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Introduction: 1997 Special Issue
Neural Networks for Consciousness

Consciousness research is now coming to the
forefront in cognitive neuroscience. The instruments
of non-invasive imaging—PET, fMRI, EG and MEG
are now being deployed to attempt to tease out how,
when and where consciousness emerges in the brain
and how it is then used to provide the efficiency of
processing able to achieve acts of great creativity and
reasoning. Yet, the wealth of data pouring in will not
be able to be correlated together and used to build a
clear picture of how the brain works, and in particular
how consciousness itself is supported, without there
being a corresponding underpinning at a theoretical
level. This must be ultimately at the level of neural
networks. That is why it is our pleasure to welcome
you to this special issue on “Neural Networks for
Consciousness”. The issue contains contributions
from across the range of workers in the field—from
experimental neuroscientists to cognitive scientists to
engineers to mathematicians. This breadth alone
shows the vitality of the field and the great interest

1173

in it from across these disciplines. It also shows the
strength future research can draw on since all of these
disciplines can, in principle, contribute to solving the
problems that consciousness raises. The problems
themselves are very deep indeed, and we do not claim
that we have assembled the last word on the subject.
However, the acumen and experience in thinking
about consciousness that the contributors undoubt-
edly possess will make this issue of both general
interest and also of relevance to those concerned
either in their own thinking processes or creating
machines which can emulate them. We wish you
enjoyment in reading the contributions.

John G. Taylor
London

Walter Freeman
Berkeley, CA
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Abstract—A program is outlined which indicates in what manner awareness may be probed by the recently developed
non-invasive instruments (PET, fMRI, MEG and EEG). The nature of the neural systems needed for the creation of
awareness is reviewed, leading to a set of characteristics required for the crucial experiments able to uncover the
processes involved. The assessment of experiments possible to probe the emergence of perception is then surveyed in
terms of these criteria, and those which appear to be most effective are delineated. Brief conclusions are then drawn as to

the viability of the program®© 1997 Elsevier Science Ltd.

1. INTRODUCTION

There is considerable interest in the use of non-invasive
instruments to detect the emergence of phenomenal

awareness, say of a percept. The new machines give

hope of being able to localise, both spatially and tempo-
rally, the neural processes which underpin such an event.
However, there are numerous questions which must be
answered before the search can be made well-enoug
defined to design paradigm experiments which can be
expected to be of high import in this task. It is the pur-

pose of this paper to explore these questions and come to

conclusions as to the viability of this program.
Amongst these questions are:

(a) what is the nature of phenomenal awareness itself?
(b) how can the “explanatory gap” (which separates
the internal experience from the external neural
patterns of the behavioural response) be bridged?

(c) what is the expected spatial localisation of the
process?

h

recognised that awareness involves use of previously
encoded material to give content and meaning to new
inputs (Baars, 1988; Baddeley, 1993; Edelman, 1989;
Taylor, 1973, 1991). Initial processing before the aware-
ness of percepts occurs is at the lowest level of coding,
that of feature encoding and filtering in the early and
associative cortices. At the next stage, higher level
object representations are expected to be activated
which begin to “fill out” and bind together the lower
level activations into meaningful percepts. At various
stages there would also be feedback helping to guide
activation of the best representation able to fit the total
input (Bullier, 1995). Awareness of a percept, say of a
geometrical shape, of a colour or a moving region, will
be expected to occur after the lowest level of coding has
been achieved, so at the object (or equivalent) level,
although exactly where that occurs is difficult to pin
down, and is the object of the experimental program
being discussed here. However, persistence of suitable
encoded activity is expected to be essential. The contin-

(d) what are the expected dynamical neural processesued activity arises in modules with the special property of

Some of these questions are very difficult, especially
(a) and (b), but without at least a preliminary attempt to
answer them it may be difficult to answer questions (c)
and (d), and so give guidance to the proposed experi-
mental program.

There is a considerable lack of agreement as to the
answers to (a) and (b). However, it is becoming

Acknowledgements: J. G. Taylor would like to thank his co-author
(H.-W. Mueller-Gaertner) for the excellent support given him whilst
he was a guest scientist at the Institute of Medicine, Research
Centre-Juelich where this work was performed.
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being able to hold activity for a suitably long temporal
duration. Such modules are different from those used in
the first (non-conscious) stage of the processing.

This leads to a working definition of awareness at the
lowest level as some form of encoded input which is
available, over a suitably extended period of time, for
further processing, and in particular for “filling out”,
by using closely related stored representations of
experiences from the past, so as to be useable at higher
levels (for action responses, reasoning, planning, for
example; Taylor, 1998). This definition needs to be
developed more fully in terms of detailed results from
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NON A’ ‘A of the visual input” (Weiskrantz et al., 1995). These
quotations, especially the last two, indicate that there
IN ouT . .
— — are cortical modules needed for the production of aware-
ness beyond those involved in low-level processing.
The answer to (b) above, as to the bridging of the
ouT

explanatory gap, is already indicated by the above
answer to (a). It will be in terms of the manner in
which the preprocessed neural activity representing an
input is able to be made available for further transforma-
tions which lead to a higher cognitive level. Such avail-
ability will require suitable temporal duration of the
the experimental program, but should help in initially representations so that they can be involved in activities
clarifying what is to be looked for. in regions crucially concerned with such higher level
What results from the above brief sketch of the nature processes, such as the frontal lobes.

of awareness is a two-stage model for consciousness with It is natural to consider possible “buffer” posterior
a simplified flow chart as in Figure 1. In the figure, the memory sites, holding activity encoded at object level,
“Non A” module performs the low-level coding of as the first candidates for sites of this availability. These
which a person is unaware. The output from this module sites sustain temporally extended activity, as is known
is then passed on to the awareness module “A” or can from psychological tests of short-term memory function-
bypass it so as to go directly to the motor response ing in the presence of distractors to prevent long-term
system. This two-stage model is to be distinguished memories from forming (Baddeley, 1986). Such short-
from the continuous or one-stage model, in which con- term memory buffers have been observed directly by
sciousness arises in the same modules as were used in theon-invasive techniques by a number of groups (Paulesu
non-conscious processing. The reason for such extraet al., 1993; Salmon et al., 1996; Smith and Jonides,
awareness of the activity would, for some reason or 1995) after the initial proposal for their existence based
other in this one-stage model, be due to increased activity on psychological data; the present evidence is sum-

FIGURE 1. The hierarchical two-stage model of consciousness in
which the early processing by the “Non A” modules is only at
preconscious level whilst that by the “A” modules supports the
emergence of consciousness.

in the relevant modules.
There is much support for the two-stage model. Thus
William James (1950) wrote “the distribution of con-

sciousness shows it to be exactly such as we might

expect in an orgaraddedfor the sake of steering a

marised in Table 1. These sites give a tentative first
answer to question (c). They also allow the model of
Figure 1 to be extended to that of Figure 2.

In Figure 2, the highest level of coding at a non-aware
level is denoted SM (for semantic memory in word

nervous system grown too complex to regulate itself”. processing) which feeds automatically to the working
Also, from evidence associated with certain forms of memory WM. It is in the latter that awareness arises,
prosopagnosia, Young (1994) wrote “activation must through lateral inhibitory and excitatory connections on
cross some form of threshold before it can result in the WM module. In Figure 3 are shown two of the
awareness”. Further evidence from neglect led Bisiach coupled SM/WM pairs for different codes (denoted A
and Berti (1995) to note “patients may be apparently and B). The manner in which awareness arises from
unaware of what lies on the side opposite to the brain joint activity of these two sets of modules has been pro-
lesion despite its having been processed up to a highposed to involve a more global control system involving
level, perhaps, at which meaning is captured”. Finally, the thalamus and the nucleus reticularis thalami (a sheet
there is evidence from study of the blindsighted of inhibitory neurons with good lateral connections;
subject GY that “the visual input can reach V5 without Taylor, 1992). It is through this sheet that a competition
passing first through V1 and that such input is suffi- can be run between the two (or more) coupled SM/WM
cient for both discrimination and conscious awareness systems shown in Figure 2.

TABLE 1
PET results on posterior sites of working memory
Task Brain area Task/Code
Spatial discrimination Left 40 (posterior parietal)® Object shape

Right 40/19 (occipito/parietal)®
Right 19 (occipital)® Orientation discrimination
Left 40 (posterior parietal)® Object

Left 37 (inferotemporal)®

Object discrimination

Phonemes/Words Left 40 (posterior parietal)® Word disambiguation
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out It is unclear at this stage exactly how to extend this
model to other modalities, especially to vision, where
i numerous separate codes exist and the problem of the
i combination of the resulting activity may be most
= — extreme. It is the purpose of the following discussion
3 ) { Inhibition to consider several possibilities of doing that which
Excitation will delineate features needing to be probed by suggested
experiments, and hence give valuable criteria to apply
WM to their choice.

2. NEURAL SUPPORTS AND CRITERIA

Excitation There appear to be two extremes of neural support which
may be suggested as being at the basis of the emergence
of perception:

1. inasingle module (as suggested by the model of word
perception in Taylor, 1996b)

2. as a distributed activity over a set of coupled modu-
les.The second model is more likely to be valid in
vision, given the number of codes (colour, motion,
Excitation shape, texture, stereoscopy) and the level of intercon-

nection between the various visual areas (Felleman
| and Van Essen, 1991). However, it is still to be
expected that there will be certain of these visual
areas which are playing a more decisive part in the
emergence of a visual percept in some particular code,

FIGURE 2. Competition for emergence into consciousness in the with characteristics as indicated at the end of the pre-
two-stage model where there is lateral inhibition on the second vious section

“A” or working memory (WM) stage modules producing con-
sciousness from the earlier preprocessing on the “Non A" or Whilst the questions (C) and (d) above about the spatial
semantic (SM) modules. L .. K
and temporal characteristics of neural activity crucially
involved in perception were posed separately, it is clear
that the answers to them must be combined in some
In a similar manner, the coupled SM/WM module manner. This is achieved on positing (Taylor, 1996b)
pairs of Figure 2 provide a first guess at the temporal that the “buffering” memory sites be regarded as candi-
dynamics of the initial stages of awareness, question dates for emergence of percepts in that particular code.
(d), as has been recently discussed by Taylor (1996b). Thus we are lead to the first criterion:
This gave an analysis, for a lexical decision task (Marcel,
1980), of the manner in which subliminally processed 1. To search for those posterior cortical sites which are
data can retard or speed up processing of later data. Itmost effective in temporally sustaining activity as a
posited that the initial emergence of awareness of words percept becomes experienced.
arises from their persistence on the phonological store in
Brodmann’s area 40 (Paulesu et al., 1993), where they There may well arise a set of sites satisfying the above
decay away over a fixed time of several seconds. criterion, in which there may be a spread of temporal
In this model, the initially unperceived neural activity duration over the various modules, but they all must
at the highest level of preprocessing (in the lexical case have several seconds of duration for neural activity.
up to the level of the semantic coding in Wernicke’'s How do we regard the emergence of the percept: from
area) has numerous representations active, correspondall of the modules conjointly or only, say, from that
ing to possibly contradictory interpretations. It is only module which holds activity for the longest time? This
at the next level up, that of the phonological store, is partly an experimental question, but there is great
that a competition is run between these various possi- relevance to perform the related psychophysical experi-
bilities, and one is singled out by the use of previous ments to ascertain the time of first experience by the
activities there which had earlier reached awareness orsubject of the percept.
had buffered subliminal activity. Thus, perception is  An example of such a combination of psychophysical
regarded as the filter to achieve disambiguation betweenand non-invasive instrument experiments is that of the
alternative interpretations based on earlier decision motion after-effect (Tootall et al., 1995), in which
made there. the experiential decay of adaptation was found to

SM

IN
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match that of blood flow activation as observed by fMRI beyond the level of non-conscious processing already
in suitable visual cortical regions. However, it is neces- known to occur, say at the retina or at the level of the
sary to note if there are any regions in which activity LGN? More specifically do the areas satisfy the above
persists even longer than that of the subjective experi- three criteria?

ence. The model of lexical decision of (Taylor, 1996b)  The non-conscious processing areas have therefore to
would indicate that activity on the phonological store be delineated and separated from those involved in the
persists longer than the subjective experience itself. emergence of a percept. That an experiment cannot do
This arose, according to the model, when the neural this will be taken as indication it will not be a crucial one
activity in the buffer site became stronger than some for the program. However, the results could still be of
criterial value. The activity then decays away over a great importance in determining the details of prepro-
few seconds, and so should leave a signal of its activation cessing necessary to build a more complete picture,
trace lasting longer than the subjective experience. Thusboth experimental and model-based, which can be used
we are led to the second criterion: to probe the emergence of a percept in more detail.

2. Attempt to order the modules observed to have
extended temporal activity according to the duration of
the observed activity (beyond that experienced by the 3.1.1. Motion After-Effect (MAE).This paradigm uses
subject); the best candidate for the emergence of the relation between the perceptual and blood flow time
perception will be that module with the longest temporal courses of the decay of the adaptation to continuous
duration. motion, as in the case of looking at a waterfall for 30
seconds and then viewing the adjacent stationary rock
It is still not clear that the module holding neural face; the latter appears to move upwards. We have con-
activity for the longest time during the development of jectured in the previous section that the MAE percept
a percept will be the only one involved in the emergence arises in that particular region which has the slowest
of that percept in the subject’'s experience. There may such decay. It may be that further regions, with blood
indeed be others which hold activity for a very similar, flow activity decaying as slow as or slower than the
but slightly shorter, duration. In that case it would be perceptual one, are crucially involved in percept forma-
necessary to measure the manner in which there is ation; it is the observation of these further regions that
causal flow of activity between the modules to determine must be done in more detail. That may also be observed
if one is dominating the others. Thus we must impose the by MEG analysis of the faster processing between the
third criterion: regions and the more detailed nature of that interaction.
In any case the experimental paradigm is satisfactory,
3. The most suitable candidate(s) will be those modules as far as criteria 1 to 3 above are concerned (and has
which are causally the dominant one(s) in the temporal already been used to good effect in Tootall et al.,
dynamics causing the emergence of the percept 1995). It involves direct comparative analysis of timing
effects across different areas.

3.1. Visual Modality Experiments

To apply this criterion, it will be necessary to measure
accurately both the temporal dynamics of the neural 3.1.2.Orientation-Specific AdaptatioilContinued view-
activity as well as that of the subjective experience. ing of oriented stripes (for over 5 or so seconds) brings
This criterion puts a requirement on the appropriate about adaptation to them, as observed by an increase of
machines to use as those with fast temporal sensitivity, the contrast threshold for detection of stripes oriented in
i.e. EEG and MEG. It may also be possible to use suitable that direction as compared with those in a perpendicular
sequencing of the slicing in echo-planar imaging in fMRI direction (He et al., 1996). This effect has been shown,
to follow the dynamics of activity through the brain by means of “crowding”—the input of further sets of
(Shah, 1997). oriented stripes in adjacent regions of visual space so as
to cause a loss of awareness of the direction of orienta-
tion but not loss of non-conscious knowledge of that
orientation—to be present in spite of the loss of the
The purpose of this section is to consider how effective conscious experience by human observers of the particu-
various experiments will be in achieving the aim to cap- lar orientation to which adaptation had occurred. The
ture the cortical sites of the emergence of perception preservation of orientation adaptation knowledge, in
under various visual (and other modality) stimulation spite of the loss of awareness due to crowding, indicates
conditions. The basic question that has to be addressedhat “visual awareness, and the crowding that blocks it,
in this assessment is: occur after orientation analysis in the visual information
processing stream” (He et al., 1996). Moreover, the
Does the experiment under consideration reveal areas asymmetry of crowding (being stronger in the upper
which give "added value” to cortical processing half visual field) can only arise from areas after V1

3. SURVEY OF RELEVANT EXPERIMENTS
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(and even V2) since these areas are both symmetrical In conclusion, the AM paradigm is only satisfactory
between the upper and lower half fields. if its temporal dynamics is also probed with suitable
These effects—the differential placement of orienta- precision.
tion adaptation (in V1 and V2) and crowding in the visual
processing stream—Ilead to search for the placement3.1.4.Blindsight. The case of GY (or similar subjects),
of the computation of crowding itself. Let us suppose for whom there is a separation of “contentless aware-
that it can be determined to be in a particular visual ness” as compared with knowledge without awareness,
area, \h say. Does that imply that consciousness of as stimulus speeds are altered (Weiskrantz et al., 1995),
crowding must also occur in AW? It is possible that is an excellent one to observe possible regions which are
the crowding effect is itself computed in an earlier activated by one paradigm compared with the other.
module than would correspond to the working memory This corresponds precisely to the case of subliminal
site of consciousness of the two-stage model of Figure 1. versus conscious perception considered below. There
In other words, consciousness could arise at a lateris, however, the concern that there may be a considerable
stage than the initial computation of the crowding effect, difference in the modules involved in such subjects as
so that the first module performing the computation of compared with those in the emergence of perception in
the effect is not a “tag” for the emergence of awareness. normal humans. A blindsighted person may well have
It would be necessary to determine the time course of developed new connections and usage of modules that
activity in order to pin down which module (or modules) are different than those used in normally sighted people
were more precisely involved in the emergence of aware- in the creation of awareness.
ness of AM, following the criteria set out in Section 2. In conclusion, the paradigm is satisfactory (modulo
In conclusion, the adaptation paradigm itself is not the problem raised above).
satisfactory to obtain the source of awareness. The
crowding effect, probed as to its temporal course across 3.1.5.Normal BlindsightThe phenomenon of blindsight,
various modules involved in its computation, does seem in which there is knowledge without awareness, is one
to be so. In that form it comes under subliminal pro- which has been activated in normal subjects by means of
cessing, and as such will be considered in more detail the experimental paradigm of Kolb and Braun (1995). In
in Section 3.3. this paradigm, a field of short oriented bars (or oppositely
moving dots), all with the same orientation (or direction
3.1.3. Apparent Motion (AM).This is a well-known of motion), is embedded in a set of similar but oppositely
paradigm in which a spot of light, say being shone at a oriented (or moving) objects. There is knowledge of
particular position on a screen, is deleted and almost the position of the small embedded subset of stimulus
immediately (within about 300 msec) shone at a patterns, but no awareness occurs. It would be possible
nearby point. This produces in the subject the experi- to modify the stimulus parameters, by increasing the
ence of motion of the spot from the first to the second size of the region of the embedded stimuli, so as to
position. cause the emergence of perceptual experience in a con-
The difficulty with the experiment as one for detecting trolled manner.
the emergence of the awareness of motion is that it uses This experimental paradigm is seen to suffer from the
the motion pathway all the way up from V1 (and below, difficulty that there is already considerable activation
in LGN) due to the rapid onset and offset of the two along the whole of the dorsal pathway caused by the
stimuli, so that even when the experience of motion surrounding pattern, of which the subject is clearly
arises in the subject (when the spots have been movedaware. The modification of this activity when there is
close enough together for the motion percept to occur) “normal blindsight”, as compared with when there
there may be use of areas already activated by the sudderis not, will therefore be submerged in a large level of
onset and offset which are involved in both non-con- activity involved with normal perception.
scious and conscious processing. The times of onset In conclusion, the paradigm is not satisfactory (due to
and offset might be used to separate out the motion the low signal for the signature of the emergence of
effects they cause from the activation due to the further awareness). It is also relevant to note that the paradigm
motion experience. However, this may need high spatial is part of that of subliminal processing, so will be con-
resolution. sidered in more detail in Section 3.3.
There is also the difficulty that the initial lowest
level computation of the track of motion may be 3.1.6. Rivalry/Binocular Rivalry.Rivalry of concepts,
achieved at a lower level than the computation of aware- such as arises in the Necker cube, has a long history of
ness; this is the same problem as that met above inpsychological investigation. The case of binocular riv-
orientation adaptation. It would be necessary to use thealry has also been used in humans (Kolb and Braun,
further criterion of temporal dynamics to ascertain the 1995) and in monkeys (Logothetis and Schall, 1989;
modules turned on by the AM signal which also held it see also Sheinberg and Logothetis, 1997) to attempt to
for a suitably long temporal duration. ascertain where the computation occurs in cortex for the
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production of the rivalrous percepts as they alternate. Inconclusion, it can only be said, for the above reason,
This has not yet proved possible. Yet there is a similar that the paradigm is not satisfactory.

problem to that raised above for orientation adaptation
and AM: it is necessary to probe the temporal dynamics
on the modules involved very carefully.

In the case of switching between the two images in the 3.2.1. The Double Click Experimenfhe double click
Necker cube, the computation could occur at a level experiment involves a subject attempting to detect
below that of awareness. Thus if the mechanism were those double clicks (with interstimulus delivery times
of simple adaptation of one percept to give way to the of 0, 6, 12, 18 and 24 msec) presented to the ears
other, for example through some form of competitive which are detectable as double clicks and not single
process, such adaptation may take place on a module abnes. At an interstimulus interval larger than about
the NonAware level of Figure 1, with output being used 12 msec there appears to be both double click detection
to feed onto the further Awareness module A in that and a phase shift in the observed 40 Hz signal observed
figure. This would not correspond precisely to the elabo- by MEG (Joliot et al., 1994). Let us suppose it to be
rated two-stage model of Figure 2, where disambigua- possible to detect the region involved in the computation
tion takes place only at the same level as awareness orof the double click interstimulus interval to produce such
the working memory site WM in that figure. However, a phase shift. Is that necessarily the region where aware-
it may be that there is some decoupling between ness of the double click arises?
disambiguation and temporal duration in the visual = The answer is no, since it is possible to consider that
modality, especially due to the large number of codes the computation of the interstimulus intervals was per-
involved as compared with the auditory one. The crucial formed at a lower non-aware level and sent on to the
tag of consciousness was claimed in Section 2 to be thatAwareness module of Figure 2. Such a possibility
of the extended temporality of neural activity; the dis- could be guarded against if there was a control experi-
ambiguation process is not necessarily associated withment performed which required the subject to be dis-
the onset of awareness (nor will it be so easy to identify). tracted by a different stimulus load (say by counting

In conclusion, it would be necessary to determine down by threes from one hundred). The resulting activity
detailed temporal characteristics of neural activity during would show whether or not the activity was still the same
rivalrous phenomena; those modules in which there is (the phase shift still having occurred at about 12 msec
temporal duration highly correlated with the oscillation interstimulus interval). If the activity were still in the
between the concepts (but having the highest such dura-same cortical area then the computation of the ISI
tion, even extending beyond the switch-over times) would clearly have been at a non-aware level. But if
would be the best candidates for the site of awareness.there were a difference in the sites of activity between
The observation of such sites may be difficult, however, the attended and distracted conditions it would still
due to highly similar coding which may occur for the not be the case that the residual activity, after subtracting
rivalrous concepts. Thus, the experimental probing of the aware from the distracted condition, would leave
such phenomena is of great interest but not at the top modules activated solely at an aware level. The distrac-
of the list of crucial experiments to probe awareness. tion could have prevented processing in some parts of
the non-aware circuitry but not throughout it all; the rest
could still be producing the stimulus timing signal to

3.2. Auditory Modality

3.1.7. Stabilised ImagesWhen images are stabilised
on the retina they are know to fade (Pritchard, 1963). send up to the awareness level.

The manner in which they do so has very interesting  In conclusion, again temporal duration must be used
characteristics, such as would seem to imply that both as a critical tag to separate non-aware from aware
Gestalt and Hebbian ensemble actions are at work. Thisprocessing.

has been explained by Taylor (1996a) in terms of

separate loss of activation of the “what” and “where”  3.2.2.Binaural Fusion.This phenomenon involves the
pathways. It would be possible to attempt to determine observation and comparison by means of MEG of those
which regions lose activation as the percept fades from regions activated either by a tone or by a set of harmonics
awareness. of the tone which lead to the same percept of the sound

It is unclear, when a stabilised image drops out of
perception, that it does so only to the next lower level
of non-conscious activation. It may be that there is no
activity even from LGN, or from any other low-level
module, where the most crucial levels of adaptation
may occur. The discovery of the set of modifications
(which area is on, which off, when the stabilised image
blinks off) is of great interest, but not able to provide the
desired answer.

in a subject (Pantev et al., 1989). This experimental
paradigm has only been performed under attentive pro-
cessing conditions, so it is unclear that the crucial regions
were at an aware level. If the experiment were also to be
performed, as in the double click experiment, under a
distracting load then one would still have the difficulty

raised in the previous paradigm, that the computation,
after subtracting the activity that was occurring under
the distracting load, would not necessarily be at the
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level of the awareness circuitry of Figure 1, but could parts of a module (as in the “filling in” phenomenon
still be down in the non-aware modules. in audition).

In both of these paradigms it would be necessary to  The first of these paradigms will be termed “fully
determine timing effects with care. Thus in conclusion, subliminal” experience, the second “partly subliminal”
the paradigm is interesting but does not single them experience. These lead clearly to different experimental
out as leading automatically to the non-aware/aware paradigms and to different criteria on the stimulus
boundary. delivery systems. That will be explored below. The

partly-subliminal is a paradigm which will be discussed

- . further in Section 3.3.3 after the consideration of the full

3.3. Subliminal Perception L . N .

subliminal stimulus paradigm in the next section.
There are different regions devoted to supporting sub-
liminal as compared with aware activity, as Figure 1 3.3.2.Fully Subliminal Stimuli.The basic idea behind
denotes. Thus confounding the two forms of activity such a visual stimulus delivery paradigm is that they be
will make the flow of information in the brain very diffi-  presented to subjects on a screen in front of them so that
cult to understand. This is particularly important as more some of the stimuli are experienced at a subliminal level,
data is gathered from the non-invasive instruments. It whilst, in comparison and at different times, other stimuli
will become more and more difficult to comprehend are to be fully experienced. To ensure that a visual
without a proper distinction between low and top-level stimulus is subliminally experienced it is necessary to
processing being introduced. Otherwise the data will just present the stimulus for a brief time, say 50 msec, and
pile up to increase confusion over its interpretation. then flash another stimulus, called the “masking stimu-

Such seems to be the case in lexical processinglus”, on the screen at a controlled time afterwards so as
(though not involving non-invasive studies yet), where to persist for, say 500 msec. The time between the offset
recent results (Levelt et al., 1991) seem to contradict the of the first and onset of the masking stimulus, the so-
simple connectionist approaches to lexical priming (in called stimulus onset asynchrony (SOA), needs to be
particular, the expected broad spread of activation at varied in steps of 5 msec to be effective in changing
phonological level to semantic associates of an input the level at which a given subject is able to perform at
word or target to be recognised). Yet these analysesjust above chance level in a lexical decision task (decid-
and theoretical frameworks are not based on standarding whether the letter string composing the first stimulus
understanding of the phonological loop and its relevance is a word or not; Marcel, 1980).
to conscious experience. That needs to be developed on Fully subliminal perception occurs in at least the
sure experimental grounds. The same situation will occur modalities of touch, vision and audition, and there is a
in vision and other modalities, although the theoretical considerable psychological literature on the nature of
structures are not as well developed to be able to appreci-these phenomena (Merikle, 1992).
ate the problem as effectively. The important problem of stimulus attention (so as to

keep attention aroused even in the apparent absence of

3.3.1. Fully Subliminal Versus Partly Subliminal any stimulus and allow stimulus timing to be effective)
Paradigms.One experimental paradigm to determine may be approached by the following choice of paradigm:
the extra machinery which divides perception without require the subject to respond, after the offset of the
awareness from that with it would thus be to subtract mask, to one of the questions:
results obtained from experiments on stimulus detection . . .
in which there is only a subliminally perceived stimulus L. was there a stimulus preceding the mask
from those obtained when awareness has occurred. The2' to which of two probe quds (presented after offset of

: S the mask) was that which preceded the mask most
neuronal modules activated in giving the extra feature of L .

similar graphically?

aware beyond that O.f non-aware processing would then 3. towhichword (asinthe paradigmfor (2) above) wasthe
be detectable as having higher activation levels after sub- ) o .
word preceding the mask most similar semantically?

traction, or more general comparison through a suitable
correlational technique. In this manner, attention can be kept focused onto a
An alternative or additional paradigm is to consider an given task (the final response) yet neither the subliminal
experiment in which there are different effects arising stimulus nor the mask should be perturbed by the
from stimuli perceived at the two levels (as in the Stroop response of the subject.
effect). The results of such an experiment will have to be  This is valid for visual stimuli, but can be extended to
interpreted with care so as to be able to distinguish somatosensory or auditory stimuli (in the former case
between the aware level of processing and that at awith stimuli possibly delivered to one or other hand, or
non-conscious level; certain paradigms should allow to two sites on the hand, and ask which hand or which site
the separation of modules involved at the two different was stimulated, whilst for audition the stimulus could
levels by means of use of different paths in the brain (as be delivered to either ear, with response to the question
in foveal versus parafoveal experiments) or different as to which ear).
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FIGURE 3. Coupling between two sets of two-stage modules of Figure 1 and Figure 2 to achieve competition between the activities on the
second stages through the interaction of those stages with the NRT-thalamic system. There is also support from episodic memories
encoded in the store denoted E in the figure.

3.3.3.Partly-Subliminal or Unattended Stimuk\ form inputs below a so-called “objective threshold” but
of this paradigm particularly relevant to fMRI experi- only awareness when the input is above a higher “sub-
mentation is that of two words presented to a subject, jective threshold” (Cheesman and Merikle, 1986;
one foveally and the other parafoveally, for 120 msec, Merikle, 1992). Thus the phenomenon would itself
with attention being paid to the foveally presented word. lead to the analysis of the emergence of perception
At an inter-stimulus interval (ISI) of 200 or 2000 msec a by attempting to detect, under one of the numerous
target word is presented with the request to classify the

stimulus as an animal or not by pressing one or other of

two buttons, in the paradigm of DiPace et al. (1991). Ay suBLIMINAL

Reaction time measurements to the response at the earlier

ISI should show priming from words semantically
related to either the foveally or the parafoveally pre-
sented stimuli; at the later I1SI only the foveally presented
prime is effective. This was found to be so experimen-
tally. The activation of the parafoveally presented word
has died away before it has had time to reach awareness.
This was also determined by asking the subjects if they
had experienced the parafoveal word; in only 15% of
cases did this happen.

There are many other stimuli which produce partly p) asware
subliminal stimuli; in vision, the Stroop test has been
mentioned. In audition, the use of a prime, which is
attended to, and a probe which can then be used as a
subliminal modifier of response to the attended prime,
is common in lexical analysis, and again there is a very
extensive literature. The accuracy of timing in these
latter cases is only at the 20 msec level or above.

NON A’

—

>

NON A’ ‘A

—— F—

FIGURE 4. The difference between subliminal processing (a) and

. . . aware processing (b); in the former activity fails, for some reason
3.3.4.Conclusions on Subliminal Stimulihere has been (low level, degradation, backward masking), to reach the second,

considerable analysis of the phenomenon of subliminal yorking memory stage of the construction of consciousness
perception, in which there is knowledge acquired for denoted in Figures 1-3.
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TABLE 2
Paradigm GING Reason/Comments
1) Blindsight G But may have altered circuits
2) MAE G Area with longest duration of adaptation (& longer than
psychophysical effects)?
3) Binocular rivalry NG Adaptation in module
Concept rivalry NG Below creation of “A”?

4) Orientation-specific adaptation NG Adaptation not create “A”
5) Double click NG Where is “A"?

G If use non-attentive conditions in addition
6) Filling in NG As for double click

G If use non-attentive conditions in addition
7) Non-attentive G Must ensure full non-attention (but attentive “A”)
8) Subliminal processing (many paradigms) G Must ensure only subliminal experience is occurring

G denotes “good”, indicating that the paradigm is effective in discerning the location of the emergence of phenomenal awareness; NG denotes “no good”).

paradigms in which it has been observed, the difference Of these, (1) and (2) seem to be the most precise and
between those areas involved in the subliminal level of clean, since they involve direct measurement of regions
processing and those involved in the further creation of long holding of the neural activity directly causing the
of awareness in the subject. emergence of the relevant percept. In (3), there is also the
The nature of these paradigms, in terms of the two- danger that blindsighted subjects could have rerouted
stage processing model of Figure 2, is as shown in their activity to other modules, so the neural sites dis-
Figure 4. The first figure shows purely subliminal cerned would not necessarily be those used by sighted
processing, in which the awareness modules “A” of subjects. In (4), there is the danger of only partially
Figure 2 are not activated; the second figure indicates attended or unattended processing.
what happens when activity also arises at the aware Given that there are two paradigms which would
level during conscious processing. appear to be effective, we can conclude that there
These seemtobethe bestofall possible paradigms, sinceare some paradigms which satisfy all of the criteria of
they directly attack the separation of tasks into those Sections 2 and 3. The next steps are (a) to perform and
involved with subliminal, just pre-conscious, activations analyse the experiments in detail and (b) to model the
from those in which there is awareness of the inputs. detailed dynamics observed, so as to obtain a better
In conclusion, these subliminal paradigms appear to be understanding of the complex phenomena involved, and
highly satisfactory. The optimal ones involve the fully so as to make detailed predictions, from the models, in
subliminal stimuli of Section 3.3.2, since there is then order to extend the experimental understanding.
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Abstract—Recent interest in consciousness and the mind—brain problem has been fueled by technological advances in
brain imaging and computer modeling in artificial intelligence: can machines be conscious? The machine metaphor
originated in Cartesian “reflections” and culminated in 19th century reflexology modeled on Newtonian optics. It
replaced the Aquinian view of mind, which was focused on the emergence of intentionality within the body, with control
of output by input through brain dynamics. The state variables for neural activity were identified successively with
animal spirits, ‘éan vital, electricity, energy, information, and, most recently, Heisenbergian potentia. The source of
dynamic structure in brains was conceived to lie outside brains in genetic and environmental determinism. An alternative
view has grown in the 20th century from roots in American Pragmatists, particularly John Dewey, and European
philosophers, particularly Heidegger and Piaget, by which brains are intrinsically unstable and continually create
themselves. This view has new support from neurobiological studies in properties of self-organizing nonlinear dynamic
systems. Intentional behavior can only be understood in relation to the chaotic patterns of neural activity that produce it.
The machine metaphor remains, but the machine is seen as self-determ@nli®§7 Elsevier Science Ltd.

Keywords—Brain dynamics, Chaos, Consciousness, Existentialism, Information, Intentionality, Nerve energy.

1. INTRODUCTION experienced some other unnatural injury to which it is not

. . . accustomed (Clarke and O’Malley, 1968, pp. 4-5).
Studies of the neural basis of consciousness have

recurred in the biomedical literature for 2500 years,
beginning with Hippocrates: The last strong outpouring from biologists came 40
years ago following the discovery of the midbrain and
thalamic reticular activating systems and their roles in
2 . : . . arousal and attention (Adrian et al., 1954). In the past
and dissatisfaction arise only from [the brain]. It is espe- 0
cially by it that we think, comprehend, see, and hear, that we FWO depat;les, F_‘,Oﬂtl’lbuthl’]S have comg from researchers
distinguish the ugly from the beautiful, the bad from the N brain imaging, psychology, psychiatry, neurology,
good, the agreeable from the disagreeable... Furthermore, Philosophy, mathematics, physics, computer science,
it is by [the brain] that we are mad, that we rave, that and artificial intelligence. As a result, a shift ofimmense
fears and terrors assail us—be it by night or by day— magnitude is taking place in our understanding of our-
dreams, untimely errors, groundless anxiety, blunders, selves, but none of us has the perspective yet to grasp its
awkwardness, want of experience. We are affected by all nature and significance. The limitation stems from the
these things when the brain is not healthy, thatis, when itis cjrcumstance that the bulk of new data has been obtained
too hot or too cold, too moist or too dry, or when it has  yithin the confines of the machine metaphor for mind/
brain function. This essay aims to explore the origin of
Acknowledgements: This work was supported by a grant MHo6686 that metaphor from what preceded it, and to indicate a

from the National Institute of Mental Health. The paper was read at new approach to mind/brain studies.

the First Tucson Conference on “Toward a Scientific Basis for

Understanding Consciousness” on 13 April 1994. It provided

materials for Chapter 2 in “Societies of Brains” (1995), and is given 2. THE ORIGIN OF BRAIN DYNAMICS IN THE

One ought to know that on the one hand pleasure, joy, laugh-
ter, and games, and on the other, grief, sorrow, discontent,

here with the permission of the publisher, Lawrence Erlbaum MACHINE METAPHOR
Associates, Hillsdale, NJ. o ) ) )
E-mail:wfreeman@garnet.berkeley.edu. Behaviorists have a long history of using natural science
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to explain what they can observe among animals and reflex action:
their fellow humans. The Greeks invented a chemistry
of the soul, in Wh,'Ch the four elements (air, earth, fire performed solely according to physical laws...but follows
and water) combined to make the four humors of the  ghecial laws inscribed, as it were, by nature on the medullary
body (phlegm, blood, black bile and yellow bile), whence pulp... The general law...is that of our preservation: so that
the Hippocratic temperaments: phlegmatic, sanguine, certain motor impressions may follow external impressions
melancholic and choleric. Aristotle applied his physics about to harm our body and produce movements aimed at
to conceive the brain as a radiator to cool the blood.  warding off and removing the harm...or sensory impressions
The foundation for a dynamics of behavior was laid about to be favorable to us, and produce movement tending
by Descartes, who proposed that the brain operated as to preserve that pleasant condition longer (Prochaska, 1784,
a pump for fluids termed “animal spirits”, which flowed p. 116).

through the ventricles from the brain into the spinal . i i
cord and out into the muscles. The valves such as the 1N€ brain was seen as complex but passive mirror.
pineal gland were controlled by the soul in humans “Reflections” became reflexes. Three d_eca_ldes_la_ter
but were automatic in animals, they being soulless Prochaska made another category error in identifying
machines. his “sensory impressions” with electricity newly
discovered by Galvani and Volta. This hypothesis was
disputed by Carlo Matteucci, who maintained that
nerves carried spiritual force, that came to be identified
with “€lan vital”.

The reflection of sensory impressions into motor...is not

The seminal importance of this formulation can be
seen from the following standpoint. In a dynamical
system some material thing moves with time. Since
Newton and Leibniz the preferred description has
been a differential equation, which relates time as it
elapses independently (in either direction) to 3 NERVE ENERGY REPLACES VIS NERVORUM

something in the system that is changing. That “some- , .
thing” is the state of the system, and its descriptor is a '€ hegemony of physics was re-established by the

“state variable”. It is essential to measure accurately Young Turks. Du Bois-Reymond discovered the injury
both the time lapse and the state variable, because thefUITent and the “negative variation” (the nerve action
equation gives the relation between the numbers that potential). Helmholtz measured its conduction velocity.
represent time and the state variables. In CartesianS€chenov developed an animal model for anencephaly

studies of the brain, the state variable would have repre-PY Pithing a frog to study reflexes. The centerpiece of
sented the flow of animal spirits, had the equations this antivitalist movement was the experimental demon-

been written. No one did this. The difficulty was that Stration of the First Law of Thermodynamics, the con-

there was no way to measure the flow of animal spirits S€rvation of energy. In the grandest category error of
through the nerves. Descartes postulated that the muscled"e€m all, the animal spirits andae vital were replaced
were shortened by being pumped full of the fluid like a with nerve fo.rces and nerve energies, which flowed
balloon. Physiologists tested this prediction by invent- Tom the environment through the sensory receptors
ing the plethysmograph to measure the volume of muscle INt© the brain and back out again through the muscles,
before and during contraction. There was no increase &fté" being stored in nerve cells and then “liberated”.
but, in fact, a slight decrease owing to expulsion of The new doctrine was announced by Herbert Spencer
blood from the veins by muscle contraction, which (1863, p. 109):
showed that animal spirits had no volume to measure. [it is]...an unquestionable truth that, at any moment, the
Hence animal spirits could not be represented by a string  existing quantity of liberated nerve-force, which in an
of numbers in a model. This is an example of what inscrutable way produces in us the state we call feeling,
Gilbert Ryle (1949) called a category error, in this must expend itself in some direction—must generate an
case the assignment of the physical property of volume equivalent manifestation_ of force somewhgre... [A]n over-
to an immaterial entity. There were more such errors  flow of nerve-force, undirected by any motive, will mani-
to follow. fest!y takg the most hablj[ual routes; and,. if these do not
Late in the 18th century a Bohemian ophthalmologist suffice, will next overflow into the less habitual ones.
named Giri Prochaska made a remarkable discovery.Charles Darwin (1872, p. 70), continued:
Until that time most scientists had assumed that the
brain was _a source of animal spirits. RrOChaSka Observe_d be accompanied by consciousness. Why the irritation of
the behavior of newborn anencephalics and found their  nepe.-cells should generate or liberate nerve force is not
behavior to be entirely normal. As we now know the  known; but that this is the case seems to be the conclusion
human cerebrum is essentially nonfunctional at birth.  arrived at by all the greatest physiologists such as Mueller,
His findings led him to propose that sensory receptors  Virchow and Bernard, and so on.
are the source of animal spirits, which are released by the
action of stimuli from the environment. He then drew The application of Newtonian dynamics was also
explicitly on Newtonian optics to formulate a theory of explicit in the writings of J. Hughlings Jackson (1884,

This involuntary transmission of nerve force may or may not
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pp. 42—-44):

...we speak of the dynamics of the nervous system... A
normal discharge starting in some elements of the highest

centres overcomes the resistance of some of the middle, next Th . t ved f
the resistance of some of the lowest centers, and the muscles € environment was concetved as a source or nerve

are moved... A fit of epilepsy is an excessive caricature €N€rgy, which flowed through the sensory receptors into
of normal physiological processes during what is called a the brain with striking motivational consequences:
voluntary action... We have, in the case of “discharging
lesions,” to consider not only the quantity of energy liber-
ated, but the rate of its liberation.Resistanceswill be
considered later.

The task of psychology...is the study of behavior in its
causal connection to the psychophysical field (Koffka,
1935, p. 67).

...things in our environment tell us what to do with them...

Their doing so indicates a field of force between these
objects and our Egos...which...leads to action. ...A handle
wants to be turned, ...chocolate wants to be eaten, ...

Koffka, 1935, p. 353).
A note in Jackson’s handwriting was later found in the ( P )

margin of this text: “No more of this was published.” It
may have already become clear that while nerve tissue
did have electrical resistance, the barrier to the flow of
“nerve energy” was not so simple. The principle of the
conservation of momentum was also used by Sigmund
Freud as a foundation for his project of a scientific
psychology, in which he confused his neuronic inertia
with dendritic current:

One of the principle architects of Gestalt psychology,
Wolfgang Kdhler, presented meticulous studies of inter-
active phenomena in perception:

Our present knowledge of human perception leaves no
doubt as to the general form of any theory which is to do
justice to such knowledge: a theory of perception must be a
field theory. By this we mean that the neural functions and
processes with which the perceptual facts are associated in
each case are located in a continuous mediurh(&o
1940, p. 55).

This line of approach is derived directly from pathological
clinical observations, especially those concerned with
excessively intense ideas... These occur in hysteria and
obsessional neurosis, where, as we shall see, the quantitative  He pressed further into physics by identifying the
characteristic emerges more plainly than in the normal... perceptual fields with the electrical fields of the newly
What | have in mind is the principle of neuronic inertia,  giscovered electroencephalogram. This hypothesis was
which asserts that neurones tenq o d|ve§t themsel,\,/es identical in form to the category error of Prochaska. It
of quantity (Q)... We arrive at the idea of a “cathected . .
neurone (N) filled with a certain quantity... The principle was qka_Iy dlsmo,ved by R_Oger Sperry (1958)‘ Who
placed strips of mica and silver needles in the visual

of inertia finds expression in the hypothesis of a current, X
passing from the cell-processes or dendrites to the axone...COrtex of trained cats and monkeys and showed that the

The secondary function [memory] is made possible by resulting distortions in electrical fields had negllglble

supposing that there are resistances which oppose dis-effects on behaviors involving visual perception. Unfor-

charge...in the contacts [between the neurones] which thus tunately, for this and other reasons, the body of Gestalt

function as barriers. The hypothesis of “contact-barriers” is  theory was discredited among neurobiologists.

fruitful in many directions (Freud, 1895, pp. 356—359). With continuing advances in the analysis of anatomi-
. ] cal pathways in the cerebrum it became increasingly

Two years ]ater these barrl_ers were named by Michael gpvious that the concept of mass flow of energy made

Foster and Sir Charles Sherrington: no sense. According to Lashley (1942, pp. 302—-306):

Such a special connection of one nerve-cell with another
might be called a synapsis (Foster and Sherrington, 1897,
p. 929).

Generalization [stimulus equivalence] is one of the primi-
tive basic functions of organized nervous tissue. ...Here is
the dilemma. Nerve impulses are transmitted...from cell
to cell through definite intercellular connections. Yet all

Some four decades later the hypothesis of synaptic
resistance was undermined by Otto Loewi’s discovery
of chemical neurotransmission, though it persists in
more realistic treatments of electrical synapses, in
which it refers to electrical current and not to nerve
energy.

Another physical principle, the field of potential that

behavior seems to be determined by masses of excitation...
What sort of nervous organization might be capable of
responding to a pattern of excitation without limited
specialized paths of conduction? The problem is almost
universal in the activities of the nervous system.

He had already noted the difficulty of finding useful

was developed by Michael Faraday to explain electrical concepts:

and magnetic forces, was coopted by Gestalt psycholo-

gists to explain their data from studies in perception:

...let us think of the physiological processes not as molecu-
lar, but as molar phenomena... Their molar properties will be

the same as those of the conscious processes which they are

supposed to underlie (Koffka, 1935, p. 57).

...expressions like mass action, stress patterns, dynamic
effects, melodies of movement, vigilance, or nervous energy
[are] all highly metaphorical and unproductive of experi-
mental problems (Lashley, 1929, p. 254).

Yet he continued to borrow from the physical sciences
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fuzzy concepts such as ‘“reverberatory circuits”, neurons form Hebbian nerve cell assemblies and neural
“equivalent nervous connections”, “systems of space networks, which provide the basis for neurocomputation
coordinates”, “wave interference patterns”, “tuned or computational neural science. A well-known example
resonating circuits”, etc. (Lashley, 1950). is the tensor system for coordination of hand movements
under visual guidance by cerebellar circuitry developed
by Pellionisz and Lliha and reviewed by Churchland
(1986).
The repeated failure of the energy metaphor opened the At the behavioral level and among successors of the
way for a new approach that came from the communi- Gestalt school, most notable is J.J. Gibson, in whose
cation sciences. Basing their work on Golgi analyses of work the “affordances” denote information that flows
the entorhinal cortex by Rafael Lorente dé Ki®34), into the brain from outside the body through exterocep-
Warren McCulloch and Walter Pitts introduced the con- tors and from inside the body through the proprioceptors:

4. INFORMATION REPLACES NERVE ENERGY

cept of nerve cells operating as binary switches in neural
networks to compute Boolean algebra. John von
Neumann used this concept to develop programmable
digital computers. Shannon and Weaver developed the
theory of information bydivorcing it from meaning
This led to the replacement of “energy” by “informa-
tion” as a descriptor of neural activity. Information
and energy are both conceived as flows from environ-
mental “sources”. They are transduced through sensory

systems, transmitted by axonal tracts as channels, carried

by action potentials (bits), transformed (processed) in
brains by synapses working as binary switches, stored
as fixed patterns (representations), recalled by read-ou
under constraints of finite channel capacities and entropic
losses, like the content addressable memories in compu
ters, and matched or cross-correlated with new input
patterns.

Information metaphors are found at four levels. At the
level of nerve cells the single neuron is seen as generat-
ing a pulse train to represent a meaning corresponding
to the Logical Positivist element of a word or an object,
such as a grandmother. The frequency of the train repre-
sents the probability that the object is present (Barlow,
1972). Members of a distributed collection of neurons
that symbolize the same object are called “cardinal
cells”, deriving from a College of Cardinals running
the brain, as distinct from the pontifical cell decried by
Sherrington (1940, pp. 177-178):

In the great head end which has been mostly darkness spring
up myriads of twinkling stationary lights and myriads of
trains of moving lights of many different directions... The
brain is waking and with it the mind is returning. It is as if

...the affordance, being invariant, is always there to be per-
ceived. An affordance is not bestowed upon an object by a
need of an observer and his act of perceiving it. The object
offers what it does because it is what it is. ...But this does not
in the least imply separate realms of consciousness and
matter, a psychophysical dualism. It says only that the infor-
mation to specify the utilities of the environment is accom-
panied by information to specify the observer himself...
[E]xteroception is accompanied by proprioception...to per-
ceive is to coperceive oneself (Gibson, 1979, p. 139).

Information is delivered into resonant circuits in the

{rain, and it flows out again as “effectivities” from

muscles and glands in object-oriented actions. According
to Shaw et al. (1990, pp. 586—-587):

Gibson, like Tolman, would disagree with [the view of]
Skinner...that the organism is merely a “through-put
system”. For Tolman, cognition can embellish the stimulus,
while for Gibson, stimulus must be informative about the
environment in ways that a stimulus, as a physiological
“goad;” or a reflexive “force”, could never be. They
both endow [the organism] with a complex interior—
which Tolman cites as the residence of cognitive functions
and Gibson as the seat of a tunable (not necessarily linear)
information detection operator which resonates to qualita-
tive environmental properties (i.e. affordances). For Gibson,
the environment that surrounds an organism is real and
objective for each given organism.

The metaphorical “resonance” is reminiscent of
Karl Lashley’s “tuned resonating circuits”. It is meta-
phorical, because no physiological embodiment has yet
been demonstrated. The difficulties of pursuing this

the Milky Way entered upon some cosmic dance. Swiftly line of theory have been well formulated by Shaw and
the head-mass becomes an enchanted loom where millionshis colleagues. For example, the infinite complexity of
of flashing shuttles weave a dissolving pattern though never “objects” in unstructured environments is treated by

an abiding one; a shifting harmony of subpatterns.

An alternative formulation holds a neuron to be a
“feature detector” by virtue of its afferent synaptic
connections, which are modified and adaptively shaped
by prior learning. A collection of feature detectors
defines an object when their pulse trains become syn-
chronized, a proposed solution to “the binding problem”
(Milner, 1974; von der Malsburg, 1983) of getting
feature detectors to work together. Large arrays of such

converting objects to numbers:

...by following Cantor’s fractalization rule, we have a way
to rescale continuous geometric objects so that their
dimensionality is reduced. Moreover, by following it with
finite recursion, we find that there are objects without
integer dimensions... These are Mandelbrot's fractals...
(Shaw and Kinsella-Shaw, 1988, pp. 197-198).

They resolve the paradox that is inherent in combining
past experiences and future goals by postulating a dual
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Minkowski space with the two cones of past and future
melded at the apex of the present, and they propose:

...an environment of information which dynamically links a
socially invariant exterior with both a biologically invariant
interior frame, on the one hand, and with a still more exterior
physically invariant frame on the other. That psychological
inverse dynamics must couple energy with information
across a frame exterior (observable) to one and interior
(controllable) to the other, and vice-versa, defines what is
meant by an ecological map (Shaw et al., 1990, p. 587).

Their proposed exploration of the role of intentionality
in purposive behavior by ecological psychology will
depend heavily on the development of graphical compu-
ter displays for the three levels of maps and the deriva-
tion of equations to describe the operations required for
transfer of information between them. At present, their

efforts are remote from direct observations made on the

dynamics of brains.

At the subneuronal level, the discovery of DNA as the
basis for transmission of genetic information has also
stimulated search for stores of experiential information
in the form of “memories” in RNA molecules as well
as synapses. The search for the “molecular alphabet” of
learning is now among the hottest areas of neurobiologi-
cal research (Alkon, 1992), although studies of synaptic
modification have not yet progressed beyond habituation,
facilitation, and simple go/no go reflex arcs. Holger
Hyden demonstrated a change in RNA in the brains of
rats trained to climb a wire and suggested that it indicated
the storage of a procedural memory in the neurons of
the vestibular nuclei. This line of thinking culminated
in studies by worm runners to transfer the memory of
working a T-maze from trained Planarian flatworms to
their naive, cannibalistic siblings. After initial success
this hypothesis failed in the hands of trained scientists,
but it is still being “replicated” in high school science
fairs annually across the country.

At the submolecular level is a variant of the informa-
tion hypothesis, in which “quanta of sentience” emerge
as Heisenbergian potentia from a “sea of universal con-
sciousness” (Herbert, 1993, p. 26):

Though materialists agree that mind (defined as “inner
experience”) is no more than a particular motion of matter,
they differ concerning how complex matter's movement
must be actually to produce a noticeable sensation, to
generate what might be called a “quantum of sen-
tience”...analogous to physicist Max Planck’s famous
quantum of action.

The main hope that drives these investigations is for
discovery of new laws of physics (Penrose, 1989), which
will explain such paranormal phenomena as teleporta-
tion, precognition, distance viewing, and related forms
of extrasensory perception (Herbert, 1993, p. 248):

Most quantum models of consciousness are similar to
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to be a sensitive receiver of mental messages that originate
outside the brain. The main difference between the coherer
model of mind and quantum consciousness models is that...-
mind is somehow resident in Heisenberg’s quantum potentia
rather than in electromagnetic ether.

Criticisms that brains, neurons, organelles and recep-
tor molecules are neither small enough nor cold enough
to afford quantum coherence have been met with the
rejoinder that superconductivity is a macroscopic state
of coherence that has already been achieved at tempera-
tures approaching Siberian winter nights, and that it may
soon be found also at normal brain temperatures. Less
easily handled have been the criticisms that, for all its
power in chemistry, quantum mechanics is a linear, first-
order, discrete approximation for protons, that it is even
inadequate to describe the collapse of the wave function,
and that it is poorly suited for describing the nonlinear
continuous time dynamics displayed by the nervous
system at all levels. More to the point, this line of thought
is new wine in an old bottle. The same properties are
invoked as for energy and information: environmental
sources of input, sinks for output, tuned receptors to
resonate with selected inputs, and connectionist mechan-
isms for storage and retrieval. The elemental building
blocks (reflexes, action potentials, bits, words, symbols,
primitives, and quanta) change with the centuries, but the
underlying concepts have been passed whole from one
generation to the next.

5. THE UNIQUENESS OF BRAIN FUNCTION

Three insights are lacking from these input—output
approaches to brain dynamics. The first insight is that
the tissue formed by neurons in animal brains is unique.
There is no other substance like neuropil in the known
universe. Phylogenetically it has emerged by evolution
repeatedly and independently in the brains of molluscs,
crustaceans, and vertebrates, always as the basis for
adaptive, goal-directed behavior. Being unlike anything
else, it offers us the opportunity to discover its “laws”,
which might constitute the “new laws of physics”
sought by Penrose (1989). Second, it follows that the
machine metaphor cannot be serve to identify brain
state variables with the state variables of any other
machine. Third, brains organize their own goals, which
machines cannot now do.

The second insight holds that, while neural activity is
based in flows of transmitter molecules, inorganic ions,
and electric currents fueled by metabolic energy and
controlled by conformational structural changes in cell
membranes, and while it carries both meaning and infor-
mation, it cannot be defined by any of these physical
or conceptual quantities. As noted by Karl Lashley the
terms “nerve force”, “nerve energy”, “information”,
and ‘“representation” aremetaphorsand not measur-
able descriptors of brain events. The spatiotemporal

Crookes’s coherer proposal in that they consider the synapsedynamic patterns of neuroactivity are observed by its
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electrochemical manifestations (“signs” according to brooked no doubts about the unique causal efficacy of
Adrian, 1947), but neuroactivity cannot be observed each person. The machine metaphor undermined that
directly, and models of it must include transforms that certainty and induced conflicts between ideas of free
describe postulated relations of the signs to the activity will and universal determinism that persist into the
(Freeman, 1975). The contents of the signs are inferred modern era. Several philosophers in the present century
from behavioral correlates and introspection (Freeman, constructed powerful theories that avoided the machine
1991, 1995), which are used to characterize and modelmetaphor and did not lead to the cruel dichotomy. The
the operations by which brains constractaningfrom earliest were John Dewey with American pragmatism,
sensory stimulationThis is not “information process- Henri Bergson with ‘“Creative Evolution”, Martin
ing”. The problem is, how to define neuroactivity? Just Heidegger with “Being and Time”, and Jean Piaget
as “force” in physics is defined as a relation between with developmental psychology. Sir Frederic Bartlett
mass, time and distance, “neural activity” must be (1932) described the problem from the viewpoint of his
defined by relations between its electrochemical signs studies on remembering:

and overt, measured behaviors. Neuroactivity does not
flow across the receptors, the muscles, or the blood—
brain barrier as energy, matter and information do.
Brains are closed systems with respect to meaning,
though not to energy or information. This enclosure
explains the inaccessibility of qualia between brains,
because the feelings and the associations in experiences
that come in each brain with expectations, actions, and
stimuli are rooted in its undivided body of past learning
and its present chemical state.

The third insight is that the patterns of neural activity
are endogenous. Their structure emerges from within and
is not imposed solely by flows of energy, information or
guanta from the bodies. The theory of chaos in nonlinear
dynamical systems offers a set of techniques for describ-
ing the conditions required for emergence of self-
organized patterns (Freeman, 1992, Skarda and Freeman,
1987). The process of self-determination is inherent in
the Aquinian concept of intentionality (Martin, 1988,
Pegis, 1948) by which each soul (mind/brain) intends
(“stretches forth”) outside itself and into the world. It

...some widely held views [of memory] have to be com-
pletely discarded, and none more completely than that
which treats recall as the re-excitement in some way of
fixed and changeless “traces” (p. vi).

The picture is one of human beings confronted by a world
in which they can live and be masters only as they learn
to match its infinite diversity by increasing delicacy of
response, and as they discover ways of escape from the
complete sway of immediate circumstances (p. 301).

There is one way in which an organism could learn how to
do this. It may be the only way... An organism has somehow
to acquire the capacity to turn round upon its own “sche-

mata” and to construct them afresh. This is a crucial step in
organic development. It is where and why consciousness
comes in; it is what gives consciousness its most prominent
function... | wish | knew exactly how it was done (p. 206).

Jason Brown (1977) described it from a philosophical
viewpoint:

acquires knowledge by shaping itself (learning) in

accordance with the effects (sensory feedback) of its
endogenous action. The soul creates itself and its virtue
by its own actions. Descartes discarded this medieval
doctrine and mechanized the body by relegating per-

The structural organization of cognition is no less dynamic
than the psychological systems it supports... The incessant
flow of cognition, the continual appearance and disappear-
ance of new form at each moment of our waking and sleep-
ing life, are manifestations of the activity of the structure

as a whole as it achieves one or another level of realization

ceptual events to the status of “representations” of the
(pp. 2—-11).

world, so the soul understood through logic, not pre-
logical learning. Kant deliberately revolutionized the
mechanization by postulating that the rules of knowing
were embedded as absolute ideas in human nature. He
had no framework in Newtonian science to cope with
the emergent processes of intentionality. Brentano and
Husserl reintroduced the word as denoting what the
Kantian representations were “about”, whether or not
the objects or events so represented actually existed in
the world (Freeman, 1995). This meaning now consti-
tutes the mainstream interpretation among analytic
philosophers (Putham, 1990).

Affect is not an energy that invades and charges an idea...
There is no need for the concept of psychic energy (instinct,
motivation) as a motivating force in cognition. The orderly
sequence and unfolding of cognitive levels repeats and
extends the phylogenetic and ontogenetic pattern. The pro-
gression from depth to surface, the incessant repetition of
developmental form, and the striving toward higher levels
are all part of an evolutionary trend that leads in a forward
direction simply because it is in the nature of the organiza-
tion to unfold in this manner (pp. 127-133).

llya Prigogine (1980) has applied his theory of “dis-
sipative structures”, which feed on energy and evolve
complex patterns in states that are far from equilibrium,
to understand the nonlinear dynamics of brains. Hermann
The neo-Aristotelian philosophy of the later Middle Ages Haken (1983) has applied his theory of synergetics to

6. NONLINEAR BRAIN DYNAMICS AND
NEUROEXISTENTIALISM
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comprehend the physical principles, by which masses of actions. This insight has been arrived at independently
neurons can interact to generate spatiotemporal patterngn the 20th century by (among others):

of activity.

Only one of several theories was effectively linked
to neurobiology by its author. Maurice Merleau-
Ponty (1942, 1945) drew heavily on work in clinical
neurology from the First World War, particularly
describing the phenomena now known as phantom
limb and sensory neglect in brain-damaged indi-

Dewey (1914): Pragmatism—"Actions are not reac-
tions to stimuli; they are actions into the stimuli.”
Heidegger (1927) and his students, Sartre and
Merleau-Ponty (1942): Existentialism—"Mind is
the structure of behavior.”

Koffka (1935): Gestalt psychology—*a field of force
between objects and our Egos...leads to action.”

viduals. With careful reasoning over voluminous bio-
logical details, he discarded the “materialist” view
that minds were the results of linear causal chains of
reflexes and chemical reactions. He likewise dismissed
the “idealist” Kantian and Husserlian views of minds
consisting of collections of representations, that were
processed according to logical algorithms. He pro- In each of these systems sensation takes place as part
posed instead the “existentialist” view, taken from of an “action—perception cycle” that Merleau-Ponty
his teacher, Heidegger, and classmate, Sartre: mind is(1942) described as “circular causality” to contrast it
“the structure of behavior”, that creates itself by with the “linear causality” of conditioned reflex chains
circular causality in its own *“action—perception cycle” and machine metaphors of brain function, such as clocks,
(Freeman, 1995). telegraph nets, thermodynamic engines, chemical reac-
tion systems, computers and holographs. Animals and
humans receive and perceive stimuli as the end result
of goal-oriented search for knowledge in the environ-
These several theories provide the warp and woof with ment, and they learn about the world and shape them-
which to weave the pattern of a strong neurobiological selves accordingly entirely in terms of the consequences
theory of self-organization of mind and brain. Biologists of their own actions. The word “intentionality” has
offer observations of the space—time patterns from brain three widely accepted meanings. In analytic philosophy
imaging of human and animal brains during the per- it means that a thought, belief, word, phrase or mental
formance of intentional behavior. Psychologists offer actis “about” something, whether an object or a person
the measurements and analyses of behavior, in order toor a state of affairs, whether in the world or in the mind.
provide the essential behavioral structures that are to beln the psychological sciences it means that a thought,
correlated with the brain data. Physicists offer the dyna- action or speech has a purpose, goal or intent, which is
mical systems theory by which to model the data and both outwardly directed toward manipulating objects
verify the capacity for brains to create and evolve their in the world and inwardly directed toward satisfying
own unique space—time patterns of neural activity. biological drives, needs or instincts. In medicine it
Philosophers offer the conceptual framework required refers to the process of healing from injury, the re-estab-
to bring the large picture into focus. The question lishment of wholeness of the body (Freeman, 1995). All
remains: how do brains work? After three centuries of the meanings stem from Medieval philosophy, which
dynamics, answers are still elusive. was synthesized in the 13th century by Aquinas. The

Nonlinear dynamics gives the technical tools mind is conceived as having unity that serves to distin-
needed to learn how it is done. The concept of the guish itself from nonself; wholeness that expresses its
self-organizing brain, with its ever-shifting basins and direction of growth to maturity and the full realization
attractors, its evolving trajectories (Tsuda, 1991), and its of its potential; and intent (“stretching forth”), by which
global cooperativity, enables us to model brain func- mind thrusts itself into the nonself by the actions of
tions that transcend the present limitations of computa- its body, and learns about the world by shaping itself
tional and representational schemata, and enter intoin accordance with the outcomes of its actions, namely
those domains of nonrational and nonlogical construc- by learning from the sensory stimuli that were sought
tion from which consciousness emerges. by its own actions (Freeman, 1995).

The complementary foundation in the mental sciences The neural mechanisms for intentionality in inverte-
has been built in the past century by outstanding brate animals and humans clearly reside in the limbic
philosophers and psychologists, who can be groupedsystem. The evidence for this conclusion comes from
under the term “existentialists”, and whose work has diverse areas of study of animal and human behavior.
remained outside the main stream of modern neuro- Comparative neuroanatomists have shown that the
biology, owing to the unsolved problem of self- forebrain of the most primitive surviving vertebrates
organization. The essential message of existentialism isrepresentative of the ancestral line is composed of
that humans—and animals—create themselves by theirthe essential sensory, motor and associational parts

Piaget (1930): The cycle of “action, assimilation, and
adaptation” in the sensorimotor stage of childhood
development.

Gibson (1979): Ecopsychology—"An affordance...of
an object offers what it does because it is what it is.”

7. THE NEUROBIOLOGY OF INTENTIONALITY
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of the limbic system, including the primordial hippo-

W. J. Freeman

“the hard problem” of Chalmers (1996), but as several

campus, septum and amygdala (Herrick, 1948). Selectiveauthors have commented (Hameroff et al., 1996), they

lesions brains have shown that removal of the entire
neocortex but sparing the ancient limbic structures
impairs sensory guidance and elaboration of behavior,
but the impoverished actions are clearly identified as
intentional (Broca, 1973, Goltz, 1874). Intentional
actions must take place within a space—time matrix for
spatial orientation (the “cognitive map”) and temporal
integration (“short-term memory”). Electrophysiologi-
cal investigations of the hippocampus (O’Keefe and
Nadel, 1978) combined with studies of selective lesions
of the hippocampal formation (Milner, 1966) have shown
the importance of the limbic system for this matrix.
An essential role in intentional action is played by
“corollary discharge” (Sperry, 1950) and reafference
(Kay, 1994) first identified by von Helmholtz (1879),
which clearly is focused in the entorhinal cortex through
its dense reciprocal connections both with the hippo-
campus and with all primary sensory cortices (Lorente
de Ng 1934) and the frontal lobes (Freeman, 1995).

8. CONCLUSIONS

Electrophysiological studies of visual, auditory, somatic
and olfactory EEGs (Barrie et al., 1996) have shown that
spatial patterns of neural activity emerge by construction

with each act of perception, and that they depend on the
context of the present and equally on the past experience

of each subject, not merely on the stimuli. This is a
reflection of the unity of function of the forebrain.

The implication is that each perceptual act has been
organized in the context of the present state of the limbic

are hard enough for this generation of researchers.
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Abstract— Considerable progress is being made in interdisciplinary efforts to develop a general theory of the neural
correlates of consciousness. Developments of Baars’ Global Workspace theory over the past decade are examples of this
progress. Integrating experimental data and models from cognitive psychology, Al and neuroscience, we present a
neurocognitive model in which consciousness is defined as a global integration and dissemination system — nested in a
large-scale, distributed array of specialized bioprocessors — which controls the allocation of the processing resources
of the central nervous system. It is posited that this global control is effected via cortical ‘gating’ of a strategic thalamic
nucleus. The basic circuitry of this neural system is reasonably well understood, and can be modeled, to a first
approximation, employing neural network principlés.1997 Elsevier Science Ltd.
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1. INTRODUCTION explicitly related to conscious experience. These models

Consciousness has been widely portrayed as an intract-eXIOIICate an architecture in which many - paralel,

. . : non-conscious experts interact via a serial, conscious
able or irrelevant problem for cognitive science (e.g.

Harnad, 1994; Penrose, 1994; O’Nuallain et al., 1997). f"‘”d mternally con5|stent Global Workspace (GW.)’ or
. ) . . L . its functional equivalent. GW, or blackboard, architec-
Certainly its serious consideration is a fairly recent

devaopment (ackencor. 198, Baars, 1998 Jomson. 198 15 15, Seve e Y egpie sl e
Laird, 1988; Edelman, 1989; Crick and Koch, 1990a), Y

although a brief enthusiasm for the subject surfaced, (TSZ(ZORI?NZL Clg%rglon of Simon, Newell and Anderson
and submerged, three decades ago (Eccles, 1966; The HEARSAY model of speech understanding

Penfle_ld, 1975). Wh'l.e Itis nqt widely realized, the . (Reddy et al., 1973) was one of the earliest attempts
experimental neuroscience which served as the basis; . ; . . .

. : : . . . to simulate a massively parallel/interactive computing
for that earlier enthusiasm is proving increasingly

: ._architecture. The notion of a global workspace was
relevant to the present recrudescence of interest in.

conscious processes (see e.g. Stryker, 1989 Newman'mt'a"y inspired by this architecture, consisting of a

1995a, 1997). Beginning with historical developments large number of knowl_edge ['nodules, or, local experts’,
: . . . all connected to a single ‘blackboard’, or problem-
in both Al and neuroscience, this paper reviews a

: . . solving space. Activated experts could compete to post
growing body of evidence that some of the basic ; )
. . . messages’ (or hypotheses) on the blackboard for all
mechanisms underlying consciousness can be modeled .
) ST . L the other experts to read. Incompatible messages would
to a first approximation, employing variations upon

. tend to inhibit each other, while the output of cooperat-
current neural network architectures (see also Taylor,

1992; Taylor, 1996; Baars et al., in press; Newman Ny expert;l WOUI? galln mlcrgasmg access tolthi black-
et al., 1997). board until a global solution emerged. Blackboard

Sairs (1963, 1960, 1992, 1994) has developed a seIOCISS, e ey sow, Summersone and
of ‘Global Workspace Models’, based upon a unifying P ' P P 9

pattern, and addressing a substantial domain of evidencelorObIemS too novel or complex to be solved b}/ any
extant modular knowledge source. Once such ‘global

solutions’ are attained, however, the original problems

Corresponding Author, Present address: 740 Clarkson Street, Denver,Can be allocated to modular processors for ‘non-
CO 80218, USA; Tel.: (303) 832-9062; e-mail: newmanjo@aol.com. conscious’ solution.
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McClelland (1986) attested to the significance of this
set of models to subsequent developments in cognitive
science when he described HEARSAY, not only as “a
precursor of the interactive activation model”, but “of
the approach that underlies the whole field of parallel
distributed processing” (p. 122). We consider
McClelland’s own ‘Programmable Blackboard Model
of Reading’ as a connectionist example of a global work-
space architecture, and discuss its applicability to
modeling conscious processes in a concluding section.

Another class of models that may turn out to be com-
patible with GW theory comes from ‘distributed artificial
intelligence’ (DAI), which Durfee (1993) characterizes
as the study of “how intelligent agents coordinate their
activities to collectively solve problems that are beyond
their individual capabilities” (p. 84). He cites examples
of DAI applications, such as generic conflict resolution,

J. Newman et al.

processing of stimuli which are predictable, routine or
over-learned is automatically allocated to non-conscious,
highly modularized cognitive systems (Newman, 1995b,
p. 691).

Generally, we are conscious of what has the highest
relevance to us at that moment. This may be a momen-
tary threat, a sudden insight, a pleasant sensation, etc. (in
relaxed moments, there may be no particular focus or
intent, simply a stream of associations). Yet, while the
range of our awareness is immense (limited only by our
most developed cognitive capacities), we contend that
the basic mechanism for the allocation of these capacities
remains constant under virtually all contingencies; and
the basic neural circuitry of that resource-allocation
mechanism is reasonably well understood. Indeed, in
subsequent sections, we suggest how it might be modeled

unified negotiation protocols, and search-based modelsbased upon already existing neural network simulations

of coordination/cooperation. DAI applications appear
to more closely approximate human interpersonal
behaviour than purely logic-driven Al. They require
that agents learn to be “knowledgeable and skilled in
interacting with others” (p. 86). DAl models would

appear to reflect an intelligent balance between compe-

titive self-interest and cooperative problem-solving that
is essential to optimizing overall outcomes in complex
‘social’ organizations. This, like GW theory, is consis-
tent with other well-known metaphors in cognitive
science, such as Minsky’s ‘Society Theory’ (Minsky,
1979) and Gazzaniga’'s ‘Social Brain’ (Gazzanigga,
1985).
A similar, globally-integrative balancing of priorities

(McClelland, 1985; Hampshire and Waibel, 1992;
Taylor and Alavi, 1993; Llinas et al., 1994).

The relevance of Global Workspace theory extends
beyond NN modeling, however. Indeed, it bears upon
central philosophical problems in consciousness studies,
such as thénomunculusaand Cartesian theater. The two
are, of course, related. The image of a ‘little man in our
head’ observing and manipulating the play of conscious
images is beguiling, but absurd. For who is this strange
being lodged in our brains? And who is watchinign?

In Global Workspace theory the single homunculus is
replaced by a large "audience of experts’. The ‘theater of
consciousness’ then becomes a workspace, with stage
(Baars, 1997). Almost everyone in an audience has

appears to characterize the optimal processing of con-potential access to center stage (although most prefer to
scious information. Conscious percepts are characterizedsimply observe, or exert indirect influences). The focus
by unified gestalts of shape, texture, color, location and of conscious activity, at any moment, corresponds to the
movement, despite the fact that these contributions to ‘work’ produced by the most active coalition of experts,
perception are initially processed in parallel areas of or modular processors: whoever has managed to win the
the cortex, in both hemispheres. Moreover, conscious competition for ‘the spotlight’. There is no fixed, super-
intentions are generally single-minded and goal-directed. ordinate observer. Individual modules can pay as much
Of course, conflicts can and do arise, but a central or as little attention as suits them, based upon their par-
purpose of consciousness seems to be resolving sucHicular expertise. At any one moment, some may be
conflicts (employing both integrative and inhibitory dozing in their seats, others busy on stage. In this
algorithms). sense, the global workspace resembles more a delibera-
While such global states can be highly adaptive — tive body than a theater audience. Each expert has a
indeed, are essential to explicit learning — GW theory certain degree of ‘influence’, and by forming coalitions
maintains that the vast majority of cognitive tasks per- with other experts can contribute to deciding which
formed by the human brain are automatic, and largely issues receive immediate attention and which are ‘sent
non-conscious (Baars, 1988; Newman and Baars, 1993;back to committee’. Most of the work of this deliberative
Baars, 1997; Newman, 1997). Consciousness generallybody is done ‘off stage’ (i.e. non-consciously). Only mat-
comes in play when stimuli are assessed to be novel,ters of greatest relevance in-the-moment gain access to
threatening, or momentarily relevant to active schemas consciousness.
or intentions. While the GW is a teaming multiplicity, what is
The defining properties of stimuli which engage conscious explicitly represented in consciousness is largely coher-
attention (i.e. the global allocation of processing resources) €Nt and adaptive. The overall workspace serves as a
are that they: 1) vary in some significant degree from ‘global integration and dissemination system’, in which
current expectations; or 2) are congruent with the current, all experts can participate, but only select coalitions
predominant intent/goal of the organism. In contrast, the dominate, momentarily, producing an orderly succession
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of global representations. The stream of consciousnesslong ago. Such ‘particular operations’ are hardly trivial
arises out of the operations of the GW system — and, aspects of language acquisition, but as Kihlstrom (1987)
over time, our sense of being a coherent ‘I' (the memory noted, in humans they tend to be “automatized through
and intention systems vital to this aspect are beyond the experience and thus rendered unconscious” (p. 285).
scope of this paper; see Baars et al., in press; Newman, Conscious awareness clearly involves a higher order
1997). It is this unitary awareness, not any agent or of resource allocation, which Newman and Baars (1993)
homunculus, that is globally superordinate. Of course, call ‘global attention’. The term “refers to a level of
such a system is prone to inefficiencies and pathological cognitive processing at which a single, coherent stream
perturbations, but this is consistent with the scientific of information emerges out of the diverse activities of the
literature concerning human consciousness (see BaarsCNS” (p. 258). The focus of that stream could (under
1988). atypical circumstances) be an individual word; but the
If we are to proceed beyond pleasing metaphors, how- conscious mind seldom confines itself to the processing
ever, it is necessary to operationalize the GW model in of such rudimentary representations. Rather it seems to be
explicit neurocognitive terms. This process begins in the decisively biased towards multifaceted, yet unified
next section. To introduce it, we offer the following images. Thus, we are able to perceive a Necker Cube
working definition: as projecting out of a two-dimensional page, alternately
to the left, then to the right; but we are curiously incapable
of perceiving these two perspectives simultaneously.
The processing load of global attention (like working
memory), is both highly chunked and highly restricted
(Baars, 1988). The non-conscious allocation of proces-
sing resources operates under no such constraints. For
dexample, neuroscience has shown that specialized areas
In the visual cortex process, in parallel, the contour,
movement, color, spatial location, etc. of a stimulus
(LaBerge, 1995). Yet our awareness is of a single, coher-
ent object (and often includes tactile, auditory and asso-
ciative aspects). Thus, neuroscience is faced with the
'binding problem’ of how these multifarious representa-
We have introduced the theoretical background for the tions, generated by widely separated areas, are integrated
model. Newman and Baars (1993) and Newman (1997) into real-time ‘objects’ of perception (see Crick and
present detailed accounts of its neural architecture. We Koch, 1990a; Newman and Baars, 1993).
would stress, however, that consciousness is a dynamic One would expect the neural mechanism for global
process, not a static structure. Also, it is not localized to attention to be complex, and widely distributed, which
some ‘brain center’, but arises out of the coordinated it is. But the basic circuitry can be described, to a first
activities of widely distributed networks of neurons. approximation, in terms of repeating, parallel loops of
Resource allocation is integral to these activities. The thalamo—cortico—thalamic axons, passing through a
neural bases of resource allocation, or attention, havethin sheet of neurons known as thecleus reticularis
been extensively explored (see, e.g. Heilman et al., thalami (nRt). The loops are formed by long-axoned,
1985; Mesulam, 1985; Posner and Rothbart, 1991; excitatory neurons. The neurons of nRt are largely
Posner, 1994; LaBerge, 1990, 1995). But, of course, GABA-ergic, inhibitory neurons. Most, if not all, of the
not all forms of attention are conscious. As an example looping axons give off collaterals as they pass through
from Al, McClelland (1986) notes that in simulations nRt, while nRt neurons themselves project mainly to
of reading, activated modules must be ‘sticky’, that is cells of the particular thalamic nucleus lying directly
“interactive activation processes continue in older beneath them. There is an orderly topography to this
parts of the programmable blackboard while they are array of axon collaterals and underlying thalamic nuclei
being set up in newer parts as the eye moves along...” (Scheibel and Scheibel, 1966; Mitrofanis and Guillery,
(pp. 150-151). This ‘stickiness’ would seem to entail a 1993). It essentially mirrors, in miniature, the modular
type of attention. It normally proceeds quite auto- architecture of the cortex (see Newman and Baars, 1993;
matically, however, both in a reading machine and in a LaBerge, 1995; Newman, 1997, for reviews).
literate human being. Only when the process is disrupted Evidence for the central role of this ‘thalamocortical
by, say, a mis-spelled or unknown word, does that word circuit’ (LaBerge, 1995) in attention and conscious-
becomes the focus of our conscious awareness.ness has been accumulating for decades (Jasper, 1960;
Normally, we are only conscious of the overall sense Scheibel, 1980; Jones, 1985; Steriade and Llinas, 1988;
of the passage of text, and the images and thoughts itLlinas and Pare, 1991). Skinner and Yingling (1977) first
evokes, not particular semantic or syntactical operations. proposed a neural model for its role in selective attention.
These linguistic processes became second nature to u®ur ‘wagon wheel’ model (next section) represents a

consciousness reflects the operations of a global inte-
gration and dissemination system, nested in a large-
scale, distributed array of specialized bioprocessors;
among the various functions of this system are the
allocation of processing resources based, first, upon
biological contingencies of novelty, need or potential
threat and, secondly, cognitive schemas, purposes an
plans.

2. MODELING GLOBAL, COMPETITIVE
ATTENTION
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competitive network for global attention based upon
a highly simplified version of the ‘thalamus—NRT—
cortex complex’. Their model is unique, in that it takes
into account the effects of dendro—dendritic interactions
throughout nRt. The dendrites of nRt cells project out
Y Y Y tangentially within the reticular sheet, bidirectionally.
A A A The physiology of information processing in dendritic
trees is highly complex, and not well understood (Mel,
1994); but Koch and Poggio (1992) review evidence for
m 2 the dendritic trees playing a role in several types of
= second-order, multiplicative computations. We will

—— ——
; / have more to say about this subsequently.

Figure 1 [taken from Taylor and Alavi (1993)] illus-
& A ?L
original paper for a detailed description of the simula-
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trates three thalamocortical circuits, as well as the non-
linear, dendro—dendritic connections between N1, N2,
N3,... within NRT. We would refer the reader to the
0 @ @ tions carried out, employing a network of 100 thalamo-
cortical loops. To briefly summarize the results, the
addition of dendro—dendritic connections to the looping
circuits provided “the basis for a simple version of the
global gating model... that instantiates a form of compe-
I tition in the spatial wavelength parameters of incoming

FIGURE 1. The wiring diagram of the main model of the thala- inpUts---” (p- 352)- In this version of the model, the entire

mus—NRT—cortex complex. Input  /; is sent both to the thalamic nRt network oscillates with a wavelength,
relay cell T; and the inhibitory interneuron  IN;, which latter cell

also feeds to T;. Output from T; goes up to the corresponding with the net strength given by the component of the input

cortical cell Cj, which returnsits outputto  T;. Both the axons  T,C; with the same wavelength.

and C;T; send axon collaterals to the corresponding NRT cell N;.

There is axonal output from  N; to IN;, as well as collaterals to The way in which global control arises now becomes
neighbouring NRT cells. There are also dendro—dendritic clear. Only those inputs which have special spatial wave-
synapses between the NRT cells (from Taylor and Alavi, 1993). length oscillations are allowed through to the cortex, or

are allowed to persist in those regions of the cortex

strongly connected to the NRT: the thalamus—NRT sys-
synthesis of both the accumulated evidence, and relatediem acts as a spatial Fourier filter (p. 353).
models (Skinner and Yingling, 1977; Scheibel, 1980;  sjmulation runs demonstrated the global, wave-like
Crick, 1984; Taylor and Alavi, 1993; Llinas et al., properties of the competitive model. The overall pattern
1994; LaBerge, 1995). These related models vary in of activation in cortical units was shown to be exclu-
their details, as the precise connectivities and sjvely dependent upon the wave pattern spanning across
physiology of the thalamocortical circuit are not fully  gj| of the NRT units (Figure 2). As LaBerge (1995) notes,
worked out. the actual physiology of nRt gating in alert states remains

Most attentional models are based upon conventional ynclear, but it is firmly established that nRt is the source

simulations of mechanisms such as center-surround inhi- of global oscillatory activity (at 8—13 Hz) initiating the
bition, or winner-take-all (WTA) competitions, among descent into sleep.
local circuits. Various researchers have described the
network of nRt neurons as a mosaic, or array, of neural

gatelets’ acting to selectively filter the flow of sensory a rebound burst. In this way a network of connected RN

input; to the .cort-ex (Skinner and Yingling, ,1977; inhibitory cells can spread activity to every cell within the
Scheibel, 1980; Crick, 1984). The WTA dynamic may network, apparently without decrement in the intensity of

seem analogous to the ‘competition’ posited by GW  the activity (p. 184).

theory. The problem with such conventional networks

is that they are poorly suited to global forms of competi-  Here then, is a plausible circuitry for a global, winner-

tion, because prohibitively long-range and geometrically take-all competition among the large array of specialized

increasing numbers of connections would be required. cortical processing areas.

Moreover, most long-range, reciprocal connections in  Llinas et al. (1994) offer an interesting variation upon

the CNS are excitatory. Inhibitory effects tend to be this circuitry, in which thalamocortical loops of the ‘non-

local. specific’ intralaminar nuclei operate in parallel with the
Taylor and Alavi (1993), however, have modeled a specific (input) loops described above. The synchronous

The RN cells are known to inhibit each other, and when
inhibition hyperpolarizes an RN cell sufficiently, it produces
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FIGURE 2. One of 15 simulation runs for the thalamus—NRT-cortex model showing full global control with semi-constant spatial input.
Note that cortex activity is influenced by the NRT alone (from Taylor and Alavi, 1993).

activation of specific and non-specific loops is postulated the CNS” (Newman and Baars, 1993). There remains to
to provide a basis for “perceptual unity... by which be explained how the thalamocortical circuit fits in with
different sensory components are gathered into onethe second half of our working definition for the con-
global image” (p. 251). Their modeling is concerned scious system: the allocation of processing resources
with high-frequency EEG oscillations (and omits
dendro—dendritic connections), yet appears to parallel
much of what we discuss above.

When the interconnectivity of these nuclei is combined with
the intrinsic properties of the individual neurons, a network
for resonant neuronal oscillations emerges in which specific
corticothalamic circuits would tend to resonate at 40 Hz.
According to this hypothesis, neurons at the different
levels, and particularly those in the reticular nucleus,
would be responsible for the synchronization of 40-Hz
oscillations in distant thalamic and cortical sites...these
oscillations may be organized globally over the CNS, espe-
cially as it has been shown that neighboring reticular cells
are linked by dendrito—dendritic and intranuclear axon
collaterals (Deschenes et al., 1985; Yen et al.,, 1985,
pp. 253-254).

3. ANEURAL MODEL FOR GLOBAL RESOURCE
ALLOCATION

We have introduced a set of convergent models for the
basic circuitry of a Global Workspace system involved in
the integration and dissemination of the processing FIGURE 3. ‘Wagon wheel’ model of CNS systems contributing to
resources of the nervous system. This ‘bare bones’ global attention and conscious perception. Al, primary auditory

version accounts for how a global, winner-take-all com-
petition might be mediated between various external
inputs and cortical modules, to produce “a single, coher-
ent stream of information out of the diverse activities of

area; BG, basal ganglia; g , ‘closed’ nRtgate; g ,, ‘open’ nRtgate;
MRF, midbrain reticular formation; nRt, nucleus reticularis tha-
lami; PFC, prefrontal cortex; S1, primary somatosensory area;
Th, ventral thalamus; V1, primary visual cortex (from Newman

et al., 1997).
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based, first, upon biological contingencies of novelty,
need or potential threat and, secondly, cognitive sche-

J. Newman et al.

and somatosensory spaces in a manner that cells correspond-
ing to points in space lie along the same vertical axis

(Merideth and Stein, 1990). Stimulation of these cells by
microelectrodes produces movements of eyes and head...
(LaBerge, 1995, p. 145)

mas, purposes and plans. In keeping with our definition,
we will first add a sub-cortical component for orienting to
“novelty, need, or potential threat”, and then discuss the
much more complex aspects of cortically-mediated
effects upon the system.

This extended version of the model is schematically
illustrated in Figure 3 as a ‘wagon wheel’, with the

LaBerge goes on to describe basal ganglia inputs that
“are of particular importance because they tonically
inhibit activity in the SC cells”. It has long been
thalamus (Th) as its *hub’. The reticular nucleus (nRY) knowrl that the front_al eye fields, and posterior parietal

area “exert strong influences on eye movements and

corresponds to the metal sleeve fitted around the hub. ! ) : .
The upper rim of the wheel represents the cerebral cortex must be considered together with the superior colliculus

(PFC/S1..V1), and closely associated basal ganglia'n accountingf_or...orienting of attention” (p. 142). The;e
(BG). The lower half shows the major sensory systems facts e’mphaS|ze tc\iNCIJ k,e% gs_pectls of dthle_ consclous
and subcortical nuclei whose projections converge upon systgm we are modeling. ) itis polymodal, mtegratmg
the thalamus. The outer ‘spokes’ represent the sensorynOt Just visual, auditory and somatosensory inputs, but

pathways for vision, audition and the bodily senses. motor and ‘h|gher-order’ cortlca! effects; gnd 2) it is
These project, in an orderly topography, to modality- extended, with input/output relations reaching from the
specific nuclei, in the thalamic ‘hub’ As,they ascend brain stem core to association cortices. Indeed, the gen-

towards the thalamus, these pathways give off coIIateraIs,eral term we have used to .descrlt.)e '.t elsewhereyls the
to the midbrain reticular formation (MRF) (see also ’extende:d retlcular—tha}Iamlc activation _system’, or.
Newman et al., 1997). Scheibel (1980) reviewed three ERTAS' (Baars, 1988; Newman and Baars, 1993;
decades of experimental evidence indicating that theseNewman.’ 1995a, 1995b, 1997). .
midbrain collaterals serve as the basis for an initial Tf)e third key as,pect of thg system (as exemplified by
‘spatial envelope’, or global map, of the environment the "wagon wheel’ model) is that I converges on the
surrounding the animal. thalamus. We have _alre_ady _dlscussed this in _terms of

the thalamocortical circuit, which connects to “virtually

Most reticular [MRF] neurons...appear multimodal,

. : . . ( every area of the cerebral cortex” (LaBerge, 1995,
responding to particular visual, somatic and auditory p. 221). Scheibel (1980) described the MRF portion of
stimuli, with combinations of the last two stimuli most

ek : ; the system as:
numerous. The common receptive fields of typical bimodal
cells in this array show a significant degree of congruence.
For instance a unit responding to stimulation of the hind
limb will usually prove maximally sensitive to auditory
stimuli originating to the rear of the organism. These twin
somatic and auditory maps retain approximate register and
overlap the visuotopic map laid down in the...superior

sweep[ing] forward on a broad front, investing the [intra-
laminar complex of the] thalamus and nucleus reticularis
thalami. The investiture is precise in the sense that the
sites representing specific zones of the spatial envelope
(receptive field) project to portions of the nucleus reticularis
concerned with similar peripheral fields via projections from

colliculus...These data might be interpreted to mean that
each locus maps a point in the three-dimensional spatial

envelope surrounding the organism. Further studies suggest

the presence of a deep motor map closely matching and in

both sensory thalamus and sensory association cortices
(p. 62).

The fact that Scheibel's (1980) ‘spatial envelope’

apparent register with the sensory map. (p. 63) projects with some topographic precision upon nRt,

would appear to enable it to disinhibit particular arrays

Molrefr(ra]cent re;earcf:l_hells supprc])rte(_j Sﬁhe'bel S PO nRt gatelets, selectively enhancing the flow of sensory
trayal of the superior colliculus as the visual component <, mation to the cortex. The 'intralaminar complex’

of what Crick and Koch (1990b) termed a ‘saliency map’ (Newman and Baars, 1993) is also integral to the
for eye movements, involved in orienting the animal to ERTAS system, as the: non-specific portion of the thala-
biologicall;_/ relevant st_imuli. Subsequent findings have mocortical CiI’CL;it. It is intralaminar projections which
both conflr!’ned SCh,e'bel.’S f_:malyS|s, and reveale(_j a relay MRF activation to the cortex (illustrated by the
p_umper of "top-down prolectlon§ that modulate activ- vertical MRF-Th projection, above which it branches
ities in MRF. LaBerge (1995) writes: out to all areas of CORTEX). As noted above, Llinas
the superficial area [of the superior colliculus] receives et al. (1994) hypothesize the perceptual unity of con-
strong cortical inputs from V1, V2 and V3 [primary and  sciousness (binding) to be brought about by the global
secondary visual cortex], the deep layers in the monkey synchronization of specific and non-specific circuits via
SC receive their main cortical inputs from the posterior npRt. Scheibel (1980) earlier concluded as much concern-

parietal area (Lynchet al, 1985), from the prefrontal  j,q the role of this extended activation system in ‘selec-
areas (Goldman and Nauta, 1976), and the frontal eye fields tive awareness’

(Leichnetzet al,, 1981). The deep layers contain a map of

visual space that is stacked adjacent to maps for auditory = From these data, the concept emerges of a reticularis
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complex [nRt] selectively gating interaction between speci- cortically-centered view of cognition, from which the
fic thalamic nuclei and the cerebral cortex under the opposed prain stem functions so far described probably seem
but complementary control of the brain stem reticular core rather primitive or trivial (i.e. orienting, controlling eye
[MRF] and the frontal granular cortex [PFC]. In addition, oyements) when compared to cortically-mediated pro-
the gate is highly selective; thus, depending on the nature of oo oaq o ch as language acquisition, pattern recognition,
the alerting stimulus or central excitation, only that portion motor planning, etc. What evidence is there that cortical

of the nucleus reticularis will open which controls the appro- . S
P PP (and other forebrain systems) depend upon projections

priate subjacent thalamic sensory field. The reticularis gate ; - .
[thus] becomes a mosaic of gatelets, each tied to some {0 the thalamus for effecting high-level cognitive

specific receptive zone or species of input. Each is under Processes?
the delicate yet opposed control of: (a) the specifically ~ Early support for such effects, mediated by prefrontal
signatured sensory input and its integrated feedback from projections, was provided by animal experiments under-
cortex [S1...V1]; (b) the reticular core [MRF] with its con-  taken by Skinner and Yingling (1977). They found that
cern more for novelty (danger?) than for specific details selective activation of one portion of a fronto-thalamic
of experience; and (c) the frontal granular cortex-medial trgct could shut down sensory processing in visual,
thalamic system [PFC/BG] more attuned to upper level pt not quditory, cortex. Activation of another ‘spoke’
strategies of the organism, whether based on drive mechan-mc the prefrontal-thalamic tract shut down auditory pro-
isms (food, sex) or on still more complex derivative phe- . but allowed visual inouts to reach posterior
nomenon (curiosity, altruism). Perhaps here resides the cessing, _u a L P - p )
structuro- functional substrate for selective awareness, and cortex. Sk'nner and Ylngllng Wrote. This regult ,'mF_’“,e_S
in the delicacy and complexity of its connections, our source that selective attention emerges via selective inhibition
of knowing, and of knowing that we know (p. 63). in certain sensory channels that the animal nkastw in
advanceare irrelevant to its situation” (p. 54). To inhibit
Here, as well, is a summary description of a neural orienting based upon advanced knowledge is clearly a
substrate for the global allocation of the processing sophisticated use of cognition. Several lines of research
resources of the CNS. All that it lacks is the mechanisms have converged in recent years to support this concept.
for a global competition (Taylor and Alavi, 1993) and Summarizing the current state of knowledge of prefrontal
binding (Llinas et al., 1994) introduced in the previous regulation of subcortical systems, Newman (1997)
section. But we must tie the operations of this thalamus- wrote:
centered sy_stem more closely to those of the cortex _and It is now generally accepted that the prefrontal lobes (with
basal ganglia, or most of the functions routinely studied e cingulate cortex) constitute an ‘executive’ over the

_by cognitive science haye no_place in the model. T_his limbic system mediating such functions as working mem-
introduces an exponentially higher level of complexity ory, inhibition of conditioned responses, and goal-directed
(one of the hazards of dealing with global systems). attention (see Fuster, 1980; Goldman-Rakic, 1988b;

One of the values of GW theory, however, is that it Damasio, 1994; Posner, 1994). More recent research on
provides a framework for understanding this complexity. ~ the basal ganglia (see reviews by Groenewegen and
First, it holds that the vast majority of cognitive functions ~ Berendse, 1994; Parent and Hazrati, 1995) have suggested
are carried out, non-consciously, via changing arrays of that they constitute a ‘motor programming extension’ of
specialized, modular processors. This is reflected, anato- € frontal lobes as well — routed through the thalamus

. . . : . (p. 112-113).
mically, in the immense number of cortico—cortical con-
nections in the human brain, outhumbering those with  Newman (1997) goes on to cite evidence (Parent and
subcortical nuclei by nearly ten to one. Thalamocortical Hazrati, 1995) that the BG ‘extension’ (like the thalamo-
projections are comparatively sparse, but serve at leastcortical loops) sends rich, collateral projections to nRt
two essential functions: 1) transmitting sensory inputs to that effect not only its ‘gating’ of motor programs, but
the primary cortical areas (S1, Al, V1, Figure 3); and 2) hippocampal-mediated episodic memory functions (see
providing a means to selectively amplify/synchronize also Newman, 1995b).
cortex-wide activation (Section 2). Finally, we would note that cortico-thalamic projec-

GW theory also reminds us that conscious functions tions to nRt and associated specific nuclei are both more
operate upon an information load about the size of work- topographically precise (Mitrofanis and Guillery, 1993)
ing memory. Thus, we are talking of a highly coarse- and more pervasive than had once been thought (Jones,
grained level of processing. In this context, global 1985). Llinas and Pare (1991) estimate that, for every
attention is (at least) a second-order operation, acting axon the thalamus sends to the cortex, the cortical area
upon a highly selective stream of information. All this it projects to reciprocates with ten. Given the modular
is to say that a relatively low density of widely distrib- architecture of the neocortex, one might reasonably
uted, yet highly convergent, circuits could be all that are predict that these cortico-thalamic projections exert
required to create a conscious system; and these are thdighly differentiated influences upon the flow of infor-
very characteristics of the neural model we have mation through the thalamus. Efforts by experimental
described. neuroscience throughout the 1980s to elucidate the

However, most neural network modelers take a precise effects of cortico-thalamic projections were
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frustratingly inconclusive. But a recent review by Buser presented, it is not executive attentional processes, but
and Rougeul-Buser (1995) notes: the selective binding of coalitions of active cortical
modules via a thalamocortical competition which is the
new and perhaps consistent findings, indicating that the sine q.ua norfor the generat'on of a coherent stream of
visual cortex appears to have a major action down onto CONSCiOUS representations. Examples of these aspects
the lateral geniculate nucleus, which may generate Of the GW model have already been offered.

thalamic oscillations (Funke and Eyse, 1992; McCormick
and Krosigk, 1992; Krosigk et al., 1993; Sillito et al., 1994)
(p. 252).

The situation has however recently swung back, due to some

4. SECOND-ORDER MODELS FOR
GLOBAL GATING

While additional research is clearly needed, these Let us return to the ‘wagon wheel’ model illustrated in
recent findings suggest that Scheibel's (1980) early Figure 3, and transform its components into a connec-
model of the converging influences of projections upon tionist GW, with an executive system. To simplify
a thalamic hub — with the addition of basal ganglia things, the network will have only two sensory modules,
inputs to nRt and the intralaminar complex — remains one for processing auditory (Al) inputs, and one for
a viable model for “global attention”, including the visual (V1). In order to provide second-order control
influences of cortically generated “schemas, purposes over processing in both modules, we will add a gating
and plans”. Newman (1997) discusses the contributions module (nRt) with the same number of units as connec-
of the ‘cortico-basal ganglia—thalamo—cortical loop’ to tions in each sensory module. Each gating unit sends its
memory and volitional processes in greater detail. The output to a corresponding connection in Al and V1. The
complexities of this system are beyond the scope of the connections between the gating units and sensory units
models presented here, although Monchi and Taylor are multiplicative. As Rummelhart et al. (1986) write
(1995) and Taylor and Michalis (1995), among others, about such connections:
have developed neural models simulating functions of . . L -

if one unit of a multiplicative pair is zero, the other member

the BG and hippocampal sy§tems. . of the pair can have no effect, no matter how strong its
What we propose to do instead is present a much output. On the other hand, if one unit of a pair has value

s?mpler, but highly relevant, connectionist mo.del that 1, the output of the other passe[s] unchanged to the receiving
simulates the sorts of second-order operations one unit....In addition to their use as gates [such] units can be

would predict in a GW system employing a gating net- used to convert the output level of a unit into a signal that

work to selectively filter and integrate inputs as a func- acts like aweight connecting two units (p. 73).

tion of central knowledge stores. The basic heuristic for

this type of model is described in Newman and Baars In this manner, a fully connected gating module can

(1993). It posits that actually program the connection strengths of one or more

. . input modules to process a particular type of input,
prefrontal cortex acts as an executive attentional system by f le oh lett int ds E .
actively influencing information processing in the posterior Oor éxample phonemes, or leters, INto woras. For maxi-

cortex through its effects upon the nucleus reticularis. In this MU flexibility, it is preferable that the gating module
manner, the highly parallel [processing] functions of the Not have fixed connections either, but simply relay
posterior cortex are brought into accord with increasingly gating (connection strength) information from a central
complex and intentional cognitive schemes generated module to which its units are connected. The central
within the prefrontal regions of the brain (p. 281). module contains (in this case) word-level knowledge
needed to program the sensory modules to process
A defining property of an executive system is that it words. Another central module might be specialized
acts upon other sub-systems, modifying their inputs for for knowledge for processing visual scenes or tactile
its particular purposes. Posterior cortical areas act moreshapes. To complete the system, each programmable
like arrays of quasi-autonomous processing modules (orinput unit sends a corresponding connection to a central
local experts) — the bread and butter of NN simulations. module unit.
Note that an executive system is notessentialequire- The highly simplified network just described is really
ment for consciousness. That this is the case is illustrateda variation on a ‘Programmable Blackboard Model
by the literature on extensive damage to the frontal for Reading’ developed by McClelland (1985, 1986).
lobes of the brain. PFC damage results in significant Its four modules correspond to those labeled in
deficits in such purposeful activities as: the inhibition Figure 4: a Central Module (PFC); Connection Activa-
of inappropriate responding; switching of response set, tion System (PFC-nRt); and two Programmable Modules
planning and monitoring of actions, etc.; but produces (A1, V1). The connections described above are shown
little or no alteration in basic mental status. Indeed, in Figure 5 (note: McClelland’s modules are identical,
many patients with frontal lobe pathology perform at and used only for reading (not hearing) words, but theo-
pre-morbid levels on intelligence tests (Walshe, 1978; retically they could be programmed to processy type
Damasio, 1994). In terms of the GW model we have of input).
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FIGURE 4. A simplified example of a Connection Information
Distributor (CID), sufficient for simultaneous bottom-up process-

ing of two two-letter words. The programmable modules consist

of the programmable letter (PL) and programmable word (PW)
nodes, and programmable connections between them (open
triangles). The central module consists of a set of central letter
(CL) nodes and a set of central word (CW) nodes, and hard-wired
connections between them (filled triangles). The connection
activation system includes the central word nodes, a set of con-

nection activator (CA) nodes, and hard-wired connections
between them. Connections between the central knowledge
system (central module plus connection activation system)
and the programmable blackboard are shown in Figure 6 (from
McClelland, 1985).

In the brain, of course, the primary areas (A1, V1, S1)
send no direct projections to PFC; but they do send
convergent projections (as in Figure 5) to secondary
association areas, which send projections directly to
PFC (as well as posterior association areas). Although
these feed-forward projections to PFC are less topo-
graphically precise (e.g. the receptive fields of visual

neurons in the secondary areas are much larger), they

maintain a fair degree of parallel distribution, indicating

that much of the prefrontal cortex is as modular in its

organization as the posterior ‘association’ cortex. More-
over, PFC ‘modules’ reciprocate these parallel, feed-
forward projections, although in a more divergent pattern
(Goldman-Rakic, 1988a; LaBerge, 1995). Interestingly,

this convergence/divergence pattern is paralleled by
the connections in Figure 5 for the central module.

In the actual prefrontal cortex there are hundreds (if
not thousands) of ‘central modules’. Feed-forward inputs
allow them to use and store highly processed infor-
mation from the posterior (sensory) cortex. Of course,
feedback (or re-entrant) connections enable PFC to influ-
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FIGURE 5. Each CA node projects to the corresponding connec-
tion in both programmable modules, and each central letter node
receives projections from the corresponding programmable
letter node in both programmable modules. The inputs to two
central letter nodes, and the outputs from two CA nodes are
shown (from McClelland, 1985).

inputs are processed (re the ‘knowing in advance’
Skinner and Yingling (1977) attributed to PFC-Th
circuits). This is where direct projections to the primary
processing areas (actually the thalamocortical circuit)
could prove quite valuable. Instead of the sensory input
units (Al1-Th; V1-Th) responding based upon fixed
connection strengths, a central module could program
input modules to process (i.e. pay attention to) particular
categories of inputs. McClelland (1986) calls this form
of activation ‘connection information distribution’ (CID)
and compares its benefits to those of:

the invention of the stored program....The use of centrally
stored connection information to program local processing
structures is analogous. It allows the very same processing
structures to be programmed to perform a very wide range of
different tasks.... [CID] also carries out a form of what is
known in production systems as ‘resolution’, binding the
right tokens in the blackboard together into higher-order
structural patterns (p. 165).

Finally, he notes analogous aspects in the CID’s opera-
tions to ‘working memory’, a process which has been tied
by neuroscientists to a prefrontal/thalamic/hippocampal
system (e.g. Fuster, 1980; Goldman-Rakic, 1988Db).
These comparisons between the Wagon Wheel and Pro-
grammable Blackboard models, of course, have purely
heuristic value (although McClelland’s (1986) PABLO
simulation of his model contained a sufficient program-
mable blackboard to read lines of text up to 20 characters
long). But the use of gating networks to generate useful
‘higher-order structural patterns’ is fairly widespread.

ence processing in the posterior areas as well. But such For engineering problems such as object recognition

divergent and indirect feedback pathways are poorly
suited to exercising momentary, direct effects upon pro-
cessing at the input level. Nor could such centrally-stored
knowledge be employed to guide, or anticipate, how

and robot motion control, the concept of combining
modular networks using gating connections has been
actively exploited to develop highly reliable systems
(Jacobs et al.,, 1991; Hampshire and Waibel, 1992;
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FIGURE 6. Schematic diagram of modular neural networks with three expert networks and a gating network. The output of the entire
architecture, denoted by Y, is Y= g1y: + 92¥2 + 93y3, Where y; denotes the output of the ith expert network.

Jacobs and Jordan, 1993; Cho and Kim, 1995). The keythere is still some indirect coupling because if some
issue in this approach is how to combine the results other network changes its weights, it may cause the
of the individual networks to give the best estimate of gating network to alter the responsibilities that get
the optimal overall result. Architectures used in this assigned to the expert network.

approach consist of two types of networks: an expert These examples from engineering applications of
and a gating network. Basically, the expert networks multiplicative, gating networks are not based upon the
compete to learn the training instances, and the gatingWagon Wheel model or, for that matter, any specific
network facilitates cooperation by the overall mediation neural circuitry. Yet Koch (1997) notes that

of this competition. The expert networks may be trained S . .
. . . Multiplication is one of the most common operations carried
separately using their own preassigned sub-tasks and out in the nervous system (for example, for estimating

diﬁeripg modqlities (e.g. vision and touch), or the same motion or the time-to-contact with an approaching stimulus)
modality at different times (e.g. the consecutive 2-D (p. 208).

views of a rotating 3-D object). The gating network
need only have as many output units as there are expert We are not aware of any studies of either the axon
networks. collateral or dendro—dendritic projections in nRt demon-
To train such a gating network, Hampshire and Waibel strating multiplicative properties, but Mel (1994) has
(1992) developed a new form of multiplicative connec- modeled such connections in the NMDA-rich dendritic
tion, which they call the ‘Meta-Pi’ connection. Its func- trees of cortical pyramidal cells. He postulates that they
tion is closely aligned with predecessors described in perform nonlinear pattern discrimination and correlative
McClelland (1986). The final output of the overall operations. Given the role of the bidirectional dendritic
system is a linear combination of the outputs of the trees of nRt cells in globally synchronizing the thalamo-
expert networks, with the gating network determining cortical circuit (Taylor and Alavi, 1993; LaBerge, 1995),
the proportion of each local output in the linear it seems likely that they will eventually be found to have
combination. Figure 6 illustrates this architecture with important computational functions as well.
three expert networks. Even if it transpires that synchronous oscillations, not
The final output of the overall system is a linear multiplicative connections, are the basis for the ‘gating’
combination of the outputs of the expert networks, with functions of nRt upon the thalamocortical circuit, NN
the gating network determining the proportion of each models based upon Meta-Pi connections may still be
local output in the linear combination. The Meta-Pi useful for simulating global workspace systems. The
gating network allocates appropriate combinations of use of Meta-Pi connections has already been extended
the expert networks when stimuli are assessed to beto synchronous oscillators in modular cortical neural
novel, while an automatic (‘non-conscious’) decision networks. Indeed, computational simulations of phase-
process operates in instances where a single expert catocked oscillations characteristic of neurons involved
execute the task. This coupling of modular, expert in the ‘binding’ of visual (Grossberg and Somers,
networks and gating controls produces new levels of 1991; Sompolinsky et al., 1991) and auditory (Vibert
cooperative behavior. The expert networks are local in et al., 1994) features of an attended object have already
the sense that the weights in one network are decoupledbeen extended to synchronous oscillators using Meta-Pi
from the weights in other expert networks. However, connections. Such oscillatory circuits have also been
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employed in modeling storage and retrieval in pattern Eccles, J. C. (1966)Brain and conscious experiencéleidelberg:

recognition tasks (Yao and Freeman, 1990). e ?p”"gg'\'\/ﬂe”i‘gég A ered 2 biological h .
In this paper, we have introduced a collection of Edeiman G.M.(1989)he remembered present, a biological theory o

. . . consciousnesNew York: Basic Books.
neuroscience and NN models for attention and binding, gynke, k.. & Eyse, U. T. (1992). EEG-dependent modulation of

resource allocation, and second-order gating, which  response dynamics of cat dLGN relay cells and the contribution
share important features and parallels with a Neural of corticogeniculate feedbacBrain Research573,217-227.
Global Workspace System for conscious attention Fuster, J. M. (1980)The prefrontal cortexNew York: Raven Press.

. Gazzanigga, M. S. (1985} he social brain, discovering the networks of
(Newman and Baars, 1993). While the NN models we the mind New York: Basic Books.

have presented only implement partial aspects of the Goldman-Rakic, P. S. (1988a). Changing concepts of cortical connec-
GW system, and even our Wagon Wheel model largely tivity: parallel distributed cortical networks. In P. Rakic and
neglects the influences of memory and affective systems  W. Singer (Eds),Neurobiology of the cortexpp. 177-202).
upon the stream of consciousness, the outlines of a _ Berlin: John Wiley and Sons Ltd.

general framework for understanding CoNnscious pro- Goldman-Rakic, P. S. (_1988b). The prefrontal contribution to working
memory and conscious experience. In O. Creutzfeld and J. Eccles

cesses should be discernable (see Newman, 1997 for a

fuller account). This is certainly great progress, given
the virtual terra incognitaconsciousness has been for
most of the history of science.
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Abstract—The paper outlines a three-stage neural network model for (i) the emergence of consciousness at its lowest
level of phenomenal experience, (ii) the development of actions on the emerged conscious activity so as to generate
higher-order consciousness. In the model, the lower first stage involves modules transforming inputs into various codes.
It is only at the second level that further modules are activated in a manner which brings about the emergence of
phenomenal awareness. The evidence in support of the initial two-stage model is briefly summarised. The two-stage
model is then developed by means of a detailed neural framework which allows analysis of the extended duration of
activity in posterior working memory sites.The third stage is then described in terms of known neural structures in the
frontal lobes, and the manner they might support the creation of higher consciousness is briefly preSeh®ad.

Elsevier Science Ltd.

1. INTRODUCTION which are supposed to support the initial appearance
of consciousness of the incoming stimuli. The two

guestion marks attached to the flow of activity in

Figure 1 are related to the following basic questions
about consciousness:

The race for consciousness has started (Taylor, 1998).
There is a large amount of interest in the neuroscience
and neural network community on the topic. Various
groups are seriously trying to track it down by the use
of non-invasive instruments (PET, fMRI, EEG and 1. Q1: how is content supplied to the conscious experi-
MEG) by observing the networks of connected modules  ence once it has been created?

which function so as to enable various high level cogni- The second question mark is attached to the “hard”
tive tasks to be solved by the brain. question of consciousness (Levine, 1983):

The current body of knowledge on consciousness is
rapidly increasing. There is already a large reservoir of
material on it discovered by psychologists over the last
century, and this is now being combined with the results
coming from non-invasive instruments, and at single cell  These two questions are closely related to each other,
level in monkeys, to attempt to indicate where and how but are logically distinct in that content may have many
consciousness arises, and is supported in the brain. possibilities, but the underlying phenomenal experience

Various models of consciousness have been suggestedtself appears to have a relatively constant set of attri-
in the past. These give answers to the two questions butes (which will be considered in due course). Question
indicated in Figure 1 associated with the question 1 attempts to explain how these variations of awareness
marks inserted there. The figure shows schematically occur, whilst question 2 explores the principles behind
the preprocessing of input by the modules labeled 1, that emergence in the first place. It might be suggested
and its further analysis by the modules 2. It is the latter that one should answer question 2 before question 1,

but indeed the former is very hard to give a convincing

Acknowledgements: The author would like to thank Prof. H.-w. €Xplanation. That is why a number of reasonably
Mueller-Gaertner, Director of the Institute for Medicine, for —acceptable proposals have been made to answer question
hospitality at the Institute where this paper was written, and to his 1, but with no acceptable solution to question 2 in sight.
cqlleagqes A. Ionnid_es, L. Jaencke, S._ Posse and J. Shah for The most promising of the answers to question 1lisin
stlmulatl_ng co_nversat!ons. | would also like to thank S. Petersen terms of some form of feedback from earlier memories
for the simulation of Figure 10. R N A N !

Requests for reprints should be sent to Dept of Maths, King's POth of semantic and episodic form. Thus, there is the
College, Strand, UK; E-mail: j.taylor@mth.kcl.ac.uk. ‘Remembered Present’ (Edelman, 1989), the ‘Relational

2. Q2: how does the transformation of activity from the
modules 1 to those in 2 cause phenomenal awareness
to arise in the first place?
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FIGURE 1. The basic two-stage model of awareness. Module 1 — A B, G

activity in module 2 is that on which phenomenal awareness is |
based. The two question marks denote the questions Q1 and Q2 — A B, Cs
stated in the text.

I I ]

L . i , FIGURE 2. The three-stage model for the creation and control of
Mind (Taylor, 1973, 1991) and the ‘Predicted Present awareness. The modules at the lowest or first stage are denoted

(Gray, 1995) as candidate versions using, in one way or A, , A, , ... and are involved only in low level feature analysis in
another, relational structures involving past memories the appropriate modality. A number of modules are involved
in one form or another. However. these approaches doin such processing. At the next stage are sites of ‘buffer memory
not seem to hel solvé uestion '2 It is the purpose of in posterior cortex, denoted B 1, B, .... They are fed by prepro-
8 p X a : purp cessed activity from first stage modules, and are coupled to each
the first part O_f this paper to propose the bare bones other so as to run a competition by lateral inhibition so as to
of such a solution. select the most appropriate percept, given earlier context still
There is also the unresolved question as to how further presentin activity'traces. on these.modules, to enter phenomerﬁal
higher level Cognitive experience arises and is related to awareness. The final third stage is composed of modules which

that of bhenomenal experience. This leads to our third are frontal and possess attentional feedback control both to
at or pnen Xperi ' I u ! the second stage modules, so as to refresh activity there,

question: and to the first stage modules to reduce or increase stimulus
Q3: Is there a dissociation between higher level cog- selectivity. Feedback is shown explicitly from the third to lower

nitive processes (thinking’ p|anning, Se|f-awareness) and stages although it will also be present from the second to first
the lower level phenomenal experience, and if so what Stage (not all feedback is shown explicitly).

are the additional neural structures and mechanisms

which support the higher level processes?

There has already been acceptance of some level ofstage in the model) using the notion of ‘bubbles’ of activ-
dissociation between passive awareness and controlledty which are formed in neural models with enough
cognition in presenting the two-stage model of Figure 1, neurons and suitably strong recurrent excitatory and
since otherwise it would not be possible to leave out inhibitory connections (Amari, 1977; Taylor, 1997a).
the higher levels. The three stage model of Figure 2 Such models have recently been suggested as explaining
does assume some dissociation but may simply bethe development of observed orientation sensitivity in
regarded as a summary of known anatomy, with the primary visual cortex (Douglas et al.,, 1995; Somers
modules at stage 2 being in posterior cortex and stage-et al., 1995; Ben-Yishai et al., 1995). The purpose of
three modules in frontal lobe. However, the process of Section 4 is to discuss the implications of the resulting
modeling the actions of the various parts of the more dynamical activity for the two-stage model of the
complete structures of Figure 2 would need to be per- emergence of phenomenal consciousness.
formed with some knowledge of the level of any such  Detailed neural models are then briefly summarised
dissociation. That will be considered at a later stage for
of the paper; for the moment we will assume that the
methodology we are adopting, of modeling the lower
two stages before attacking the third stage, will have
some chance of being successful.

The detailed contents of the paper are as follows. It
commences in Section 2 with an outline of the two-stage
neural model for the emergence of consciousness. In this
model the lower first stage involves modules transform-
ing inputs into codes in the visual or other modalities. It
is only at the second higher level that further modules are
activated in a manner which brings about the emergence
of phenomenal awareness. The evidence in support of
such a two-stage model will be briefly summarised in
Section 3.

The two-stage model is then developed in Section 4  The initial two-stage model is then extended to a third
by means of a detailed neural framework which allows stage, as shown in Figure 2, in Section 5. There is much
analysis of the extended duration of activity in posterior investigation presently as to the extent of possible disso-
working memory sites (which are posited as at the second ciations between posterior sites of working memory, the

performs preprocessing in various modalities and codes; \

1. the initial emergence of consciousness in terms of
semi-autonomous ‘bubbles’ of activity in a neural
system of the form of a continuum neural field
theory (CNFT), as developed in a two-dimensional
context (Taylor, 1997a);

2. application of CNFT to give brief initial explanations
of various visual phenomena: apparent motion (due to
moving bubbles) and stabilised image effects
(destruction of bubbles);

3. how working memory modules, with extended tem-
poral activity, can arise as from CNFT for suitably
high density neuronal content (together with suitable
ionically-driven adaptation);
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so-called ‘buffer sites’ of short term memory, and the important feature in Table 1, that of the temporal aspect
anterior ‘active memory’ sites (Fuster, 1993). The of duration, is a crucial part of the general features of
nature of this evidence will be summarised and a third- the buffer stores in the psychologically-based working
stage model suggested in Section 6 which appears to bememory model (Baddeley and Hitch, 1974; Baddeley,
consistent with presently know data. 1986). These buffers have input from semantic-level

The paper finishes with a discussion, particularly on coding, where all possible interpretations (in the case
how the anterior activations can create the experiencedof words) have already been accessed in the semantic
features of higher consciousness. memory, so at the end of the stage 1 processing, before
the buffer store is attained (Marcel, 1980; Levelt et al.,
1991).

The two-stage model of Figure 1 has been developed
The two-stage model of the emergence of awareness inin a neural network implementation elsewhere (Taylor,
the brain is shown in Figure 1. There is supposedly no 1996a). It uses semantic-level coding of activity at stage
awareness of activity in stage 1 modules, whilst it is in 1 and then buffered activity at stage 2, with lateral
modules at stage 2 that activity can enter awareness.inhibition at this stage to achieve singling out of the
What sort of neural networks would be suitable for contextually appropriate representation at the higher
such a separation? Some features of them have beerstage. It is this activity which then enters awareness
summarised in Table 1, derived from analysis of intro- by being broadcasting around the ‘global workspace’ of
spection by psychologists and philosophers (and sum-(Baars, 1988) or, in terms of the three stage model
marised in Metzinger, 1995). As seen from the table, of Figure 3 gaining access to the anterior sites of working
there are spatial and temporal features of the networks memory. Once at that third and highest level the material
which are of great importance. Thus, there are spatial can be rehearsed or manipulated as desired. A neural
features which require localised representations in setsnetwork model of this higher level processing will also
of well-connected modules which are also well coupled be described later in the paper.
to those modules involved in higher cognitive processes Besides the construction of a model of the two-stage
(the modules C of the third stage of processing in process, and due to the plethora of buffer stores now
Figure 2). observed in posterior cortex in various modalities and

The temporal features are also very specific, requiring codes (Salmon et al., 1996; Paulesu et al., 1993; Smith
suitably long temporal duration of activity (of the order and Jonides, 1995) there must be some way of combining
of 300—500 ms) for phenomenal experience (PE) to arise their various activities so as to achieve a unified experi-
but with little time between one experience and the ence of consciousness. Control structures in the brain
next. Finally, there are emergent features which are are thereby needed which produce global correlations
also non-trivial, involving one-way and rapid emergence between the various component working memories. In
of PE at the highest level of a processing hierarchy particular, these control structures should support com-
with no ability to gain awareness of the activity of petition between various inputs, when suitably encoded,
lower modules of stage 1. and only allow certain, most relevant, memories to be

Coding at the highest level of activity emerging activated and related to the corresponding winning input.
into PE is most simply obtained by assuming that it Such structures may also be involved with assessing
arises from those first stage modules which are also the level of discrepancy of new incoming input with
coded at the second-stage level. The other mostthat predicted from later parts of activated stored pattern
sequences. These aspects were considered (Taylor, 1992,
1993, 1994; Taylor and Villa, 1997), in terms of possible
networks which could perform pattern matching and
sustain competition. One of these involved the nucleus
reticularis thalami (NRT), a sheet of mutually inhibitory

2. THE TWO-STAGE MODEL OF AWARENESS

TABLE 1
Criterial features on neural networks to support PE

Spatial features:

(a) localised representations in localised modules

(b) modules well-coupled together

(c) modules well-coupled to higher-level modules
Temporal features:

(a) temporal continuation of activity

(b) time required to achieve PE activation

(c) no gap between different PE activations
Emergent features:

(a) one-way creation of PE activation

(b) PE created at highest level of a hierarchy

(c) rapid emergence once begun

(d) no ability to probe lower levels supporting PE but below PE

creation level

neurons interposed between thalamus and cortex (see
Figure 3).

It was suggested that the thalamus-nucleus reticularis
thalami(NRT)-cortex complex may support such activ-
ities. This is due to the fact that the NRT is composed
almost entirely of inhibitory neurons which are fed by
activity coming from thalamus up to cortex and also
by reciprocal cortico-thalamic connections. Since NRT
also sends inhibitory inputs down onto thalamus, it is
clear that such inhibition (which could also function as
a release from inhibition if the NRT targets inhibitory
interneurons in thalamus more effectively than the
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Cortex

Thalamus

Nucleus
Reticularis
Thalami

Main Nuclei of Thalamus Cerebellum

FIGURE 3. The Nucleus Reticularis Thalami (NRT) is a sheet
of inhibitory neurons surrounding the upper and lateral parts
of the thalamus. It only gives output to the thalamus as well as
by lateral connections to other parts of itself, whilst receiving
collaterals from both thalamo-cortical and cortico-thalamic
axons.

excitatory relay cells to cortex) could exert a powerful
control influence on cortical activity. This has been
shown experimentally to be the case, with global effects
of the NRT sheet especially being observed in the
manner in which NRT controls the nature of cortical

J. G. Taylor

Cortex
(volts)

NRT
(volts)

ouT
(Thalam.)

ouT

(Inhib.)

Input
(volts)

FIGURE 5. Results of a simulation of the circuit of Figure 4 for a
line of 100 cells, for an input given on the bottom line. There is a
global wave of activity set up over the NRT, as seen in the activa-
tion curve iin the second line of the figure. This causes a reduced
level of input to cortical cells, as their activity indicate, shown on
the top line.

the NRT will try to damp down activity on it elsewhere

patterns of activity in sleep. There is also some evidence py |ateral inhibition, the NRT can sustain ‘bunched’

for a similar global form of control by NRT on allowed
cortical activity in the non-sleep states (Skinner and
Yingling, 1977; Villa, 1988).

It is possible, in a general manner, to understand
this global control achieved by NRT of cortical activity
in the following manner. Since any localised activity on

Cortex lNRiI’ Thalamus
Ny Ty 7_f3
~— L (N,
N, P 7‘f2
—¢
N, T 7-f1
[ S—

FIGURE 4. Circuit used to simulate the global competitive control
action of the NRT over thalamic inputs to cortex, and hence to
cortical activity itself. Input | enters both the main relay cells,
denoted T, and the associated inhibitory interneurons IN in tha-
lamus, and then feeds topographically to cortical cells C. There
are collaterals from the cortico-thalamic axons and the thalamo-
cortical ones feeding the NRT cells N, whcih are also laterally
connected. These latter also feed back to both the inhibitory
and relay cells in the thalamus, having greatest inhibitory effect
on the former (from Alavi and Taylor, 1993).

spatially inhomogeneous activity, in which competition
between neighbouring thalamic or cortical inputs onto it
is occurring. This spatially structured activity may occur
globally over the whole NRT sheet if it is well enough
connected laterally, as is seen to be the case in spindle
generation in sleep (Steriade et al., 1990). In this manner
the NRT may function as a global controller of cortical
activity. As such it appears of great relevance to include
in models of the control circuitry for consciousness
(Taylor, 1992, 1993, 1996b; Alavi and Taylor, 1992,
1993, 1995; Baars and Newman, 1993, 1994; Harth,
1995; Kilmer, 1996). Known local circuitry (Steriade
et al., 1990) was used to construct a simulation of
the coupled thalamo-NRT-cortical system following
the circuit of Figure 4; the resulting activity arising
from a simulation of 100 cortical neurons is shown in
Figure 5. The resulting extended two-stage model is
shown in Figure 6.

In summary the proposed two-stage model has the
following features:

1. coding occurs up to semantic level (denoted SM) in

the first (preprocessing) stage in Figure 6,

. there is feedforward transfer of activity from the first
to the second stage at approximately the same level of
coding, with the feedforward map being

. SM— WM

. in a given code (as shown in Figure 6),

. duration of activity is longest of all posterior modules
in the WM of the second stage,

6. there is a process of global competition between

[S20F ~ V]
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The reason for such a challenge is not too difficult
to discern. If the two-stage model is true then there
must be some properties possessed by the stage-2
modules which are not by the stage-1 modules. Such

IN properties should be open to direct analysis by experi-
ment and modeling, and perhaps allow the manner in
which awareness is created to be determined. On
the other hand, if there were no special modules in the
brain supporting awareness then consciousness could
preserve its monolithic mystery; it would still be some
unknown feature possessed by a complex enough set of
nerve cells but not one we can yet (if ever) see how to
probe. Of course the two-stage model shades into the
one-stage, monolithic one as the preprocessing stages
of Figure 1 reduce in size and importance. However
the existence of any modules at the non-aware level

NRT-THALAMUS

FIGURE 6. The resulting more detailed first two stages of
the networks of the 3-stage model. The various features are

would still destroy the monolithic approach and make
the task of probing consciousness more hopeful.

There are two main sources of support for the two-
stage model: altered experience brought about by defi-

discussed in the text. cits, and that caused by suitably subtle paradigms for

normal people. The first class contains modification of
activities on different WMs, supported by the many forms of experience due to brain damage brought
TH/NRT/C system, about by accident or disease. All of these are germane to
7. there is a strong reciprocal connectivity between the the general program of explaining the mind in terms of
posterior WM sites and frontal areas at the highest the brain but some are more crucial to the task at hand,
level of coding (to allow rapid and effective access that of supporting the two-stage model, so will be
to the frontal ‘active’ working memory sites). Such  described briefly in this section.
connections are observed neuroanatomically. The two most important deficits to be discussed here
The above model of the two-stages of phenomenal &€ those of neglect and of blindsight. Neglect involves

awareness leaves unanswered many detailed points. If1€ inability to notice inputs to one side of the body.
particular: hus, a patient will be unable to notice one side of

_ . o their field of view; if such a patient is shown a picture
1. what is the dynamical origin of the temporally containing two houses, placed one above the other, with
extended activity traces on the working memory one of the houses having flames emerging from its left

sites?
. how are the codes in the WMs built up?

N

side, then the patient may well prefer the house without
the flames if asked to choose between them. This and

3. how do features become bound across codes andother tests (Bisiach, 1988) indicate that the patient has

modalities?

knowledge up to a high level about the neglected side of

4. what is the temporal dynamics of the emergence of their field of view but it is not part of their phenomenal

awareness?

Answers to some of these questions (especially the 1st,

experience.
Blindsight is a similar phenomenon in which there is

2nd and 4th) will be developed in Section 4. Before that knowledge without awareness. It is a phenomenon which

has been well documented (Weiskrantz, 1986), and

we turn in the next section to describe some of the experi- ,
mental basis for the separation of the emergence of 9cCUrs to those who have lost a part of the primary

awareness in two parts, as the 2-stage model claims. visual cortex and so cannot see things in that part of
’ the visual field. Yet they have knowledge of moving

spots of light in their blindfield, since they can guess
above chance as to where a spot of light has moved
across a screen in front of them. It has even been
The two-stage model supposes that there are two sorts offound, in some cases, that the patient possesses some
cortical processing: firstly at the level of the stage-1 form of awareness of the movement-termed ‘contentless
modules in Figure 1 and supporting neural activity of awareness’ (Weiskrantz et al., 1995), if it is fast enough.
which there is no direct awareness, and secondly that atThus, it would appear as if there is still the ability of
the level of stage-2 modules of Figure 1, of which there is modules after V1 (the primary visual area) to create
direct awareness. This is not a new idea although it hasawareness provided there is a large enough input by
been severely challenged in the past. some alternate route.

3. EXPERIMENTAL SUPPORT FOR THE
TWO-STAGE MODEL.
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Besides the cases brought about by damage and |, unattended condition
disease there is also the phenomenon of ‘normal blind-
sight’ (Kolb and Braun, 1995). A subject is required to z
pick out from an array of short bars oriented in a parti- 3 I 5 !
cular direction a small subset oriented in the perpendi- Stages

cular one. Itis found that, provided the field of oppositely
oriented bars is small enough, the subject is not aware of
them but can be correct as to where they are more often

than by chance alone. Here again there is knowledge )

without awareness, so that the orientation analysis, per- passive awareness

formed very likely in V1, is producing knowledge which z

is below the level of awareness. 3 2 1
Further support for V1 being below the level of aware- Stages

ness has also been given by an experiment which uses
the adaptation of subjects to oriented bars, which takes
place over about 5 s of viewing the bars (He et al., 1996).
Once such adaptation has taken place, and before recov-
ery, the contrast threshold for detecting oriented bars of
the same orientation is found to have increased consider-
ably. If the bars were ‘crowded’ by having bars of oppo-
site orientation surrounding them in the field of view, Stages
loss of awareness of the particular bars now occurs but FIGURE 7. The levels of activation of the various modules of the
there is still an increase of the threshold for detecting 3-stage model for a given input under the three conditions of a)
bars presented at a variable contrast thresholds. The pheignore b) passive awareness c) directed attention. Under condi-
nomenon of crowding is also found to be asymmetric tion (b) both the first two stgge mgdules are activated, whilst
between the upper and lower halves of the field of under (c) all are on. 'I.'her'e will be d|fference§ gxpected between
. . the total levels of activation across the conditions due to feed-
view, an asymmetry not possessed by V1. This means back modulation, so the levels in the different conditions are
that V1 is involved in the adaptation to the orientation normalized.
analysis but not in the final production of awareness. As
the authors concluded ‘activation of neurons in V1 is have about equal numbers of neurons firing both for
insufficient for conscious perception’. the percept they support (in terms of direction of
This is further supported by the so-called waterfall motion, for the paradigm in which the rivalry is between
effect or ‘motion after-effect’ (MAE). This occurs as two sets of moving bars going vertically upwards versus
an adaptation after about 30 seconds of viewing a moving moving downwards; a neuron supports a movement
scene; on cessation of the motion there is an apparentdirection if it fires preponderantly when that direction
motion of the now static scene in the opposite direction. of movement is presented) and the opposite one. As
The time course of this has been investigated under fMRI they wrote, ‘The majority of cells in all areas continue
(Tootell et al., 1996a) where they detected in subjects to respond even when it is perceptually suppressed'.
continued activity in the motion-sensitive area V5 for However their most recent analysis in the inferotemporal
about the same length of time that the MAE persists in area (Sheinberg and Logothetis, 1997) has shown that in
humans (about 9 s). even more interestingly they areas TE and TEO there is now a majority of active
observed (Tootell, 1996b) a longer time course of the neurons in favor of the percept being experienced.
effect (by about 3 s) in higher visual areas beyond V5. Where the change-over area is sited is unclear and very
This supports the notion that awareness arises in sitesimportant to discover.
with about 3 seconds of duration of neural activations. There is also support from psychophysical experi-
Single cell data from monkeys are also relevant to the ments on word processing, in which the processing of a
search for the modules involved in the creation of con- word presented visually is probed by a further auditorily-
sciousness. Binocular rivalry (in which different images presented probe word (Levelt et al., 1991). The conclu-
are presented to the two eyes and the percept will switch sion of the study was that a two-stage process occurs in
every few seconds between the two possibilities) has which at the first stage there is automatic processing of
been used in monkeys to determine in which area thereall meanings of the word, which at a later stage are
is a predominance of neurons signaling the percept whenreduced to a suitably unique phonological representation.
it is experienced (which they can be trained to do faith- This is similar to the earlier two-stage ‘logogon’ model
fully). The use of this technique, over several years, has of (Morton, 1969, 1979) both supporting the proposal
led Logethitis and colleagues (Logothetis and Schall, of the two-stage model of Section 2 that awareness
1989; Leopold and Logothetis, 1996) to be able to arises at the second stage.
show that, in vision, certain earlier areas (V1, V2, V4) There is also increasing evidence in support of the

z attended |condition
3 2 1
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FIGURE 8. Differences in activation at various levels of the brain from an fMRI experiment (Taylor, Jaenke et al, 1997) in which the passive
levels had subtracted from them levels due to ignore conditions for listening to a sequence of syllables. Note the non-zero levels of
activity in various sites (threshold set at 5 leads to significance at p < 0.01).

2-stage model from non-invasive measurements. Thus, ifto the passive listening condition; these are candidates
a stimulus is ignored (by means of a suitably distracting for the emergence of phenomenal awareness of syllables.
task in another modality) the activity in cortical areas can The activation in Broca’s area may be part of attetional
be compared with that arising from passive awareness of processing and not due to phenomenal awareness.

the stimulus itself without any distractor. The 2-stage  Similar support arises from a recent MEG experiment
model would lead to the expectation of differences in (Vanni et al., 1996) in which subjects were presented
activation along the lines of that shown in Figure 7. with line drawings of objects or of non-objects, with a
These differences in activation level have been seen invisual mask then delivered 30, 45 or 106 ms later. The
an auditory listening task with an added attentional load, level of the peak amplitude in only one visual area, the
as shown in Figure 8 (Taylor et al., 1997). This is taken right lateral occipital (LO) area, was found to be signifi-
from an fMRI study of five subjects in which there is cantly correlated with the level of awareness of the
comparison between subjects ignoring a sequence of syl-object drawings. This result indicates that the right
lables and listening passively to them. There is clear cortical visual area LO is importantly involved in
activation of regions in BA44/45 (Broca’'s area) and the creation of awareness of the objects described by
auditory areas when one passes from the ignore conditionthe line drawings.
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There is also a set of recent fMRI studies determining and some of their properties in CNFT is given in this
areas activated by various working memory tasks, such subsection, and relevant applications developed in the
as then-back task (Cohen et al., 1996). In this task a following one.
subject observes a sequence of letters or numbers pre- CNFT is based on a model of cortex as a continuous
sented one per second and has to respond when the sam@vo-dimensional sheet of neurons with a lateral connec-
symbol occurs after n presentations (wharbas been  tion with the shape of a ‘Mexican hat’. This allows the
told to the subject by the experimenter before the parti- creation of localised activity, the bubbles, which can
cular run, with values of = 1 to 4). Various areas were persist, and remain localised in spite of the absence of
found to be significantly active compared to a back- input due to the recurrent activity produced initially
ground task, in particular posterior sites in BA 40 and causing repeated firing of the neurons initially activated.
BA 18/19, as well as prefrontal sites whebecame 2 or  The basic CNFT equation is constructed in terms of
greater. This was especially so for the dorsolateral pre- the membrane potential of a neuron and denoted by
frontal cortex (DLPFC), a fact important for our analysis u(x;t), at the pointx and timet. It will be assumed that
of the third stage modules of Figure 2. However this area there is lateral connectivity other neural sheet defined
was not active fon = 1, so corresponding to posteriorly by the lateral connection weight functiom(x — x’)
sited buffer memory (holding an object in memory over between the two neurons at the relevant pont3he
10 s), and supporting the dissociation between frontal connection weight will be usually taken to be of Mexican
(stage 3) and posterior (stage 2) cortical areas underhat form as a function of the Euclidean distance-|x'|.

low-load conditions. There is also an afferent connection weight function
The conclusion of this section is that there is strong s(x, y) from the thalamic positiony to the cortical
experimental support for point x. The response function of a neuron will be

Itaken to be determined by its mean firing rate,
which is given as some functioh of the membrane
d potential u of the relevant cell.

The membrane potentialx, t) will satisfy the CNFT
equation (Amari, 1977)

1. the existence of two separate stages at the lowest leve
in Figure 1,

2. the localisation of activity associated with the secon
stage of Figure 1 to specialised sites in posterior
cortex, usually termed sites of ‘buffer memory’,

3. the determination of sites also involved in the stage-3
modules of Figure 3, involved in the creation of
higher -order consciousness.

4. dissociation of the third from the lower stages under + de >y Hy,t) + h 1)
low attentional load.

Tou(x, t)/ot= —u(x, t) + de’w(x — X[ u(x',t)]

wherel(y, t) is the input to the thalamic position at
time t, h is the neuron threshold and the integration

4. A NEURAL NETWORK FOR THE TWO- over the lateral connection weight is over the manifold
STAGE MODEL M of neurons.
There are well-known autonomous solutions to (1) in
4.1. The Basics of Bubbles the case whe is one-dimensional (Amari, 1977). In

that case equation (1), for a static solution and with no
We now turn to the development of a neural model to jnput, becomes:

help support the two-stage model of Figure 1 and use it to
give tentative answers to the questions raised at the end () — J WX —x) UG dx’ + h 2
of Section 2. In particular we will consider the questions: ) ( ) HuC)] + )

1. what is the dynamical origin of the temporally where the sharp threshold response funcfien 1 (the
extended memory traces residing in the short-term step function) has been assumed in (2). A ‘bubble’ is
working memory sites considered in this section? defined to have a positive membrane potential over an

2. how are the codes in these sites constructed? interval, independent of input. This is formalised as
3. what are the neural principles behind the creation of
phenomenal awareness in these sites? 4.1.1.Definition. A ‘bubble’ of neural activity is a loca-

lised persistent solution to the CNFT equations. Its size is
in general dependent on input, but its continued existence
is not (to within effects of adaptation).

Let us consider the bubble extending from= 0 to
X =a

As stated in the Introduction we will employ conti-
nuum neural field theory (CNFT) whcih has been used
over many years as a first approximation to cortical struc-
ture (Amari, 1977; Beurle, 1956; Ermentrout and Cowan,
1978). One of the important results of that period is the
Qigpovery of cortic;al ‘bubblesi of actiyity which are u(x) >0, 0<x<a u0)=u(@=0 ©)
initially created by input but which persist after stimulus
offset (Amari, 1977). A brief introduction to bubbles and otherwisel < 0. Then from (2) and (3), u is obtained
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explicitly as

ux) = J: wx—Xx)dx + h=W(X) —W(kx—a) (4)

where the functiorw is defined by

X
w(x) = Jo w(x") dx’ (5)
Necessary conditions for the bubble to exist are that tt
membrane potential vanishes at the ends of the interv
[0, &, so

u(0) = u(@=0=W()’ + h (6)

It is then possible to show thatu(x) >0 for
0<x<aif h<0;u(x) <0 otherwise.
Stability of the resulting solution then requires

dw(a)/da <0, v w(a) < 0 @)

Thus, the one-dimensional bubble exists under the ¢
ditions (6) and (7).

There are a number of further important resu
derived in Amari (1977) concerning the nature
bubble solutions and their extension to input depende
which will be briefly summarised here:

1. the parameter ranges foand for the parameters W
can be determined so as to allow for autonomc
solutions of various types @ or the trivial one,

or the constant non-zero one, an a-solution as

bubble of finite length a described above, and a s

tially periodic solution),

. complete determination of those patterns which
stable and those which are unstable, from amor
the stationary solutions described above,

. response to input stimulus patterns: a bubble of finite
length moves to a position of maximum of the input,

. two bubbles interact, if close, with attraction (from
the Mexican hat connection weight function), if
more distant with repulsion, and if very distant with
no effect on each other,

oscillations (between a layer of excitatory and one
of inhibitory cells)
. traveling waves can persist.

Returning to the full two-dimensional bubble in the
region D (which will be called anR[2]-solution here),
we define

W, = limp... W(R) (8)

where

W(R) = JD w(x —x")dx’ 9
where x is only allowed to be on the boundary &
which has radiusxl = R.

It is now possible to extend the methods of Amari,

. there can occur spatially homogeneous temporal
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1977 to deduce the same results as in the one dimensional
case for the questions (a) to (f) raised above. Using the
same enumeration:

1. Theorem 1. In the absence of input:

There exists & solution iffh < 0.

There exists arp-solution iff W, > - h.

There exists af[2]-solution iff h < 0 andR >0
satisfies

W(R) + h =0 (10)

It is possible to extend the classification of the solu-
tions for varying levels of the stimulus h. L&, =
max, W(X).

. Theorem 2. The nature of the various solutions for
different parameter ranges is as in Figure 9.

To determine which of these solutions is stable it is
necessary to extend the one-dimensional discussion of
Amari (1977) to two (or higher) dimensions. From the
two-dimensional extension of equation (6) the bound-
ary of D, defined by the radiuR(t) at timet, satisfies

the constraint

u(R(t),t)=0 (11)

On differentiation of equation (11) with respecttto

and use of equation (1) there results
drR/dt = — [G(R(t)) + h]/7v (12)

wherev is gradient ofu normal todD and is negative.
The equilibrium case results on setting the right

Casel

{2}
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{2}
{eo}
{R}

{eo}

Case Il

{2} {2}
{0}
{Ri}
{Ry}

{eo}

Annuli

-G 0 -W,,

FIGURE 9. Parameter ranges for the existence of stable bubbles
in two-dimensional CNFT (from Taylor, 1997a). The meaning of
the paramteres is given in the text.



1216

hand side of equation (12) to zero. The stability of this
solution is determined by the sign dB(HR: dG/dR <

0 < stability. This leads to the stability classification
of the solutions as given in theorem 2.

. The response to stationary inputs ofR{&]-solution
can also be treated as in Amari (1977). Consider a
small stationary input I(x), which is not assumed
to be circularly symmetric so that the asymptotic
bubble will not be circularly symmetric either.
The equation of constraint is, following equation
(12), that

dx/dt. Vu+ ouw/ot =0 ondD(t) (13)

. Replacing the time derivative af on the left hand
side of equation (13) by equation (1) it is now
possible to derive the condition faft) on the bound-
ary of D(t),

dx/dt. Vu = (17)[h+ el + G(Ix(t)])] (14)

. On expanding in a perturbation series in the small

quantity e, with

lIx@)ll = Ry + (s, ) (15)

. (wheres denotes a parameter specifying which point
on the boundary of the unperturbd®]2] is being
considered in the perturbation (15)) there results the
constraint

de/dt. Vu = (U7)[e +e. VG(IX(t)]) ] (16)

. Wheree = ¢&(s, t) is a vector describing the direction
as well as the magnitudgs, t) of the perturbation of
the boundary poink, and the derivatives in (16) are
evaluated at = 0, so atx(t) = Rg.

. The result from the constraint (16) is that the net
radial movement of the boundary BX(t) is towards
the region of largest input. There will be a movement
of regions ofoD(t) towards lower values of the input,
if these are positive, but there will be a larger velocity
of movement towards those regions of the boundary
nearer the maxima df

extended in the same way, where the effect of one
region (sayD1) on another (sayD2) is given, in
terms of the lateral interaction term in equation (2),
as the effective input to a neuron DR at the pointx

of amount

S(X) = JDl w(Ix — x'[)dx’ @an

This will have the same effect as in the one-

J. G. Taylor

dimensional case, with attraction between the bubbles
at D1 and D2 if they are close enough (as deter-
mined by s(x)), repulsion if the two regions are
further separated, and ultimately no interaction
between the bubbles at all if they are beyond
the range of the lateral interaction temn(if that is
finite).

5. The case of spatially homogeneous oscillations

extends immediately to the two-dimensional case,

since only-solutions are being considered.

This case involves temporal structure and is consid-

ered more fully in Taylor (1997a).

6.

4.2. Applications of Bubbles

We will apply the bubble solutions only to the cases of
apparent motion, the fading of stabilised images and the
lifetime of bubbles in cortex. Bubbles have also been
applied to a variety of other cortical processes: the devel-
opment of topographic maps, both in the one dimensional
case (Takeuchi and Amari, 1979) and for two dimensions
(Taylor, 1997a), control of saccades by the superior
colliculus, on which the bubbles are supposed to form
(Kopecz and Schoner, 1995), the modifications of the
somatosensory constant topographic map by rapid
unmasking due to removal of portion of an input
(Petersen and Taylor, 1996a) or by relearning (Petersen
and Taylor, 1996b), the guidance of head-directed cells
(Zhang, 1996) and in explaining pre-attentive auditory
memory (May et al., 1995). The two cases to be consid-
ered are closely related to features associated with the
possible manner in which bubbles could enter directly
into perception, and so are most relevant for discussion
here.

4.2.1. Apparent Motion.This is the very well-known
phenomenon in which a spot of light appearing on a
screen in one place within 200 or so ms after the dis-
appearance of one within 5 degrees of the second leads
to the experience to a viewer of the motion of the first
spot to the second. There has been considerable research
on this phenomenon (see, for example, Cavanagh and
Mather, 1990 and Uliman, 1979) and interesting attempts
to correlate and explain it (Dawson, 1991). Here CNFT
will be used to give an explanation at the level of
principle, without attempting to explain all of the details

. The one-dimensional result (d) above can also be of the phenomenon by the model (which is discussed

more fully elsewhere).

The basic idea is the visual input from the initial spot
creates a bubble in a cortical area (very likely MT) which
is then dragged across the area by the appearance of the
new spot in the manner arising from the result (d) above.
The disappearance of the first spot and the appearance of
the second causes a change in the background in which
the bubble created by the first spot resides. It is thus
attracted to the central region of activity brought about
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FIGURE 10. The dragging of a bubble, due to a localised input at the point 30 at time 0-300, formed in a line of neurons when the new input
at the position 70 is switched on at the time 250. This is a proposed explanation of AM (see text).

by the second spot on its appearance, following the percepts were observed by subjects:
above argument. This process is difficult, although not
impossible, to analyse in detail using the time-dependent ™
equation (1), but a one-dimensional simulation is shown

in Figure 10. In this, a bubble is created by a spot at ™
time t = 0 at the position 30, using equation (1) with
suitable parameters for the input to cause the creation
of a bubble. This initial input is then removed at time It is possible to give a simple model possessing these
250 and a new input used at the position 70 at that three activations by means of two coupled CNFTs, one
time. As seen from the figure the bubble created by the coding for red, the other for green. The red and green
first spot reduces in size when its input is removed but neurons at a given position are coupled inhibitorily to
persists to move over to the position of the second each other. The resulting model is shown in Figure 11.
input. It leaves a trail as it goes, causing the impression The coupled equations for the membrane potentials u and
of a moving input. v for the two sets of colours are

an overall ‘red/green’ colored region they had never
experienced before,

dots of red and green interspersed throughout the
visual field,

3. islands of red in a sea of green or vice versa.

4.2.2 Stabilised Image& hese are experienced when the dwdt=—u + Wy, * 0(u) =Wy, *6(v) + hy + 1,
retinal image is kept fixed on the eye and the image (18a)
ultimately fades from view (Pritchard, 1963). The initial

loss of image may be due to adaptation in the retinal

pathway, so reducing the image able to reach later

stages. The process leads to very interesting patterns of

image loss in which there are both Gestalt-type and ggpiaver

ensemble effects observed. One particularly interesting Ol 3 Q
effect was observed by (Crane and Piantanida, 1983) by
stabilising the line between a rectangle of green and one ..., e

of red. Normally it is not possible to observe both green ' >
and red together (they are opponent colours) but On FiGURE 11. The architecture used for modelling red/green
stabilising the dividing line between them three different stabilised image percepts. See text for details.
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I, +h,

FIGURE 12. The regions of the (1 , + hy, I, + hy)- plane
associated with the possible solutions to the model of figure

11, as discussed in the text.

dvidt= —Vv + W, * (V) — Wy, *0(u) + hy + Iy

(18b)

J. G. Taylor

to the experiences of subjects listed above. The range
of the parameter pland ( + hy, I, + h,) for which
these solutions (i)—(iii) exist is shown in Figure 12 and
Figure 13.

4.2.3.Bubble LifetimesHaving seen that bubbles can
help explain some of the phenomena of perception (and
other features of cortical processing as well, as noted
in the earlier references) we now turn to the important
question as to how bubbles might disappear It is very
unlikely that they persist for ever, and if they did so
then they would present an ever increasing background
of ‘noise’ interfering with current ongoing processing.
There is even some evidence for their possessing a
finite lifetime from work of Lu et al. (1992). They
exposed subjects to a sequence of sounds with the inter-
stimulus interval (ISI) being gradually increased. They
discovered that the amplitude of the N100 response
(100 ms after stimulus onset) reached saturation at

(where * denotes convolution over the cortical area, suitably long ISI in both primary and secondary auditory

w,, and w,, are the usual Mexican hat functions and
W, W, are short range (excitatory) carriers of
inhibition to their opposite colour). The inputgandl,

cortex, with the rise to saturation corresponding to a
decaying trace with lifetime of about 3 s in primary
and 5 in secondary auditory cortex.

are assumed to have been reduced on stabilisation What mechanism could cause the decay of such a
of the image, so as to lead to a range of possible trace or more generally of the bubbles which they
solutions to (18a) and (18b). It may be shown (Taylor, might represent? The most likely answer is that of adap-
1997b) that there are at least three forms of solution tation of the responses of the neurons in the CNFT.

to (18):

1. oxo (in the notation of earlier in the section, where

‘o0’ denotes an infinitely extended bubble),
2. interdigitating spatial oscillations,

3. solutions of the type { =, a;] U [ a, «} X

[ a1, @, ] (giving the support of the bubble solution

in the separate coordinates).

Spike adaptation is a well-studied phenomenon (Connors
et al, 1982; McCormick, 1986) arising from slow
after-hyperpolarizing currentkyyp and Iy, which can
last for several seconds (Schwindt et al., 1988). These
after-currents essentially raise the threshold for neuronal
response. There may also be an effect from previous
traces of neural activity which shunts out later activation
(May et al., 1997).

It is seen that these solutions correspond respectively The results of Lu et al. (1992) and of Uusitalo and

—
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FIGURE 13. The model of recency in working memory (Hastings and Taylor, 1994). The nodes are dedicated to a given input item, and the
resulting activity decays as corresponding to a leaky-integrator neuron. Probe re-activation has to lead to neuron activity above a criterial
level before reponse. The resulting ‘universal forgetting’ formula for the reaction time to a new input as having been in the previously

presented list fits known data well.
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Williamson (1996) will be interpreted here in terms of under other assumptions on the relation betweeamd

the decay of a lasting trace of activity in the parti- 7', with a similar result to that presented above.

cular region from which the magnetic field was being There is the further question as to how neurons can
measured (auditory or primary visual cortex respec- possess such large and variable time constants, both
tively). This will be shown by using a very simple across areas and across subjects, as have been measured
model of the response of a neuron, that of the leaky by Williamson and colleagues (1992, 1996). We will
integrator (Hodgkin—Huxley) neuron, but with an after- now show that these variations are to be seen as arising
hyperpolarizing current as observed in Schwindt et al. from variable levels of recurrence, giving an increase to

(1988). The equation for the membrane potentiabf the intrinsically identical time constants of each neuron
this neuron will be by an amount dependent on the amount of recurrence;
this level of recurrence can vary from one cortical region
rdwdt=—u + I(t) - A Jo exp — (t—t')/7'] flu(t")]dt’ (and from one subject) to another, and is crucially depend-
(19) ant on the cell density in the short-term memory stores.

) _ ) ) In order to consider bubble decay we will consider
wherel(t) is the input current at timg N is the strength  in more detail the effect of the long-lasting after-
of an after-hyperpolarising current dependent on the pynerpolarisation current used in equation (19) on bubble

responsefu(t)] integrated over the time the neuron is  |itetime. The two-dimensional expression replacing
active with an exponential decay of lifetime, andr equation (19) is

is the intrinsic lifetime of activity on the surface of the
neuron (assumed to have no intgrnal structure). TOU(X, /ot = — u(x,t') + der W(x— X') f[ u(x', 1) ]

Under the experimental paradigm of Lu et al. (1992)
the input is on for the tim@ and off for the time which J' r
we denote by the value ISl. + Jdysxy) Iy.0) + h =\ |

During the period that the input is on,builds up its x exp — (t—t')/7'] flu(x, t")] dt’ (23)
value driven by the input Let us suppose that the hyper- . o _
polarising lifetimes’ is much longer than the time of wherer' is a measure of the lifetime of the adaptation
duration of the input. This is valid for the long-lasting ~current, anck denotes its strength. It is now necessary to
potassium-dependent hyperpolaristions mentioned by calculate the lifetime of a bubble created using equation
Schwindt et al. (1988), which we assume to be the one (23). Let us first consider the one-dimensional case; that
of equation (19). At the end of the input period the mem- for two dimensions will follow straightforwardly.
brane potential begins to decay exponentially, so behaves A Particular case of interest is when a bubble has
as exp[— t/7] (multiplied by a suitable constant, and to initially been created by an input which is then removed.
within an additive constant). That could be due, for example, to the neural module

We now assume that the term on the left-hand side of @cting as the source of the input having a shorter lifetime
(19) can be neglected (in other words the time constant for the persistence of bubbles than the one under con-
is relatively short) with the result that the time depend- Sideration. It would also occur if the bubble is created in a
ence ofu at (or close to) the beginning of the next input, Primary sensory module and the input itself has been
say at the N100 response, has the value (to within a modified.

constant initial value front = T) To discuss this case it is appropriate to first reduce
even further to a single recurrent neuron. For that case
— )\J exd — (t —t')/7'] flu(t’)]dt’ (20) the membrane potential equation, from (23), is:
0
7ou(t)/ ot = — u(t) + wl[ut)] + h

wheret = T + ISI. Forf chosen to be the semi-linear
functionf(x) = (X) . (the positive part ok) and assuming Ja N , ,
that the membrane potential is positive through the I1SI — M J o & = =ty 6lu)] dt
(sothaff is linear) then the membrane potential &t T =
ISI, is from (20) equal to

(24)

where a step function response has been taken for the
neuron. From equation

constant— Aexd — (T + ISI)/7] (21) U(t) = u(0) + [1 — exp( — t/)][h+w] (25)
For an ISI= 0 there will be no N100 so that (21) must ; v
then be equal to zero. Thus (21) becomes (for fiXed Y J exd — (t—t')/7]dt’ J exp — (t' — t')/7']dt”
U(T +1S1) = AL — exg] — ISl/-]) 22) ° °

From (25), withu(0) > 0, u(t) will remain positive

Formula (22) fits the results of Williamson and collea- | ="' \==/ ,
f initially in time. Moreover (25) reduces to the expression

gues (1992, 1996). This justifies interpreting the value o
the time constant (as the duration of the neural trace  u(t) =u(0) 4 [1 — exp( — t/7)][h +wW — A77']

of activity in the cortical site from which they were )

measuring. A more complete analysis can be given, +Ar(7')[exp( - U7') —exp( - Un))/(7' —7)  (26)
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where the last term on the right hand side of (26) is The latter quantity is expected to be an intrinsic charac-

replaced, forr=7', by the expressionrr'exp( — t/7). teristic of the single (pyramidal) neuron, so very likely
The last term in (26) may be neglected iK 7, so that if constant throughout cortex. This characteristic differ-
A > h+ w+ u(0) 27) ence between the bubble lifetimes in the two cases (in

the former depending on the cortical area under con-
then for suitably large, u(t) will become negative and  sjderation, in the latter constant throughout cortex) has
the firing of the neuron will then cease. If no new interesting experimental consequences for cortical
input arrives then no further activity will ensue from processing, which are explored in Taylor (1997a).
the neuron. Finally the lifetime is seen to increase (logarithmi-

The initial lifetime of the bubble is given by equating cally) as the lateral connection strength &, in (32))

the right hand side of (26) to zero. Using the assumption jncreases. Such an increase is slow, according to the
that 7' > 7 in (26) gives the approximate value for the formula (32), but this may be only a result of the assump-

life-time T as tion of a hard limiting threshold output function for the
T= — 7In{1 — uQ)r[\rr —h —w]} (28) neurons. A smooth ;igmoid response .(which can sti!l
support bubble creation) can lead to a linear increase in

where the factorr7" — h — w] is positive by (27). lifetime. This may therefore explain the observed
Equation (28) is the formula we wish to extend to the increase of lifetime as observed in Lu et al. (1992), as

case of a one- and then a two-dimensional CNFT. well as be the source of the buffer capability of working

Firstly the case of a bubble solution infinitely extended memory modules.
in either dimension reduces to the above analysis with
the constantv in the single neuron case being replaced 4.2.4. The Buffer StoresA simple explanation of the
by the quantitiesv = [ w(X)dx, w = [ w(xX)dx in the recency effect, that more recent items in a short list are
one and two dimensional cases respectively. remembered better and faster, has been given by many
The relevant equation in one dimensions for a finite- groups; one of these, with a useful ‘universal forgetting
sized bubble solution (Taylor, 1997a) has the extra adap-formula’ was in Hastings and Taylor (1994). This models
tation term the short-term buffer store as a set of dedicated nodes
A (29) which have decaying activity on them. A short list of
items coded by these nodes has decaying activity on
(dropping the term of &() in (26)) and the added initial  the store in which the strongest activity is that for the
valueu(l(0), 0), wherd(t) is the size of the bubble attime  |atest input. Recognition of the items presented then
t; the input term involvingS has also to be dropped. The occurs from probe inputs which cause a temporal
bubble will have a finite lifetime if the adaptation term is increase in activity until it reaches some criterial thresh-
so negative that there exists a solution to the resulting old for response. The form of this reactivation is shown
equation for the asymptotic size of the bubble Amari, in Figure 12. It is clear from the figure that the most
1977: recent input reaches the criterial threshold soonest, the
h — N7’ + W(21(®)) = 0 (30) earliest one taking the longest time. The resulting set

) o ) ) of reaction timesRT(n, N) for the n’th item in a list of
whereW(x) is the first integral of the connection weight length N may be shown to be given by the “forgetting’
w over the bubble domain. Such a solution could arise if formula

AT — h > W, (31) RT(n,N) = aln{b + c.exgdd(n—N)]} (33)

whereWy, is the maximum value oWV. Thus if (31) is  \wherea, b, ¢, d are constants and in particuldis deter-
true then the bubble will have a finite lifetime given, mined by the decay constant of the nodes. Avery good fit
under the same approximation as for the single neuron, o the experimental observations leads to a value of the
by lifetime of the activations on the nodes of about 1.5 s,
T = 7In[—h(\r' — h W) (32) WhiCh i_s in the same ‘ball-park’ as the lifetimes observed
by Williamson et al. noted above.
This approximation should hold for both the one andtwo ~ We conclude that there is support for the existence of

dimensional cases. In both cases we note thal/gss bubbles in cortex at the basis of phenomenal experience
increased, say by increase of cell density, the correspond-and that these can help to explain the somewhat activity-
ing lifetime increases. independent lifetimes observed in short-term memory
For the other extremg > > 7thenr and7’ must be tests and modeled by very simple dedicated nodes with
interchanged in the lifetime formulae (28) and (32). lifetimes of about 100 times the decay constant of the
In conclusion, for the case> > 7’ the bubble life- single neurons themselves. This latter feature is explic-

time is effectively proportional tar, so dependent on  able in terms of adaptation-driven bubble decay. The
whatever mechanism produces the bubble itself. In the resulting lifetime of a bubble depends on the density
opposite case the bubble lifetime is proportionakto of the cells in the area supporting it, with the longest
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lifetime occurring for highest density. Finally we note and later retrieval of words or pictures, have shown up a
that these bubble may be used to help explain the naturenetwork of modules involving area 46 on both left and
of the ‘qualia’-like aspects of phenomenal experience, in right as well as Broca’'s speech area 44/45. These new
particular its apparently intrinsic and non-relational modules appear to have considerably longer lifetimes
characteristics Taylor (1997b). than those of the posterior cortex (Goldman-Rakic,
1992) so posing a question as to the mechanism behind
such long activation. We will turn in the next section to
consider a possible model for such long and adaptive
We now turn briefly to the third stage of the three-stage lifetimes.
model of Figure 3. This stage receives conscious material
from the second stage discussed above and uses it to
achieve goals by planning and reasoning. We would
expect that the regions of frontal cortex so involved
would be the working memory sites of the prefrontal One of the clearest differences between the frontal and
cortex, particularly areas 46 and 9, those observed to posterior cortices is the existence of strong cortico-
cause deficits in long-term planning and delayed tasks thalamic recurrence between frontal sites and the
when lost due to accident or disease. There is also amedio-dorsal thalamus. There is also known crucial
clear change in personality and social responsivenessinvolvement of the basal ganglia in motor and cognitive
when there is loss of the mesial oribtofrontal regions. processing, as defects brought about by loss of the basal
Such regions would also be implicated in the construc- ganglia show in patients with Parkinson’s disease. The
tion of higher order consciousness. problem we are facing is that of modeling what Fuster

We have already given support, at the end of Section 3, (Fuster, 1993) calls ‘active memory’, that is persistent
to the suggested dissociability between the first two neural activities which can be acted upon and trans-
stages and that at the third, highest level assumed informed into other ones so as to achieve some goal or
the three-stage model of Figure 3. There is considerable other. It is useful to turn to consider what form represen-
further material for such dissociation between the stagestations of motor actions take in motor and related
from deficits of frontal patients, who appear to posses cortices. Strong support for population vector coding in
awareness of their deficits but not the concern that motor and pre/supplementary motor cortices for output
would be expected in their situations. Thus there is ‘a responses (coding of the direction of motor actions)
dissociation between what the frontal patient knows or has been presented in Georgopolous (1994). This also
says, and how he or she behaves’ (Stuss, 1991), a featurgyives a mechanism for allowing the active memory
indicating dissociation between posterior knowledge and regions of frontal cortex to be used as ‘blackboards’.
anterior action systems. Material can be written on these by input causing the

The earlier approach, in terms of the use of memory recurrent lateral cortical and recurrent thalamo-cortical
structures, termed the ‘Relational Mind’ model in Taylor loops to tend rapidly to the relevant attractors of the
(1973, 1991) can also be used to explain how content population coding; modulation by basal ganglia will act
arises in higher consciousness. Thus there are reprethereby to modify the thresholds and direct or change
sentations of earlier experienced objects encoded inthe attractors.
appropriate sites in frontal lobe and their re-activations A neural model of such processing has been presented
by later input gives content to that input. These inputs in the ACTION network of Taylor (1995) and Alavi and
arise from the posterior buffer sites discussed earlier, so Taylor (1996), which has some similarity to models of
that the coding of the frontal sites is guided by posterior Houk and Wise (1993). It has been applied to modeling
activity and at the same time feedback to those sites delayed tasks and their deficits in frontal patients
would help their own representations. However the late (Monchi and Taylor, 1995, 1997). There are also a
onset of prefrontal myelination would prevent much use further range of neural models of frontal components
being made of such frontal sites in the first few years of of working memory (Carpenter and Grossberg, 1993;
life, a period when there is extensive coding of words and Dominey and Arbib, 1992; Dominey et al., 1995:
objects in posterior sites. Thus the prefrontal representa-Guigon et al., 1994; Kirillov et al., 1993; Zipser et al.,
tions may only help in the development of more 1993). We will concentrate here on the ACTION net-
advanced and sophisticated concept representationsvork as being most closely related to the neuroanatomy
than carried posteriorly. of the frontal cortex.

There is now considerable experimental evidence
from non-invasive mstrumen_ts for the |nlvolve_ment of 6.1 The Action Network
the above mentioned areas in so-called ‘working mem-
ory’ tasks, those requiring the holding of activity over The ACTION net is composed of the basal ganglia acting
long and variable periods of time for transformation and in a disinhibitory manner on the thalamo-cortical recur-
later response. Such tasks, for example in the encodingrent loops (with the presence of lateral cortico-cortical

5. THE THREE-STAGE MODEL

6. A NEURAL NETWORK FOR THE THREE-
STAGE MODEL.
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Cortex Posterior Inputs and mesio-orbital areas needs to be of a whole host of
earlier memories, which can give the consciousness
/ ‘color’ to experience. That might not best be achieved
by a pattern completion or attractor network (Amit,
1990), since only a single pattern would result at one
time. The most suitable memory structure is an associa-
tive matrix memory for a feedforward net, in which a
FMedi_ dorsal Thalamus l given input pattern will excite as many outputs as pre-
viously stored patterns with strong overlap with the
FIGURE 14. A schematic version of the ACTION network. See text input. However the use of an attractor net may in fact
for detalils. help explain the length of time taken in memory search,
as various of the attractors are activated and then rejected
by comparison to some actively held template as part of
connections present as well), so as to cause an attractor tahe processing of the frontal lobes’ ACTION network.
be set up by an external input in the (possibly high) This has been discussed from an interesting neural basis
dimensional space given by the input features, as in Amit (1995).
shown schematically in Figure 14. This generalises the
two-dimensional population-vector action coding of
the motor cortex to the other loops of the frontal system. 7. DISCUSSION
The process of learning the correct connection weights Having constructed some of the possible neural machin-
for such an input set, so as to be able to write any material ery to support higher consciousness, it has now to be put
from posterior WM and other memory sites onto the to work. In particular it is important to show, though in
frontal cortex, is presently under analysis (Taylor and the space available only very cursorily, how the frontal
Taylor, 1997), and has been considered in some detail processes of attention, thinking, planning, prediction and
in Dominey et al. (1995). These connections would allow schema learning and selection might be achieved. Also
the active memories to have written on them material the place of emotions in such a galaxy of functions
from posterior buffer sites, from autobiographical/ needs to be clarified. More general aspects of higher
episodic memory databases related to this material andconsciousness, such as intentionality and introspection,
from goal or other memory buffered in hippocampus.  are considered elsewhere (Taylor, 1997a).

The process of ‘intermingling’ of these activities A number of these processes have already been hinted
with ongoing activity so as to achieve higher level con- at in Taylor (1995). Thus attention can be decomposed
sciousness is expected to require competitive processinginto the component sub-processes of comparison, activa-
for a similar reason to that discussed in connection with tion/inhibition and monitoring. All of these can be per-
low-level consciousness and for which the NRT was formed by the ACTION network (Alavi and Taylor,
employed earlier in the paper. That such competition 1996), as can sequence learning and generation, at the
can be supported by the ACTION network was suggested basis of schema learning and production. Prediction is
in Alavi and Taylor (1996), where the inhibitory nuclei also involved in sequence generation, in which hippo-
in basal ganglia (striatum and globus pallidus) may be campal activity, as in Gray’'s model (Gray, 1995;
able to function in a similar manner to that of NRT. The Kubota and Gabriel, 1995), should be included. Thinking
competition would then involve threshold-changing has been discussed in Taylor (1995), using action trans-
processes, as performed by the disinhibitory action of formations on representations written on prefrontal
striatum on thalamus. cortex so as to make such representations be closer,

There are five possible ACTION networks, corres- after comparison by the ACTION network, to a goal
ponding to the 5 great frontal loops of Alexander and held in the Papez circuit. Planning can use similar tech-
colleagues (Alexander et al.,, 1986) involving motor, niques to discover transformations taking a given state to
premotor and supplementary motor cortex (action a goal state. Note the difference between thinking and
sequences), limbic (affect), orbitofrontal (social), frontal planning; on this view the former uses whatever trans-
eye fields (eye movements) and dorsolateral prefrontal formations that can be constructed so as to reach a
cortex (cognitive/ attentional). Each of the cortical goal—it is the sequence of states that are important—
regions is expected to have suitable connections for whilst the latter emphasises the set of transformations
writing on them from posterior and limbic sites; this and not the states.
seems to be the case from neuro-anatomical knowledge, Emotions are considered as global activations from the
as mentioned earlier, and so supporting the ‘well- limbic system when concerns (Frijda and Moffat, 1993),
connected character’ required for the modules supporting that is differences between desired and actual states,
consciousness noted in Table 1. become large. Such comparisons (as concerns) are

From the discussions so far it is clear that the related to those of the model of Gray, but are used to
re-excitation of episodic memories from hippocampal give a global signal of affect to the cortical sites of

‘ Basal Ganglia ‘
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consciousness so as to cause modification of on-goingBisiach E. (1988) The (haunted) brain and consciousness, In A. J. Marcel

behavior. This may be crucial in order to change
schemata (Frijda and Moffat, 1993) as well as having
an important effect in motivation and intelligence.

and E. Bisiach (eds@onsciousness in Contemporary Scierdew
York: Oxford University Press, pp 101-120.

Cavanagh, and Mather, (1990). Motion: The long and short 8figtial
Vision, 4, 103—-129.

Such an approach has been used in the neural modelgarpenter, G., & Grossberg, S. (1993). Normal and amnesic learning,

of delayed tasks and the Wisconsin card sorting task in
Monchi and Taylor (1995, 1997) where there are three
coupled ACTION networks with switching betweeen
them according to valuation (concerns) by a net model-
ing the amygdala.

The above models of neural networks for conscious-
ness have not only been sketched very briefly but also
there has been omission of models for the limbic system,

recognition and memory by a neural model of cortico-hippocampal
interactionsTrends in neurosciencé6, 131-140.

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C.,
Jonides, J., & Smith, E.E. (1996). Temporal dynamics of brain
activation during a working memory tasMature 386,604—608.

Connors, B. W., Gutnick, M. J., & Prince, D. A. (1982). Electro-
physiological properties of neocortical neurons in vitdournal
of Neurophysiology48, 1302—-1320.

Crane, H. D., & Piantanida, T. P. (1983). On seeing Reddish Green and
Yellowish Blue.Science221,1078-1080.

in particular the hippocampus and related areas. Therep,yson, M.R.W. (1991). The how and why of what went where in

is presently considerable interest in such areas and they

clearly play an important role in determining the contents
of consciousness. However this is something that the
interested reader will have to look elsewhere (see, for
example, Taylor, 1996¢, 1998).
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Abstract—A combined neurophysiological and computational approach is reviewed that leads to a proposal for how
neural networks in the temporal cortical visual areas of primates could function to produce invariant object representa-
tion and identification. A similar approach is then reviewed which leads to a theory of how the hippocampus could
rapidly store memories, especially episodic memories including spatial context, and how later recall of the information
to the neocortex could occur. Third, it is argued that the visual and memory mechanisms described could operate without
consciousness, and that a different type of processing is related to consciousness. It is suggested that the type of
processing related to consciousness involves higher-order thoughts (“thoughts about thoughts"), and evolved to allow
plans, formulated in a language, with many steps, to be corrected. It is suggested that it would feel like something to be a
system that can think linguistically (using syntax) about its own thoughts, and that the subjective or phenomenal aspects
of consciousness arise in this way. It is further suggested that "raw sensory feels" arise in evolution because once some
types of processing feel like something by virtue of a system capable of higher-order thoughts, it is then parsimonious to
postulate that sensory and related processing, which has to be taken into account in that processing system, should feel
like something. It is suggested that it is this type of processing, which must be implemented in neural networks, which is
related to consciousnes® 1997 Elsevier Science Ltd.

Keywords—Consciousness, Hippocampus, Memory, Invariance, Visual recognition, Higher-order thoughts, Visual
cortex.

1. INTRODUCTION could perform the required computations. Examples of
this approach are described first in this paper.

Having considered brain mechanisms involved in
visual object recognition and memory, | then consider
whether, once this processing is fully understood, we
will have produced an account of the brain mechanisms
underlying consciousness. | argue that we will not, and
that it is a different type of information processing that is
involved in consciousness. | outline a theory of what the
processing is that is involved in consciousness, of its
adaptive value in an evolutionary perspective, and of
how processing in our visual and other sensory systems
can result in subjective or phenomenal states, the "raw

Acknowledgements: The author has worked on some of the feels" of conscious awareness. These processes involved
experiments described here with G. C. Baylis, M. Booth, M. J. jn consciousness must themselves be implemented in
e e o, 0%, neural networks, but before considering how these pro-
J. Thorpe, and F. A. W. Wilson, and their collaboration, and helpful cesses are |mplemented, it is useful to be clear about
discussions with or communications from M. Davies and C. C. W. What processing must be implemented.

Taylor (Corpus Christi College, Oxford), and M. Stamp Dawkins, are
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by the Medical Research Council (PG8513579), and by The Human 2. NEURONAL NETWORKS INVOLVED IN

Frontier Science Program. INVARIANT VISUAL OBJECT RECOGNITION
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versity of Oxford, Department of Experimental Psychology, South ;

Parks Road, Oxford OX1 3UD, UK; Tel.: +44-1865-271348; Fax: 2.1. Neurophysiology

+44-1865-310447; e-mail: Edmund.Rolls@psy.ox.ac.uk The visual pathways project in primates by a number of

Advances are being made in understandiog/the brain
could perform some of the processing involved in per-
ception and memory. These advances come in part from
neurophysiological experiments in which the processing
involved in vision and memory is analysed by recording
the activity of single neurons in primates during these
types of processing, and incorporating this information
into computational models at the neuronal network level
which provide an account of the ways in which many
neurons in the networks found in different brain regions
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having to measure the activity of an enormous number

50 TE view independence
Z 1~ of neurons. For example, the results of the experiments of
3 20 TEO ey dependent Rolls et al. (1997b) indicate that the activity of 15 neu-
@ configuration sensitive rons would be able to encode 192 face stimuli (at 50%
3 80 V4 combinations of features accuracy), of 20 neurons 768 stimuli, and of 25 neurons
LI; f 3072 stimuli (Abbott et al., 1996; the values are for an
g 32 V2 farger recepive fields optimal decoding case). This is strong evidence for dis-
&% tributed encoding. This type of encoding makes brain
13 Vi 1 connectivity possible, in the sense that a receiving
ToN neuron can gain a great deal of information even when

it does not receive vast numbers of inputs. Another inter-
esting aspect of this encoding is that the information just
described is available from the firing rates of the neurons,
without taking into account the relative time at which the
neurons fire. Thus temporal encoding is not an essential
part of the code at this stage at least of visual information
processing (see further Rolls et al., 1997b; Tovee &
Rolls, 1995; Tovee et al., 1993). Another interesting
aspect of the encoding is that much of the information
from a population of neurons is available when the
decoding is a simple neuronally plausible decoding
involving a dot product of the neuronal activity in the
cortico-cortical stages from the primary visual cortex current 500 ms (or 100 ms or 50 ms) presentation with
until they reach the temporal lobe visual cortical areas that which occurred previously in the population of neu-
(see Figure 1, and for details of the neurophysiology rons to a particular stimulus (Rolls et al., 1997b). Such
summarized next, see Rolls, 1991, 1992, 1994b, 1995b,decoding could be performed by neurons which calculate
1997). Along these pathways the receptive fields of neu- their activation by a weighted sum of their input activity,
rons gradually become larger, as shown in Figure 1. (The which is common in neural network modelling. The fact
receptive field of a neuron is the part of visual space that the information is available in a form in which it can
within which appropriate visual stimuli can activate the be read out by this simple neuronally plausible dot pro-
neuron.) Part of the basis for this is the convergence onto duct decoding with sampling from a limited set of neu-
neurons at any one stage of processing from a limited rons, and at the same time having the properties of a
area of the preceding cortical area (see Figure 1). For thisconstant sparseness of the representation, and providing
to result in neurons at the final stages of visual processingfor generalization and graceful degradation, is probably
responding to the same object or stimulus independently what accounts for the fact that neurophysiologically
of position on the retina, the appropriate connections interpretable information is available in the responses
must be set up in the hierarchy. Ways in which the appro- of single neurons about which stimulus has been seen
priate synaptic weights to achieve this translation invar- (Rolls et al., 1997a; Tovee & Rolls, 1995; Tovee et al.,
iance could be learned are considered below. 1993).. This is one of the factors that allows single
The encoding that is provided of objects and faces at neuron recording to be so useful in understanding brain
the end of this processing in the inferior temporal visual function—a correlation can frequently be found between
cortex is distributed, in the sense that the representationthe activity of even a single neuron and a subset of the
is not local or "grandmother cell" like, but instead many stimuli being shown, of the motor responses being made,
neurons are active to encode any one object (Rolls & etc.
Tovee, 1995; Rolls et al., 1996). Using an information- ~ Some neurons in the temporal cortical visual areas
theoretic approach, it has been shown that the informa- have responses which are invariant not only for position
tion available from the firing rates of a population of on the retina, but also for the size, contrast, spatial fre-
neurons about which visual stimulus (which of 20 equi- quency, position on the retina, and even angle of view
probable faces) has been shown on a single 500 ms pre-
_sentatlon increases linearly with the number of neurons ! The fact that the information increases approximately linearly with
in the sample (Abbott et al., 1996; Rolls et al., 1997b). the number of neurons in the sample implies that the neurons convey
Because information is a logarithmic measure, this indi- almost independent !nformation (if the s_timulus set size is _sufficientl_y
cates that the number of stimuli encoded rises approxi- large). If local encoding were used, the information would increase in

. . proportion to the logarithm of the number of cells. If, for example,
mately exponentially, as the number of neurons in the binary encoding were used (as, for example, numbers are encoded in

sample increases. The consequence of this is that Iargea computer word), then the sparseness of the representation would

: : - i : fluctuate wildly, any receiving neuron would need to receive from all
numbers of stimuli, and fine discriminations between the input neurons, and generalization and graceful degradation would

them, can be represented without (a receiving neuron) not occur.

0 133280 20 50
Eccentricity / deg

FIGURE 1. Schematic diagram showing convergence achieved
by the forward projections in the visual system, and the types of
representation that may be built by competitive networks oper-
ating at each stage of the system from the primary visual cortex
(V1) to the inferior temporal visual cortex (area TE) (see text).
LGN, Lateral geniculate nucleus. Area TEO forms the posterior
inferior temporal cortex. The receptive fields in the inferior tem-
poral visual cortex (e.g. in the TE areas) cross the vertical midline
(not shown). (Reprinted from Wallis & Rolls, 1997.)
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(see Rolls, 1992, 1994b, 1995b, 1997; Rolls et al., 1996). over distances of 1-2 mm in the cortex.) These compe-
Itis clearly important that invariance in the visual system titive nets operate by a single set of forward inputs lead-
is made explicit in the neuronal responses, for this sim- ing to (typically non-linear, e.g. sigmoid) activation of
plifies greatly the output of the visual system to memory output neurons; of competition between the output
systems such as the hippocampus and amygdala, whichheurons mediated by a set of feedback inhibitory inter-
can then remember or form associations abmhjects neurons which receive from many of the principal (in the
The function of these memory systems would be almost cortex, pyramidal) cells in the net and project back to
impossible if there were no consistent output from the many of the principal cells, which serves to decrease the
visual system about objects (including faces), for then the firing rates of the less active neurons relative to the rates
memory systems would need to learn about all possible of the more active neurons (i.e. soft competition); and
sizes, positions, etc., of each object, and there would bethen of synaptic modification by a modified Hebb rule,
no easy generalization from one size or position of an such that synapses to strongly activated output neurons
object to that object when seen with another retinal size from active input axons strengthen, and from inactive
or position. input axons weaken (see Rolls, 1989c; Rolls & Treves,

Other aspects of the neurophysiological findings 1997). (A biologically plausible form of this learning rule
which provide constraints on and guide the development that operates well in such networks is
of neural network theories about how the visual cortical
areas involved in visual object recognition operate is that
learning of new faces or objects can occur rapidly, within wherek is a constantpw; is the change of synaptic
a few seconds; that the processing within any one cortical weight, r;" is the firing rate of thgth axon, andm is a
area is fast, with sufficient processing being completed non-linear function of the output activation of neuron
within 30 ms in each cortical area in the hierarchy to which mimics the operation of the NMDA receptors in
subserve recognition; and that neurons in intermediate learning; see Rolls, 1989a, b, c; Rolls & Treves, 1997).
stages of processing (e.g. V2 and V4) respond to combi- Related approaches to self-organization in the visual
nations of features present at earlier stages of processingystem are described by Linsker (1986, 1988) and
(see Figure 1 and Rolls, 1992, 1994b, 1995b, 1997).  MacKay & Miller (1990).

Translation invariance would be computed in such a
system by utilizing competitive learning to detect regu-
larities in inputs when real objects are translated in the
physical world. The hypothesis is that because objects
Cortical visual processing for object recognition is con- have continuous properties in space and time in the
sidered to be organized as a set of hierarchically con- world, an object at one place on the retina might activate
nected cortical regions consisting at least of V1, V2, feature analysers at the next stage of cortical processing,
V4, posterior inferior temporal cortex (TEO), inferior and when the object was translated to a nearby position,
temporal cortex (e.g. TE3, TEa and TEm), and anterior because this would occur in a short period (e.g. 0.5 s), the
temporal cortical areas (e.g. TE2 and TE1). (This stream membrane of the postsynaptic neuron would still be in its
of processing has many connections with a set of cortical "Hebb-modifiable" state, and the presynaptic afferents
areas in the anterior part of the superior temporal sulcus, activated with the object in its new position would thus
including area TPO.) There is convergence from each become strengthened on the still-activated postsynaptic
small part of a region to the succeeding region (or neuron. It is suggested (Rolls, 1992) that the short tem-
layer in the hierarchy) in such a way that the receptive poral window (e.g. 0.5s) of Hebb-modifiability helps
field sizes of neurons (e.g.° hear the fovea in V1)  neurons to learn the statistics of objects moving in the
become larger by a factor of approximately 2.5 with physical world, and at the same time to form different
each succeeding stage (and the typical parafoveal receprepresentations of different feature combinations or
tive field sizes found would not be inconsistent with the objects, as these are physically discontinuous and present
calculated approximations of, e.d.i& V4, 20° in TEO, less regular correlations to the visual system. Foldiak
and 50 in inferior temporal cortex; Boussaoud et al., (1991) has proposed computing an average activation
1991) (see Figure 1). Such zones of convergence wouldof the postsynaptic neuron to assist with the same pro-
overlap continuously with each other (see Figure 1). This blem. Another suggestion is that a memory trace for what
connectivity would be part of the architecture by which has been seen in the last 300 ms appears to be implemen-
translation invariant representations are computed (seeted by a mechanism as simple as continued firing of
Rolls, 1992, 1994b, 1995b, 1996a; Wallis & Rolls, inferior temporal neurons after the stimulus has disap-
1997). Each layer is considered to act partly as a set of peared, as we have shown in masking experiments (see
local self-organizing competitive neuronal networks with Rolls & Tovee, 1994; Rolls et al., 1994b). This continued
overlapping inputs. (The region within which competi- firing could be implemented by local attractor networks
tion would be implemented would depend on the spatial in columns or modules in the cerebral cortex imple-
properties of inhibitory interneurons, and might operate mented by the local recurrent collaterals of the cortical

owij = kmy(r" — wj)

2.2. Computational Processes Involved in Invariant
Visual Object Recognition
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pyramidal cells (Rolls & Treves, 1997). Other invar- that a connection comes from within four cells of the
iances, for example, size, spatial frequency, and rotation distribution centre. Figure 2 shows the general conver-
invariance, could be learned by a comparable process. Itgent network architecture used, and may be compared
is suggested that this process takes place at each stage ofith Figure 1. Within each layer, lateral inhibition
the multiple-layer cortical processing hierarchy, so that between neurons has a radius of effect just greater than
invariances are learned first over small regions of space, the radius of feedforward convergence just defined. The
and then over successively larger regions. This limits the lateral inhibition is simulated via a linear local contrast
size of the connection space within which correlations enhancing filter active on each neuron. (Note that this
must be sought. It is suggested that view-independentdiffers from the global ‘winner-take-all’ paradigm imple-
representations could be formed by the same type of mented by Foldiak, 1991). The cell activation is then
computation, operating to combine a limited set of passed through a non-linear activation function (e.g. sig-
views of objects. Increasing complexity of represen- moid), which also produces contrast enhancement of the
tations could also be built in such a multiple layer firing rates.
hierarchy by similar mechanisms. At each stage or So that the results of the simulation might be made
layer the self-organizing competitive nets would result particularly relevant to understanding processing in
in combinations of inputs becoming the effective stimuli higher cortical visual areas, the inputs to layer 1 come
for neurons. from a separate input layer which provides an approxi-

To test and clarify these hypotheses (see further Rolls, mation to the encoding found in cortical visual area 1
1992, 1994b, 1995b, 1997) about how the visual system (V1) of the primate visual system. These response
may operate to learn invariant object recognition, we characteristics of neurons in the input layer are provided
have performed a simulation which implements many by a series of spatially tuned filters with image contrast
of the ideas just described, and is consistent with and sensitivities chosen to accord with the general tuning
based on much of the neurophysiology summarized profiles observed in the simple cells of V1.
above. The network simulated can perform object, The synaptic learning rule used in these simulations
including face, recognition in a biologically plausible (VisNet) can be summarized as follows:
way, and after training shows, for example, translation
and view invariance (Wallis & Rolls, 1997; Wallis et al.,
1993). and

In the four-layer network, the successive layers corre- m=(1— 77)r_(t) i nm(t
spond approximately to V2, V4, the posterior temporal :
cortex, and the anterior temporal cortex. The forward wherer;’ is thejth input to the neurom; is the output of
connections to a cell in one layer are derived from a theith neuronw; is thejth weight on theth neurony
topologically corresponding region of the preceding governs the relative influence of the trace and the new
layer, using a Gaussian distribution of connection prob- input (typically 0.4-0.6), ant"’ represents the value of
abilities to determine the exact neurons in the preceding theith cell's memory trace at time In the simulations
layer to which connections are made. This schema is the neuronal learning was bounded by normalization of
constrained to preclude the repeated connection of anyeach cell’'s dendritic weight vector.
cells. Each cell receives 100 connections from thex32 To train the network to produce a translation invariant
32 cells of the preceding layer, with a 67% probability representation, one stimulus was placed successively in a
sequence of nine positions across the input, then the next
stimulus was placed successively in the same sequence
of nine positions across the input, and so on through the
set of stimuli. The idea was to enable the network to learn
whatever was common at each stage of the network about
a stimulus shown in different positions. To train on view
invariance, different views of the same object were
shown in succession, then different views of the next
object were shown in succession, and so on. It has been
shown that this network, inspired by Fukushima's
(Fukushima, 1980) neocognitron as well as by the neu-
rophysiological data, can form cells in its final layer with
translation, size and view invariant responses to stimuli
presented on the ‘retina’ (Wallis & Rolls, 1997; Wallis et
al., 1993).

: : . These results show that the proposed learning mechan-

FIGURE 2. Hierarchical network structure used in the model of . . .
invariant visual object recognition. (Reprinted from Wallis & ism and neural architecture can produce cells with
Rolls, 1997.) responses selective for stimulus type with considerable

ow; = kmr;’

— ]_)
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position, size or view invariance. The ability of the net- the information from the type of visual processing
work to be trained with natural scenes is currently help- system | describe would have to be projected to a differ-
ing to advance our understanding of how representationsent brain system, the nature of which will be described
of objects are built and encoded in the primate visual below. Before turning to that, some recent advances in
system. understanding the brain processing that occurs when we
This combined neurophysiological and computational store and then recall later everyday events are described,
approach is thus leading to biologically plausible theories and | ask whether these memory processes are closer to
about how the brain operates when it performs face or consciousness.
object recognition. In addition, there is now considerable
evidence about what happens in our higher cortical visual
areas when we recognize faces, and about how informa-
tion about at least some classes of object in the world is The hippocampus is implicated in a particular type of
represented in the visual system. Yet does this under-memory, the memory for recent events and episodes, in
standing of visual object recognition help us directly which there is frequently a spatial aspect or context (see
with the problem of consciousness, of why it is that it for details Rolls, 1996b, d, 1997). In monkeys, a proto-
feels the way it does when we recognize a face? Would atypical memory task impaired by damage to the hippo-
computer which operated in the way described above becampal system is object-place memory, in which the
conscious during object recognition? | suggest that it locations of objects in space must be remembered (see
would not be, and that for the object recognition pro- Gaffan, 1994). This impairment is analogous to that
cesses to be conscious, including to feel like anything, shown by anterograde amnesic patients with damage to

3. THE HIPPOCAMPUS AND MEMORY
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FIGURE 3. Forward connections (continuous lines) from areas of cerebral association neocortex via the parahippocampal gyrus and
perirhinal cortex, and entorhinal cortex, to the hippocampus; and backprojections (dashed lines) via the hippocampal CA1 pyramidal
cells, subiculum, and parahippocampal gyrus to the neocortex. There is great convergence in the forward connections down to the
single network implemented in the CA3 pyramidal cells, and great divergence again in the backprojections. Left: block diagram. Right:
more detailed representation of some of the principal excitatory neurons in the pathways. D, Deep pyramidal cells; DG, dentate granule
cells; F, forward inputs to areas of the association cortex from preceding cortical areas in the hierarchy; mf, mossy fibres; PHG,
parahippocampal gyrus and perirhinal cortex; pp, perforant path; rc, recurrent collateral of the CA3 hippocampal pyramidal cells; S,
superficial pyramidal cells; 2, pyramidal cells in layer 2 of the entorhinal cortex; 3, pyramidal cells in layer 3 of the entorhinal cortex. The
thick lines above the cell bodies represent the dendrites.
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the hippocampus and nearby areas who cannot remembeaboutwhatmust be implemented before consideriray
the locations of objects on a tray. it could be implemented in neural networks.

On the basis of these findings in humans and other A starting point is that many actions can be performed
animals, the hypothesis is suggested that the importancerelatively automatically, without apparent conscious
of the hippocampus in spatial and other memories is that intervention. An example sometimes given is driving a
it can rapidly form event or "episodic" representations of car. Such actions could involve control of behaviour by
information originating from many areas of the cerebral brain systems which are old in evolutionary terms such as
cortex. In rats, hippocampal pyramidal cells (e.g. CA3 the basal ganglia. It is of interest that the basal ganglia
and CA1 neurons) respond when the rat is in a particular (and cerebellum) do not have backprojection systems to
place in a spatial environment. In monkeys, it has been most of the parts of the cerebral cortex from which they
shown that there is a rich representation of space outsidereceive inputs (see, e.g. Rolls, 1994a; Rolls & Johnstone,
the monkey implemented by "spatial view" cells (see 1992). In contrast, parts of the brain such as the hippo-
Rolls, 1996b, 1996d). These would provide an excellent campus and amygdala, involved in functions such as
representation of the spatial information needed to form a episodic memory and emotion respectively, about
memory of where an object had been seen in space. It iswhich we can make (verbal) declarations (hence declara-
suggested that an autoassociation network implementedtive memory, Squire, 1992) do have major backprojec-
by the CA3 cells of the hippocampus brings together the tion systems to the high parts of the cerebral cortex from
object information represented in temporal cortical which they receive forward projections (Rolls, 1992;
visual areas, and spatial information represented in par-Rolls & Treves, 1997; Treves & Rolls, 1994; see
ietal areas, so that associations can be formed betweerFigure 3). It may be that evolutionarily newer parts of
objects and places (see Figure 3 and Rolls, 1989a, b, c,the brain, such as the language areas and parts of the
1990a, 1996a,b). prefrontal cortex, are involved in an alternative type of

A theory of how the networks shown in Figure 3 could control of behaviour, in which actions can be planned
operate, not only to store memories of events, but also towith the use of a (language) system which allows
recall them to the neocortex via the backprojection path- relatively arbitrary (syntactic) manipulation of semantic
ways, has been developed (see Rolls, 1989a, b, 1996agntities (symbols).

Rolls & Treves, 1997; Treves & Rolls, 1992, 1994). A The general view that there are many routes to
way in which such recall could be useful in the cortex for behavioural output is supported by the evidence that
building long-term semantic memories has been there are many input systems to the basal ganglia (from
described by McClelland et al. (1995). A comparison almost all areas of the cerebral cortex), and that neuronal
of these approaches with others (for example by Burgessactivity in each part of the striatum reflects the activity in
et al., 1994; and Hasselmo & Bower, 1993) is provided the overlying cortical area (Rolls, 1994a; Rolls & John-
by Rolls (1996a), Rolls & Treves (1997) and Treves & stone, 1992). The evidence is consistent with the
Rolls (1994). possibility that different cortical areas, each specialized
for a different type of computation, have their outputs
directed to the basal ganglia, which then select the stron-
gest input, and map this into action (via outputs directed,
It would be possible to build a computer which would for example, to the premotor cortex) (Rolls & Johnstone,
perform all the above functions of visual object recogni- 1992; Rolls & Treves, 1997). Within this scheme, the
tion, memory storage and recall to the neocortex, and language areas would offer one of many routes to
even emotion (Rolls, 1990b, 1995c), using the same action, but a route particularly suited to planning actions,
computational principles described above, and yet we because of the syntactic manipulation of semantic enti-
might not want to ascribe subjective or phenomenal ties which may make long-term planning possible. A
states, which | shall call qualia, to this computer. We schematic diagram of this suggestion is provided in
might not want to say that it feels like something to the Figure 4. Consistent with the hypothesis of multiple
computer when the computer is performing these func- routes to action, only some of which utilize language,
tions. This raises the issue of in which networks in the is the evidence that split-brain patients may not be
brain would consciousness be represented. Because thaware of actions being performed by the "non-domi-
topic of subjective or phenomenal feels or feelings (that nant" hemisphere (Gazzaniga, 1988, 1995; Gazzaniga
it feels like something to be in that state) is of con- & LeDoux, 1978). Also consistent with multiple includ-
siderable current interest, and is for the present purposesing non-verbal routes to action, patients with focal brain
the defining aspect of consciousness, one view on con-damage, for example to the prefrontal cortex, may emit
sciousness, influenced by contemporary cognitive actions, yet comment verbally that they should not be
neuroscience, is outlined next. However, this view is performing those actions (Rolls et al., 1994a). In both
only preliminary, and theories of consciousness are these types of patient, confabulation may occur, in
likely to develop considerably. A reason for describing that a verbal account of why the action was performed
this view of consciousness is that we need to be clear may be given, and this may not be related at all to the

4. CONSCIOUSNESS
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Language thought that | have just described (e.g. | think that he
Cortex thinks that--), as this would allow much better modelling
and prediction of others’ behaviour, and therefore of
/A planning, particularly planning when it involves others.
Association This capability for higher-order thoughts would also
Cortex allow reflection on past events, which would also be
useful in planning. In contrast, non-linguistic behaviour
f would be driven by learned reinforcement associations,

learned rules, etc., but not by flexible planning for many
Secondary steps ahead involving a model of the world including
Cortex . . . . .

others’ behaviour. (For an earlier view which is close
to this part of the argument, see Humphrey, 1980.)
(The examples of behaviour from non-humans that

Primary A R
Cortex may reflect planning may reflect much more limited
_ and inflexible planning. For example, the dance of the
brainstem honey-bee to signal to other bees the location of food
may be said to reflect planning, but the symbol manip-
INPUT spinal cord OUTPUT ulation is not arbitrary. There are likely to be interesting

examples of non-human primate behaviour, perhaps in

. ic i ion indicati ibl . .
FIGURE 4. Schematic illustration indicating many possible the great apes, that reflect the evolution of an arbltrary

routes from input systems to action (output) systems. Cortical

information processing systems are organized hierarchically, SymbOI'manipUIation system that could be useful f(?r
and there are routes to output systems from most levels of the flexible planning; see Cheney & Seyfarth, 1990.) It is
hierarchy. important to state that the language ability referred to

here is not necessarily human verbal language (though

environmental event which actually triggered the action this would be an example). What it is suggested is impor-
(Gazzaniga, 1988, 1995; Gazzaniga & LeDoux, 1978). It tant to planning is the syntactic manipulation of symbols,
is possible that sometimes in normal humans when and it is this syntactic manipulation of symbols which is
actions are initiated as a result of processing in a specia-the sense in which language is defined and used here.
lized brain region such as those involved in some types of It is next suggested that this arbitrary symbol-manip-
rewarded behaviour, the language system may subse-ulation using important aspects of language processing
quently elaborate a coherent account of why that action and used for planning but not in initiating all types of
was performed (i.e. confabulate). This would be consis- behaviour is close to what consciousness is about. In
tent with a general view of brain evolution in which as particular, consciousness mag the state which arises
areas of the cortex evolve, they are laid on top of existing in a system that can think about (or reflect on) its own (or
circuitry connecting inputs to outputs, and in which each other peoples’) thoughts, that is, in a system capable of
level in this hierarchy of separate input—output pathways second- or higher-order thoughts (Rosenthal, 1986, 1990,
may control behaviour according to the specialized func- 1993; compare Dennett, 1991). On this account, a mental
tion it can perform (see schematic diagram in Figure 4). state is non-introspectively (i.e. non-reflectively) con-
(It is of interest that mathematicians may have a hunch scious if one has a roughly simultaneous thought that
that something is correct, yet not be able to verbalize one is in that mental state. Following from this, intro-
why. They may then resort to formal, more serial and spective consciousness (or reflexive consciousness, or
language-like theorems to prove the case, and these seemself consciousness) is the attentive, deliberately focused
to require conscious processing. This is a further indica- consciousness of one’s mental states. It is noted that not
tion of a close association between linguistic processing all of the higher-order thoughts need themselves be con-
and consciousness. The linguistic processing need not, ascious (many mental states are not). However, according
in reading, involve an inner articulatory loop.) to the analysis, having a higher-order thought about a

We may next examine some of the advantages andlower-order thought is necessary for the lower-order
behavioural functions that language, present as thethought to be conscious. (A slightly weaker position
most recently added layer to the above system, would than Rosenthal’s on this is that a conscious state corre-
confer. One major advantage would be the ability to sponds to a first-order thought that has tapacityto
plan actions through many potential stages and to eval- cause a second-order thought or judgement about it—
uate the consequences of those actions without having toCarruthers, 1996). This analysis is consistent with the
perform the actions. For this, the ability to form proposi- points made above that the brain systems that are
tional statements, and to perform syntactic operations onrequired for consciousness and language are similar. In
the semantic representations of states in the world, would particular, a system that can have second- or higher-order
be important. Also important in this system would be the thoughts about its own operation, including its planning
ability to have second-order thoughts about the type of and linguistic operation, must itself be a language
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processor, in that it must be able to bind correctly to the do Y, and then C would be able to do Z." A first-order
symbols and syntax in the first-order system. According language system could process this statement. Moreover,
to this explanation, the feeling of anything is the state the first-order language system could apply the rule use-
which is present when linguistic processing that involves fully in the world, provided that the symbols in the lan-
second- or higher-order thoughts is being performed.  guage system (A, B, X, Y, etc.) are grounded (have

It might be objected that this captures some of the meaning) in the world.) In line with the argument on
process aspects of consciousness, what it is good for inthe adaptive value of higher-order thoughts and thus con-
an information processing system, but does not capturesciousness given above, that they are useful for correct-
the phenomenal aspect of consciousness. | agree thaing lower-order thoughts, | now suggest that correction
there is an element of "mystery" that is invoked at this using higher-order thoughts of lower-order thoughts
step of the argument, when | say that it feels like some- would have adaptive value primarily if the lower-order
thing for a machine with higher-order thoughts to be thoughts are sufficiently complex to benefit from correc-
thinking about its own first- or lower-order thoughts. tion in this way. The nature of the complexity is specific:
But the return point is the followingif a human with that it should involve syntactic manipulation of symbols,
second-order thoughts is thinking about his or her first- probably with several steps in the chain, and that the
order thoughts, surely it is very difficult for us to conceive chain of steps should be a one-off set of steps, as in a
that this would ~or feel like something This is particular plan or sentence, rather than a set of well-
especially the case when the first-order thoughts are lin- learned rules. The first- or lower-order thoughts might
guistic, and are about (grounded in) the real world. involve a linked chain of "if--then" statements that

It is suggested that part of the evolutionary adaptive would be involved in planning, an example of which
significance of this type of higher-order thought is that it has been given above. It is partly because complex
allows correction of errors made in first-order linguistic lower-order thoughts such as these, which involve syntax
or in non-linguistic processing. Indeed, the ability to and language, would benefit from correction by higher-
reflect on previous events is extremely important for order thoughts, that | suggest that there is a close link
learning from them, including setting up new long-term between this reflective consciousness and language. The
semantic structures. It was shown above that the hippo-hypothesis is that by thinking about lower-order
campus may be a system for such "declarative" recall of thoughts, the higher-order thoughts can discover what
recent memories. Its close relation to "conscious" proces- may be weak links in the chain of reasoning at the
sing in humans (Squire has classified it as a declarative lower-order level, and having detected the weak link,
memory system) may be simply that it allows the recall might alter the plan, to see if this gives better success.
of recent memories, which can then be reflected upon in In our example above, if it transpired that C could not do
conscious, higher-order, processing. Another part of the Z, how might the plan have failed? Instead of having to
adaptive value of a higher-order thought system may be go through endless random changes to the plan to see if
that by thinking about its own thoughts in a given situa- by trial and error some combination does happen to pro-
tion, it may be able to better understand the thoughts of duce results, what | am suggesting is that by thinking
another individual in a similar situation, and therefore about the previous plan, one might, for example, using
predict that individual's behaviour better (Humphrey, knowledge of the situation and the probabilities that

1980). operate in it, guess that the step where the plan failed
As a point of clarification, | note that according to this was that B did not in fact do Y. So by thinking about the
theory, a language processing system issusficientfor plan (the first- or lower-order thought), one might correct

consciousness. What defines a conscious system accordthe original plan, in such a way that the weak link in that
ing to this analysis is the ability to have higher-order chain, that "B will probably do Y", is circumvented. To
thoughts, and a first-order language processor (thatdraw a parallel with neural networks: there is a "credit
might be perfectly competent at language) would not assignment" problem in such multistep syntactic plans, in
be conscious, in that it could not think about its own or that if the whole plan fails, how does the system assign
others’ thoughts. One can perfectly well conceive of a credit or blame to particular steps of the plan? The sug-
system which obeyed the rules of language (which is the gestion is that this is the function of higher-order
aim of much connectionist modelling), and implemented thoughts and is why systems with higher-order thoughts
a first-order linguistic system, that would not be con- evolved. The suggestion | then make is that if a system
scious. (Possible examples of language processing thatwere doing this type of processing (thinking about its
might be performed non-consciously include computer own thoughts), it would then be very plausible that it
programs implementing aspects of language, or ritua- should feel like something to be doing this. | even sug-
lized human conversations, e.g. about the weather. gestto the reader that it is not plausible to suggest that it
These might require syntax and correctly grounded would not feel like anything to a system if it were doing
semantics, and yet be performed non-consciously. A this.

more complex example, illustrating that syntax could  Two other points in the argument should be empha-
be used, might be: "If A does X, then B will probably sized for clarity. One is that the system that is having
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syntactic thoughts about its own syntactic thoughts linguistic system that can reflect on and correct its own
would have to have its symbols grounded in the real lower-order processes, and thus has adaptive value.
world for it to feel like something to be having higher- This account implies that it may be especially animals
order thoughts. The intention of this clarification is to with a higher-order belief and thought system and with
exclude systems such as a computer running a programlinguistic symbol manipulation that have qualia. It may
when there is in addition some sort of control or even be that much non-human animal behaviour, provided that
overseeing program checking the operation of the first it does not require flexible linguistic planning and correc-
program. We would want to say that in such a situation it tion by reflection, could take place according to reinfor-
would feel like something to be running the higher-level cement-guidance (using, e.g. stimulus-reinforcement
control program only if the first-order program was sym- association learning in the amygdala and orbitofrontal
bolically performing operations on the world and receiv- cortex, Rolls, 1990b, 1996c), and rule-following (imple-
ing input about the results of those operations, and if the mented, e.g. using habit or stimulus-response learning in
higher-order system understood what the first-order sys-the basal ganglia, Rolls, 1994a; Rolls & Johnstone,
tem was trying to do in the world. The second clarifica- 1992). Such behaviours might appear very similar to
tion is that the plan would have to be a unique string of human behaviour performed in similar circumstances,
steps, in much the same way as a sentence can be &ut would not imply qualia. It would be primarily by
unique and one-off string of words. The point here is virtue of a system for reflecting on flexible, linguistic,
that it is helpful to be able to think about particular planning behaviour that humans (and animals close to
one-off plans, and to correct them; and that this type of humans, with demonstrable syntactic manipulation of
operation is very different from the slow learning of fixed symbols, and the ability to think about these linguistic
rules by trial and error. processes) would be different from other animals, and
This analysis does not yet give an account for sensory would have evolved qualia.
qualia ("raw sensory feels"; for example, why "red" feels ~ For processing in a part of our brain to be able to reach
red), for emotional qualia (e.g. why a rewarding touch consciousness, appropriate pathways must be present.
produces an emotional feeling of pleasure), or for moti- Certain constraints arise here. For example, in the sen-
vational qualia (e.g. why food deprivation makesfesl sory pathways, the nature of the representation may
hungry). The view | suggest on such qualia is as follows. change as it passes through a hierarchy of processing
Information processing in and from our sensory systems levels, and in order to be conscious of the information
(e.g. the sight of the colour red) may be relevant to plan- in the form in which it is represented in early processing
ning actions using language and the conscious processingstages, the early processing stages must have access to
thereby implied. Given that these inputs must be repre- the part of the brain necessary for consciousness. An
sented in the system that plans, we may ask whether it isexample is provided by processing in the taste system.
more likely that we would be conscious of them or that In the primate primary taste cortex, neurons respond to
we would not. | suggest that it would be a very special- taste independently of hunger, yet in the secondary taste
purpose system that would allow such sensory inputs, cortex, food-related taste neurons (e.g. responding to
and emotional and motivational states, to be part of (lin- sweet taste) only respond to food if hunger is present,
guistically based) planning, and yet remain unconscious. and gradually stop responding to that taste during feeding
It seems to be much more parsimonious to hold that we to satiety (see Rolls, 1989d, 1993, 1995a). Now the qual-
would be conscious of such sensory, emotional and moti- ity of the tastant (sweet, salt, etc.) and its intensity are not
vational qualia because they would be being used (or areaffected by hunger, but the pleasantness of its taste is
available to be used) in this type of (linguistically based) decreased to zero (neutral) (or even becomes unpleasant)
higher-order thought processing, and this is what | after we have eaten it to satiety. The implication of this is
propose. that for quality and intensity information about taste, we
The explanation of emotional and motivational sub- must be conscious of what is represented in the primary
jective feelings or qualia that this discussion has led taste cortex (or perhaps in another area connected to it
towards is thus that they should be felt as conscious which bypasses the secondary taste cortex), and not of
because they enter into a specialized linguistic symbol- what is represented in the secondary taste cortex. In con-
manipulation system that is part of a higher-order trast, for the pleasantness of a taste, consciousness of this
thought system that is capable of reflecting on and cor- could not reflect what is represented in the primary taste
recting its lower-order thoughts involved, for example, in  cortex, but instead what is represented in the secondary
the flexible planning of actions. It would require a very taste cortex (or in an area beyond it). The same argument
special machine to allow this higher-order linguistically arises for reward in general, and therefore for emotion,
based thought processing, which is conscious by its nat-which in primates is not represented early on in proces-
ure, to occur without the sensory, emotional and motiva- sing in the sensory pathways (nor in or before the inferior
tional states (which must be taken into account by the temporal cortex for vision), but in the areas to which
higher-order thought system) becoming felt qualia. The these object analysis systems project, such as the orbito-
qualia are thus accounted for by the evolution of the frontal cortex, where the reward value of visual stimuli is
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reflected in the responses of neurons to visual stimuli (see Language
Rolls, 1990b, 19954, c). It is also of interest that reward Cortex
signals (e.g. the taste of food when we are hungry) are f
associated with subjective feelings of pleasure (see Rolls,

1990b, 1993, 19954, c). | suggest that this correspon- Ag(s)oncei:tion
dence arises because pleasure is the subjective state

that represents in the conscious system a signal that is f

positively reinforcing (rewarding), and that inconsistent
behaviour would result if the representations did not cor- Secondary
respond to a signal for positive reinforcement in both the
conscious and the non-conscious processing systems.
Do these arguments mean that the conscious sensation Primary

Cortex
of, for example, taste quality (i.e. identity and intensity)
is represented or occurs in the primary taste cortex, and / brainstem
of the pleasantness of taste in the secondary taste cortex, |

and that activity in these areas is sufficient for conscious INPUT — spinalcord %" g ppyr
sensations (qua“a) to occur? | do not suggest this at all. FIGURE 5. Schemaitic illustration indicating that early cortical
Instead, the arguments | have put forward above SUggeStstages in information processing may need access to language
that we are only conscious of representations when we areas which bypass subsequent levels in the hierarchy, so that
have high-order thoughts about them. The implication consciousness of what is represented in early cortical stages,
then is that pathways must connect from each of the and Whi(?h may not pe re_presented in later cortical staggs, can
brain areas in which information is represented about °°CU"- Higher-order linguistic thoughts (HOLTS) could be imple-
. . X mented in the language cortex itself, and would not need a sepa-
which we can be conscious, to the system which has rate cortical area. Backprojections, a notable feature of cortical
the higher-order thoughts, which, as | have argued connectivity, with many probable functions including recall
above, requires language. Thus, in the example given, (Rolls, 1989a, b, 1996a), probably reciprocate all the connections
there must be connections to the language areas fromshown.
the primary taste cortex, which need not be direct, but
which must bypass the secondary taste cortex, in which
the information is represented differently (see Rolls, reflective control of lower-order processing, nor indeed
1989d, 1995a). There must also be pathways from the any contribution of language. There are many brain pro-
secondary taste cortex, not necessarily direct, to the cessing routes to output regions, and only one of these
language areas so that we can have higher-order thoughténvolves conscious, verbally represented processing
about the pleasantness of the representation in the secwhich can later be recalled (see Figure 4).
ondary taste cortex. There would also need to be path- Some of the brain systems involved in this type of
ways from the hippocampus, implicated in the recall of conscious processing that it is suggested has evolved to
declarative memories, back to the language areas of thehelp the correction of plans are as follows. One module is
cerebral cortex (at least via the cortical areas which a system that can implement syntax, because the many
receive backprojections from the hippocampus, see symbols (e.g. names of people) that are part of the plan
Figure 3, which would in turn need connections to the must be correctly linked or bound. Such linking might be
language areas). A schematic diagram incorporating this of the form: "if A does this, then B is likely to do this, and
anatomical prediction about human cortical neural this will cause C to do this-". The requirement of syntax
connectivity in relation to consciousness is shown in for this type of planning implies that an output to lan-
Figure 5. guage systems in the brain is required for this type of
One guestion that has been discussed is whether thergplanning (see Figure 4). Another building block for such
is a causal role for consciousness (e.g. Armstrong & planning operations in the brain may be the type of short-
Malcolm, 1984). The position to which the above argu- term memory in which the prefrontal cortex is involved.
ments lead is that indeed conscious processing does havd his short-term memory may be, for example, in non-
a causal role in the elicitation of behaviour, but only human primates of where in space a response has just
under the set of circumstances when higher-order been made. A development of this type of short-term
thoughts play a role in correcting or influencing lower- response memory system in humans to allow multiple
order thoughts. The sense in which the consciousness isshort-term memories to be held in place correctly, pre-
causal is then, it is suggested, that the higher-order ferably with the temporal order of the different items in
thought is causally involved in correcting the lower- the short-term memory coded correctly, may be another
order thought; and that it is a property of the higher- building block for the multiple step "if-then" type of
order thought system that it feels like something when computation so as to form a multiple step plan. Such
it is operating. As we have seen, some behavioural short-term memories are implemented in the (dorso-
responses can be elicited when there is not this type oflateral and inferior convexity) prefrontal cortex of
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non-human primates and humans (see Goldman-Rakic,or not. (The operation of brain machinery must be rela-
1996; Petrides, 1996), and may be part of the reason whytively deterministic, for it has evolved to provide reliable
prefrontal cortex damage impairs planning (see Shallice outputs for given inputs.)
& Burgess, 1996). These are my initial thoughts on why we have con-
It is of interest to comment on how the evolution of a sciousness, and are conscious of sensory, emotional and
system for flexible planning might affect emotions. Con- motivational qualia, as well as qualia associated with
sider grief which may occur when a reward is terminated first-order linguistic thoughts. It is likely that theories
and no immediate action is possible (see Rolls, 1990b, of consciousness will continue to undergo rapid devel-
1995c). It may be adaptive by leading to a cessation of opment, and current theories should not be taken to have
the formerly rewarded behaviour and thus facilitating the practical implications.
possible identification of other positive reinforcers in the
environment. In humans, grief may be particularly potent
because it becomes represented in a system which can
plan ahead, and understand the enduring implications of Some ways in which the current theory may be different
the loss. (Thinking about or verbally discussing emo- from other related theories follow. The current theory
tional states may also in these circumstances help,holds that it is higher-orderlinguistic thoughts
because this can lead towards the identification of new (HOLTS) that are closely associated with consciousness,
or alternative reinforcers, and of the realization that, for and this may differ from Rosenthal’'s higher-order
example, the negative consequences may not be as bad athoughts (HOTs) theory (Rosenthal, 1986, 1990, 1993),
feared.) in the emphasis in the current theory on language. Simi-
This account of consciousness also leads to a suggesiarly, the theory differs from suggestions for a function of
tion about the processing that underlies the feeling of free consciousness in "monitoring” (e.g. Marcel, 1988), in
will. Free will would in this scheme involve the use of that a specification is given in the present theory of the
language to check many moves ahead on a number oftype of correction being performed of first-order linguis-
possible series of actions and their outcomes, and thentic thought processes, and of the computational advan-
with this information to make a choice from the likely tages of this. Language in the current theory is defined by
outcomes of different possible series of actions. (If, in syntactic manipulation of symbols, and does not neces-
contrast, choices were made only on the basis of the sarily imply verbal language. The reason that strong
reinforcement value of immediately available stimuli, emphasis is placed on language is that it is as a result
without the arbitrary syntactic symbol manipulation of having a multistep flexible "on the fly" reasoning pro-
made possible by language, then the choice strategycedure that errors which cannot be easily corrected by
would be much more limited, and we might not want reward or punishment received at the end of the reason-
to use the term free will, as all the consequences of ing, need ‘thoughts about thoughts’, that is, some type of
those actions would not have been computed.) It is sug- supervisory and monitoring process, to detect where
gested that when this type of reflective, conscious, infor- errors in the reasoning have occurred. This suggestion
mation processing is occurring and leading to action, the on the adaptive value in evolution of such a higher-
system performing this processing and producing the order linguistic thought process for multistep planning
action would have to believe that it could cause the ahead, and correcting such plans, may also be different
action, for otherwise inconsistencies would arise, and from earlier work. Put another way, this point is that
the system might no longer try to initiate action. This credit assignment when reward or punishment are
belief held by the system may partly underlie the feeling received is straightforward in a one layer network (in
of free will. At other times, when other brain modules are which the reinforcement can be used directly to correct
initiating actions, the conscious processor may confabu- nodes in error, or responses), but is very difficult in a
late and believe that it caused the action, or at least give multistep linguistic process executed once "on the fly".
an account (possibly wrong) of why the action was Very complex mappings in a multilayer network can be
initiated. The fact that the conscious processor may learned if hundreds of learning trials are provided. But
have the belief even in these circumstances that it once these complex mappings are learned, their success
initiated the action may arise as a property of it being or failure in a new situation on a given trial cannot be
inconsistent for a system which can take overall control evaluated and corrected by the network. Indeed, the com-
using conscious verbal processing to believe that it was plex mappings achieved by such networks (e.g. back-
overridden by another system. propagation nets) mean that after training they operate
In the operation of such a free will system, the uncer- according to fixed rules, and are often impenetrable and
tainties introduced by the limited information possible inflexible. In contrast, to correct a multistep, single
about the likely outcomes of series of actions, and the occasion, linguistically based plan or procedure, recall
inability to use optimal algorithms when combining con- of the steps just made in the reasoning or planning, and
ditional probabilities, would be much more important perhaps related episodic material, needs to occur, so that
factors than whether the brain operates deterministically the link in the chain which is most likely to be in error

5. DISCUSSION
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can be identified. This may be part of the reason why representation of faces and objects (Tovee & Raoalls,
there is a close relation between declarative memory 1992).)
systems, which can explicitly recall memories, and con-  The current theory holds that consciousness arises by
sciousness. virtue of a system that can think linguistically about its
Some computer programs may have supervisory pro- own linguistic thoughts. The advantages for a system of
cesses. Should these count as higher-order linguisticbeing able to do this have been described, and this has
thought processes? My current response to this is thatbeen suggested as the reason why consciousness evolved.
they should not, to the extent that they operate with The evidence that consciousness arises by virtue of hav-
fixed rules to correct the operation of a system which ing a system that can perform higher-order linguistic
does not itself involve linguistic thoughts about symbols processing is, however, and | think may remain, circum-
grounded semantically in the external world. If, on the stantial. (Why must it feel like something when we are
other hand, it were possible to implement on a computer performing a certain type of information processing? The
such a high-order linguistic thought supervisory correc- evidence described here suggests that it does feel like
tion process to correct first-order linguistic thoughts with something when we are performing a certain type of
symbols grounded in the real world, then this process information processing, but does not produce a strong
would prima facie be conscious. If it were possible in a reason for why it has to feel like something. It just
thought experiment to reproduce the neural connectivity does, when we are using this linguistic processing system
and operation of a human brain on a computer, then capable of higher-order thoughts.) The evidence, sum-
prima facie it would also have the attributes of conscious- marized above, includes the points that we think of our-
ness. It might continue to have those attributes for as long selves as conscious when, for example, we recall earlier
as power was applied to the system. events, compare them with current events, and plan many
Another possible difference from earlier theories is steps ahead. Evidence also comes from neurological
that raw sensory feels are suggested to arise as a consecases, from, for example, split brain patients (who may
guence of having a system that can think about its own confabulate conscious stories about what is happening in
thoughts. Raw sensory feels, and subjective states assotheir other, non-language, hemisphere), and from cases
ciated with emotional and motivational states, may not such as frontal lobe patients who can tell one consciously
necessarily arise first in evolution. what they should be doing, but nevertheless may be
A property often attributed to consciousness is thatitis doing the opposite. (The force of this type of case is
unitary. The current theory would account for this by the that much of our behaviour may normally be produced
limited syntactic capability of neuronal networks in the by routes about which we cannot verbalize, and are not
brain, which renders it difficult to implement more than a conscious about.) This raises the issue of the causal role
few syntactic bindings of symbols simultaneously (see of consciousness. Does consciousness cause our
McLeod et al., 1998; Rolls & Treves, 1997). This limita- behaviour? The view that | currently hold is that the
tion makes it difficult to run several "streams of con- information processing which is related to consciousness
sciousness" simultaneously. In addition, given that a (activity in a linguistic system capable of higher-order
linguistic system can control behavioural output, several thoughts, and used for planning and correcting the opera-
parallel streams might produce maladaptive behaviour tion of lower-order linguistic systems) can play a causal
(apparent as, e.g. indecision), and might be selectedrole in producing our behaviour (see Figure 4). It is, |
against. The close relation between, and the limited capa-postulate, a property of processing in this system
city of, both the stream of consciousness, and auditory— (capable of higher-order thoughts) that it feels like some-
verbal short-term memory, may be that both implement thing to be performing that type of processing. Itis in this
the capacity for syntax in neural networks. Whether sense that | suggest that consciousness can act causally to
syntax in real neuronal networks is implemented by tem- influence our behaviour: consciousness is the property
poral binding (see von der Malsburg, 1990) is still an that occurs when a linguistic system is thinking about
unresolved issue (see Rolls & Treves, 1997). (For exam- its lower-order thoughts. The hypothesis that it does
ple, the code can be read off from the end of the visual feel like something when this processing is taking
system without taking the temporal aspects of the neuro-
nal firing into account, as described above; much of the ——— _ _
information about which stimulus is shown is available This raises the issue of the causal relation between mental events
. . . . and neurophysiological events, part of the mind—body problem. My
in short times of 30—50 ms, and cortical neurons need fire yjey is that the relation between mental events and neurophysiological
for only this long during the identification of objects events is similar (apart from the problem of consciousness) to the rela-
(ROllS & Tovee, 1994; Rolls et al., 1994b: Tovee & tion between the program runninginacomputerar]dthehardware in the
computer. In a sense, the program causes the logic gates to move to the
Rolls, 1995; Tovee et al., 1993) (these are rather short heyt state. This move causes the program to move to its next state.
time windows for the expression of multiple separate Effectively, we are looking at different levels of what is overall the

populations of synchronized neurons); and oscillations, oPeration of asystem and causality can usefully be understood as
! ' operating both within levels (causing one step of the program to

at least, are not an ObViOL_JS prc_)perty of nepronal fir?ng iN move to the next), as well as between levels (e.g. software to hardware
the primate temporal cortical visual areas involved in the and vice versa).




Consciousness in Neural Networks?

1239

place is at least to some extent testable: humans perform-Hasselmo, M. E., & Bower, J. M. (1993). Acetylcholine and memory.

ing this type of higher-order linguistic processing, for
example, recalling episodic memories and comparing

them with current circumstances, who denied being con-
scious, would prima facie constitute evidence against the Linsker, E.

theory. Most humans would find it very implausible
though to posit that they could be thinking about their
own thoughts, and reflecting on their own thoughts, with-
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out being conscious. This type of processing does appeéaiyackay, D. J. C., & Miller, K. D. (1990). Analysis of Linsker's simu-

to be for most humans to be necessarily conscious.
Finally, | provide a short specification of what might
have to be implemented in a neural network to imple-

ment conscious processing. First, a linguistic system, not

necessarily verbal, but implementing syntax between
symbols implemented in the environment would be

needed. Then a higher-order thought system also imple-
menting syntax and able to think about the represen-
tations in the first-order language system, and able to

correct the reasoning in the first-order linguistic system
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in a flexible manner, would be needed. So my answer to Petrides, M. (1996). Specialized systems for the processing of mnemo-

the title of this paper is that consciousness can be imple-

mented in neural networks (and that this is a topic worth
discussing), but that the neural networks would have to
implement the type of higher-order linguistic processing
described in this paper.
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Abstract—The paper traces theoretical work concerning the understanding and simulation of brain functions from
early studies of artificial neural nets to present considerations of human consciousness. The emphasis is on work carried
out since about 1963 at my laboratory in collaboration with my students. The discussion centers on sensory, especially
visual, information processing, some of the cerebral mechanisms involved, and current approaches to an understanding
of conscious perception. The sketchpad model, in which the ubiquitous feedback pathways in the brain play a dominant
role, is described, together with a discussion of the meaning and applicability of scientific reductionism to the problem of
consciousnes® 1997 Elsevier Science Ltd.
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1. INTRODUCTION machines. The McCulloch—Pitts paper raised the hope
that all manner of brain functions could be under-
stood—and eventually synthesized—by systems com-
posed of such primitive logical elements, relying only
on the sheer mass of the net and, perhaps, the delicacy
of its interconnections.

| was asked to review my work and ideas for this Special
Issue on Consciousness. My aim here will be to retrace
my own circuitous route that took me from studying

primitive structures of formal neurons to that hardest of

hard questions, the nature of consciousness. - :

In the beginning, the problem of how mind arises from The ability to undergo permanent or semi-permanent
the physical brain ’seemed not too awesome a chaIIengeChangeS is a further essential ingredient in a system that
to some of us. With enviable insouciance one theoreti- ;slgzgl;ur;:c tgstebc;‘alt?{a;”lﬁispsylg Z?:;?'Str;?ggéd iﬂe?hbe
cian had declared that the constellation of neurons active o 99 P y .
in a neural net—both its biological prototype and the modifiable strengths of neuronal interconnections,
electronic analogue—is quite simply. a thought! We the synaptic couplings between neurons. He further
have become more sophisticated both in our knowledge asggmgd that these syna_ptlc changes, castkmaptu_:
of the brain and in constructing powerful neural net- facilitation, result from strictly local effects, that is,
works, but the question What, if anything, lies between from the coincidence of a presynaptic action potential
the machine and human thought? has continued to be anand a pos.tsynaptlc excitation of the target ceII..
unresolved issue It remains to endow the net of real or simulated

' neurons with structure. Here, the controversy raged for

The impetus for the many studies of neural nets in the . ; :
.~ along time, whether the biological neural net was hard-
late 1950s and early 1960s came mostly from a seminal " . . . .
wired in the sense that the entire connectivity was both

paper by McCulloch & Pitts (1943) in which neurons : . . L
) . determined and essential to its functioning, or whether
were treated as simple threshold elements with all-or- ) L :
genetic determination left some of the details of the
none response. The authors showed that networks of¥." ™ . .
. circuitry to chance. The extreme assumption of a single,
suchformal neuronswere capable of carrying out any .
. . : amorphous, randomly connected net was clearly in
computation whose logical steps could be defined, and ~. "' . :
violation of biological facts, but was nevertheless often

were thus functionally equivalent to universal Turin . . . . .
y €q 9 taken as the starting point of theoretical discussions and
the study of artificial neural networks. At the other
Requests for reprints should be sent to: Erich Harth, Department of .ex”eme' the asse.rt!on of a_r.lgldly deterministic Clrcwtry
Physics, Syracuse University, Syracuse, NY 13244-1130, USA; E-mail: IN Which all detail is specified, has been contradicted
harth@suhep.phy.syr.edu. by numerous brain studies.
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There is, finally, the question what we wish the netto  Limitations of the original elementary perceptrons
accomplish, or what output to expect, and in what code. were pointed out by Minsky & Papert (1969); these
Here, again, Hebb has shown the way. Meaning is to be were largely overcome by adding one or more layers of
attached not to the firing of single neurons (sometimes hidden units to the device. The simple reinforcement
called grandmother cells), but to subpopulations of the rules for elementary perceptrons could no longer be
neural net that Hebb termecell assembliesA cell applied since the role of the hidden units in forming a
assembly may arise through synaptic facilitations and particular output is not readily ascertained. A procedure
is capable of sustaining neural activity within itself called back propagation (Rumelhart et al., 1986) solves
through reverberating circuits. this problem, but is time-consuming and biologically

Hebb’s ideas of synaptic facilitation and cell assem- implausible. Neither the elementary perceptron, nor its
blies have been the cornerstone of practically all thinking more sophisticated hidden-layer successor, contained
about the brain’s ability to record, associate, and recall neural feedback loops; hence no reverberatory activity.
sensory events, as well as the chief ingredient in learning
machines we call neural nets. They appear over and
over in most theories of brain functions from the most
primitive to the elusive phenomena of human thought My own contribution to the field began with a paper
and consciousness. presented in 1965 at a conference on Automata Theory

Together with the concept of McCulloch—Pitts held in Ravello (Harth, 1966). | carried out computer
neurons, the Hebb rules make it appear that brain func- simulations of a randomly connected net of 100 formal
tions are mechanisms that are conceptually simple. Thisneurons whose structure was given by a ‘sparse’
has given rise to bold attempts to simulate different 100X 100 asymmetric coupling matrix. Before learning,
aspects of the brain by use of artificial nets of formal the net was amorphous and isotropic except for statistical
neurons, and to a general euphoria about their future fluctuations. In addition, 25 input units were randomly
potential. A word of caution is in order. It has become and diffusely connected into the net.
increasingly clear just how “impoverished” artificial Stimuli were defined as 25-five digit binary words.
neurons are when compared to their biological arche- The resulting state of the net—a 100-bit word—repre-
types. The proliferation of recognized neurotransmitters, sented the response. The application of Hebbian learning
neuromodulators, and neurochormones since about therules brought out two related results. When the net was
mid 1970s, all of which affect the behavior of neurons trained on the simultaneous presentation of two different
but take their information from widely different sources, stimuli, then the subsequent presentation of just one of
has made us aware of the enormous functional complex-them would produce a response that contained elements
ity that exists already at the level of individual cells. of the responses to both stimuli (association). Similarly,
the presentation of parts of a stimulus would tend to
produce a response closer to that of the previously
learned entire stimulus (pattern completion).

2.1. Netlets

2. SIMPLE NEURAL NETS AND
BRAIN FUNCTIONS

The late 1050s saw a number of papers (Allanson, 1956
Rochester et al., 1956; Beurle, 1959) investigating the
dynamics of populations of primitive neuron-like ele- Harth & Edgar (1967) extended this study to association
ments, and incorporating the ideas proposed by nets of 1000 neurons. These were defined by such para-
McCulloch & Pitts (1943) and Hebb (1949). meters as thresholds, average number of efferent junc-
In 1958 Frank Rosenblatt (1958) initiated a new tions per neuron, average coupling coefficients, and ratio
approach in neural net technology. Rather than studying of inhibitory to excitatory neurons. Although containing
the dynamic properties of multiply connected networks many loops, reverberatory activities were kept down by
of many formal neurons, he conceived a circuit consist- sparse connectivity matrices and high firing thresholds.
ing of an array of input units, connected through a set of The response to a given input vector is the totality of
intermediate neurons to an array of output units. The neurons that reach firing level following the stimulus.
inputs and outputs are both binary words. He called We demonstrated that, upon applying rules of synaptic
this device a perceptron. Initial coupling strengths are facilitation, systems of this kind are able to perform a
chosen arbitrarily, and, for a particular task, a truth remarkable variety of “cognitive” tasks such as simple
table prescribes the “correct” output for every possible conditioned reflexes, dual-conditioned reflexes, bidirec-
input. In a training procedure many different inputs are tional, and reverse conditioned reflexes, as defined by
presented to the perceptron. A simple training rule speci- Asratian (1965).
fies the changes to be made to the coupling strengths We assumed that subsets of the network acted as
according to whether the net gave a correct or incorrect Hebbian cell assemblies with fixed and arbitrarily
response. After training, the perceptron will in general assigned meanings. Associations between different cell
produce correct answers a large fraction of the time. assemblies were accomplished by strengthening their

;2.2. Associations and Reflexes
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FIGURE 2. Connectivity matrix (defined as in Figure 1) in a
computer simulation experiment. The 11 netlets are assigned

FIGURE 1. Matrix of coupling coefficients in simulation of a con- . .
piing meanings as indicated, and cross-hatched areas are enhanced.

ditioned reflex. Each small square represents a netlet of about
100 neurons. U—unconditioned stimulus; C—conditioned
stimulus: R—unconditioned response. Shaded areas denote

domains of enhanced coupling coefficients within netlets U, C, areas are domains of enhanced Synaptic Strengths result-
and R, and the initially strong connection.s from Uto R. Cross- ing from binary associations: FIRE ENGINE with RED,
hatched areas are enhanced due to learning. FIRE ENGINE with METAL, etc. The net is thus
instructed that fire engines are red and of metal, that
interconnections. The previously observed effect of pencils are yellow and of wood, traffic signs yellow
pattern completion means that the association of anand of metal, that red, yellow, and blue are colors and
assemblyA with an assemblyB will trigger a portion plastic, wood and metal materials. With properly chosen
of B wheneverA alone is activated, and vice versa. parameters of thresholds and average normal and

In this approach the simple conditioned reflex is char- enhanced synaptic strengths, it will take more than one
acterized schematically in Figure 1, which shows a part cell assembly to cause significant activity in an asso-
of the matrix of coupling coefficients. The domaldsC, ciated assembly. Taking advantage of the non-linearity
andR are cell assemblies representing the unconditioned of responses, the diagram in Figure 2 shows that the net
and conditioned stimuli and the response, respectively. will respond with RED when the input is FIRE ENGINE
Here, each small square in Figure 1 iste® n matrix of plus COLOR, but shows weak activities in the other
coupling strengths, where is the number of neurons assemblies. Similarly, the question “What is the material
in the cell assembly. Before training, the only inhomo- of pencils?” is answered by WOOD, “What is yellow
geneities in the net are the shaded area indicatingand made of metal?” by TRAFFIC SIGN, and so on.
enhanced coupling coefficients withish C, andR, and In a computer simulation, each of the cell assemblies
from U to R, causing activity inR wheneverU is was made up of 75 formal neurons. The question “What
triggered, but no activity irR when C is active. The is the color of traffis signs?” produced the activities
cross-hatched areas represent synaptic facilitation dueshown in Table 1. The answer is given by the strong
to learning, in this case the frequent coincidences of activity of 16 out of 75 in the YELLOW cell assembly.
stimuli U andC. Thus, triggering the conditioned stimu-
lus C will cause activity to extend intd) and from there
into R.

Figure 2 is a schematic diagram of the connectivity The next two papers (Harth et al., 1970b; Anninos et al.,
matrix in a classification task. Eleven cell assemblies are 1970) examine the dynamics of structured neural nets
shown here, representing different objects and propertiesmade up of randomly connected subsystems that are
as labeled. The initially random, homogeneous and non-randomly connected to one another. We introduced
isotropic connectivity matrix is shown after associations, here the concept of randomness-in-the-small and struc-
i.e., enhancement of couplings between netlets. The ture-in-the-large (Anninos et al., 1970). For the random
resulting matrix is seen to be macroscopically sym- subsystems we chose the term netlets. In a sense, the cell
metrical, but microscopically asymmetric. Cross-hatched assemblies arising in the originally homogeneous

2.3. Neurodynamics
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TABLE 1
Cell assembly responses to “What is the color of traffic signs?”
Traffic sign Pencil Fire eng. Color Yellow Red Blue Material Plastic Wood Metal
75 3 0 75 16 2 3 1 0 6 0

connectivity matrix (Figs 1 and 2) become netlets in the that is with around 30% of the neurons active in each
trained net. iteration.

We classified netlets according to their excitability, The dynamics were extended to the case of netlets
that is their ability to sustain activity in the absence of having a steady excitatory or inhibitory input from the
input. The parameters defining a netlet were, among outside. Point©, A, andB are now functions of the input
others, fraction of inhibitory neurons, thresholds, and as shown in the schematphase diagranof Figure 4.
average coupling strengths. In the formalism used the For changing input levels the net now exhibiiissteresis
results were independent of the total number of with the arrows in Figure 4 indicating the spontaneous
“neurons” in the netlet, except for the size of the statis- shift in activity level. For a combination of excitatory
tical fluctuations. Dynamics of these structures were and inhibitory inputs, stationary states form a surface
obtained from statistical arguments as well as by com- in three dimensions (Figure 5).
puter simulations, some of which are shown in Figure 3.  The calculations and simulations were extended
Here, the abscissa, refers to the fraction of neurons (Wong & Harth, 1973) to netlets of different temporal
active in thenth iteration, and the ordinate is the activity characteristics describable by finite difference equations
atn + 1. (The drop-off of the curves ag, approaches 1.0  of order two and greater. This formalism can take into
is due to an assumed refractory period.) Thus, a very high account any combination of refractory periods, sum-
initial activity will find most neurons refractory in the  mation times, and effective delays.

next iteration, and the activity in the net will soon ter- The dynamic characteristics here described were
minate. The curve labeleg = 2 (a measure of the simulated for netlets of 1000 neurons, but turned out to
netlet's excitability) shows two stationary poimdsand be robust down to very small populations. Shaw et al.

B (in addition to the one at the origin). We deduced that (1982) have shown that small netlets can act as func-
this gives rise to a hysteresis effect: a momentary input tional units in the central nervous system, and that the
that triggers more than about 15% of the neurons in the cooperative phenomena described above were reliably
netlet causes sustained activity at the level of p&@nt  performed with net sizes down to about 30 neurons.
With the approach of randomness-in-the-small and
structure-in-the-large, neural systems can be constructed
ro to perform specific tasks. Harth et al. (1975) and

I Megn of severol computer simuiations
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FIGURE 3. Dynamics of neural netlet, showing activity at time FIGURE 4. Hysteresis of netlets with steady input  ¢. The unstable
n + 1 as function of activity at  n. Points are results of repeated stationary state A is indicated by the dotted line. It is seen that,
computer simulations and solid lines are computed from a finite when excitatory input exceeds o, activity will rapidly increase
difference equation. Different curves are for different excitabil- to Bgit.- The input will now have to be reduced to the negative
ities of the netlets. Points O, A, and B are stationary points (for (inhibitory) value o, before the activity is extinguished. Two

details, see Anninos et al., 1970). netlets of lower excitability are shown for comparison.
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Csermely et al. (1973) attempted to account for the
oscillatory behavior in the escape motion of the mollusk
Tritonia gilberti. In the anatomical studies reported by
Willows (1967), the system is composed of four small
neural populations (Figure 6), where TFN refers to
trigger group neurons, GEN to general excitor neurons,
and DFN and VFN to dorsal and ventral flexion neurons,
respectively. In the mechanism proposed by Willows, the
trigger neurons excite the GEN pool causing alternating
activities in DFN and VFN (Figure 7).
In our simulation ofT. gilberti’'s motion, we have

taken the connectivity proposed by Willows, replacing
each of his neuron pools with a random netlet. No further
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FIGURE 7. Activities in DFN and VFN populations of swimming
T. gilberti (after Willows, 1967).

schematic diagram of the visual pathway is shown in
Figure 8. Here, visual information gathered by the retina
is first conveyed to neurons in the lateral geniculate
nucleus (LGN), a structure in the thalamus. From there
about a million neural fibers go to a region in the cortex
called V1, the first cortical area devoted to vision. A
prominent feature—but one rarely discussed by physio-
logists—is the fact that perhaps 10 times as many fibers
descend from V1 and send information back to the LGN.
From V1 the visual information travels along several
parallel pathways to centers called V2, V3, V4, and
many others. Some 30 different visual centers have
been identified in monkey cerebral cortex (Felleman &
Van Essen, 1991). Again, practically all connections
between different cortical centers are reciprocal.

The ubiquity of such loops of connectivity in the
central nervous system blurs the distinction between
higher and lower cortical centers. There is no strict
hierarchy of sensory processing. The “higher” centers
receive information from the “lower” centers, but these
sources are modified, augmented, and perhaps censored
by the “higher” centers. The prominence of these return
pathways, especially the massive fiber bundle from V1 to

details of connectivity are thus assumed. This contrasts LGN, has been one of the great puzzles of cerebral archi-

with the approach of Selverston (1980), in which he

proposes to account for a similar problem (the motion
in the lobster stomatogastric ganglion) by invoking all

details of neural connectivity. | discussed the funda-
mental differences in the two approaches in a commen-
tary to Selverston’s paper (Harth, 1980).

2.4. Visual Perception

Vision is the most extensively studied of the senses,
and, in humans, the most valuable. A much simplified

N
R

FIGURE 6. Connectivity between neuron populations in
gilberti, according to Willows (1967).

Tritonia

tecture. It appears that the cortex is more bent on intro-
spection and confabulation than on forming an unbiased
view of the outside world.

2.5. Receptive Fields

To understand the functioning of the visual system, we
would like to know what patterns of neural activity in the
brain follow different visual stimuli. This has been until
very recently extremely difficult to determine, and so,
experimenters have often chosen to investigate a related
problem: What is the visual stimulus pattern to which a
given single neuron exhibits its strongest response? The
stimulus, usually obtained by trial and error, is called
the receptive field of that cell.

LGN PGN Cortex

Retina

@> N

FIGURE 8. Schematic of visual pathways from retina to visual
cortex.

>

Vi
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In a slight departure from the netlet concept, Finette
et al. (1978) applied the dynamic principles we had
developed for homogeneous and isotropic netlets, to
structures with random but anisotropic connectivity.
The attempt here was to account for the transition from
small, essentially circular, visual receptive fields in
mammalian retina and lateral geniculate nuclei (LGN)
to the elongated fields observed by Hubel & Wiesel
(1962) in area V1 of visual cortex. It is customary to
assume that these elongated fields are the result of multi-
ple inputs to V1 cells from LGN cells whose fields lie
along an oriented line.

By contrast, Finette et al. (1978) found that locally C <
anisotropic connectivity within V1 can give rise to
resonant activity having the shapes of Hubel and
Wiesel fields. AIthoth attempts to detect such aniso- FIGURE 9. Determination of visual receptive field by Alopex
tropies in rat visual cortex (Paldino & Harth, 1977) method. D—CRT display; M—microelectrode; C—computer.
remain inconclusive, the ease with which these elongated

responses arise, and the comparative simplicity of the ' , , , )
neural circuitry required, make this model still a of the cell's response in theth iteration.R is thus a

plausible candidate for explaining cortical receptive Scalar quantity that is to be maximized in this process.
fields. This is often called @ost function

The method was applied successfully to frog retinal
ganglion cells (Tzanakou et al., 1979) and cat cortical
a Cells (Micheli-Tzanakou, 1984). In Figure 10 we show
the “optimal” pattern obtained by the Alopex procedure
together with the receptive field arrived at by conven-

The study of receptive fields offers an interesting
exercise in solving th@roblem of the inverseOne is
attempting to determine a visual pattern for which
particular neuron (that is being monitored with a micro-
electrode) shows the highest response. Clearly, it is " )
impractical to try all possible stimuli, hence the answer tonal methods for a neuron in V1 of cat.
involves some reasonable guesses on the part of the 1he €ase with which the Alopex algorithm reversed
experimenter. There is never a certainty, however, that (N€ Sensory process in our studies of visual receptive

some modification of the input may not have produced fi€lds, spawned another idea (Harth, 1976). Could it
an even higher response. be that similar processes take place within the brain,

whereby feature-detecting neural circuits in the

cortex—such as the “face detectors” first reported by
2.6. Alopex Gross et al. (1969)—enhance or generate at more peri-
In the early 1970s work began in my laboratory on a pheral .cerebral locations, those pattern; to whi_ch they
procedure for determining visual receptive fields that @€ evidently tuned? If such a mechanism existed, it
would eliminate the guesswork and biases of the experi- Would clearly add another dimension to visual percep-
menter. Receptive fields were to be mapped hyilla _t|on: the_wsu_al stimuli would no Ion_ger be transported
climbing procedure in which the cell under observation N ©ne direction only, along the brain’s conveyor belts,
generates its own receptive field. We accomplished this P€iNg progressively fragmented and having various
by using an algorithm that maximizes the cell response f€atures extracted in what | have called #laughter-
(Harth & Tzanakou, 1974). In this procedure, called house paradigniHarth, 1993). Instead, visual perception
Alopex, an animal viewed a computer-generated visual
pattern displayed on a CRT while a neuron in the visual
pathway was being monitored (Figure 9). The Alopex
procedure changes all pixel intensities on the CRT
before each successive presentation depending on theustacrad
correlation (or anticorrelation) between the preceding dg'.fr:::l
changes in pixel intensity and cell response. The algo-
rithm can be represented by the simple equation

X = X0 L g q[x-D _ x-2][RO-D _ g2
@) @ (o)

W i i i i i
ln_ eqn (1)x _IS the II'?tGﬂSI_ty O]Zn)theth pixel in _the FIGURE 10. Cortical visual receptive field of cat cortical neuron
stimulus array in theth iteration,g™ a random variable  getermined by standard procedures (a), and by the Alopex

(noise),c an adjustable parameter, aR{P the strength method (b) (from Micheli-Tzanakou, 1984).
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would now appear as a self-referent process in which
the incoming stimulus is continuously recreated and
reanalyzed by higher cortical centers.

2.7. Feedback Pathways

Neural connections in the brain are generally reciprocal.
If a regionA sends fibers t8, then, very likely, there will

be return paths fromB to A. Thus, we speak not only of
afferentfibers, but also of descending, oorticofugal
fibers. The massive return paths from cortical visual
area V1 to the visual thalamic relay nucleus LGN has
been known to neuroanatomists for nearly a century.
Livingston (1958) quotes Brower (1933) who com-
mented: “We accept that there is also a centrifugal
side in the process of sensation, of vision, of hearing,

and so on. | believe that a further analysis of the descend-

ing tracts to pure sensory centers will also help physio-
logists and psychologists to understand some of their
experiences”.
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by “higher” cortical centers, and perhaps committed to

memory, and creative in that neural activity patterns
evolveandlink sensory information to past experiences

in novel combinations. Edelman believes that the modu-
lation of images through extensive cross-talk between
sensory centers bestows a kind of unity on sensory
experience.

The problem of preserving spatial mappings was dis-
cussed by Harth et al. (1970a) in connection with lateral
inhibition. This phenomenon is as ubiquitous in sensory
systems as the reciprocity between maps. What effect
does lateral inhibition have on the information that is
passed back and forth between two maps, or passed
sequentially from one map to the next?

It turned out that under repetitive mapping with a
Gaussian spread function, a sharply defined spot will
rapidly blur and melt into background noise.

In Figure 11(a) we observe the repeated mappings of
an initial delta function by a Gaussian spread function
that results in the expected progressive deterioration of

Through all the years since then this goal has been the signal. In Figure 11(b) the spread function is altered
elusive. There have been many speculations concerningby adding a negative Gaussian of smaller amplitude but

the function of these return paths, but little consensus.
Rothblatt & Pribram (1972) speculated that there should
be pattern-specific top-down modification of sensory
inputs, and were among the first to raise the question
by what neural mechanism this could be accomplished.

Apart from the cortico-thalamic tracts, it has been
recognized for a long time that brainstem structures
also communicate with all afferent sensory pathways.
In an early symposium on the brainstem reticular forma-
tion, Livingston (1958) talks about “the reticular forma-
tion ... rippling its fingers in some kind of play of.
perceptive... composition”.

In more recent work, Yingling & Skinner (1977)
report that neurons of the nucleus reticularis thalami
(NRT), which is interposed between thalamic sensory
relay nuclei and sensory cortex, are inhibitory on
thalamic relay cells. This inhibitory feedback is topo-
graphically organized between NRT and thalamic cells,
but the NRT cells, in turn, receive ribn-selective,
generalized inhibitory input (Steriade et al., 1986)
from the mesencephalic reticular formation (MRF).

Thus, if cortico-thalamic pathways and thalamic input
from the brainstem affect the pattern of incoming sensory
stimuli—and it is difficult to avoid this conclusion—
then these feedbacks are very likely to be feature-
specific.

This reciprocity of connections in sensory pathways is

almost universal and has given rise to many speculations.

Von Holst & Mittelstaedt (1950) speak ofginciple of

reafference by which the brain may generate its own
input without sensory stimulation. Edelman (1992)
points to there-entry of information passed back and
forth between sensomaps The resulting reverberations

greater width, which mimics the well known character-
istic spread function for lateral inhibition. This results in

a remarkable phenomenon. After some initial changes,
the signal stabilizes and becomes essentially insensitive
to further blurring.

A graphic confirmation of this principle is shown in
Figure 12. Here, a black spot is imaged repeatedly by a
photocopier whose spread function also showed an
inhibitory surround. The succession of mappings at first
introduced increasing amounts of noise. But, instead of
eventually overwhelming the signal, the pattern stabilizes
and soon becomes immune to further corruption. The
information is now carried by a stable pattern of noise.

FIGURE 11. Successive mappings of a delta function through (a)

are both conservative and creative, in the sense that theya aussian point spread function, (b) through a function with
may preserve a stimulus long enough to be contemplatedpositive Gaussian center and negative Gaussian surround.
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activity” and a ‘“reality-emulating system”, though
they take the emulation to occur at higher cortical
levels as a result of temporal scanning mechanisms.
This point is admittedly still somewhat in dispute,
since some data suggest that V1 activity is not essential
for conscious cognition.

3. THE SKETCHPAD MODEL

The ideas presented here are taken chiefly from my
recent work (Harth, 1995, 1996a), but incorporate
many elements of the earlier papers.

The notion of internal sketchpads has its origin in the
observation that thought processes, especially creative
ones, often involve a cyclic interplay between cerebral
and external events: the artist sketches before putting
paint to canvas, the composer needs a piano to compose
his music, and all of us occasionally talk to ourselves.

Why do we bother to externalize for our own perusal
something we already know? The answer is, | believe,
not hard to find. Our nervous system finds it difficult to
store complex images of, say, a painting or a symphony,
in a way that would allow us to contemplate and judge
: : : the work in its entirety. Hence, the creation of such works
o e e e eQUIeS Tamporary exemal storage of e ascent s,
number of successive mappings, and that one of theseSensory access to the Image, and the ablh.ty to mod|fy,
has the form(sinkx)/x, which is s’imilar to the spread ellabo.rate and to perfect. Thls can be desgr|bed as a hill-

' climbing procedure, in which the changes in the external

funct|tgn n Eteral'tlmmbmokn e?cc:j(.apt. f.orh.havmg fIFtlrtger image, or artifact, are guided by internal aesthetic or
negative and positive peaks of diminisning amplitudes. - ,y,0 - criteria.  Such processes are self-referent and

et e o of sl ibizalon due 0, inive posive feechack
play y y sy " | have proposed thamental images, though more

:.)gr?.g(hgmw'tg ;ne;?ar:;sn;:e;o;o?tegr;? Iteh?) Sggglmgn restrictive in their capacity to hold information, serve
'gnifi ways, prop xampie by functions that are very similar to the artist’'s sketchpad

(1992). The first must exist for the second to function. or the composer’s piano.

| came across this same idea in a most unlikely source.
Tran Duc Thao (1984) quotes from Karl MarxBas

(c)

(d)

FIGURE 12. Successive mappings by a photocopier. (a) original;
(b) 4th copy; (c) 13th copy; (d) 15th copy.

In a subsequent paper (Harth & Pertile, 1972), we

2.8. Mental Images

Humans are able to construct visual images in the
absence of visual input. We speak wiental images,

Kapital:

... what distinguishes the worst architect from the best of

and the controversy has been whether these images bees is this, that the architect raises his structure in the

have the spatio-temporal characteristics of true visual
stimuli, or whether they areeural codesappearing at
high level cortical areas. In the first alternative, we would

imagination before he erects it in reality.

If, indeed, top-down mechanisms in the brain are to

expect them to appear at more peripheral regions in the generate “peripheral” neural activity patterns that have
visual pathway where neural representations are still the spatio-temporal characteristics of visual stimuli, then
retinotopically organized. we may suppose that they can function as trial patterns,
This appears to be the case. In a series of PET scanto be viewed and further developed, very much like
studies Kosslyn et al. (1993) have shown that mental patterns we put on a sketchpad.
imagery is accompanied by marked activity in V1, and  In developing this idea further, | proposed (Harth,
that the spatial extent of the activity depends on the size 1976) that a feedback to the LGN act asast function
of the object imagined. They propose that mental that guides a pattern-generating optimization process. |
imagery possesses characteristics resembling images ohave taken the example of the Alopex algorithm and our
real objects, and that these images form the inputs to receptive field studies (Tzanakou et al., 1979) as general
higher cortical levels as in visual perception. In an guide for this model. Accordingly, the feedback would
analogous description, Llisaet al. (1994) call the have to be @lobalfunction, i.e., one that carries a simple
brain a “closed system capable of self-generated figure of merit expressing the degree to which the



Brains and Neural Nets 1249

peripheral pattern satisfies some internal requirements. A B C
In the limit, a simple scalar quantity would suffice. |
believe this assumption of global re-entry into the
sensory pathway is somewhat related to Edelman’s
(1992) concept oflobal mapping

In this first attempt (Harth, 1976), | viewed the LGN 7]
as the site of the internal sketchpad, and the cortico-
thalamic feedback pathways as the carriers of the cost
function.

There are several difficulties with this scheme. Rather
than carryingglobal information, the cortico-thalamic
pathways are specific, connecting cells in V1 with their F
retinotopic equivalents in the LGN (Yingling & Skinner,  FIGURE 14. Schematic of computer simulation of  sketchpad
1977). These are more likely to cause reverberations, i.e.,mechanism. A—hiliclimbing algorithm modifying a peripheral
a temporary stabilization of the stimulus pattern, while Patern: B—aray of feature analyzers producing responses
the “nonselective, generalized” input from MRE to Ry — R4; C—a non-linear integrator producing  a cost function F .
NRT has more of thglobal qualitiesof a cost function.

On the basis of this diagram, one would expect that a
retinal input pattern would be quickly extinguished by
the PGN cells, except when strong brainstem input
The effect of brainstem neurons on thalamocortical trans- inhibits the PGN cells. With the addition of random
mission was considered in a revised sketchpad modelnoise and the iterative character made possible by the
(Harth & Unnikrishnan, 1985; Harth et al., 1986, 1987, retinotopic feedback from V1, this circuit is capable of
1990). carrying out the optimization algorithm defined by
The diagram in Figure 13 illustrates the anatomical eqn (1).
features on which the model is basedm@apof thalamic
relay cells ) is connected reciprocally to visual cortex
V1. These connections are excitatory, and send exci-
tatory collateral inputs to PGN cellsP). These are | present here one of the many results of computer simu-
inhibitory on thalamic relay cells and are, in turn, inhib- |ations reported in previous publications (e.g., Harth,
ited by fibers from the MRF. Thelobal character of ~ 1995). In Figure 14, boX represents an optimizer that
the latter is here represented by a single ascending line.carries out an algorithm such as the one defined by eqn
(1), using the scalar variable ascost functionand dis-
playing the resulting pattern in an iterative fashion.
G P C These patterns aréiewedby four feature analyzer,

whose responseR,; to R, reflect the similarity between

the observed pattern and the fixed template assigned to

3.1. Brainstem Control of Sensory Messages

3.2. Sketchpad Simulations

> < ; > Q < Ll 1 Higher

Cortical

O. Centers
Retinal : * :
Input ¢ * °

A
— Excitatory
—@ Inhibitory From

Brainstem

FIGURE 13. Schematic of connectivity in visual pathway,
showing thalamocortical loop with collateral inputs to PGN,
and PGN inhibition of LGN relay cells. G—thalamic relay
neurons; P—neurons in PGN; C—cortical cells. FIGURE 15. Templates used in sketchpad simulation.
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FIGURE 16. (a) Initial stimulus pattern; (b) pattern after hillclimb-
ing convergence. T

milliseconds

that ana|yzer_ The ana|yzer responses are summed nonE!GURE 18. Periodic (ca. 30 Hz) post-stimulus histogram in frog
linearly in C to make up the cost functiof. retinal ganglion cell (from Stiles et al., 1985).

Figure 15 shows four such templates, and Figure 16(a)
an initial state chosen for the system. This pattern is
almost random; it was obtained by superimposing
random noise on the Einstein template. With the applica- Mental processes are appropriately calleflective and
tion of the hillclimbing algorithm, the pattern changed concomitant neural activity is cyclic, self-referent. What
gradually and eventually became almost identical with distinguishes the thinking brain from computers, and

3.3. Summary of Model

the Einstein template [Figure 16(b)]. from most artificial neural networks, is the fact that in
Figure 17 shows the evolution of the analyzer thought processes there are no finalpatput states
responses and the combined respoRsélote that the In summarizing the model, let me begin, arbitrarily, by

responseR, of the Einstein analyzer is initially higher  considering the extensive, scattered activities in cortical
than that of the others, and begins to increase sharplyareas, including sensory analyzers, association areas, and
after an initial period ofuncertainty The process *“higher” areas such as thesorking memoryBaddely,
speeds up as the cost functifthbecomes dominated 1986), or theglobal workspace(Newman & Baars,
almost exclusively byR,. 1993). These activities are in part elicited by current

An optimization algorithm of the type shown here is sensory stimuli, in part due to entirely endogenous pro-
the most general way in which peripheral pattern genera- cesses, including neural noise. Chaotic processes may
tion can be achieved in the sensory system by top-down well be involved, allowing minute fluctuations to cause
control. It is also the one requiring the least complexity macroscopic activity changes (Harth, 1983; Freeman,
of the necessary neural circuitry. The known connectiv- 1987; Freeman & Barrie, 1994).
ity between LGN, PGN, V1, and BRF (Figure 13) From all this scattered activity, global function is
appears to be eminently suited to carry out the necessaryconstructed and, by way of brainstem nuclei, relayed
algorithm, but similar processes may take place at higher to visual and/or other sensory projection areas. A hill-
visual areas, as well as in other sensory modalities. climbing process will then strengthen whatever features
happen to dominate the global cost function.

There will be competition between such cortitahcy
and ongoing sensory stimuli, with the latter generally
dominating the process, except in the cases of hallucina-
tions and dreams, and such creative activities we referred
to above.

The transformation from the extended activities in the
association areas and working memory to specific mental
images may be likened to the collapse of a wave function
in quantum mechanics, although | hesitate to refer to that
much overused term. No quantum mechanical effect is
here implied.

0.0 | want to stress two significant characteristics of the

2 2000 4000 6000 8000 10000 model.
no. of iterations

Responses

1. Unification of sensory elements and stored memories
FIGURE 17. Responses R; — R, of feature analyzers and cost and associations is achieved by reciprocal linking, in
function F in sketchpad simulation. which those sensory elements are enhanced which
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cause resonant activity at higher levels. (I leave open
for the time being the question of how a cost function
is constructed from what goes on in the working
memory, and how this is conveyed to the brainstem
reticular formation.)

. The self-referent processes in which higher cortical
levels observetheir own reflections, make unneces-
sary the introduction of the pesky homunculus.

3.4. Limitations of the Model

In a critique of the sketchpad model, Francis Crick
(private communication) has pointed out that hillclimb-
ing processes such as Alopex are inherently slow, and
can therefore not account for mental phenomena like
pattern recognition. Although some receptive field
experiments (Tzanakou et al., 1979) produced significant
convergence in less than 100 iterations, the simulation
studies (Harth et al., 1990) extended over thousands of
iterations. This would translate into many seconds or
even minutes of neural processing time. Another objec-
tion to hillclimbing processes in general is their frequent
failure to arrive at theglobal maximum by becoming
trapped on secondary peaks.

| commented on these objections as follows (Harth,
1996a):

1. In the computer simulations (Harth, 1980) the initial
patterns were either very noisy [Figure 16(a)] or com-
pletely random. Perception would, in general, have to
deal with much less ambiguous inputs.

. Unlike the recognition of unambiguous stimuli, many
cognitive processes are slow, This is especially true
for creative processes, for which the sketchpad model
is most applicable.

. Convergence times may be shortened considerably if
we allow a hierarchy of feature analyzers together
with a similar hierarchy of hillclimbing algorithms.

. Recognition of ambiguous stimuli may require only a
slight increase in global cost function, rather than
complete convergence.

. Other processes, such as matching activity in the
thalamus—PGN-cortex—brainstem complex that was
suggested by Taylor (1992, 1996), Newman et al.
(1996), and Baars (1996), may contribute to solving
the inverse problem.

. The random variable used in the hillclimbing proce-
dure (the quantity in egn (1)) will tend toshakethe
process off secondary maxima. On the other hand, we
know that thought processes are not unerringly goal-
seeking, but that “getting sidetracked” is a frequent,
and probably useful feature of mentation.

4. CONSCIOUSNESS
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Nobody likes to define consciousness, but everybody
expects others to define it. | succumbed to this pressure,
fully aware of the pitfalls of any such attempt, when |
wrote: “Consciousness is. afeelingof subjective and
perceptual unity. It is as though a unique, but probably
fictitious center, thel, were the recipient of all the
sensory inputs, past and present, and as though all mes-
sages pertaining to an object of sensory reality were
reunited somewhere in the mind to constitute a con-
sciously perceived facsimile of the same reality”
(Harth, 1995).

4.1. The Binding Problem

One of the attributes | wanted to stress is tb@atscious-
ness is a feelingl'he brain is a network of neurons, and it
feels. Whether a network of artificial neurons can also
have feelings is one of the hotly debated issues. The other
point refers to what is now generally called thimding
problem:what is it that confers unity, meaning, and the
property of beingownedto the activities of countless
neurons that are scattered over large areas of the nervous
system? Why is this thoughny thought, as William
James mused? [I want to avoid here the much over-
worked dichotomy of the problem into a@asyand a
hard question(Chalmers, 1996)].

Binding poses an almost impossible task for the brain.
It appears at first that the contents of consciousness
would have to be brought together both spatially and
temporally to form a single, localized, and instantaneous
globalexpression. It is not clear, how anything other than
a single bit of information can be so compressed.

If, on the other hand, the information is spread
spatially and/or temporally, we are left with the feeling
that—unless there is another observeinpaunculusto
integrate these data—we are back to the simplistic asser-
tion that “a thought issimply a constellation of active
neurons” containing either a spatial or temporal code.
(Whenever ‘simply’ or * nothing but are used in a
definition, | suspect that a great deal of complexity is
being swept under the rug.)

True spatialbinding appears to be out. Physiologists
have looked in vain for aonvergence zoret the highest
cortical levels such as the prefrontal cortex, although
convergence of a sort exists in the brainstem reticular
formation through which all afferent and efferent infor-
mation must pass.

This leaves us with temporal binding. Eckhorn et al.
(1988) proposed that coherent oscillations of around
40Hz are the “feature linking mechanism” in
the brain. Such periodic oscillations were found in the
visual system of cats and monkeys (Doty & Kimura,
1963), and of frogs (Stiles et al., 1985). Figure 18
shows a post-stimulus spike histogram obtained in my
laboratory for frog retinal ganglion cells.

How does subjective awareness arise inthe brain,andhow The idea of binding by temporally linking scattered

can we understand it in terms of a network of neurons?

neural activities was taken up by Crick & Koch (1990)
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and Llinzs et al. (1994). | have pointed out (Harth, 1995)
that the difficulty in all these schemes comes from the

5. REDUCTIONISM RE-EXAMINED

. ! o The problem of consciousness further raises these funda-
assumption of a final, ooutput statearising spon- S S
mental questions: Is the problem amenable to a scientific

taneou;ly or triggered by sensory'stlmuh. To make approach? and Can we apply the methodology of reduc-
such final states account for consciousness, somehow,

. ] ) . ; tionism? Are the two questions perhaps the same? |
conflicts with the notion of locality in physics. Each
. : addressed that problem at a recent conference (Harth,
neuron knows only what transmitters are coming across

its synapses (if we can speak of a single celkaswing 1996D).

. : Much has been written about the scientific method, but
anything). How, then does global knowledge arise from - .

. the concept of reductionism appears to be at its core. To
local ignorance? Does neurdrknow that neurons, C,

andD are alsofiring at this moment? If notwvhoor what physicists this term has a lucid meaning that has to do

does? This problem has occasioned some investigators toWIth the flow of causality in the inanimate world, which

.~ s from the small to the large, doottom-up Hence, to
resort to some form of non-local quantum mechanics understand a phenomenon. we must o the other wa
(Penrose, 1994; Hameroff & Penrose, 1996). P ' 9 Y,

In connection with the models of temporal bindin reducing it to its more elementary constituents. We
by phase-locked 40 hz activities FreerFr:an & Barr?e understand the formation of an ice crystal, for example,
(1994) pointed out that cortical n’eurons unlike peri- by examining the properties of water molecules and their

heral sensory neurons. aenerall do, ot exhibit mutual interactions. The water molecule itself, or its
pheral sory 9 Y atomic constituents, are the same whether part of an
periodic activity, Instead, “local neighborhoods can

. ) . . icicle or a cloud of steam. There are, to be sure, situations
be viewed as an equivalence class, in which the burden.

of firing is rotated at random among the members”. This in which large-scale phenomena affect events in the

is reminiscent of the dynamics of neuratlets(Harth microworld—the  cold we_ather causing the_ water to
et al., 1970b). freeze—but the explanation of that is agaieduced

to molecular events.

The enormous success of what | will calassicalor
atomistic reductionism-explaining the large by looking
at the small—suggests to many that the method should
be universally applicable, even to its ultimate challenge:
consciousness. Thus, Francis Crick (1994) states that,

4.2. The Computer Analogy

The whole idea of binding derives, | believe, from the
erroneous analogy between brains and computers, which
assigns in both cases initial and final states with inter-
vening computation. In the case of computers these states
are written in a code, designed and read by an external
intelligence. In the case of the brain, the sensory stimuli
are not really input states, since—as we have seen—they
are subject to modification by the very centers for which
they are intended. It is even less appropriate to speak of
output states because activity in the cortex is contin-

You, your joys and sorrows, your memories and your ambi-

tions, your sense of personal identity and free will, are in

fact no more than the behavior of a vast assembly of nerve
cells and their associate molecules.

In a similar vein, the philosopher John Searle (1995)
writes,

uous, widespread, and ever-changing. Nor is meaning
assigned to these activities by some exteursdr We

can simulate many brain functions on a computer, but
the brain does notomputeany more than a telescope
computes the trajectory of light passing through it (Harth,
1986).

In my sketchpad model, by contrast, no final cortical
states can be defined, since the cortico-thalamic—
reticular system is self-referent. It appears also, that the
cortical activities following a given sensory stimulus
are not invariant relative to that stimulus, but change

. our entire mental life is caused by the behavior of
neurons, and all they do is increase or decrease their rate
of firing.

And this from the physicist Steven Weinberg (1995):

Phenomena like mind and life do emergethe rules they
obey are not independent truths, but follow from scientific
principles at a deeper level. The reductionist world view
rules out other sorts of understanding.

In 1895 Sigmund Freud argued forRroject for a

with every subsequent presentation as a function of the Scientific Psychologywith true reductionist fervor he
ever-changing store of memories and associations proposed that human actions and emotions were to be
(Freeman & Barrie, 1994). The picture | have drawn is understood by studying the underlying neural processes.

perhaps complementary to Taylortelational model
(Taylor, 1996), in which sensory inputs derive their

meaning and significance from cortically stored popular

He soon abandoned that approach.

Now, a hundred years lateemergentisnis still very
among neuroscientists and philosophers.

memories and associations. Here, these higher corticalMental phenomena are viewed amergingout of the
activities play a role in conscious perception through staggering complexity of the human brain, but their

their interaction with and modification of sensory
primitives at peripheral levels.

roots are sought in the electro-chemical pulsations of
the nerve cell.
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But the where and how of this emergence had
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of firing”, we would soon be lost in a causal jungle that

remained obscure. Although we have learned much is both impenetrable and unenlightening.

about brain function and neural dynamics, no satisfactory The absurdity of pushing atomistic reductionism
causal connection has been established between brairbeyond its useful range becomes more and more apparent
processes and the manifestations of the mind. The bestas we further increase the complexity of the system. In a
we have been able to do is point to some neural activities society of a few hundred million individuals the four
that are observed when we experience certain emotionselementary interactions recognized in physics are of
or perform certain mental tasks. Physiologists speak of little help in tracing and solving societal problems.

the neural correlatesof mental phenomena. The finding

What guides the dynamics of a nation—what really

of such correlates has been made possible by modernmovesit—are non-physical entities: political philoso-
non-invasive techniques such as PET scans, in which phies, the economy, the appeal, persuasion (and dupli-
shortlived radioactive substances trace enhanced bloodcity) of its leaders. Clearly, we are no longer able to

flow and, presumably, heightened neural activity. The

construct seamless causal chains made up entirely of

subject is fully conscious and alert, and can be given a elementary physical interactions, though they undoubt-

variety of mental tasks. But correlation alone does not
produce understanding. Apart from the fact that such

edly exist.
| believe that the concept of reductionism has to be

correlations are evanescent, and at best approximatebroadened. In fact, the Latin root of the word merely

no such finding produces the much desitdd! reaction.

Our frustration has to do, | believe, with the fact that
we are looking for understanding in the wrong place. A
cursory look at life processes will convince us that we are
facing here a situation that differs fundamentally from
what goes on in the world of physics. Where top-down
control was virtually absent in inanimate nature—or at
least transparently physical in its elementary details—it
plays a dominant role where life is involved.

The downward sweep of causality is nowhere as
apparent as in the interplay between an individual life
form, its DNA blueprint, and its role in the ecological
struggle for existence. We may explain most physical
properties of the individual through methods of atomistic
reductionism, going all the way back to its submicro-
scopic blueprint, the DNA molecule and studying the

copying, reading, and expressing of the genetic mes-

sages. But if we wish to understandhy a given genome

means tolead back The reductio ad absurdunteads

us back to the original statement (and proves it wrong);
it does not dissect an argument into mutually contradic-
tory elements.

Mental activities, then, are what | have caléelolved
phenomena. They are—in the sense of Taylor's (1996)
relational mind—tied inextricably to extensive memory
structures and associations that, in turn, are derived from
a lifetime of interaction with our environment. Searching
through the underbrush of neural connectivity may
uncover regions of correlated activity, or even mechan-
isms, but will not satisfy our curiosity regarding the
nature of thought. If mental phenomena are under top-
down control, then, to understand them, we must look at
higher levels.

This new type ofnon-atomisticreductionism other-
wise conforms to all requirements of a scientific
approach. It is just immeasurably more complex than

has a certain nucleotide sequence, we must look farwhat the “nothing-but school has been trying to tell

above the molecular level. Unlike theemergent

us. Our one-hundred-billion-neuron brains with their

phenomenon of the ice crystal, the genome structure istrillions of modifiable synapses, their largely unexplored

a devolved principle It was shaped in the battle for
survival by complex ecological factors extending over
eons of time.

The complexity of the situation increases drastically

pharmacopoeia of neurotransmitters, neuromodulators
and neurohormones, are the necessary instruments on
which the mental symphonies are played, but there

would be little music without the greater complexity of

with the introduction of mental processes into the causal the society of humans with its language, traditions, its art,

chain. Human speech requires precise timing in the acti-

vation of many muscle groups, but if we want to under-

and its history. This shows us also how very much further
we have to go before we can simulate by computers

stand what is being said and why it is being said, we must the true nature of consciousness.

analyze theglobal sources (semantic coding, cultural

background, motivation, etc.) rather than the neuronal
firing patterns. Similarly, the detailed neural processes

in dreaming are under top-down control by memory
structures that involve the whole gamut of personal

experience and values. To explain a given human activity
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Abstract—The transition from automatic (unconscious) to controlled (conscious) processing is described in terms of a
neural network model of classical conditioning (Schmajuk et al., 1996). In the framework of the network, an environ-
mental stimulus is processed in controlled or conscious mode when Novelty and attention to the stimulus are large, and
in automatic or unconscious mode otherwise. In the model, indirect dopamine (DA) agonists, such as amphetamine or
nicotine, enhance the DA representation of Novelty, thereby increasing attention and engaging conscious processing of
environmental stimuli. By contrast, DA receptor antagonists, such as haloperidol, reduce the DA representation of
Novelty, thereby decreasing attention, and engaging unconscious processing of the 6ti®9lv. Elsevier Science Ltd.
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Automatic processing, Neural network.

1. INTRODUCTION the information processing that the brain performs,
and/or the transactions between the organism and its
environment determined by such information processing
— how any or all of these give rise to conscious experi-
ences. One of us (Gray, 1995a, b) believes that this
is indeed a Hard Question that awaits a radically new
theory for its resolution; the others (Schmajuk and
Axelrad, 1995; Buhusi and Schmajuk, 1996), that the
Hard Question will be resolved simply by the accumula-

The starting point for the speculations contained in this
paper lies in the cognitive abnormalities characteristic of
the acute phase of schizophrenic psychosis. Patients in
this stage of the illness typically display a variety of

positive symptoms (Crow, 1980), such as hallucinations,
delusions, fragmentation, intensification or loss of selec-
tivity of attention, etc. These symptoms have been inter-

preted as reflecting a breakdown in the normal control of . L 7 )
) . . ... tion of new data and models within existing theoretical
current information processing by stored regularities

. . . models. We all believe, however, that the best (probably
of previous input (Hemsley, 1987, 1993, 1994; Gray the only) thing that can be done right now is to continue

et al,, 1991a). One consequence of this breakdown 'S with the accumulation of such data and the development

that processing which, in normal individuals, takes L L
. . : of such models. It is in that spirit that the present paper
place in automatic, non-conscious mode has to be dealt.

with in controlled or conscious mode (Schneider and IS written.
Shiffrin, 1977; see discussion in Gray et al., 1991b).
We have for some years been studying the disruption
of latent inhibition (LI; see below) as a relatively
simple experimental model of Hemsley’s (1987) postu- If a stimulus is repeatedly presented without other
lated breakdown in the control of current information consequence (preexposure) and is subsequently used as
processing by stored regularities of previous input the conditioned stimulus (CS) in a standard Pavlovian
(Gray et al., 19914, b, 1995), and have recently devel- conditioning paradigm, the preexposed (PE) CS develops
oped a neural network model of LI (Schmajuk et al., a weaker association with the unconditioned stimulus
1996; Schmajuk, 1997). We speculate here how LI, the (US), as measured by the strength of the ensuing condi-
neural machinery that underlies LI, and our neural net- tioned response (CR), than does a hon-preexposed (NPE)
work model of LI may relate to the transition from CS. This difference between the CRs evoked by PE
automatic to controlled processing. and NPE CSs, respectively, is the phenomenon of latent
In so speculating, we make no claims to deal with inhibition. Most often, different groups of subjects are
the Hard Question about consciousness (Chalmers,conditioned with PE and NPE CSs, respectively. In this
1996), i.e. the issue of how it is that brain processes, case, LI is measured as the difference in the efficacy

2. LATENT INHIBITION AND SCHIZOPHRENIA
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of conditioning between the preexposed and non- administration of the indirect dopamine (DA) agonist,
preexposed groups. This between-subjects approachamphetamine. Neurochemically, the relevance to schizo-
may, however, be complemented by within-subject phrenia of this observation derives from the fact that
designs, in which all subjects receive both PE and NPE indirect DA agonists, including amphetamine (Meltzer
CSs and LI is measured as the difference in the efficacy and Stahl, 1976), have psychotomimetic effects, while
of conditioning between the two CSs (e.g. N. S. Gray DA receptor antagonists, such as haloperidol, are used
et al., 1995; Killcross and Robbins, 1993). therapeutically as anti-psychotics (Carlsson, 1988;
First described by Lubow and Moore (1959), LI has Haracz, 1982; Meltzer and Stahl, 1976; Swerdlow and
subsequently been the subject of considerable investi-Koob, 1987). Psychologically, its relevance lies in the
gation (Lubow, 1989) in many species, including man. fact that at least some positive psychotic symptoms
The experiments in Gray’'s laboratory have used both (Crow, 1980) can be regarded as reflecting a diminished
rats and human subjects. In the former case, we typically tendency to screen out redundant stimuli from pro-
assess LI using an off-the-baseline conditioned emo- cessing (Anscombe, 1987; Frith, 1979), a description
tional response (CER) procedure in animals licking for that seems also to apply well to an amphetamine-treated
water (e.g. Feldon and Weiner, 1991; Weiner et al., rat learning about a PE CS that is disregarded by a
1984). In this procedure, after initial baseline training placebo-treated control.
to lick, CS preexposure and CS—footshock pairings are In the 15 years since publication of these seminal
both conducted without access to water, and the CS isobservations, LI and its relation to schizophrenia have
then presented to the rat while it is again licking; CR become the focus of increasingly intense interest (Dunn
magnitude is measured by the degree of lick suppressionet al., 1993; Ellenbroek and Cools, 1990; Killcross et al.,
during the CS. LI consists of lower suppression of licking 1994; Weiner, 1990). This interest is largely based upon
in response to the CS in the PE as compared to the NPEthe assumption that the blockade of LI by amphetamine
animals. in the rat presents a viable experimental model of posi-
Another procedure used to study LI is nictitating mem- tive psychotic symptoms in man. We have recently
brane or eyeblink conditioning, in rabbits (Solomon and embedded this assumption in a model of the neural sub-
Moore, 1975) and rats (Schmajuk et al., 1994). In these strate of LI, as well as in a general neuropsychological
experiments, animals in the PE condition are exposed totheory of positively-symptomatic schizophrenia (Gray
the CS for several days. Animals in the control, NPE et al., 1991a, b; Weiner, 1990). This theory has in part
condition remain in the conditioning chamber for an been formulated mathematically as a neural network
equivalent amount of time without CS presentations for (Schmajuk et al., 1996; Buhusi and Schmajuk, 1996),
the same number of days. On the first conditioning day, considered in more detail below; and also related to
animals in the PE condition are exposed to additional clinically observed symptoms (Hemsley, 1993 Hemsley,
trials of CS-alone presentations, while animals in the 1994) and, in outline, to the aberrations of conscious
NPE condition again remain in the conditioning chamber experience that these symptoms reflect (Gray, 1993,
for an equivalent time. Subsequently on the same day, 1995a, b).
when subjects in both conditions are trained in a delay At the psychological level, our central hypothesis
conditioning paradigm, PE animals exhibit slower acqui- (Gray et al., 1991a; Hemsley, 1987; Weiner, 1990)
sition of the CR than NPE animals. states that the cognitive deficits of acute, positively-
With human subjects, our usual procedure is based symptomatic schizophrenia stem from disruption of
upon that of Ginton et al. (1975). Subjects first listen the normal ability to use past regularities as a guide to
to a tape recording of nonsense syllables, with instruc- current information processing. Within this framework,
tions to count the number of times they recur. In the PE we treat LI as a case in which the initial regularity;be-
condition, bursts of low-intensity white noise (the CS) CS leading to no consequence followed by the
are randomly superimposed on the recording. Subse-requirement to learn a conflicting regularity, which in
guently, still listening to the tape recording, subjects our standard conditioned suppression paradigm with
are asked to predict when a counter display will be incre- rats is CS-shockor, in our human paradigm (Baruch
mented; increments (the US) are preceded for all et al., 1988a, b)CS-counter incrementn the absence
subjects by the white noise CS, and the number of of pathology or drug treatment, this sequence of conflict-
trials taken to detect this contingency is the measure ing regularities normally leads to retarded learning of
of conditioning. the CS—-US association (i.e. to LI). In animals which
The significance of disrupted LI for the deficit in fail to show LI (e.g. after amphetamine treatment), the
the ability to ignore irrelevant stimuli extensively docu- influence of the past regularity is lost, and they are con-
mented in schizophrenia (for review, see Hemsley, 1987) trolled by the most recent (i.e. the CS—-US) regularity. In
was initially pointed out by groups in Massachusetts terms of symptomatology, Hemsley has, in a series of
(Solomon et al., 1981; Solomon and Staton, 1982) and papers (Hemsley, 1987, 1993, 1994), provided support
Tel Aviv (Weiner et al., 1981, 1984). These groups for the general theory by showing how, given this ana-
both reported that LI is abolished in the rat by systemic lysis, blockade of LI can give rise to such positive
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psychotic symptoms, well documented in the early stagesby Gray et al. (1991a, 1995) holds more specifically
of schizophrenia, as hyper-vigilance; and similarly that an increase in accumbens dopamine transmission
how blockade of the closely-related Kamin blocking at the time of conditioning reverses, and a decrease in
effect (Jones et al., 1992; Kamin, 1969) can give rise to this transmission boosts, the effects of CS preexposure;
delusional beliefs (elaborated in detail by Garety and this hypothesis is consistent with Hemsley's (1987)

Hemsley, 1994).
In support of this theory, work in Gray's laboratory has

view of schizophrenic positive psychotic symptoms as
reflecting a failure in the normal integration of current

demonstrated loss of LI in normal human subjects after information processing with previous regularities of
oral administration of a low dose of amphetamine (N. S. experience.

Gray et al., 1992a; Thornton et al., 1996); and, critically,

The experiments with the rat have provided evidence

in medicated schizophrenics, provided that they are in support of this hypothesis. These experiments have
tested in the first two weeks of the current psychotic showninter alia the following:

episode (Baruch et al, 1988a; N. S. Gray et al,

1992b), before treatment with neuroleptics is able to 1. In our standard CER paradigm (see above), a non-

bring symptoms under control. LI is also absent in unme-
dicated schizophrenics, the loss of LI in this case lasting
up to ayear (N. S. Gray et al., 1995). In addition, a series
of studies have reported that LI is reduced in normal

subjects who obtain high scores on questionnaire mea-
surements of the tendency towards psychosis (Baruch et

al., 1988b; De la Casa et al., 1993; Lipp and Vaitl, 1992;
Lubow et al., 1992). At the same time, extensive studies
of the rat in a number of laboratories including our own

(for review, see Gray et al., 1995) have done much to 2.

elucidate the neural basis of LI and its disruption.

3. THE NEURAL BASIS OF LATENT INHIBITION

As noted above, LI is abolished by increased DA release,
as caused for example by systemic administration of the
indirect DA agonist, amphetamine. Behaviourally, loss
of LI occurs because conditioning is increased in PE
subjects, but not in NPE subjects, by indirect DA
agonists. This effect is blocked by concomitant adminis-
tration of DA receptor antagonists, such as haloperidol.
In addition, these compounds, given on their own, induce
LI under conditions (too few preexposure trials) in which

undrugged animals fail to display LI; this “potentiated 3.

LI" is due to decreased conditioning induced by DA
antagonists in PE but not NPE subjects (for review, see
Gray et al., 1995). It has been proposed (Solomon et al.,

1981; Solomon and Staton, 1982; Gray et al., 1991a) that
these effects are due to alterations in dopaminergic trans-

mission specifically at the terminals of the mesolimbic
dopaminergic projection from nucleus (n.) A 10 in the
ventral tegmental area to n. accumbens in the ventral
striatal region of the basal ganglia. Thus, on this hypo-

thesis, increased intra-accumbens DA release facilitates,

while blockade of DA transmission reduces, condition-
ing only in subjects that have had preexposure to the
CS. Experiments using systemic administration of DA

agonists and antagonists have further demonstrated tha#.

both blockade and potentiation of LI can be obtained if
the relevant drug is administered only at the time of
conditioning, preexposure having taken place in the

normal state (Joseph et al., 1993; Peters and Joseph,
1993; Moran et al., 1996). Thus, the hypothesis proposed 5.

preexposed CS associated with the footshock US
comes to elicit conditioned DA release in n. accum-
bens, but not in the dorsal striatum (target of the
nigrostriatal dopaminergic projection). However, a
preexposed CS (to which conditioning is substantially
reduced) fails to elicit such conditioned DA release in
n. accumbens (Young et al., 1993). Thus, accumbens
DA release maps well on to the changes in condition-
ing that constitute LI.

Destruction of dopaminergic terminals within n.
accumbens potentiates LI (causing this phenomenon
to appear with a number of PE trials too few to cause
LI in normal animals); blockade of accumbens post-
synaptic receptors by local injection of the DA recep-
tor antagonist, haloperidol, at the time of conditioning
only similarly potentiates LI (S. Peters, G. Grigoryan,
A. Young, M. H. Joseph and J. A. Gray, in prepara-
tion). In both cases, these effects are due to changes
in the preexposed animals only. Thus, in accord with
the hypothesis under test, decreased intra-accumbens
DA transmission at the time of conditioning boosts
the effects of CS preexposure, even though this has
taken place in the normal state.

The blockade of LI by systemic injection of the indir-
ect DA agonists, amphetamine and nicotine, is in both
cases reversed by intra-accumbens injection of halo-
peridol at the time of conditioning only (S. Peters
et al, in preparation). Thus, the effect of these
agonists must be mediated by DA transmission in n.
accumbens, showing that (in agreement with the
hypothesis) an increase in such transmission reverses
the effect of CS preexposure even though this has
taken place in the normal state.

Other experiments, also offering support for the
neuropsychological model of LI advanced by Gray
et al. (1991a, b), have provided evidence (reviewed
in Gray et al., 1995) that:

In general, but not always, LI depends upon the integ-
rity of the hippocampal formation, and of the retro-

hippocampal region (subicular area plus entorhinal
cortex) reciprocally connected to the hippocampal
formation.

The roles of the dopaminergic projections to n.
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FIGURE 1. Diagram of different brain regions involved in latent inhibition. Connections from the subiculum (sub) and entorhinal cortex

(ERC) (“retrohippocampal region”) to the n. accumbens (NAC) and from the NAC to the nucleus reticularis thalami (NRT) and thalamo-

cortical sensory pathways. PFC, prefrontal cortex; DM, dorsomedial thalamic area; VP, ventral pallidum; A 10, dopaminergic nucleus

A 10 in the ventral tegmental area (VTA). Neurotransmitters: GLU, glutamate; DA, dopamine; GABA, gamma-aminobutyric acid. +, —:
excitation and inhibition. I, Il and IlI: feedback loops.

accumbens and the hippocampal system in LI are thalamocortical loops. Figure 1 presents this circuitry
interconnected; thus, for example, the loss of LI in diagrammatic form.
after damage to the hippocampal formation or to the  Let us consider how the circuitry of Figure 1 would be
retrohippocampal region is in both cases restored by likely to work under the conditions of an experiment in
systemic administration of haloperidol (Christiansen which an indirect DA agonist, such as amphetamine or
and Schmajuk, 1993; Yee et al., 1995). nicotine, is used to block LI by causing DA release in n.
accumbens. As we have seen, the basic phenomenon of
Although the n. accumbens is usually thought of as LI consists in the fact that the preexposed CS is slow to
belonging to the motor programming circuitry of the enter into an association with a Pavlovian US. Let us
basal ganglia (in which, indeed, it clearly plays an impor- interpret this, speculatively, as reflecting a lack of access
tant role; Swerdlow and Koob, 1987; Gray et al., 1991a), to conscious processing by the preexposed CS. If, how-
it appears to play a key role in the regulation of LI. ever, presentation of this CS is accompanied by enhanced
Recently, Lavin and Grace (1994) have studied what DA release in n. accumbens (as induced pharmacologi-
happens to the outputs from the n. accumbens. Usingcally, by activation of the retrohippocampal input to n.
electrophysiological and tract-tracing techniques, these accumbens, or during acute psychosis), LI is overcome,
workers have demonstrated that the inhibitory GABA- indicating ex hypothesithat the preexposed CS has
ergic output from n. accumbens synapses, in the ventralregained the capacity to engage conscious processing.
pallidum, upon further GABA-ergic inhibitory neurons The circuitry of Figure 1 constitutes a mechanism by
that project to the nucleus reticularis thalami (NRT). The which this effect can be produced. DA release within n.
NRT is unusual among thalamic nuclei in that it too accumbens inhibits (by acting on DA D2 receptors;
consists mainly of inhibitory GABA-ergic neurons; Robertson and Jian, 1995) the GABA-ergic pathway to
these project to a number of the surrounding thalamic the ventral pallidum, thus disinhibiting the pallidal
nuclei whose job is to relay impulses originating in GABA-ergic pathway to NRT, which in turn inhibits
peripheral sense organs to the appropriate sensorythe GABA-ergic projections from NRT to the ascending
regions of the cerebral cortex (Jones, 1975). The possiblethalamocortical sensory relay projections, so disinhibit-
role of the NRT in the selection of stimuli for attention ing the latter. In this way, accumbal DA release should
and conscious processing was first pointed out by Crick lead to an intensification of processing in whatever
(1984), and has been incorporated into a neural network thalamocortical sensory relay projections were already
model by Taylor and Alavi (1992). Note that, since the operative in the prior instant of time. In the LI experi-
pallidal output to these neurons is itself inhibitory, its ment, this intensification of sensory processing will allow
activation has the effect of disinhibiting these sensory the preexposed CS (which otherwise would not have
relay pathways, i.e. increasing the entry to the cerebral been fully processed) to enter more readily into asso-
cortex of those stimuli that are currently engaging the ciation with the US. This line of argument is consistent
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with the suggestion that, in acute schizophrenia, con- assuming that these pathways are activated either by the
scious (or controlled) processing (Schneider and Shiffrin, same initial output from n. accumbens to the ventral
1977) is dominant. pallidum or by two such outputs but simultaneously,
This analysis of how the circuitry of Figure 1 would be the one set of thalamocortical loops will always be
expected to function when a supra-normal pulse of DA is excited when the other is inhibited. This arrangement
injected into it in n. accumbens needs to be understood inseems ideally suited to produce a rapid oscillation
the context of its likely continuing activity under more between the taking in of information from the environ-
normal conditions. A striking feature of this circuitry is ment and the organisation of a step in a motor program
the imbalance between, on the one hand, the accumbengsee Gray et al., 1991a). Given other considerations as
output to the thalamocortical sensory loops (3 steps) and,to the time-scale of events in these loops (Gray, 1982,
on the other, the dorsomedial thalamic-prefrontal motor 1995a), we may suppose that these oscillations between
loop (2 steps). This imbalance has the consequence thatsensory-dominant and motor-dominant processing occur
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every 50 ms or so. Figure 1 suggests, furthermore, thatto zero (see Hull, 1943; Grossberg, 1975). In addition, we
(in agreement with the hypothesis proposed by Weiner, assume that;(t) increases also when €% predicted
1990) the switch between the one and the other form of by other CSs (see eqn (1) in Appendix A).

processing is controlled by the feedback loop from the Internal representationThe internal representation of
ventral pallidum via A 10 back to n. accumbens. When CS, X;, is proportional tor; and tor; multiplied by its
the inhibitory step from n. accumbens to ventral pallidum attentional LTM, z (see egn (2)). Internal representa-
is operated (leading to sensory-dominated processing),tions, X;, determine both the read-in and read-out of
this simultaneously disinhibits the ventral pallidal input associative LTM (see below). The magnitude of the
to A 10 and so inhibits the A 10 to n. accumbens path- internal representation of GSX;, modulates both (a)
way. In this way accumbens inhibition of the ventral the rate of change of GSC§ and C$-US associations
pallidum is reinstated, switching dominance back to the (see eqns (4) and (¥, and (b) the magnitude of the CR
thalamo-prefrontal loop. Interpreted without further (see eqns (3) and (9)). That i; controls both storage
gloss, this understanding of the circuitry of Figure 1 and retrieval of CS-C§ and CS$-US associations.
would seem to predict that conscious experience Simultaneous control of memory read-in and memory
(assumed here to be linked to processing in the sensoryread-out byX; is a most important feature of the model.
but not the motor component of these linked loops, Attentional LTM Attentional LTM, z, represents the
together with widespread activity in the overall compara- past experience that GDr its predictionB;, is accom-
tor system, as described by Gray, 1995a) would be inter- panied by a certain amount of Noveltg,/\, — B!
rupted by recurrent periods of 50-ms blanks in every (defined below) (see eqn (5)). This attentional LTM is
100 ms; which is clearly not the case. We need therefore established when Novelty temporally overlaps with the
to suppose that, once the sensory processing that fillsSTM of CS, 7;, or its predictiorB,;. LI is the consequence
conscious experience is initiated in the thalamocortical of the depresseH; that results from the decreased atten-
loops, it continues until it is replaced, approximately tion (small positivez;) or the inattention (negativg) to
every 100 ms, by a new set of selected elements. Manythe preexposed CS. The magnitude of the LI effect
of these will presumably be the same as elements in thedepends on the time needed to increAsby reversing
previous set, so resulting in an apparently seamlessinattention (negative;) into attention (positive;) during
stream of consciousness. conditioning.

Associative LTM Associative LTM, Vi, represents
the past experience that C& followed by eventk
(CS or the US) (see eqns (4) and ¥ This associative
LTM is established when everit temporally overlaps
In order to offer a formal description of the transition with the internal representation of G;. By controlling
from automatic to controlled processing, or from con- the magnitude ofX; (see eqn (2)), attentional LTN,
scious to unconscious modes, the present section intro-controls the rate of change &f, US associations (see
duces the neural network theory of LI offered by eqgn (4)). In addition, by controlling the magnitude of
Schmajuk et al. (1996); (see also Schmajuk, 1997). X;,z also controls the size @& s (see egn (3) and the
Figure 2 shows a detailed diagram of the network, strength of the CR (see eqgn (9)).
henceforth called the SLG model. The SLG network is  Cognitive mappingThe network storing CS—CS and
areal-time modelWhich describes the unbroken temporal CS-US associations in Figure 2 is a recurrent autoasso-
dynamics of behavioural variables and, therefore, its ciative network (Kohonen, 1977) capable of combining
output can be compared to behaviour as it unfolds in multiple associative values, a process similar to what
real time. Furthermore, the dynamics of its intervening Tolman (1932) called inference. Tolman hypothesized
variables can be contrasted with neural activity, provid- that a large number of associative values can be com-
ing a basis for the study of the physiological founda- bined into acognitive map The internal representation
tions of behaviour. This dynamic description is of CS, X;, becomes associated with the US in proportion
formalized by a set of differential equations that depict to the differenceXys — Bys), whereBsis the aggregate
changes in the values of neural activities and connectiv- prediction of the US by all CSs with representations
ities as a function of time. A formal description of the active at a given time, andys represents the intensity
model is presented in Appendix A. of the US. More generally, the aggregate prediction of

The SLG network incorporates different types of CS by all CSs with representations active at a given
memory: (1) a trace short-term memory (STM) of (CS time, By, is given by By = X; X; Vix Vik increases
(2) an attentional long-term memory (LTM) for G$3) when X;(t) is active and evenk is underpredicted,
associative CSCS, and CS$S-US LTMs, and (4) i.,e. W\« — By is greater than zeroV;x decreases
intermediate-term memories of ¢SUS, and their when X;(t) is active and evenk is overpredicted, i.e.
predictions. (M — By) is smaller than zeroV;, remains unchanged

Trace STMTrace STMr(t), increases over time toa  wheneverX;(t) is zero or evenk is perfectly predicted,
maximum during CSpresentation and then decays back i.e. \x — By) equals zero.

4. A NEURAL NETWORK THEORY OF LATENT
INHIBITION
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Novelty Novelty of eventk is computed agh, — By/,
i.e. the absolute value of the difference betwagnthe
running average of the observed value of everindB,,

1263

conscious mode, and later in training d$ processed
in automatic or unconscious mode.
In terms of the SLG model, LI is the consequence of

the running average of the aggregate prediction of eventthe depressed representation of;,C§, that results from

k. N and B, are computed by neural elements whose

the decreased Novelty that follows preexposure and

outputs are proportional to present and past values of from the decreased attention (smg)lto the preexposed

A« andBy (see egns (6) and (7)).

Novelty is given by the sum of the novelty of all
stimuli present or predicted at a given tin&/\, — B!
(see eqgn (8)). We assume that GAan be predicted by
other CSs, the context (CX), or itself. Therefore, either
repeated presentations of C# a given context or
simply repeated presentations of (d8ad to a decrease
in CS, novelty. Whereas CS-CS, associations decrease
CS¢ novelty in a context-independent manner,; 9SS,
or CX-CS associations decrease Q®velty in a con-

text-dependent way. Because, according to the SLG

model, decrements in novelty are responsible for LI,
CS—CS, associations are responsible for context-
nonspecific LI, whereas GSCS, or CX-C& associa-
tions are responsible for context-specific LI (see Good
and Honey, 1993).

Figure 2 shows that Novelty becomes associated with
trace 7i(t). This association is represented by the atten-
tional memory,z, which modulates the amplitude of
internal representatioiX;, thereby modulating the rate
of learning. Therefore, the SLG model suggests that
attentional memory; is CS-specific but regulated by
the non-specific Novelty (see eqn (5) in Appendix A).

Orienting response (OR)Sokolov (1960) proposed
that the strength of the OR might be an index of the
amount of processing afforded to a given stimulus, and
that this amount of processing is proportional to the
novelty of the stimulus. In line with Sokolov’s idea, we
assume that Novelty, I\, — B,l, determines the magni-
tude of the OR (see eqgn (9)).

Behavioural inhibition Gray (1971) suggested that a
behavioural inhibition system, activated by signals of
punishment or non-reward, innate fear stimuli, or novel
stimuli, gives rise to behavioural inhibition, increased
arousal, and increased attention to environmental stimuli.
In the same vein, we suggest that CR amplitude (a)
increases proportionally to the magnitude of the predic-
tion of the US, and (b) decreases in proportion to the
magnitude of the OR, CR Z;X;V;x — OR (see eqn (10)).

LI and the transition from controlled (conscious) to
automatic (unconscious) processingjccording to the
model, at the beginning of acquisition of classical con-
ditioning, Novelty andz; are large because both Chd
the US are unexpected, but both Novelty andecrease
as conditioning progresses and both;G&d the US

CS. This decreased attention can be interpreted, specula-
tively, as reflecting a lack of access to conscious pro-
cessing by the preexposed CS.

In summary, in the framework of the SLG model, CS
is processed in controlled or conscious mode when
Novelty and z are large, and in automatic or non-
conscious mode when Novelty agdare small.

5. ANEURAL SYSTEM INTERPRETATION OF
THE NETWORK MODEL

In this section we consider how to translate the variables
in the neural network model of latent inhibition into an
equivalent set of functions on real-brain structures. In
attempting to do this, we limit ourselves to the variable
Novelty. Although we have begun the task of making
appropriate translations for other variables within the
neural network model, it is Novelty and its real-brain
equivalent that are central to our present theme, the tran-
sition from automatic to controlled processing. Let us
now consider how the critical variable Novelty in the
SLG model can be mapped onto the circuitry of
Figure 1. Under the assumption that Novelty is repre-
sented by the DA input to the accumbens, increases in
Novelty result in increased DA release within n. accum-
bens which inhibits the GABA-ergic pathway to the
ventral pallidum, thus disinhibiting the pallidal GABA-
ergic pathway to NRT, which in turn inhibits the GABA-
ergic projections from NRT to the ascending thalamo-
cortical sensory projections, so disinhibiting the latter. In
this way, increased Novelty increases accumbal DA
release, thus leading to an intensification of processing
of the CSs that activate the thalamocortical sensory relay
projections, and to more conscious processing. After CS
preexposure, decreases in Novelty result in a reduction
of the attentional memory and the processing of the
preexposed CS, and in less conscious processing.
Weiner et al. (1988) demonstrated that two adminis-
trations of amphetamine, given prior to preexposure and
prior to conditioning on successive days, are effective in
impairing LI. In contrast to the effect of amphetamine
administration, Weiner et al. (1987) reported that halo-
peridol administered during both the preexposure and
conditioning phases facilitates LI, but that this effect is
absent when drug administration is limited to the pre-

become expected. Pearce and Hall (1980) suggestedexposure phase.

that this transition from high to low levels of attention

The top left panel in Figure 3 shows mean percentage

was akin to the concept of passage from controlled or of avoidance responses for preexposed and non-
conscious to automatic or non-conscious modes pro- preexposed groups under saline or haloperidol adminis-
posed by Schneider and Shiffrin (1977). At the beginning tration (during preexposure and conditioning) as reported
of conditioning, C$ is processed in controlled or by Weiner et al. (1987). Whereas animals receiving
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FIGURE 3. Effect of the administration of amphetamine and haloperidol on LI. Top left panel: (data from Weiner et al., 1987): Mean
percentage avoidance responses for saline-control (CON) and haloperidol-treated (HAL), preexposed (PE) and non-preexposed (NPE)
rats. Lower left panel: (simulation) Percentage peak CR after 5 CS preexposure trials followed by 10 conditioning trials for saline-control
(CON) and haloperidol-treated (HAL), preexposed (PE) and non-preexposed (NPE) rats. Top right panel: (data from Weiner et al., 1988)
Mean percentage avoidance responses for saline-control (CON) and amphetamine-treated (AMPH), preexposed (PE) and non-preex-
posed (NPE) rats. Lower right panel: (simulation) Percentage peak CR after 295 context-only preexposure trials, 5 CS preexposure trials
followed by 6 conditioning trials for saline-control (CON) and amphetamine-treated (AMPH), preexposed (PE) and non-preexposed (NPE)
rats. Because experimental data show that CS—US classical associations (interpreted as fear of the US) modulate the generation of
avoidance responses (Rescorla, 1967; Rescorla and LoLordo, 1965; Weisman and Litner, 1969), we compare percent CR amplitude with
the mean percent of avoidance responses.

saline (CON/NPE and CON/PE) show little difference in groups under saline or amphetamine administration (dur-
behaviour, PE animals treated with haloperidol show a ing preexposure and conditioning) as reported by Weiner
clear retardation in the acquisition of avoidance etal. (1988). Whereas animals treated with amphetamine
(HAL/NPE vs. HAL/PE). In addition, animals receiving (AMP/NPE and AMP/PE) show little difference in
saline (CON/NPE and CON/PE) learn faster than behaviour, PE animals receiving saline show a clear
animals receiving haloperidol (HAL/NPE vs. HAL/PE). retardation in the acquisition of avoidance (CON/NPE
The bottom left panel in Figure 3 presents computer vs. CON/PE). In addition, animals receiving ampheta-
simulations obtained with the SLG network showing mine (AMP/NPE and AMP/PE) learn faster than animals
peak CR amplitude after 5 CS preexposure trials receiving saline (CON/NPE and CON/PE). The bottom
followed by 10 conditioning trials. Although simulated right panel in Figure 3 presents computer simulations
HAL/PE animals show more learning than the experi- obtained with the SLG network showing CR amplitude
mental animals, in agreement with the experimental after 295 context preexposure trials representing appara-
data, haloperidol administration facilitates LI. tus familiarization and 5 CS preexposure trials followed
Thetoprightpanelin Figure 3showsmean percentage of by 6 conditioning trials. In agreement with the experi-
avoidance responses for preexposed and non-preexposethental data, amphetamine administration impairs LI.



The Transition from Automatic to Controlled Processing 1265

In addition to describing the effect of haloperidol and ~ While awaiting the advent of that theory, it is non-
amphetamine administration on LI, the model also theless worth speculating on just what might turn out to
describes LI facilitation produced by context preexpo- be linked to what in the brain-consciousness conundrum.
sure that precedes CS preexposure (compare LI in nor-This paper has attempted to do this for the transition
mal preexposed animals without context preexposure between automatic and controlled processing, a transi-
(left panels) to LI in normal preexposed animals with tion which appears to go badly awry in schizophrenia.
context preexposure (right panels)).
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APPENDIX A:

A.1l. A Formal Description of the SLG Model

This section formally describes the SLG model as depicted in Figure 2.

A.1.1. Short-Term Memory Trace of the CS

CS generate an STM trace;, according to
d(7;)/dt =Ky (CS —7) (1)

whereK represents the rate of increase and decay,@nd the initial
value ofr; is zero.

A.1.2. Internal Representation of the CS

The combination of; with the prediction of C§ B;, can be modified by
the attentional value;, to yield the internal representation of C&;,
according to

X = Ka(7i +K3B)(Ks +7) @

whereK 3 represents a reinjection coefficient By, K4 represents an
unmodifiable connection between inptiti#- K B, andX;, andz; is the
attentional memory defined by eqn (5). By eqn ()]s active either
when (a) C$is present and; is greater than zero, or (b) when GS
predicted by other CSs arg] is greater than zero. Increasing values of
z; increase the magnitude &f. Because increasing GSCS associa-
tions increasd;, they also increase the magnitudeXef

A.1.3. Aggregate Predictions

The aggregate predictiomf eventk (CSy) by all CSs with representa-

tions active at a given timd,, is given by
Br =LiVi kX 3)

whereV; represents the associationXfwith CS,.
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The aggregate prediction of the US by all CSs with representations
active at a give timeBys, is given by

Bus=ZL;Vi usX;

whereV; ys represents the associationXfwith the US.

@)

A.1.4. Long-Term Memory CS—US Associations

Changes in the association betweéérand the USV, ys, are given by
d(V;,us)/dt = KsX;(Ays — Bus)(1 — [V, usl) (4)

whereX; represents the internal representation of, 8gs the intensity

of the US,Bys the aggregate prediction of the US by 4§ active at a
given time. The term (% IV, ygl) boundsV, ys between 1 and- 1. By

eqn (4),Vius increases wheneveX; is active and\ys > Bys and
decreases wheiys < Bys. In order to prevent the extinction of
conditioned inhibition or the generation of an excitatory CS by present-
ing a neutral CS with an inhibitory CS, we assume Bg¢ = 0 when

Bys < 0.

A.1.5. Long-Term Memory CS—CS Associations
Changes in the association betwegrand C§S, V;;, are given by

d(Vi )/t =KsXi(\ — By)(1— Vi ;1) )
whereX; represents the internal representation of, Gsrepresents the
intensity of CS, B; represents the aggregate prediction of eyéatall
X's active at a given time. The term ¢ [V;;l) boundsV;; between 1
and — 1. By eqn (4), Vj; increases wheneveX; is active and\; > B;
and decreases whey) < B;. WhenB; < 0 thenB; = 0. V;; represents
the association of GSwith itself.

A.1.6. Attentional Memory
Changes in the association between+« K3 B;) and Novelty,z;, are
given by

d(z)/dt = (7; + K3B;)(KgNovelty(1 — z) — K;(1+ z) (5)

whereKg represents the rate of increae,the rate of decay of;, and
Novelty is given by eqgn (8). When Novelty is zemdecreases unti;

We assume that when < 0, thenX; = Ky(r; + K3 Bj)K, (see eqn
(2)). This means that when becomes negative, input;(+ Kz B))
activatesX; only through the unmodifiable connnectikin. By egn (6),
whereas a CSwith negativez; has a relatively smak;, and therefore,
its associations change slowly, a G&th positive z; has a relatively
large X;, and therefore, its associations change rapidly. LI is the con-
sequence of the negative value acquired;luring CS preexposure (as
Novelty decreases) and, consequently, of the time needed to restore
its positive value (as Novelty increases) during conditioning. Interest-
ingly, in line with Lubowet al’s (1981) suggestion, positive valueszpf
can be interpreted as a measure of the attention directed,tovB&eas
negative values df; can be interpreted as a measure ofitiatention
to CS.

A.1.7. Total Novelty

The average observed value of evkiig given by

A= (1= NN+ Kghe (6)

whereKg represents the rate of decayiaf
The average prediction of evekis given by

By = (1 — By)By + KgB (7)
whereKg represents the rate of decayXaf Novelty is given by
Novelty= I, | A — By| (8)

wherek includes all CSs and the US.

A.1.8. Orienting Response
The magnitude of the OR is given by

OR= Novelty’/(K2 + Novelty?) 9)
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A.1.9. Performance Rules

The amplitude of the CR is given by
CR=B’ys(1—K;,0R) (10)

whereB' s is given byB' ys = B3¢/(K%, + B3g). According to eqn (9),
the magnitude of the CR increases with increasing predictions of the
US, and decreases with increasing ORs elicited by novelty.

A.1.10. Effects of Amphetamine and Haloperidol

Administration
It is assumed that the administration of amphetamine or nicotine

J. A. Gray et al.

where Ky, > 1 for DA agonist andK;; < 1 for DA antagonist
administration.

A.2. Simulation Parameters

In our computer simulations, CS-preexposure trials, context-
preexposure trials, and conditioning trials last 600 time units. A CS
of amplitude 1.0 is presented between time units 55 and 80, a US of
intensity 1.8 is applied between time units 75 and 80. Context amplitude
is 0.1. Parameter values used in all simulationgare- 0.2,K, = 2,K3
=0.4,K,=0.1,Ks=0.005Kg=0.02,K;=0.005Kg=0.005Kg =

increases, and administration of haloperidol decreases, the action of0-79:K10=0.7,Ky; = 0.15, andK,, = 1. Administration of ampheta-

the VTA dopaminergic projection to the n. accumbens coding Novelty.
Novelty is given by

NOVeIty: K1oZk A — Byl (8’)

mine was simulated by assuming, = 2.0, and administration of
haloperidol by assumingf;, = 0.65.

A DOS version of the program used in the present paper is available
on request.
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1. INTRODUCTION ideals (the basic and distinctive characteristics that com-
bine to give rise to the various phenomena we come
across in nature) can be more abstract. For example, in
the brain there appears to exist a kind of process for
the decomposition of incoming visual patterns in such

£ way that, at a cortical level, different groups of neurons

become specialized in detecting individual lines that

compose the pattern.

The dwellers of the cave have no consciousness of
this ideal world because they are unable to see beyond
the images on the cave wall. Indeed, we are incapable
of perceiving the abstract seeds of knowledge that, as a
whole, produce our consciousness. In the above example
we do not appreciate a visual pattern as a group of dis-
tinctive lines even though we appreciate it as a whole.
Plato considered that the philosopher's (or perhaps
nowadays, the neuroscientist’s) task was to present

For example, according to Plato, the idea of a real tree ,, . " 7.
T . . their findings to those people who seemed to be trapped
would be a combination of the ideas of an ideal tree, the
at the entrance of the cave.

idea of greenness, the idea of height, etc. However, these The author writer believes that the Platonic world of

ideas exists within us. It is neither eternal nor immutable,
Acknowledgements: The author expresses his gratitude to ProfessoraS Plato thOUth’ but ra_ther is created throth Ieammg
Shun-ichi Amari, director of the Brain Information Processing Group aNnd experience. According to the model of the thalamus
in the RIKEN Institute, and Professor Kazu Aihara of the University of and cortex introduced in this paper, one of the functions
Tokyo for their valuable criticisms and suggestions. The author is also of the thalamus is to break down arriving information
grateful to Shirley F. Taniguchi for reviewing this c.ontribution: into simple and relevant components similar to Platonic
Requests for reprints should be sent to Javier RoperdePela ideals. Thr h a bindin rocess that will be explained
Department of Mathematical Engineering, Faculty of Engineering, laeals. Ol'Jg a gp p .
The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113. Tel/fax later, these ideals are recomposed to generate similar or
03-5689-5752; e-mail: javier@sat.t.u-tokyo.ac.jp other related patterns. When a new pattern arrives, there

The ‘Myth of the Cave’, found in Plato’s dialogu&he
Republig illustrates how, according to the philosopher,
objects perceived by the senses are nothing but a com-
bination of pure entities called ‘ideals’. It can be
imagined that some people are trapped in an undergroun
cave in such a way that they can only see the cave’s inner
wall and cannot see the outside world. They think that the
shadows projected onto the wall constitute the real world,
and do not realize that these shadows are only poor
reflections of radiant and perfect figures that exist outside
the cave. In this way, every object of their world is a
mixture of the projections of these figures onto the
cave wall. These figures are a metaphor for the pure
‘ideals’ that, when combined, give rise to an entire
world represented by the shadows on the cave wall.
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would be some plausible ‘candidate ideals’ which are more information back from the cortex than from the
used in combination by the brain to match the incoming senses. Figure 1 schematically depicts the synaptic organi-
patterns. During this process a combination of candidate zation of the thalamus (see Steriade & Llinas, 1988).
ideals would win the competition for matching the Neurons that arrive at the thalamus make contact with
incoming pattern. If there is not a perfect match, new two different kinds of neuron: thalamocortical and local
ideals will be created and stored for later use in dealing circuit neurons. Local circuit neurons exert inhibition
with upcoming patterns. over each other and over thalamocortical neurons. The
Although input patterns are perceived as simultaneous, two types of thalamocortical neuron projections which
the thalamus will split them into a temporal sequence of go to cortical and to reticular neurons are excitatory.
ideals. These ideals will be synchronized again through Each of the thalamic projections to the cortex is accom-
the delays in the long dendrites of cortex pyramidal panied by a reverse projection from cortex pyramidal
neurons. If two or more patterns are presented simulta- neurons to the thalamus, with matching conduction
neously, their equal ideals will be associated through velocities. The spatial organization of the reverse projec-
synaptic reinforcement in pyramidal neurons. For tions is in a fairly precise reciprocal relationship with
example, continuing with the Platonic metaphor, if a the forward spatial organization (see article by Crick &
bush and a tree are intended to be memorized as simul-Asanuma in McClelland et al., 1986).
taneous, the binding of both concepts must be done at Reticular neurons in the reticular nucleus of the
the level of the characteristics or ideals they share, suchthalamus (RNT) possess dendrodendritic synapses and
as the idea of greenness, height, etc. We are not aware oexert inhibition over each other, and over thalamocortical
this binding, that is performed in different temporal neurons. The inhibition over thalamocortical neurons
layers (Thomson & Deuchars, 1994). Therefore, this is mediated in higher mammals’ LGN parvocellular
information must be synchronized in order for us to be pathway by inhibitory local circuit neurons whose
conscious of it. This synchronization is hypothesized to hypothetical role in learning will be explained later.
be performed at a cortical level where asynchronous, The fourth layer of the cortex receives most of the
non-overlapping information coming from the thalamus afferences from the thalamus. 40 Hz sparsely inhibitory
is delayed. The result of this process would be returned spinous interneurons inhibit nearby pyramidal neurons
as an input to the thalamus at the same level of otherand seem to be restricted to this area. Chandelier
input patterns (Contreras et al., 1995). neurons inhibit pyramidal neurons in their axon hillock
Up to this point two processes have been discussed:which is the strategic point in which axon potentials
the generation of ideals and the binding process. As will are generated. Basket neurons seem to regulate in a
be revealed, these two processes are closely related to theontrol loop manner the threshold of surrounding pyra-
two modes of thalamic neuron firing: the tonic and burst midal neurons.
modes. An attempt will be made to explain the overall
behaviour of the thalamus and cortex in order to develop
a new paradigm of neural network (Ropero, Pelaez
19964, b). This will include an examination of the rules
of interconnectivity of the thalamus and cortex, the Intralaminar and paralaminar thalamic nuclei are called
synchronizing role of the nonspecific thalamic nucleus, nonspecific because their projections are not restricted to
the modelization of synapses, the interplay between the a unique sensorial modality. Intralaminar thalamocorti-
tonic and bursting mode in thalamic neurons, the specific cal neurons exhibit a firing frequency of 40 Hz (Steriade
computation in every kind of neuron with a deep analysis et al., 1993). Paralaminar neurones receive inhibition
of pyramidal processing, the mathematical algorithms from reticular neurons and project to the thalamus and
that describe the ‘ideals’ extraction and the binding to cortical layers | and IV (Llinas et al., 1994). First layer
problem and, finally, the explanation of the neural projections are performed mainly in the tuft of pyramidal
counterpart that supports these algorithms. neurons. Since branches in this tuft converge over the
pyramidal dendritic shaft, excitations over the tuft are
integrated and generate a large response that will travel
through the shaft and will reinforce other stimuli over a
40 Hz basis.

2.2. Synchronization Role of Nonspecific Thalamic
" Nucleus

2. NEUROLOGICAL FOUNDATIONS

2.1. Rules of Interconnectivity in the Thalamus and
Cortex

The majority of the information that arrives at the neo- 2.3. Modelling Synaptic Weights

cortex is relayed by the thalamus, an ovoid-shaped struc-In the next exampleA and B are the spikes in the
ture in the middle of the inverted bowl formed presynaptic and postsynaptic space respectively. The
by the cerebral hemispheres. Although most of the conditional probability ofB given A, P(B/A), could
afferences from the senses to the cortex are relayedwell describe the weight which is the value of the
through the thalamus, the thalamus receives ten timesreinforcement or weakening in the synapse. The above
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Pyramidal 40Hz.spinous Chandelier Thalamo-cortical Reticular

FIGURE 1. Connections between thalamus and cortex 4th layer.

expression is consistent with the latest biological In those synapses in which the presynaptic neuron is
discoveries (Artola et al., 1990; Huntley et al., 1994). inhibitory, there are no modifiable weights because
According to these studies, reinforcement in the synapse NMDA channels are not present there. Despite this,
only occurs when there is a postsynaptic spikever a there exists a possibility of computing synaptic weights
specific threshold, after or together with the presynaptic in the synapses of reticular thalamic neurons through a
spike A (glutamate must be bound at an NMDA gate, structure called the glomerulus. A glomerulus is a com-
due to eventA, while magnesium in this gate is drawn plex synaptic structure in which contacts between
away due to evenB). In this caseP(B/A) increases. In thalamocortical and local circuit neurons occur in a
the opposite situation, when givexthere is noB, the synaptic island encapsulated by glial cells. The most
synapse is weakened (Desmond & Levy, 1983) and frequent case is depicted in Figure 2. In this case an
P(B/A) decreases. It is possible to calculate, for example, axon terminal of an input neurdmexcites the dendrites
the P(B) (probability of a shot in the postsynaptic of local-circuit neurond; and |, and thalamocortical
space over a certain threshold) when the shot in the neuront. Local-circuit neuron, inhibits|; and this latter
presynaptic space has a probabilRgA). The method exerts inhibition overt. Corticothalamic and reticular
for obtaining P(B) is to multiply P(A) by the weight neurons produce, respectively, excitation and inhibi-
P(B/A). In this wayP(B) = P(B/A)P(A). tion over local circuit neurons in the extraglomerular
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a b
y
t
1 1§
1 w=P(b/y)
b
Cc d
- [Excitation (NMDA)
<= Inhibition
FIGURE 2. Equivalence between the hypothetical process carried out in thalamic glomeruli in which inhibitory synapses are not
modifiable (a) and in an artificial model (b) in which these synapses have a weight defined by P(bly): t = thalamocortical dendrite; /;

and /, = local-circuit neurons’ dendrites; b = input terminal; y = reticular neuron. (c) and (d) On* b’ being activated, /; is active only when
there is inhibition from* ). This allows us to calculate weight ~ w; as P(b/y), the influence from* b’ being P(b)P(b/y) which can be rewritten
as P(y)P(y/b). This expression is equivalent to an inhibition from * y' through a synaptic weight  P(y/b), as depicted in (b).

neuropil (in Figure 2, inhibition from reticular neurgris net input probability ovet is P(b) — P(b/y)P(y), as in
represented). The following explanation shows that Figure 2b.

the structure in Figure 2a is equivalent to that in
Figure 2b in which the weight in the inhibitory synapse
from the reticular neuron is modelled Bfb/y). The net
input to the thalamic neuron can be measured as the2.4.1. Thalamocortical Neurons. Thalamocortical
probability of the excitation fronh minus the probability (thal-cor) neurons have two ways of firing (Llinas &

2.4. Types of Neuronal Firing

of the inhibition fromy: P(b) — P(b/y)P(y). Jahnsen, 1982). They may fire tonically when they are
In Figure 2c, dotted areas represent depolarized excited above a certain threshold, as happens in the rest
structures. In this instance inphtdepolarized; andl,, of the neurons (Figure 3a). The frequency of firing of
butl, inhibition overl, neutralized ; depolarization. No thalamocortical neurons during their tonic mode depends
inhibition from |, overt is produced. on the summation of their inputs. In Figure 3a, the

Figure 2d shows what happens when there is a thalamocortical neuron would fire in this mode with
reticular inhibition byy. In this instancel, depolariza- probability P(b) — P(y), which would be the sum of the
tion is neutralized so that it cannot inhilbit Because of  excitatory and inhibitory input probabilities.
this, an input fromb excitesl ;, which inhibits the thala- The other mode of firing is a high frequency
mocorticalt. This can lead us to a rule of thumb in which, (> 250 Hz) burst firing that occurs after the accomplish-
when there is reticular inhibition from, which is made ment of a precise sequence of facts. First, a small
effective by inputb, thenl , is active as well. In thisway,  depolarization from rest is required. Afterwards, this
activity of |, is highly correlated to activity iy. Because  depolarization must be reduced by an active hyper-
of this, it is possible to model the weight; betweenl; polarization or from a reduction of a depolarizing
and b as P(y/b). Thus the excitation fronb over |, is input. When the neuron is maintained in this state for
P(y/b)P(b), which can be rewritten aB(b/y)P(y). The at least 50—100 ms, the bursting mode is produced by a
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P(b)-P(y) P(b/y)P(y) a b C.
Il T JM .
P(y) P
Thal-cor Thal-cor W
P(b) P(b)
a. Tonic firing b. Burst firing
FIGURE 3. Two types of firing in thalamic neurons. (a) The
probability of firing in tonic mode is the sum of the probabilities d
of the inputs. (b) In bursting mode, a necessary condition for
bursting is the previous inhibition by neuron * y'. Therefore the

probability of bursts in the thalamocortical neuron is modelled
by the mathematical expression of the conditioned probability of
‘b’ due to * y’ multiplied by the probability of bursts in y.

small depolarization, The probability of a high frequency (
burst has been modelized in Figure 3Pgs/y)P(y), The
expression of the conditional probability bfgiveny is
used here because the condition liao allow thalamo- FIGURE 4. Different theoretical situations in spine signal
cortical neuron burst firing is the previous inhibition processing. (a) No excitation over the spines; calcium ions

from the reticular neurony’ which has a probability remain inside. (b) Tonic excitation arrives at both spines.
. ! Although a little calcium leaves the spines, the frequency of
P(y) (Figure 2b).

. L . the inputs is not high enough to allow the communication
Reticular neurons exhibit not only the same kind of of the two spines through a calcium ion’s path, nor to allow
firing as thalamocortical neurons (Llinas, 1988) but also properly the synchronicity of the spikes in both spines. There
a unique pacemaker-like rhythmicity (Pinault & is not synaptic reinforcement  R. (c) Every spine receives a burst
Deschenes, 1992)_ Their firing is also characterized by of splkes. The high frequency of .burstlng allows the release of
. . calcium to the dendrite and the reinforcement of both synapses.
a -second rebound in the b.UI’St mode whose |mportance(d) A burst excitation is applied over the spines and over inhibi-
will be remarked upon during the course of the paper. tory neurons. The consequence is a depolarization that tries to
Threshold accomodation is another specific character- release calcium. However, when this ion tries to go to the den-
istic of reticular neurons that is necessary to produce drite the hyperpolarization due to the inhibitory neuron brings

alternation of reticular neuron activations in the NRT, back thg calcium to the spine. Neither calmum path nor reinfgr-
. cement is produced. (e) The same case as in (d), but there is a
as will be suggested.

bearer depolarization that comes through the dendrite. As it does
not arrive at the inter-spine gap at the time that the spines receive
2.4.2.40 Hz Inhibitory Stellate Spinous Neurod€ Hz bursting excitation, the result is as in (d). (f) In this case the

inhibitory stellate spinous neurons are present mainly in begrer wave is synchronized with the spikes’ burst so that it
the fourh ayer of the cortex, which IS the region that TTSStte i Fhes e s e e v 1,
receives most of the afferences from the thalamus. Their _.i.m ion potential.
inputs come from the thalamus and their efferences go
to the dendritic spines of pyramidal neurons. In vitro
intracellular recordings demonstrate a 40 Hz oscillatory excitation. In the cortex 4th layer, efferences from the
response after depolarization. Another characteristic thalamus are used to make contact over 40 Hz inhibitory
that is relevant, due to its computational possibilities, is neurons and over pyramidal neurons. Looking carefully
that the response outlasts the first stimulus but comes toat the disposition of the synapses over a spine in the
an abrupt cessation in the middle of a second one (Llinas cortex 4th layer (Figure 1) it is possible to hypothesize
et al., 1991) in a ‘flip-flop’ manner. that these inhibitory neurons are able to cut off the exci-
tation from the thalamus. Spines have the property of
2.4.3. Pyramidal Neurons and Sequential Processes. accumulating calcium. Although this fact has an impor-
Pyramidal cells represent the most abundant and charac+ant biological meaning (calcium leads to cell death, so
teristic neuronal type of the cerebral cortex (DeFelipe & spines can be considered as isolated compartments
Faritas, 1992). They have a long apical dendrite with where high concentrations of ¢aare stored without
bulbous-like synapses called dendritic spines connecteddamage to the cell function), calcium would be stored
to the dendrite by a ‘neck’. One or two excitatory inputs as a reservoir of ions for boosting travelling potentials
could arrive at a dendritic spine mainly in the spine head through the dendrite. It also could provide an effective
and, in many cases, there is also an afference from anpath for signal transmission and synaptic reinforcement
inhibitory input neuron near or on the spine neck. Inhibi- between two nearby spines (Yuste & Denk, 1995; Yuste
tion in this specific place could cut off most of a previous & Tank, 1996).
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Taking into account these properties of dendritic the other spines and reinforcement would be accom-
spines, several theoretical situations of spine computa- plished, Figure 4f. Furthermore, a travelling depolariza-
tion have been depicted in Figure 4. These situations will tion would be boosted. If the depolarization is enhanced
allow us to understand temporal computation of inputs along its course by different active spines in the dendritic
over dendrites. The conclusion is that high frequency shaft, this depolarization can be seen as a bearer wave
bursts of spikes could promote reinforcement in nearby that carries the information of the sum of different inputs.
spines (Figure 4c) while this situation is exceptional If every inputis required to be summed once, and all the
when low frequency spikes (Figure 4b) arrive at the inputs are to be considered in the sum, a top-down
spine. When an input volley arrives simultaneously at summation must be accomplished, from the most distal
the spine and at a 4th layer inhibitory spinous neuron, input in the upper layer to the lowest one near the soma.
the inhibitory neuron could hypothetically block both the In order to obtain this top-down summation, the inputs
signal and calcium diffusion into the dendrite, making must be ordered according to time; in other words, the
difficult the reinforcement of synapses of nearby spines, first input must be in the upper part of the dendrite and
Figure 4d. However, when, synchronously with excita- the last input in the lower part. If it is supposed that
tion of the spine, a big depolarization passes through every event inside consciousness not only generates a
the dendritic shaft invading the neck of these spines, specific spatial pattern but also a sequentially ordered
excitation in a spine would be transmitted faithfully to pattern, it can be seen that every input to the dendrite

might be ordered according to time in a top-down
manner. According to the hypothesis stated below, this

FIGURE 5. Retrograde action potentials can theoretically give
rise to a hebbian learning that reinforces ( R) not only the
appropriate synapses but also a temporal order of the synaptic
stimulus. Paralaminar thalamic burst depolarizes the branches
of the pyramidal tuft, and this depolarization is integrated to form
a big ‘bearer wave’ that can be boosted if the spine’s synaptic
depolarization occurs when this wave passes near the spine. The
consequence of this boosting might be the reinforcement of
the active synapses through a retrograde action potential. (a)
Various responses due to a paralaminar thalamic neuron in the
tuft of an apical dendrite are summed and generate a large wave
that travels through the dendritic shaft. We have considered that,
because of the shaft cable properties, the amplitude will diminish
and will not be large enough to generate an action potential after
reaching the soma. (b) Let us suppose that, as a consequence
- of the paralaminar burst over cortical neurons, some of the
subsequent bursts will arrive at the neuron under study with
a fixed delay after the intralaminar burst. Let us say that the
synchronizing burst arrives at time t = 0 while the others will
arrive with delays t; and t,. In the figure b, and b, are ordered
according to time, from the upper part of the dendritic shaft to
the lower part. In this way the first burst will take place nearer the

| by= synchronizing burst tuft and the last one nearer the soma. The syr)aptlc locations of

Tt ) b, and b, are purposely placed at a proper distance so that the
—T.‘—_l’}um—-—— by = first burst ‘bearer wave’, the one originating at the tuft, could reach the first

E(L) | b= second burst synapse at time t; and the second at time . In this case, the

bearer wave is boosted twice and will become big enough to
promote a retrograde potential that will reinforce the previously
excited synapses (because glutamate appears to be bound at the
NMDA gate, at least until the retrograde spike depolarizes the
C postsynaptic membrane above a certain threshold). Although a
stimulation in spine S may not coincide with the passing of the
bearer wave, it is also reinforced by means of the retrograde
action potential. (c) This case could be helpful for understanding
those in Figure 7. In this case we have burst b, and b, going
through the same axon. They are produced at the same time as
bursts b, and b, that are travelling through the axon below.
Since this case is the same as that of Figure 4c, reinforcement
is produced. In this particular case every synapse is reinforced
twice, first by the pair b, and by and secondly by b, and by. As
has been explained in Figure 4c, the ‘bearer wave’ is not
necessary here for promoting reinforcement.
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organization is achieved through a mechanism that certain inhibitory neurons, such as chandelier cells that

involves the reinforcement of the synapses that accom-

plish this time-based as

explained in Figure 5.

top-down organization,

strongly inhibit the cell at that precise point.
The top-down organization of synapses inside a pyra-
midal neuron could give rise to an organization of

In Figure 5a is represented the course of a big ‘bearer sequential firing in different pyramidal neurons. As a

wave’' generated by the convergence of the 40 Hz
paralaminar spikes over all the dendrites of the tuft of a

general idea, the order of the input neurons in the apical
dendrite will define the order in the sequence. In Figure 6,

certain pyramidal neuron. This response is weakeneda simple case of sequentiality with three pyramidal

gradually and if, when reaching the soma, it is not high
enough it will not generate an action potential. This
bearer wave can be amplified during its course if it is
coincident with other incoming inputs. In Figure 5b, the
paralaminar bursb, is supposed to produce excitation,
not only in the tuft of the neuron but also in the other two
neurons that, due to bursg, will subsequently fire with
burstsb; andb, over the neurons depicted in the figure
having at; andt, delay time respectively from burbg,.

If the synapses are placed in a position that allows

neurons is shown with examples of clockwise, counter-
clockwise, cluster and reverberant states. It tries to draw
the reader’s attention towards the importance of inhibi-
tion in sequential processing in the cortex, and towards
the possible role of inhibitory chandelier and basket
neurons. According to this hypothesis, chandelier cells
avoid coincident activation over pyramidal neurons,
allowing sequentiality in their inputs. It is remarkable
that chandelier cells inhibit the coincidence of the acti-
vation of pyramidal neurons over other pyramidal

the coincidence of the bearer wave producedppnd neurons, but are not capable of avoiding thalamocortical
the excitations fromb, and b,, the bearer wave will coincident activation because afferences from the thala-
be boosted twice and probably will be big enough to mus over chandelier cells are unusual. In this way,
produce an action potential in the soma. Together with pyramidal neurons seem to promote sequentiality
this action potential, a retrograde action potential (Stuart through temporal integration, mainly at a cortical level,
& Sakmann, 1994) will return to the apical dendrite, as well as detection of thalamocortical coincidences.
reinforcing the synapses that were previously active. This hibrid mode hypothesis integrates former ones
This reinforcement is produced because the neurotrans-(Konig et al., 1996).

mitter glutamate that was previously released in the Inhibition from basket neurons regulates the firing
synaptic gap is still bound to the NMDA gate when threshold of pyramidal neurons. Consequently, if there
the retrograde action potential reaches the synapseis little inhibition, neurons fire when receiving the
(Lester et al., 1990). In this moment the strong potential sequential activation of very few neurons. The range of
repels the magnesium that was blocking the channel, andinput neurons that, depending on the threshold, produce
calcium is able to enter the spine, promoting the synaptic the pyramidal activation define which neurons take part
reinforcement. If, in the case of a retrograde potential, in a certain sequence. If the inhibition is high, a lot of
there were synapses that previously were not coincidentinput neurons are necessary for reaching the firing thresh-
with the bearer wave, they would be potentiated too. In old. In this case the sequence comprises more neurons.
short, potentiation will be produced in all the synapses If the inhibition is low, very few inputs produce the
that receive inputs if there is a retrograde action potential pyramidal firing, and the sequences comprise only
due to a suprathreshold activation of the soma producedthese few input neurons. In this case, different clusters
by a minimal group of active inputs that boosted the of neurons can produce different sequential loops at the
bearer wave. same time.

Another way of producing synaptic reinforcement is In the cortex 4th layer, the present work suggests that
by means of the coincidence of impulses in nearby not spines but rather clusters of spines (see Yuste &
neurons, Figure 5c. The situation in this figure anticipates Tank, 1996) are also ordered through time in the way
some concepts that will be seen later: two trains of explained above. In this case, the reinforcement is not
highly correlated bursts will reinforce all the synapses due to a retrograde action potential but, instead, is due
in the figure as many times as the number of bursts in to the simultaneous coincidence of the bearer wave and
each train, without any consideration of the order of the activations of the inputs over the same spine as in
bursts nor of the exact point where spines are placed. Figure 4f. While in the previous case there was rein-

Several other questions must be addressed. There iforcement in active spines whose inputs were not coin-
one way to avoid the reinforcement of the synapses in cident with the bearer wave, in the present case of the 4th
this last case of coincidence of pulses, or even in the caselayer, reinforcement does not occur if the activation of
where the proper order of inputs is accomplished. Since the inputs is not coincident with the synchronizing
the action potential generated in the axon hillock is the wave (Figure 7a). If the same thalamocortical axons
one that, retrogradely, allows the reinforcement of make contact over different spines on the section of a
the synapses, if an inhibition is applied in the hillock, dendritic shaft in the 4th layer, the spatial organization
no action potential is generated and no reinforcement of the spines will mimic the temporal organization of
occurs. This could give some insight into the role of the bursts in thalamocortical axons, Figure 7b and 7c.
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The hypothesis that thalamocortical axons convey sequentiality due to the possibility that it could decom-

precise sequences of bursts will be explained in this pose input patterns into a sequence of raw ‘ideals’ that

work. are produced in order through an iterative sequential
Sequentiality, as will be shown, is promoted not only method that will be explained.

at a cortical level; the thalamus could also promote These two reasons, sequentiality promoted by

a ) b o
A
A %"\

FIGURE 6. A temporal organization of synapses in the apical dendrite of pyramidal neurons could cause a group of these neurons to fire
sequentially. (a) In this case a neuron will fire if the 40 Hz neuron fires first and the other two inputs receive excitation in the appropriate

order (threshold = 2; 2 inputs). In this group of neurons the sequence of firing is clockwise, thus: 12312312.... Thefiring rate of each
neuron is 40/3 Hz. (b) In this case the three neurons fire simultaneously (in an ‘epileptic’ manner) at 40 Hz because of the coincident
activation of two inputs in all neurons. (c) In a combination of the above cases, there are two more connections in each pyramidal neuron.

There is also a chandelier cell (with an arbitrary threshold = 2 input neurons). When it receives two or more excitations it inhibits all
pyramidal neurons, avoiding coincident activation over them. Here there are two possible sequences of firing: clockwise as in (a), or
counterclockwise 3 21321 32... (which is performed through broken lines). The system is hooked in one of the sequences depending

on which organization synchronizes first with the 40 Hz synchronizing input. However, it could be forced into one sequence by means

of an external activation. (d) Three basket neurons are added. Basket neurons only regulate the threshold of pyramidal neurons, instead

of cutting off their firing. They are inhibiting according to the surrounding level of pyramidal activation in a control loop manner.
Subsequently the pyramidal neurons’ threshold increases when it is more inhibited. Depending on the pyramidal neurons’ threshold,

the sequences of firing vary from an ‘epileptic’ behaviour (threshold = 0 when at the very beginning the network was in a steady state) to

a wide sequence of three neurons as in cases (a) or (c) (threshold = 2 at the end) through three oscillatory possibilities 1 2121..,
13131..0r2323.. (when threshold = 2 in a transitory state). In these cases the threshold is proportional to the number of active
basket neurons.
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FIGURE 7. Three different theoretical situations in layer IV signal processing. (a) Two trains of bursts coming through two different axons

are represented at both sides of the neuron. Bursts b, and by are produced atthe sametimeas b,and b,. Since the first couple of bursts,
b, and by, arrive synchronously at the spines  p4 and p3 but not at the same instant as the ‘bearer wave’ generated by bo, synapses in
these spines are not reinforced (see also Figure 4e). Synapses in p, and p, are not reinforced because they have not already been
stimulated. (b) Attime t;, b;and by arrive at the synapsesin p,and p; respectively synchronously with the bearer wave produced by bo.
At t, the same occurs by means of bursts b, and b, over synapsesin p,and ps. The resultis areinforcement R of all these synapses (see
also Figure 4f). (c) This is the same case as (b) but with an extra pair of spines. Since these spines psand pg are not properly placed, the
bearer wave is not coincident with the bursts and reinforcement is not produced. Synaptic depression in the spines of both pyramidal

and sparsely spinous interneurons will hypothetically cause these spines to be disconnected. In this way spatial and temporal synchro-

nization can be produced during development. It should be noted that in the above cases, in which spines act as coincident detectors, a
retrograde potential is not necessary for reinforcing an appropiate spatial order for placing incoming inputs over the dendritic shaft, as

seen in Figure 5.

pyramidal inputs and a sequential decomposition of codifications of the world, as in the retina which decom-
input patterns in the thalamus, are why thalamocortical poses the colour into the three basic types, or in the
inputs to the cortex might be ordered according to time tonotopic and visuotopic map in the cerebral cortex.
in dendrites. According to several authors (DeValois & DeValois,
1988), these visuotopic maps, in which cortical areas

3. IDEALS AS AXES IN PATTERN
VECTOR CODING

respond differently to different spatial frequencies of
patterns, are the result of Fourier decomposition, which

is a kind of mathematical process known as ortho-
In the Myth of the Cave Plato describes the ‘world of gonalization. One way to think of this is that all the
ideas’ in which eternal and immutable patterns give rise information entering the cortex must previously undergo

to various phenomena in nature. Similarly, there exist in some kind of orthogonalization.

the brain specific locations that store very abstract Figure 8 is an example of orthogonalization
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S

FIGURE 8. Vector coding. Three axes define an infinite number of faces.

and vectorial coding adapted from Churchland and if all the inputs constituted a unique pattern that

Sejnowsky, 1992. It shows that an infinite number of could be completed coherently if some of the inputs

faces can be defined by merely varying the intensity were missing.

of the three basic characteristics, or ideals, that are Every input is defined as a vector mfcomponentsn

depicted in the figure. To represemideals, am-dimen- being the number of orthogonal neurons in the reticular

sional space would be required. neuron layer. Orthogonality can be considered as
Another fact that leads us to believe that there is some follows.

kind of orthogonalization process taking place in the  Two patternsA andB, are orthogonal when the scalar

brain is that the orthogonalization of input infor- product, defined as the number of coincidences of the

mation is a necessary condition to achievédebbian two of them, is zero (see Section 9):

learning in pattern associator models (McClelland et al., oL

1986). It seems that the brain utilizes this kind of n(ANB)=0

hebbian learning instead of complicated neural network .
In other words, two patterns are orthogonal if the prob-

algorithms. bility of thei incid . Al th
Events in the brain occur by means of impulse rates, abriity ot their coincidence 1S zero. € neuroys

making the use of statistics in the present research seenl” Te Irletlculallr Igyerbcould betkc: onS|de_retd orthogonilt_or
convenient. But if orthogonalization is considered mutually exclusive because there exisis a competiive

inside statistics it is necessary to redefine some importantInhlbltlon between them (wh_en one neuron fires the
statistical notions, so that statistics can be seen as aothers _do not). Orthogonality in  reticular neurons
branch of euclidean algebra. This topic is treated at the mterapnons allqws these neurons to be considered as
end of the paper to provide the reader with a general axes in a.coordlnate system._ . ' )
background without diving into abstract mathematics. According to these ideas, inpbiis defined as:

Several results from that section will be utilized in the
course of the paper. _
On the basis of that section, nervous information In this patternb, all the components are mutually
will be treated as statistical events. For example, if exclusive and define a partition of the whole space.
the input layer is a matrix ofn neurons, any of the™ Every factork; is a flag that exhibits the partial contribu-

subsets that could be accomplished with th@eurons tion of the reticular activatiog;, to the patterr; in other
will be considered an event. Every input would be words, k; =P(b/y;). It is also possible to compute the
related to the others in an auto-associative manner, asprobability of patternb performing its scalar product

b= ki1 + koY + ... + KoV
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FIGURE 9. This figure illustrates the Gram—Schmidt (G—S) pro-
cess of axis generation. Only active connections are shown. (a.1)
Pattern b, is presented. Reticular neuron  y; is selected through
a competitive process of inhibitory neurons. Connections
between thalamocortical ( t) and reticular neurons ( y) are rein-
forced. The first iteration of G-S is computed: P(y1)=P(by).
(a.2) Feedback connections are trained using a process that is
similar to a delta rule. (b.1) The second pattern b, is input.
Candidate reticular neurons are selected. (b.2) Reinforced feed-
back connections of y; inhibit inputs B2 and b3. The remaining
inputs activate y,. The probability of y, is calculated as follows:
P(y,) = P(by) — P(by/y1)P(y1), which is the second iteration of
G-S. The activity of y; decreases because the activity of inputs
also diminishes. This situation prepares y1 to start firing in a
burst mode if an excitation arrives from the paralaminar nucleus.

(b.3) A little later, y, also diminishes its activity. (b.4) y; and y,
commence firing in a burst mode due to an excitation from the
paralaminar nucleus.

by the normalized diagonal vectBt(see Section 9):
P(B)=nBNT)

through which the usual expression of a vector in terms
of its components is obtained:

P(b) = P(b/¥1)P(3) + P(02)P(¥2) + ... + P(b/Yn)P(Tr)
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4. HOW IDEALS ARE OBTAINED FROM
INPUT PATTERNS

According to the author's hypothesis, every new
pattern that arrives at the thalamus determines, in part,
the processing of subsequent patterns, and, conversely,
is processed according to the organization defined by
previous patterns. Similarly, in the Gram-Schmidt
orthogonalization process, the first pattern will define
the first axis of a coordinate system, with successive
patterns helping to find the orthogonal basis over which
all the vectors of a certain euclidean space can be
defined.

If the generic scalar product in the Gram—-Schmidt
equation is substituted by the previously defined scalar
product, then the next version of Gram-Schmidt is
obtained (see Section 9):

-
-

y1=b;

r
Ver1=b 11— > PO 15
i=1

Calculating the probabilities of the obtained axes, the
result is:

P(y1) = P(by)

P@r 1) =P 1) - Zl P(b; 1+ 1/5)P)

Orthogonalization allows all the input patterns to be

represented in a coordinate system. During the ortho-
gonalization process thal-cor neurons and RE neurons
hypothetically discharge in the tonic mode. This is

corroborated by the fact that the presentation of
new information is normally done in the awakened

state in which the tonic mode is also more frequently

detected.

In the orthogonalization process, thalamocortical
neurons serve as inputs and reticular neurons serve as
the axes over which the information is projected. For
the sake of simplicity, Figure 9 depicts only the connec-
tion between these two types of neurons.

In this very simple example, an analysis is performed
of the computation produced when the first two patterns
are input. In the first pattern, (Figure 9a.1 and 9a.2), the
first three thalamic neurons, t, and t; are activated
with a certain probability that is considered to be the
same in all of them. The second pattern presentation
(Figure 9b.1) corresponds to the det that, in this
example, is characterized by the activation of thalamic
neuronst,, ts;, t; and ts. Inhibitory connections from
reticular neurons are not modifiable but behave as if
they were, according to the description of the glomerulus
given in Section 2.3. The weight in the glomerulus is
calculated as the probability of an input neutmbeing
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conditioned by a reticular neuron P(bly), so that the consequently, having no active inpuis, decreases its
inhibition by y over the thalamic neurons R(b/y)P(y), activation, as occurred previously in the case/pf{see
as was discussed in Section 2.3. the upper part of Figure 9b.2). The sudden drop in input
When the first patter, is presented, Figure 9a.1, a signals, toy; and subsequently tg,, inactivates them
certain reticular neuron, in the competitive reticular  gradually (Figure 9b.3), and the reticular neuron
neuron layer wins the competition to represent the prepares to start firing in a bursting mode after a slight
input. During presentation, the conditional probabilities depolarization arriving from the paralaminar nucleus
P(y1/t;) for each of the relay neurortg are reinforced. (the paralaminar neurons seem to burst when, being
After reinforcement, every timé, is presented it will inhibited by reticular neurons, they receive excitation
generate the activation of;, such thatP(y;) = P(b,), from 40 Hz intralaminar neurons, filtering in this
which is the first iteration in the Gram—Schmidt algo- manner the activity of the latter according to the state
rithm. The weights of the inhibitory backward projec- inside the thalamus). Although thalamocortical neurons
tions P(b ;) are also reinforcedu(being each of the  should also be in the burst mode, brain stem reticular
input units of the input patteﬂo]) (Figure a.2),and finally ~ formation, through its cholinergic inputs, prevents
the thalamic neurons are silenced. thalamocortical neurons from bursting (McCormick &
When the second input patteily, Figure 9b.1, is Prince, 1987a, b). On the contrary, these same
presented, thalamic neurobsandts, that were active  cholinergic inputs facilitate the bursting mode in reticu-
during b, presentation, project towards through the lar neurons. After depolarization, the bursting mode
previously reinforced synapses. Subsequently, the rein-commences earlier and with a stronger frequency in
forced backward inhibition will cause, andt; to rest, those neurons that were inactivated earlier or which
Figure 9b.2. had been further inactivated. In this case, in whjgh
During the presentation of the second pattéJp and y, suffer a similar inactivationy,; changes into
another reticular neuroy, wins the competition inside  burst mode first because it was the first to be inactivated,
the RNT. It could be argued that the previously selected Figure 9b.4. This bursting mode in reticular neurons
reticular neurony,, should win the competition to repre-  represents the beginning of a new process for binding
sent the second input pattern because of the previouslythe different inputs and features that characterize a
reinforced forward connections. However, reticular certain input pattern. This binding ensures that a certain
neurons possess threshold accommodation, a uniquepattern will be remembered as a whole, with inner
property among thalamic neurons (Mulle et al., 1986, coherence between the different constituent ideals and
p. 2140). In that paper it is shown thainic firing is between the inputs that constitute every ideal. This
always associated with a marked increase of the spike topic will be discussed in Section 5. However, it is still
threshold as is demonstrated in an experiment in which necessary to remark further on the process explained
the first spike was fired at-50 mV while the tenth above.
spike reached threshold at38 mV. This means that a Once the selection of axes is achieved in a competitive
continuously increasing input voltage is required for neural network-like manner, the process of correlating
maintaining the spiking rate of reticular neurons. In the inputs and outputs is a typical example of a hebbian
present case (during the presentation of the second inputdelta rule (a good review of this work can be found in
patternb,), y; diminishes its firing rate because inptds McClelland & Rumelhart, 1988, pp. 84—95) in which
and tz go rapidly to rest. If the slope of the net input the input patterns are coded in the reticular neuron layer
activation overy, is bigger than that ovey,, y, wins and the target patterns are those input to the thalamus.
the competition in the reticular layer. The probability According to the delta rule, the weights in the network
of reticular neurory, being agtlvated5 which corresponds are proportional to the correlation between the inputs
to the activation of inputs, andb,, is calculated as  and a certain error computed in the output neurons.
the prppablhg‘g’ of patternb, after the inhibition of This error is equal to the difference between the target

inputsb, andb, from y: pattern and the actual network output. In the thalamus,
this error is computed by thalamocortical neurons. In
P(Y,) = P(b,) — P(b,/y,)P(Y1) them the pattern of inhibitions by the reticular neurons

over thalamocortical neurons corresponds to the output
which is the second iteration of the Gram— in the delta learning rule, while inputs from senses to
Schm|d5 equation. Inhibitory connectlon§>(b2/y2) the thalamus correspond to the target pattern. According
and P(b,/y,) from y, over t, and t; would also be to the delta rule, when the input patterns used in training
reinforced if there were no inhibition by; (activated are independent, the correct association with the target
by by, and bys) over y,, which counterbalances this patterns is obtained, thereby avoiding contamination
tendency. between the desired output and the output to other
y2 now starts firing, and, as a result, the backward learned input patterns. In the present case, during the
inhibitory connections to the thalamus are reinforced. presentation of patterh;, vector (1,0) that corresponds
This inhibition caused, and ts to be at rest again; to reticular neurory; activation was obtained. During



Plato’s Theory of Ideas Revisited

the presentation cﬁ')z, reticular neurony,; andy, were
sequentially activated, giving rise to vector (1,1). Both
vectors (1,0) and (1,1) constitute an independent

input set. During each learning pattern presentation a

new axis is obtained, but former axes are also recalled,

giving rise to a new independent vector. These vectors

are associated with each target pattb[rthrough the

delta rule. Moreover, when a testing pattern in RNT
is a linear combination of the independent vectors
obtained during learning, the same linear combination

(in this case between the outputs) explains the output

to the testing pattern. A certain independent vector in
the reticular nucleus of the thalamus codifies a linear
combination of the different features of an incoming
pattern. Each component of this combination is stored,
as will be explained in Section 5, in the connections from
pyramidal neurons to reticular neurons.

5. BINDING

Input patterns to the thalamus are split into characteristic
features or ideals, each one associated through a delta
rule with an independent vector in the RNT. One pre-
condition to preserve the identity of each pattern is to
bind the activation of different neurons inside a certain
feature and to bind the different features inside a
pattern. Pyramidal neurons in the inferior temporal
cortex provide an example of this type of binding.

Lesions in this region produce prosopagnosia, in which

patients are able to identify the parts of a face and even
specific emotions expressed on it, but are incapable

of identifying a person’s identity. Identity can be
defined as the concurrent activation of certain inputs
and ideals at a specific instant. The concurrent acti-
vation of two input neuron®; andb, or in general of
two parts of an image, can be measuredDGlszn bl)
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Section 9):

n
Z P(by N by)

P(bynby) _
P(by) P(b,)

The computation of this algorithm inside the thalamus
will now be described using Figure 10. For this purpose,
the explanation will first describe the learning process
(having all the inputs) followed by the test process
in which omitted inputs will be obtained through the
presentation of the remaining inputs.

Figure 10 does not aim to be completely exhaustive
but rather to facilitate the reader's understanding.
Near some thalamic synapses the value of their weight
is written, while the equation near the spine corresponds
to the value of the projection of an incoming input over
a certain axis.

P(by/by) =

5.1. Learning Process

Incoming information promotes the activation of certain
Seticular neurons that constitute the axes over which the
information is going to be projected. During activation,
these axes inhibit thalamocortical neurons, completely
counterbalancing their excitation through a sculpturing
process explained in Section 4. For example, the prob-
ability of the excitation ovet; from inputb, in Figure 10

is exactly equal to the probability of the inhibition from
y1 andyy:

P(by) = P(b1/y1)P() + P(B1/5,)P(V2)

which is the theorem of total probability. After this
inhibition, thalamocortical neurons return to the resting
level.

Reticular neurons are awakened through the Gram—

In this section it will be suggested that a pyramidal Schmidt orthogonalization process. When all the selected
neuron can produce this computation, firing according reticular neurons simultaneously receive excitation from
to a certain combination of ideals which constitute the paralaminar neurons, the first inactivated is the first to
identity of a pattern. change its tonic firing mode into burst firing (Llinas &
Binding any two inputsb; and b, also means that Jahnsen, 1982). The remaining reticular neurons will
the conditional probabilitie®(b;/b,) or P(b,/b;) could produce burst firing in the order in which they were
be computed and stored in memory. In general, every inactivated. In the present case of two reticular neurons,
input can share different ideals or, in other words, Y; fires first (instant 4 in Figure 10), inhibiting deeply
different ideals can be partially represented by a certain and abruptly all the thalamocortical neurons that, as we
input. The only way by which the above computation concluded, were at a resting level. This deep inhibition
can be accomplished is by projecting every pattern is necessary to counterbalance projections from the
over the orthogonal axes previously found. The general brain-stem reticular formation that try to keep thalamo-
expression for a conditional probability is: cortical neurons in the tonic mode. In this situation of
deep hyperpolarization, if an input volley arrives tto
andt,, they start bursting (instant 5). The burststin
andt, are then conditioned by the burstyn (see also
Section 2.4.1 and Figure 3b). Burstgtirandt, due toy,
correspond, respectively, to the projectionsefindb,

P(b, N by)
P(by)

And, expressing every projection bf over they; axes
P(b )y, in the more compactbjl, the conditional overy,, by, andb,, (Figure 10, top). Therefore burst,
probablllty expression of the two evenlts and b in (which occurs with probability(b;,)) and bursb,, pass
terms of theirn orthogonal components is derived (see beside spinep; andp,, respectively (instant 6), without

P(by/by) =
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LEARNING PROCESS|  axes selection projection]| |projection || =
bl and b2 as inputs yl and y2 over y2 " |over y1 I Binding
01 2 314 5 6 78 9 19liL 12
At instant: —

receives excitation/
inhibition from:

with synaptic
input value

figure:

in tonic/bursting
mode

this mode is_

ue to a previous E E E il 1. — =|1 i1 —|= —
excitation/inhub. ___ ¥ oo od ) . AN .
with a value:) Il N Ny Ny g E
Comments: 1. — 2._‘ 3[ _,";l’ 4. = - = -
TESTING PROCESS axes selection projection || projection | Bindin - - : :
only bl as input yl and ?12 over y2  "!lover vyl ' 8 V, : P(b) V,: P(by) ) )
At instant: ¥ B N N V, : P(b 1 3)P(Y) Vs Py 7 3)PG)
I T W e V, i Py 15)PGY)  Vy: Plby 13,)P(3)
the neuron f ah » o1oa Vs @ P(by 1) P(3) + P(by 1 3,)P(¥,) = P(by)
.................... fe fe P L Vi P(b 15)PGG)+P(b 15)P( )= P(b )
receives excitation/ § , | y 2| ¢ 7 211 22 2 2
inhibition from: R e ! Vg1 Plby N by)) Vo : P(by, M byy)
Vi : P(by  by) = Pl(byy N by )+ (byy N by
Comments:

with synaptic
input value

1/ Although thalamic neurons are firing over pyramidal
neurons, we assume that tonic firing frequency is not
strong enough to excite them.

2/ In this moment the probability of the inhibition over
t; dueto y; and y,, equates the probability of the

according to

f%(;l.r.e.:..n..-.a ...... ;..;;-....-.-.-......l; ......... N . excitation from bl.
andit will produce [y %y 5 [f - -
R TR ) 1 1 Not: No t “No : . . -
excitation/inhibition a y D2a Yoy 14 yet yet e yetf T 3/ Although pararalaminar thalamic neurons fire over
JOVEL e} T DI Y L i S yj and y, the neuron that has been inhibited more will
in t(zinicfbursting T ¥ T B|B B — —|{B B— |B — produce a burst firing in first place. (Jahnsen,1984)
modae
-(il-n-s- mode -15- ------------------------------------------------- - ------------- 4/ The course of the bearer wave produced by the 40Hz
duetoa g?n‘gptl)l's' EE E  —=|I 1 — =1 :bF —| — neuron in the tuft is depicted above.
excitation/mubitiony ___Zo . . GNEE  -ae - Ra
v v 5/ Although there is no input from b, , the net valueis

with a value:) N = . D B e e as if it were, because the weight in pl is:
----------------------------------------------------------------------------- P(byy n By)/ P(b11)  and multiplying the weight
c : , s : by the input the result is P(by, 0 by

omments: = 30— = 5.1 6. [~

6/ Analogous reason as 6.

FIGURE 10. This figure explains the process of selection of ‘ideals’ (axes) and the binding process of two inputs. These tables are
intended to be read column by column from instant 1 to 12. Every column is designed to form a sentence: the first column will say “At

instant O the neurons t; and t, that receive excitation/inhibition [in this case excitation] from b, and b, and a net input Vo, V; respec-
tively...”. Dashes must be skipped when reading. Other abbreviations: f.e. = for example; res. = respectively. Data that is squared in both
tables must be compared carefully to understand the difference between the learning and the testing process.
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producing any effect, as explained in Figure 7a and ,
Figure 4e; but, when arriving at spinpsandp, (instant

7), their simultaneous coincidence (their intersection)
boosts the 40 Hz response that has travelled up to this
point through the dendritic shaft (see also Figure 7b). At
this moment burstsh,, and b,, also reinforce the
synapses in the spine (the tonic mode firing of the thala-
mocortical neuron was not strong enough to allow rein-
forcement during the previous process of axis selection
as seen in Figure 4b). While the consequences of the
burst ofy, reticular neuron evolve, the burst modeyof
produces its first barrage, inhibiting strongly the same
thalamocortical neurons andt, (instant 8) and thereby
producing the projections df; andb, over axisy, (that

are led through the path depicted as broken lines in the
figure). These projections correspond to the second pair
of travelling burstd;; andb,,. The intersection of these
two bursts, when arriving at spings and p,, boosts

the same bearer wave that was previously boosted by
the intersection ob;, andb,, (see also Figure 7c). The T (O retieatar O Thalcor. i Pyramidal
bearer wave then conveys the information of the sum of o o -
the intersection of projections ovgg andy,. This sum Cwes: Eftoncfing - L] svongy inbiied 8 purs g

defines the intersections of the inplhtﬁand b2: FIGURE 11. The second barrage of the burst in reticular cells
. . . . . . seems to play a specific role in the reinforcement of backward
P(él) =P(b; N by) =P[(b11 N byy) + (b2 N by)] connections from the cortex. (a) Bursts of  y; hyperpolarize t,

o . ] ) and t;, creating in them the conditions for burst firing that
The concurrent activation of both inputs is what defines commences after an excitation from the paralaminar nucleus.

the identity of the input pattern as a whole. This means (b) y also facilitates the burst mode in  t, and ts. (c) Corticotha-
that a pyramldal neuron onIy responds to a certain com- lamic connections are reinforced, silencing incoming inputs.
bination of inputs, firing concurrently each of them with (@ Weights from pyramidal to thal-cor are calculated as

" . .. R P(b3*/a) and from pyramidal to local circuit cell I, as P(b3;/b").
a specific probability. The activity of each pyramidal
neuron expresses the inner coherence that defines a _ .
certain input pattern, as would a signature. The activation P(by;) = P(b/y,)P(y,) is multiplied by the weight
of the pyramidal neuron represents the input pattern P(b;; N b,)/P(by;) (that was computed in the_ spine
itself, or the coherent characteristics that define it, during the learning process) the resultRé;; N b,,),
without considering other circumstantial details. For as if the other inpub,; had just arrived at sping;. In
example, in the identification of a face neither the length the case of spinp,, the result |sP(b12 N b22) as if there
of the hair nor the type of ear rings or the luminosity were a stimulus in spinp,. These two fictitious inter-
will be taken into consideration. In this sense, the output sections produce, however, the firing of the pyramidal
of the pyramidal neuron can be understood as a transfor-neuron that encodes the intersection of ingytandb,:
mation of the input pattern through a coherence function L. _ . _ .
over patterrb that will be in the notatiorb*: P(3;) = P(b; N by) = P[(by1 N byy) + (b2 N byy)]

a=b This result is the same as that of applying a certain con-

ditional probability P(b2/b1) over the input patterrin1

which occurs with probabilityP(b,)) so that
5.2. Testing Process P (b))

n
During the testing process onby is presented. Ab; is P(Bl)P(bzlbl) = Z P(BZi Nby) =P(b, N by)
considered to share axgs andy,, both are alternately i=1
activated. Whery; andy, burst over thalamocortica, In this way the expression of a conditional probability
burst firing does not result sind¢gis without the excita-  is identified in the computation between thalamus and
tory input that is necessary to deactivateand start  cortex, which was the purpose of this section.
bursting. Only the projections of the unique inpu When the probability of pyramidal neuran is multi-

overy, andyy, by and by, respectively, approach the plied by the weight between thalamocortical neutgn
spines sequentially. When arriving at the spines, and and pyramidal neurora;, which is P(b,/3;)=1, the
multiplied by the weights, they produce the same result result is the excitation ovesp:

as ifby, andb,; had also arrived at the spines. In the case I . - o

of spineps, if the probability of the input to the spine P(8)-P(b2/81) = P(8) = P(by N by)
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This is the same result as_that of mult|ply||1ng by a
conditioned probablht)P(bz/bl) stored in the network.
In this case, the pattenuh is reconstructed, but only to
the extent of spiking with a probabﬂn&(bl N b2) which
is not the original probablllt)F’(bz) However, this prob-
ability defines the contribution df, to the identification
of the input pattern.

Pyramidal neurom, also fires in a burst mode over
and y,. When doing this, the conditional probabilities
P(y./a;) and P(y,/a;) are stored in its synapses. These
probabilities represent the extent to which a certain
feature or ideal contributes to the identification of an
input pattern. As mentioned at the end of Section 4,
one of the characteristics of a neural network trained
through a delta rule is that it is possible to obtain an
output pattern that is a blend of several features, each
of which is associated with an orthogonal input, if this
same blend of orthogonal inputs is introduced to the net-
work. In this case the orthogonal inpytsare combined
as follows:

b= P(B*/yl)yl + P(B*/Y/z)yz

This combination of activations of reticular neurons
produces an output pattern of inhibitions over thalamo-

cortical neurons (through the weights stored during Pattern 1
the Gram-Schmidt proces®(bj/y;)) that reproduces Pattern 2

pattern b. Therefore the sculptunng inhibition of  cuRe 12 () Two pyramidal neurons  a; and a, each one

reticular neurons over thalamocortical ones is_accom- representing a certain coherent input pattern, are related by

plished through an ideal image of the input pattbrn means of a third pyramidal neuron  a,. The reverberant activity
Some remarks on the adjustment of backward connec- of the two pyramidal neuron layers in the figure ensures the

tions from pyramldal neurons to thalamic neurons are maintenance of corticothalamic projections that complete
(lined areas) partial input patterns (arrows). These loops of rever-

still necessary. For this purpose the example glven in berant activity tend to vanish because pyramidal neurons recall
Section 4 will be continued. In the upper part of surounding basket neurons that inhibit them. This fading is
Figure 11c, the typical response of a reticular neuron to counterbalanced if pyramidal neurons of higher layers are
an input consisting of a depolarization, a hyperpolari- recruited (b) so that these loops become wider. Connections
zation and another depolarization is shown. The responseP®Ween lavers are the same as between the neurons depicted
in Figure 6a. their activity being regulated by the same rules of
to a slight excitation after hyperpolarization is composed sequentiality. Higher layer neurons are able to participate in
of a burst with a rebound around 40 ms later. While several reverberant loops (comprising lower layer neurons),
the first reticular burst produces the hyperpolarization correlating them. The highest layer neurons cannot be correlated
of thalamic neurons so that the pl’OjeCtIOI’IS of the mput by upper neurons but form a large loop that is hypothesized to
patterns over the reticular axgs andy, can be trans- ~ Pe the hippocampal formation.
ferred to the cortex (Figure 1la and 11b), the second
burst seems to play a special role over the reinforcement
of the connections from the pyramidal neuron to the €quals that from the stimulds -
reticular and thalamocortical neurons (Figure 11c). It N =2 .
seems as if the rebound waited until( tr?e pyram)idal P(b2 ):P(b2/y1)P(y1)—|—P(b2/)72)P(y2)
neuron sent its message back to the thalamus so thaDepending on the strength of this inhibition ougr a
both stimuli could be related through hebbian rein- proportional bursting frequency is produced whithin
forcement. The process of this reinforcement is the it. For example, the postsynaptic bursttinwith prob-
following: the bursting reticular neurow; inhibiting ability P(b5,), combined with a presynaptic burst from
cell 1, (Figure 11d) allows forl, %o inhibit thalamo- pyramidal neuron & W|t£1 frequency P(b"), produces
cortical cellt with a probabilityP(b,/y,)-P(y,) (see also the synaptic weightP(b, /o ) in their synapse. The
Figure 2). If the influence of all the inhibitions over the synaptic weight betweem and |, is P(byi/b ). This
thalamocortical neuron (in the example frgmandy.,) is second type of connection ensures that when there is
computed, then the probability of the whole inhibition no inhibition overt, from reticular neurons, the same
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inhibition is produced ovet, to allow it to enter into the 7. EXPERIMENTAL RESULTS
bursting mode, in this case promoted by a pygamidal
neuron (the reticular inhibition is absent ougrif b, is

not present). Another interesting effect is that when the
thalamocortical loop is reinforced, pyramidal neurons
mute sensorial inputs hypothetically throuth(Sillito

et al., 1993); see Figure 11c, in which the input arrows
are omitted.

A simplified version of the model described above has
been implemented in a computer program. It comprises
thirty modules with a thalamocortical, a reticular, a

pyramidal and a basket neuron in each module. A two
hemispheres version with callosal neurons connecting
both of them was also accomplished. The following

conclusions should be noted.

1. The model learns non-orthogonal patterns.

2. Eliminating or modifying connections confirms the
previously described properties of different kind of
neurons.

In Section 5 was proposed a mechanism by which 3. After learning, when inputs are omitted and the

pyramidal neurons that represent a certain coherent neurons’ threshold is decreased, the model continues

pattern can reconstruct a partial one by means of the its inner dynamic mixing of previously learned
feedback stimulation of thalamocortical neurons. It was  patterns in a continuous way.

also explained that pyramidal neurons can mute sensorial

inputs so that, transiently, the input to the thalamus

would beb* (from cortex) instead ob (from senses).
Figure 12a shows that two pyramidal neur@sand The hypothesis of thalamus and cortex computation just
ay, each of which represents a certain unitary content presented allows incoming patterns to be considered as
or identity, can also be related through a third vectors that are unequivocally characterized by their
pyramidal neurora, if both contents are simultaneous. projections over a coordinate system. The axes in this

In the example, pyramidal neurores and a; were basis (the ‘ideals’ in Plato’s theory) are represented by

recalled, respectively, by a fragmented presentation of the firing in each reticular thalamic neuron. These ideals

two patterns depicted as continuous and dotted arrowsare extracted from input patterns through a Gram-—
respectively. The activation of pyramidal neur@asand Schmidt orthogonalization process that is accomplished

a; complete the patterns 1 and 2 over thalamocortical in the thalamus. The association between an active

neurons, muting actual inputs. At the same time, the reticular neuron and the feature or ideal that it defines

6. TRANSIENT MEMORIES MAINTAINED
THROUGH THE ACTIVATION OF
CORTICAL LOOPS

8. DISCUSSION

concurrent activation ofi; and a;r over a, reinforces is achieved through a delta-rule-like process in which
synapses ina,, as explained in Section 2.4.3 and dendritic glomeruli have a special role. Binding the
Figure 4c. Reciprocally pyramidal neuroa,, firing different ideals that are present in a certain input pattern

over the previously activated; and ay, activates the  is achieved in pyramidal neurons. Since Gram—-Schmidt
backward path. If only the inputs represented by the con- selection of axes is an iterative process accomplished
tinuous arrows were present, both input patterns would over time, the exact temporal sequence of axes or ideals
be reconstructed, because only one inputproduces for a determined pattern is crucial, and this sequence
the same response as if both inputs were present (seés stored like a certain sequence of inputs in layer IV
Section 5.2). These reconstructed patterns would bepyramidal apical dendrites.
only evanescent images if the inputs completely dis- This process also allows the binding of the input
appeared. However, these memories are maintainedneurons that give rise to a certain ideal, and of the differ-
active in the reinforced loop of pyramidal neurons ent parts of an input pattern. When a certain pyramidal
whena; anday produce the shot dadi, and this neuron  neuron shoots, it produces an ideal image of the input
fires again ovea; anda,. Despite this, these reverberant pattern over thalamocortical neurons. If only a part of
loops tend to desappear because of basket cell inhibitionthe input pattern is presented, it is fully reconstructed
unless pyramidal neurons recruit higher level neurons through the projections from pyramidal to thalamic
(Figure 12b). neurons. The firing of pyramidal neurons also represents
In this latter case neuramy is recruited and is involved  a measure of the coherence of a certain pattern. Several
in a circuit in which the three layers of neurons fire in a coherent patterns represented by different pyramidal
cycle. This cycle is the same as that previously shown neurons are related through the activation of pyra-
in Figure 6a. The activity of pyramidal neura not midal neurons of higher layers. Cycling loops of neurons
only contributes to the maintainance of this loop but in different cortical layers maintains the integrity of
also to the engagement of other loops. The pyramidal memories, and higher layer neurons engage lower
neurons of higher layers engage wider loops. It is layer cycling loops. Hypothetically, the hippocampus
assumed here that the hippocampus is hypothetically would engage the activity of pyramidal neurons in the
capable of coordinating inside other loop the activity of highest layers, giving a unified representation of current
neurons in the highest layer. sensorial events.
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9. MATHEMATICAL FOUNDATIONS probability

This section is devoted to reviewing the mathematical 4
background of the model. Each of thé 2ubsets that Z [P(B/y' }
can be formed with theninput neurons defines a certain B .
pattern. Patterns can be represented as elements of &8t us define a diagonal vector = (Y, Y20 - Yn)-
linear n-dimensional space that will be referred toygs ~ Pividing i by the sum norm i _”(' n ')_”(yl)+
with addition and multiplication defined in the usual N(¥2)+, ... n(¥n), a normalised vectdr is obtained:
way. In this linear space of patteriYs a factork multi- R
plied by a certain patterpindicates the extent to which I =
this pattern collaborates in the identification of another _
patternb (b=ky+...). In Y, a negative pattern is that The probability of evenB in terms of its components
which, when added to its opposite, annihilates it (excita- can be defined as the scalar prodB@B) =n(BN1):
tion and inhibition are an example in neural systems). n
Taking this into accounty accomplishes all the proper- PB)=nBn= > [p(B/ ) M
ties that define a linear or euclidean space. i=1

In Y an inner produc(A B) can be defined as:

_IU —_

n(y;)

P(B/Y/|) n()71) + n(yz) =+, ... n(yn):|

n(A N B)

which represents how many times the coincidence of 4
two patterns takes place. This inner product shares the Z [P(B/y,)P(y, }

properties of every inner product:
making it possible to apply the probability as if it were a

1 Commutatlven(A n B) = ”(B n A) linear operator over pattefd and itsy; components:

2. Distributive: n(An (B+ C)) = n(An B) + n(An C) . .

3. Associative: n(An kB) kn(An B) (for k < O this 2y 2o\ ey | 5\ pre.
scalar product is a measure of opposition rather than P(B)=P i; P(B/y,) o) ) = i; P(B/y,) POI)

coincidence); . . _
4. Positivity: n(AN A) = 0. The above expression helps to clarify the meaning of

the components in the euclidean spateEvery factor
This scalar product makes it possible to define ortho- ¢an pe understood as a conditional probability: it shows
gonality between two patterns as: the probability of B’ having the additional information
- = of ‘y;’. This is consistent with our previous interpretation
n(ANB)=0 . .
of a factor that is multiplied by a pattern as a measure
Y becomes @uclidean spacdecause it possesses the Of the extent to which a certain pattef, collaborates
above inner product. In a generic euclidean space, aor prejudices (if the factor were negative) in the identi-
vector B is written in terms of its projections over an fication of another one (in this ca&).

orthogonal basis as follows: It was suggested that the thalamic model orthogona-
- lizes the afferent information. A basis of orthogonal pat-
Z (B, ¥ ternsy; can be obtained from other non-orthogonal ones
— (i, y,) by substituting in the Gram-Schmidt equation the

o o previously defined inner product for the generic inner
Substituting the new scalar produm;An B) in the above products:

expression yields

y1=b
B i (Bny,) _
SIECalN PR ol CRSTAI 0N
" & n@iny)

As all axesy; are orthogonal they can be considered
as mutally exclusive events from a statistical point
of view because(y, Ny;) =0= P(y;NYy;) =0, Vi #].

It can also be considered that the sum of the prob- B
abilities of all the axes itYis equal to 1, thereby defining P(y,) =P(b,)
a partition of the sample space.

Taking this into account, the above expression of . r .
a pattern B in terms of its components can be P +1) =P(br 1) — Z P(br 1 1/¥:)P()
rewritten as shown below, taking into account that the =1
part within brackets is equivalent to a conditional It is also possible to calculate the intersection of two

The probability of each axis is obtained by applying
the above new definition of probability over each
member of the Gram—Schmidt equations:
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patternsBl and 52 by substituting for each of them the A useful expression of the conditional probability of a
sum of their projections over the previously obtained certain patterrb, due to another onb, is also derived

orthogonal axes: from those above:
n n
b by = D [POS)S] N Y. PG| 5 Y Ry by
= j=1 P(B/B)_P(blnbz)_i=l S
Whenb, andb, are projected over a generic asthe 2R p(Bl) N p(Bl)

resulting projection$,; andb,; can be expressed as:

by = P(by/%:) Vi

> = . REFERENCES
bai = P(D2/Y:) i . .
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Abstract—Up to the present day, simulations using a neural network model have been carried out under the global
inhibition and the uncorrelated noise in order to simulate the dynamics transition of neuronal activities from the flat
(slow wave sleep) to the 1/f (dream sleep) power spectral density profile during the sleep cycle in cats. In particular, the
metastability of the network attractor is shown to be essential in generating the 1/f fluctuations. Here, the dynamics of
neuronal and network activities are analyzed under the correlated noises mimicking a cholinergic drive. Regardless
of the network structure, symmetry and asymmetry, the behavior of network activity and the escape time distributions
show that the long-lasting autocorrelation of the noise prolongs its prescence in the metastable states. These results and
the newly estimated network attractor show that the interplay between the metastability of the network attractor and the
noise statistics determines the dynamics of network activity. Our results may be able to provide the novel framework
to investigate the function of dreaming in the higher-order brain functri997 Elsevier Science Ltd.

Keywords—Correlated noise, Dream sleep, Dynamics transition, Escape tifridudfuations, Metastability, Network
attractor, Slow wave sleep.

1. INTRODUCTION eye movement sleep (REM or dream sleep), neuronal

Sleep state is one of the substantial aspects of Conscious?m'v'tIes showed slow fluctuations, and their power

. . : spectral densities (PSD) were approximately inversely
ness. Concerning the function of sleep in memory and . .
learning, much physiological and psychological data proportional to frequency in the frequency range of
9 phy 9 Py .g 0.01-1.0 Hz (simply abbreviated as 1. (ii) During
have been accumulated (e.g. Smith, 1995; Antrobus,
. . the steady state of slow wave sleep (SWS), neurons
1997). Many ideas have been proposed to elucidate the . .
. . : e demonstrated the almost flat spectral profiles in the
mechanisms underlying them (e.g. Crick and Mitchison,
same frequency range. These phenomena have been

1983). However, none of these ideas has been estab- . . . , .
. . . . found in various regions of the cat's brain, such as the
lished. It is essential to construct a model which can

provide an insight into the mechanisms of sleep and mesencephalic reticular formation (Yamamoto et al.,

. : ) : 1986), the hippocampus, the thalamus, and the cortex
enables its computational interpretation. We have made . s )
. Co . . (Mushiake et al., 1988; Kodama et al., 1989; Yamamoto
efforts following this line from the physiological and

. ) et al., 1995).
model-based points of view. . .
) Based on neurophysiological knowledge, we success-
In a cat's central nervous system, we have found the

following phenomena conceming dynamics of single fully simulated the dynamics transition using a symmetry

neuronal activities during sleep cycle. (i) During rapid neural network model including a globally applied
9 b cycle. g rap inhibitory input and a random noise. That is, the neuronal

dynamics during SWS and REM was reproduced by the
) . network model under the strong and the weak inhibitory
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Tel and Fax: +81-22-217-7178; E-mail: nakao@ecei.tohoku.ac.jp. We also showed that the variance of the noise could
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differentiate the network state behavior in the metastable evolution rule is defined as follows:

attractor. We assumed the serotonergic system as the N

physiological substrate providing the global inhibi- ut+1)= Z w; % () — h+ & (t+ 1) (1)
tion from our pharmacological experimental results j=1

(Mushiake et al., 1988; Kodama et al., 1989). More

generally, from the results of recent studies aminergic

systems such as the noradrenergic should be included X (t+1)=g(u(t+ 1)) (2)
in the substrate (McCarley et al., 1995). On the other

hand, the noise might consist of a membrane noise of a

neuron, external inputs from other neural networks, etc. 90 = 1 x=0
Our experimental results also suggest the necessity 0 x<0
of cholinergic drive for generating fl/fluctuations

(Mushiake et al., 1988). In addition, this is shown to be

possibly mediated by the muscarinic pathway rather U+ D =a&()+&M), i=1,2,..., N (4)
than the nicotinic (Yamamoto et al., 1993). Furthermore, i )
acetylcholine is released in high concentration during VNereN denotes the number of neurons contained in the
REM (Kodama et al., 1990). Therefore, the cholinergic N€WOrk, andt is a discrete timee;(t) denotes random
system which originates from the brainstem and projects noises which are assumed as mutually independent, zero-
directly/indirectly its fibers to the whole brain area could mean white gaussian noises with an identical variance
be a possible candidate of a noise source. Actually, our ¢ “(1— &”), in which a variance of autoregressive process
previous results showed how the dynamics of the net- is kept constant regardless@fh( > 0) is the inhibitory
work state evolution depends on the magnitude of the input Wh'_Ch 'S_ f_|xed herg independent of neurons for the
inhibition and the variance of a Gaussian noise (Nakao sake_ of simplicity, ana is an_autoregressn(e parameter.
et al., 1992). However, it is not yet been known whether In this case, the autocorrelation functioytk) is given by

or not those results could be applied for dynamics under
more generalized conditions. Furthermore, a possible
rationale and functional interpretations of théfluctua-

tion during dream sleep remain unsolved.

In this paper, the dynamics of neuronal activities and
network state evolution are investigated under a corre-
lated noise which is a first-order autoregressive process.
In addition, escape time distributions in metastable
states are derived for varied correlations of the noise in
order to understand the interaction between the geo-
metrical structure of network attractor and the correlated
noise. Through these studies, the temporal correlation of
noise is shown to distinctly change the network dynamics
cooperating with the metastable structure of network
attractor. So far, we have been regarding the global
inhibition and the noise variance as control variables to
induce the neuronal dynamics transition. However, they
may not be the only possibilities. Here, by showing that
diluting connections between neurons in the network
could play a similar role to them, we propose a general
possible mechanism for generating thé flictuations
during dream sleep and the white PSD during SWS.
We will discuss the neurophysiological mechanisms
underlying the dynamics transition as well as the rela-
tionship between the dynamics of neuronal activities and

®)

re(k)=o’a®, k=..., =2, =1,0,1,2,... (5)

As described in Section 1, an acetylcholine-containing
neuron, which is called a cholinergic neuron, could be
one of possible sources for this noise. Although their
state-dependent activities are heterogeneous, most
cholinergic neurons raise their activities during REM
and reduce them during SWS (Kodama et al., 1990;
Koyama and Kayama, 1995). Furthermore, a muscarinic
receptor in the cat brain is known to respond as fast as on
the order of several seconds (McCormick and Price,
1987), and facilitatory effects are exerted on most
pyramidal neurons in the hippocampus (Stewart and
Fox, 1990) and cortex (Sato et al.,, 1987; McKenna
t al., 1988), and a thalamic relay neuron (McCormick
and Price, 1987). Considering the responsiveness of a
muscarinic receptor and temporal variabilities in the
discharge pattern of cholinergic neurons during REM
(Sei et al., 1993; Koyama and Kayama, 1995), the
cholinergic input is supposed to be a band-limited
noise with a d.c. component in the frequency range
0.01-1.0 Hz, which we are interested in. Taking account
of supposition, the correlated noise is assumed to
come from various sources, such as the cholinergic/
noncholinergic input from external environment, and

dreaming. o .
an intrinsic membrane noise.
Synaptic weightsv; are defined following the case of
2. NEURAL NETWORK MODEL an associative memory:
Here, the model structure is reviewed briefly (Nakao M

1
. (m) (m) A
etal., 1990). The neural network model we used consists wi={ N Z (27 =127 —1) 1#] 6)
of fully interconnected neuron-like elements (abbre- . m=1 o
viated as “neuron”). For theith neuron, the state 0 =)



Metastable Network Models of Dream Sleep 1291

where xi(m) indicates theith neuron’s state of theth 3. SPECTRAL ANALYSIS OF NEURONAL
memorized pattern, an is the number of memorized ACTIVITIES IN NEURAL NETWORK MODEL
patterns. This possibly enables the parametric control of
the fundamental structure of the network attractor. In this
case, the symmetry condition

Typical PSD profiles of single neuronal activities in the
network model are shown in Figure 1 for varied inhibi-
tions anda values. Unless otherwise stated, the number
Wij = W (7) of neuronsN = 100 and the number of memorized
patternsM = 30. In this figure, activity of a single

In addition, the asymmetry network is subject to simu- neuron is picked up from 100. neurons included n the
lations, which can be regarded as more physiological network. The rgster plot afi(t) is shown tpgether with
than the symmetry. In the symmetry network, each 'Te correspondlnfg PﬁD’ wheref_a(c)ioF |nd|ch§tgés - L
neuron is allowed to exert its inhibitory and excitatory P;gnehcan see ort f"3| c?sean f]EIz;e.hW fllte nmsi),
synaptic effects on target neurons simultaneously. On changes its profile from the the flat as the

the other hand, in the asymmetry neural network, a per- inhibitory input increases. Here, the paramet_er values
mitted sign of synapse depends on the attribute of a ando are selected regardless of the connection type, so

neuron, i.e. excitatory or inhibitory (Dale’s rule: Gray, that most of neurons in the network show thé RSD

1987). Here, synapses of the symmetry network which profiles under the weak inhibition and the flat PSD pro-
do not obey, Dale’s rule are cut in order to obtain the files unc_zler the strong inhibition. The time sereg)
asymmetry neural network (Shinomoto, 1987). The attri- responsible for the 1/PSD shows larger and slower
bute of a neuron is assigned at random on each neuronvar'.atlons than that for the fl-at. PSD.‘ Natur_ally, the activ-
with proportionsp (excitatory) and 1— p (inhibitory). gy |s_breguced as lthele?'b'tory ||npli;$rc1)creﬁses. As
With synchronous state evolution, the constructed asym- escribed previously ( aKao et al, ) the strong
metry network was shown to preserve the same retrieving and the w_eak inhibitory inputs are rgsp0n3|ble_ for_ SWS
property of the embedded memory patterns as the origi- and REM in our framework, respectively. Qualltgtn_/ely,
nal symmetry network except for the limit cycle, which the_ PSD profiles and the tempo.ral chara_cterlstl_cs of
some initial states induce (Shinomoto, 1987). Our simu- activities are well reproduced in our simulations.

lations with asynchronous state evolution find no limit 'lI)"rt]roug.h 3|Tglat|on§ W'ltbt‘ :d 0 prt::setnted he:.e,.tan mzl'
cycles and no chaotic behavior. itory input is manipulated so that an activity under

N 0
For both types of networks, state evolution in the strong inhibition is reduced to about 10% of that

networks is performed in the asynchronous (cyclic) under th_e _weak_ in_hi_b_ition. This proportion is selected
manner (Hopfield, 1982). The memorized patterns and as .th.e_ limit of inhibition, bepause under the stronger
the initial states are given as equiprobable binary random |nh|.b|.t|on the ”“’T‘b.er of exc_ltatory states .COUId not be
sequences. Unless otherwise stated, simulations aresufﬂment to stgt@t@glly valldat'e the estimated PSD'
carried out for 11000 Monte Carlo steps (MCS), and R_egardless of inhibition Ievel_, finely fragm_entgd activ-
the initial 1000 MCS is not analyzed to exclude the ities tend to be suppressedaincreases, which is more

state sequence dependent on the initial pattern. Since,ObVIous Im tt)he strong: |nh|b|t|ondcase. Slop(_ast c()jf pths
in our case, a PSD of a state sequence is almost invarianommonty ec;qme steeper, and are asioqa f with an
against the temporal translation of the sequence, the!NCr€Ase INa. SINCE an Increase ia results in fonger

starting time of the analysis scarcely affects the resulted lasting autocorre.latlon, the ab(_)ve results can be attrl'bu-
PSD. ted to a change in the correlation structure of the noise.

The data length, 10000 MCS, is selected to estimate The neuronal activities appear to more closely follow the

PSD in the frequency band width of three decades with dynamlc_s of thg NOISE as INCreases.

sufficient statistical reliability. The PSDs of actual The simulation results for th? a§ymmetry network
neuronal activities referred here were given in the similar (M = 30,p = 0.5) are presented n F|gur<_e 2. In.contrast
frequency band width (Yamamoto et al., 1986). Further- with the symmetry, clpstgrs of activities still survive even

more, the data length of the neuronal spike train analyzed under th_e strong inhibition. However, the abov_e r_esults
was at most several hundred seconds. Comparing thisSummarlzed for the symmetry network qualitatively

actual data length with 10 000 MCS, 1MCS could corres- apply to the asymmetry network.

pond to several tens of milliseconds. This could be
regarded as a time unit during which a neuron keeps
its state active (1) or inactive (0). The neuronal state
may be determined to be responsible for the number
of spikes during this time unit. This time resolution is Up to now, we have been studying the dynamics of
presumably sufficient, considering that the firing rates of neural network models which receive the global inhibi-

actual neurons under study were at most 30—40 spikes s tion and the uncorrelated random noise (Nakao et al.,
and the concerned frequency range is lower than 1 Hz 1990), where the structural change of the network attrac-
(Yamamoto et al., 1986). tor associated with the inhibition has been investigated

is satisfied.

4. DYNAMICS OF NEURAL NETWORK IN
STATE SPACE
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FIGURE 1. Simulation results on the dynamics transition of neuronal activities in the symmetry neural network for varied « under weak
and strong inhibitions, h, where M = 30 and ¢ = 0.26. Raster plots of single activities and the corresponding PSDs for the picked-up
neuron are shown together. The upper panels (A) show the results for h =0.40 and the lower (B) for h = 0.50. In PSD, the frequency axis is

normalized by f, which denotes an arbitrary standard frequency.

through the state space analysis. We suggested that thiparameter « differentiates the pattern of network
structural change could underlie the dynamics transition activities.
of neuronal activities during sleep cycle. Therefore, the  As shown in Figure 3(A), under the weak inhibition,
metastable properties of the attractor could be a key issuethe network activity explicitly indicates that the regular
in understanding the physiological mechanism which and irregular patterns appear alternatively with varied
controls the dynamics of neuronal activities during the durations. In the regular states, several different stripe
sleep cycle. Here, we analyze how the correlation of patterns can clearly be seen. In contrast, only the irregu-
the random noise modifies the network dynamics in the lar state becomes dominant under the strong inhibition.
state space. It can be shown that these stripe patterns correspond to
For the same symmetry network in Figure 1, activities the vicinities of equilibrium states under this condition,
of all neurons (network activity) are briefly presented in while the irregular pattern corresponds to the vicinity of
Figure 3(A) under the weak inhibition, and (B) under the “0” state where all neurons are silent. Naturally,
the strong inhibition. In each figure, the autoregressive these equilibrium states except for the “0” state are
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different from those memorized by eqgn (6) due to the of x. For the networks appearing in Figure 1, reference
global inhibition. The closest reference equilibrium equilibrium states including the “0” state are reached
state to the current network state is determined every from 4000 statistically independent initial states under
MCS in terms of a direction cosine (DC). DC here repre- no noise, i.es = 0. Here, the “0” state is denoted by
sents the “agreement” between a current network state x, = [0, O,..., 0]. Sixty-three and two equilibrium
x(t) and a certain reference state which is defined by states are found for the networks in Figure 1(A) and
2x" — 1)/ (2x(t) — 1) (B), respectively; 115 and 18 for the networks in

DC= o — 1112 ik Figure 2(A) and (B), respectively. For all references,
X" — l2x(t) - the closest reference to the current state is determined
X'(t) = [X(t), Xo(t), ..., Xn(®)], X =[X1, X5, .vy Xnls step by step by comparing the magnitude of the corres-
1=[1 1. 1] ®) ponding DCs.

Under the weak inhibition, the network state is drifting
wherex’ denotes a transpose of a vectpand x a length among the vicinities of the equilibrium states. Here, the
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FIGURE 2. Simulation results on the dynamics transition of neuronal activities in the asymmetry neural network for varied « under weak
and strong inhibitions,  h, where p = 0.5, M= 30 and ¢ = 0.21. Raster plots of single activities and the corresponding PSDs for the picked-
up neuron are shown together. The upper panels show the results for h = 0.40 and the lower for h = 0.57. In PSD, the frequency axis is

normalized by f, which denotes an arbitrary standard frequency.
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A h=0.40,0=00 B h=0.50,a=0.0
9600

h=0.50,a=0.9
4 08000 8300 9600

#100-

FIGURE 3. Dynamics of network state evolution for the network shown in Figure 1. This shows the brief sequences of all neuronal
activities (network activity), where the numbers on the left end denote neuron numbers, and the number on the top indicates the number
of steps from the beginning of evolution.

equilibrium states are not absolutely stable, becausecertain period. In the irregular states, the network is
intermittent transitions among them driven by the noise possibly drifting around the vicinity of the “0” state.
are observed. In this sense, they are denoted here asVhile in the vicinity of the “0” state, each neuronal
“metastable equilibrium states” or simply metastable state is expected to be determined by an instantaneous
states following the terminology of statistical physics value of the noise rather than inputs from the other
(Amit, 1989). In spite of a constant drive by the noise, neurons. This is presumably the reason why the spatio-
the network state is trapped in metastable states for atemporal activity pattern appears random. Here, the

A h=0.40,a=00 B
+ 18090
#100.
h=0.40,0=0.5 h=0.57,a=0.5
%00, 800 : 00

ST

=
=
e

FIGURE 4. Dynamics of network state evolution for the network shown in Figure 2. This shows the brief sequences of all neuronal
activities, where the numbers on the left end denote neuron numbers, and the number on the top indicates the number of steps from the
beginning of evolution.
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“metastability” represents the structural properties of still survive even under the strong inhibition, which is
the network attractor in which such metastable equi- distinct from the symmetry case (Nakao et al., 1992).
librium states dominantly exist. Therefore, the following This is reflected on the cluster activities of a single
description is possible concerning the dynamics transi- neuron in Figure 2(B). As seen in Figure 3(B), the
tion of single neuronal activities. The globally applied large « distinctly raises the regular patterns under the
inhibitory input modifies the structure of the network stronger inhibition than the symmetry network.
attractor. In the weakly inhibited case, the metastability
of the network attractor becomes dominant so as to
realize the I/ fluctuations of single neuronal activities,
and in the strongly inhibited case, the “0” state becomes
the global attractor which underlies low and random In this section, we investigate a mechanism underlying
activities. In other words, we suggest that these behavior the behavior of the network activity controlled by the
reflect the geometrical structure of the network attractor: correlation properties of the noise. Asincreases, we
a “bumpy” structure becomes dominant but rather have observed that the irregular patterns are suppressed
monotonous under the strong inhibition. for the weakly inhibited case, and the regular patterns
For « = 0.5, one may not be able to recognize the are raised even under the strong inhibition. These obser-
difference between the behavior of the network state vations suggest that the correlation properties of the
and the above results in the case of the white Gaussiannoise could control an elapsed time during which
noise, i.e.« = 0. However, finely fragmented patterns the network state is trapped in a metastable state.
such as snow noises become suppressed ter0.9 in
both the strongly and weakly inhibited cases. For the
weakly inhibited case, more types of regular patterns
could be recognized than the case with the smatler
Similarly, in the strongly inhibited case, the distinct In order to confirm the above implication more
regular patterns are clearly raisedcagcreases. guantitatively, distribution of escape time in respective
For the same asymmetry network with= 0.5 in metastable state is obtained for variedoy a Monte-
Figure 2, the network state behavior almost resembles Carlo simulation with 10,000 trials. Here, the escape
the dynamical features observed in the symmetry casetime is defined as the time required for the network
(Figure 4). We suggested that several metastable statestate, which is initially located in a metastable

5. METASTABLE NETWORK ATTRACTOR AND
CORRELATED NOISE

5.1. Escape Time Distribution in a Metastable
Equilibrium State

A h=0.40 B h=0.50

state 0 state 0

state 29 state 1

FIGURE 5. Escape time distributions in metastable states (on the definition of an escape time, see the text). Part (A) shows the semi-
logarithmic plots of the escape time distribution in metastable states, state 0 and state 29, for the network shown in Figure 1(A), where h=
0.43 and ¢ = 0.26. Part (B) shows the semi-logarithmic plots of the escape time distribution in metastable states, state 0 and state 1 for the

network shown in Figure 1(B), where  h=0.50 and ¢ = 0.26. Here, the abscissa denotes the escape time in Monte Carlo steps, the ordinate

the value of «, and the vertical the frequency.
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equilibrium state, to first cross a boundary distant from function is a multi-dimensional function, it is difficult
the corresponding equilibrium state by 0.2 in terms of the to estimate the height of the potential wall. Here, the
DC under the correlated noise with the parameter  following computational procedure is employed to esti-
Figure 5 and Figure 6 show the escape time distributions mate the height of the potential wall between metastable
for the symmetry and the asymmetry networks, respec- states. We now show how to estimate the height of
tively. For both types of networks, an escape time is the wall between equilibrium states and s;. Firstly,
distributed in a monophasic manner peaking in the the maximum network potential is obtained during the
short range. As shown in the distributions of states 29 process approachirgto s; by flipping the different bits
and 1 in Figure 5 and those of states 8 and 1 in Figure 6, (neuronal states) one by one. Then, the potential maxima
the escape time for a metastable state (except for the “0” are collected by repeating the same procedure, changing
state) usually tends to be prolonged and associated withthe flipping order 100 times. The minimum in the set of
an increase irx, while for the “0” state a consistent the maxima is selected as an potential wall height
relationship between the distribution and the valuexof  betweens; ands;. In addition, the transition probability
could not be found; in some cases, it is rather shortened.from s; to s; is estimated by 10 runs of 10,000 MCS
This might be attributed to the peculiar landscape of network state evolutions, where the transition probability
potential energy around the "“0” state described in fori = j indicates the staying probability in stateThe
Section 5.2. Nevertheless, since the prolongation of the wall height and the transition probability are presented
escape time is commonly observed in all other meta- for the symmetry network in Figure 7. Since a network
stable states, the above results support our implication. potential function is not known for the asymmetry
network studied here, the analysis is confined to the
symmetry network. For the weakly inhibited case,
the wall heights and the transition probabilities from
Stochastic properties of network activity is roughly char- the “0” state and state 29 to all other metastable states
acterized by staying probability in a metastable state as are presented. Note that the wall heights in the objective
well as transition probability from one metastable state to states are “0”. Characteristically, there are high poten-
the other, where a higher-order Markovian nature is tial walls between the “0” state and any other meta-
assumed to be negligible. Both probabilities possibly stable states. In contrast, there are several low walls
reflect the height of the potential wall between meta- around state 29, e.g. to states 4, 26 and 55. This structural
stable states. However, since the network potential property of the network potential around state 29 is

5.2. Potential Walls Surrounding Metastable States

A h=0.40 B h=0.57

state 0 state 0

state 8 state 1

FIGURE 6. Escape-time distributions in metastable states. Part (A) shows the semi-logarithmic plots of the escape time distribution in
metastable states, state 0 and state 8, for the network shown in Figure 2(A), where h = 0.40 and ¢ = 0.21. Part (B) shows the semi-
logarithmic plots of the escape time distribution in metastable states, state 0 and state 1 for the network shown in Figure 2(B), where h=
0.57 and ¢ = 0.21. Here, the abscissa denotes the escape time in Monte Carlo steps, the ordinate the value of «, and the vertical the
frequency.
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FIGURE 7. Estimated height of network potential walls between metastable states and the transition probability (for the procedure on
estimating the potential wall height, see the text). (A) Height of network potential walls around the “0” state and the transition probability
from the “0” state. (B) Height of network potential walls around state 29 and the transition probability from the state 29. Parts (A) and (B)
for the symmetry network under the weak inhibition appeared in Figure 1(A). (C) Height of network potential walls around the “0” state
and the transition probability from the “0” state. (D) Height of network potential walls around state 1 and the transition probability from
the state 1. Parts (C) and (D) for the symmetry network under the strong inhibition appeared in Figure 1(B).
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shared by the other metastable states except for the “0” In short, the behavior of network activity in the state
state. In this sense, the potential landscape around thespace consists of stochastic transitions among metastable
0" state is special. Regarding the transition probability, equilibrium states. The stochastic features of transitions
transition from the “0” state to the other metastable are determined by the height of the potential walls
states is rare in comparison with staying, which could around metastable states and the correlation structure
be well understood from the above special potential of the noise. As far as the inhibition induced dynamics
landscape. On the other hand, the transition probability transition is concerned, the global inhibition reduces the
from state 29 is high in itself and the other metastable height of the potential walls and the number of meta-
states with low potential walls. This agreement between stable states so that a PSD of a neuronal activity changes
the height of the potential wall and the transition prob- its profile from the 1f' to the white.
ability demonstrates the validity of the procedure for
deriving the wall height. A large& is shown to make
the transition to the other states less frequently and to
increase a staying probability. Although, under the
strongly inhibited condition, a few metastable states In the previous sections, the global inhibition is shown
could only be analyzed, the results in Figure 7(C) and to change the structure of the network attractor so as to
(D) show similar features to the weakly inhibited case in induce the neuronal dynamics transition. From another
Figure 7(A) and (B). Under this condition, the potential point of view, an increase in the global inhibition and/or
wall from the “0” state to state 1 is much higher than in the noise variance implies that external inputs become
from state 1 to the “0” state, which is thought to make dominant in comparison with the inputs from the other
the staying probability close to 1. For state 1, the staying neurons interconnected (network input). Here, “exter-
probability increases and the transition decreases; as nal” means that neurons under consideration are not
moves closer to 1. involved in its dynamics. According to this context,
Escape time distribution is expected to depend on the the previously proposed mechanism for the neuronal
local landscape of network potential around an equi- dynamics transition could be reinterpreted as follows.
librium state. A symmetry neural network is known to Under the weakly inhibited condition, interaction
be a multi-dimensional discrete gradient system (see between the external inputs and the network inputs is
for example Hopfield, 1982). However, there is no prevailing, while under the strongly inhibited condition,
general theory describing the metastability of such a the external inputs dominates the network inputs.
multi-dimensional system. On the other hand, for a one- That is, the balance between the external and the
dimensional continuous gradient system with a two-well network inputs is supposed to play an essential role in
potential, escape time under a small Gaussian noiseinducing the neuronal dynamics transition. In order to
obeys an exponential distribution whose parameter realize the same situation in a different manner from
depends on the height of the potential wall between the global inhibition, we investigate how randomly
two wells (see Bulsara and Ross, 1991). That is, a stayingdiluting connections between neurons affect the structure
probability in a shallow potential well has a faster decay- of the network attractor and the metastable behavior of
ing profile than in a deep well. Although under the the network.
correlated noise, the theoretical results are derived only  Figure 8 shows briefly the network activities in the
under limited conditions even for one-dimensional state space, as the connections are diluted with varied
potential case, from some numerical experiments the ratios, where the connection is symmetiy,= 196,
escape time distribution is expected to depend on M = 59, ¢ = 0.28 andh = 0.53. The noise is a white
the local geometry of the attractor as well as the correla- Gaussian, and the values @andh are set so that most
tion structure of the noise (Moss and McClintock, 1989). of the neurons exhibit the fifluctuations. The dilution
Our result obtained for the neural network qualitatively is carried out at random and in a symmetrical manner.
coincides with those of one-dimensional system. With no dilution, the metastable behavior is clearly
These interpretations are based on the gradientshown to be similar to that in Figure 3(A) and
property of the system. As far as the asymmetry network Figure 4(A). As the dilution ratio increases, irregular
used here is concerned, it remains unclear whetherpatterns such as a snow noise become distinct in the
this network is a gradient system or not, because its network activities, where most of the neurons exhibit
Lyapunov function appears difficult to obtain (Kobuchi, flat PSDs in the frequency range less ttarfl0™™. In
1991). However, according to the basic property of the order to understand the structural change of the network
asymmetry network dynamics described in Section 2 attractor associated with the dilution, the number of equi-
and its a-dependency of the escape time distributions librium states are derived by the same procedure
similar to the symmetry one, it could be regarded as a described in Section 4. Figure 9 shows the number of
gradient system. Therefore, its behavior is expected to metastable equilibrium states as a function of the dilution
be understood, at least qualitatively, within the same ratio together with that as a function of an inhibitory
framework as the symmetry. input in the fully interconnected network. Both curves

6. NEURONAL DYNAMICS TRANSITION
INDUCED BY DILUTING CONNECTIONS



Metastable Network Models of Dream Sleep 1299

A 1000

100 o N

B 40 L 4800 B 5600

number of equilibrium states
/

T v T T

T
0 3 6 9 12 15
dilution ratio (%)

17 -

#156 -

#196 -

B 1000

C 40 4800 5600

278

100
$17

2156

#196 -

D 4000 4800 5600 10 A

+0

number of equilibrium states

239

278

o7 1 —— e —
0.520 0.530 0.540 0.550 0.560 0.570

2156 global inhibition

#196
FIGURE 9. Number of metastable equilibrium states as functions

FIGURE 8. Dynamics of network state evolution for the network of the dilution ratio (A) and the global inhibition (B). They are
whose connections are partly diluted, where ~ N=196, M=59, h= estimated for the network shown in Figure 8.

0.53 and ¢ = 0.28. The dilution ratios are (A) 3.6%, (B) 5.5%, (C)

7.6% and (D) 9.4%. This shows the brief sequences of all neuro-

nal activities (network activity), where the numbers on the left

end denote neuron numbers, and the number on the top indi-

cates the number of steps from the beginning of evolution. 7. DISCUSSION

In this paper, the neuronal activities and the network

activities in the state space have been analyzed for the
monotonically decline with an increase in the dilution symmetry as well as the asymmetry neural network
ratio or the inhibitory input. Furthermore, a similar models under a drive by the correlated noise. This
result is obtained for the other trials of random dilution. correlation represents the supposed dynamics of
Naturally, full dilution isolates each neuron, which cholinergic inputs. The noise correlation was observed
results in purely random neuronal activities elicited to suppress the finely fragmented activity so that the
only by the noise. Within the numerical range of the slope of the 1f/and the flat PSDs became steeper. This
inhibition and the dilution ratio used here, this result result indicates augmentation of frequency power in
suggests that the similar structural change is causedthe lower frequency range. In order to demonstrate
by both of the dilution and the inhibitory input, also the relationship between the network attractor and the
taking account of the network activities in Figure 8. noise statistics, the escape time distributions for
Although, of course, there are many possible ways of the metastable states have been derived for the varied
reducing effective network inputs, the balance between correlations. Our main finding is that the escape time
the external inputs and the network inputs is suggestedtends to be prolonged and associated with an increase
to be essential for inducing the neuronal dynamics in the correlation time of the noise regardless of
transition. the connection type, symmetry and asymmetry. Here
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the correlation time indicates the time during which feedback loop between serotonergic (noradrenergic)
significant autocorrelation exists. and cholinergic neurons (McCarley et al., 1995). There-
We have already suggested that the structural changefore, to be physiologically precise, the common inhibi-
of the network attractor associated with the global inhi- tory postsynaptic inputh, represents overall influences
bitory input could be the underlying mechanism for the of the “modulatory systems” (Maeda, 1995)" such as
neuronal dynamics transition we observed physiologi- the serotonergic, noradrenergic and cholinergic systems.
cally (Nakao et al., 1993, 1994). In particular, the meta- So, from the physiological point of view, our results are
stable properties of the network attractor are found to meaningful with respect to the possible function of the
play a main role for generating theffluctuations of modulatory systems being deeply involved in controlling
neuronal activities. We also found that the correlation and maintaining consciousness. In order to confirm our
properties of the noise could change the dynamics of hypothesis and to clarify the contribution of respective
the network activities, and the staying time in the meta- systems, we are planning to set up an experiment where
stable state was prolonged due to an increase in thethe relationship between extracellular concentrations
correlation time of the noise (Nakao et al., 1994). Here, of amine/acetylcholine and the dynamics of neuronal
those results have been confirmed in terms of the escapeactivities will be investigated. For this purpose, we
time distribution in each metastable state, and the meta-have developed the special technique combining a
stable structure of the network attractor has been roughly microdialysis and a unit recording (Nakamura, 1996).
visualized by estimating the wall height of the network Rapid eye movement sleep, where the single neuronal
potential energy between metastable states. In addition,activity shows the X/fluctuation, is well known as a
diluting the connections in the network has been shown dream sleep. Crick and Mitchison (1983) postulated
to modify the structure of the network attractor so that the that dream sleep functions acts to remove certain
dynamics transition of neuronal activities took place, undesirable modes of interaction in neural networks of
which was similar to that induced by the global inhibi- the cerebral cortex by nonspecific random excitation
tion. This result generalizes the conditions for generating (PGO waves), which are known to be generated in the
the 1f fluctuations and the dynamics transition of neuro- brainstem and delivered to the cerebral cortex during
nal activities. According to this result, one of the essen- dream sleep. Their idea was concurrent with the
tial factors for inducing the dynamics transition is ‘“unlearning” algorithm (Hopfield et al., 1983). How-
suggested to be the balance between the external inputever, its physiological reality has not yet been known.
such as the global inhibition and the noise, and the Concerning the relationship between thé flctuation
inputs from the other interconnected neurons, i.e. net- of a single neuronal activity and PGO waves, we have
work inputs. In other words, when the network inputs the preliminary physiological evidence suggesting that
and the external inputs are of a comparable order, thethere is no correlation between them (Yamamoto et al.,
metastability of the network attractor distinctly appears: 1993). Nevertheless, the metastable behavior of the
the 1f fluctuation of neuronal activities are shown. In network activity appears to be suitable for unlearning,
contrast, when the external inputs exceed the network because the depth of a potential well where a metastable
input, the “0” state is highly attractive: the neuronal state is located is reflected on the corresponding staying
activities exhibit the flat PSD. According to our simula- time. Appropriate unlearning could be performed by
tion results, mechanisms underlying the actual neuronal reducing synaptic weights every time the network
dynamics transition may be anticipated as follows. remains in the vicinity of a metastable state. Based on
During SWS, neurons receive stronger inhibitory inputs a physiology-based concept similar to ours, Sutton et al.
and/or less input magnitude from interconnected (1992) studied the state-dependent behavior of the
neurons in comparison with REM. In contrast, during associative sequencing asymmetry network which
REM, neurons are released from inhibitory inputs and/ memorized limit cycles (Peretto, 1992). Although the
or receives comparable input magnitude from inter- implementation of the aminergic and cholinergic effects
connected neurons with the inhibition and the noise. was different from ours, the network was assumed to
We suggest the serotonergic system as a possiblebe less excitable in the non-REM state (SWS in our
candidate responsible for the globally working inhibitory case), and more excitable and randomly perturbed in
system. This is based on our neuropharmacological REM. Therefore, from our previous and current results
results (Mushiake et al., 1988; Kodama et al., 1989). (Nakao et al., 1993; Yamamoto et al., 1995), the meta-
However, the noradrenergic system, which is known to stable property is expected to be pronounced in the
have a similar state-dependent activity to the serotoner-simulated REM, which could underlie the diverse
gic system (Jacobs, 1985), is qualified as another sub-dynamics which they observed. These assumptions and
strate exerting a biasing effect. In addition, the the observed phenomena qualitatively coincide with
cholinergic input, mediated mainly by the muscarinic ours. Although their network attractor is considered to
pathway, possibly has a d.c. component in addition to have a more complex structure, the mechanism under-
the temporally variable component as a source of the lying the state-dependent behavior of their network could
noise. Furthermore, there seems to exist a negativebe understood within the same framework as ours.
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Dreaming might be regarded as a random recalling Kodama, T., Takahashi, Y., & Honda, Y. (1990). Enhancement of
process of memorized patterns without Iogical context. acetylcholine release during paradoxical sleep in the dorsal teg-

In this respect, the metastable behavior of the artificial r2"7e7n_t";|8geld of the cat brain stenNeuroscience Letteyslid,

neural network could be analogous to dreaming. There- Koyama, Y., & Kayama, Y. (1995). Properties of neurons participating
fore, our model-based approach could provide novel in regulation of sleep and wakefulnegsdvances in Neurological
information for investigating the functions of dreaming Sciences39(1), 29-40.
and REM through the Lfluctuations of neuronal activ- Maled?' T| 5(1_995)' 32(‘31‘;’6‘1' 1migha”isms of sledgvances in Neuro-
o - . . . ogical Science , 11-19.
ities. From the cognitive pOIf_]t of view, computatlonal McCarley, R. W., Greene, R. W., Rainnie, D., & Portas, C. M. (1995).
network models on dreaming have been proposed  prainstem neuromodulation and REM sledpeurosciences?,
(Hinton et al., 1995; Antrobus, 1997). In addition, there 341-354.
have been many physiological and psychological studies McCormick, D. A., & Price, D. A. (1987). Actions of acetylcholine in
which suggest an important role of a dream sleep in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro.
memory and leamning processes such as Wilson and,, Journal of Physiology392,147-165.
X . McKenna, T. M., Ashe, J.H., Hui, G. K., & Weinberger, N.W. (1988).

McNaughton (1994), Karni et al. (1994) and Smith Muscarinic agonists modulate spontaneous and evoked unit dis-
(1995). The relationship between these ideas and the charge in auditory cortexSynapse2(1), 54—68.
1/f fluctuations merits further study. Moss, F. & McClintock, P. V. E. (Eds.) (1989Noise in nonlinear

Some researchers have reported dreamings during dynamical systemd/ols 1-3. Cambridge: Cambridge University

Press.
non-REM (e'g' VOgel et al., 1972)' Currently’ we do Mushiake, H., Kodama, T., Shima, K., Yamamoto, M., & Nakahama,

not have any appropriate explanations for this phenom- 1 (1988). Fluctuations in spontaneous discharge of hippocampal
ena. According to our simulation results, metastable  theta cells during sleep-waking states and PCPA-induced insomnia.
states with shallow potential wells and peculiar periodic Journal of Neurophysiology60, 925-939.

events during non-REM such as spindling and slow wave Nakamura, K. (1996)Development of neuropharmacological tech-

L. T . . . nique and its application to neuronal unit recordind/aster
activity may be a possibility. This will be the subject of a Thesis, Graduate School of Information Sciences, Tohoku

future paper. University.
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NOMENCLATURE
X(t)
o parameter of an autoregressive process x*
gi(t) random noise mutually independent, zero- %o
mean white Gaussian noise with an identical PSP
variances’(1 — a?) DC

o variance of the noise&(t)} MCS
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first-order autoregressive process
internal state of théh neuron at time
synaptic weight from théth to jth neurons
output ofj — the neuron at timé

global inhibitory input

the number of neurons contained in the
network

the number of the memorized patterns
autocorrelation function of the autoregres-
sive process

theith neuron’s state of theith memorized
pattern

current state vector

reference equilibrium state vector

the “0” state vector

power spectral density

direction cosine

Monte Carlo step
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Abstract—This paper synthesises three diverse approaches to the study of consciousness in a description of an existing
program of work in Artificial Neuroconsciousness. The three approaches are drawn from automata theory (Aleksander,
1995, 1996), psychology (Karmiloff-Smith, 1992; Clark & Karmiloff-Smith, 1993) and philosophy (Searle, 1992).
Previous work on bottom-level sensory-motor tasks from the program is described as a background to the current
work on generating higher-level, abstract concepts which are an essential part of mental life. The entire program of work
postulates automata theory as an appropriate framework for the study of cognition. It is demonstrated how both the
bottom-level sensory-motor tasks and abstract knowledge representations can be tackled by a single neural state
machine architecture. The resulting state space representations are then reconciled with both the psychological and
philosophical theories, suggesting the appropriateness of taking an automata theory approach to conscious9@ss.
Elsevier Science Ltd.

1. INTRODUCTION famous “four f's” of fighting, fleeing, feeding and fornicat-
ing, to driving cars, writing books and scratching our itches.
All of the processes that we think of as especially mental—

whether perception, learning, inference, decision making,

This paper brings together three recent approaches
in the study of consciousness. A neurally based theory

of artificial consciousness (Aleksander, 1995, 1996), a
philosophy of mind based on cognitive acts (Searle,
1992) and a theory of human development based on a
redescription of learned competences (Clark &
Karmiloff-Smith, 1993). The purpose of this paper is to
present a neural automata theory approach to conscious-
ness, rather than describe particular machine architec-
tures, which are liable to undergo refinement as the
work progresses. Particular details of the design of the
experimental work described can be found in the appro-
priate references.

For continuity and completeness, the paper will com-
mence with a brief recapitulation of the salient proposi-
tions of the Artificial Consciousness Theory which are
later compared with Searle’s philosophy of mind (Searle,
1992). Searle insists that the study of cognition is the
study of consciousness, just as the study of biology is

problem solving, the emotions, etc.— are in one way or
another crucially related to consciousness. Furthermore,
all of those great features that philosophers have thought
of as special to the mind are similarly dependent on con-
sciousness: subjectivity, intentionality, rationality, free will
(if there is such a thing), and mental causation. More than
anything else, it is the neglect of consciousness that
accounts for so much barrenness and sterility in psychology,
the philosophy of mind, and cognitive science.

The study of the mind is the study of consciousness, in much
the same sense that biology is the study of life. Of course,
biologists do not need to be constantly thinking about life,

and indeed, most writings on biology need not even make
use of the concept of life (Searle, 1992).

So, taking Searle’s argument that the study of mind is

the study of consciousness, this paper sets out to examine
[The brain’s] special feature, as far as the mind is concerned, ?eural networl_( models ofdr?]md.dHtavmgdde;‘lr.led :jhfhpct)stlr_]
the feature in which it differs remarkably from other bio- 1on on Con,SC'O,usneSS adhered 1o an. Cclaime at the
logical organs, is its capacity to produce and sustain all of Study of mind is the study of consciousness, all that
the enormous variety of our conscious life. By conscious- remains is to define the stance taken on mind in this

ness | do not mean the passive subjectivity of the Cartesian paper. The mind is assumed to be directly responsible
tradition, but all of the forms of our conscious life-from the  for cognition. Clark & Karmiloff-Smith (1993) make a

the study of life.
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powerful distinction between complex information (Karmiloff-Smith, 1992) is then presented in detail,

processors, which includes computers, and genuinemoving to a suggested neural architecture with the capa-

cognizers. city for spontaneous re-representation of its own internal
The sea slug and the VAX mainframe are both effective S_tateS: The paper conclu,des With a discussion of the rela-
processors of information. Yet it is only human beings, tionship betwee_n Searle’s ph"OSOPhY' the Fun.damental
and perhaps some higher animals, who are credited with POstulate (Section 2.2) of the Artificial Consciousness
genuine thoughts. Is this mere prejudice, or have we some- 1heory (Aleksander, 1996) and the proposed cognitive
how latched on to a genuine joint in the natural order? Ifitis neural architecture which emphasises the importance of
a genuine joint in nature, what feature of set of features mark examining the mental processes occurring in the system
it? as conscious in some form—the authors would stress an

artificial, rather than biological form.
The hypothesis to be considered is that there is indeed a joint

in the natural order such that humans fall on one side and
many other systems (including some quite sophisticated 2. NEURAL STATE MACHINE MODELS

information processors) fall on the other. The joint, we OF COGNITION

argue, marks a pivotal difference in internal organisation.
9 P - g .. For over 20 years, one of the authors (.A.) has been
The representational redescription model embodies specific

hypothesis about the nature of this joint (Karmiloff-Smith, sugge_stlng that the cap_acny for thought can be encapsu-

1979a, 1979b, 1986, 1990, 1992). For genuine thinkers, we !atéd in a machine with an adaptable state structure

submit, are endowed with an internal organisation which is (Aleksander & Hanna, 1975; Aleksander, 1996). An

geared to the repeated redescription of its own stored knowl- adaptable state machine can be implemented in a

edge. This organisation is one in which information already machine with some form of learning capacity. The con-

stored in an organism’s special-purpose responses to thetemporary versions of such machines have been dubbed
environment is subsequently made available, by the RR gs “Neural State Machine Models (NSMMs)”
process, to serve a much wider variety of ends. Thus knowl- (pleksander & Morton, 1993); the Multi-Automata
edge that is initially embedded in special purpose effective General Neural Unit System (MAGNUS) (Aleksander
procedures subsequently becomes a data structure availableet al., 1993) being the most widely used. Since the
to other parts of the system (Clark & Karmiloff-Smith, o :

1093). NSMM_ is abqut as far as one can get from r_nuch of

the philosophical discussion concerning consciousness,

There has been some discussion about the boundariest is worth pausing a moment, before pressing on with a
between congizers and non-cognizers (Aleksander, description of the Artificial Consciousness Theory to
1996) which suggests that animals and even machinesplace this proposition in relation to the philosophical
could redescribe their knowledge. Apart from noting discourse. A more detailed account can be found in
this slight objection, the general principle that redescrip- Aleksander (1996).
tion is an essential feature of cognition is not at stake,
there is only a slight difference in opinion over the posi-
tion and abruptness of the divide.

In the search for artificial consciousness, the chal- The position taken in the program of work relating to the
lenge, therefore, is to bestow a neural network with the Artificial Consciousness Theory is that the term con-
ability to re-represent its own internal states. Previous sciousness was first used by John Locke when in 1690
work (Browne & Parfitt, 1997) suggests that such a he wrote;
system might well add further weight to the numerous
refutations (Smolensky, 1987; Pollack, 1990; Van .

} whatever else you please to call them, which a man observes
Gelder, 1990; Aleksander & Mqrton, 1993) of Fodor. and is conscious to himself he has in his mind; and the way
and Pylyshyn's attack on connectionist models of cogni- iy which the understanding comes to be furnished with them

tion (Fodor & Pylyshyn, 1988). The previous work (Locke, 1690, Ch. i. 4. Reproduced in Locke, 1975).
further suggests that recursive redescription of system

representations might provide a possible mechanism by This can be distinguished from three millennia of con-
which a pseudo-symbolic system, which many agree is cerns with the physical makeup of mind and its relation-
the basis of cognitive function, could arise in a connec- ship to body culminating with Cartesian dualism
tionist network. The general model of emergent hierarch- (DesCartes, 1637) about which Locke and his successors
ical data structures presented here also has much infor the next 300 expressed considerable skepticism.
common with Harnad’'s proposals of the recursive Locke’s motivation for his study of knowledge is reputed
grounding of language (Harnad, 1992). to have come from his view that metaphysics was ulti-
Before the redescriptive process can be discussed inmately futile. He is reported to have turned to friends
detail, the type of neural architecture and represen- after an inconclusive debate on metaphysics and asked;
tational form being proposed must be described. “ Shouldn’t we first determine whether we are capable of
Karmiloff-Smith’s representational redescription model answering such gquestio?s (Soloman, 1993).

2.1. Relationship to a Genealogy

First, | shall enquire into the origin of those ideas, notions, or
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Philosophy from Locke in the 17th century to far removed from the philosophical lineage as one can
Wittgenstein at the turn of the 20th attempted to refine get, as a philosopher might immediately argue that such
the taxonomy of different “ideas, notions, ...the under- structures are disqualified for not being the flesh and
standing”. This in itself is not a matter for mathe- blood for which consciousness makes sense. But the
matical analysis but one of philosophical discourse. aim of the rest of this paper is to illustrate that this con-
However, when suggesting that consciousness could bestructivist approactioesprovide a general perspective
analysed in an artificial neural model it is precisely on the synthesis of consciousness, while respecting the
this taxonomy which has to be borne in mind, as the genealogy of the subject. A synthesised consciousness
model must palpably be able to represent “notions and might in itself, if Searle is correct, be at the root of
their understanding” which are as different as, say, feel- building truly cognitive machines.
ings, objective, knowledge, actions, beliefs, etc. It is
for this reason that a list of corollarles has been _creat_ed 2 2 The Fundamental Postulate
in the work. Some of the corollaries are described in
later sections of this paper; a complete list can be The Fundamental Postulate (Aleksander, 1996) states the
found in the Appendix. following:

The curious nature of contemporary analyses of The personal sensations which lead to the consciousness of

consmousngss is that they spread OV?V a very wide an organism are due to the firing patterns of some neurons,
methodological front. At one extreme is the natural  g,ch neurons being part of a larger number which form the
philosophical descent of the lineage mentioned above,  state variable of a neural state machine, the firing patterns
where it is the nature of consciousness and not its  having been learned through a transfer of activity between
physical basis which is at stake. Many such discussions sensory input neurons and the state neurons.
(Nagel, 1974; Lucas, 1994, for example) take the posi-
tion that only the inexplicable subjective nature of con-  The Fundamental Postulate posits, as an appro-
sciousness is worth discussing. Giving it a neural basis priate framework in which to examine cognitive pro-
is therefore at best uninteresting and at worst irrelevant cesses, an automata theory in which the state variables
to philosophical concerns. Others (Penrose, 1994, for have neural learning properties, and also that neural
example) believe that consciousness is beyond thatstates which contribute to consciousness must be created
which can be achieved through current mathematical through a process which has been describeit@sic
analyses, particularly neuronal computations. He advo- learning
cates a solution based on the function of microtubles in
the brain cells causing effects which could only be 2.2.1.Iconic Learning.lconic learning is a represen-
described by a non-computable extension to quantum tational scheme proposed in previous work by one of
theory which includes the gravitational force. Most the authors (Aleksander & Morton, 1993) and others
analyses, however, which actually attempt to find a (Harnad, 1987b). The representational scheme has two
neural basis of consciousness operate in a domainsalient properties which are; (1) preservation of the struc-
where effects observed in the human brain are correlatedtural form of the environment through the direct transfer
to conscious experience reported by or inferred in the of activity from sensory neurons to the state neurons
owner of that brain. Greenfield (1995) and Crick responsible for consciousness and (2) the representations
(1994) are major contributors to this methodology. are concatinatively combinatorial.
Even further away from classical philosophy is the Harnad proposes iconic representations for discrimi-
work of computationalists such as Dennett (1991) and nation, which he defines as,[T]he ability to judge
Sloman (1994) who argue that consciousness is a productwhether two inputs are the same or different, and, if
of the architectural character of the brain which, for different, how different they are(Harnad, 1992).
Dennett, can be expressed in computational terms suchldentification, on the other hand, is concerned with
as virtual machines and interacting agents. categorisation and requires a different representational
The approach taken in this paper, described in detail in form. As opposed to discrimination, which is a relative
(Aleksander, 1996), is founded on iconic representation judgement between objects, identification is an absolute
and its consequences, which suggests that consciousnegsidgement as to which category a particular perception
could be found in neuronal models which are neither belongs to. Contrary to some theorists (Paivio, 1986, for
structured like the brain, nor are they computationalist example), Harnad maintains that iconic representations
in the sense that they represent a programmer’s idea ofare insufficiently distinguishable for reliable identifica-
what the elements of consciousness are. The approachion (Harnad, 1982, 1987b). He proposes a system of
is constructivist only in the sense that it looks for *“categorical perception” for reliable identification
emergent properties of a very large structure, but relates(Harnad, 1987a, b) which utilise categorical represen-
such properties to the global parameters of that structure.tations. Categorical representations are the product of
The only construction is the fundamental postulate, the category specific feature detectors which filter out
rest is consequential or a matter of refinement. This is asinformatiort in the iconic representations which are not
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directly involved in the differentiation between members 5
of a category and nonmenmbers (Harnad, 1990).
Harnad (1987b) proposes that the categorical represen-
tations only lose information which is irrelevant to the
disambiguation between category members and non-
menbers within the existing context of alternatives. The
issue here is that the features which differentiate a cat
from say a dog are different from those which distinguish
between a cat and a tiger, which are again different
from the set of features which between a cat and an
elephant. In other words, the category features vary
depending on the particular features of the class of non-
members with which the object for categorisation is
compared. In order to accommodate a large range of
confusable alternatives the category representations
must maintain a great deal of the structural information
about the environment, but in a compressed form. Since
the structural form of the environment is to largely be
maintained, then the resulting representational form is
better dubbed areduced iconic representationgithin
the current discourse to highlight their compatibility
with the Fundamental Postulate (Section 2.2). Harnad
(1987b) describes the proposition as follows:
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Note that [the conversion from iconic to categorical repre-
sentation] is still analogue, for it continues to preserve some
of the physical “shape” of the input, albeit in a highly . o o )
reduced and abstracted form. Iconic/Categorical conversion Simulated, it is important to distinguish between them.
is really a transformation from macro-icons to micro-icons, Everything within the large dotted frame (Figure 1) is
the former preserving the context independent, holistic, the MAGNUS program. Everything else, including the
configural properties of the proximal stimulus, the latter picture, is another program—ttéchenworldprogram.
selectively reduced to only those properties that are  The two interact as follows. At its output, MAGNUS
invariant in a specific context of confusable alternatives jsgyes signals tkitchenworldwhich controls the position
(Harnad, 1987b). and size of a window placed over the picture. In the
example (Figure 1) the window is shown to be over an
apple. Another dotted position for the window is shown
over a plate. So MAGNUS is to derive how much
to move in the two directions X and Y, and how big to

State spaces are the currency of automata theory. Two ofmake the size (Z) of its window on thiétchenworld

the authors (Sales, 1996; Evans, 1996) have examinedThe output of the MAGNUS (Figure 1) consists of
the properties of learned state spaces in neural statethree bars, one each for X, Y and Z. These can be thought
machines as models of cognition. The work was under- of as "strengths of firing of three separate regions of the
taken using a simulated, virtual, environment called neural state machine which determine the position of

kitchenworld the window.
Given the position and size of a window, thiichen-

world delivers to MAGNUS the content of the window as

FIGURE 1. MAGNUS in a kitchen world.

2.3. State Space Representations of Knowledge

2.3.1.The Kitchenworld Environment hekitchenworld

arrangement (Figure 1) consists of MAGNUS (Multi-
Automata General Neural Unit System) exploring and
naming objects in a virtual environment callkiichen-

world. The kitchenworld consists of objects such as

a thresholded binary pattern. This pattern forms one part
of the neural state machine input. It can be seen as a
visual input—MAGNUS current view of thé&itchen-

world. The second part of the system input can be seen

glasses, plates, cutlery, cups, bottles and the odd appleas linguistic. It consists (Figure 1) of a binary pattern in

The digitised image, available to the MAGNUS simula-

the form of a word. This pattern is selected by an instruc-

tion, was created from a real image taken from a video tor and is considered to be a name for the object currently

camera. Since both MAGNUS and tk#&chenworldare

1 Harnad (1990) actually uses the word features, but following

correspondence between one of the authors (C.B.) and Harnad, the

author believed that information is a more apt description.

in view. The system is, therefore, exposed to two sensory
events in different modalities, visual and linguistic,
which occur in close time proximity; the word input is
deliberately chosen and presented to coincide with the
visual stimulus.
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FIGURE 2. State characteristics for two named objects.

FIGURE 3. Attractor objects and a repeller background in the
kitchen world.

2.3.2.Simple Object Namingn previous work (Sales,
1996), a model of simple object naming was constructed,

which verified Corollary 8 (Aleksander, 1996). object being named. The refutations of these criticisms
lie in the formation of group nouns for objects, which is

_ _ ~section and is discussed in the section relating to that
When sensory events occur simultaneously or in close time (Section 3.1.1)

proximity in different sensory modalities, iconic learning

and generalisation of the neural state machine ensures that . . .
one can be recalled from the other (Aleksander, 1996). 2.3.3. Locating ObjectsPrevious work (Evans, 1996)

used the MAGNUS system in thaetchenworldenviron-
ment to examine the capacity of an iconically trained
The MAGNUS visual input was centred on an object neural state machine to locate objects. Object location
in the kitchenworld the framed apple (Figure 1) for s crucial if it is to be understood how a conscious
example, and simultaneously presented patterns corresorganism might partition its sensory world into objects
ponding to the written name for the object to the linguis- that need naming. It has been demonstrated (Evans,
tic input. MAGNUS, a generalising neural state machine, 1996) that it is possible to train a window to locate on
was then iconically trained on the pair of inputs. The a particular object such as an apple (Figure 1). Location
neural state machine learned attractor states which con-on an object is achieved by displacing a window, which
sisted of both the visual and linguistic inputs (Figure 1). is perfectly positioned over an object, in both location
It is known that in common with any neural model, local and size, and training the network to output a move
generalisation in the logical neurons used in MAGNUS towards the correct position. The interesting part of this
leads to the property of state reconstruction (Aleksander work is that having done this for the apple, as shown, not
& Morton, 1991). This means that either the name input only the apple becomes an attractor in the image space,
or the object input will lead to the reconstruction of but so does any other object. A close look shows that
the state representing both (Figure 2). In other words, the system is interpretingny disturbance from the back-
an input from a single modality, with the other set to groundin the visual input as a pattern which causes an
random noise, will lead to the recall of a state consisting output that moves the movable input window towards
of the iconic representations of the sensory experiencethe object. So when the input window covers a part of
of both modalities. The experience of each modality an object, it will tend to be attracted towards that object.
can be reconstructed from the other, as proposed inCuriously, this creates not only attractors where the
Corollary 8. objects are, but also “repellers”, such as R (Figure 3)
The learning of simple object names discussed here isin areas where there are no objects.
open to the criticisms raised by philosopher’s such as  The experiments demonstrate that it comes naturally
Wittgenstein (1953) and Quine (1960). The problem, in for a neural state machine with a visual input and a motor
short, concerns the underdeterminance of language. Theoutput to develop a general notion of finding an object
issue at stake is how a child learning a language is to by treating it as a disturbance in a background after
determine which part of the visual scene relates to the minimal instruction.
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Karmiloff-Smith has undertaken a number of develop-
mental studies in order to investigate changes in
children’s representations (Karmiloff-Smith, 1992).
These studies bear out the predictions of the RR model.
A particularly salient study is one concerning drawings
57 (Karmiloff-Smith, 1990).

Six drawings were produced by four- to 11-year-olds.
The children were told the subjects of the drawings. First
a house was requested, then a house which does not
exist. Similar pairs of drawings for a man and an animal
were asked for. Only the drawings of men (Figure 4) are
considered here.

The motivation behind asking the children to draw a
basic object, succeeded by a version of that object that

O did not exist was as follows. The standard object could
4 be produced by the simple execution of an action
:@-' J schema. To produce the fictitious drawing, however,
the children would be forced to break down their action
FIGURE 4. Example drawings inspired by children’s drawings of schema for dr'awmg the regular objects in order to resize,
a man who does not exist. After (Clark & Karmiloff-Smith, 1993). reshape, omit or swap components. The hypothesis,
Taking the drawings in rows from the top left and denoting the which was borne out, was that young children with
ages of the artists as years; months, then the ages are as follows onIy level-I representations would be unable to draw

(8) 4:8 (b) 5:9 (¢) 5:3 (d) 9:0 (€) 9:8 () 916 (0) 9:8. the fictional manifestations of the objects. Their implicit

only representations constrained these children to
merely reproducing the entire schema, despite verbal
report that they were about to draw “a man who does
The tasks presented so far have all concerned bottom-not exist”. The components of the schema were not
level, sensory-motor processing. Earlier, we suggestedavailable as explicit information available to the children

that cognition only arose through a process of redescrip- for manipulation.

tion of lower-level representations into higher-level ones.  Of greater interest was the difference in drawings
That process is now described in detail. produced by four- to six-year-olds and eight- to

The representational redescription (RR) model has 10-year-olds. The imaginary drawings from the former
been developed by Karmiloff-Smith over a period of were created by altering the size and shape of compo-
time. A comprehensive description is given in Karmiloff- nents and some deletions of components. The deleted
Smith (1992). At the heart of the RR model is an internal components were often the last one to be drawn in the
process of representational change by which the mind undistorted pictures. The later group’s fictitious drawings
enriches itself. showed a much greater variety of manipulations from

The RR model posits a number of levels. It should be the original. The components of the original images
stressed that RR is not a Piagetian stage model. RR iswere manipulated as independent entities, leading to
presented as a domain general process, but importantlyinsertion of additional elements from the same concep-
it is posited to act on domain specific representations. tual category, change of position and/or orientation of
Three levels of the RR model are of interest to the con- whole elements, or even the insertion of components
nectionist modeller. from a different conceptual category.

The first level of implicit, or level-I, representations The children’s drawing study demonstrates the
is the level achieved by connectionist models of beha- underlying thesis of RR, which is that knowledge
viour. At this level stored representations are activated which is implicit in the original action schema, in this
by external stimuli, but are not available to the system case the action schemas for drawing body compo-
in an explicit re-usable format (Karmiloff-Smith, 1992; nents, gradually becomes more explicit through an
Browne & Parfitt, 1997). Beyond level-l is the first internally generated process of representational
level of explicit representation of knowledge, level-E1. redescription.

At level E1 representations are not available to con-  Another important feature of the RR process is that
sciousness or verbal report, but they are available withoutit is recursive. The redescribed representations must
the need for external stimuli and to other domains. themselves be capable of undergoing further redescrip-
At higher levels of redescription, levels E2/E3 [also tion. As more levels of redescription occur, the knowl-
denoted by E+ (Clark & Karmiloff-Smith, 1993)] the edge becomes more abstract and more accessible. As
knowledge is available to conscious access and verbalstated above, previous work suggests that it is the recur-
report. sive nature of RR which may lead to an insight as to how

3. REPRESENTATIONAL REDESCRIPTION
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a pseudo-symbolic system of cognitive representation
is constructed from low-level processing (Browne &
Parfitt, 1997).

3.1. Redescription in State Spaces: Complex States

Previous work (Aleksander, 1996) suggests that the
bottom-level sensory-motor, simple states learned in
tasks such as those studied above (Section 2.3) [Evans
1996; Sales, 1996] are equivalent to Karmiloff-Smith’s
bottom-level, implicit  (level-l)  representations
(Karmiloff-Smith, 1992). He further suggests that
higher-level, complex states can be formed which are
equivalent to the first level of explicit, abstract knowl-
edge; level-E1.

3.1.1. First Level of RedescriptionTo illustrate the
notion of complex state representations of abstract con-
cepts, a particular example which makes reference to
the kitchenworldenvironment will be used. Within the
kitchenworldthere are a number of repeated instances
of various objects (Figure 1). There are two apples,
four glasses, two cups and two plates. When the objects
are named like objects will receive identical names;
both cups will be labelled as “cup”, each glass as
“glass”, etc. Since the object naming function of the
system allows the visual input to be recalled from
the linguistic label, the multiple visual input for each
linguistic label might now appear to cause a conundrum.
Which visual input is to be recalled in association with
the linguistic label? The dilemma can be resolved by
adding a probabilistic element to the system (Browne
& Aleksander, 1996). This probabilistic element allows
the system to explore regions of state space where the
input does not explicitly define a particular state. In
the case where the visual input is undefined and the
linguistic input is a recognised label, the probabilistic
state space exploration allows all the states which
match the linguistic input to be explored (Figure 5).
During the exploration of state space the states corres-
ponding to several, or even all, the visual inputs are
visited. The linguistic labels have now become class
nouns, representing the commonality between a cluster
of bottom-level, learned states. These clusters of state
can now be represented as single, complex states
[Figure 6(a)].

There is some controversy as to whether the complex
states described are adequate representations of clas
nouns. The deficiencies of this approach are discussed
in a later section. For the current argument, however,
which is based on the linguistic construction of class
nouns the described complex states are arguably suffi-
cient, if recourse is made to Wittgenstein’s proposition of
the non-essentialism of language (Wittgenstein, 1953).
Wittgenstein argued that there are no hidden, or ultimate,
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FIGURE 5. Concepts in state space. The first level of

redescription.

visual modality region of the described complex states,
and that the image must be derived from only the set of
dogs which the person in question has experienced. The
simple states which together form the complex state are
all derived directly sensory experience. This is ensured
by the insistence on iconic learning. It is in this retreat
from the realism of word meaning, which is arguably
what prompted Wittgenstein to write Philosophical
Investigations (Wittgenstein, 1953), that the concerns
of Quine (1960) and particularly Wittgenstein (1953),
noted above (Section 2.3.2) are refuted. The argument
stated here is expanded in detail by both Harnad (1995)
and Searle (1992). Searle argues in particular that
Quine’s theory (Quine, 1960) is only appropriate for a
zombie robot, which conscious human beings are
clearly not.

AL
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a) State groups are equivalentto a single state

sl

)

b) A structure of grouped states

universals in language. He suggests that a word such as;GuRE 6. state grouping to form concepts (a) and higher-level

“dog” derives its meaning from a mental image, the

concepts (b).
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3.1.2. Second Level of Redescriptiokarmiloff-Smith 4. INTERNALLY DRIVEN REDESCRIPTION IN A
(1992) demands the redescribed states must themselves SINGLE NEURAL ARCHITECTURE

be available for redescription. Continuing with the pre-
vious example wherkitchenworldstates are redescribed
through the addition of linguistic tags, the second level of
redescription can be driven by providing new, equally
valid but broader domain, linguistic tags for known
objects. Moving slightly away from the actukitchen-
world, assume that a system is exposed to an environ-
ment consisting of a number of fruits; strawberries,
pears and grapes for instance. Assume also that the

neural state machine has learned the names of the indi-4.1. Representational Replacement for Class Nouns

vidual fruits, so it has complex states representing .. . Lo .
Since representational redescription is posited as a recur-
the class nouns strawberry, pear and grapes. Now say

N . . sive process, the appropriate representational form for
the system’s visual input is centred on one of the straw- ;
) L .~ =" o the abstracted concepts must be highly related to that
berries and the word fruit is input to the linguistic

modality. The visual input of the strawberry will cause proposed for the bottom-level, i.e. iconi%learning. I_:odor
a region of the complex state representing the noun and Pylyshynargue, correctly, that the tokegpresenting

. 4 -~ an higher level concept should consist of the systematic
strawberry to be reconstructed and learning will combine - ; S .
Jm . combination of the items from which it is comprised
the new linguistic tag, fruit into that state. A new com- . ;
: L (Fodor & Pylyshyn, 1988).What is at stake is whether
plex state with two linguistic tags, strawberry and : L .
. . ; L2 systematic combination of tokens can only be achieved
fruit, for the associated visual stimuli will be created. If )
- . . . . in computational data structures, or whether a neural net-
the word “fruit” were then associated, in an identical ) . X
. . work is capable of such functionality. Pollack has clearly
manner, with the complex states representing pear _ .
: s demonstrated that a connectionist system is capable of
and grapes, then a set of states which are unified by a : s ;
R . : . systematic combination (Pollack, 1990). The suggestion
common linguistic tag [Figure 6(b)] is created, which

o . ; . . resen here i n extension and refinement of
is identical in form to the set of simple states which prese t,Ed ere 1S an € te slon -a d refinement o

. L Pollack’s recursive auto-associative memory (RAAM).
combined to create the initial complex states

[Figure 6(a)] except that the lower-level states are them- The congept of glass has a"e?‘dy been established to be
grounded in the sensory experience of all the glasses a
selves complex states, rather than the bottom-level, !
. person has seen. It would seem appropriate to construct
sensory-motor states of the previous example. In other : X )
e e the representation of the concept from this sensory experi-
words, the more general group noun “fruit” has allowed ; ) L
. . ence. Doing so would satisfy both the criteria for systema-
the first level complex states representing the group

S ) . ; tic combination of the tokens from which the concept
nouns for individual fruits to be recursively redescribed . S ;
: ; : - is constructed and the demand for iconic representation.
at a higher level. This recursive redescription can be

: : S The most obvious technique of combining the sensory
seen to be constructing a general, hierarchical informa-. . . .
. iconic representations of the four glasses (Figure 5)
tion structure. . . .
which have been experienced would be to superimpose
them. This technique has two serious inadequacies; (1)
3.2. Inadequacy of Language Based Redescription the resulting representation is liable to be amorphous and

. .. (2) the amorphous nature of the representation makes it
The proposed method of representational redescription s o .
even more open to Harnad'’s criticism that it is insuffi-

gives an excellent demonstration of the_ appl|cab|llty of cient for identification (Harnad, 1990).
complex states to the task. The redescription process, as
currently described, however, requires external linguistic
input. Karmiloff-Smith is quite prepared to accept that 4.2. Internally Generating the Appropriate
explicit knowledge can arise through verbal instruction, Representations
but she insists that this is not true representational
redescription. That, she insists is driven by an internal,
spontaneous process.

The possibility of deriving internally driven group

representations, their form and the implications on the
system are the topics of the next section. 3 Token, rather than icon, is used in this context as reference is being
made to Fodor and Pylyshyn’s work which is symbol based. The author
would strenuously argue that arbitrary symbols are insufficient for
cognition and that iconic representations are appropriate (Aleksander
2 Interestingly, Harnad has recently shown the use of language in & Morton, 1993; Aleksander, 1996). Throughout this section, if the
conveying explicit knowledge to a group which creates an evolutionary word token is used in relation to a connectionist system it should be
advantage over groups with no language where each member mustread as icon. Token is used for consistency and chosen for its generality.
derive all their explicit knowledge for themselves (Harnad, 1996). Icons are a subset of tokens, thus token is universally applicable.

The task of building a single neural architecture with an
internally driven redescriptive mechanism can now be
split into two questions. (1) Given the explanatory power
of the suggested complex state approach to redescription,
what form of internal representation might replace the
externally provided class nouns? (2) How could a single
neural architecture derive the appropriate representations?

Since class nouns represent categories, the most obvious
candidate for the appropriate representational form is
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Harnad’s categorical representations (Harnad, 1987b) introduced, the rule could be revised and elaborated so as
described above (Section 2.2.1) and dubbed as reduced to tighten the approximation in accordance with the new
iconic representations for clarity. Such reduced descrip- ~ contingencies (Harnad, 1987b).

tions are entirely commensurate with Hinton’s proposals ] )
(Hinton, 1988). Harnad (1987Db) refers to this effect as “Approxima-

tionism”. The suggestion being that a categorical repre-

4.2.1.Learning RulesTwo learning rules, Bienenstock, Sentation is not a fixed absolute, but an ever improving
Cooper and Munro (BCM) [Bienenstock et al., 1982], approximation driven by the nature of the context; being
and Local Error-driven and Associative Biologically the noncategory members the category members have to
Realistic Algorithm (LEABRA) [O'Reilly, 1996] overtly ~ be differentiated from.

display representational reduction whilst maintaining

structural integrity. Previous work (Browne & Parfitt, 4.2.3.Construction of Category Representations Occurs
1997) describes the features of both these learning©Over Time.The implication of approximationism for
rules and posits them as ideal candidates for the learningthe internally generated category representation is that
rules underlying a neural system capable of repre- this must occur over time. The feature extraction
sentational redescription. O'Reilly gives an excellent System will develop features which distinguish category
account of the inadequacy of backpropagation in main- members from previously encountered nhonmembers, but
taining the structural form of the environment (O’Reilly, s anomalies or new items which from other nonmember

1996) and so it is not considered further as a learning categories are experienced the set of reduced features
rule. which defines the category representation will require

Intrator (Intrator, 1992) has applied exploratory pro- refinement or addition.
jection pursuit methods in order to derive a modification
to the original BCM learning rule (Bienenstock et al., 4-2.4.Neural Architecture Capable of Building Appro-
1982). The technique results in an unsupervised learningPriate  Category ~RepresentationsPrevious —work
rule for input to output dimensionality reduction which ~(Browne & Parfitt, 1997) has suggested a two unit
seeks projections that emphasise distinguishing featuresneural system (Figure 7) for producing internally

Such a learning rule is ideally suited to creating reduced driven category representations. The first network
iconic representations. extracts the category features from sensory stimuli

using Intrator's modification (Intrator, 1992) to the

4.2.2. Approximationismlt is important to note that the ~BCM rule (Bienenstock et al., 1982). The second net-
features extracted by Intrator’s (Intrator, 1992) learning WOrk then recombines these extracted features as they
rule emphasise distinguishing features in only the data are extracted over time by means of its feedback loop
presented. It is therefore possible that a feature which in much the same manner as Eiman’s Simple Recurrent
distinguishes two categories for a portion of the data is Network (Elman, 1990) constructs temporal relations in
later proven to be inadequate for the task and thereforethe context units. If, in contrast to Elman (1990), who

requires refinement. Harnad (1987b) frames the problem USes error backpropagation (Rummelhart et al., 1986), a
as follows: structure preserving algorithm, such as the two suggested

above (Section 4.2.1) is used in the second network,

t(;or:sidey a Timple pro?'em in mﬁczi':e ‘éiSiO”: Stuptp(l)lse a”tthen the evolved category representation maintains its
at a visual scene categoriser had to do was 1o tell apar iconic form as desired.

trees from animals, that is, to categorise all instances of trees
as trees and all instances of animals as animals. Suppose, by

way of further simplification, that trees and animals were 5. COMPARISON WITH OTHER APPROACHES
the only patterns the analyser ever encountered, and suppose

(to simplify still further) that its input patters were already It is certainly not intended to claim in this paper that
suitably smoothed and parsed so that they only appeared inautomata theory is the only approach to understanding
standard positions, with figure and ground, parts and whole, consciousness. The aim of this discussion is to argue that
already appropriately sorted. the described automata based theory does provide a

useful theoretical framework for exploring conscious-
Now it is evident that if there were nothing to worry about ness, or at least the particular aspects focussed on here;
but sorting trees and animals under these canonical con- redescription and abstraction. It is, therefore, important
ditions, a very simple rule would work quite well, for 4, o6 the essential features of iconically trained neural
example, counting the number of legs, L, and calling an 10 machines that differentiates them from other
instance a tree if L was less than or equal to 1 and an animal -

approaches. The authors are perfectly willing to accept

otherwise. Obviously such a rule could only work with well )
smoothed and parsed inputs, free of anomalous instancesthat other approaches may satisfy the fundamental

(such as storks standing on one leg, trees with split trunks, POStulate and corollaries. The theory is, however,
or tables). As an approximation, however, the rule would couched in terms of state spaces which fits naturally

sort the standard cases described. As anomalies werewith neural state machines. The appropriateness of
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m Inputs from proprioception

Network 1 Network 2
Feature Extracted features Feature
extraction recombination

Recurrent connections
of current category
representation

FIGURE 7. A schematic of a suggested system to learn the concept of rotation through the redescription of iconically learned states. The
first network extracts features from the currently presented views (in this case a bar down the left in the upper image and a bar down the
right in the lower image). An intermediate state is formed from the combination of the features extracted from the current training
example. These sets of features extracted from a number of individual pairs of training examples are combined, over time, in the second
(right hand) network, to form a representation of the overall concept. This representation consists of the combination of all the features

extracted from individual instances of the concept.

automata theory to the study of consciousness is of little from the problem. If the neural network uses a localist

surprise considering the fact that it was developed representation at any stage of processing, then the
against a background of the Macy Conferences on Feed-environmental structure present at the input is lost and
back Mechanisms and Circular Causal Systems in the symbol grounding problem re-emerges. However,

Biology and the Social Sciences, at which the question there are a large number of neural network models
of mechanistic consciousness was raised at an early stagevhich employ distributed representations throughout.

in the development of computing (Asprey, 1990). Further discussion is limited to these systems.

It is first important to point out that the iconic training Above (Section 1), it was stated that Fodor and
is an essential feature. Iconic training ensures that the Pylyshyn's (Fodor & Pylyshyn, 1988) objections to con-
system is not subject to the symbol grounding problem. nectionism had been refuted. Although this is true, it has
The symbol grounding problem relates to the absence of not as yet been fully demonstrated how a connectionist
intrinsic meaning in a system of arbitrary symbols, network might generate flexible representations which
the currency of classical Artificial Intelligence. Searle are available throughout a system (Clark & Karmiloff-
(1980) provided one of the original demonstrations of Smith, 1993). Current neural networks are capable of
the issue in what he calledThe Chinese Rodhthought generating concept trees (Pollack, 1990), but this still
experiment. Harnad has reformulated the idea in a clearerdoes not describe the full capacity for internally driven,
form by describing the never ending search for meaning recursive concept abstraction demanded by Clark &
by a non speaker attempting to translate a Chinese textKarmiloff-Smith (1993).
from a Chinese-to-Chinese dictionary (Harnad, 1990). The failure of both traditional Artificial Intelligence
Both these arguments are considered to be powerfuland connectionist approaches in cognitive modelling
criticisms of any claim computationalism has to model- has lead, in an attempt to find a successful compromise,
ling cognition or consciousness. Harnad takes the ideasto the development of a number of hybrid systems.
a stage further using them to refute the claim that cog- Implicit in hybrid systems is the hope that the juxtaposi-
nition is computation (Harnad, 1994). The authors, there- tion of the two approaches will alleviate the inadequacies
fore, suggest that symbolic Artificial Intelligence, as of both. Unfortunately, what is equally as likely is that
it currently stands, is not an appropriate model of the resultant system will suffer from the deficiencies
consciousness. of both connectionism and computationalism. Symbol

Neural networks, on the other hand, derive their repre- grounding demands that there is a clear, consistant
sentations directly from the environment and are there- process by which higher-level, more abstract symbols
fore less susceptible to the symbol grounding problem. are generated from lower-level ones. The break in the
It is not true to say that neural networks are immune representational scheme between the symbolic and
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connectionist regions of a hybrid system means that they however, that the model developed in this paper is
are still susceptible to the symbol grounding problem, if true to the style of enquiry advocated by Locke [as
at a higher-level. Also, the tokens utilised by symbol quoted above (Section 2.1)]. The principle of an iconic
processing region of the system are constrained by thetransfer comes from the “consciousness to one’s self” of
connectionist system, so may well be far from ideal for “ideas, notions or whatever else you please to call
the required computation. them...”

What is required is for either a symbol system to  Of all the contemporary philosopher's, Searle is
uneqgivocably overcome the symbol grounding problem, possibly the closest to a continuation of the line of
or the development of a connectionist system with the enquiry commenced by Locke. Searle’s position is well
capacity to flexibly manipulate its representations. It is defended in Searle (1992). It can be summarised as
suggested that the automata theory approach describedollows. Consciousness is an emergent property of
here does provide a clear view as to how the latter type the brain. We do not understand how this occurs as yet,
of system might be constructed. That is not to say that but advances in science will unravel the mystery in
other approaches are incapable of some, or even all, oftime. For the present we should just accept that one of
the functions outlined by the corollaries. The automata the functions of the brain is to cause consciousness.
theory framework taken as an overall approach, however, Consciousness is inextricably bound to mental life. The
does stand out, as it does provide useful insight into contents of consciousness are mental phenomena.
cognitive functioning which other approaches have so Unconscious mental phenomena are only describable
far failed to clearly reveal. in terms of their similarity to conscious ones. Although

What the automata theory approach described in this unconscious mental phenomena may never become the
paper offers can be summarised as a clear view as to howcontent of consciousness they must have an identical
a neural system might build up a set of internally gener- form. Attributes of the brain which can never enter
ated, hierarchical, flexible representations in a number of consciousness are nonconscious. Searle differentiates
domains. Such representations have been claimed to be atinconscious from nonconscious mental phenomena as
the heart of cognition (Clark & Karmiloff-Smith, 1993)  follows:
and are later argued to be commensurate with a contem-

. . . Think of the difference, for example, between my belief
porary philosophy of mind (Section 6). P y

(when | am not thinking about it) that the Eiffel Tower is

in Paris, and the myelination of the axons in my central
nervous system. There is a sense in which both are uncon-
scious. But there is a big difference between them in that the
structural states of my axons couldn’t themselves be con-
scious states, because there isn’'t anything mental about
them. | assume for the sake of this argument that myelina-
tion functions essentially in the production of my mental
states, but even if myelinated axons were themselves objects
of experiences, even if | could feel inwardly the state of the
myelin sheaths, still the actual structures are not themselves

6. CONCLUSIONS: WHERE DOES
CONSCIOUSNESS COME IN?

A fair critique of the above would be that all that has been
suggested is method for learning to represent worlds con-
taining nested concepts, so why have a fanciful reference
to the difficult and woolly concept of consciousness? In
fact, why refer to a program of work which goes under

the heading of Artificial Consciousness at all? The
answer lies in the fundamental postulate and therefore
its associated corollaries. A neural state machine has
been shown to satisfy the requirements of corollaries 4,
iconic learning and 8, the representation of meaning.
Corollary 4 relates to consciousness by suggesting that
iconic transfer creates ‘“sentience” by making neural
firing patterns meaningful in terms of the organism’s
sensory world. It is this corollary which gives the propo-
sals immunity from the symbol grounding problem, dis-
cussed above.

Corollary 8 is discussed as being the key to the repre-
sentation of abstractions such as place and category
within a neural state machine.

Of course, any attempt at a neural construction of the
properties of consciousness can be dismissed purely on
the grounds that some definition of consciousness can

mental states. Not every unconscious feature of my brain
that (like myelination) functions essentially in my mental
life is itself a mental feature. But the belief that the Eiffel
tower is in Paris is a genuine mental state, even though it
happens to be a mental state that is most of the time not
present to consciousness. So here are two states in me, my
belief and my axon myelination: both have something to do
with my brain and neither is conscious. But only one is
mental, and we need to get clear about what makes it mental
and the connection between that feature—whatever it is—
and consciousness. Just to keep this distinction clear, | pro-
pose in this chapter to call phenomena like myelination,
which are not in the mental line of business at all, “non-
conscious” and phenomena like mental states that | am not
thinking about or have repressed “unconscious” (Searle,
1992).

In the neural state machine approach to consciousness,

be found which excludes the activity altogether either the fundamental postulate defines the current system
for not being biologically relevant or for being a philo- state as the existing conscious state. Other iconic states
sophical error of category as is the belief of some of the in the learned state structure are possible candidates for
authors discussed above (Section 2.1). It is arguable,becoming the system state, so in Searle’s terminology are
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unconscious mental phenomena_ Since the neural statddarnad, S. (1987b{ategory induction and representatiddew York:
machine approach to consciousness is defined in terms Cambridge University Press.

of state spaces, little reference need be made to the actua'l"arggg’_;'e(lggo)' The symbol grounding probledysica [ 42,

structure of the SySte.m' althOUQh it i§ worth mentiolning Harnad, S. (1992)Connecting object to symbol in modelling cognition
that the MAGNUS simulation (Section 2.3) described Springer.
above is extremely adept for the task, which comprise Harnad, S. (1994). Computation is just interpretable symbol manipula-

Searle’s nonconscious mental phenomena need not be tion: Cognition isn't. Minds and Machines4(Special issue on
. . . “What is Computation?”), 379—-390.
studied in detail.

L . . . . Harnad, S. (1995)The origins of words: A psychological hypothesis
The insistence on iconic learning provides the system  puenster: Nodus Publishers.
with both symbol grounding (Searle, 1980; Harnad, Harnad, S. (1996). On the virtues of theft over honest toil: Grounding
1990) at the bottom-level and a maintenance of the language and thought in sensorimotor categorieBrateedings of
aspectural shape (Searle, 1992) of the higher-leve| theHang Seng Centre Conference on Language and Thought
Hinton, G. E. (1988). Representing part-whole hierarchies in connec-
mental states. - .
L . . L tionist networks. InProceedings Tenth Annual Conference of the
In this light, the items discussed above are well within Cognitive Science Societgp. 48-54). Montreal, Quebec.
the realms of the study of consciousness and might proveintrator, N. (1992). Feature extraction using an unsupervised neural
to be a fruitful approach to a complex problem. network.Neural Computationd, 98—107.
Karmiloff-Smith, A. (1990). Constraints on representational change:
Evidence from children’s drawin@ognition 34,57-83.
Karmiloff-Smith, A. (1992).Beyond modularityMIT Press.
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state variables of a neural state machine, the firing patterns p 1 6. Corollary 6: The Awareness of Self
having been learned through a transfer of activity between

sensory input neurons and the state neurons. o )
As a result of iconic learning and feedback between

physical output and the senses, the internal state structure
. - . of a conscious organism carries a representation of its own
A.1.1. Corollary 1: The Brain is a State Machine output and the effect that such an output can have on world
states.
The brain of a conscious organism is a state machine whose
state variables are the outputs of neurons. This implies that a
definition of consciousness be developed in terms of the )
elements of automata theory. A.1.7. Corollary 7: Will

The organism, in its mental mode, can enter state trajec-

A.1.2. Corollary 2: Inner Neuron Partitioning tories according to need, desire or in an arbitrary manner
not related to need. This gives it its powers of acting in both

. . . o a seemingly free and purposeful manner.
The inner neurons of a conscious organism are partitioned gly purp

into at least three sets:

Perceptual Inner Neurons: responsible for percep- A 1.8. Corollary 8: Representation of Meaning
tion and perceptual memory;

Auxiliary Inner Neurons: responsible for inner : . .
“labelling” of tual ts- When sensory events occur simultaneously or in close time
abetliing - of perceptua eve.n S . proximity in different sensory modalities, iconic learning
Autonomous Inner Neurons: responsible for “life- and generalisation of the neural state machine ensures that

support” functions—not involved in consciousness. one can be recalled from the other.

A.1.3. Corollary 3: Conscious and Unconscious
States A.1.9. Corollary 9: Learning Utterances

The contribution to consciousness of the inner neurons and  The feedback loop responsible for the creation of “self”

the sensory neurons has three major modes: representations is also responsible for the creation of state
representations of the basic utterances of the organism
Perceptual: which is active during perception—when which are retrieved in response to the utterances of other,

“adult”, organisms and may be used by the adult to teach

Sensory neurons are active;
the organism more complete utterances such as the words of

Mental, conscious:which is an act of thinking in the
same neurons even when sensory neurons are inactive & language.

or otherwise engaged;

Mental, unconscious:which is activity generated by

the neurons involved in conscious activity, but which A 1.10. Corollary 10: Learning Language
does not cause sensations of consciousness.

Language is a result of the growth process of a social repo-
sitory from which it can be learned by a conscious organism,
given the availability of knowledgeable “instructors”. The

. o ) o structure of such language is a process of the social evolu-
To qualify for a contribution to consciousness, firing tion of a best-match to the development of state structure in
patterns in the inner perceptual/conscious neurons need to the organism.

be created through dominant neural inputs which sample

the activity of outer sensory neurons and influence the

function of the inner neurons. This has been dubbed “iconic

learning”. A.1.11. Corollary 11: Iconic Transfer of

Qualitative Sensory Properties (Qualia?)

A.1.4. Corollary 4: Iconic Learning

A.1.5. Corollary 5: Prediction Iconic transfer operates on all aspects of sensory

perception discriminated by receptors. Therefore qualitative
Relationships between world states are mirrored in the state ~ properties of objects such as colour become candidates
structure of the conscious organism enabling the organism  for iconic transfer and representation in recallable state
to predict events. structure.
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A.1.12. Corollary 12: Instinct A.1.13. Corollary 13: Emotions

To enhance survival, an organism needs a substrate of out- Emotion in a neural state machine is an iconic encoding
put actions that are linked to inputs or inner autonomic of instinctive sensations. It leads to behaviour which
neurons and which are or become independent of the state enhances the avoidance of danger and the protection of
of inner neurons. These may be inborn or become inde-  survival.

pendent of state variables as a result of development.
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1. INTRODUCTION to stay at an intermediate and functional level; investi-
gating the detailed functional roles of consciousness
and determining how various aspects of the conscious
and the unconscious should figure into the architecture

Amidst the widespread enthusiasm of recent years con-
cerning the scientific study of consciousness, there are a

large number of models being proposed (including com- L .
. L . of the mind (in terms of learning as well as performance).
putational models, which in turn include neural network

; . In other words, we posit a middle level between phenom-
models), and various claims have been made about them. ; . . :
. : enology and physiology/neurobiology, which might be
These models capture to various extents experimental . -
N . o . more apt at capturing fundamental characteristics of con-
findings and pretheoretical intuitions about conscious- _ . . : .

} ) sciousness. We will also link computational models of
ness (see, e.g. Taylor, 1994; Schacter, 1990; JaCkendOff’consciousness to parts of (phenomenological) philo
1987; Shallice, 1988; Baars, 1988; Dennett & Kins- P _\phenom gical) p

. sophy that are concerned with consciousness.
bourne, 1992; Penrose, 1994). Unfortunately, however, : . . .
! As we will focus mainly on the learning aspect in
some of these models (such as Dennett & Kinsbourne, . . . . :
i ; i . consciousness, let us briefly describe the learning settings
1992; Shallice, 1988; Jackendoff, 1987) are aimed at a .
) : that we examined (from Sun et al.,, 1995). These
very high and gross level of explanation (e.g. overall . . o
. : . settings are more complex than simple categorisation/
architectures) and thus unable to provide more detailed A . :
. X ...~ classification and though action-based, involve more
predictions and explanations. On the other hand, existing . ) . . .
. . than just simple stimulus—response pairing. Psychologi-
computational, especially neural network, models tend to : . : ; . i
: : . . . cal experiments involving dynamic decision making or
rush directly into complex neural physiological thickets e . 4 ) .
) ; artificial grammars will be discussed. In dynamic deci-
(Taylor, 1994; Edelman, 1989) and thus may lose sight of . . .
i 7 sion making (Berry & Broadbent, 1988), subjects were
forests. In addition, most existing models do not deal

. . ; required to control the levels of an output variable by
adequately with one crucial aspect of human conscious-

: . . dnanipulating levels of an input variable. In one instance,
ness: learning. In contrast to these approaches, we inten . . )
subjects were to manage a simulated sugar production

factory and the goal was to reach and maintain a parti-
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learning (Reber, 1989), subjects were presented with a1983; Keil, 1989; Smolensky, 1988; Stanley et al.,
string of letters that were generated in accordance with 1989). Humans are able to learn procedural knowledge
a simple grammar. Although subjects were unaware of through trial and error (without a priori knowledge) in the
the underlying grammars, they were asked to judge the aforementioned tasks. On top of low-level procedural
grammaticality of novel strings. In addition, two naviga- skills, declarative knowledge can be acquired also
tion tasks were used for both psychological experiments through on-going experience in the world (see Stanley
and computational modelling in our lab (see Sun et al., et al., 1989). Furthermore, it is important for declarative
1995, 19964a, b). One is maze running, in which from knowledge to be learned through the meditation of low
a starting location, a subject has to find a goal location, level skills (i.e. bottom-up learning; see Sun et al.,
using only local sensory information. The other is 1996a).
navigation through minefields, in which a subject Procedural knowledge (skills) can be captured by sub-
is required to go from a starting location to a goal loca- symbolic distributed representation, such as that pro-
tion within a given short period of time by navigating vided by a backpropagation network. Because of the
through a densely packed field of mines (which will implicit nature of procedural skills, details of such skills
explode if the subject gets too close). | will later show are in general inaccessible to consciousness (Anderson,
the relevance of these learning tasks to the study of 1983; Reber, 1989). A distributed representation natu-
consciousness. rally captures this property with representational units
In the rest of this paper, | will first present a cognitive that are capable of accomplishing tasks but are in general
architecture €arion® for accounting for the distinction  uninterpretable and subsymbolic (Sun, 1994, 1995). (A
of the conscious and the unconscious (in Section 2). | will symbolic representation may be used, but then this would
then show how it accounts for a number of phenomena require an artificial assumption that these representations
related to the conscious/unconscious distinction in learn- are not accessible, while other similar representations are
ing (which may also be referred to as the explicit and accessible — such a distinction is arbitrary.)
implicit distinction) (in Section 3). A discussion of some Procedural knowledge can be learned in a couple of
fundamental theoretical issues will take place after that different ways. In the case where correct input/output
(Section 4). A comparison to existing models of con- mappings are provided, straight backpropagation can
sciousness such as Baars (1988), Schacter (1990), andbe used on a neural network. Otherwise, reinforcement
Damasio (1994) will follow, which will show the com-  learning can be used (Sutton, 1990; Watkins, 1989). This
monalities shared by some of these models angkfon is preferred because there is often no uniquely correct
and the unique features of the present model (in Sectionaction in the aforementioned tasks, although feedback is
5). Some concluding remarks (Section 6) will complete usually available. Using reinforcement learning in neural
the paper. networks, we can measure the goodness of an action
through a payoff-reinforcement signal. An adjustment
can be made to weights to increase the chance of select-
ing the actions that receive positive reinforcement and
A computational model that can tackle the learning tasks to reduce the chance of selecting the actions that receive
mentioned above is needed. It needs to satisfy some basimegative reinforcement.
requirements as follows. It must be able to learn from  This level can be modular; that is, a number of small
scratch on its own (as human subjects often do in the networks can co-exist each of which is adapted to
learning tasks outlined earlier; Berry & Broadbent, specific modalities, tasks, or groups of input stimuli.
1988; Reber, 1989; and also Sun et al., 1996a). The This coincides with the well known modularity claim
model also has to perform concurrent, on-line learning. (Fodor, 1983; Karmiloff-Smith, 1986; Cosmides &
That is, it has to learn continuously from on-going Tooby, 1994), in that much processing in the human
experience in the world; for, as indicated by Medin mind is done by limited, encapsulated (to some extent),
et al. (1987), Nosofsky et al. (1994) and others, human specialized processors that are highly efficient. It is also
learning is often gradual, on-going and concurrent, which similar to the idea of Shallice (1988) that a multitude of
is true of all the aforementioned tasks. As suggested by “action systems” compete with each other. There also
Anderson (1983) and many others, there are clearly two has been some work in neural network and machine
types of knowledge involved in human learning — pro- learning communities in developing modular systems,
cedural and declarative: while one is generic and easily which are equally relevant.
accessible, the other is embodied and specific. Moreover, On the other hand, declarative knowledge can be
different types of learning processes are involved in captured by a symbolic or a “localist” representation
acquiring different types of knowledge (Anderson, (Clark & Karmiloff-Smith, 1993), in which each unit
has a clear conceptual meaning or interpretation. This
allows declarative knowledge to be highly accessible

11t was originally developed for modelling human skill learning; see and inferences to be performed explicitly (Smolensky,
Sun et al. (1995). 1988; Sun, 1994, 1995).

2. AHYBRID NEURAL NETWORK MODEL
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Declarative knowledge can be learned in a variety of
ways. In this work, because of the dynamic on-going
nature of the learning tasks, we need to be able to dyna-
mically acquire a representation and to modify the repre-
sentation subsequently if necessary, in an efficient or
even one-shot fashion.

The difference in representing procedural and declara-
tive knowledge revealed by the above discussion leads
naturally to a two-level architecture, in which one level is
procedural and the other declarative. This structuring can
be argued on both psychological and philosophical

grounds. Anderson (1983) put forward the dichotomy o
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Medin, 1985; Keil, 1989; Sun, 1992a, 1994; Sun &
Bookman, 1994). The dual representation hypothesis
put forth in Sun (1994) stated that:

It is assumed in this work that cognitive processes are
carried out in two distinct levels with qualitatively different
processing mechanisms. Each level encodes a fairly com-
plete set of knowledge for its processing, and the coverage
of the two sets of knowledge encoded by the two levels
overlaps substantially.

Based on the above considerations, we developed
LARION: Connectionist Learning with Adaptive Rule

of separate yet interconnected declarative and procedural
knowledge bases to account for a variety of learning data.
Smolensky (1988) suggested that the separation of con-
ceptual-level and subconceptual-level processing. The
conceptual level possesses three characteristics: (1)

Induction ON-line It consists of two main components:

the top level encodes explicit declarative knowledge, and
the bottom level encodes implicit procedural knowledge.
In addition, there is an episodic memory, which stores

public access; (2) reliability; and (3) formality. It can
thus be modelled by symbolic processing. In contrast,
skills, intuition, and the like are not expressible in lin-
guistic forms and do not conform to the three criteria
prescribed. Hence, skills and intuition constitute a differ-
ent type of capacity, reflecting the “subsymbolic” pro-
cessing at the subconceptual level (see also Shiffrin &
Schneider, 1977). In a similar vein, Dreyfus and Dreyfus
(1987) contrasted analytical and intuitive thinking, from
a phenomenological analysis of human cognitive skill
learning in which the fluent, holistic and situation sensi-
tive way of solving problems (intuition) as observed in
master level performers is in sharp contrast with the
slow, deliberate thinking that often occurs in the novices
(analytical thinking). Models have been proposed to
account for such two-tiered structures, which often

recent experiences in the form of “input, output, result”
(i.e. stimulus, response, and consequence) that are
recently-filtered (episodic memory will not be used in

this paper and therefore will not be further discussed

here) (see Figure 1).
An overall pseudo-code algorithm that describes the
operation of CArioN is as follows:

1. Observe the current staxe(in a proper representa-
tion).

2. Compute in the bottom level th@-values ofx asso-
ciated with each of the possible actiorg’s:
Q(X, &), ..., Q(x,a,). Select one action or a few
based orQ-values.

3. Find out all the possible actiorfby, b,, ..., b, at the
top level, based on the inpwt (sent up from the
bottom level) and the rules in place.

posit the existence of at least two separate components4. Compare the values of the selectgd with those of

each of which responds to one side of a dichotomy (e.g.
Posner & Snyder, 1975; Schacter, 1990; Murphy &

thely’s (sent down from the top level), and choose an
appropriate actiof.

Declarative
Knowledge
\
Episodic
Memory
Procedural
Knowledge

FIGURE 1. The CrarioN architecture.
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5. Perform the actiob, and observe the next statand critic
(possibly) the reinforcememt OS‘i': Q.v.-ugs selection

action

O

i

6. UpdateQ-values at the bottom level in accordance
with the Q-Learning-Backpropagatioalgorithm.

7. Update the rule network at the top level using the
Rule-Extraction-Refinemeatgorithm.

8. Go back to step 1.

In the bottom level, &-value is an evaluation of the
“quality” of an action in a given stateQ(x, a) indicates FIGURE 2. The Q-Learning method.
how desirable actiom is in statex (which consists of
some sensory input). We can choose an action based on
Q-values, e.g. by choosing the one that has the maximumprevious considerations). The output of the third layer
Q-value in the current state or by choosing an action (i.e. the output layer of the backpropagation network)
probabilistically based orQ-values. To acquire the indicates theQ-value of each action (represented by an
Q-values, one option is to use ti@learningalgorithm individual node), and the node in the fourth layer deter-
(Watkins, 1989), a reinforcement learning algorithin. mined probabilistically the action to be performed based
the algorithmQ(x, a) estimates the maximum discounted 0on the Boltzmann Distribution (i.e. Luce’s choice axiom;
cumulative reinforcement that the agent will receive Watkins, 1989):
from the current stat& on: VaQ(x, a)

e
- p(alx) = W 3)
max Z Y 1) i
i=0
Here,« controls the degree of randomness (temperature)

wherey is a discount factor that favours reinforcement ¢ ihe decision making proce8sThe combination of

received sooner relative to that received later, grid Q-learning and backpropagation facilitates the develop-
the reinforcement received at stefwhich may be 0).  ment of procedural skills in the bottom level, which can
The updating 0fQ(x, ) is based on minimising potentially be done solely on the basis of acting and

r +ye(y) — Q(x, a) ) exploring in the real world. This learning process

performs both structural credit assignment and temporal
credit assignment.

In the top level, declarative knowledge is captured in a
simple propositional rule form. To facilitate correspon-
dence with the bottom level and to encourage uniformity
and integration (Clark & Karmiloff-Smith, 1993), we
chose to use a localist network model for representing
these rules. Basically, we connect the nodes representing
conditions of a rule to the node representing the conclu-
sion. However, we need to determine how we wire up
a rule involving conjunctive conditions. There are a
number of previous attempts (e.g. Sun, 1992b; Towel
& Shavlik, 1993) that we can draw upon. For each
rule, a set of links can be established, each of which
connects to a concept in the condition of a rule to the
conclusion of the rule. So the number of incoming links
to the conclusion of a rule is equal to the number of
conditions of the rule. If the concept in the condition is

where v is a discount factor ana(y) = max,Q(y, a).
Thus, the updating is based on ttenporal difference

in evaluating the current state and the action chosen. In
the above formulaQ(x, a) estimates, before acticais
performed, the (discounted) cumulative reinforcement to
be received if actiora is performed, and + ye(y) esti-
mates, after actiora is performed, the (discounted)
cumulative reinforcement that the agent will receive; so
their difference (the temporal difference in evaluating an
action) enables the learning @fvalues that approximate
the (discounted) cumulative reinforcement. UsiQg
learning allows sequential behaviour to emerge. Through
successive updates of tiefunction, the agent can learn
to take into account future steps in longer and longer
sequences.

We chose to use a four-layered network for implemen-
tation (see Figure 2), in which the first three layers form a
(either recurrent or feedforward) backpropagation net-
work for computing Q-values and the fourth layer
(with only one node) performs stochastic decision
making. The network is internally subsymbolic and
implicit in representation (in accordance with our

“ The training of the backpropagation network is based on minimis-
ing the following:

{r+ve(y)—Q(X,a) ifa—a
err; =

. (4)
0 otherwise

2 Supervised learning methods can also be applied, when correct - . . .
mappings of an input and output are available. wherei is the index for an output node representing the actipn

3In terms of both simplicity and performanc@:learning is best Backpropagation is then applied as usual to adjust the weights. Or,
among similar reinforcement learning methods (Lin, 1992; Sun et al., when correct mappings are available for each step, backpropagation
1995). can be directly applied.
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FIGURE 3. A network for representing rules: (1) bc—a; (2
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in a positive form, the link carries a positive weiglit
otherwise, it carries a negative weight w- Sigmoidal
functions are used for node activation (as an obvious
choice; other functions are also possible):

O O OO0

;. ®)
Z LW, —7
l+ei

The threshold of a node is set to betimesw — 6, where
nis the number of incoming links (the number of condi-
tions leading to the conclusion represented by this node),
andé is a parameter, selected along withto make sure  analysis, counterfactual reasoning and explicit hypoth-
that the node has activation above 0.9 when all of its esis testing can be used. These rules, expressed in the
conditions are satisfied, and has activation below 0.1 “state — action result” form (which constitutes a
when some of its conditions are not met. (Activations schema cf. Waltz, 1991). allows powerful operations
above 0.9 are considered 1, and activations below 0.1to be performed. Backward chaining means-ends analy-
are considered O; so rules are crisp/binary.) In addition, sis is accomplished at the top level through backward
if there is more than one rule that leads to the same tracing of rule links from the “result”, which is the
conclusion, an intermediate node is created for each new state entered after the “action” is performed, to
such rule: all of the conditions of a rule are linked to the state, which is the state before the action is per-
the same intermediate node, and then all the intermediateformed. This process is successively applied, with the
nodes are linked to the node representing the conclusionderived “state” as the new state (the result) to be back
(see Figure 3). (For more complex rule forms including traced, until reaching an initial state. All of the actions
predicate rules and variable binding, see Sun, 1992b). involved in the derivation are collected, which form a

To fully capture bottom-up learning processes, we plan for accomplishing the desired final result. Counter-
devised an algorithm for learning declarative knowledge factual reasoning can also be applied (because we have
(rules) using information in the bottom level. The basic information concerning conditions, actions, and results
idea is as follows: if an action decided by the bottom readily available): one can thus hypothetically alter
level is successful (here, being successful could mean aeither the conditions or the action of a rule, and see the
number of different things, including the difference change in (immediate or final) results. Such counter-
between the&)-value of the state before an action is per- factual reasoning can be used to justify (or explain) a
formed and that after the action is performed, which chosen action, or a sequence of such actions (a plan).
comes from the bottom level; the details are specified Explicit hypothesis testing, similar to techniques dis-
in Sun et al., 1995), then the agent extracts a rule that cussed by e.g. Bruner et al. (1956), Nosofsky et al.
corresponds to the action selected by the bottom level (1994), and Michalski (1983), can also be applied at
and adds the rule to the network. Then, in subsequentthis level of G ArION.
interactions with the world, the agent verifies the  The algorithm (at step 4) makes the final decision on
extracted rule by considering the outcome of applying which action to take by incorporating influences from
the rule: if the outcome is not successful, then the rule both levels (as has been shown by Willingham et al.,
should be made more specific and exclusive of the cur- 1989, in humans, declarative knowledge can influence
rent case; if the outcome is successful, the agent may tryprocedural performance). It allows different operational
to generalise the rule to make it more universal (Mitchell, modes: (1) relying only on the top level; (2) relying only
1982). (The detail of the algorithm can be found in Sun et on the bottom level; or (3) combining the outcomes from
al., 1995.) both levels weighing them differently. The weights can

At the top level, after rules have been learned, change over time and in different situations. (These
backward and forward chaining reasoning, means-endsdifferent operational modes roughly correspond to the

FIGURE 4. The implementation of C LARION.
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folk psychological notions of the intuitive mode, the Human knowledge, and its acquisition process, could
deliberative mode, and the various mixtures of the two be partially or completely unconscious. The connection
with different percentages of each; more later; see Sunfrom such illustrative data to our model lies in the ability
et al., 1995.) Figure 4 shows the details of the two levels of the model to account for some of the most important
of the model. characteristics of human implicit/explicit learning, as
The necessity of a two level architecture that incorpo- will be sketched below. (More detailed comparisons
rates two types of processes can be summed up asand data can be found in Sun et al., 1996a, b)
follows:

¢ In terms of representation, without the bottom level, 3.1. The Difference of Conscious/Unconscious
the model will not be able to represent procedural Learning
skills properly. Such skills may involve graded, uncer-
tain and inconsistent knowledge and autonomous
stochastic exploration (with numeric calculation and
probabilistic firing).

e In terms of learning, without learning in the bottom
level, the model will not be able to learn from experi-
ence dynamically to acquire procedural skill. The
bottom level capturegyradual learning of skills,
which is different from one-shot rule learning at the
top level.

o Without the top level, the model will not be able to (1)
represent generic, easily accessible, and crisp knowl-
edge and (2) explicitly access and communicate that
knowledge. When precision, consistency, and cer-
tainty are needed, declarative knowledge is preferred.

e Without rule learning, the model will not be able to
acquire quickly and dynamically explicit knowledge
for the top level from experience, and therefore have
to resort to externally given declarative knowledge or
to procedural knowledge exclusively.

In the psychological data, there is a clear demonstration
of the difference between conscious and unconscious (or,
explicit and implicit) learning. Berry & Broadbent
(1988) demonstrated this through an experiment using
two similar dynamic decision tasks differing in the
degree of saliency of the input/output relation. Human
subjects were required to maintain the behaviour of a
computer person at a “very friendly” level through
their inputs. In the salient version, the computer
responded in accordance with the subjects immediately
preceding input. In the non-salient version, the computer
responded in accordance with the input prior to that.
Results suggested that subjects in the two conditions
learned the tasks in very different ways: subjects in
the non-salient condition learned the task implicitly
while subjects in the salient condition learned the task
explicitly, as demonstrated by tests of their explicit
knowledge. Reber (1989) described a similar situation
in artificial grammar learning. When complex hierarch-
ical relations were needed to judge grammaticality, sub-
There is ample biological evidence that indicates the jects tended to use implicit, unconscious learning; for
existence of multiple pathways (in visual, linguistic, and example, when a sequence consisted of pairings of
other processing modes) some of which lead to consciousadjacent symbols that were ambiguous pair-wise but
awareness, while others do not (e.g. one type is cortical unambiguous when the entire sequence was viewed
while the other is subcortical), as described in Damasio through hierarchical relations, such as in the case of
(1994) and LeDoux (1992). For example, LeDoux (1992) 101110, implicit learning was preferred by the subjects.
described a cortical pathway from stimulus to thalamus When only pair-wise relations were needed, such as in
to cortex, which produces conscious thoughts, and a sub-the case of 101010, subjects were more likely to use
cortical pathway from stimulus to thalamus then to explicit, conscious learning by inducing an explicit
amygdala, which can lead directly to brain stem and rule. In other tasks, Cohen et al. (1990) also expressly
effect actions without any explicit process. A two-level demonstrated a dissociation between learning simple
model such as CirioN approximates the separation of (pairwise) relations and learning complex hierarchical
the two kinds of pathwaysto a certain degree, and suggestsrelations. A pattern emerging from the human data is
in a concrete and tangible way, how subcortical pro- that, if the to-be-learned relationships are simple, usually
cesses can play a fundamental role in supporting and initi- explicit/conscious learning prevails, while, when more
ating consciousness in a bottom-up direction (more later). complex relationships are involved, implicit/lunconscious
learning becomes more prominent. The implicit learning
mechanism appears to be more structurally sophisticated
and able to handle more difficult situations (Lewicki
The crucial link between this model of procedural/ et al.,, 1992). It is important to note the inability of
declarative knowledge and the conscious/unconscioushuman subjects to articulate their implicitly learned
distinction in humans is in the psychological work on knowledge, no matter how hard they tried (this is espe-
implicit learning (by e.g. Reber, 1989; Lewicki et al., cially true in Lewicki et al., 1992). The subjects were
1992; Berry & Broadbent, 1988; Stanley et al., 1989; often not even aware that they were learning. Never-
Willingham et al., 1989). Such work shows the disso- theless their performance improved over time, which
ciation between conscious and unconscious learning.demonstrated that their knowledge was unconscious.

3. PSYCHOLOGICAL DATA AND THE MODEL.
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This accords well with the CirioNn model. In the have been, because in brain damaged patients, it was
model, one can freely move from one type of process possible that certain reconfiguration and reallocation
to another, by engaging or disengaging the top level might have taken place (Shallice, 1988) and thus ren-
and its associated learning mechanisms (explicit pro- dered the findings less applicable to normal human sub-
cesses that are consciously accessible, as discussegkcts. In this work, | only examine experimental findings
before), or the bottom level and its associated mechan-from normal human subjects and thus results obtained
isms (implicit processes that are not consciously acces-may be generalised to a wider range of settings.
sible). Furthermore, in general, the bottom level is used
to tackle more complex relations while the top level takes
on simpler and crisper relations (cf. Reber, 1989; Seger,
1994). This is because the top level does not lend itself In the implicit learning literature, implicit performance
easily to the learning of complex structures due to its typically improves earlier than explicit knowledge that
crisp, individuated, and symbolic representation and can be verbalised by the subject (Stanley et al., 1989).
rigorous learning process. The bottom level, with its For example, in dynamic decision tasks, although perfor-
distributed network representation that incorporates mance quickly rises to a high level, subjects’ verbal
gradedness and temporal information, handles complexknowledge improves far slower; the subjects cannot pro-
relations better. vide usable verbal knowledge until near the end of their

A specific example of this complexity difference is as training (Stanley et al., 1989). Bowers et al. (1990) also
follows. Implicit learning of sequences (e.g. artificial showed delayed explication of implicit processes. When
grammar sequences) is biased towards sequences witlsubjects were given patterns to complete, they showed
a high level of statistical structure with much correlation implicit recognition of what a proper completion might
(Stadler, 1992). As has been demonstrated by Elmanbe even though they did not have explicit recognition of a
(1990) and by Cleeremans and McClelland (1991), recur- correct completion. The implicit recognition improved
rent backpropagation networks, as used in the bottom over time and eventually, an explicit recognition was
level of CLarioN (in conjunction withQ-learning), can achieved. In all of these cases, as suggested by Stanley
handle sequences with complex statistical structures,et al. (1989) and Seger (1994), we may hypothesise that,
given proper training procedures. Dienes (1992) reported due to the fact that explicit knowledge lags behind but
similar results, in which a simple network model out- improves along with implicit knowledge, explicit knowl-
performed other models in capturing sequence learning edge is in a way extracted from implicit knowledge.
data. The rule learning mechanism, as used in the topCleeremans and McClelland (1991) also pointed out
level of CLariON, clearly has trouble handling such this possibility in discussing their data and models.
sequences. Therefore, in the circumstances in which a Several developmental theorists have considered a
high level of statistical structure is involved in sequences, similar process in child development. Karmiloff-Smith
the bottom level prevails. (1986) suggested that developmental changes involve

Note that there has been other work that demonstratedrepresentational redescription. In young children, first
the distinction and dissociation of the two types of low level implicit representations of stimuli were
knowledge and proposed models based on that (e.g.formed and used, then, when more knowledge was accu-
Schacter, 1990; Shallice, 1988). However, some of the mulated and stable behaviours developed, through a
empirical work on which these models are based is con- redescription process, more abstract representations
cerned with abnormal subjects, most typically patients were formed that transformed low-level representations
with brain damages. For example, Schacter (1990) dis- and made them more explicit and usable. Based on data
cussed the following types of patients: amnesia (a selec-on perceptual analysis and categorization in infancy,
tive inability to remember recent experience and to learn Mandler (1992) proposed that relatively abstract
new information, typically due to lesions in the medial “image-schemas” were extracted from perceptual sti-
temporal lobe), blindsight (the inability to make certain muli, which coded several basic types of movements.
responses in the absence of conscious perceptual aware©n top of such image schemas, concepts were formed
ness due to damages in the visual cortex), aphasiausing information therein. She suggested that it was
(impairment in processing syntactic or semantic informa- likely that an infant gradually formed “theories” of
tion due to damages to a particular brain region), hemi- how his/her sensorimotor procedures work and thereby
neglect (an impaired ability to attend to the side gradually made such processes explicit and accessible.
contralateral to the damaged hemisphere), and so on,Finally, Keil (1989) suggested that conceptual represen-
all of which were characterised by dissociation of differ- tations were composed of an associative component
ent types of information/knowledge somewhat similar to (with frequency and correlational information; Hasher
situations discussed above. Schacter (1990) proposed & Zacks, 1979) and a “theory” component (with explicit
model for accounting for the dissociation (see Section 5 knowledge; Murphy & Medin, 1985). Developmentally,
for details). Although the model was, | believe, on the there was a clear shift from associative to theory based
right track, the support for it was not as strong as it could representations in children. In data concerning learning

3.2. Delayed Explication of Unconscious Processes
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concepts of both natural and nominal kinds, simple demonstrated in neural network models by e.g. Elman
similarity-based or prototype representations dominated (1990) and many others. Elman (1990) reported good
at first, but gradually more explicit and focused theories generalisation of sequences by recurrent backpropaga-
developed and became more prominent. Keil (1989) tion networks in grammar learning. Pollack (1991)
pointed out that it was unlikely that theories developed found generalisation of such networks to arbitrarily
independently, but rather they developed somehow from long sequences. As in human learning, generalization
associative information that was already available. Thesein neural networks is based in part on similarity of old
findings further testify to the ubiquity of an implicit-to- and new sequences but also in part on certain structures
explicit transition (Clark & Karmiloff-Smith, 1993). exhibited by the sequences. Thus, the bottom level of
CrarioN readily captures this kind of bottom-up pro- CrLarion, which incorporates a backpropagation net-
cess. The bottom level develops implicit, embodied skills work, has the capability to capture the generalization
on its own (Section 2, egn (2)), while the top level exhibited in human implicit learning. (Explicit processes,

extracts explicit rules using algorithiRule-Extraction- as in the top level of Carion, can also generalise, albeit
RefinementSection 2). Thus, the delayed bottom-up in a different way as discussed in Sun et al., 1995.)
learning naturally falls out of the modalI. It has also been observed that implicit processes are

more robust than explicit processes (Reber, 1989) in the
face of internal disorder and malfunctioning. For exam-
ple, Hasher and Zacks (1979) found that encoding of
frequency information (an implicit process) was cor-
It has been shown that implicit learning produces less rectly performed by clinically depressed patients, even
flexible knowledge than explicit knowledge (Seger, though they could not perform explicit tasks consciously.
1994; Berry & Broadbent, 1988; Stanley et al., 1989; Warrington and Weiskrantz (1982) found that amnesics
Karmiloff-Smith, 1986). Seger (1994) argued that impli- were more successful in performing implicit rather than
cit learning results in knowledge that was more tied to the explicit memory tasks. This effect is consistent with the
specific stimulus modality of the learning environment dual representation framework of. €&ron: while the top
and less manipulable. Based on psycholinguistic data, level employs localist representation and is thus more
Karmiloff-Smith (1986) observed that with the growth vulnerable to malfunctioning, the bottom level utilises
of explicit representations, more and more flexibility was a distributed representation that is more resistant to
shown by subject children.i@rion can account for the  damages and faults, as demonstrated amply in neural
higher degree of flexibility of explicit, conscious knowl- network models.
edge relative to implicit, unconscious knowledge. Due to
the explicit (i.e. Iocalllst) representatlloln used at the top 3.4. Unconscious Initiation of Action
level of CLarion (Which stores explicit knowledge), a
variety of explicit manipulations can be performed that Existing evidence indicates that unconscious processes
are not available to the bottom level. For example, back- often (if not always) initiate actions in skilled perfor-
ward and forward chaining reasoning, counterfactual mance in advance of conscious awareness. Libet (1985)
reasoning, explicit hypothesis testing learning, and so reported that electrophysiological “readiness poten-
on can be used individually or in combination. These tials” (RPs) always precede conscious initiation of an
capacities lead to heightened flexibility in the top level. act that is fully endogenous and voluntary. After a con-
The bottom level employs only backpropagation net- scious intention to act appears, whether the action actu-
works and thus cannot have the same flexibility. ally takes place or not can still be decided consciously
As observed in many experiments, following explicit by a subject within a time period of somewhere between
learning, subjects are able to handle novel stimuli in a 100 and 200 ms. As suggested by Libet (1985), the role
similar way (or in other words, to generalise). In artificial of the conscious mind is not to initiate a specific course
grammar learning, Reber (1967, 1976) found good of action, but to control and influence (implicitly selected
transfer to strings using different letters but based on and initiated) actions.
the same grammar. Berry and Broadbent (1988) showed This view is consistent with that of Willingham et al.
that subjects trained on a dynamic decision task could (1989) that the role of explicit processes is to influence
transfer to another task with a similar cover story and the implicit process but not to directly take control of
identical underlying relations. Generalisation has been skill learning or performance. Willingham et al. (1989)
posited that the effects from the two processes are

. ) . “superimposed” on each other, so that each type com-
5There is also evidence that explicit knowledge may develop P P yp

independently. Willingham et al. (1989) reported such data. These Plement each other. Kelley and Jacoby (1993) also
data rule out the possibility that one type of knowledgeaiways insisted that an important function of the explicit mind

preceded by the othertype,at Ieastunderthewequrl_mental conghtlons. is to oppose, or counterbalance, the influence of the
To account for this phenomenon, inL&ioN, explicit hypothesis . . . .

testing can be employed in the top level for learning rules, inde- IMPlicit mind.

pendently of the bottom level, as mentioned before. The aforementioned view is also consistent with

3.3. Differences in Conscious/Unconscious Processes:
Flexibility, Generalizability, and Robustness.
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voluminous data on the ever-present role of unconscious

processes in all kinds of tasks: lexical priming, semantic

processing, visual attention, unconscious perception and

so on (as discussed in Velmans, 1991; Marcel, 1983).

Velmans (1991) summarized evidence for the existence

of implicit (preconscious) analysis of input stimuli,

implicit processing of semantic content of word pairs ) o )

. . . . . . FIGURE 5. The Maze. The starting position is marked by “S” in

In ;_hadowmg eXpe”men_tS’_ and Imp_“CIt process_mg which the agent faces upward to the upper wall. The goal is

of bilingual messages in similar experimental settings. marked by “G".

Most of these findings support the possibility that uncon-

scious processes start before conscious processes takeubjects who explained the examples in textbooks more
hold. completely did better in solving new problems. In all

CLARrION can readily accommodate this phenomenon, these cases, it may well be the explication and the use
in that the bottom level, which captures unconscious of explicit knowledge that helped the performance.
processes, can work independently and initiate proces- In terms of facilitating transfer of skills, Willingham
sing without the involvement of the top level. However, et al. (1989) obtained some suggestive evidence that
after the initiation of action and, consequently, the acti- explicit declarative knowledge facilitated transfer of
vation of the relevant nodes, the corresponding represen-skilled performance. It was reported that: (1) subjects
tations at the top level can then be activated by the who acquired explicit knowledge in a training tasks
bottom-up information flow (see Section 2). The acti- tended to have faster response times in a transfer task;
vated explicit representations and their associated pro-(2) these subjects were also more likely to acquire expli-
cesses at the top level will in turn influence the implicit cit knowledge in the transfer tasks. In high-level
processing at the bottom level, in way of modifying and domains, Ahlum-Heath and DiVesta (1986) also found
rectifying its outcomes and decisions (through the com- that the subjects who were required to verbalize while
bination mechanism; see Section 2). Thus the implicit solving the Tower of Hanoi problem performed better on
processes, which directly control actions in skilled per- a transfer task after training.
formance, incorporate the results of explicit processes Sun et al. (1995) reported some simulation experi-
from the top level. ments that demonstratedL&kion was able to exhibit
analogous synergy effects in learning, performance,
and transfer through the interaction of the two levels.
The simulation experiments were conducted in two
domains: maze running and navigation through mine-
Why are there two separate (although interacting) sys- fields. The details of the experiments and complete
tems, one conscious and the other unconscious? Based odata can be found in Sun et al. (1995). Briefly, in the
earlier discussions, we may hypothesize that each systemmaze task, a subject/agent was to find a unknown
serves a unique function and the two are complementarytarget in the maze and had only rudimentary sensory
to each other; that is, there may be a synergy between theinputs regarding its immediate left, front and right side,
conscious and the unconscious. Such a synergy mayindicating whether there was a wall, an opening, or the
show up by speeding up learning, improving learned goal; the agent could move forward, turn to the left, or
performance, and facilitating transfer of learned skills.  turn to the right, until it found the target (see Figure 5). In

In terms of speeding up learning, Stanley et al. (1989) terms of speeding up learning, the differences in learning
reported that in a dynamic decision task (the sugar fac- speeds betwee@-learning (which in CarioN captures
tory task), subjects’ learning improved if they were asked unconscious learning at the bottom level) anch&onN
to generate verbal instructions for other subjects along (which includes both unconscious and conscious learn-
the way during learning. Willingham et al. (1989) found ing) were very significant. In terms of trained perfor-
that those subjects who acquired full explicit knowledge mance (measured by the average number of steps
appeared to learn faster. needed to reach the target in one episode\rbN out-

In terms of learned performance, Willingham et al. performed pure-learning by large margins again. We
(1989) found that subjects who verbalized while per- also compared the trained performance of the bottom
forming were able to attain a higher level of perfor- level of CLarION alone (after the training of the entire
mance, because the requirement that they verbalisedsystem together, includin@-learning) with the perfor-
their knowledge prompted the formation and utilization mance of pur&-learning, and discovered that the expli-
of explicit knowledge. In high-level skill acquisition, cation of skills not only improved the performance of the
Gick and Holyoak (1980) found that good problem whole system, but it also improved tliglearning part
solvers could better state rules that described their when included as part ofiGrion. We also assessed the
actions in problem solving. This phenomenon may be performance of trained models in a new and larger maze.
related to the self-explanation effect (Chi et al., 1989): CrarioN transferred much better thaplearning alone

3.5. Synergy Between the Conscious/Unconscious
Processes
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O 4. THEORETICAL ISSUES

u Some theoretical issues concerning consciousness will be

O discussed below in relation to tha£&kioNn model.
Q O obstacles

4.1. Casual Efficacy of Consciousness

Q Is consciousness epiphenomenal as some have claimed?
O ' To see the casual role of consciousness, it is useful to
O . ) ” )

O O examine the available cognitive. The following has been
observed from patients who suffered the loss of some of
the capacities of their consciousness due to brain
damages (Marcel, 1988):

target

e They lost the ability to act on parts of the environment
O that were not accessible to their explicit/conscious
mind (as in the case of blindsight patients who could
Q not grasp objects in the blind field).
FIGURE 6. Navigating through mines. ¢ They lost the ability to form an integrated self-concept
(as in the case of amnesiac patients).
¢ They lost the ability to learn new complex tasks that
required explicit, verbal instructions.
They lost the ability to form explicit plans of actions
before acting on them.

(in terms of number of steps to reach the goal in one
episode). Furthermore, by comparing the corresponding
performance of the top level, the bottom level and the
whole G.arioN model, it was clear that often learned
rules alone (the top level) performed better in transfer ~ These effects indicate certain casual efficacy of con-

than the bottom level, as well as than the whola@on sciousness, and are consistent witha@on. In the
model, which showed that explicit knowledge facilitated model, these effects follow from the loss of the mechan-
transfer. isms in the top level of €arioN, such as backward

In the simulated navigation task shown in Figure 6, the chaining reasoning (planning), verbal instruction taking,
subject/agent had to navigate an underwater vesseland the use of explicit knowledge (regarding self and
through a minefield to reach a target location. The objects in the world).
agent received only local information from a number of ~ Through contrasting “aware” vs “unaware” condi-
instruments, as shown in Figure 7. Using only this infor- tions on their experiments with human subjects, Kelley &
mation, the agent decided (1) how to turn and (2) how Jacoby (1993) showed that conscious awareness per se
fast to move, and within an allotted time period, could had a distinct effect in subsequent behaviour. The two
either (a) reach a target (which is a success), (b) hit a different conditions produced two different causal attri-
mine (a failure), or (c) run out of fuel (a failure). Interms butions in the subjects: one to true causes (in the
of learning speeds, the superiority of.kion over Q- “aware” condition) and the other to spurious causes
learning was statistically significant. To access transfer, (in the “unaware” condition; see Nisbett & Wilson,
after training models on 10-mine minefields, we assessed1977 for causal attribution as error-prone, post hoc inter-
performance of these models in new minefields that con- pretation); consequently, different causal attributions
tained 30 mines. CarioN outperformed-learning. The  led to different actions on the part of the subjects
difference between the best transfer of Q-learning and making the attributions. This kind of causal role in con-
the best transfer of G\rion was statistically significant. ~ sciousness is consistent with that of the top level of
In sum, G.ARION is able to replicate similar findings in  CLARION, which shares the responsibility of controlling
human conscious/unconscious learning. actions using explicit knowledge. A second mechanism

on top of unconscious processes can offer counter-
balance, and thus can have clear survival values to the

@ agent possessing it.
@ 4.2. Human Intuition
While the top level of €CarioN captures conscious pro-
° 0 00 cesses, the bottom level may captimeiition to some
o , extent (as a form of skill): This level has the character-
FIGURE 7. The navigation input. The display at the upper left isti f bei . licit. i ibl d holisti hich
corner is the fuel gauge; the vertical one it the upper right corner ISticS of being implicit, Inaccessible, an olistic, whic

is the range gauge: the round one in the middle is the bearing are also characteristics of human int_uition (James, 1890;
gauge; the 7 sonar gauges are at the bottom. Dreyfus & Dreyfus, 1987). According to Smolensky
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(1988), as mentioned before, intuition and skill are not
expressible in linguistic forms and constitute a different
kind of capacity, reflecting “subsymbolic” processing.
Dreyfus & Dreyfus (1987) suggested that intuition is
manifested in the fluent, holistic and situation sensitive
way of dealing with the world, unique to humans and not
captured by conventional symbolic computation. These
identified characteristics can be found in the bottom level
of CLARION t0O some extent.

It was hypothesised by Reber (1989) that human intui-
tion may be the direct result of implicit, unconscious
learning: Through the gradual process of implicit learn-
ing, “tacit” (implicit) representations emerge that cap-
ture environmental regularities and are used in direct
coping with the world (without the involvement of any
introspective process). Intuition is the end product of this

process of unconscious and bottom-up learning (Reber,

1989). Bowers et al. (1990) also suggested that intuition
is the outcome of an unconscious, implicit process
(which later becomes explicit due to the emergence of
a coherent pattern of activation) in the context of discov-
ery. GLarioN indeed uses implicit learning to develop
tacit (implicit) representations in the bottom level and
thus acquires intuition in the sense identified above.

4.3. Two Types of Consciousness

We can also examine the two levels of &R1on using
the perspective of phenomenological philosophy.
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comportment with the world is aiecessarymeans

for coping with a complex world that exhibits complex
regularities. Explicit representations are derived from
direct comportment with the world. Derived representa-
tion and thematic consciousness come into play, e.qg.
during breakdown in which established routines get
disrupted and thus alternative ways are necessary (see
also Sun, 1994, Chapter 8). In the light of the above,
the distinction between the two levels in.&ion can

be corresponded roughly to the distinction between com-
portment and thematic consciousness. Specifically, the
bottom level captures the implicit and routine activities
and embodies “comportment”. This is because the
bottom level embodies skills resulting from and used
for directly coping with the world and involves distrib-
uted representation, which is hence unable to present
explicit traces of its processes (Smolensky, 1988). How-
ever, some events (e.g. certain implicit processes or
explicit verbal inputs; Velmans, 1991) may lead to acti-
vation of corresponding explicit representations and pro-
cesses at the top level and therefore lead to (thematic)
conscious awareness. This is because at the top level
explicit/localist representation is used, which makes it
possible to articulate the content that is present and
trace the processes as they are occurring (Sun, 1994,
Chapter 2). Furthermore, due to the fact that the top
level of CLarioN is derived from, mediated by, and
grounded in the bottom level, which has direct inter-
actions with the external world and develops bottom-up

Heidegger (1927) emphasised a basic mode of existencefrom such interactions, (thematic) consciousness is

that is, the immediate comportment with the world.
Normally, when going about its daily business, an
agent is nothematicallyconscious of routine activities.
Everyday routine activities are mostly made up of non-
deliberate “primordial” coping. For example, in normal
perception, we are usually not having thematic experi-
ence of the world (Dreyfus, 1992). An agent’s “openness
onto the world” is fundamental and makes possible the
secondary experience of deliberate looking or trying to
see (Dreyfus, 1992). Comportment is prior to any
(explicit) belief, (explicit) knowledge, or (explicit)
representation; it is a direct connection between an
agent and its existential context. It is comportment with
the world that is in fact a more fundamental kind of

clearly grounded, in this model as in humans, in the
interaction between the agent and the external world.

4.4. Qualia

But what about qualia? Qualia refer to the phenomenal
quality of conscious experience. Block (1994) distin-
guishes access consciousness and phenomenal con-
sciousness, whereby access consciousness refers to the
utilization of the content of consciousness while phe-
nomenal consciousness refers to the subjective feel of
conscious experience. Although it has been a major dif-
ficulty to understand phenomenal consciousness/qualia
(“the hard problem”; Chalmers, 1992), some specula-

consciousness, according to Heidegger, and in thistions may be made here in relation ta.A&ioN: qualia
view, consciousness is non-representational (i.e. without (phenomenal consciousness) may be accounted for by

explicit representation).
This is in contrast with the notion of “thematic” con-

sciousness, which involves a focused, meditated aware-

the totality of a multi-modal (see the next section regard-
ing modalities), multi-level organization and its total
collective states, which are of extremely high complexity

ness of the object of consciousness (akin to the commoninvolving external perception (of many modalities),
notion of consciousness). Thematic consciousness isinternal perception, action decision making, explicit

representational because it treats awareness itself as aconcepts, etc. The complexity of this organisation may
object (see also Clark & Karmiloff-Smith, 1993). As has explain the difficulty (or impossibility) of describing
been argued extensively by Heidegger (1927), thematic phenomenal qualities (qualia) of consciousness, which
consciousness can indeed arise, but it presupposes ds the most striking feature of phenomenal consciousness
nonthematic, nondeliberate, direct, and on-going way (as argued by Nagel, 1974). In this approach, a particular
of dealing with the world (i.e. comportment); for direct kind of phenomenal quality may be accounted for by a
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particular region of total-state space (involving the
totality of all the aforementioned aspects) or the manifold
as termed by Van Gulick (1993), which gives rise to the
sense of what something is like (Nagel, 1974). Clearly,
such regions depend on particulamctional organi-

zations of modules and levels (Chalmers, 1992) that

support such a space of total-states. Qualia are thus

(partially) the result of functional organisations (archi-
tectures) of cognitive apparatuses. Ima®ioN, qualia
are (partially) the result of the two-level organization,
on top of all the detailed, intricate structures involved
in various fine-grained modalities (the detail of which
is not covered here). Equally important, such regions
arise from the interaction of the agent and the world, as
the consciousness is grounded in learning, action, and th
world in which the agent exists. Thus, phenomenal con-
sciousness is in general derived from a complex integra-

tive organisation of cognitive apparatuses that develop as

a result of the interaction between the agent and the
world. This is true both in an ontological and in an onto-

genetic sense. Note that, though access consciousnes

has a clear causal role in behaviour (as discussed earlier)

phenomenal consciousness is less clear in this regard

(Block, 1994).

4.5. Functionalism

An important question regarding consciousness is
whether there is a physical basis for consciousness
and what it is. It is pretty much agreed upon among
contemporary philosophers that there is indeed a
physical basis but they disagree on what constitutes
that physical basis. In thet@rion model, we basically
stipulate that the physical basis of consciousness is mad
up of the detailed architecture, the fine-grained func-
tional organisation (e.g. the two-level modular frame-
work with detailed sensory modality structures at a
very fine level), of one’s cognitive apparatus, in inter-
action with one’s world. The distance between the physi-
cal and the phenomenological/psychological is so great
that intermediate levels (functional levels) are necessary
for studying cognition, and this is especially true in the

€

e
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5. COMPARISONS

The following comparisons will further explicate and
accentuate the GrioNn model in accounting for issues
of consciousness.1GrioN captures important features
of existing models. The comparisons reveal thah&

10N has the potential to account for the integration of
sensory modalities, global consistency, and the unity of
consciousness.

First we can compare iGrion with the model of
Baars (1988) (see Figure 8), in which a large number
of specialist processors perform unconscious processing
and a global workspace coordinates their activities
through global broadcasting to achieve consistency and
thus conscious experience. The model bears some resem-
blance to @arion, in that unconscious specialist proces-
sors in that model can be roughly equated to modules
in the bottom level of Carion, and the global workplace
may be roughly captured by the top level, which
“synthesizes” the bottom level modules and is essential
in conscious processing. One difference is theiiGoN
does not emphasise as much internal consistency
(Marcel, 1983): it is believed to be limited as a phenom-
enon in consciousness and may have only limited roles in
the emergence of consciousness. Global broadcasting
in Baars’ model (Baars, 1988; Revonsuo, 1993) can be
viewed as the integration of the two levels of representa-
tions (with the bottom-level representations dispersed
within multiple modules) in €arion, which does pro-
duce somewhat consistent outcomes (which lead to the
unity of consciousness; Baars, 1988; Marcel, 1983; more
on this later).

We can also compare 1@rion with the model of
Schacter (1990) (see Figure 9), which is based on
neurophysiological findings of the dissociation of differ-
ent types of knowledge in brain damaged patients as
mentioned earlier. It is similar to 1GrioN, in that it
includes a number of “knowledge modules” that per-
form specialized and unconscious processing (analogous
to bottom-level modules in Girion) and send their

case of studying consciousness. The present approach

is a form of fine grained functionalism (Chalmers,
1992), which states that consciousness is invariant
across systems with the same functional organization at
a sufficiently fine-grained level (i.e. the principle of
organizational invariance), as argued for elegantly by
Chalmers (1992). It is a weak form of functionalism, in
that it is not just causal connections between functional
states that are important, but also the level at which we
identify functional states. This approach is also inter-
actionalism in the sense that the interaction of internal
and external systems (the agent and its world), on the
basis of internal (developing) fine-grained functional
organizations, is crucial in giving rise to conscious
experience (Heidegger, 1927).

global
workspace

e

specialist
processors

i } i

FIGURE 8. Baars’ model of consciousness.
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FIGURE 9. Schacter’s model of consciousness.

outcomes to a ‘“conscious awareness system” (analo-

gous to the top level in CariON), which gives rise to

via recurrent connections. InL&rioN, different sensory
convergence zones may be roughly captured by bottom-

conscious awareness. Schacter's explanation of someevel modules, each of which takes care of sensory inputs

disorders (e.g. the loss of short-term memory or explicit
learning abilities, as mentioned earlier) is that certain

of one modality (at a properly fine level), and the role of
the global multi-modal convergence zone (similar to the

brain damages result in the disconnection of some of “global workspace” in a way) may be played by the top
the modules from the conscious awareness system,level of CLarioN, which has the ultimate responsibility

which leads to their inaccessibility to consciousness.
An alternative explanation offered byL&rion is that

for integrating information (and serves as ‘“conscious
awareness system”). The widely recognised role of

disorders may not be due to disconnected modules, butreverberation (Damasio, 1994; Taylor, 1994) may be

the loss of some explicit learning and performance
mechanisms at the top level (resulting from brain
damages etc.).

Finally, we can examine Damasio’s neuroanatomi-
cally motivated model (Damasio, 1994; Revonsuo,

captured in C€arioN through using recurrent connec-
tions within modules at the bottom level and through
multiple top-down and bottom-up information flows
across the two levels, which lead to the unity of con-
sciousness that is the synthesis and integration of all

1993). The model (see Figure 10) hypothesised the the information present (Marcel, 1983; Baars, 1988).

existence of many “sensory convergence zones” that
integrated information from individual sensory modal-

ities through forward and backward synaptic connections
and the resulting reverberations of activations, without
the need for a central location for information storage
and comparisons; it also hypothesised the global
“multi-modal convergence zone”, which integrated

information across modalities also through reverberation

multimodal
convergence
zone

Somatosensory
convergence

auditory
convergence

visual
convergence

FIGURE 10. Damasio’s model of consciousness.

6. CONCLUDING REMARKS

This paper presented a hybrid neural network model for
learning that incorporated the distinction of declarative
and procedural knowledge, and succeeded to some extent
in accounting for the distinction of the conscious and
the unconscious (or the explicit and the implicit). More
specifically, the €arion model applied neural network
and machine learning techniques to explain complex
human learning and consciousness in normal human
subjects. It accounted for phenomena in psychological
literature on learning and development in terms of the
two levels in the model and their associated mechanisms.
The model readily accommodated important features of
existing models of consciousness. We also had some-
thing to say about theoretical issues such as qualia and
intuition on the basis of the model, which helped clarify
complex issues in a tangible way. The key issue for
future research is scaling up the model by incorporating
a variety of sensory information and dealing with com-
plex environments, in order to allow rudimentary forms
of consciousness to emerge, because, | believe, complex-
ity is a necessary condition for consciousness.
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Abstract—A memory-controlled, sensor/actuator machine senses conditions in its environment at given moments, and
attempts to produce an action based upon its memory. However, a sensor/actuator machine will stop producing new
behavior if its environment is removed. A sensor/sensor unit can be added to the sensor/actuator machine, forming a
compound machine. The sensor/sensor unit produces a stream of internally created sensed conditions, which can replace
the sensed conditions from the environment. This illusion of an environment is similar to consciousness. In addition,
actuator/sensor and actuator/actuator units can be added to this compound machine to further enhance its ability to
function without an environment. Predetermined and empirical memory cells can be distributed throughout the control
units of this compound machine to provide instinctive and learned behavior. The internal and exterior behavior of this
compound machine can be modified greatly by changing the cycle start and ramp signals that activate these different
kinds of memory cells. These signals are similar in form to brain wa®ek997 Elsevier Science Ltd.

Keywords—Memory-controlled machines, Conditional memory cells, Logarithmic changes in memory, Trinary
encoders and decoders, Interrogation signals, Brain waves, Anesthesia, Coma.

1. MEMORY-CONTROLLED, SENSOR/ (AP) memory cells in a “1” (conducting) or “0”
ACTUATOR MACHINE (non-conducting) position, as shown in the scalar matrix
in Figure 2.

The diagram in Figure 1 can represent a typical machine.

A memory-controlied, sensor/actuator machine Sensesthe sensor variabley] is identified and held by a latched

conditions in its environment at given moments, and : ) . . )
. . connect. This energizes the input disconnect, which
converts these sensed conditions into memory addresses;

. prohibits any other value of the sensor variabh (
It then attempts to produce an action based upon thefrom being identified in that transition cycle. The voltage

content of these memory addresses, completing a transi- ;
tion cycle (Ashby, 1960), from the output enable appears at the output terminal

. of the AP cell with a closed toggle switch and the ener-
The behavior of a memory-controlled, sensor/actuator . . .
machine can be predetermined (programmed or Setglzed Igtched connect. This energizes an output connect
beforehand), or it can be established over time by an belonging to the actuator variablg)( The actuator delay
empirical (s,elf-learning) process. The output of the timer (tg) in the cycle timing circuit delays the movement
controller of a memory-controllea machine also can of the actuator to the position of the energized output

be absolute (determined by individual memory cells), connect, and the cycle end timete)(terminates the

. i . transition cycle, releasing the latches and timers. A
or conditional (determined by the relative values of : ) .
brake holds the actuator in a fixed position between
many memory cells).

transition cycles.

At the beginning of a transition cycle, the value of

1.1. Absolute-Predetermined, Memory-Controlled 1.2. Conditional-Predetermined, Memory-Controlled
Machine Machine

An absolute-predetermined, memory-controlled machine Complex behavior may be difficult to program into an
can be programmed to produce a specific action for eachabsolute memory-controlled machine. A cumulative
specific sensed condition. This is done by placing the programming process can be achieved by changing the
toggle switch in each of its absolute-predetermined stored memory values logarithmically between zero and
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Control Memory

Input | Output
Sensed Output
Conditions Signal
Sensor Actuator
Changed Attempted
Conditions Action

Environment

FIGURE 1. A memory-controlled, sensor/actuator machine
produces an ongoing line of behavior when each sensed
condition produces a new action, and each action creates a
new sensed condition through the environment in each
transition cycle.

1 in steps. This is done by means of the logarithmic
subtraction mechanism (LSM) (Brown, 1994) in each
conditional-predetermined (CP) memory cell in the
controller of the conditional-predetermined, memory-
controlled machine shown in Figure 3.

The CP memory cells are interrogated by the ramp
signal (R). The ramp signal (R) causes a CP cell to

R. A. Brown

(CP) memory cell approaches its maximum or minimum
value asymptotically.

An equal input of 1's and 0’s leaves the sensitivity of
a CP cell near the mid-position after a sufficient number
of programming steps.

2. SELF-LEARNING, SENSOR/ACTUATOR
MACHINE

A self-learning, memory-controlled machine measures
the action that is actually carried out in each transition
cycle. It then adjusts its memory to increase the likeli-
hood of selecting the actual action when the same
conditions reoccur (Brown, 1994), as shown in Figure 5.

The behavior of a self-learning machine will change
until it is no longer interfered with by outside
influences. Thus, the behavior of a self-learning,
memory-controlled machine will come to reflect the
intentions of its operators, and the constraints of its
environment.

2.1. Absolute-Empirical, Memory-Controlled
Machine

A circuit can be added to the absolute-predetermined

become conductive when the ramp signal reaches thecontroller shown in Figure 2 that measures the actual

sensitivity value of that CP cell. The output from
the matrix is terminated by the output disconnect when
an output latch is energized. This prohibits any other

action that takes place in a given transition cycle. This
actuator feedback circuit can be used to change the state
of absolute-empirical (AE) memory cells, forming the

less sensitive CP cells from selecting another value of absolute-empirical memory controlled machine shown

the actuator variableZ].

1.3. Logarithmic Subtraction Mechanism

The logarithmic response curves in Figure 4 show how
the sensitivity of a single conditional-predetermined

in Figure 6.

The memory state of each absolute-empirical (AE)
memory cell is set by changing its value to 0 when it
selects an output, and changing its state to 1 if the
output its selects actually takes place in a given transi-
tion cycle.

Actuator

|~ APCell | L _-FA_PEe_u a0

Connect "_)’——I
A—1| o

M

; T
: Latched H,. | 1'-|_\
1) (o) 1
—
Sensor L A

.
|

|
|
|
! Output : P |
: Enable i ! | Switch ' |
° | N
I | k3 | ' Output
I L__i=i0! = N Terminal
| |
| | /
1 I I g Ep——
l 1 ! AP Cell | | APCel i |1 ©
| T o—t—— |
| | . | ] ... 1 | Scalar
| HE ' E | | Memory
! T i ! | P P
! I = ! Tl |
[ Y il S e |
J S, Input —3 — — —
r 1
i Terminal | ] F | Input
| ! [l Di _
!\F" . | 1\ . | Dls\connect td|j":-*
| |
|
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A
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[ Ul =
| Iy
1 Signal *% LS'H_

FIGURE 2. The binary memory matrix of an absolute-predetermined, memory-controlled machine is similar to a computer memory matrix.
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FIGURE 3. The analog sensitivity of each conditional-predetermined (CP) memory cell in the controller of a conditional-predetermined
memory-controlled machine is determined by the position of the wiper arm on its variable resistor.

2.2. Absolute-Empirical Algorithm memory-controlled machine shown in Figure 3, forming
the monolithic conditional-empirical memory-controlled
machine shown in Figure 8.

The sensitivity of the selecting CE memory cell is
fractionally decreased. Then, the actuator feedback
circuit measures the actual action that takes place in a
given transition cycle. It then fractionally increases the
sensitivity of a feedback-selected CE cell, which is at
the intersection of the actual value of the actuator
2.3. Conditional-Empirical, Memory-Controlled co-variable 7') and the value of the input variabl&)
Machine in that transition cycle. This makes the feedback-selected
CE cell more likely to select the value of the actuator
variable g) that takes place with the value of the sensor
variable @) in that transition cycle, as explained in the
next section.

The operation of the absolute-empirical, memory-
controlled machine in Figure 6 is shown in the
absolute-empirical algorithm in Figure 7.

An absolute-empirical, memory-controlled machine
loses all traces of its previous experience when it
encounters new learning.

The actuator feedback circuit shown in the absolute-
empirical (AE) cell memory-controlled machine in
Figure 6 can be added to the conditional-predetermined

Maximum 1 2.4. Logarithmic Response Curves of a CE Cell
Programming 1's Only The logarithmic subtraction mechanism (LSM) in each
Sensitivity 0.5
Programming 0’s Only
Minimum 0 Tt oo TTToTTToTTTTm e !

Number of Subtractions Self-Learning, Sensor/Actuator Machine

Maximum 1

Programming 1's and 0’s Equally Control Memory

Sensitivity 0.5 Input I Output
Sensed | Feedback Output
- Conditions Signal Signal
Minimum 0 5' 1(? 1'5 2'0 215 | Sensors | | Actuators
FIGURE 4. A falling logarithmic response curve is produced Changed | Actual | | Attempted
when the LSM subtracts a fixed percentage of the sensitivity Conditions Action y Action

each time the conditional-predetermined (CP) memory cell is
programmed with a “0"”. A rising logarithmic response curve

is produced when the LSM adds the same fixed percentage
of the difference between the sensitivity and the maximum FIGURE 5. A self-learning, sensor/actuator machine learns to
sensitivity each time the conditional-predetermined (CP) produce the action that is most likely to be carried out with

memory cell is programmed with a “1”. each sensed condition in a given transition cycle.

Environment
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FIGURE 6. An absolute-empirical, memory-controlled machine learns the
condition.

conditional-empirical (CE) memory cell decreases its
sensitivity by a fixed percentage of its existing sensitivity
value when it selects an action. It then increases its
sensitivity by a fixed percentage of its difference from
1 if that action actually takes place in that transition
cycle, creating the logarithmic response curves shown
in Figure 9.

Cycle Outside Cycle
Start = Timing (<— End
Signal Source Signal
T N I
| Select Output Set Memory Value :
Sensed |} | Based Upon of Relation <
Input |} Memory Value Actually Carried Out
i of Sensed Input o One

Set Memory Value
of Selected Input/
Output Relation
To Zero

Control Memory

ABSOLUTE EMPIRICAL MACHINE

Attempt to
Produce

Output Measure
i Actual
Envi-
ronmental écttuallt Ogtﬁut
Delay | utpu v;l::n ;n
! t
|

Outside
Influences
(Interferences)

FIGURE 7. The absolute-empirical algorithm is typical of a binary
computer memory, which leaves no trace of a recorded value
once it is erased.

last action that is actually carried out with each sensed

If more selection events occur than feedback events,
the sensitivity of a CE cell will reach a value closer to
the minimum sensitivity. If more feedback events occur
than selection events, the sensitivity of the CE cell will
reach a position closer to the maximum sensitivity. If
an equal number of selection and feedback events
occur for a sufficient number of times, indicating
that the selected action always occurs, the sensitivity
of the CE cell will approach the mid-position. Usually,
there are more selection events than feedback
events, because not every selected action is carried
out successfully. Thus, a successful selection/feedback
event increases the sensitivity of a CE cell toward the
mid-position asymptotically, which is the maximum
sensitivity a cell can have if every selected action is
carried out.

2.5. The Conditional-Empirical Algorithm

The conditional-empirical algorithm shown in Figure 10
is similar to the accounting system used in financial
markets.

The conditional-empirical algorithm causes the most
sensitive memory CE cell connected to a sensed condi-
tion in a given transition cycle to select an action, but at
the price of losing some of its sensitivity. If its action
takes place, it regains more sensitivity than it lost. Thus,
successful CE cells become more likely to select actions.
However, the memory of an unsuccessful CE cell is
reduced only slightly, leaving a permanent record of
previous successes.

2.6. Duplex Control Memory

The control memory of a self-learning, memory-
controlled machine works best if it is divided into two
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FIGURE 8. In a conditional-empirical, memory-controlled machine, a ramp signal causes the most sensitive CE cell connected to the
existing value of the sensor variable ( A) to select its value of the actuator variable ( Z2).

memories. An input decoder unit is connected to an produce the actual values of the actuator variable that
output encoder/decoder unit by an intermediate variable take place with the sensed conditions in that transition
() and intermediate co-variabld’). The two units cycle.

form the duplex control memory shown in Figure 11.

This configuration allows a value of the intermediate

variable () to represent a specific actuator state, and

greatly reduces the number of required memory cells

when a limited number of sensor/actuator relations are

required. i[Cyde | [Ouside | [cyoe | k
The self-learning duplex sensor/actuator machine St [ Soumg 1= Senel |
|

measures the actual values of its actuator variables,

and uses this feedback signal to decode a back- s?Jlect%np%Based Fractionally IEcrease
selected value of its intermediate co-variablE).( Sensed Lgp\%'?sg‘?”ﬁea‘fg lf‘ﬁﬁ‘;’%?,’{f%feilﬂt°fd .

I i I 1 ells Connecte ntersection of Sense
Thls_back-selected val_ue of the |nterr_ned_|ate co-variable 1o Sensed Input | |Input and Actual Output
(I") is then used to increase the likelihood that the

programmable input decoder will select the value of

. . . . . Confid Level
the intermediate variablel)( that is most likely to the Selecting Control Memory

of the Selecting
Memory Cells

J—

1
H
|

Fractionally Decrease 1
i
H

|
|
|
|
|
|
|
|| Input
|
|
|
|
|
|
|
|
|

Maximum 1

Feedback Only MONOLITHIC
CONDITIONAL-EMPIRICAL MACHINE
Sensitivity 0.5 -
Produce
Select Only Selected

Output

|
|
|
|
|
|
| |Attempt to
|
|
|
|
[

Minimum 0 - Measure
Maximum 1 Number of Subtractions Actpal
Action
| Within
Select and Feedback Equally | Feedback
Sensitivity 0.5 [~ ‘L Period
///( Outside
Minimum 0 ! | | ! Influences
5 10 15 20 25 (Interferences)
FIGURE 9. The logarithmic response curves show that the FIGURE 10. According to the conditional-empirical alogrithm, a
sensitivity stored in a conditional-empirical (CE) cell approaches buyer’s liquid assets are reduced when a investment is made. If
the mid-position when there are an almost equal number of the investment is successful, the assets are increased more than

selection and feedback events. they were decreased, when the investment is liquidated.
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FIGURE 11. A duplex control memory must be programmed to
decode the values of its sensor variables into a forward-selected r
value of itsintermediate variable (/). Also, it must be programmed
to encode this forward-selected value (/) into forward-selected
values of its actuator variables. The duplex network is similar
to a computer memory system. The sensor matrix acts as a
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L
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programmable address decoder, and the actuator matrix acts

as a set of data (memory) registers. .
R
2.7. Conditional-Empirical, Bidirectional Actuator I.-.;;.'.':,'_’:'_'.‘,
ni o
i
The CE cell matrix shown in Figure 8 can be used as a

self-learning input decoder. However, it cannot be used
as the output encoder/decoder in a self-learning duplex
machine because it Ca_nn()t f_eed back the In_formatlon FIGURE 12. A conditional-empirical, bidirectional actuator unit
about the actual behavior of its actuators to its SENSOr foryard-selects a value of its output variable ( Z) based upon the
unit. Thus, the conditional-empirical, bidirectional value of its intermediate variable ( /) and the sensitivity of its
actuator unit shown in Figure 12 is required in a self- bidirectional (BD3) memory cells. It then back-selects a value
eaing duplex network it ol {2y o 20 Sovinty 38 et
Each bidirectional (BD3) memory cell uses the same ?;g;t?;ecrzo";ri”s( Y
LSM and variable resistor (memory element) in the
forward-selection and back-selection process. The
forward-selecting ramp (F-R) is isolated from the back-
selecting (B-R) ramp by the diodes shown. A bidirec-
tional actuator matrix is not used as a stand-alone
machine like the monolithic machine in Figure 8, rather
as a unit in an empirical network.

cell in any other set connected to the latched input
terminals and an unselected value of the intermediate
variable (). The bidirectional actuator matrix then
forward-selects the value of the actuator variablgs (
and Z) connected to the most sensitive bidirectional
memory (BD3) cells connected to the forward-selected
value of the intermediate variablé).( The sensitivities
of the forward-selecting memory cells in both matrices
Two or more of the scalar conditional-empirical matrices are reduced according to the conditional-empirical
in Figure 8 can be connected to form a multivariable algorithm (Figure 10).
sensor matrix. Two or more of the scalar bidirectional  The bidirectional actuator matrix then back-selects a
matrices in Figure 12 can be connected to form a multi- value of the intermediate co-variable)(where, in the set
variable actuator matrix. The multivariable sensor and of BD3 cells connected to the actual latched terminal
actuator matrices can be connected to form the multi- of each actuator co-variablé/’(and Z2’) and the back-
variable, conditional-empirical, duplex network shown selected value of the intermediate co-variatl8, (the
in Figure 13. least sensitive BD3 cell in the set is more sensitive
The conditional input matrix forward-selects a value than the least sensitive BD3 cell in any other set con-
of the intermediate variabld)(where, in the set of CE  nected to the latched actuator co-terminals and an
cells connected to the latched terminal of each input un-back-selected value of the intermediate co-variable
variable @ and B) and the forward-selected value of (I'). The sensitivities of the back-selecting BD3 cells
the intermediate variabld)( the least sensitive CE cell are increased logarithmically. Then the sensitivities of
in the set is more sensitive than the least sensitive CEthe conditional-empirical (CE) memory cells in the

2.8. Conditional-Empirical, Duplex Network
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FIGURE 13. The conditional-empirical (CE) and bidirectional (BD3) cells in a multivariable, conditional-empirical, duplex network
contribute to the forward-selection and back-selection of a value of the intermediate variable (

with the highest historical probability.

input matrix connected to the latched values of the sensor
variables A and B) and the back-selected value of the
intermediate co-variablel’) are increased logarithmi-
cally according to the conditional-empirical algorithm
(Figure 10).

2.9. Network Algorithm

The network algorithm shown in Figure 14 describes the
operation of a duplex network of empirical memory
matrices.

2.10. Digitized Self-Learning Machine

The empirical machine shown in Figure 13 has to learn
behavior for each value of the sensed conditions encoun-
tered, even though the same output behavior may apply
to many values of these sensed conditions. This problem
can be overcome by connecting an encoder to the sensor
variable and the sensor matrix through additional aggre-
gate variablesA(a) and A(b). A decoder and feedback
encoder can be connected to additional aggregate actua-
tor variablesZ(a) andZ(b) and the bidirectional actuator
matrix, as shown in Figure 15.

A generally high or a generally low value of the sensor
variable @) can select a unique value of the intermediate
variable () through the most significant aggregate

/) that represents a sensor/actuator relation

Cycle- Qutside Cgcle-
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FIGURE 14. A duplex network uses the network algorithm to

variable (A‘(b)) when high S_en_Si_tiVity values appear_ in forward-select values of its actuators according to the forward-
both values of the least significant aggregate variable selected value of its intermediate variable. It then back-selects a

(A(@)). Alternatively, each specific value of the sensor value of the intermediate co-variable (  I) that represents the value
variable @\) can each select a unique value of the inter- of the intermediate variable (/) most likely to forward-select the

mediate variablel} through each combination of values

actual values of the actuator variables that occurs in that
transition cycle. The back-selected value of the intermediate

of t_he most Signiﬁcant and least Signiﬁcant aggregate co.variable ( I') is then used to increase the sensitivity of the
variables A(b) andA(a)). conditional-empirical (CE) cells in the sensor matrix.
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FIGURE 15. A digitized self-learning machine can learn to provide general or specific representations of its sensor and actuator variables
(self-partitioning), and can do so with a minimum number of memory cells and a minimum learning time.

Decoder

A binary sensor encoder, actuator decoder, and feed-sensor/actuator machine, forming the compound
back encoder operating upon two aggregate variables ismachine (Brown, 1994) shown in Figure 16.
shown for the sake of simplicity. Additional aggregate = The four units of a compound machine make a unique
variables must be added if the number of values of a contribution to its overall success. The sensor/sensor unit
sensor or actuator variable exceeds four. Trinary (three- can provide the illusion of an environment by producing
value) encoders and decoders provide higher resolutiona stream of new sensations. The actuator/sensor unit
with fewer memory cells than binary or quadrary may help the machine anticipate certain events by
encoders and decoders (Brown, 1994). The trinary digi- supplying new sensed conditions based upon the actual
tized duplex network is the most effective configuration behavior of its actuators. The actuator/actuator unit can
of the empirical machines presented. supply routine actuator behavior, which may contribute
to the physical skills of the machine without the need to
3. COMPOUND MACHINE involve the sensor systems.
If the environment of a sensor/actuator machine is
removed, it will stop running. However, a sensor/sensor
unit can supply new sensed conditions even if the real Since these memory-controlled machines operate in
sensed conditions are suspended. The sensor/sensatiscrete steps at distinct moments, they may be called
unit can be connected to the sensor variables of adiscontinuous machines, in contrast to continuous
machines, such as analog computers. These discontinu-
ous, memory-controlled machines require a cycle control

3.1. Cycle Control Signal

Sensor/Actuator
Unit Transition Cycle Signal
Input | Output \/10(;ta}ge
S——l S ,_.8 F
Sensor/ | £ °E> A 12 Actuator/ L
Sensor — VSe_nsc]Jr S Vctvua!i)tlor —Actuator H
unit |3 ariables £| |Variables =| Unit mv) [
C L
g__l T 5 L.g r
Output | Input F
Actuator/Sensor 07 0.1 0.2
Unit End Start Time (sec.) End
FIGURE 16. A compound machine can keep running even if its FIGURE 17. The cycle control signal determines the period

environment is removed. between each input/output relation (transition).
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Ramp Curve 3.3. Mixed Memory Matrix
Voltage

o1r Absolute-predetermined (AP) cells in Figure 2 and
i absolute-empirical (AE) cells in Figure 6 can be modified
r to operate with conditional-predetermined (CP) cells in
mv) | Figure 3 and conditional-empirical (CE) cells in Figure 8,
F as shown in the mixed memory matrix in Figure 19.
The values of the mixed absolute-predetermined
(MAP) cells and conditional-predetermined (CP) cells

05 0.01 0.02 may be determined beforehand, and be programmed
Cycle Start  Ramp Start Time (sec) Peak into mixed matrices to take care of self-regulation
(homeostatic) functions of the machine. These predeter-
FIGURE 18. The voltage ramp signal is used to find the CP cell or mined memory cells may provide for innate behavioral
CE cell with the highest sensitivity in the set of conditional cells mechanisms such as “ducking a brick” (Dennett, 1991).

connected to the sensed value at the start of a transition cycle. Behavior that must be learned can be established in

signal to start and end each sense/action (transition)conditional-empirical (CE) memory cells and in mixed

cycle, as shown in Figure 17. absolute-empirical (MAE) memory cells in an input
Suspending the cycle control signal stops the behavior Matrix, and bidirectional empirical (BD3) cells in the
of a discontinuous machine. remaining matrices after the machine is put into use.

The behavior of the empirical cells can override and
supersede the behavior of the predetermined cells if
consistent behavior is found and learned. This is because
Conditional-predetermined and conditional-empirical the maximum sensitivity of the empirical cells can be
control memories require the additional ramp (search) designed to be greater than the sensitivity of the pre-
signal shown in Figure 18 to find the action that occurs determined cells. The predetermined cells can also
most likely with a sensed condition. provide fallback behavior in cases where consistent

Loss of the ramp signal results in the suspension of behavior cannot be found and learned. All of these
all behavior produced by the conditional (CP and CE) cells can be distributed throughout mixed memories
memory cells, but does not influence the behavior of of sensor/actuator, sensor/sensor, actuator/sensor, and
the absolute (AP and AE) memory cells shown in actuator/actuator units of the compound machine
Figs 2, and 6. shown in Figure 16.

3.2. Ramp Signal
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FIGURE 19. In a mixed memory matrix, the mixed absolute-predetermined (MAP) cells and conditional-predetermined (CP) cells can
produce instinctive behavior, while the mixed absolute-empirical (MAE) cells and conditional-empirical (CE) cells can produce learned
behavior.
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4. CONSCIOUSNESS signals were suspended to all of the controllers except
the actuator/actuator controller of a compound machine,
the machine might go into sleep walking line-of-behavior
involving routine movements, such as getting out of
ped. If the cycle start signal were to be suspended to all
of the controllers of a compound machine, a non-living
machine would go into a state of suspended animation.
Its memories would not change, and it would start right
up where it left off when the cycle start signals are
reintroduced. However, a living being would die if its
cycle start signals were discontinued. This is because
its self-regulation functions would cease.

The sensor/sensor unit of a compound machine may
serve the function of consciousness. That is, it may
provide an ongoing stream of internally-generated
sensations that carries the machine through states thal
lack meaningful or useful external stimulation. This
process may be extremely valuable in situations where
interruptions occur in the normal stream of sensed con-
ditions. For example, too much light may saturate the
visual sensors of an autonomous guided vehicle (AGV)
if it looks directly at the Sun. Alternatively, the visual
sensors may be unable to see in an environment with
too little light, say when it enters a dark room. In these
cases, the sensor/sensor system of this AGV may be able
to imagine the normal view that would be expected
under the circumstances that preceded the loss of the
image, and it could proceed as if it could see. Without Physicians testthe degree of consciousness of patients by
the contribution of the sensor/sensor unit (consciousnessasking them if they know what day it is, or what city they
unit) the AGV would have to be designed to stop when are in. Since there are no obvious clues in the patients’
its image sensor fails. Otherwise, it may produce uncon- room from which they can react responsively, they must
trolled and/or inappropriate behavior. dig into their conscious mind to find the answer to these
Most of the memory cells in a sensor/sensor control types of questions. Thus, their answer provides a beha-

memory of a compound machine may be conditional- vioral clue of consciousness (Herbert, 1993). Likewise, a
empirical (CE and BD3) cells. This is because it is diffi- compound machine can be placed in a task that involves
cult or impossible to determine the sequence of sensorsensor input. Then the sensors can be disconnected
values that may occur in a given task beforehand. How- intermittently. If the compound machine is able to cope
ever, it is conceivable that predetermined memory cells with the task successfully, a strong case is made for
may be used in a sensor/sensor controller to provide the machine having an internal representation (con-
innate illusions (Dennett, 1991) that are useful to the sciousness) of the external environment normally seen
operation of the machine. by its sensors. This internal representation is not a

model, but a dynamic line-of-behavior that is similar to

our intuitive understanding of our conscious thought

process. We seem to live in (act through) our conscious
4.1. Changing Levels of Consciousness thoughts.

4.2. Tests of Consciousness

Changing the distribution of the ramp signals throughout
a compound machine will result in major changes in its
behavior. If the ramp signals are suspended to all the
conditional memory cells in a compound machine with
a mixed memory, the machine will go into what appears Since there may be many memory units in a complex
to be a coma. In this case, the memory cells involved compound machine, there may be many overlapping
in learning will not operate. Only the absolute- cycle start signals and ramp signals. Each may operate
predetermined (AP) cells used for self-regulation will in phase and out of phase with other signals. Some
continue to operate, producing a vegetative state. If the signals may be present at certain times, and be suspended
ramp signal is discontinued to the conditional memory at other times. The changing pattern of these signals
cells of its sensor/sensor controller only, the compound greatly alters the type of behavior produced by a com-
machine will appear to be in a hypnotic state. It will pound machine. These changes in behavior occur
appear to react to all outside suggestions, having lost without changes in the basic memory state of the
its internal sense of intentionality. Other physical and machine. This is similar to the changes in behavior that
mental states are produced when the cycle start andoccur with changing patterns of brain waves in living
ramp signals are discontinued to the other controllers beings. For example, patterns associated with sleep
in a compound machine. For example, a dreaming, create different behaviors than patterns associated with
sleep-like state can be produced if the ramp signal is wakefulness. Since these different types of behavior
discontinued to all of the controllers except the sensor/ may be useful in different situations, a separate mode
sensor controller. In this case, the machine can think, controller may be required. The mode controller can be
but cannot move. The trajectory of the sensor/sensor used to control when and where the cycle start and ramp
controller would correspond to a dream. If the ramp signals operate. Since each matrix is influenced by the

4.3. A Cycle and Ramp Signhal Mode Controller
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cycle timing circuit, the mode controller can control 5.1. Questions Raised by the Design of Memory-
each cycle timing circuit, thus controlling the mode of Controlled, Compound Machines

behavior of a compound machine. For example, the
mode controller can determine the level of physical

action required for a given task, and set the sensor/
actuator and actuator/actuator ramps to produce the
appropriate level of arousal. Likewise, the mode

controller can shut down the cycle start signals to an
AGV used in a space voyage, thus immobilizing the

AGV. It can then restart the cycle start signals when

the AGV is ready to be deployed.

® Does neural activity cause brain waves, as is
commonly believed, or do brain waves cause the
activity of neural memory cells in the same way
that ramp signals cause conditional memory cells
to operate, as described above? If neural activity
causes brain waves, why are there no brain waves
in the spinal cord, where we know there is much
neural activity, but few if any memory cells?

® Do the cycle start signals and ramp signals, with
their overlapping phase and different periods,
correspond to brain waves? If so, the source of

5. CONCLUSION these signals in living beings may be found. If

o ) chemicals can be found that change the phase and/
The local determinations of success rate by the logarith- or relative strength of these signals, it may be
mic subtraction mechanism (LSM) in each conditional possible to suspend and re-establish consciousness
memory cell allow the digitized, self-learning, com- in a living being in a controlled manner. This may
pound machine described in this paper to learn the provide new ways of creating anesthesia and/or
behavior allowed by its operators and its environment. reviving individuals from coma.

A useful enhancement of this compound machine is a

sensor/sensor unit that produces internal signals similar

to our conscious or internal sensing process. This REFERENCES
Neural activity (Freemam, 1995) can occur without

the machine sensing or acting in a real environment. Ashg())/;]\slv. Ross (1960pesign for a brainNew York: John Wiley and

Altering the CyCIe_ control and/or ramp S|gnals of th!S Brown, Robert Alan (1994)Machines that learnNew York: Oxford
compound machine can further enhance its behavior.  university Press.

This non-computational memory system may corres- Dennett, Daniel C. (1991 onsciousness explainddew York: Little,
pond to the living brain to a greater degree than con-  Brown.

ventional neural networks, which must sum currents, Freemam, Walter J (1995%0ciety of brainsNew Jersey: Lawrence
Erlbaum Associates.

or fUZZY systems that depend upon global software emer, nick (1993)Elemental mind: Human consciousness and the
calculations. new physicsNew York: Dutton.
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