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There is a surprising variety of programs in the philosophy and foundations
of mathematics that have found mereology a useful and, in some cases, an indis-
pensable tool. After emphasizing a number of key relevant features of mereology,
we will brie�y examine four such programs, including (1) Goodman and Quine�s
e¤orts to recover syntax of mathematical language as part of a �nitist, formalist
philosophy of mathematics; (2) Field�s and Burgess�"synthetic mechanics" as an
e¤ort to recover nominalistically certain applications of mathematics in physics
inspired by synthetic geometry; (3) Lewis�attempt to ground set theory on a com-
bination of mereology and plural logic, which he called "megethology" (theory of
size); (4) Hellman�s modal-structuralism employing the same machinery as (3)
together with modal logic, but to provide an eliminative structuralist alternative
to platonist, face-value readings of abstract mathemtical theories.
It must be noted at the outset that, all by itself, mereology is too weak to

provide a framework for even very elementary mathematics. It is, after all, just a
set of "axioms" in the sense of de�ning conditions for a complete Boolean algebra,
or an atomic version thereof, with minor adjustments to avoid commitment to a
null entity. There is little more to this than commitment to closure of given things
under the operation of "nominalistic summation", i.e. passing to the whole, or
"fusion" (nominalistic "sum") constituted of given things as "parts". ("x is part
of y"� written x < y� is the basic partial ordering relation, and may be taken
as the sole extralogical primitive.1 It is presented entirely schematically in the
manner of abstract algebra.) Four elements of weakness of this machinery stand
out in relation to set theory:

1Alernatively, it can be de�ned in terms of "overlaps", x o y, via

x < y $ 8z(z o x! z o y):

1
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1. There are no existence axioms (the existence of wholes or fusions being
conditional on some given entities as "parts"), in contrast with set theory�s
axiom of the existence of an in�nite set, as well as a null set, etc.

2. Unlike sets vis-à-vis their members, wholes of given parts do not generally
retain information recovering those parts in the sense that multiple decom-
positions into parts are equally correct. An important exception to this is
uniqueness of decomposition into atoms (individuals lacking proper parts),
when the wholes in question are exhausted by atoms.

3. Whereas a set of a single object, its singleton, is distinct from that object,
the whole of a single object is just that object, i.e. nothing new is recognized.
The operation "set of" is "creative" and iterative, leading to ever larger sets:
given a set x; one passes to the set of all subsets of x (the "power-set"of x),
always a set of higher cardinality by Cantor�s theorem, and this goes on in-
de�nitely; whereas given some individuals, say atoms, "taking sums" leads
just to all the wholes corresponding to the non-empty sets of atoms, and
then no further wholes are generated. (In e¤ect, in mereology one applies
the power-set operation just once.) So, for example, with set theory, given a
single individual, one immediately has the means of introducing a structure
for the natural numbers, e.g. à la Zermelo, by iterating the singleton opera-
tion, which then behaves as a "successor" operation on numbers. Mereology
by itself, in comparison, gets exactly nowhere.

4. As a key example of this weakness of mereology in comparison with set the-
ory, whereas in set theory a general theory of relations is readily developed,
via any of in�nitely many ways of identifying ordered pairs of objects as sets
(so that an n-ary relation can be taken as a set of ordered n-tuples of related
objects), mereology by itself has no general means of coding ordered pairs
of individuals, and lacks resources for a theory of relations.

Thus, it is only in combination with other primitives that mereology functions in
accounts of mathematics, to which we now turn.
In their "Steps Toward a Constructive Nominalism", Goodman and Quine

used mereology along with a short list of syntactic primitive predicates of con-
crete marks or inscriptions intended to reconstruct enough formal syntax of math-
ematical language to serve as the basis of a formalist, nominalistic account of
mathematics as a symbolic, rule-governed activity (which of course would include
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all theorem-proving as well as problem-posing, conjecturing, applying, etc). As
they noted, standard syntax is thoroughly platonistic in that it refers to abstract
types, including characters, sequences thereof, formulas, proofs, etc. Formation
rules, as standardly presented, provide closure conditions, ways of forming com-
plex formulas out of atomic ones, and the class of all (well-formed) formulas is
speci�ed as the minimal closure of the atomic ones under these conditions, i.e.
the intersection of all classes containing the atomic formulas and closed under the
operations provided by the rules. Similarly, the class of proofs is de�ned as the
minimal closure of the axioms of the system under applications of the formal rules
of inference. To nominalists such as Goodman and Quine, this is objectionable on
two main counts: �rst, the objects are all abstract, and second, (minimal) closures
under the typical operations imply an in�nitude of objects. They took as their
task a thorough-going reconstruction of syntax of a suitably powerful, regimented
mathematical language and theory (a version of �rst-order set theory) that would
avoid any commitment to abstract entities or to in�nitely many things of any sort.
In addition to primitives for the basic symbols, e.g. "Vee x" for "x is a v-

inscription", "Ac x" for "x is an accent-inscription" (where formal variables will
be a v concatenated with a string of accents), "Str x" for "x is a stroke-inscription"
(where the stroke will be the sole truth functional connective of alternative denial),
"Ep x" for "x is an epsilon-inscription" (for set-membership), etc., they take as
primitive "Cxyz" meaning "x and y and z are composed of whole characters of
the language...in normal orientation and x consists of y followed by z." Informally,
this makes use of mereological composition; formally that enters at a later stage
when they de�ne auxiliary notions such as that two inscriptions are "equally
long" (containing the same number of characters), which is used in de�ning "x
is the alternative denial of y and z", etc. In order to rule out in�nitely long
inscriptions, "composed of whole characters" should mean "of �nitely many whole
characters", i.e. the notion of "�nite" would also be serving as a background
primitive (although Goodman and Quine are silent on this important matter).
Since they contrive clever alternatives to the method of minimal closure in order
to de�ne "formula" and "proof" (e.g. D20, "Quasiformula", and D29, "Proof"),
they do not have that standard method of insuring that only �nite strings get
admitted. (Even a "v" followed by an in�nite string of accents isn�t ruled out as
a "variable inscription" by their de�nitions.)2 With these assumptions, however,

2Instead of explicitly taking ��nite� as primitive, Goodman and Quine could adopt some
further axioms and stipulations, e.g. that every string have a terminating basic symbol, that
every basic symbol in a string except the initial one have an immediate predecessor, and that a
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Goodman and Quine do succeed in setting out enough formal syntax to meet their
goals. Their de�nitions of "formula" and "proof" allow there to be just as many
of either as ever get inscribed without commitment to there being in�nitely many,
and they must indeed have the intuitively correct shape in order to qualify.3

Turning to our second example, Field�s Science without Numbers developed
methods analogous to those of synthetic geometry in order to provide nominalis-
tically acceptable, synthetic formulations of key physical theories (especially clas-
sical �eld theories, such as Newtonian gravitation theory), over which standard
analytic applied mathematics could be demonstrated to be logically conservative
(deriving only those nominalistically formulable consequences which already are
derivable in the synthetic formulation). Standard reasoning in physics concerning
real numbers and functions of reals representing physical magnitudes, e.g. spatial
or temporal distance, the value of a potential, etc., would thereby be justi�ed as a
useful, but ultimately dispensable tool, supporting an instrumentalist view of the
analytical mathematics, in a nutshell: "useful but not true". Taking inspiration
from Hilbert�s synthetic geometry in which primitive relations on the geometric
space, such as betweenness and congruence, su¢ ce to capture metrical relations
standardly expressed in terms of real numbers and functions, Field introduced
suitable synthetic relations on space-time allowing recovery, in a certain sense, of
reasoning about the values of scalar and vector �elds in physical theories; and
he sought to argue both that this synthetic treatment of space-time is nominal-
istically acceptable and that the "recovery" of analytical applied mathematics
established the desired logical conservativeness just mentioned as well as yielding
genuine insight into the way mathematics actually applies to the physical world.
The "recovery" for Field turned on proving a representation theorem (inspired
by modern theory of measurement) roughly as follows. Let a standard model

form of induction hold, e.g. that every whole with the terminating symbol of a string as part
which is closed under "immediate predecessor" have the initial symbol as a part. Here appeal is
made to "the complete logic of Goodmanian sums", roughly equivalent to monadic second-order
logic, and not recursively axiomatizable. Non-standard models are ruled out if quanti�cation
over wholes really encompasses all of them.

3One should compare all this with Quine�s own development of "Protosyntax" in his Math-
ematical Logic secs. 55, ¤. which also uses mereology in an essential way to avoid reliance
on classes and the in�nite in the development of syntax for mathematics. In a footnote (14),
Goodman and Quine refer back to Quine�s method there of "framed ingredients" (in which
special markers are used to identify the relevant parts of concatenated strings, cf. weakness 2
of mereology listed above), as a nominalistic substitute for the Fregean-Dedekindian method
of minimal closure, but they criticize that method as overly contingent on "what inscriptions
happen to exist in the world".
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of T syn, the synthetic space-time version of the original applied mathematical
physical theory T, say of a single scalar �eld  , take the form (X; Seg-CongX ;
Scale-BetwX ,...), where X is the domain of space-time points, Seg-CongX is a (4-
place) relation of congruence of two line segments in X, Scale-BetwX is a relation
that holds of points p; q; r when the value of  at q is inclusively between those
at p and r. Let a model of the original, analytically formulated T be of the form
((M;d);  ), where M is a manifold, d a distance function or metric on M , and  
the scalar physical �eld described (typically with di¤erential equations) in T The
representation theorem for these theories then states that each standard model
of Tsyn is homomorphic to some model of T , i.e. a 1-1 mapping ' from X to M
satis�es the conditions that
Seg-CongX(p; q; r; s) if and only if d['(p); '(q)] = d['(r); '(s)] and
Scale-BetwX (p; q; r) if and only if  ('(p)) �  ('(q)) �  ('(r)):
It is especially in order to guarantee that such homomorphisms exist that Field

made use of mereology. In the setting of space-time, this allows quanti�cation over
arbitrary regions of space-time, as well as the points, and this is then expressively
equivalent to applying second-order monadic logic. This enables, for example, the
expression of genuine continuity of space-time and of functions de�ned theoreon,
e.g. that every "bounded, collinear (i.e. Between-related) whole of points has a
least bound (from either end, that is)" � all of which can be stated geometrically.
Such conditions are required for the desired representation theorem, and mereol-
ogy serves as an adequate, nominalistically acceptable substitute for set theory
or second-order logic. As already noted and as Field recognizes, this "complete
logic of Goodmanian sums" is not recursively axiomatizable. Still, the machinery
is intelligible and available to the nominalist.4

Now, ironically, just because of this "second-order" strength provided by mere-
ology, enabling proof of existence of a representing homomorphism between space-
time and R4; it turns out that analytical applied mathematics (e.g. set theory
with urelements, on which Field concentrated) is not deductively conservative over
the synthetic (geometrized) physical theory, Tsyn. (See Shapiro (1983).) Within
the latter, for example, a standard model of arithmetic can be described. Using
Gödelian techniques relative to this model, the consistency of Tsyn can then be for-
mulated (nominalistically)� call this "Con(Tsyn)"� , but is not provable in Tsyn (if
that theory is in fact consistent), as a consequence of Gödel�s (second) incomplete-
ness theorem. However, the applied set theory can prove "Con(Tsyn)" because it

4The full strength of this second-order mereology is not required, i.e. one need not quantify
over arbitrary regions. But enough strength is needed to transcend �rst-order axiomatization.
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can prove the usual statement, "Con(PA)", of consistency of the Peano-Dedekind
axioms and, in virtue of the representing homomorphism between space-time and
R4; it proves the equivalence between "Con(PA)" and "Con (Tsyn)". (It is true
that applied set theory is semantically conservative over Tsyn; i.e. no sentence in
the language of Tsyn is implied by the former but not the latter; but the dispens-
ability of abstract mathematics for proving physically signi�cant results remains
to be established.5)
Interestingly, rigorous conservativeness results of the sort sought by Field have

been obtained (by Burgess (1984)), but as expected, this pertains to �rst-order
versions of Tsyn which lack the resources for characterizing standard models of
arithmetic and analysis and do not permit proof of representing homomorphisms
between space-time and R4: Conservativeness is proved directly from properties
of �rst-order theories and their extensions by de�nitions and abstractions, with-
out recourse to Field-style representation theorems. In particular, the synthetic,
geometrized physics gets by entirely with geometric-style primitives and makes
no essential use of mereology, certainly not the "complete logic of Goodmanian
sums". We conclude, then, that the real value of mereology in connection with
Field�s program is to enable one to characterize up to isomorphism key structures
of interest in mathematics and physics without any reliance on the concepts of set
and function. Furthermore, quite apart from the goal of logical conservativeness,
the representation theorems are of value in providing insight into the applicability
of mathematics to the physical world.
In contrast to these �rst two programs, the programs of Lewis and Hellman

both seek to respect "mathematical truth" but in contrasting ways. Lewis seeks
a reconstruction of Zermelo-Fraenkel set theory which, curiously, is formulated
with "nominalistically acceptable" primitives, namely a combination of mereology
and plural quanti�cation. Hellman employs this same machinery but combines it
with modal logic in order to "de-ontologize" mathematics completely, while in a
sense respecting its objective truth. Let us now describe the common core, the
combination of mereology and plural quanti�cation.
Plural quanti�ers are common in English and are well-illustrated by exam-

5The Fieldian nominalist can argue here that the conservative, analytical mathematics serves
as a useful instrument in helping us learn about more semantical consequences of nominalistic
theories than we otherwise could know, but that this instrument still need not be regarded as
asserting (platonistic) truths. But, in appealing to Field�s methods of establishing the semantical
conservativeness, the nominalist must still grasp the representation theorems, which are couched
in platonist mathematical language (referring e.g. to homomorphisms between models of space-
time and R4, etc.). The methods described in the next paragraph avoid such vicious circularity.
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ples such as, "Some kids in the neighborhood congregate only with one another",
"Any people whatever, if too closely con�ned under conditions of scarcity, will
quarrel among one another". Such sentences cannot be accurately symbolized in
the notation of �rst-order logic using just the predicates occurring in the English
formulations. They can, however, be symbolized by adding quanti�cation over
classes, so that, e.g. the �rst sentence would be read as "There is a class of kids
in the neighborhood such that if any member congregates with anyone, the lat-
ter is also a member". It seems that the ordinary English sentence involves us
in monadic second-order logic or some set theory. The key idea behind plural
quanti�cation is to turn this on its head: "Some kids" as it functions in the �rst
example is a plural existential quanti�er speaking directly of many kids (without
de�niteness as to how many), without any singular reference to an abstract class
of kids, and we understand such constructions perfectly well. Indeed, plural quan-
ti�ers can be invoked to reduce or replace class quanti�ers: monadic second-order
logic is ontologically innocuous, committed to no more than what the rest of the
sentence already involves. Thus, given some items serving as natural numbers,
the second-order principle of mathematical induction, used in characterizing the
structure up to isomorphism, can be stated: "Any items among which are the
zero and the successor of any among them have all the numbers among them",
without any reference to sets or classes. And, in set theory itself, one may speak
of "all the ordinals", or "all the cardinals", or "all the sets", without introducing
an exceptional layer of "proper classes", collections which are somehow "too big"
to be members of anything. And, without fear of paradox, one may speak of "all
the non-self-membered collections", and so forth.6

This gets us the strength of monadic second-order logic, but how can we obtain
polyadic or a theory of many-place relations, of the essence in formulating math-
ematics? Here, as Burgess, Hazen, and Lewis (1991) realized, one may combine
plural quanti�ers with mereology (in several di¤erent ways) to get the e¤ect of
ordered pairing of individuals (generalizing to ordered-triples, quadruples, etc.).
The methods require an in�nitude of su¢ ciently distinct things, in the simplest
case, mereological atoms. This can be postulated directly using plural quanti�ca-
tion and mereology, e.g. by

"Some X are such that an atom a is one of the X and for each of the X; x;
there is a unique atom b not part of x such that the fusion x+ b is also one of the

6Boolos (1985) originally introduced plural quanti�ers explicitly to avoid proper classes while
justifying the use of second-order logic in set theory.
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X:"

Now, we will explain Burgess�method (which is most easily vizualized). Much
as the positive integers all can be mapped in a 1-1 fashion in two (familiar) distinct
ways into some but not all of them, e.g. to all the odd numbers and to all the
even numbers (in their natural order, say), there being no overlap between the
odd images and the even images, we may claim that any in�nitude of atoms can
be mapped 1-1 to two discrete (i.e. non-overlapping) "microcosms", labelling the
�rst-mentioned as "�rst", the other "second". We could then code an ordered pair
< a; b > of atoms as the fusion of (say) the �rst-image a1 of a and the second-image
b2 of b: Quantifying plurally over such codes gets the e¤ect of quantifying over
binary relations of atoms. Moreover, any whole w of atoms� corresponding to a
non-empty set of them� has as a "�rst image", w1; the fusion of the �rst-images
of its atoms and, similarly a "second image", w2. The ordered pair < w; v >
of two such wholes, w and v, can then be taken as the fusion of w1 and v2:
Plural quanti�cation over such fusions then gets the e¤ect of quanti�cation over
relations of arbitrary fusions of atoms. (If our atoms were labelled as natural
numbers, for example, this in e¤ect would provide relations among arbitrary real
numbers!) All this depends on making sense of the initial distinct mappings of all
our atoms to just some of them. But that can be understood in terms of plural
quanti�cation over "diatoms", (unordered) two-atom fusions, as spelled out in a
postulate that the (postulated in�nitude of) atoms have a "trisection", i.e.that
they are the fusion of pairwise non-overlapping wholes, x; y; and z, and that some
diatoms X map atoms of y + z 1-1 into x; and similarly, mutatis mutandis for
some diatoms Y and some diatoms Z: Let Yx be those diatoms of Y that have
an atom of x as a part, and let yx be the fusion of those atoms of y that are
part of diatoms of Yx:Then diatoms Yx map x 1-1 to yx:Yz and yz are de�ned
similarly. Then diatoms X along with those of Yx map all the atoms 1-1 into
x+ yx, and diatoms of Z and those of Yz map all the atoms 1-1 into z + yz: The
ranges of these two 1-1 correspondences are discrete. Since this is all relative to
given x; y; z;X; Y; Z, quanti�ed in order, we may speak of the x + yx atoms as
"�rst-images", and the z + yz atoms as "second-images" (deterined by the given
order of plural quanti�ers). Then ordered pairs of atoms and fusions of atoms are
de�ned as indicated above.
It should be clear that mereology plays a crucial role in all this: its notions

of "atom" and "diatom" impose su¢ cient distinctness so that relevant wholes
remain distinguishable and so that many diatoms encode 1-1 mappings. Neither
mereology nor plural quanti�ers separately su¢ ce for a theory of relations, but in
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combination they do, bringing all of mathematics within reach.
Lewis (1991, 1993) uses the language of mereology and plural quanti�cation to

recover set theory as describing part of an absolute, very large "Reality". Rather
than withholding mereology from abstract classes or renouncing them entirely, as
in the nominalist tradition, he accepts classes and argues that they indeed have
parts, namely their subclasses, and that these are their only parts. Any singleton
then counts as a mereological atom, and a class is the fusion of the singletons of its
members. Indeed, one need not take "membership" as primitive but can recover
set theory from structural conditions de�ning "s is a singleton function", viz. s is a
1-1 function whose range consists of atoms, de�ned on "small" fusions of singletons
along with individuals (non-classes, lacking any singletons as parts), and satisfying
an extremal clause: "any things that include all the individuals and are closed
under application of s and under fusions of any of them includes all things." Here
a fusion is "small" just in case its atoms are not in 1-1 correspondence with all the
atoms. Then certain conditions are laid down (as postulates of megethology) that
guarantee that the axioms of Zermelo-Fraenkel set theory are satis�ed, indeed
a second-order version in which proper classes are outside the domain of the
singleton function.7 For example, the Axiom of In�nity (of set theory) results from
the postulate that something small is in�nite. Analogous to "small thing" is the
plural notion of "few things", corresponding 1-1 with some but not all of the atoms.
The the Axiom of Power Sets is guaranteed by the postulate of megethology that
the parts of a small thing are few. And the Axiom of Replacement is guaranteed
by the postulate that the fusion of few small things is small ; and so forth. It
follows that there must be strongly inaccessibly many things (cf. Zermelo (1930)).
For Lewis, this recovery is both faithful to mathematics (as he conceives it) and
clarifying: classes and membership are profoundly mysterious, and a structuralist
description of "singleton function" is, he thinks, an improvement. In any case, the
whole reconstruction is a tour de force in deployment of the "nominalist" logical
tools of mereology and plural quanti�cation, about as far removed from Goodman
and Quine�s formalism as it could possibly be.
In contrast, Hellman (1989, 1996, 2005) combined the above machinery of

mereology and plural quanti�cation with quanti�ed S-5 modal logic to give modal-
structural interpretations of mathematical theories. In�nitely many atoms are
postulated only as a logico-mathematical possibility, not as actual. Then number
theory, analysis, geometry, algebra and much else can be understood as proving

7Proper classes are admitted via the closure of "reality" under fusions of any� i.e. arbitrarily
many� things. Consider the irony of this in light of n. 5 above.
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what would be the case in any structure of the appropriate type(s) there might be
(the "hypothetical component") as well as asserting that such structures are pos-
sible (the "categorical component"). Even this modalized reference to structures
can be understood in terms of "suitably many things, suitably interrelated", as
spelled out using mereology and plural quanti�cation, i.e. functions and relations
are "explained away" and need not be recognized as objects. At the same time,
the nature of the hypothetical objects considered is entirely immaterial. Most
mathematics as practiced is thus understood on its own terms rather than be-
ing embedded in set theory. Set theories can also be understood, however, in
this eliminative structuralist manner, the larger cardinalities of items postulated
merely as possibilities, with no single system of set theory taken as "the one true
theory", i.e. mathematical pluralism is naturally accommodated. Moreover, an
extendability principle (inspired by Zermelo (1930) and Putnam (1967)) is pro-
moted: any possible structure for set theory could be properly extended. An
absolutely maximal one is not recognized as a coherent possibiloity. In contrast
to Lewis�absolutism, proper classes are recognized only relative to a hypothetical
structure; as Zermelo argued, they become elements of still further collections in
higher domains for set theory. The approach is also friendly to category and topos
theory as an alternative "universal" framework for mathematics. Indeed, a rel-
ativized version of Lewis�megethology can be deployed to describe hypothetical
"large domains" in which both set theory and topos theory can be developed side
by side. Neither is "the true foundation" for mathematics; rather both are great
frameworks unifying mathematics in their own distinctive ways.
Thus, mereology has proved an extremely useful instrument in developing a

surprisingly broad range of programs in the philosophy and foundations of mathe-
matics, some of which are �exible and powerful enough to accommodate all known
mathematics.
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