	
B	Beam	
D	Diffuse	

- H Horizontal
 - SN Solar Noon

D3

D1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, contains equations that may be used to determine the solar insolation parameters required to calculate the vapor space temperature factor, K_T . These equations have been selected from Duffie and Beckman [24]^{*} and are arranged in the order required to calculate I_{H.SN}, I_{D.SN}, and I_{B.SN} given n, ϕ , H_H and A.

<u>Section D2</u> presents the equations to calculate each of the required solar insolation parameters.

<u>Section D3</u> presents sample calculations illustrating the use of the equations for a sample problem. Table D2 summarizes the results of the sample problem. These results are also used in Section C6 of this Documentation File to develop an equation for the vapor space temperature factor, K_T .

D2.0 SOLAR INSOLATION EQUATIONS

D2.1 Declination, δ

The declination, δ , is the angular position of the sun at solar noon with respect to the plane of the equator, where a north declination is considered positive. The declination varies between -23.45° and +23.45° and is only a function of the day of the year, n, where $1 \le n \le 365$.

$$\delta = 23.45 \operatorname{Sin} \left[\frac{360 (284 + n)}{365} \right]$$
 (D-1)

[see Ref. 24, pg. 11, Eq (1.6.1)]

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from

Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

D2.2 Zenith Angle at Solar Noon, 85N

The zenith angle at solar noon, θ_{SN} , is the angle at solar noon between the beam radiation and the normal to a horizontal surface. At solar noon, the zenith angle is a function of only the declination, δ , and latitude, ϕ .

 $\cos \theta_{SN} = \cos \delta \cos \phi + \sin \delta \sin \phi \qquad (D-2)$

[see Ref. 24, pg. 13, Eq (1.6.4)]

D2.3 Sunset Hour Angle, ω

Copyright American Petroleum Institut

opyright American Ferroretin manage rovided by IHS under license with API to reproduction or networking permitted without license from IHS

The sunset hour argle, ω , is the angular displacement of the sun, west of the local meridian, at sunset due to the rotation of the earth on its axis at 15^o per hour.

$$\cos \omega = -\mathrm{Tan} \phi \, \mathrm{Tan} \, \delta \tag{D-3}$$

[see Ref. 24, pg. 13, Eq (1.6.7)]

D2.4 Atmospheric Transmittance for Beam Solar Insolation at Solar Noon, 7B SN

The atmospheric transmittance for beam solar insolation at solar noon, $\tau_{B,SN}$, may be determined from Eq (D-10). The constants a_0^* , a_1^* , and k^* must first be determined from Eqs (D-4) through (D-6) for the specified altitude, A. The constants r_0 , r_1 and r_K may be selected from Table D1.

$$a_0^{\bullet} = 0.4237 - 0.00821 [6.0 - (A/3281)]^2$$
 (D-4)
[see Ref. 24, pg. 62, Eq (2.8.2)]
 $a_1^{\bullet} = 0.5055 + 0.00595 [6.5 - (A/3281)]^2$ (D-5)
[see Ref. 24, pg. 62, Eq (2.8.3)]

$$k^* = 0.2711 + 0.01858 [2.5 - (A/3281)]^2$$

[see Ref. 24, pg. 62, Eq (2.8.4)]

Table D1 - Correction Factors for Climate Type*

Climate Type	ro	r 1	rĸ
Tropical	0.95	0.98	1.02
Mid-Latitude Summer	0.97	0.99	1.02
Subarctic Summer	0.99	0.99	1.01
.Mid-Latitude Winter	1.03	1.01	1.00

* See Ref. 24, pg. 62, Table 2.8.1.

 $a_0 = a_0^* r_0$ [see Ref. 24, pg. 63] (D-7)

$$a_1 = a_1^* r_1$$
 [see Ref. 24, pg. 63] (D-8)

$$k = k^{\star}r_{K}$$
 [see Ref. 24, pg. 63] (D-9)

$$\tau_{B,SN} = a_0 + a_1 \exp\left(-\frac{k}{\cos\theta_{SN}}\right) \tag{D-10}$$

[see Ref. 24, pg. 62, Eq (2.8.1)]

D2.5 <u>Atmospheric Transmittance for Diffuse Solar Insolation at</u> <u>Solar Noon, TD, SN</u>

The atmospheric transmittance for diffuse solar insolation, at solar noon, $\tau_{D,SN}$, may be determined by Eq (D-11).

$$\tau_{\rm D, SN} = 0.2710 - 0.2939 \tau_{\rm D, SN}$$
 (D-11)

[see Ref. 24, pg. 64, Eq (2.8.7)]

D6

API MPMS*19.10 93 🖿 0732290 0511533 307 📟

D2.6 <u>Ratio of Hourly to Daily Total Solar Insolation on a Horizontal Surface</u> <u>at Solar Noon, r_{H,SN}</u>

The ratio $r_{H,SN}$ is the ratio of the <u>hourly</u> total solar insolation on a horizontal surface at solar noon, $I_{H,SN}$, to the <u>daily</u> total solar insolation on a horizontal surface, H_{H} . This ratio may be calculated from Eq (D-14), where the coefficients a and b are first determined from Eqs (D-12) and (D-13), respectively.

 $a = 0.4090 + 0.5016 \text{ Sin } (\omega - 60)$ (D-12)

[see Ref. 24, pg. 79, Eq (2.13.2a)]

 $b = 0.6609 - 0.4767 \sin (\omega - 60)$ (D-13)

[see Ref. 24, pg. 79, Eq (2.13.2b)]

$$r_{\rm H, SN} = \left(\frac{\pi}{24}\right) \left[\frac{(a+b)(1-\cos\omega)}{\sin\omega - (2\pi\omega/360)\cos\omega}\right]$$
(D-14)

[see Ref. 24, pg. 79, Eq (2.13.1)]

D2.7 Hourly Total Solar Insolation on a Horizontal Surface at Solar Noon, IH SN

The hourly total solar insolation on a horizontal surface at solar noon, $I_{H,SN}$, may be determined from the ratio $r_{H,SN}$ and the daily total solar insolation on a horizontal surface, H_{H} , using Eq (D-15).

$$I_{H,SN} = r_{H,SN} H_{H}$$
 (D-15)

D2.8 Diffuse Solar Insolation at Solar Noon, In SN

Copyright American Petroleum Institute Provided by IHS under license with API

p reproduction or networking permitted without license from IHS

The diffuse solar insolation at solar noon, $I_{D,SN}$, may be determined from IH,SN, 7B,SN and 7D,SN using Eq (D-16).

$$I_{D,SN} = I_{H,SN} \left(\frac{\tau_{D,SN}}{\tau_{B,SN} + \tau_{D,SN}} \right)$$
(D-16)

D2.9 Beam Solar Insolation at Solar Noon, IB.SN

The beam solar insolation at solar noon, $I_{B,SN}$, may be determined from IH,SN, $I_{D,SN}$ and θ_{SN} using Eq (D-17).

$$I_{B,SN} = \left(\frac{I_{H,SN} - I_{D,SN}}{\cos \theta_{SN}}\right)$$
(D-17)

D3.0 SAMPLE CALCULATIONS

This section presents sample calculations illustrating how Eqs (D-1) through (D-17) may be used to determine the solar insolation parameters for a sample problem.

The <u>Given Conditions</u> chosen for this sample problem are the same as those that were used to develop the API Computer Data Base [39].

Given Conditions:

n = 105 year day number ϕ = 35 deg. north latitude A = 2000 ft. altitude H_H = 1500 B/day ft²

The <u>Calculated Results</u> of this sample problem are summarized in Table D2. These results are also used in Section C6 to develop an equation for the vapor space temperature factor, K_T , for the case of a "two color fixed-roof tank with typical solar insolation parameters" (see Eqs (C-84) through (C-88)).

Copyright American Petroleum Institute

rovided by IHS under license with API o reproduction or networking permitted D3.1 Calculate δ from Eq (D-1)

$$\delta = (23.45) \operatorname{Sin} \left[\frac{360 (284 + 105)}{365} \right]$$

 $= 9.41490^{\circ}$

D3.2 Calculate θ_{SN} from Eq (D-2)

 $\cos \theta_{SN} = \cos (9.41490) \cos (35) + \sin (9.41490) \sin (35)$ = 0.90195 $\theta_{SN} = 25.5848^{\circ}$

D3.3 Calculate ω from Eq (D-3)

 $\cos \omega = - \text{Tan} (35) \text{Tan} (9.41490)$ = -0.116106 ω = 96.6674⁰

D3.4 Calculate a_0° , a_1^{*} and k^{*} from Eqs (D-4) through (D-6)

 $a_0^* = 0.4237 - 0.00821 [6.0 - (2000/3281)]^2$ = 0.185144 $a_1^* = 0.5055 + 0.00595 [6.5 - (2000/3281)]^2$ = 0.711948 $k^* = 0.2711 + 0.01858 [2.5 - (2000/3281)]^2$ = 0.337499

D3.5 Determine r0, r1 and rx from Table D1

r₀ = 0.97 r₁ = 0.99 r_K = 1.02

D3.6 Calculate and, a1 and k from Eqs (D-7) through (D-9)

 $a_0 = (0.185144)(0.97)$ = 0.179590 $a_1 = (0.711948)(0.99)$ = 0.704829 k = (0.337499)(1.02)

= 0.344249

D3.7 Calculate TB SN from Eq (D-10)

7B,SN = 0.179590 + 0.704829 exp (-0.344249/Cos (25.5848)) = 0.660790

D3.8 Calculate TD. SN from Eq (D-11)

 $\tau_{D,SN} = (0.2710) - (0.2939)(0.660790)$ = 0.0767938

D3.9 Calculate a and b from Eqs (D-12) and (D-13)

a = 0.4090 + 0.5016 Sin (96.6674 - 60) = 0.708540 b = 0.6609 - 0.4767 Sin (96.6674 - 60) = 0.376230

D3.10 Calculate rH SN from Eq (D-14)

$$r_{\rm H, SN} = \left(\frac{\pi}{24}\right) \left\{ \frac{\left[(0.708540) + (0.376230)\right]\left[1 - \cos(96.6674)\right]}{\sin(96.6674) - (2\pi)(96.6674/360)\cos(96.6674)} \right\}$$

= 0.133277

D3.11 Calculate IH. SN from Eq (D-15)

 $I_{H,SN} = (0.133277)(1500)$ = 199.915 B/hr ft²

D3.12 Calculate ID_SN from Eq (D-16)

$$I_{D,SN} = (199.915) \left(\frac{0.0767938}{0.660790 + 0.0767938} \right)$$

= 20.8142 B/hr ft²

D3.13 Calculate IB SN from Eq (D-17)

$$I_{B,SN} = \frac{(199.915 - 20.8142)}{\cos (25.5848)}$$
$$= 198.571 \text{ B/hr ft}^2$$

D4.0 CONCLUSION

The typical solar insolation parameters developed in this Section D of the Documentation File were used in Section C6 to develop the equation for calculating the daily vapor temperature range, ΔTy .

D11

.

Table D2 - Summary of Sample Problem Results

Symbol	Description	Value	Units
	Given Information		
n Ø Hµ A	Year Day Number Latitude Daily Total Solar Insolation on a Horizontal Surface Altitude	105 35 1500 2000	deg. north B/day ft ² ft
	Calculated Results		
$ \delta \\ \theta SN \\ \omega \\ a_0 \\ a_1 \\ k^* \\ r_0 \\ r_1 \\ r_X \\ a_1 \\ k \\ r_0 \\ r_1 \\ r_X \\ a_1 \\ k \\ r_0 \\ r_1 \\ r_X \\ a_1 \\ k \\ r_0 \\ r_1 \\ r_X \\ a_1 \\ k \\ r_0 \\ r_1 \\ r_X \\ a_1 \\ $	Declination Angle Zenith Angle at Solar Noon Sunset Angle 	9.41490 25.5848 96.6674 0.185144 0.711948 0.337499 0.97 0.99 1.02 0.179590 0.704829 0.344249	deg. north deg.
TB, SN	Atmospheric Transmittance for Beam Solar Insolation at Solar Noon Atmospheric Transmittance for Diffuse Solar Insolation	0.660790	
, U, SN	at Solar Noon	0.0767938	
a b		0.376230	
rh, sn Ih, sn	Ratio of I _{H, SN} to H _H Hourly Total Solar Insolation on a Horizontal Surface	0.133277	
ID, SN IB, SN	at Solar Noon Diffuse Solar Insolation at Solar Noon Beam Solar Insolation at Solar Noon	199.915 20.8142 198.571	B/hr ft ² B/hr ft ² B/hr ft ²

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION E

DEVELOPMENT OF PAINT SOLAR ABSORPTANCE, α

~

.

API PUBLICATION 2518 DOCUMENTATION FILE SECTION E

CONTENTS

SECTION	DESCRIPTION	PAGE
	NOMENCLATURE	. E3
E1.0	INTRODUCTION	. E4
E2.0	SOLAR ABSORPTANCE FUNDAMENTALS	. E4
E3.0	DEVELOPMENT OF PAINT FACTORS FOR API PUBLICATION 2518, FIRST EDITION	. E5
E4.0	RELATIONSHIP BETWEEN SOLAR ABSORPTANCE AND PAINT FACTORS	. E8
E5.0	EFFECT OF PAINT CONDITION ON SOLAR ABSORPTANCE	. E 8
E6.0	CONCLUSION	. E9

TABLES

E1	Paint Classification for Tanks Tested	E6
E2	Solar Reflectance and Solar Absorptance of Tank	
	Paints [A6]	E10
E3	Solar Reflectance and Solar Absorptance of Tank	
	Paints [3]	E11
E4	Paint Factor and Solar Absorptance of Selected Tank	
	Paint Colors and Conditions [A6]	E12
E5	Solar Absorptance for Selected Tank Paint Colors	
	and Conditions	E13

FIGURES

E1	Effect of Solar Reflectance on Paint Factor [From Fig.	
	IV-3 of Ref. A6]	E14
E2	Effect of Paint Condition on Solar Absorptance	E15

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API PUBLICATION 2518 DOCUMENTATION FILE SECTION E

NOMENCLATURE

DESCRIPTION

UNITS

Fp	Paint factor	dimensionless
α	Solar absorptance of paint	dimensionless
ac.	Solar absorptance of paint in good condition	dimensionless
α Δρ	Solar absorptance of paint in poor condition	dimensionless
٥	Solar reflectance of paint	dimensionless
T	Solar transmittance of paint	dimensionless
2		

SYMBOL

E3

E1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, contains a development of the solar absorptance, α , for selected paint colors, paint types and paint conditions. The values developed are based on information that was presented in Appendix IV of API Publication 2518, First Edition [A6]^{*}.

<u>Section E2</u> presents fundamental definitions and a relationship between solar absorptance and solar reflectance.

<u>Section E3</u> describes the work that resulted in the paint factors, F_p , that appear in API Publication 2518, First Edition.

<u>Section E4</u> describes the relationship between solar absorptance and paint factor.

<u>Section E5</u> develops a relationship between the solar absorptance of paints in poor condition and good condition.

<u>Section EF</u> summarizes the set of solar absorptance values that were selected for use in API Publication 2518, Second Edition.

E2.0 SOLAR ABSORPTANCE FUNDAMENTALS

Solar radiation that impinges on a surface is either: (1) absorbed by the surface; (2) reflected from the surface; or (3) transmitted through the surface. The fraction of the incident solar radiation (referred to as "insolation") that is absorbed is referred to as the absorptivity, α , of the surface; the fraction that is reflected is referred to as the reflectivity, ρ , of the surface; and the fraction that is transmitted is referred to as the transmittance, τ , of the surface, where:

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

^{*} Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

 $\alpha + \rho + \tau = 1$ (E-1) For the metal surfaces of fixed-roof tanks, the transmittance is zero, or:

$$\tau = 0 \tag{E-2}$$

Eq (E-1) then reduces to:

$$\alpha + \rho = 1 \tag{E-3}$$

The following discussion focuses primarily on the values of absorptance, α , of a surface for use in calculating the thermal breathing losses of fixedroof tanks. If the reflectance, ρ , of a surface is known, Eq (E-3) may be used to determine the corresponding absorptance, α , of the surface.

The exterior surface of fixed-roof tanks is normally coated with a paint to reduce corrosion. A wide range of paint colors have been used, sometimes with a different color on the tank roof than on the tank shell.

The absorptance of tank paint depends upon the paint color, paint type and paint condition. Newly painted tank surfaces, or painted surfaces in a good condition will have a lower absorptance than weathered painted surfaces or painted surfaces in poor condition.

E3.0 DEVELOPMENT OF PAINT FACTORS FOR API PUBLICATION 2518, FIRST EDITION

At the time that the First Edition of API Publication 2518 [A6] was published, the importance of the effect of paint absorptance on the thermal breathing loss was recognized. A paint with a low absorptivity, such as white paint, was known to affect the thermal breathing loss in two significant ways:

- 1. It reduces the transfer of heat to and from the tank vapor space and therefore reduces the volume of thermal breathing loss.
- It reduces the transfer of heat to the bulk liquid and therefore reduces the thermal breathing loss by lowering the stock vapor pressure.

During the development of the First Edition to API Publication 2518, a Paint Factor Task Group was formed and was given the assignment of developing a practical correlation of the effect of paint on the thermal breathing loss from fixed-roof tanks. Through discussions and correspondence, the task group worked with paint chemists and the staff of one large paint manufacturer. In addition, pertinent literature was studied and analyzed. Evaporation loss tests, other than those used in developing the breathing loss correlation [see Eq (3) in Ref. A6], were studied and tabulated [see Table IV-2 in Ref. A6]. Tests were performed to determine the difference in liquid body temperature in large tanks painted aluminum versus those painted white. Tests were performed with both artificial light and sunlight on various painted surfaces to determine their reflectance.

In this discussion, reflectance refers to measurements made with a spectrophotometer which utilizes an integrating sphere. On this scale, 100 represents the reflectance of pure magnesium oxide (MgO) sprayed on tile until no increase in the instrument reading can be observed. This instrument measures only the visible spectrum. Although heat for evaporation is partially supplied to a tank by the nonvisible (infared) portion of the sun's rays, it was assumed that the effect of this portion is proportional to the visible (measured) portion of the sun's rays. It was not concluded, however, that this relationship will hold for all paint formulations and climatic conditions.

In developing the correlation for thermal breathing loss [Eq (3) in Ref. A6], test data from 64 painted tanks were selected for detailed analysis. The paint classification for the 64 tanks tested is as follows:

Roof	Shell	Number
Color	Color	of Tanks
White Aluminum White Aluminum White Gray Total	White White Aluminum Aluminum Gray Gray	18 2 4 12 24 64

lable El - Paint (Classification 1	for Tani	cs Tested
--------------------	------------------	----------	-----------

E6
At the time that the First Edition of API Publication 2518 was published, little loss data on fixed-roof tanks with paint colors other than white, aluminum or gray was available.

Early in the study of paint reflectance, a definite relationship appeared to exist between relative loss and tank paint reflectance. It also became obvious that the broad paint classifications of white, aluminum, gray, etc. were not sufficiently definitive. Paints have a wide range of reflectance, varying from a freshly painted laboratory sample to a surface in a dirty and extremely weathered condition.

Paints of the same nominal color and in the same condition have a wide range of reflectance, depending upon formulation. One paint manufacturer reported that the reflectance of new white paint on a tank might range between 0.80 and 0.86, with a maximum of 0.88, and that the reflectance of new black paint on a tank might range between 0.04 and 0.08. New aluminum paint also has a wide range of reflectance, depending upon the grade of aluminum powder and the type of formulation. One type of aluminum paint, formulated with a specular type of pigment (polished scales), may have a reflectance that might range between 0.60 to 0.70, with an average of 0.68. Another type of aluminum paint, utilizing a diffuse type of pigment, may have a reflectance as low as 0.35. Aluminum paints of intermediate reflectance can be formulated from mixtures of these two paint types. Thus, aluminum color paints cover a wide range on the total reflectance scale.

Approximate reflectance values for various paint colors and paint conditions are presented in Table E2. These values are based on: (1) the thermal breathing loss correlation test data [see Tables II-1, II-2 and II-3 in Ref. A6]; (2) supplementary test data; (3) information supplied by paint manufacturers; and, (4) the results of field tests conducted by the task group.

For reference purposes, Table E3 lists the reflectance values of various paint colors and paint conditions reported by Nelson [3].

Table E4 summarizes the set of paint factors, Fp, that were developed by the Paint Factor Task Group for use with the thermal breathing loss correlation [Eq

(3) in Ref. A6]. These paint factors were compiled by the task group from a judicious review of all available data. These paint factors do not represent a precise evaluation of the effect of tank paints on evaporation loss from tanks. They do, however, present useful and reasonable paint factors that are based on the alignment of the relative test data and on the agreement of the test data for aluminum painted tanks and gray-painted tanks.

E4.0 RELATIONSHIP BETWEEN SOLAR ABSORPTANCE AND PAINT FACTORS

Figure E1 [from Fig. IV-3 of Ref. A6] illustrates the effect of solar reflectance, ρ , on the paint factor, Fp. This figure shows a linear relationship between ρ and Fp for values of Fp \leq 1.5. Eq (E-3) expresses this linear relationship:

$$F_{P} = 1.74 - 0.90 \rho$$
 (E-3)

Substituting Eq (E-2) into (E-3) and solving for the solar absorptance, α , we obtain:

$$\alpha = 1.11 \text{ Fp} - 0.94$$
 (E-4)

Eq (E-4) was used to convert the values of paint factor, Fp, to solar absorptance, α , in Table E4.

E5.0 EFFECT OF PAINT CONDITION ON SOLAR ABSORPTANCE

The solar absorptance values listed in Table E4 include values for paint in good condition, α_G , and values for paint in poor condition, α_P .

Figure E2 is a plot of αp versus αg for each of the paints listed in Table E4. The values plotted may be fit with a linear relationship that must go through the point where $\alpha g = 1$ and $\alpha p = 1$. Eq (E-5) expresses this linear relationship:

(E-5)

E6.0 CONCLUSION

Table E5 summarizes the set of solar absorptance values that were selected for use in API Publication 2518, Second Edition. The values selected were based upon a careful evaluation of the values presented in Tables E2 and E4.

Use was made of the values in Table E4 for only the cases where the tank roof and shell are painted the same color. Also, Eq (E-5) was used to determine the poor condition values from the good condition values for gray and red color paints.

The values of Nelson [3] listed in Table E3 were not incorporated into Table E5, but are listed in this section of the Documentation File only for reference.

Paint Color	Paint Shade or Type	Paint Condition	Solar Reflectance p (1) (dimensionless)	Solar Absorptance & (2) (dimensionless)
Magnesium Oxide (3)			1.00(1)	0.00
White		Good	0.83	0.17
Aluminum	Specular	Good	0.65	0.35
Aluminum	Specular	Average	0.60	0.40
Aluminum	Diffuse	Good	0.45	0.55
Aluminum	Diffuse	Average	0.40	0.60
Aluminum	Diffuse	Extremely Weathered	0.30	0.70
Red	Primer	Good	0.11	0.89
Black			0.06	0.94

Table E2 - Solar Reflectance and Solar Absorptance of Tank Paints [A6]

- Notes: (1) Values of ρ are from Table IV-1 of Ref. A6. (2) Values of α are calculated from the relationship: $\alpha = 1 - \rho$
 - (3) Magnesium oxide is the reflectance standard whose value is assumed to be 1.00.

Paint Color	Paint Shade or Type	Paint Condition	Solar Absorptance œ (dimensionless)	Solar Reflectance p (dimensionless)
Aluminum Aluminum Aluminum		New Weathered	0.330 0.408 0.645	0.670 0.592 0.355
Black			1.000	0.000
Blue Blue Blue Blue	Light Pale Dark		0.150 0.272 0.505 0.545	0.850 0.728 0.495 0.455
Cream	Light		0.115	0.885
Gray Gray Gray	Glossy Light 		0.190 0.430 0.530	0.810 0.570 0.470
Green Green Green Green	Light Dark Dark		0.215 0.592 0.596 0.787	0.785 0.408 0.404 0.213
Metal	Bare		0.900	0.100
Pink	Light		0.135	0.865
Red Red Red	Iron Oxide Dark		0.305 0.724 0.787 0.828	0.695 0.276 0.213 0.172
Tan	oriyni 		0.355	0.645
White			0.100	0.900
Yellow			0.435	0.565

Table E3 - Solar Reflectance and Solar Absorptance of Tanks Paints [3]

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Table E4 - Paint Factor and Solar Absorptance of Selected Tank Paint Colors and Conditions [A6]

Tank	Color	Paint Fact (dimensi	or, Fp (l) onless)	Solar Absorg (dimensi	otance, α (2) ionless)
Roof	Shell	Good Condition	Poor Condition	Good Condition	Poor Condition
White	White	1.00	1.15	0.170	0.337
Aluminum (Specular)	White	1.04	1.18	0.214	0.370
White	Aluminum (Specular)	1.16	1.24	0.348	0.436
Aluminum (Specular)	Aluminum (Specular)	1.20	1.29	0.392	0.492
White	Aluminum (Diffuse)	1.30	1.38	0.503	0.592
Aluminum (Diffuse)	Aluminum (Diffuse)	1.39	1.46	0.603	0.681
White	Gray	1.30	1.38	0.503	0.592
Light Gray	Light Gray	1.33	1 1 1	0.536	
Medium Gray	Medium Gray	1.46	8	0.681	-

Values of Fp are from Table 2 of Ref. A6. Values of α are calculated from the relationship: α = 1.11 Fp - 0.94 Notes: (1) (2)

API MPMS*19.10 93 🗰 0732290 0511550 499 🗰

Paint Color	Paint Shade	Solar Absorptance, α (dimensionless) Paint Condition		
	or Type	Good	Poor	
Aluminum	Specular	0.39	0.49	
Aluminum	Diffuse	0.60	0.68	
Gray	Light	0.54	0.63	
Gray	Medium	0.68	0.74	
Red	Primer	0.89	0.91	
White		0.17	0.34	

Table E5 - Solar Absorptance for Selected Tank Paint Colors and Conditions

E14

Figure E2 - Effect of Paint Condition on Solar Absorptance

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION F

DEVELOPMENT OF LIQUID SURFACE TEMPERATURE EQUATIONS

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS F1

PAGE

API PUBLICATION 2518 DOCUMENTATION FILE SECTION F

CONTENTS

DESCRIPTION

	NOMENCLATURE	F3
F1.0	INTRODUCTION	F4
F2.0	LIQUID BULK TEMPERATURE	F4
F3.0	AVERAGE GAS SPACE TEMPERATURE	F5
F4.0 F4.1 F4.2	LIQUID SURFACE TEMPERATURE RANGE Liquid Surface Temperature Range Correlation Liquid Surface Temperature Range Equation	F5 F5 F6
F5.0 F5.1 F5.2 F5.3	AVERAGE LIQUID SURFACE TEMPERATURE Heat Transfer Model Comparison With Test Data Average Liquid Surface Temperature Equation	F8 F8 F10 F10
F6.0	CONCLUSION	F11

TABLES

SECTION

.

e 1		
F1	Temperature Difference Ratio	(TLA-TBA)/(TGA-TBA)
	Calculated From the API Test	Data [33,38] F12

FIGURES

F1	Effect of Paint Solar Absorptance on the Liquid Bulk	
	Temperature	5
F2	Liquid Surface Temperature Range Versus Gas Space	
	Temperature Range for API Computer Data Base Cases	
	1 through 200	į.
F3	Liquid Surfact Temperature Range Versus Gas Space	
	Temperature Range for API Computer Data Base Cases	
	201 through 400	j
F4	Liquid Surface Temperature Range Versus Gas Space	
	Temperature Range for API Computer Data Base Cases	
	401 through 560	5
F5	Schematic of Energy Flows and Temperatures Near the	
	Liquid Surface	
	•	

API PUBLICATION 2518 DOCUMENTATION FILE SECTION F

NOMENCLATURE

SYMBOL

DESCRIPTION

UNITS

Area	ft ²
Defined by Eq (F-21)	dimensionless
Defined by Eq (F-22)	dimensionless
Heat capacity	B/1bm ^O F
Defined by Eq (F-9)	dimensionless
Daily total solar insolation on a horizontal surface	B/day ft ²
Heat transfer coefficient	B/hr ft ² OF
Defined by Eq (F-6)	dimensionless
Thermal conductivity	B/hr ft ^O F
Temperature	of
Temperature change	٥F
Solar absorptance	dimensionless
Density	lbm/ft ³
	Area Defined by Eq (F-21) Defined by Eq (F-22) Heat capacity Defined by Eq (F-9) Daily total solar insolation on a horizontal surface Heat transfer coefficient Defined by Eq (F-6) Thermal conductivity Temperature Temperature change Solar absorptance Density

SUBSCRIPTS

Ambient
Ambient, Daily Average
Liquid Bulk
Liquid Bulk, Daily Average
Liquid Bulk, Daily Minimum
Liquid Bulk, Daily Maximum
Gas
Gas, Daily Average
Gas, Daily Minimum
Gas, Daily Maximum
Liquid Surface
Liquid Surface, Daily Average
Liquid Surface, Daily Minimum
Liquid Surface, Daily Maximum

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS F3

F1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, presents the development of the equations required to determine the daily maximum liquid surface temperature, T_{LX} , the daily average liquid surface temperature, T_{LA} , and the daily minimum liquid surface temperature, T_{LN} .

<u>Section F2</u> develops an equation for estimating the liquid bulk temperature, T_B , when this temperature is not available from tank operating records. This equation is based on data from in API Publication 2518, First Edition [A6]^{*}.

Section F3 presents an equation for determining the daily average gas space temperature, T_{GA} .

<u>Section F4</u> develops an equation for determining the daily liquid surface temperature range, ΔT_L . This theoretical equation is confirmed by a correlation developed from the API Computer Data Base [39].

<u>Section F5</u> develops an equation for determining the daily average liquid surface temperature, T_{LA} . This theoretical equations is confirmed by the API Test Data [33,38].

<u>Section F6</u> presents a summary of the equations required to calculate the daily maximum liquid surface temperature, T_{LX} , the daily average liquid surface temperature, T_{LA} , and the daily minimum liquid surface temperature, T_{LN} . The equations are presented in the order required for calculation.

F2.0 LIQUID BULK TEMPERATURE

The liquid bulk temperature, T_B , is the average temperature of the liquid stock in the storage tank. This information is usually available from tank gaging records or other tank operating records.

^{*} Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

If the liquid bulk temperature is not available, it may be estimated from the daily average ambient temperature, T_{AA} , and the tank shell paint solar absorptance, α , using Eq (F-1).

$$T_{B} = T_{AA} + 6\alpha - 1 \tag{F-1}$$

Figure F1 is a plot of liquid bulk temperature, Tg, above that in a white tank versus shell paint solar absorptance, α . This figure is from Figure IV-2 of API Publication 2518, First Edition [A6]. Eq (F-1) was developed from the straight line on Figure F1 and from the assumption that the liquid bulk temperature in a white tank is the same as the average ambient temperature, TAA.

F3.0 AVERAGE GAS SPACE TEMPERATURE

The following equation may be used to determine the daily average gas space temperature, T_{GA} . Refer to Eq (C-108) in Section C8 of this Documentation File for the development of this equation.

$$T_{GA} = 0.775T_{AA} + 0.225T_{LA} + 0.0140 \alpha H_{H}$$

(F-2)

F4.0 LIQUID SURFACE TEMPERATURE RANGE

This section contains the development of two equations for the daily liquid surface temperature range, ΔT_{L} : (1) a correlation from the API Computer Data Base [39]; and (2) a theoretical equation from a heat transfer analysis.

F4.1 Liquid Surface Temperature Range Correlation

A correlation between the liquid surface temperature range, ΔT_L , and the gas space temperature range, ΔT_G , was developed from the 560 sets of calculated results that are contained in the API Computer Data Base [39].

The daily liquid surface temperature range, ΔT_L , and the daily gas space temperature range, ΔT_G , are defined by Eqs (F-3) and (F-4).

$$\Delta T_{L} = T_{LX} - T_{LN} \tag{F-3}$$

$$\Delta T_{\rm G} = T_{\rm GX} - T_{\rm GN} \tag{F-4}$$

Figures F2, F3 and F4 are plots of liquid surface temperature range, ΔT_L , versus gas space temperature range, ΔT_G , from the API Computer Data Base [39]. Each of these figures contains about 1/3 of the 560 calculated values in the API Computer Data Base.

The resulting correlation is shown in Eq (F-5):

 $\Delta T_{L} = 0.534050 \Delta T_{G} - 2.810841$

(F-5)

Although the data in Figures F2 through F4 exhibit a slight curvature, the linear correlation results in an excellent fit of the values, with a correlation coefficient of 0.998344.

F4.2 Liquid Surface Temperature Range Equation

This section contains the development of a theoretical equation for the liquid surface temperature range, ΔT_L , from a heat transfer analysis.

The API Test Data [33,38] indicates that the top layer of liquid stock behaves thermally as if it were a layer of solid material during the daily thermal heating cycle. Heat is transferred in a vertical direction through this top layer by steady periodic heat transfer.

The case of heat transfer between a fluid medium with a steady periodic temperature change in contact with the plane surface of a semi-infinite solid material is treated by Jakob [Jakob, M., "Heat Transfer", Volume 1, John Wiley & Sons, Inc., 1949, pp. 296-299]. This analysis may be applied to the top layer of liquid stock in a storage tank and results in Eq (F-6), (F-7) and (F-8):

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS F6

$$K_{L} = \frac{\Delta T_{L}}{\Delta T_{G}}$$
 (F-6)

.

or

$$\Delta T_{L} = K_{L} \Delta T_{G}$$
 (F-7)

where:

•

$$K_{L} = \left(\frac{1}{1 + 2G^{1/2} + 2G}\right)^{1/2}$$
(F-8)

$$G = \left(\frac{\pi \rho_L c_L k_L}{24 h_G^2}\right)$$
(F-9)

The following values for ρ_L , c_L and k_L from the API Base Case [39] were used to calculated G and K_L :

 $\rho_{\rm L} = 53 \ \rm lbm/ft^3$ (F-10)

 $c_{L} = 0.45 \text{ Btu/lbm }^{OF}$ (F-11)

 $k_{\rm L} = 0.08 \ {\rm Btu/hr} \ {\rm ft} \ {\rm ^{OF}}$ (F-12)

$$h_{\rm G} = 0.65 \ {\rm Btu/hr} \ {\rm ft}^2 \ {\rm oF}$$
 (F-13)

The resulting values calculated for G and K_L from Eqs (F-9) and (F-8), respectively, are:

G = 0.5911 (F-14)

$$K_{\rm L} = 0.5185$$
 (F-15)

This value for K_L is supported by the correlation result of Eq (F-5).

The value for K_L listed in Eq (F-15) may be rounded to 0.500 for ease of calculation. Finally, substituting this value for K_L into Eq (F-7), we obtain:

$$\Delta T_{L} = 0.500 \ \Delta T_{G}$$
 (F-16)

F5.0 AVERAGE LIQUID SURFACE TEMPERATURE

F5.1 Heat Transfer Model

This section develops a simplified equation for estimating the daily average liquid surface temperature, T_{LA} , from the liquid bulk temperature, T_B , and the daily average gas space temperature, T_{GA} .

Figure F5 is a schematic of the energy flows and temperatures near the liquid surface. The heat transfer equations are Eqs (F-17) and (F-18).

$$a_{\rm G} = h_{\rm G} A_{\rm I} (T_{\rm G} - T_{\rm I})$$
 (F-17)

$$q_{L} = h_{L} A_{L} (T_{L} - T_{B})$$
 (F-18)

The heat balance equation at the liquid surface is:

$$q_{\rm G} = q_{\rm L} \tag{F-19}$$

Substituting Eqs (F-17) and (F-18) into Eq (F-19) and solving for T_L we obtain:

$$T_{L} = a T_{G} + b T_{B}$$
 (F-20)

where:

$$a = \left(\frac{h_G}{h_G + h_L}\right)$$
(F-21)

Copyright American Petroleum Institute Provided by IHS under license with API

lo reproduction or networking permitted without license from IHS

$$b = \left(\frac{h_L}{h_G + h_L}\right)$$
(F-22)

The ratio a/b may be determined from Eqs (F-21) and (F-22) as follows:

$$\frac{a}{b} = \frac{h_{G}}{h_{L}}$$
 (F-23)

Substituting Eq (F-23) into Eq (F-22) we obtain the following relationship between b and a.

b = 1 - a (F-24)

During the daily thermal breathing process, the liquid bulk temperature, T_B , can be assumed to be constant. At the maximum, average and minimum gas space temperature conditions, Eq (F-20) becomes:

- $T_{LX} = aT_{GX} + bT_B$ (F-25)
- $T_{LA} = aT_{GA} + bT_B$ (F-26)

$$T_{LN} = aT_{GN} + bT_B \tag{F-27}$$

The daily liquid surface temperature range, ΔT_L , and the daily gas space temperature range, ΔT_G , were defined by Eqs (F-3) and (F-4). Substituting Eqs (F-25) and (F-27) into Eq (F-3), we obtain:

$$\Delta T_{L} = (aT_{GX} + bT_{B}) - (aT_{GN} + bT_{B})$$

$$\Delta T_{L} = a(T_{GX} - T_{GN})$$

$$\Delta T_{L} = a\Delta T_{G}$$

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

From Eq (F-16) in Section F4.2, we know that a = 0.500. Substituting this value for a into Eq (F-28), we obtain b = 0.500. Substituting these values for a and b into Eqs (F-25), (F-26) and (F-27), we obtain:

$$T_{LX} = 0.500T_{GX} + 0.500T_B$$
 (F-29)

 $T_{LA} = 0.500T_{GA} + 0.500T_B$ (F-30)

 $T_{LN} = 0.500T_{GN} + 0.500T_B$ (F-31)

F5.2 Comparison With Test Data

To compare the results of this analysis with the API Test Data [33,38], it is first convenient to form the ratio $(T_{LA} - T_B)/(T_{GA} - T_B)$ using Eq (F-30) from the above analysis as follows:

$$\left(\frac{T_{LA} - T_B}{T_{GA} - T_B} \right) = \left[\frac{(0.500T_{GA} + 0.500T_B) - T_B}{T_{GA} - T_B} \right] = 0.500$$
 (F-32)

Table F1 presents the above ratio calculated from API Tests 1 through 6. API Tests 7 through 10 could not be used for this comparison since the liquid surface thermocouple appeared to be reading the gas temperature rather than the liquid surface temperature. The average value calculated for the ratio $(T_{LA} - T_B)/(T_{GA} - T_B)$ from the API Test Data is 0.467. This value calculated from test data is close to the value of 0.500 in Eq (F-32), thus verifying the heat transfer analysis in Section F5.1.

F5.3 Average Liquid Surface Temperature Equation

Substituting Eq (F-2) for T_{GA} into Eq (F-30) and solving for T_{LA} , we obtain finally the following expression for the daily average liquid surface temperature, T_{LA} .

 $T_{LA} = 0.437T_{AA} + 0.563T_B + 0.00789aH_H$

(F-33)

F6.0 CONCLUSION

Copyright American Petroleum Institute Provided by IHS under license with API

reproduction or networking permitted

without license from IHS

The equations that are required to calculate T_{LA} , T_{LX} and T_{LN} are summarized below. These equations are presented in the order that is required for calculation.

1. Determine TR TB = value from tank operating data or (F-34) $T_B = T_{AA} + 6\alpha - 1$ 2. Determine TLA (F-35) $T_{LA} = 0.437T_{AA} + 0.563T_B + 0.00789\alpha H_H$ 3. Determine <u>ATv</u> (F-36) $\Delta T_V = 0.723 \Delta T_A + 0.0279 \alpha H_H$ 4. Determine ΔT_1 (F-37) $\Delta T_1 = 0.500 \Delta T_y$ 5. Determine TIX (F-38) $T_{IX} = T_{LA} + 0.500 \Delta T_{L}$ 6. Determine TIN (F-39) $T_{1N} = T_{LA} - 0.500\Delta T_{L}$

It is possible to combine some of the above equations to reduce the number of equations, but they are listed separately here for clarity.

Test No.	TBA	TLA	T _{GA}	(TLA-TBA)	(T _{GA} -T _{BA})	$\left(\frac{T_{LA}-T_{BA}}{T_{GA}-T_{BA}}\right)$
	(°F)	(°F)	(°F)	(°F)	(°F)	(dimensionless)
API-1	52.8	58.2	65.3	5.4	12.5	0.432
API-2	52.7	60.0	67.3	7.3	14.6	0.500
API-3	53.2	61.0	70.5	7.8	17.3	0.451
API-4	53.9	61.8	70.2	7.9	16.3	0.485
API-5	53.7	60.5	67.3	6.8	13.6	0.500
API-6	53.8	56.5	60.0	2.7	6.2	0.435
Average						0.467

Table F1 - Temperature Difference Ratio (TLA - TBA)/(TGA - TBA) Calculated From the API Test Data [33,38]

Note: (1) The mean values T_{BA} , T_{LA} , T_{VA} listed in this table were calculated from the maximum and minimum values measured in the API tests [33,38].

Solar Absorptance, a (dimensionless)

F13

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

Range for API Computer Data Base Cases 401 Through 560

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

Figure F5 - Schematic of Energy Flows and Temperatures Near the Liquid Surface

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION G

SENSITIVITY ANALYSIS OF STANDING STORAGE LOSS EQUATION

•

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS Gl

PAGE

API PUBLICATION 2518 DOCUMENTATION FILE SECTION G

CONTENTS

DESCRIPTION

	NOMENCLATURE G3
G1.0	INTRODUCTION G5
G2.0	VARIABLES USED IN THE SENSITIVITY ANALYSIS G5
G3.0	SAMPLE CALCULATIONS FOR THE BASE CASE G5
G3.1 G3.2	Base Case Conditions G6 Calculated Results G6
G4.0	SENSITIVITY ANALYSIS RESULTS GII
G4.1 G4.2	Breather Vent Setting Sensitivity
4.3	API Publication 2518 GII
G5.0	CONCLUSION

TABLES

G1	Range of Values and Base Case Value Used in Sensitivity	G13
G2	Input and Output Variables for the Sensitivity Analysis Effect of Reid Vapor Pressure on Emissions Calculated	G14
40	From Both the First and Second Edition of API Publication 2518	G16

FIGURES

Effect of Tank Diameter, D, on Emissions	G17
Effect of Vapor Space Outage, Hvo, on Emissions	G18
Effect of Daily Total Solar Insolation on a Horizontal	
Surface, I, on Emissions	G19
Effect of Tank Paint Solar Absorptance, α , on Emissions	G20
Effect of Stock Vapor Molecular Weight, My, on Emissions.	G21
Effect of Daily Average Ambient Temperature, TAA,	
on Emissions	G22
Effect of Daily Ambient Temperature Range, ΔT_A ,	
on Emissions	G23
Effect of Breather Vent Pressure and Vacuum Settings,	
Pro and Prv. on Emissions	G24
Effect of Stock Reid Vapor Pressure, RVP, on Emissions	G25
Effect of Stock Vapor Pressure, PvA, on Emissions	G26
	Effect of Tank Diameter, D, on Emissions Effect of Vapor Space Outage, Hyo, on Emissions Effect of Daily Total Solar Insolation on a Horizontal Surface, I, on Emissions Effect of Tank Paint Solar Absorptance, α , on Emissions Effect of Stock Vapor Molecular Weight, My, on Emissions. Effect of Daily Average Ambient Temperature, T _{AA} , on Emissions Effect of Breather Vent Pressure and Vacuum Settings, Pgp and Pgy, on Emissions Effect of Stock Reid Vapor Pressure, RVP, on Emissions Effect of Stock Vapor Pressure, PyA, on Emissions

SECTION

.

API PUBLICATION 2518 DOCUMENTATION FILE SECTION G

NOMENCLATURE

SYMBOL

DESCRIPTION

UNITS

. A	Constant in the vapor pressure equation	dimensionless
В	Constant in the vapor pressure equation	or
D	Tank diameter	ft
E1	Daily standing storage loss calculated from API Publication 2518, First Edition [A6]	1b/day
E2	Daily standing storage loss calculated from API Publication 2518, Second Edition [A7]	lb/day
Hyo	Vapor space outage	ft
Ι	Daily total solar insolation on a horizontal surface	Btu/ft ² day
κ _E	Vapor space volume expansion factor	dimensionless
Ks	Vented vapor saturation factor	dimensionless
Ls	Daily standing storage loss	1b/day
My	Stock vapor molecular weight	lb/lbmole
PA	Atmospheric pressure	psia
PBP	Breather vent pressure setting (always a positive value)	psig
PBV	Breather vent vacuum setting (always a negative value)	psig
PVA	Stock vapor pressure at the daily average liquid surface temperature	psia
PVN	Stock vapor pressure at the daily minimum liquid surface temperature	psia
Ργχ	Stock vapor pressure at the daily maximum liquid surface temperature	psia
ΔΡγ	Stock daily vapor pressure range	psi
ΔΡΒ	Breather vent pressure setting range	psi
RVP	Reid vapor pressure	psi
TAA	Daily average ambient temperature	^o R or ^o F
Тв	Liquid bulk temperature	^o R or ^o F
TLA	Daily average liquid surface temperature	^o R or ^o F
ΔΤΑ	Daily ambient temperature range	^o R or ^o F
TIN	Daily minimum liquid surface temperature	^o R or ^o F

G3

API PUBLICATION 2518 DOCUMENTATION FILE SECTION G

NOMENCLATURE (Continued)

DESCRIPTION

UNITS

Tix	Daily maximum liquid surface temperature	^o R or ^o F
ATV	Daily vapor temperature range	or or of
- V Vv	Tank vapor space volume	ft ³
Wy	Stock vapor density	lb/ft ³
a	Tank paint solar absorptance	dimensionless

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

SYMBOL

GI.O INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition $[A7]^*$ contains a sensitivity analysis of the standing storage loss equation. The objective of this analysis is to determine the affect of the variables in the standing storage loss equation on the calculated loss over a range of conditions for each variable.

Section 62 summarizes the variables used in the sensitivity analysis.

Section 63 presents sample calculations for the Base Case conditons.

Section G4 presents the results of the sensitivity analysis.

Section G5 presents conclusions from the sensitivity analysis.

62.0 VARIABLES USED IN THE SENSITIVITY ANALYSIS

Table G1 lists the input variables that were studied as part of the sensitivity analysis. For each input variable, a "Base Case" value and a range were selected.

In performing the sensitivity analysis, each of the input variables was kept at the Base Case value while the value of the input variable being studied was varied over the desired range. In this way, the sensitivity of the API standing storage loss model was evaluated around the Base Case conditions.

G3.0 SAMPLE CALCULATIONS FOR THE BASE CASE

This section summarizes sample calculations of the standing storage loss for the Base Case conditions.

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IH

Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

G3.1 Base Case Conditions

63.1.1 Tank Conditions

D = 100 ft H_{VO} = 30 ft α = 0.50 P_{BP} = 0.03 psig P_{BV} = -0.03 psig

63.1.2 Meteorological Conditions

 $T_{AA} = 519.69^{\circ}R (60.00^{\circ}F)$ $\Delta T_A = 20.00^{\circ}R (20.00^{\circ}F)$ I = 1500 Btu/ft² day P_A = 14.696 psia

G3.1.3 Stock Conditions

Type = Crude Oil RVP = 2.0 psi My = 80 lb/lbmole

63.2 Calculated Results

63.2.1 Determine TB

 $T_B = T_{AA} + 6\alpha - 1$ $T_B = (519.69) + (6)(0.50) - (1)$ $T_B = 521.69^{\circ}R (62.00^{\circ}F)$ (G-1)

t

G6

G3.2.2 Determine TLA $T_{LA} = 0.44T_{AA} + 0.56T_B + 0.0079\alpha I$ (G-2) $T_{IA} = (0.44)(519.69) + (0.56)(521.69) + (0.0079)(0.50)(1500)$ $T_{IA} = 526.74^{\circ}R (67.05^{\circ}F)$ 63.2.3 Determine ∆Ty (G-3) $\Delta T_V = 0.72 \Delta T_A + 0.028 \alpha I$ $\Delta T_{V} = (0.72)(20.00) + (0.028)(0.50)(1500)$ $\Delta T_V = 35.40^{\circ}R (35.40^{\circ}F)$ G3.2.4 Determine TLX (G-4) $T_{LX} = T_{LA} + 0.25 \Delta T_{V}$ $T_{1X} = (526.74) + (0.25)(35.40)$ $T_{IX} = 535.59^{\circ}R (75.90^{\circ}F)$ G3.2.5 Determine TLN (G-5) $T_{IN} = T_{IA} - 0.25\Delta T_V$ $T_{LN} = (526.74) - (0.25)(35.40)$ $T_{IN} = 517.89^{\circ}R (58.20^{\circ}F)$ G3.2.6 Determine A (G-6) $A = 12.82 - 0.9672 \ln (RVP)$ $A = (12.82) - (0.9672) \ln(2.0)$ A = 12.15

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS G7

G3.2.7 Determine B

B = 7261 - 1216 ln(RVP) B = (7261) - (1216) ln(2.0) B = 6418^oR

63.2.8 Determine Pyx

 $P_{VX} = \exp \left[A - \frac{B}{T_{LX}} \right]$ (G-8) $P_{VX} = \exp \left[(12.15) - \frac{(6418)}{(535.59)} \right]$

63.2.9 Determine PVA

$$P_{VA} = \exp\left[A - \frac{B}{T_{LA}}\right]$$

$$P_{VA} = \exp\left[(12.15) - \frac{(6418)}{(526.74)}\right]$$
= 0.9662 psia

(G-7)

G3.2.10 Determine PyN

$$P_{VN} = \exp\left[A - \frac{B}{T_{LN}}\right]$$
(6-9)
$$P_{VN} = \exp\left[(12.15) - \frac{(6418)}{(517.89)}\right]$$
= 0.7846 psia

G3.2.11 Determine ΔP_V

$$\Delta P_V = P_{VX} - P_{VN} \qquad (6-11)$$

$$\Delta P_V = (1.1817) - (0.7846)$$

$$\Delta P_V = 0.3971 \text{ psi}$$

G3.2.12 Determine ΔP_B

$$\Delta P_B = P_{BP} - P_{BV} \qquad (6-12)$$

$$\Delta P_B = (0.03) - (-0.03)$$

$$\Delta P_B = 0.06 \text{ psi}$$

G3.2.13 Determine V_V

$$V_V = \frac{\pi}{4} p^2 H_{VO} \qquad (6-13)$$

$$V_V = \frac{(3.1416)(100)^2(30)}{(4)}$$

 $V_{y} = 235,620 \text{ ft}^{3}$

(4)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

G9

\$

G3.2.14 Determine Wy

$$W_{V} = \frac{M_{V} P_{VA}}{R T_{LA}}$$
(G-14)
$$W_{V} = \frac{(80.00)(0.9662)}{(10.731)(526.74)}$$
$$W_{V} = 0.01367 \ 1b/ft^{3}$$

G3.2.15 Determine KE

$$K_{E} = \frac{\Delta T_{V}}{T_{LA}} + \frac{\Delta P_{V} - \Delta P_{B}}{P_{A} - P_{VA}}$$
(G-15)

$$K_{E} = \frac{(35.40)}{(526.74)} + \frac{(0.3971) - (0.0600)}{(14.696) - (0.9662)}$$

$$K_{E} = 0.09176$$

G3.2.16 Determine Ks

$$K_{S} = \frac{1}{1 + 0.053 P_{VA} H_{VO}}$$

$$K_{S} = \frac{1}{1 + (0.053)(0.9662)(30)}$$

$$K_{S} = 0.3943$$
(G-16)

G3.2.17 Determine Ls

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS
64.0 SENSITIVITY ANALYSIS RESULTS

Table G2 lists the input and output variables from the API standing storage loss equation for each of the 57 cases which were studied as part of the sensitivity analysis.

Figures G1 through G10 illustrate the effect of the input variables on the emissions calculated by the API standing storage loss equation. The Base Case condition is also indicated on each figure.

64.1 Breather Vent Setting Sensitivity

Figure G8 indicates that the breather vent pressure and vacuum settings (up to ± 0.05 psig) have little effect on the standing storage loss.

64.2 Vapor Pressure Sensitivity

The sensitivity analysis also include an evaluation of the effect of vapor pressure on emissions. Vapor pressure is affected by stock type, Reid Vapor Pressure and temperature. Table G2 and Figures G9 and G10 show the effect of Reid Vapor Pressure and resulting true vapor pressure, respectively, on emissions for crude oil.

Even though the RVP was kept constant in most of the sensitivity analysis, the TVP varied from 0.3547 psia in Case No. 29 to 2.2815 psia in Case No. 33. This variation in TVP occurred implicitly as the calculated liquid surface temperature vaired due to varying the ambient temperature.

Currently, stocks with a TVP greater than 1.5 psia are not commonly stored in fixed-roof tanks.

G4.3 Comparison Between the First and Second Editions of API Publication 2518

A comparison was made between standing storage loss calculated from the First Edition [A6] and the Second Edition [A7] of API Publication 2518. The RVP

was varied from 0.001 psi to 12.0 psi, while the other variables were kept at the Base Case conditions.

Table G3 summarizes the calculated results. The last column indicates the ratio of the standing storage loss calculated from the First Edition to that calculated from the Second Edition. It should be noted that the ratio equals about 1.0 when the RVP equals about 12 psi or the TVP equals about 10 psia.

Figures G9 and G10 graphically illustrate the effect of RVP and TVP on standing storage loss. It should be noted that the emissions predicted by the Second Edition are close to the emissions predicted by the First Edition when the vapor pressure is over about 2 psia. For low vapor pressures, the emissions calculated from the Second Edition are significantly less than those calculated from the First Edition, indicating that the First Edition overpredicts emissions for low vapor pressure stocks (less than 2.0 psia).

65.0 CONCLUSIONS

The sensitivity analysis showed that the standing storage loss equation exhibits the same trends that were shown by a similar sensitivity analysis performed on the API Computer Model [39]. This similarly in sensitivity helps validate the standing storage loss equation.

The sensitivity analysis showed that the breather vent pressure and vacuum settings had little affect on the calculated loss.

The sensitivity analysis showed that for high vapor pressure stocks (greater than 2.0 psia) the evaporation losses calculated from the Second Edition are close to those calculated from the First Edition, and that for low vapor pressure stocks (less than 2.0 psia) the First Edition overpredictes the evaporation loss.

RANGE OF VALUES	25, 50, 75, 100, 150, 200, 250, 300	10, 20, 30, 40, 50	· 500, 1000, 1500, 2000, 2500	0.1, 0.3, 0.5, 0.7, 0.9	40, 60, 80, 100, 120	20, 40, 60, 80, 100	10, 15, 20, 25, 30	0, ±0.1, ±0.2, ±0.3, ±0.4,±0.5	0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 2, 3, 5, 8, 10, 12
BASE CASE VALUE	100,	30	1500	0.5	80	60	50	±0.03	~
UNITS	ft	ft	Btu/ft ² day	dimensionless	lb/lbmole	oF	OF	±ps1g	psi
DESCRIPTION	Tank Diameter	Vapor Space Outage	Daily Total Solar Insolation on a Horizontal Surface	Tank Paint Solar Absorptance	Stock Vapor Molecular Weight	Daily Average Ambient Temperature	Daily Ambient Temperature Range	Breather Vent Pressure and Vacuum Settings	Stock Reid Vapor Pressure
SYMBOL	0	HVO	F	8	M	TAA	ΔTA	PBP, PBV	RVP

Table G1 - Range of Values and Base Case Value Used in Sensitivity Analysis

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS G13

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

API MPMS*19.1) 93 🖿 0732290 0511583 935 🖿

<u></u>
2
Ë
×.
2
Ŧ
>
-
±.
15
Ë
ē
S
ž
-
-
<u> </u>
2
-
5
e
-
Ś.
>
مد
5
ā
÷
2
0
15
Ž
-
Ξ.
a
Ē
N
ى
-
e
Ā
—

†s

.

								_					_										_			_			
LS	(lb/day)	7.282	29.13	65.53	116.5	262.1	466.0	728.2	1048.6	65.13	97.31	116.5	129.3	138.3	54 1R	84.24	116.5	151.1	188.1	64. <u>8</u> 8	60.06	116.5	144.2	173.1	58.25	87.38	116.5	145.6	174.8
RVP	(psi)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0 0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
P _B v	(psig)	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
PBP	(ps1g)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
ATA	(9F)	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	50	20	20	20	50	20	20	20	20	20	20	20
TA	(J0)	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Λ	(lb/lbmole)	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	8	80	80	80	80	40	. 09	80	100	120
8	(-)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.3	0.5	0.7	6.0	0.5	0.5	0.5	0.5	0.5
I	(Btu/ft ² day)	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	500	1000	1500	2000	2500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
Hvo	(ft)	30	8	30	30	30	30	30	30	10	20	30	\$	50	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
٥	(ft)	25	20	75	001	150	200	250	300	100	100	100	10	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
CASE		1	2	m	4	S	9	~	8	6	2	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

API MPMS*19.10 93 🖿 0732290 0511584 871 📟

G14

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

LS (1b/day)	65.86 89.61 116.5 148.0 187.7 91.64	104.1 116.5 129.0 141.4 122.1 120.2	118.4 116.5 114.7 112.8	0.00759 0.03312 0.1664 0.7249 3.599 14.89 59.67 116.5 116.5 168.9 282.1 534.5 846.4 1529.
RVP (psi)	2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0	0.001 0.003 0.03 0.1 0.1 0.3 0.3 0.3 0.3 1.0 5.0 8.0 10.0
P _{BV} (psig)	-0.03 -0.03 -0.03 -0.03 -0.03	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	-0.02 -0.03 -0.04 -0.05	
PBP (psig)	0.03 0.03 0.03 0.03	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02 0.03 0.05	000000000000000000000000000000000000000
ΔTA (°F)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 30 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	2222	\$\$\$\$\$\$\$\$\$\$\$ \$ \$\$\$\$
TAA (°F)	60 10 10 10 10 10 10 10 10 10 10 10 10 10	8888 888 8888	00000	88888888888888888888888888888888888888
MV (1b/1bmole)	හි සි	<u>මිළීමී</u> මීමී	S S S S	$\overset{\circ}{\sim}\overset{\circ}{\circ}{\sim}\overset{\circ}$
a (-)	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5	00000000000000 00000000000000000000000
I (Btu/ft ² day)	1500 1500 1500 1500 1500	1500 1500 1500 1500	1500 1500 1500	1500 1500 1500 1500 1500 1500 1500 1500
Hvo (ft)	888888 8	8888 88 88	8888 8	
D (ft)	888888	00000	00000	888888888888888888888888888888888888888
CASE NO.	34 33333 333333 34	35 36 33 38 38 38 36 39 38 36 39 38 36 30 36 36 37 36 36 37 36 36 37 36 36 37 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 36 37 36 37 36 36 37 36 36 37 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	41 43 44	55555555555555555555555555555555555555

Table G2 - Input and Output Variables for the Sensitivity Analysis (Continued)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

G15

RVP	A	B	PB	PVA	E1	E2	$\left({}^{E_1} \right)$
	(1)	(2)	(3)	(4)	(5)	(6)	$\left(\frac{1}{E_2}\right)$
(psi)	(-)	(°R)	(psia)	(psia)	(1b/day)	(1b/day)	(-)
0.001	19.50	15,660	0.00002705	0.00003607	0.1217	0.00759	16.03
0.003	18.44	14,320	0.0001223	0.0001591	0.3396	0.03312	10.25
0.01	17.27	12,860	0.0006232	0.0007893	1.0277	0.1664	6.176
0.03	16.21	11,520	0.002817	0.003481	2.867	0.7249	3.955
0.1	15.05	10,060	0.01450	0.01745	8.740	3.599	2.428
0.3	13.98	8,725	0.06428	0.07546	24.12	14.89	1.620
1.0	12.82	7,261	0.3335	0.3811	74.82	59.67	1.254
2.0	12.15	6,418	0.8587	0.9662	146.0	116.5	1.253
3.0	11.76	5,925	1.496	1.668	219.9	168.9	1.302
5.0	11.26	5,304	2.983	3.289	381.3	282.1	1.352
8.0	10.81	4,732	5.694	6.212	707.9	534.5	1.324
10.0	10.59	4,461	7.682	8.339	1028.	846.4	1.215
12.0	10.42	4;239	9.919	10.723	1589.	1529.	1.039

Table G3 - Effect of Reid Vapor Pressure on Emissions Calculated From From Both the First and Second Edition of API Publication 2518

(1) Calculated from: $A = 12.82 - 0.9672 \ln (RVP)$. (2) Calculated from: $B = 7261 - 1216 \ln (RVP)$. Notes:

- (2) Calculated from: $P_B = exp [A (B/T_B), where T_B = 521.69^{\circ}R (62.00^{\circ}F).$ (4) Calculated from: $P_{VA} = exp [A (B/T_{LA})], where T_{LA} = 526.74 (67.05^{\circ}F).$ (5) Calculated from API Publication 2518, First Edition [A6] for the Base Case Conditions listed in Table G1 and for the RVP listed in this table.
- Calculated from API Publication 2518, Second Edition [A7] for the (6) Base Case Conditions listed in Table G1 and for the RVP listed in this table.

(vsb/df) , snoissim3

617

Figure G1 - Effect of Tank Diameter, J, on Emissions

Tank Diameter, D (ft)

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Figure G2 - Effect of Vapor Space Outage, H_{VO}, on Emissions

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

G19

Figure G4 - Effect of Tank Paint Solar Absorptance, $\boldsymbol{\alpha},$ on Emissions

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

G20

• --`.....`.....

Figure G5 - Effect of Stock Vapor Molecular Weight, M_V , on Emissions

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

G21

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

API MPMS*19.1) 93 🗰 0732290 0511592 948 🗰

G23

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST G24

Figure G8 - Effect of Breather Vent Pressure and Vacuum Settings, PBp and PBV, on Emissions

Figure G9 - Effect of Stock Reid Vapor Pressure, RVP, on Emissions

Figure G10 - Effect of Stock Vapor Pressure, PyA, on Emissions

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

API MPM2*19.10 C732290 C711597 42T

API PUBLICATION 2518 DOCUMENTATION FILE

SECTION H

COMPARISON OF STANDING STORAGE LOSS EQUATION WITH TEST DATA

.

NOTE: This document is part of the API standards development process and is intended for use by API committees <u>ONLY</u>. It shall not be reproduced or circulated or quoted, in whole or in part, outside of the cognizant API committee(s) except with the written approval of API. This draft API standard will be formatted and edited prior to API publication. Copyright (2)1990.

.

H1

API PUBLICATION 2518 DOCUMENTATION FILE SECTION H

CONTENTS

SECTION	DESCRIPTION	PAGE
	NOMENCLATURE	НЗ
H1.0	INTRODUCTION	H4
H2.0	COMPARISON WITH THE API TEST DATA [38]	H4
H3.0	COMPARISON WITH THE EPA TEST DATA [20]	H5
H4.0	COMPARISON WITH THE WOGA TEST DATA [17].	H5
H5.0	CONCLUSION	Нб

TABLES

H1	Summary of Calculated and Measured Variables for the API Tests [38]	H7
H2	Summary of Calculated and Measured Variables for the	ЦО
НЗ	Summary of Calculated and Measured Variables for the WOGA Tests [17].	H9

FIGURES

H1	Calculated Versus Measured Vapor Space Temperature Range
	ΔTy, for the API Tests [38] H10
H2	Calculated Versus Measured Vented Gas Volume Outflow, Q,
	for the API Tests [38] H11
H3	Calculated Versus Measured Daily Standing Storage Loss,
	Ls, for the API Tests [38] H12
H4	Calculated Versus Measured Vapor Space Temperature Range,
	ΔTy, for the EPA Tests [20]
H5	Calculated Versus Measured Vented Gas Volume Outflow, Q,
	for the EPA Tests [20]
H6	Calculated Versus Measured Daily Standing Storage Loss,
	Ls, for the EPA Tests [20]
H7	Calculated Versus Measured Vented Gas Volume Outflow, Q,
	for the WOGA Tests [17]
H8	Calculated Versus Measured Daily Standing Storage Loss,
	Ls, for the WOGA Tests [17]

H2

API PUBLICATION 2518 DOCUMENTATION FILE SECTION H

NOMENCLATURE

SYMBOL	DESCRIPTION	UNITS
A	Constant in the vapor pressure equation	dimensionless
В	Constant in the vapor pressure equation	oR
D	Tank diameter	ft
HVO	Vapor space outage	ft
Ι	Daily total solar insolation on a horizontal surface .	Btu/ft ² day
ΚĘ	Vapor space expansion factor	dimensionless
Ls	Daily standing storage loss	lb/day
My	Stock vapor molecular weight	lb/lbmole
PA	Atmospheric pressure	psia
PBP	Breather vent pressure setting (always a positive value)	psig
PBV	Breather vent vacuum setting (always a negative value)	psig
Q	Vented gas volume outflow	ft ³ /day
ΤΑΧ	Daily maximum ambient temperature	٥R
TAN	Daily minimum ambient temperature	٥R
т _в	Stock liquid bulk temperature	٥R
ΔΤγ	Daily vapor temperature range	oR
٧٧	Tank vapor space volume	ft ³
a	Tank point solar absorptance	dimensionless

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

.

H3

H1.0 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition $[A7]^*$ contains a comparison of the standing storage loss equation with the API test data [38], EPA test data [20] and WOGA test data [17].

H2.0 COMPARISON WITH THE API TEST DATA [38]

Table H1 summarizes the input information from Tests API-1 through API-10 which was used to calculate the standing storage loss. This table also compares the measured and calculated results.

All of the 10 API tests [38] continued sufficient information to make a comparison between the measured and calculated results for ΔTy , Q and Ls.

Table H1 summarizes a comparison between the measured and calculated vapor space temperature range, ΔTy . The average difference is -17.5%. Figure H1 illustrates this comparison graphically.

Table H1 summarizes a comparison between the measured and calculated vented gas volume outlfow, Q, which was calculated from Q = Vy KE. The average difference is -11.3%. Figure H2 illustrates this comparison graphically.

Table H1 summarizes a comparison between the measured and calculated daily standing storage loss, L_S . The average difference is -14.3%. Figure H3 illustrates this comparison graphically.

In general, the comparison between the API test data and the predictions made by the standing storage loss equation are excellent.

^{*} Numbers in brackets refer to the numbered references listed at the end of this Documentation File.

H3.0 COMPARISON WITH THE EPA TEST DATA [20]

Table H2 summarizes the input information from the EPA tests which was used to calculate the standing storage loss. This table also compares the measured and calculated results.

Only 12 of the 15 EPA tests [20] were suitable for making a comparison between the measured and calculated results for ΔTy , Q and Ls.

Table H1 summarizes a comparison between the measured and calculated vapor space temperature range, $\Delta T \gamma$. The average difference is 10.7%. Figure H4 illustrates this comparison graphically.

Table H1 summarizes a comparison between the measured and calculated vented gas volume outflow, Q. The average difference is 77.3%. Figure H5 illustrates this comparison graphically.

Table H1 summarizes a comparison between the measured and calculated daily standing storage loss, L_S. The average difference is 111.3%. Figure H6 illustrates this comparison graphically.

In general, the thermal response of the tank vapor space is predicted quite well, thus indicating that the heat transfer aspects of the standing storage loss model compare well with actual measurements.

H4.0 COMPARISON WITH THE WOGA TEST DATA [17]

Table H3 summarizes the input information from the WOGA tests which was used to calculate the standing storage loss. This table also compares the measured and calculated results.

During the WOGA tests, measurements were not made of the vapor space temperature, T_V . Thus, it is not possible to compare the predicted values with the measured values for this variable.

Only 8 of the 44 WOGA tests [17] were suitable for making a comparison between the measured and calculated results for Q and Ls.

Table H3 summarizes a comparison between the measured and calculated vented gas volume outflow, Q. The average difference is 79.3%. Figure H7 illustrates this comparison graphically.

Table H3 summarizes a comparison between the measured and calculated daily standing storage loss, LS. The average difference is 28.1%. Figure H8 illustrates this comparison graphically.

In general, the comparison between the measured and calculated vented gas volume outflow, Q, for the WOGA tests is about as good as that for the EPA tests. Again, this illustrates that the standing-storage loss model incorporates a good charaterization of the tank vapor space thermal response.

H5.0 CONCLUSIONS

The comparison with the API test data [38], EPA test data [20] and WOGA test data [17] validated the suitability of the standing storage loss equation.

The API tests provided a more accurate and extensive set of test data for comparison with the API standing storage loss equation. The average difference between the calculated and measured standing storage loss is 14.3%.

The EPA and WOGA test data, although of lesser suitability for an accurate validation, also confirmed the suitability of the standing storage loss equation. The average difference between the calculated and measured standing storage loss is 111.3% for the EPA tests and 28.1 for the WOGA tests.

Table H1 - Summary of Calculated and Measured Variables for the API Tests [38]

VAD1481 F	UNITS	1-14V	AP1-2	6-14V	4-14V	2-19A	API-6	AP1-7	8-14V	AP1-9	AP1-10	AVERAGE
Reference: Test Date Product Type	: :	11-25-84 Fuel Oll No. 2	11-29-84 Fuel Oil No. 2	11-30-84 Fuel 011 No. 2	12-01-84 Fuel 011, No. 2	12-02-84 Fuel 011 Mo. 2	12-03-84 Fuel 011 No. 2	03-30-85 Fuel Q1 No. 2	04-03-85 Fuel 011 No. 2	04-04-85 Fuel 011 No. 2	04-25-85 Fuel 011 No. 2	
Calculation input: NO NO RV A M M M M M M M M M M M M M	ft. ft. in. H ₂ 0 in. H ₂ 0 oF oF oR oR psia	20.0 8.65 0.42 0.50 -0.50 53.0 53.0 39.8 1.028 14.348 14.348 14.348 14.696 14.696	20.0 8.85 0.42 0.50 62.0 46.0 1.142 14.348 10.082 52.7 11.696 14.696	20.0 8.85 0.42 0.50 0.50 64.4 40.3 1.072 110 14.348 10,082 53.2 11.082 53.2	20.0 6.85 0.42 0.50 -0.50 64.1 1,095 1,095 14.348 10,082 53.8 10,082 53.8	20.0 8.85 0.42 0.50 -0.50 62.0 39.5 39.5 39.5 110 110 110 110 53.8 53.8	20.0 8.85 0.42 0.50 0.50 -0.50 52.7 44.4 448 110 110 110,082 53.7 14.696	20.0 8.85 0.42 0.50 0.50 67.0 46.3 2.136 110 9.260 7,267.2 55.0	20.0 8.85 0.42 0.50 -0.50 80.3 49.7 2.021 110 9.260 7,287.2 66.1 14.696	20.0 8.85 0.42 0.50 0.50 69.2 1,818 1,818 1,818 1,818 1,818 1,818 1,818 1,818 1,818 1,818 1,696	20.0 8.85 0.42 0.50 -0.50 69.1 54.5 2,047 110 9.260 7,287.2 65.5 14.696	
Calculation Autout: Ary o Ls	af ft ³ /day 1b/day	21.59 110.6 0.0110	24.95 127.9 0.0145	29.96 155.2 0.0172	29.37 151.8 0.0171	27.74 143.3 0.0155	11.24 54.35 0.00531	40.02 207.1 0.0374	45.80 233.8 0.0530	37.58 192.0 0.0397	34.58 175.4 0.0382	
Beasured: br c ls	of ft ³ /day 1b/day	29.1 139 0.0152	32.8 157 0.0170	39.4 188 0.0216	38.7 185 0.0219	33.0 159 0.0179	17.3 78 0.0079	42.1 202 0.0334	44.0 210 0.0502	43.5 207 0.0478	39. 1 185 0. 0441	
Difference: (l) Åry ls	36 36 36	-25.8 -20.4 -27.6	-23.9 -18.5 -14.7	-24.0 -17.4 -20.4	-24.1 -17.9 -21.9	-15.9 - 9.9 -13.4	-35.0 -30.3 -32.8	- 4.9 2.5 12.0	4.1 11.3 5.6	-13.6 - 7.2 -16.9	-11.6 - 5.2 -13.2	-17.5 -11.3 -14.3

Notes: (1) Difference = [(Calculated - Measured) × 100]/Measured. (X)

Table H2 - Summary of Calculated and Measured Variables for the EPA Tests [20]

VARÍABLE	UNITS	EPA-1A	EPA-18	EPA-2A	EPA-2B	EPA-2C	EPA-3A	EPA-38	EPA-SA	EPA-5B	EPA-GA	EPA-68	EPA-6C	AVERAGE
Reference: Test Date Product Type	::	04-13-78 1so- propanol	04-14-78 1sa- propenol	04-18-78 Ethanol	04-19-78 Ethanol	04-20-78 Ethenol	04-20-78 Glacial Acetic Acid	04-21-78 Glacial Acetic Acid	05-09-78 Ethyl Benzene	05-10-78 Ethyl Benzene	05-16-78 Cyclo- hexane	05-17-78 Cyclo- hexane	05-18-78 Cyclo- hexane	
Calculation Input: 0 Myo 0 PBP PBV	ft. 11. H20 11. H20	54.0 27.1 0.17 0.00	54.0 27.1 0.17 0.00 -0.00	70.0 11.4 0.17 0.00 -0.00	70.0 11.4 0.17 0.00	70.0 11.4 0.17 0.00 -0.00	120.0 26.7 0.54 0.00 -0.00	120.0 26.7 0.54 0.00	95.0 11.9 0.17 0.50 -0.50	95.0 11.9 0.17 0.50 -0.50	73.0 17.8 0.17 0.25 -0.25	73.0 17.8 0.17 0.25 -0.25	73.0 17.8 0.17 0.25 -0.25	
╳┋╴⋧<╓╓╴╴	9 Btu/ft ² day 1b/1bmole of of psia	72.0 57.0 2.470 60.10 16.7687 9113.6 70.0 14.696	/3.0 60.0 60.10 16.7687 9113.6 70.0 14.696	65.0 69.0 1,700 46.02 16.3801 16.3801 14.696 14.696	83.0 63.0 2,320 46.02 16.3801 16.3801 14.696 14.696	71.0 57.0 1,730 46.02 16.3801 16.3801 16.3801 16.696 14.696	67.0 56.0 1,730 60.05 14.8028 8591.1 69.9 14.696	71.0 53.0 2,400 60.05 14.8028 14.8028 8591.1 69.8 14.696	88.0 71.0 2.140 106.11 14.0362 8423.3 81.7 14.696	83.0 61.0 2,540 106.11 14.0362 8423.3 80.0 14.696	69.0 74.0 1,730 64.16 13.6969 7091.7 79.0 14.696	84.0 74.0 2.510 84.16 13.6969 7091.7 78.7 14.696	87.0 75.0 2,160(1) 84.16 13.6969 7091.7 78.7 14.696	
Calculation Dutput: Ary Ls	of ft ³ /day lb/day	22.56 3,717 13.35	20.26 3,354 12.15	19.61 2,583 12.99	25.44 3,343 16.73	18.31 2,290 10.42	34.08 22,230 45.64	49.25 32,370 70.50	22.43 3.702 13.56	27.93 4,645 15.59	19.03 4,979 48.64	19.15 4,997 48.64	18.92 4,949 48.41	
Heasured: My C	oF Å 1b/day	NA 3.824 15.0	NA 4.248 17.2	35.0 1,313 5.91	31.0 790 3.41	28.0 1,435 5.15	30.0 9.508 21.2	39.0 18,934 45.3	17.0 2,526 11.4	24.0 3,740 14.4	NA 2,965 20.0	13.0 3.094 17.0	12.0 2,980 14.4	
Difference: (2) Ary Q Ls	***	 -2.8 -11.0	 -21.0 -29.4	-44.0 96.7 119.8	-17.9 323.2 390.6	-34.6 59.6 102.3	13.6 133.8 115.3	26.3 71.0 55.6	31.9 46.6 18.9	16.4 24.2 8.3	 67.9 142.7	47.3 61.5 186.1	57.7 66.4 236.2	10.7 77.3 111.3

Notes: (1) Assumed value. Based on the average of the I values for the other EPA tests.

(2) Difference = [(Calculated - Measured) x 100]/Calculated, (X).

MPMS*19.1) 93 🗰 0732290 0511604 497 📟 **APT**

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

H8

141	3	
	(100)/Measured.	
	- Heasured)	
	[(Calculated	
	•	
	01 fference	
	Ξ	
	Notes :	

VAD LARL E	UNITS	W0GA-78	NOGA-BA	NDGA-13A	W06A-13B	W0GA-16A	W06A-16B	WOGA-17A	W06A-178	AVERAGE
Reference: Test Date Product Type		02-19-77 Crude	05-13-77 Crude	05-10-77 Crude	05-11-77 Crude	02-11-77 Crude	02-12-77 Crude	05-18-77 Crude	05-19-77 Crude	
Calculation Input: PBP PBP PBP PBP PBP PBP PBP PBP PBP PB	ft. ft. in. H20 in. H20 oF lu.ft ² day Btu/ft ² day oF oR oR oR	120.0 39.6 0.66 0.66 0.66 53 53 53 11.64 11.64 11.64 5773 5573	120.0 37.3 0.68 0.86 -0.86 -0.86 1,780 66.7 12.64 1,780 66.7 12.64 12.64 12.64 12.64 12.64 14.696	120.0 35.8 0.17 0.86 -0.86 69 63.9 13.49 8104 92 8104 92	120.0 35.8 35.8 0.17 0.86 54 54 1.610 64.4 13.49 813 83 83	175.8 2.3 2.3 0.86 -0.86 90 1,020 63.9 11.23 55 55 56 14.696	175.8 2.3 2.3 0.86 -0.86 91 49 63.9 11.23 55 56 56 56 11.23	175.8 6.9 0.36 0.86 -0.86 75 56 5189 65 65 14.696	175.8 6.9 0.36 0.86 -0.86 79 58 1,850 1,850 58 5189 65 65 65	
Calculation Durput: Ary C	oF ft ³ /day 1b/day	36.48 54,540 254.6	48.29 46,580 145.2	17.46 12.850 22.0	17.02 12.430 19.5	41.24 10.530 282.7	40.16 10.320 278.7	34.34 29.900 448.0	33.77 29,680 446.6	
Measured: Ary C	o _F ft ³ /day 1b/day	NA 29,200 148	NA 14,930 80.3	NA 16,300 129	NA 16,320 143	NA 4,029 98.7	NA 5,857 143	NA 17,058 578	NA 16.059 544	
Difference: (1 Åry Q	***	86.8 72.0	212.0 212.0 80.8	 -29.8 -82.9	 -32.2 -86.4	161.4		75.3	84.8 -17.9	 79. 28.

API MPMS*19.10 99 🛲 0792290 0511605 326 📟

Table H3 - Summary of Calculated and Measured Input Variables for the WOGA Tests [17]

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS

H9

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

Figure H2 - Calculated Versus Measured Vented Gas Volume Outflow, Q,
for the API Tests [38]

H12

Figure H4 - Calculated Versus Measured Vapor Space Temperature Range, ^{ΔT}γ, for the EPA Tests [20]

Copyright American Petroleum Institute Provided by IHS under license with API No reproduction or networking permitted without license from IHS H13

H14

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

((vsb\²f) 0 .wolftu0 smulov ssb bstnsv bstelusis)

Figure H5 - Calculated Versus Measured Vented Gas Volume Outflow, Q. for the EPA Tests [20]

H17

API MPMS*19.10 93 🖿 0732290 0511614 339 🖿

API PUBLICATION 2518 DOCUMENTATION FILE

REFERENCES

R1

.

API PUBLICATION 2518 DOCUMENTATION FILE REFERENCES

.

CONTENTS

SECTION	DESCRIPTION	PAGE
R1	Introduction	R3
R2	American Petroleum Institute Publications	R3
R3	Literature References	R4

R2

R1 INTRODUCTION

This section of the Documentation File to API Publication 2518, Second Edition, contains a list of the references that are cited in this Documentation File. In addition to those that are cited, the list also contains references that were reviewed as part of preparing the Second Edition to API Publication 2518.

<u>Section R2</u> contains a list of API publications that relate to atmospheric storage tanks. These are arranged in numerical order according to their API publication number.

<u>Section R3</u> contains a list of literature references. These are arranged in chronological order according to their publication date.

R2 AMERICAN PETROLEUM INSTITUTE PUBLICATIONS

- Al. American Petroleum Institute, "<u>Inspection of Atmospheric and Low-Pressure</u> <u>Storage Tanks</u>", Recommended Practice RP-575, First Edition, Washington, D.C., 1990.
- A2. American Petroleum Institute, "<u>Welded Steel Tanks for Oil Storage</u>", Standard 650, Seventh Edition, Washington, D.C., November 1980.
- A3. American Petroleum Institute, "Venting Atmospheric and Low-Pressure Storage <u>Tanks (Non refrigerated and Refrigerated)</u>", Standard 2000, Third Edition, Washington, D.C., January 1982, Reaffirmed December 1987.
- A4. American Petroleum Institute, "<u>Evaporation Loss in the Petroleum Industry-</u> <u>Causes and Control</u>", Bulletin 2513, First Edition, Washington, D.C., February 1959.
- A5. American Petroleum Institute, "<u>Evaporative Loss from External Floating-Roof</u> <u>Tanks</u>", Publication 2517, Third Edition, Washington, D.C., February 1989.
- A6. American Petroleum Institute, "<u>Evaporation Loss from Fixed-Roof Tanks</u>", Bulletin 2518, First Edition, Washington, D.C., June 1962, Reaffirmed August 1987.
- A7. American Petroleum Institute, "Evaporative Loss from Fixed-Roof Tanks", Publication 2518, Second Edition, Washington, D.C., December 1990.
- A8. American Petroleum Institute, "Evaporation Loss from Internal Floating-Roof Tanks", Publication 2519, Third Edition, Washington, D.C., June 1983.
- A9. American Petroleum Institute, "<u>Use of Pressure-Vacuum Vent Valves for</u> <u>Atmospheric Pressure Tanks to Reduce Evaporation Loss</u>", Bulletin 2521, First Edition, Washington, D.C., September 1966.
- AlO. American Petroleum Institute, "Petrochemical Evaporation Loss from Storage Tanks", Bulletin 2523, First Edition, Washington, D.C., November 1969.
- All. American Petroleum Institute, "<u>Guide for Inspection of Refinery Equipment</u>", Chapter XIII, Atmospheric and Low-Pressure Storage Tanks, Fourth Edition, Washington, D.C., April 1981.
- **R3** LITERATURE REFERENCES
- 1. Boardman, H.C., "<u>Storage of Volatile Petroleum Products</u>", Petroleum Refiner, Vol. 25, No. 4, April 1946, pp. 109-116.
- American Petroleum Institute, <u>Symposium on Evaporation Loss of Petroleum</u> <u>from Storage Tanks</u>, Papers Presented During the 32nd Annual Meeting of the American Petroleum Institute, Held in Chicago, IL, November 10, 1952, (Also Published in API Proceedings, Vol. 32, Part I, 1952, pp. 212-281).
- 3. Nelson, W.L., "<u>How Painting Affects Storage Tank Losses</u>", The Oil and Gas Journal, Vol. 52, November 2, 1953, pg. 130.
- 4. Prater, N.H., "<u>How to Calculate Vapor Losses</u>", Petroleum Processing, April 1954, pp. 537-540.
- 5. Walker, E.H., R.M. Eltringham, and A. Puttick, "<u>Evaporation Loss From Petrol</u> <u>Storage Tanks in the United Kingdom - A Practical Survey</u>", Paper Presented at a Meeting of The Institute of Petroleum at 26 Portland Place, London, U.K., May 11, 1955.
- 6. Hoffman, E.L., "<u>The Effect of Paint Colors in Reducing Storage Tank Losses</u>", Paper Presented at the 35th Annual Meeting of the American Petroleum Institute, Marketing Division, Operations and Engineering Committee, San Francisco, California, November 14, 1955.
- 7. Snyder, A.D., "<u>Theoretical Analysis of Breathing Volatile Liquid Vapor</u> <u>Losses from Fixed-Roof Storage Tanks</u>", Report, Prepared by Olin Mathison Chemicals Co. for the American Petroleum Institute, Committee on Evaporation Loss, July 7, 1965.
- 8. Cinnamon, S.J., "<u>Investigation of a Method for Reducing Vapor Losses in</u> <u>Storage of Volatile Liquids</u>", M.S. Thesis, Submitted to Purdue University, Department of Chemical Engineering, August 1965.
- 9. Cinnamon, S.J. and J.E. Myers, "<u>Reducing Liquid Storage Losses</u>", Chemical Engineering Progress, Vol. 61, No. 12, December 1965, pp. 69-74.
- Air Pollution Control Association, "<u>Control of Atmospheric Emissions from</u> <u>Petroleum Storage Tanks</u>", Informative Report No. 2, Prepared by the TI-3 Petroleum Committee, Presented in the Journal of the Air Pollution Control Association, Vol. 21, No. 5, May 1971, pp. 260-268.
- 11. NUKEM GmbH, "Development of a Method for the Recognition of Environmental Damage Using the Example of Emissions Due to Transfer of Fuels and Breathing of Tank Installations", Prepared for the Ministry of the Interior, Federal Republic of Germany, 1972.

- Matsumura, I., "<u>Evaporation Loss of Hydrocarbons in Handling Petroleum</u>", Bulletin of the Japan Petroleum Institute, Vol. 16, No. 2, November 1974, pp. 132-139.
- 13. BMI-DGMK, "<u>Measurement and Determination of Hydrocarbon Emissions in the Course of Storage and Transfer in Above-Ground Fixed Cover Tanks With and Without Floating Covers, Project 4590-11: Fixed Cover Tank Without Floating Cover", jointly funded by BMI (Ministry of the Interior, Federal Republic of Germany) and DGMK (German Society for Petroleum Technology and Coal Chemistry), 1976.</u>
- 14. Ball, D.A., A.A. Putman and R.G. Luce, "<u>Evaluation of Methods for Measuring</u> and <u>Controlling Hydrocarbon Emissions from Petroleum Storage Tanks</u>", Battelle Columbus Laboratories, Prepared for the U.S. Environmental Protection Agency, EPA Report No. 450/3-76-036, November 1976.
- 15. Zanker, A., "<u>Estimate Tank Breathing Loss</u>", Hydrocarbon Processing, January 1977, pp. 117-120, (Errata contained in Hydrocarbon Processing, July 1977, pp. 82-83).
- 16. Schwanecke, R., "<u>Evaporation Losses from Liquid Tanks</u>", Wasser, Luft and Betrieb, Vol. 15, No. 7, July 1977, pp. 254-258.
- 17. Engineering-Science, Inc., "Hydrocarbon Emissions From Fixed-Roof Petroleum Tanks", Prepared for the Western Oil and Gas Association, July 1977.
- 18. Harrer, R.D., "Field Data Developed for Fixed-Roof Tank Emissions", The Oil and Gas Journal, January 2, 1978, pp. 90-97.
- 19. Wilson, A.L., "<u>Suggested Emission Factors for Fixed-Roof Storage Tanks</u>", Paper Presented at the Meeting of the Air Pollution Control Association, Anaheim, California, November 13, 1978.
- 20. Engineering-Science, Inc., "Synthetic Organic Chemical Manufacturing Industry, Emission Test Report, Breathing Loss Emissions from Fixed-Roof Petrochemical Storage Tanks", Prepared for the U.S. Environmental Protection Agency, EPA Report No. EMB-78-0CM-5, February 1979.
- 21. Moryzkov, V.S., L.L. Tatarnikov, E.Y. Kardash and A.S. Yarmukhametov, <u>"Losses of Crude Oil and Products in Operation of Refinery Storage Tanks</u>", Khimiya i Tekhnologiya Topliv i Masel, No. 4, April 1979, pp. 8-10.
- 22. Cinquemani, V., J.R. Owenby, Jr., and R.G. Baldwin, "<u>Input for Solar Systems</u>", Prepared by the U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental and Information Service, National Climatic Center, Asheville, North Carolina, Prepared for the U.S. Dept. of Energy, Div. of Solar Technology, under Interagency Agreement No. E (49-26)-1041, November 1978 (Revised August 1979).
- 23. Erbar, J.H., "<u>Predicting Hydrocarbon Emissions from Fixed Roof Field Storage</u> <u>Tanks</u>", Prepared for the American Petroleum Institute, Environmental Affairs Department, Task Force on Hydrocarbon Emissions from Production Operations, 1980.

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST

- 24. Duffie, J.A. and W.A. Beckman, "<u>Solar Engineering of Thermal Processes</u>", John Wiley and Sons, 1980.
- 25. Laverman, R.J., "<u>Evaluation of the Temperature Factor for Thermal Breathing</u> Loss Estimation from Fixed Roof Tanks", Chicago Bridge & Iron Co., CBI Research Report No. RC-3000-2, March 11, 1981.
- 26. Laverman, R.J., "<u>Thermal Breathing Loss Analysis for a Roof Vent Area</u> <u>Diffusion Rate Controlled Model</u>", Chicago Bridge & Iron Co., CBI Research Report No. RC3000-1, March 11, 1981.
- Beckman, J.R. and J.R. Gilmer, "<u>Model for Predicting Emissions From Fixed-Roof Storage Tanks</u>", Industrial & Engineering Chemistry, Process Design & Development, Vol. 20, No. 4, April 1981, pp. 646-651.
- 28. U.S. Environmental Protection Agency, "<u>Compilation of Air Pollutant Emission</u> <u>Factors, Section 4.3, Storage of Organic Liquids</u>", Supplement No. 12 to EPA Report AP-42, April 1981.
- 29. TRW Environmental, Inc., "<u>Background Documentation for Storage of Organic</u> <u>Liquids</u>", Prepared for the U.S. Environmental Protection Agency, EPA Contract No. 68-02-3174, May 1981.
- 30. Beckman, Duffie and Associates, "<u>Evaporation Loss of Petroleum from Storage</u> <u>Tanks</u>", Final Report, Prepared for the American Petroleum Institute, Committee on Evaporation Loss Measurement, August 1, 1982.
- 31. Verein Deutscher Ingenieure, "Emission Control: Refineries", VDI 2440, June 1983.
- 32. Beckman, J.R., "Breathing Losses from Fixed-Roof Tanks by Heat and Mass <u>Transfer Diffusion</u>", Industrial & Engineering Chemistry, Process Design & Development, Vol. 23, No. 3, 1984, pp. 472-479.
- 33. Environmental Monitoring & Services, Inc. (subsidiary of Combustion Engineering Co.), "<u>Breathing Loss Emissions from Fixed Roof Tanks</u>", Final Report, Prepared for the American Petroleum Institute, Committee on Evaporation Loss Measurement, June 1985.
- 34. U.S. Environmental Protection Agency, "<u>Compilation of Air Pollutant Emission</u> <u>Factors, Section 4.3, Storage of Organic Liquids</u>", USEPA Report No. AP-42, Third Edition, September 1985.
- 35. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, <u>"Comparative Climatic Data Through 1984</u>", National Climatic Data Center, Asheville, North Carolina, 1986.
- 36. Beckman, J.R. and J.A. Holcomb, "<u>Experimental and Theoretical Investigation</u> of Working Emissions from Fixed-Roof Tanks", Industrial and Engineering Chemistry, Process Design & Development, Vol. 25, No. 1, 1986, pp. 293-298.

- Beckman, J.R., "<u>Model Development to Predict Hydrocarbon Emissions from</u> <u>Crude Oil Storage and Treatment Tanks</u>", Final Report, Prepared for the California Air Resources Board, CARB Agreement No. A4-045-32, July 20, 1986.
- 38. Knodel, B.D. and R.J. Laverman, "Data Base Generation, Analysis and Revision of API Publication 2518, Task 1: Validate Computer Model", Final Report for Task 1, Prepared by CBI Industries, Inc., Prepared for the American Petroleum Institute, Committee on Evaporation Loss Measurement, Task Group 2518, September 11, 1986.
- 39. Rinehart, J.K. and R.J. Laverman, "<u>Data Base Generation, Analysis and Revision of API Publication 2518, Task 2: Generate Computer Data Base</u>", Final Report for Task 2, Prepared by CBI Industries, Inc., Prepared for the American Petroleum Institute, Committee on Evaporation Loss Measurement, Task Group 2518, February 16, 1987.
- 40. Rinehart, J.K. and R.J. Laverman, "Data Base Generation, Analysis and <u>Revision of API Publication 2518, Task 3: Correlate Data Base</u>", Final Report for Task 3, Prepared by CBI Industries, Inc., Prepared for the American Petroleum Institute, Committee on Evaporation Loss Measurement, Task Group 2518, August 26, 1988.

R7

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST API MPMS*19.10 93 🖿 0732290 0511621 579 📰

ļ

Order No. 852-30553

1-01102-4/93-1C (4E)

American Petroleum Institute 1220 L. Street, Northwest Washington, D.C. 20005

Licensee=Technip Abu Dabhi/5931917101 Not for Resale, 02/22/2006 01:18:31 MST