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Abstract in Danish
I moderne matematikfilosofi findes en række forskellige naturalistiske forklaringer af mate-
matik. I denne afhandling præsenterer jeg tre forskellige typer af s̊adanne s̊adanne forkla-
ringer, og diskuterer deres styrker og svagheder. Disse tre naturalistiske forklaringstyper
tager udgangspunkt i hhv. 1) evolutionær biologi, 2) kognitionsvidenskab og 3) vidensso-
ciologi. Hver af disse retninger inden for naturalismen hævder, at matematisk viden kan
forklares med en bestemt type af kendsgerninger om menneskets natur, men den præcise
type af kendsgerning varierer fra retning til retning; den evolutionære tilgang til natu-
ralismen peger p̊a kendsgerninger om evolutionære historie, den kognitionsvidenskabelige
tilgang peger p̊a kendsgerninger om menneskets kognitive apparat og den videnssociologi-
ske tilgang peger p̊a sociale kendsgerninger.

Mit m̊al i denne afhandling er dobbelt. Dels præsenterer og evaluerer jeg de forskellige

naturalistiske teorier, nævnt ovenfor, og dels ønsker jeg at give en ny og mere adækvat

naturalistisk beskrivelse af matematik. Som jeg ser det, er matematik s̊a komplekst et

fænomen, at det ikke er muligt at forst̊a det ved hjælp af et enkelt forklaringsniveau. For-

klaringer, der udelukkende opererer indenfor en enkelt teoretisk ramme, s̊a som kognitive

semantik eller evolutionær biologi, fører uundg̊aeligt til en uproduktiv reduktionisme. Af

den grund ønsker jeg at vise, hvordan forklaringer fra b̊ade det biologiske, det kognitive og

det sociale forklaringsniveau kan sammensættes til at forme en konsistent, ikke-reduktive

forst̊aelse af matematik.

Abstract
A number of different naturalistic explanations of mathematical knowledge have been
given in modern philosophy of mathematics. In this dissertation I presents and discuss
the strengths and weaknesses of three such naturalistic approaches. The three approaches
takes departure in respectively 1) evolutionary biology, 2) cognitive science, and 3) sociol-
ogy of science. Each of the approaches claims mathematical knowledge to be explainable
by a particular type of facts about human nature. The type of facts varies with the ap-
proach; the evolutionary biology approach states facts about humans’ evolutionary origin,
the cognitive science approach states facts about human cognition and sociology of science
states social facts.

My aim in the dissertation is double. Firstly, I want to present and evaluate the dif-

ferent naturalistic approaches described above, and secondly, I want to give a new and

more adequate naturalistic explanation of mathematics. As I see it, mathematics is much

too rich to be understood on a single level of explanation. Explanations solely operating

within a single theoretical framework, such as cognitive semantics or evolutionary biology,

are valuable in many ways, but in my view they inevitably lead to an unproductive re-

ductionism. As I see it, mathematics cannot be reduced to a single type of phenomena

or facts. For this reason, I wish to show how explanation from both the biological, the

cognitive and the social level of explanation can be pieced together to form consistent and

non-reductive understanding of mathematics.
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Chapter 1

Introduction

1.1 Background

The subject for my master thesis was artificial intelligence (AI). The main
goal with my thesis though, was not AI in itself, but rather to find out
what we can learn about human cognition from the so far failed attempts
to simulate it. There are several different AI research paradigms, and all
of them are rooted in strong assumptions about what characterizes human
intelligence. When it turns out to be impossible to build intelligent machines
within a given paradigm, some of the basic assumptions of the paradigm
must be wrong. Finding out which can teach us something about human
intelligence. It cannot tell us what human intelligence is, but it might tell
what it is not, and that is almost as valuable.

One of the most important lessons learned in this way, is the fact that logic
and formal reasoning can only explain and simulate a surprisingly small part
of human intelligence. Although logic driven AI systems are good at playing
chess and performing other tasks traditionally associated with high intelli-
gence, they have turned out to be incapable of simulating many of the core
components of human intelligence. Most surprisingly, it was realized that
logic driven AI systems cannot plan in a dynamic environment (because of
the so-called ’frame problem’ (see Pylyshyn, 1987; Ford & Pylyshyn, 1996)).
So although a classical logic driven AI system might be able to plan a chess
move at grandmaster level, it cannot plan even simple actions such as making
a sandwich in a real world environment. This was a clear proof of the short-
comings of formal reasoning and logical deduction. This surprising discovery
(amongst others) led parts of the AI community to broaden their view on
intelligence. Intelligence was no longer associated exclusively with logic and
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formal reasoning, but also with more capacities, such as the ability to plan
and stay alive in a dynamic environment. “Elephants don’t play chess”, as
Rodney Brooks famously remarked, but they nevertheless seem to be intelli-
gent — in some ways much more so than classical AI systems playing chess
at a human level (Brooks, 1990).

There is a close connection (both in content and history) between the
classical AI paradigm, where thinking is conceived as nothing but formal ma-
nipulation of signs, and the formalist conception of mathematics. Although
few mathematicians actually believe that mathematics is to be practiced
in accordance with the formalist ideal (i.e. as a purely formal game), the
surprising limitations of formal reasoning evidenced by the development of
AI-research, seemed to me to stress the need to give a more adequate picture
of mathematical reasoning. Mathematicians do play chess, but do they also
do more than that?

1.2 Aim and scope

In this dissertation, I decided to see the question of cognition in mathematics
as part of the more general questions: What is the origin of mathematical
knowledge, and how is it produced?

The general aim of this dissertation is to give at least a partial answer to
these questions. In doing so, I will furthermore test and discuss the strength
of naturalism as a general approach to answering this kind of epistemological
and ontological questions in the philosophy of mathematics. My motivation
for choosing naturalism over the more traditional rationalistic approach to
the philosophy of mathematics will be explained in section 3.

Although my aim is to give naturalistic explanations, I will not commit
myself to explanations within a specific theoretical framework, such as cog-
nitive semantics or evolutionary biology. Some attempts have been made at
explaining all of mathematics from such singular theoretical standpoints (e.g.
De Cruz from evolutionary biology, Lakoff and Núñez from cognitive seman-
tics, Bloor form sociology). These attempts are valuable in many ways, but
they inevitably lead to an unproductive reductionism. As I see it, mathemat-
ics is much to rich to be reduced to a single type of phenomenon or process.
For this reason, I will work with explanations on three different levels:

1. Evolutionary biology (i.e. how much of mathematics can be explained
as evolved behavior and capacities?)
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2. Cognitive science (i.e. how much of mathematics can be explained by
our specific cognitive style?)

3. Sociology (i.e. to what extend is mathematics dependent on our par-
ticipation in social institutions?)

I believe that explanations on one level are irreducible to explanations on any
of the two others. I will give a theoretical argument for this anti-reductionist
stance in section 3.2.1.

1.3 Summery

In chapter 2, I begin by addressing the traditional conception that mathe-
matical knowledge is a priori knowledge produced by logical deduction from
secure first principles. As I see it, this conception is flawed for two reasons:
Firstly, there is no consensus on what types of arguments to accept as valid.
Secondly, it is not possible to find secure first principles in the form of self-
evident axioms. On the contrary, it seems that mathematics takes departure
in some set of already accepted theorems, and set out to find the axioms
needed in order to prove those theorems.

This relationship between theorems and axioms blocks a traditional an-
swer to the research question outlined above. We cannot simply say that
mathematics is produced as logical inferences from axioms given to us by
reason. In order to address the question, we must instead investigate why
some theorems and some modes of reasoning get accepted in mathematics in
the first place. This conclusion is a clear motivation for adopting a natural-
istic method in answering where our mathematical knowledge comes from.

In the chapter 3, I present my own conception of naturalism, and address
some of the common objection raised against naturalistic explanations of
mathematics. This includes the charge of psychologism proposed by Edmund
Husserl and Gottlob Frege.

After these preparatory chapters, I will begin the naturalistic account of
mathematics in chapter 4. Here, the claim that our mathematical knowledge
and abilities are a direct product of our evolutionary history is discussed.
The claim has been defended in a large body of empirical work examining
the mathematical skills of non-human animals and the apparently inborn
mathematical skills of human infants. As I see it, the available empirical
work in the area is only able to account for a very limited part of the modern
human’s mathematical knowledge and abilities. For this reason, it is neces-
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sary to move beyond explanations given at the level of evolutionary biology
in order to understand and explain mathematics.

In chapter 5 I present a particular understanding of human cognition,
where cognition is treated not as a purely internal phenomenon, but as a phe-
nomenon involving the body and the physical surroundings to some extend.
More specifically, humans seem to use two powerful cognitive strategies. The
first consists in a process of externalization, where problems, which could be
solved using mental calculations, are instead externalized and solved using
bodily and physical resources. The second strategy consists in the use of con-
ceptual mapping. Such mapping is used to guide our treatment of unknown
or abstract domains by transferring structure from well-known domains (such
as physical experience) onto the unknown domains. In chapter 6 I discuss,
how and in which ways our use of these cognitive strategies have influenced
our conception of what we take mathematics to be.

Neither the biological nor the cognitive level of explanation however,
seems to be able to account for the apparent normativity of mathematics.
For this reason, I move to the social level in chapter 7 in search for a natu-
ralistic account of the normativity of mathematics. I here take departure in
a number of theories giving a collectivist account of rule following.

Finally, in chapter 8 I recapitulate my findings and show how the natural-
istic approach can answer two of the major problems facing any philosophy
of mathematics: why do we feel that we are working with something objec-
tively existing, when we do mathematics? And: why can mathematics be
applied with empirical success in descriptions of the physical world?

Chapter 8 also contains my final conclusion. In brief, the material pre-
sented below shows, in my view, that mathematics cannot be accounted for as
strictly objective knowledge produced as logical derivations from secure first-
principles. Our mathematical knowledge is exactly that – our mathematical
knowledge. It is knowledge produced by a particular kind of biological being,
and it is shaped by our biology, our particular way of existing and interacting
with our environment, the kind of cognitive strategies we prefer, and even
by particular cultural ideas and practices. Mathematics as we know it is
created by us. It is a construction, but as I see it, not an arbitrary construct.
Choices are made for reasons – mostly good reasons – and mathematics is to
a large extend constrained by our interest in and need for handling particular
aspects of the world, we inhabit.
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1.4 Other activities

Obtaining a ph.d.-degree requires more than writing a dissertation. A ph.d.
should be training to become a university researcher, and the job description
of a researcher includes much more than just doing research (sadly, some
would say). Apart from doing the research reflected in this dissertation, I
have had the main responsibility for, and have been the main teacher at
the University of Copenhagen’s annual course in the philosophy of science
for mathematics students. During my time as a ph.d.-student, more than
200 students passed this 7.5 ECTS-course. In 2009 I was nominated for the
‘Harald’ (the University of Copenhagen’s teacher of the year award) by the
students (but did not win).

Furthermore, if research in an area such as philosophy of science is to
be beneficial to the general public, it is imperative not only to communicate
with fellow philosophers, but also to communicate research results to the
relevant scientific society (in this case mathematics), to students, and to the
general public. To reach this goal, I have been giving ten lectures (to hi-
school students, hi-school teachers, ph.d.-students and the general public),
and I have written numerous newspaper articles, popular science articles,
blog-entries (on the national science outreach webpage Videnskab.dk), and a
paper to a popular publication discussion the relationship between God and
mathematics. An overview over these activities is included in the following
lists:

List of scientific papers

• “Embodied strategies in mathematical cognition”, pages 179–196 of
Löve, B. and Müller, T. (eds.): PhiMSAMP. Philosophy of Math-
ematics: Sociological Aspects and Mathematical Practice, College
Publications, 2010

List of outreach and other papers published without peer-review

• “Does the usefulness of mathematics prove the existence of God?”, pp.
71-93 of Kragh, H. and Nielsen, M.V. (eds.): God - a Mathematician?,
Volume 5. of Proceedings of the Danish Science-Theology Forum,
University of Aarhus, 2010.

• “N̊ar matematikken sl̊ar rødder”, Mona, nr. 3, 2010

• “Er Gud matematiker?”, Videnskab.dk, 31. March 2010
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• “Private universiteter i Danmark?”, Videnskab.dk, 15. December 2009

• “Hvad skal vi med videnskaben?”, Videnskab.dk, 25. November 2009

• “Markedsføring af videnskaben kan overdrives”, Videnskab.dk, 5.
October 2009

• “Miljøministerium undergraver forskeres autoritet”, Videnskab.dk, 28.
September 2009

• “Haarder og Galilei i frit fald”, Videnskab.dk, 11. September 2009

• “Humanistisk videnskabsteori er noget særligt”, Videnskab.dk, 28.
August 2009

• “Videnskabens varedeklaration er vigtig”, Videnskab.dk, 6. August
2009

• “Sponseret forskning p̊avirker resultater”, Videnskab.dk, 14. July 2009

• “Om videnskabelig sikkerhed og usikkerhed”, Videnskab.dk, 25. June
2009

• “Lær statistik og lev længere”, Videnskab.dk, 4. June 2009

• “Kan man stole p̊a en computer?”, Videnskab.dk, 28. May 2009

• “Regnedyr”’, Weekendavisen 30. April, 2008

• “Den sidste skilpadde”, Aktuel Naturvidenskab, nr. 1, 2008

• “Post-akademisk videnskab”, Aktuel Naturvidenskab, nr. 2, 2007

• “Computere i matematikken”, DR Viden Om, spring 2007

• “Preparing Ph.D. students for the post-normal age”, (with Tom
Børsen Hansen and Claus Emmeche), INES Newsletter, nr. 55, 2007

• “Fra faktura til forskning”, Weekendvisen, 2. marts 2007

As a note on scientific ethics, the reader should be aware that some of the
ideas and findings presented in this dissertation have been presented (mostly
in popular form) in these various papers and articles. This is particularly the
case for the paper “Embodied strategies in mathematical cognition”. Several
passages of this paper are reproduced with slight or no change in chapter 5
and 6 of this dissertation.

Finally, the ph.d-education at the University of Copenhagen includes a
‘change of environment’ stay at a foreign university, normally for a semester.
For personal reasons, a stay of this length was not possible in my case. In-
stead, I visited several relevant university departments for shorter periods of
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time. This included short visits at UC Berkeley and UC Santa Cruz, a longer
stay at the Department of Cognitive Science at UC San Diego, and finally a
visit at the University of Edinburgh. I wish to thank everybody involved in
these stays for welcoming me.
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2.1 The Euclid Myth

In traditional rationalistic accounts of mathematics, mathematical knowledge
is believed to be produced by deductive proofs collected in an axiomatic-
deductive system. The system as a whole is supposed to rests on a small
number of self-evidently true axioms. As deductive inferences are truth pre-
serving, truth will be transported from the axioms throughout the system as
a whole. Consequently, mathematical knowledge produced by valid proofs in
this way can be known to be true beyond any reasonable doubt.

This conception of mathematics is for instance expressed in the following
passage of the textbook AT-H̊andbogen, aimed at the philosophy of science
teaching in Danish hi-schools.

Mathematics is constructed as a deductive network consisting of ax-
ioms, definitions and theorems.

Mathematical theorems are usually general and independent of culture
and time. It only happens very rarely that a theorem, once accepted
as valid, ends up getting disproved. Pythagoras’ theorem applies to
all right-angled triangles, no matter how large they are, and it has
been known and accepted for thousands of years.

Mathematics has these two properties, universality and validity,
because mathematical theorems are proved, i.e. justified by logically
valid deductions from a firm foundation that is regarded as being true.

(Dideriksen et al. , 2009, p. 52, my translation)

We do not know the exact genealogy of this axiomatic-deductive method. It
probably has its origin in Greek philosophy, and was used with great per-
fection by Euclid, who in his Elements from around 300 b.c.e. managed to
compile most of the knowledge of geometry of the time in a single axiomatic-
deductive system, using only ten unproven axioms1.

For the sake of the discussion below, I have illustrated the axiomatic-
deductive method by reproducing Euclid’s proof of the fact that the interior
angles of a triangle equals two right angles (see figure 2.1). The proof appears
as theorem nr. 32 of book I of Euclid’s Elements. Apart from the axioms
presupposed as true by Euclid, the theorem is proved only by appealing to
three other theorems (theorems nr. 13, 29, and 31). All of these theorems are

1The Elements also deals with number theory in the three books VII, VIII, and IX.
However Euclid wanted to separate numbers and magnitudes (probably following Aristo-
tle), and consequently these three books form an entirely independent unit (Katz, 1998,
p. 84).
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in turn proved by appeal to other theorems closer to the axioms (theorems
nr. 13 for instance is proved by appealing to theorem 11 plus axioms, and
theorem 11 is proved by appeal to theorem 1, 8, and 3 plus axioms, and so
on). Tracing the proof further back, we will find that in the end it relies
on nothing but the ten indubitable axioms. So in conclusion, the proof of
theorem 32 along with its position in the deductive system as a whole allows
us to state beyond any doubt, that the interior angles of the triangle are
equal to two right angles. This, in short, is how the axiomatic-deductive
method is supposed to work.

For centuries the Elements was considered an ideal of mathematics, and
the truth of its theorems were largely acknowledged. The certainty and
clarity of the mathematical method even had a tremendous impact outside
of mathematics. Rationalist philosophers beginning with Plato saw mathe-
matical thinking as an epistemic paradigm to be followed, and renaissance
philosophers such as Spinoza and Descartes tried to apply the axiomatic-
deductive method to other areas of knowledge; Spinoza tried to axiomatize
ethics (the name of his major work on ethics is Ethica Ordine Geometrico
Demonstrata), and Descartes of course used his cogito as the fundamental ax-
iom on which he could rest and justify all other knowledge. More surprisingly
– and even somewhat contradictory to their general views - -the empiricists
(save John Stuart Mill) accepted mathematics as a priori, necessarily true
knowledge.

In the words of Imre Lakatos:

Classical epistemology has for two thousand years modelled its ideal
of a theory, whether scientific or mathematical, on its conception of
Euclidean geometry. The ideal theory is a deductive system with
an indubitable truth-injection at the top (a finite conjuction of
axioms) – so that truth, flowing down from the top through the safe
truth-preserving channels of valid inferences, inundates the whole
system.

(Lakatos, 1976a, p. 205)

This idea of mathematics as eternally true knowledge produced by deductive
proof from self-evident axioms was however met with stark criticism, espe-
cially during the last half of the 20th century (not least by Lakatos). As part
of this criticism, Philip Davis and Reuben Hersh famously dubbed it ‘the
Euclid Myth’ (1992, pp. 322). And it is, as I see it, a myth. A myth, not
so much about Euclid’s work, but rather about the role played by axiomatic
thinking in mathematics, and about the idea that the axiomatic-deductive
method can warrant the truth and certainty of mathematical knowledge.
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In any triangle, if one of the sides be produced, the exterior angle is
equal to the two interior and opposite angles, and the three interior
angles of the triangle are equal to two right angles.

Let ABC be a triangle, and let one side of it BC be produced to
D; I say that the exterior angle ACD is equal to the two interior
and opposite angles CAD, ABC, and the three interior angles of the
triangle ABC, BCA, CAB are equal to two right angles.

For let CE be drawn through the point C parallel to the straight line
AB. Then, since AB is parallel to CE, and AC has fallen upon them,
the alternate angles BAC, ACE are equal to one another. Again,
since AB is parallel to CE, and the straight line BD has fallen upon
them, the exterior angle ECD is equal to the interior and opposite
angle ABC. But the angle ACE was also proved equal to the angle
BAC; therefore the whole angle ACD is equal to the two interior and
opposite angles BAC, ABC. Let the angle ACB to each; therefore
the angles ACD, ACB are equal to the three angles ABC, BCA,
and CAB. But the angles ACD, ACB are equal to two right angles;
therefore the angles ABC, BCA, and CAB are also equal to two right
angles.

(Euclid’s Elements, theorem I.32. Text from Heath, 2006, pp. 164-5)

Figure 2.1: Proof that the interior angles of a triangle equals two right
angles.
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Consequently, I prefer to call it the myth of axiomatic truth and certainty. If
the myth had been right, there would be no place for naturalized explanations
of mathematics; mathematics would simply be the produce of pure reason,
and nothing else. Consequently, any naturalized accounts of mathematics
must start with showing the myth of axiomatic truth and certainty to be
false, and that is what I will do in the rest of this chapter. The discussion of
this myth of axiomatic truth and certainty will force us to ask some new and
very interesting questions regarding the status and nature of mathematical
knowledge.

2.2 End of the myth

First of all, it should be noted that the truth and certainty of the Euclidean
proofs have not always been accepted. Today it is well known that there
are gaps in many of the proofs of the Elements, and that Euclid presupposes
several hypotheses not explicitly stated as axioms. The very first proposition
for instance, is a demonstration showing that an equilateral triangle can be
constructed on any finite straight line AB (see figure 2.2). In the proof, two
circles with radius AB is produced, one with center A and the other with
center B, and the point C of intersection is used as the third vertex in a
triangle ABC, which is then shown to be equilateral. The trouble is that
Euclid does not demonstrate that the point C of intersection exists. It is
intuitively obvious from the figure, but from a modern point of view the
existence of the point nevertheless presupposes an axiom of continuity.

Figure 2.2: The construction of an equilateral triangle

The skepticism towards the Elements is not exclusively a modern phe-
nomenon. The proof given for theorem I.32 above was, for instance, hotly
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debated in the Renaissance and in the 17th century. The proof takes ad-
vantage of external angles α’, β’, and auxiliary line segments CD and CE,
but these external lines and angles cannot be said to be the cause of the fact
proven (that the sum of the interior angles equals two right). Hence, it was
argued, the proof does not produce proper scientific knowledge according to
the Aristotelian criteria set forth in the Posteria Analytics2.

So the proof techniques and standard of rigor found in the Elements has
not universally been accepted. The conception of precisely which techniques
to accept vary over time and between different philosophical schools. As
René Thom put it: “There is no rigorous definition of rigor” (Thom, 1971,
p. 697).

Secondly, with the Elements only geometry was axiomatized. Large parts
of mathematics such as arithmetic, probability theory and analysis was de-
veloped without Euclidean axiomatic – and during some periods with much
looser demands on rigor. In the case of analysis, the lack of rigor and ques-
tionable use of infinitely small quantities was famously pointed out by Bishop
George Berkeley (1685–1753) (Berkeley, 1754), but with little effect. The
mathematicians continued to develop the today celebrated bulk of analy-
sis (including the impressive work of Leonhard Euler (1707-1783) and Carl
Friedrich Gauss (1777–1855)) without axioms or foundations, and, one might
add, at times with a somewhat hazardous interpretation of central concepts3.

In the case of arithmetic negative numbers, rational numbers and even
complex numbers were introduced and used for centuries without axioms
and without deep and rigorous understanding of their nature (Kline, 1980,
pp. 113). In other words: Through the history of mathematics the rigor
and axiomatic-deductive structure of the Elements was an ideal only met
occasionally.

Thirdly, the Euclidean system was not as perfect and indubitable as the
Euclid myth suggests. Euclid’s axioms consist of two groups: Five ‘common

2This line of criticism actually goes back to Proclus’ commentary on the Elements
(see Proclus 1970, pp. 161). A thorough discussion of this example is found in Mancosu
(1996, pp. 8). Note, that the same critique can be (and was) raised against indirect proofs
including the celebrated exhaustion technique used by the Greeks to determine areas of
certain plane figures.

3Euler’s conception of the derivative dy/dx can serve as an example. The expression
dy/dx was originally (by Leibniz) conceived as a ratio of infinitesimals, that is, infinitely
small quantities. Euler, on the other hand, saw the infinitesimals as actually zero, and so
dy/dx to him equaled 0/0. This is normally considered an undefined term. Euler however,
argued that since n · 0 = 0 we get by dividing with 0 that n = 0/0 for any number n.
Consequently, 0/0 can have many values – including the desired one. (Kline, 1980, p.
147).
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notions’ describing general rules of inference applicable outside of mathemat-
ics, and five ‘postulates’ concerning permitted geometrical constructions. For
instance the first common notion states that “Things which are equal to the
same thing are also equal to one another”, and the first postulate states that
it is possible “To draw a straight line from any point to any point” (both
from Heath, 2006, p. 2-3). All of this seems rather innocent, but the fifth
so-called ‘parallel postulate’ seems to be something different. It states: “If a
straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two right angles”
(Heath, 2006, p. 3; see figure 2.3).

Figure 2.3: Euclid’s fifth postulate: If the sum of α and β is less that
two right angles, the straight lines a and c will meet on the side of α and
β if prolonged indefinitely.

The postulate is crucial, because it allows parallels to transport equal
angles. In the proof for the theorem that the sum of the interior angles of a
triangle equals two right angles, Euclid used this property in form of theorem
I.29, which states that a straight line falling on two parallel lines makes
the alternate angles equal. But this theorem cannot be proven without the
parallel postulate, and hence, without the parallel postulate it is not possible
to prove that the angle sum of a triangle equals two right angles. Indeed, it
turns out that the parallel postulate and theorem I.32 are equivalent, that
is: if any one of them is assumed, the other can be demonstrated.

The trouble with the parallel postulate is the word ‘indefinitely’; the lines
must be produced indefinitely. But what does that precisely mean? Do we
have any clear conceptions of what happens when lines are produced indefi-
nitely? What if for instance the sum of the interior angles is just a little bit
smaller than two right angles? Can we be sure that the straight lines will
meet? And what if they do not meet? Is it because the parallel postulate is
false, or is it just because, we have not prolonged the lines enough? Anyway,
the postulate can hardly be said to be self-evident, and from remarks in Aris-
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totle we know, that the Greek mathematicians even before Euclid discussed
the problem of parallels and the angle sum of the triangle (for references see
Tóth 1969, pp. 90)4.

After Euclid, many mathematicians considered the parallel postulate to
be a blemish to the Elements, and consequently tried to do something about it
in order to provide secure foundations for the Euclidean geometry. Three dif-
ferent strategies can be identified: Some mathematicians tried to substitute
the parallel postulate with truly self-evident axioms, others tried to prove the
postulate directly by deducing it from the remaining nine Euclidean axioms,
and finally yet others tried to prove it indirectly by showing that the negation
of postulate led to a contradiction. The list of mathematicians who thought
they had succeeded in proving the postulate is long, beginning with Claudius
Ptolomy (about A.D 150), through a number of Islamic mathematicians (for
instance Omar Khayyam (b. 1048)), to John Wallis (1616–1703), Girolamo
Saccheri (1667–1733) and Adrien Marie Legendre (1752–1833). However,
all the proofs of the postulate were faulty, and all the candidates for more
self-evident axioms turned out to be just as questionable as the disputed
postulate itself.

During the first half of the 19th century it was realized (first by Gauss,
who did not publish, and during the 1820’s by Nikolai Lobachewski (1792–
1856 ) and János Bolyai (1802–1860), who did publish) that without the
parallel postulate, one could actually reach a fruitful and interesting geom-
etry, although it in a number of ways seemed quite strange. In this new
so-called (hyperbolic) non-Euclidean geometry, the angle sum of the triangle
would for instance depend on the size of the triangle and always be less than
180◦. Finally, in 1868 it was realized5, due to a model for the hyperbolic
geometry constructed by Eugenio Beltrami, that the hyperbolic geometry
was relatively consistent to the Euclidean geometry, that is: If the Euclidean
geometry is without contradictions (but we do not know that), then non-
Euclidean geometry will also be without contradictions (Gray 1989, pp. 147).
So, from a purely rational or logical point of view, both of the geometries
are equally good. They are both equally thinkable, and hence pure thinking
cannot determine which geometry to count as the correct and objectively

4According to Imre Tóth, it seems that Aristotle and his contemporaries were aware,
that the postulate could not be proven by logic, but that you somehow had to make a
choice between different geometries. One, where the sum of the angles of a triangle equals
two rights, and others where it does not. It should be noted, tough, that this theory is
highly controversial, and one might rightly accuse Tóth of going beyond what can safely
be concluded from shattered remarks in Aristotle. The remarks leaves, however, little
doubt that the problem of the parallels was discussed.

5Exactly by whom is a little unclear, see Grey 1989, p.149 for a discussion.
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true description of the Universe.

The discovery of the relative consistency of hyperbolic geometry was cer-
tainly a massive blow to the traditional conception of Euclidean geometry.
The theorems of the Elements could still be counted as true, but only true
within the system of Euclidean geometry. Euclidean geometry as a whole was
given a different status. It could no longer be counted as a body of necessary
truths about the Universe, but only as a mathematical system that might
(or might not) be useful in describing the real world. This is what Caroline
Dunmore (1992) calls a ‘meta-revolution’ in mathematics: The truth of the
Euclidean geometry was not overthrown; rather the very meaning of mathe-
matical truth was about to change from a classical correspondence theory of
truth to something more similar to a coherence theory of truth (a theorem is
true, if it can be proved from a set of consistent axioms). This step, however,
was only to be taken fully by Hilbert years later.

The discovery of non-Euclidean geometry was only the beginning. In the
last half of the 19th century several other surprising – and equally disturbing
– discoveries were made. The most striking was probably the ‘space-filling
curves’, i.e. curves with an area strictly larger than zero (discovered by
Giuseppe Peano in 1890) and everywhere continuous, but nowhere differen-
tiable functions (first announced by Karl Weierstrass in 1872, but already
discovered by others in the 1830’s (Kline, 1980, p. 177))6. The everywhere
continuous, nowhere differentiable functions were especially shocking to the
mathematical society, since until then, most mathematicians had simply as-
sumed, that continuity implied differentiability.

Discoveries such as these made two things clear to the 19th-century math-
ematicians: 1) our geometric intuition is not to be trusted and 2) more rigor is
needed. The rigorization of analysis had already begun with Augustin-Louis
Cauchy’s (1789–1857) Cours d’analyse algébrique from 1821. This rigoriza-
tion program was continued primarily in the last half of the 19th century

6Intuitively speaking a function f(x) is differentiable at the point a, if it is possible to
draw a definite tangent to its graph in the point (a; f(a)). A function is continuous, if
small changes in the argument (input) only result in small changes in the values (output),
or, as the high-school teacher tells you: If you can draw its graph without lifting the
pencil from the paper. So an everywhere continuous, but nowhere differentiable function
is a function, which can be drawn without lifting the pencil from the paper, but in such
a way that it does not have a well-defined tangent at any point. Try imagining such a
curve – it seems alt least to me to be very, very hard. Weierstrass’ everywhere continuous,
nowhere differentiable function was given in a strictly analytical way as the equation:
f(x) =

∑∞
n=0 b

n cos(anx)π, with a odd, b ∈ [0; 1] and ab > 1 + 3π/2. Helge von Koch
later gave his ‘snowflake’ as an example of a tangentless curve, which could be visualized
geometrically (see Mancosu, 2005, p. 16-17).
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by men like Karl Weierstrass (1815–1897), Richard Dedekind (1831–1916),
Georg Cantor (1845–1918), Gottlob Frege (1848–1925) and Giuseppe Peano
(1858–1932). One of the primary strategies of this program was to redefine
central mathematical concepts in terms of set theory. The concept ‘con-
tinuity’, which is intuitively very closely connected to movement in space,
was for instance reduced to properties of sets of real numbers with the ε-δ-
definition7 . Real numbers in turn were defined using infinite sets of rational
numbers. Rationals were easily defined using integers, and these were axiom-
atized in 1889 by Peano and given a set-theoretical definition by Frege in his
Die Grundlagen der Arithmetik from 18848. In this way, the traitorous intu-
itions of space and motion were eliminated and replaced with the assumingly
more clear and simple ideas of arithmetic and sets. Finally mathematics
was on safe grounds again, and at the International Congress of Mathemati-
cians at Paris in 1900, Henri Poincaré (1854–1912) famously uttered: “One
may say today that absolute rigor has been attained” (quoted in Kline 1980,
p. 195).

One feature of the rigorization program should however be noted. With
the ideal of the axiomatic-deductive method in mind, one would have ex-
pected the rigorization to proceed from secure and self-evident foundation
and upwards. But it did not. It proceeded in the exact opposite direction,
starting with the top-level concepts of analysis and working its way down to
the basic concept of natural numbers. This top-down approach has inspired
the following comment by Morris Kline:

The newly founded rigorous structure presumably guaranteed the
soundness of mathematics but the guarantee was almost gratuitous.
Not a theorem of arithmetic, algebra, or Euclidean geometry was
changed as a consequence, and the theorems of analysis had only to
be more carefully formulated [. . .] Indeed, the axioms had to yield the
existing theorems rather than different ones because the theorems
were on the whole correct. All of which means that mathematics
rests not on logic but on sound intuition.

(Kline, 1980, pp. 194)

7It goes like this: A function f(x) is continuous in a point a, if f(x) is defined in an
open interval containing a, the function has a limiting value for x approaching a, and the
limiting value equals f(a), that is: limx→a f(x) = f(a). The limit of the function at a is
in turn defined using the ε-δ-definition: The statement limx→a f(x) = f(a) means that for
every ε > 0 there exists a δ > 0, such that if 0 < |x− a| < δ then |f(x)− f(a)| < ε .

8The definition goes: “Die Anzahl, welche dem Begriffe F zukommt, ist der Umfang
des Begriffes ‘gleichzahlig dem Begriffe F’ ” (Frege, 1974, p. 79-80).
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2.3 The foundational crisis

Not all mathematicians were as confident about the rigorization of mathe-
matics as Poincaré. At the 1900 Congress David Hilbert presented a list of
23 problems that remained to be settled. As the second of these problems,
he stressed the need for a proof of the consistency of the real number system:

... above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that
a definite number of logical steps based upon them can never lead to
contradictory results.

(Hilbert quoted from Feferman, 1998, p. 23)

As sketched out above, most of mathematics was reduced to arithmetic and
set theory during the rigorization process of the 19th century. Furthermore,
it was well known at the time (and Hilbert also pointed this out in his talk)
that the axioms of geometry could be modeled in the real number system
using the method of analytic geometry. This meant that geometry was con-
sistent relative to the arithmetic of the real number system. In other words,
everything seemed to depend on the consistency of arithmetic. But can we
be sure that arithmetic is without contradiction? Hilbert anyway called for
a proof, and he even raised the stakes by tying mathematical existence very
closely to consistency: If a concept is consistent, it can be said to exist. So,
if the real number system could be shown to be consistent, the infinite set
of real numbers might be said to have actual existence: “Indeed, when the
proof for the compatibility of the axioms [of the real number system] shall
be fully accomplished, the doubts which have been expressed occasionally
as to the existence of the complete system of real numbers will be totally
groundless” (Hilbert in Feferman, 1998, p. 24).

In this, Hilbert touched upon another problem that had become apparent
in the development of set theory during the last decades of the 19th century,
namely the use of actually infinite sets. The actual infinite had been banned
in mathematics since Aristotle, who only allowed mathematicians to use po-
tential infinite9. But during the 1870’s George Cantor began developing a

9To Aristotle, infinity only meant that a certain process of either prolonging or dividing
could always continue one step further. Hence “It turns out that the infinite is the opposite
of what people say it is: it is not that of which no part is outside, but that of which
some part is always outside. [. . .] Nothing is complete unless it has an end, and an
end is a limit” (Aristotle, Physics, 206b33-207a14, quoted from Hussey 1983, pp. 15-16).
The mathematicians however do not need to change their practice: “This reasoning does
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theory of infinite sets as actually existing wholes. Cantor soon realized the
need to distinguish between different orders of infinitude. He defined two sets
to be of the same size, if a one-to-one mapping between the members of the
two sets existed. This is a rather trivial and straightforward definition when
finite sets are examined, but it is more questionable when applied to infinite
sets. Does it really give any meaning to compare the size of two infinite col-
lections? Nevertheless Cantor did so, and by using this definition, he easily
proved that the set of natural numbers and the set of rational numbers are
of the same size, or ‘equipollent’. Both sets are what mathematicians call
denumerable.

To some surprise, Cantor also showed that the set of real numbers have
a larger cardinality than that of the natural numbers. In other words, the
set of reals is larger than the set of naturals, even though both sets are of
infinite size. Even more surprising Cantor showed that the real numbers
can be well-ordered, that is: ordered in such a way that every subset of the
reals have a first element. Note that in the standard ordering this is not
the case. What is for instance the first positive real number? However, not
everybody was convinced by Cantor’s proof, and Hilbert as part of the first
of his 23 problems called for a direct proof of this so-called well-ordering
theorem (Moore, 1982, pp. 55).

Cantor’s set theory was met with a lot of opposition. Firstly, the concep-
tion of sets as existing wholes seemed to imply some sort of realism or Pla-
tonism (and indeed Cantor had a Platonist conceptual framework (Moore,
1982, pp. 54)); the infinite sets were supposed to exist and have definite
properties independent of and before mathematicians discovered them.

Secondly there seemed to be some logical problems in connection to Can-
tor’s set theory. Most prominently, Cantor used the set Ω of all ordinal
numbers in his proof of the well-ordering theorem. This concept requires a
little explanation. Numbers can be used for two different purposes: They can
be used as cardinal numbers to describe the size of a collection or they can be
used as ordinal numbers to describe the position of an element in a sequence.
The sequence 0,1,2,3,4,5 for example has 6 elements (6 as cardinal) and 5 is
the 6th element in the sequence (6 as ordinal). Cantor considered transfinite
ordinals, so to him the sequence of ordinals, begun above, went on to the
first infinite ordinal ω and beyond: 0, 1, 2, 3, . . . , ω, ω + 1, . . . , 2 · ω, . . . , ωω
and so forth. In other words, Cantor introduced the possibility of counting

not deprive the mathematicians of their study, either, in refuting the existence in actual
operation of an untraversable infinite in extent. Even as it is they do not need the infinite,
for they make no use of it; they need only that there should a finite line of any size they
wish” (Aristotle, Physics, 207b27-207b31, quoted from Hussey 1983, pp. 17-18).
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a transfinite number of elements, that is the ωth element, the ω + 1th and so
on.

The set Ω of all ordinal numbers is itself well-ordered, and hence it must
have an ordinal number δ. As hinted in the example above (where 5 has
the ordinal number 6), δ must be greater than - and consequently different
from - any ordinal in Ω. But, since Ω is the set of all ordinals, δ must also
be a member of Ω. This is a contradiction (commonly known as Bureli-
Forti’s paradox). The paradox was discovered by Cantor and communicated
in a letter to Dedekind (Cantor, 1899). Cantor however did not see the
contradiction as a problem to his general theory. Instead, he distinguished
between consistent and inconsistent sets, and saw the paradox as a proof for
the fact that Ω was a set of the latter type.

The Bureli-Forti paradox involves complicated concepts like well-ordering
and ordinal numbers, but in 1901 Bertrand Russell (1872–1970) found an-
other paradox involving only the simple and basic concepts of set and mem-
bership. The paradox was famously communicated to Frege in a letter in
June 1902 (reproduced and translated as (Russell, 1902)). The idea of the
paradox is this: In näıve set theory, a set can be formed freely as the ex-
tension of a determinate property, or, to put it more formally: If P (x) is
a propositional function containing x as a free variable, there will exist a
set whose members are exactly those things x having the property P . The
trouble is that this definition makes it possible for a set to be a member of
itself. As an easy example, we can let P be the property ‘being a set’, then
P (x) is the set of all sets. Since the set of all sets is itself a set, it must be a
member of itself.

Russell used another, similar, set in his paradox, namely the set of all
sets that are not members of them selves: M = {x|x /∈ x}. The question
is of course whether M is a member of itself or not. Testing the different
possibilities, we will find that M ∈ M implies M /∈ M and the other way
around. In other words: if M is a member of itself, it cannot be a member
of itself, and if M is not a member of itself, it must be a member of itself.
This is a very clear and undisputable paradox in set theory, and it had as
Hilbert puts it “a downright catastrophic affect in the world of mathematics”
(Hilbert, 1925a, p. 375).

The paradoxes of näıve set theory, the lack of a proof of the consistency of
arithmetic and the (to some) rather dubious metaphysical status of Cantor’s
transfinite numbers and actual infinite sets were the main ingredients in a
cocktail of problems that one way or the other inspired the so-called three
foundational schools: logicism, formalism (in form of the Hilbert program),
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and intuitionism. We shall not go into the details of the three schools here10.
The three schools all failed for different reasons, and a few remarks on why
they failed is all that is of interests to us here.

2.3.1 Logicism

Logicism was the attempt to reduce mathematics to logic. The basic logicist
idea can (to some extend) be found in the work of Frege, but unfortunately
Frege’s program suffered a fatal blow by the discovery of Russell’s paradox.
After Frege, the logicist program was primarily carried out by Bertrand Rus-
sell who, in collaboration with Alfred North Whitehead, presented his ideas in
the monumental three-volume work Principia Mathematica published from
1910-13. The main idea of logicism was to reformulate all mathematical
concepts, i.e. concepts such as ‘number’, ‘addition’ and so forth, in logi-
cal (set-theoretical) terms, and to derive all mathematical theorems from
a few axioms, which were all logical tautologies, using nothing but logical
deduction. In other words, Russell and Whitehead wanted to demonstrate
mathematics to be purely analytic a priori knowledge.

The paradoxes of set theory were blocked by type theory. With type
theory an elaborate hierarchy of different types of sets is introduced. Type
1 sets were sets containing only individuals as their elements. Type 2 sets
were sets allowed to contain either individuals or sets of type 1 as elements.
Type 3 sets were sets of either individuals, type 1 sets or type 2 sets, and
so forth. The basic idea was that no sets were allowed to contain sets of its
own type as elements, but only sets of lower types (and individuals). In this
way, self-membership was ruled out, and neither Russell’s paradox nor the
Bureli-Forti paradox could be formulated.

As it turned out, it was not possible to carry out the logicist program.
Russell and Whitehead had to introduce two non-tautological axioms: the
Axiom of Infinity and the Axiom of Reduceability. The Axiom of Infinity
states that at least one actual infinite set exists. The existence of an infinity
is certainly not a logical tautology; living in a finite world it is not even
common sense plausible11.

10I will refer the reader to Stewart Shapiro (2000) for a thorough textbook introduction
and to Jean van Heijenoort (1967) and Benacerraf & Putnam (1983) for selections of the
primary texts.

11It is sometimes argued that we actually do know infinite sets. For instance, a line
can be divided in halves an infinite number of times, and thus the endpoints of the line
segments will form an infinite set. It should be noted though that actual lines like this:

can only be divided in halves a few times before subatomic length is reached. What
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The Axiom of Reduceability was needed in order to fix a problem caused
by the introduction of type theory. Numbers were defined as sets, but because
of the type theory, we would have different types of sets, and consequently
different types of the same numbers – so the number 3 for example, would
exist both as a type 2 number, as a type 3 number and so on. This made
any kind of mathematics very cumbersome, and in order to fix the problem,
Russell and Whitehead introduced an axiom stating that every set of a higher
type is coextensive with sets of the lower levels – the Axiom of Reduceability.
The axiom is not a logical tautology, but was clearly introduced as an ad hoc
move in order to fix a specific problem in the theory developed (indeed, one
might even say that the very theory of types was an ad hoc move taken to
block the known paradoxes. At least, the existence of an elaborate hierarchy
of types does not in itself seem to be an a priory necessary truth).

The lesson learned form the logicist program is this: Mathematics (as we
know it) cannot be reduced to logic – or at least we do not yet know how.

2.3.2 Intuitionism

Intuitionism is the best example of a genuine attempt to give a bottom-up
justify of mathematics. The theory was primarily worked out by the Dutch
mathematician Luitzen Egbertus Jan Brouwer (1881–1966) (starting with his
doctoral dissertation from 1907), his student Arend Heyting (1898–1980), and
Herman Weyl (1885–1955) (who was ‘converted’ to intuitionism round 1920).
Following the constructivist stance advanced by Leopold Kronecker (1823–
1891), Brouwer wanted to rebuild mathematics from the bottom and up.
To Brouwer, mathematical objects did not have any real and independent
existence. Mathematics was a mental activity, and mathematical objects
were mental construction rooted in a basic Kantian intuition of time.

Roughly speaking, the intuitionist took the following path in the attempt
to rebuild mathematics: The natural numbers could be constructed from
the basic intuition of time. The rational numbers could be constructed from
the naturals, and from these constructions the real number system could be

is cut in halves after that point cannot be the real line, but only the mathematical line,
that is: the mathematical abstraction of the real line. So this proof of the existence of
an infinite collection only works, if the real existence and reality of the mathematical
abstraction (that is: a Platonist ontology) is assumed in advance.

On a more pragmatic note it might be added that according to Salomon Feferman
(1998), a mathematics suitable for the needs of natural science can be developed without
the use of infinite sets. Hence, even the so-called indispensability argument, which from
the outset is much weaker than logical necessity, is blocked
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constructed. Finally, geometry could be constructed from the reals using
analytical geometry (Heyting 1931, pp. 52; Shapiro 2000, p. 177).

As it turned out, the mathematics actually constructed by the intuition-
ists seemed somewhat unfamiliar to many of Brouwer’s contemporaries. The-
orems – even fundamental theorems – that seemed intuitively correct to most,
did not hold good to the intuitionists. For instance, Brouwer disproved the
following two theorems (Brouwer, 1923, pp.337):

1. Every number is either smaller than, equal to or greater than zero

2. Every continuous curve defined on a closed interval has a maximum

Brouwer even called for revisions of the basic logical inferences allowed.
According to Brouwer, the principle tertium non datur (P ∨¬P ) could only
be used in finite cases, but not in infinite (ibid. p. 336). This robbed the
intuitionists of the strong tool of indirect proof in the infinite case.

However, the intuitionists did not only restrict ordinary mathematics,
they also claimed the truth of theorems that seemed obviously wrong or
even bizarre from a traditional point of view. It was for instance a theorem of
intuitionistic mathematics, that every real function is continuous (Feferman,
1998, p.47).

It can be – and indeed has been (for instance in Brown, 1999, p.115) –
discussed, whether private intuitions can be used as a safe foundation for
mathematics. However, the main thrust of the criticism raised against the
intuitionist school was not directed against its foundational program, but to-
wards the results it produced — or rather: the results it did not produce. The
constructive stance of intuitionism seemed to impose heavy and unnecessary
restrictions on mathematics. As Hilbert put it:

They [Weyl and Brouwer] seek to ground mathematics by throwing
overboard all phenomena that make them uneasy and establishing
a dictatorship of prohibitions à la Kronecker. But this means to
dismember and mutilate our science, and if we follow such reformers,
we run the danger of losing a large part of our most valued treasures.
Weyl and Brouwer calumniate the general notion of irrational num-
ber, of function, even of number-theoretic function, the Cantorian
numbers of the higher number-classes [transfinite ordinal numbers],
etc. [. . .] and even the logical tertium non datur.

(Hilbert, 1922, p. 200)

On the last he later commented:
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Taking the principle of the excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his fists.

(Hilbert, 1925b, p. 476)

So intuitionism failed, not (or at least not only) because it failed to provide
safe foundations for mathematics, but because it failed to produce founda-
tions for the body of knowledge already accepted to be the true mathematics.

2.3.3 Formalism

Formalism understood as a foundational school, is primarily represented by
the Hilbert-program, set forth by David Hilbert in 1917 in his address Ax-
iomatisches Denken (Hilbert, 1918) and in several other addresses in the
following years. During the 1920’s, Hilbert’s program was taken up by a
number of mathematicians including John von Neumann (1903-1957) and
Paul Bernays (1888–1977).

The motivation for the program was the discovery of the paradoxes in set
theory. As Hilbert put it:

Let us admit that the situation in which we presently find ourselves
with respect to the paradoxes is in the long run intolerable. Just
think: in mathematics, this paragon of reliability and truth, the very
notions and inferences, as everyone learns, teaches, and uses them,
leads to absurdities. And where else would reliability and truth be
found if even mathematical thinking fails?

(Hilbert, 1925a, p. 375)

The main goal of Hilbert’s program was to deliver a proof of the consistency
of mathematics – the proof Hilbert had already asked for as the second of
the 23 problems set forth at the 1900-congress. First of all, it should be
noted, that Hilbert considered finite arithmetic to be safe. A formula like
2 + 3 = 3 + 2 can simply be checked in our intuition. 2, 3 and 5 can be
represented as ||, ||| and ||||| respectively, and the verification of the truth of
2 + 3 = 3 + 2 amounts to checking that the concatenation of || and ||| and
the concatenation of ||| and || both amounts to |||||. In other words: As long
as only finite quantities are involved, there is no problem. The problem only
sets in when infinite quantities are introduced.

The basic idea (as presented in Hilbert, 1925a) is first of all to formalize
and axiomatize all of mathematics – including the infinite parts such as
Cantor’s theory of infinite sets. This formalization makes it possible to treat
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the mathematical formulas as strings of meaningless logical and mathematical
signs, following each other according to definite rules. As Hilbert puts is:
“hence contentual inference is replaced by manipulation of signs according
to rules, and in this way the full transition from a näıve to a formal treatment
is now accomplished” (Hilbert, 1925a, p. 381).

With the formalization completed, it should secondly be made sure, that
the system is without contradictions. Given that 1 = 1 is clearly a true the-
orem of finite arithmetic, the inspection for consistency amounts to demon-
strating that the formula 1 6= 1 cannot be proven from the axioms chosen12.
Luckily this task can proceed as an inspection of the finite formulas and
proofs of the axiomatic system. As Hilbert puts it: “. . . a formalized proof,
like a numeral, is a concrete and surveyable object. It can be communicated
from beginning to end”, and hence the task of showing that the proof of
1 6= 1 does not exist is a task, that “fundamentally lies within the province
of intuition” (ibid., p. 383). Actually, mathematics itself can be used in order
to perform this inspection or analysis of our system, but since all the proofs
and theorems of the axiomatic system are finite objects, we will only need
the safe, finite part of mathematics in order to inspect them. Proceeding in
this way it should, Hilbert believed, be possible to prove the consistency of
all of mathematics using only the safe, finite parts.

As it is well known, the dream of such a proof was shattered with the ad-
vent in 1931 of Kurt Gödel’s incompleteness theorems. From these theorems
it follows, that no consistent axiomatic system powerful enough to reproduce
arithmetic can prove its own consistency (a very precise statement of this
is found in the note added in 1963 to (Gödel, 1931, p.616)). So the Hilbert
program, where the consistency of all of mathematics was to be proven by a
subsystem of mathematics, was doomed to failure.

As noted in the beginning, the axiomatic-deductive method presupposes a
foundation in the form of axioms, the truth of which is transported through
the system as a whole by valid logical inferences. Consequently, the truth and
certainty of the theorems of the system is always relative to the axiomatic
foundation. Due to the discovery of non-Euclidean geometry and the para-
doxes of set theory, neither geometrical intuition nor näıve set theory could

12For those not familiar with logic it should be noted that (logically) anything follows
from a contradiction. Consequently, if a system contains one contradiction, it will contain
all other possible contradictions, including 1 6= 1.



2.4 Modern foundations 27

give the type of foundation needed in order to realize the ideal of mathemat-
ics as a body of eternal and objective truth. The three foundational schools
tried out different strategies for solving this problem, but all of them failed;
as it seems, mathematics cannot be reduced to logic, mathematics cannot
be shown to be consistent (by safe means), and mathematics as we know it
cannot be constructed from a basic intuition of time.

There were – and there still are – attempts of carrying the programs of the
foundational schools through. The basic tenants of the logicist program can,
for instance, be found in Bob Hale and Crispin Wright’s neologicism, and the
intuitionist school is, to a certain extent, carried on in Michael Dummet’s
philosophy (see for instance Hale & Wright (2001)). The validity and scope of
Gödel’s incompleteness theorem has also been attacked (see Shapiro, 2000,
pp. 167 for an overview). However, most mathematicians and the mathe-
matical society in general have settled for something less, or, should I say,
something else than absolute, objective certainty. The nature of this ‘less’ or
‘else’ is the subject of the next section.

2.4 Modern foundations

The generally accepted foundation for modern mathematics is set-theoretic
axiom system called ZFC. The system is named so after to of its creators –
Ernst Zermelo (1871-1953) and Abraham Fraenkel (1891-1965) – and one of
the axioms, the Axiom of Choice. ZFC is a set-theoretic axiomatic-deductive
system so powerful that all ordinary mathematics can be developed within
the system. At first sight, it looks as if ZFC is the realization of the dream
of axiomatic-deductive certainty. However, on closer inspection it turns out
that ZFC, from an epistemic point of view, is very far from the ideal of
axiomatic certainty and truth.

The goal of Zermeleo, who published the first version of ZFC in 1908,
was not to solve philosophical and epistemic problems. It was, as Jean van
Heijenoort puts is, to give “an immediate answer to the pressing needs of
the working mathematician” (Van Heijenoort, 1967, p. 199). At the time,
what the working mathematicians needed was simply to get Cantor’s set
theory without the paradoxes. And that was exactly what Zermelo set out
to provide:

Under these circumstances [i.e. the existence of the paradoxes] there
is at this point nothing left for us to do but to proceed in the opposite
direction and, starting from set theory as it is historically given,
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to seek out the principles required for establishing the foundations
of this mathematical discipline. In solving the problem we must,
on the one hand, restrict these principles sufficiently to exclude all
contradictions and, on the other, take them sufficiently wide to retain
all that is valuable in this theory.

(Zermelo, 1908a, p. 200)

In this quote Zermelo clearly states that he is not trying to provide safe foun-
dations the ‘bottom-up’-style. He starts with the historically given theory
and will then try to find the axioms needed.

In justifying the axioms, self-evidence is, Zermelo writes, “surely a nec-
essary source of mathematical principles” (Zermelo, 1908a, p. 187). But, he
goes on, self-evidence is merely a subjective fact, whereas what can be ob-
jectively decided is whether a principle (i.e. an axiom) is necessary for the
mathematical science or not. “Actually, principles [axioms] must be judged
from the point of view of science [mathematics], and not science from the
point of view of principles fixed once and for all. Geometry existed before
Euclid’s Elements, just as arithmetic and set theory did before Peano’s For-
mulaire, and both of them will no doubt survive all further attempts to
systematize them in such a textbook manner” (ibid. p. 189).

Following Penelope Maddy (1997, p. 37), we can distinguish between in-
trinsic and extrinsic justifications for an axiom. Intrinsic justification regards
how self-evident and reasonably the axiom seem in itself, whereas extrinsic
justifications are judgments based on the consequences of the axiom. From
the above, it seems as if Zermelo values extrinsic justification above intrinsic
(even though he does not disregard intrinsic justifications all together).

Such a view might seem very surprising, even slightly disturbing. If the
axioms are justified by their consequences, i.e. the theorems it is possible
to derive from them, the theorems in turn cannot be justified by appealing
to the axioms. That would be a perfectly circular way of reasoning. So
if axioms are to have epistemic value as a secure foundation for a body of
mathematical theorems, the axioms must be justified exclusively by intrinsic
means. But apparently, that was not what Zermelo intended to deliver.

Interestingly, Zermelo was far from alone in this view on the relationship
between axioms and theorems. In a discussion on the justification of the
Axiom of Reducibility, Russell and Whitehead write:

That the axiom of reducibility is self-evident is a proposition which
can hardly be maintained. But in fact self-evidence is never more
than a part of the reason for accepting an axiom, and is never
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indispensable. The reason for accepting an axiom, as for accepting
any other proposition, is always largely inductive, namely that many
propositions which are nearly indubitable can be deduced from it, and
that no equally plausible way is known by which these propositions
could be true if the axiom were false, and nothing which is probably
false can be deduced from it.

(Whitehead & Russell, 1910, p.62)

Here, Russell and Whitehead seem to abandon the fundamental ideas of
logicism. Instead of a bottom-up approach, where mathematics is deduced
from logically secure foundations, they seem to endorse a top-down approach
where axioms (or at least some of them) are judged in the light of theorems
that somehow seem ‘nearly indubitable’.

2.4.1 The axioms of ZFC

Now, let us spend a little time evaluating the justification given for some
of the actual axioms of ZFC13. First of all, we find the Axiom of Infinity.
The axiom claims the existence of “at least one set Z that contains the
null set as an element and is so constituted that to each of its elements
a there corresponds a further element of the form {a}” (Zermelo, 1908b,
p. 204). This gives us a sequence of elements a, {a}, {{a}}, . . . or in other
word a denumerable infinite set like the natural numbers. Now, the actual
existence of anything infinite does, as noted above, not seem self-evident. The
standard justification for the axiom is, as Maddy puts it “purely extrinsic”
(1997, p. 52), being that analysis and the theory of rational numbers cannot
be developed in set theoretical terms unless infinite sets can be treated as
existing wholes.

In the formulation of the Axiom of Infinity Zermelo used the null, or
‘empty’ set. The existence of this set is also ensured by axiom: “There
exists a (fictitious) set, the null set, 0, that contains no elements at all”
(Zermelo, 1908b, p. 202). The existence of such a set also seems very hard
to justify – note that even Zermelo strangely calls it ‘fictitious’. A set is a
collection of objects, and a collection of objects without any objects seems
like a contradictory entity. Maddy (1997, p. 39–40) sums up the justification
for the empty set given by Fraenkel et al. (1973) in two points: 1) We need
some kind of starting point in order to get the construction of sets started,

13A number of arguments pro and con the axioms are examined and categorized as
intrinsic or extrinsic in (Maddy, 1997, p. 36)). In (Feferman, 1998, p. 44–45) six themes
or features of current concern regarding ZFC and Cantor’s set theory is collected and
discussed. Here the intrinsic-extrinsic-distinction is not observed.
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and 2) we want the intersection of two sets to be always a set, even when
the two sets have no elements in common. These are, from a practical point
of view, very good reasons for including the empty set, but the reasons are,
of course, purely extrinsic.

However, the most debated axiom of ZFC is, without doubt, the Axiom
of Choice. In its intuitive form, it states that if you have a collection of non-
empty, mutually disjoint sets, you can always form a new set by choosing
exactly one element from each of the sets in your collection. In Zermelo’s
1908-version, the axiom states that if T is a set whose elements are non-
empty, mutually disjoint sets, then there exists at least one choice-set having
one and only one element in common with each element of T (Zermelo, 1908b,
p. 204). In Zermelo’s version the emphasis is on existence rather than choice,
but the result is the same.

In the finite case, the axiom is uncontroversial. It just states that you can
form a new collection by picking one element from a set of already existing
collections – you can make a collection of candy, by picking one piece of candy
from each non-empty jars in the candy store. But what if the collection
of sets is infinite? The axiom just states the existence of the choice-set,
but it does not define the set or in any way tell us how to construct it,
and that is a problem. How can a mathematical object exist without being
constructed or at least defined in a specific way by us? It seems as if the axiom
presupposes realism concerning infinite sets: Infinite sets exists and have
definite properties, including choice-sets, independently of the human mind.
We might come to know these properties or we might not, but nonetheless,
they are there.

Zermelo’s defense of the axiom includes both intrinsic and extrinsic ele-
ments. Even before the axiom was stated explicitly, it had been used heavily,
but implicitly, by Cantor and a number of other mathematicians (Moore,
1982, pp. 30). Zermelo notes this (Zermelo, 1908a, p. 187), and see it as
a sign of the axiom’s self-evidence, that is, as an intrinsic justification for
the axiom. Zermelo then goes on to give his extrinsic justification. He lists
seven theorems and problems that cannot be dealt with without the Axiom
of Choice, and states that “as long as [. . .] the principle of choice cannot
be definitely refuted, no one has the right to prevent the representatives of
productive science [i.e. mathematics] from continuing to use this ‘hypothesis’
” (Zermelo, 1908a, p. 189). In other words: The Axiom of Choice makes it
possible to prove a number of important results, so, as long as the axiom has
not led us into any trouble, it should be used. According to Moore (1982, p.
285), these two arguments have remained as the primary arguments used in
defense of the axiom.



2.4 Modern foundations 31

We do not need to follow the debate to a conclusion here. From what
we have seen it is, I believe, safe to say, that the Axiom of Choice is not
self-evident, unless you share a specific metaphysical view on mathematics
(i.e. realism). “Yet”, as Moore concludes his thorough investigation of the
axiom, “as the years passed, the Axiom [of Choice] continued to be used
fruitfully in those branches of mathematics undergoing rapid development.
Later mathematicians, who had not been involved in the controversy, were
increasingly likely to apply the Axiom with no qualms of conscience” (Moore,
1982, p. 290).

We have now examined the justification given for three of the axioms of ZFC.
I have fixed the scales a bit by picking some of the most dubious axioms for
inspection, but somewhat similar stories could be told for several of the
remaining axioms. We do not need to go through that here – I believe the
general point has come through. The axioms of ZFC are not self-evident
and indubitable principles. Just like the rigorization program of the 19th
century, Zermelo had a top-down approach. He started from the theorems
he believed to be true – i.e. the historically given Cantorian set theory –
and then he found the axioms he needed in order to deduce these theorems.
So, contrary to the myth of axiomatic certainty and truth, mathematics
does not proceed by logical deduction from a number of self-evident axioms.
Instead, mathematics starts with something. We know some propositions to
be true, and then we might (or we might not) set out to find the more or
less self-evident axioms needed in order to deduce those propositions. But
what is given, what is the starting point, is not the axioms, it is some set of
propositions.

The fate of intuitionism is a very telling illustration of this point. Brouwer
set out to provide the kind of safe ‘bottom-up’ foundation, the myth of ax-
iomatic truth and certainty would need for its realization. But as it turned
out, that was not at all what the mathematical society wanted. They wanted
the already accepted theory to be justified. The goal was set in advance,
and when Brouwer’s intuitionistic mathematics missed that goal, it was dis-
carded. Logicism and the Hilbert-program set out to justify the already
accepted body of mathematical knowledge, but even when that turned out
to be impossible, the accepted mathematics was not modified. Instead, the
quasi-justifications provided by ZFC were adopted as the foundation of math-
ematics.



32 If not in mathematics?

Finally, we might also briefly return to Euclid. Why did Euclid accept
the fifth postulate as an axiom? Note, that he postponed the use of the
postulate as long as possible – it is only used for the first time in the proof
of the 29th postulate. This suggests that he did not see the postulate as
self-evident, or at least he was suspicious towards it. So, why did he include
a principle, he was suspicious towards, in the very foundation of his system?
Obviously, we will never know Euclid’s actual motives, but in the light of
the above one very straightforward answer is this: He simply knew that he
needed the postulate in order to prove an important theorem, he believed to
be true, i.e. that the sum of the angles of a triangle equals two right.

2.5 Axioms and the essence of mathematics

In the empirical sciences it is sometimes possible to explain a phenomenon
by reducing it to a more basic phenomenon. Standard examples of successful
reductions of this type are the reduction of chemical properties (such as
valence) to physical properties and the kinetic theory of heat. The reduction
makes it possible to understand and predict important aspects of the reduced
phenomenon (such as transfer of heat), and one might even say, that the
reduction reveals the true nature of the reduced phenomenon. Heat is not
presence of the element of fire or a mysterious weightless fluid, as supposed
by the caloric theory. Heat is average speed of the molecules of a substance.
Nothing more, nothing less.

Now, one might wonder if something similar can be done in mathematics.
Can the true nature or essence of a part of mathematics be revealed by a
reduction to a more basic theory? Such an idea would go very well – and
can sometimes be seen as a part of – the myth of axiomatic truth and cer-
tainty: By axiomatizing mathematics we find the fundamental principles (i.e.
the axioms) hidden beneath the immediate phenomena, and these principles
reveal the true nature of the reduced theory.

As it turns out, such reductions are not unproblematic, neither in empir-
ical science (which I will not comment further on here) nor in mathematics.
Firstly, there is what one might call a problem of underdetermination; it
is well known that the same parts of mathematics can be axiomatized by
several different systems of axioms. As a competitor to ZFC, we have for
instance the von Neumann axioms, which are actually stronger than ZFC,
i.e. every theorem deducible in ZFC is also deducible in the von Neumann
axioms (Wang, 1949, p. 152). Also, entirely different types of axioms can
be used. The synthetic Euclidean axioms, which were perfected in Hilbert’s
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Grundlagen der Geometrie, offer one way of axiomatizing geometry, but as
it is the case with most parts of mathematics, geometry can also be axioma-
tized in ZFC using analytic methods. In comparison to Euclid and Hilbert’s
axioms, ZFC has the advantage of unifying most of mathematics, but does it
follow from this fact, that geometry is really set theory, i.e. that all this time,
when we have been talking about circles and triangles and other geometrical
shapes, we have really been talking about sets? No. ZFC and the axioms of
Euclid and Hilbert are different ways of describing geometrical properties –
they are different models (where the word ‘model’ is in a way similar to the
way it is used in physics). But the geometric properties, we wish to describe,
do not fully determine which axiom system we should use. The choice of
axiom system is underdetermined by geometry, so there is no ‘right’ or ‘true’
axiom system.

Secondly, the idea that axioms might somehow reveal the true nature
or essence of mathematics is challenged by the existence of so-called ‘non-
standard’ models14. A non-standard model is a model that is not isomorphic
to the intended interpretation of a given set of axioms. The existence of such
models was discovered by Thoralf Skolem (1887–1963) in a number of papers
published from 1922 to 1934.

As an example, (first-order) Peano arithmetic is usually axiomatized with
the following axioms (Manzano, 1999, p. 173):

1. ∀x c 6= fx

2. ∀xy(fx = fy → x = y)

3. ∀x x+ c = x

4. ∀xy x+ fy = f(x+ y)

5. ∀x x · c = c

6. ∀xy x · fy = (x · y) + x,

and the first-order induction axiom ϕ(c) ∧ ∀x(ϕ(x)→ ϕ(f(x))→ ∀xϕ(x).

Normal arithmetic on the usual set of natural numbers {0, 1, 2, 3, 4, . . .}
is a model of these axioms (with c interpreted as 0 and f as the successor-
relation). The natural numbers (and isomorphic structures) are considered
the standard model for the axioms as they probably constitute what Peano

14And here the word ‘model’ is to be understood in the exact reverse sense in comparison
to its use in physics (and natural language). In mathematical logic, a model is, loosely
put, a structure that constitutes an interpretation of a given set of axioms
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and others intended to axiomatize. However, several non-standard models
can also be constructed, for instance by adding a so-called infinite collection
of Z-chains after the standard natural numbers. In non-technical terms, each
of these chains will have the same structure as the integers, so we might have
the non-standard number, say 1∗, which is the successor of the non-standard
0∗, which is the successor of the non-standard −1∗ etc. Each non-standard
number is the successor of another non-standard number, but a non-standard
number will never be the successor of a standard number. Consequently, you
can never count to the 1∗ by starting with 0 (Manzano, 1999, p. 177), and
all in all we get a structure of the following type:

0, 1, 2, 3, . . . ,−2∗,−1∗, 0∗, 1∗, 2∗, . . . ,−2∗∗,−1∗∗,−0∗∗, 1∗∗, 2∗∗ . . .

This model verifies all the Peano axioms (in first order logic), and conse-
quently is a valid interpretation of the axioms.

How should we react to this? Should we embrace the non-standard models
as new knowledge given to us by the axioms, or should we rather reject the
non-standard models as a chimera?

As it seems, the underdetermination goes both ways; given a set of ac-
cepted theorems, there is always more than one way to axiomatize them, and
given a set of axioms, they can always be verified by other models than the in-
tended one (in first order logic and due to the Löwenheim-Skolem theorem)15.
At the very least, this should serve as a reminder of the epistemic footing we
are on, when we are axiomatizing. The axioms are partly justified by a fit
between some of their consequences and some of the mathematical facts we
– one way or another – believe to be true. Does this mean that the axioms
capture the essence of mathematics? That they explain the true nature of
the things we are dealing with? That the reformulation of mathematics in set
theory thought us that mathematics really is and has always been properties
of sets, in the same way physics taught us that heat is really just kinetic
properties of molecules? Absolutely not! The axiomatic-deductive method is
an important tool in the mathematician’s toolbox, but no set of axioms can
capture the essence of mathematics, and the mathematical method should
not be identified with the axiomatic-deductive method.

15On a technical note it should be remarked that the problem of non-standard interpre-
tations can be solved by using second-order logic. Second-order logic, however, has other
problems, which I will not comment on further at this place (see e.g. Jané, 2005).
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3.1 The motivation for naturalism

In the previous chapter, I explained why the myth of axiomatic certainty
and truth is but a myth. Unfortunately, this did solve much in terms of
the research question pursued here. On the contrary, if the starting point of
mathematics is not self-evidently true axioms, but propositions we somehow
intuitively know or take to be true, we need to ask: why? Why do we believe
certain propositions to be true? How do we acquire this knowledge? How
certain is it? Does it develop, and if so: how and due to which mechanisms?
Is mathematical knowledge objective, and if so: in what sense? Is it strongly
or only weakly objective, i.e. is it the kind of knowledge any thinking being
would agree to, or only the kind of knowledge any human being would agree
to?

In order to answer these questions a change of focus is necessary. Instead
of examining the logical foundations and justifications of mathematics, we
should study how mathematics is practiced and develops. In recent decades
a still growing number of philosophers of mathematics have changed their
focus from the logical foundations to the practice and history of mathematics
(see e.g. Domı́nguez & Gray, 2006; Mancosu, 2008). This have resulted in
a number of fruitful studies. In the present study, I will however take this
development a step further. I will view the mathematical practice from the
outside in order to put it into a cognitive, biological and sociological context.
In other words, I will take a naturalist stance and view mathematics as an
inherently human activity, i.e. an activity carried out by particular biological
creatures in possession of certain cognitive and bodily resources, placed in
certain physical and cultural contexts and pursuing certain interests.

Before starting these investigations, a short presentation and discussion
of naturalism as a scientific method is in place.

3.2 What is naturalism?

In a modern setting, naturalism is connected to the essay “Epistemology
Naturalized” by Willard Van Orman Quine (1969). Here, Quine states that
“Epistemology, or something like it, simply falls into place as a chapter of
psychology and hence of natural science. It studies a natural phenomenon,
viz., a physical human subject” (1969, p. 82-83). Naturalism in broad follow
Quine in this general idea. Consequently, the task of understanding why
we form the type of beliefs about the physical world we do, and the task
of determine the conditions of possibility governing our epistemic relation
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with the physical world, are empirical questions that should be solved using
scientific knowledge about the world and about human beings. To Quine,
the relevant type of scientific knowledge about human subjects was psychol-
ogy. Later definitions of naturalism seems to favor cognitive science (e.g.
Kornblith, 1994, p. 43), but naturalistic epistemology can also include soci-
ological, anthropological and other types of empirical knowledge explaining
the epistemic situation of human agents.

Turning to mathematics, a naturalistic account simply amounts to a sci-
entific study of why we form certain mathematical beliefs. This is to be
seen in contrast with other, more traditional accounts such as Platonism and
formalism. To spell out the contrast, we can take a look at the following
often-quoted Platonistic account given by Gödel:

The objects of transfinite set theory [. . .] clearly do not belong to
the physical world and even their indirect connection with physical
experience is very loose [. . .]. But, despite their remoteness from
sense experience, we do have something like a perception also of the
objects of set theory, as is seen from the fact that the axioms force
themselves upon us as being true. I don’t see any reason why we
should have any less confidence in this kind of perception, i.e. in
mathematical intuition, than in sense perception.

(Gödel, 1947, p. 483-4)

Perhaps Gödel is right – perhaps transfinite sets do exist in an immaterial
Platonic world, and perhaps we do have a special faculty that makes it pos-
sible for us to perceive them. The problem is, that we can never know. It
is a simply metaphysical assumption that can never be justified empirically.
A Platonistic account, such as the one given by Gödel, does answer many
of the questions surrounding mathematics. But sometimes answers are to
easily had.

The great attraction of naturalism, as I see it, is that it does not need to
invoke mysterious entities, such as a platonic realm of eternal entities with
no causal properties and no location in space and time, or mysterious facul-
ties, such as the Gödelian intuition, that can bring us into contact with these
entities. It tries to explain mathematics using generally acknowledged empir-
ical methods and scientific knowledge that fits into our overall web of beliefs
about the state of the world. It does not simply accept the feeling Gödel –
and many other mathematicians – have that mathematical entities exist, at
face value. On the contrary, the feeling that mathematical entities exists in
a platonic world and the feeling that we somehow are capable of intuiting
them are part of the phenomenology of mathematics that needs explaining
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on the naturalistic account; we must understand why mathematicians feel
this way, and not necessarily honor those feelings as revealing the truth (as
also explained in Bloor, 1991, p. 86).

A lot of work that could be categorized under the general heading of
naturalism in the philosophy of mathematics has been done during the last
few decades. This work includes Lakoff & Núñez (2000), where explanations
from cognitive science are used, de Cruz (2007), where a Darwinian approach
to mathematics is taken, and Bloor (2002, 1983), where sociology is used to
give naturalistic explanations of mathematical beliefs.

In the chapters below, I will present and discuss several of these ap-
proaches in order to give a nuanced naturalized picture of our mathematical
beliefs. This picture includes scientific knowledge from biology and neu-
roscience about the evolutionary shaped biological hardware of the human
brain. It includes knowledge from cognitive science about the specific cog-
nitive strategies generally used by human beings. And finally, it includes
sociological knowledge explaining how mathematics depends on our social
surroundings and relations with social groups.

This approach, where knowledge and models of explanation from more
levels are used, allows me to break up my overarching research question. In-
stead of asking: where does mathematics come from? I can more indirectly
ask: How much (if any) of mathematics can be explained by evolutionary
biology?, by cognitive science? and by sociology of science? – or, as I like to
put it: do our biology, cognitive style and social behavior have an impact on
our mathematical beliefs? So instead of starting at the bottom and explain
the origin of our mathematical beliefs, I start with the already given natu-
ralistic theories, and discuss whether they are able to contribute with a piece
of the answer to the general question. As historian of science Ryan Tweney
has strikingly put it “there is not likely to be a single theory that accounts
for everything. You must assemble bits and pieces of this and that, hoping
that your account is going to get closer and closer to the truth” (Callebaut
& Bechtel, 1993, p. 339). And that is exactly how I propose to proceed. The
challenge in this way of proceeding is of course to make the pieces fit together
in a consistent way.

3.2.1 Levels of explanations

Before moving on, I will discuss some possible objections to my particular
conception of naturalism, and some of the standard objections raised against
the use of naturalistic methods as such in the philosophy of mathematics.
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Beginning with the first, the naturalistic description I wish to give is
inclusive; it involves knowledge from several branches of science, and operates
with several levels of causes and explanations. This type of approach is not
universally endorsed amongst naturalists. Helen de Cruz (2007) for instance,
does not accept this kind of non-reductive approach. Naturalism is supposed
to use scientific knowledge in the study of human beliefs, but according to de
Cruz, science – and hence naturalism – is committed to reductive physicalism:

Science has an implicit ontological commitment to physicalism. In
order to engage in science, we assume that the real world is material,
and that there are no autonomous subject-free ideas, and that every
event in the world is the outcome of prior causal events or laws; there
are no uncaused causes [. . .]. In other words, scientific investigation
explains events or properties of the world by looking for causal mecha-
nisms, which can be traced to material, tangible objects in the world.
The fundamental thesis of physicalism is that the only existents are
material things. [. . .]

This means that we simply cannot evoke culture as an ultimate
causal mechanism to explain the complexities of human mathematical
thought. The complex body of beliefs and behaviors that constitutes
each culture is caused by lower-level processes. Like all other events in
the world, human culture must be explained as the outcome of specific
causal mechanisms, which can be described in purely materialistic
terms. Mathematical constructions, according to this physicalist
perspective, are products of individual human mathematicians,
equipped with a human brain.

(de Cruz, 2007, pp. 32-33)

First of all, even granted materialistic reductionism to be true, it might from
a pragmatic point of view be vise to operate with more levels of explanation
than the purely material. If we want to describe and explain, say, the phe-
nomenon of normativity in mathematics, the correct level of explanation is,
as I see it, clearly the social level, and not the purely material level, where
the neurophysiological processes of the individual actors are described.

This being said, I do not agree with the doctrine that science is nec-
essarily committed to this kind of materialistic (ontological) reductionism.
This type of all-encompassing reductionism is highly questionable. To men-
tion only one problem, there is a seemingly insurmountable explanatory gap
between the material, neurophysiological processes of the brain and our con-
scious, first-person experiences (see e.g. Zahavi, 2004). Consequently, no one
can explain how human culture is supposed to be explained in “purely ma-
terialistic terms”, as de Cruz puts it. Perhaps, it simply cannot be done.
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Furthermore, there are alternatives to materialistic reductionism, and some
of them do seem better suited to bridge the explanatory gap mentioned
above. A promising candidate is the theory of emergentism, claiming that
reality ultimately consists of a hierarchy of levels. The properties of each
level emerges from the interactions of the relatively simpler elements of the
level below, but they do so in a non-reducible way (the idea was originally
suggested in Anderson (1972). For further developments, see Emmeche et al.
(1997, 2000). For criticism, see Kim (2006)). Although theories of emergence
are heavily debated, they do constitute a possible alternative to materialistic
reductionism, and consequently science is not committed to materialism as
claimed by de Cruz. At least it seems safe to say that the jury is still out on
this question. On a stronger note, I believe that the account of mathematics
given in this dissertation will furthermore show the advantages of operating
with more explanatory levels in a non-reductionist way.

3.2.2 Internalism vs. externalism

In the area of mathematics, a distinction between internal naturalism and
external naturalism is furthermore relevant (Van Kerkhove, 2006). The head-
ing ‘external naturalism’ is used to characterize approaches, such as the one
outlined above, where knowledge relatively external to mathematics is ap-
plied in order to explain how we arrive at our mathematical beliefs. In-
ternal naturalism on the other hand, takes an entirely different approach.
Here, mathematics and mathematical methodology is only to be evaluated
by its own standards and ideas of fruitfulness, and not by anything outside of
mathematics itself. Mathematics is in other words only to respond to purely
mathematical considerations.

The most prominent proponent of the internalistic school is no doubt
Penelope Maddy (Maddy, 1997, 1998). The internalistic (and Maddy’s own)
position is clearly presented in the following passage, where Maddy com-
ments on the acceptance of the axiom of choice and the use of impredicative
definitions (viz. a particular kind of self-referring definitions such as ‘least
upper bound’):

Impredicative definitions and the Axiom of Choice are now respected
tools in the practice of contemporary mathematics, while the philo-
sophical issues remain subjects of ongoing controversy. The method-
ological decision seems to have been motivated, not by philosophical
argumentation, but by consideration of what might be called, for want
of a better expression, mathematical fruitfulness [. . .].
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What are we to make of this? One response would be to insist that
the mathematical community has been too hasty in its embrace of
these disputed methods, that they are being used, as it were, without
justification, without their essential philosophical underpinnings. The
response I propose turns this position on its head: Given that the
methods are justified, that justification must not, after all, depend on
the philosophy. Mathematical naturalism, as I understand it, is just a
generalization of this conclusion, namely, that mathematical method-
ology is properly assessed and evaluated, defended or criticized, on
mathematical, not philosophical (or any other extra-mathematical)
grounds. The particular instances of mathematical fruitfulness
that played the decisive roles in the impredicativity and choice
controversies stand as ready examples of the type of ‘mathematical
grounds’ I have in mind.

(Maddy, 1998, p. 164)

This type of naturalism is supposed to be purely descriptive. Its main aim
is to propose candidates for new axioms and to help settle the debates over
whether to accept new axioms candidates or not. This is done by creating
descriptive models of the modes of reasoning and methods of justification
already accepted as part of the (fruitful) mathematical practice, and use
these model as a way to evaluate and ultimately justify the rationality of
arguments involved in current discussions (Maddy, 1997, p. 199).

It has however been questioned, whether the resources available to in-
ternalistic naturalism are adequate for reaching this goal of justification
(Roland, 2007). The main problem lies in the fact, that the modes of reason-
ing that are accepted as delivering rightful justification for particular axioms,
are themselves only justified by the fact that they have previously lead to
mathematically fruitful results. But what could mathematical fruitfulness
be? As explained by Roland (2007), Maddy can neither appeal to an under-
standing of fruitfulness as ‘correctness’ understood as correspondence with
an independent platonic, mathematical realm, or (because of the proclaimed
independence from anything extra-mathematical) to usefulness in applica-
tions in other sciences. The claim that a mathematical result is fruitful is
not accountable to anything except the collective endorsement of the practi-
tioners.

In contrast, naturalism in broad and externalistic naturalism in math-
ematics use empirical knowledge to evaluate and explain a given epistemic
practice. Empirical knowledge is always accountable to something outside of
itself. It can be criticized or even falsified if it does not correspond to the
part of reality is supposed to describe in the way intended. Furthermore, sci-
ence is not monolithic. As pointed out by Roland (2007), disciplinary holism
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ensures that different branches of science might criticize each other. So all
in all, science has meaningful and robust means of criticizing itself. This
might not add up to the kind of ultimate justifications, sometimes wanted
for mathematics, but it does at least render a particular scientific discipline
accountable to something other than itself.

Because of the declaration of independence, these means of external crit-
icism are not available to the internalistic mathematical naturalist. Conse-
quently, the internalistic justification of an axiom comes down to the fact
that the axiom can be justified by the kind of reasoning that have previously
led to the kind of results, we as a collective happen to perceive as fruitful.
It is hard to see why the same maxim of reasoning could not just as well be
used to justify astrology, numerology or ‘guru-ology’ (as suggested by Paseau,
2008), as long as these disciplines are perceived as being fruitful by their par-
ticipants, for instance by being able to answer the guiding questions of the
various practices. Consequently, the justifications delivered by internalistic
naturalism are very week; mathematics is as justified as astrology or guru-
ology – but that in itself is, I believe, not very reassuring, and probably not
what Maddy set out to achieve. It simply seems that you cannot both justify
mathematics in any real or strong sense of the word and have independence
from anything extra-mathematical at the same time.

As explained above, the axioms of set theory are at least partially justified
by the fact that they capture results, we somehow already accepts. So if one
wants to justify the axioms, one should examine why we have come to accept
some results as correct (or fruitful), and what part this type of mathematical
beliefs play in our general epistemic practice. One should in other words
apply an externalist naturalistic approach, and examine mathematics from
the outside. This being said, the project of creating naturalistic models of the
actual reasoning used in mathematical practice is an interesting and valuable
project – there is much to be learned from the analysis of Maddy. However,
such models cannot by them selves provide justification for the validity of
the reasoning maxims they describe.

To clarify expectations, I should add that my primary goal is not to justify
mathematical practice or particular mathematical beliefs. I simply wish to
explain and understand why we form these beliefs – although the two things
are not unrelated, as I will explain in the next subsection.
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3.2.3 Discovery and justification

As an interesting objection to Quine’s initial exposition of naturalism, Jaeg-
won Kim (1988) argues that epistemology and the naturalized investigation
suggested by Quine are in fact two very different things; naturalism inves-
tigates how and why we form certain beliefs, i.e. it investigates a causal
relation between us and the world, whereas epistemology is concerned with
how beliefs can be justified, and in other words investigates a justificatory
relation between us and the world. For that reason, naturalized epistemology
cannot replace classical epistemology.

As I see it, this objection hinges on the differentiation between the context
of discovery and context of justification. In Kim’s view, naturalism only
concerns the discovery process – how we come to hold certain beliefs –, and
that is something else than justifying these beliefs. The division between
these two contexts has its origin in the positivist movement, where it was
meant as a mean to separate the (ideally) wholly rational and logical process
of justification from the irrational process of discovery. The latter could be
influenced by sociological and psychological factors, religious feelings or even
dreams (as in the famous story of Friedrich Kekulé’s discovery of the structure
of benzene), but as long as the former was kept clean as a strictly rational
and logical process, the idea of science as a cumulative and objective body of
knowledge could be upheld. In other words, with the divide, the positivists
acknowledged what they could not deny; that external and irrational factors
inevitably play some kind of role in science, but at the same time claimed it
to be possible to isolate the irrational element, and keep the crucial process
of justification clean and rational.

Good as this might sound, the possibility of observing an ultimate division
between the two contexts has been questioned, not the least in the influential
work by Thomas Kuhn (1922-1996). Briefly put, Kuhn pointed out that
justification is always set within the context of something else, which cannot
itself be ultimately justified – the measuring stick must be chosen before any
measuring can be done. This point is in fact very well exemplified in the
history of mathematics. As described in chapter 2 above, a specific theory,
i.e. Cantorian set theory, was chosen by the mathematicians (or rather a
subset of them) as the right one. There were good reasons for this choice
(and also good reasons against it), but no ultimate justification. Rather,
once the choice was made, it determined what was to count as justification.
Today, a theorem is justified if it can be derived from the axioms of ZFC,
which were in turn tailored to match the Cantorian theory. In other words,
the discovery of the Cantorian theory was prior to the context of justification
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offered by ZFC.

But other more fundamental choices went into the manufacturing of ZFC
as well. The rules of inference of ZFC might seem self-evident and objectively
true, but they should be seen in contrast with other options, such as the
intuitionistic logic and the Aristotelian ideal of scientific logic. Clearly, a
choice was made here. Furthermore ZFC is, as we have seen, the product of
a long process of rigorization and axiomatization, but this process was not
something objectively necessary. It was a contingent event in the history of
mathematics, fueled by discoveries within mathematics (such as the advent of
non-Euclidean geometry), the choice of specific values as principal (rigor and
certainty) and other factors. Most parts of mathematics had for centuries
done well without modern standards of justifications. Also, the choice of a
strict axiomatic system as justification can be debated. Why can diagrams
or computer experiments not count as justification?

All of this demonstrates that the distinction between context of justifi-
cation and context of discovery should be used with the outmost caution, if
at all. There is no ultimate, neutral and objective context of justification –
not even in mathematics. There is only the justification we ourselves have
manufactured. Consequently, the relevance of naturalistic methods both in
explanations of how we acquire mathematical knowledge and in judging how
justified it is, is ensured.

3.2.4 Psychologism

The last criticism against naturalism, I will treat at this point, is the charge
of psychologism. This criticism was primarily developed by Edmund Husserl
(1859-1938) and Gottlob Frege. Husserl and Frege directed their attack
against several naturalistic theories proposed in the 19th century. The to-
day most well known of these is probably the empiricistic theory of John
Stuart Mill. Mill and the other naturalists saw mathematics and logic as
psychological phenomena, and consequently all theories adhering to this ba-
sic principle were given the name ‘psychologism’. Neither Husserl nor Frege
did not agree with the psychologistic idea of conceiving logic and mathe-
matics as psychological phenomena, and consequently positioned themselves
as anti-psychologists. Husserl and Frege more or the less agreed in their
criticism of the naturalistic theories, although Husserl’s positive account of
mathematics and logic is embedded in a more elaborate and thought-through
epistemic theory, than the epistemic theory provided by Frege.

Frege’s anti-psychologistic arguments were published in Grundlagen der
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Arithmetik from 1884 and in the foreword of Grundgesetze der Arithmetik
from 1893. Here, I will only focus on the arguments proposed in Grundla-
gen. What I see as the main argument of the text can be summed up in the
following way: Frege rejects both the idea that numbers can be properties
of physical objects and the idea that numbers are the products of subjective
psychological factors. To Frege, numbers must be something objective: “Und
wir kommen zu dem Schlusse, dass die Zahl weder räumlich und physikalisch
ist, wie Mills Haufen von Kieselsteinen und Pfeffernüssen, noch auch sub-
jectiv wie die Vorstellungen, sondern unsinnlich und objectiv” (Frege, 1974,
p. 38). One can wonder what objectivity more precisely means in this con-
nection. Frege tells us that being objective means being independent of our
subjective ideas and psychological processes. “Während jeder nur seinen
Schmerz, seine Lust, seinen Hunger fühlen, seine Ton- und Farbenempfind-
ungen haben kann, können die Zahlen gemeinsame Gegenstände für Viele
sien, und zwar sind sie für Alle genau dieselben, nicht nur mehr oder minder
ähnliche innere Zustände von Verschiedenen (Frege, 1974, p. 105). Further-
more, Frege notices the normativity involved in mathematics: “Schaffen wir
auch Zahlen, welche divergirende Reihen zu summiren gestatten! Nein! auch
der Mathematiker kann nicht beliebig etwas schaffen, so wenig wie der Ge-
ograph; auch er kann nur entdecken, was da ist, und es benennen” (Frege,
1974, p. 107-8). In this way, numbers are in some sense similar to physical
objects: “So ist auch die Zahl etwas Objectives. Wenn man sagt ‘die Nordsee
ist 10,000 Quadratmeilen gross,’ so deutet man weder durch ‘Nordsee’ noch
durch ‘10,000’ auf einen Zustand oder Vorgang in seinem Innern hin, son-
dern man behauptet etwas ganz Objectives, was von unsern Vorstellungen
und dgl. unabhängig ist”(Frege, 1974, p. 34). By ‘North Sea’ we do designate
an external, physical object, which is clearly independent of us and our sub-
jective psychology, but what can we designate by the word ‘10,000’? Having
excluded both internal, psychological states and external physical objects, ul-
timately Frege chooses a form of realistic conception of numbers – “wir haben
schon festgestellt, dass unter den Zahlwörtern selbständige Gegenstände zu
verstehen sind” (Frege, 1974, p. 73), and those objects are, in Frege’s view
(and very briefly put) extensions of concepts.

Husserl presents the bulk of his anti-psychologistic argument in the pro-
legomena to Logische Untersuchungen (originally published in 1900). I will
not go through all of the many details of his argument here. As I see it, the
main point of the argument is the claim that we must distinguish between the
mental acts involved in mathematical judgments, and the objects of those
acts. The mental acts are themselves psychological events that can well be
described by experimental psychology, but the objects are not. Husserl here
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agrees with Frege’s Platonism; the mathematical theorems (and the laws of
logical) are ideal objects that are independent of anything factually given.
The logical laws and mathematical truths are timelessly and objectively true.
They transcend the individual subjects psychological states of approval. Con-
sequently, it is (to use Husserl’s expression) a μετάβασις εὶς α̈λλο γένος, viz
a fallacy similar to what we, following Gilbert Ryle, would call a category
mistake, to explain mathematics and logic using the tools of an empirical
sciences such as psychology.

Husserl’s attack is mainly aimed at psychologistic explanations of logic,
but as he sees mathematics as a branch of general logic, the same general at-
tack applies to both naturalistic theories of logic and mathematics (Husserl,
1993, § 45). Here, however, I will restrict myself to describing his position
concerning mathematics. This is very well summed up in the following two
passages. In the first, Husserl attacks the naturalistic idea (called anthro-
pologism) that the truths of mathematics are relative to us as a particular
species:

Die Konstitution der Spezies ist eine Tatsache; aus Tatsachen lassen
sich immer wieder nur Tatsachen ableiten. Die Wahrheit relativistisch
auf die Konstitution der Spezies gründen, das heißt also ihr den
Charakter der Tatsache geben. Dies ist aber widersinnig. [. . .]
Wollte man sich darauf stützen, daß doch wie jedes Urteil, auch
das wahre aus der Konstitution des urteilenden Wesens auf Grund
der zugehörigen Naturgesetze erwachse, so würden wir entgegen:
Man vermenge nicht das Urteil als Urteilsinhalt, d. i. als die ideale
Einheit, mit dem einzelnen realen Urteilsakt. Die erstere ist gemeint,
wo wir von dem Urteil “2 × 2 ist 4” sprechen, welches dasselbe ist,
wer immer es fällt. Man vermenge auch nicht das wahre Urteil,
als den richtigen, wahrheitsgemäßen Urteilsakt, mit der Wahrheit
dieses Urteils oder mit dem wahren Urteilsinhalt. Mein Urteilen, daß
2× 2 = 4 ist, ist sicherlich kausal bestimmt, nicht aber die Wahrheit:
2× 2 = 4.

(Husserl, 1993, p. 119, emphasis in the original)

In the second, Husserl explains why the objects of mathematics must be
ideal:

Niemand faßt die rein mathematischen Theorien und speziell z. B.
die reine Anzahlenlehre als “Teile oder Zweige der Psychologie”,
obgleich wir ohne Zählen keine Zahlen, ohne Summieren keine
Summen, ohne Multiplizieren keine Produkte hätten usw. [. . .]
Und trotz dieses “psychologischen Ursprungs” der arithmetischen
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Begriffe erkennt es jeder als eine fehlerhafte μετάβασις an, daß die
mathematischen Gesetze psychologische sein sollen. Wie ist das zu
erklären? Hier gibt es nur eine Antwort. Mit dem Zählen und dem
arithmetischen Operieren als Tatsachen, als zeitlich verlaufenden
psychologischen Akten, hat es natürlich die Psychologie zu tun. Sie
ist ja die empirische Wissenshaft von den psychischen Tatsachen
überhaput. Ganz anders die Arithmetik. Ihr Forschungsgebiet ist
bekannt, es ist vollständig und unüberschreitbar bestimmt durch
die uns wohlvertraute Reihe idealer Spezies 1, 2, 3 . . . [. . .] Die Zahl
Fünf ist nicht meine oder irgend jemandes anderen Zählung der
Fünf, sie ist auch nicht meine oder eines anderen Vorstellung der Fünf.

(Husserl, 1993, p. 170, emphasis in the original)

So to summarize the arguments given by Frege and Husserl, mathematics
is concerned with ideal objects that are untouched by the contingency of
our psychological states. So although we apprehend mathematics through
mental acts, it would be a category mistake to explain the content of such
acts by the use of psychology (or any other empirical sciences).

At the outset, the argument does not seem to exclude naturalistic inves-
tigations altogether, only to delimit their scope. The naturalistic project, as
I have described it above, is concerned with the origin of our mathematical
beliefs, not with mathematical truth in itself. Such an investigation could be
of value, even if the mathematical objects exist as ideal, platonic elements,
as described by Frege and Husserl. The main conflict with naturalism lies
with Frege and Husserl’s conviction that mathematical knowledge is apodic-
tic; that our mathematical beliefs are absolutely clear and certain knowledge
about the ideal, platonic world of mathematics. As Husserl describes it
above, our belief that 2× 2 = 4 is not just a contingent psychological event.
It is an absolute truth that we somehow have come into contact with. This
kind of absolutism does, however, seem hard to justify. As we saw in chapter
2, it does seem impossible give the feeling of certitude any real substance in
the form of secure foundations for mathematics. We simply do not have the
means to justify our mathematical beliefs independently from the content of
those beliefs (as argued in section 3.2.3 above). In fact, as pointed out by
Kusch (2007) something similar can be said about logic: “In the light of the
development of over the past 70 years, it is no longer evident that the laws of
Frege’s and Husserl’s classical logic are necessary and unique” (Kusch, 2007,
§7). In modern mathematics, there is a choice of logical framework, and this
choice in itself is seen as part of the theory construction (see e.g. Goodman,
1990, p. 185).

All of this does not rub Frege and Husserl of their distinction between
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our contingent and psychologically caused mathematical beliefs, and the ab-
solute mathematical truth, although the need for justifying the existence of
such an absolute truth is perhaps somewhat strengthened. Concerning that,
Frege and Husserl seem to be using an inference to best explanation; they
take departure in the apparent objectivity of mathematics, and from that
they infer the existence of a platonic realm of ideal, mathematical elements
as the only explanation. Husserl and Frege do seem to have a very good
point here. Even though mathematics might not be completely certain, the
content of our mathematical beliefs does seem to lie beyond my individual
psychological dispositions. They have an objectivity, or rather normativity,
my individual, contingent psychological dispositions cannot account for. As
Husserl describes it, the number 5 does not seem to belong to me or any other
individual persons, and my belief that 2× 2 is 4 does seem to be something
completely different from my disposition, say, to pick a particular brand of
milk when I am in the supermarket. If I picked a different brand of milk, I
would simply be differently disposed, but if I believed 2 × 2 to be anything
but 4, I would be wrong. The fact that 2× 2 is 4 is a truth that transcends
my individual psychology. It appears to be true no matter what I believe of
it, and that appearance is something any naturalized account of mathematics
should be able to account for.

As I see it, there are other and more plausible way to account for the
normativity and perceived objectivity of mathematics than proposing the
existence of a platonic world of ideal mathematical objects. A satisfactory
answer does however presupposes the introduction of a great deal of relevant
theory, so I will not give it at this place, but return to the challenge and give
an answer in chapter 7.



Chapter 4

The biological level
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4.1 The biological level

In December 2007 the astonishing result of a research project on monkeys’
mathematical skills made news around the world. As it turns out, the math-
ematical skills of monkeys rivals that of college students – or at least, that
was the surprising conclusion of the study (Cantlon & Brannon, 2007).

In the study a simple, non-verbal test of numerical and arithmetical skills
was used. The test-subject would at first see a set of dots on a computer
screen. Then a blank screen was presented for a short time, followed by a
screen showing another set of dots. Finally, the subject was presented with
two sets of dots shown side by side; a sum set in which the number of dots
corresponded to the arithmetic sum of the number of dots in two first sets,
and a distractor set, in which it did not. The subject had to choose between
the two sets by touching the screen (see figure 4.1).

Figure 4.1: Experimental paradigm for a non-verbal addition task.

Two rhesus macaque monkeys were trained to choose the sum set using
a limited number of addition problems and distractor sets (1 + 1 = 2, 4,
or 8, 2 + 2 = 2, 4, or 8 etc.). After 500 trials, the range of result sums
were expanded to 2, 4, 8, and 16, and finally the monkeys were tested for
approximately 600 trials using the novel sums 3, 7, 11, and 17. In order to
prevent simple reinforced learning, the monkeys were rewarded regardless of
whether they picked the right result or not during these last tests.

On both the novel and the familiar problems the monkeys performed
significantly better than chance (giving respectively 70% and 75% correct
answers for the novel problems). Furthermore, the monkeys’ performance
seemed to depend on the ratio of the numerical value of the sum and the
distractor set; the performance declined as the ratio between the two sets
approached one. This dependence of the ratio between the correct and the
distractor choice, known as Weber’s Law, is widespread and has been ob-
served in the numerical performance on many tests of both human and non-
human animals. In addition to the ratio of the sum and the distractor, the
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numerical size of the sum also seemed to have some impact on the perfor-
mance of the monkeys. As the sum increased, the precision of the monkeys
decreased (Cantlon & Brannon, 2007, p. 2916).

In order to make sure that the monkeys were actually basing their choice
on the number of dots and not on their cumulative area, the size of the dots
were varied to create trials, in which the total area of the dots of the distracter
set was closer to the total surface area of the dots in the two addends than
that of the sum set. The monkeys still performed significantly better than
chance on this subset of trials, indicating that they actually relied on the
number of dots, not on their surface area. Furthermore, a number of other
false strategies (such as: ‘always choose the larges of the two sets on the
result screen’) were ruled out through analysis of the data.

The study by Cantlon and Brannon is only one amongst a vast array of
studies investigating the evolutionary roots of mathematics. The question
seems to be simple: How much of mathematics is there to begin with? How
much is inborn, developed through evolution and given to us from birth?
Or differently put: Does our evolutionary history have an impact on our
mathematical beliefs? Any naturalized account of mathematics must give
some sort of answer to those questions.

The empirical investigations of those questions draw on data from four
different sources. First of all there is the study of the mathematical skills
of non-human animals, secondly there is the comparison between the per-
formance of humans and animals, thirdly there is the investigation of the
mathematical performance of human infants and finally there is the study of
the adult human brain and the attempt to locate the neurological basis for
the observed mathematical performance. In the following, I will go through
the main points of the first three types of this evidence, starting with an
overview and discussion of the studies of the mathematical skills of non-
human animals. In this, I will only focus on the numerical and arithmetic
skills, not on any of the geometrical skills animals might possess. The last
type of evidence, viz. the study of the adult human brain will be covered
in chapter 6. I should be understood that it is surprisingly difficult to do
empirical work in this area (as the well-known story of the mathematical
skills of Clever Hans reminds us). There are many possible methodological
errors, and it is easy to draw too strong conclusions from the available data.
For that reason I will describe the different empirical studies in some detail.
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This is, I believe, necessary in order to be able to discus and evaluate the
studies properly.

4.2 Mathematics in the wild

4.2.1 Relative size

The most basic way to exploit numerical aspects of sensory input is to judge
the relative size of two given sets, i.e. to judge which set contains most
elements. Several species of animal has been tested positive on this ability,
including rhesus macaque monkey (Hauser et al. , 2000), pigeon (Emmerton
& Renner, 2009), horse (Uller & Lewis, 2009) capuchin monkey (Beran, 2008),
chimpanzee (Wilson et al. , 2001, 2002), lion (McComb et al. , 1994), rat
(Church & Meck, 1984), pigeon (Roberts & Mitchell, 1994) and meadow vole
(Ferkin et al. , 2005).

Various test-paradigms have been used in these experiments. In several of
the tests, a spontaneous free choice paradigm, where a test-subject is allowed
to choose freely between two different sized sets, was used (see figure 4.2). As
an example, a free choice test was used on semi-free ranging rhesus macaque
monkeys by Hauser et al. (2000). In each test-run, a monkey was allowed
to see different number of food items (slices of apple) being placed in two
opaque boxes by two researchers, and subsequently given the opportunity to
approach the boxes. As it turned out, the monkeys significantly more often
chose to approach the box containing most slices on 1 versus 2 slices, 2 versus
3, 3 versus 4, and 3 versus 5 slices, but they were not able to go for more on
4 versus 5, 6, or 8 and on 3 versus 8 slices.

Controls were established in order to make sure that the monkeys were not
basing their choice on either volume or the time spend placing the apple slices
in the boxes. The time factor was ruled out by the conduction of a series of
experiments, where the same number of items was placed in both containers,
only some of the items in one container were pieces of rock instead of apple.
So for instance, three pieces of apple would be placed in one container, and
two pieces of apple plus one piece of rock would be placed in the other. In
order to rule out – or at least make it harder for the monkeys to base their
choice on a direct visual comparison of the volume of food, the slices of apple
were placed in the container one by one. Furthermore, a test situation was
constructed, where three slices of one-sixth of an apple were placed in one
container, while half an apple was placed in the other. The vast majority of
monkeys chose the box containing three slices and not the box containing the
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Figure 4.2: The spontaneous choice paradigm. Here, in (a) the subject
sees a number of items being placed one at the time in two opaque boxes.
In (b), the subject is subsequently allowed to choose one of the boxes.
The paradigm is used in slightly different versions.

full half apple, indication that the monkeys were not – or at least not directly
– judging the volume of the food items, but their numerosity. Finally, the
subjects were not trained, and all subjects were only allowed to perform the
test once in order to make sure that the observed behavior was spontaneous,
and not acquired.

In analyzing these results, it is important to note that the monkeys’
performance violated Weber’s law: Their performance seemed to depend
more on the total sum of items than on the ratio between the size of the two
sets – surprisingly, the monkeys performed worse on 3 vs. 8 than on 3 vs. 4!

Spontaneous choice tests have been applied to a number of other species,
including mosquitofish (Agrillo et al. , 2007), domestic dog (Ward & Smuts,
2007), salamander (Uller et al. , 2003) and capuchin monkey (Addessi et al.
, 2008). Unfortunately, in all of these studies, the subjects had both choice
quantities in plain view at the time they were choosing (or in the case of
domestic dogs, just before). Since no controls were made for non-numerical
aspects of stimuli we cannot be sure whether the subjects based their choice
on numerosity or on surface area or other factors co-varying with the number
of items in the choice sets. The seriousness of this problem was underlined by
a follow-up study on mosquito fish (Agrillo et al. , 2008). In the first study,
fish faced with the choice of two schools had consistently chosen to join the
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most numerous. However, when controls were made for total surface area of
fish in the two choice sets (by having a large quantity of small fish in one
school and a small quantity of large fish in the other), a negative result was
obtained. This indicates that mosquito fish’ choice of school depends on the
total surface area of the fish in the school, and not on the number of fish.

A few other tests-paradigms have been applied. As a particularly inter-
esting example, a ‘many’ versus ‘few’ discrimination test has been used on
wild female lions in Serengeti National Park (McComb et al. , 1994). In the
test, recordings of roars of unfamiliar lions were played back to packs of wild
female lions. The recordings were of either a single female lion or of three
female lions roaring in a chorus. The lions interpreted the recorded roars
as the roars of intruders, and they would either approach the loudspeaker
(in order to attack the simulated intruders) or not. As it turned out, the
lions carefully adjusted their decision of approaching the intruders or not to
both the size of their own pack and the size of the intruding pack. Similar
behavior has been observed in wild chimpanzees (Wilson et al. , 2001, 2002).

Finally, a few tests using training by reinforcement have been applied to
rats (Church & Meck, 1984), pigeons (Roberts & Mitchell, 1994), capuchin
monkeys (Beran, 2008) and rhesus macaque monkeys (Brannon & Terrace,
1998). In the last mentioned test (on macaque monkeys), the subjects were
simultaneously shown four sets with one to four elements on a touch-screen.
After 35 training sessions, the subjects proved able to choose the sets in
ascending order by touching the screen. The size of the elements was varied
in different ways in order to provide controls for total surface area of the
elements of the sets.

Subsequently, the monkeys were given the choice between only two sets
containing 1 through 9 elements. Without further training, the monkeys
proved able to choose the smallest of any of the possible pairs (i.e. 1 vs. 2, 1
vs. 3 etc.). However, their performance depended directly on the numerical
distance between the two sets. So in this condition, rhesus monkeys clearly
performed differently than in the spontaneous choice test described above (in
Hauser et al. , 2000), where no dependence on numerical distance between
choice sets, but a clear limit to performance (when more than 4 elements in
either choice set was present) was observed. A similar performance profile
was obtained with capuchin monkeys, although in this case no controls were
made for surface area (Addessi et al. , 2008). I will discuss the apparent
context-dependency of the performance profile of the subjects at length in
section 4.2.6.
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4.2.2 Cardinality

A vast number of species of animal also seem to have some understanding
of cardinality, i.e. of the absolute number of elements in a set. In a series
of experiments conducted in the 1930’s and 40’s by Otto Koehler, several
species’ ability to discriminate the cardinality of sets was tested. Koehler
distinguished between two different types of abilities: 1) the ability to dis-
criminate simultaneously presented quantities and 2) the ability to estimate
the number of repetitions in a sequence of action (such as picking a grain).

The first ability was tested using a ‘matching to sample’ protocol, where a
subject was shown a sample with a certain number of dots, and was required
to pick the one out of two or more test samples that bore the same number
of dots. The shape, size and position of the dots were changed in an irregular
way from experiment to experiment. This insured that the birds could not use
non-numerical information to solve the task. Positive results were obtained
using op to six dots on jackdaws (Koehler, 1941) and ravens (Koehler, 1951).

In another set-up, birds had to chose the group containing a specific given
number of units from a choice of two groups. Koehler (1941) reports positive
results for doves in a set-up, where the birds had to chose between two
groups containing different numbers of grains. However, as no controls were
made for the total surface area of the grains, the result must be regarded as
inconclusive.

Koehler tested the sequential understanding of numerosity on doves by
training the birds to eat a specific number of grains either out of a larger
heap or from a feeding mechanism, where peas were released one at the time.
Positive results were obtained training the birds to pick five grains (51,7%
correct out of 2166 trials with the feeding machine), but the animals could
not manage to pick six grains consistently. In another set-up, subjects were
trained to open boxes containing small amounts of baits until they had found
a specific number of baits. The number of baits in each box was changed
from trial to trial. This ensured that subject could only rely on the number of
baits eaten, and not on the number of boxes opened. Koehler (1941) reports
positive results for six bates with doves and five with jackdaws (however, the
tasks posed to the jackdaws were considerably more demanding, as the birds
had to secure a different number of baits depending on the color of the lids).

This experiment was later repeated by Koehler’s student M. Hassmann
using squirrels (Hassmann, 1952). Hassmann reports positive results for up
to six bates. The squirrels were also able to pick a lid with a specific number
of up to six dots amongst four other dotted lids. The dots were of different
shape and size. Interestingly, the squirrels’ performance apparently depended
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on the numerical distance between the number of dots on the correct and the
distracter lids, and not on the ratio. For instance, the success rate in locating
a lid with four dots hidden amongst four lids with six dots was approximately
50%, whereas the success rate was only approximately 15% when they had
to locate a lid with two dots hidden amongst four lids with three dots.

The basic numerical skills of rats have also been thoroughly tested since
the 1950’s using an ‘match to anchor value’ experimental paradigm invented
by the animal psychologist Francis Mechner. In the original experiment by
Mechner (1958a), a rat was placed in a small chamber equipped with two
levers, lever A and lever B. During the experiment, the rat was deprived
of water, but could receive a reward in the form of a few drops of water by
responding on lever B after having completed at least a preset anchor number
n of consecutive responses of lever A. If the rat switched to lever B before
completing the sequence of n presses on lever A, it would as a punishment
have to start over with the entire procedure, pressing lever A n times.

After a training period, where the rats were given easy tasks in order to
learn how to operate the levers, each rat was trained under four different
values of n (4, 8, 12, and 16). The training of each value of n lasted for
nine consecutive days, but only the behavior during the last five days were
included in the experimental data. The result of the experiment (see figure
4.3) quite clearly indicates that the number of times a rat would press lever
A before pressing lever B changed as a function of the value of n, with the
mean number of presses a little above n. In other words: If a rat was required
to press lever A four times before switching to lever B, it would press lever A
about four times before switching to lever B, and it would more often press
lever A five times than three times. Furthermore, the accuracy of the rats
seemed to depend on the magnitude of n; the rats were much more precise
for low values of n than for high values. For n = 16 the rats would press
lever A anywhere between 11 and 26 times before switching.

In order to test whether the rats were in fact estimating the number of
presses and not only the time elapsed during the pressing sequence, Mechner
and Guevrekian conducted a similar test in 1962 (Mechner & Guevrekian,
1962). In this test, the rats were deprived of water to different degrees
(ranging from 4 to 56 hours) on some of the trials. After a long period
of deprivation, the rats completed the pressing sequence much quicker than
normal, but no significant change in the number of presses were observed.
In other words: The rats seemed to rely on the number of presses, and not
on the duration of the pressing sequence. In conclusion, the results obtained
by Mechner shows that rats are capable of estimating the number of times
they press a lever, although they do not have the digital precision of human
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Figure 4.3: Data from two of the subjects in Mechner’s experiment
(adapted from Mechner, 1958a, p. 113).

counting. In this setup, the rats seem only to have an approximate sense of
numbers.

I a similar work on pigeons by Li Xia, Martina Siemann and Juan D.
Delius, pigeons were trained to match visual symbols with the numbers 1
through 6. When a key with the symbol for the number n was lit, the pigeon
was supposed to peck the key n consecutive times before finishing with one
peck on a special ‘enter’ key. Only a correct combination of pecks resulted
in a food rewarded, all other combinations of pecks were punished with a
time out. The birds were trained on the numbers 1-4 before learning 5 and
6, but in the final session all of the six symbols were in use. As seen on
the distribution of pecks (figure 4.4), the spread of errors increased with the
number of pecks supposed to be given.

Subsequent work by Russell Church and Warren Meck suggests that the
rats’ representation of numbers is rather abstract. In their experiment, a rat
was placed in a cage, much like the cage of Mechner’s original experiment.
This time however, the rats were not supposed to perform a specific number
of actions themselves, instead they were conditioned to associate the two
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Figure 4.4: Distribution of responses with stimuli for the numbers 1
through 6 (where “S1” is the symbol associated with 1 etc.) (adapted
from Xia et al. , 2000, p. 40).

levers with different numbers of sequential stimuli; if the rat heard two tones
or saw two flashes of light, it was supposed to press the right lever, and if
it heard four tones or saw four flashes of light, it was supposed to press the
left lever. After this conditioning, the rat was presented with compound
(i.e. cross-modality) stimuli in the form of either one tone followed by one
flash of light or two tones followed by two flashes of light. Interestingly,
the rats pressed the right lever when presented with a total of two stimuli,
and they answered with the left lever when presented with a total of four
stimuli. Apparently, the rat was capable of estimating the total number of
stimuli, independent of the modality (Church & Meck, 1984). This indicates
that the rats’ representation of numbers is abstract and not closely related
to a specific kind of sensory input. However, the task posed by Church and
Meck was a simple dichotomy task, and other attempts to observe a transfer
between different modalities on more complicated tasks have failed (for a
review see Davis & Perusse, 1988, pp.576).

Apart from birds and mammals some species of social insects such as
bees and ants have also been tested for the ability to use numerical aspects
of their environment as a way to adaptively improve their behavior. In a
series of experiments, scouts of the European red forest ant proved able to
successfully communicate the location of a food source located in a branched
maze to their fellow ants (see figure 4.5) (Reznikova & Ryabko, 1996, 2000,
2001). Effective controls were made for odor trails and other alternative
cues the ants might use to find the food. This indicates, that the forester
ants were relying on the information received from the scout. However, the
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actual nature of this information is unknown. It might (as speculated by the
authors) be numerical (i.e. a branch number), but as no controls were made
for co-varying continuous factors such as duration or length, the experiments
are in my view inconclusive.










































































































Figure 4.5: One of the mazes used in (Reznikova & Ryabko, 1996). A
source of food was hidden at the end of one of the branches of the maze.
A scout ant would be placed near the food and allowed to return to its
nest and convey information about the location of the food to a team
of forester ants. Apart from this horizontal trunk shaped maze, vertical
trunk shaped, circular, spheric and grid shaped mazes were used in the
experiment.

Honeybees rely on both distance information and sequences of landmarks
when they navigate between their hive and a known food location (Men-
zel et al. , 1996). Such a sequence of landmarks could in theory include
numerical cues, but it is to the best of my knowledge not well understood
whether numerical information forms part of the landmark sequences of bees,
or whether their landmark sequences are purely featural (i.e. it is not known
whether their sequences are of the form “landmark A, B, C” or of the form
“first landmark, second landmark, third landmark).

4.2.3 Basic arithmetic

Several species of animal also seem to be able to perform basic arithmetic
operations such as addition and subtraction on small sets of objects. Such
competences have for instance been observed in a population of semi-wild
ranging rhesus monkeys in several experiments conducted by Marc Hauser
and various colleagues (Hauser et al. , 1996, 2000; Hauser & Carey, 2003).
The experiments were conducted using a violation of expectancy paradigm,
where the monkeys’ arithmetic expectations were tested by observing their
reaction to arithmetically possible and impossible events (see figure 4.6). At
first, a box containing a small number of eggplants was shown to a monkey.
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Then a screen temporarily occluded the monkey’s view to the box while one
or more eggplants were either added to or removed from the box. Finally,
the occluding screen was removed, so the monkey could see the eggplants left
in the box.

Figure 4.6: The violation of expectancy paradigm, here used to test
1 + 1 = 1 or 2. An object is located in a box. Subsequently the subjects
view to the box is occluded by a screen and one more object is placed in
the box. The occluding screen is removed, and the subject’s response is
observed.

On some trials, the monkeys could clearly see all of the eggplants being
added to or removed from the box, but on others further eggplants were
either added or removed using a hidden trap door. As a result, the number of
eggplants in the box would either seem arithmetically possible or impossible
from the monkey’s point of view once the occluding screen was removed. So
for instance, if one eggplant was visible in the beginning and one eggplant
was added while the screen was up, a result of two eggplants would seem
possible while a result of three eggplants would seem impossible. When the
occluding screen was removed from the box, it was recorded how long time
the animal looked at the eggplants. If the monkey looked at an impossible
result for a longer time than at the corresponding possible result, it was taken
as a sign of surprise and evidence, that the subject had an expectation of the
outcome of the arithmetic operation being performed.

Using this set-up, Hauser et. al. got positive results for the problems
1 + 1 = 1, 2 or 3 and 2 + 1 = 2, 3 or 4. However, the results obtained on
2 − 1 = 1 or 2 were not conclusive, and the monkeys failed tests such as
2 + 2 = 3, 4 or 5 where the total number of items in the expected outcome
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exceeded three. Furthermore, it should be noted that each monkey was only
tested once, and that no reinforcement was used. This indicates that the
observed behavior was spontaneous.

4.2.3.1 Discussion of the violation of expectancy

The violation of expectancy paradigm has been heavily discussed, and at least
three interpretations other than ascription of precise arithmetical expecta-
tions to the subjects have been suggested (Cohen & Marks, 2002). First
of all, there is the direction hypothesis. This hypothesis suggests that the
subjects do expect more objects to be present after an addition event and
less objects after a subtraction event, but that the subjects do not have
any expectations to the precise number of objects in the final result. In the
present study however, the monkeys seemed to be equally surprised whether
presented with impossibly many or impossibly few eggplants following an
addition event. As this is not consistent with the direction hypothesis, it
seems to be ruled out at least as an interpretation of this particular study.

Another interpretation is the continuous quantity hypothesis. This hy-
pothesis states that the subjects are not encoding and forming expectations
concerning the number of objects, but are instead encoding a continuous
factor such as total surface area, total contour length, total volume or other
factors co-varying with the number of objects. In order to rule out this
hypothesis, Hauser & Carey (2003) conducted a set of trials with 1 small
+ 1 small = 2 small or 1 big eggplant. The monkeys looked significantly
longer at the numerically impossible outcome of one big, even though the
expected surface area of eggplant was roughly present. This result makes
interpretations in terms of continuous factors unlikely.

Finally it has been suggested (in Cohen & Marks, 2002) that the subjects
in violation of expectancy tests are merely responding to a simple habitua-
tion. So for instance, when subjects look longer at the impossible 1-result of a
1+1 test, it is merely because they started out seeing one object, and are now
looking longer at this familiar stimulus. In order to rule out this hypothesis,
Hauser & Carey (2003) used a very careful familiarization procedure. Prior
to the actual test, the monkey was familiarized to the experimental set up
of box, screen, and eggplants. No impossible outcomes were used during the
familiarization runs, but the outcome of the familiarization runs was always
equal to the outcome of the actual test, the particular monkey was going
to be subjected to. So monkeys tested on 1 + 1 = 2 were familiarized with
outcomes of 2, while monkeys tested on 1 + 1 = 3 were familiarized with
outcomes of 3. This procedure makes an interpretation of the result in terms
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of simple habituation unlikely.

In conclusion, the study by Hauser and his group seems to provide very
strong evidence to the hypothesis that rhesus macaque monkeys do have some
expectations to the outcome of arithmetic behavior of small sets of objects.

In subsequent tests, the violation of expectancy paradigm has also been used
on four species of lemur (Santos et al. , 2005). The animals tested positive
for the conditions 1 + 1 = 1, 2 or 3 and for the surface area control 1 small +
1 small = 2 small or 1 big. The violation of expectancy paradigm has also
been used to test domesticated dogs (West & Young, 2002) and cotton-top
tamarins (Uller et al. , 2001) with positive results. However, these studies
did not include controls for all of the alternative hypotheses discussed above,
so the results cannot unambiguously be interpreted as sign of arithmetical
competences in the two species.

The results obtained using the violation of expectancy paradigm have
been backed up by a variant of the spontaneous choice test with semi-free
ranging rhesus macaque monkeys. As usual in spontaneous choice tests, the
monkeys had to choose between two quantities of food items, but in this
experiment, the animals were at first allowed to see both quantities of food
clearly. Then the food was occluded and the monkeys were allowed to see
one or more items being removed from either one or both of the quantities.
Finally, the monkeys were allowed to approach one of the quantities of food.
The monkeys reliably chose the set containing the largest quantity of food
items on tests such as 3−1 vs. 1, 3−1 vs. 2−1, and 2−1 vs. 1+1 (Sulkowski
& Hauser, 2001). This indicates that the animals had some expectations to
the outcome of the simple manipulations.

4.2.4 Advanced skills

Finally, very few species are known to master advanced arithmetic such as
symbolic calculations and calculations involving fractions. In a study by
Guy Woodruff and David Premack, a chimpanzee was taught to match a
fraction of an object with the similar fraction of a dissimilar object. So for
instance, the animal would be presented with a half-full glass of blue liquid,
and was to point to half an apple when presented with the choice of half an
apple and three-quarter of an apple. It is not clear precisely how the animal
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completed this task, but it seems as if it must at least have had some primitive
understanding of part-whole relationships and proportionality (Woodruff &
Premack, 1981).

We also have a few examples of abstract, symbolic competences in ani-
mals. One such example is the chimpanzee Ai. Ai has been taught to use
the Arabic symbols for the numbers 1 through 9 as both cardinal and ordinal
numbers, that is: Given two numbers, Ai can pick the largest (ordinality),
given a set of dots, she can pick the numeral corresponding to the size of
the set (cardinality), and given a numeral, she can point to a set with the
corresponding number of dots (cardinality) (Biro & Matsuzawa, 2001).

Another impressive example of abstract symbol based mathematical rea-
soning is found in the female chimpanzee Sheba, who was trained by Sarah
Boysen and colleagues. At first, the chimpanzee was taught to pick the cor-
rect Arabic number symbols from five plastic cards depicting the numerals 0
through 4 when presented with a number of food items. Secondly, the exper-
imenter would hide a number of oranges at fixed locations in the cage. The
chimpanzee was instructed to inspect the hiding places one by one, return
to the starting place and pick the numeral corresponding to the total sum of
oranges. The oranges at one hiding place were not visible form other hiding
places or from the place, where the chimpanzee was supposed to give its an-
swer. The chimpanzee performed well above chance (75% correct answers on
267 trials), indicating, that she were somehow able to mentally keep count
of the number of oranges seen.

Finally, instead of oranges, the instructor would hide two plastic placards,
each imprinted with one of the Arabic numerals known to the chimpanzee,
at two separate hiding places. The chimpanzee was instructed to inspect
the hiding places as before, and to answer with the numeral corresponding
to the arithmetic sum of the hidden placards. The trials included tasks
such as n + 0 and 2 + 2. Once more, the chimpanzee performed well above
chance (74% correct out of 38 double blind tests, where the possibility of
getting subconscious cues from the instructors were eliminated) (Boysen &
Berntson, 1989). Sheba was subsequently taught to use the numerals 5 to
9, but the summation experiment described above has, to the best of my
knowledge, not been repeated with the new numerals (Boysen, 1993).

4.2.5 Possible mechanisms

The data presented above has led to speculations on the specific mechanism
or mechanisms with which animals handle numerical aspects of stimuli. Sev-
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eral suggestions have been made.

In several of the studies, especially studies involving larger numbers, the
performance of the animals seems to vary with the size of the numbers in-
volved. Furthermore, if the subjects are required to choose between two
quantities, their performance seems to depend on the arithmetical ratio of
the quantities following the characteristic Weber Law. The observation of
these two effects has led to the suggestion, that the animals must represent
numbers using a continuous magnitude that is an analog of number. As
an example of this, Meck & Church (1983) suggests an accumulator model,
where an approximate unit quantity of energy is let into a mental container
or accumulator for each entity in the set the animal is counting. In this way,
the final state of the accumulator will be an analog representation of the total
quantity of the set. So for instance, two will be represented by an analog
magnitude perhaps something like this: —— and three with a magnitude
like this: ———.

Yet, because of small variations in the amount of energy led into the accu-
mulator for each entity, the representation will only be an approximation, the
precision of which will decrease as the number of items enumerated increase.
In this way, the accumulator model can account for the observed variation
of the precision with size of the collections handled, and as a side effect of
this fuzziness, for The Weber Law signature. Several theorists have elabo-
rated on this idea (e.g. Gelman & Gallistel, 1992; Dehaene, 1997; Dehaene
& Changeux, 1993, p. 46).

The analog magnitude model however, does not seem able to explain
the observation of primates’ arithmetical competences. The animals’ perfor-
mance did not decrease continuously as the number of objects was increased.
Instead, they seemed to reach an absolute limit, beyond which the subjects
could not perform at all. These finding indicate that primates have a special
system for handling small quantities complimenting the approximate system
for handling larger quantities (Hauser & Spelke, 2004).

Several suggestions have been made to the nature of this special system for
handling small quantities. One suggestion is subitizing. The term was coined
by E. L. Kaufman as a way to describe adult human subjects ability to rec-
ognize the number of up to six simultaneously presented objects rapidly and
precise (Kaufman et al. , 1949)1. Following von Glasersfeld (1982), subitizing
is usually taken to be a perceptual mechanism, probably based on pattern

1The term is not accidental, but derived from the Latin adjective subitus (meaning
‘sudden’) and the verb subitare (meaning to ‘arrive suddenly’) (Kaufman et al. , 1949,
p. 520).
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recognition, and not a cognitive or rational mechanism. Subitizing is sup-
posed to make it possible for the animal to perceive or intuitively apprehend
the numerosity of a given stimuli; the subject is simply supposed to directly
see ‘threeness’ or ‘twoness’ when three or two objects are presented, just as
the subject can see color or shape. In the original suggestion, subitizing was
only intended to work for small quantities of simultaneously observed ob-
jects, but in the context of animal cognition, subitizing has been suggested
to apply to sequential stimuli as well as simultaneous stimuli, and to stimuli
of any of the six modalities (Davis & Perusse, 1988, p. 570).

Another suggestion is the object-file model. As subitizing, this model
was also originally developed in the context of human cognition (Kahneman
et al. , 1992), but has since been adapted to animal cognition (for instance by
Sulkowski & Hauser, 2001). Unlike subitizing, the object-file model does not
rely on pattern recognition. In the object-file model, it is instead assumed
that an index of attention or ‘pointer’ can be attached to objects encoun-
tered in the world. The indices are ‘sticky’ and follow the individual objects
through space and time. When an index is assigned, a file in short-term
memory is opened keeping track of the number of indices currently under
use. So basically, objects are represented in a one-to-one way by a mental
model consisting of tokens in short term memory.

According to the object file model, arithmetical tasks such as those in-
volved in violation of expectancy tests can be accomplished by a simple one-
to-one comparison of object files. In the 1+1 = 2 or 3 situation for instance,
the two opened object files modeling the initial situation are compared to the
two or three objects perceived in the result situation (or perhaps the two or
three opened object files in the model of the result situation), and a violation
of expectancy can be detected. This process does not necessarily involve any
concepts of numbers or abilities to perform symbolic calculations, but only
the ability to form mental models that capture the numerical aspect of a
situation, and the ability to perform simple one-to-one comparison between
two such models. Limitations to the number of indices it is possible to han-
dle in parallel by short-term memory, result in the observed limitation to the
number of objects, subjects are able to handle by the precise small system.
For human beings this number is supposed to be somewhere between three
and five (Hauser & Carey, 1998, p. 73).

Finally, the animals might simply be counting using a list of either innate
or acquired symbols. This idea origins in Gelman and Gallistel’s suggestion,
that human infants possess a list of innate mental symbols called ‘numerons’
(Gelman & Gallistel, 1978). A similar hypothesis is sometimes discussed in
the context of animal cognition (e.g. in Hauser & Carey, 1998).
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The counting hypothesis is, however, almost universally rejected in the
literature. There are several reasons for this. Counting is a quite demanding
process. According to Davis and Memmott (1982), the counting agent should
firstly be able to tag each item to be counted once. The tags do not need to
be similar to the conventional number words and symbols used by humans.
They could be non-verbal or other types of entities, but secondly they should
be applied in a repeatable, stable order. Thirdly, the agent should understand
that the final tag has special significance of stating the cardinality of the set
counted. As all of this is very complicated, simpler models such as subitizing
and the accumulator- or object-file model is preferred if possible.

Furthermore, counting or numeron-list models is neither consistent with
the approximate and fuzzy nature of the animals handling of larger numerosi-
ties nor with the absolute limit to the small and precise system of approx-
imately four objects. If the animals were counting larger sets, they should
exhibit digital precision not fuzziness, and if the mechanism of the small
precise system was counting, the limit of approximately four objects seems
strange. There is no reason why the list of numerons should be limited to
only four items, but there are good reasons why short-term memory should
be limited in this way.

In other words: If animals were counting, they should be able to handle
sets larger than four with digital precision. As this is not in general the
case, it seems safe to conclude, that the animals in the experiments I have
described so far do not count.

On the other hand, there are a few (very few!) examples of animals that
are able to handle sets larger than four with digital precision. One of those is
the gray African parrot named Alex. Alex was trained to apply the number
words ‘one’ through ‘six’. Presented with a tray with objects of various types,
sizes and color, Alex could answer questions of both the form ‘how many x’
(where x was a type of object), and ‘what object/color n?’ (where n denotes
a number 1-6). As Alex’ performance did not seem to depend on the size of
numbers involved, he probably was not using an analogue representation type
of mechanism. And because he dealt with as many as six objects, neither the
object file model nor subitizing seems to be an option. This leaves a cognitive
process perhaps similar to digital human counting as a possible explanation
of his performance.

However, the perceptual system of birds is supposed to be very different
from that of mammals, so Alex might be using simpler non-counting mecha-
nisms such as subitizing or the object file mechanism even though mammals
supposedly cannot use such mechanisms for sets with more than four ele-
ments (see Pepperberg & Gordon, 2005, for a review and discussion).
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The chimpanzee Ai, briefly mentioned above, exhibits another very inter-
esting example of counting-like behavior. When Ai had learned to enumerate
arrays of one to five dots, her reaction time was measured. As it turned out,
her reaction time was essentially the same when one to three dots were dis-
played, then it increased for four dots and surprisingly decreased again when
five dots were displayed. This pattern repeated itself when the maximum
number of dots presented to her was increased first to six and finally to
seven: Same reaction time for one to three dots, then a steady increase and
then a decrease with the largest number of dots (Murofushi, 1997). This
clearly indicates that Ai used two different mechanisms for the enumeration
of arrays with many (4-7) and few (1-3) dots. The flat reaction time for one
to three dots speaks for a quick, parallel process, such as subitizing, whereas
several models might explain the linear increase in reaction time for larger
collections.

Some commentators, including Kiyoko Murofushi (Murofushi, 1997) and
later Sarah Boysen and Karen Hallberg (Boysen & Hallberg, 2000), conclude
that Ai must have been estimating the numerosity of the larger sets, perhaps
using the analog magnitude model discussed above. This is a tempting pos-
sibility, but on the other hand, had Ai been estimating, one would expect
the precision to decrease as the number of dots increased, but no such effect
was observed – the percentage of correct responses stayed well above 80% for
all arrays. So for sets larger than three, the reaction time seemed to increase
linearly with the number of dots, and the precision was constant. In other
words: exactly what one would expect, if the chimpanzee had indeed been
counting. The drop in reaction time for the largest number known to the
animal is hard to explain. Perhaps the animal simply associated the largest
number n with ‘more than n − 1’ and estimated when this was the case.
Anyway, we do not know the exact mechanisms used by either Alex or Ai,
but at least we cannot rule out actual counting based on the given data. Yet,
it should be noted, that Alex and Ai are exceptions, and that their behavior
is the result of intensive training. So even though the two individuals might
be counting, it cannot be concluded that any species of animal in general
count. Indeed, all the observations of the spontaneous numerical behavior of
animals seem to support the very opposite conclusion: animals do not count
spontaneously. But perhaps some animals can learn to count.

Turning to the debate on subitizing vs. object file mechanism a more open
conclusion must be advocated. Ai’s flat reaction time might have spoken in
favor of subitizing, but on the other hand it seems improbable that a purely
perceptual mechanism, such as subitizing, can account for the arithmetic
skills of primates. As the animals apparently formed expectations to the
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outcome of operations of groups of objects they could not directly perceive,
it seems as if some kind of mental modeling of the situation must have taken
place – and this of course is just what the object file model suggests. So
perhaps primates use both mechanisms in different situations, or perhaps
they are subitizing the number of object files (as suggested by Sara Cordes
and Rochel Gelman, (2005, p. 138)). Or they might use neither subitizing
nor object files, but something entirely different. Given the current data it
seems very hard to reach any final and definite conclusions. The only thing
that seems fairly probable is the suggestion that two different systems are at
play; an approximate for the handling of larger sets, and a more precise for
smaller sets.

4.2.6 Is mathematics evolved?

If the observed mathematics skills are to be counted as a direct consequence
of evolution, they must be adaptive, i.e. somehow increase the fitness of their
bearer. This is clearly the case for some of the observed capabilities. The
ability observed in lions to judge the relative size of groups clearly seems to
increase the chances of success when deciding whether to engage in intergroup
aggressions or not. A precise judgment of small numbers might also be a
benefit when animals form coalitions and when mothers track the number
of offspring present (as suggested by Hauser & Spelke, 2004, p. 862). Also,
the ability to estimate the relative number and type of scent marks can
play an adaptive role in sexual selection of some species of animal. This
type of behavior has been reported by Ferkin et al. (2005) in a study on
female meadow voles acting in simulated natural conditions. The behavior is
adaptive, as it enables the females to choose the male producing the highest
quantity of high quality scent marks.

There have been made other suggestions of adaptive use of arithmetic
and numerical skills, but they are all supported by unclear evidence. Bruce
Lyon for instance suggests that the American coot might use estimations of
the number of eggs in the nest as a means to avoid parasitism (Lyon, 2003).
It is however not possible to test whether the birds rely on numerosity or
on volume or other factors covarying with the number of eggs in the nest,
so the suggestion must be seen as rather hypothetical. Similarly, male meal-
worm beetles are able to discriminate between odor signals made by different
numbers of female beetles; the male beetles spend relatively more time in-
vestigating signals from many females than from few (Carazo et al. , 2009).
This behavior is adaptive, as the beetles are promiscuous, but the behavior
does not show that the beetles are directly sensitive to the actual number
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of females, only that they are sensitive to the greater chemical complexity
in signals from more females. Finally, insects might use numerical features
of a landscape as a way to remember the location of a food source (Menzel
et al. , 1996) and direct other individuals of its group to a food source by
transmitting such numerical information (Reznikova & Ryabko, 1996). Such
skills are adaptive, but it is not clear whether the insects rely on numerical
or other types of information (such as featural information about landmarks
or duration of travel).

It has also been suggested that animals can benefit from numerical judg-
ment in foraging situations. As Stanislas Dehaene straightforwardly describes
the supposed mechanism: “The squirrel that notices that a branch bears two
nuts, and neglects it for another one that bears three, will have more chances
of making it safely through the winter” (Dehaene, 1997, p. 23). This sugges-
tion however, is more dubious. In foraging situations the principal interest
of an animal should be the total amount and quality of the food, not the
number of individual food items collected. As food items vary in size we
would expect selective pressure against foraging strategies focusing solely on
the number of food items (such as the one suggested by Dehaene).

In fact, in a recent study, cotton-top-tamarins have been shown to favor
the total amount of the food over the total number of food items (Stevens
et al. , 2007). The study consisted of a spontaneous free choice test where
the monkeys had to chose between two trays with food items of varying size
and number. Both trays were in view of the subjects when they made their
choice. Given a choice between a few large food items vs. many small food
items, the subjects consistently chose the largest amount of food (measured
in weight) and not the largest number of items. Also, when the same amount
of food was distributed in either many small or a few large foot items, the
monkeys chose the few, large items. This last result gives evolutionary sense,
as it is faster to collect and easier to handle and monopolize a few large than
many small food items.

This result is not necessary inconsistent with the studies reporting pos-
itive results for numerical capacity (including studies specifically on cotton-
top tamarins, such as (Uller et al. , 2001; Hauser et al. , 2003)), as a different
experimental setup was used. The study does however clearly show that
judgment of numerosity is not the only foraging strategy used by the sub-
jects. In fact, when a direct judgment of food amounts is possible, cotton-
top-tamarins prefer this strategy to numerosity judgment. So apparently
judgment of numerosity is at most a secondary strategy to this species of
monkey.

Something similar can be concluded from the experimental data con-
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cerning rhesus macaque monkeys. As explained above, semi-free ranging
macaques fail to distinguish between sets containing respectively of 3 and 8
elements in a spontaneous free-choice test (Hauser et al. , 2000). One would
expect selective pressure against a foraging strategy that leaves an animal
unable to distinguish between 3 and 8 similar sized food items. Furthermore,
macaques succeed in discriminating between all pars with 1 through 9 ele-
ments in another experimental setup, including reinforced training (Brannon
& Terrace, 1998). So apparently, rhesus macaque can learn how to discrimi-
nate between set with 3 and 8 elements, but they do not do so spontaneously
when they are in their natural environment. All in all this points to the
conclusion that macaques do not or only to a very limited extend rely on
numerical discrimination as part of their natural foraging strategy.

The results on cotton-top tamarins and rhesus macaques quoted above points
to another and more fundamental problem for the evolutionary claim. For
both species different experimental setups lead to diverging results on the
same type of task. This shows that the numerical and arithmetic behavior of
cotton-top tamarins and rhesus macaques is context dependent; the animals’
numerical and arithmetic skills only display themselves in carefully designed
experimental setups. This forces us to ask whether the skills are part of the
animals’ natural behavior or laboratory artifacts produced by experimental
setups forcing the animals to behave in specific ways.

The generality of the problem is illustrated by table 4.1 and table 4.2.
Here, I have collected all of the papers reporting positive results for numerical
or arithmetic skills of animals quoted in this chapter (table 4.1) and all the
papers concerning the numerical or arithmetic skills of animals published
after year 2000 in one of the leading journals of the area, Animal Cognition
(table 4.2)2. For each study, the species and type of mathematical skills are
indicated in order to give an idea of just how widespread which mathematical
skills are. The mathematical skills are divided into the subgroups used above,
that is: Judgment of the relative size of sets, estimation of cardinality, basic
arithmetic, advanced arithmetic and symbol use. Furthermore, the tasks
posed to the animals’ are divided into three categories: Artificial, partly

2All papers containing at least one of the word ‘numerical’, ‘numerosity’ and ‘arith-
metic’ were considered. The search gave a total of 60 papers. Of these, 34 papers were
discarded as they only accidentally contained the search word and did not address numer-
ical or arithmetic competence of animals. The table contains the remaining 26 papers.
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natural and natural. The category ‘artificial’ cover tasks completely foreign
to the animals’ natural environment, such as pressing a lever. ‘Partly natural’
cover tasks that in essence are similar to tasks confronting the animals in
their natural habitat, although the test-tasks do not directly simulate the
corresponding natural task. This could be tasks such as choosing between
two buckets after watching different amounts of food items being hidden in
them. Finally, the category ‘natural’ covers tasks that are either completely
natural or at least directly simulate problems confronting the animals in
their natural environment. This could be tasks such as deciding whether
to attack a pack of intruders after hearing their roars. There are of course
borderline cases. Most prominently, I have categorized all experiments using
violation of expectancy paradigm as artificial. As this choice is debatable, I
have furthermore labeled these cases “VOE”. Finally, it is indicated whether
the skills are acquired by training or spontaneously arise in the individual
animal (either instinctively or by observing fellow members of the species).

All in all, 61 studies are included in this overview. Of these, only five is
based on observation of animals’ spontaneous behavior under natural con-
ditions. Furthermore, two of these five studies are inconclusive due to lack
of control for co-varying continuous factors. This leaves us with only three
studies where the use of numerical aspects of reality conclusively can be said
to form part of a species’ natural behavior. All of these three studies concern
inter-group conflict (of either lions (McComb et al. , 1994) or chimpanzees
(Wilson et al. , 2001, 2002)). The remaining 56 studies included in the tables
involve either training or carefully designed experimental setups, where the
animals are forced to rely on numerical strategies because all non-numerical
cues have been removed.

From an experimenters’ point of view, the trouble is that the abstract, nu-
merical aspect of most natural environments is fully integrated with concrete
physical features (such as area, mass, density, brightness, length, intensity,
variety) or even other abstract aspects (such as duration). This is in itself
thought provoking. It shows that although human adults (with a modern ed-
ucation) readily abstract and to a large extend rely on the numerical aspect
of reality, this aspect is not independent, but is almost always interwoven
with other aspects of reality; it takes a lot of ingenuity to design even simu-
lated natural tasks where the subjects are forced to rely solely on numerical
judgment. Consequently, if an experiment is conducted in a natural environ-
ment, we cannot tell whether the subjects are exploiting the numerical or
one or more of non-numerical aspects of their sensory input. This forces the
experimenters to invent settings where all (or at least most) non-numerical as-
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pects of sensory-input are artificial removed or blurred. Unfortunately, when
such artificial settings are used, we cannot tell whether the subjects’ per-
formance mimics its natural behavior or whether the performance is merely
a laboratory artifact produced only under the artificial settings used in the
experiment (or, as in 27 of the 61 studies: as a result of intensive training).

The integration of numerical and other aspects of reality makes it less
likely that animals have developed special purpose mechanisms for tracking
number. At least a good reason should be given: Why track number, if other
co-varying factors can just as well be exploited?

In this connection the use of language in the papers is particularly inter-
esting. Animals are reported as “succeeding” a test, if they behave as the
experimenter intended, and “failing” if they do not – although failing a test
might well be the adaptively most sensible behavior (such as choosing the
largest amount of food over the largest number of food items)3. This choice
of words betrays the fact that the experimenters clearly know what they are
looking for. The experiments are not designed in order to investigate how the
animals solve problems or what kind of information they rely on in choice
making. The studies are designed specifically in order to test the mathe-
matical skills of the subjects by forcing them into acting in an unnatural
way.

This does not detract from the studies, but it does call for a much more
careful interpretation, especially concerning the evolutionary value of the
observed skills. Most of the studies only give reliable information about
the subjects’ cognitive potential, not about their actual cognitive behavior.
They tell us something about what the subjects can accomplice when pushed
or trained. The observed skills might well be laboratory artifacts (as also
suggested in Davis & Memmott, 1982). They might never have formed part

3This use of language is ubiquitous in the literature, but I will give a few examples of
the kind of language use I have in mind. In Hauser & Carey (2003, p 369-70), we find the
following passage (my emphasis): “Participants succeed (pick the larger number) if both
sets are small (upper limit 4 for rhesus adults and upper limit 3 for babies) but fail if one
of the sets exceeds that limit (e.g., rhesus fail at 3 vs. 8; infants fail at 2 vs. 4, 3 vs. 6, and
even 1 vs. 4)”. In Hauser et al. (2000, p. 829, my emphasis): “They [the subjects] failed
at four versus five, four versus six, four versus eight and three versus eight slices”. And
finally in Boysen & Hallberg (2000, p. 428, my emphasis): “However, further training for
discrimination between 7 dots versus 8 dots was not successful. The stimuli were modified
so that the dots sequence on each card were equidistant from one another on the cards.
With this change, the subject’s performance fell below chance, and the authors concluded
that his previously successful responses had likely been based upon density, rather than
absolute number. [. . .] Presumably, given the animal’s failure with these tasks, Douglas &
Whitty modified their procedures . . .” Similar examples can be found in almost all papers
discussed in this chapter.
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of the animals natural behavior, and their development is most likely the side
effect of a non-numeric adaptation or the result of the selection of general-
purpose devices (which are general enough to support mathematical cognition
under the pressure of training or absence of other cues, as suggested by
(Church & Meck, 1984).

Unfortunately, this observation is not always noticed in the literature. To
take a few examples of typical over-interpretations, the comparative study of
rhesus monkeys and college students cited at the beginning of this chapter
does not show that monkeys can perform mental addition (as claimed by
the authors Cantlon & Brannon, 2007, p. 2916). It only shows that rhesus
monkeys can be trained to do so, or in other words that rhesus monkeys have
the cognitive capacity needed in order to learn how to perform above chance
on tasks involving the estimation of the sum of small addends.

Similarly, the fact that rats can be trained to walk into the n’th tunnel in
an array of similar looking and smelling tunnels, does not show that rats rely
on numerical discrimination in real world setting and that this skill is adap-
tive (as suggested by Dehaene, 1997, p. 23). In the experiment, the rats were
trained and all other than numerical cues had painstakingly been removed
from the maze. In the real world however, there are other cues present,
and rats and other mammals are known to use both olfactory information
and visual cues (in the form of special features or ‘landmarks’) when they
navigate (Maaswinkel & Whishaw, 1999; Vlasak, 2006). A rat might well
be better served relying on such non-numerical cues than on its somewhat
approximate sense of numbers when it navigates its tunnels. The numerical
judgment of the laboratory rats might in other words only have been a last
resort strategy.

As I see it, when the lack of observation of numerical and arithmetic skills
in real life situation is taken into account, the following conclusion concerning
the evolution of animals’ numerical and arithmetic skills is reached: The
ability to judge the relative size of groups have a direct adaptive significance
and has been observed as part of several species’ natural behavior. The
ability to estimate cardinality and to perform basic arithmetic seems to be
highly context dependent, i.e. they can appear spontaneously at least in
some species, but only in carefully structured experimental setups where
all but numerical cues have been removed. This indicates that the skills
are at most last-resort strategies used for instance when a direct judgment
of the amount of food hidden in two locations is not possible. Last-resort
strategies can be adaptive, however we lack evidence that the animals in fact
use such strategies as part of their natural behavior. So no firm conclusions
can be drawn concerning the evolutionary origin of these abilities. Finally,
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advanced arithmetic skills and the use of abstract symbols take intensive
training. Such skills are clearly laboratory artifacts and not part of any
species of animals’ natural and spontaneous behavior. As such, they cannot
be products of direct selection, but is most likely the result of the selection
of general-purpose cognitive mechanisms.

4.2.7 Partial conclusion

Based on the studies discussed above the following conclusions can be drawn:
The basic capacity to exploit numerical aspects of the environment is found in
several species of both bird and mammal. Many species of primates further-
more seems to be able to perform basic arithmetic operations, i.e. addition
and to some extent subtraction involving sets with less than five elements.
Chimpanzees finally seem to be able to learn more advanced mathematical
skills such as calculation with fractions and the use of small number symbols
in simple addition tasks.

Primates seem to poses two different systems; a small and precise system
for handling small numerosities, and a larger and imprecise system governed
by Weber’s Law for the handling of larger numerosities. The mechanism
behind the mathematical performance of birds’ and other species of mammals
is not well understood.

Only basic mathematical skills, i.e. the ability to judge the relative size
of two sets, have been observed in a reliable way as part of a species natural
behavior. All other skills only express them selves in partly artificial settings
or after intensive training. For this reason, only little can be concluded about
the evolutionary origin of the observed mathematical abilities. They might
be the direct result of adaptive selections, but they might just as well be the
result of the selection of perceptual or general-purpose cognitive mechanisms.

4.2.8 Mathematics in the kindergarten

The study of the mathematical capabilities of animals is of interest to us
here mainly because the existence of such mathematical abilities in animals
might reveal something about the evolutionary origin of similar abilities in
humans. As it turns out, humans seem spontaneously to possess roughly the
same basic mathematical capacities as primates, i.e. a precise system for the
handling of small quantities and an approximate system for the numerical
judgment of larger sets. This is primarily tested in two ways: By testing
human infants, who have not yet learned advanced human mathematics, and
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by testing human adults in ways that make it impossible for them to use
advanced techniques such as digital counting.

From the 1980’s and on a number of habituation experiments provided
evidence that very young infants are able to discriminate between different
small numbers of objects (see figure 4.7).

Figure 4.7: The habituation paradigm. In a typical habituation tests
the subject is repeatedly shown different displays of a fixed, given number
of objects. The objects’ size, spatial arrangement and even type is varied
from display to display, but the number of objects is kept constant. After
a while, the subject typically habituates; it looses interest and only takes
a brief look when a new display is introduced. When a preset number of
habituation displays have been shown, the subject is presented with one
or more test display containing either the same or a different number of
objects as the habituation displays. During the test, it is observed whether
the subject looks longer at displays containing a novel number of objects
(dishabituates). If it does, it is taken as an indication of sensibility to
the change in the number of objects. Apart from bounded surfaces (dots,
pictures of objects etc.), other types of visual stimuli (such as jumps of a
doll) have been used i habituation tests. Other sense modalities, such as
such tones or syllables have also been used with the test paradigm.

Using this paradigm, 22 weeks old infants have been tested able to distin-
guish between two and three dots varying in arrangement, but not between
four and six dots (Starkey & Cooper, 1980). 6-8 month olds have been tested
able to distinguish between photographs of two and three household objects
varying in type, size, and arrangement, and they in addition seemed able to
associate two and three sounds with the same respectable number of objects
(Starkey et al. , 1990). Six-month old infants were able to discriminate two
from three jumps of a doll (Wynn, 1996).

Infants were also early on subjected to violation of expectancy experiment
similar to those used on primates. The method was in fact introduced in a
landmark experiment on infants conducted by Karen Wynn in 1992. The
result of the experiment suggested that five-month-old infants had expecta-
tions to the outcome of the arithmetic operations 1 + 1 and 2 − 1. Wynn
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saw this as evidence that infants are not only capable of discriminating and
representing numbers, but are also capable of performing actual calculations
(Wynn, 1992a).

The optimistic conclusions by Wynn and others have been replicated and
used in parts of the philosophical literature (such as Dehaene, 1997; Lakoff &
Núñez, 2000). Unfortunately, very few of the early studies using the violation
of expectancy paradigm made systematic controls for non-numerical factors
such as surface area, total contour length and other factors co-varying with
the number of objects. Even though Starkey, Spelke and Gelman (1990)
for instance randomized the size of the objects, this does not constitute a
systematic control, and on average two objects of random size will have
twice the area of one object of random size (provided all objects are taken
from the same collection).

The seriousness of the problem of co-varying non-numerical factors be-
came apparent after two studies, one with systematic control for contour
length (Clearfield & Mix, 1999) and the other with systematic control for
surface area (Feigenson et al. , 2002a). As it turned out, the infants very
clearly responded to a change in surface area and contour length, but they
did not respond to changes in numerosity if the surface area or contour length
was held constant. So for instance, in one of the set-ups used by Feigenson
et al. , infants were habituated to one large figure, and then presented with
either two small figures (same surface area, different number) or one small
figure (same number, different area). No significant change in looking time
was observed when the two small figures were introduces, whereas a signif-
icant response was observed when the surface area was changed with the
introduction of one small figure. Similar results were obtained in all of the
other set-ups of both studies.

In a subsequent study by Feigenson, Carey and Hauser a similar con-
clusion was obtained using free choice test on 10 and 12-month-old infants.
The infants were given the choice of two quantities of crackers placed one by
one in two opaque buckets. Both groups of infants reliably chose the largest
quantity on 1 vs. 2 and 2 vs. 3 crackers, but not on 3 vs. 4, 2 vs. 4 and
3 vs. 6. The results were stable on controls for complexity and duration,
but not for controls for area. Given the choice of one big (78 cm2) vs. two
small crackers (total area of 39 cm2) the children went for the big cracker,
and when given the choice between the same amount distributed in either
one big or two small crackers, the children chose by chance (Feigenson et al.
, 2002b). This clearly shows that the children’s choice is based on quantity,
nor numerosity.

These results clearly refute the original interpretation of Karen Wynn’s
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experiments. The subjects in the study probably formed expectations about
the total surface area of the objects used in the tests, and not about their
number. The same explanation applies to several other early experiments
where no systematic control for surface area was performed, including the
study by Starkey & Cooper (1980).

However, sensitivity to surface area cannot explain all of the results. In
some instances, number does seem to play a role for the infants’ performance.
The was the case in the study by Starkey & Cooper mentioned above. Here,
no controls were made for surface area, and (as expected) infants were able
to distinguish between two and three dots (of the same size). This simply
shows that infants are able to judge surface area at a 2:3-ration. However, the
infants were not able to distinguish between four and six dots (of the same
size). As the ratio of surface area was exactly the same in the two conditions,
surface area cannot explain this difference in performance. Is simply seems
as if numerosity indeed somehow is important for the infants’ performance
in some situations.

This conclusion is backed up by a number of experiments where infants
indeed do seem to base their judgment on numerosity, and not on continuous
factors such as surface area. More specifically, children seem to base their
judgment on number in two different conditions.

Firstly, when many (≥ 4 or 5) objects are present, infants do seems
primarily to pay attention to numerosity, and not to surface area. Several
habituation tests with careful control for non-numerical factors such as sur-
face area and density have been conducted. In these tests, six-month-old
infants are able to discriminate between 8 and 16 dots, and between 16 and
32 dots, but do not reliably discriminate 2 from 4 dots, as expected in a
set-up with effective controls for size. Also, the infants cannot discriminate
8 from 12 and 16 from 24 dots, suggesting that six-month-olds are capable
of discriminating large numerosities with a 1:2 ratio, but not with a 2:3 ratio
(Xu & Spelke (2000); Xu (2003); Xu et al. (2005)). In a similar subsequent
study 10-month-olds were able to discriminate 8 from 12 elements, that is
in a 2:3 ratio, but not 8 from 10 elements (4:5-ratio) (Xu & Arriaga, 2007).
These results show that infants clearly base their judgment on numerosity
when more objects are involved, and on area when less objects are involved.
Furthermore, they show that the judgment of large sets is less precise than
judgment of small sets.

Secondly, under the right circumstances infants base their judgment on
numerosity, even when only a few (< 4) entities are present. The ‘right
circumstances’ might be stimulus consisting of events instead of objects, or
situations where the number of objects, not their size, is of principal concern
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to the infants. As an example of the event-type of stimuli, six-month-old
infants have been shown able to discriminate two from three jumps of a
doll in a habituation study by Karen Wynn (Wynn, 1996) (although Wynn
did not control for the height of the jumps the study this and thus left the
possibility of discrimination in terms of total trajectory length open to the
infants). And neonates seems to be able to discriminate between two and
three syllable utterances, but not between four and six syllable utterances
(controls were made for duration) (Bijeljac-Babic et al. , 1993).

Turning to situations where numbers are of more importance than size,
a search-box study by Feigenson and Carey might serve as example. In the
experiment 12- to 14-month-old infants were able to base their decision to
reach in a search-box on the number of objects known to be in the box. That
is, if n toys were placed in the box, the infants would use considerably more
time reaching in the box when n− 1 or less toys were retrieved than when n
toys were retrieved for all n < 4. This clearly shows that the infants were able
to represent exactly one, exactly two and exactly three, but not exactly four.
Controls were made for size using a set-up, where two small toys were placed
in the box. On some tests, one of the small toys were surreptitiously swapped
with one big toy, but the infants used the same amount of time reaching in
the box again whether they retrieved a small or a big toy in their first search.
This proofs that the infants based their decision to reach in the box on the
number of toys known to be in the box, and not on the total amount of toy.
As the toys furthermore were placed in the box one by one on this last trial,
the result in addition indicates that infants had correct expectations to the
outcome of the operation 1 + 1 (Feigenson & Carey, 2003).

4.2.9 Innate arithmetic

Next, we might return to the claim made by Karen Wynn (1992a), that in-
fants not only represent numbers, but are also capable of reasoning about
numerical information. Wynn’s claim was originally based on the violation
of expectations experiments indicating that infants have expectations to the
outcome of simple operations such as 1 + 1 and 2 − 1. As we have seen,
subsequent work questions Wynn’s interpretation of the experiments. The
infants’ performance might not have been the result of numerical computa-
tions, but is most likely the result of simpler object-tracking mechanisms.
Even though infants correctly expect two toys to be present in a box when
they are placed there one by one, this can easily be explained with simpler
mechanisms such as the opening of object-file tokens in short term memory
and one-to-one comparison between object files and the physical situation.
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So infants might no after all be able to perform true computations involv-
ing small numbers. However, two resent studies by Karen Wynn and Koleen
McCrink indicate that infants have some numerical competences beyond mere
representation when it comes to larger sets. In the first experiment, Wynn
and McCrink used a violation of expectancy paradigm with careful control
for surface area and contour length to demonstrate that 9-month-old infants
look significantly longer (indicating surprise) at the unexpected outcome of
the operations 5 + 5 = 5 or 10 and 10 − 5 = 5 or 10 (McCrink & Wynn,
2004). The second test was a habituation test, where 6-month-olds were pre-
sented with pictures containing different numbers of large yellow Pac-Men
and small, blue pellets mixed in different rations. The result of the test indi-
cate that the infants were able to discriminate between ratios that differed by
a factor 2, but not between ratios that only differ by a factor 1,5 (McCrink
& Wynn, 2007). So infants might after all have some expectations to the
approximate (very approximate) outcome of operations on large sets of ele-
ments, although there is no direct proof that they are capable of performing
numerical computations with digital precision.
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4.2.10 Mechanisms for encoding

So in sum, infants seem to be able to estimate the numerosity of large nu-
merosities, and they seem to rely on precise numerical information about
small collections of entities when either no information about size is avail-
able or size is of secondary importance to them (see table 4.8 for an overview).
This data has been taken as proof of the existence of two different systems,
just as we saw in the case of primates; one system for the handling of large
collection and one for the handling of sets with less than four elements (as
suggested by Feigenson et al. , 2002a). As the infants’ performance on large
collections is governed by the characteristic Weber Law, it seems reasonable
to hypothesize that numerical information is encoded in analog magnitude
representation, such as the accumulator model or similar.

Turning to the smaller system, several mechanisms such as subitizing,
counting using innate ‘numerons’, and the object-file mechanism has been
suggested. As pointed out by Marc Hauser and Susan Carey (1998) nu-
meron counting is not consistent either with the existence of an absolute
upper limit to the system or with the learning curve of children learning to
count using conventional numerals. It also seems very difficult to explain the
given data with a pattern-recognizing mechanism such as subitizing. Why
do the infants react differently to the same pattern of say ‘three elements’ in
different situations; when three crackers are presented, infants react to area,
not number, but when three toys are hidden in a search box, they react to
number.

Much of the data on the other hand can be explained by a modified version
of the object file model (as suggested by Feigenson et al. , 2002a, p. 63). In the
object file model, objects are encoded in short memory. Numerical aspects
of the situation is supposed to be represented by the number of files opened,
but Feigenson and colleagues suggest that other aspects of the situation, such
as the size or type of the individual objects might also be encoded in the
individual files as well. Various computations could be performed using such
multi-dimensional files. Infants might form numerical expectations, but they
might also exploit information about non-numerical aspects of the situation,
such as surface area or size of the represented entities. So in both subitizing,
the numeron-counting model and analog magnitude model only quantitative
information is represented, but the modified object file model is supposed to
be a richer form of representations, where both quantitative and qualitative
aspects of the situation is encoded. This of course fits very well with the fact
that infants, when dealing with stimuli containing less than four elements,
apparently can base their decision on either total size (as in the case of the
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crackers) or numbers (as in the case of the toys in the search box).

In sum, Lisa Feigenson and colleagues imagines a two-system model con-
sisting of modified object file representations for situations where few ele-
ments are present, and the usual analog magnitude representations for situ-
ations with more elements. In the object files, both quantitative and quali-
tative information is represented where only quantitative information is rep-
resented in the analog magnitude system.

This combination of the modified object file model and analog magnitude
representations is able to explanations some of the more puzzling data. In
Cooper’s experiment, infants were able to distinguish two from three dots,
but not four from six. This is explained by the limit to the number of object
files. Since the two and three dots could be represented using object files and
all dots were of the same size, the infants could rely on either one-to-one nu-
merical comparison or judgment of total surface area to distinguish between
habituation stimuli and test stimuli. In the four vs. six dots situation on the
other hand the number of elements was above the upper limit of the object
file system, and the situation could only be handled by the less precise analog
magnitude representations. So even though the ratio between dots were the
same in both test situations, the infants performed differently because they
handled two situations with two different representational systems.

A similar explanation can be given for Fei Xu’s observation that six-
month-olds are able to distinguish between 4 and 8 dots, but not between 2
and 4 (Xu, 2003). In this case, the 1:2 ratio was big enough for the infants to
discriminate between the different sets of dots using analog magnitude rep-
resentations. Furthermore, controls were made for area in this experiment,
so there would be no difference between mean area of dots in test and habit-
uation situations. This explains why the infants were more likely to notice
a difference in the case where they only represented quantity (4 vs. 8) using
analog magnitude representations, than in the case where they represented
both area and quantity using object files (the 2 vs. 4 case).

Finally, when confronted with non-tangible events such as sounds or
jumps of a doll, infants also seem sensible to the numerical aspects of the
situation. Feigenson et. al. suggest that infants might use analog magnitude
representations in these situations, where no objects are present (Feigenson
et al. , 2002a). This however is not consistent with six-month-old infants
being able to discriminate jumps of a doll in a 2:3 rate (Wynn, 1996). So it
seems as if infants do use object file representations also in the case where
events and not objects are observed. The explanation of their sensitivity to
number in these cases might simply be that the number of something is a
much more salient feature in the case of events than in the case of objects,
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where particularly area for foraging reasons might be very interesting to the
infants.

In conclusion, infants do seem able to represent numerical aspect of stim-
uli, either approximately by use of analog magnitudes or by creating simple
mental models in the form of object files. Infants can habituate to numerical
aspects of a situation, and they can base a decision (to reach in a search-box
or not) on numerical information.

4.2.11 Innate arithmetic in adults

Finally, let us turn to human adults. Many adults of course have learned
to perform verbal counting and perhaps also symbolic computations to some
extend. But apart form these advanced techniques, human adults also seem
to have something similar to the large, approximate system detected in both
human infants and several species of animal. This has been shown by a num-
ber of experiments, where adults were prevented from using verbal counting,
typically by forcing them to respond too quickly to be able perform a digital
counting process. Under such circumstances, adults’ performance is governed
by the characteristic Weber Law, indicating the use of analog magnitude rep-
resentations. This was for instance the case in the experiment by Cantlon
and Brannon cited at the beginning of this chapter, where college students
were asked to estimate the sum of two sets of dots (Cantlon & Brannon,
2007).

Similarly, Hilary Barth, Nancy Kanwisher and Elizabeth Spelke con-
ducted a number of experiments, where adults were asked to pick the more
numerous of two sets of stimuli. The stimuli could be sequences of tones,
sequences of flashes, arrays of dots or combinations, where the subject for
instance had to compare the number of flashes of light with the number of
dots in an array. The results indicated a clear Weber Law signature: The
accuracy decreased as the ratio between the two sets got closer to one, but
the accuracy did not depend on the absolute size of the sets. Furthermore,
the accuracy for both modes (visual and auditory) and both formats (sequen-
tial and simultaneous presentation) were approximately the same, and the
accuracy only decreased slightly when cross modal and cross format stimuli
was used (Barth et al. , 2003). This result suggests that the internal rep-
resentation is abstract, i.e. amodal and independent of the format of the
stimulus.

The experimental paradigm used by Mechner (1958a; 1958b) to test the
numerical abilities of rats has also been applied to human adults. In a study
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by Cordes, Gelman and Gallistel, test-subjects were required to press a key
a specific number of times under two different conditions; one in which they
were required to count the key presses out loud and one in which they re-
peated the word “the” on each key press in order to prevent any form of
counting. The adults were able to estimate the number of key presses even
when counting was suppressed. In this condition furthermore, the variability
of the number of presses was proportional to the mean number of presses
for the given target number (i.e. scalar variability) as the rats of Mechner’s
experiment, which is in agreement with Weber’s Law. In contrast, when
subjects were allowed to count out loud, the variability was proportional to
the square root of the mean number of presses (binomial variability). This
change of variability strongly indicates that two different representational
systems were used in the two different conditions (Cordes et al. , 2001).

Interestingly, when human adults are asked to decide which of two Arabic
numbers are the largest, a characteristic distance effect is observed: The
reaction time decreases as the distance between the two numbers increases
(Moyer & Landauer, 1967; Dehaene et al. , 1990; Temple & Posner, 1998).
This suggests, that even symbolically presented numbers are encoded using
analog magnitude representations.

We can also ask, whether adults use something similar to the special
mechanism primates and infants use for the handling of small numerosities.
There is strong evidence, that human adults have some sort of object-based
mechanism that allows them to track and encoding properties (such as color
and orientation) of up to four objects in parallel (Pylyshyn & Storm, 1988;
Luck & Vogel, 1997; Kahneman et al. , 1992). It has also been suggested that
this object file mechanism (perhaps in combination with subitizing or other
rapid pattern recognizing mechanisms (Cordes & Gelman, 2005)) is used
when adults enumerate up to four elements. The reason why it is assumed
that a special mechanism is used in the enumeration of small quantities is a
characteristic ‘elbow’ in the reaction time curve; When adults are asked to
enumerate small quantities of elements, both reaction time and error rate is
flat for the first four elements, with fast reactions and very few errors. But
after four, both reaction time and error rate increase with the number of
elements (Mandler & Shebo, 1982; Trick & Pylyshyn, 1994).

However, recently this claim has been the subject of some discussion. No
special signature for small numbers was found in the key-pressing experiment
by Cordes, Gelman & Gallistel (2001). The subjects were apparently using
the same analog magnitude representations for all sets regardless of their size.
This might be explained by the sequential nature of the stimuli, but the result
at least indicates that object files cannot be the only non-verbal mode of
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representation of small numbers. The existence of the ‘elbow’ in reaction time
even for simultaneously presented visual objects has also been contested by
Balakrishnan and Ashby (1992), who were not able to reproduce the proposed
discontinuity in a test where adults were asked to rapidly enumerate arrays
of simultaneously presented blocks. These results cast some doubt on the
original studies of reaction time, and it remains controversial whether adults
use a special system for estimation of size etc. of small sets of elements or
whether they use the same analog magnitude representations for both small
and large sets (see Cordes & Gelman, 2005, p. 138 for a discussion).

In sum, we have identified two core systems of numerical competence; a
large approximate system for the handling of large quantities and a small,
precise system for the handling of small (< 4 or 5) quantities. Both systems
have been identified in human infants enabling them to estimate the size of
large collections of items and form expectations about the outcome of simple
arithmetic operations (such as 1 + 1 + 1, 5 + 5 and 10 − 5). Human adults
also seem able to access at least the large, approximate system when digital
counting is not possible. Tests involving the comparison of two number
symbols even suggest that number symbols and words are mapped onto and
internally represented using the large system of analog magnitudes.

4.3 Limitations of the innate skills

The limitations of inborn mathematics are well illustrated by a recent dis-
cussion about the innateness of the number line. The number line is a basic
mathematical concept. It is typically introduced early in mathematical ed-
ucation, and most people seem able to learn and understand how to use it.
The concept is, on the other hand, not too basic; it is far from trivial to learn
how to map numbers onto a unidirectional line in the right order and using
the right metric. This makes the number line concept perfect for a discussion
about the limitations of innateness.

As noted above, humans – and several species of mammals – seem to
posses a large, approximate system where numbers are encoded as some kind
of analog magnitudes. Several authors have suggested that this unspecified
analog magnitude may be likened to an innate, mental number line (see for
instance Dehaene et al. , 1993; Dehaene, 1997; Zorzi et al. , 2002). This idea
is primarily supported by two different sources of evidence.

Firstly, a puzzling effect was observed in an experiment conducted by
Dehaene and colleagues 1993. In the experiment, adult, western subjects
were requested to judge whether a target number (represented with Hindu-
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Arabic numerals) was larger or smaller than a given anchor. The subjects
were given two buttons, one to indicate that the target was smaller than
the anchor, and the other to indicate that the target was larger than the
anchor. The subjects were furthermore required to operate one of the buttons
with one hand and the other with the other hand. As it turned out, it
took the subjects significantly longer time to give a ‘larger than’-response
when the ‘larger than’-button was operated with the left that with the right
hand. And conversely, it took significantly longer time to give a ‘smaller
than’-response when the ‘smaller then’-button was operated with the right
hand. This asymmetry in response time was called the SNARC effect (Spatial
Numerical Association of Response Codes effect), and according to Dehaene
et al. , the effect shows the existence of an quasi-spatial, mental number
line bearing “a natural and seemingly irrepressible correspondence with the
left-right coordinates of external space” (Dehaene et al. , 1993, p. 394).

Secondly, a number of experiments probing the ability to map numbers
onto a line segment have been conducted on both Western children (Booth &
Siegler, 2006) and members of an indigenous tribe (the Mundurukú), known
only to possess very limited mathematical knowledge (Dehaene et al. , 2008).
In the experiments, subjects were presented with a line segment and were
told the numbers located at the endpoints (0 or 1 at the left endpoint and
10, 100 or 1000 at the right endpoint, depending on the experiment, see
figure 4.9). After this instruction, subjects were required to indicate the lo-
cation on the line of a test set of the numbers in the interval between the
endpoint-numbers. In the experiments on Western children, numbers were
always represented symbolically (using Hindu-Arabic digits), in the experi-
ment on members of the Mundurukú people, numbers were presented either
symbolically (as Mundurukú or Portuguese number words) or as sets of tones
or dots.

According to the two studies, all subjects were able to map numbers onto
a line segment while consistently observing the basic principle of order (i.e.
in this setting: greater numbers are always located to the right of relatively
smaller numbers). However, Western kindergarteners and Mundurukú peo-
ple used a logarithmic mapping, allocating relatively more space to smaller
numbers. For Western children the logarithmic component gradually disap-
pears during the first few grade, and they start mapping numbers onto space
linearly, allocating the same amount of space to all numbers. According to
Dehaene et al. (2008), these results reveal the existence of both a universal
and a cultural-dependent facet of the number line. Numbers are innately
represented in a logarithmic format, but with the effect of education, this
logarithmic representation can be transformed into a linear representation.
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Figure 4.9: In (Dehaene et al. , 2008) members of the Mundurukú tribe
were presented with a horizontal line segment, labeled with a set of 1 dot
on the left endpoint and a set of 10 dots on the right endpoint, similar to
the above. Subjects were told that 1 was located at the left endpoint and
10 on the right endpoint. Subsequently, subjects were required to locate
numbers presented either symbolically as number words or as sets of dots
or tones onto the line segment. Both line segment and labels were present
during the test.

Several points of criticisms can, however, can be raised against the data
supporting the idea of an innate number line. Concerning the SNARC ef-
fect, several experiments have shown the effect to be a laboratory artifact.
It is a product of a strategic choice used in a particular experimental setup,
rather than the product of a universal mode of mental representation (Fis-
cher, 2006). Most strikingly, the SNARC effect was reversed when subjects
were presented with a usual clock face and asked, whether selected numbers
in the interval 1 to 11 was greater or smaller than 6. In this experimental
setup, small numbers (1-5) were apparently associated with right and large
numbers (7-11) with left (Bächtold et al. , 1998). Also, in an experimental
setup where subjects were required to classify numbers as larger or smaller
than a given anchor by pressing either a key close to or a key far away from a
given center, the SNARC effect completely disappeared (Santens & Gevers,
2008). Instead of the left-right association of the SNARC effect, an associ-
ation between the close response-key and numbers smaller than the anchor,
and the far response-key and numbers larger than the anchor was observed.

Concerning the ability to map numbers onto a line segment, two lines
of criticism have been followed. Firstly, it should be remembered that the
number line was brought into the experiment by the experimenter, not by
the test-subjects; due to the experimental paradigm, subjects were forced
to report their numerical experiences using a number line (as also noted in
Núñez, (accepted for publication)). For this reason, the experiments can only
be used to determine to what extend subjects are able to master this mode of
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reporting. A positive answer to this question does not allow us to conclude
that the subjects’ internal representations of numbers are also linear.

This point was underlined in a number of recent experiments, where sub-
jects were required to use other modalities, such as squeezing a ball, clanging
a bell or singing with varying intensity, to report the relative size of num-
bers (Núñez (accepted for publication), and personal communication). As
it turned out, subjects were able to use these alternative forms of reporting
while maintaining the crucial property of order. Such experiments, how-
ever, clearly does not show that the subjects internally represent numbers
as squeezing or vocalizing force, only that they are able to report numerical
experiences using these modes of reporting.

Secondly, a careful study of the answers given by the Mundurukú reveals
a much more profound cultural component than that accepted by Dehaene
et al. . Such an analysis is carried out in (Núñez, (accepted for publication)).
It should be noted, that the Mundurukú population tested in (Dehaene et al.
, 2008) is not uniform; it includes both adults, children and subjects with
or without mathematical training. The only part of this population suit-
able for testing the innateness of a mental number line is the uneducated
adults. A closer study of this part of the population reveals that the sub-
jects 1) failed to associate the lowest numerosities with the left endpoint of
the number line, and 2) in the case of tonal input even failed to observe the
fundamental principle of order – 1 tone was on average located 40% down
the response line, while 2 tones were located only 30% down the response
line (Núñez, (accepted for publication)). These results imply that the uned-
ucated Mundurukú in fact were not able to map numerosities onto space in
a consistent way. So if anything, the experiments by Dehaene et al. (2008)
show that a mental number line (log or linear) is not even partly universal,
but a complete product of cultural specific education.

This conclusion is backed up by historical evidence. Although numbers
have been used for geometrical measurements, the actual number line was
only introduced relatively late (in the 15th or 16th century). One of the
first well-known introductions to the number line concept is found in Wallis
(1685). As noted by Núñez ((accepted for publication)), Wallis take great
care in describing the details of the number line concept, and explains it using
analogies to well-known physical activities (walking so-many steps forwards
or backwards). This clearly marks the introduction of something new and
foreign to the mathematical community, and not simply the use of a well-
known or intuitive idea.

All in all, the evidence does not prove the existence of an innate, mental
number line. Numerosity might be internally represented somehow as an
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analog magnitude, but the representation is not inherently spatial. The
ability to map numbers onto space in a consistent way (either log or linear)
is culture-dependent – it must be learned.

The controversy over the innateness of the number line is interesting for two
reasons. Firstly, it reveals a clear limit to our innate, mathematical skills;
the number line is not innate, but culturally mediated. Secondly, the case
serves as a warning against over-interpretation of experiments. The observed
abilities turned out to be laboratory artifacts produced by a particular exper-
imental setup (in the case of the SNARC effect) and by a particular choice
of reporting mode (in the case of the ability to map numbers onto space).
However, the reporting mode is part of the experiment, not part of the test
subjects’ cognitive apparatus, and that should not be forgotten.

4.4 Mathematics as a product of biological

evolution

Finally, we can return to the overall research question guiding this work:
What is mathematics and how was it developed? In the first section, we saw
that it is not possible to give mathematics a foundation in the form of either
logical truisms or otherwise self-evident axioms. On the contrary, the ZFC-
axioms currently accepted as a foundation for most mathematics was not
accepted because of their self-evidence, but because they made it possible to
derive the mathematics already accepted. That is, the axioms were accepted
for extrinsic reasons, not for intrinsic. This left us with the question: Where
does the accepted mathematics come from and why is it accepted as true?

In this chapter, we are investigating extend to which mathematics is cre-
ated by evolution. After having reviewed the available empirical evidence,
we can conclude that humans have cognitive systems that allow them to
estimate the approximate, relative size of large collections and the precise
size of small collections. Furthermore, we seem able to form expectations to
the outcome of basic, arithmetic operations. These abilities are innate and
shared with several species of animals, both evolutionary close to us (such as
primates) and evolutionary distant (such as birds).

From this, it might seem that the foundation of mathematics is formed by
evolution, and not by logic or abstract reasoning. This claim must, however,
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be modified for several reasons. As we saw in section 4.2.6, it is questionable
whether the abilities used for numerical and arithmetic judgment are selected
for these purposes. In most real-world settings, numerical and non-numerical
factors are interwoven, and the cognitive mechanisms used to form arithmetic
expectations in one setting are in others used to choose the largest amount
of food. For that reason, it is much too strong to claim these abilities to
be rudimentary mathematics or to say that they form a number sense. The
cognitive abilities allowing animals and uneducated humans to perform arith-
metic or numerical judgments are most likely general-purpose mechanisms
that express themselves as mathematical only when subjects are situated in
highly artificial experimental setups. Evolution has not give us mathematical
abilities; it has given us general-purpose abilities that happen to enable us
to succeed on tasks involving numerical and arithmetic judgment.

Furthermore, the fact that the behavior of animals and human children is
in some cases consistent with mathematical reasoning does not prove that it is
the result of mathematical reasoning. The tasks posed to the subjects can be
solved by counting, adding, subtracting and so forth, but – as far as we know
– this is not how the subjects actually proceed. The cognitive mechanisms
supporting the mathematical skills are most likely pattern recognition, simple
mental models (in the form of object-files) and some kind of analog magnitude
representations. None of these mechanisms are inherently mathematical, and
using them to solve problems involving numerical features do not constitute
mathematical reasoning, let alone conceptual, mathematical knowledge.

What is worse, the innate mechanisms used by infants and animals seem
to have qualitative shortcomings; simply widening the range of the object file
mechanism or making the analog magnitude encoding more precise will not
in itself be enough to constitute mathematical reasoning and knowledge, such
as the concept of natural numbers, understanding of the property of order,
the ability to add or subtract. Cognitive mechanisms qualitatively different
from the innate mechanisms displayed in the experiments reviewed above are
needed. For this reason, evolutionary theory can only explain a relatively
small part of mathematics. The biological evolution has provided us with
the cognitive prerequisites needed in order to develop mathematics, not with
primitive mathematics. In order to understand and explain why and how
mathematics proper was developed from these prerequisites, theories other
that evolutionary biology are needed. We must move to another level of
explanation.
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4.5 Mathematics as a product of cultural

evolution

There is one possible objection to this conclusion. Although mathematics
is only to a very little extend the product of biological evolution, it might
still be a product of evolutionary process. The mechanism of variation, se-
lection and inheritance is in principle content free, and it might be used to
model development in areas other then the world of living beings. In the
1970s, several authors proposed human culture to be developing through
such evolutionary processes (e.g. Richard, 1976; Cloak, 1975). Cultural ideas
and practices – sometimes called memes in analogy with biological genes –
spread themselves, develop and compete for attention in ways, similar to the
fight for life and proliferation seen in the biological world.

This theory of universal Darwinism (or universal selection theory) has
been applied to the development of mathematics by several theorists, includ-
ing Stanislas Dehaene (1997) and more thoroughly Helen de Cruz (2007).
The theory takes departure in the facts that 1) mathematical ideas can
‘replicate’ by being communicated (in speech or writing), and 2) there is an
over-production of ideas, so consequently ideas will have to fight for math-
ematicians’ attention and for space in journals and university curricula etc.
This sets the stage for a Darwinian process, where mathematical ideas are de-
veloped through mechanisms of random variation and non-random selection.
In the case of mathematics, both internal and external selection forces are
at play: Sometimes ideas a selected according to their internal mathematical
value, and at others in accordance with their value to the surrounding soci-
ety. The last type of selection forces can, as speculated by Dehaene, perhaps
even explain why mathematics is useful in the description of nature:

The evolution of mathematics is a fact. Science historians have
recorded its slow rise, through trial and error, to greater efficiency.
It may not be necessary, then, to postulate that the universe was
designed to conform to mathematical laws. Isn’t it rather our mathe-
matical laws, and the organizing principles of our brain before them,
that were selected according to how closely they fit the structure of
the universe? The miracle of effectiveness of mathematics, dear to
Eugene Wigner, could then be accounted for by selective evolution,
just like the miracle of the adaptation of the eye to sight. If today’s
mathematics is efficient, it is perhaps because yesterday’s inefficient
mathematics has been ruthlessly eliminated and replaced.

[. . .] Mathematicians generate an enormous amount of pure mathe-
matics. Only a small part of it will ever be useful in physics. There
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is thus an overproduction of mathematical solutions from which
physicists select those that seem best adapted to their discipline – a
process not unlike the Darwinian model of random mutations followed
by selection. Perhaps this argument makes it seem somewhat less
miraculous that, among the wide variety of available models, some
wind up fitting the physical world tightly.

(Dehaene, 1997, pp. 250-51)

As I see it, the main problem facing such a theory is the question whether
the development of new mathematical ideas can be characterized as random.
In the case of biological evolution, the random variation is produced by mu-
tations of individual genomes and (mainly) by the combination of genomes
in sexual reproduction. It is hard to find exact analogies to these sources of
variation in the development of mathematical ideas. In the case of cultural
ideas, it could be argued that at least some of the variation is a product
by transmission errors; mistakes are made, and sometimes they turn out to
be adaptive, i.e. they are reproduced by other practitioners. But in math-
ematics, even this type of random variation is almost completely ruled out.
As noted by Azzouni (2006), mathematics is unique as a social practice ex-
actly because it resists change introduced by mistake. Although mistakes
are ubiquitous in mathematics, they are easily recognized as mistakes – even
by the practitioners who made them. Mistakes are seldom reproduced and
never lead to deviant practices. So transmission errors cannot be a source of
random variation in mathematics.

Furthermore, evolution is blind. It does not proceed towards a particular
purpose or goal. Although expressions such as ‘natural selection’ or ‘the hand
of nature’ does imply intentionality and goal-orientedness, such expressions
should not be taken at face value. They are clearly metaphorical. Nature is
not a sentient being selecting individuals with a particular goal in mind.

This feature of evolution also contrasts the development seen in mathe-
matics. Mathematics is evidently not static. Variation and change do oc-
cur, but not randomly. Variations can at most be described as part of an
trial-and-error process (Lakatos, 1976b), but trial-and-error processes are not
necessarily evolutionary. Rather, as I see it, evolution is a type of trial-and-
error, but there are other types, which not centered on the element of random
variation. In the case of mathematics, new practices, definitions and tech-
niques are frequently tried out, but they are done so intentionally and with a
particular purpose in mind. They are never introduced as random variations
of existing practices, and never without a particular goal in mind.

de Cruz seems to acknowledge parts of this line of critique, and she coun-
ters it with the observation that often mathematical ideas or techniques devel-
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oped for one purpose, ends up being used for something completely different,
not intended by the original creators (de Cruz, 2007, pp. 276). This, however,
does not constitute randomness and purposelessness. Although a mathemat-
ical idea might end up being used for purposed not intended by its creator,
it was still not created at random. And although a mathematician might
use an existing idea for something new, she does so intentionally and with a
purpose in mind. The evolutionary process of blind progress through random
variation simply does not seem to apply to the development of mathematics.

As concluded above, in order to understand what mathematics is and
where it comes from, something qualitatively different from evolutionary the-
ories most be invoked. Mathematics cannot be explained either by evolution-
ary biology or the theory of cultural evolution. In the next two chapters, I
will move to a different theoretical level and investigate the extend to which
mathematics is a product of our particular cognitive style.



Chapter 5

Theories of human cognition
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5.1 Computational theory of mind

The main goal of the next chapter is to discuss if and how the particular cog-
nitive style and strategies used by humans have influenced our mathematical
beliefs. Before doing so, it is however necessary to address what a sufficiently
adequate theory of general human cognition should look like. And that is
the goal of this chapter.

Cognitive science emerged as an independent discipline during the 1950’s.
By then, the discipline was dominated by the computational theory of mind,
where cognition is believed to be nothing but information processing; The
human brain was assumed to be a special kind of computer, equivalent in
computational powers to a universal Turing machine, and all cognitive pro-
cesses were taken to be purely syntactic, rule governed manipulations of
internal symbolic representations.

Jerry Fodor’s 1976 The Language of Thought is a very clear formulation
of this theory. Fodor holds that thinking takes place in a special mental
language, often for convenience referred to as Mentalese. The relation be-
tween Mentalese and natural languages, such as English or Danish, is the
same as that between the machine language and the programming language
of a computer (Fodor, 1976, p. 67). Although we communicate using natural
languages, the actual processing only takes place, when the information has
been translated into Mentalese.

Furthermore, sentences of Mentalese are represented as physical struc-
tures in the brain. The operations on such representations are purely causal,
as the brain, like any physical object, is governed by the laws of physics
(Fodor, 1976, p. 74). As a consequence, the operations on a sentence are
only sensitive to the syntax, i.e. the physical form of the sentence, whereas
the semantics or meaning of the sentence is causally irrelevant. Fodor fur-
thermore assumes that the physical machinery of the brain (conveniently) is
constructed in such a way, that a physical brain state Sn only follows form a
sequence of physical states S1 . . . Sn−1, if it is the case that the correspond-
ing sentences F1 · · ·Fn−1 of natural language constitute a logical proof of Fn
(Fodor, 1976, p. 73). So to Fodor, thinking is nothing but formal operations
on symbols physically instantiated in the brain.

This general outlook was also shared by and found its strongest expression
in the classical paradigm of artificial intelligence research, sometimes referred
to as GOFAI (Good Old Fashioned Artificial Intelligence). Herbert Simon
and Allen Newell for instance famously claimed that a “physical symbol
system [i.e. a formal system that is somehow physically instantiated] has
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the necessary and sufficient means for general intelligent action” (Newell
& Simon, 1976, p. 87). Simon and Newell emphasize that they with the
use of the word “necessary” want to claims, that any intelligent system –
including biological organisms such as human beings – are in fact physical
instantiations of formal systems. The strength of this claim is only enhanced
by the fact that the symbols of the systems imagined by Newell and Simon,
apparently do not designate anything external to the system they are a part
of, but only refer to relationships and processes occurring within the system
(Newell & Simon, 1976, p. 86). The symbols are in other words very similar
to the implicitly defined symbols of Hilbertian formalism, and the thinking
of symbol systems is to an extreme degree isolated from the external world.

During the 1980s, the computational theory of mind was met with con-
siderably opposition from many different fronts (such as studies in animal
vision, robot engineering, philosophy of consciousness, neuroscience etc.). I
will not review all of the arguments here, but instead focus on a single line
of criticism. This line of criticism simply points out that the theory is inad-
equate, because it fundamentally conceives cognition in a limiting way (for
more points of criticism, see Johansen, 2003).

In the computational theory of mind, the brain is metaphorically con-
ceived as a container. All cognitive content (memory, feelings, reasoning,
etc.) is located inside the container in isolation from the physical world on
the outside. Sensing, planning, and acting are supposed to be three clearly
distinct activities, and they are supposed to be performed in the mentioned
order: First you sense, then you use your internal cognitive resources to form
a plan, and finally you enact your plan.

This container metaphor of cognition can be found in many traditional
theories of cognition, such as the Cartesian model. It has also been applied in
theories of mathematical cognition, for instance the so called ‘abstract code
model’, where a tripartition between comprehension (of the mathematical
problem), calculation, and response (for instance in the form of a written
number) is hypothesized (Campbell & Epp, 2005).

Much of human cognition can indeed be described as contemplation tak-
ing place inside the head, such as the container metaphor suggests. But not
all of it. Parts of human cognition seems to be interactive processes involving
both the brain, the body, and the surrounding environment. Human cogni-
tion in short seems to be distributed and embodied. These interactive aspects
of cognition are not captured at all by the container metaphor. On the con-
trary, the metaphor seems to rule them out as impossible. Consequently,
the computational theory of mind (and other theories of cognition that ex-
ploits the container metaphor) cannot account for the interactive aspects of



98 Theories of human cognition

cognition. They are simply inadequate.

5.2 Embodied Cognition

As an alternative, I will introduce an embodied theory of cognition. This
however, also takes a little clarification. Strictly speaking, there is no single
‘embodied theory of cognition’. The term ‘embodied cognition’ has been
used to characterize a number of quite different approaches to cognition. All
of the approaches reject the basic ideas of the container metaphor, and they
focus on examples of cognition that clearly do not fit into the tripartition
structure, dictated by the container metaphor. They view cognition as a
basically interactive process, somehow involving both the brain, the body
and the surrounding world. When these basics intuitions are coined out in
actual theory, profound differences, however, starts to show.

Margaret Wilson (2002) has identified six different embodied approaches,
each making fundamentally different claims about the nature of cognition,
and each taking cognition to be embodied for very different reasons. These
six claims are:

1. Cognition is situated, i.e. cognition takes place in real world context
and rely heavily on a continuous flow of input and output. This is ap-
parent when, for instance, we try to locate a misplaced item by moving
to the location where the item was last in use. Here, the process of
remembering is not purely internal or mental, but is rather an interac-
tive process, where perception, movement and the physical environment
play vital parts.

2. Cognition takes place under time pressure. As biological creatures liv-
ing in an dynamic environment we must be able to find workable (but
not necessarily perfect) solutions to pressing problems. So in other
words, cognition is constrained by – and consequently shaped by – our
specific embodied nature.

3. Cognition is off–loaded onto the environment, or rather, we do not nec-
essarily internalize all problems. Instead, sometimes we solve problems
by manipulating the external world directly, as when we turn two pieces
of a puzzle to see if they fit or not, or we reduce the problem space
and demands on memory by sorting the pieces of the puzzle into piles
of distinguishable parts of the motive.
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4. The environment is part of the cognitive system, i.e. the most suitable
analytic unit in cognitive science is not the individual mind, but func-
tional relationships of elements participating in a specific task. Cogni-
tion might be distributed across the different objects or persons par-
ticipating in any particular cognitive task.

5. Cognition is for action; our individual representations, percepts and
concepts are directly connected to patterns of physical action.

6. And finally, off-line cognition is body based. Our off-line thinking ex-
ploits or (stronger) is structured by direct physical experiences and
mental structures connected to motor action and perception.

It should be noted that these six different claims are not necessarily in conflict
with each other. Rather, as I see it, they highlight different aspects of how
our cognition is embodied and how it is performed as an interactive process
involving both brain, body and the external environment.

As our main goal at this place is mathematical cognition, it might how-
ever be wise to cut the cake slightly differently. Firstly, claim 1), 2) and 5) do
not apply directly to mathematical reasoning: Regarding 1), mathematical
reasoning is not situated or at least only in ways covered by the remaining
three claims. Regarding 2), the solution to a mathematical problem might
be needed in a hurry, but in general, mathematics is not under the kind of
time pressure aimed at in the second claim. The real world is dynamic, and
consequently the optimal solution to a given problem is constantly changing.
In contrast, the world of mathematics is static, and the solution to a given
problem does not change over time. We might of course want the find the
solution as fast as possible, and we might want different problems solved at
different times, but still, the kind of time pressure found in mathematics is in
principle different from the time pressure constraining cognition in general.
Regarding 5), mathematical reasoning might ultimately be action guiding,
but apart from basic intuitive mathematical skills such as subitizing, math-
ematical reasoning is not action guiding in the direct sense aimed at in the
claim. For these reasons, I will not treat these three claims further.

Secondly, claim 3) and 4) both express the more general claim that cogni-
tion involve our physical surroundings, either because we refrain from mental
modeling and use the world as its own best model (claim 3), or because we
actively use and exploit the environment as a way to off-load mental content
(claim 4). I will treat these two claims under a single heading and investigate
if and how mathematical reasoning involves this kind of externalization.
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I will treat the sixth claim it more or the less as it is stated, only I will
differentiate between two different types of experiences: a) basic life-world
experiences and b) culturally created experiences.

5.3 Externalization: Tools of thought

The distributed nature of human cognition is witnessed by our use of en-
vironmental resources as cognitive tools. As it turns out, our cognitive life
seems to involve the physical and social surroundings to a surprisingly large
extend. I for once constantly writes notes to my self, and I could not work,
if my office was not structured in a very particular way: Books are alpha-
betized, papers are in organized by theme, I have a shelf for things, I really
ought to read, and a shelf for books borrowed at the library. On my desk,
I keep pen, stabler, post-it-notes – bills I have to pay – and of course the
most important tool of them all; my lap-top computer. Although comput-
ers are commonly anthropomorphized and regarded as persons, they are in
fact physical devices, build out of mainly plastic, copper and a few grams
of silicon. But without a laptop or other means of writing, I am quite sure
this dissertation would be a lot shorter, and probably also very different in
style and content. So in other words, as a cognizing agent, I rely heavily on
physical resources in my environment.

The distributed cognition movement is motivated by observations such as
the above. Our cognitive life simply seems to involve the external environ-
ment in non-trivial ways. For this reason, the classical definition of cognitive
processes as something going on inside an isolated persons isolated brain is
simply inadequate. The unit of analysis in cognitive science should not be de-
termined by the location of the process, but by “the functional relationships
among the elements that participate in it” (Holland et al. , 2000, p. 175).
Consequently, the distributed cognition approach is not so much interested
in what is going on inside individual brains or minds, but mainly wants to
explore how cognition is distributed “across internal human minds, external
cognitive artifacts, and groups of people, and across space and time” (Zhang,
1997, p. 182).

5.3.1 Epistemic actions

An important concept in the distributed theory of cognition is epistemic
action. Such actions were identified and defined by David Kirsh and Paul
Maglio (1994). Where pragmatic actions are actions performed with a prag-
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matic goal, such as peeling potatoes, an epistemic action is defined as:

[A] physical action whose primary function is to improve cognition by:

1. Reducing the memory involved in mental computation, i.e. space
complexity;

2. Reducing the number of steps involved in mental computation,
i.e. time complexity;

3. Reducing the probability of error of mental computation, i.e.
unreliability. (Kirsh & Maglio, 1994, p. 514)

Kirsh and Maglio give several examples of such epistemic actions. If you
have a tendency to forget your key, you might for instance leave it in your
shoe. Then you will be sure to be reminded of your key, when you put on
your shoes before leaving your apartment. By putting the key in the shoe,
the key becomes a cognitive device that reduces both the probability of error
and the demands on internal memory. Hence, the act of putting your key in
your shoe is an epistemic action.

Apart from reference to recognizable every day situations such as leaving
a key in a shoe, Kirsh and Maglio back their claims about epistemic actions
and externalization of computations up by a thorough empirical investigation
of people playing the now classical computer game Tetris. According to
traditional theories of cognition, one would expect the gamers to build an
internal model of the game situation, figure out what to do by manipulating
the internal model, and finally enact that plan. So, when a new brick (or
‘zoid’ as they are more technically called) arrives at the top of the screen,
the gamers supposedly should perceive the zoid and use their internal model
of the the game situation to plan how to rotate and translate the new zoid
in order to fit it in with the other zooids. Finally, the gamers should perform
this plan by pressing the buttons used to control the game. Kirsh and Maglio
discovered that this is not at all how actual gamers behave. As gamers get
more and more skilled, they adopt a strategy, where the step of internal
modeling and computation is avoided as much as possible. When a new zoid
arrives, the gamers simply rotate the zoid using the rotation button in order
to directly see where the zoid fits. In other words, they substitute internal,
mental computations with a tight loop of action and perception.

It should also be noted that epistemic actions are only one of a number of
different ways, humans use space intelligently. Epistemic actions simplify in-
ternal computations, but space, or rather the physical arrangement of objects
in space, might also be used to simplify choice and perception (as pointed
out in Kirsh, 1995).
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The first (simplification of choice) can be achieved, for instance, by the use
of informational cues or even physical constraints that reduce the perceived
or actual degrees of freedom in a given situation. As an example, a door jam
can function both as an informational cue, telling you not to close the door,
and (if overlooked or ignored) as a physical constraint, blocking a particular
action (Kirsh, 1995, p. 44).

The second (simplification of perception) can for instance be achieved, by
sorting or segregating. Alphabetizing or thematically sorting the books on
a shelf might greatly simplify the perceptual process of finding a particular
volume. Or, to use Kirsh’s own example, the task of telling the washed from
the unwashed tomatoes can be simplified by placing each tomato in an other
physical location on the kitchen table, as it is washed (Kirsh, 1995, p. 56).

5.3.2 Cognitive artifacts

In the examples give above, various cognitive tasks were performed in a
cognitively more economic way by exploiting already existing environmental
resources and structures in an opportunistic way. This opportunistic use
of already existing objects, however, does not exhaust our use of external
cognitive tools. As it turns out, our cognitive lives also include specially
created tools or cognitive artifacts.

In the most narrow definition, cognitive artifacts are simply defined as
“physical objects made by humans for the purpose of aiding, enhancing, or
improving cognition” (Hutchins, 2001, p. 126). This definition of cognitive
artifacts includes numerous everyday objects, such as shopping lists, calen-
dars and computers. It also includes highly specialized artifacts, such as the
so-called ‘midwife’s wheel’ (figure 5.1). This artifact is used by midwifes to
calculate the due day of a child. The wheel consists of two discs, one marked
with the months of the year and the other with the weeks 1 to 42 of a nor-
mal pregnancy. Given the date of conception, the midwife aligns the discs
in certain ways, and that allows her to read off both the current duration
of the pregnancy and when the child is due to be delivered. In other words,
the artifact allows the midwife to substitute complicated mental calculations
with manipulative and perceptual (i.e. epistemic) actions; she simply slides
the disks and read off the result. In this way, the artifact enhances and im-
proves cognition, not by enhancing the mental powers of the cognizing agent,
but by reducing the demands on the internal, mental resources. This way
of functioning, by reducing the demands on internal resources, is typical for
cognitive artifact.



5.3 Externalization: Tools of thought 103

Figure 5.1: Midwife’s wheel
(from www.imprintitems.com/images/products/healthcare/PregWheel.jpg)

Not everybody accepts the narrow definition of cognitive artifacts as phys-
ical objects, but argues for a more inclusive definition including non-physical
artifacts such as concepts, rules and procedures:

Reading, arithmetic, logic, and language are mental artifacts, for
their power lies in the rules and structures that they propose, in
information structures rather that physical properties. Mental
artifacts also include procedures and routines, such as mnemonics for
remembering or methods for performing tasks. But whether physical
or mental, both types of artifacts are equally artificial: They would
not exist without human invention.

(Norman, 1993, p. 4)

As pointed out by Andy Clark Clark (1998a), language itself can be seen
as the ultimate mental artifact. Language serves several purposes besides
merely being a means of communication. The proper conceptual setting can
drastically improve our learning curve, but most importantly, language is a
way to turn our thoughts into external object:

[. . .] as soon as we formulate a thought in words (or on paper), it
becomes an object for both ourselves and for others. As an object,
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it is the kind of thing we can have thoughts about. In creating the
object, we need have no thoughts about thoughts – but once it is
there, the opportunity immediately exists to attend to it as an object
in its own right. The process of linguistic formulation thus creates the
stable structure to which subsequent thinkings attach.

The key claim is that linguistic formulation makes complex thoughts
available to processes of mental attention, and that this, in turn open
them up to a range of further mental operations. It enables us, for
example, to pick out different elements of complex thoughts and to
scrutinize each in turn. It enables us to “stabilize” very abstract
ideas in working memory. And it enables us to inspect and criticize
our own reasoning in ways that no other representational modality
allows.

(Clark, 1998a, p. 177)

Or in other words, language makes it possible or us to turn our thoughts into
external objects, inspectable from a third person perspective, and that is a
prerequisite for the formation of high level cognitive processes. Something
similar might be said about diagrams, drawings and other means to turn
mental imagery into external objects. A point, I will discuss further below.

Andy Clark is not the only or even the first to air such views. The idea
that language offers a way to turn our thoughts into objects is for instance
present in Karl Poppers theory of the three worlds:

By formulating a thought in some language, we make it a world 3
object; and thereby we make it a possible object of criticism. As
long as the thought is merely a world 2 process, it is merely a part of
ourselves, and it cannot easily become an object of criticism for us.
But criticism of world 3 objects is of the greatest importance, both
in art and especially in science.

(Popper, 1980, p. 159)

Also, the idea that language is a powerful tool that both can help us orga-
nizing our thoughts and facilitate learning is present in the so-called ‘activity
theory’, taking its departure in the work of Lev Vygotsky. What distributed
cognition offer and adds to these theories, is mainly the ability to see the tool
of language as part of a more general cognitive strategy, where cognition is
enhanced or facilitated by the use of external objects, be they physical ‘world
1’ objects or culturally shared, mental ‘world 3’ objects.

Apart from producing objects of inspection and criticism, the representa-
tion of thought in external objects also offer conceptual stability. As noticed
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by Edwin Hutchins (2005), our ability to perform reasoning involving com-
plex conceptual structures depends on our ability to represent these struc-
tures in an appropriate way. When we reason with a complex conceptual
structure, we manipulate parts of the structure while the rest is kept sta-
ble. Our ability to simultaneously represent and manipulate such structures
mentally is limited, but it can be facilitated by the use of external repre-
sentation, which allow us to anchor some of the elements of the structure in
stable, physical objects. A stable, external representation of the conceptual
structure allows us to focus on the part of the structure manipulated on, and
consequently, we might be able to perform much more complex manipula-
tions. There is in other words a direct correlation between the stability of
the external representation and the complexity of the manipulations we are
able to perform on the conceptual structure, it represents.

Here, Hutchins do not only consider representations in the form of lan-
guage. He allows for all kinds of physical representations, as we see them for
instance in sliding rules, compass roses etc.

Finally, we might touch an interesting discussion concerning the precise im-
pact of the cognitive artifacts. Do the artifacts merely enhance or strengthen
cognition, or do they in fact do more than that? Might they be constitutive
of certain cognitive processes? Or do they influence or even determine cog-
nitive content? The answer to such questions will of course depend on which
particular artifact we are looking at. The human memory is not unlimited,
so even though we can make it to the grossers and buy the things needed
without an external shopping list, at one point we will have to rely on exter-
nal representation in order to extend our mnemonic capacity. Similarly our
onboard computational powers are limited, and although a midwife might be
able to calculate the due-day without external artifacts such as the midwife’s
wheel, at one point the naked brain cannot satisfy our calculational needs
and we will have to rely on external calculating machines.

So external artifacts are constitutive of certain types of cognitive behavior,
but this however might be in a very trivial sense; due to our brains limita-
tions, external artifact must at one point take over and do the brains job, so
to speak. This is merely a matter of quantity, but what is more interesting is
the matter of quality, i.e. whether our use of external artifacts influence the
content of the cognitive processes, and whether the artifacts make entirely
new processes possible. An example of a qualitative gain might be our use
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of language. If Andy Clark and others are right, our ability to external-
ize thoughts in the form of words is constitutive of an entirely new type of
cognition, i.e. abstract and second-order thinking. Whether the more spe-
cific properties of language, i.e. the specific concepts available, might have
cognitive influence is a more debated question.

At this point, I will not go deeper into the debate over the impact of
cognitive artifacts, but we will have to go much deeper into this discussion
when we debate the use of cognitive artifacts in mathematics.

Finally, cognitive artifacts are of course not the only type of artifacts with
importance for our ability to generate knowledge. Science, for instance, also
depend on other artifacts, such as telescopes, microscopes, bubble chambers
etc. Such instruments, however, cannot in general be classified as cognitive
artifacts, since they do not aid cognition, but rather enhance our perceptive
powers. A telescope, if anything, could be called an epistemic or perceptual
artifact. Similar to the discussion above, it can be discussed whether such
epistemic artifacts actually in some instances constitute what is perceived.
Unfortunately, such a discussion falls outside the scope of this dissertation.

5.4 The use of sensory-motor experience in

off-line thinking

5.4.1 Conceptual metaphor

The use of epistemic actions and physical cognitive artifacts implies that hu-
man cognition is embodied in a very concrete sense. A disembodied mind
cannot put a key in her shoe or operate a tool such as the midwife’s wheel.
Our physical body offers possibilities and has limitations for interacting with
the surrounding world, and these constrains on our bodily interactions con-
dition which artifacts we can and cannot use.

But that is not all. Our body and basic bodily experiences also influence
our cognitive life in a much more profound way. As it turns out, we seem to
use basic life-world experiences as a way to structure abstract thinking. This
structuring is revealed by our heavy use of metaphors taking basic life-world
experiences as their source-domain.

Examples of such metaphors are easily found in everyday language. Take
for instance the expressions: “I couldn’t quite grasp what he was saying”,
“Everything he said just flew over my head”, and “Did you get it?” In these
examples, ideas are described as physical objects, understanding as grasping



5.4 The use of sensory-motor experience in off-line thinking 107

or holding such objects, and an exchange of ideas is described as an exchange
of objects. As ideas are not physical objects, and cannot literally be thrown
or grasped, these descriptions are clearly metaphorical; the abstract domain
of knowledge is conceptualized using the concrete domain of physical objects.

This cross-domain mapping is not only used as a clever way to describe the
target domain. What makes this kind of mapping interesting and cognitively
powerful, is the fact that it can be used to transfer the inferential structure of
the source domain to the target domain. If a person A is throwing an object
to another person B, we know that B might not be able to catch the object
thrown. We also know that it is easier for B to catch the object, if A is able
to throw within the grasping range of B. Once the analogy between objects
and ideas has been established, such inferences are easily and unconsciously
transferred to the domain of ideas: If you are giving a lecture, you should
be careful to aim what you say within the grasping range of the audience, or
they might not be able to understand you.

Ideas can be conceptualized using a wide range of other metaphors. Ideas
can be seen as living organisms; they can be born, mature, get old and die,
and they can come to fruition or be planted in someone’s mind. Ideas can
be understood as food; they can be hard to digest, half-baked, rotten, fresh,
or hard to swallow. Or ideas can be seen as cutting instruments or weapons:
They can be sharp, dull or cut right to the heart of matters (see Lakoff &
Johnson (1980, pp. 46) for further examples).

All of these metaphors help us understanding and structuring the abstract
phenomena of ideas using well-known and concrete everyday experiences.
The various metaphors highlight different aspects of the target-domain and
offer guidance in different situations; when giving a lecture, you should be
careful to aim what you are saying at the audience in order for them to catch
your ideas, and when going to a debate (which is commonly conceptualized
in terms of warfare!) it is wise to bring ideas at least as sharp as those of
your opponent.

This type of metaphors, where a cross-domain mapping is used to transfer
the inferential structure of one domain to another, is usually called ‘concep-
tual metaphor’.

The cognitive approach to metaphor was introduced in the late 1970’s, most
influentially by George Lakoff and Mark Johnson (1980). According to this
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approach, the structuring of a concept in terms of concrete experience is
not something exceptional or rare. In fact: “[...] metaphor is pervasive in
everyday life, not just in language but in thought and action. Our ordinary
conceptual system, in terms of which we both think and act, is fundamentally
metaphorical in nature” (Lakoff & Johnson, 1980, p. 3).

Especially the abstract is typically conceptualized using concrete, physical
terms. Thus, abstract thinking is grounded in basic life-world experiences
and our sensory-motor system (Lakoff & Johnson (1980, 59); Lakoff & Núñez
(2000, pp. 5)). Our basic, bodily experiences, and the metaphors we infer
from them are, in a sense, “the hidden hand, that shapes conscious thought”
(Lakoff & Johnson, 1999, p. 12).

A point of debate is the exact cognitive significance of such metaphors.
When we talk about ideas as objects using the metaphorical expression “I
couldn’t quite grasp what he was saying”, do we also think of ideas as objects,
or is the metaphor merely a linguistic phenomenon? It is not very hard to
find examples of dead metaphors, i.e. metaphors that once might have had
cognitive significance, but clearly do not have so any more. Take for instance
the expression: “I have examined 14 students today”. The word ‘examine’
originates in the Latin ‘examen’, which literally means ‘tongue of a balance’.
So, examining student is – or was – originally a metaphor, where the process
of judging the knowledge of a student was described by comparing it to the
process of weighing goods at the marketplace. Today however, most English
speakers do not know the original meaning of the word ‘examine’, and they
do not think of balances or processes of weighing when they use it. The word
has simply obtained a new meaning, and consequently, the original metaphor
is dead and has ceased doing any cognitive work.

So, how do we know that not all of the metaphors discussed above are
dead? This is a very good question that needs to be answered before the
cognitive approach to metaphor and language can carry any philosophical
weight. Part of the evidence put forth by the cognitive approach is linguis-
tic. Most people would probably not accept expressions such as: “That idea
was hard to swallow, I couldn’t grasp it at all”. The two parts of the sentence
express the same phenomena of not being able to understand, but still, the
sentence seems to be somehow inconsistent. The reason for this inconsistency
is the fact that the sentence contains two metaphors exploiting two different
source-domains; edibles and objects respectively. And although ideas can be
understood as both edibles and objects, they cannot be done so at the same
time. The metaphors used to conceptualize ideas must in other words be ap-
plied in a coherent way. This suggest that the analogies to basic experiences
expressed in the metaphors still have cognitive significance and structure,
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not only the way we talk about ideas, but also the way we think about ideas.

Similarly, a sentence such as “that idea is full of vitamins” will probably
be understood immediately and effortlessly by most people familiar with
English, even if it is the very first time they hear the expression. This
suggests that the analogy exploited in the ideas-are-food metaphor is still
active and allows us to use knowledge of nutritional facts to understand new
aspects of the abstract domain of ideas.

Apart from such linguistic evidence, the basic claim of the cognitive ap-
proach is backed up by empirical evidence from neural science. I will however
restrict myself to a more thorough review of this type of evidence specifically
put forth in connection to the conceptual metaphors used in mathematics
(below, section 6.12.2). The reader is referred to (Lakoff & Johnson, 1999,
pp.36) for a comprehensive list of the different types of evidence jused to
justify the more general claim.

5.4.2 Metaphors of science

George Lakoff and Mark Johnson are particularly interested in metaphors
taking life-world experiences as their source-domain. The widespread, al-
most ubiquitous use of such metaphors in abstract thinking underlines the
embodied character of human cognition and the inadequacy of the con-
tainer metaphor of classical theories of cognition. Although such life-world
metaphors are especially important, the source domains of metaphors are not
necessarily restricted in this way. The basic cognitive tool of understanding
one thing in terms of another works as long as the source domain is something
well-know or at least better-known than that, which we try to conceptualize
via the metaphor. In science, new and unknown phenomena are frequently
conceptualized using metaphors with source-domains in technology or other
more well-established parts of science.

The Saturnian system, for instance, was used by early researchers as a
source domain for metaphors describing the atom (the source domain was
only later and mainly for philosophical reasons changed to the Solar system
metaphor known today (Knudsen, 1999, pp. 106)). Similarly, geneticists
of the 1950’s used the at the time highly popular field of cybernetics and
information theory as a source-domain for metaphors describing hereditabil-
ity and genetics. Such generative or theory-constructive metaphors help the
researcher to structure observations, form expectations, and ask questions
about the unknown field, and, as pointed out by Susanne Knudsen (1999, p.
151), they also serve as an effective tool to form a vocabulary for describing
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new phenomena; take as an example the ‘orbitals’ of electrons (derived from
the orbits of planets), or the vast amount of information-related words, such
as ‘transcription’, ‘sense & nonsense’, ‘genetic code’, and ‘messenger-RNA’,
used by molecular biologists and geneticists to describe the processes involved
in protein synthesis.

The cognitive status of such metaphors is somewhat less clear. They
clearly had cognitive significance to part of the research community at some
point in history, but the question is: when and to whom? The Solar system
metaphor for the atom still serves as a didactic tool in explaining basic ideas
of the atom to young students, but it is very unlikely that working physi-
cists still use their knowledge about the Solar system to structure and form
expectations about the atom. The status of the information metaphor in
genetics is, on the other hand, heavily debated. Some commentators, such
as Knudsen (1999, p. 152), claim that the information metaphor does not
function as a metaphor any more, and question whether molecular biologists
and geneticists understand words such as ‘messenger-RNA’, ‘transcription’
and ‘genetic code’ as metaphorical. Other commentators hold the metaphor
to be very much alive and still structuring the researchers conception of the
processes they describe (see for instance Oyama (2000)).

I will not try to settle the debate here. My point is only to note that
similarly to the life-world metaphors we saw above, the cognitive status of
the metaphors of science is debated as well. Metaphors are mainly of interest
if they reveal something about how we think and understand a phenomenon,
but how can we distinguish between cases, where metaphors are mere linguis-
tic forms, i.e. dead metaphors, and cases where the metaphors have actual
cognitive significance?

5.5 Conceptual blends

Conceptual metaphor is an example of cross-domain conceptual mapping,
as one conceptual domain is mapped onto another. We do however, also
use other types of conceptual mapping. Apart from cross-domain mappings
there seem to be good and important examples of conceptual integration or
‘blending’, where elements from two conceptual domains are integrated and
used to form a new conceptual domain instead of simply mapping one domain
onto the other. The new blended domain will have emergent properties not
in any of the original domains, and knowledge about the original domains
can be gained by exploiting the emergent structure of the new domain.

This theory of conceptual blends was primarely developed by Gilles Fau-
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counnier and Mark Turner (Fauconnier & Turner, 1998, 2003; Fauconnier,
1997). According to Faucounnier and Turner, the construction and use of the
blended spaces usually involves three different, but interrelated, operations.

• Composition: Selected elements form the two input sets are composed
in the blended space. This composition of the different spaces creates
relations, which are not available in any of the separate input spaces.

• Completion: The blending is usually created on a background of con-
ceptual and cultural knowledge. This allows the blend to be seen as
part of a larger pattern, which can be used to complete the blend.

• Elaboration: When the blend is developed, new inferences can be drawn
by elaborating the emergent structure of the blend in accordance with
its own internal logic. This is called called ‘running the blend’
(Fauconnier 1997, p. 150-151; Fauconnier & Turner 1998, pp.142).

The riddle of the buddhist monk is a good example of the use (and power) of
blends as conceptual tools (Fauconnier & Turner, 1998, pp. 136). The riddle
takes departure in a story of a buddhist monk, who travels up a mountain,
spends the night at the top, and travels down again the following day. Both
the travel up and the travel down starts at dawn and ends at sunset, and the
monk follows the same path on both journeys. The riddle consists in showing
that there exists a point on the path that the monk occupies at the same
hour of the day on both the travel up and the travel down. The riddle can
be solved by creating a blended space taking the two separate journeys as
input spaces. In this blended space, the two journeys are imagined as taking
place simultaneously. It is intuitively clear that two travelers, who travel the
same path in separate directions, will meet each other at some point on the
path, or in other words, that the two travelers will be on the same point of
the path at the same hour of the day. When this inference is projected back
onto the input spaces, it is clear that the monk will be on the same point of
the path at the same hour of the day on his two separate journeys.

Here, elements from the two input spaces are selectively chosen (the monk,
and the path are chosen, but not the day of the journeys) and projected to a
blended space, where the monk, who is identical in the input spaces, can be
imagined as two travelers traveling simultaneously. This is the composition
of the blend. The blend is completed by activating a larger pattern of people
traveling towards each other, and finally, running the blend allows us to infer
the encounter of the two travelers, which consequently give us the solution
of the riddle.
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The riddle of the traveling monk is a very simple and clear example of a con-
ceptual blend. The mapping taking place here is clearly non-metaphorical;
we do not simply describe one domain by mapping structure from another
domain onto it. We clearly integrate elements and structure from the two
separate domains into a new, imagined domain. In many other examples
however, the division between the different types of mapping (conceptual
metaphors and blends) is less clear, as the conceptual mapping taking place
involves larger networks of spaces, and involves both cross-domain mapping
(i.e. conceptual metaphor) and conceptual integration (i.e. blends) between
these spaces.

5.5.1 Material anchors for conceptual blends

In the case of the traveling monk, the blended space is purely imaginative.
As noticed by Edwin Hutchins, this is not always the case (Hutchins, 2005).
In some cases, one of the input spaces has physical form, and here it can be
used to create an external representation or ‘material anchor’ for the blend.
One of the examples given by Hutchins is people queuing for theater tickets.
According to Hutchins (2005, p. 1559), a line of people is not by it self a
queue. The line only becomes a queue, if it is blended with an imagined,
directed path or trajector. So here, a physical space – a line of people – is
blended with an imagined space – a trajector – to form a blended space, the
queue. The blend has emergent structure, most prominently the sequential
ordering of the people, which is not to be found in any of the input spaces.
It draws on a larger, culturally dependent narrative of ‘serving people after
a come-first, served-first principle’, and by running the blend we can draw
inferences such as ‘how many people is in front of me’. So far this case
resembles the case of the traveling monk, but in contrast to the monk, the
queue is physically instantiated by the people actually standing i line. They
form a material anchor for the blend.

The use of material anchors for conceptual blends connects the two cogni-
tive tools externalization and cognitive mapping, described in this chapter. A
material anchor for a conceptual blend is in effect an external, physical rep-
resentation of a cognitive mapping, and it has the advantages and combined
power of these two different cognitive tools.
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5.6 The embodied mind

In conclusion, it seems very clear to me that the computational theory of
mind – and the more general container metaphor for cognition, it is modeled
upon – are inadequate to describe human cognition. As we have seen, human
cognition is embodied in a non-trivial sense. Our physical body and brain
is more than just a random piece of hardware necessary in order to run our
cognizing program (as it is implied in the computational theory of mind).
We actively off-load cognitive tasks onto our environment (both physical and
social), and we use our bodily experiences as vital resource in our off-line
thinking. These findings should have some impact on how we view ourselves
as cognizing beings. As Andy Clark puts it:

We must abandon the image of ourselves as essentially disembodied
reasoning engines. And we must do so not simply by insisting that
the mental is fully determined by the physical, but by accepting
that we are beings whose neural profiles are profoundly geared so as
to press maximal benefit from the opportunities afforded by bodily
structure, action, and environmental surroundings. Biological brains,
are, at root, controllers of embodied action. Our cognitive profile is
essentially the profile of an embodied and situated organism.

(Clark, 1998b, p. 273)

In the following chapter, I will turn to mathematics and discuss whether the
changed conception of general human cognition should lead to a changed
view of mathematical cognition, and if so, discuss the implications of this
changed view.
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Chapter 6

The cognitive level:
Mathematical cognition
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6.1 The naturalistic account

The mode of mathematical reasoning is commonly believed to be a priori
deductions. Mathematical reasoning has been taken to be untouched by hu-
man nature, i.e. by the fact that we have physical bodies of a particular
type and are situated in a specific physical, social and cultural environment.
The assumption that mathematical knowledge seems to be eternal and abso-
lutely objective rests on this very fact; if mathematical reasoning is in some
way influenced by our biology and conditions of life, we cannot claim our
mathematical knowledge to be strictly objective.

This idea fits well with the computational theory of mind. Here, cognition
is taken to be hardware independent; cognition is simply a program that
happens to run on the carbon based hardware of the human brain, but it
would in principle run equally well on other types of hardware, such as silicon
based electronic computers or purely mechanic machines such as Charles
Babbage’s ‘difference engine’.

The computational theory of mind is however, as we saw in the previous
chapter, inadequate as a theory of human cognition. Vital parts of human
cognition are embodied, and consequently, human cognition in general is
highly dependent both on the hardware of the human body and on the envi-
ronment we happen to occupy. This observation does not allow us to conclude
that mathematical cognition is embodied as well; if anything, mathematical
cognitions seems to be the most likely candidate for an area where cogni-
tion could be performed in a way consistent with the computational theory
of mind, i.e. as purely a priori deductions performed completely inside the
cognitive container. On the other hand, if mathematical reasoning proves
to be embodied, it will to some extend be dependent on contingent factors,
and thus mathematical knowledge might not be the eternal and completely
objective knowledge it has traditionally been taken to be.

As I see it, a naturalistic investigation of mathematical cognition should
examine the extend to which mathematical cognition deviates from the tra-
ditional picture of context free, a prori reasoning. In other words, we should
investigate whether mathematical cognition is influenced by anything specif-
ically human, such as our hardware or particular cognitive style. Several
types of human influence could be investigated, but I will here limit my-
self to investigate whether mathematical cognition is embodied, and if so,
whether this embodied character of the cognition has affected the contend of
our mathematical knowledge. Or in other words: Does the embodied nature
of human cognition have an impact on our mathematical beliefs? An answer
to this question will clearly add to the answer of the general research question
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motivating this dissertation: What is the origin of mathematical knowledge
and how is it produced?

As we shall see in the following, it is not difficult to show the use of embodied
cognitive strategies in mathematics. The hard part is to find out whether
the use of such strategies has had an impact on our mathematical beliefs. In
order to discuss this matter, I will introduce four levels of impact, captured
in the following four hypotheses:

1. The neutral tool hypothesis: Our use of embodied cognitive strategies
only make it easier for us to do the things, we would have done without
the aid of such strategies. The embodied cognitive tools are merely
heuristic tools.

2. The telescope hypothesis: Embodied strategies make it possible for us to
explore parts of the mathematical universe that would not be accessible
to the naked brain. Embodied cognition can in other words be seen in
analogy with the telescope, which makes it possible for the astronomer
to see more clearly and penetrate deeper into the physical Universe.

3. The constructivist hypothesis: Embodied cognitive tools influence the
content of mathematics in a non-trivial way, i.e., they influence what
we hold mathematics to be and which mathematical theorems we hold
to be true. To stay in the analogy to empirical science, the thesis implies
that at least some mathematical objects are in fact laboratory artifacts,
i.e. effects produced by the instruments used in the investigation.

4. The identification hypothesis. This hypothesis claims, that mathematics
can be identified with the use and exploration of one or more cognitive
artifacts.

An important part of the discussion of embodiment of mathematical cog-
nition will be centered on an assessment of these four hypothesis; we must
know to what extend the embodiment of mathematics has had an impact on
our mathematical beliefs. That is the central question.

It should furthermore be noted that this these four hypothesis are ana-
lytic tools. The individual hypotheses do not necessarily reflect the position
of working mathematicians or philosophers of mathematics. This being said,



118 The cognitive level: Mathematical cognition

identification hypothesis is quite clearly the thesis hold by the more extreme
formalist schools, such as Haskell Curry’s formalist definition of mathemat-
ics as “the science of formal systems” (Curry, 1954, p. 204). It could be
an interesting historical study to categorize the conception of mathematical
cognition hold by key figures in the philosophy of mathematics, within these
four different hypotheses. I will however refrain from such a study and in-
stead concentrate on the discussion about which of the four hypotheses – if
any – that characterize the actual mathematical practice the best.

On more remark might be in place before moving on to the actual analy-
sis of mathematical cognition. The discussion about the impact of embodied
cognitive strategies seems to be a purely epistemic discussion. However, the
outcome of this discussion could also have ontological consequences. An on-
tological realist concerning mathematical objects can easily accept the first
two of the four hypotheses, but the third and fourth should be somewhat
worrying to the traditional realist. It is very hard to maintain that mathe-
matical objects are real, in the sense of having mind independent existence,
if they are in fact either side effects of a specific cognitive strategy (as the
construction hypothesis holds) or if mathematics is nothing but the investiga-
tion and use of an artifact (as the formalist holds). The key word her is the
word ‘artifact’; we have created the cognitive artifact, and consequently, if
some or all mathematical objects merely reflect the properties of the artifact,
we have created the mathematical objects.

I will return to this matter with a more fulfilling treatment at a later
point. The reader should keep in mind, that the discussion of the four hy-
potheses is not a trivial matter or a matter only of interest to cognitive
science. The discussion of the cognitive strategies used in mathematics has
deep implications for our philosophical understanding of mathematics. This
is why I have chosen to investigate this point rather thoroughly.

6.2 Cognitive artifacts and the development

of arithmetic

6.2.1 Counting tools

Cognitive artifacts play a vital and virtually overlooked part in almost all
aspects of the mathematical practice. Even an activity as simple and funda-
mental as counting seems to be crucially dependent on external artifacts of
various sorts.
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As we saw above, humans – and a range of non-human animals – seem
to have an innate ability to handle the numerical aspects of small collections
with digital precision, and larger collections with approximation. If large col-
lections are to be handled with the same digital precision as small collections,
we must use some sort of external artifacts.

At least two different strategies can be used to handle the numerical
aspect of larger collections (and both have been in actual use). The first is
the use of reference collections: If you wish to grasp the number of a collection
of objects, say the number of sheep in a herd, you form a reference collection
by admitting a token, say a small pebble, to your reference collection for
each element in the set you wish to count. In this way, you will end up
accumulating a collection containing exactly the same number of elements as
the collection you need to handle; the heap of pebbles will contain exactly
the same number of elements as the heard of sheep, and you can at any time
check whether a sheep is missing simply by making a one-to-one mapping
between the two collections. The pebbles in other words make it possible for
you to grasp – literally – the number of sheep, even if you are not able to
count in the conventional sense.

We have some evidence that this strategy has been in actual use. Karl
Menninger for instance reports, how the Wedda tribe, who had no number
words, used sticks and similar tokens to keep track of things: “If a Wedda
wishes to count nuts, for example, he collects a heap of sticks. To each
coconut he assigns not a number word but a stick: one nut – one stick; and
each time he does so, he says, ‘that is one’. So many coconuts, so many
sticks; for he has no number-words” (Menninger, 1992, p. 33).

Reference collections can support surprisingly advanced numerical prac-
tices. Archaeologists have for instance discovered clay tokens contained in
sealed, hollow clay balls in the ruins of several Sumerian cities. These ar-
tifacts are still somewhat mysterious, but it is generally believed that the
Sumerians in the 4th millennium bce used the clay tokens as reference collec-
tions, and stored them in clay balls in order to keep them safe and unspoiled
(Nissen et al. 1993; Schmandt-Besserat 1979). Such a practice would allow
the users to keep track of dents and property, even if they did not know how
to count in the conventional sense or did not have a shared and stable system
of numeration.

The use of reference collections is a clear example of embodied cognition
in the form of externalization. The cognitive task of handling quantitative
aspects of nature is accomplished by bodily action and the use of physical
cognitive artifacts. Almost all steps in the process are externalized; you
only need to be able to make the bijection between the two collections, and
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then the external artifacts will take care of the rest. Note however, that the
externalization in this case is not – or at least not only – a way to reduce the
demands on internal cognitive workload. As the naked brain can only handle
the numerosity of very small collections with digital precision, the use of this
cognitive artifact greatly expands our inborn cognitive abilities.

This way of handling numerosity, on the other hand, also has obvious
limitations. To mention only a few, your ability to handle collections depends
on having access to a stock of reference tokens, but what if no pebbles are
around – or if you run out of pebbles when faced with a large collection?
Also, the reference collection must be kept safe and unspoiled. The practical
problems this might pose is perhaps nicely illustrated by the hollow clay balls
used by the Sumerian.

The second strategy used to handle numerosity is counting. From a cogni-
tive point of view, counting is much more demanding than the use of reference
collections. First of all, you must remember a sequence of signs. Secondly,
you must be able to bring the elements of the sequence in a one-to-one connec-
tion with the collection you want to count, and thirdly, you must understand
a principle of cardinality: the member of the sequence applied to the last
member of the collection signifies the size of the collection. All of this makes
counting much more cognitively demanding than the use of reference collec-
tions, but apparently the flexibility of using a counting sequence outweighs
the increased demands on internal mental workloads. This simple observa-
tion teaches us a small, but important lesson about mathematics: It is not
only determined by the need of cognition, other ends must also be met.

The central artifact used in counting is of course the sequence of num-
bers. From anthropology, we know that the apparently indefinite sequence of
numbers, such as one used by us today, does not simply arise by itself. Other
cultures have much lesser developed number sequences. Furthermore, the
etymology of some of our number words is related to body parts: The words
“five” and “fingers” share a common root in Indo-European, and the word
“digit” origins in the Latin word for finger or toe. Studies of the language of
the various tribes in Papua New Guinea and on the Torres Strait Islands give
us some idea of how number sequences might have been developed (Lancy
1983, pp. 102–4; Butterworth 1999, pp. 55; Ray 1971). When they count,
some of the tribes points to a sequence of concrete locations on their body
and use the corresponding names for those body parts as counting words. In
the western islands of the Torres Strait for instance, counting typically starts
with the little finger of the left hand (and the word used for ‘one’ is iden-
tical to the word for ‘left little finger’), and goes on following an elaborate
pattern of places on the body including: left hand wrist (6), left arm elbow
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(7), left nipple (8), left breast (9), sternum (10), right breast (11) etc. until
it ends at the right little finger (19). Furthermore, in some cases the size of a
collection of items is recovered by remembering the body part corresponding
to its number (Ray, 1971, p. 47). In other words, in such system the body
itself is used as a physical cognitive artifact that supports counting.

According to (Butterworth, 1999, pp. 53), body-counting systems of this
type is the first stage in the development of number sequences. From such
systems, number-words are gradually replaced by words that are un- or only
slightly related to body parts, such as the sequence of words used in modern
English. And still, even users of modern English frequently touch or bend
their fingers when they count, in order to keep track of the abstract number
sequence. So although the sequence of English number words is a conceptual
artifact, counting is not unrelated to our embodied nature, and in particular
to our use of our own body as a physical cognitive artifact.

Developmental psychology also tells us something about just how hard it is
to learn verbal counting. In a study by Karen Wynn (Wynn, 1990) 2,5 year
old children were able to apply the counting sequence to diverse phenomena,
such as objects, sounds and actions. This practice, I might add, included
mastery of the bijection principle needed in order to use reference collections,
as described above. However, only a few of the children were able to apply
the cardinality principle, i.e. respond with the last word in the counting
sequence when asked how many objects, sounds or actions they had observed.
Furthermore, the children performed very poorly when asked to give a specific
number (between 1 and 6) of toy animals to a large puppet. The children
were able to succeed when asked to give one toy, but when asked to give more
than one, they would simply grasp a random number of toys and give them
to the puppy without counting them. Three year olds adopted the same
grapping-strategy; only they tended to succeed to give two as well as one
toy, but still without counting. Only 3,5 year old children were consistently
able to solve the problem by counting and applying the cardinality principle.
These study suggest that children start by having performative, but not
conceptual knowledge about numbers. At first, children simply learn the
counting routine. They learn number words as a sequence of more or the less
meaningless signs, and only later do they start to understand that counting
determines numerosity. This order of learning is quite interesting from a
philosophical point of view, and we will return to it in later discussions.
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Based on a longitudinal study, where children between the age of 2 and 3
were followed for seven months, Wynn suggests that the proper understand-
ing of counting is acquired in the following steps: At first, the children know
which numerosity the word “one” picks out, then they learn the meaning
of “two”, then “three”. After this slow and stepwise progression, the chil-
dren seem to realize how the counting sequence represents numbers, and they
more or the less simultaneously learn the meaning of all the higher numbers
within their counting range (Wynn, 1992b, 1997).

The reason why it is so hard to learn how the counting system works,
might be, as hypothesized by Wynn (1997), that the system represents num-
ber in a radically different way than we naturally do. As we saw in chapter
4, humans and a number of other species spontaneously represents numer-
ical aspect of reality as magnitude (either continuous for large numbers or
as discrete ‘object files’ for small numbers). The number system, however,
represents numerosity by ordinality, i.e. by the position a sign in a sequence.
Acquiring conceptual understanding of the number system includes under-
standing how to map these two different representational systems onto each
other.

Counting by reference system is on the other hand quite easy. It only
takes the bijection principle that even two year olds master, and numerosity
is represented by magnitude in parallel to our innate representations.

All of this show us that the natural numbers are perhaps not so natural
after all. The sequence of natural numbers is a culturally created external
cognitive artifact. We are not born with innate knowledge about the natu-
ral numbers, but we might be born into a culture that possesses them. In
learning the numbers, we start by acquiring the artifact, that is the sequence
of signs, and only then do we gradually achieve conceptual understanding
of the number system. In this case, it is clear that one of our embodied
cognitive strategies – i.e. our use of external cognitive artifacts (conceptual
or physical) – is constitutive for the observed practice; we simply would not
be able to handle large collections with digital precision, let alone construct
the natural number system, without some kinds of external artifacts. The
artifacts are not merely neutral tools. It seems that at least the telescope
hypothesis or possibly even the constructivist hypothesis is more adequate in
this case.

Exposure to the artifact of the number sequence is, I might note, not
in itself enough to acquire full understanding of the natural numbers. As
we saw in chapter 4, chimpanzees who are taught to count are not able to
perform the inductive step, human children perform after having understood
the meaning of the first few number words; it is equally hard for a chimpanzee
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to learn the meaning of “four” or “five” as it is for it to learn the meaning for
“two” or “three”. Consequently, none of the chimpanzees trained in counting
have learned more than the first nine or ten number words – despite intensive
training.

As a final note on animals and the artifact of counting, it is, I believe, in-
teresting to observe that the only animals known to handle collections of more
than four elements with digital precision, is exactly those who were taught to
use an external sequence of number signs. This is to a clear demonstration
of the power of external cognitive artifacts.

6.2.2 Calculating tools

So, counting, or more generally, the handling of numerical aspects of experi-
ence with digital precision, seems to be intimately connected with cognitive
artifacts, either physical as the pebbles in a reference collection, or mental
as a sequence of counting words or signs. Something very similar seems to
be the case regarding calculations.

We are actually capable of doing some calculations using nothing but
the naked brain, so to speak. The test subjects in the study by Cantlon
& Brannon (2007), cited at the beginning of chapter 4, were for instance
capable of computing the number of dots without counting. However, their
results were less than perfect, and certainly below what one would expect
had the subjects been allowed to count or to use other cognitive artifacts.

Most people can (or can learn how to) perform at least basic calculations
using only mental and conceptual artifacts, such as the number system, al-
gorithms and rules of thumb. However, purely internal, mental calculation
takes practice, skill and effort, and therefore it is no surprise that a large va-
riety of physical cognitive artifacts have been devised throughout history in
order to substitute mental calculations with physical and epistemic actions.

The most commonly used calculation-artifacts are probably written tables
and different forms of abacai (or counting boards). Written tables express-
ing the result of arithmetic operations (such as multiplication) or important
functions (such as sine and logarithms), are an easy and low-tech cognitive
artifact. Such tables have been in use at least since the beginning of the sec-
ond millennium bce, where the Babylonians used tables of multiplication,
reciprocals, square- and cube roots (Kline, 1990, pp. 5).

Counting boards and abacai are similar low-tech artifacts. In their most
basic form, they consist of nothing but some kind of tokens, say a handful of
pebbles, and lines drawn on a board or in the sand. The abacus allows men-
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tal calculation to be substituted with manipulation of the physical tokens.
Basic calculations, such as addition and multiplication, are quite easily per-
formed, but the abacus also supports surprisingly complicated calculations,
such as extraction of square and cube roots and the solution of systems of
linear equations. Textual evidence suggests that the Sumerians used primi-
tive tallying boards already in the forth millennium bce (Nissen et al. , 1993,
p. 134), and abacai and counting boards of different shapes and designs are
known to have been in use in large parts of Europe and Asia for several
millennia.

Although written tables and abacai are probably the best-known types of
cognitive artifacts used for calculations, they are not the only ones. All sorts
of calculation instruments have been in use throughout history: Specialized
instruments such as astrolabes and sliding rules, modern digital calculating
machines and computers. Even the fingers of the human hand have been
used as a simple device allowing multiplication to be performed following an
easy algorithm (Dantzig, 2005, p. 11).

These devices are very diverse in design, but they all work in a similar
fashion: They allow internal, mental calculations to be externalized and sub-
stituted by epistemic actions. Using the abacus for instance, calculations are
performed by manipulating patterns of physical tokens. These manipulations
are purely formal, and can be performed without any knowledge or under-
standing of what the patterns represent. Once the numbers are encoded, you
only need to know the right algorithm for manipulating the tokens – i.e. you
only need to know which physical actions to take to turn the given pattern
into the wanted pattern –, and then you can read off the correct result from
the device when the manipulations are completed.

Such devices are the result of a cognitive strategy, where physical action
and environmental recourses are involved in the cognitive process of doing
mathematical calculations. They are in other words clear examples of embod-
ied cognition in the form of externalization, and make use of both physical
cognitive artifacts (the actual physical devices) and mental cognitive artifacts
(the algorithms).

It is hard to determine the precise impact of this strategy. As noted
above, we can in fact learn how to do computations mentally, so at least
in principle the artifacts do not allow us to do anything, we could not have
done without them. They might in other words merely be neutral tools or
at most tools that expands the abilities of the naked brain in a neutral way
(i.e. the neutral tool or telescope hypothesis might apply to our use of such
calculating devices).
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This, on the other hand, does not exclude that our de facto use of em-
bodied calculation strategies might have influenced the content matter of
mathematics. Some historians for instance hypothesize that the develop-
ment of the Hindu-Arabic numeral system was highly dependent upon the
use of particular types of counting boards (see Katz 1998, pp. 230; Barrow
2000, p. 36; Lam 1988). The hypothesis remains highly controversial, but if
it is true, it seems to be an example where the use of a cognitive artifact has
influenced mathematics in a more profound way.

As a more recent example, the use of digital computers in experimental
mathematics and in computer assisted proofs seems to mark a profound
change in both epistemic standards and mathematical practices, although
we have only begun to see this change recently (see e.g. Tymoczko, 1979;
Sørensen, 2010).

6.3 Thinking with symbols

Another common way to do calculations is to use written symbols. The
reader can for instance consider multiplying five-hundred-twenty-two with
four-hundred-seventy-six. Doing it by purely mental means would, I believe,
pose a considerable challenge to most people. If on the other hand, pen
and paper (or other means of writing) is allowed, the calculation can quite
easily be performed by representing the numbers in the familiar Hindu-Arabic
numerals and following a simple algorithm, as exemplified in figure 6.1.

I) II)

5 2 4 · 4 7 6

0 0
0

5 2 4 · 4 7 6

2 3 8 0 0 0
9 5 2 0
1 9 0 4

2 4 9 4 2 4

Figure 6.1: Multiplication in columns using Hindu-Arabic numerals. I)
is the initial representation of the problem. II) is the final state.

This is of course a very simple and familiar example of how symbols are used
in everyday calculations. The mathematics involved is not very advanced,
but the general method of using symbols for calculations is at the heart of
modern mathematics. For this reason, I will give in-depth analysis of both
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the roles played by symbols and of the impact symbol use might have on
modern mathematics. I will start by analyzing why Hindu-Arabic numerals
support calculations so well, as we saw in the example above. Then I will go
on and analyze more advanced uses of symbols.

6.3.1 The Hindu-Arabic numerals

In an interesting paper, Jiajie Zhang and Donald Norman (1995) compare the
performance of Hindu-Arabic, Greek alphabetic, and Egyptian hieroglyphic
numerals on multiplication tasks. Zhang and Norman conclude that the
superiority of the Hindu-Arabic numerals can (at least in part) be contributed
to the fact that they, compared to the other systems, allow more of the steps
of the multiplication algorithm to be externalized; i.e. performed as epistemic
actions using pen, paper and the numerals of the system in question.

Unfortunately, this analysis suffers from several weaknesses. Most im-
portantly, all three systems of numerals are compared on the same polyno-
mial algorithm for multiplication1. This is highly problematic. Although
the polynomial algorithm is the algorithm commonly used today with the
Hindu-Arabic numerals, it is very unlikely that the either the Greek or the
Egyptians used the algorithm on their respective numeral systems.

We do not know much about how the Greeks did their calculations, but we
do know that they at least occasionally used the abacus and counting boards.
If this is so, the proper unit of analysis concerning the Greek system is not
the alphabetic numbers used in combination with the polynomial algorithm,
but the alphabetic numbers taken in combination the with the abacus; that
is: the calculations are done using the abacus and the alphabetic numbers
are only used to record the result. In this way, multiplication is in fact to
a very large degree externalized and performed as epistemic actions on the
abacus.

Something similar can be said concerning the Egyptian system. The
Egyptians are known to have used a binary, and not a polynomial algorithm

1In a numeral system with base x, a number a can be represented in polynomial form
as
∑
aix

i. In this representation, the algebraic structure of polynomial multiplication of
two numbers a and b is: a · b =

∑
aix

i ·
∑
bjx

j =
∑∑

aix
ibjx

j =
∑∑

aibjx
i+j .
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for multiplication2. Using the binary algorithm with Egyptian hieroglyphic
numerals, multiplication can quite easily and to a large extend externally be
performed as a series of doublings and reductions of the written signs.

So in conclusion, when the proper historical context is taken into account,
it is questionable whether the Hindu-Arabic numerals in fact allow for a
greater amount of externalizations than the two other systems. Thus, we
cannot tell why or if it is easier to use the Hindu-Arabic numerals than
the Egyptian hieroglyphic only by looking at the ratio between internal and
external workload. Other factors, such as the total number of operations
performed, must be considered as well.

In order to get a better understanding of the unique qualities of the Hindu-
Arabic numerals, we might instead use the typology of numeral systems
developed by Stephen Chrisomalis (2004) (see table 6.1).

In this typology, the Hindu-Arabic numerals are characterized as posi-
tional and ciphered. We will analyze these two characteristics one by one
starting with ciphering.

In comparison with cumulative systems, the advantage of ciphering is the
possibility of a much more compact way of writing numbers. The number
eight for instance can be written with a single symbol in the Hindu-Arabic
system: ‘8’ (and in other base 10 ciphered systems, such as Greek alphabetic
or Egyptian hieratical), whereas it takes eight symbols to represent the same
number in the Egyptian hieroglyphic system: ‘IIIIIIII’, and four symbols
using Roman numerals: ‘VIII’.

Due to the compactness of the script, one would expect calculations in
general to take fewer operations in a ciphered than in a cumulative system.
Unfortunately very little empirical work has been done in this area, but the
hypotheses is backed up by at least one study (Schlimm & Neth, 2008),
where the ciphered Hindu-Arabic system is compared with the cumulative
Roman system. Using virtual agents to perform a large number of addition
and multiplication tasks in ways similar to human agents, Schlimm and Neth
found that the number of basic operations, such as perceptual steps, attention
shifts and motor actions, was considerably more numerous when using Roman
numerals than when using Hindu-Arabic numerals.

The compactness of ciphered numerals however, comes at a cost. Schlimm

2In the binary algorithm, the multiplier a is decomposed into its binary representation∑
ai2

i and the multiplicand b is multiplied with each term, thus:

a · b =
(∑

ai2
i
)
· b =

∑
ai2

ib

.



128 The cognitive level: Mathematical cognition

Additive
The sum of the value of
all the numerals gives
the total value of the
whole number

Positional
The position of each
numeral decides which
power of the base, the
numeral is to be multi-
plied with.

Cumulative
Many signs per power
of the base. These are
added to obtain the to-
tal value of that power.

Egyptian hieroglyphic Babylonian
sexagesimal cuneiform

Ciphered
Only one sign per
power of the base.
This sign alone repre-
sents the total value of
that power.

Greek alphabetic Hindu-Arabic

Multiplicative
Two components per
power, unit-sign(s)
and power-signs,
multiplied together,
give that power’s total
value.

Chinese traditional Logically
excluded

Table 6.1: Typology of numerical notation systems.
(Redrawn with small adjustments from Chrisomalis, 2004, p. 42)

and Neth note, that using the Hindu-Arabic numerals has higher demands
on memory than using the Roman numerals. This is partly due to the fact
that in a cumulative system, addition can be performed largely externally by
counting and simplifying the written numerals, whereas in a ciphered system,
you will have to remember an addition table.

Adding to this, cipherization also has another cost of more philosophical
significance. In a cumulative system, the value of each power of the base is
represented by a repetition of a specific symbol. So for instance, in Egyptian
hieroglyphic system, eight tokens of the symbol ‘I’ means eight, and eight
tokens of the symbol ‘

⋂
’ means eight tens (i.e. eighty) and so forth. In other

words, in a cumulative system there is an iconic likeness between the value
of a power and the number of signs used to represent this value. This is not
so in ciphered systems. The sign ‘8’ gives no clue to the fact that its value
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is eight. In a ciphered system the numerals are conventional symbols. They
are meaningless until they are interpreted. This introduces a divide between
the symbols as semantic objects i.e. carriers of meaning, and the symbols as
syntactic objects, i.e. objects for purely syntactic operations.

In sum, from a cognitive point of view, the choice of a ciphered over a
cumulative system is in fact a trade-off, where a reduction in the number of
operations is obtained by increasing the demands on internal cognitive work.

This leads us to the positional character of the Hindu-Arabic system. I
will here restrict myself to a discussion of ciphered additive systems versus
ciphered positional systems.

In ciphered, additive systems such as the Greek alphabetic or the Egyp-
tian hieratical, both base and power values are represented by the shape of
the individual numeral. In the Greek system for instance, eighty is repre-
sented with the single symbol π, and the reader will have to infer both the
base value – eight – and the power value – tens – from the shape of the sign.
Calculating using such a sign, you will either mentally have to separate the
base- and the power dimensions in order to reduce the calculation to simpler
facts, or you will simply have to memorize the necessary tables for all the
numerals used in the system. As the separation of the two dimensions must
be done internally, the former option greatly increases the demands on inter-
nal, mental resources (see Zhang & Norman (1995) for a detailed analysis).
However, as there are 27 different numerals in the Greek alphabetic system,
the last option pose a considerable challenge to long-term memory. Choosing
either option, the written numerals of the Greek system do not seem to offer
much support for calculations. More empirical work need to be done in this
area, but it seems as if any ciphered, additive system will pose you with a
similar choice of either memorizing very large tables or separating base and
power dimensions mentally – or using other artifacts such as the abacus, as
the Greeks probably did.

Positional systems on the other hand, allows for an easy separation of
the power and base dimensions, as Zhang & Norman (1995) rightly points
out. The power of each numeral of a number is represented by its position
and the base value by its shape. Due to this fact, calculations can easily be
broken down to two simpler tasks; calculations involving only the numerals
0 through 9 and writing the result of such simple calculations in the right
positions on the paper. Unfortunately, Zhang and Norman do not give many
details of just how the right position on the paper is located, so let us take
a closer look at what exactly was going on during the calculation presented
above (see figure 6.1).
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During the calculations, the working area of the paper is implicitly divided
into columns and rows. The columns represent different powers of the base,
starting with the power 0 in the rightmost column, and increasing by one
each time we move a column to the left. The power dimension of each digit
in both the partial sums and the final result are determined by its location
in this system of columns. For this reason, it is crucial to place the partial
results in the right positions on the paper. This is taken care of by following
a simple procedure.

Firstly, the working area is shaped by filling in a number of zeroes. In
the first row, the n first columns are blocked with zeroes, in the second row,
the n − 1 first columns are blocked etc., where n is the number of digits of
the multiplier.

After this shaping of the working area, the partial sums are produced one
digit at a time. In short, the product of the leftmost digit in the multiplier
and the rightmost digit in the multiplicand is written in the first vacant
position of the first row, and the rest of the digits of the sums are produced
by moving one position to the left as each digit in the multiplicand is treated
(from right to left), and by moving one row down and begin in the first vacant
position to the right as each digit in the multiplier is treated (from left to
right). If the result of a partial product is two-digit, only the digit indicating
the 1’s is written in the designated position, whereas the digit indication the
10’s is stored and added to the digit written in the next vacant position. The
storing of such carry-overs is typically taken care of by writing and scratching
out numbers in the empty area above the multiplier and multiplicand. This
area of the paper serves as a temporal working memory.

When all of the partial sums are produced, the final result is obtained,
by adding the digits in each column. This might also produce carry-overs.

All of this is a complicated procedure, and it takes a lot of time and
practice to learn how to perform it properly. During the procedure, the
concrete physical presence and distribution of the numerals written on the
paper is heavily exploited. We simply fill in the results of calculations digit
by digit following a simple pattern. We do not need to think about the power
dimension of any of the partial products. For instance, we do not need to
know, that the power of the first partial product of 5 · 6 is hundreds. As long
as we follow the procedure and write the result in the first vacant position
of the first line, we automatically get the power dimension right. Also, the
procedure neatly lines up the partial sums for the final addition.

As it can be seen from this example, the numerals do not only act as
semantic- and syntactic objects during the calculation process. Their pres-
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ence and physical location on the paper is used as external scaffolding that
guides our performance. The symbols are in other words used as purely
physical objects with a physical presence and location.

Interestingly, the formal algorithm for polynomial multiplication does not
address the distribution of the numerals as physical tokens. The algorithm
simply tells us to calculate the partial products and add them. So if anything,
it seems to suggest a procedure of this type:

524 · 476 = 24 + 280 + 1600 + 120 + 1400 + 8000 + 3000 + 35000 + 200000

= 249424

This procedure serves as an instructive contrast to the multiplication by
columns-procedure described above. In this procedure, the physical distri-
bution of the digits is not exploited at all. We have for instance to get the
power dimension of the partial products right our selves (and that takes a
lot of effort!). Furthermore, the partial products are distributed in a way
that does not aid the final addition at all. Calculating in the way suggested
by the algorithm simply takes a lot more effort compared to multiplication
using the columns-procedure. So the spatial arrangement of the symbols on
the paper is indeed very important part of the calculating procedure.

Multiplication can of course be performed using many other physical dis-
tributions of the symbols. The numbers to be multiplied can be written in
other positions on the paper, and the working area can be shaped in other
ways (see figure 6.2)

5 2 4
4 7 6

2 3 8 0 0 0
9 5 2 0
1 9 0 4

2 4 9 4 2 4

5 2 4

1 9 0 4 6
9 5 2 7

2 3 8 0 4

2 4 9 4 2 4

Figure 6.2: Two alternative layouts for multiplication using columns.

A particular interesting alternative procedure is the so-called multiplica-
tion by jalousie (or by diagonal lattice). Here, the multiplier and multiplicand
is written on the rim of a lattice drawn so the number of columns corresponds
to the number of digits in the multiplier, and the number of rows to the num-
ber of digits in the multiplicand. The diagonals of each square in the lattice
is drawn, and the partial products of the multiplication are written in the
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squares, with the 1’s on the right side of the diagonal, and the 10’s on the left
side. So for instance, the product of 5 and 6 is written as 3/0 in the square
made up by the column below 5 and the row to the left of 6 (see figure 6.3).
In this physical line up, the power of the partial results are represented by
their position in the diagonal columns, and the final result i produced simply
by adding the digits in each diagonal column (starting in the bottom right
corner and carrying the 10’s to the following column).

I
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5 2 4

4

7

6

2 0 1
0 8 6

3 1 2
5 4 8

3 1 2
0 2 4

4 2 4

2

4

9

-

Figure 6.3: Multiplication by jalousie. I) is the initially structured work-
ing space. II) is the filled-in working space. The result can be read along
the edge of the square beginning at the top left corner.

According to Karl Menninger, this method has been in actual use in Ara-
bic and early Italian textbooks on calculations (Menninger, 1992, p. 442).
The method is particularly interesting, because it actually allows for a
greater degree of externalization than the column-method favored today. The
columns and rows are explicitly drawn, and most importantly, we do not need
to worry about carry-overs when the partial products are produced. As Men-
ninger writes, it “requires wenig kopffs” (Menninger, 1992, p. 442). Today
however, the column-method is preferred. The reason for this choice is not
known, but I hypothesize that the extra work it takes to explicitly draw the
elaborate lattice structure makes the jalousie-method too slow in actual use.
This serves once more as a reminder of the fact that we do not only go for
the largest degree of externalization possible. Other factors, such as speed
and the amount of physical work involved in the procedure, also influence
our choice.

The example also draws attention to another aspect of the multiplica-
tion by columns-procedure. We do not actually (or only seldom) draw the
columns and rows. Instead, we use sophisticated spatio-visual capacities for
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arranging physical objects in rows and columns. This underlines the fact,
that the performance of the calculation using Hindu-Arabic numerals and
the column-procedure is indeed an excellent example of embodied cognition.
The numerals are treated as physical tokens, distributed in an elaborate pat-
tern on the paper. Such a way of calculation is only available to embodied
creatures with sophisticated abilities to arrange physical objects in space.

In conclusion, the Hindu-Arabic numerals are a very special kind of sym-
bols. Unlike ciphered, multiplicative systems, they allow calculations to be
performed largely externally as series of epistemic actions, and unlike the
numerals of cumulative systems, they are conventional, i.e. abstract symbols
that have no iconic likeness with that, which they represent. The symbols
can both be treated as semantic, syntactic and physical objects. For this rea-
son, they can easily be manipulated and used to perform epistemic actions
in ways similar to the beads of an abacus. To borrow a phrase from Zhang &
Norman (1995) (who use it slightly differently), the Hindu-Arabic numerals
can be characterized as object symbols.

Before leaving the Hindu-Arabic system altogether, it should be noted
that the cognitive properties of the numerals cannot in itself explain why the
system was adopted, first in the Arabic world and later on in Europe as well.
A full explanation should consider other factors as well. The availability
and cost of paper does for instance play an important part in the story. As
embodied creatures, humans adapt to changes in the environmental resources
available. The change from the use of the abacus to pen, paper and Hindu-
Arabic numerals is an excellent example of such an adaptation in cognitive
style. Other factors of course also played a part, such as the interest in making
permanent records of partial calculations and perhaps even the cultural fact
that the numerals originally came to Europe from the Muslim Arabic world.

6.3.2 The symbol revolution

The Hindu-Arabic numerals are not the only abstract symbols used in mod-
ern mathematics. Abstract symbols, however, are a fairly new invention.
Before the 16th century, all mathematical text were written in rhetoric style
without any other mathematical symbols than (perhaps) numerals.

The first move toward a symbolic style was the so-called syncopated style,
where a few of the most frequently used words of the mathematical texts
were abbreviated, typically using the first letters of the words. This style
was already visible in the Diophantus’ Arithmetica, where a semi-symbolic
notation for the various terms involved in equations, was introduced. The
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unknown was designated by the sign ς with an accent ‘. Perhaps this sign
was a contraction of the first two letters in the word arithmos, i.e. “number”,
or perhaps the sign was chosen because it was the only one not used in the
Greek alphabetic numeral system (for the first hypothesis see (Katz, 1998,
p. 174), for the second see (Cajori, 2007, pp. 71)).

Numbers not involving the unknown were indicated by the symbol M̊,
derived from monas (meaning: “unit”), and subtraction by a specially cre-
ated symbol, which is probably an abbreviation for the word lepsis (meaning:
“wanting” or “negation”). The square and the cube of the unknown were
designated respectively by ∆Y and KY , where ∆ was derived from the word
dynamis (“power”) and K from kubos (“cube”). So, in Diophantus’ for-
malism, a polynomial expression such as x4 + 5x3− 3x+ 7 would be written
∆Y ∆ε̄KY ζ̄M̊γ̄ς, (where ε̄, ζ̄ and γ̄ are the Greek alphabetic numerals for five,
seven and three respectively).

Quite remarkably, Diophantus used his symbolism to designate powers
higher than three, so for instance he used ∆Y ∆ to designate the forth power
of the unknown, ∆KY the fifth and so on. This was a clear break with tradi-
tional Greek practice, where powers higher than three were not considered,
because they had no geometrical interpretation (Katz 1998, pp. 173; Kline
1990, pp. 138). I will discuss the significance of this result further below.

From Brahmagupta (598-668) and onwards the Hindu algebraists used
several abbreviations including (in our alphabet) ru for rupa, the absolute
number, ya for yávat-távat, the unknown, c for carańı, the surd or square
root and v for varga, square (Cajori, 2007, p. 75).

In Europe, abbreviations such as co for cosa (Italian: “thing” viz. the
unknown), aeq. for aequales (“equality”), R for radix (“root”), p for plus
and m for minus were in use by several authors in the 15th century. The last
two were introduced by Nicholas Chuquet, who also developed the notation
for roots to include higher order of roots by writing R2 for square root, R3

for cube root and so on. Interestingly, Chuquet developed a typographically
similar way to signify the power of the unknown. What we would write as
12x4 he would simply write as 124, leaving the base of the exponent out.
This praxis even included the negative exponent -1 in expressions such as
121m̄ (viz. 12x−1 in modern notation) (Cajori, 2007, pp. 100).

With the work of François Viète (1540-1603), the use of letters to denote
quantities of arithmetic became popular. Although Euclid and other antique
writers had used letters in this way, they had only done so sporadically, and
it was Viète who introduced the use of letters in a systematic way; the vowels
A, E, I, O, U, Y were used for unknown quantities, and the consonants for
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known quantities. This move to a greater level of abstraction allowed Viète to
state the basic laws of arithmetic, such as ‘A−B times A+B equals A2−B2’,
and solve algebraic problems in a partly symbolic way. As an example of the
last, Viète solved the classical problem of finding two numbers given their
difference and their sum in the following way: Let B (a consonant) signify
the difference, D signify the sum, and A (a vowel) signify the smallest of
the two unknown. Then the larger of the two unknown can be expressed as
A + B. Consequently, D equals 2A + B, and by transposition, 2A equals
D−B leading to the result that A equals (1

2
)D− (1

2
)B (Viète, 1983, p. 83).

Viète’s contribution was not to solve the problem for the first time – it
had been solved in full generality by purely rhetoric means before –, but to
solve it in a symbolic way. The new use of symbols however, did add to
Viète’s theory of equations, as it allowed him to treat them in their general
form (or at least a more general form) instead of considering several special
cases.

In the 16th and late 15th century not only abbreviations, but also true ab-
stract symbols (other than Hindu-Arabic numerals) began to appear. These
new symbols included the well-known signs + and - for plus and minus (in-
troduced late in the 15th century by German authors (Cajori, 2007, p.230),
a horizontal dash - to signify equality (introduced by Regiomontanus late in
the 15th century) and the sign

√
to indicate square root (first used by Robert

Recorde (Cajori, 2007, pp.164)). However, abstract symbols were only in-
troduced and used on a larger scale in the 17th century, where authors such
as René Descartes, William Oughtred, and John Wallis introduced a wealth
of symbols – Oughtred alone is known to have used at least 150 different
symbols and abbreviations, most of which are forgotten today (Cajori, 1916,
p.28).

Although the symbolic style was met with some opposition, symbols grad-
ually came to play a larger and larger role in mathematics.

6.4 What symbols do

Mathematical symbols in general are used very similar to the way the Hindu-
Arabic numerals are used. Mathematical symbols are object symbols, and
have a tripartite nature. Mathematical symbols are:

• semantic objects, i.e. carriers of mathematical content or meaning,

• syntactic objects, i.e. objects of syntactic transformation following
purely formal rules, and
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• physical objects, i.e. tangible objects, which can be moved, manipu-
lated and arranged in ways that support our work with certain prob-
lems.

The rhetoric style, where mathematical content is represented by written
words, of course also use abstract symbols; letters are concatenated to form
words, whose physical appearance has no likeness with the objects, the words
represent. The word-picture “point”, say, does not look like a point, and the
word-picture “ten” does not have any more likeness with ten units than the
abstract number-symbol “10”.

Both written words and abstract mathematical symbols can carry seman-
tic content, i.e. they can be carriers of meaning. The important difference
between written words and abstract symbols is the two last points on the
list above, i.e., that mathematical symbols, besides their role as bearers of
contend, can also be treated as syntactic and as physical objects. With a
few rare exceptions (such as avant-garde poetry), written words are never
used as more than semantic objects; they cannot be used for purely syn-
tactic transformations or as purely physical objects. So although both the
rhetoric and the symbolic style of representing mathematics can be said to
use abstract symbols, there is a qualitative difference between the affordances
of written words and written mathematical symbols. In the following, I will
only be referring to abstract mathematical symbols, when I use expressions
such as ‘symbol’ or ‘abstract symbols’, although I acknowledge that the writ-
ten words used in the rhetoric style are equally abstract symbols – but of a
completely different kind.

6.4.1 Mathematical symbols as syntactic objects

When symbols are treated as syntactic objects, the semantics, i.e. the mean-
ing of the symbols, can be disregarded or suspended, and mathematical prob-
lem can be solved (in some instances) by manipulation of the symbols follow-
ing purely formal rules. In terms of the embodied theory of cognition, the
symbols are used as cognitive artifacts allowing computations to be external-
ized and performed as epistemic actions (as also noted by De Cruz (2005)),
similar to the turning of a midwifes disc or the manipulations of the counters
on an abacus.

Let me present two examples as illustration. Firstly, we can try to com-
pare one of Euclid’s proofs with the algebraic explanation given by the trans-
lator, T.L. Heath (Heath, 2006, p. 441-442)3. The proof is the proof for

3Such algebraic versions of Euclid’s proofs are clearly anachronisms. From a history of
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proposition 24 in book V of The Elements. In Euclid’s words, the theorem
states:

Proposition 24.
If a first magnitude have to a second the same ratio as a third has to
a fourth, and also a fifth have to the second the same ratio as a sixth
to the fourth, the first and fifth added together will have to the second
the same ratio as the third and sixth have to the fourth.

(Heath, 2006, p. 441)

In order to prove this proposition, Euclid needs two previously proven results,
proposition 18 and 22. They state:

Proposition 18.
If magnitudes be proportional separando, they will also be proportional
componendo.

(Heath, 2006, p. 427)

The concepts separando and componendo are explained in the specification of
the proof as: “Let AE, EB, CF , FD be magnitudes proportional separando,
so that, as AE is to EB, so is CF to FD; I say that they will also be
proportional componendo, that is, as AB is to BE, so is CD to FD” (Heath,
2006, p.427). We are here to imagine the magnitudes AE and EB as parts
of a larger magnitude AB, and similarly CF and FD as part of a magnitude
CD.

Proposition 22.
If there be any number of magnitudes whatever, and others equal to
them in multitude, which taken two and two together are in the same
ratio, they will also be in the same ratio ex aequali.

(Heath, 2006, p. 337)

Given these propositions to be true, the proof of proposition 24 goes:

Let a first magnitude AB have to a second C the same ratio as a third
DE has to a fourth F ; and let also a fifth BG have to the second C
the same ratio as a sixth EH has to the fourth F ;

I say that the first and fifth added together, AG, will have to the
second C the same ratio as the third and sixth, DH, has to the fourth
F .

mathematics point of view, the value and validity of such anachronisms can be contested.
Here, however, I am not primarily interested in uncovering the ideas of Euclid. Rather, my
goal is to understand the value of the symbolic method by contrasting it with an entirely
other way of reasoning
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For since, as BG is to C, so is EH to F , inversely, as C is to BG, so
is F is to EH. Since, then, as AB is to C, so is DE to F , and, as C
is to BG, so is F is to EH, therefore, ex aequali, as AB is to BG, so
is DE to EH.

And, since the magnitudes are proportional separando, they will also
proportional componende; therefore, as AG is to GB, so is DH to
HE. But also, as BG is to C, so is EH to F ; therefore, ex aequali, as
AG is to C, so is DH is to F .

Therefore, [the proposition stated holds true.]

F

D

C

A

H

G

E

B

(Text and illustration (redrawn) from Heath, 2006, p. 441-42)

The proof can be followed somewhat easier, by anchoring the conceptual
complexity in a drawing representing the magnitudes in question. Heath
includes such a figure along with his translation of Euclid’s original proof
(redrawn and inserted in the proof above).

Heath, however, also gives an algebraic version of the proof. Firstly,
the content of the two auxiliary propositions 18 and 22, can be stated alge-
braically as the rules:

Proposition 18: If a : b = c : d, then (a+ b) : b = (c+ d) : d.
Proposition 22: If a : b = d : e and b : c = e : f , then a : c = d : f.

(Heath 2006, p. 428; Heath 1921, p.390)

Then, proposition 24 can be stated and proven algebraically thus:

Algebraically [proposition 24 states that], if

a : c = d : f, and b : c = e : f,

then
(a+ b) : c = (d+ e) : f.

[. . .] Inverting the second proposition to c : b = f : e, it follows,
by [proposition 22], that a : b = d : e, whence, by [proposition 18],
(a + b) : b = (d + e) : e, and from this and the second of the two
given proportions we obtain, by a fresh application of [proposition
22], (a+ b) : c = (d+ e) : f .

(Heath, 2006, p. 442)
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The proof given by Heath is obviously easier to survey, simply because it is
much shorter than the original proof give by Euclid. Apart from this some-
what superficial difference, there is a more significant difference in cognitive
style worth noticing. The proof given by Euclid is completely contentual; the
proof takes place within the domain of magnitudes, and in order to follow
the proof, we must understand the content of each expression in terms of
its reference to magnitudes, for instance by drawing a figure (such as the
illustration accompanying the proof above), illustrating the content of the
proposition. In contrast, the algebraic proof given by Heath, is partially for-
mal. Once the theorem is stated, the content is bracketed (in the Husserlian
sense). The proof exclusively states and discusses how one symbolic form
can be transformed into another by use of previously proved rules of trans-
formation. There is no reference to the meaning or content of the symbols
during this process, only references to rules of transformation and the sym-
bolic forms themselves, e.g. in expressions such as: “inverting the second
proposition”, “from this and the second of the two given proportions we ob-
tain” etc. This use of abstract symbols allows Heath to suspend the meaning
of the symbols and to treat them solely as syntactic objects. From a cognitive
point of view, this is a very economic way of proceeding; we do not need to
interpret and follow the meaning of all the steps in the proof. The proof is
externalized and reduced to the lawful manipulation of external objects.

As an example of the symbol-use in modern mathematics, we can take a
closer look at problem and its paradigmatic solution taken from a textbook
on calculus (Adams, 1995):

Show that: 2 sin−1 x = cos−1(1− 2x2) holds for 0 ≤ x ≤ 1.
Solution: Let f(x) = 2 sin−1 x− cos−1(1− 2x2). Then

f ′(x) =
2√

1− x2
−

(
− 1√

1− (1− 2x2)2
(−4x)

)
=

2√
1− x2

− 4x√
1− (1− 4x2 + 4x4)

=
2√

1− x2
− 4x√

4x2(1− x2)

=
2√

1− x2
− 2√

1− x2
= 0,
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provided x ≥ 0, since
√

4x2 = 2x in this case. Now Theorem 2 shows
that f(x) is a constant on [0, 1], and the constant must be 0 since
f(0) = 0. This provides the given identity.

(Adams, 1995, p. 256)

Firstly, it should be noted, that the problem is at heart a geometric problem
– sine and cosine were originally defined as properties of angles – and the
identity can quite straightforwardly be given a purely geometrical proof (see
figure 6.44).

Figure 6.4: The arc lengths marked out in I) and II) represent 2·sin−1 (x)
and cos−1 (1− 2x2) respectively. What is wanted is a proof that lengths of
these two arcs are identical. This can be done by considering the isosceles
triangle marked out in III). Two legs of the triangle have length 1, and
the third has the length 2x. Consequently, the triangle will span an arc of
length 2 · sin−1 (x), when it is placed in the unit circle as indicated. The
identity can be proven by showing b to be equal to 1 − 2x2. For brevity,
I will not go through the proof in full detail. In short, by Pythagoras
h1 must be equal to

√
1− x2. Consequently, the area of the triangle

must be x ·
√

1− x2. From this, we can see that h2 = 2x ·
√

1− x2,

and by Pythagoras we have: b =
√

1− (2x ·
√

1− x2)2 =
√

(1− 2x2)2 =

1 − 2x2, as wanted. It should be noted that although this proof is closer
to the geometrical content, it is not completely without purely syntactic
elements.

In the solution given by Adams, the problem is solved by using a typical
mixture of conceptual knowledge and syntactic transformations. It has to be
known that sine and cosine can be conceived as functions, and it has to be
known that a function is constant, if its derivative is zero (this is the content

4I am indebted to my advisor Jesper Lützen for pointing this out to me, and for showing
me a sketch of the proof.
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of Theorem 2 referred to in the solution). Following this idea, the identity
can be expressed as a function, and its derivative can be found. The step
of determining the derivative is omitted in the solution, but it can be taken
simply by consulting a list of elementary derivatives (stated in symbolic form)
and (purely formal) differentiation rules. A list of elementary derivatives is
conveniently given in the beginning of the textbook in question.

As soon as the derivative is stated in symbolic form, the rest of the prob-
lem can be solved as a series of syntactic transformations. I this presenta-
tion, two or more transformations are typically performed from one line to
the next. From the first to the second line for instant, the following rules are
applied:

• a
b
· k = a·k

b
. Applied on the last fraction and (−4x).

• 1 · a = a. Used to simplify the multiplication 1 · (−4x) to (−4x).

• (−a) · (−b) = a · b. Used to cancel the minuses in front of the fraction
and −4x.

• (a − b)2 = a2 − 2ab + a2. Applied on (1 − 2x2)2 in the denominator
giving 1− 4x2 + 4x4

During these transformations, no reference whatsoever is made to the original
geometric content of the identity. Although the steps are not explained
in words, in the way Heath explained the moves in his algebraic proof of
proposition 24 above, a typical explanation of, say, how to get from the
first to the second line could go something like this: “The factor −4x is
moved onto the fraction line, and the two minuses cancel each other. In the
denominator, the term (1 − 2x2)2 below the square root sign is expanded.
Finally, the parentheses are eliminated. As they contain only one positive
term, this can be done without any further changes.”5

What we are concerned with here, is the concrete symbolic forms written
on the paper, and not whatever the symbols might signify. The original
meaning of the symbols is suspended, and the symbols are treated as purely
physical and syntactic objects. New strings of symbols are produced only by
considering the physical shape and pattern of the already given symbols. This
allows mental computations and contentual considerations to be replaced by
rule governed physical operation on externally given objects. This is – once
more – economic from a cognitive point of view; we do not have to bother

5Explanations of this type can be found in more elementary text books, see for instance
(Antonius et al. , 2009, p 84ff) or other hi-school level textbooks.
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with meaning and understand the significance of all the steps in the proof,
as long as we follow the rules of syntactic transformation correctly, we will
arrive at the right result.

In contrast to the use of Hindu-Arabic numerals in multiplication prob-
lems, there is no strict, overall algorithm to follow in this case. We start with

one symbolic form (f ′(x) = 2√
1−x2 −

(
− 1√

1−(1−2x2)2
(−4x)

)
) and we know

which form we want to obtain (f ′(x) = 0), but there is no strict algorithm
taking us from the given to the wanted state. We must ourselves find out
which syntactic transformations to make when in order to get to the goal.

Quite interestingly, a common strategy in solving such problems is simply
to try something out on the paper, so the mathematician can see – literally
see – whether she moves in the right direction or not. The symbols are not
merely (or at least not always) used to record a solution already thought out,
they are often used actively throughout the solution process. Mathematical
symbols are not always used like chess pieces, which are merely moved in
order to represent an already thought through plan. They are frequently
used more like puzzle pieces that are moved around and manipulated, piled
and compared as part of the solution process. This is clearly part of an
embodied strategy of externalizing and using the world as its own best model
(see section 5.2).

6.4.2 Mathematical symbols as physical objects

In my explanation of the calculation given above, the symbols were not only
treated as syntactic objects, i.e. as objects of syntactic transformation. They
were also treated as palpable physical objects; Heath for instance ‘inverted’
a proposition, and in my explanation of Adam’s calculations, the factor −4x
was ‘moved’. The idea, that symbols can be moved around like concretely
given physical objects, is widespread in modern mathematics. Note for in-
stance the use of the expression symbol manipulation. Literally speaking,
the symbols are not manipulated (i.e. handled’) during solution processes,
such as the above. Instead, entirely new strings of symbols are produced in
accordance with the given rules of transformation and the shape and pattern
of the already given symbols.

In some cases, the mathematician might imagine or visualize some of the
reported motions. This idea is for instance exploited in (Giaquinto, 2007,
pp. 191), although the empirical evidence is lacking (as admitted by Gi-
aquinto); his main source is a study by John Hayes (Hayes, 1973). Here, it is
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suggested that we are capable of solving simple algebraic problems (such as
“6 + x = 12”) in imagination, and that at least some subjects do this by vi-
sualizing motions of the involved symbols. The study however, is somewhat
anecdotal and suffer from the methodological weakness, that the subjects
were asked to solve the problems using visual imagination. So the study
at most demonstrates that it is possible to solve simple problems using vi-
sual imagination, not that visual imagination is involved in actual, everyday
problem solving.

A more solid line of evidence for our treatment of mathematical symbols
as imaginary objects comes from the study of gestures. Gestures, produced
while a person is speaking, are generally thought to be a reliable source
to the person’s unconscious conception of the topic, she talks about. In a
study by Laurie Edwards, the gestures of elementary school teacher students
were observed while the students solved problems with and explained the ba-
sic properties of fractions (Edwards, 2009). Many of the gestures produced
referred to the manipulation of physical objects (such as dividing rods or
cutting pies), but a full 10% of the gestures depicted manipulations of writ-
ten mathematical symbols. The written symbols were imagined as objects
located in space, and procedures such as multiplying and adding fractions
were discussed by the gestural manipulation of these imagined objects in
space.

The use of such visualizations constitutes one way in which we use symbols
as physical objects: We imagine that we can move the symbols similar to
the ways we move physical objects. This, furthermore, is a clear example
of embodied cognition. Our knowledge of how to move physical objects is
applied in the process of symbol driven problem solving.

There is however several other ways in which symbols are used as physical
objects. In analogy to the example involving multiplication using Hindu-
Arabic numerals, the physical properties and distribution of the symbols are
exploited in a number of calculation tasks. Matrix multiplication might serve
as a typical example6,7. At its core, matrix multiplication consists of simple

6Giaquinto (2007, p. 242) explains how visual imagination might also be used in matrix
multiplication.

7For those not aquatinted with matrices, they are in short sets of elements ordered
in two dimensions. The elements are typically numbers (real or irrational), but they can
also be certain other mathematical objects, such as derivatives of functions (in matrix
calculus).

The elements of a matrix are usually presented as an array:

A =

[
a b c
d e f

]
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multiplication and addition operations. The hard part of the process is not
multiplying and adding, but finding out which elements to perform which
operation on when – and where to put the results (i.e. where to locate the
result in the two dimensional structure of the product matrix). As anyone
who has ever done matrix multiplication will know, the process of picking out
the right elements and putting the result in the right place is heavily guided
by the physical layout of the matrices; it is simply reduced to a matter of
going through the rows of one matrix and the columns of the other in a
specific pattern.

The importance of the guidance offered by the physical layout of the
matrices is apparent even in textbook definitions of matrix multiplication.
In Robert Messer’s textbook Linear Algebra: Gateway to Mathematics (used
to teach undergraduate algebra at University of Copenhagen in the 1990’s),
matrix multiplication is defined as:

The matrix product of an m×n matrix A = [aij ] with an n×p matrix
B = [bjk] is the m× p matrix, denoted AB, whose ik-entry is the dot
product

n∑
j=1

aijbjk

of the ith row of A with the kth column of B.
(Messer, 1994, p. 178)

The definition is seemingly formal; the matrices are formally represented by
their general elements (aij and bjk respectively), and in the definition of the
central multiplying and summing operation, the elements are identified only
using indices. So far, the definition only reveals the algebraic structure of the
problem. However, in the final line of the definition, the indices are explained
as referring to the ‘rows’ and ‘columns’ of the two factor matrices. So the
reader is not to think of matrices as sets of elements ordered abstractly in
two dimensions by indices (as the representation the algebraic structure could
suggest). The reader is clearly to imagine the matrices physically represented
as arrays.

Here, the ordering of the elements is represented by their physical location in the array,
i.e. which row and column, each element is located in. The ordering could be (and
sometimes is) represented by other means, such as subscripts or indices. We could for
instance represent the matrix above as a list of elements with subscripts representing each
element’s location in the internal order of the matrix:

A = {a11, b12, c13, d21, e22, f23}
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After stating the definition, Messer assures us, that “[t]he pattern of
adding the products of corresponding entries across the rows of the first
factor and down the columns of the second factor soon becomes automatic”
(Messer, 1994, p. 178). Here, Messer explicitly explains how to exploit the
physical layout of the problem.

In some definitions of matrix multiplication, the use of the physical layout
of the matrices is underlined even stronger. In the Wikipedia-definition, for
instance, the following illustration is offered: Here, the parts of the multi-

Figure 6.5: A description of matrix multiplication.
(From http://en.wikipedia.org/wiki/Matrix (mathematics))

plication process guided by the physical structure of the matrices are clearly
indicated; the problem of finding the right elements and the problem of
putting the results in the right places is reduced to a problem of locating and
counting rows and columns of physical objects (here mathematical symbols)
arranged in arrays. In contrast, imagine multiplying the matrices from figure
6.5 represented as lists of indexed elements, thus:

A = {a11, a12, a21, a22, a31, a32}

B = {b11, b12, b13, b21, b22, b23}

Or even worse, as unsorted lists, for instance thus:

A = {a12, a31, a21, a11, a32, a22}

B = {b12, b22, b13, b11, b21, b23}
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If one looks only at the algebraic structure of the problem and the syntactic
transformations involved, it does not matter, how the elements of the matri-
ces are presented to the user of the symbols. But if a human agent is actually
to multiply matrices, the physical layout and structure of the elements do
play a major role – and this role is not captured by the formal definition
describing only the algebraic structure of the process. In this, matrix multi-
plication is very similar to multiplication using Hindu-Arabic numerals.

In the matrix-case, the mathematical symbols are clearly treated as phys-
ical objects, which are arranged in ways that guide and enhance our per-
formance of certain tasks (here multiplying two matrices). The use of the
symbols as physical objects is very clear in this case, but other, similar ex-
amples could be given, for instance some operations on permutations, the
use of group diagrams etc.

Finally, it should it should be noted that this use of the physical as-
pect of representations is not necessarily restricted to mathematical symbols.
Rhetoric representations of mathematical content could be arranged in simi-
lar ways. Matrices for instance can be displayed using number words instead
of Hindu-Arabic numerals. Abstract symbols however, will in most cases
be better suited for this kind of physical arrangement due to their compact
physical size (compared to rhetoric representations); a symbol such as ‘29’ is
simply easier to handle and arrange qua physical object than a word such as
‘twenty nine’.

All the uses of symbols as physical objects we have seen so far are purely
pragmatic. The physical arrangement of matrices does not reflect or clarify
or help us understand the algebraic structure of matrix multiplication. It is
an auxiliary structure, which serves the purely pragmatic purpose of making
it easier to find out, which symbols to operate on when (although of course,
an important part of learning matrix multiplication is learning how to master
this auxiliary structure in addition to the algebraic structure). Such prag-
matic uses of symbols as physical objects must be distinguished from the
epistemic use of symbols as physical objects. Here, the physical arrangement
of the symbols is used to serve epistemic, not pragmatic goals.

As an example, I will present Cantor’s celebrated (and much debated)
‘diagonal argument’ for the uncountability of the real numbers. The argu-
ment was presented by Cantor in a paper from 1891. It should be noted
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that Cantor in fact did not prove the uncountability of the real numbers in
this particular paper (he had done that already using another method in
1873 (Kline, 1990, p. 997)). In the 1891-paper, Cantor merely proved that
uncountable sets, i.e. sets that cannot be brought into a one-to-one relation-
ship with the natural numbers, exist. His argument can however easily and
obviously be used on the set of real numbers, and it is this application of
Cantor’s argument I will present as a case, not Cantor’s actual 1891-proof.

The proof is usually presented as a proof by contradiction: If we assume,
that the reals in [0; 1] can be enumerated, it must be possible to display them
as a list, and assign a natural number to each real number in the list:

1 ↔ 0, a11 a12 a13 a14 . . .
2 ↔ 0, a21 a22 a23 a24 . . .
3 ↔ 0, a31 a32 a33 a34 . . .
4 ↔ 0, a41 a42 a43 a44 . . .

...
...

. . .

Here, the natural numbers are represented using the standard Hindu-Arabic
numerals, and the real number are symbolically represented as decimal frac-
tions, where ank is the kth decimal in the nth real number on the list.
Given this list, we can define a real number b in the following way: Let
b = b1b2b3b4 . . ., where

bk =

{
9, if akk = 1
1, if akk 6= 1

Let a be the nth number on the list of all the reals. Due to the way b
is constructed, bn 6= ann, and consequently b 6= a. As this applies for all
n ∈ N, the real number b cannot be on our list of all the real numbers, in
contradiction with our original assumption. Consequently, the real numbers
cannot be collected in a countable list (see for instance Kline, 1990, for a
similar version of the proof).

The proof is interesting as an example of symbol use for two reasons.
Firstly, the proof is not just at random called a diagonal proof. The con-
structed number b will differ from the numbers on the list precisely on the
diagonal digits, i.e. the digits a11, a22, a33 etc. In more pedagogical versions
of the proof, this crucial idea is conveyed by typographically highlighting the
diagonal, for instance like this:
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1 ↔ 0, a11 a12 a13 a14 . . .
2 ↔ 0, a21 a22 a23 a24 . . .
3 ↔ 0, a31 a32 a33 a34 . . .
4 ↔ 0, a41 a42 a43 a44 . . .

...
...

. . .

In such cases, the physical arrangements of the symbols are clearly use
as knowledge guiding, i.e. for epistemic purposes.

Secondly, the proof is in fact not about the real numbers as such, but
about a particular symbolic representation of the real numbers (as also noted
for different reasons in Kerberi & Polleti, 2002). The proof only works, if the
real numbers are represented as decimal fractions, i.e. as infinite sequences
of singular digits, which can be compared and arranged in space. The proof
can be presented using an actual list as above or more formally (e.g. in
Schumacher, 1996, p. 167-8), but it will always rely on the possibility of
representing any real numbers as sequences of numerals. So in this proof, a
particular symbolic representation of the real numbers plays a crucial epis-
temic role; without a place value representation of the reals, there simply
would not be a proof.

I will return to the epistemic use of symbols as physical objects in section
6.10.2.

The use and structuring of mathematical symbols treated as physical objects,
is a instructive example of one aspect of the embodied nature of human
cognition. We do not only use the given environment. We change it and
structure it in ways that suit our cognitive and physical profile and enhances
our cognitive performance. We deposit things at different physical positions:
Pens are in one drawer, binders in another, papers on different subjects
are sorted and placed in different piles on the desk and so on. We organize,
alphabetize, sort and pile. And sometimes we arrange mathematical symbols,
in order to support the operations we are about to perform on them. The
digits in real numbers are arranged in a specific way, when we multiply real
numbers, and the entries of matrices are structured in rows and columns,
when we multiply matrices. This reflects something about the beings we
are. Our abilities for arranging and locating things in physical space are
highly developed, and these capacities are exploited in certain mathematical
operations. For another kind of being with different cognitive and bodily
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profiles, the picture might be different. A digital computer for instance,
might not prefer matrices arranged in arrays.

6.4.3 Physical patterns

Finally, the physical pattern made by the symbols, i.e., the way, the symbols
physically present them selves to the eye, might be used as a way to discover
new theorems. Two different mechanisms have been suggested: Firstly, pat-
terns in the layout of physical symbols might suggest new and more general
formulas. Secondly, new formulas might be discovered by simply substituting
some of the symbols in a well-known formula by others.

As an example of the first, I will present an example from (Adams, 1995)8:

Find the nth derivative y(n) of y = 1
1+x = (1 + x)−1.

Solution: Begin by calculation the first few derivatives:

y′ = −(1 + x)−2

y′′ = −(−2)(1 + x)−3 = 2(1 + x)−3

y′′′ = 2(−3)(1 + x)−4 = −3!(1 + x)−4

y(4) = −3!(−4)(1 + x)−5 = 4!(1 + x)−5

The pattern here is becoming obvious. It seems that

y(n) = (−1)nn!(1 + x)−n−1.

We have not yet actually proved that the above formula is correct for
every n, although it is clearly correct for n = 1, 2, 3, and 4. To com-
plete the proof we use mathematical induction [and Adams concludes
by performing such a proof].

(Adams, 1995, p. 137)

So, Adams see a pattern in the development of the derivatives, and uses this
to reach a general expression for the n’th derivative of the function.

In this case, the symbolic representation guides the search for a pattern
by presenting the algebraically similar parts of each line in typographically

8It should be noted, that I do not claim anything about how the formula was first
discovered. The example is merely an example of how the reader of the textbook is
supposed to ‘see’ a general formula – and (as the example is a paradigmatic text-book
solution to a problem), how the reader is instructed to find solutions to similar problems
on their own. Examples where a similar recognition of patterns in the physical symbols
might play a part in the actual discovery can be found in the history of mathematics, see
for instance (Euler, 2000).
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similar ways; the (1 + x)-factor clearly stands out as a typographic block,
exponents are lifted etc. This typographic appearance makes it easier to
find and compare similar elements in different lines; (1 + x) for instance
immediately stands out as invariant, and it is easy to find the exponents and
follow their development through the four lines. The abstract mathematical
pattern is simply matched by a typographic pattern – and it is in fact not
completely clear which of these patterns, Adams finds ‘obvious’.

So once more, the guidance is offered by the physical appearance and
layout of the symbols. The symbols are here guiding qua being physical
objects, and neither as syntactic or semantic objects.

The contribution of this guidance might be clearer, if we compare the
symbolic representation of the calculations with a purely it with a purely
rhetoric:

The first derivative of the function equals minus one plus the
argument of the function (taken as a whole) and taken to the power
of minus two.
The second derivative equals two multiplied with one plus the
argument (taken as a whole) and taken to the power of minus three.
The third derivative equals minus the faculty of three multiplied with
one plus the argument (taken as a whole) and taken to the power of
minus four.
The fourth derivative equals minus the faculty of four multiplied with
one plus the argument (taken as a whole) and taken to the power of
minus five.

Although the algebraic pattern might still be derived from the rhetoric rep-
resentation, the representation does not structure and guide the search. The
different parts of each line seem typographically alike; it is for instance dif-
ficult to identify and compare the exponents in all the lines, and is not
immediately clear, that the factor (1 + x) remains unchanged through the
development of the different derivatives. The typographic structure offered
by the rhetoric representation is simply inferior to that offered by the sym-
bolic ditto.

It is more difficult to find examples, where the typographic layout of the
symbols has inspired entirely new theorems, but there are a few interesting
cases.
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Some commentators take Leibniz’ discovery of the formula for differenti-
ating the product of two function as an example of discovery by substitution.

In a letter dated October 1695 to Johan Bernoulli, Leibniz points out an
apparent analogy between powers of a sum and differentiation of products.
Leibniz begins by expressing Newton’s binominal formula in the following
way (Gerhardt, 1863, p. 221):

n(x+ y) = xny0 +
n

1
xn−1y1 +

n(n− 1)

1 · 2
xn−2y2 etc. (6.1)

Notice the inclusion of y0 and division by 1. These elements are syntactically
redundant (i.e. they can freely be removed), but they are typographically
important as they make the pattern in the development more obvious. From
the binominal formula, Leibniz substitutes (x+ y) with (xy) and substitutes
exponentials with differentials (dn denoting the nth differential). This gives
him the following formula for differentiating products (now known as Leibniz’
formula):

dn(xy) = dnxd0y +
n

1
dn−1xd1y +

n(n− 1)

1 · 2
dn−2xd2y etc. (6.2)

We do not know exactly what lead Leibniz’ to make the substitutions neces-
sary to go from (1) to (2) above, or what gave him confidence in the formula.
Michel Serfati sees the derivation of (2) as the result of a“jeu combinatoire” -
a game of combination (of symbols) (Serfati, 2005, p. 390). Brendon Lavore
sees Leibniz’ confidence in the formula as partly resulting from a belief in
the syntactic analogy between the well-known result (1) and the new result
(2) (Lavor, 2010). I will not try to settle the matter her, but will simple
leave the Leibniz formula as a possible example of discovery, based on or
helped by the physical appearance of the mathematical symbols. Perhaps,
Liebniz’ formula (2) was simply the lucky result of his playing around with
the symbols.

The so-called umbral method is another – and better documented – example
of discovery by substitution of symbols (see also Lavor, 2010). The methods
close connection to the physical appearance of the symbols is already reflected
in its name; ‘umbral’ is Latin for ‘shadow’, and allegedly the method got its
name because it involves the interchange of exponents and their typographic
shadows, suffixes (Di Bucchianico & Loeb, 1995).
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The method was first presented by John Blissard in 1861 (Blissard, 1861).
The basic idea, in short, is to derive identities involving sequences of num-
bers by changing the index n of the sequence {an} to an exponent and sub-
sequently treat the sequence as if it was a sequence of powers an.

The method is for instance frequently used on the sequence {Bn} of
Bernoulli numbers. The numbers are defined by the generating function:

∞∑
n=0

Bn
xn

n!
=

x

ex − 1

By changing the index n to an exponent, the following transformation can
be performed:

∞∑
n=0

Bn
xn

n!
'

∞∑
n=0

Bnx
n

n!
=

x

ex − 1
= eBx

, where ' is used to symbolize umbral equivalence. Standard algebraic ma-
nipulations can then be performed on the given expression, and identities
concerning the Bernoulli numbers can be reached by changing the exponents
back to be an index (see (Di Bucchianico & Loeb, 1995); (Guinand, 1979)
for detailed examples).

From a mathematical point of view, umbral transformations are simply
non-sense. It does not give any meaning to change an index to be an expo-
nent and back again. Consequently, the method was simply considered to be
a collection of magic rules, that somehow gave interesting results (Di Buc-
chianico & Loeb, 1995, p. 3), although the method have now been given a
thorough mathematical justification (see for instance Roman, 1984)).

We do not know for sure how Blissard found his methods. However, as
the transformations used in the umbreal method are mathematically non-
sensical, it seems unlikely that they were discovered from considering the
meaning of the symbols. The method simply seems to be inspired by the ty-
pographical appearance of the symbols; a symbol written thus: Bn can easily
be changed to a symbol looking thus: Bn, although the actual meaning of
this transformation remains in the shadows (so to speak).

Blissard does make some comments on his notation, which could support
such an interpretation. In chapter III of the paper “Theory of generic equa-
tions”, Blissard opens by describing his ‘representative notation’ as consisting
of a single convention:

Let U0, U1, U2, . . . Un be any class or series either of quantities or func-
tions, which are connected by any general law of relations, then Un is
held to be equivalent to, and may in development be replaced by Un.

(Blissard, 1862, p. 185)
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After presenting a long list of theorems, discovered by his new method, Blis-
sard closes the chapter with the following interesting comment:

The preceding list of theorems and formulæ, most of which I suppose
to be perfectly new, has been given for the purpose of exhibiting, in
brief compass, a body of results which may serve to recommend the
notation through which they have been obtained, – a notation which,
I confidently believe must, in course of time, from its perfect simplicity
and unrivalled power, come into general use. It may certainly, I think,
be regarded as tending to give to analysis the eminently desirable
qualities of unity, compactness, and simplicity; and since it is of wholly
unlimited application, it is perhaps in the perfecting of this notation,
as a proper tool to work with, that a large extension of modern analysis
may not unreasonably be expected. If one like myself can obtain by
its use, in whatever direction it may be applied, novel results of great
generality and symmetry, what may it not prove in the hands of the
able and accomplished analysts who adorn our age and country?

(Blissard, 1862, p. 208).

Here, Blissard explicitly contributes his discoveries to the power of the nota-
tion and the convention of transformation, this notation makes possible. So
here, we do seem to have a something like an example of discoveries depending
on the typographic structure of the symbolic notation used in mathematics.

6.5 The impact of the use of symbols

So far, I have mainly tried to explain how the use of abstract symbols al-
lows for a cognitively more economic practice. The use of abstract symbols
simply seem to be a very effective cognitive strategy, and that explains why
mathematicians have adopted this practice to the extend they have.

Next, I will discuss the possible impact the use of this cognitive strategy
has had on our mathematical beliefs. In the examples given above, the
abstract symbols seemed to work as neutral tools, merely making it easier
for us to do, what we would have done anyway without them. One could
perhaps argue, that the Cantorian diagonal argument opened entirely new
land (confirming the telescope hypothesis), but as we will remember, the
diagonal argument was merely a striking and (to most) convincing way of
proving a fact, Cantor had already proven by another technique. In this
section, I will more thoroughly discuss whether the use of abstract symbols
might in some cases have had a more profound impact on what we take
mathematics to be.
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6.5.1 Extension of the symbol calculus

I will open the discussion by considering the idea that abstract symbols
plays a constitutive role in the introduction of particular new mathematical
objects. The idea was originally suggested by Augustus De Morgan (1849),
but has recently been expanded by Michel Serfati (2005).

According to De Morgan, abstract symbols and the rules for operation on
them, are at first introduced in one area in a meaningful way. The rules of
operation however, will occasionally lead to symbol-combinations that seem
meaningless or contradictory under the original interpretation of the symbols.
Nonetheless, in some cases, such meaningless symbolic forms can be accepted
as valid new mathematical objects. The examples of such new objects used
by De Morgan are negative and imaginary numbers.

Beginning with specific or particular arithmetic, in which every symbol
of number has one meaning, we have invented signs, and investigated
rules of operation. An easy ascent is made to general or universal
arithmetic, in which general symbols of number are invented, the let-
ters of the alphabet being applied to stand for numbers [. . .]. And
thus, [. . .] we arrive at a calculus in which the actual performance of
computations is deferred until we come to the time when the values
of the letters are found or assigned.

(De Morgan, 1849, p. 95, emphasis from the original)

In this symbolic calculus, the rules of operation led to symbols such as a−(a+
b), which were meaningless or inconsistent when the letters were interpreted
as quantities. However:

So soon as it was shewn that a particular result had no existence as
a quantity, it was permitted, by definition, to have an existence of
another kind, into which no particular inquiry was made, because the
rules under which it was found that the new symbols would give true
results, did not differ from those previously applied to the old ones.
A symbol, the result of operations upon symbols, either meant quan-
tity, or nothing at all; but in the latter case it was conceived to be a
certain new kind of quantity, and admitted as a subject of operation,
though not of direct conception.[. . .] These phrases, incongruous as
they always were, maintained their ground, because they always pro-
duced a true result, whenever they produced any result at all which
was intelligible: that is, the quantity less than nothing, in defiance
of the common notion that all conceivable quantities are greater than
nothing, and the square root of the negative quantity, an absurdity
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constructed upon an absurdity, always lead to truths when they led
back to arithmetic at all, or when the inconsistent suppositions de-
stroy each other.

(De Morgan, 1849, p. 99)

So in other words, although the new symbolic forms were inconceivable in
themselves, they were accepted because they formed a conservative extension
of a body of meaningful signs and rules of operations. In this description, the
introduction of abstract symbols seems to be crucial to the process; abstract
symbols and formal rules of operation allow us to disregard meaning and
expand the symbolic calculus into new areas. In this way algebra becomes,
according to De Morgan, a science of reduction and restoration: “reduction
of universal arithmetic to a symbolic calculus, followed by restoration to
significance under extended meanings” (De Morgan, 1849, p. 98).

This idea of extension of symbolic forms has been developed further by
Michel Serfati. In his 2005 book La revolution symbolique, Serfati discusses
several examples, where one or more of the laws governing a symbolic form
are used to give meaning to the form, when it is extended onto a domain
where it prima facie is meaningless. One such examples is the expansion of
Descartes’ notation ap of powers (defined as a multiplied with itself p times),
to the form ap/q. Descartes’ symbolic form is perfectly well-defined as long
as the exponent is a natural number, but what does it mean to multiply a
number p/q times with itself? The only way this new and meaningless form
could be given meaning, was by extending some of the laws of operation,
governing the original notation, to the new domain.

Given the definition of the original form, it can easily be shown that
(ap)q = ap·q is a meaningful law of operation on the form. From the original
definition of ap it also follows trivially, that if ap = b then a = p

√
b. Using

these laws on (a1/p)p we get: (a1/p)p = ap/p = a, so a1/p = p
√
a, and in

general ap/q = q
√
ap, which is a meaningful expression (for all a ≥ 0). To use

Serfati’s expressions, the chosen laws of operation (canons électifs) formed a
bridgehead that allowed the original symbolic form to be extended to a new
domain in a meaningful way (Serfati, 2005, pp. 328).

Serfati treats several other similar examples. These includes: the expan-
sion of the factorial function n! = n · (n − 1) · . . . · 1 to all positive real
numbers, the use of complex numbers and square matrices as exponents, the
expansion of trigonometric functions to take complex numbers as arguments,
and the expansion of the form A−1 to all given complex matrices (including
non-square and non-invertible matrices). According to Serfati:

Dans chaque prolongement en effet, les réquisits symboliques priment
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initialement ceux de sens, puisque, dans la méthodologie canonique,
ce sont les significations qui doivent trouver le moyen de s’adapter aux
exigences du symbolique et non l’invers.

(Serfati, 2005, p. 377)

So to both De Morgan and Serfati, the symbolic forms and the laws of opera-
tion governing their syntactic transformation have a clear and strong impact
on the content matter of mathematics. The lawful manipulation of symbols
inspire and bring new mathematical entities into being, and subsequently –
as Serfati expresses it –, meaning will have to find the means to adapt to the
new symbolic forms. This is a very strong claim; if it is true, some of the
mathematical objects we use are in fact constructs dictated to us as a con-
sequence of our use of a particular cognitive artifact, viz. abstract symbols.

For the sake of the discussion at hand it is important to be very clear on
the distinction between two different scenarios: 1) cases where symbols are
used to express content matter that it is hard or even impossible to express by
other known means, and 2) cases where a symbolism inspires or determines
the conceptual development of mathematics, for instance in the form of the
creation of new meaning or new entities. Serfati clearly seems to consider his
examples to be of the second type – meaning must conform to symbols, and
not the other way around. I on the other hand, see the question as somewhat
more open.

Let us return to the development of the notation for powers. As it turns
out, a lot of both conceptual and notational development had taken place long
before Descartes started to use his ap-notation. As noted in subsection 6.3.2,
Diophantus was already using a semi-symbolic notation in the 3th century ce.
In the 12th century, the Arab mathematician al-Samaw’al developed a table
of powers, including reciprocals (what we would call powers with negative
exponents). By describing how to jump from one column to the next in this
table, al-Samaw’al was able to explain the content of the law of exponents,
viz. that xn · xm = xn+m, although his rhetoric style, where say, the product
of a square (x2) and a cube (x3) would be expressed as a ‘square-cube’, did
not allow him to express the law numerically (Katz, 1998, pp. 252).

In the 14th century Nicole Oresme worked with fractional exponents espe-
cially in connection to ratios. He developed a language, where for instance the
1
2
’th power of a given ratio was expressed as ‘half’ the ratio, the 3

4
’th power

as ‘three fourth parts’ of the ratio, and so on. This allowed him to expressed
general relationships, such that “. . . one third of a whole equals two-thirds of
its half or subdouble.”, meaning in modern terms: A1/3 = (A1/2)2/3 (Grant
1974, p. 153; see also Cajori 2007, pp. 91). Most remarkably, Oresme even
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seems to have had an intuition of the existence of irrational exponents, but
he was unable to describe his ideas clearly because he lacked the prober
notation.

Finally, in the 15th and 16th century, several different notations were
tried out competing with the one finally used by Descartes. These include
Nicolas Chuquet’s notation, which allowed him to use negative exponents
(see subsection 6.3.2 above).

All in all, the introduction of the Cartesian notation for exponentials and
the ‘prolongement’ of it to include fractional exponents seem quite clearly to
be a case, where already existing ideas were given a suitable and usable ex-
pression by a newly invented symbolic form. So the symbols did not predate
the meaning, as Serfati suggests, rather the symbolic forms presented a way
to convey ideas that were hard or even impossible to express without the
proper representational means. So this is a case of type 1 of the two types
distinguished above.

Something similar can be said of the examples given by De Morgan. Neg-
ative numbers were known and operated on long before the introduction
of symbolic algebra. Diophantus stated the basic rules for multiplication
involving negative numbers (described as ‘wantings’), and explains how to
transform equations in order to eliminate negative coefficients (Heath, 1910,
pp. 130). In the Chinese textbook The Nine Chapters on the Mathematical
Art, probably composed in the 1th or 2th century ce, the rules the for addi-
tion and subtractions involving negative numbers (and zero) were explained
in connection to the use of the Chinese stick abacus (Yong 1994, pp. 35; Boyer
1989, pp. 222). Finally, all the basic rules of arithmetic, including how to op-
erate with negative numbers and zero were stated in purely rhetoric form by
the Indian mathematician Brahmagupta as early as year 628 ce (Katz, 1998,
p. 226). Although the Hindu mathematicians did not acknowledge negative
solutions to equations involving quantities (such as monkeys), they at least
on one occasion accepted a negative solution to a problem involving distance
(interpreting it as a positive distance in the opposite direction) (Ebbinghaus
et al. , 1991, p. 13).

So although the Europeans were indeed very skeptical towards negative
numbers for centuries, the development of an abstract symbolic arithmetic
does not seem to be a necessary step towards at least some understanding of
the concept.

Complex numbers – De Morgan’s second example – were also first encoun-
tered and operated on in a purely rhetoric context in Gerolamo Cardano’s
(1501-1576) Ars Magna from 1545, where Cardano states and verifies the
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complex solutions (5 +
√
−15 and 5 −

√
−15 in modern notation) to the

problem of dividing 10 into two parts such that the product is 40. His suc-
cessor Rafael Bombelli (1526-1572) stated the various laws of multiplication
for imaginary numbers – still without the use of abstract symbols – and used
calculations on complex numbers to find the real number solutions to selected
cubic problems (Katz, 1998, p. 335–336).

It should be noted that Cardano, Bombelli and most mathematicians
of the time regarded complex numbers as mere sophistry, and not as solid
mathematical objects. This leaves some room for the introduction of abstract
symbols to play in the acceptance of complex numbers. It can however, be
argued, that the most important event in this process was the introduction
of an intuitive and meaningful geometric representation of complex numbers
in form of the complex plane, and not the introduction of abstract symbols
as such. I will return to the role played by the introduction of the complex
plane below (in section 6.12.1.2.3)

So in conclusion, De Morgan seems to have overrated the role played by
the introduction of abstract symbols in the conceptual development of mathe-
matics. The conceptual development of negative and imaginary numbers was
well on its way before the introduction of abstract symbols. In these cases,
the central artifact seems to be the algorithms and rules of operation devel-
oped in order to solve specific problems; the crucial step in both Cardano
and Bombelli’s encounters with complex numbers was not abstract symbols,
but algorithms developed in order to solve particular classes of problems.
Algorithms, which in some cases led to solutions involving square roots of
negative numbers. In The Nine Chapters, negative numbers and the rules
for operating on them were introduced as part of a method for solving lin-
ear equations. The method involved both addition and subtraction of large
columns of numbers, and such a procedure would inevitably lead to the oc-
currence of negative numbers. This was handled arithmetically by stating the
relevant rules of operation, and representationally by introducing sticks with
two different colors – red sticks for representing positive numbers, and blacks
sticks for representing negative numbers. Zero was represented by leaving a
slot empty (Yong, 1994, pp. 35). So of course, some representational power
was needed, but not the kind of abstract, symbolic power, De Morgan refers
to. The two cases used by De Morgan in other words seems to be of type 1,
using the typology presented above.

The development of pseudo-inverses and factorials of positive real num-
bers are better candidates to cases of type 2, i.e. cases, where the symbolism
played a greater part in the conceptual development. In both cases, the
‘bridge’ formed by the chosen rules of transformation seems to lead into gen-
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uinely new areas of mathematics, and furthermore, there seems to be more
of a genuine choice involved in picking out the canons électifs.

In the case of the factorials, the chosen rule is the identity f(x) = x·f(x−
1), which is obviously true for the factorial function. According to Serfati
(2005, pp. 366-8), Euler however, discovered another function – the gamma
function Γ(x)9 – which satisfies the same relationship, i.e. Γ(x) = x ·Γ(x−1),
and furthermore has the value (x − 1)! for all integer values of x. So in
other words, the gamma function (or rather Γ(x+ 1)) is both a conservative
expansion of the factorial function, and share an important rule of operation
with the factorial function. The gamma function was on this ground chosen as
a way to generalize the factorial function to all positive real numbers simply
by defining x! as Γ(x + 1). From this development, otherwise meaningless
forms such as 3,5! or π! were given meaning.

Something similar can be said about the development of pseudo inverses
of matrices. Here, according to Serfati (2005, pp. 370-2) four identities, all
trivially true for regular inverses, were chosen to define pseudo inverses10.
The pseudo inverse of a given matrix A then, was simply defined as any
matrix A−1 making all of the four identities true. Given this definition,
any complex matrix A turned out to have one unique pseudo inverse, and
in the case of invertible matrices, the pseudo inverse was identical to the
regular inverse. So the concept is well-defined and pseudo inverses form a
conservative extension of regular inverses. In this case, a clear choice formed
the bridge to a place, where the symbolic form A−1 is meaningful for all
complex matrices A.

In these cases the bridges at least seems to lead to genuinely new and
uncharted land. It is however, still somewhat unclear precisely what the
symbols added to the process. Is the use of abstract symbols essential to
such developments, or could we have reached similar results using a purely
rhetoric style? To my mind, the method of conservative expansion through

9The function was by Euler defined as

Γ(x) = lim
n→∞

(
1 · 2 · · · · · · (n− 1)

x · (x+ 1) · · · · · (x+ n− 1)
nx
)

10The four identities are:

AA−1A = A
A−1AA−1 = A−1

(AA−1)∗ = AA−1

(A−1A)∗ = A−1A

, where M∗ is the adjoint matrix (Serfati, 2005, p. 371)
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choice of rules of operation does not seem necessarily tied to the use of
symbols. In fact, as we saw in the case of negative and imaginary numbers,
such expansions can take place in purely rhetoric context as well. I will return
to this type of expansion of mathematics again in chapter 7. This time with
a focus on the laws of operation, and not so much on the fact that they in
some cases happen to be applied to abstract symbols.

6.5.2 Impact on ontology and epistemic standards

There are however, other examples, where the use of abstract symbols has
had a clear impact on both the ontology and the epistemic standards of
mathematics.

As a beginning, I will turn to the discussion over which objects to allow
in geometry. As I will discuss at length below (in section 6.7), the frame-
work provided by Euclid’s Elements was rather restrictive, and in the 17th
century, René Descartes, Christiaan Huygens and others discussed how to
expand this framework in order to allow more objects into geometry. The
discussion however, never came to a conclusion in the given setting. Towards
the end of the 17th century, the problem of finding tangents to curves and ar-
eas beneath curves became prominent in mathematics, in part because such
problems frequently arose in the study of motions in mechanics. These prob-
lems could not be handled satisfactory by traditional Euclidian (synthetic)
geometry. Instead, a new analytic paradigm, where curves were represented
by equations, arose. This paradigm turned out to be highly successful, partly
because it offered a way to represent a class of curves that were hard or im-
possible to express in the previous paradigms, and partly because it offered a
way to replace a number of difficult operations and constructions (including
finding tangents and areas) with syntactic transformations of the symbols of
the equations (i.e. calculus).

This remarkable development however, turned out not only to offer an
easier and faster way to accomplish mathematical results; it also changed
mathematics in several ways. Firstly, the adoption of the calculus led to
a considerable change in epistemic standards. Where synthetic geometry
based on the axiomatized Euclidean framework had the very highest epis-
temic standards, advocates of the calculus more or less had to develop an
epistemic blind-spot in order to overlook the severe foundational problems
of the theory (see Berkeley 1754 for a contemporary criticism). Although
calculus was widely used in the 18th century, it was not given a satisfactory
foundation at least until the development of the concept of limits in the early
19th century.
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Secondly, the acceptance of any curve that could be stated in analytic
form, ultimately lead to the acceptance of a number of curves that were
impossible from a geometrical point of view, such as space-filling curves and
everywhere continuous but nowhere differentiable curves11. In fact, instead of
leading to the rejection of these objects, the geometric counter intuitiveness
of the curves lead to the rejection of geometric intuition; as the intuition was
clearly in contradiction with the symbol based analytic geometry, it could no
longer be trusted (see for instance Mancosu 2005).

So in this example a particular embodied cognitive strategy had a clear
impact on mathematics: The need and desire to use symbols as a cognitive
artifact in a specific area of mathematics led to profound changes both in
regard to the objects accepted by and the epistemic standards of the area.
Clearly, in this case the cognitive artifact served as more than just a neu-
tral tool. It seems that a particular set of mathematical beliefs was directly
formed by our adoption of abstract symbolic representations of geometric
objects. The ‘monster curves’ described above are clear examples of mathe-
matical objects that are constructed as a direct consequence of our use of a
particular cognitive tool.

As a second example of the impact of the use of abstract symbols, I will men-
tion the use of formalizability as a criterion for the acceptability of a proof.
Although proofs are rarely given as rigorous formal deductions, most mathe-
maticians today will only accept a proof, if it is somehow made probable that
it could be formalized and given as a series of purely formal transformations
in a formal theory (see e.g. Curry, 1954; Tymoczko, 1979). Proofs are simply
to be identified with the external, physical, symbolic forms used to represent
them. The test of the validity of a proof, amounts to examine whether the
manipulations made on the symbols conform to the syntactic moves allowed
in the formal system – that is why Thomas Tymoczko in a much discussed
paper on computer assisted proofs adds surveyability to formalizability as
“major characteristics of [acceptable] proofs” (Tymoczko, 1979, p. 59). It

11The first space-filling curve was published by Peano in 1890. The curve is a continuous
map from the unit interval [0; 1] to the unit square [0; 1] × [0; 1]. It was defined purely
analytically without any geometrical interpretation (Peano, 1890). The first continuous
nowhere differentiable function to be published was Weierstrass’ function, discovered in
1872 and published in 1875 in (du Bois Reymond, 1875). It was given by the equation:
f(x) =

∑
(bn cos(anx)π), with a odd b ∈]0; 1[ and ab > 1 + 3

2π.
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must of course be possible to examine the proofs given as external, physical
objects, in order to see if they live up to the given standards. This, on the
other hand, is something, which can be done by purely syntactic means, and
consequently, the symbols do not need to be considered as semantic objects at
all. Revealingly, characteristics such as ‘conveying understanding’ or ‘being
meaningful’ are not considered as being important by Tymoczko. A probable
motive for this choice is that meaning and understanding is something sub-
jective, while the properties of a concrete physical object (a list of stepwise,
symbolic manipulations) is something which can objectively be determined.
Consequently, only by considering the symbols of a given proof exclusively
as a syntactic objects, is it possible to establish truly objective criteria for
determining whether the proof is valid or not.

So here once more, the introduction and use of a particular cognitive
artifact – abstract symbols – has facilitated a clear and significant change
in the epistemic standards of mathematics, i.e. in the standards used to
judge whether a knowledge claim is acceptable or not. Mathematics was
done before the introduction of abstract symbols, and proofs were made and
accepted as valid. However, with the introduction of abstract symbols, a
different standard of validity – believed to be more objective – was made
possible, and was eventually adopted by the mathematical society.

So in conclusion, the use of abstract symbols as cognitive artifacts has
had a clear and significant impact on mathematics. The artifact is not just a
neutral tool. Its use has had consequences for the kind of objects, we belief
to be acceptable geometrical objects, and it has changed the way we evaluate
proofs to be acceptable or not. This in other words seems to be consistent
with the constructivist hypothesis.

The power and enormous influence of this particular cognitive tool is wit-
nessed by the fact that the formalist movement simply identified mathematics
with “manipulation of signs according to rules” (Hilbert, 1925a, p. 381) (or
in other words, they adopted the identification hypothesis). From my point of
view, this is a mistake. Abstract symbols are simply a cognitive tool used in
our mathematical practice, and one should not take the tools for the trade.
Although this particular cognitive tool is at the heart of modern mathemat-
ics, it does not exhaust what mathematics is. As we shall see in the next
sections, other cognitive strategies and tools are equally important.
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6.6 Figures as cognitive artifacts

The spatial and topological properties of external representations can be
used in many different ways. The pragmatic use of the physical properties
of object symbols described in section 6.4.2 provides one such use. In this
dissertation, I will discuss two other slightly different uses; one is exemplified
by the use of drawings and figures, and the other by the use of certain types
of diagrams. Both of these uses are epistemic, or what I will call knowledge
guiding ; in addition to the purely pragmatic use of the spatial arrangement
of symbols e.g. in matrix multiplication, the physical and spatial properties
of figures and diagrams can be used to gain knowledge and understanding
about the mathematical objects, they represent. As they do so in two very
different ways, I will concentrate on the use of figures in this section, and
discuss the use of diagrams in section 6.10.1 below.

The main difference between figures and diagrams is, as I see it, the
following: Figures are meant to resemble or even have an iconic likeness with
the topological structure of the objects, they represents, whereas diagrams
do not. Diagrams are of course also meant to resemble something, but what
that more precisely is will take some explanation, which I wait until section
6.10.1 to give. The above statement might cause some ontological worries.
What does it mean for an abstract object to have geometrical properties?
And do such objects exist at all? With more caution, the statement could be
rephrased like this: A figure will partially share the geometrical structure of
or even belong to the general type of shapes, the mathematical object, the
figure is used to represent, is an abstraction of. An actual drawing will of
course always be different from an abstract mathematical object – the lines
used to draw a triangle will for instance have breath and cannot be perfectly
straight in contrast to the lines making up the legs of an ideal and abstract
mathematical triangle. But still, the likeness between a drawing of a triangle
and an idealized triangle can in some instances be good enough to be used
for knowledge guiding purposes, as I will explain in more details below. But
first, I will present some examples of mathematical figures.

Figures are of course prototypically used in geometry. The figure used
as part of the proof presented in figure 6.4 above can serves as a good and
typical example. Figures however, can also be used in analysis, for instance
to represent curves and graphs of functions (see figure 6.6 and figure 6.7) and
even, one could argue, in some cases in arithmetic (figure 6.8).

From a cognitive point of view, figures allow mental content to be off-
loaded into the environment in the form of a concrete, external object, which
can be inspected from a third person view and intersubjectively shared and
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Figure 6.6: “The graphic method”
from a Danish text book on hi-school
mathematics (Antonius et al. , 2009,
p. 148). The method is used to
find the points of intersection of the
graphs for the functions f(x) = x2 −
x + 3 and g(x) = −x2 + 2x + 3 (so
the ideal, mathematical objects rep-
resented in the figure are graphs, not
functions). In the context of Danish
hi-school mathematics, the graphical
method is considered valid if the so-
lutions are subsequently validated by
insertion in the analytic expressions
for the functions.

Figure 6.7: The tangent and nor-
mal to the graph y =

√
x from a

text book on undergraduate calcu-
lus (Adams, 1995, p. 97). Here, the
figure is used as a way to illustrate
solutions found by other (analytic)
means. However, the once the graph
y =
√
x is drawn, it will have a tan-

gent and a normal at any point (al-
though they can be hard to deter-
mine with precision by inspection of
the figure alone).
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I) II)
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w w w w w ww w w w ww w w ww w ww ww
ww ww w ww w w ww w w w ww w w w w w

Figure 6.8: The elements in these figures are iconic representations of
arrangements of discrete objects. In I), the objects are arranged in six
columns. The number of objects in the columns corresponds to the first
six natural numbers, starting with one object in the first column on the
left. The sum of the numbers from one to six can easily be deduced from
figure I) by counting the elements, although the sum was not part of the
information used to make the figure. In II) auxiliary elements have been
added to the figure, showing that the sum of the original elements – and
consequently the sum of the numbers form one to six – can be determined
as (6 · 7)/2. The figure also suggests how a more general argument could
be produced.

discussed. This is the advantage of language noted by Andy Clark by (see
section 5.3.2 above), but in my view, mathematical figures and most other
external representations share this function with rhetoric representations.

Figures however, also offer something more, something the inspection of
a rhetorical representation does not. Firstly, figures can serve as material an-
chors for conceptual structures. The concept material anchors was originally
designed by Edwin Hutchins only to apply to representations of conceptual
blends (see section 5.5.1), but I see no reason why it does not apply to un-
blended domains just as well. The use of figures as material anchors is for
instance clearly evident in figures such as 6.4, where the physical drawing is
used to stabilize an elaborate conceptual structure.

Secondly, due to the iconic likeness between the figure and the object it
represents, the figure will share more properties of the objects, than those
used to create the figure. In the examples given above, the intersection points
for the graphs of f(x) = x2 − x+ 3 and g(x) = −x2 + 2x+ 3 can be read off
from the figure, although this information was not used in the construction
of the figure (figure 6.6). Similarly, the figure representing the graph for
y =

√
x will have a tangent and a normal at any point, once the figure is

drawn, and the properties (such as slope) of the tangents and normals on the
figure will approximate the properties of the corresponding abstract objects
(figure 6.7). In figure 6.8, there will be a total number of dots in the columns
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once they are drawn, although this number was not used in the construction
of the figure. And finally, returning to figure 6.4, we can add a triangle to
the initial figure of the arch length on the unit circle. This physical triangle
will have heights h1 and h2 similar to the abstract triangle it represents,
and it will have a given area etc. None of this information was used in our
original drawing of the arch length, but it can nonetheless be used to infer
information about the arch length.

The fact, that physical figures can contain additional information about
the objects, they represent, allow us to use the figure to gain knowledge.
Figures might in other words function as epistemic artifact that allow us
to replace calculations and mental imaginary with physical actions, in the
form of construction and inspection of the concrete, external figures that are
drawn on the paper before our eyes.

The fact that figures can be used as epistemic artifacts in ways similar to
abstract symbols, has led to discussion about whether there is any difference
between the two types of representations. Charles S. Pierce for instance, con-
sidered figures and symbols to be the same general type of symbols. Pierce
simply defined iconicity functionally; a representation is iconic, if it makes
it possible to derive more information about the represented than the infor-
mation used to form the representation (Stjernfelt, 2006). As this is the case
for both prototypical figures, as those discussed above, and mathematical
symbols, both types of representations are in Pierces’ classification iconic
symbols.

Marcus Giaquinto seems to advocate a similar viewpoint (Giaquinto,
2007). Giaquinto notices, that since we use the concrete physical shape
of both mathematical symbols and figures to gain new knowledge, the tradi-
tional dichotomy between algebraic and geometric methods cannot be upheld:

Symbolic thinking typical of algebra, to wit, rule-governed manip-
ulation of symbols, is just as spatial as geometrical thinking. The
rearrangements, additions, and deletions of symbols [...] are opera-
tions in two-dimensional space. Moreover, these operations depend
on spatial features of the input symbol array and may be performed
independently of any semantic content assigned to the symbols.

(Giaquinto, 2007, p. 241)
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Both Pierce and Giaquinto are in a way right; as both mathematical symbols
and figures are used as epistemic artifacts, we do create knowledge or infor-
mation by handling the concrete physical objects on the paper. However, as
I see it, we do not create new knowledge in the same way in the two cases,
and that is important to notice. In the case of symbols, we manipulate them
in accordance with syntactic rules, which must somehow be known or learned
in advance. In the case of figures, new knowledge is guide by exploiting the
figures’ iconic likeness with the objects they represent (although admittedly,
the construction of new geometrical shapes and auxiliary lines etc. might
be restricted by rules, such as the rules restricting possible constructions in
the Euclidian framework). The shape of an arbitrary symbol is arbitrary;
the physical shape of a symbol does not have any likeness with the object, it
represents (and this is why symbols in my mind do not have iconic likeness
with that, which they represent), so during the production of new knowledge,
the meaning of the symbols might be totally disregarded, as also noticed by
Giaquinto. This is never the case with figures. They will always present
themselves for us as meaningful, and it is because we understand the figures
that we are able to use them to infer new knowledge.

So in sum, figures can produce knowledge qua their iconic likeness with
the objects they represent, symbols can produce knowledge qua their role as
syntactic objects. These are two very different processes. The use of figures
discussed above, is in other words a genuine new way of using the spatial
character of external representations.

This use of drawings and figures is clearly an example of embodied cogni-
tion. The computational tasks involved in mental imagery are replaced by
the creation and inspection of external, physical objects. Furthermore, the
inspection of the physical objects can be eased by drawings of additional
objects. The construction of the physical drawings can be aided by the use
of instruments, such as rulers and compasses - and in resent years the image
creating computer programs.

6.7 Impact of figures and drawings

I will center the discussion of the impact of the use of figures on the use
of drawing instruments, such as compass and straightedge in mathematics.
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These instruments serve as tools to draw precise representations of geometri-
cal objects. But the choice of instrument is not innocent, as different objects
can be constructed and different problems solved depending on the tools used.
To give an example, the angle cannot be trisected in the Euclidean frame-
work, where only constructions by compass and straightedge is allowed, but
the problem can easily be solved, if other types of instruments, such as a
marked ruler or a special compass, are brought into play.

In the 16th and 17th century discussion of instruments and practical meth-
ods of construction frequently entered the debate over which objects to accept
in geometry. François Viète, for example, wanted to expand geometry. He
did so simply by postulating the existence of a particular construction, the
‘neusis’, which can be used to solve classical problems such as the trisection
of the angle12. The use of the neusis was later sought justified by Johannes
Molther by appeal to the exactness of the instruments (a marked ruler) and
procedures needed to perform the construction (Bos, 2001, chap. 10 and 12).

Instruments and machinery used to trace curves also played an impor-
tant part in the mathematical reasoning of René Descartes. Descartes also
wanted to expand the universe of traditional Euclidean geometry. Instead
of restricting himself to the curves, which can be traced by straightedge and
compass (viz. straight lines and circles), he wanted to accept more complex
curves as well:

[I]f we think of geometry as the science which furnishes a general
knowledge of the measurement of all bodies, then we have no more
right to exclude the more complex curves than the simpler ones, pro-
vided they can be conceived of as described by a continuous motion
or by several successive motions, each motion being completely deter-
mined by those which precede; for in this way an exact knowledge of
the magnitude of each is always obtainable13.

(Descartes, 1954, p. 43).

In order to determine whether a curve actually fulfilled this criterion of
being constructible in a clear and distinct way, Descartes frequently imag-
ined how and with which instruments a curve could be traced. Descartes
for instance envisioned special compasses that could be used to divide an

12Given two straight lines, a point O, and a line segment a, the neusis is the construction
of a straight line going through O and intersecting the two original lines in points A and
B such that AB = a.

13In modern terms, Descartes accepted only algebraic curves, but rejected the tran-
scendental once. Although Descartes co-invented analytic geometry, he did not use the
equations of curves as a way to distinguish between acceptable and unacceptable ones
(Bos, 1981, p. 297).
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Figure 6.9: Trisection compass.
The four rulers AB, AC, AD, and
AE are pivoted at A. The links are
fixed at F , I, K, and L, but can slide
at G, and H. A given angle α is tri-
sected by opening the compass until
WBAE is equal to α. This will make
WDAC equal to 1/3α.

Figure 6.10: Descartes’ mesolabe.
The ruler Y X pivots around Y .
The ruler BC is fixed at B, and
the following rulers can slide on ei-
ther Y X or Y Z. When the instru-
ment is opened, BC will push CD,
which in turn will push DE and so
on. The wanted curves are traced
by the intersection of Y X and the
sliding rulers. (Reproduced from
(Descartes, 1954, p. 46 (p. 318))

angle into any number of equal part (which is not possible in the Euclidean
framework, see figure 6.9) and a very complicated piece of machinery, the
mesolabe (figure 6.10), which could be used to construct any number of mean
proportionals (also something not possible by Euclidean means). These in-
struments were, in Descartes view, “no less certain and geometrical than the
usual compass by which circles are traced” (quoted in (Bos, 2001, p. 349),
see also (Descartes, 1954, p. 47)), and the curves traced by them were just
as acceptable geometrical objects as lines and circles.

Descartes also considered machinery involving pieces of string. He ac-
cepted some such designs, for instance machines used to trace ellipses and
ovals (Descartes 1954, p. 90 and p. 122, see also figure 6.11). However, he
did not accept a curve, if the string in the machine used to trace it changed
from being curved to being straight during the tracing motion. Descartes
did not consider such a change in curvature of a string a clear and distinct
motion, because the ratio between straight and curved lines was not known
(and, Descartes believed, would never be known by human minds (Descartes,
1954, p. 90)).

We do not know exactly what kind of machinery Descartes had in mind
in connection to this statement. However, he does mention the Archimedean
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Figure 6.11: Descartes’ oval tracing machine. A string is fixed at E,
slung around K and C and fixed at G. The string is kept straight to the
ruler FE at C by a tracing pin. The oval is traced by pivoting the ruler
around F (reproduced from (Descartes, 1954, p. 122 (p. 356))

.

spiral as an unadmittable curve, and perhaps he might have been aiming at
something similar to a device sketched by Christiaan Huygens some years
later (in 1650). This machine could be used to trace Archimedes spiral by
letting a string curl around a pivot/pulley during the tracing motion (see
figure 6.12).

The device mentioned above is not the only one imagined by Huygens.
In fact, such machinery seems to have played an important part in his math-
ematical thinking as well. The best example is perhaps his attempt to argue
for the acceptance of another controversial curve, the tractrix 14, by designing
a number of quite ingenious machines, which came, in his opinion “very close
to the simplicity of the compass” and allowed him to tract the curve “almost
as easily as the circle” (citations from Bos 1988, p. 29). These machines
included a small two-wheeled cart, a spherical shell dragged while floating
on a fluid, and various designs involving heavy objects being dragged (see
figure 6.13). It is known, that Huygens made at least one of the devices and
used it to draw the tractrix (Bos, 1988, p. 29).

14The tractrix is inspired by the curve traced by a heavy object (say a chain watch) being
dragged by a string over a smooth surface (such as a tabletop) in a direction perpendicular
to the original orientation of the string. For a precise definition and properties, see (Bos,
1988)
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Figure 6.12: Huygens’ device for
tracing the Archimedian spiral: A
ruler AB with a drawing-pin at-
tached at A is pivoted counter-
clockwise around B. While the ruler
moves, a string AED winds around a
disc EH and drags the drawing-pin
toward the center B (Huygens, 1908,
p. 216)

Figure 6.13: Huygens’ drawings of
some of his designs for tractrix trac-
ing machines (reproduced from Bos
(1988, p. 30)).

The examples given so far should be enough to establish the following point:
In the 16th and 17th century a particular type of argument involving reference
to physical representations of geometrical objects entered the mathematical
debates over which objects to admit in geometry. This type of argument and
the debate as a whole are only meaningful in a setting, where figures are
used to represent geometrical objects. So here, we see a clear impact of this
particular cognitive practice; in this case it facilitated and made a particular
kind of debate over which objects to accept in mathematics, possible. So our
use of figures as external representation of mathematical objects is not just
a neutral tool. At least in this case, it seemed to influence our beliefs about
which objects to accept in mathematics.

This particular episode underlines embodied nature of mathematical cog-
nition. The arguments made by Descartes and Huygens presuppose both
very specific bodily capacities – you must for instance be able to grasp and
move things – and a set of environmental affordances, such as the existence
of strings, rigid bodies, and objects capable of leave a permanent mark. For
this reason, the arguments simply does not seem to be available to disembod-
ied cognizers or cognizers having bodies or living in environments markedly
different from ours; if dolphins were doing geometry, there is little chance
that they would consider the mesolabe or even be able to understand the
argument made from it by Descartes. And this is not due to any facts about
the imagined dolphin-geometers’ brain or mind, but due to the fact that
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their body and physical environment simply does not support the right kind
of interactions.

The episode in other words, serve as an example of the impact the use of
a particular embodied strategy can have on our mathematical beliefs, but it
also very clearly shows how or mathematical beliefs are constrained by our
body and particular way of existing in the world. Although the reference to
the complicated machinery above offers a particularly clear example of this
influence, it might not be isolated. I see no reason why a similar argument
could not be made for Euclidean geometry and other types of constructive
geometry. In those practices only other types of machinery (such as compass
and straightedge) are involved.

6.8 Partial conclusion: The use of external-

ization in mathematical thinking

I the preceding sections, I have investigated the role played by externaliza-
tion in mathematical thinking. The use of this cognitive strategy is mainly
centered around different types of cognitive artifacts, ranging from purely
conceptual artifacts, such as rules of operation and sequences of counting
words, to material artifacts, such as the abacus, abstract symbols and fig-
ures. As we have also seen, our mathematical practice is highly dependent
on such external artifacts in almost anything, from very basic tasks such as
handling the numerical aspect of reality with digital precision, to very com-
plicated operations, where mental computations are substituted with symbol
manipulation, or complicated conceptual structures are anchored in figures
representing the mathematical objects in question. Cognitive artifacts, fur-
thermore, does not seem to be merely neutral tools, that allow us to do,
what we would have done anyway in a cognitively more economic way. In
some instances, the artifacts are clearly constitutive for the performance of
the tasks, they are part of, and in others, our adoption of a particular type
of artifact has had a clear influence on our mathematical beliefs. Our use
of cognitive artifacts, in other words, cannot be explained with the neutral
tool hypothesis. It seems that some of our mathematical beliefs are partially
constructs formed by our use of particular cognitive artifacts.

I will now leave the use of use of externalization, and in the following
sections turn to the second embodied cognitive strategy used in mathematical
thinking; the use of sensory-motor experience in off-line thinking.
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6.9 The use of life-world experience in off-line

thinking

Sensory-motor experiences, especially in the form of what I will call life-world
experiences, i.e. pre-theoretic perceptual or practical experiences, might in-
fluence, be used in or even be constitutive of mathematical thinking in two
different ways: 1) Cognitive blends having mathematical objects in one do-
main and life-world experiences in the other, and 2) Conceptual metaphor
having mathematical objects as target and life-world experiences as source
domain. These mechanisms are related, and they both fall under the more
general category of conceptual mapping.

Some examples of the use of such mappings in mathematics are given in
Fauconnier & Turner (1998), Fauconnier & Turner (2003), Lakoff (1987), and
Robert (1998). Furthermore, Lakoff & Núñez (2000) contains a thorough and
in-depth analysis of the use of cognitive mapping in mathematical thinking.
The ideas of this book have been developed with modification in subsequent
work by Núñez (for instance in Núñez, 2004, 2008, 2009). The work by
Lakoff and Núñez is not only the most thorough, it also contains – by far –
the strongest claims about the impact of cognitive mapping on the content of
mathematics. For this reason, I will discuss the claims made by Lakoff and
Núñez in depth in a separate subsection below. Firstly, however, I will give
my own account of the role played by conceptual mapping in mathematics.

6.10 The use of conceptual metaphors in

mathematical thinking

In the textbook Basic Algebra by Nathan Jacobson sets are introduced as
arbitrary collections of elements (Jacobson, 1985, p. 3). On the following
pages of the book, the basic properties and relations between sets are defined
and described in the following way:

If A and B ∈ P(S) (that is, A and B are subsets of S) we say that
A is contained in B or is a subset of B (or that B contains A) and
denote this as A ⊂ B (or B ⊃ A) if every element a in A is also an
element in B. [. . . ]

If A and B are subsets of S, the subset of S of elements c such that
c ∈ A and c ∈ B is called the intersection of A and B. We denote
this subset as A ∩B. If there are no elements of S contained in both
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A and B, that is, A∩B = ∅, then A and B are said to be disjoint (or
non-overlapping)

(Jacobson, 1985, p. 3–4. All emphasis form the original)

In the text, sets are described as containers; a set B can contain another
set A, and both sets can contain elements etc. Such descriptions are clearly
metaphorical; sets are abstract collections of mathematical objects, and a
collection in itself cannot literally contain anything. The descriptions given
by Jacobson all draw on a basic metaphorical conception of sets as containers
(see table 6.2 for details).

Sets Are Containers
Source domain: Target domain:

Containers Sets

A container → A sets

Containers inside a container → Subsets of the set

Objects inside a container → Elements of the set

Objects contained by two containers → Elements shared by two set

Table 6.2: Elements of the Sets Are Containers metaphor

Our experiences of containers are pervasive. We are constantly dealing
with containers such as cups, pans, and cupboards. We move them around,
put things into them, take things out of them again, and put containers into
other containers. We are our self being contained in rooms, buildings cloths,
light, darkness etc, we experience moving into and out of containers, and
we experience their internal relationships (a room might be contained in a
building). In fact, one of our most basic experiences is the experience of our
body as a container and of the flow of material moving into and out of this
container15.

The conceptualization of sets as containers allow us to recruit all of these
past experiences with containment when we deal with mathematical sets.

15In cognitive linguistics the container metaphor is counted amongst a few conceptually
primitive image schemas. In this context, the concept is derived from the concept of
schemata introduced by Immanuel Kant, and used to describe “embodied patterns of
meaningfully organized experience” (Johnson, 1990, p. 19). Image schemas might be
perceived, as when we see that the tea is in the cup, but they might also be imposed
on perception, as when we see a bird as being inside a flock (see Lakoff & Núñez, 2000,
pp. 30 for more). In this connection, however, the precise classification of the metaphor is
perhaps less important, as long as it is understood that we are dealing with a significant
embodied experience.
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This grounds our understanding of sets in experience and give us an intuitive
grasp of the abstract concept, which enable us to draw inferences about
mathematical sets quickly and effortlessly16. So for instance, if we are told
that a set A is contained in another set B, and that A contains a particular
element x, we immediately and effortlessly infer that x is also contained in
B.

Here, we seem to have a clear example of a conceptual metaphor, as they
were described in the previous chapter: An abstract and unknown domain is
conceptualized in terms of a well-known domain of physical experience, and
this connection allows the user to transfer structure and expectations from
the well-known to the unknown domain.

The use of linguistically expressed conceptual metaphors in mathematics
is well described in the literature, so I will not give further examples at
this point. In the discussion of the impact of metaphors below, I will give
examples of the use of metaphors in arithmetic. The reader is also referred
to Núñez (2004) for a thorough analysis of the metaphors of movement and
the use of the so-called Source-Path-Goal image schema in analysis.

6.10.1 Material anchors for conceptual metaphors

In the example given above, the Sets Are Containers metaphor was ex-
pressed by purely linguistic means. But this is not the only way to express
metaphors. In mathematics, metaphors are frequently expressed by the use
of diagrams, arrangement of symbols and other visual means. As I see it,

16It should be noted, that in the context of mathematics, ‘grounded meaning’ is not the
only type of meaning. An expression as (−3)·(−2) can be perfectly meaningful in the sense
that one knows the rules for handling it correctly – in this case that (−3) · (−2) = 6 – even
though the rules themselves do not make sense and are not understood on a deeper level. I
will call this more superficial understanding consisting in knowing how to manipulate the
terms of a given expression ‘Wittgensteinian meaning’ following Ludwig Wittgenstein’s
famous definition of meaning in Philosophical Investigations: “For a large class of cases
— though not for all — in which we employ the word ‘meaning’ it can be defined thus:
the meaning of a word is its use in the language” (Wittgenstein, 1958, §43).

I am aware, that this brief discussion of the concept of meaning is hardly satisfying
from a philosophical point of view. This dissertation however, is a highly cross-disciplinary
work. Its aim is to combine knowledge and insights from philosophy, mathematics, and
cognitive science in a fruitful way. Unfortunately, this does not leave time or space for an
elaborate discussion of concepts of particular philosophical or mathematical interest. It
is my privilege – and responsibility – to define the concepts I use with adequate precision
for the job at hand. In this case, this rather sketchy account of the meaning of ‘meaning’
will have to do. I will however, return to the concept of meaning and add to the account
in the next chapter
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such representations are used as material anchors for the metaphors, similar
to the way conceptual blends can have material anchors.

Although the use of material anchors for conceptual blends have been
described by Hutchins (2005), the use of material anchors for conceptual
mapping in mathematics is largely unnoticed in the literature. Further-
more, a better understanding of the use of such anchors might shed light
on the different roles played by symbols, diagrams and figures in mathemat-
ical thinking. For these reasons, I will give a thorough analyses of several
such non-linguistic expressions of conceptual mappings.

As a first example, we can continue to look at the conceptualizations of
sets. In textbooks, sets are frequently conceptualized as Venn-diagrams. In
Jacobson’s Basic Algebra, we find such a diagram as part of the explanation
of the distributive law, connecting the concepts of union ∩ and intersection
∪. Jacobson at first describes the law purely symbolically as

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Then he gives a graphically representation of the law with the diagram re-
produced as figure 6.14, and finally, he gives a purely symbolic proof of the
law.

Figure 6.14: Venn-diagram illustrating the distributive law for set
operations. The shaded areas corresponds to both A ∩ (B ∪ C) and
(A ∩ B) ∪ (A ∩ C), thus illustrating the identity. (Reprinted from Ja-
cobson, 1985, p. 4).

In the diagram, the sets in question are depicted as bounded regions of
space. Bounded regions of space are a special type of containers. Unlike
some containers, bounded regions of space can overlap, but otherwise they
are encompassed by the same basic logic as containers in general. As sets
do not have any inherent spatial properties, the diagram is not a literal
description of the sets. It is a description of what it would look like, if the
sets were bounded regions in space. Consequently, the sets in question are
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metaphorically conceptualized as bounded regions in space, and the diagram
is a representation of the sets conceptualized in this particular way (see table
6.3 for details).

Sets Are Bounded Regions in Space
Source domain Target domain

Space Sets

Bounded regions in space → Sets

Points in the region → Elements of the set

Points in overlapping regions → Elements shared by two or more set

Table 6.3: Elements of the Sets Are Bounded Regions in Space

metaphor.

The diagram is a material anchor for the metaphor; it allows the concep-
tual structure established via the metaphor to be mapped onto the material
structure of the drawing on the paper. The components of the diagram serve
as proxies for elements of the conceptual structure captured by the metaphor.
Consequently (and connecting to the discussion about the role of figures in
section 6.6 above), the diagram does not have topological iconic likeness with
the sets represented as such, only with the sets conceptualized as bounded
regions in space.

A diagram serving as material anchor for a metaphor, serves several pur-
poses. Firstly, it simply conveys the particular metaphorical conception and
thus ground our understanding of the represented mathematical content in
sensory-motor experience. In figure 6.3, we do not need to explain that the
sets are to be understood as bounded regions of space, it is immediately clear
from the diagram. Secondly, the anchor provides a stable, external represen-
tation of the conceptual structure. One can alter parts of the representation,
for instance by adding new bounded regions or, as in the case of figure 6.14,
by shading some regions, while the rest of the structure remains stable. This
stability of the representation allow us to perform more complex manipula-
tions of the conceptual structure. Thirdly, manipulation and inspection of a
diagram can be used to draw inferences and give us new knowledge about the
objects represented (or rather: about the objects as they are conceptualized
under the given metaphor). In the case of figure 6.3, the distributive law can
be verified by simple inspection of the diagram, although knowledge of the
distributive law was not used in its construction. This inference of the dis-
tributive law is relatively intuitive, as we (due to the underlying metaphorical
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conception of sets as containers) can recruit our experience with containers
during the reasoning process17.

It is a well-known fact that inferences drawn from the inspection of figures can
lead to false conclusions for a number of reasons, such as lack of generality (in
figure 6.8, only the case n = 6 is depicted, but how can we describe the general
case with a figure), over-specificity (you cannot draw a triangle as such, but
will have to draw either a right, an obtuse or an acute triangle) and other
types of unintended exclusions (see Giaquinto, 2007, pp. 137 for a review).
With the inspection material anchors for metaphors (i.e. diagrams) we must
add inadequacy of the metaphor to the list of possible errors. Diagrams
only have iconic likeness with the mathematical objects under a particular
metaphorical conception, but metaphors can sometimes be misleading. In
the case of Venn-diagrams for instance, the diagrams only offer a partial
description of the properties of mathematical sets. Let me give two examples
where the inadequacy of the metaphor might lead to false conclusions, when
the diagrams are inspected.

Firstly, mathematics sets cannot only be subsets of other sets, they can
also be elements of other sets. This distinction carries important mathemat-
ical weight, but when sets are conceptualized as bounded regions in space,
the distinction is blurred. If a set A is represented as a bounded region of
space and encapsulated in another bounded region representing the set B, A
will seem to be a subset of B. A can of course be represented as a member

17In contrast, the reader might try to verify the theorem using the formal proof given
by Jacobson:

[L]et x ∈ A ∩ (B ∪ C). Since x ∈ (B ∪ C) either x ∈ B or x ∈ C, and
since x ∈ A either x ∈ (A ∩ B) or x ∈ (A ∩ C). This shows that A ∩
(B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C). Now let y ∈ (A ∩ B) ∪ (A ∩ C) so either
y ∈ A ∩ B or y ∈ A ∩ C. In any case y ∈ A and y ∈ B or y ∈ C. Hence
y ∈ A ∩ (B ∪ C). Thus (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C). Hence we have
both A∩ (B ∪C) ⊂ (A∩B)∪ (A∩C) and (A∩B)∪ (A∩C) ⊂ A∩ (B ∪C)
and consequently we have [the distributive law].

(Jacobson, 1985, p. 4)

This is not to say that verification of theorems using diagrams is superior to verification
via formal proof. In contrast to diagrammatic proofs, formal proof can be characterized
as precise and linear; in the formal proof the argument is broken down into a sequence of
small steps that can be verified one at a time. In many instances this is an advantage over
the use of diagrammatic proofs.
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Figure 6.15: Is A an element of B or subset of set B?

of B by other means, for instance by representing A symbolically as a dot
named ‘A’ inside the bounded region of space making up B, but this would
be to go beyond the original metaphor, and it would not make the metaphor
in question capture this particular property of sets (see figure 6.15).

Secondly, the metaphor might lead to wrong inferences concerning the
relative size of sets. In mathematics, two sets – and this includes sets with
infinitely many elements – are considered to be of the same size, if there
exists a bijection pairing the elements of the two sets. In the case of infinite
sets, this definition of size contradicts our intuitive geometrical experience
that the whole is greater than its parts. In figure 6.16, the natural numbers
are geometrically represented as a true subset of the rational numbers. A
natural and intuitive conclusion from this diagram would be, that the set of
rationals is larger than the set of natural numbers. But given the definition
of size currently accepted in mathematics, this is not the case. The natural
and the rational numbers are sets of precisely the same size.

Figure 6.16: Diagram illustrating the set N of natural numbers as a
subset of the set Q of rational numbers.

This underlines the fact that the conceptualization of sets as bounded
regions in space is merely a metaphor and not a literal description. It is a well-
known property of metaphorical descriptions that they are seldom complete.
A metaphorical description might capture some, but not all aspects of a given
phenomenon, and not all inferences of a metaphor might hold true. This is
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exactly why we use many different metaphors to conceptualize highly abstract
phenomena such as ideas; each metaphor captures parts of the phenomena
and leaves other parts in the dark.

This aspect of metaphor brings the importance of the choice of metaphor
in focus. As each metaphor describes the phenomena in question differ-
ently, they might have different implications, and consequently the choice of
metaphor used to conceptualize a phenomenon is not innocent. It shapes
how we subconsciously understand and deal with the phenomenon, and it
can determine the outcome of a debate concerning the properties of the phe-
nomenon in question.

In the world of mathematics, this is especially important as the prop-
erties of a given object or phenomenon is subjected to – and perhaps even
determined through – debate. The size of infinite sets is a case in point. As
noted above, the container metaphor for sets leads conclusions considered to
be false concerning the size of infinite sets. It would in fact be more adequate
to say that a choice of metaphor has been made. As I see it, there is no ob-
jective truth about the size of infinite sets. The truth was constructed by the
choice to apply the ‘pigeon hole principle’18 metaphorically to infinite sets.
Had we chosen to accept the container metaphor as an adequate description
of the size of infinite set, we would have reached another truth. It should be
noted, that the metaphors themselves did not imply or cause the choice.

The choice was most likely motivated by several other factors, such as
values residing in the mathematical community dictating the mathematicians
to expand mathematics as much as possible. I will, however, not go further
into this point here, only note that there is a limit to the power of metaphors;
they cannot cause their own acceptance, but once they are accepted, they
do exert a certain power on the way we conceive of things. Interestingly,
in recent years mathematicians have successfully developed transfinite set
theory based on the conception of size implied by the container metaphor
(see Mancosu, 2009, for a discussion). This underlines the fact, that we have
a real choice here. We can chose to develop transfinite set theory using either
the one or the other metaphor to conceptualize the size of sets, but the choice
will have real consequences. Different choices will lead to different truths.

18It states: ‘If you can put exactly one letter in all of the pigeonholes, the number of
pigeonholes and letters are the same.’
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6.10.2 Mixed anchors

Physical anchors for metaphorical mappings can also be created by the use
of symbols or a mix of symbols and other forms of representation. As an
example, I will take a closer look at the use of commutative diagrams in set
theory and algebra.

The visual representation of mappings in set theory is a good example of
the use of mixed material anchors for conceptual metaphors. From a strictly
formal point of view, a map consists of three sets, a domain S, a co-domain
T and a set α of ordered pairs (s, t), with s ∈ S, t ∈ T and such that:

1. for any s ∈ S there exists a pair (s, t) ∈ α for some t ∈ T

2. if (s, t) ∈ α and (s, q) ∈ α then t = q.

So a map in short states a relation between all of the elements of one set and
all or some of the elements of another sets.

Figure 6.17: Diagram with directed paths illustrating the mapping of
the set S on a subset of the set T . From a formal point of view, the
map consists of the domain {s1, s2, s3}, the co-domain {t1, t2}, and of the
following subset of the Cartesian product of the domain and co-domain
{(s1; t1), (s2; t2), (s3; t2)}

.

A map can be represented by adding arrows to Venn-diagrams represent-
ing sets, as seen in figure 6.17. The arrow is a conventional sign representing
directed movement. Here, the arrows do not only represent a direction (as
when they are used on a street sign), they furthermore constitute the ac-
tual path between the two points one is to take on the paper. All in all,
the diagram represents a layered metaphor, where sets are conceptualized as
bounded regions in space, and mappings as directed movement along paths
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connection the elements of the sets (see table 6.4 for details.). These concep-
tualizations are deeply metaphorical; sets are not bounded regions in space,
and although the concept of mapping has its roots in geometrical operations,
the concept as defined in set theory is a purely static object consisting of
three sets as described above (Jacobson, 1985, p. 6).

Sets Are Bounded Regions in Space With Maps

Source domain: Target domain:
Space Sets

Bounded regions in space → Sets

Points in the region → Elements of the set

Points in overlapping regions → Elements shared by two or more set

A map → A set of directed paths connecting
the points of two bounded regions

Table 6.4: Elements of the Sets Are Bounded Regions in Space With Maps

metaphor

In many cases, the precise relation between the elements of the sets is
either inconsequential or too cumbersome to represent explicitly, and maps
are simply represented as a movement along a directed path between sets
represented as locations in space labeled with letters (this is called external
diagrams in contrast to internal diagrams depiction relations between indi-
vidual elements). So a map α form A to B can for instance be represented
as A

α−→ B. This type of representation is particularly useful when maps
between several sets are involved. In the simplest case, we might have three
maps, say α form A to B, β form B to C and γ form A to C, represented by
the following triangle:

A
α //

γ
��@

@@
@@

@@
B

β

��
C

Interestingly, the metaphor is not adequate in this case. In the diagram, a
movement along the composition of α and β brings me to the same location on
the paper as a movement along γ. However, maps are not relations between
sets, but relations between the elements of sets, and the composition of α
and β is only equal to γ if it takes me to the same element in C for any
elements in A. If this is the case, the diagram is said to commute.
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The diagram in figure 6.18 is an example of the use of such a commutative
diagram in a mathematical textbook. The precise mathematical content and
relevance of the diagram is not so important here. It will suffice to know,
that the diagram illustrates the relation between two sets, their sum and the
set 2.

A1

A0

A0 + A1

�
�
��

@
@
@R

1

1

2

�
�
��

@
@
@R

-

-

-

i1

i0

1

0

f

Figure 6.18: Diagram illustrating the relation between the sets A0, A1,
their sum set A0 + A1 and the set 2 = {0, 1} (redrawn from Lawvere &
Rosebrugh, 2003, p. 31)

.

Diagrams of this type are not only used in set theory. Especially commuta-
tive diagrams are used in virtually all parts of abstract algebra and category
theory to express different types of mappings between different types of math-
ematical objects. Often the truth of a theorem can be converted to a question
of whether a certain diagram commutes.

In group theory, an interesting variant is used19. Here, mathematical
objects are not only represented as objects on the paper, the location of the

19For readers not acquainted with group theory, a group is a set G with a composition
∗ mapping G×G to G and satisfying the following three conditions:

1. the composition is associative, i.e. for all x, y, z ∈ G : (x ∗ y) ∗ z = x ∗ (y ∗ z),

2. the group contains a neutral element e satisfying e ∗ x = x ∗ e = x for all x ∈ G,
and

3. for any element x ∈ G the group must contain an inverse element x−1 satisfying
x−1 ∗ x = x ∗ x−1 = e.

Given two groups G and G′, a homomorphism is defined as a map ϕ : G 7→ G′ satisfying
the condition that ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) for all x, y ∈ G. An isomorphism is a bijective
homomorphism
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objects on the paper is also used to express inclusion: A subgroup H of a
group G is placed below G.

As an example, we can look at the two diagrams in figure 6.19. The dia-
grams are taken from a textbook on algebra, where they are used as a way to
illustrate Noether’s two isomorphism theorems (Thorup, 1998, p. 96)20. The
maps in question (homomorphisms) are represented with arrows as above,
but trivial inclusions are represented with strokes only.

{e} r
rH ∩N �
�
�

A
A
A
r rH N

�
�
�
A
A
A

�
�
�
rHN

rG

Noether’s first theorem

{e} r
rϕ−1(e′) = K

r
r

r
r
r
r

-

-

N

G

{e′}

ϕ(N)

ϕ(G)

G′

Noether’s second theorem

Figure 6.19: Diagrams illustrating Noether’s two isomorphism theorems
(redrawn from Thorup, 1998, p.96)

.

What is represented here, is in fact a very complex conceptual structure,

20The precise content of the theorems is not essential for the understanding of this
example, and I will not explain it in detail. For those interested, the theorems state the
following (see Thorup, 1998, p. 94-95):
Noether’s first isomorphism theorem: Let H and N be subgroup of G, where N is normal
in G. Then the subset HN = {hn|h ∈ Handn ∈ N} is a subgroup of G. Furthermore N is
normal in HN and H ∩N is normal in H and there exists a natural isomorphism,

H/(H ∩N)
∼−→ HN/N.

Noether’s second isomorphism theorem: Let ϕ : G → G′ be a homomorphism, and let
K be the kernel for ϕ. The we have: H 7→ H ′ defines a bijective map from the set of
subgroups H of G which includes K, on the set of all subgroups of ϕ(G). The inverse map
L 7→ ϕ−1(L), for subgroups L of ϕ(G).

Under this bijection, a subgroup N of G with N ⊇ K is normal in G if and only if ϕ(N)
is normal in ϕ(G). Furthermore, we have that if N is normal in G and N ⊇ K then there
exists a natural isomorphism,

G/N
∼−→ ϕ(G)/ϕ(N)
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where the original metaphor conceptualizing sets (or here groups) as physical
objects in space, is used opportunistically to conceptualize inclusion as rel-
ative physical location. This type of diagrams resemble technical drawings,
where, say, an engine is drawn as dismantled into its constituent parts, and
the parts are spread out in a sequence reflecting the sequence of assembly
(such as figure 6.20).

Figure 6.20: A BMW R-71 engine. Technical drawing from the factory
manual. From:
www.fallschirmjager.net/Vehicles/Motorcycles/BMWTechnical/Drawings.html

This adds to the original metaphor. Groups are not only conceptualized
as physical objects, they are conceptualized as objects consisting of parts.
Groups can be disassembled, and their parts can be spread out in space in a
sequence resembling the way the parts fits together inside the original group.
Furthermore, under a given map, parts of one group might have relations
with analog parts of other groups.

As noted above, material anchors for conceptual metaphors serve several pur-
poses: 1) they ground our understanding of mathematical content in sensory-
motor experience by conveying a metaphorical conception of the objects and
relations in question, 2) they serve as a stable, external representation of
the metaphorical conceptualization and 3) they can be used to infer new
knowledge about the objects represented. In the examples above, a mix of
mathematical and other symbols are used to create a material anchor for
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a metaphors, conceptualizing sets and groups as physical objects located in
space and maps as trajectories connecting these objects.

These anchors are created by the physical layout and composition of
the actual symbols on the paper. This adds to the list of things we can
do with abstract symbols; by arranging the symbols on the paper, we can
create material anchors for conceptual metaphors and blend. In doing so,
the symbols are used both as physical objects and as semantic objects – the
symbol ‘+’ for instance has a precisely defined meaning in the sign ‘A +
B’ in figure 6.18, and the arrows of the diagram are defines as denoting
group homomorphisms or maps between sets (relative to content). So the
symbols, in other words have a double life here; as semantic objects they
represent mathematical objects and operations, and as physical objects they
are used to represent elements of a metaphorical conception of these objects
and operations.

6.11 The use of conceptual blends in mathe-

matical thinking

The number line is a simple example of a conceptual blend integrating math-
ematical objects and sensory-motor experience. In the blend, numbers are
metaphorically conceived as locations in space. This metaphorically con-
structed domain, is then blended with the geometrical domain of lines to
create an entirely new domain, where numbers are conceived as locations on
a line.

In the blend, the arithmetic property of ‘being greater than’ is associ-
ated with the geometrical property of relative location, and the arithmetic
property of difference is associated with the geometric property of directed
distance. A particular number, zero, is associated with a particular location,
the origin O, and the arithmetic difference of +1 is associated with a particu-
lar directed distance, the unit. This creates a new conceptual domain, where
numbers are conceptualized as locations in directed distance form a particu-
lar point O. In the blend, structure from both input-domains are integrated,
and numbers are simultaneously conceptualized as geometrical points on a
line and as mathematical objects obeying the laws of arithmetic. This is why
the blend is a blend, and not merely a metaphor; numbers are not simply
(metaphorically) conceptualized as locations on a line, they are done so in a
way that integrates arithmetic properties with properties of space (see table
6.5 for further details, see also Lakoff & Núñez 2000, pp. 278).
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The Number Line blend
Domain 1 Domain 2

Numbers as points in space A directed line

A number ↔ A point on the line

0 ↔ A point O (the origin)

1 ↔ The location one unit distance
to the right of the origin

a < b ↔ Point a is located to the left of point b

a = b ↔ Point a is in the same location
as point b

Absolute value of a ↔ Distance from point a to point O

Table 6.5: Elements of The Number Line blend

The use of conceptual blending is widespread in mathematics, and sev-
eral such blends have been analyzed and discussed in the literature (see for
instance Lakoff & Núñez, 2000; Fauconnier & Turner, 1998, 2003; Robert,
1998). However, most of this work concentrates on the integration of differ-
ent mathematical domains. As an addition to this work (and in line with the
foregoing section), I will focus on the integration of physical and mathemat-
ical domains and on the use of material anchors for such mappings.

When drawn in the familiar way, the number line is in fact an excellent
example of such an anchor, made up by a mixture of mathematical symbols
and geometrical elements. In the following subsection, I will contribute with
one more example by giving an in-depth analysis of the various material
anchors used for a conceptual blend in the proof of a particular result.

6.11.1 Anchoring the countability of the rational num-
bers

The countability of the rational numbers was proved by George Cantor in
1874. His second proof of the theorem, published in 1895, is the one most
widely known and used, so I will only discuss that proof here.

The basic idea of the proof is to establish an algorithm that makes it
possible to go through all of the rational numbers one by one. If one can go
through the numbers one by one, they must be countable (or more precisely:
the algorithm establishes a one-to-one connection between the rational and
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the natural numbers).

In most presentations of the proof, numeral symbols representing a section
of the rational numbers are arranged in a particular pattern in space, and
the algorithm is described as a way physically to move through this pattern.

In the presentation of the proof in (Kline, 1990, p. 996) for instance, ten
rational numbers are arranged in a triangular array with rows of ascending
denominator and columns of ascending nominator (starting with 1/1 in the
top left corner) (see figure 6.21). One can imagine that all of the rationals
will be included in the array, if the pattern is continued infinitely. We are
told, that the sum of the nominator and denominator are constant for all the
numbers in any diagonal.

Figure 6.21: Diagram proving the countability of the rational numbers
(reprinted Kline, 1990, p. 996).

The central algorithm is described by pointing out a particular way
through this array of numbers. This is done by the addition of arrows to
the array of numbers, and by the following explanatory text: “Now one
starts with 1/1 and follows the arrows assigning the number 1 to 1/1, 2 to
2/1, 3 to 1/2, 4 to 1/3, and so on. Every rational number will be reached
at some stage and to each one a finite integer will be assigned” (Kline, 1990,
p. 996).

The proof as given here is vastly dependent on cognitive mapping. Two
metaphors are at play; firstly the rationals are conceptualized as objects
located in space (in an array), and secondly, the idea that we can include all
of the rational numbers by completing the array is a clear use of the Basic

Metaphor of Infinity, which I will not go further into here (see Lakoff &
Núñez, 2000, pp. 158 for a description of this metaphor).

This creates a metaphorical domain, where the totality of the rationals
is conceptualized as an infinite array of physical objects. In the proof, this
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metaphorical domain is integrated with a domain of directed movement in
physical space to create an abstract domain, where one can actually move
through all of the rationals one by one. This is not merely a metaphor,
but a blend, where structure from both domains are integrated to create a
completely new domain; the rationals are at once conceptualized as numbers
(arranged by the value of the nominator and denominator) and as discrete
locations on an path of directed movement. So the composition in this case is
the placement of the number-objects on a particular path of directed move-
ment giving each number-objects a location on the path. The completion
consists in the infinite extension of the array of number-objects and the path
going through them. By running the blend, we can infer that all of rational
numbers can be reached one by one by following this path, and hence that
they must be countable.

The accompanying diagram serves as a material anchor for the concep-
tual blend. Physical symbols representing the rationals are arranged on the
paper forming part of the imagined array of the blend, and arrow symbols
are used to indicate the path one is to take through the number-locations.
So the material anchor is created by arranging mathematical and other sym-
bols in space, and – once more –, mathematical symbols are at once used
as physical objects with a location in space and as semantic objects with a
particular meaning. Furthermore, as in the previous examples, the material
anchor serves both as a stable, external representation of a complex concep-
tual domain, and grounds our understanding of the mathematical content
represented in physical experience. In this case, the existence of a bijective
map between two infinite sets of numbers is inferred by appealing to our
knowledge of moving along paths traversing objects (see figure 6.22).

It is debatable whether the conceptual blend is essential for the proof. In
Cantors original poof (Cantor, 1895, pp. 492), we find no array of rationals
and no arrows indicating a paths of movement through them. Instead, Cantor
represents the (positive) rationals as a sequence of ordered pairs (µ, ν) of
natural numbers. The pairs are ordered in accordance with two principles,
1) after the sum ρ = µ + ν of the elements and 2) pairs with same sum are
ordered so the first elements of the pairs form an increasing sequence:

(1, ρ− 1), (2, ρ− 2), . . . , (ρ− 1, 1)

Cantor continues:

. . . so erhält man sämmtlicher Elemente (µ, ν) in einfacher Reihen-
form:

(1, 1); (1, 2), (2; 1); (1, 3), (2, 2), (3, 1); (1, 4), (2, 3), . . . ,
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und zwar kommt hier, wie man leicht sieht, das Element (µ, ν) an de
λst Stelle, wo

λ = µ+
(µ+ ν − 1)(µ+ ν − 2)

2

(Cantor, 1895, p. 494)

And, Cantor concludes, as λ takes on every integer value precisely once, it
constitutes a bijective map between the natural and the (positive) rational
numbers.

Although less spectacular, the sequence of pairs printed by Cantor is still
a material anchor for a cognitive blend. The rationals are conceptualized as
objects in space and a path traversing the totality of these objects is imag-
ined. This metaphorical blend is materialized on the paper by a particular
arrangement of the physical symbols used to represent the numbers in ques-
tion. Only Cantor has arranged the numbers as a one dimensional sequence,

Figure 6.22: Two spaces are integrated to create a blended space, where
the rational numbers are conceptualized as locations on a directed path.
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instead of spreading them out in a two dimensional array. This makes the
path traversing the numbers obvious, and eliminates the need to point it out
using arrows or other visual cues.

Notice also, how Kline’s version of Cantor’s proof is actually wrong;
Kline’s path through the rationals gets the numbers in every other diago-
nal in the wrong order. If Kline were to follow Cantor’s order, his path
should have looked like this:

1/1 2/1 3/1 4/1 . . .
↗ ↗ ↗

1/2 2/2 3/2 . . .
↗ ↗

1/3 2/3 . . .
↗

1/4 . . .
...

...
...

...
. . .

Kline however, clearly – and wisely – has chosen cognitive over formal
accuracy, by choosing a connected path going through the rationals in a
different order than Cantor’s. In other versions of the proof, different layouts
of the rationals are chosen and a variety of paths are used (for one more
example, see figure 6.23). They are not formally equal to Cantor’s proof,
but from a cognitive point of view, they all share the same idea of creating
a cognitive blend, where the rationals are conceptualized as locations spread
out in space, and of showing that there exists a connected path taking you
through all of these number-locations one by one. And of course, they all
use mathematical symbols (sometimes combined with arrows etc.) to create
a physical anchor for the cognitive blend.

Despite their presence in most versions of the proof, the blend and the
physical representation of it are in fact not essential. From a formal point of
view, all you need is the λ-function

λ = µ+
(µ+ ν − 1)(µ+ ν − 2)

2

creating a bijection between the sets N and Q. Using only the λ-function
might not completely clean the proof for all cognitive mapping, but it will at
least remove the cognitive blend under discussion.

Consequently, the cognitive blend and the material anchor for it are not
strictly necessary for the proof. We could choose to present the proof purely
formally by use of the λ-function, but we rarely do so. In fact, I have never
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(a) Physical layout of the rationals

(b) Connected path through the rationals

Figure 6.23: Alternative layout of and path through the rationals.
(Reprinted from Friend, 2007, p. 18 and 19).

seen the λ-function mentioned anywhere except in Cantor’s original proof –
the proof seems always to be explained by presenting a material anchor for
the blend. So in this case, the anchor and the blend are used as heuristic
tools that make the content of the proof intuitively and effortlessly graspable
by giving it a concrete physical form (in the material anchor) and relating it
to concrete bodily experience (via the blend).

6.12 Lakoff and Núñez’ radical theory of im-

pact

So far, the conceptual metaphors I have analyzed seem to have a limited
impact on the content of mathematics; apparently, the main role of the
metaphors is to ground the meaning of mathematical content in sensory-
motor experience, which in turn allows for easier and more intuitive reason-
ing. For the most parts, the metaphors are not indispensable. The reasoning
could just as well have been performed purely formally without the use of
metaphors, so the metaphors and blends simply seems to be neutral cognitive
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tools.

In the following sections, I will discuss whether this picture of metaphors
as merely heuristic tools is adequate, or whether the use of metaphors might
have a more significant impact on the content of mathematics. I will open the
discussion by presenting and evaluating the radical theory of impact proposed
by George Lakoff and Rafael Núñez in their groundbreaking (and highly
controversial) main work Where Mathematics Comes From. Here, Lakoff
and Núñez explains how our innate arithmetic, covering only the arithmetic
properties of collections containing at most four objects, are expanded firstly
to full blown arithmetic and ultimately to all of mathematics in a process,
driven by the use of conceptual metaphors and blends.

In this presentation of Lakoff and Núñez’ work, I will mainly focus on their
description of how innate arithmetic is expanded into general arithmetic. The
first step in this process is, according to Lakoff and Núñez, the creation of
four metaphors, grounding our innate arithmetic skills in everyday sensory-
motor experiences. These metaphors are called the four grounding metaphors
(4Gs) and with them, innate arithmetic is respectively conceived as (Lakoff
& Núñez, 2000, pp. 54):

• object collection

• objects construction

• motion along a path and

• the use of a measuring stick.

The 4Gs offer natural conceptualization of all basic elements of innate arith-
metic, viz. cardinality, order (greater than, smaller then) and the operations
plus and minus. Here, I will only describe the exact content of the Arith-

metic is Object Collection metaphor (table 6.6). The reader is referred
to (Lakoff & Núñez, 2000) for exact descriptions of the other three Gs.

The conceptualizations of arithmetic offered by the 4Gs are visible in
the expressions we use, when we communicate arithmetic facts. Taking the
4Gs one by one, arithmetic is conceived as object collecting when we say for
instance: “If you add three and four, you get seven” or “If you put two and
two together, you get four”. Object construction is visible in the expressions:
“Five is made up of two and three,” and “If you take three from seven, how
much do you have left?”. Arithmetic is conceptualized as motion along a path
when we say: “The result is around forty,” and “4.9 is near 5” (examples
from Lakoff & Núñez, 2000, p. 54–74. No examples of the Measuring Stick

metaphor is given).
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Arithmetic Is Object Collection

Source-domain: Target-domain:
Object Collection Innate arithmetic

A collection of objects → A number

The size of the collection → The size of the number

A bigger collection → A greater number

The smallest collection → The unit (one)

Putting collections together → Addition

Taking a smaller collection → Subtractionfrom a larger collection

Table 6.6: Elements of the Arithmetic Is Object Collection

metaphor. Reproduced with small adjustments from (Lakoff & Núñez,
2000, p. 55).

In the limited domain of our innate arithmetic, the structure of all of the
4Gs are isomorphic and corresponds to the structure of our inborn arithmetic.
So for instance, according to our innate arithmetic, we expect two plus two
to be four. This corresponds precisely to the structure of the source-domains
of all of the 4Gs: A collection of two objects added to a collection of two
objects results in a collection of four objects, taking two steps down a road
followed by two more steps in the same direction leaves you in the same place
as taking four steps down the road etc.

Once the analogies with the source-domains of the 4Gs are established,
the metaphors are used to expand arithmetic beyond its original limits. This
is the next step in the creation of general arithmetic. As an example, we know
from basic experience that adding a collection of objects to another collection
of objects always results in a collection of objects. When this structure is
projected onto the domain of arithmetic, we can infer that the addition of
two numbers must always result in a number, and consequently N must be
closed under addition. This forces us to expand the domain of arithmetic
from the four element limits of our innate abilities, to the unlimited natural
numbers.

Similarly, all basic laws of arithmetic, such as the commutativity and
associativity of addition, are derived by projecting the inferential structure
of the source-domains of the 4Gs to the domain of arithmetic. To take an
example, we know from experience that the order is insignificant, when you
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pile collections of objects; you will end up with three objects no matter
whether you add one object to a collection of two objects, or the two objects
to the one. When this structure is transferred to arithmetic, you get the law
of commutativity for addition (a+b = b+a). Similar results can be obtained
by projecting structure from the other 3G’s.

The projection of structure from the source-domains of the 4Gs also allows
us to define new operations. Most importantly, collections of the same size
can be pooled into new collections; A collections of size B can be pooled into
a new collection of size C. When this structure is projected onto the domain
of arithmetic, it entails a new operation, multiplication: A·B = C. Similarly,
the inverse operation, division, is entailed by projection the reverse operation
of splitting a collection into a number of equally sized subcollections.

As the final step in the creation of general arithmetic, a number of new
mathematical objects such as zero, fractions, and negative and complex num-
bers are created through projections from basic experience of one or more
of the 4Gs (and some times with the addition of other metaphors or con-
ceptual blends). I will discuss the creation of complex numbers at length
below. Of the other entities, zero is the natural consequence of both the
Arithmetic Is Object Collection and the Arithmetic Is Motion Along

A Path metaphors; in the first, zero is naturally conceptualized as lack of
objects to form a collection (Lakoff & Núñez, 2000, p. 64), and in the second,
zero is naturally conceived as the origin point. The conceptual metaphors
are in other words entity-creating; they create zero as an actual number.

The negative numbers are entailed by a natural extension of the Arith-

metic Is Motion Along A Path metaphor; if positive numbers are concep-
tualized as the points lying to the one side of the origin, negative numbers
are simply the points lying to the other side (Lakoff & Núñez, 2000, p. 72).
As a consequence of the measuring stick-metaphor, given a unit length, any
physical segment is conceived as a number. This conceptual blend leads
to the expansion of arithmetic with both the rationals (fractions) and the
irrationals (Lakoff & Núñez, 2000, p. 70–71).

All in all, according to Lakoff and Núñez, general arithmetic is created in
a process, starting with the experience of a correspondence between our in-
nate arithmetic and four different types of life-world experiences (the source-
domains of the 4Gs). This leads to the formation of a strong analogy be-
tween innate arithmetic and these four different types of experiences. Once
this analogy is established, elements of innate arithmetic are conceptualized
metaphorically using elements from the source domains of the 4Gs. Subse-
quently, structure not in the original analogy is projected from the source-
domains of the 4Gs onto the domain of innate arithmetic. This expands
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Extensions of innate arithmetic entailed by the
Arithmetic Is Object Collection-metaphor

Source-domain: Target-domain:
Object Collection Innate arithmetic

Adding collections of objects always → N is closed under additionresult in a new collection of objects

Adding a collection to another collection,
→

(a+ b)− a = b
and then removing it again (addition and subtraction

leaves you with the original collection are inverse operations)

The order does not matter when you

→
pool collections (you get the same resul- Addition is commutative

ting collection whether you add collection (a+ b = b+ a)
A to collection B or B to A)

Pooling of A collections of size B → a · b = cinto a new collection of size C

Splitting a collection of size C into → c/a = bB collections of size A

The lack of objects to form a collection → 0

Table 6.7: Examples of extensions of innate arithmetic entailed by the
Arithmetic Is Object Collection metaphor. The same extensions can
be made for all or some of the other 4Gs.

innate arithmetic adding both new mathematical objects and new opera-
tions.

Once fill-blown arithmetic is created, it is, according to Lakoff and Núñez,
expanded even further using a host of other conceptual metaphors, so-called
‘linking metaphors’ (linking different mathematical domains to each other)
and conceptual blends (I will not describe the details of this process here,
but in section 6.12.1.2.3 I will give an example by presenting Lakoff and
Núñez’ description of the creation of complex numbers). In the end, the
process lined our above leads to the creation of large and important parts
of mathematics, such as the real and complex number systems, the concept
of infinity, transfinite numbers, limits, and specific theorems, such as Euler’s
formula eπi + 1 = 0. If Lakoff and Núñez are right, conceptual metaphors
plays a vital part and is the driving force in the development of most of the
mathematics known to us today.
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The picture of mathematics presented by Lakoff and Núñez can be broken
down to two different claims. First of all, they clearly make a cognitive claim:
The 4Gs are cognitively active metaphors that constantly shape the way we
understand arithmetic. Secondly, Lakoff and Núñez also seem to make a
genealogical claim about the genesis and expansion of arithmetic, although
it is at times difficult to see, whether they are making a historical claim
about the actual development of mathematics, or more of a psychological
claim about how mathematics (under a particular rational reconstruction)
can be made meaningful. So for instance, when they describe how zero
is ‘created’ as a number by a conceptual metaphor, do they refer to actual
historical events that led to the invention and acceptance of zero? Or do they
only mean to describe how each of us learns to recognize zero meaningfully
as being a number? As I see it, Lakoff and Núñez are not completely clear
about this point, and statements supporting both positions can be found in
(Lakoff & Núñez, 2000). For brevity, I will not discuss Lakoff and Núñez’
exact position on this matter any further, but simply discuss the evidence
given for the genealogical hypothesis, as that hypothesis makes the strongest
claim concerning the impact of conceptual metaphors, and hence is the most
interesting from the point of view of the current investigation.

It should also be noted that genealogical and cognitive claims are logically
independent. Metaphors and cognitive mechanisms at one point involved in
the development of a theory or conceptual system, do not necessarily need
to stay active, once the theory is developed. This was for instance the case
with the Saturnian system metaphor, which was an active and cognitively
important metaphor in the development of the Bohr-Rutherford model of
the atom, but quickly played out its role and became a dead metaphor,
only useful for pedagogical purposes (Knudsen, 1999, pp. 106). Conversely,
metaphors that are active and play a vital part in the modern understanding
of a theory need not to have been actively involved in the development of this
theory. As I will argue below, this is clearly the case with the metaphors used
in the modern conceptualization of complex numbers (subsection 6.12.1.2.3).
For this reason, the two different claims must be justified independently.

6.12.1 The genealogical claim

Let me begin by spelling out the exact content and radicality of the claim.
The claim is in its essence the statement of a particular kind of construc-
tivism: Full-blown arithmetic is constructed by us primarily by projecting
the inferential structure of four domains of embodied experiences onto the
rudimentary inborn arithmetic. The rest of mathematics is constructed us-
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ing similar conceptual metaphors or linking metaphors, building new content
on top of already created parts of mathematics. This naturally places con-
ceptual metaphor in a central position in the development of mathematics,
and ascribes an enormous impact on the content of mathematics to our use
of such metaphors. It might in fact be wrong to speak of an impact here.
Mathematics is not just influenced by our use of conceptual metaphor; it is
simply a product of conceptual metaphors mapping real world experiences
onto the abstract domain of mathematics.

This constructivist stance should not be confused with the idea that math-
ematics is hardwired into our brain or otherwise determined by our biology.
Firstly, as Núñez has pointed out in subsequent work (Núñez, 2009), the con-
structivist theory regards the rudimentary mathematics, we are born having,
as being qualitatively insufficient for the creation of full-blown mathematics.
Our innate skills simply cannot be scaled up to provide the richness and
precision of the natural number system or general arithmetic:

Explaining the origin of numbers and arithmetic requires an explana-
tion that gives an account of their precision and the highly developed
range extension, as well as the specificity and precision of their com-
binatorial power. Mere training at improving numerosity judgments,
whether it is at the level of the individual or the neuron, doesn’t pro-
vide the answer to the question on the nature of number systems and
arithmetic.

(Núñez, 2009, p. 72).

Something else is needed, and this is, according to the strong genealogical
claim, the cognitive mechanisms provided by conceptual mapping. So, math-
ematics is not hardwired into our brain in the form of a pre-given ‘number
module’ or similar, according to Lakoff and Núñez . Rather, it is constructed
in an active process, where a small core of hardwired mathematics is articu-
lated and extended using the qualitatively different cognitive mechanism of
conceptual mapping.

Secondly, although the conceptual metaphors used in the construction
of mathematics to some extend depend on our brain and in general biology,
they are not, according to Lakoff and Núñez, determined by it. There is room
for contingency, as culture-specific ideas (this could be ideas from science,
philosophy, religion etc.) can be brought into mathematics and shape its
development in different ways:

There is a sense in which mathematics in not culture-dependent and
another in which it is culture-dependent.
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• Mathematics is independent of culture in the following very im-
portant sense: Once mathematical ideas are established in a
worldwide mathematical community, their consequences are the
same for everyone regardless of culture. (However, their estab-
lishment in a worldwide community in the first place may very
well be a matter of culture.)

• Mathematics is culture-dependent in another very important
sense [. . .] Historically important, culturally specific ideas from
outside mathematics often find their way into the very fabric
of mathematics itself. Culturally specific ideas can permanently
change the actual content of mathematics forever.

(Lakoff & Núñez, 2000, p. 356)

As examples of such cultural-specific ideas that have made their way into and
have shaped the development of mathematics, Lakoff and Núñez mention
the idea that any theoretical building (including mathematics) must have a
foundation, and the idea that mathematical reasoning must be a version of
logic.

In subsequent work, Núñez allow for an even stronger influence from cul-
ture. A study of the Aymara language of the Andes’ highlands shows that the
speakers of this language, conceptualize time in a way that is inconsistent
with our standard conceptualization of the phenomena. In both standard
English and Aymara, time events can be conceptualized as locations in uni-
directional space – this is for instance, what we do, when we say: “I’m looking
forward to the Holidays” or “I’m glad the winter is well behind us now”. As
indicated by the examples, English speakers conceptualize the future as be-
ing ahead of us, and the past as being behind us. The Aymara speakers
however, conceptualize the future as behind them and the past as in front
of them. So both language groups use the same conceptual metaphor Time

Events Are Locations In Unidirectional Space, and both consistently
use the inferential structure of the source-domain to describe time-events,
but the two groups project the inferential structure onto the target domain
in completely different ways, and that leads to two mutually inconsistent
conceptualizations; what is true for an English speaker (e.g. “The winter is
behind us”), will be false for an Aymara speaker. Consequently, there is no
single, transcendental truth about such imaginary structures. The truth will
always be relative to the particular metaphorical mapping used to structure
the abstract domain in question (Núñez, 2009).

So although our biology to some extend determine which bodily expe-
riences are available to us, it does not determine how we use them. This
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leaves a lot of latitude for cultural and other ideas to put their mark on any
particular abstract conceptualization.

Furthermore, although the source-domains of the constituting metaphors are
experiences of the physical world, the claims made by Lakoff and Núñez
should not be mistaken for a empiricistic claim (such as the one made by
John Stuart Mill, that mathematical theorems are inductive generalizations
based on direct observation (Mill, 1973)). Mathematics is not in a direct
way ‘out there’ as an objective parts of the external world. There are several
reasons for this.

Firstly, what Lakoff and Núñez claim is only that the structure of lo-
cal experiences is projected onto the domain of mathematic. The difference
between these two claims is very visible in the example given above on the
closure of N. In Lakoff and Núñez’ view, the closure of N is a consequence of
the projection of the local observation that we can always add more objects to
a collection. It does not matter that we cannot in fact make a pile containing
infinitely many objects, due to the finite nature of the Universe. What mat-
ters is the structure we experience in our every-day handling of objects, and
exhausting the Universe is not part of this experience. In a strict empiricist
theory on the other hand, mathematical theorems must be based on actual
observations, and consequently infinitistic mathematics cannot be accounted
for – and that is one of the major points of criticism raised against classical
empiricist theories of mathematics. Lakoff and Núñez however, avoids this
type of criticism by focusing on locally observed structure.

Secondly, the experiences used to build mathematics are not neutral or
objective observations, as is demanded in an empiristic theory. Rather, they
are the results of interactions between a particular kind of being, having
a particular bodily and morphological structure, and its environment. This
makes the experiences used to create mathematics specifically human and de-
pending on our special way of being in the world. Other intelligent creatures
trying to create mathematics might not have the same kind of experiences
available to them (unless of course, their morphology and habitat are similar
to ours in relevant aspects).
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This is the main elements of Lakoff and Núñez’ strong genealogical claim:
Mathematics is constructed by projection life-world experience onto rudi-
mentary inborn mathematical skills. Mathematics is ‘neither hardwired nor
our there’ (as Núñez expresses it (2009)); it is not hardwired, because our in-
nate mathematical abilities are qualitatively too weak to generate full-blown
mathematics. It is not out there, because it is not based on inductive gen-
eralizations of neutral observations. Mathematics is a particularly human
construct, dependent both on our biology and interactions with our envi-
ronment, and on cultural-dependent ideas and interpretation of our basic
life-world experiences.

In the discussion of this claim it will be useful to make a further subdivi-
sion between 1) the original genesis of basic arithmetic and 2) the expansion
of arithmetic (with new objects and operations).

6.12.1.1 Genesis of arithmetic

Lakoff and Núñez’ description of the genesis of basic arithmetic is in many
ways attractive and certainly adds to classical empiristic theories. As I see
it, however, the main problem concerning the description is the question
whether the cognitive mechanisms involved are in fact conceptual metaphors,
as claimed by Lakoff and Núñez. A conceptual metaphor is a mapping be-
tween two distinct domains, but it is in my view questionable whether innate
arithmetic can be counted as an independent conceptual domain. As we saw
in chapter 4, innate arithmetic is nothing but the ability to pay attention to
the numerical aspects of experience, perhaps added some innate expectations
concerning the numerical behavior of small number of objects. By represent-
ing small number of objects as object files, human infants might be able to
form the expectation that two objects added to one object should result in
three objects, but they do not have conceptual knowledge that 1 + 2 = 3,
and to them, the numbers one, two and three are nothing separate from the
experience of one, two or three objects (or tones or jumps of a doll etc.).
For this reason, it is questionable whether innate arithmetic can be counted
as a separate conceptual domain that exists independent of our experiences
and which might be metaphorically conceptualized in terms of such experi-
ences. What is described as innate arithmetic is more likely the ability to
pay attention to particular aspects of experience.

If this is the case, the close connection between arithmetic and the source-
domains of the 4Gs cannot be described as a cross-domain mapping, where
structure from one domain is mapped onto another. Instead, what Lakoff and
Núñez describes, seems to be a process, where the domain of abstract arith-
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metic is formed by focusing solely on the numerical aspects of experiences
involving object collections, object construction and movement along paths.
Such a process is more rightly described as a process of abstraction than as
a process of cross-domain mapping. This being said, the difference between
the two types of processes might not be that big. The cognitive mechanism
of cross-domain mapping always involves an element of abstraction, as we
must always abstract from some aspects of the two domains in order to see
a structural likenesses between others. So for instance, when the atom is
described metaphorically as a Solar system, we abstract from size, weight,
temperature and so forth, and focus on certain structural similarities between
the two domains.

Theories explaining the genesis of mathematics with a form of abstraction
from experience are not new. They are not unproblematic either, but Lakoff
and Núñez do seem to avoid two of the most common objections. Firstly,
it is commonly objected that the process of abstraction is obscure. This is
true, but by placing the genesis of arithmetic in the general context of cog-
nitive semantics, the process of abstraction can at least be seen as a part
of a general and important cognitive mechanism, i.e. conceptual metaphor.
We might not know how we perform the abstractions involved in conceptual
mapping, but (according to cognitive semantics) we do it all the time. Al-
though this does not explain the process of abstraction, it at least locates it
as a normal part of our cognitive life, instead of seeing it as a special pro-
cess invented especially to explain the genesis of mathematics. Secondly, it
is commonly objected that arithmetic, involving infinity or even just large
numbers plus the more advanced parts of mathematics, cannot be described
by processes of abstraction. This objection clearly does not apply to the the-
ory proposed by Lakoff and Núñez, as they 1) only claim arithmetic to take
departure in locally observed structure (which makes it possible for them to
account for infinity, as described above), and 2) more advanced mathematics
is constructed but other (and truly) metaphorical mappings. The convincing
answer to this last objection is in my view one of the main assets of Lakoff
and Núñez’ theory.

Another and minor problem facing Lakoff and Núñez’ theory, is the fact
that the genesis of arithmetic can hardly be accomplished with experiences
and cognitive abilities existing on a personal level alone. If that was the case,
we would expect humans to develop basic arithmetic skills spontaneously.
However, the possession of arithmetic skills beyond the rudimentary skills
of innate arithmetic is not universal, but seems to be culture-dependent.
In this case, the culturally dependent element can hardly be the metaphors
(or source-domains of abstraction) as these are universally shared life-world
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experiences. This suggests, that the development of arithmetic not only
depends on the individual, but also on culture-dependent artifacts such as
number words or other counting sequences, and material cognitive artifacts
such as tally sticks or other types of representational means strong enough
to express or even calculate arithmetic facts.

Although the theory proposed by Lakoff and Núñez is not the final answer
to the genesis of arithmetic, it should not be dismissed too easily. The theory
does offer a new and interesting explanation to the mysterious connection
between the real world (or at least our experience of it) and the abstract
domain of arithmetic. Furthermore, the theory is an attempt to place the
explanation of the genesis of arithmetic on empirical data (from cognitive
science), so although the theory might seem somewhat speculative, it is in fact
much less speculative than other similar theories (such as the one proposed
by Mill). What is completely lacking is historical evidence. The origin of
arithmetic is after all a historical event, and a theory explaining it should be
backed up by historical data, or perhaps by date from contemporary cultures
still in the process of developing arithmetic. This lack of historical evidence
turns Lakoff and Núñez’ theory into a possible explanation of what could
have happened; a model, so to speak, which seems to have a good fit with
two types of date: human cognition and the nature of arithmetic.

6.12.1.2 Expansion of arithmetic

Lakoff and Núñez’ picture of the expansion of arithmetic (taken in its strong
version), is clearly a claim about the historical development of mathematics
and the origin of certain mathematical concepts. For this reason, it will
need historical evidence as justification, and in this case Lakoff and Núñez
do provide some.

In connection to the development of general arithmetic, Lakoff and Núñez
primarily present two historical cases as justification: The role played by the
discovery of incommensurability in the construction of irrational numbers
(Lakoff & Núñez, 2000, p. 70–71), and the role played by the use of the
number line in the 16th century in the construction of negative numbers
(ibid. p. 73-74). I will discuss these two cases in turn, beginning with the
discovery of incommensurability.

In connection to the development of other and more advanced parts of
mathematics, several case studies are presented. I will here limit myself to
present and discuss Lakoff and Núñez’ description of the development of
complex numbers
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6.12.1.2.1 The discovery of incommensurability
According to Lakoff and Núñez, the expansion of arithmetic to include irra-
tional numbers was the direct result of the discovery of incommensurability,
in combination with a particular conceptual blend integrating numbers and
physical segments. I will describe these two elements one by one, and then
give my own comments.

The discovery of incommensurability, in short, refers to the discovery,
made by Greek mathematicians sometimes during the 5th century bce, that
the square root of two cannot be expressed as an irreducible fraction p/q for
any natural numbers p and q. In modern terms, this amounts to saying that√

2 is not a rational number.

Given the Pythagorean theorem a2 + b2 = c2, it can easily be seen that
the length of the diagonal of a unit square equals the square root of two. So
it follows as an immediate consequence of the discovery incommensurability,
that an easily constructible length, i.e. the length of the diagonal of a unit
square, cannot be expressed as a fraction p/q of the unit for any natural
numbers p and q.

The Number/Physical Segment blend
Domain 1 Domain 2

The use of a measuring stick Arithmetic

Physical segments ↔ Numbersconsisting of parts of unit length

Basic physical segment, ↔ One(the unit segment)

The length of the physical segment ↔ The size of the number

Manipulations of physical segments ↔ Arithmetic operations

Forming longer physical segments
↔by putting segments together Addition

end-to-end

Taking a shorter physical ↔ Subtractionsegment from a longer

Table 6.8: Relevant elements of the Number/Physical Segment blend
(Lakoff & Núñez, 2000, p. 68-71)

The second element of the case-study is a particular conceptual blend
integrating numbers with physical segments. The blend is called the Num-

ber/Physical Segment blend, and is created by integrating the source- and
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target-domains of the Measuring Stick Metaphor (see table 6.8 for details).
The blend creates a new conceptual domain, in which there is a one-to-one
correspondence between numbers and physical segments (and not only a seg-
ment for every number, as entailed by the Measuring Stick Metaphor).
Consequently, in the blended domain there must be a number corresponding
to the length of any line segments, including the length of the diagonal of
the unit square.

Now, according to Lakoff and Núñez, the discovery of incommensurabil-
ity combined with the Number/Physical Segment blend, forced the Greek
mathematician Eudoxus to conclude that

√
2 must exist as a number. Conse-

quently “[i]t was the Measuring Stick metaphor and the Number/Physical

Segment blend that gave birth to the irrational numbers” (Lakoff & Núñez,
2000, p. 71) (notice the clear expression of the strong genealogical thesis in
this quote).

There is much to be commented on this case study. Firstly, it eludes me why
it is necessary to use the Number/Physical Segment blend to create the
irrational numbers. According to (Lakoff & Núñez, 2000, p. 70), the Mea-

suring Stick Metaphor can be used as an object-construction metaphor to
create the rational numbers (by mapping the n-th part of a physical segment
onto the fraction 1/n) and zero (by mapping the lack of segments onto the
domain of numbers), so why can’t the metaphor be used to create

√
2 and

other irrationals as well?

Secondly, from a strictly mathematical point of view, there is something
wrong with the interpretation of the blend. In a geometrical interpretation,
the incommensurability of two line segments means that they cannot be
constructed using the same basic line segment (of finite length). So when
the diagonal is incommensurable with the side of the unit square, it means
that I cannot find a basic line segment that allows me to construct both
the side of the square and the diagonal by placing copies of the basic line
segments end-to-end. As only this kind of construction is allowed in the
Number/Physical Segment blend, it seams that the diagonal is in fact not
constructible in the blended space (given that we chose a basic length which
allows us to construct the unit, i.e. the segment corresponding to 1, which
seems reasonable). What is needed in order to entail irrational numbers in
this way, is a blend integrating numbers with a continuous domain, as it is
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the case in the Number-Line blend. A blend integrating numbers with a
discrete domain of line segments will not do.

Thirdly, the historical accuracy of the case is somewhat debatable. Al-
though Heath has hypothesized otherwise (Heath, 1921, Vol. 1, pp. 325
), it is the general consensus that the Greek did not draw the conclusions
implied by the Number/Physical Segment blend (or rather as explained
above, the Number-Line blend). Greek arithmetic was not simple expanded
to include a new type of objects, the irrationals. Instead, the discovery
of incommensurability lead to a paradigm shift, where a research program
focusing on arithmetic and the properties of numbers was replaced by a
geometry-centered research style, better suited to handle incommensurable
magnitudes (Dauben, 1984) – although number theory was not given up all
together.

As noted above, Lakoff and Núñez acknowledge that culture has some
say over which metaphors and ideas we allow in mathematics. But once an
idea is accepted, its implications are (according to Lakoff and Núñez) be-
yond the influence of culture. So the Greeks rejection of the implications of
a conceptual blend seems to be a direct contradiction of this theory. There
is however, another possibility. It is well-known, that the Greek mathemati-
cians were very careful in distinguishing between numbers and magnitudes
(physical lengths) (see for instance Knorr, 1975, p. 9-10). This suggests, that
the Greeks might well have rejected the very idea of a Number-Line blend
and not only one of its implications. This interpretation would make the
episode consistent with Lakoff and Núñez’ general theory. So at best, the
discovery of incommensurability illustrates the power of culture to accept or
reject certain metaphors as valid, and not the power of conceptual mapping
as intended by Lakoff and Núñez. At worst, the episode is in direct con-
tradiction to their theory. In any case, the discovery of incommensurability
does not give support to the strong genealogical claim.

All of this is not to say that conceptual mapping did not play any role
in the process leading to the modern acceptance and understanding of irra-
tional numbers. So for instance, the conceptual integration of the domain
of numbers with a continuous line plays a central role Richard Dedekind’s
(1831–1906) famous attempt to understand the nature of irrational numbers,
not least in his definition of irrational numbers as ‘cuts’ (in a continuous line)
(see Lakoff & Núñez, 2000, pp. 292 for a beautiful analysis of the metaphors
and blends used by Dedekind). This however, does not prove that such con-
ceptual mappings were the driving force or main motive behind the invention
and acceptance of irrational numbers. It should be noted, that the need for
irrational numbers does not only arise when numbers are integrated with
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continuous lines. It also arises in purely arithmetic contexts as the need for
a consistent use of certain operations such as square root; without the accep-
tance of irrational numbers, the square root of a number will in some cases
be a number, but in other cases not, which seems odd.

6.12.1.2.2 Negative numbers
Lakoff and Núñez briefly mention another historical case. The Arithmetic

Is Motion Along A Path metaphor gives a natural extension of the natural
numbers to zero (the origin point) and negative number (locations in the
same distance but opposite direction from the origin, as the corresponding
positive numbers).

This metaphorical extension was, according to Lakoff and Núñez, made
by the 16th century mathematician Rafael Bombelli, who gave the first known
representation of negative numbers as locations on a number line (Lakoff &
Núñez, 2000, p. 73).

Lakoff and Núñez are right in stating that the number line was probably
created by Bombelli and (more well-known) his 17th century colleague John
Wallis. But still, negative numbers can hardly be said to be a 16th century
European discovery. As mentioned in section 6.5.1 above, negative numbers
were represented and operated on by Chinese, Greek and Hindu mathemati-
cians long before Bombelli’s introduction of the number line. So negative
numbers were clearly not created by the Arithmetic Is Motion Along a

Path metaphor or the introduction of a geometrical interpretation in form
of the number line. The metaphor was more likely used as a way to concep-
tualize and give meaning to entities already known and discovered by other
means. This is not to be belittled. As Lakoff and Núñez rightly notes (p. 73),
the introduction of the number line metaphor offered a uniform conceptu-
alization of all (real) numbers, in contrast to for instance Brahmagupta’s
conceptualization of negative and positive numbers as respectively debts and
fortunes or Diophantus’ conceptualization in terms of wantings and forth-
comings.

6.12.1.2.3 Complex numbers
Lakoff and Núñez also give a very detailed account of the cognitive origin of
complex numbers (Lakoff & Núñez, 2000, p. 420–432). In brief, according
to Lakoff and Núñez, our conceptualization of the complex numbers takes
departure in the Number-Line blend, where all real numbers are conceptual-
ized as points on a line. For any number n, n and −n are located in exactly
the same distance, but in opposite directions from the origin O. According
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to Lakoff and Núñez, this symmetry is conceptualized in terms of a 180◦

mental rotation around the origin, taking n to −n (and vice versa). As the
multiplication n · −1 takes you to the same point on the number line as a
180◦ rotation to the symmetry point of n, a blend, correlating multiplication
by -1 in the domain of arithmetic with 180◦ rotation in the domain of space,
is formed. By combining this blend with the Cartesian plane, a Rotation-

Plane blend, correlating multiplication by -1 in the Cartesian plane with
180◦ rotation around the origin, is formed. The expansion to the plane allow
us to expand the original blend to include rotations other than 180◦. By
adding a 90◦ rotation anti-clockwise around the origin, we metaphorically
add a number i, such that multiplication by i corresponds to a rotation by
90◦. As two rotations by 90◦ corresponds to one rotation by 180◦, it follows
that i2 corresponds to -1. Or in other words, i =

√
−1 (see table 6.9 for an

overview).

The Rotation Plane blend
extended with 90◦ Rotation Plane metaphor
Domain 1 Domain 2

The Rotation-Number-Line blend The Cartesian Plane blend

The zero point ↔ The origin O

Rotation by 180◦ ↔ Multiplication by −1

Rotation by 90◦ anti-clockwise ↔ Multiplication by i

Two rotations by 90◦ anti-clockwise ↔ Multiplication by i2 = −1

Table 6.9: Overview of the Rotation Plane blend

Most importantly, the integration of the Rotation-Number-Line with
the Cartesian plane allow us to ascribe coordinates to the newly defined
numbers. In this extended Rotation Plane blend, i is the point (0,1) (the
result of rotation a 90◦ rotation of the point (1,0) around the origin), and i2 is
the point (-1,0) (the result of a 180◦ rotation of (1,0) around the origin). For
a real number b, b · i is the point (0,b) (the result of rotation a 90◦ rotation
of the point (b,0) around the origin), and consequently the complex number
a+ bi is the point (a, b).

Given these basic identities, addition and multiplication of general com-
plex numbers can straightforwardly be given a geometrical interpretations.

Lakoff and Núñez are aware that complex numbers can be conceptualized
in several other ways. One can see complex numbers as points in the usual
Cartesian plane (with unusual rules for addition and multiplication) or one
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can simply see the complex numbers as ordered pairs of numbers. Comment-
ing on these different representations and their presentation of the arithmetic
rules (or ‘laws’) governing complex algebra, Lakoff and Núñez write:

The last two are the ways the complex numbers are usually taught.
But they give very little insight into the conceptual structure on the
complex numbers - into why they are the way they are. [. . . N]either
method explains why those laws are there as consequences of the cen-
tral ideas that structure the complex numbers.

(Lakoff & Núñez, 2000, p. 432, original emphasis)

According to Lakoff and Núñez, the conceptualization in terms of the 90◦

Rotation Plane metaphor is vital for any understanding of complex num-
bers, because the properties of the complex number system was motivated
by this metaphor:

If you want to think of [a complex number] as isolated from the spa-
tial domain, you can. But then you would be losing all the conceptual
structure that motivates the arithmetic properties of this number sys-
tem.

(Lakoff & Núñez, 2000, p. 430)

Lakoff and Núñez furthermore, dismiss the idea that spatial metaphors are
merely a pedagogical tool:

One can compute with, and prove theorems about,
√
−1 without the

idea of the complex plane or rotation. Does that mean that those ideas
are extraneous to what

√
−1 is? Do they stand outside the mathe-

matics of complex arithmetic per se? Are they just ways of thinking
about

√
−1 – mere representations, interpretations, or ways of visu-

alizing
√
−1 – useful for pedagogy but not part of the mathematics

itself?

From the perspective of cognitive science and mathematical idea anal-
ysis, the answer is no.

(Lakoff & Núñez, 2000, p. 431)

So Lakoff and Núñez clearly seems to hold a strong genealogical thesis re-
garding the spatial metaphors for complex numbers; complex arithmetic is
motivated by and has the properties it has because of the spatial metaphors
described above.

Unfortunately, this thesis is very hard to back up. In fact, the historical
evidence clearly seems to refute it. As noted above, complex numbers were
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at first encountered in a purely algebraic context (the solution of second and
third degree equations) in the 16th century. There is some evidence suggest-
ing that Euler and a few other 18th century mathematicians sporadically
visualized complex numbers as points in a coordinate plane (Kline, 1990,
p. 629). But apart form a vague attempt by John Wallis (who interpreted
imaginary numbers as the sides of negative areas, such as a field swallowed
by the sea), decisive geometrical interpretations of complex numbers and
complex algebra were first invented late in the 18th century by outsiders to
the mathematical community, and geometrical interpretations only became
accepted and used by mainstream mathematics in the beginning of the 19th
century – when complex numbers had been used and explored for more than
two centuries.

All in all it seems very unlikely, that complex numbers and their basic
mathematical properties are the result of spatial metaphorical mappings.
Imaginary and complex numbers were not motivated by metaphors, but by
the need for arithmetic closure, and by the fact that they produced correct
results (see Kline, 1990, pp. 251; pp. 592 for a review). The spatial metaphors
used to give a geometrical interpretation of complex numbers were chosen to
fit the properties of complex algebra, not the other way around.

In this case, however, we have clear evidence suggesting that the spatial
metaphors influenced the acceptance of complex numbers as genuine math-
ematical objects. Although complex numbers were used and manipulated
formally in the 17th and 18th century, they were generally believed to be
impossible or merely imaginary entities, and only tolerated because of their
usefulness.

In an introductory comment to the work Theoria Residuorum Biquadrati-
corum, originally published in 1831, Gauss regrets this state of affairs and
sets out to change the general conception of complex numbers (Gauss, 1863,
169–178). He coins the term ‘complex numbers’ for numbers of the form
a + b

√
−1 (with a, b ∈ R), and describes how such numbers can be concep-

tualized as points on an infinite plane, similar to the way the real numbers
can be conceptualized as the points on an infinite line; instead of ordering
the numbers in one dimension with +1 as a unite distance, the imaginaries
must be ordered in two dimensions with +1 as the (real) unite of distance in
one dimension and

√
−1 as the (imaginary) unit of distance in the other.

In section 38 of the paper proper, Gauss straightforwardly interprets the
complex number x + y

√
−1 as the point (x; y) in a plane with a real x-axis

and complex y-axis, and continues to gives a geometrical interpretation of
subtraction and multiplication of complex numbers. “Auf diese Weise”, he
remarks, “wird die Metaphysik der Grössen, welcher wir imaginäre nennen,
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in ein ausgezeichnetes Licht gestellt” (Gauss & Maser, 1889, p. 548).

This conceptualization of complex numbers as points on the plane, Gauss
imagines, is needed in order for the mathematicians to understand and accept
the numbers:

Wir haben geglaubt, den Freunden der Mathematik durch diese kurze
Darstellung der Hauptmomente einer neuen Theorie der sogenannten
imaginären Grössen einen Dienst zu erweisen. Hat man diesen Gegen-
stand bisher aus einem falschen Gesichtspunkt betrachtet und eine
geheimnisvolle Dunkelheit dabei gefunden, so ist diess grossentheils
den wenig schicklichen Benennungen zuzuschreiben. Hätte man +1,
-1,
√
−1 nicht positive, negative, imaginäre (oder gar unmögliche) Ein-

heit, sondern etwa directe, inverse, laterale Einheit genannt, so hätte
von einer solchen Dunkelheit kaum die Rede sein können.

(Gauss, 1863, pp. 177)

Although the names here suggested by Gauss never caught on, spatial in-
terpretations of complex numbers (either as points on the complex plane as
here suggested by Gauss, or as directed vectors as suggested by other math-
ematicians) became a vital step in the graduate acceptance of such numbers
as genuine mathematical objects. It can be discussed, whether these inter-
pretations corresponds to the rotation plane interpretation given by Lakoff
and Núñez, but leaving that aside, it seems that spatial metaphors grounding
complex algebra in our experience of two dimensional space played an impor-
tant role in the history of complex numbers. Not as the driving force behind
their invention, but as a way to make operations determined and constrained
by other forces, intuitively meaningful and thus acceptable.

As a final comment on this case study, it should be noted that in case of
conflict, formal calculations are trusted at the expense of intuitive (metaphor-
ical), spatial interpretations. A clear example of such a conflict is the dis-
covery made by Edward Kasner that for a complex function f(x), the arch
length along the curve y = f(x) between two points P and Q on the curve
can be shorter than the chord (i.e. the straight line) from P to Q. This is
for instance the case for the complex valued function f(x) = x2 + ix. By
calculating the arch length s from x = 0 to x = a with the usual formula

s =

∫ a

0

√
1 + f ′(x)2 dx,

it can be showed that the ratio s/c between the arch length s and the cord
length c, limits 2/3

√
2 ≈ 0, 94 as a → 0. This means, that the arch gets

about 6% shorter than the chord as the point a closes in on 0 (see Nahin,
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1998, p. 105–7). Our geometric intuition tells us that a straight line con-
necting two points is always shorter (or as short as) an arch. We would in
other words expect the ration s/c to be ≥ 1. So here, the formal calculations
clearly contradicts the result implied by a metaphorical, geometric interpre-
tation of complex numbers. As mentioned above, modern mathematics does
not question the formal result, but counts the mismatch with our geometric
intuition as an interesting puzzle. This is a clear example of the limits of the
metaphorical conceptualizations of complex numbers.

In conclusion, Lakoff and Núñez do not present evidence strong enough to
support the strong genealogical claim concerning the 4G’s. The metaphors
we frequently use to conceptualize negative numbers, complex numbers, and
several other mathematical entities did not cause their creation. Rather these
entities were created from the consistent use of established algorithms and
rules of operation, and only subsequently given meaning by the introduction
of the metaphors.

6.12.1.2.4 Metaphors as constitutive for expansions
Although it is hard to find examples where metaphors are the driving force
behind a particular extension of mathematics, metaphors might well influence
the development of mathematics in more indirect ways. There are examples,
where the expansion of mathematics in a particular direction clearly depends
on the introduction of new metaphors (although it is not driven by them).
The development of analytic geometry is a case in point. As described in
section 6.5.2, analytic geometry depends on the use of a particular cognitive
artifact, i.e. abstract symbols. However, analytic geometry also presupposes
several metaphors and conceptual blends. The most important of these are:

• a linking metaphor (introduced by Descartes and Fermat), linking
geometry and algebra

• the conceptualization of the plane and geometric objects as point-sets

• a blend integrating numbers and locations in geometric space.

These metaphors and blends made it possible to identify geometrical objects
with sets of ordered pairs of real numbers defined by equations determining
the relationship between the numbers.
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It should be noted that in this case, the metaphor was not the driving
force behind the development – analytic geometry did not force itself upon
us as an implication of the metaphors. Rather, the metaphors were chosen
in order to reach specific mathematical goals, which could not have been
reached without them. So the cognitive tool of conceptual mapping clearly
had an impact here: It allowed us to expand mathematics in a way, we
could not have done without mapping (which is consistent with the telescope
hypothesis). Several similar examples, where linking metaphors are used to
create and exploit an analogy between different areas of mathematics, could
be given.

The metaphors used in the creation of analytic geometry also have an-
other and deeper impact. As mentioned in section 6.10.1, metaphors have
different implications, and consequently the choice of metaphor is not inno-
cent as it might determine the outcome of a debate. Something similar can
be said about the introduction of new metaphors. To give a clear exam-
ple, the introduction of analytic geometry gave rice to a number of ‘monster
functions’ having equally monstrous graphs (as noted above). When the ex-
istence of these curves (i.e. the graphs) is debated within the framework
of the metaphors of analytic geometry, the answer is more or the less given
in advance; the curves must exist. Once the metaphors are accepted, they
determine how we understand and deal with geometric objects. In this way,
the metaphors have a real, although indirect impact on the content of math-
ematics. A real discussion of the existence of such the monster functions
should address the adequacy of the metaphorical conceptions of geometric
objects, they rely on.

6.12.2 The cognitive claim

Lakoff and Núñez claims the conceptual metaphors they consider to have a
real and ongoing cognitive significance; the metaphors are active and subcon-
sciously structure the way normal human beings think about mathematics.
In some cases, such as the 4Gs, the metaphors are even hypothesized to be
grounded in actual neural connections linking arithmetic operations (such as
addition) and sensory-motor physical operations (such as taking away objects
from a collection) (Lakoff & Núñez, 2000, p. 54).

Lakoff and Núñez are not alone in making cognitive claims. Cognitive
linguistics is in general committed to the hypothesis that the metaphors
they investigate are not just linguistic phenomena, but reflect underlying
and significant cognitive mechanisms (which might or might not be neurally
encoded as Lakoff and Núñez hypothesize). In the following, I will start
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by reviewing the evidence given by Lakoff and Núñez. However, as the
hypothesis is a more general one, I will also consider other ways to justify it.

Part of the evidence given for the cognitive claim is linguistic; when we
talk about mathematical objects, we frequently use a vocabulary taken from
the sensory-motor experiences; we might for instance metaphorically speak
about numbers as if they were objects (see examples above). As always, this
type of evidence is faced with a serious problem. A lot of expressions that
entered language as metaphors, have turned into literal expressions, because
the original meaning of the expression is forgotten21. So the fact that we
talk about numbers as if they were objects, does not proof that we also think
about numbers as if they were objects. More evidence is needed.

In (Lakoff & Núñez, 2000) the linguistic evidence is mainly backed up by
experimental psychology and the study of the human brain. A number of
experiments suggest that at least the natural numbers seem to be encoded in
the form of some sort of magnitude. Reaction time experiments for instance,
reveal that the time it takes a subject to judge whether a number represented
in Hindu-Arabic digits is larger or smaller than a given target, increases with
the numerical distance between the two numbers (Dehaene et al. , 1990).
Furthermore, studies of patients who have lost part of their mathematical
capabilities due to injuries of the brain suggest that there is a close connection
between basic arithmetic skills, body maps, and spatial maps (Dehaene, 1997,
pp. 189). This is used by Lakoff and Núñez to support the view that at least
basic arithmetic is closely connected to basic life-world experiences of the
body and physical space (Lakoff & Núñez, 2000, pp. 23).

However, such evidence from experimental psychology should be treated
with much care. It is questionable to what extend studies of the physical
brain can tell us anything about mental phenomena such as thinking and
understanding. Does the (supposed) fact that arithmetic is encoded in the
same region of the brain as spatial- and body maps really prove that we
understand arithmetic using bodily and spatial experience?

Even granted such an intimate relation between the physical brain and
understanding, the evidence is still somewhat inconclusive, and it only sup-
ports a limited connection between life-world experiences and mathematics.
Only arithmetic is (apparently) located in the brain area in question, while
other mathematical capacities are not. This was for instance the case in a
patient suffering from acalculia (Hittmair-Delazer et al. , 1995). Due to the

21In English this is for instance the case with many of the expressions originating in
Latin. To give an example, the word “examine” is in modern English considered a literal
expression, but it was originally a metaphor derived from the Latin “examine” meaning
“tongue of a weight”.
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effects of cancer treatment, the patient had lost the ability to solve even basic
arithmetic problems, such as 2 + 3 and 3 · 4, but he was nevertheless able to
solve abstract algebraic problems, such as recognizing that (d/c) + a is not
in general equal to (d + a)/(c + a). So the brain area involved in abstract
algebra is located in a different place than that involved in general arithmetic
and body and spatial maps. Does that prove that abstract algebra is not in
any way connected to or conceptualized in terms of body and spatial maps?

6.12.2.1 Gestures

In Núñez (2004) another type of evidence supporting the cognitive claim is
tried out. Núñez moves a little away from basic arithmetic and investigates
the metaphors of movement used in calculus. Although all central concepts
such as function, continuity, differentiability etc. are now defined in terms of
sets, i.e. discrete and motionless entities, textbooks still describe functions
as ‘oscillating’, ‘approaching’, ‘tending to’ and so on (see Núñez, 2004, for
an interesting treatment of several such examples).

In order to argue for the real cognitive significance of these metaphors,
Núñez turns to the study of gestures. As mentioned above, there seems to
be a close link between gestures and speech, and it is believed, that gestures
and speech both reflect the same underlying cognitive reality. A study of
college professors teaching calculus shows that the words of movement used
by the teachers are accompanied by corresponding gestures of movement.
This suggests that the metaphors of movement are in fact active; the teachers
not only think in terms of movement, they also think in terms of movement
(Núñez, 2004, pp. 68). In a revealing example, a professor describes how
the partial sum Sn of a convergent sequence oscillates around 1. While he is
giving this description, his thumb and index finger are pressed together as if
he holds a small object, and he waves his hand from side to side. So in other
words, he describes and thinks of 1 as a location in space, and he thinks of
the partial sum as an object oscillating around this location.

Núñez’ results are confirmed by studies of hi-school teachers. Here, we
also find a close relationship between gestures and conceptual metaphors de-
scribing abstract mathematical entities in terms of sensory-motor experience
(see Frant et al. , 2006; Arzarello et al. , 2009).

Such studies of gestures give us strong reasons to believe that metaphors,
used by the teachers in these cases, actually reflect how they think. Although
more studies should be conducted to establish the generality of this effect,
the fact that the conceptual metaphors used by hi-school and even college
teachers are active at all is still a major result. This shows that conceptual
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Figure 6.24: A professor of mathematics describes how a convergent
sequences oscillates around 1 (reprinted from Núñez, 2004, p. 69).

metaphors are not merely linguistic phenomena or figures of speech that has
lost their literal meaning long ago. When the metaphors are used in the
classroom, they are alive.

The main problem with these studies is the question whether they can be
generalized to non-teaching situations, and especially to the problem-solving
process of active mathematicians. The teaching situation is a very special
situation, and the teachers might well have chosen to use the metaphors
in question for purely didactic reasons, although they would never use the
metaphors outside the classroom. So the observation that college professors
think in metaphors of movement when they teach does not prove that the
professors still think in movement, when they return to their offices and start
doing mathematical research.

This problem is addressed in a recent study (Marghetis & Núñez, 2010).
Here, a group of graduate mathematics students were divided into pairs and
asked to prove the following non-trivial theorem from analysis:

Let f be a strictly increasing function from [0, 1] to [0, 1]. Then there
exists a number a in the interval [0, 1] such that f(a) = a.

(Marghetis & Núñez, 2010, p. 24)

The students were video filmed while they were working, and their language
and gestures were subsequently analyzed. According to the analysis, intu-
itively dynamic mathematical concepts such as ‘increasing’, ‘continuity’ and
‘intersection’ were accompanied by corresponding dynamic gestures, while
other intuitively static concepts such as ‘containment’ and ‘closeness’ was
accompanied by static gestures. This shows that even highly trained profes-
sional mathematicians conceptualize certain mathematical concepts in terms
of physical movement when they solve certain problems.
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The study is unique both in its topic (advanced problem solving) and
in its method (the study is quantitative rather than qualitative). Its basic
conclusion that students conceptualize central concepts of analysis in terms
of physical movement seems very well founded. The study does however have
two possible problems, which should be addressed.

Firstly, although the students clearly understood some concepts in terms
of movement, it can be debated whether these dynamic descriptions are in
fact metaphorical. According to Marghetis (personal communication), the
subjects of the study typically started by drawing and discussing graphs on
the blackboard, and only later formulated their reasoning in set theoretical
terms. A graph drawn on a blackboard is clearly produced by dynamic
processes — the movement of a piece of chalk —, so as long as the students
were discussing such physical representations of graphs, dynamic descriptions
can hardly be said to be metaphorical. We should keep in mind, that although
the formalist movement identifies mathematical concepts exclusively with
their set theoretical definitions, such set-theoretical descriptions are often
deeply metaphorical. This is for instance clearly the case, when dynamic
concepts such as continuity, intersection, and increment are captured with set
theoretical descriptions (see Lakoff & Núñez, 2000, pp. 306). As the problem
the students were solving in this case, was exactly a problem concerning
the properties of a monotonic increasing function, one could argue that the
dynamic language used by the students was pre-metaphorical, and that the
metaphorical descriptions only began when the situation was coined in terms
of static, set theoretical language.

It could also be argued that the dynamic descriptions were in a way
pre-mathematics. We are here in a situation similar to the genesis of basic
arithmetic. When it comes to the analysis of simple functions, it seems to me
that we do not use the physical world as a means to (metaphorically) describe
an already existing domain of mathematical objects. Rather, we use (or
create or abstract) the mathematical objects as a way to describe properties
of the physical world. In this case, functions conceptualized as objects of set
theory are used to capture and analyze properties of trajectories in physical
space, i.e. graphs drawn on a blackboard. So here, the relationship between
mathematical content and physical inscriptions are the exact opposite of what
it is, when we use Venn- and commutative diagrams. In the case of diagrams,
the physical inscription is clearly used to create a metaphorical description
of mathematical content. Here, mathematics (in the form analysis) is used
to describe properties of physical inscriptions.

Although it is questionable whether the dynamic descriptions used by
the students are metaphorical or not, they are still there. And that in itself
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in an important result. It shows that the so-called ‘discretization program’
aiming to eradicate dynamic thinking from mathematics by redefining all
mathematical concepts in terms of static sets, has not yet been completely
successful. Mathematicians still think of functions as trajectories of move-
ment in space, or rather: they start by thinking about trajectories in space,
and only later try to capture the properties of such trajectories by corre-
sponding set-theoretic concepts from mathematical analysis.

The problem addressed above could perhaps be solved by observing stu-
dents solving problems in a branch of mathematics not so closely related to
the dynamics of the real world. There is however another and more funda-
mental possible problem with the study. In a teaching situation, the teacher
is clearly trying to reach communicative goals. For this reason she might be
using conceptualizations, she would never use if she were thinking in soli-
tude. In the current study, the students are observed in a problem-solving
situation. Although this makes it more likely that the speech and gestures
produced by the students correspond to the way they privately conceptu-
alize the concepts in question, this is still a communicative situation. The
students work in pairs, and they produce speech and gestures as a way to
convey ideas to each other. Consequently, the metaphors might only be used
as a way to reach communicative goals; the metaphors might not reflect the
way the students think, but only the way they explain their thoughts. The
conclusions of the study are only valid, if the students are ‘thinking aloud’,
i.e. directly expressing their own conceptualizations of the problems at hand
without adding metaphors or gestures in order to be better understood by
their teammate. This is a far more serious problem, as it questions the
method of using gesture studies as a way to justify the cognitive claim made
by cognitive semantics.

6.12.2.2 Material anchors

A possible solution to some of theses problems could be to investigate ma-
terial anchors for metaphors and blends instead of speech and gestures. So
for instance, as we saw above, Cantors proof of the countability of the ra-
tional numbers is usually communicated using a material anchor for a blend
integrating a metaphorical conception of the rational numbers as locations in
space with the domain of directed paths in space. The various proofs of the
theorem use formally different, but cognitively similar anchors. This indi-
cates that the material anchors reflect a cognitive reality; we understand the
proof in terms of the blend materialized in the anchor, and we can express
this meaning in formally very different anchors. So in our understanding of
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this particular proof, the different conceptual mappings are active.

Cantor’s proof and most of the material anchors discussed above are taken
from communicative situations (i.e. text books and published papers). Con-
sequently, the conclusions drawn from them are limited; we cannot tell, if the
anchors reflect how the authors generally conceive of the objects in question,
or whether the anchors are specially invented for the communicative situation
and merely used as didactic tools. Luckily, and in contrast to language and
gestures, material anchors are not in principle confined to communicative sit-
uations, but might also be used by mathematicians working in solitude. In a
study on mathematical writing, Morten Misfeldt has shown that writing has
least five different functions for the working mathematician. Working math-
ematicians use writing for: 1) heuristic treatment, i.e. getting and trying
out ideas, 2) control treatment, i.e. a precise investigation of the heuristic
ideas, 3) information storage (for own personal use), 4) communication with
colleagues, and 5) production of papers (Misfeldt, 2006, p. 27). So writing
is not only used in communicative settings, but also as part of the personal
thinking process.

The five functions roughly corresponds to the different phases involved
in the production of mathematical knowledge: First you get the idea, then
you submit it to tests (control it), you communicate it to others, and finally
you produce a paper for publication. Interestingly, some (but not all) of
the mathematicians in the study by Misfeldt used diagrams heavily in the
initial heuristic phase. As a typical example, the respondent R1 starts an
article by working on diagrams drawn on a piece of scrap paper. Then he
controls his ideas working mostly with formal calculations on a different type
of paper. Finally, he presents his ideas and arguments as a linear narrative
using a mix of formal and natural language and only few diagrams (see figure
6.25)(Misfeldt, 2006, p. 23–26 and 34–35).

As it can be see, R1 use commutative diagrams heavily in the initial,
heuristic treatment of his ideas. The use of material anchors for conceptual
metaphor in a completely private and non-communicative setting shows that
at least to R1, these metaphors are active. They reflect the way he in fact
conceptualizes the mathematical reality in question, and to the extend such
diagrams find their way into his papers, they are not merely communicative
tools glued onto the formal treatment as an afterthought. They go to the
heart of how he conceptualizes the mathematics in question.

Misfeldt’s study was not conducted with the purpose of testing the cog-
nitive claims made in cognitive semantics, and consequently we cannot draw
any firm conclusions about this claim from it. However, the study does show
that writing, and in some cases diagrams and non-linear arrangements of
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(a) Scrap-paper for heuristic treatment

(b) Lined paper used for control
treatment

(c) Final paper written in LaTeX.
The argument is formalized and lin-
ealized

Figure 6.25: Three stages in the creative mathematical process
(reprinted from Misfeldt, 2006, p. 23–25)

.
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symbols, are used for non-communicative purposes as part of the working
process of professional mathematicians. This is in itself an important result.
It shows that studies of the initial phases of mathematical working process
can give us insight into what the mathematicians think while they work,
and not just into how they communicate their ideas. Unfortunately, to my
knowledge no studies have be performed specifically investigating the use of
material anchors in this phase of mathematical writing, but I propose, that
such a study will be a promising way to shed light on the question of the
cognitive reality of conceptual metaphor to the working mathematician.

It is now time to recapitulate. The main question in the evaluation of the
cognitive claim is: When are the conceptual metaphors and blends active,
and to whom? The question is particularly complicated, as a metaphor might
be active only to some individuals, only in a particular situation and only
in a particular historical era. Judging from the evidence evaluated above,
the thesis that the metaphors used in mathematics are always active and
determines the way mathematicians think, is clearly much too strong to be
defended. Neither the study of gesture, language or the human brain gives
sufficient evidence to support such a conclusion. The study of gestures does,
on the other hand, give strong evidence to the conclusion that at least some
metaphors and blends are active at least in communicative situations, such as
collaborative problem solving, teaching and communication of mathematical
results. This result is supported by the study of material anchors for con-
ceptual mappings (such as diagrams). The study of such material anchors
might furthermore be a promising way to prove the role played by conceptual
metaphors and blends even in non-communicative situations, such as actual
mathematical research.

When this conclusion is combined with the conclusion regarding
metaphors’ role in the expansion of mathematics, it seems that the major
role played by conceptual metaphors and blends is not the role as the cre-
ative force driving the development and creation of mathematics. Rather,
metaphors and blends are used to give grounded meaning to objects created
by the use of symbols and (mainly) the application of established of operation
rules in consistent ways.

In this way, the two embodied cognitive strategies I have described, i.e.
internalization and externalization, seem to compliment each other neatly.
By the help of externalization, mathematics can be performed as a formal
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game, where external object symbols are treated and manipulated as tokens
of arbitrary, Wittgensteinian ‘meaning as use’. However, mathematics can
also be done as something meaningful, where the meaning, at least in part,
comes from conceptual metaphors and blends grounding the meaning of the
symbols in life-world experience.

6.13 A functional role for grounded mean-

ing?

What remains is to ask, if this latter grounded meaning has a functional role
to the practitioner of mathematics. Do we actually need the deeper meaning
provided by conceptual metaphor, or is the more superficial Wittgensteinian
meaning (i.e. meaning as use) sufficient?

In answering this question, we should distinguish between the broader
historical development of mathematics and the problem solving and devel-
opment for new results within an established theoretical framework.

Starting with the historical development, it should firstly be noted that
even the rules of operation used to create Wittgensteinian meaning are not ar-
bitrary. Most parts of mathematics take departure in real world observations
and problems. As we have seen, this is for instance the case in arithmetic
that takes departure in the manipulation of collections of objects and other
real world experiences (I will discuss and defend this position at length in
chapter 7 below).

Although the rules take departure in real life phenomena, it is not always
possible to completely capture the essence of these phenomena by the rules.
The problem of non-standard arithmetic serves as a telling example. Here
our intuitive understanding of the natural number system is underdetermined
by the formal rules attempting to capture it (see section 2.5). This points
to a limitation in formal and un-grounded rule following. The fact, that
we are able to recognize a mismatch between the formal axioms and an
intuitively given structure shows that there is more to mathematics than
rules and axioms. There is an intuitively given and meaningful structure,
which we wish to capture with the rules and axioms. The fact that we see
the mismatch between rules and as a problem, furthermore shows that in
this case, the intuitively given structure has precedence.

So mathematics starts with something meaningful and intuitively given,
which might never be fully captured in the rules. In the expansion of math-
ematics, however, the intuitive or ‘grounded’ meaning is in many histori-
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cal cases secondary to the rule based treatment; in case of conflict between
grounded meaning and established rules of operation, the rules tend to win,
as we have seen in several instances. So here, grounded meaning seems to
play a secondary role in the development of mathematics.

This being said, these are examples where the conceptual mapping in
general (and this covers more that grounding metaphors and blends) does
seem to have a functional role in the development of mathematics, besides
creating meaning to rule governed extensions post factum. There are exam-
ples where we have a real choice over which metaphor to use to conceptualize
a concept. And such choices have consequences. As we also saw, there are
cases (such as the development of analytic geometry) where a particular set
of metaphors and blends are necessary in order to create and exploit fruitful
analogies between two separate areas of mathematics.

Turning to problem solving, one way to attack the question is to make em-
pirical investigations of the role of grounded meaning in actual problem solv-
ing. To the best of my knowledge very few such studies have been made.
Furthermore, the few studies that have been made, mainly addresses how
basic mathematical problems are solved. It has for instance been shown that
elementary school students, who have a grounded understanding of nega-
tive numbers (by using the Number/Line blend) are better at solving prob-
lems that children, who handle negative numbers using only algebraic rules
(Thompson & Dreyfus, 1988).

Another and more direct way of attacking the problem, is to investigate
so-called automated theorem provers. Automated theorem provers are essen-
tially computer programs that are able – on their own hand – to find the
formal manipulations needed to get from a given set of (formally stated)
assumptions to a given (formally stated) theorem. In contrast to computer
assisted proofs, where the computer is only used to performs long, but trivial
calculation, automated theorem provers can be said to simulate an element
of creativity; they seem find the proof on their own (although it the process
in many cases is better described as an extensive search).

Automated theorem provers have successfully proven a long list of theo-
rems. Most of the problems are from the typical undergraduate curriculum,
but at least on one occasion, a computer program beat top-level human
mathematicians, and became the first to prove a non-trivial result. This was
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in 1996, when the program EQP (‘Equation Prover’) proved the so-called
‘Robins problem’ (McCune, 1997)22. As impressive at this might be, auto-
mated theorem provers, however, also have severe limitations compared to
human mathematicians. At least three such limitations can be pointed out:

• Automated theorem provers cannot form higher order concepts

• Automated theorem provers cannot use knowledge from other areas of
mathematics

• Automated theorem provers cannot change the representation and state
the problem in another form (which often makes the solution trivial).

I will discuss these three limitations on at a time in the following.

The lack of higher order concepts tends to make the proofs generated by
automated systems dense with symbols and trivial calculations. As an exam-
ple, we can take a closer look at the proof of the Robins problem produced
by EQP. The proof consists of only twelve equations of the following type:

¬(¬(¬(¬(¬(¬x+ y) + x+ 2y) + ¬(¬x+ y) + ¬(y + z) + z) + z + u)
+¬(¬(y + z) + u) = u

(Equation number seven of the proof, from McCune, 1997, p. 266)

Such proofs are almost impenetrable for human mathematicians to read and
verify. Human proofs in contrast, generally invoke higher order concepts.

So for instance, after the publication of the computer-generated proof
of the Robbins problem, several ‘anthropomorphized’ versions of the proof
have been given (see Dahn, 1998). All of these proofs start by introducing
higher order concepts, such as δ(x, y) = ¬(¬x + y), and a considerable part
of the proofs consist in reasoning about these concepts (for instance proving
that δ(x,¬y) = δ(y,¬x)). The anthropomorphized proofs are in general
longer than the original EQP-proof, but they consist of considerably simpler
calculations and higher order reasoning, which makes them much easier for
human mathematicians to read and understand.

It could be argued that this contrast between human and computer
provers illustrates a shortcoming in the human mathematicians, and not
in the computer systems. Computers cannot master higher order concepts,
but they do fine without them. Humans, on the other hand, need higher

22In brief, the problem consists in showing that a certain set of equations, including the
so-called Robbins equation (¬(¬(x + y) + ¬(x + ¬y)) = x), can be used as a basis for
Boolean algebra. For details, see McCune (1997).



6.13 A functional role for grounded meaning? 225

order concepts, because our ability to master formal calculations is limited.
Nevertheless, here we are interested in the actual abilities of human math-
ematicians, and not in how they could have performed, if they had been
computers. Given this premise, the contrast between human and computer
provers teach us a valuable lesson. Purely formal proofs made by purely for-
mal reasoners (i.e. computers) are simply not accessible to us. We can hardly
understand, let alone produce, proofs of this type. When humans construct
mathematical proofs, we simply need to introduce higher order concepts that
allow us to substitute some of the low-level, formal calculations with higher
order reasoning. So higher order concepts clearly play a functional role to
human mathematicians.

Furthermore, the work with automated theorem provers has brought out
examples that clearly illustrate the advantage of conceptual reasoning in
comparison to purely formal reasoning. To give and example from Michael
Beeson (2003, p. 98), humans can easily prove the continuity of the function
f(x) = (x+ 3)100 by recognizing it as compound function and appeal to the
high-level theorem, stating that functions composed of continuous functions
are themselves continuous. This strategy is not open for automated systems.
Even recognizing a function as compound is, according to Beeson, beyond
the reach of automated systems. It takes conceptual knowledge.

The process of concept formation in mathematics is not well understood,
but it is clearly not a unitary process. Some concepts, such as the δ-function
mentioned above, are introduced probably as a clever abbreviation of fre-
quently occurring symbolic forms in a given area of mathematics. Others
are shaped by the internal mathematical needs of a proof process (these are
the ‘proof generated concepts’ Imre Lakatos famously described in (Lakatos,
1976b)). Such higher order concepts do not necessarily reflect any grounded
meaning. Other concepts however, clearly relate to sensory-motor experi-
ence. This is for instance clearly the case with concepts such as ‘triangle’
or ‘circle’. Also, some mathematical concepts are shaped by the interaction
between mathematics and science. Liouville’s introduction of differentiation
of fractional order or various mathematicians use of the delta-functions can
be briefly mentioned as examples – although I will not go into further discus-
sions here (see e.g. Lützen, 1990, 2006). Finally, the names given to many
higher order concepts betray their origin in grounded meaning23. Mathe-
matical concepts are not given systematic names (such as newly discovered
bodies of the heavens), but are often named in a meaningful way. Such names
typically refer to a particular metaphorical representation of the general con-
cepts. Groups for instance have ‘centers’ and ‘kernels’, and subgroups can be

23I am indebted to Esben Lorentzen for pointing out this fact to me



226 The cognitive level: Mathematical cognition

used to form a ‘tower’. Here, groups are clearly conceptualized as physical
objects that have parts and can be manipulated in space.

All of this shows, that grounded meaning both in the form of direct
experience and in the form of metaphorical mapping plays a role in the
formation of higher order concepts. As such concepts play a functional role
to human mathematicians, grounded meaning consequently has at least an
indirect functional role as well.

The second shortcoming of automated provers, i.e. their inability to use
knowledge from multiple areas, put clear limitation on the performance of
the computer systems, as mathematical theory often consists of a mix of
knowledge and concepts drawn from different areas. As a telling example,
Michael Beeson reports how one of his master students went through the
exercises on ring-theory24 in a typical text book on algebra (Beeson (2003,
p. 97–98; p. 122). The textbook is Jacobson (1985)). Of the 150 exercises,
only 14 could be formalized in first order language of rings (and subsequently
solved by the automated theorem prover Otter). The rest of the problems
involved higher order concepts (such as sub-groups, sub-rings and homomor-
phisms) and theory from other areas, such as number theory. As an example,
Beeson mentions Lagrange’s theorem stating that if H is a subgroup of a fi-
nite group G, then the number of elements in H is a divisor in the number
elements in G. The theorem involves both the higher order concept of sub-
group, and knowledge about natural numbers and the property of being a
divisor form number theory. For this reason, the theorem is not in the range
of automated theorem provers (Beeson, 2003, p. 122).

The last inability of computer provers, i.e. the inability to change repre-
sentation, also put clear limitations on such automated systems. Although
automated provers are able to prove a vide range of theorems, they have
surprising problems with some fairly trivial problems. As an example, David
Corfield notes the following theorem of group theory: “If G1 has exactly two
elements and G2 has exactly two elements, then there exists and isomor-
phism between them” (Corfield, 2003, p. 41). The theorem is part of the
problem library TPTP (Thousand Problems for Theorem Provers), which is
often used by constructers of theorem provers to test their programs. Al-
though the problem is trivial from a human point of view, at the time of

24Rings are a particular type of objects in algebra. There exact properties are not
important here.
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Corfield’s review, it did not have a satisfying automatically generated proof.
The reason for this difference between the performance of humans and com-
puters, is that humans do not prove the theorem directly by the use of the
group axioms in a formal argument. Instead, a human proof will typically
(and simply) consist of filling in the multiplication table for the group (see
table 6.10).

Multiplication table for a two-group

∗ e a
e e a
a a ?

Table 6.10: Let e and a be the elements of the group, and e be the
neutral element. The first three spaces of the table are filled out as a
direct consequence of the neutral element property of e. As a according to
the group axioms must have an inverse, the element in the last remaining
space must be e, making a its own inverse. As the multiplication table
is completely specified by the group axioms, it must be the same for all
groups with exactly two elements, and hence they must all be isomorphic.

The human proof involves a change in representational form; instead of
formal deductions, a table is used. According to Raymond Duval mathemati-
cians use four different kinds of representational systems (called ‘registers’,
see table 6.11). Representations can either be ‘discursive’ or ‘non-discursive’
and they can either be ‘multi-’ or ‘mono-functional’. Discursive registers
are characterized by deduction and linear argument, where non-discursive
registers are typically geometrical drawings, graphs or diagrams. In mono-
functional registers, processes can be performed by the use of algorithms,
whereas in multi-functional registers they cannot (Duval, 2000, 2006). The
change between deductions from axioms to filling in a multiplication table
used in the proof above, amounts to a shift from a discursive, monofunctional
register to a non-discursive, monofunctional register.

The ability to change the representation of a problem and make con-
versions between different registers has well-established benefits to (human)
reasoners (Zhang, 1997; Kerberi & Polleti, 2002). It is however, difficult for
many mathematics students to learn to perform such shifts, and they seem
in general to be beyond the reach of automated theorem provers (Kerberi
& Polleti, 2002). Making such shifts is an advanced process. As noted by
Duval 2006, a shift or a conversion is a transformation that changes repre-
sentational system without changing the conceptual reference. The ability to
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Discursive Non-discursive

Multifunctional
Natural language

Drawings, sketches
(non-algorithmic) and geometric figures

constructed with tools

Monofunctional Symbolic computations, Diagrams and
(algorithmic) and proofs Cartesian graphs

Table 6.11: Duval’s typology of registers (redrawn with simplifications
from Duval, 2006, p. 110)

perform such a shift presupposes that one does not identify the mathemat-
ical concepts with their representations. It presupposes, that one can grasp
meaning that lies beyond the rules for operating on the symbols of a given
representational system.

As I see it, a conversion can in some cases be performed by a simple
change in representational forms (this is the case in Zhang (1997)). In other
cases however, the change requires conceptual mapping, either linking two
areas of mathematics or grounding mathematical theory in life-world expe-
rience. The first (i.e. linking) is the case in analytic geometry, where a
conceptual link between algebra and geometry allows powerful conversions
from a non-discursive, geometric register to a discursive, algebraic register
to take place. The second (i.e. grounding) is the case in commutative di-
agrams, where a metaphor conceptualizing algebraic objects as objects in
space, allows advanced algebra to be represented in diagrammatic form (i.e.
conversions from discursive to non-discursive registers).

This great flexibility in reasoning style clearly has a functional role to
human mathematicians. As it is in part realized by grounded meaning, it
constitutes another example, where grounded meaning has a functional role
to human mathematicians.

The comparison between automated theorem provers and human mathe-
maticians helps illustrating the advantages of the cognitive strategies used by
humans. Computers have more memory and can perform significantly more
manipulations of formal expressions than human mathematicians (EQP for
instance searched almost 50.000 equations in its search for the proof of the
Robbins problem (McCune, 1997)). Still, automated theorem provers are
currently at the level university freshmen (at best) (Beeson, 2003, p. 100).
This proves the efficiency of the cognitive strategies used by human math-
ematicians, and analyzed in this present chapter. Humans form high-level
concepts, we integrate knowledge from more areas and we represent a prob-
lem in different ways, allowing us to attack it from different perspectives.
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All of this involves the ability to form analogies between different cognitive
domains, and even ground mathematical meaning in life-world experience.
This is how we do mathematics. But it is more than that. Compared to
the Wittgensteinian, rule-governed manipulation of abstract symbols, mas-
tered by automated theorem provers, it also proves a very effective strategy.
Manipulation of arbitrary symbols according to syntactic rules is but one of
the cognitive strategies used by human mathematicians. It is a very efficient
strategy, but as the above comparison clearly shows, mathematics should
not be identified with this strategy alone. Other strategies, including the
grounding of mathematical concepts in real-world experience, clearly have a
functional role for human mathematicians.

6.14 Life-world experience in mathematical

cognition

Allow me to take stock and summarize my conclusions regarding the role
played by life-world (and other sensory-motor) experiences in mathematical
cognitions. As we have seen in these last few sections, life-world experience
clearly enters mathematical cognition in connection to the use of conceptual
mapping as a cognitive strategy. Here, life-world experiences can either be
used as source-domain for conceptual metaphors or as one of the domains
used to form conceptual blends. Our use of diagrams presuppose this kind
of blends or metaphors that make it possible for us to conceptualize abstract
mathematical content as physical objects that subsequently can be repre-
sented and manipulated in diagrammatic form. In communicative settings,
such as teaching or cooperate problem solving, conceptual metaphors are
used to ground mathematical content in life-world experiences in order to
make it intuitively accessible to the listeners. We might even use these tech-
niques when we solve mathematical problems in solitude, as evidenced by the
use of diagrams in the heuristic treatment of new mathematical problems.

It is debatable what kind of impact our use of life-world experience in
mathematical cognition has on the content of our mathematical beliefs. Judg-
ing from the examples given above, conceptual mapping is mainly a neu-
tral tool that helps us to perform in a cognitively more economic way. As
suggested by the comparison with automated theorem provers, the use of
conceptual mapping and grounding of meaning might even in some cases
make it possible for us to reach results, not reachable without this partic-
ular cognitive instrument (supporting the telescope hypothesis). The idea
(suggested by Lakoff and Núñez) that conceptual metaphors have been the
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driving force behind the development of central mathematical concepts, such
as real and complex numbers, is not supported by the historical evidence.
We do see however, that the introduction of a suitable metaphor, ground-
ing otherwise counterintuitive concepts in life-world experience, might have
played a part in the general acceptance of such concepts. Also, in some iso-
lated cases, a particular area of mathematics can be conceptualized using
different metaphors with different mathematical implications. In such cases,
the culture-dependent choice and use of particular conceptual metaphors and
blends has had a direct influence on our mathematical beliefs. In these cases,
our mathematical beliefs do seem to be constructs, depending on the intro-
duction of particular life-world conceptualization of abstract mathematical
content.

6.15 Partial conclusion: The embodiment of

mathematical cognition

To conclude more generally on the chapter as a whole, we have seen the
following. Firstly, externalization of mental content clearly plays an im-
portant part in mathematical cognition; we use cognitive artifacts such as
symbols and figures, and they allow us to substitute mental computations
with epistemic actions and they make it easier for us to handle conceptual
complexity by anchoring it in external inscriptions (such as written or spoken
language, abstract symbols, figures and diagrams). Secondly, through con-
ceptual mapping, concrete and well-known life-world experiences are use to
render highly abstract mathematical content intuitively graspable and un-
derstandable. Mathematical cognition, in other words, is clearly embodied
cognition. It is not objective or abstract reasoning that simply happens to
be performed by humans. The cognitive tools we use are essentially anthro-
pomorphic; our body and environment determine both which basic experi-
ences that are available to us as source-domain for conceptual metaphors,
and which physical artifacts it is possible for us to produce and operate. Hu-
man cognition is in a non-trivial way embodied; it is shaped by the nature
and possibilities of our body and physical surroundings. And that goes for
mathematical knowledge as well. As all human cognition, mathematical cog-
nition is integrated with our biological nature and our way of existing in the
world, and it is influenced and constrained by the kind of beings we are. For
that reason, Husserl’s claim that mathematics is species-independent does
not hold good; at least, the mathematical knowledge available to us, is de-
pendent on the kind of species we are. In theory, this does not exclude the
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existence of mind-independent, purely objective mathematical truths – but
they do not seem to be ours to have. The mathematics we know, is shaped
by the kind of beings we are.

As we have seen in this chapter, mathematics furthermore depends heav-
ily on the culture-dependent context of artifacts, instruments and accepted
metaphorical conceptualizations. A simple question such as: What is a gen-
uine geometrical object? will always be answered within such a context;
Euclid gave one answer, the culture-dependent practice of machine-use led
Descartes and Huygens to give another, and finally, the introduction of ab-
stract symbols as a new mathematical technology led to yet another.

There is here, as pointed out by David Kirsh (in personal communica-
tion), a great deal of parallelism with the ideas of Imre Lakatos. Lakatos
pointed to the lack of certainty of mathematical theorems due to the fact
that the intra-mathematical discourse might always lead to new counter-
example. The dependency of mathematical thinking on cognitive strategies
involving artifacts and metaphors points to another layer of contingency; the
introduction of new artifacts or the acceptance or rejection of a metaphor
might always lead to revisions of our mathematical beliefs.
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The social level
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In the previous chapter, I identified the essential part rules play in the de-
velopment of mathematics. In several cases, new mathematical objects were
created simply by extending known rules of operation into new domains. This
was for instance how negative numbers and complex numbers were brought
into being. This process of expansion naturally brings our ability to follow
rules to the center stage, and demands a deeper explanation of what this
ability consists in.

So far, I have treated rules and rule following as trivial processes. It is
however, somewhat mysterious that we are in fact able to follow rules. This
became clear with the later writings of Ludwig Wittgenstein, where seem-
ingly trivial examples of rule following, such as ‘+2’, were examined and
brought into questioning. Wittgenstein’s central point is that neither train-
ing nor the previous use of a rule seems to determine the outcome, when the
rule is applied to new cases. The use of a rule seems to be underdetermined
by previous use. This being said, there is no consensus on Wittgenstein’s
general conclusion on the matter. At least three different schools can be
identified all – with some right – claiming to be based on different interpre-
tations of Wittgenstein’s writings: 1) An individualistic approach claiming
rule following to be an essentially individual process, 2) a collectivistic ap-
proach claiming social groups to be constitutive to rule following and 3) a
‘quietistic’ approach claiming rule following to be beyond philosophical and
rational treatment, but as long as we do not theorize about it, there is no
problem.

In the following, I will limit myself to a discussion of the collectivistic ap-
proach. My goal is neither to discuss the correct interpretation of Wittgen-
stein’s philosophy nor to account for rule following in general – I will leave
that for others. My goal is solely to shed light on the process of rule following
in the context of mathematics, and as I see it, the radical claims made by
the collectivistic approach invites the most fruitful discussion.

Furthermore, rule following is closely connected to normativity; when
rules are involved, you can do things either right or wrong. Normativity is
a salient and important feature of mathematics, as noted in the discussion
of Frege and Husserl’s anti-psychologism (in section 3.2.4). In mathematics,
what you do is almost always either right or wrong. However, neither the
biological nor the cognitive level is capable of giving an adequate account of
normativity in mathematics. At these levels of analysis, we are confined to
describe behavioral dispositions; a monkey might be disposed to choose the
bucket containing three pieces of apple over the bucket containing only two,
but it is neither right or wrong in doing so. It is only more or less competent
in food gathering. Humans might be disposed to follow certain cognitive



7.1 Rule skepticism 235

strategies, such as externalizing, but we are neither right nor wrong in doing
so. We are only more or less efficient cognizers. Yet, in mathematics, you
are right if you claim 2 + 2 to be 4, and wrong, if you claim it to be 5, and
this aspect of normativity must somehow be accounted for. To give such an
account, it is, I believe, necessary to move to a new level of explanation and
treat mathematics as a social phenomenon.

7.1 Rule skepticism

The collectivistic approach is based on a skeptical account of rule follow-
ing inspired by Wittgenstein’s later writing. I will begin by presenting this
account as Saul Kripke proposes it.

Kripke takes departure in the following passage from Wittgenstein: “This
was our paradox: no course of action could be determined by a rule, because
every cause of action can be made out to accord with the rule” (Wittgen-
stein, 1958, §201). What Wittgenstein aims at here, is that, under the right
interpretation, any action can be made out to be in accord with a given rule.
But if that is the case, how do we have the feeling that rules somehow picks
out one particular action as the right one? This seems to be a paradox, and
at least some kind of explanation is needed. It can be debated whether the
paradox applies to all instances of rule following, but in Kripke’s treatment,
the rule following paradox is mainly taken to problematize the idea that rules
can apply to infinitely many cases, although at any given time we have only
used it in finitely many cases.

The bulk of Kripke’s argument is centered on the familiar arithmetic rule
‘plus’. Although the function plus is defined for all the infinitely many pairs
of natural number, there exists a number N such that no sums a + b, with
neither a ≥ N nor b ≥ N have actually been performed. For convenience,
Kripke imagines this number N to be 57.

Given this setting, we can imagine that someone asks me to calculate a
new and unknown sum, say 57 + 68. I confidently give the answer: 125.
At this point, Kripke imagines a skeptic, and the skeptic objects: How can
I know that 125 is the correct answer to the problem 57 + 68? The most
straightforward answer would be to show the skeptic an arithmetic calcula-
tion, but the skeptic does not doubt my ability to calculate. He is doubting
whether I can be sure, that I have based my calculation on the correct rule,
i.e. whether I am following the same rule in this case, as in all the previous
cases of addition, I have so far encountered. As the rule for addition has only
been applied to finitely many cases, we can imagine a multitude of functions,
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all of which accord on all of these cases, but differs on new cases. Kripke’s
skeptic for instance, imagines the function ‘quus’ defined in the following
way:

x⊕ y =

{
x+ y, if x, y < 57
5, otherwise

If I had been ‘quussing’ instead of plussing on all previous cases, the correct
answer to this new problem of 57 + 68, i.e. the answer according to the
rule followed so far, would be 5 and not 125. In fact, any answer could be
made out to be in accordance with my previous practice, given an intelligent
choice of rule (as Wittgenstein noted in the quote above). So when I claim
that the answer ‘125’ is in accordance with my previous practice, I am, the
skeptic claims, taking a stab in the dark. I have chosen to apply the rule for
plussing, and not the rule for ‘quussing’ (or similar deviant rules) to the new
and unknown case, but how is this choice justified?

When I am faced with the new case, I feel like I follow directions, I
previously gave myself, and that these directions somehow determine the
answer I ought to give in this new case. But, the skeptic asks, what could
such directions consist in (Kripke, 1982, p. 10)? What fact about me or my
previous behavior establishes that I meant plus and not ‘quus’ (or another
deviant function) in the past? This is the core of the skeptical challenge.

According to Kripke, an answer to this challenge should satisfy two con-
ditions: Firstly, it should establish a fact about me that specifies precisely
which rule, I was following in my previous addition practice, and secondly,
this fact must furthermore justify the answers I give in the new addition
situations (Kripke, 1982, p. 11).

Kripke consider several candidates for such facts or ‘self-instructions’.
Firstly, I could explicitly have told myself to give the answer ‘125’ when
faced with the problem ‘57 + 68’. This is true, but addition is supposed
to work for an infinite number of cases, and at any given time I can only
explicitly have given myself the answer to finitely many calculations. So
this solution does not capture the depth of the skeptical challenge, Kripke is
posing.

As a second candidate, I could explicitly have described the algorithms
used to calculate answers to addition tasks. This could for instance be a
description of the physical operation of combining piles of discrete objects.
I could give myself the direction that the result of a + b is the number of
objects in a pile, constructed by combining a pile containing a and a pile
containing b objects. This answer however, presupposes the extension of
another, more basic rule – the rule of counting – to new cases. But how do
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I know what counting a pile of objects means? At any point in time, I have
only counted finitely many samples, so the skeptical challenge can be applied
to the operation of counting in exactly the same way, it is applied to adding
(Kripke, 1982, p. 16). So, I have not removed the problem by describing an
algorithm, only moved it to another, more basic level. A similar skeptical
answer will apply to any other self-instructions in the form of algorithms; I
may try to determine the meaning of a rule by stating another rule, but that
does not change anything. The skeptical challenge remains unanswered.

Thirdly, I could answer that the meaning of ‘plus’ flows from a disposition
to give certain answers (Kripke, 1982, pp. 22). When faced with a familiar
task, say 7 + 8, I am simply disposed to give a certain answer, here ‘15’, and
the same goes for novel tasks. Especially, I am disposed to answer ‘125’ when
posed the task of adding 57 and 68. This account in terms of dispositions,
however, does not tell my why I am justified in giving the answer ‘125’ to the
problem of adding 57 and 68. On the contrary, it merely states that whatever
I feel to be right, is right, and if that is the case, we are, as Wittgenstein
noted, in a situation where we cannot talk of ‘right’ or ‘wrong’ anymore
(Wittgenstein, 1958, §258). An account in terms of dispositions dissolves the
normativity that surrounds the situations. It fails to acknowledge that there
is a difference between questions such as “what would you like for lunch?”
and questions such as “what is 57+68?” There is no correct answer to the
first question, and any answer I might be disposed to give will suffice. This is
not so in the case of the second question. 125 is the right answer to 57 + 68.
It is not just an arbitrary answer, I somehow feel disposed to give.

In a variant of the dispositional answer, I can imagine building a plussing
machine, i.e. a machine that, given two numbers, answers with their sum
(Kripke, 1982, pp. 32). In that case, the machine handles the normativity
of the situation; what ever the machine answers, is the right answer. Or in
other words: The ‘disposition’ of the machine determines what the correct
answer is, and I can test my own answer against that of the machine. This
solution to the skeptical challenge is, unfortunately, very problematic. Any
mechanical device is finite, just like myself, so at some point the machine
will either break down or I will encounter numbers too large for it to handle.
What if the machine breaks down and starts answering ‘5’ to all addition
tasks involving numbers larger than 56. Has the machine, and consequently
myself, been quadding all the time? For this reason, a machine cannot play
the role of a standard. It must be build to confine with a standard, and I must
be able to judge its answers to be right or wrong, just as my own answers
must be either right or wrong. Simply defining the right answer to be what
ever the machine comes up with, does not answer the skeptical challenge.
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Normativity cannot be accounted for in terms of dispositions, neither of a
machine nor of individual persons.

Fourthly, the meaning of ‘plus’ might be an irreducible experience, such as
a headache, a mental image or a similar introspectible sensation that always
confront me, when I follow the rule for ‘plussing’ (Kripke, 1982, pp. 40).
Although I might in the past have had such a sensations each time I applied
the rules for ’plus’, it would not in itself, Kripke notes, tell me how to apply
the rule to new cases. The most convincing case for such a introspectible state
would be a mental picture of the addition table, but as we are finite beings,
even such a picture would be limited, and could not guide my extension of the
rule infinitely. So the meaning of ‘plus’ cannot be captured in introspective
sensations or mental pictures.

Finally, the meaning of ‘plus’ could be a real Platonic object, such as an
addition table containing all of the infinitely many addition task and correct
answers. Even granting the existence of such immaterial, Platonic objects
does not answer the skeptical challenge. My own practice is still finite, and
when confronted with a new addition task, how can I be sure, that I in my
previous practice was referring to the addition table, and not the equally
infinite ‘quaddition’ table? The introduction of platonic objects does not
solve the problem. It merely moves it to another level, where the choice of
Platonic object as referent to a term must be justified, instead of a particular
answer to a calculation task.

This is the skeptical paradox, as Kripke describes it. In his own solution
of the paradox, Kripke focuses on assertability and justification conditions.
An individual might believe she is following a rule. When asked about the
result of 57 + 68 I unhesitatingly answer ‘125’ and believe this answer to be
in accordance with my previous use of ‘plus’. As we have seen, this belief
cannot be justified by pointing to any fact about myself. According to Kripke,
however, I am nonetheless licensed to give whatever answer I believe to be
right, as our language game of speaking of rule following allows a speakers
to follow her inclinations without giving ultimate justifications. “All we can
say, if we consider a single person in isolation, is that our ordinary practice
licenses him to apply the rule in the way it strikes him” (Kripke, 1982, p. 88).
So when a person is considered in isolation as a private rule follower, the
justification conditions only amounts to the person believing she is acting in
accord with the rule.

This of course does not fully capture our concept of rule following. On the
contrary, it seems to show that rule following is not an individual process. As
Wittgenstein put it: “[T]o think one is obeying a rule is not to obey a rule.
Hence it is not possible to obey a rule ‘privately’: otherwise thinking one was
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obeying a rule would be the same thing as obeying it” (Wittgenstein, 1958,
§202). In order to grasp what rule following consists in, we must, according
to Kripke, widen our gaze and consider the individual, not as an individual,
but as part of a community. The community will not in general accept the
individual as an authority on her own rule following practice. An answer
given by an individual to a rule following problem will be judged as ‘correct’
if it corresponds to the answer generally accepted by the community, and as
‘incorrect’ otherwise. This alters the justification conditions radically; I am
justified in answering ‘125’ to the problem ‘57+68’, not just because I think
the answer is correct, but because this answer is the answer accepted by the
community of adders.

I might myself be accepted in the community of adders, if I generally
give correct answers to particular addition tasks, such as ‘57+68’. So the
situation is to be seen like this: When I answer ‘125’ to the task ‘57+68’, my
answer is not caused by a rule. On the contrary, by confidently answering
‘125’, I show that I am competent in following the rules governing the word
‘plus’. So the rule following does not cause the correct answer, instead the
correct answer causes my behavior to be in alignment with the rule.

This also determines the assetability conditions of sentences such as “I
mean addition by ‘plus’ ”. As soon as my answers to addition tasks are
so frequently in accordance with the answers of the community that I get
the feeling that I can give the correct answers in new situations, then I am
(subject to correction by others) entitled to say that I mean addition by ‘plus’.
Furthermore, I am (also subject to correction by others) entitled to judge my
responses to new addition tasks as ‘correct’ with the sole justification that
the responses are the once I am inclined to give (see Kripke, 1982, p. 90).

This picture of rule following is capable of accounting for the important
aspect of normativity. Normativity is simply understood as conformity; as
long as my answers agree with those of the community, I am right, and if my
answers for some reason begin to diverge, I am wrong – viz. I am no longer
entitled to assert that I am following the rule in question.

Kripke’s account ties rule following closely to the agreement of a social
group. But how does this general agreement emerge? Here, Kripke is remark-
ably – and deliberately – silent. He turns to the Wittgensteinian concept of
‘forms of life’: “The set of responses in which we agree, and the way they
interweave with our activities, is our form of life. Beings who agreed in con-
sistently giving bizarre quus-like responses would share another form of life”
(Kripke, 1982, p. 96). In Kripke’s view, our form of life cannot be explained
any further. An explanation of our form of life would imply an explanation
of why we agree that 57 + 68 is 125, and according to the skeptical paradox,
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no such fact can be stated. For this reason, our agreement must be taken as
a brute fact.

I will return to Kripke’s solution and in particular to his stance on expla-
nations of our form of life shortly, but first I will present two slightly different
theories, both applying the collectivistic account of rule following directly to
the practice of mathematics. So firstly, I will present Andrew Pickering’s
theory of ‘disciplinary agency’ and secondly David Bloor’s account of math-
ematics as social institutions.

7.2 Rules as institutions

Kripke’s answer to the skeptical challenge has been extended by David Bloor
(2002). In contrast to Kripke, Bloor takes departure in a conception of
rules as social institutions. Here, an institution is to be understood as a
self-referring system, i.e. a system that is created and upheld by practices
referring to the system itself. As an example of such an self-referring system,
Bloor states the institution of property (Bloor, 2002, p. 30-31). The fact that
people can own property is generated by the very fact that enough people
talk about ownership and act as if it is the case that people can own property.
It is in other words generated by acts referring to the very institution they
constitute, and if everybody stopped engaging in the social institution of
property, it would simply vanish. This makes social institutions such as
property, money, royalty, marriage etc. into something completely different
from physical objects. A physical object will exist, whether or not we know
about and acknowledge it, but a persons ownership of the object only exists,
if enough people acknowledge it. As Bloor remarks, social institutions are
almost something magical; a group of people brings something into existence,
simply by acting as if it existed (Bloor, 2002, p. 29).

The introduction of self-referring social institutions allows Bloor to give
a ‘straight’ answer to the skeptical challenge, i.e. an answer that shows one
of the premises of the paradox to be false. This is to be contrasted with
Kripke’s ‘skeptical solution’, where the paradox is accepted, but shown to
be consistent with our usual practice of talking about rule following and
meaning.

As we will recall, Kripke’s skeptic was looking for a fact about me that
could determining what I, in my previous practice, meant by the word ‘plus’.
Kripke claimed that such a fact could not be found. Bloor does not agree.
He points out that all the possible facts considered in Kripke’s skeptical
argument, are individualistic facts. For this reason, the argument does not
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show that meaning and rule following cannot be accounted for in factual
terms, only that it cannot be explained by facts about isolated individuals.
But there are other types of facts. Facts, not about isolated individuals, but
about social groups and social institutions.

It is a fact that (say) Jones owns a house. But what kind of fact is it?
It is not a fact neither about the house taken as a physical object or about
Jones taken as an individual. No inspection of either Jones or his house
will reveal the ownership. This is because Jones’ ownership is a social fact.
It amounts to the fact that enough people acknowledge the institution of
property and accept Jones as the rightful owner of the house. The ownership
is in other words constituted by Jones’ contact with and particular role in
the institution of property. As Bloor puts it, the ownership is true of Jones,
not caused by him (or the house) (Bloor, 2002, p. 65).

In Bloor’s view, a similar type of fact constitutes the meaning of addition.
Addition is a self-referring social institution similar to property. It is created
by people being trained to, performing acts of and talking about adding.
If people stopped talking about, stopped performing and stopped training
others in addition, addition would simply vanish, just as ownership or royalty
or marriage would vanish, if people stopped acknowledging the existence of
these institutions. So, the fact that I mean addition by ‘plus’ is constituted
by social facts about my membership of and participation in the institution
of addition, just as Jones’ ownership of his house was constituted by his
participation and role in the institution of property:

The (finite) content of the state of meaning [addition], or the act of
meaning, derives from the actor’s real or perceived contact with the
institution of adding. The institution itself only exists in virtue of the
whole nexus of similar actions and references and behaviours by the
other participants.

(Bloor, 2002, p. 67)

And similarly, the truth that 57 + 68 is 125, is a truth about this institution.
I am right in claiming that 57 + 68 is 125, because I have a certain perceived
contact with the institution of adding, and 125 is the institutionalized answer
to 57 + 68.

In Kripke’s story, the ambiguity of the rules for addition arose, because
the particular addition task considered was a novelty. If that is the case,
how can the answer be embedded in an institution? Will the members of
the adding institution still not have to face the ambiguity between – and
hence different extensions of – ‘adding’ and ‘quadding’. To this, Bloor sim-
ply answers “what ambiguity? There is no ambiguity. Within the practice so
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described there is no double meaning attached to the word ‘add’. There is no
surmise and no doubt. There is just one thing that they rightly do, namely
give this answer to this question, and that answer to that question”(Bloor,
2002, p. 69). So, as long as the community of adders agrees in their prac-
tice, there is no ambiguity. The possibility of ambiguity only arises, if the
community of adders becomes aware of the two possible descriptions of their
past practice (as either adding or quadding) – and hence of the two possi-
ble extensions of the practice in the new case. The community is, however,
completely free to decide, and whatever they decide to be correct, is correct.
And if they agree that 57 + 68 is 125, this agreement in itself counts as a
proof that they all along meant ‘adding’ and not ‘quadding’ by ‘plus’ (Bloor,
2002, p. 70). So as long as they agree, even on what answers to give to the
new problem, there is no ambiguity in their practice.

Bloor readily admits that his institutional account is a form of
community-wide dispositional theory. A social institution can simply be
seen as “the collective product of the interactions between the dispositions
of many individuals” (Bloor, 2002, p. 68). As we will recall, Kripke’s skeptic
dismissed individual dispositions as candidates for facts constituting mean-
ing, on the ground that individual dispositions could not account for the per-
ceived normativity. So what about community-wide dispositions? Doesn’t
the problem of normativity arise again, only at the community level? It does,
Bloor admits, but the community is beyond right or wrong. If the group of
people sharing the institution of adding deems “125 to be consistent with
their past meaning, then it is consistent – because meaning is an institution,
and an institution is what people make it” (Bloor, 2002, p. 70). Normativ-
ity only exists within an institution. My individual dispositions and answer
to a particular addition task can be judged right or wrong in comparison
to the answer deemed right by the others participating in the institution of
adding, but ultimately, the institution itself cannot be compared to anything
outside itself. There is no golden standard to compare the decisions of the
community against. Institutions are self-referring practices. They provide
normativity for their participants, and that is all the normativity there is.

7.2.1 Institutions as a source of objectivity

The answers given by Kripke and Bloor might seem very similar. They both
agree on the basic claim that rules, normativity and meaning cannot be
accounted for by looking at isolated individuals, but essentially involves the
shared practice of a community. There is however, at least one important
difference between them. As Kripke accepts the skeptical challenge, he is
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forced to give up the idea that our practice of talking about meaning and
rule following is fact-stating. This is why he is only able to state assertability
and justification conditions, and not truth or correspondence conditions. In
Kripke’s view, I can be entitled to make statements like “I mean addition
by ‘plus’ ”, but I can never claim it to be a fact that I mean addition by
‘plus’. On Bloor’s account on the other hand, it is a fact that 57 + 68 is
125, similar to the fact that Jones owns his house or that Margrethe II is the
queen of Denmark. It is a fact, not about me as an individual, but about
the social institution I participate in. On Bloor’s account in other words,
the dichotomy between referring to an independent reality and not referring
to facts at all, accepted by Kripke, is false, as it leaves out the possibility of
self-reference, i.e. reference to social institutions (Bloor, 2002, p. 68).

The implication of Bloor’s acceptance of social facts is fully exploited in
one of his earlier works (Bloor, 1991). Here, Bloor addresses Frege’s search
for the objectivity of mathematics. As explained in section 3.2.4, Frege and
Husserl notices the objectivity and normativity connected to mathematical
objects and truths. This objectivity can neither be explained, if we take
numbers to be properties of physical objects nor if we see numbers as the
products of subjective psychological factors. Consequently, Frege and Husserl
conjectured the existence of a realm of ideal, mathematical objects having
objectively given properties.

Given Bloor’s institutional account of rule following and meaning, another
possibility becomes visible. The third type of objects, which are neither
individual psychological states nor physical objects could just as well be
social institutions. Social institutions are neither physical objects nor merely
individual, psychological states or dispositions. They are external to us as
individuals. They form a social reality, and for that reason they can account
for the experience of normativity and objectivity, Frege and Husserl notices
so well; we cannot at will create numbers with the properties that suits us.
We are restricted by something that is not our own will. So according to
Bloor,

The conclusion is that the way to give substantial meaning to Frege’s
definition of objectivity is to equate it with the social. Institutional-
ized belief satisfies his definition: this is what objectivity is.

(Bloor, 1991, p. 98)

7.2.2 Institutions and social causes

There is another essential difference between the answers to the skeptical
challenge given by Bloor and Kripke. As mentioned above, Kripke refrains
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from giving causal explanations of our form of life. He leaves our agreement
to follow one rule and not another completely and intentionally unexplained.
As we shall see shortly, something similar is seen in the account given by
Andrew Pickering. Here, institutions are seen as emerging in a non-reducible
way from the interaction between our projects and intentions on the one side,
and the already accepted institutions on the other.

To Bloor, however, there is another possibility. Bloor embeds meaning
and rule following in social facts, and social facts can be given sociological
explanations – or at least one can meaningfully look for them. This allows
Bloor to meaningfully apply the ideas of the so-called ‘strong program’ to
the philosophy of mathematics.

The strong program, in brief, refers to a particular approach to the so-
ciology of scientific knowledge, proposed by Bloor in association with Barry
Barnes and Harry Collins amongst others (see for instance Bloor, 1991;
Barnes et al. , 1996). The strong program demands the investigation of
scientific knowledge to be causal, i.e. “concerned with the conditions which
bring about beliefs or states of knowledge” (Bloor, 1991, p. 7), impartial, i.e.
investigate and explain both true and false, rational and irrational beliefs,
symmetric, i.e. seek the same types of explanations for true and false, rational
and irrational beliefs, and reflexive, i.e. “its patterns of explanation would
have to be applicable to sociology itself” (Bloor, 1991, p. 7). Although the
precise type of causes are not specified in the tenets of the strong program,
in the actual application of the program Bloor and colleagues are mainly
focusing on social causes and on showing how scientific beliefs are caused by
social interests. Consequently, the strong program in its actual realization is
part of the sociological program claiming scientific knowledge to be a social
construction.

The strong program has been met with stark criticism as basic for investi-
gating and explaining the empirical sciences (see e.g. Collin, 2003). To men-
tion only one point of criticism, the basic idea (of the social constructivistic
approach) of using empirical studies to show that the knowledge claims made
by the empirical sciences are caused by social facts, and not by correspon-
dence with an independent reality, seems to have insurmountable reflexivity
problems. How are we supposed to evaluate such a claims? The claim is
made by an empirical science (sociology) and is the result of an empirical
investigation, so should we take the claim to be true (i.e. corresponding to
the independent social reality they it is meant to describe) or to be itself
the product of social facts causing the sociologists of science to make this
claim? If we believe the sociologist of science to be right, we simultaneously
rob her of her empirical justification. From the outset, the strong program
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seems to presupposes a fundamental asymmetry between social and other
types of facts. We have access to social facts, they can cause our beliefs –
and sociologists can describe them rightfully –, but how other types of facts
enters the equation is somewhat less clear.

Mathematics, however, is not an empirical science, so the idea of seek-
ing social explanations of mathematical beliefs seems to evade at least the
reflexivity problem. There might of course be other problems, but let us at
least see some of the explanations given by Bloor, before we evaluate them
and his general approach.

I will start by introducing Bloor’s conception of social causes, as it is
presented in his treatment of four case studies (in Bloor, 1991, p. 110–130).
As noticed above, the strong program does not explicitly demand the causes
which “bring about beliefs or states of knowledge” to be social. However,
Bloor makes his focus on social causes clear before he sets upon the actual
cases: “I shall offer illustrations of four types of variations in mathematical
thought each of which can be traced back to social causes” (Bloor, 1991,
p. 110). This being said, Bloor does seem to allow the possibility that other
than social factors can influence mathematics. He mentions for instance, how
mathematics can be affected by experiences, habits, patterns of behavior and
psychological processes (see e.g. Bloor (1991, p. 154-5); Bloor (2002, p. 20)).
However, as it turns out Bloor only describes social causes as explanations
for the mathematical beliefs, he describes, and he does seem to consider
social causes to be privileged in comparison to the other possible sources of
influence mentioned above.

The four cases considered by Bloor in (1991) are: 1) the status of ‘one’
as a number, 2) number mysticism 3) the proof that

√
2 is irrational and 4)

the status of infinitesimals.

The first two cases are connected, and address the fact that mathemati-
cians through the ages have had very different conceptions of what numbers
are. In the classical conception, numbers were associated with pluralities of
discrete units. From this point of view, it can meaningfully be questioned
whether ‘one’ is a number. Aristotle for instance argues that ‘one’ is the
unit, i.e. the measure of some plurality, whereas ‘number’ is a measure of
the plurality of units. For this reason ‘one’ cannot be a number, as the unit is
by definition not a plurality (Metaphysics book N 1087b33-1088a14 Annas,
1976, p. 117). As it turned out, this conception of number changed, and as
described in section 6.12.1.2, a different conception of number, associating
numbers with locations in space (i.e. on a directed line) were introduced in
the 16th century.
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In section 6.12.1.2, I were mainly concerned with the cognitive mecha-
nisms in the form of conceptual metaphors and blends involved in this change
in the conception of number. Bloor however, draws attention to the social
factors also involved in the change. According to Bloor, the Greek mathe-
maticians holding the classical conceptions of number were concerned with
mathematics from a purely theoretical or even philosophical point of view,
whereas several of the leading mathematicians of the 16th and 17th century
were engineers and physicists (Bloor only gives the Dutch inventor of loga-
rithms, Simon Stevin (1548–1620), as an example, but the same holds true
of several others of the leading figures). These men were not (or at least
not only) interested in numbers for their metaphysical significance. They
wanted to use numbers for measurements of distance, movement and pro-
cesses of change, and according to Bloor, that paved the way for a change in
the conception of numbers.

The last two of the case studies concern the variation in the demands on
rigor and in the interpretation of pieces of deduction. In both cases, Bloor
draws attention to the fact that there are no eternal and objective standards
of rigor or of what counts as a valid argument. For this reason, the knowledge
claims made in a mathematical proof are not successful only because of the
proof in itself, but because the proof makes use of accepted and meaningful
forms of reasoning: “Certain conditions have to obtain before a computation
has any meaning. These conditions are social in the sense that they reside
in the collectively held system of classifications and meanings of a culture”
(Bloor, 1991, p. 124).

What Bloor claims here, is that mathematics is always set in broader
context of purposes, interests, values, standards, training, accepted inter-
pretations and meaning giving metaphors. This is not unlike the Kuhnian
idea of paradigms, as Bloor notes – although he does not pursue the analogy
further (Bloor, 1991, p. 129). As the cases are meant to show, changes in
this broader, culturally shared context might lead to (or facilitate) changes
in the content of mathematics. One could perhaps argue that Bloor does not
explain why these changes came about; engineers and physicists suddenly
became interested in mathematics, the standards of rigor constantly change,
but why did they do that? Bloor does not give an explanation. But that is,
as I see it, less important in this connection. The important thing is to note,
that mathematical practice is always performed in a wider social setting, and
properties of this setting can (however they came to be) influence the math-
ematical practice. That is, as I see it, how Bloor understands ‘social causes’
at this place.

I will get back to and discuss this conception of social causes, but first
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I will point out, that Bloor seems to operate with two other very different
conceptions of social causes, both of which are more in line with the social
constructivistic ideas, often connected with the tenets of the strong program
and the sociology of scientific knowledge.

The second conception of social causes is found in Barnes, Bloor and
Henry (1996). Here, Lakatos’ idea that 2 + 2 might equal 5 in some cases
is discussed. The idea origins in the dialog of Proofs and Refutations, where
the dialog partner Kappa makes the following suggestion: “In certain cases
two and two makes five. Suppose we ask for the delivery of two articles
each weighing two pounds; they are delivered in a box weighing one pound,
then in this package two pounds and two pounds will make five pounds”
(Lakatos, 1976b, p. 101). Barnes et al. see this as a real challenge. Why
do we perform what Lakatos calls ‘weightless addition’, i.e. why do we hold
that 2 + 2 = 4 and not 5 or some other thing? According to Barnes and
colleagues, it must be for a sociological or psychological reason. They do,
however, not search for psychological reasons, but instead give the outline of a
sociological explanation. From a sociological point of view, they explain, “to
establish a convention for adding means solving a coordination problem, that
is, it means getting everybody to adopt the same procedure” (Barnes et al.
, 1996, p. 185). Such problems are most easily solved, if there is a ‘salient
solution’, i.e. a solution that is plainly visible to everyone, and weightless
addition is exactly such a solution:

Salient solutions are often extreme solutions, ones which lie promi-
nently at the beginning or the end of the spectrum of alternatives.
Weightless addition may be such an extreme and prominent solution.
There are therefore pragmatic reasons connected with the organiza-
tion of collective action that would favour saying 2 + 2 = 4, rather
than 2 + 2 = 5 or 6 or 7 or . . .. As a convention it is probably easier
to organize than the others, and therefore more likely to arise histor-
ically.

(Barnes et al. , 1996, p. 185)

So here, social causes are understood as sociological facts about group dy-
namics and facts about how social groups establish organized behavior.

The third conception of social causes used by Bloor is established in a
detailed case study on the different attitudes towards the status of sym-
bolic calculations hold by William Rowan Hamilton on the one side, and
the Cambridge school of symbolic algebra, counting members such as Pea-
cock, Babbage and Whewell, on the other (Bloor, 1981). According to Bloor,
these different attitude towards algebra were caused by the actor’s different
political and social ideas.
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Hamilton was involved in a movement inspired by German idealism, and
following the ideas of Kant, he saw algebra as a synthetic a priory investiga-
tion of pure time. This idealist movement operated with a hierarchy of mental
faculties. In this way, the faculty of understanding was seen as subordinate
to the faculty of reason. As science, according to the idealists, belonged to
the first-mentioned, and religion and morality to the last, the hierarchy of
mental faculties resulted in a similar hierarchy in knowledge forms – science
was considered to be subordinate to moral and religion. By fitting algebra
into this ontology, Hamilton managed to see it as dependent on the higher
faculty of reason, and consequently as subordinate to religion and morality
(see Bloor, 1981, for details).

According to Bloor, this localization of algebra in the hierarchy of knowl-
edge forms was not a purely academic exercise. It served a practical purpose
as well. Hamilton was a conservative, and by interpreting algebra in the light
of idealist metaphysics, he managed to see algebra in a way that was con-
sistent with his social values: “[the idealist interpretation’s] practical import
was to place mathematics as a profession in a relation of general subordi-
nation to the church. Algebra, as Hamilton viewed it, would always be a
reminder of, and a support for, a particular conception of the social order”
(Bloor, 1981, p. 217). So, Hamilton’s conception of algebra was, in other
words, caused by his political ideas and values.

The Cambridge school of symbolic algebra on the other hand, advocated
a formalist conception of algebra (or rather; what is now with a slight, but
common, anachronism classified as a formalist conception of algebra). They
saw algebra as a closed system of manipulation with written symbols, which
had no relation to anything outside itself; symbolic algebra, in their view,
was a self-sufficient and autonomous system. According to Bloor, this con-
ception of algebra also has to be seen as a statement of social values. The
members of the Cambridge school were “reformers and radicals” (Bloor, 1981,
p. 222). They rebelled against tradition and authority, and by imposing self-
sufficiency and independence onto their symbols, they were freeing themselves
of external sources of authority and control. As Bloor summarizes:

Stated in its broadest terms, to be a formalist was to say: ‘we can take
charge of our selves’. To reject formalism was to reject this message.
These doctrines were, therefore, ways of rejecting or endorsing the es-
tablished institutions of social control and spiritual guidance, and the
established hierarchy of learned professions and intellectual callings.

(Bloor, 1981, p. 228)

The rival conceptions of algebra were in other words used to send different
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political messages. They were used as tools in a game of power and social
control. “[I]n our social life we are always putting pressure on our fellows
and seeking to evade that pressure ourselves [. . .]. In order to do these things
we try to make reality our ally, showing how the nature of things supports
the status quo, or how the established social order is at odds with what is
natural” (Bloor, 1981, p. 230-1). So at this place, the social facts causing the
different conceptions of algebra are the actors’ interests in different types of
social order. The different conceptions of algebra are simply used as means
of furthering the social interests of their holders.

I will get back to and discuss these different conceptions of social causes
below. At first, I will however present the theory of Andrew Pickering, where
the origin of mathematical institutions is given yet another explanation.

7.2.3 Disciplinary agency

Like Kripke, Andrew Pickering (1995) identifies the normativity of rule fol-
lowing with the responses generally accepted by a community of rule follow-
ers. Pickering however, puts emphasis on the role played by training. In
his view, rule following is constituted by a process of training, where the
individual is disciplined by the community into responding mechanically in a
particular way. He introduces the term ‘disciplinary agency’ to describe the
force this kind of training can exert on an individual.

Pickering introduces the concept of disciplinary agency as a counterpart
to the concept ‘material agency’; in the empirical sciences such as physics,
the intentions and wishes of the scientist is opposed by the ‘agency’ of the
material world, she tries to handle and get particular responses from. We
cannot simply impose our will on the material world and make it behave as
we want to. The agency of the scientist seems to meet with another agency
– the agency of the material world. As a consequence, science is produced in
an open-ended process, where the ideas and hypothesis of the scientists are
constantly ‘mangled’ (as Pickering expresses it) in the encounter with the
material agency of the physical world.

According to Pickering, something similar is taking place in the develop-
ment of mathematics. Mathematicians cannot do just anything. Their ideas
and plans are met with some kind of opposition similar to the opposition fac-
ing physicists and chemists, and that opposition is precisely the disciplinary
agency. So disciplinary agency accounts for the normative aspect of math-
ematics. There is a right and a wrong in mathematics, and what counts as
what is decided by the community. When the general opinion of the social
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group is internalized by the individuals through training, it takes the form of
an agency – disciplinary agency – that gives us a clear sense of what counts
as right and wrong in a given situation. In fact, most of the time, it simply
makes us act unhesitatingly in conformity with the rule.

In connection to mathematics, Pickering’s main contribution is to describe
the collective development of mathematics and disciplinary agency. In Pick-
ering’s view, mathematics is developed by extending well-known cases into
new domains. The extension process has three stages. Firstly, a bridgehead
must be established. The bridgehead fixes both the domains to be worked
on and how the elements of the well-known domain are to be transferred to
the new domain. Secondly, a translation takes place. Here, structure and
rules of operation are transferred (or translated) via the chosen bridgehead
from the old to the new domain. Lastly, the rules of operation of the old
domain might not fully determine all of the possible moves in the extension.
If that is the case, a process of filling, where the undetermined moves are
fixed, takes place (Pickering, 1995, p. 115–6).

According to Pickering, the three stages of the extension process, not
only reflect changes in the type of processes going on, but also (and more
importantly) in the distribution of agency. In short, the choice of bridgehead
and process of filling are ‘free moves’, i.e. moves where the mathematician is
free to act and make choices of her own. The translation stage on the other
hand, is a forced move determined by disciplinary agency.

This interplay of agency is clearly visible in a model-case presented by
Pickering (Pickering, 1995, p. 121–41). The case is William Hamilton’s de-
velopment of the system of quaternions. As is well known, the quaternions
were the unexpected outcome of Hamilton’s attempt to develop a three-
place algebraic description of three-dimensional space. As earlier described
(subsection 6.12.1.2.3), an analogy between the two-dimensional plane and
complex, two-place algebra was generally accepted during the first decades of
the 19th century. Following this example, Hamilton wanted to create a three-
place algebra that could be used to create an analogy to three-dimensional
space. So in other words, Hamilton wanted to extend both the two-place,
complex algebra to a three-place algebra, and the corresponding geometrical
interpretation from a two- to a three-dimensional model.

Hamilton tried to extended the complex, two-place algebra to a three-
place algebra simply by adding another imaginary unit. So where a standard
complex number s has the form s = x + iy, where x, y ∈ R and i =

√
−1,

a number t in the three-place algebra should have the form t = x+ iy + jz,
where x, y, z ∈ R and i = j =

√
−1. This is the bridgehead of the extension.

Hamilton here made a free choice of how he wanted to extend the well-known
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two-place algebra. So in this phase of the extension, Hamilton was in control.

In the next stage – the stage of translation – Hamilton had to determine
what the basic rules of operation for the new three-place algebra should look
like – and here, he was no longer in control. As an example, he determined
the square of a number t in the three-place algebra to be:

t2 = x2 − y2 − z2 + 2ixy + 2jxz + 2ijyz

This equation was not the result of a free choice on Hamilton’s side. It was
a result produced by applying the well-known and already accepted rules
of standard algebra to the expression (x + iy + jz)2. In Pickering’s words,
“[a]nyone already disciplined in algebraic practice, then or now, can check
that Hamilton (and I) have done the multiplication correctly” (1995, p. 129).
So the result, in other words, was (and still is) determined by disciplinary
agency.

As it might be noticed, one term of the equation above, however, is not
completely determined by previous practice. Previous practice does not tell
us what the product of the two imaginary units i and j should be. So here
we have once more a free move – a filling move –, where Hamilton had an
actual choice to make.

Apart from the extension of two- to three-place algebra, Hamilton was si-
multaneously trying to extend the two dimensional interpretation of complex
algebra to a three-dimensional interpretation of his new three-place algebra.
These two extensions in combination left him with several filling moves, and
Hamilton tried to create the desired fit between the geometrical and the al-
gebraic extensions, by filing in the undefined moves in different ways. As a
part of this process, Hamilton decided to give up the rule of commutativity.
Until then, it had been a standard rule in algebra, that a · b = b ·a. Hamilton
however, decided to define the new and unknown product of two imaginary
units in a way, so i · j = −j · i. This move solved some of his problems, but
eventually the difficulties facing Hamilton proved too great. He abandoned
his original goal of extending complex algebra into a three-place algebra, and
instead decided to change his bridgehead and extended it into a four-place
algebra, by introducing yet another imaginary unit k, defined as the product
of i and j. The imaginary units of this four-place system furthermore embod-
ied the property of non-commutativity, so for instance ij = k, but ji = −k.
This four-place algebra, usually called the quaternion system, turned out to
have the required geometrical interpretation, but only to four-dimensional
space, and not to three-dimensional space, as Hamilton originally wanted (or
at least it did not do so in any straightforward way).

According to Pickering, the case shows how mathematics is developed
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through a ‘dance of agencies’. Hamilton did not reach the goal he set out
to reach. He achieved something different. His wishes and intentions met
resistance in the form of disciplinary agency, and consequently were changed
or mangled. Disciplinary agency on the other hand was also mangled in this
meeting, as something new in the form of a non-commutative elements were
introduced. Furthermore, Hamilton’s eventual success led to the stabilization
of the choices he had made; they were accepted and considered as being right,
because they lead to a success.

What interests us here, is mainly the origin of the conceptual practice
embodied in disciplinary agency. Pickering takes this case study to show
that the development of a conceptual practice is an open-ended process that
is not completely determined by any of the individual human agents involved
in it. Rather,

[c]onceptual practice thus has the quality [. . .] of a dance of agency,
this time between the discretionary human agent and what I have
been calling disciplinary agency. The constitutive part played by disci-
plinary agency in this dance guarantees that the free moves of human
agents – bridging and filling – carry those agents along trajectories
that cannot be foreseen in advance, that have to be found out in prac-
tice.

(Pickering, 1995, p. 139)

So the conceptual structure itself is an “upshot of the mangle” (Pickering,
1995, p. 140). It emerges in a non-reducible way from the intersection of
human agency and already accepted conceptual structures. Pickering fur-
thermore stresses, that conceptual practice and culture in broad in both
mathematics and science in general, is controlled by nothing outside of itself.
The ‘nothing’ here specifically covers both social factors and the physical
world:

I want to stress that on my analysis nothing substantive explains or
controls the extension of scientific culture [defined by Pickering to
include mathematics]. Existing culture is the surface of emergence
of its own extensions, in a process of open-ended modelling having
no destination given or knowable in advance. Everything within the
multiple and heterogeneous culture of science is, in principle, at stake
in practice. Trajectories of cultural transformation are determined
in dialectics of resistance and accommodation played out in real-time
encounters with temporally emergent agency.

(Pickering, 1995, p. 146)
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So according to Pickering, the conceptual practice of mathematics is nothing
but an emergent and non-reducible feature of the ‘dance’ between human
and disciplinary agencies.

7.3 Impact of the social

Let me start the concluding discussion with a brief recapitulation. I took
departure in Kripke’s rule skepticism. According to Kripke, rule following
cannot be an individual or ‘private’ activity. Following a rule, is following it
either rightly or wrongly. As no fact about me as an individual can determine
what is right or wrong, rule following necessarily presuppose contact with
the shared practice of a group. Kripke, however, is reluctant to explain how
a particular rule for, say, addition, gets accepted as being correct. David
Bloor and Andrew Pickering agree with Kripke’s fundamental analysis, and
they furthermore give two different explanations of how rules gets established
in mathematics. To Pickering, rules (embodied in disciplinary agency) are
simply the outcome of a process of interaction between already established
rules and the intentions of individual mathematicians. This process is not
influenced by any external factors. Bloor on the other hand, sees the rules
of mathematics (in the form of self-referring institutions) as the product of
different types of external, social causes.

I will open the discussion by consider two lines of criticism against the
collectivistic approach to rule following, a radical and a less radical. The
radical line of criticism accepts that rule governed behavior presupposes some
kind of feedback from a source external to the rule-follower, but claims that
this feedback does not necessarily need to be from a social group of fellow
rule users. It can just as well be from the physical world. The less radical line
of criticism accepts that contact with a social group is constitutive for rule
following, but rejects the idea, that the rules of mathematics consequently
are arbitrarily created social constructs; even though a rule is created by and
can only exist due to a social group of fellow practitioners, it can be used to
represent a reality other than the social reality of the group, if that is the
use of the rule intended by the social group.

Starting with the first line of criticism, it seems that the collectivist ap-
proach considers feedback from our social surrounding to be different from
feedback from our physical surroundings. But why is that so? It seems to
be a basic fact about humans – and most other animals – that we can learn
i.e. adjust our behavior in accordance with regularities, perceived in our
surroundings (be it social or non-social). Even simple computer programs,
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such as the so-called neural networks modeling some of the basic mecha-
nisms of biological brains, have this capacity (with some limitations, see e.g.
Rumelhart & McClelland 1986; Johansen 2003). So our ability to learn from
experience appears to be a purely biological fact based in the structure and
function of our nervous system.

Let us go back to the experiments on animals discussed in chapter 4. Here,
we saw for instance how rats, in the experimental setup used by Mechner,
were able to learn to apply a given number of presses to a lever, in order to
receive water (Mechner, 1958a,b). Apparently, the rats did not have to be in
contact with any kind of social group in order to learn simple rules such as
‘press lever A 18 times or more, then press lever B’. If a rat can learn rules
of this kind only by experiencing regularities in its physical surrounding, why
shouldn’t I be able to learn rules, such as the rules for counting or adding,
by making similar observations of, say, the regularities governing piling of
discreet objects?

The answer is, as I see it, that the rat is not really following a rule. It
is trying to adapt to its environment. We can describe the rat’s behavior
in terms of rule following, saying for instance “oh, it got it wrong. It only
pressed the lever 17 times, and not 18 as it was supposed to”, but by doing
so, we bring the rat into contact with our own rule following practice. We
measure the rat’s behavior by our own golden standard of what it means to
count to 18 rightly. The rat on the other hand, is not trying to behave in
accordance with any counting standards. It is simply trying to get water
by interacting with and investigating its environment. This includes the ap-
proximately repetition of patterns of behavior that previously lead to success,
but that in itself does not constitute rule following. It is more appropriately
described as part of an adaptive strategy of exploiting the possibilities of the
environment. Such a strategy can be described as successful or not, but not
as right or wrong.

The rat’s behavior is completely tied to the dispositions of its environ-
ment – in this case to the machine. Rule following proper is, as I see it,
something else. As noted above, rule following presupposes an element of
normativity; if I follow a rule, I can do it rightly or wrongly, and if I use
rules to interact with the physical world, I must be able to judge whether the
world follows the rule as expected or not. I cannot simply define 18 as “the
number of times I have to press the lever in order to get water”. If I operate
Mechner’s machine by following a rule such as: “press lever A 18 times”, then
I must be able to say to myself: “the machine is malfunctioning, it didn’t
give me water as it was supposed to – or perhaps it is following a different
rule now”. Similarly, I cannot simply define the rules of addition as the
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regularities observed during particular instances of object piling. I must be
able to say, “these objects do not behave in the right way, they are somehow
malfunctioning or following another rule than addition” (this could happen,
if I was working with, say, drops of mercury). Rule following in other words
presuppose an element of detachment from individual instantiations of the
rule in the physical world. It presupposes the acknowledgment and use of a
standard, which lies beyond any particular instances of regularities observed
in the physical world. Unfortunately, I cannot provide this standard myself
as an individual – that would lead to the identification of the rule with my
accidental dispositions. The only way such a standard, that lies beyond both
my own accidental dispositions and particular instances of regularities in the
physical world, can be provided is by contact with a social group.

So even though we can learn to repeat patterns of behavior by observing
and interacting with regularities in the physical world, that in itself does
not turn us into rule followers. Following a rule presupposes the kind of
normativity relative to an abstract standard that only contact with a social
group can provide. In Bloor’s words (in personal communication on the rat-
example): “We can do whatever the rat can do – and then some”; just like the
rat, we can learn from regularities in the world, but by using these regularities
as the foundation of a social institution, we can also create an independent
vantage point that allows us to evaluate the perceived regularities, and not
only follow them blindly.

So far at least, I agree with the collectivistic approach to rule following;
contact with a community of fellow practitioners is a necessary condition for
rule following practice. This brings us to the second line of criticism: Given
that contact with a community is a necessary condition for rule following,
does it follow that the rules themselves are social constructs? According to
Pickering, we cannot really account for the rules – they simply emerge in
the dance of agencies. According to Bloor, the rules are (at least in part)
produced by social causes of various types.

Beginning with Pickering, Pickering seems to claim that the rules and
laws of operation accepted in mathematics is the somewhat arbitrary emer-
gent product of the ‘dance of agencies’. I will not rule out that this could
be so in some instances. However, in the only case provided by Pickering, it
clearly seems not to be the case. Hamilton is tinkering with the rules of ab-
stract algebra, and his moves are partially restricted by the already accepted
laws. So far, Pickering is right. Nevertheless, Hamilton is also restricted by
something besides disciplinary agency. He is trying to create a mathematical
structure capable of representing or corresponding to fundamental structures
of the actually experienced three-dimensional space. He is not just tinkering
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aimlessly, and the rules he arrives at are not arbitrary. They are part of
a mathematical structure that is capable of representing properties of the
physical world.

Although Pickering claims that the free moves made by Hamilton were
‘stabilized’ due to his success, it should be noted that the quaternian system
was soon abandoned (or rather made obsolete) by the introduction of vector
theory. The theory of vectors provided the wanted algebraic treatment of
three-dimensional space, and consequently was favored over the theory of
quaternians, which does not provide such an interpretation. This shows that
the ‘agencies’ described by Pickering are not just dancing aimlessly around.
The dance is constrained by our interest in creating mathematics, in this case
in an interest in describing three-dimensional space in a convenient way. On
a more general note, it is worth noting that Pickering only considers model-
ing in the form of extension from one mathematical domain to another. As
we saw in chapter 6, there is also another type of modeling going on in math-
ematics. With meaning creating metaphors, mathematics is connected, not
only to previously constructed mathematical theories, but also to structures
in the real world. As we also saw, this mechanism has an impact on the
development of mathematics by being instrumental in getting a particular
piece of technical deduction accepted as valid. So also in this way, mathe-
matics is connected to and constrained by structures experienced in the real
world.

Turning to Bloor, he suggests, as noted above, several slightly different
types of social causes, which – in his view – shapes the content and rules
of mathematics. Starting with the case study on Hamilton, Bloor suggests
that the metaphysical conception of mathematics is used as a tool in a power
struggle. So the metaphysical conception is other words caused by the wish
to propagate a particular set of social norms. This conception of social causes
is clearly a variant of social constructivism. Mathematics – or at least the
metaphysical conception of mathematics – is mainly used as an instrument
for promoting narrow group interests.

In my view, there are two fundamental problems with this case study.
Firstly, according to Bloor, Hamilton and the Cambridge group agreed on
the level of technical detail, although they disagreed about the nature and
symbolic significance of algebra (Bloor, 1981, p. 203). Bloor states this fact
in order to show that the conception of algebra is underdetermined by the
technical practice (and hence, it must be determined by something else, viz
social interests). So according to Bloor, there is no causal arrow going in the
direction from the subject matter of algebra to the metaphysical interpreta-
tion of the discipline. However, the fact that mathematicians can participate
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in and agree on a shared technical practice, despite severe differences in
opinions about the interpretation and significance of that practice, also casts
doubt about the causal link going the other direction, i.e. from metaphysical
conceptions to the technical practice of algebra. Consequently, even if social
interests shape the metaphysical outlooks in the way described by Bloor, the
causal impact does not seem to reach the subject matter of algebra – at least
not in this particular case.

Secondly, as noted by Pickering (Pickering, 1995, pp. 147-156), it is ques-
tionable to what extend the metaphysical conceptions in this case is in fact
caused by social interests. The problem for Bloor, is that Hamilton changed
his metaphysical views over time, and came to a partial acceptance of for-
malism. Bloor does address this fact, and he explains it by pointing out that
Hamilton gradually loosened his political views as well. However, a corre-
lation between two phenomena does not reveal the nature or even existence
of a causal link between them, so Bloor’s explanation is not fulfilling. Pick-
ering on the other hand tries to examine what actually caused the change
in Hamilton’s metaphysical conceptions. As it turns out, Hamilton’s partial
acceptance of formalistic metaphysics came shortly after his discovery and
work on the quaternian system. When doing this work, Hamilton struggled
to find acceptable interpretations, and consequently had to trust the rules
of operation he was working with. In other words, Hamilton was practicing
algebra as a rule-governed game with uninterpreted symbols – in accordance
with the formalistic conception of the discipline. For this reason, Pickering
finds it likely that the transformation in Hamilton’s metaphysical position
was in fact caused by the discoveries, he had made in his technical practice
(Pickering, 1995, p. 155-6). So apparently, metaphysics is not – or at least
not only – determined by social interests, it can also be influenced by the
technical practice itself.

All of this casts doubt on the influence social causes in the form of political
and social values have on mathematics. Judging from the case study provided
by Bloor, it does not seem likely that the social interests of the practitioners
shape the technical practice of algebra.

The next conception of social causes used by Bloor (et. al.), is the identi-
fication of social causes with sociological facts about how social groups solve
coordination problems. This conception was exemplified by the suggestion,
that our accept of 4, and not 5 (or any other thing else) as the correct an-
swer to 2 + 2, was caused by the fact that 4 is a ‘salient’ solution to the
problem, and hence easier coordinate as the accepted solution. This con-
ception of social causes severs mathematics from any ties to the physical
world. Mathematics simply becomes an expression of properties of how so-
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cial groups organize their behavior. As it is the case with the above type
of causes, i.e. causes in the form of political and social interests, accepting
this type of causes as the source of mathematics, will lead to a form of social
constructivism. The difference is, that in connection to this type of causes,
mathematics is not deliberately shaped to suit particular group interests, but
unconsciously determined by facts about the organization of social groups.
If the laws of mathematics are caused by facts about social coordination,
the content of mathematics is clearly separated from any contact with the
physical world.

The introduction of this type of social causes is in my view question-
able. To stay with the example at hand, the most obvious explanation of
our acceptance of ‘weightless’ addition (in Lakatos’ definition), is the fact
that the behavior of most of the discrete objects of importance to us in our
environment, can be successfully described by weightless addition, and not
by the alternative rules suggested by Lakatos. If our environment had been
radically different – or we had had radically different interests or modes of
interaction – our choice in rules of addition might also have been different.
But they are not.

Bloor’s response to this type of argument is that physical objects can be
arranged in many ways, so even though the laws of arithmetic takes departure
in experience of operations with physical objects, there is still an element of
choice:

Of all the countless games that can be played with pebbles, only some
of the patterns that can be made with them achieve the special status
of becoming ‘characteristic ways’ of ordering and sorting them. In
exactly the same way, all the countless possible patterns that may be
woven into a rug are not equally significant for a group of traditional
weavers. There are norms for those who would weave carpets just as
there are norms for those who would learn mathematics.

(Bloor, 1991, p. 99-100)

And this brings the social back into the equation. Physical nature does not
have the authority to give a particular set of patterns the stamp: ‘character-
istic’. This is an authority the social group can make only for itself.

In a similar vain, Bloor presents the following model of the relationship
between our psychology, social interests and the language-games, we accept.
Here, box no 1 represents non-verbal, intuitive logical instincts or innate
propensities for making certain inferences or accepting something as correct.
Box no 3 represents codified and accepted language games. The relationship
between these two boxes is mediated by box no 2, consisting of ‘interests
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Figure 7.1: Relationship between the psychological, the social and insti-
tutions. Redrawn from (Bloor, 1983, p. 135)

and needs’. So intuitions only become institutionalized language games after
being refracted through our needs and interests. This corresponds to the
situation described above, where only some patterns of manipulations of
pebbles becomes accepted as significant by the authority invested in the social
group. The question of course is, what these interests and needs consist
in. Bloor at this place explicitly and exclusively defines them as “social
interests”, such as the interest a sub-group of the community might have
in preserving a particular cultural achievement, such as the propositional
calculus. Bloor concludes: “My claim is that a pursuit of the causes that
make us deploy our intuitions one way rather than another, leads straight to
social variables of this type” (Bloor, 1983, p. 136).

What Bloor brings into battle here is the last conceptions of social causes
presented above, i.e. the conception of social causes as the wider context of
interests, purposes, values etc. mathematical knowledge is always set within.
I agree with Bloor so far that only some of the structures we experience in the
physical world are used as the basis for institutionalized mathematical rules,
and only some of our intuitive ideas about logical inferences are accepted
as valid by the community. Social variables and facts do play a part in the
development of mathematics; if we want to explaining why the number line
got accepted as a valid understanding of the number system, it is not enough
to point to the fact that we have the necessary cognitive resources needed in
order to create the Number-line blend. We must also look to the factors in
the wider context that led to the acceptance of this particular conception of
numbers – Bloor has a good and important point here.

Where I disagree with Bloor, is in the (apparent) identification of needs
and interests with the narrow interests of social groups. In my view, the
context mathematical practice is set within is much too diverse for such a
narrow identification to be successful. Firstly, in some cases, our needs and
interests simply spring from the kind biological beings we are and the type of
environment we live in. If we want to explain why we take 2 + 2 to be 4 and
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not 5, we do not need to look at social causes and interests. As noted above,
creatures with the biology we have, living in the kind of environment we do,
simply gets to see simply gets to see that kind of pattern as significant. As we
saw in chapter 4, animals evolutionary close to us seem to share this interests
(although it does, as explained above, take contact with a social group to
turn the disposition to behave as if 2 + 2 = 4 into rule following behavior
proper). This has nothing to do with social variables, or rather: the social
and cultural variables are insignificant in this case. Our belief that 2 + 2 = 4
is simply a product of the way we, as biological creatures, interact with our
world.

Secondly, in other cases, much more than narrow group interests are
involved. This was for instance the case in the debate over which geometrical
objects to accept. Here, a sphere of technology entered the equation; the
familiarity with different types of drawing instruments led Euclid, Descartes
and Huygens to see different types of patterns (in the form of actual or
imagined curves) as significant. A similar point can be made for the use of
cognitive technologies, such as the introduction of abstract symbols, which
radically changed our conception and experience of certain mathematical
objects and of the nature of mathematical proof.

Furthermore, the narrow interests of sub-groups of the mathematical com-
munity are often (but not always) set in a wider and shared interests, of
creating mathematical systems capable of representing structures of the real
world correctly. The case of the different number concepts used by Bloor
does in fact show this; both the Greek and the Renaissance mathematicians
shared a common interest of representing the world correctly by the use of
numbers, they only had very different metaphysical ideas about the prop-
erties of this world. Mathematics is not the arbitrary product of a social
game where narrow interests are negotiated. Although mathematics depend
on and is to some extend shaped by a wider context of social ideas, it is
largely created instrumentally as a way to represent or help us interact with
the world around us – whatever it is perceived to be.

7.3.1 Kripke revisited

All of this leads us back to revise Kripke’s skeptical argument once more.
Kripke is right in pointing out that a rule using practice, covering only a
finite number of instances, does not somehow in advance determine all the
possible new cases, the rule might be applied to. There is, however, some-
thing worrying about the example provided by Kripke. From an intuitive
point of view, it is hard to accept 57 + 68 as being a genuinely new case
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of addition, even given the setting presupposed by Kripke. There seems to
be a difference between adding yet another couple of positive integers, and
other cases, such as adding infinitely many integers, adding infinitely large
numbers or, say, subtracting 68 from 57 in a setting, where only subtraction
involving positive differences have until now been considered. Intuitively, the
last examples simply seem to be genuinely new in a way Kripke’s addition
task does not – and from a historical point of view, they have all led to
substantial discussion over which answers to consider as correct (I will give
an example below). How can we account for this difference? Why is 57 + 68
not problematic or debatable (or at lest not perceived as problematic and
debatable) in the same way as 57− 68? We some kind of explanation.

As I see it, the main difference between the two types of cases lies in the
fact that addition of any pair of finite, natural numbers falls within the do-
main of experience, primarily giving meaning to addition, i.e. manipulation
of discrete, physical objects, whereas the other examples does not. Kripke
might object that in the given setting, physical operations involving more
than 57 pebbles are just as new and unknown as operations involving in-
finitely many pebbles. He does, however, forget the generality provided by
metaphorical mappings. As noted in section 6.12, we do not base the ad-
dition of every, individual pair of numbers on different experiences, but on
the general experience of pooling two sets containing some (finite) number
of discrete objects. So even in the case that nobody has ever added 57 and
68, the task is covered by the meaning giving metaphor.

Furthermore, the algorithm used for adding numbers represented in
Hindu-Arabic numerals is completely independent of the number of digits
in the addends (similar to the multiplication algorithm described in section
6.3.1). It operates on a completely local basis, where the digits are added
pairwise. If you master the addition table for the numerals 1 through 9 and
know the proper algorithm, you can also add 57 and 68 – or any other pair
of finite numbers. There is nothing new in this particular combination of
numerals.

For these reasons the case of adding two positive, natural numbers of
arbitrary size does not seem to be a new case that needs to be negotiated.
The extension of subtraction to cover negative differences or sums involving
infinitely many addends, on the other hand, does seem to be genuinely new.
Here, we must both leave the domain of the meaning giving metaphor (see-
ing addition and subtraction as an operation on finite collections of objects),
and we must introduce new symbols, such as

∑∞
i=1 or . . . or negative num-

bers, whose syntactic properties must be negotiated before they can be used
confidently.



262 The social level

As I see it, Kripke have overlooked that not only particular answers to
particular problems can get institutionalized as correct. Both conceptual and
technical means for handling the more general case can be institutionalized
as well. When Kripke asks me to point to a fact that determines my answer
to 57 + 68 (given his hypothetical setting, where this particular sum is a
novelty), I can point to the fact that I participate in an institution that has
accepted this metaphor and this algorithm as the correct way to conceptualize
and handle this general type of problem. Of course, nothing is settled for
good. The collective might always revise its accept of both a particular
metaphor and an algorithm at any given time – the limitations imposed on
the metaphorical conception of sets as bounded regions in space might serve
as an instructive example.

This being said, we can always find genuinely new extension, where the
application of the rules must be negotiated before we can proceed. To give
just at glimpse of the actual historical negotiations going on in connection to
one of the examples mentioned above, we can look at De Morgan’s treatment
of an infinite sum. According to Phillips (2005), De Morgan considered the
infinite sum (1 + 2 + 4 + 8 + 16 + · · · ). He made the following calculation:

N = 1 + 2 + 4 + 8 + 16 + · · · (7.1)

N = 1 + 2(1 + 2 + 4 + 8 + · · · ) (7.2)

N = 1 + 2(N) (7.3)

N − 2N = 1 (7.4)

N = −1 (7.5)

In the view of De Morgan, the calculation shows that the sum of infinitely
many positive numbers can be a negative number. De Morgan defended
the result, and used it as a demonstration of the difference between algebra,
understood as a purely formal discipline of operating with the symbols, and
arithmetic, understood as something meaningful, i.e. operation of numbers
understood as quantities; from an arithmetic point of view, an infinite series
of positive numbers must be positive, but from an algebraic point of view
this is not the case, as the calculation above shows (Phillips, 2005)1.

From a modern point of view, however, the paradox is resolved by claim-
ing that De Morgan did not extend the rule of subtraction correctly. The
step from (7.3) to (7.4), where De Morgan subtracts 2N from N , is only valid
if the series in question is convergent, i.e. if N is a finite number. So effec-

1The series considered by De Morgan had puzzled mathematicians before. Euler for
instance, reached the same conclusion regarding the sum of the series as De Morgan, but
saw this as a proof that negative numbers are larger than infinite (see Kline, 1980, pp. 143).
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tively, we say to De Morgan: “what you have done here is not subtraction.
The rule you use only applies to finite numbers”.

To formulate the example in parallel with Kripke’s original skeptical chal-
lenge, we might say that we have an ambiguity between the two practices,
‘subtraction’ and ‘quubtraction’. The two practices agree on the finite case,
but disagree when infinitely large numbers are at play. For quubtraction, we
have that N − 2N = −N , for all N , whereas subtraction is defined as:

N − 2N =

{
−N, for N finite
undefined, for N infinite

As the two functions agree on all finite cases, how can we know that the
practice we have been involved in so far, is subtraction and not quubtraction?
The answer is: we cannot. We are here in a situation similar to the one
described by Bloor above; one of the practitioners points out a an ambiguity
in our practice, and the group will have to make a choice. In this case, the
group chose to say: “all along we have been subtracting, not quubtracting, so
De Morgan’s calculation is faulty”. This however, is a clear choice. It is not
arbitrary – the wish to make algebra consistent with arithmetic constitutes
a very good reason for making this choice, but it is nonetheless a choice.
Nothing in our previous practice can tell us whether we were subtracting or
quubtracting, before the choice was made.

The two examples, N = 1 + 2 + 4 + 8 + 16 + · · · and 57 + 68, illustrate
in my view, two different things. The first, i.e. N = 1 + 2 + 4 + 8 +
16 + · · · , illustrates Kripke general rule skeptical point; a rule does not and
cannot in advance determine how it should be applied in all possible future
applications. This observation is also appropriately known as ‘finitism’ (see
e.g. Bloor, 1983, p. 23). As the example shows, finitism is not just a purely
academic or philosophical problem. It is a real phenomenon that can be
observed in the history of mathematics. The second example, i.e. Kripke’s
57 + 68, illustrates something different. In this case our ‘form of life’ (to
use Wittgenstein’s expression) seems to make it possible for us to answer
unhesitatingly and with confidence, although the rule is in a way used to
cover a new case. The naturalistic investigation performed in this dissertation
allows us to put a little more meat to this concept; in this case, our form of
life is partially constituted by our use of cognitive tools, such as cognitive
artifacts (in the form of object-symbols and algorithms) and meaning-giving,
conceptual metaphors, and basic, life-world experiences, which can be used
as source-domain for such metaphors. The institutionalized use of this kind
of cognitive tools provide the resources necessary to go on, confidently, as
long as we are within the domain covered by the tools. The use of the tools
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is of course subordinate to a social consensus; it might always be decided
that this metaphor or this algorithm is inappropriate or limited in scope, but
as long as it is not, we can go on as if the answers we give, were in fact
determined in advance.

7.4 Partial conclusion

The discussions of this chapter have been centered on two main questions.
Firstly, we have been asking into the nature of the rule governed aspects of
mathematical practice. As we have seen, the existence of rule following is
dependent on the perceived contact with a social collective. The understand-
ing of rules as social institutions furthermore gives a natural explanation of
the normativity and objectivity of mathematics. As noted by Frege and
Husserl (in chapter 3), mathematical truths seems to be objective in a way
than cannot be accounted for neither by tying mathematics to our individual
psychology or by seeing mathematics as part of the physical world. Husserl
and Frege solve this puzzle by proposing the existence of ideal, mathemat-
ical objects. The collectivistic account of rule following however, allows for
a metaphysically more economic account, by seeing mathematics as lodged
in social institutions. Social institutions can deliver the wanted normativity
and perceived objectivity, as they are both external to my individual dis-
positions; it is because our answers are judged against the consensus of the
group that we cannot do just anything in mathematics. Furthermore, the
fact that the social group upholds rules, gives the rules the quality of be-
ing abstract from particular and accidental regularities perceived in physical
nature. Normative rules upheld by a social collective in other words, can
function as a ‘golden standard’ we can judge both our selves and regularities
perceived in the surrounding world against. For these reasons, contact with
a social group is constitutive of mathematics. If we were not social beings
and did not have the ability to coordinate our behavior in social institutions,
we would simply not be able to create mathematics.

All of this naturally led to the second main theme debated above; if rule
following is constituted by contact with a social group, will the content of
the rules (and hence the content of mathematics) then be caused by social
factors? As I see it, it is not necessarily so. Although mathematics is created
by our collective decisions, it is not done so arbitrarily (as Pickering would
have it) or done so solely to serve the social interests of sub-groups of the
community (as Bloor seems to imply). Basic parts of mathematics are de-
termined by our biology and way of existing in the world, and furthermore
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the group have the liberty to chose mathematics to be instrumental for our
needs, which at least in some cases requires mathematics to correspond to
actually perceived structures of the physical world. For this reason, mathe-
matics is simply constrained by more than just social consensus. This makes
mathematics different from purely socially constructed practices, such as,
say, fashion or chess.
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Recapitulation, answers and
final conclusion
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8.1 Recapitulation

In the material below, I have given a partial answer to the question: What
is the origin of mathematical knowledge, and how is it produced? The tradi-
tional answer to the question goes along the lines that mathematical knowl-
edge is produced by logical deduction from secure first principles. As we
have seen, this answer is severely flawed; it is not possible to find self-evident
axioms to serve as secure first-principles, and even if it was, it is not clear
what types of arguments to accept as valid logical deductions. Although
deductive proofs given in an axiomatic-deductive system does play a part
in the mathematical practice, they do not seem to be neither the origin of
mathematical knowledge, nor the primary way of producing such knowledge.

These shortcomings of traditional rationalistic accounts of mathematics
motivates the attempt to give a naturalistic account of mathematics: if we
want to understand why we form the mathematical beliefs we do, we must
involve scientific evidence external to the body of mathematical knowledge
itself. We must understand how our biology, cognitive style and contact with
social groups shape our mathematical beliefs.

In the material below, three different levels of (naturalistic) explanations
were investigated. Firstly, I examined the extend to which our evolutionary
history can explain our mathematical beliefs. As it turned out, the direct
impact made by evolution on our mathematical beliefs is limited. Evolution
has provided us with the cognitive and perceptual prerequisites needed in
order to do mathematics, but even slightly advanced concepts, such as the
number line, or slightly advanced abilities, such as the ability to handle
collections with more than a few elements with digital precision, requires
more than our innate mathematical skills can handle.

Secondly, the impact made by our cognitive style was investigated. As
we saw, mathematics is not exclusively produced by a priori, deductive rea-
soning. Mathematical reasoning is – as all human reasoning – embodied. To
a very large extend, mathematical reasoning makes use of embodied cogni-
tive tools, such as cognitive artifacts and conceptual mapping. These tools
greatly expand our innate mathematical abilities. Even basic mathematical
skills, such as the ability to handle the numerosity of collections with more
than four elements, seem to depend critically on our ability to use cogni-
tive artifacts. However, the cognitive tools are not neutral. They not only
expand out ability to gain and produce mathematical knowledge, but also
have a clear impact on the content of the knowledge produced. Both our
epistemic standards and our acceptance of particular mathematical objects,
such as space filling curves, are directly influence by our use of particular
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cognitive tools.

Finally, I examined a social level of explanation. Involving this level
makes it possible to explain the crucial element of normaitvity intimately
connected to mathematics. Our contact with other individuals of a social
collective is crucial for our ability to form and follow rules, and thus, math-
ematics as we know it would simply not be possible if not set in a social
context. The impact of this dependence on social factors is hard to deter-
mine precisely, although radical social construtivistic theories clearly over-
estimates it; although mathematics is connected to social institutions, it is
clearly constrained by more than social interests. Mathematics is also con-
strained by our way of existing in the world and our interest in representing
properties of this world with abstract, mathematical structures.

This, in brief, is what we have seen so far.

8.2 Answers

A naturalized description should be able to explain at least some of the
most salient features of the phenomenon, it tries to describe. In the case of
mathematics, two features are in need of explanation: 1) the feeling of deal-
ing with an independent reality, many practitioners of mathematics report,
and 2) why mathematics is effective in the description of the physical world
surrounding us.

8.2.1 Why mathematicians are Platonists

Let me start wit the feeling mathematicians have of dealing with an indepen-
dent reality. The naturalistic theories presented in this dissertation leave at
least two possible explanations. Firstly, Lakoff and Núñez propose that the
feeling of reality is a byproduct of our use of conceptual metaphors; when
we conceptualize mathematical objects using conceptual maps taking real-
world objects as source-domains, we transfer more than just the inferential
structure from source- to target-domain (Lakoff & Núñez, 2000, p. 349-50).
We also transfer the idea of dealing with an independent ontological reality
similar to the physical world. This is a plausible explanation, although in
my view, it is not without its problems. The main problem, as I see it, is
a problem of generality. Not all mathematical objects are conceptualized
metaphorically as physical objects. As we saw in section 6.10.2, maps be-
tween sets are typically conceptualized as directed paths. Now, a path is not
an independently existing physical object. Does that mean that mathemati-
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cians conceive of maps as less real objects than the elements of a set? And
what in cases where a meaning giving metaphor has not been established.
Does the feeling of dealing with something real disappear? This could be –
remember how complex and imaginary numbers were considered to be – well
– imaginary and hypothetical, until a proper metaphor connecting them to
experience of the real world, was established. However, I am not convinced
that this is generally the case, and at least, the theory proposed by Lakoff
and Núñez should be backed up by more empirical data showing a match
between the type of metaphor we use to conceptualize an object, and the
feeling of reality we attach to it.

The second explanation takes departure in the normativity of mathemat-
ics. Because the rules of mathematics are lodged in social institutions, we
cannot do just anything. Our will is constrained by something outside of our-
selves, and that can give a feeling of dealing with something real. As Bruno
Latour once remarked: “Reality is what resists” (in Latour, 1989, p. 106).

Wittgenstein for instance uses this explanation in the following passage,
where he contemplates what is meant by statements of ontological realism,
such as: ‘to mathematical propositions there corresponds a reality’:

[T]o say this may mean: these propositions are responsible to a reality.
That is, you can’t say just anything in mathematics, because there’s
the reality. [. . .] It is almost like saying, “Mathematical propositions
don’t correspond to moods; you can’t say one thing now and one thing
then.” Or again it’s something like saying, “Please don’t think of
mathematics as something vague which goes on in the mind.” Because
that has been said. Someone may say that logic is a part of psychology:
logic treats of laws of thought and psychology deals with thought. You
could get to the idea of logic as extremely vague, as psychology is so
extremely vague. And if you oppose this you are inclined to say “a
reality corresponds”.

(Wittgenstein, 1976, p. 240)

This explanation is in many ways more convincing; we do encounter a sort
of reality when we do mathematics, only it is a social reality and not an
independent ontological realm. There are however, also problems. I for one
am not completely convinced that the constrains provided by social institu-
tions are enough to impose the feeling of dealing with something real, often
reported by mathematicians. In chess for instance, or fashion, we also cannot
do just anything. Our own ideas of right or wrong are restricted by those of
the community. We cannot move a chess-piece to just any position on the
board that suits us. But nonetheless, we do not propose the rules chess to
correspond to an independent ontological reality.
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As I see it, the difference between these two situations has to do with
the fact, that the laws of mathematics are not arbitrary. As explained in
chapter 7, mathematics is, in my view, not only constrained by the commu-
nity, or rather: in the case of mathematics, the decisions of the community
are constrained by an interest in creating mathematics, such that it captures
features perceived as salient in our life-world. For that reason, the basic laws
and objects of mathematics are abstracted from regularities and objects, we
experience in the physical world, and we experience basic mathematics as
being directly applicable to the very same world. This, in my view, is why
mathematics is experienced as something real, while chess is not.

8.2.2 Why mathematics is efficient in the description
of the physical world

the fact that mathematics can be used with empirical success in theories de-
scribing the physical world has also been given several explanations, taking
departure in the naturalistic theories described above. As noted in section
4.5, the usefulness of mathematics has for instance been described as a prod-
uct of our biological evolution. As Reuben Hersh has put it: “our mathe-
matical ideas fit the world for the same reason that our lungs are suited to
the atmosphere of this planet” (Hersh, 1979, p. 45). And that reason is: if
they did not, we would simply not have survived to philosophize about it.

As also explained in (Johansen, 2010), this claim is highly problematic for
two reasons. Firstly, at best it only covers a very limited part of mathematics,
as most of the mathematics known and used by us today has been developed
during the last few thousand years. Not very must biological evolution can
have taken place in such a brief span of time, so for that reason alone, there
is no reason to believe that our mathematical knowledge fits the physical
world, because individuals holding knowledge not fitting the world, did not
survive to pass on their genome to future generations. Secondly, as explained
in chapter 4, it is furthermore not clear that mathematical knowledge is all
that adaptive outside of the highly culturally shaped environment, we inhabit
today in most parts of the world. What good would, say, the ability to
solve differential equations do hunter-gatherers living on the African savannas
20.000 years ago?

In another but similar theory, the usefulness of mathematics is explained
by claiming it to be a product of cultural evolution. This theory has been
discussed and dismissed for different reasons in section 4.5, so I will not go
further into it here.
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Lakoff and Núñez have a different and highly original theory. As they see
it, the fact that mathematics so often turn out to be useful in physics (and
other empirical sciences one could add), is due to the fact that mathemati-
cians and physicists share the same conceptual system, because they have
similar bodies and share roughly the same type of life world:

Physicists, having physical bodies and brains themselves, can com-
prehend regularities in the world only by using the conceptual system
that the body and brain afford. Similarly, they understand mathe-
matics using the conceptual system that the body and brain afford.

(Lakoff & Núñez, 2000, p. 344)

This theory might be a way to explain the conceptual match between physics
and mathematics, but it cannot, as I see it, explain why the use of mathemat-
ics in physics can lead to empirical success. As explained in chapter 6, the
metaphors are mainly introduced post factum as a way to ground the meaning
of mathematical knowledge. Although this might in some cases have played
a part in the acceptance of particular theorems or objects, metaphors are
not the driving force in the development of mathematics. So mathematics in
other words, is not produced by the ‘shared conceptual system’, Lakoff and
Núñez refers to. Rather, the shared system is used to make mathematics,
produced by other means, understandable to us on a deeper level.

The idea proposed above, that some mathematical rules and objects are
created as abstractions from observations of the physical world, obviously ex-
plains a great deal of the empirical success of the application of mathematics
to the same type of phenomena. The same can be said about the obser-
vation, briefly touched above, that even some quite advanced mathematical
objects are created as answers to the demands of physics (as also pointed
out by Lützen, 2006). It is no miracle that concepts and theories developed
specifically in order to fit the needs of science, later turns out to be effective
when used by science. Consequently it is, as pointed out by Mark Steiner
(2005), necessary to distinguish between canonical and non-canonical appli-
cations of mathematics in science. Canonical applications are cases, where
a mathematical theory is used to describe exactly the class of phenomena,
it was developed in order to describe. The successes of mathematics in such
cases are in fact not at all mysterious and require no further explanation.
Non-canonical applications on the other hand, are cases where a mathemati-
cal theory is applied to describe phenomena, foreign to its development. The
use of conic sections in the description of the Solar system is a case in hand.
Here, the mathematical theory was developed almost two millennia before
its use in science – and without any connection whatsoever to the domain of
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its application. Empirical success in this kind of applications does seem to
be harder to explain.

An attempt to explain successful non-canonical applications must, I be-
lieve, take departure in a detailed description of the nature of the empirical
sciences and especially their relationship with mathematics. Such a descrip-
tion lies outside the scope of this dissertation, so I will restrict myself to
propose two ideas, which could prove valuable in the explanation of the ‘un-
reasonable effectiveness of mathematics’ (see also Johansen, 2010). Firstly,
the successful use of mathematics in science is partially a product of approx-
imation and idealization; the world does not behave strictly according to
mathematical law, it only do so approximately, and that takes some of the
mystery out of the non-canonical applications. Many of them – including the
use of conic sections to describe the Solar system – can simply be explained as
the choice of a mathematical theory that has an acceptable fit to data, from
several mathematical theories at the scientists’ disposal. Secondly, modern
science aims to give mathematical explanations, and that might well have
guided the types of phenomena taken under consideration. It can be argued
that science has chosen to describe only a very specific class of phenomena,
namely phenomena that seem ripe for mathematical treatment. And that of
course also explains some of the mystery of the applicability of mathematics;
mathematics cannot be used to describe the entire physical world. It can
only be used to describe a small and carefully selected sample of phenomena,
and only approximately so (as also stated in Johansen, 2010).

Much more empirical work is of course needed in order to justify these to
claims – and in general to give a full explanation of the relationship between
mathematics and the empirical sciences. However, the argument sketched
out above do serve as a proof of principle; a full and detailed explanation
the mysterious effectiveness of mathematics do seem to be within the scope
of naturalistic explanations, although it will take more than just naturalized
description of mathematics to deliver it.

8.3 The normativity of philosophy of mathe-

matics

So far, this dissertation has been purely descriptive; I have simply tried to
describe mathematics as it is currently practiced. It could be asked, whether
philosophy of mathematics also holds normative responsibilities, i.e. whether
it is also to some extend responsible for telling mathematicians, how mathe-
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matics should be practiced.

As with all works of humanities, these two roles cannot completely be dis-
tinguished. A careful and fitting description of a practice might also change
it, simply because it makes the actors aware of what they are actually doing.

I will not make normative statements about which objects or which proof
techniques to accept in mathematics. It is the responsibility of those partak-
ing in the practice of mathematics to make these choices. This being said,
I do want to make one clear normative statement: when the practitioner of
mathematics make the kind of decisions described above, they ought to do
it on an informed ground. That is, the practitioners of mathematics have a
responsibility to understand the practice they are partaking in and to try to
form consistent philosophical position concerning its nature.

In an often quoted passage, one of the leaders of the Bourbaki collective,
Jean Dieudonné, made the following statement:

On foundations we believe in the reality of mathematics, but of course
when philosophers attack us with their paradoxes we rush to hide be-
hind formalism and say, “Mathematics is just a combination of mean-
ingless symbols,” and then we bring out Chapter 1 and 2 on set theory.
Finally we are left in peace to go back to our mathematics and do it
as we have always done, with the feeling each mathematician has that
he is working with something real. This sensation is probably an il-
lusion, but it is very convenient. That is Bourbaki’s attitude toward
foundation.

(Dieudonné, 1970, p.145)

In my view, this is no less than a declaration of intellectual bankruptcy.
Philosophers like myself have a responsibility to formulate adequate theories
about mathematics, and mathematicians have a responsibility to use such
theories, in order to inform their own professional practice by meta-level
knowledge about this practice. The appeal to ignorance, made by Dieudonné
is tempting, but it is not how mathematicians ought to proceed.

My humble hope is that I have contributed to this meta-level under-
standing of mathematics, by presenting this naturalized description of the
biological, cognitive and sociological factors constraining and shaping the
practice of mathematics.
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8.4 Some ideas for future work

The description of mathematics given in this dissertation is far from com-
plete, and consequently could be extended in several directions. Especially,
the relationship between mathematics and the empirical sciences is almost
completely left out, and a more detailed investigation of this relationship is
an obvious and much needed extension. Also, the work by Imre Lakatos,
describing how the internal demands on mathematics shape the formation of
certain concepts, could be addressed and integrated in the general naturalis-
tic framework offered here. Finally, as noticed in section 6.13, the functional
role played by conceptual mapping calls for more empirical work, studying
for instance how working mathematicians use diagrams in their research.

Apart from such extensions and addition of further detail, the material
presented in this dissertation might also form the basis for further work in the
didactics of mathematics. A more precise understanding of the roles played
by abstract symbols, figures and diagrams in mathematics, could make it eas-
ier learn to manage these cognitive technologies by students learning mathe-
matics at hi-schools level (where most of these strategies are introduced and
used in full). As it is, the precise function of the various cognitive tools used
in mathematics, is not addressed explicitly in the hi-school teaching of today.
The function of the cognitive tools are treated as ‘tacit knowledge’, the stu-
dents must somehow pick up during training. In fact, I am afraid that only
few teachers would be able to give fulfilling explanations of the various cogni-
tive techniques being used. In my experience as a trained hi-school teacher,
this leaves many students puzzled. This points to the need for empirical
work, investigating how the role played by cognitive tools and techniques,
such as abstract symbols and conceptual mapping, could be introduced to
hi-school students, and if such an explicit introduction would enhance the
performance and understanding of the students.

On the level of theoretical didactics, the detailed description of the various
cognitive techniques and tools used in mathematics could be used to add to
the general theory of registers offered by Raymond Duval (see section 6.13).

8.5 Final conclusion

Although the account of mathematics given below is far from complete, the
material presented in this dissertation gives a rough picture of how our math-
ematical beliefs are formed. Mathematics – as we know it – is clearly rooted
in our biology and our way of existing in the world. Let me take arithmetic
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as an example. Here, evolution has provided us with the perceptual and
cognitive recourses necessary in order to encode and use the numerical as-
pects of the world adaptively. Furthermore, our environment and culturally
mediated ways of interacting with objects in the world, make particular pat-
terns of change in numerosities seem interesting to us. It should be noted
that this is not a necessary step; animals and human infants only seem to
be interested in the numerical aspects of the world on rare or specially de-
signed circumstances (and the same can be said for several tribes living as of
hunter-gatheres (see e.g. Gordon, 2004)). By the use of cognitive artifacts,
such as sequences of number signs and different calculating tools, our innate
skills are extended to cover more than the original domain. The rules of
operation accepted as valid are solidified as social institutions, and finally it
is negotiated how the rules should be extended to cover instances beyond the
original domain; how should we deal with subtraction of numbers with neg-
ative difference, with square roots of such negative differences, with infinite
sums etc.?. During this negotiation, conceptual mapping relating mathemat-
ical content to life-world experience plays a part; the Number-Line blend and
the geometric interpretation of complex algebra for instance, provide con-
nections between particular extensions of the rules of algebra and structures
experienced in the world. Such connections can help particular extensions to
be accepted as valid over others.

Something similar can be said about other areas of mathematics, such
as geometry, topology, statistics, probability theory, differential calculus etc.
They all arise from our interests in particular aspects of the world we live in,
their rules and objects are lodged in social institutions and expanded through
the use of cognitive artifacts. This is how we do mathematics. This is how
our mathematical knowledge is created. There are of course other aspects to
it – mathematics is not only inspired and constrained by the needs of daily
life, but also but the needs of science, religion and other culturally significant
activities, available technologies etc. However, including such aspects in the
model described above will only strengthen it, not show it to be wrong.

In the picture I here have given of mathematics, our mathematical knowl-
edge is clearly not objective knowledge about a mind-independent realm of
Platonic objects. It is a construction made by us and resulting from the
way we exist in the world. We can of course never rule out metaphysical as-
sumptions such as the existence of a Platonic realm of mathematical objects
(as the assumption by hypothesis is not empirically testable), but we can say
that the assumption is not necessary in order to explaining our mathematical
practice and beliefs. They can be explained by scientific, naturalistic means
– in fact, even the belief in realism can be explained as a naturally occurring
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side effect of the way, our mathematical knowledge is constructed.

Finally, regarding naturalism as a method in the philosophy of mathe-
matics, two main conclusions can be reached based on the material presented
below. Firstly, naturalistic methods operating only with one level of expla-
nation have severe limitations. We have, for instance, seen that neither
the biological not the cognitive level can explain the normativity surround-
ing mathematics. The social level, on the other hand, cannot explain why
mathematics is not arbitrary, or how our ‘form of life’ more precisely al-
lows us to extend rules to new cases (such as 57 + 68), while others (such
as N = 1 + 2 + 4 + 8 + · · · ) requires negotiation. Mathematics is a highly
complex practice, and more than one level of explanation is needed, if we are
to understand it on naturalistic terms. On the other hand, this dissertation
do demonstrate (performatively) that a naturalistic method involving more
than one level of explanation, provides a fruitful way to describe and explain
the origin of our mathematical knowledge. Many pieces are still missing be-
fore the picture is complete. There is still much work to be done, but luckily,
a ph.d.-dissertation is supposed to mark the beginning of a long research
career, not the end.
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University Press.

Emmerton, J., & Renner, J.C. 2009. Local rather than global processing
of visual arrays in numerosity discrimination by pigeons (Columba livia).
Animal cognition, 12(3), 511–526.



BIBLIOGRAPHY 287

Euler, L. 2000. Foundations of Differential Calculus. Secaucus, NJ.:
Springer-Verlag.

Evans, T.A., Beran, M.J., Harris, E.H., & Rice, D.F. 2009. Quan-
tity judgments of sequentially presented food items by capuchin monkeys
(Cebus apella). Animal Cognition, 12(1), 97–105.

Fauconnier, G. 1997. Mappings in thought and language. Cambridge:
Cambridge University Press.

Fauconnier, G., & Turner, M. 1998. Conceptual integration networks.
Cognitive science, 22(2), 133–187.

Fauconnier, G., & Turner, M. 2003. The way we think: Conceptual
blending and the mind’s hidden complexities. New York: Basic Books.

Feferman, S. 1998. In the Light of Logic. Oxford: Oxford University Press.

Feigenson, L., & Carey, S. 2003. Tracking individuals via object-files:
evidence from infants’ manual search. Developmental Science, 6(5), 568–
584.

Feigenson, L., Carey, S., & Spelke, E. 2002a. Infants’ discrimination
of number vs. continuous extent. Cognitive Psychology, 44(1), 33–66.

Feigenson, L., Carey, S., & Hauser, M. 2002b. The representations
underlying infants’ choice of more: Object files versus analog magnitudes.
Psychological Science, 13, 150–156.

Ferkin, M.H., Pierce, A.A., Sealand, R.O., & delBarco Trillo,
J. 2005. Meadow voles, Microtus pennsylvanicus, can distinguish more
over-marks from fewer over-marks. Animal Cognition, 8(3), 182–189.

Fischer, M.H. 2006. The future for SNARC could be stark... Cortex, 42(8),
1066–1068.

Flombaum, J.I., Junge, J.A., & Hauser, M.D. 2005. Rhesus monkeys
(Macaca mulatta) spontaneously compute addition operations over large
numbers. Cognition, 97(3), 315–325.

Fodor, J.A. 1976. The Language of Thought. Wiltshire, GB: The Harvester
Press Limited.

Ford, K.M., & Pylyshyn, Z.W. (eds). 1996. The robot’s dilemma re-
visited: the frame problem in artificial intelligence. Norwood, N.J.: Ablex
Publishing Corporation.



288 BIBLIOGRAPHY

Fraenkel, A.A., Bar-Hillel, Y., & Levy, A. 1973. Foundations of set
theory. Amsterdam: North Holland.

Frant, J.B., Acevedo, J.I., & Font, V. 2006. Metaphors in Mathemat-
ics Classrooms: Analyzing the Dynamic Process of Teaching and Learning
of Graph Functions. Actas del CERME, 4, 82–91.

Frege, G. 1974. Die Grundlagen der Arithmetik, translated by J.L. Austin
as The Foundations of Arithmetic. 2. revised edn. Oxford: Basil Blackwell.

Friend, M. 2007. Introducing philosophy of mathematics. Stocksfield: Acu-
men.

Gauss, C.F. 1863. Werke. Vol. 2. Göttingen: Königlichen Gesellschaft der
Wissenschaften zu Göttingen.

Gauss, C.F., & Maser, H. (translation). 1889. Untersuchungen über
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From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931.
Cambridge, MA: Harvard University Press, 1967.

Hilbert, D. 1925b. The foundatins of mathematics. Pages 464–479 of:
Van Heijenoort, J. (ed), From Frege to Gödel: A Source Book in Math-
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symbolique mathématique. Paris: Petra.

Shapiro, S. 2000. Thinking about mathematics. New York: Oxford Univer-
sity Press.

Shifferman, E.M. 2009. Its own reward: lessons to be drawn from the
reversed-reward contingency paradigm. Animal cognition, 12(4), 547–558.

Sørensen, H. 2010. Exploratory experimentation in experimental math-
ematics: A glimpse at the PSLQ algorithm. Pages 341–360 of: Löve,
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Zorzi, M., Priftis, K., & Umiltà, C. 2002. Brain damage: neglect
disrupts the mental number line. Nature, 417(6885), 138–139.


