

Ruby on Rails™

FOR

DUMmIES
‰

01_081204 ffirs.qxp 11/30/06 11:08 PM Page i

01_081204 ffirs.qxp 11/30/06 11:08 PM Page ii

by Barry Burd

Ruby on Rails™

FOR

DUMmIES
‰

01_081204 ffirs.qxp 11/30/06 11:08 PM Page iii

Ruby on Rails™ For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Ruby on Rails is a trademark
of David Heinemeier Hansson. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006936826

ISBN: 978-0-470-08120-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RZ/RS/QW/IN

01_081204 ffirs.qxp 11/30/06 11:08 PM Page iv

www.wiley.com

About the Author
Dr. Barry Burd received an M.S. degree in Computer Science at Rutgers
University and a Ph.D. in Mathematics at the University of Illinois. As a teach-
ing assistant in Champaign-Urbana, Illinois, he was elected to the university-
wide “List of Teachers Ranked as Excellent by Their Students” five times.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for profes-
sional programmers in business and industry. He has lectured at conferences
in the United States, Europe, Australia, and Asia. He is the author of several
articles and books, including Java For Dummies, 4th Edition, and JSP:
JavaServer Pages, both from Wiley Publishing, Inc.

Dr. Burd lives in Madison, New Jersey, with his wife and two children. In his
spare time, he enjoys being a workaholic.

01_081204 ffirs.qxp 11/30/06 11:08 PM Page v

01_081204 ffirs.qxp 11/30/06 11:08 PM Page vi

Dedication
for
Harriet, Sam and Jennie,
Sam and Ruth,
Abram and Katie, Benjamin and Jennie

Author’s Acknowledgments
Many thanks to Paul Levesque who worked so closely with me on this
project, and thanks to Katie Feltman who headed up the project at Wiley.
And to Andy Cummings who steers the For Dummies series, thanks. And, yes,
thanks to copy editors Mary Lagu and Virginia Sanders. Also, thanks to Laura
Lewin, agent at StudioB. Thanks, and thanks again to Jay Zimmerman and the
speakers in the No Fluff, Just Stuff Symposium for opening my eyes to Ruby
on Rails. And to Charles Nutter and Thomas Enebo, who bridge the gap
between Ruby and Java, thanks. Of course, Matt Kent, Kyle Shank, and Marc
Baumbach, thanks for the use of RadRails, both inside and outside of this
book. I extend thanks to Stefan Reichert with his Wicked Shell. To Francis
Hwang and the members of the Ruby-NYC group, I say thanks. Thanks indeed
to Frank Greco and his New York Java Special Interest Group and to Mike
Redlich and the gang at the Amateur Computer Group of New Jersey because
without them I wouldn’t know anything about object-relational mapping.
Thanks. And special thanks to Sam and Jennie, and of course, to Harriet,
thanks I say thanks I will Thanks.

01_081204 ffirs.qxp 11/30/06 11:08 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Paul Levesque

Acquisitions Editor: Katie Feltman

Copy Editors: Mary Lagu, Virginia Sanders

Technical Editor: Charles Nutter

Editorial Manager: Leah Cameron

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Claudia Bell,
Lavonne Cook, Denny Hager,
Barbara Moore, Barry Offringa,
Laura Pence, Heather Ryan

Proofreaders: Cynthia Fields, Jessica Kramer,
Techbooks

Indexer: Techbooks

Anniversary Logo Design: Richard Pacifico

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_081204 ffirs.qxp 11/30/06 11:08 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Nuts and Bolts ...7
Chapter 1: Welcome to the World of Ruby on Rails ...9
Chapter 2: Installing the Software ..21
Chapter 3: Details on Rails ..47
Chapter 4: Using RadRails ...67

Part II: Creating Code ...87
Chapter 5: Ruby One’s Day..89
Chapter 6: Ruby Two’s Day ...113
Chapter 7: Weaving the Web ...129

Part III: Real Rails ...153
Chapter 8: Action-Packed Adventures...155
Chapter 9: Some Things You Can Do with Models ...177
Chapter 10: I’ve Been Working on the Rails Code ..201
Chapter 11: Image Is Everything...219
Chapter 12: More Model Magic...233
Chapter 13: Cool Things on Rails ...257

Part IV: The Part of Tens ...277
Chapter 14: Ten (Times Two) Great Web Sites ...279
Chapter 15: Ten Features That Set Ruby Apart ..285
Chapter 16: Ten Pivotal Ruby on Rails Concepts ...293
Chapter 17: Ten Ways to Override Rails Defaults...299

Index ...315

02_081204 ftoc.qxp 11/30/06 11:08 PM Page ix

02_081204 ftoc.qxp 11/30/06 11:08 PM Page x

Table of Contents
Introduction..1

How to Use This Book ...1
Conventions Used in This Book ...2
What You Don’t Have to Read ..2
Foolish Assumptions ...3
How This Book Is Organized...4

Part I: Nuts and Bolts ...4
Part II: Creating Code ...4
Part III: Real Rails..5
Part IV: The Part of Tens..5

Icons Used in This Book..5
Where to Go from Here..6

Part I: Nuts and Bolts..7

Chapter 1: Welcome to the World of Ruby on Rails 9
The Software Development Process..11

Agility ...12
Databases and the World Wide Web ..12
Throwing frameworks at the problem...13

Along Comes Ruby on Rails ..13
Why Ruby? ..14
Why Rails? ...17

Let’s Get Going..19

Chapter 2: Installing the Software .21
Six Pieces of Software ..22
Installing the Ruby Interpreter ...22

Testing the Ruby installation ..24
Troubleshooting the Ruby installation..25

Installing Rails ..26
Installing Java ...27
Installing RadRails..28

Creating a RadRails shortcut on your desktop30
Testing RadRails ...31
Troubleshooting the RadRails installation..33
Configuring RadRails..33

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xi

Installing MySQL...36
Installing MySQL Administrator...40

Testing your MySQL installation ..40
Troubleshooting your database connection.....................................41

Chapter 3: Details on Rails .47
Creating a Database ...48
Creating a New Ruby on Rails Project ...50
Running Your New Rails Project (Already!) ..53
Creating a Model ..55
Creating a Database Table...58
Creating a Scaffold ...61
Using the New Web Interface..63

Chapter 4: Using RadRails .67
Words, Words, Words ..67

What’s inside a view or an editor? ...69
Understanding the big picture..71

Some Common RadRails Tasks ..72
Changing the perspective..72
Showing a view ...74
Using a wizard to create something...76
Using the Generators view to create something78
Editing an existing file..80
Running a Ruby program...81
Visiting a URL..82
Customizing RadRails ..83

Troubleshooting the Run of a Ruby Program...84
Does your Ruby code have a syntax error?85
Does your Ruby code have a semantic error?..................................85
Did you tell RadRails where to find a Ruby interpreter?.................86
Did you point RadRails to the correct location

of the Ruby interpreter?...86

Part II: Creating Code..87

Chapter 5: Ruby One’s Day .89
Hello, Again ...90

A glimpse of a Ruby method ...90
Variables and values ..91
Ruby strings ..92

Ruby on Rails For Dummies xii

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xii

Working with Values...93
Displaying values..94
Assigning values ...94

Going with the Flow ...95
Getting input from the keyboard..96
Using keywords...97
Flowing the other way ...98
Going with the glow (or glowing with the flow)98

Bunches of Things..100
Arrays...100
Hashes..102

Using Methods..104
Methods, methods everywhere..106
Please pass the hash..108
What’s the symbolism?..109

Chapter 6: Ruby Two’s Day .113
Objects and Classes...113

Creating objects..115
Adding another file’s code to your own file’s code........................115
Classes, objects, and database tables ...116

Objects Have Methods ..117
Ruby’s handy iterators ..118
Finding iterators where you least expect them..............................121

Enhancing Classes..122
Open classes ...123
Being selfish ..123
Defining subclasses..124

Creating a Module ..127

Chapter 7: Weaving the Web .129
The Working of the Web ..129

The Web developer’s point of view..130
The Hypertext Transfer Protocol ...131
Web pages ...132

Your HTML Starter Kit ...134
Start tags..136
End tags, empty tags, and paired tags...137
If it feels good, do it..138
Entities ...138
Comments and declarations ...139

xiiiTable of Contents

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xiii

HTML Elements ..140
Displaying images...140
Using tables to align things ...142
Creating an HTML form ...144
Using form elements ..147

Part III: Real Rails ..153

Chapter 8: Action-Packed Adventures .155
Model/View/Controller ..155

Creating a controller and a view...157
Why you shouldn’t rename files...159

The Rails Way of Life..161
Convention over configuration...161
Don’t Repeat Yourself (DRY)...162

Writing What You Want Where You Want It ..163
Sending text to the console...163
The art of Web server redirection..165
Making the controller do the work ..166

The Controller Shakes Hands with the View ..167
Using parameters ...169
Getting parameters from a form...172

Dividing the Work of the View ..173
Creating and using a partial (a partial what?)175
A view’s little helper...176

Chapter 9: Some Things You Can Do with Models 177
A Web Site for Photos ..178
Programming with a Rails Model ...182

Using Active Record...184
Requiring a gem..185
Connecting to the database ..185
Displaying data ...187

Modifying a Database ..189
More Rails Programming Tricks...192

Deleting rows ..193
Adding rows ..194
Finding rows..196
Using SQL ..198
Using id numbers ...199

Ruby on Rails For Dummies xiv

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xiv

Chapter 10: I’ve Been Working on the Rails Code201
Displaying an Image ...201

Creating code ..202
Understanding the code ..204
Passing photos from place to place ...207

Importing Files..214
Importing files the easy way ...214
Importing files the geeky way...216

Chapter 11: Image Is Everything .219
Enhancing Your Project’s Code ..220

Follow the book’s longest step list...220
Know the flow ...226

Understanding the Enhanced Code ...228
Creating a database table..228
Moving on to more code228
Creating a file input field ...228
Creating a Photo instance ...230
Reading the image bits ..230
Composing an image tag ...231
Sending image bits to the visitor’s browser....................................232
Whew!...232

Chapter 12: More Model Magic .233
Blogging Your Dreams ...233
Validating the Visitor’s Input ..235
Adding Comments..237
Adding Keywords ...243

Connecting dreams with keywords..244
How the Rails code does what it does...251

Chapter 13: Cool Things on Rails .257
Using Ajax..257

Refresh part of a page, not the entire page.....................................258
Incorporating Ajax into a Rails page..258

Sending E-Mail ..263
Don’t blame me if it doesn’t work ..263
Rails mail ...264

Creating and Consuming Web Services...269
How to avoid screen scraping ..270
Building a Web service using Ruby on Rails271

xvTable of Contents

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xv

Part IV: The Part of Tens..277

Chapter 14: Ten (Times Two) Great Web Sites 279
Ten Ruby Sites ..279

Documentation ...279
Open source Ruby projects...280
Starting points for Ruby resources ..280
Discussing Ruby ...280
A weekly challenge...280
Add-ons for Ruby..281
Meet people...281
Write Ruby code on a desert island...281
How to be multilingual...281
Agile Development ...282

Ten Rails Sites...282
Straight from the source’s mouth...282
Find a Web host ..282
Get hooked on RadRails ..283
Documentation ...283
Discuss Ruby on Rails..283
A Rails-friendly operating system ..283
Read the latest news ..284
Steal some code..284
Brush up on SQL...284
The seminal Ajax document..284

Chapter 15: Ten Features That Set Ruby Apart 285
Hashes ...285
Open Classes ..285
Duck Typing ..286
Modifiers ...287
Blocks ..287
Everything Is an Object ...288
Objects Might Have Their Own Methods..289
Mixins ..289
Built-In Unit Testing ...290
Built-In Reflection...291

Chapter 16: Ten Pivotal Ruby on Rails Concepts 293
Don’t Repeat Yourself (DRY) ..293
Convention over Configuration..294
Model/View/Controller (MVC)..294
Agile Development ...294

Ruby on Rails For Dummies xvi

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xvi

Dynamic Discovery of a Database’s Characteristics295
Object-Relational Mapping (ORM)...295
Using Generators..296
Create, Read, Update, and Delete (CRUD) ..296
Using Migrations ..296
Using Partials..297

Chapter 17: Ten Ways to Override Rails Defaults 299
Overriding the Database Name ..300
Overriding a Database Table Name ...301
Overriding a Controller Name ..303
Overriding the Name of a Table’s Primary Key ..304
Using Singular Nouns...305
Creating Irregular Plurals ..307
Overriding a Default Layout..308
Creating Additional Web Pages ..310
Modifying the Meanings of URLs..311
Changing the Server Environment ...312

Index..315

xviiTable of Contents

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xvii

Ruby on Rails For Dummies xviii

02_081204 ftoc.qxp 11/30/06 11:08 PM Page xviii

Introduction

“Ruby on Rails? What’s that?” asks my uncle. “You write about this
stuff for dummies? You mean those black and yellow books that

everyone buys?”

“Yes, like the one I’m quoting you in,” I say. “Please check your spelling as
you speak.”

“I will. But what’s Ruby on Rails? Is it the 6:05 train to Poughkeepsie? Is it the
name of an old vaudeville act? Is it a pop singer? A rock band? Is it a rare
stone from India? Is it the codename of an informer in a political scandal?”

“No.”

“Is it the name of an exotic cocktail? A species of bird? An animal act in a
circus? A John D. MacDonald title?”

Finally, I interrupt. “Ruby on Rails is a computer thing.”

“What kind of computer thing?” he asks.

“It’s a framework for creating applications with Web interfaces to databases.”

“Oh, yeah?” he says. “Your nephew from Brooklyn, he read Getting Ahead in
Politics For Dummies. He loved the book. Did you write that one?”

How to Use This Book
As a computer book author, I strive not to be full of myself. I have no illusions
that you plan on reading this book from cover to cover. I read sections and
chapters out of order when I buy a computer book. Why would I expect you to
approach my book any differently? And even if I read something in Chapter 2,
who says I remember it when I read Chapter 11?

I write each section with these thoughts in mind. In the middle of Chapter 12,
I might want you to remember some nugget of knowledge that I introduce in
Chapter 4. If I use that nugget over and over again in Chapters 5, 7, 8, and 9,
I don’t remind you about it in Chapter 12. But for other nuggets — ones that
you don’t read about repeatedly in this book — I provide cross references.

03_081204 intro.qxp 11/30/06 11:08 PM Page 1

So in general, my advice is

� Read what interests you; skip what doesn’t interest you.

� If you already know something, don’t bother reading about it.

� If you’re curious, don’t be afraid to skip ahead. You can always sneak a
peek at an earlier chapter if you really need to do so.

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Ruby on
Rails For Dummies is no exception. What follows is a brief explanation of the
typefaces used in this book:

� New terms are set in italics.

� If you need to type something that’s mixed in with the regular text, the
characters you type appear in bold. For example: “Type MyNewProject
in the text field.”

� You also see this computerese font. I use computerese for Ruby code,
filenames, Web page addresses (URLs), on-screen messages, and other
such things. Also, if something you need to type is really long, it appears
in computerese font on its own line (or lines).

� You need to change certain things when you type them. Words that
you need to replace with your own words are set in italicized
computerese. For instance, I might ask you to type

class Anyname

which means that you type class and then some name that you make up
on your own.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you might hate making decisions as much as I do.
If so, here are some guidelines that you can follow:

� If you already know what kind of an animal Ruby on Rails is and you know
that you want to use Ruby on Rails, skip Chapter 1 and go straight to
Chapter 2. Believe me, I won’t mind.

� If you already have Ruby on Rails, a database, and a Ruby program
editor installed on your computer, skip Chapter 2 and go to Chapter 3.

� If you’ve seen one of the many Ruby on Rails demos or worked through
a Ruby on Rails tutorial, move quickly through Chapter 3.

2 Ruby on Rails For Dummies

03_081204 intro.qxp 11/30/06 11:08 PM Page 2

However, don’t completely ignore Chapter 3. Some of the wording I use
in Chapter 3 might be helpful, even if you’ve already been through a
Rails demo or two.

� If you’re a computer programmer, you might have already used Eclipse
(for Java or for some other programming language). In that case, plan a
quick excursion through Chapter 4. This book’s examples use the
RadRails integrated development environment, and RadRails is based
on Eclipse.

� If you’ve never written programs in Ruby, Perl, or Smalltalk, set aside
some time to read Chapters 5 and 6.

These chapters cover some Ruby concepts, but the chapters don’t
describe the entire Ruby language. In these chapters, I highlight Ruby
concepts that appear frequently in Rails code. I also emphasize some
unusual features of Ruby — features that you don’t find in other lan-
guage families (in Java and C++, for example).

If you want to skip the sidebars and the Technical Stuff icons, please do.
But try not to skip too many of my jokes. (I tell my kids that I write jokes for
a living. They don’t believe me. But even so, I’d appreciate your help in per-
petuating this myth.)

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

� I assume that you have access to a computer. Here’s the good news:
You can run the code in this book on almost any computer. The only
computers that you can’t use to run this code are ancient things that are
more than six years old (give or take a few years).

� I assume that you can navigate through your computer’s common menus
and dialog boxes. You don’t have to be a Windows, Linux, or Macintosh
power user, but you should be able to start a program, find a file, put a
file into a certain directory . . . that sort of thing.

On those rare occasions when you need to drag and drop, cut and
paste, or plug and play, I guide you carefully through the steps. But your
computer might be configured in any of several billion ways, and my
instructions might not quite fit your special situation. So, when you
reach one of these platform-specific tasks, try following the steps in this
book. If the steps don’t quite fit, consult a book with instructions tai-
lored to your system or visit one of this book’s Web sites for helpful
hints. The URLs are www.burdbrain.com/RubyOnRails and
www.dummies.com/go/RonR1e.

3Introduction

03_081204 intro.qxp 11/30/06 11:08 PM Page 3

� I assume that you’ve written some computer programs. I’ve tried to
make the book interesting for experienced programmers, yet accessible
to people with only a modest amount of programming experience. I don’t
assume that you’ve written programs in any particular language or that
you’ve hacked from midnight until dawn on the latest UNIX system.
I assume only that you can compose loops, if statements, and other
such things. (Of course, if you have no computer programming experience,
you can start with my Beginning Programming with Java For Dummies
book. Remember, the more of my books that you buy, the less debt I’ll
have when my kids finish college.)

If you’ve written lots of programs in Visual Basic, Java, or C++, you’ll
discover some interesting plot twists in Ruby. The developer of Ruby
took the best ideas in other programming languages, streamlined them,
combined them, and reorganized them into a flexible, powerful new
programming language. Ruby has many new, thought-provoking features.
As you find out about these features, many of them will seem very nat-
ural to you. One way or another, you’ll feel good about using Ruby.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections,
which come together to make chapters, which are lumped finally into four
parts. (When you write a book, you get to know your book’s structure pretty
well. After months of writing, you find yourself dreaming in sections and
chapters when you go to bed at night.) The parts of the book are listed here.

Part I: Nuts and Bolts
This part is your executive briefing. It includes a chapter that answers the
question “What is Ruby on Rails?” and a chapter with a complete set of
instructions on installing and running the software. It also has a jump-start
chapter and a chapter with details about the RadRails integrated develop-
ment environment.

Part II: Creating Code
Chapters 5 through 7 cover Ruby and HTML. Some of the material in Part II
might be familiar to you. If so, you can skip some sections or read this stuff
quickly. But don’t read too quickly. Ruby is a little different from some other
programming languages, and you might stumble upon some exciting new ideas.

4 Ruby on Rails For Dummies

03_081204 intro.qxp 11/30/06 11:08 PM Page 4

Part III: Real Rails
This third part cuts to the chase. Rails has three components — Action
Controller, Action View, and Active Record. The controller controls things
(of course), the view displays things, and Active Record maintains all the data.
Chapters 8 through 13 cover these three components and describe some
interesting applications along the way.

Part IV: The Part of Tens
The Part of Tens is a little Ruby on Rails candy store. In the Part of Tens, you
can find lists — online resources, hints about Ruby, and other interesting
goodies.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence in my head. Most of the sentences
I mutter several times. When I have an extra thought, a side comment, or
something that doesn’t belong in the regular stream, I twist my head a little
bit. That way, whoever’s listening to me (usually nobody) knows that I’m off
on a momentary tangent.

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book.

A tip is an extra piece of information — something helpful that the other
books may forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think people are especially prone to make a mistake, I mark it
with a Warning icon.

Question: What’s stronger than a Tip icon, but not as strong as a Warning?

Answer: A Remember icon.

5Introduction

03_081204 intro.qxp 11/30/06 11:08 PM Page 5

Occasionally I run across a technical tidbit. The tidbit might help you under-
stand what the people behind the scenes (the people who developed Ruby
on Rails) were thinking. You don’t have to read it, but you might find it useful.
You might also find the tidbit helpful if you plan to read other (more geeky)
books about Ruby on Rails.

This icon calls attention to useful material that you can find online.

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Ruby on Rails.
Think of me (the author) as your guide, your host, your personal assistant. I
do everything I can to keep things interesting and, most importantly, help
you understand.

If you like what you read, send me a note. My e-mail address, which I created
just for comments and questions about this book, is RubyOnRails@
BurdBrain.com. And don’t forget — for the latest updates, visit one of this
book’s support Web sites. The support sites’ addresses are www.burdbrain.
com/RubyOnRails and www.dummies.com/go/RonR1e.

6 Ruby on Rails For Dummies

03_081204 intro.qxp 11/30/06 11:08 PM Page 6

Part I
Nuts and Bolts

04_081204 pt01.qxp 11/30/06 11:09 PM Page 7

In this part . . .

What’s Ruby on Rails all about? And how do you
install Ruby on Rails? And after installing it, how

do you get started doing something with it? And what’s
really going on at Area 51 in Roswell, New Mexico?

This first part of the book answers the basic questions
about Ruby on Rails. But “basic” doesn’t mean “lame.”
For example, in Chapter 3, you create a complete Web
application from scratch. You create the application in
minutes, not hours. Then in Chapter 4, you find out
what’s at Area 51.

04_081204 pt01.qxp 11/30/06 11:09 PM Page 8

Chapter 1

Welcome to the World
of Ruby on Rails

In This Chapter
� Understanding the need for agile software development

� Discovering Ruby’s role in agile development

� Finding out how Rails fits in

O nce upon a time, there were three little programmers. The programmers
wrote code for the World Wide Web — code to give users access to a

company’s database.

The first programmer was in a hurry to write her code. She wrote simple
code as quickly as she could. The second programmer wasn’t quite in such a
hurry. She used the traditional Waterfall methodology — a multistep process
involving analysis, design, coding, testing, and deployment. The third pro-
grammer was careful and industrious. She used a heavyweight persistence
framework such as Enterprise JavaBeans. She built her software to cover
every possible contingency and to accommodate any future need.

As you might expect, this story has a big bad wolf. The wolf might have been
a manager, a client paying for the software’s creation, or a customer attempt-
ing to access the company’s Web site. The wolf went in reverse order, visiting
the careful and industrious programmer’s Web site first.

Unfortunately, the wolf couldn’t log onto the industrious programmer’s site.
Instead, he got the message: “This site is under construction.” The careful,
industrious programmer had completed only half of her work. The heavy-
weight persistence framework was difficult to learn and burdensome to use.
Needless, to say, the wolf huffed and he puffed, and he blew the Web site down.

05_081204 ch01.qxp 11/30/06 11:09 PM Page 9

So the wolf visited the second programmer’s Web site. The site was up and
running, but certain aspects of the site didn’t meet the wolf’s needs. In fol-
lowing the Waterfall methodology, the second programmer had carefully
planned every aspect of the project before beginning to write the code.
But by the time the code was ready for testing, the project’s requirements
had shifted.

The second programmer was aware of her Web site’s deficiencies. Through
extended testing and use, she had learned that the original requirements were
obsolete. But with all the code in place, the second programmer couldn’t
easily make major changes. All she could do was fix bugs and make the
code run a bit faster. She promised that she’d update the requirements for
version 2.0 of the system. But the wolf was impatient. He huffed and he
puffed, and he blew the Web site down.

In desperation, the wolf visited the first programmer’s Web site. She had built
the site quickly and easily, using Ruby on Rails. In fact, her first prototype had
been up and running in two days. Her co-workers had tested the prototype,
critiqued the prototype’s features, and told her what they expected in the
next prototype.

The next prototype was ready sooner than anyone expected. Once again,
co-workers tested the prototype, suggested improvements, and helped the
programmer to refine her evolving requirements.

After several brief rounds of coding and testing, the Web site was ready for
public use. The wolf enjoyed visiting the site because the site’s look and feel
reflected the way it had been designed. The site was nimble, intelligent, and
easy to use. The site did the kinds of things the wolf wanted it to do because
the programmer had gotten feedback on each prototype. Everyone was
happy . . . for a while anyway.

To repay the Ruby on Rails programmer, the wolf offered to repair her
house’s leaking roof. Unfortunately, the wolf had a nasty accident. While he
was working on the roof, he fell into the chimney and landed directly into a
pot of boiling water. Goodbye, wolf!

But the Ruby on Rails programmer was happy. She had created a great Web
site. And with all the time she’d saved using Ruby on Rails, she was able to
climb up to the roof and repair the leak herself.

The end.

10 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 10

The Software Development Process
The world changes quickly. Ten years ago, when I taught programming to
computer professionals, I wore a suit and a tie. Last month I taught the
same course wearing a polo shirt and khakis.

This tendency for things to change goes way back. In the 1960s, programmers
and managers noticed that commercial software tended to be very buggy.
They analyzed large projects created by big businesses. They saw software
development efforts going past deadline and over budget. They saw finished
products that were terribly unreliable. Most computer code was difficult to
test and impossible to maintain.

So they panicked.

They wrote books, magazine articles, and scholarly papers. They theorized.
They devised principles, and they arrived at various conclusions.

After years of theorizing, they founded the discipline known as software
engineering. The goal of software engineering is to discover practices that
help people write good code. As disciplines go, software engineering is pretty
good stuff. Software engineering encourages people to think about the way
they create software. And when people think about the way they work, they
tend to work better.

But in the 1970s, software engineering focused on methodologies. A methodol-
ogy is a prescribed set of practices. Do this, then do that, and finally, do the
other thing. When you’re finished, you have a big software system. But do
you have a useful software system?

In 1979, I worked briefly for a company in Milwaukee. On the day I arrived,
the team manager pointed to the team’s methodology books. The books con-
sisted of two monstrous volumes. Together the volumes consumed about six
inches of bookshelf. I remember the team manager’s words as he pointed a
second time to the books. “That’s what we use around here. Those are the
practices that we follow.”

I spent several months working for that company. In all those months, no one
ever mentioned the methodology books again. I would have cracked the books
open out of curiosity. But unfortunately, excessive dust makes me sneeze.
Had I found anyone on the team who knew the methodology, I probably

11Chapter 1: Welcome to the World of Ruby on Rails

05_081204 ch01.qxp 11/30/06 11:09 PM Page 11

would have learned how ponderous the methodology can be. No one wanted
to wade through hundreds of pages of principles, rules, and flow diagrams.
And if anyone did, they’d read about rigid systems — systems that encourage
programmers to follow fixed procedures — systems that don’t encourage
programmers to listen, to adjust, or to change.

Agility
In 2001, a group of practitioners created the Manifesto for Agile Software
Development (www.agilemanifesto.org). The Manifesto’s signatories
turned their backs on the methodologies of the past. Instead, they favored a
nimble approach. Their principles put “individuals and interactions over
processes and tools,” and put “responding to change over following a plan.”
Best of all, they declared that “Simplicity — the art of maximizing the
amount of work not done — is essential.” According to these practitioners,
the proof of the pudding is in the result. A process that doesn’t end in a
worthwhile result is a bad process, even if it’s an orderly, well-established
process.

The Agile Manifesto’s signatories aren’t opposed to the discipline of software
engineering. On the contrary, they believe firmly in the science of software
development. But they don’t believe in unnecessary paperwork, required
checklists, and mandatory diagrams. In other words, they don’t like horse
puckey.

Databases and the World Wide Web
By 2001, many businesses faced an enormous problem. Computers were no
longer islands unto themselves. Customers visited Web sites, ordered goods,
read headlines, updated records, posted comments, and downloaded songs.
At one end was a Web browser; at the other end was a database. In between
was lots of network plumbing. The problem was to move data from the browser
to the database, and from the database to the browser. The movement must
be efficient, reliable, and secure.

Imagine millions of people working on the same problem — moving data
between a Web browser and a database. If everyone works independently,
then millions of people duplicate each others’ efforts. Instead of working
independently, why not have people build on other people’s work? Create a
software framework for connecting Web browsers to databases. Provide hooks
into the software so that people can customize the framework’s behavior.
An online order system uses the framework one way, and a social networking
site uses the framework in its own, completely different way.

12 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 12

Throwing frameworks at the problem
By 2004, there wasn’t just one framework for solving the Web/database prob-
lem. There were dozens of frameworks. New frameworks, with names such
as Enterprise JavaBeans, Spring, Hibernate, and .NET, tackled pieces of the
problem.

But most of the aforementioned frameworks had a serious deficiency. They
didn’t lend themselves to agile software development. Software created with
one of these frameworks was fairly rigid. Planning was essential. Changes
were costly.

What the world needed was a different framework — a framework for agile
developers. The world needed a language that didn’t put programmers in
a box. The world needed software that could shift with a user’s shifting
needs. Let the major corporations use the older, heavyweight frameworks.
An entrepreneurial company thrives with a more versatile framework.
A small-to-medium-size company needs Ruby on Rails.

Along Comes Ruby on Rails
Think about your native language — the language you speak at home. Divide
the language into two styles. You use one style when you speak to a close
friend. (“Hi, buddy.”) You use another, more formal style when you write to a
potential employer (“Dear Sir or Madam . . .”).

Talking to a close friend is an agile activity. You listen intently, but occasion-
ally you interrupt. If your friend says something intriguing, you take time out
to ask for more details. You don’t try to impress your friend. You tune care-
fully to your friend’s mood, and the friend tunes to your mood.

In contrast, writing a business cover letter is not an agile activity. You don’t
get feedback as you write the letter. You try to guess what the potential
employer wants you to say, but you can never be sure. You use a formal
writing style in case the employer is a stodgy old coot.

Now imagine using a formal style to speak to your friend. “If you have any
questions about our next meeting at Kelly’s Tavern, please don’t hesitate to
call me at the phone number on this napkin. I look forward to hearing from
you soon. Yours truly, et cetera, et cetera.” Using formal language with your
friend would slow the conversation to a crawl. You wouldn’t pop your eyes
open when you heard some juicy gossip. Instead, you’d plan each sentence
carefully. You’d think about subject/verb agreement, hoping you didn’t offend
your friend with an awkward phrase or with some inappropriate slang.

13Chapter 1: Welcome to the World of Ruby on Rails

05_081204 ch01.qxp 11/30/06 11:09 PM Page 13

Language isn’t a neutral medium of expression. Language influences the
nature of the message. A free-flowing style encourages free-flowing thought.
In the same way, a flexible programming language complements an agile soft-
ware development process.

Why Ruby?
Ruby is a computer programming language. You might be familiar with Basic,
Java, C++, or some other programming language. In certain ways, all these
languages are the same. They all provide ways for you to give instructions to
a computer. “Move this value from that memory location to that other location
on your hard drive.” A computer language is a way of expressing instructions
in a precise, unambiguous manner.

What makes Ruby different from so many other computer programming lan-
guages? In what way does Ruby support agile development?

Here’s the answer: Ruby is a dynamically typed, interpreted, reflective,
object-oriented language. That’s a great answer, but what does it mean?

Ruby is dynamically typed
In many languages, you have to declare each variable’s type. You write

int date;
date = 25092006;

The first line tells the computer that the date must store an integer — a whole
number — a number without a decimal point — a number like 25092006.
Later in the same program, you might write

date = “September 25, 2006”;

But the computer refuses to accept this new line of code. The computer flags
this line with an error message. The value “September 25, 2006” isn’t an
integer. (In fact, “September 25, 2006” isn’t a number.) And because of the
int date; line, the non-Ruby program expects date to store an integer.

The word int stands for a type of value. In a statically typed language, a vari-
able’s type doesn’t change.

In contrast, Ruby is dynamically typed. The following lines form a complete,
valid Ruby program:

date = 25092006
date = “September 25, 2006”

14 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 14

(Yes, this program doesn’t do anything useful, but it’s a program nevertheless.)

Ruby’s variables can change from being integers to being decimal values, and
then to being strings or arrays. They change easily, without any complicated
programming techniques. This flexibility makes Ruby a good language for
agile software development.

Ruby is interpreted
Many commonly used programming languages are compiled. When the com-
puter compiles a program, the computer translates the program into a very
detailed set of instructions (a set more detailed than the set that the pro-
grammer originally writes).

So picture yourself developing code in a compiled language. First you write
the code. Then you compile the code. Then you run the code. The code doesn’t
run exactly the way you want it to run, so you modify the code. Then you
compile again. And then you run the code again. This cycle takes place hun-
dreds of times a day. “Modify, compile, run.” You get tired of saying it inside
your head.

In contrast to the compiled languages, Ruby is interpreted. An interpreted lan-
guage bypasses the compilation step. You write the code, and then you run
the code. Of course you don’t like the results. (That’s a given.) So you modify
and rerun the code. The whole cycle is much shorter. A piece of software (the
Ruby interpreter) examines your code and executes that code without delay.

Which is better — compiled code or interpreted code? Believe it or not, the
answer depends on your point of view. A computer executes compiled code
faster than interpreted code. But as computer processing power becomes
cheaper, the speed of execution is no longer such an important issue.

So step back from the processing speed issue and think about the speed of
software development. With a compiled language, each modify-compile-run
cycle is three steps long, compared with the two-step modify-run cycle in an
interpreted language such as Ruby. But what’s the big deal? How long can an
extra compilation step possibly take?

The answer is that compilation can slow you down. Compilation can be time
consuming, especially on a very large, complex project. Even a two-second com-
pilation can be annoying if you perform the cycle several hundred times a day.

But aside from the time factor, the compilation step distances the programmer
from the run of a program. Imagine writing a program in a compiled language,
say in C++. The computer compiles your program to get a more detailed set
of instructions. This detailed set of instructions isn’t the same as your origi-
nal program. It’s a translation of your instructions. Instead of executing your
program, the computer executes a translation.

15Chapter 1: Welcome to the World of Ruby on Rails

05_081204 ch01.qxp 11/30/06 11:09 PM Page 15

Little to nothing gets lost in translation. But the fact that the computer doesn’t
run your original code makes a difference in the way you think about the
development cycle. The immediate, hands-on feeling of an interpreted lan-
guage gives an extra lift to the agile development mindset.

Ruby is reflective
A Ruby program can reflect upon its own code, like a philosopher reflecting
on his or her own life. More specifically, a Ruby program can turn a string of
characters into executable code and can do this somersault during the run of
a program. Listing 1-1 contains an example:

Listing 1-1: Defining a Database Table

print “Enter some text: “
STDOUT.flush
text_input = gets
puts

print “You entered: “
print text_input
puts

print “Maybe you entered some Ruby code!\n”
print “I’ll try to execute the text that you entered.\n”
print “The result of executing your text is “
eval text_input

Figures 1-1 and 1-2 show two different runs of the code in Listing 1-1. In each
run the code prompts you to type some text. Ruby does two things with
whatever text you type:

� Ruby echoes the text (displays the text a second time on the screen).

� Ruby interprets your text as Ruby code and executes the code if possible.

The second step (reinterpreting text as code) is difficult to do in other pro-
gramming languages. Ruby makes it easy to reinterpret text as code, and this
ease makes life better for computer programmers.

Figure 1-1:
A run of the

code in
Listing 1-1.

16 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 16

Ruby is object-oriented
I describe object-oriented programming (OOP) in Chapter 6. So I don’t want
to spoil the fun in this chapter. But to give you a preview, object-oriented pro-
gramming centers around nouns, not verbs. With object-oriented program-
ming, you begin by defining nouns. Each account has a name and a balance.
Each customer has a name, an address, and one or more accounts.

After describing the nouns, you start applying verbs. Create a new account
for a particular customer. Display the account’s balance. And so on.

Since the late 1980s, most commonly used programming languages have
been object oriented. So I can’t claim that Ruby is special this way. But
Ruby’s object-oriented style is more free-form than its equivalent in other
languages. Again, for more details on object-oriented programming in Ruby,
see Chapter 6.

Why Rails?
Rails is an add-on to the Ruby programming language. This add-on contains a
library full of Ruby code, scripts for generating parts of applications, and a
lot more.

The name Ruby on Rails is an inside joke. Since the year 2000, teams of
Java programmers have been using a framework named Struts. The Struts
framework addresses many of the problems described in this chapter —
Web development, databases, and other such things. But the word strut
means something in the construction industry. (A strut is a horizontal brace,
and a sturdy one at that.) Well, a rail is also a kind of horizontal brace.
And like Ruby, the word Rail begins with the letter R. Thus the name
Ruby on Rails.

In spite of the name Ruby on Rails, you don’t add Ruby on top of Rails. Rather,
the Rails framework is an add-on to the Ruby programming language.

Figure 1-2:
Running the

code with
more com-

plicated
input.

17Chapter 1: Welcome to the World of Ruby on Rails

05_081204 ch01.qxp 11/30/06 11:09 PM Page 17

The following fact might not surprise you at all. What separates Rails from
Struts and other frameworks is agility. Other frameworks used to solve the Web/
database problem are heavy and rigid. Development in these other frameworks
is slow and formal. In comparison, Rails is lightweight and nimble.

Author and practitioner Curt Hibbs claims that you can write a Rails applica-
tion in one-tenth the time it takes to write the same application using a
heavyweight framework. Many people challenge this claim, but the fact that
Hibbs is willing to make the claim says something important about Rails.

Rails is built on two solid principles: convention over configuration, and
Don’t Repeat Yourself (DRY).

Convention over configuration
A Web application consists of many parts, and you can go crazy connecting
all the parts. Take one small example. You have a variable named picture
in a computer program, and you have a column named image in a database
table. The computer program fetches data from the image table column and
stores this data in the picture variable. Then the program performs some
acrobatics with the picture variable’s data. (For example, the program dis-
plays the picture’s bits on a Web page.)

One way to deal with an application’s parts is to pretend that names like
picture and image bear little relation to one another. A programmer stitches
together the application’s parts using a configuration file. The configuration
file encodes facts such as “variable picture reads data from column image,”
“variable quotation reads data from column stock_value,” and “variable
comment_by_expert reads data from column quotation.” How confusing!

With dozens of names to encode at many levels of an application, program-
mers spend hours writing configuration files and specifying complex chains
of names. In the end, errors creep into the system, and programmers spend
more hours chasing bugs.

Rails shuns configuration in favor of naming conventions. In Rails, a variable
named image matches automatically with a column of the same name in the
database table. A variable named Photo matches automatically with a table
named photos. And a variable named Person matches automatically with a
table named people. (Yes, Rails understands plurals!)

In Rails, most configuration files are completely unnecessary. You can create
configuration information if you want to break Ruby’s naming conventions.
But if you’re lucky, you seldom find it necessary to break Ruby’s naming
conventions.

18 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 18

Don’t Repeat Yourself (DRY)
Another important Rails principle is to avoid duplicating information. A tradi-
tional program contains code describing database tables. The code tells the
rest of the program about the structure of the tables. Only after this descrip-
tive code is in place can the rest of the program read data from the database.

But in some sense, the description of a database is redundant. A program can
examine a database and automatically deduce the structure of the database’s
tables. Any descriptive code simply repeats the obvious. “Hey, everyone.
There’s a gorilla in the room. And there’s an image column in the photos
database table.” So what else is new?

In computer programming, repetition is bad. For one thing, repetition of infor-
mation can lead to errors. If the description of a database is inaccurate, the
program containing the description doesn’t work. (My HMO asks for my
address on every claim form. But my address hasn’t changed in the past ten
years. Occasionally, the folks who process the claim forms copy my address
incorrectly. They mail a reimbursement check to the wrong house. Then I make
ten phone calls to straighten things out. That’s a danger of having more than
one copy of a certain piece of information.)

Aside from the risk of error, the duplication of information means more
work for everyone. With traditional database programming, you must track
every decision carefully. If you add a column to a database table, you must
update the description of the database in the code. The updating can be
time-consuming, and it discourages agility. Also, if each change to a database
table requires you to dive into your code, you’re less likely to make changes.
If you avoid changes, you might not be responding to your customer’s ever-
changing needs.

Let’s Get Going
You can read this chapter’s lofty paragraphs until you develop a throbbing
headache. But the meaning behind these paragraphs might be somewhat elu-
sive. Do you feel different when you switch from C++ or Java to programming
in Ruby? Does Rails really speed up the development cycle? Can you create
an application in the time it takes to find a Starbucks in Manhattan? If you
find these questions intriguing, please read on.

19Chapter 1: Welcome to the World of Ruby on Rails

05_081204 ch01.qxp 11/30/06 11:09 PM Page 19

20 Part I: Nuts and Bolts

05_081204 ch01.qxp 11/30/06 11:09 PM Page 20

Chapter 2

Installing the Software
In This Chapter
� Installing the required software

� Testing that the software is installed properly

� Adding shortcuts to run the software quickly and easily

There was a young fellow named Nash

Whose software installing was rash.

He followed directions,

But skipped half the sections,

And caused his computer to crash.

Your system won’t crash if you install Ruby on Rails incorrectly. The
worst that can happen is that your Ruby program doesn’t run. Well,

worse than that, your Ruby program doesn’t run, and you forget to send me
an e-mail message asking me how to fix it. Remember, this author reads his
e-mail!

Anyway, you don’t have to read all the sections in this chapter. (In the lim-
erick, I encourage you to read all the sections, but I do that only because
“sections” rhymes with “directions.” It makes a better limerick.) Instead,
read enough directions to make sure you don’t leave out any crucial steps.
That means skimming for what you need to know, skipping descriptions of
things you already know how to do, and backtracking occasionally when you
stumble onto some unusual computer behavior.

06_081204 ch02.qxp 11/30/06 11:09 PM Page 21

Six Pieces of Software
I recommend that you install six different programs when you begin working
with Ruby on Rails. You can get away with fewer programs or different pro-
grams, but the list of programs in this chapter includes the easiest, most
convenient tools, which are

� The Ruby interpreter

� The Rails framework

� The Java runtime environment

� The RadRails integrated development environment

� The MySQL database system

� The MySQL Administrator program

All of these tools are free. (Yippee!)

Installing the Ruby Interpreter
To install Ruby on your computer, follow these steps:

1. Visit http://rubyforge.org/projects/rubyinstaller.

The software that you download from http://rubyforge.org/
projects/rubyinstaller runs only on Windows. If you’re running
Linux, try http://rubyforge.org/projects/ruby instead. If you’re
a Macintosh user, visit http://hivelogic.com/articles/2005/
12/01/ruby_rails_lighttpd_mysql_tiger.

2. Click the Download link.

Figure 2-1 shows the Download link as it appears in the summer of 2006.
The name of the software is One-Click Installer. By the time you read this
book, the Ruby people might have changed the Web page, and the link
might look different. (For that matter, the steps for finding the Download
link might be different.)

If in doubt, do the things that you’d usually do to find a download link at
a Web site. If all else fails and you can’t find the link, check this book’s
Web page for up-to-date information.

The Download link should lead you to a list of Ruby interpreters with
version numbers like 1.8.4 and 1.8.5.

22 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 22

3. Find the highest-numbered version with the word stable in its
description. Click this version’s link to begin the download.

Your Web browser might ask whether you want to save or run the file.

4. Click Run to run the installation file.

Alternatively, you can click Save to save the installation file on your hard
drive. Then you can find the installation file’s icon and double-click the
icon to start running this file.

5. Respond to any prompts during the installation.

You might see a dialog box asking whether you really want to install this
potentially dangerous program. If you’re downloading the program from
http://rubyforge.org, the chance that the program contains a virus
(or any other malicious code) is very, very small.

At some point in the installation, you might also be given a list of compo-
nents to install, including Ruby itself, something named SciTE, and other
things. (See Figure 2-2.) The installation program permanently selects
the Ruby check box. (That’s good, because to work with Ruby on Rails,
you need this Ruby software.) But make sure that you also select the
RubyGems check box. Later in this chapter, you use the RubyGems com-
ponent to help you install Rails.

6. When the installation is complete, click Finish.

Download link

Figure 2-1:
The link for

downloading
the Ruby

interpreter.

23Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 23

Testing the Ruby installation
After installing the Ruby interpreter, you should test your new interpreter to
make sure that it’s installed properly. This section shows you how to perform
a test.

Steps 1 and 2 apply only to computers running Microsoft Windows. If you use
Linux or Mac OS X, visit this book’s Web site for more specific instructions.

1. If you run Windows XP, choose Start➪Run. If you run Windows Vista,
simply choose Start.

A small Run dialog appears.

2. If you run Windows XP, type cmd in the Run dialog’s text field. If you
run Windows Vista, type cmd in the Start Search field. Then, in both
cases, press Enter.

A white-on-black window appears. This is your computer’s command
window. The text C:\WINDOWS\system32\cmd.exe appears in the
command window’s title bar.

A blinking cursor appears inside the command window.

3. In the command window, type irb and then press Enter.

The letters irb stand for interactive Ruby. This irb command fires up
a very easy-to-use interface to the Ruby programming system. (See
Figure 2-3.)

For now, you can ignore the cryptic prompt irb(main):001:0>.

Figure 2-2:
The installer
offers you a

choice of
components.

24 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 24

4. Type puts "Hello" and then press Enter.

You’ve just told Ruby to display the word Hello. Ruby displays Hello,
followed by some other junk. (See Figure 2-4.)

5. Type quit.

Typing quit ends the execution of the irb interface.

Troubleshooting the Ruby installation
The instructions in this troubleshooting section are primarily for Windows
users. If you’re a Mac or Linux user, visit this book’s Web site.

When you type irb, you might get a message saying that ‘irb’ is not
recognized as an internal or external command. If so, try the
following:

� Open a new command window (as in Steps 1 and 2). Then try typing
irb again.

If this works, it’s because the Ruby installation didn’t reconfigure any
command windows that you already had open. From this time onward,
any command window that you open anew will properly interpret your
irb request.

Figure 2-4:
Ruby

responds by
displaying

the word
Hello.

Figure 2-3:
The inter-

active Ruby
interpreter

(irb).

25Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 25

� Type dir c:\ruby\bin\irb* in a command window.

In the computer’s response, you should see irb and irb.bat. If you
don’t see these, you probably didn’t install Ruby properly. Try installing
Ruby again. (I know. It’s a pain in the neck to install software twice. But
what else can you do?)

If the computer’s response includes irb and irb.bat, the most likely
cause of the ‘irb’ not recognized error is that the Ruby installa-
tion failed to change your system’s path. (See the next bullet for details
about the system’s path.)

� Type set path in a newly opened command window.

Somewhere in the computer’s wordy response, you should see some-
thing about ruby\bin. If you don’t, type the following:

c:\ruby\bin\irb

Typing c:\ruby\bin\irb should start the Ruby interpreter. (You should
see the kind of text shown earlier in Figure 2-3.) If typing c:\ruby\bin\
irb works for you, you have three choices:

• Get into the habit of typing c:\ruby\bin\irb (instead of plain
old irb) whenever you want to run irb from a command window.

• Find out how to permanently add c:\ruby\bin to your
system’s path.

• Ignore the problem, because when you run the examples in this
book, you don’t use the command window very often.

Installing Rails
After installing Ruby, the installation of Rails goes fairly quickly.

1. Make sure you have a working connection to the Internet.

Visit www.burdbrain.com, just to make sure!

2. If you run Windows XP, choose Start➪Run. If you run Windows Vista,
simply choose Start.

A small Run dialog appears.

3. If you run Windows XP, type cmd in the Run dialog’s text field. If you
run Windows Vista, type cmd in the Start Search field. Then, in both
cases, press Enter.

The (by now familiar) white-on-black command window appears.

26 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 26

4. In the command window, type the following line, and press Enter:

gem install rails -r -y

With this command, you tell your computer to use gem — an installa-
tion-managing program for Ruby add-ons. In particular, you tell gem to
install Rails (though the command is rails, lowercase). The -r part of
the command tells gem to get the Rails program remotely (from the
Internet, that is). The -y part of the command tells gem to install other
programs — programs that your computer needs in order for Rails to
work properly.

A typical gem session is shown in Figure 2-5.

The gem installer has all kinds of nice features. To find out about these fea-
tures, open a command window and type gem help, gem help commands, or
gem help examples.

Installing Java
Hey, wait a minute! Ruby is a computer programming language, and Java is
a different computer programming language. What does Java have to do
with Ruby?

Here’s the story. When you create Ruby on Rails programs, it helps to work
inside an integrated development environment (IDE). An IDE is like a text
editor, but smarter. An IDE organizes your code into projects, runs your
code with a few mouse clicks, and displays the code’s output in a nice panel.
In general, an IDE removes the programming grunt work and makes you more
productive.

Figure 2-5:
Installing

Rails.

27Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 27

The best IDE for writing Ruby on Rails code is a program named RadRails,
and RadRails is written partially in Java. So before you can use RadRails,
you have to install Java. Fortunately, the people at Sun Microsystems have
simplified the installation of Java.

1. Visit www.java.com.

2. Find and click the Java download link.

I don’t bother putting a screenshot of the link in this book. The Web page
layout changes quite often. Sun Microsystems wants you to download
Java, so they feature the download link very prominently near the top
of the Web page.

After you click the link, Java downloads and installs itself. You don’t
even leave your Web browser’s window.

3. As the installation proceeds, select all the defaults, including the ones
that warn you about potentially malicious software.

When the dust settles, Java is installed on your computer.

Installing RadRails
RadRails is a cool program developed by Kyle Shank, Marc Baumbach, and
Matt Kent. RadRails is built on top of Eclipse, another cool program (a pro-
gram that most of the world uses as a Java IDE).

In my unending quest to make things easy for you, I’ve created my own editions
of RadRails (for Windows, Linux, and Macintosh computers). The customized
editions come with all the code from this book. The customized Windows edi-
tion also has a neat plug-in named Wicked Shell (created by Stefan Reichert).
With Wicked Shell, you can jump seamlessly from Ruby development to the
command window (introduced earlier in this chapter in the “Testing the Ruby
installation” section).

To install my custom version of RadRails, do the following:

1. Visit this book’s Web site.

2. Look for the link to my version of RadRails (whichever link is appro-
priate for your computer’s operating system).

3. Click the Download link.

In response, your computer probably asks you whether you want to
save the file.

28 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 28

4. Say “yes” to saving the file.

RadRails slithers down onto your computer’s hard drive as one big Zip
file. You have to extract the contents of this file to some handy place on
your hard drive. Here’s one way to do it:

5. Double-click the downloaded Zip file.

When you double-click, you get to see what’s inside the Zip file. This Zip
file contains lots of stuff, but all that stuff is inside one folder — a folder
named radrails.

To find the radrails folder, you might have to double-click twice — once
on a radrails-0.6-win32.zip icon and then a second time on a
radrails-0.6-win32 icon (without the zip). One way or another, you
should work your way down to a folder whose name is plain old radrails.

6. Right-click the radrails folder and then click Copy.

7. Open My Computer.

8. Right-click the C: drive and then click Paste.

Steps 5 through 8 work with plain old Windows XP and Windows Vista systems.
If your computer has a third-party Zip-file-handling program (WinZip, or some
other such thing), the way you deal with the Zip file might differ from the steps
described in this section.

29Chapter 2: Installing the Software

Those pesky filename extensions
The filenames displayed in the Browse for Files
or Folders dialog box can be misleading. You
might browse your hard drive in Steps 3 and 4
and see the name radrails. Instead of just
radrails, the file’s full name is radrails.
exe. You might even notice two radrails
branches. What you don’t see is that one
branch’s real name is radrails, and the
other’s real name is radrails.exe.

The ugly truth is that Windows and its dialog
boxes can hide parts of filenames. This awful
feature tends to confuse people. So, if you don’t
want to be confused, modify the Windows Hide
Extensions feature. To do this, you have to open
the Folder Options dialog box. Here’s how:

� In Windows XP with the control panel’s
default (category) view: Choose Start➪
Control Panel➪Appearance and Themes➪
Folder Options.

� In Windows Vista with the control panel’s
default (category) view: Choose Start➪
Control Panel➪Appearance and Personali-
zation➪Folder Options.

� In Windows XP or Windows Vista with the
control panel’s classic view: Choose Start➪
Control Panel➪Folder Options.

In the Folder Options dialog box, click the View
tab. Then look for the Hide File Extensions for
Known File Types option. Make sure that this
check box is not selected.

06_081204 ch02.qxp 11/30/06 11:09 PM Page 29

After following this section’s steps, you have a folder named radrails on your
computer’s hard drive. That’s all you do to install RadRails on your computer.
There’s no setup program to run, no dreaded DLLs to install, no Windows reg-
istry settings to change — nothing like that.

Creating a RadRails shortcut
on your desktop
This section applies only to computers running Microsoft Windows. If you use
Linux or Mac OS X, visit this book’s Web site for more specific instructions.

Having a RadRails shortcut on your desktop might be helpful. Here’s how you
can create one:

1. Right-click any uninhabited space on your system’s desktop.

A contextual menu appears.

2. Choose New➪Shortcut.

A Create Shortcut wizard appears. The wizard has a Browse button.

3. Click the Browse button.

This step opens the familiar Browse for Files or Folders dialog box.

In Windows Vista, the dialog box’s title bar reads Browse for Files or
Folders. But in Windows XP, the dialog box’s title bar reads Browse
For Folder. The Vista title is more accurate because, in this section’s
steps, you browse for a file, not for a folder. Despite the confusing title
bar, this section’s steps work in both Windows XP and Windows Vista.

4. Browse to the inside of the directory in which you installed RadRails.

If you followed the previous section’s steps to the letter, you can reach
this directory by expanding My Computer, then expanding the C: drive
branch within My Computer, and then expanding the subbranch of C:
named radrails.

5. Inside the radrails directory, select the branch named radrails
(or radrails.exe).

If you find something named radrails.exe, you’re in very good shape.
If you don’t see radrails.exe, the thing you want is simply labeled
radrails. It’s inside a folder of the same name (radrails). It’s a leaf on
the tree. It has a pretty icon — an icon that doesn’t look like a folder.
(The icon is either blue or red.) See Figure 2-6.

30 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 30

After finding the correct radrails branch, you’re almost finished creat-
ing a desktop shortcut.

6. In the Browse For Files or Folders dialog box, click OK.

This step brings you back to the Create Shortcut Wizard.

7. Click Next.

In response, the second page of the wizard appears. The second page
asks if you want to change the name of the shortcut. You can accept the
default name, change the name to kaploozamamma, or do whatever you
want with the name.

8. When you finish naming your newborn baby shortcut, click Finish.

The shortcut appears on your desktop. Now it’s time to run RadRails.

Testing RadRails
It’s time to take RadRails for a test drive. Here’s how you do it:

1. Double-click the desktop shortcut that you created in the preceding
section.

RadRails starts running. The RadRails splash screen appears for an
uncomfortably long time. (All Eclipse-based programs take longer than
average to start running. Relax! It’s worth the wait.)

Figure 2-6:
Finding the

RadRails
program.

31Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 31

Finally, a Workspace Launcher dialog box appears. (See Figure 2-7.)

2. Click OK to accept the default workspace folder.

. . . or don’t click OK. Change the workspace folder and see if I care!
The point is that the default workspace folder is fine, and any other
place you choose on your hard drive is fine, too.

After clicking OK, the RadRails workbench (shown in Figure 2-8) opens
in full glory. When you see the workbench, you know that you’ve suc-
cessfully installed RadRails.

Figure 2-8:
The RadRails
workbench.

Figure 2-7:
The RadRails

workspace
launcher.

32 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 32

Troubleshooting the RadRails installation
If you follow the steps to install and test RadRails and you don’t see the
workbench in Figure 2-8, something’s wrong. But don’t panic! Most RadRails
installation problems have one of four causes:

� You might have downloaded and installed the wrong version of
RadRails.

RadRails comes in three flavors — Windows, Macintosh, and Linux. If you
run Windows, double-check your RadRails download to make sure that
the filename contains the letters win. For a Macintosh installation, look
for mac in the filename. And for Linux, check for linux.

� You might not have installed Java properly.

If you see a message containing words like No Java Virtual
machine was found, you might have skipped something in this chap-
ter’s “Installing Java” section. I recommend repeating the steps in that
section, looking carefully at the instructions on the www.java.com
Web site.

� You might not have unzipped the RadRails download correctly.

Check to make sure that you have a folder named radrails. Then check
within that folder for a file named radrails (or radrails.exe).
Also within the radrails folder, check for subfolders named configura-
tion, features, and plug-in. If you can’t find these things, revisit Steps 5
to 8 at the start of this chapter’s “Installing RadRails” section.

� The file that you’re trying to run might not be radrails.exe.

In the section entitled “Creating a RadRails shortcut on your desktop,”
Step 5 instructs you to look for something named radrails or
radrails.exe. Between radrails and radrails.exe, you might
have become confused. (The confusion isn’t your fault. It’s the Windows
operating system’s fault.) If you see radrails but not radrails.exe,
follow the instructions in the sidebar entitled “Those pesky filename
extensions.” The steps in that sidebar should help clear up the problem.

Configuring RadRails
A section near the start of this chapter presents steps for installing a Ruby
interpreter. And in this section, you install RadRails. The RadRails integrated
development environment uses your installed Ruby interpreter. So before

33Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 33

RadRails can do its thing, you have to point RadRails to the Ruby interpreter.
Here’s what you do:

1. Launch RadRails.

For details, see the section entitled “Testing RadRails.”

2. Choose Window➪Preferences.

The Preferences dialog box appears.

3. In the Preferences dialog box’s navigation tree, expand the Ruby
branch. Then, in the Ruby branch, select Installed Interpreters.

In response, RadRails displays a big Installed Interpreters panel. (See
Figure 2-9.)

4. Click Add.

The Add Interpreter dialog box appears. (See Figure 2-10.)

Figure 2-10:
The Add

Interpreter
dialog box.

Figure 2-9:
The Installed
Interpreters

panel.

34 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 34

5. Make up any name and type it into the Interpreter Name field. Then
click the Browse button to start filling in the Location field.

If you run Windows and you didn’t change any defaults when you
installed Ruby, you can browse to the C:\ruby\bin directory and
select ruby (or ruby.exe). When you finish browsing, the Add
Interpreter dialog box should look like the one in Figure 2-10.

6. Click OK to close the Add Interpreter dialog box.

In response, the Preferences dialog box’s Installed Interpreters panel
comes to the fore. The panel displays your C:\ruby\bin\ruby.exe
location. (See Figure 2-11.)

7. Make sure that the new check box (the check box for the location
C:\ruby\bin\ruby.exe) is selected.

Again, see Figure 2-11.

8. In the Preferences dialog box’s navigation tree, expand the Rails
branch. Then, in the Rails branch, select Configuration.

In response, RadRails displays a Configuration panel. (See Figure 2-12.)

9. Click the topmost Browse button to fill in the Rails Path field.

If you run Windows and you didn’t change any defaults when you
installed Ruby, you can browse to the C:\ruby\bin directory and
select rails.

10. Click the next Browse button to fill in the Rake Path field.

If you’re lucky, you might find a rake entry in the C:\ruby\bin direc-
tory. If you’re not lucky, you might have to browse for a rake entry in a
directory named C:\ruby\lib\ruby\gems\1.8\gems\rake-0.7.1\
bin (or something like that). In Figure 2-12, I’m not lucky.

11. Click OK to close the Preferences dialog box.

Figure 2-11:
The Installed
Interpreters

panel has an
interpreter

in its list.

35Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 35

Congratulations! By following this section’s instructions, you’ve effectively
molded RadRails to suit your needs. RadRails is ready to work for you.

Installing MySQL
Rails is a framework for making Web pages communicate with databases. So
to work with Rails, you need database software. If you already have database
software, you can probably use that software with Rails. Rails talks to all
kinds of databases, including Oracle, MySQL, DB2, Postgres, Firebird, SQLServer,
and SQLite databases. In this book, I emphasize MySQL because Ruby on
Rails and RadRails have built-in MySQL support. Besides, MySQL is free.

I haven’t found any software to make Rails talk to a Microsoft Access database.
But there are plenty of ways to convert an Access database to some other
kind of database. My favorite trick is to launch Microsoft Access, open the
database in question, and then choose File➪Export. In the Save As Type
drop-down list, I select Text Files and save the database with the .csv (comma
separated value) extension. Almost every other kind of database, including
MySQL, has facilities for importing files of type .csv. (There are usually sev-
eral .csv options to choose from, so sometimes you have to experiment a bit
before you import the data correctly. Be patient, and you’ll figure it out.)

To install MySQL on your computer, follow these steps:

1. Visit http://dev.mysql.com/downloads/mysql.

Figure 2-12:
The Rails

Configura-
tion panel.

36 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 36

2. Find the link for downloading the Windows Essentials version of MySQL.

As the name suggests, Windows Essentials is all you need for running
MySQL on Windows. This Windows Essentials bundle has none of the
extra (possibly confusing) features that you get when you download the
full Windows MySQL program.

Once again, if you run Linux, a Mac OS, or some other non-Windows
operating system, you need to follow a slightly different set of instruc-
tions. The http://dev.mysql.com/downloads/mysql page has
downloads for many different operating environments, so scroll down
the page to find the download that’s right for your system. You might
not see a download dubbed “Essentials,” but you can certainly find a
download for your computer’s operating system.

3. Click the Download link.

Proceed with the download as you would with most other programs.
When the download is complete, you double-click the downloaded file
to begin execution of the installation program.

When the installation finishes, the program asks whether you want to
begin configuring MySQL.

4. Make sure that the Configure MySQL check box is selected. Then click
Finish.

The MySQL Server Instance Configuration Wizard appears.

5. Click Next over and over again to accept most of the defaults.

Notice the word most in this step. Strictly speaking, you can’t just keep
clicking Next and do nothing else. At one point in the configuring of
MySQL, you’re presented with the Modify Security Settings check box. (See
Figure 2-13.) If you leave this check box selected (which is the default),
you have to make up a username and password. You can’t click Next
until after you’ve typed these two things into their respective text fields.

Figure 2-13:
The Security

Settings
page of the

MySQL
Server

Instance
Configura-

tion Wizard.

37Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 37

On the other hand, if you deselect the Modify Security Settings option,
the wizard sets the username to root and leaves the password empty.
This is fine for a beginning Ruby on Rails user. So after you deselect
Modify Security Settings, you can once again click Next.

For a real-life application, your password should never be empty.

When you deselect the Modify Security Settings option, the wizard grays
out the username and password fields, making it look as if there’s no
username and no password. Yes, there’s no password, but the username
is root.

At one point, the MySQL Server Instance Configuration Wizard offers
you the option to Enable TCP/IP Networking. You should accept the
default (enabling TCP/IP networking with port number 3306). On another
of the wizard’s pages, you should accept the Install As Windows Service
default, with the Launch the MySQL Server Automatically check box
selected. (A Windows service is like any other Windows program except
that a Windows service runs constantly in the background, without muss
or fuss.) Change these settings only if you have experience installing a
database and you know how to deal with non-standard settings.

6. On the last page of the configuration wizard, click Execute.

In response, MySQL configures your new database.

7. Click Finish to execute the configuration wizard.

38 Part I: Nuts and Bolts

Database terminology
People toss around the word database as if it’s a
Frisbee or one my out-of-print books. But at this
early stage, when you’re first installing MySQL,
it helps to distinguish between terms like data-
base and database server. Here are the terms
you need to know, from the bottom upward:

A table is a collection of rows. For example, a
table named employeesmay have 50 rows —
a row for each employee in the company. A
table also has several columns (also called
fields). The employees table may have fields
called firstname, lastname, jobtitle,
salary, and so on.

A database is a collection of tables. For exam-
ple, the xyzcompany database may have
tables named employees, customers,
suppliers, and so on.

With only a database and nothing else on your
system, the database is useless. To read data
from the database and write data to it, you need
a special program called a database server.
These servers typically come from big compa-
nies, such as Microsoft, Oracle, and IBM. Of
course, some servers come from smaller, open
source organizations such as MySQL.

The kind of server you have determines the kind
of database that you use. That’s because each
server encodes and decodes data in its own way.
The ones and zeros in an Oracle database are
different from the ones and zeros in a Microsoft
database, even if the information stored in the two
databases (the employees’ names, job titles, and
salaries) is exactly the same. When Microsoft
SQL Server stores part of an employee’s name, it

06_081204 ch02.qxp 11/30/06 11:09 PM Page 38

39Chapter 2: Installing the Software

may store 01101010. But when IBM DB2 stores the
same name, it may store 10010001. That’s why,
when you refer to a database, you usually spec-
ify the database’s type — Microsoft SQL Server,
DB2, or in most of this book’s examples, MySQL.

So far you have a database — a bunch of infor-
mation sitting passively on your computer — and
a database server, which reads from and writes
to the database. What else? Well, a company’s
accounting application needs to get salaries from
the database, reduce each salary (except the
CEO’s) by 10 percent, and put the new updated
information back into the database. This account-
ing application is called a database client. To
interact with the database, this client software
sends requests to the server software. In turn,

the server fulfills the request (reads from the
database or writes to the database) and sends
results back to the client.

The whole business can take place on several
different computers (with the client on one com-
puter, the server on another, and the database
itself on a third). Or, the way you’re setting up
the software in this chapter, the whole affair
can take place on only one computer. Your com-
puter houses the database and runs both the
client and the server. Even so, the client must
send explicit requests to the server. Same
machine or not, the client and server are sepa-
rate programs, each with its own specific role.
(See the following figure.)

Client

MySQL Administrator

localhost:3306
DatabaseServer

There’s a tried and true way of sending requests
and other messages from one program to
another. It’s called TCP/IP (Transmission Control
Protocol/Internet Protocol). Besides connecting
your computer to the Internet, TCP/IP can also
connect your database client to your database
server. When you communicate by using TCP/IP,
you specify a bunch of things, including a host
name and a port number. For instance, when
you visit Google, your browser specifies the
host www.google.comwith port number 80.
It’s like tuning to channel 80 on your
www.google.com TV.

When you run both the MySQL server and a
client program on the same computer, the client
sends requests to host name localhost and
port number 3306. The word localhost
means “the same computer as the client,” but
the port number 3306 is somewhat arbitrary. You

can change this default number as long as you
change the setting in both the server and the
client’s dialog boxes. (Of course, you should
never reuse a number that’s already in use by
another program, like that magic number 80. If
you’re not sure about port numbers, you’re best
off sticking with the 3306 default.)

Finally, the term database administrator usually
refers to a person — a highly paid techie at a
large firm — who makes important decisions,
attends lots of meetings, and is surrounded by
swarms of underlings. But in this book, the term
MySQL Administrator refers to a program — a
special piece of client software. This MySQL
Administrator program provides a user-friendly
interface to the database server. You tell MySQL
Administrator to perform setup tasks and main-
tenance tasks. In turn, MySQL Administrator
sends requests to the database on your behalf.

06_081204 ch02.qxp 11/30/06 11:09 PM Page 39

Installing MySQL Administrator
Working within the Rails framework, you can do almost anything with a data-
base. You can add tables, drop tables, add rows, modify values, and do all
sorts of nice things. There’s just one thing you can’t do — create a database.
To create a new database, you need MySQL’s own administrative tools.

The easiest tool to use is named MySQL Administrator. Here’s how you get it:

1. Visit http://dev.mysql.com/downloads/administrator.

This is the main download page for the MySQL Administrator tool.

2. Click the download link for your particular operating system.

Windows users: Click the link labeled Windows. No surprise there.

3. Choose to save the download on your computer’s hard drive.

4. When the download is complete, run the downloaded file in order to
begin the installation.

5. Accept the license agreement, the defaults, and all that other stuff.

In response, the software installs MySQL Administrator on your computer.

Testing your MySQL installation
If you’ve followed the steps in the preceding two sections, you’re ready to
test MySQL. Here’s what you do:

1. Choose Start➪All Programs➪MySQL➪MySQL Administrator.

A preliminary dialog box opens. In the text fields, you tell the
Administrator program how to connect to your MySQL database.
(See Figure 2-14.)

Figure 2-14:
The MySQL

Admin-
istrator

preliminary
dialog box.

40 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 40

Once again, if you don’t do Windows, you have to modify Step 1. See this
book’s Web site for hints.

2. If you followed the steps in this chapter’s “Installing MySQL” section,
you can accept all the dialog box’s defaults. Simply click OK. (Again,
see Figure 2-14.)

The main MySQL Administrator window opens. (See Figure 2-15.) If you
get this far, your MySQL installation is a success.

If you don’t see the window in Figure 2-15 (if you get a message saying Could
not connect to the specified instance or some other frightening
thing), you have to troubleshoot your database connection. Fortunately, trou-
bleshooting the connection is the topic of the next section.

Troubleshooting your database connection
What do you do if you can’t connect to your database? (That is, what do you
do besides scream?) A number of things can keep you from connecting. This
section has some troubleshooting tips.

This section’s steps emphasize Microsoft Windows. If you’re a Linux or
Macintosh user, visit this book’s Web site.

Figure 2-15:
The main

MySQL
Adminis-

trator
window.

41Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 41

Is the database server running?
To find out whether the database server is running, do the following:

1. Choose Start➪All Programs➪MySQL➪MySQL Administrator.

The preliminary dialog box opens.

2. While holding down Ctrl, click Skip.

42 Part I: Nuts and Bolts

Advice for travelers
Several years ago, I was asked to give a talk on
database connectivity in Dublin, Ireland. Normally,
I’d get some funding from my employer and travel
on a very low budget. But this time, I decided to
bring along my family and some of my in-laws.
My family members booked hotel rooms in sev-
eral cities and planned for us to caravan from
city to city for a week before my presentation.

Wouldn’t you know it? When I arrived in Ireland,
I turned on my notebook computer and found that
I couldn’t connect to my database. While my
family members toured the city, I sat in the hotel
room trying to get the database software working.

The next day, we drove from Waterford to Galway.
I spent the day with my fist clenched nervously
on the car’s shift lever (which was on my left, not
my right). When we arrived in Galway, I unpacked
my computer and began working with the data-
base. Much later that night, my family members
(happy travelers that they were) returned to the
hotel room. “Any luck?” they asked. “Not yet,”
I said. “But I think I’m getting closer.”

On we marched, from day to day, from city to
city. Each day I got what I called “closer.” But
each day I failed to connect to the database.
The database was installed. The software for

getting data from the database was installed.
But the software couldn’t communicate with the
database. “Database connection failed,” it said.

The morning of the conference, I got out of bed,
thinking about nothing in particular. My mind
wandered, and I asked myself, “Are blank spaces
allowed in the database names?” I turned on my
computer to check it out. Sure enough, when I
removed the blank space, my database software
connected instantly. When I gave the talk at the
conference, everything went well.

You might think that the point of this story is “Don’t
try to connect to a database. It’ll just make you
miserable. Besides, you’ll spend a lot of money on
a vacation, and you’ll miss seeing any of Ireland.”
Well, that’s not the point of the story. The point is
“Don’t travel with your family and your in-laws.”

Or maybe the point of the story is “Don’t be dis-
couraged. Connecting to a database can be
tricky. Even more-experienced people run into
some stumbling blocks.” If you have trouble
connecting, don’t despair. Double-check the
instructions, ask a friend, check the online dis-
cussion groups, try a different computer, or
send me an e-mail. One way or another, you’ll
get things running.

06_081204 ch02.qxp 11/30/06 11:09 PM Page 42

Holding down Ctrl turns the Cancel button into a Skip button! (Never in a
million years would you discover this fact on your own. You have to
read about it somewhere.)

When you press Skip, MySQL Administrator opens in configure-service
mode. In configure-service mode, the Administrator program doesn’t ask
for settings (as it does in Step 1 of the “Testing your MySQL installation”
section). Instead, the Administrator program searches your computer
for any run of the MySQL server.

3. In the upper-left panel of MySQL Administrator, select Service Control.

After selecting Service Control, you should see a MySQL Service is
running message (like the message in Figure 2-16). Alternatively, you
might see the MySQL Service is stopped message (which is easily
fixed) or the No Service selected message (which isn’t great, but
also isn’t the worst thing in the world).

• If you see MySQL Service is stopped, you should also see a
Start Service button. Click the Start Service button, and then
things should be okay. Repeat the steps in the “Testing your
MySQL installation” section.

• If you see No Service selected, you didn’t successfully install
MySQL as a Windows service.

To fix the problem, choose Start➪All Programs➪MySQL➪MySQL
Server➪MySQL Server Instance Config Wizard. In response, MySQL
restarts the dialog box from Step 4 of the “Installing MySQL” section,
earlier in this chapter. Repeat the steps in that section (from Step 5
onward) and then repeat the steps in the “Testing your MySQL
installation” section.

Figure 2-16:
MySQL

Administrat
or confirms

that the
server is
running.

43Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 43

Are the server and the administrator
programs using the same settings?
Look again at Figure 2-14. The dialog box in Figure 2-14 tells the MySQL
Administrator client how to talk to the MySQL server. In that dialog box,
the item in each text field must match whatever value the server expects.
(The client can’t see the server if the client watches CNN while the server
sings on MTV.)

In Figure 2-14, the MySQL Administrator client is being told to use port 3306
on the localhost computer (on the same computer that’s running the MySQL
Administrator client program). To log onto the database, MySQL Administrator
tries username root with no password.

So to check for matching settings, you look at two things — the client set-
tings and the server settings. First, check the client settings:

1. Restart MySQL Administrator as you do in Step 1 of the “Testing your
MySQL installation” section.

There are at least two ways to launch MySQL Administrator. The way
you launch in this step isn’t the same way you launch in the next set of
steps!

2. In the preliminary dialog box, verify that the values are the same as
the values you see in Figure 2-14.

The values in Figure 2-14 are localhost, 3306, root, and no password.

3. If you see anything different, change it to localhost, 3306, root,
and no password. Then, click OK and see what happens.

If that doesn’t fix the problem, check the server settings:

1. Restart MySQL Administrator in configure-service mode, as you do in
Steps 1 and 2 of the section entitled “Is the database server running?”

The MySQL Administrator program starts immediately (without showing
you a preliminary settings screen).

2. In the left panel of MySQL Administrator, select Startup Variables.

After selecting Startup Variables, a bunch of tabs appear in the main
body of the MySQL Administrator window.

3. Select the General Parameters tab.

44 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 44

4. Make sure that Disable Networking is not selected and that the TCP
Port is 3306. (See Figure 2-17.) If either of these items is incorrect,
fix it.

You don’t have to check the host name (localhost) or the username
(root). So the only remaining item to check is the password. To be pre-
cise, you don’t actually check the password. Instead, you set the password
to its original default (to no password, that is).

To set the server’s password, rerun the MySQL configuration wizard.
Here’s how:

5. Choose Start➪All Programs➪MySQL➪MySQL Server➪MySQL Server
Instance Config Wizard.

In response, MySQL restarts the dialog box from Step 4 of the “Installing
MySQL” section.

6. Repeat the steps in the “Installing MySQL” section (from Step 5,
onward) making sure to deselect Modify Security Settings when that
check box appears.

That should fix the problem. Repeat the steps in the “Testing your MySQL
installation” section. I think you’ll be pleasantly surprised.

If all else fails, I suggest uninstalling MySQL, deleting the directory that once
contained MySQL, and then reinstalling MySQL. Remember, installing soft-
ware is fun. (Okay, it’s not always fun. But sometimes, it’s necessary.)

Figure 2-17:
Checking

the MySQL
server

settings.

45Chapter 2: Installing the Software

06_081204 ch02.qxp 11/30/06 11:09 PM Page 45

46 Part I: Nuts and Bolts

06_081204 ch02.qxp 11/30/06 11:09 PM Page 46

Chapter 3

Details on Rails
In This Chapter
� Creating a new database

� Creating a Web interface to a database

� Using the Web interface to create, list, and modify database entries

June 21, 2006, 12:06 p.m. EST — Ruby on Rails For Dummies —
Author’s note to self: Every technical book begins with a quick-start

chapter — a chapter that quickly guides the reader through a simple but power-
ful example. The chapter’s purpose is to show the reader how, with little effort,
a person can easily create an interesting, useful application. Why not do some-
thing different in Ruby on Rails For Dummies? Consider not including a quick-
start chapter. Instead, dive right into the detailed material in Chapter 3.

June 21, 2006, 12:33 p.m. EST — Ruby on Rails For Dummies — Author’s
note to self: Made a brief effort to avoid having a quick-start chapter and to
dive right into the details. It was painful to write and would have been impossi-
ble to comprehend. I’m returning to Plan A. Chapter 3 will be a quick-start chap-
ter. Chapter 3 will show the reader how, with little effort, a person can easily
create an interesting, useful Ruby on Rails application.

To be perfectly frank, I feel guilty writing this chapter. It’s not that I don’t like
quick-start chapters. I love quick-start chapters. For many books, the quick
start is the only part that I read. (This applies mostly to technical books, but
in some cases it applies to general non-fiction, fiction, books about politics
for which I already have an opinion, owner’s manuals, mortgage contracts,
students’ term papers, and on occasion, a single sentence that someone says
to me.)

The problem with this quick-start chapter is that Ruby on Rails makes a quick
start too easy. There’s no sport in writing a quick-start example. With a little
practice, you can put up a Web interface to a database in just a few minutes.
What could be quicker than that?

07_081204 ch03.qxp 11/30/06 11:09 PM Page 47

Creating a Database
In this section, you create an employee database using MySQL Administrator.
(For info about installing MySQL Administrator, see Chapter 2.)

1. Choose Start➪All Programs➪MySQL➪MySQL Administrator.

The MySQL Administrator program displays its preliminary dialog box.
(See Figure 3-1.)

2. In the preliminary dialog box, click OK to accept the defaults.

As in Figure 3-1, the defaults are localhost for the server host, 3306
for the port, and root as the username. The Password field is empty.

After you click OK, the main MySQL Administrator window opens. The
window is divided into two panes — a narrow pane on the left and a
wider pane to the right. The pane on the left contains a list. The wider
pane contains information about the MySQL server.

3. In the list pane (on the left) click Catalogs.

A list of catalogs appears. At first, this list includes only two catalogs —
mysql and test. (See Figure 3-2.)

MySQL Administrator displays the words database, catalog, and schema.
What’s the difference? At this point in the process, there’s no difference
at all. A schema is the structure underlying a particular database. But
who cares? When you click Catalogs, you see a list of databases. And the
title of the list of databases is “Schemata.” No, the word schemata isn’t
the name of some strange curse from a cheap horror movie. Schemata is
the plural of schema. So if you want to sound cool, you say schemata, not
schemas. I don’t want to sound cool, so I say database.

Figure 3-1:
The

preliminary
MySQL
Admin-
istrator

dialog box.

48 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 48

4. Right-click anywhere inside the list of catalogs (databases). Then, in
the resulting contextual menu, select Create New Schema.

In response to your selection, the Create New Schema dialog box
appears. (See Figure 3-3.)

5. In the Schema Name field, type company_development. Then click OK.

In the list of catalogs, a brand-new company_development entry
appears. (See Figure 3-4.)

This step creates a database named company_development. The
company part describes the information that you intend to store in
the database. The development part indicates that this is a sample
database to use while you develop a new application.

Figure 3-3:
The Create

New
Schema

dialog box.

Figure 3-2:
The main

MySQL
Admin-
istrator

window.

49Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 49

The alternatives to development are test and production. You use a
company_test database to test the code after you’ve developed it.
Eventually, you use the company_production database to process the
company’s real-life data.

Put an underscore (_) between the words company and development.

6. Close MySQL Administrator. (Choose File➪Close.)

You can leave MySQL Administrator open if you want, but you won’t use
it for the remainder of this chapter.

Creating a New Ruby on Rails Project
RadRails is an integrated development environment for Ruby on Rails. (See
Chapter 2.) Like most other integrated development environments, RadRails
separates your code into projects. A typical project contains all the code
related to one application. (That explains the word project clearly. Now what
does one application mean?)

In this chapter, you create a project named company — a project whose code
processes information about a particular company. In another project, you
might house a much simpler application. For example, you might store the
code and images required to run a simple computer game. One way or another,
each project tends to be a complete, self-contained entity. (Of course, in this
complex computing world, nothing is ever really self-contained. So please take
my description of the word project with a grain of salt.)

1. Double-click the RadRails shortcut icon on your desktop to launch
RadRails.

The RadRails workbench appears on-screen.

If you haven’t yet created a desktop shortcut for RadRails or (Heaven
forbid) you haven’t yet installed the RadRails software, flip back to
Chapter 2.

Figure 3-4:
Look! A

company_
development

database!

50 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 50

The RadRails workbench is divided into four parts. The leftmost part
displays the Rails Navigator view. You recognize the Rails Navigator view
by the label on the tab near the top of Figure 3-5.

2. Right-click inside the Rails Navigator view. In the resulting contextual
menu, choose New➪Project.

The New Project dialog box appears. (See Figure 3-6.)

Figure 3-6:
The New

Project
dialog box.

Figure 3-5:
The

RadRails
workbench.

51Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 51

3. In the New Project dialog box, select Rails Project from the navigation
tree and then click Next.

In response, the New Rails Project dialog box appears. (See Figure 3-7.)

Under certain circumstances, you can compress Steps 2 and 3 into one
step. The contextual menu in Step 2 might have a New➪Rails Project
option. If so, you can select the Rails Project option and then skip Step 3.

4. In the Project Name field of the New Rails Project dialog box, type
company.

The name of the project matches part of the database name. In a project
named company, Rails automatically creates references to three data-
base names: company_development (which you create in the previous
section), company_test, and company_production.

5. Still in the New Rails Project dialog box, make sure that the Use
Default Location, Generate Rails Application Skeleton, and Create a
WEBrick Server check boxes are all selected. Also, make sure that the
Disable Table Pluralization check box is deselected.

You can do some fancy things with all these check boxes. But in this
book, I avoid fancy things. I try to keep it simple.

6. Click Finish.

Figure 3-7:
The New

Rails Project
dialog box.

52 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 52

The New Rails Project dialog box disappears. A new branch, labeled
company, appears in the Rails Navigator view. And a new item (labeled
companyServer) appears in the Servers view. (See Figure 3-8.)

At this point, servers abound. You have the database server described in
Chapter 2. In addition, you have a Web server (named companySerthat
shows up in Figure 3-8. For more information about these servers, see
Chapter 11.

Running Your New Rails
Project (Already!)

In the preceding section, you create a bare-bones Rails project. Bare as its
bones may be, the project has enough equipment for you to start testing your
work.

Rails Navigator view Servers view

Figure 3-8:
RadRails

has a
company

project
and a

company-
Server.

53Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 53

In a few steps, you check to make sure that the new companyServer runs
properly.

1. Select the companyServer row in the RadRails Servers view.

For help finding the Servers view, refer to Figure 3-8.

2. Click the Launch Browser icon in the Servers view’s toolbar.

The Launch Browser icon looks like a tiny globe. (See Figure 3-9.)

In response to your click, RadRails displays a message: . . . your
server is currently stopped. Do you want to start the
server?

3. Click Yes.

A this point, you might see a standard Windows Security Alert asking
whether you really, really, reeeeeeally want to let the Ruby interpreter
have access to your innocent little Web server.

4. In the Windows Security Alert dialog box, click Unblock.

The server starts, and RadRails displays a small Web browser. The page
in the Web browser starts with Welcome aboard . . . You’re
riding the Rails! (See Figure 3-10.)

Working busily behind this Welcome page lies more code than you might
think. Your computer is running a Web server (the companyServer),
and the server is feeding the new Welcome page to the Web browser.
Using Rails, you make all this stuff happen by clicking your mouse and
typing a few words. Not bad!

Figure 3-9:
Launching

a Web
browser.

54 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 54

Creating a Model
To deal with your company_development database, Rails uses a model.
Think of a model as a piece of code — a Ruby program whose structure
mirrors the structure of a database table.

Rails is based on the celebrated Model/View/Controller (MVC) framework.
For details about MVC, see Chapter 8.

You might think that creating a model means writing a bunch of Ruby code.
But you don’t have to write any code. Rails makes the creation of model code
a cinch. Here’s how:

1. In the Rails Navigator view, select the company project branch.

See Figure 3-11.

Figure 3-10:
Your new

application’s
Welcome

page.

55Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 55

2. Near the bottom of the RadRails workbench, select the Generators
tab. (You find the Generators tab in the same part of the RadRails
workbench as the Servers tab.)

Your selection brings the Generators view to the foreground. (See
Figure 3-12.) With this view, you tell Rails to generate things (models,
for example).

3. In the Generators view’s drop-down list, select Model.

4. In the radio button group, select Create.

5. In the text field, type Employee.

With Steps 3–5, you prepare to create a model for a table named
employees. Sure, you haven’t even created an employees table yet.
But the lack of a database table doesn’t bother Rails.

The Generators view has some other options (labeled Pretend, Force,
Skip, and so on). You can leave these things deselected.

Before proceeding to Step 6, look at the Rails Navigator view. Make sure
that you haven’t accidentally changed the selection you made in Step 1
(selecting the company project branch). I admit, if you have only one
project, you’re not likely to be selecting the wrong branch. But when
you become proficient and have several projects, it’s easy to select the
wrong branch. (I ought to know. I selected the wrong project when I first
prepared these instructions!) So don’t wait until you have 20 or 30 pro-
jects. Start developing the habit of double-checking your Rails Navigator
selection.

Figure 3-12:
The

Generators
view.

Figure 3-11:
Selecting a

project in
the Rails

Navigator
view.

56 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 56

6. In the Generators view, click Go.

After you click Go, the Generators view gets covered up by another
view — the Console view. Within this Console view, you see Rails doing
its thing. As shown in Figure 3-13, Rails creates an employee.rb file, an
employee_test.rb file, and so on. These are Ruby program files.

In fact, if you poke around inside the Rails Navigator tree, you find new
branches for the newly created files.

7. Expand the company branch. Within the company branch, expand
the app branch. Finally, within the app branch, expand the models
branch.

Inside the models branch, you see an employee.rb branch. This
branch represents the newly created employee.rb Ruby code file.

8. Double-click the employee.rb branch.

An editor appears. (See Figure 3-14.) The editor displays the Ruby code
in the employee.rb file.

The code in Figure 3-14 is very brief. The code has only two lines with
nothing very specific to companies or employees. What an anticlimactic
end to the creation of this important thing called a model! But don’t be

Figure 3-14:
The

employee.rb
model file.

Figure 3-13:
The Console
view shows

the progress
as Rails

generates a
model.

57Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 57

fooled. This simple code contains a lot of good stuff, by virtue of its
relationship to ActiveRecord::Base. But that story must wait until
Chapter 9.

Creating a Database Table
In the preceding section, you create an Employee model — a Ruby program
whose structure mirrors the structure of a database table. But remember —
at this point in your work, your database has no table! You’ve created a data-
base, but you haven’t yet created a database table. There’s no structure for
the model to mirror.

You must add a table to your database. When you do, the table’s columns
(employee name, employee salary, and so on) are the table’s structure.

To create a table, Rails provides a migration mechanism. A migration is a
Ruby program that creates tables, adds columns to tables, and does other
nice things to databases. Here’s how it works:

1. In the Rails Navigator view, expand the company branch. Within the
company branch, expand the db branch. Finally, within the db branch,
expand the migrate branch.

Inside the migrate branch, you see a 001_create_employees.rb
branch. This branch represents the new 001_create_employees.rb
Ruby code file.

2. Double-click the 001_create_employees.rb branch.

An editor appears. (See Figure 3-15.) The editor displays the Ruby code
in the 001_create_employees.rb file.

Figure 3-15:
The

migration
file.

58 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 58

3. Add lines to the 001_create_employees.rb file.

Add the t.column lines as follows.

class CreateEmployees < ActiveRecord::Migration
def self.up
create_table :employees do |t|
t.column :name, :string
t.column :name, :string
t.column :hiredate, :date
t.column :salary, :float
t.column :fulltime, :boolean
t.column :vacationdays, :integer
t.column :comments, :text

end
end

def self.down
drop_table :employees

end
end

If you don’t enjoy typing, you can omit some of the new t.column lines.
After all, if your practice database doesn’t have a vacationdays column,
no one cares.

Check the lines that you type before proceeding to the next step. Check
spelling, capitalization, and punctuation. Look for :string instead of
:String. Look for t.column :name, :string instead of t.column,
:name :string.

4. When you’re done checking your typing, choose File➪Save.

Your changes to the migration file are now safe and sound.

5. In the lower-right pane of the RadRails workbench, select the Rake
Tasks tab.

The Rake Tasks view appears. (See Figure 3-16.)

6. In the Rake Tasks view’s drop-down list, select db:migrate. (See
Figure 3-16.)

Figure 3-16:
The Rake

Tasks view.

59Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 59

In the Rake Task view, make sure that the text field to the right of the
drop-down list is empty. Don’t worry about any text (or the lack of text)
in the big text area below the text field.

7. In the Rake Tasks view, click Go.

In response, Ruby on Rails creates an employees table. Rails guesses
the table name employees from your model name Employee. (Rails is
good at guessing names. From a model named Person, Rails would
create a table named people!)

To confirm the table’s creation, the RadRails Console view displays
some migrating and migrated messages. (See Figure 3-17.) If you
want more confirmation, you can launch MySQL Administrator and
examine the newly created table.

60 Part I: Nuts and Bolts

What kinds of columns are you creating?
The migration code in Step 3 tells Rails to
create a database table. The table contains six
columns. Each column has a name and a type.
The name identifies the column, and the type
describes the kind of value that may be stored
in that column’s entries.

In the code of Step 3, the column names are
name, hiredate, salary, fulltime,
vacationdays, and comments. Never
mind that the first column’s name is name. If I
had planned ahead, I would have called this
column familyname, or something like that.
But unfortunately, I didn’t plan ahead.

In the code of Step 3, the types of values stored
in the columns’ entries are string, date,
float, boolean, integer, and text. The
word string stands for a short string of char-
acters. The word date stands for a calendar
date. The word float stands for a number
with some digits to the right of the decimal point
(a number like 23999.95). The word boolean
stands for either true or false. (True, this
employee is full time; or false, this employee
isn’t full time.) The word integer stands for

a number with no digits to the right of the deci-
mal point (a number like 60). Finally, the word
text stands for a potentially long string of
characters.

If you think about it, the choices for column
types make sense. An employee’s name isn’t
likely to be more than 30 characters long. A
salary might have cents (digits to the right of the
decimal point). Even a salary like 25000.00 has
digits to the right of the decimal point, although
both of the digits are zeros. A number of vaca-
tion days is normally a whole number. (An
employee with 15.27 vacation days is rare, just
as an employee with 2.5 children tends not to
want anyone to know about it.) And a comment
might be a large number of characters, espe-
cially for some employees that I’ve met.

If you’re a fan of databases, you know that each
kind of database supports certain types of
values. In MySQL, a Rails string is of type
VARCHAR(255). A Rails boolean is of type
TINYINT(1). The other Rails types in the
code of Step 3 have the same names as their
corresponding MySQL types.

07_081204 ch03.qxp 11/30/06 11:09 PM Page 60

In Step 7, you run the migration code, but you don’t run the code directly.
Instead, you invoke something called Rake, which calls the migration code on
your behalf. To discover more about Rake, visit http://rubyforge.org/
projects/rake.

Creating a Scaffold
In common English, the word scaffold has two meanings. A scaffold can be a
temporary structure for supporting builders while they work. A scaffold can
also be a platform with a noose — a place for hanging criminals.

In Rails, the word scaffold stands for a temporary Web page. The page pro-
vides simple connectivity to the database, helping you to develop your appli-
cation. (With a Rails scaffold, you may execute some commands, but you
don’t execute any criminals.) Think of the scaffold as a quick prototype —
a proof-of-concept for your Web interface. Or, if you’re like many developers,
you can use the scaffold as a basis for your application. You start with the
scaffold, add more functionality, customize the menus, pretty it up a bit, and
Presto! You have a complete Web application.

In this section, you create a scaffold for the company project. You repeat the
steps from this chapter’s “Creating a Model” section. But this time, you build
a scaffold instead of a model:

1. In the Rails Navigator view, select the company project branch.

2. Near the bottom of the RadRails workbench, select the Generators tab.

Your selection brings the Generators view to the foreground. In the next
few steps, you set up the parameters in the Generators view. You can
follow along in Figure 3-18.

Figure 3-17:
Confir-

mation that
RadRails

performed a
migration.

61Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 61

3. In the Generators view’s drop-down list, select Scaffold.

4. In the radio button group, select Create.

5. In the text field, type Employee.

The Generators view has some other options (labeled Pretend, Force,
Skip, and so on). You can leave these things deselected.

With Steps 3–5, you’re preparing to create a scaffold for your Employee
model.

Before proceeding to Step 6, look back at the Rails Navigator view. Make
sure that you haven’t accidentally changed the selection you made in
Step 1 (selecting the company project branch).

6. In the Generators view, click Go.

In the Console view, RadRails shows the progress of the scaffold cre-
ation. (See Figure 3-19.) When the creation is complete, you can view the
scaffold’s code.

In this chapter’s “Creating a Model” section, I mention that Rails uses a Model/
View/Controller framework. When Rails creates a scaffold, much of the scaf-
fold’s code is inside the Controller part of the framework. So to see some of
the scaffold’s code, you can look at a controller file. Here’s how:

Figure 3-19:
The terminal

shows the
progress as

Rails
generates a

scaffold.

Figure 3-18:
Creating a

scaffold.

62 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 62

1. Expand the company branch in the Rails Navigator view. Within the
company branch, expand the app branch. Finally, within the app
branch, expand the controllers branch.

Inside the controllers branch, you see an employees_controller.
rb branch. This branch represents the newly created employees_
controller.rb Ruby code file.

2. Double-click the employees_controller.rb branch.

The code defines what it means to list employees, to show one
employee, to add a new employee, and so on. (See Figure 3-20.) This
employees_controller.rb file works in conjunction with other files
(also created as part of the scaffold) to present a Web interface to the
database.

Using the New Web Interface
Every story has a climax; every joke has a punch line. This section is the
climax to the story you’ve been developing throughout this chapter. With
some pointing, clicking, and a minimal amount of typing, you’ve built a
modest (but complete) application. The application includes a database and
a Web interface to the database. Here’s how to test your application:

1. Repeat the steps in the section entitled “Running Your New Rails
Project (Already!).”

RadRails displays a small Web browser. The page in the Web browser
starts with Welcome aboard . . . You’re riding the Rails!
(Refer to Figure 3-10.) In the browser’s address field, you see http://
localhost:3000/ (or something similar).

Figure 3-20:
The

controller
file contains

scaffold
code.

63Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 63

2. To the text in the browser’s address field, add employees/new and
then press Enter.

The text in the address field should be http://localhost:3000/
employees/new.

In the browser window, you see a shiny, new, custom Web page for
adding an employee to the database. (See Figure 3-21.) Rails creates
this page according to your specifications.

The RadRails Web browser is a component borrowed from Microsoft
Internet Explorer. And Internet Explorer doesn’t allow you to abbreviate
http://localhost:3000 by writing localhost:3000. You get an
error page if you omit the http:// prefix.

3. Fill in the fields on the New Employee page. (Again, refer to Figure 3-21.)

4. Click Create at the bottom of the New Employee page.

In the browser window, a Listing Employees page appears. (See Figure
3-22.) The Listing Employees page has only one employee (the employee
that you create in Step 3). But you can add more employees.

Figure 3-21:
The New

Employee
page.

64 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 64

5. Click the Web page’s New Employee link.

In response, the browser redisplays the New Employee page.

6. Fill in the fields on the New Employee page (this time, for a different
employee).

7. Click Create at the bottom of the New Employee page.

The Listing Employees page reappears. This time, the page lists two
employees. (See Figure 3-23.)

Notice the Show, Edit, and Destroy links to the right of each employee’s
information.

8. Click the Show link for one of the employees.

After clicking Show, you see a page like the one in Figure 3-24. The body
of the page has information about the company’s favorite employee, and
the bottom of the page has links for editing and for returning to the list
of all employees.

Figure 3-23:
The Listing
Employees
page with

two
employees.

New Employee link

Figure 3-22:
The Listing
Employees

page.

65Chapter 3: Details on Rails

07_081204 ch03.qxp 11/30/06 11:09 PM Page 65

9. Experiment further with the Show, Edit, and Destroy links.

Using these links, you can perform the four basic database operations —
Create, Read, Update, and Destroy. So common are these operations that
they have their own acronym. They’re called the CRUD operations. (I
suppose that calling them CRUD operations is better than calling them
the SCUM operations. Would that be Search, Create, Update, and
Modify? Or how about calling them the DIRT operations? That’s Delete,
Interrogate, Read, and Tally. Anyway, if you talk about databases, you’re
stuck with the term CRUD.)

The goal of this chapter was to create and test a scaffold — a simple proto-
type for what may become a complex Web interface.

But maybe this chapter’s prototype isn’t so simple. The prototype solves all
kinds of problems that you face when you create Web pages, and the scaffold
pages do some very useful tasks. The scaffold pages list items, create items,
edit items, and so on. That’s what online shopping carts do. It’s also what
online guest books and discussion forums do. It’s what millions of Web sites
do every day.

Figure 3-24:
The Show

page for one
employee.

66 Part I: Nuts and Bolts

07_081204 ch03.qxp 11/30/06 11:09 PM Page 66

Chapter 4

Using RadRails
In This Chapter
� Navigating the RadRails workbench

� Performing common tasks

� Heading off trouble (if trouble occurs)

RadRails is an integrated development environment (IDE) for Ruby on
Rails. In the name RadRails, the Rad stands for “Rapid application devel-

opment” (and, of course, Rails stands for “Rails”). RadRails is based on the
Eclipse platform — an open source effort that forms the basis for many IDEs.

Words, Words, Words
In many of this book’s examples, I ask you to do this-or-that by using RadRails.
So to make things easy for you (well, for me, actually), I start by establishing
some RadRails terminology. Some of this terminology is familiar stuff for you.
Some other terminology might be new.

� Workbench: The RadRails desktop. (See Figure 4-1.) The workbench is
the environment in which you develop code.

� Area: A section of the workbench. The workbench in Figure 4-1 has four
areas. (See Figure 4-2.)

� View: A part of the workbench that displays information for you to
browse and modify. A view can fill up an area in the workbench. For
instance, in Figure 4-1, the Outline view fills up the rightmost area.
Also in Figure 4-1, the six different views share the bottommost area.
(The Servers, Generators, Console, RI, Rails Plugins, and RegExp views
share the bottommost area.)

08_081204 ch04.qxp 11/30/06 11:10 PM Page 67

68 Part I: Nuts and Bolts

Many views display information as lists or trees. For example, in Figure 4-1,
the Rails Navigator and Outline views contain trees, whereas the Servers
view contains a list.

You can use a view to make changes to things. For instance, to delete a file
named useless_code.rb, find the useless_code.rb file in the Rails
Navigator view. (The Rails Navigator view lives along the left side of the
RadRails workbench. See Figure 4-1.) Right-click the useless_code.rb
branch. Then, in the resulting contextual menu, choose Delete.

� Editor: Another part of the workbench (besides a view) that displays
information for you to modify. The workbench in Figure 4-1 has two
editors. The editors’ names are employees_controller.rb and
application.rb. All editors share the same area — called the editor
area, of course — but reside on distinct tabs that you then bring to the
fore with a single mouse click.

A typical editor displays the lines of text in a file (the way a word proces-
sor displays the lines of text in a document). But some editors surprise
you and display information in a more elaborate format.

Like other authors, I occasionally become lazy and use the word view when
I really mean view or editor. When you catch me doing this, just shake your
head and move onward. When I’m being very careful, I use the official ter-
minology. I refer to views and editors as parts of the workbench. Unfortu-
nately, this parts terminology doesn’t stick in people’s minds very well.

Figure 4-1:
The RadRails

workbench
often looks

like this (but
not always).

08_081204 ch04.qxp 11/30/06 11:10 PM Page 68

What’s inside a view or an editor?
The next several terms deal with individual views, editors, and areas.

� Toolbar: The bar of buttons (and other little things) at the top of a view.
See Figure 4-3.

� Menu button: A downward-pointing triangle in the toolbar. When you click
the menu button, a drop-down list of actions appears. (See Figure 4-4.)
The list of actions varies from one view to another.

� Close button: A button that gets rid of a particular view or editor. See
the big, hollow X icons to the right of the words Rails Navigator and
employees_controller.rb in Figure 4-4.

Figure 4-3:
The Collapse
All button in

the Rails
Navigator

view’s
toolbar.

Figure 4-2:
The work-

bench
is divided

into areas.

69Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 69

� Chevron: A double arrow indicating that other tabs should appear in a
particular area (but that the area isn’t wide enough). The chevron in
Figure 4-5 has a little number 3 beside it. The 3 tells you that, in addition
to the two visible tabs, three other tabs are invisible. Clicking the chevron
brings up a menu containing the labels of all five tabs.

� Marker: Tiny icons along the left edge of the editor area.

In Figure 4-6, a marker to the left of puts “Hello looks like a circle with
an X inside it. The marker indicates that the line puts “Hello contains
a Ruby syntax error. That is, the line puts “Hello isn’t a grammatically
correct Ruby statement.

Figure 4-6:
A marker

accom-
panies

unmatched
quotation

marks.

Figure 4-5:
Clicking the

chevron
reveals the
labels of all
the editors’

tabs.

Figure 4-4:
Clicking a

view’s menu
button.

70 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 70

Understanding the big picture
The next two terms deal with the overall look and feel of RadRails:

� Layout: An arrangement of certain views (along with the editor area)
on the workbench. The layout back in Figure 4-1 has nine views —
two in the left area, one in the right area, and six in the bottom area.
But additional views are available. (See the section entitled “Showing
a view.”)

� Perspective: A handy way of referring to a very useful layout. If a partic-
ular layout is really useful, someone gives that layout a name. And if a
layout has a name, you can use the layout whenever you want.

For instance, the workbench of Figure 4-1 displays the Rails perspective.
The Rails perspective is useful for creating and editing Rails projects. By
default, the Rails perspective contains nine views, with the arrangement
shown in Figure 4-1.

Along with all these views, the Rails perspective contains an editor area.
(Sure, the editor area has several tabs, but the number of tabs has noth-
ing to do with the Rails perspective.)

To find out about another perspective — the Ruby perspective — see
this chapter’s “Changing the perspective” section.

To all this user interface vocabulary, add two more terms:

� Workspace: A directory in which RadRails stores your work. You can
choose one directory or another each time you launch RadRails.
(For details, see Chapter 2.)

� Project: One application comprising a collection of files and folders.
The Rails Navigator view back in Figure 4-1 lists two projects: company
and sample. As the view shows, each project contains several folders
and files.

Don’t confuse the workbench with a workspace. The workbench is a
bunch of panels in the RadRails window. A workspace is a group of
projects. In addition, RadRails stores startup information as part of a
workspace. So if you choose File➪Switch Workspace and then type
a new folder name in the Workspace Launcher dialog box, RadRails
restarts with no projects and with all of its default settings, as if you’re
running RadRails for the first time.

71Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 71

Some Common RadRails Tasks
The preceding sections tell you the names of all the doohickeys and thingam-
abobs on the RadRails workbench. The rest of this chapter tells you what you
can do with all those doohickeys and thingamabobs.

Changing the perspective
Figure 4-7 shows the upper-left corner of the RadRails workbench. The Rails
icon is part of the perspective bar. The Rails icon’s inlaid look indicates that
the workbench is currently in the Rails perspective. To change to another
perspective, do the following:

1. Click the Open Perspective button, as shown in Figure 4-7.

2. In the resulting pop-up menu, look for the name of the perspective
that you want to activate.

In Figure 4-7, the only easily accessible alternative to the Rails perspective
is the Data perspective. But what if the perspective you want to activate
is the Ruby perspective?

3. If you don’t find the perspective you want, click Other.

The Select Perspective dialog box appears. (See Figure 4-8.)

4. Select Ruby. Then click OK.

The Ruby perspective (shown in Figure 4-9) opens before your eyes. The
Ruby perspective is useful for developing and testing plain old Ruby pro-
grams (code that’s not necessarily associated with Rails). By default, the
Ruby perspective has the eight views shown in Figure 4-9, along with an
editor area for Ruby code.

Figure 4-7:
Clicking

the Open
Perspective

button.

72 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 72

Figure 4-9:
The Ruby

perspective.

Figure 4-8:
The Select

Perspective
dialog box.

73Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 73

Showing a view
Each view has its own Close button, and occasionally you might press the
Close button by accident. You can follow these steps to reopen a view or to
open a previously unopened view:

1. Choose Window➪Show View, as shown in Figure 4-10.

2. In the resulting submenu, look for the name of the view that you want
to open.

In Figure 4-10, the views named in the submenu include the Console, the
Rails Navigator, and so on. You can show a view by choosing one of
these alternatives. But what if you want to show a view that isn’t listed
in the submenu?

3. If you don’t find the view you want to open, click Other.

The Show View dialog box appears. (See Figure 4-11.)

4. In the Show View dialog box, navigate to the view that you want to open.

To find the view that you want to open, you might have to expand a
branch in the Show View dialog box’s tree. In Figure 4-11, I went for the
Shell view (one of two views in the Wicked Shell category).

Wicked Shell isn’t available in the standard version of RadRails (the ver-
sion that you download from www.radrails.org). You can try adding
the Wicked Shell plug-in to a standard download of RadRails. But over
time, Eclipse becomes available in different releases (releases 3.1.2, 3.2,
and so on). Changes between releases can make the installing of Wicked
Shell a bit tricky. So, for a surefire way of getting RadRails with Wicked
Shell, download the customized version of RadRails from this book’s
Web site.

Figure 4-10:
A choice
of views.

74 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 74

Only the Windows version of my customized RadRails download has
the Wicked Shell plug-in. The Linux and Macintosh versions don’t
include Wicked Shell. Even so, a Linux or Macintosh user can follow
this section’s steps to open any available RadRails view.

5. Click OK.

The selected view appears in the RadRails workbench. Figure 4-12 shows
the Shell view.

Figure 4-12:
The Shell

view.

Figure 4-11:
The Show

View dialog
box.

75Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 75

Using a wizard to create something
Chapter 3 describes a quick way to create a certain kind of project (a Rails
project). This section describes a more general way to create things.

1. Select a project in the Rails Navigator or Ruby Resources view.

Whatever you create will be inside this project. (Of course, if the thing
you want to create is a brand-new project of some kind, skip this step!)

2. In the RadRails main menu, choose File➪New.

A Select a Wizard dialog box appears. (See Figure 4-13.) The dialog box
offers several choices (several kinds of things that you can create).

3. Select one of the items in the dialog box and then click Next or Finish.

In Chapter 3, I choose Rails Project. But in Step 2, I choose Ruby Class.
The Finish button in Figure 4-13 is grayed out, so I can’t click Finish.
Instead, I click Next. In response, RadRails displays a New Ruby Class
dialog box. (See Figure 4-14.)

Figure 4-13:
Pick your

poison.

76 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 76

4. Fill in any required fields (and select any other required items) in the
dialog box.

In Figure 4-14, I accept the defaults. In particular, I leave MyNewClass in
the Class name field.

I also leave /first_ruby in the Container field. (In this case, the word
Container is a fancy name for directory or folder. When it’s created, my
new Ruby class will live in a folder named first_ruby, and will be part
of a project named first_ruby.)

5. Click Next to move to the next wizard page. Alternatively, click Finish.

In Figure 4-14, the Next button is grayed out. So instead of clicking Next,
I click Finish. When I click Finish, the wizard disappears. In the Ruby
Resources view, I see the new Ruby file’s name (my_new_class.rb).
And in the editor area, I see some skeletal Ruby code. (See Figure 4-15.)

Figure 4-15:
RadRails

creates a
Ruby file.

Figure 4-14:
The New

Ruby Class
dialog box.

77Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 77

Using the Generators view
to create something
In Chapter 3, you use the New Rails project wizard to create a project. But in
the same chapter, you use the Generators view to create a model. One task
uses a wizard, and the other task uses a view. There are reasons why you
create one thing with a wizard and another thing with a view, but in the end,
the reasons aren’t air-tight. That’s just the way RadRails works.

The preceding section describes the way you use a wizard to make some-
thing new (a new project or a new file, for example). This section describes
the way you use the Generators view to make something new:

1. Open the Rails perspective.

For details, see this chapter’s “Changing the perspective” section.

78 Part I: Nuts and Bolts

Using the Shell view
Eclipse is a very versatile platform with many
avenues for customization and enhancement.
And because RadRails is an offshoot of Eclipse,
a developer can add new views, new features,
and make all kinds of useful contributions.

Stefan Reichert created the Wicked Shell plug-in
for Eclipse. He also helped me install Wicked Shell
on RadRails. This plug-in gives you easy access
to the computer’s command window. Using
Wicked Shell, you can quickly perform some
system tasks without leaving the RadRails envi-
ronment. (Refer to Figure 4-12.) Wicked Shell also
gives you alternative ways of performing some
Rails-related tasks. For example, in Chapter 3, you

create a database by using MySQL Administrator
and create a table by using Rails migration. If you
prefer the good old command line over these
fancy tools, you can accomplish the same tasks
in Wicked Shell, as I show in the figure below.

Using Wicked Shell (or your system’s command
window) means remembering instructions to
type. But for tasks that you perform frequently,
remembering and typing instructions can be
easier than opening windows and clicking but-
tons. And if you already know the SQL query
language, the shell can save you from some
laborious pointing and clicking. You can use the
GUI tools or the shell. It’s your choice.

08_081204 ch04.qxp 11/30/06 11:10 PM Page 78

2. In the Rails Navigator view, select a project branch.

In Figure 4-16, I select the branch for a project named sample.

3. Near the bottom of the RadRails workbench, select the Generators tab.

4. Make the appropriate choices in the Generators view.

In Figure 4-17, I make choices as follows:

• In the drop-down list, I select the Controller option.

• Among the radio buttons, I select the Create option.

• In the text field, I type TheBoss (the name of this particular
controller).

• I leave the check boxes deselected.

5. In the Generators view, click Go.

RadRails generates the new model, the new scaffold, the new controller,
or whatever else you asked RadRails to generate.

Figure 4-17:
Generating

a controller.

Figure 4-16:
Selecting a

project in
the Rails

Navigator
view.

79Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 79

Editing an existing file
When you work with Ruby (or with any programming language, for that matter),
you have to write and edit instructions in files. This section tells you how to
do that.

1. Navigate to a file’s branch in one of the workbench’s views.

In this chapter’s “Using a wizard to create something” section, you
create a file named my_new_class.rb in a Ruby project named
first_ruby. (Refer to Figure 4-15.)

So in Figure 4-18, with RadRails in the Ruby perspective, I navigate
to the first_ruby\my_new_class.rb file’s branch in the Ruby
Resources view.

Notice how I can use a backslash to refer to a branch in a view’s tree. I
can extend this notation to several levels. For example, to refer to the
employee.rb file in Figure 4-19, I write company\app\models\
employee.rb.

2. Double-click the branch.

The file’s content appears in the editor window.

3. Type any changes that you want to make to the file’s content.

In Figure 4-20, I type puts “Hello” after the word end.

4. Save the changes by choosing File➪Save.

Figure 4-19:
A branch in

the Rails
Navigator

view.

Figure 4-18:
A branch in

the Ruby
Resources

view.

80 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 80

Instead of double-clicking, as in Step 2, you can right-click a filename in the
Rails Navigator or Ruby Resources view. In the resulting contextual menu,
choose Open With. In response, RadRails displays a submenu containing a
list of editors. You can open the file with any of these alternative editors.

Running a Ruby program
In Chapter 3, you run some Rails code by visiting a Web page in a browser. In
the next few steps, you do something similar, but you don’t use Rails or a
Web browser. Instead, you run some Rails-less Ruby code.

1. Open the Ruby perspective.

For details, see this chapter’s “Changing the perspective” section.

2. Create a new Ruby Class file.

For details, see this chapter’s “Using a wizard to create something” sec-
tion. In that section, you create a file named my_new_class.rb.

3. Edit the Ruby Class file.

For details, see this chapter’s “Editing an existing file” section. In that
section, you edit my_new_class.rb.

4. Select the Ruby Class file in the Ruby Resources view.

Back in Figure 4-18, I select the first_ruby\my_new_class.rb
branch in the Ruby Resources view.

5. Choose Run➪Run As➪Ruby Application. (See Figure 4-21.)

In response, RadRails runs your my_new_class.rb program. A Console
view appears in the bottommost area of the RadRails workbench. Inside
that Console view, your program displays its output. (See Figure 4-22.)

If you follow this section’s steps but you don’t see Hello in the Console
view, try some of the steps in this chapter’s “Troubleshooting the Run of
a Ruby Program” section.

Figure 4-20:
Adding a

line to the
code in

Figure 4-15.

81Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 81

When you choose Run As, RadRails analyzes the file you want to run,
and offers you a list of possibilities based on that analysis. As you saw
in Figure 4-21, RadRails offers two choices — Ruby Application and
Test::Unit Test. Occasionally, RadRails doesn’t offer the choice that you
want. You might want Ruby Application, but the only choice that you see
is Test::Unit Test. In that case, check to make sure that you selected the
file you want to run in Step 4. As an alternative, you can right-click the
editor containing the file that you want to run. Then, in the resulting con-
textual menu, choose Run As➪Ruby Application.

Visiting a URL
Rails is all about creating Web sites, so RadRails comes with its own built-in
Web browser. This section describes the use of the RadRails browser.

1. Open the Rails perspective.

For details on opening a perspective, see this chapter’s “Changing the
perspective” section.

2. Select one of the servers in the Servers view.

Refer to Figure 4-1.

3. Click the Launch Browser icon in the Servers view’s toolbar.

The Launch Browser icon looks like tiny globe.

4. Click Yes in response to any “Do you want to start the server?” message.

Figure 4-22:
A Ruby

program’s
output.

Figure 4-21:
Launching
the run of

a Ruby
program.

82 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 82

A Web browser appears in the editor area. The URL in the browser’s
address field is something like http://localhost:3000/. (For the
Web server in your first Rails project, the URL is http://localhost:
3000/. For the Web server in your second Rails project, the URL is
http://localhost:3001/. RadRails adds 1 to the port number for
every newly created Web server.)

5. Change the URL in the browser’s address window.

For example, to see a list of employees in the Rails project of Chapter 3,
change http://localhost:3000/ to http://localhost:3000/
employees/list. To see a Webcam in Barry Burd’s office or pictures of
soft, furry bunnies hidden at Area 51, replace http://localhost:
3000/ with www.burdbrain.com.

The RadRails Web browser is a component borrowed from Microsoft
Internet Explorer. And Internet Explorer doesn’t allow you to abbreviate
http://localhost:3000 by writing localhost:3000. You get an
error page if you omit the http:// prefix.

Customizing RadRails
You can change the way RadRails behaves. Here’s how:

1. Choose Window➪Preferences.

A Preferences dialog box appears. (See Figure 4-23.)

Figure 4-23:
The

Preferences
dialog box.

83Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 83

2. In the upper-left corner of the dialog box, look for a field containing
the words “type filter text.”

Again, see Figure 4-23.

3. Replace the words “type filter text” with a word that describes the fea-
ture that you want to customize.

For example, to change the way editors work, type editor. In the panel
on the left side of the Preferences dialog box, RadRails displays items
having to do with editors. (See Figure 4-24.)

4. Select an item in the panel on the left side of the dialog box.

When you select an item, RadRails shows you a list of choices relating to
that item. For example, if you select the Editors item in the Rails branch,
RadRails offers to stop its automatic closing of braces, parentheses, and
quotation marks.

For another example of RadRails customization, read about the Installed
Interpreters preference in Chapter 2.

Troubleshooting the Run
of a Ruby Program

If, after all your efforts, you don’t get the result shown in Figure 4-22, you
don’t have to suffer endlessly. The following sections have a few things you
can check.

Figure 4-24:
Editor

preferences.

84 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 84

Does your Ruby code have a syntax error?
In Figure 4-6, I type puts “Hello with an opening quotation mark but no
closing quotation mark. With unmatched quotation marks, the puts “Hello
statement makes no sense to the Ruby interpreter. RadRails marks the error
with a marker and puts a jagged red underline beneath the suspicious part of
the code. (Again, refer to Figure 4-6.)

This statement puts “Hello has a syntax error, very much like a grammati-
cal error in an English language sentence. If you make a grammatical error in
English, people can probably figure out what you’re trying to say. But like the
headmaster in a 1940s school for wayward boys, the Ruby interpreter accepts
only syntactically correct statements — nothing else.

Does your Ruby code have a semantic error?
Linguist Noam Chomsky once said that “Colorless green ideas sleep furiously.”
No, he wasn’t crazy. He was giving an example of a grammatically correct sen-
tence that makes absolutely no sense. It’s called a semantic error; the word
semantic refers to meaning.

Consider the following one-line Ruby program:

puts “Hello”

This program has no errors. With properly matched quotation marks, Ruby
displays the word Hello.

Now consider the following two-line Ruby program:

Hello = 10
puts Hello

This program has no errors. Without any quotation marks, Ruby displays the
value represented by the name Hello. The output is 10.

But try to run the following one-line Ruby program.

puts Hello

If you try to run this one-line program, you get the message shown in
Figure 4-25. Without any quotation marks around Hello, Ruby thinks you’re
trying to display whatever value is contained in a placeholder named Hello.
And because there’s no statement saying Hello = 10 (or saying that Hello
equals anything at all), the placeholder Hello has no value. This one-line
program makes no sense.

85Chapter 4: Using RadRails

08_081204 ch04.qxp 11/30/06 11:10 PM Page 85

The nasty thing is that the RadRails editor doesn’t put a marker beside this
line. This single line of code is grammatically correct because, when it’s pre-
ceded by Hello = 10, this line makes sense. This one-line program has a
semantic error, not a syntax error.

Did you tell RadRails where
to find a Ruby interpreter?
In Chapter 2, I ask you to fuss with the Installed Interpreters preference in
RadRails. If you forget to do this, then when you try to run a Ruby program,
you get a nasty error message.

The message might be “Before running a Ruby application, please specify an
interpreter using the ruby interpreter preferences page.” Alternatively, you
might see “An error occurred while trying to launch a ruby application. There
is currently no ruby interpreter defined. Use preferences to define and select
the active interpreter.” One way or another, I recommend that you check
Chapter 2 for the section on configuring RadRails.

Did you point RadRails to the correct
location of the Ruby interpreter?
What if you try to run a Ruby application and something very strange happens?
Windows Notepad opens, or a lamp in your living room starts to flicker. One
possible cause is that, when configuring the RadRails Installed Interpreters
preference, you chose a program that’s not a Ruby interpreter. To fix this, go
back to the section in Chapter 2 on configuring RadRails. Make sure that the
Ruby Interpreter’s location ends in ruby.exe.

RadRails doesn’t always respond quickly when you change an Installed
Interpreters preference. Deselecting one check box and selecting another
check box might have little or no effect. You might have to completely remove
the unwanted interpreter from the list. In extreme cases, you might have to
remove all interpreters from the list, and then rebuild the list from scratch. In
any case, I recommend restarting RadRails before you try the new interpreter.

Figure 4-25:
Sorry, pal!
You have a

semantic
error.

86 Part I: Nuts and Bolts

08_081204 ch04.qxp 11/30/06 11:10 PM Page 86

Part II
Creating Code

09_081204 pt02.qxp 11/30/06 11:10 PM Page 87

In this part . . .
You can go a long way in Ruby on Rails with very little

coding. For example you can create a complete Web
application by typing less than 200 characters. (Yes, I’ve
counted the characters.)

But to understand how an application works or to
customize an application, you need to know some Ruby
programming. You must also understand how to use
HTML tags to compose Web pages. This part of the
book describes all that stuff.

09_081204 pt02.qxp 11/30/06 11:10 PM Page 88

Chapter 5

Ruby One’s Day
In This Chapter
� Exploring Ruby fundamentals

� Controlling flow in a Ruby program

� Using Ruby collections

I don’t like to make fun of people (at least not in print). But several years
ago I was conversing with someone I didn’t like. We were talking about

computer programming languages. He was finishing a course on C language
fundamentals, and he wanted me to give him some advice. Which program-
ming language should he learn next?

I thought for a moment. Then I asked him which languages he eventually
wanted to learn. “All of them,” he replied.

Sorry, no one can learn all computer programming languages. The world has
thousands of computer languages. You can narrow down the list. Depending
on how you count, at least 20 of these languages are “major” computer lan-
guages. But no one becomes expert in all 20 of them.

I would have advised this fellow to learn Ruby, but unfortunately, I couldn’t.
The year was 1982, and Ruby hadn’t yet been invented. The Ruby program-
ming language dates back to around 1993. The brainchild of Yukihiro “Matz”
Matsumoto, this language crept onto the scene the way most one-person
efforts do. Some people read about the language, and a few people became
excited about it. By 2004, when Ruby on Rails came along, many computer
professionals had heard the name Ruby, but most didn’t know much about
the language.

But as time goes on, Ruby is becoming more and more popular. Rails has
pushed Ruby into the computer programming limelight. And with Ruby,
people are discovering something that they seem to have forgotten — that
computer programming can actually be fun.

10_081204 ch05.qxp 11/30/06 11:11 PM Page 89

90 Part II: Creating Code

Hello, Again
As they say, “You gotta start somewhere.” In this section, you start with some
small details — things to remember the next time you play a Ruby trivia game.

Listing 5-1 contains an introductory Ruby program. A run of the program is
shown in Figure 5-1.

Listing 5-1: A Simple Ruby Program

This file’s name is intro.rb

puts “Hello, world!”
numOfCoins = (10 + 20) * 2 / 3
puts “You have #{numOfCoins} coins.”
puts ‘You have #{numOfCoins} coins.’
puts ‘You have ‘ + numOfCoins.to_s + ‘ coins.’

You can run the code in Listing 5-1. You can also experiment with what hap-
pens when you modify the code. For details, see the section about running a
Ruby program in Chapter 4.

The Ruby interpreter ignores everything on a line that comes after a pound
sign (unless the pound sign occurs inside a string of characters). So the first
line in Listing 5-1 is a comment. The Ruby interpreter doesn’t try to execute
the words This file’s name is intro.rb. (That’s good, because those
words mean nothing to the Ruby interpreter!)

A glimpse of a Ruby method
In Ruby, a method is a sequence of statements. Each method has a name. You
can execute the method’s statements by writing the method’s name. You can
define your own methods, execute methods written by other programmers,
or execute methods defined in the standard Ruby library.

Figure 5-1:
I know!

I have
20 coins.
Enough,
already!

10_081204 ch05.qxp 11/30/06 11:11 PM Page 90

In Listing 5-1, the second nonblank line has a call to the standard Ruby
puts method. Like other methods, a call to Ruby’s puts method may have
parameters (also known as arguments). If you call puts “Hello, world!”,
the string “Hello, world!” is one of the puts method’s parameters.
When you call the puts method, Ruby displays each parameter’s value in
the RadRails Console view (or in some other place, depending on your Ruby
environment).

The puts method takes as few or as many parameters as you want to give it.
If you type puts on a line with no parameters, Ruby displays a blank line.
If you type puts “Hello”, “There”, Ruby displays two lines — one line
with the word Hello, and another line with the word There. (On a call to the
puts method, Ruby displays each parameter on a line of its own.)

For more on Ruby methods, see this chapter’s “Using Methods” section.

Variables and values
In Listing 5-1, the word numOfCoins is called a variable. You can assign
values to variables and perform arithmetic on numeric values.

When you do arithmetic, an asterisk (*) denotes multiplication. Listing 5-1
uses a few of Ruby’s arithmetic operations. Other operations include more
exotic things such as exponentiation (**), remainder upon division (%), bit
inversion (~), shifting (>> and <<), and three-way comparison (<=>).

What I call “remainder upon division” is commonly called the modulo opera-
tor. And (get this!) the three-way comparison is often called the spaceship
operator.

Any chunk of code that represents a value is called an expression. Sure, the
chunk (10 + 20) * 2 / 3 from Listing 5-1 is an expression. (The expres-
sion’s value is 20.) But what about the entire statement numOfCoins =
(10 + 20) * 2 / 3? Is that an expression too?

Yes. In Ruby, more things than you might guess are expressions. The line

puts (numOfCoins = (10 + 20) * 2 / 3)

in a Ruby program causes it to display the number 20. The value of a Ruby
assignment is the same as the value being assigned.

91Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 91

Ruby strings
The last three lines of Listing 5-1 illustrate some tricks you can perform using
Ruby strings. In particular, the code #{numOfCoins} is called an interpolated
expression. Ruby may evaluate the expression and then substitute the expres-
sion’s value in the middle of the string. To be more precise,

� Ruby performs the substitution within a string that’s enclosed in double-
quotation marks.

� Ruby doesn’t substitute within a string that’s enclosed in single quota-
tion marks.

So in Figure 5-1, the program’s output has three You have ... coins lines.

� In the first of these lines, Ruby substitutes 20 for #{numOfCoins}.

� In the second line, the corresponding line of code contains a singly
quoted string. So Ruby doesn’t substitute.

� The third You have ... coins line comes from a more traditional
technique (a technique shared by many other computer languages).
In Listing 5-1, the last call to puts contains a three-part string. Plus
signs (+) paste the three parts together. In the middle part, the variable
numOfCoins isn’t enclosed in quotation marks. So Ruby evaluates
numOfCoins and obtains the value 20.

The only problem is that this value 20 is a number, not a string. Ruby doesn’t
know how to add a string to a number. So if you type ‘You have ‘ +
numOfCoins + ‘ coins.’ in your code, then Ruby spits back an error
message. In Listing 5-1, you fix this problem with a call to Ruby’s to_s
method.

Every number has a to_s method. You apply a number’s to_s method by
writing the number, followed by a dot, followed by to_s. In Listing 5-1,
numOfCoins is a number, but numOfCoins.to_s is a string. Ruby knows
what it means to apply a plus sign to strings, so the expression ‘You have
‘ + numOfCoins.to_s + ‘ coins.’ is legal in Ruby.

In Ruby, a plus sign (+) is an overloaded operator. The plus sign has several
different meanings — one meaning for numbers, another meaning for strings,
a third meaning for arrays, and so on. For strings, the plus sign performs
concatenation. If you write “Barry “ + “A. “ + “Burd”, the concatenated
result is one string — “Barry A. Burd”.

92 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 92

Working with Values
Most programming languages have several ways to assign values to variables,
and several ways to display values. In this regard, the Ruby language is no
exception.

Listing 5-2: Counting Coins

numOfCoins = 6
NumOfCoins = 10
print “NumOfCoins: “, NumOfCoins, “\n”
print “numOfCoins: “, numOfCoins, “\n”

numOfCoins = numOfCoins + 1
numOfCoins += 1
print “After two increments, numOfCoins is “,
numOfCoins, “\n”

NumOfCoins = 24
print “After reassignment, NumOfCoins is “,
NumOfCoins, “\n”

Ruby is case-sensitive. So in a Ruby program, the names numOfCoins and
NumOfCoins stand for two different (unrelated) things. The fourth line in
Listing 5-2 displays the number 6 in spite of the earlier assignment of 10 to
NumOfCoins (starting with an uppercase N). For evidence, see Figure 5-2.

Ruby uses two separate queues for the output in Figure 5-2. One queue is for
the ordinary (expected) output. The other queue is for error messages and
warnings. Like the waiting lines in a store, the queues might be processed at
slightly different rates. So the warning in Figure 5-2 might not always be the
last line of output.

Figure 5-2:
Some

success
(followed
by a bit of

failure).

93Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 93

Displaying values
The code in Listing 5-2 calls Ruby’s print method. Unlike the puts method,
the print method doesn’t automatically display its parameters on separate
lines. For example, the fourth line in Listing 5-2 adds “numOfCoins: “,
numOfCoins to the output shown in Figure 5-2. In this output, the characters
numOfCoins: and the number 6 appear on the same line.

One way to force a line break in a print call is to add “\n” to the print
call. Taken together, the symbols \n form an escape sequence — a group of
symbols representing some useful, hard-to-represent character.

When you place the \n escape sequence between double-quotation marks,
the escape sequence stands for a line break. So, each print call in Listing 5-2
ends with a line break (preparing for the next print call to begin on a brand-
new line of output).

Ruby substitutes a line break for \n only when \n is between double-
quotation marks (“). When \n is between single quotation marks (‘),
Ruby doesn’t perform a substitution. In other words, the statement print
“One\ntwo\nthree\n” displays three lines of output, but the statement
print ‘One\ntwo\nthree\n’ displays only one line (the line containing
One\ntwo\nthree\n).

Besides \n, Ruby has several other escape sequences: \t for tab, \a for
beep, and so on. The business about single and double quotation marks
applies to all Ruby’s escape sequences.

The last print statement in Listing 5-2 continues from one line to the next.
Normally, a Ruby statement ends when a line ends. But if the line isn’t
a complete statement or if the line ends with a backslash (\), the statement
continues on the next line. The next-to-last line in Listing 5-2 ends with a
comma, so Ruby decides that this line isn’t a complete statement. Ruby looks
on the last line (NumOfCoins, “\n”) for the rest of the statement.

Assigning values
Listing 5-2 contains two statements that have exactly the same effect. The
statement numOfCoins += 1 does the same thing that numOfCoins =
numOfCoins + 1 does (adds 1 to the value of numOfCoins). In fact, the
second statement (with +=) is an abbreviation for the first statement (with + 1).
So anything you do to redefine the plus sign applies automatically to += as well.

Unlike C++ and Java, Ruby has no post-increment or pre-increment operators.
In Ruby, you can’t write numOfCoins++. Sorry about that.

94 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 94

In Ruby, a name beginning with a lowercase letter is a variable and a name
beginning with an uppercase letter is a constant. In Listing 5-2, numOfCoins
is a variable and NumOfCoins is a constant. But notice, a Ruby constant’s
value can change! At the top of Listing 5-2, I assign 10 to NumOfCoins. Then,
near the bottom of Listing 5-2, I assign a different value, 24, to NumOfCoins.
In response, Ruby changes the value of NumOfCoins (from 10 to 24), but
because NumOfCoins is a constant, Ruby issues a warning. In Figure 5-2,
Ruby warns you “already initialized constant NumOfCoins.”

Going with the Flow
Like so many other languages, Ruby has if statements and loops. Both if
statements and loops control the flow of a program’s execution. Listing 5-3
has both an if statement and a loop. Figure 5-3 shows a run of the code in
Listing 5-3.

Listing 5-3: Repeating and Making Choices

3.times do
print “Enter a value: “
STDOUT.flush
value = gets.to_i

if value == 1
puts “one”

elsif value == 2
puts “two”

else
puts “many”

end

puts
end

Figure 5-3:
Turning

numbers
into words.

95Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 95

The if statement in Listing 5-3 starts by comparing value to 1. If the com-
parison is favorable (that is, if value equals 1), Ruby displays one and
jumps down to the puts statement. When the comparison with 1 isn’t favor-
able, the if statement marches on to compare value to 2.

If the comparison with 2 is favorable (that is, if value equals 2), Ruby dis-
plays two and jumps down to the puts statement. But when the comparison
with 2 isn’t favorable, Ruby executes whatever code is between else and
end. If value is neither 1 nor 2, this program displays the word many.

The whole process (the execution of the if statement with its comparisons
and printing) takes place three times in Figure 5-3. The reason for this repeti-
tion is that the if statement is inside a loop. The loop starts with 3.times
do, and ends with the last line in Listing 5-3. (I have more to tell you about
this 3.times business. See Chapter 6.)

In Ruby, the assignment operator is a single equal sign (=), and comparison
for equality is a double equal sign (==). Every programmer goofs once in a
while and uses a single equal sign in an if statement’s comparison clause.
But the expression value = 1 (with a single equal sign) doesn’t do what you
expect it to do. The expression value = 1 assigns 1 to value. What’s worse,
the expression value = 1 is always true because, in Ruby, all numbers are
considered to be true. Even the number 0 is true. So whenever you mistakenly
ask Ruby if value = 1, Ruby considers value = 1 to be true. The moral
of the story is, don’t write if value = 1. Instead write if value == 1.

In Ruby, a double ampersand (&&) stands for and, an exclamation point (!)
stands for not, and a double pipe (||) stands for or. So you can combine
simple conditions to obtain complex conditions. For example, the expression

age >= 13 && !(time_of_day < 18 || reply == ‘Yes’)

is true as long as the first condition (age is greater than or equal to 13) is
true and both remaining conditions (time_of_day is less than 18 and the
reply is ‘Yes’) are false. Here’s another way to say the same thing: The
whole expression is true as long as age is greater than or equal to 13, and it
is not true that either time_of_day is less than 18 or that reply is ‘Yes’.
How about that?

Getting input from the keyboard
Listing 5-3 contains a call to Ruby’s gets method. The gets method accepts
input from the keyboard (in this program, a number such as 1, 2, or 3). But
gets interprets whatever you type as a string of characters. If you type 2,

96 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 96

then the value of plain old gets is the string “2”. Unfortunately, the string
“2” isn’t the same as the number 2, so with plain old gets, a comparison
such as value == 2 always fails. (The comparison fails because Ruby com-
pares the string “2” with the number 2.)

To fix this problem, Listing 5-3 calls Ruby’s to_i method. (The name to_i
stands for “to integer.”) Every string has a to_i method. In Listing 5-3, gets
is a string (such as “2”). But gets.to_i is a number (such as 2). Listing 5-3
assigns gets.to_i to the variable named value, so value is a number
(such as 2) and the comparison value == 2 makes sense.

You can apply to_i to any string, not only to strings of digits. If you apply
to_i to an alphabetic string, then to_i returns 0.

In Listing 5-3, the line STDOUT.flush ensures that the RadRails Console dis-
plays the program’s output correctly. Without STDOUT.flush, RadRails
does all its reading before it does any of its writing. The result is that lines
of the program’s output seem to appear out of sequence. This nasty effect
happens only when the program contains a gets call. Furthermore, the effect
happens only in RadRails. (You can run a Ruby program from your operating
system’s command line. If you do, the call to STDOUT.flush in Listing 5-3 is
optional.)

Using keywords
A keyword is a word that has the same meaning in all Ruby programs. Listing
5-3 uses the keywords do, if, elsif, else, and end. Some other keywords
that you encounter in this book’s examples include the words class, false,
module, nil, self, super, true, unless, until, while, and yield.

As a general rule (subject to exceptions), the names of things aren’t Ruby
keywords. For example, method names such as puts and print aren’t key-
words. Ruby defines these names in its standard library. But with a little
code, you can change the meanings of these names.

When you make up names for things in a Ruby program, don’t use any of
Ruby’s keywords. A statement such as do = 20 isn’t legal as far as Ruby is
concerned.

In Ruby, the word false is a keyword. The comparison if false is never
true. The word nil is also a keyword. The keyword nil stands for a nothing
object — an object that happens not to be anything (whatever that means).
In a Ruby comparison, nil is the same as false. So if nil is never true.

97Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 97

Flowing the other way
Ruby has many variations on the if statement and the loop. Like so many
other languages, Ruby has a while loop. (See Listing 5-4 and also the output
of Listing 5-4 in Figure 5-4.)

Listing 5-4: A while Loop

i = 10
while i >= 0
print i, “ bottles of beer on the wall.\n”
i -= 1

end

Ruby’s until loop does roughly the same things as Ruby’s while loop. For
example, the code in Listing 5-5 produces the same output as the code in
Listing 5-4.

Listing 5-5: An until Loop

i = 10
until i < 0
print i, “ bottles of beer on the wall.\n”
i -= 1

end

Going with the glow (or glowing
with the flow)
In addition to while loops, until loops, and other loops, Ruby has modifiers.
A modifier is like an if statement or a loop. But a modifier applies to only one
statement. And you write the modifier after the statement that it modifies.
The code in Listing 5-6 contains two modifiers.

Figure 5-4:
A classy
program

runs its
course.

98 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 98

Listing 5-6: An until Modifier

i = 1
i += 7 until i > 30
puts i if i % 2 == 0

The output of the code in Listing 5-6 is the number 36. The program starts with
i equal to 1, then adds 7 to i (making i equal to 8), then adds 7 a few more
times until i becomes 36. The looping stops because 36 is greater than 30.

On the last line of Listing 5-6, Ruby compares 36 % 2 with 0. Remember that
the percent sign (%) represents the remainder upon division. When you divide
36 by 2, you get the remainder 0. (In fact, when you divide any even number
by 2, you get the remainder 0.) On the last line of Listing 5-6, the condition i
% 2 == 0 is true. So the program displays the value of i, which is 36.

An if statement, a while loop, or an until loop may contain one or more
statements. But a modifier applies to only one statement.

Ruby has a for loop. For example, the output of code in Listing 5-7 is 1 5 9
4 fish.

Listing 5-7: A for Loop

for value in [1, 5, 9, 4, “fish”] do
print value, “ “

end

Ruby also has a ternary conditional expression. The expression is called
ternary because it takes three parameters. A ternary expression has the fol-
lowing form:

condition_to_test ? value_when_true : value_when_false

Listing 5-8 contains the ternary expression i != 1 ? ‘s’ : ‘’. When i
!= 1 is true, the ternary expression’s value is ‘s’. But when i != 1 is false,
the ternary expression’s value is ‘’ (two single quotes surrounding nothing —
a string containing no characters). The output of Listing 5-8 is shown in
Figure 5-5.

Listing 5-8: Making Decisions the Easy Way

i = 10
while i >= 0
print i, “ bottle#{i != 1 ? ‘s’ : ‘’} of beer “,
“on the wall.\n”

i -= 1
end

99Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 99

Bunches of Things
Ruby has two structures that collect individual values into groups of values.
One structure, familiar to people who program in other languages, is an array.
The other (less familiar) structure is called a hash.

Arrays
An array is an indexed collection of things. Listing 5-9 gives you an example.

Listing 5-9: Keeping Track of a Hotel’s Guests

how_many_in_room = [2, 3, “closed for repair”, 0, 1]
how_many_in_room += [2]

puts “Displaying individual elements:”
puts how_many_in_room[0]
puts how_many_in_room[5]
puts

puts “Stepping through elements:”
for count in how_many_in_room
puts count

end
puts

puts “Stepping through indices:”
for room_number in 0..10
print room_number, “ “,
how_many_in_room[room_number], “\n”

end

Here are some observations about the code in Listing 5-9:

Figure 5-5:
The output

for one
bottle is

grammat-
ically

correct.

100 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 100

� A Ruby array may contain values of any type.

The array in Listing 5-9 contains several integer values and one string
value. In many other languages, you can’t mix integers and strings in a
single array.

� An array has no fixed size.

The second line of Listing 5-9 enlarges the how_many_in_room array by
adding a new element to the existing array. If you want, you can add
1,000 new elements. Ruby doesn’t care.

� An array’s indices start with 0.

In Listing 5-9, the array’s initial element, how_many_in_room[0], stores
the value 2. (See Figure 5-6.)

� You can step through an array’s elements using a loop.

Listing 5-9 steps through the how_many_in_room array with the for
count loop.

� You can step through an array’s indices.

The last loop in Listing 5-9 has room_number going from 0 to 10, inclu-
sive. This 0..10 expression is called a range. You can use ranges almost
anywhere in your code, not only in for loops.

Ruby has two notations for ranges — a notation that uses two dots, and
a notation that uses three dots. These different notations have slightly
different meanings. The range 0..5 (with two dots) stands for the num-
bers 0 to 5 inclusive. But the range 0...5 (with three dots) stands for
the numbers 0 to 4 (excluding the 5).

Figure 5-6:
Listing the

numbers of
people in

hotel rooms.

101Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 101

Ruby arrays are rich and varied creatures. You can do dozens of things with
Ruby arrays that you can’t do with other languages’ arrays. For details, visit
http://www.ruby-doc.org/core/classes/Array.html.

Hashes
A hash is like an array, except that a hash’s indices aren’t necessarily num-
bers. More precisely, a hash is a collection of key/value pairs. Each pair is
called an entry. The hash

{‘Book’ => 20.00, ‘Shirt’ => 15.00, ‘Cup’ => 10.00}

contains three entries. In one entry, ‘Book’ is the key and 20.00 is the value.
In another entry, ‘Shirt’ is the key and 15.00 is the value. Listing 5-10
illustrates some features of Ruby hashes.

Listing 5-10: Using a Hash

price_of =
{‘Book’ => 20.00, ‘Shirt’ => 15.00, ‘Cup’ => 10.00}

price_of[‘Car’] = 15000.00

puts “Displaying a value:”
printf(“$%5.2f”, price_of[‘Book’])
puts; puts

puts “Displaying entries:”
for one_thing in price_of
print one_thing, “\n”

end
puts

puts “Displaying keys and values:”
for first_thing, second_thing in price_of
printf(“%s\t$%5.2f\n”, first_thing, second_thing)

end

Figure 5-7 shows a run of the code in Listing 5-10. In Listing 5-10, a hash
named price_of begins its life with three entries. But the hash gains a
fourth entry (for ‘Car’) on a subsequent line of code.

You use brackets to refer to a particular entry’s value. So in Listing 5-10, the
expression price_of[‘Car’] stands for the a new ‘Car’ entry’s value, and
the expression price_of[‘Book’] stands for the ‘Book’ entry’s value.

102 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 102

Hashes and loops
The for loops in Listing 5-10 are interesting. Both loops cycle through the
entries in the price_of hash. But in the first loop, the variable one_thing
stands for an entire hash entry. And in the second loop, the variables
first_thing and second_thing stand for the two parts of an entry
(the key and the value).

The chosen variable names have nothing to do with this. (Replacing
one_thing by fred everywhere in the first for loop doesn’t change the
way this code works.) The code works because, in the first line of each for
loop, Ruby counts the variables and figures out what each variable signifies.

Writing the fine print
If you’ve written programs in C or C++, you feel at home with Ruby’s printf
method. The method’s first parameter is a format string. The format string’s
cryptic codes tell Ruby how to display the remaining parameters. In par-
ticular, in the code %5.2f, the 5 tells Ruby to take at least five characters
(including the decimal point) to display a number. Also, in %5.2f, the 2 tells
Ruby to display two digits to the right of the decimal point. So in Figure 5-7,
Ruby displays $20.00, not $20.0 and not $20.000.

With the format code %5.2f, the number 5 is merely advisory. If the number
being displayed requires only four characters, Ruby pads the number with
a blank space. If the number being displayed requires ten characters, Ruby
ignores the 5 and displays ten characters.

The printf call in the second for loop illustrates some facts about Ruby’s
format strings. A format string may contain more than one format code.
The string “%s\t$%5.2f\n” contains two format codes — the code %s to
display the value of first_thing, and the code %5.2f to display the value
of second_thing. The code %s stands for any string, and indeed, the value of
first_thing is a string.

Figure 5-7:
Displaying
hash keys

and values.

103Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 103

The format string “%s\t$%5.2f\n” contains other characters — characters
that aren’t format codes. In this format string, \t stands for a tab, $ stands
for itself (a dollar sign to be displayed), and \n stands for a line break.

A typical Ruby statement is exactly one line of code. But a statement can
straddle several lines. And you can separate two statements with a semi-
colon. If you do, you can squeeze two (or more) statements on a line. In
Listing 5-10, the line puts; puts contains two Ruby statements.

Using Methods
A Ruby method is a named sequence of statements. Other languages use the
terms function, subprogram, or procedure to refer to a sequence of this kind.
You can do two things with a method.

� You can define the method.

When you define a method, Ruby doesn’t execute the statements inside
the method.

� You can call a defined method.

When you call a method, Ruby executes the statements inside the method.

Listing 5-11 has some examples.

Listing 5-11: Don’t Move! You’re Surrounded.

Method definitions...

def show_surrounded_alan
puts “**Alan**”

end

def show_surrounded(param)
puts “**#{param}**”

end

def surround(param)
“**#{param}**”

end

def surrounding(param)

104 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 104

yield(“**#{param}**”)
end

def surround_all(param_1, param_2, param_3)
yield “**#{param_1}**”, “**#{param_2}**”,
“**#{param_3}**”

end

def show_all_surrounded(*params_in)
for param in params_in do
puts “**#{param}**”

end
end

Method calls...

show_surrounded_alan

show_surrounded(“Barry”)
show_surrounded “Barry”

your_string = surround(“Chris”)
puts your_string

surrounding(“Eddie”) { |x| puts x }

surround_all(“Frank”, “George”,
“Harriet”) { |x, y, z| puts x, y, z }

show_all_surrounded(“Irene”, “Jennie”, “Karen”)

Figure 5-8 shows a run of the code in Listing 5-11. The code defines six methods.
Each method adds asterisks (in one way or another) to a string of characters.

Figure 5-8:
How to

choose a
name for

your baby.

105Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 105

Methods, methods everywhere
This section takes a closer look at each of the methods in Listing 5-11.

A method with no parameters
The show_surrounded_alan method is the simplest method in Listing 5-11.
This method takes no parameters. When you call the method, the method’s
puts call displays **Alan**.

Later in Listing 5-11, a line containing the name show_surrounded_alan
calls this method into action.

A method that displays a value
The next method in Listing 5-11 (the show_surrounded method) takes one
parameter. The method’s puts call displays that parameter surrounded with
asterisks.

In Listing 5-11, I call the show_surrounded method twice — once with
parentheses around the parameter “Barry” and once without parentheses.
In Ruby, parentheses around parameter lists are optional.

A method that returns a value
The surround method’s definition contains an expression (“**#{param}**”).
When you call the method, Ruby evaluates this expression. At first the act of
evaluating doesn’t do anything. Nothing changes as a result of the evaluation.

But a Ruby method returns the result of its last expression evaluation. So in
Listing 5-11, a call to the surround method returns the result “**Chris**”.
Ruby assigns this result to your_string and displays **Chris** in the
RadRails Console view.

The idea about a method’s returning the value of its last expression is really
important. The idea is worth repeating. So . . .

A Ruby method returns the result of its last expression evaluation. There. I
repeated it.

A method call with a block
Putting curly braces around a statement (or a bunch of statements) turns the
statement into a block.

106 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 106

In Listing 5-11, the call to the surrounding method has both a parameter
and a block. The parameter is “Eddie”, and the block is { |x| puts x }.
(You can also create a block using the words do and end. See the explanation
in Chapter 6.)

The definition of the surrounding method contains a yield statement. The
word yield is a Ruby keyword. When the Ruby interpreter encounters a
yield statement, the interpreter temporarily yields control to the block of
statements following the method call. (See Figure 5-9.)

To make things even more interesting, a block may contain its own parame-
ters. When you create a block, you enclose the block’s parameters in pipe
symbols (| |). For example, in Listing 5-11, the call to the surrounding
method has a block with parameter x. In the same listing, the call to the
surround_all method has a block with parameters x, y, and z.

So many different things have parameters! A method has parameters; a block
has parameters. What else has parameters?

2. Execute any statements
that come before the yield.

1. param gets the
value "Eddie".

def surrounding (param)

end

yield ("**#{param}**")

surrounding ("Eddie") { |x| puts x }

3. x gets the value
"**Eddie**".

4. Display x and then continue
executing any statements inside
the method.

5. Execute any statements
that come after the yield.

Figure 5-9:
The flow of

execution
when a

method call
has a block.

107Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 107

In Listing 5-11, the yield statement in the surrounding method’s defini-
tion has a parameter! Ruby passes this parameter (“**Eddie**”) to the
method call’s block. The call’s block displays the parameter in the RadRails
Console view.

A block with three parameters
The surround_all method does almost the same thing as the surrounding
method. But the surround_all method takes three parameters (param_1,
param_2, param_3). And the surround_all method’s yield statement
has three parameters (“**#{param_1}**”, “**#{param_2}**”,
“**#{param_3}**”).

To be in step with the method definition, the call to surround_all in
Listing 5-11 has three parameters (“Frank”, “George”, “Harriet”).
And the block following the call has three parameters of its own (x, y, z).
When Ruby executes the yield statement, the block’s x parameter becomes
“**Frank**”, the block’s y parameter becomes “**George**”, and the
block’s z parameter becomes “**Harriet**”. The block displays these
three values in the RadRails Console view.

A method with a variable number of parameters
In the show_all_surrounded method’s definition, the parameter contains
an asterisk (*). The asterisk before params_in tells Ruby that params_in
may stand for more than one value.

Indeed, the last line of Listing 5-11 has three values in its call to show_all_
surrounded. In the definition of show_all_surrounded, a for loop steps
through the three params_in values. Each time through the loop, the code
displays a name surrounded by asterisks.

If your method definition contains more than one parameter name, you can
put an asterisk before the last of the names. You can’t put an asterisk before
any of the other parameter names.

Please pass the hash
A previous section describes Ruby hashes — lists of key/value pairs. In Ruby
on Rails code, you often see a hash being passed as a parameter to a method.
Listing 5-12 has an example.

108 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 108

Listing 5-12: Passing a Hash to a Method

def display(price_of)
for first_thing, second_thing in price_of
printf(“%s\t$%5.2f\n”, first_thing, second_thing)

end
end

display(‘Book’ => 20.00, ‘Shirt’ => 15.00,
‘Cup’ => 10.00)

On first glance, the call to the display method in Listing 5-12 has three
parameters. But the display method’s definition has only one parameter.
So what’s going on?

In the call, the three things in parentheses form a single hash (a hash
with three entries). If you do what you did in this chapter’s “Hashes”
section — that is, you surround the three entries with curly braces — the
stuff in the method call looks more like a hash. But if you omit the curly
braces, Ruby scratches its virtual head and figures out that these three
things form a hash.

If you’re not convinced that the parameter price_of represents a hash, add
the statement puts price_of.class to the code inside the display
method’s definition. The output of the puts call is the word Hash.

A run of the code in Listing 5-12 is shown in Figure 5-10.

What’s the symbolism?
Twenty-five centuries ago, the Greek philosopher Democritus said that every-
thing is made of atoms. In Democritus’s view, each atom is indivisible. An
atom has no characteristics. It’s a point with no shape. It’s a black hole with
no hair. (Stephen Hawking would be pleased.)

Figure 5-10:
Displaying
items and

their prices.

109Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 109

Like a Democritus atom, a Ruby symbol has no characteristics. (Well, a symbol
has a few characteristics, but not many.) You might ask, “What good is a thing
with no characteristics?” You can’t display this thing’s parts because it has
no parts. You can’t combine two of these things because if you did, the new
thing would have internal parts.

Fortunately, you can distinguish one Ruby symbol from another, and that’s
what makes symbols worth using. What’s more, a symbol without parts has
no baggage; so symbols are efficient and easy to use.

Ruby on Rails code passes symbols around as if they were chips in a
poker game. So symbols are worth investigating. Listing 5-13 begins the
investigation.

Listing 5-13: Passing Symbols from Place to Place

def decide_about(thing)
puts “Executing decide_about...”
print thing, “ is “
puts “the ‘b’ symbol.” if thing == :book
puts “the ‘s’ symbol.” if thing == :shirt
puts “a string.” if thing == “book”
puts

end

def show_hash(my_hash)
puts “Executing show_hash...”
puts my_hash[:book], my_hash[:shirt]
puts “$$$” if my_hash[:book] == ‘costly’
puts

end

def show_hash_again(my_hash)
puts “Executing show_hash_again...”
for entry in my_hash
puts entry

end
puts

end

decide_about :book
show_hash :book => ‘costly’, :shirt => ‘cheap’
show_hash_again :book => ‘costly’, :shirt => ‘cheap’

The code in Listing 5-13 calls three methods — decide_about, show_hash,
and show_hash_again.

110 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 110

Comparing and displaying symbols
In Listing 5-13, the decide_about method does what little you can do with
symbols. You can compare them with other values, and you can display their
names.

� The decide_about method compares its parameter with the symbols
:book and :shirt. The only positive match is with :book. (See
Figure 5-11.) Ruby distinguishes atoms with different names from one
another. The :book atom isn’t the same as the :shirt atom.

� The decide_about method compares its parameter with the string
“book”. The match isn’t positive. (Again, see Figure 5-11.) Atoms aren’t
strings. The :book atom isn’t the same as the “book” string.

� When the decide_about method displays its thing variable (with value
:book), the RadRails Console displays the word book. Each symbol has
a name, and Ruby knows how to display a symbol’s name.

A string has many more characteristics than an atom. You can insert new
characters into a string. You can find substrings within a string. You can
capitalize the letters in a string. But you can’t do any of these things with a
symbol. A symbol is a symbol is a symbol. That’s all there is to it. You can call
a symbol’s to_s method to derive a string from the symbol, but why bother?

Using symbols as hash keys
The second and third methods in Listing 5-13 deal with symbols as the keys
for hash entries. Ruby on Rails code does this all the time. When you write
your own Rails code, you may call a method with hash parameter :book =>
‘costly’, :shirt => ‘cheap’. In many cases, the method you call is
part of the Rails library, so you don’t have easy access to the method’s code.

Figure 5-11:
How things
look after a

run of the
code in

Listing 5-13.

111Chapter 5: Ruby One’s Day

10_081204 ch05.qxp 11/30/06 11:11 PM Page 111

In one way or another, the Rails method’s code looks like the show_hash
method’s code in Listing 5-13. With expressions such as my_hash[:book]
and my_hash[:shirt], the code distinguishes one hash entry from another.
Then with the value of my_hash[:book], the code forms a condition and
makes a decision based on the condition’s truth or falsehood.

The last method in Listing 5-13 (the show_hash_again method) steps
through the hash’s entries. But unlike the show_hash method, this
show_hash_again method doesn’t separate the keys from the values.

112 Part II: Creating Code

10_081204 ch05.qxp 11/30/06 11:11 PM Page 112

Chapter 6

Ruby Two’s Day
In This Chapter
� Discovering object-oriented programming in 25 pages or fewer

� Using Ruby’s iterators

� Gathering code into modules

Think about something tiny — a tiny icon on a computer’s screen. Magnify
the icon’s image by a factor of 7 or more. What do you see?

You see dots. You see jagged edges and blurs. If you magnify by a sufficiently
large factor, you don’t even see the original image. What once looked like a
picture of a file folder becomes a meaningless field of light and dark pixels.

If you look at an image too closely and you ignore the big picture, you’re
likely to miss something important. A similar thing happens when you write
computer programs. If you concentrate too much on each little statement
and ignore the way statements are organized into larger units, you miss some
important concepts.

Objects and Classes
An object is a single thing. Here’s an employee object. The employee object
has a name (“Barry Burd”), a hire date (2006-06-21), and a salary
(1000000.00). And here’s a second employee object. This second object
has a different name (“Harriet Ritter”), a different hire date (2006-06-25),
and a different salary (50000.00).

A class is a blueprint. The blueprint describes each one of a bunch of similar
things. The Employee class says that each employee object has a name, a
hire date, and a salary. The Employee class doesn’t contain any particular
name (such as “Barry Burd” or “Harriet Ritter”). The Employee class
doesn’t contain any particular hire date or salary. Instead, the Employee
class is an ethereal outline, a prediction of things to come when some
employee objects are eventually created.

11_081204 ch06.qxp 11/30/06 11:11 PM Page 113

Each object forged from a class is called an instance of that class. The employee
object whose name is “Barry Burd” is an instance of the Employee class.
The employee object with name “Harriet Ritter” is another instance of
the Employee class. After defining the Employee class, you can create as few
or as many instances as you want. (See Listing 6-1 and the run in Figure 6-1.)

Listing 6-1: Defining and Using an Employee Class

require ‘date’

class Employee
attr_reader :name, :hiredate, :salary
attr_writer :salary
def initialize(n, h, s)
@name = n
@hiredate = h
@salary = s

end
end

a_date = Date.new(2006, 6, 21)
me = Employee.new(“Barry Burd”, a_date, 1000000.00)

a_date = Date.new(2006, 6, 25)
you = Employee.new(“Harriet Ritter”, a_date, 50000.00)

print me.name
printf(“\t%s\t%5.2f\n”, me.hiredate, me.salary)

print you.name
printf(“\t%s\t%5.2f\n”, you.hiredate, you.salary)

me.salary += 1000.00
print me.name
printf(“\t%s\t%5.2f\n”, me.hiredate, me.salary)

Listing 6-1 defines an Employee class. The Employee class has three
instance variables — @name, @hiredate, and @salary. As the term
“instance variable” suggests, each instance of the Employee class has its
own @name, @hiredate, and @salary.

A variable that starts with a single at-sign (@) is an instance variable.

Figure 6-1:
Barry earns

more money.

114 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 114

In Listing 6-1, the line attr_reader :name, :hiredate, :salary makes
the instance variables’ values visible to code outside the class definition.
For example, the statement print me.name isn’t inside the Employee class
definition. So if you remove attr_reader :name from Listing 6-1, the state-
ment print me.name is no longer allowed.

The method named attr_writer allows code outside the class definition to
change one or more of the instance variables’ values. Without the attr_
writer call in Listing 6-1, the statement me.salary += 1000.00 is no
longer allowed.

Creating objects
After defining a class, you can create an instance of the class by calling the
class’s new method. Listing 6-1 creates two instances of the Employee class.
In the first case, the listing assigns Employee.new to the me variable. In the
second case, the listing assigns Employee.new to the you variable. So the
variable me refers to one instance, and the variable you refers to another
instance.

When you create an instance, you may include parameters along with the
call to new. For example, in Listing 6-1, the first call to Employee.new has
parameters “Barry Burd”, a_date, and 1000000.00. The call to the new
method triggers the execution of the Employee class’s initialize method.
In turn, the initialize method assigns these parameter values to the three
instance variables — @name, @hiredate, and @salary.

A call to a new method triggers the execution of a class’s initialize method.
This relationship between two method names, such as new and initialize, is
an irregular occurrence in Ruby. In most cases, a method call triggers execution
of a method of the same name. For example, if you call my_string.chomp,
Ruby looks for a method whose definition begins with def chomp.

An object stands in a “has a” relationship with each of its instance variables.
An employee object has a name, has a hiredate, and has a salary.

Adding another file’s code
to your own file’s code
Listing 6-1 defines the Employee class but not the Date class. The Date
class is defined in a file named date.rb — a file that comes standard with
the Ruby interpreter. When you fire up the Ruby interpreter, the interpreter
loads only the stuff you need in order to run your code. If you don’t put the

115Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 115

statement require ‘date’ in your program, the interpreter doesn’t load
the date.rb code. In that case, the interpreter doesn’t know what
Date.new(2006, 6, 25) means.

If you put a file (call it orphan.rb) in some arbitrary directory on your hard
drive, the chance that the Ruby interpreter responds to a require ‘orphan’
request is very small. A file such as date.rb or orphan.rb can’t live in any
old directory on your computer’s hard drive. For the interpreter to find a file,
the file must be somewhere in the interpreter’s load path.

The load path is an array of directory names. When the interpreter encoun-
ters a require call, the interpreter searches this array’s directories for a file
whose name matches the name in the require call.

Ruby follows the UNIX shell tradition of using brief, cryptic combinations of
characters to represent some important system variables. If you want to see
the directory names in the load path, do you think of adding puts $: to
your program’s code? Sure, you do. Because in a Ruby program, $: stands
for the load path. Go figure!

Classes, objects, and database tables
Database tables resemble classes and objects.

� A class is like the collection of column names in a database table.

An employees table may have a name column, a hiredate column,
and a salary column. The corresponding Employee class definition
decrees that each of its instances has a name, a hiredate, and a
salary.

� An object is like a row in a database table.

The employees table may have a row with name “Barry Burd”, hire
date 2006-06-21, and salary 1000000.00. The corresponding Ruby
code may, at one time or another, have an employee object with name
“Barry Burd”, hire date 2006-06-21, and salary 1000000.00.

� A class is also like the collection of all rows in a database table.

An employees table may have 100 rows — one row for each of the
company’s 100 employees. You might find it useful to think of the
Employee class as a bunch of employees (100 employees, all packed
into a crowded room).

Comparing classes and objects with database tables might help you under-
stand object-oriented programming (OOP) concepts. But the comparison
isn’t only metaphorical. Rich functionality arises when you connect objects
to database table rows. For more information, see the material about object-
relational mapping (ORM) in Chapter 9.

116 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 116

Objects Have Methods
An object can have methods. You may define the object’s methods when you
define the object’s class. If you do, you tap into one of the central ideas in
object-oriented programming. Listing 6-2 has an example.

Listing 6-2: Defining Methods within a Class

class Account
attr_reader :name, :balance

def initialize(n, b)
@name = n
@balance = b

end

def add_interest(rate)
@balance += @balance * rate / 100

end

def display
printf(“%s, you have $%5.2f in your account.\n”,

@name, @balance)
end

end

my_account = Account.new(“Barry”, 10.00)
my_account.add_interest(5.0)
my_account.display

your_account = Account.new(“Harriet”, 100.00)
your_account.add_interest(7.0)
your_account.display

The Account class in Listing 6-2 defines an add_interest method and a
display method. The add_interest method takes a parameter (rate) and
uses the rate to change the value of an instance’s @balance. The display
method takes no parameters. But the display method writes a sentence
containing the instance’s @name and @balance. A run of the code in Listing
6-2 is shown in Figure 6-2.

Figure 6-2:
Barry must
have spent

all the
money he
earned in

Figure 6-1.

117Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 117

The code in Listing 6-2 creates an instance of the Account class and
assigns this instance to the my_account variable. Then the code calls the
my_account instance’s add_interest method. To state this a bit more pre-
cisely, the code sends the add_interest(5.0) message to the my_account
object. When the my_account object receives the message, the object exe-
cutes its add_interest method, adding 50 cents to my depleted account.

Next, the code sends a display message to the my_account object. In
response, the my_account object executes its display method, writing my
name and account balance in the RadRails Console view.

To call an instance’s method, you follow a reference to the instance by a dot,
then by the name of the method, and finally by any parameters to be sent
along with the method call.

Like other authors, I use the words “call a method,” even though in Ruby, the
correct terminology is to “send a message.” The differences between method
calling and message sending are subtle. Most importantly, a call is an action
(a verb), and a message is a thing (a noun). When you send a message, you
send a thing of some kind to an object. The object can store that thing, ana-
lyze the thing, modify the thing, and so on. In this book, you don’t have to
sweat about the difference between method calling and message sending. But
if you delve deeper into Ruby, you’ll see how message sending works to your
advantage.

Ruby’s handy iterators
The whole is more than the sum of its parts. When you combine an instance
method with a code block, you get an iterator — a super-duper Ruby pro-
gramming technique.

An iterator method belongs to a collection (to an array or a hash). The itera-
tor steps through the collection, from one element to another, doing some-
thing with each element. Different iterators do different things with the
collection’s elements.

The term “iterator” isn’t baked into the Ruby programming language. The word
iterator isn’t a Ruby keyword. You don’t declare a particular method to be
an iterator. Instead, the word “iterator” describes certain kinds of methods.
Thinking of certain methods as iterators helps you to understand how your
program works.

Listing 6-3 makes use of my favorite iterator Ruby’s each method.

118 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 118

Listing 6-3: The Truth about Iterators

class Account
attr_reader :name, :balance

def initialize(n, b)
@name = n
@balance = b

end

def add_interest(rate)
@balance += @balance * rate / 100

end

def display
printf(“%s, you have $%5.2f in your account.\n”,

@name, @balance)
end

end

my_account = Account.new(“Barry”, 10.00)
your_account = Account.new(“Harriet”, 100.00)
their_account = Account.new(“Sam & Jen”, 7836.00)

an_array = [my_account, your_account, their_account]

puts “ARRAY”
puts “an_array.each ...”
an_array.each { |e| e.display }
puts

a_hash = { :me => my_account, :you => your_account,
:them => their_account }

puts “HASH”
puts “a_hash.each using |k, v| ...”
a_hash.each { |k, v| v.display }
puts

puts “a_hash.each_value ...”
a_hash.each_value { |v| v.display }
puts

puts “a_hash.each using |e| ...”
a_hash.each { |e| e[1].display }
puts

class Array
def each_plus_interest(rate)
for acct in self

(continued)

119Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 119

Listing 6-3 (continued)

acct.add_interest(rate)
yield acct

end
end

end

puts “ARRAY”
puts “an_array.each_plus_interest ...”
an_array.each_plus_interest(5.0) { |e| e.display }
puts

Listing 6-3 begins by defining the Account class. (To keep things simple, I
define identical Account classes in Listings 6-2 and 6-3.) After creating three
accounts (mine, yours, and theirs), Listing 6-3 combines the accounts into an
array (actually, into an_array).

A call to an_array.each sets interesting things into motion. Behind the
scenes, Ruby’s each method makes three yield calls — one call for each of
the three array elements. With every yield call, Ruby executes the { |e|
e.display } block. During the first yield call, the variable e stands for the
“Barry” account. So Ruby executes the “Barry” instance’s display
method. During the second yield call, Ruby displays the “Harriet”
instance. And during the third yield call, Ruby reveals Sam and Jen’s
finances. (See Figure 6-3.)

Figure 6-3:
Running the

code in
Listing 6-3.

120 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 120

After calling an_array.each, Listing 6-3 repeats the process using a hash.
In fact, Listing 6-3 repeats the process three times using the same hash.

� The first time, in a call to a_hash.each, Ruby distinguishes between
each entry’s key and value (each entry’s k and v). Each value is an
account, and Ruby calls the value’s display method.

� The second time, Listing 6-3 calls a_hash.each_value. Ruby’s each_
value method works only with hashes. When you call each_value, the
block’s parameter becomes a hash entry’s value (not an entire hash entry).

In Listing 6-3, the variable v becomes an account, so the call v.display
makes sense.

� The third time, Listing 6-3 calls a_hash.each. In this call, the block has
only one parameter (the variable e). So the variable e stands for an
entire hash entry (such as :me => my_account).

To isolate an account from an entire entry, the code calls e[1].display.
(For a hash entry e, the expression e[0] stands for the entry’s key, and
the expression e[1] stands for the entry’s value. Isn’t that convenient?)

Ruby iterators aren’t mysterious. In fact, you can write your own iterators.
For help, see this chapter’s “Open classes” section.

Finding iterators where
you least expect them
A listing in Chapter 5 contains this code:

3.times do
execute some statements

end

The code is so easy to read that you don’t pay much attention to it. But, in
fact, the code uses some nifty Ruby tricks.

For one thing, Ruby doesn’t have a special times loop. The word times is
the name of a method. When Ruby executes 3.times, the interpreter sends a
message to an object. In particular, the interpreter sends the times message
to the 3 object.

In Ruby, a number such as 3 is an object. Like other whole numbers, the
number 3 is an instance of Ruby’s Integer class. And objects have methods.
Every Integer instance (such as the number 3) has a times method.

121Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 121

In Ruby, you can form blocks using curly braces. (Refer to Listing 6-3.) But you
can also form blocks using the words do and end. When you write 3.times
do, Ruby does the same kind of thing that it does in Listing 6-3. Namely, Ruby
sends the times iterator message to the 3 object. In responding to the message,
the times method yields repeatedly to the do ... end block’s code.

Consider an example. You can display the word Ruby three times using either
curly braces or do and end.

3.times do
puts “Ruby”

end

3.times { puts “Ruby” }

You can even create a do ... end block with one or more parameters.

3.times do |x|
print x, “ “

end

When the times iterator performs a yield, the iterator passes a count
(starting with 0) to the applicable block. So the output of this 3.times do
|x| code is 0 1 2.

In most cases, you can flip a coin to decide how to create a block. “Heads, I use
curly braces; tails, I use do and end.” But a block enclosed in curly braces
isn’t exactly the same as a block created with the words do and end. The dif-
ference has to do with parameters — the parameters of the method to which
the block applies. If you don’t want to worry about the difference between
curly braces and do/end blocks, always enclose the method call’s parameter
list in parentheses. If you use parentheses, curly braces are the same as do
and end.

Enhancing Classes
If classes were fixed, inflexible things, object-oriented programming would be
a momentary fad. No one would see the need to use classes and objects.

But classes are very flexible. After creating a class, you can use, reuse, and re-
reuse the class. You can also modify the class in many useful ways. This section
describes only two such ways. (Object-oriented programming has many more
tricks up its virtual sleeve; but in this section, I cover only two.)

122 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 122

Open classes
Ruby has open classes. An open class is a class that obeys the old adage,
“It ain’t over ’til it’s over.”

Take, for example, Ruby’s built-in Array class. The Array class has many
methods — methods such as insert, delete, fill, and length. But the
Array class has no built-in each_plus_interest method. So Listing 6-3
adds its own each_plus_interest method to the Array class’s methods.
An open class, even a class that’s part of Ruby’s standard library, is always
“open for additional definitions.”

The each_plus_interest method in Listing 6-3 is an iterator. The method
calls yield for each account in the array. Each yield call defers temporarily
to an {|e| e.display } block, and the block displays an account with
interest added.

Being selfish
In the each_plus_interest method’s definition (Listing 6-3), the word
self refers to an_array. The word self (a Ruby keyword) refers to an
instance of the class in which the word appears. (What does that mean?
Read the next paragraph.)

In Listing 6-3, the word self refers to the array that receives the each_
plus_interest call. Imagine having ten arrays. Name them an_array,
another_array, yet_another_array, and so on. (Make up any names
you want. It doesn’t matter much.) When you call an_array.each_plus_
interest, the word self refers to an_array. Later in the code, if you
call another_array.each_plus_interest, the word self refers to
another_array. And so on.

At first, you might find the word self confusing. But if you think about it,
the word self in Ruby is very much like the word “self” in English. When I
say “self,” I refer to “Barry Burd.” When you say “self,” you refer to yourself
(whoever you are). Everyone who says “self” refers to a different person.
And in Ruby, every call to a method containing the word self refers to a dif-
ferent instance of a particular class. It’s hard to imagine how you’d write the
each_plus_interest method’s definition without using something like the
keyword self.

123Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 123

Defining subclasses
After defining a class, you can make things more specific by defining a
subclass. Consider the Employee class in Listing 6-1. A subclass of Employee
may be named FacultyMember. Another subclass of Employee may be
named StaffMember. The Employee class is the superclass of both the
FacultyMember and StaffMember classes.

In addition to having a name, a hiredate, and a salary, each FacultyMember
instance has rank and research_specialty values. In addition to having
a name, a hiredate, and a salary, each StaffMember has a sick_days
value. In the language of object-oriented programming, the FacultyMember
subclass inherits having a name, a hiredate, and a salary from its parent
class (from the Employee class). Similarly, the StaffMember class inherits
having a name, a hiredate, and a salary from the Employee class.

A class stands in an “is a” relationship with its superclass. A FacultyMember
is an Employee. A StaffMember is an Employee.

Inheritance is important. With inheritance, the person who writes the
FacultyMember code doesn’t have to write any code dealing with a name,
a hiredate, or a salary. The person writing the FacultyMember code
writes only the rank and research_specialty code. The FacultyMember
code inherits all the name, hiredate, and salary code from the parent
Employee class. Listing 6-4 has an example.

Listing 6-4: A Tale of Two Subclasses

require ‘date’

class Employee
def initialize(n, h, s)
@name = n
@hiredate = h
@salary = s

end

def display
printf(“%s\t%s\t$%5.2f”, @name, @hiredate, @salary)

end
end

class FacultyMember < Employee
def initialize(n, h, s, ra, rs)
super(n, h, s)
@rank = ra

124 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 124

@research_specialty = rs
end

def display
puts “Faculty member:”
super
printf(“\t%s\t%s”, @rank, @research_specialty)

end
end

class StaffMember < Employee
def initialize(n, h, s, si)
super(n, h, s)
@sick_days = si

end

def display
puts “Staff member:”
super
printf(“\t%s”, @sick_days)

end
end

hire_date = Date.new(2004, 10, 12)
employee =
Employee.new(“Buddy Burd”, hire_date, 2500.26)

hire_date = Date.new(1995, 3, 18)
faculty =
FacultyMember.new(“Bumper Burd”, hire_date,

4125.01, “Assistant Professor”,
“Computer Science”)

hire_date = Date.new(2006, 1, 1)
staff =
StaffMember.new(“Binky Burd”, hire_date, 1000.00, 24)

employee.display
print “\n\n”
faculty.display
print “\n\n”
staff.display

The less-than sign in FacultyMember < Employee means “is a subclass
of.” So in Listing 6-4, the FacultyMember class effortlessly inherits
the instance variables @name, @hiredate, and @salary from the
Employee class. You don’t write code to handle these variables in the
FacultyMember class. You simply use the variables with your newly
created FacultyMember class.

125Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 125

Creating an instance of a subclass
In Listing 6-4, the call to FacultyMember.new has five parameters. The first
three parameters match the inherited Employee variables, and the last two
parameters match the FacultyMember class’s own variables. To give values
to all these variables, the FacultyMember class’s initialize method does
two things:

� The FacultyMember class’s initialize method calls super(n, h, s).

The word super is a Ruby keyword. When you write super on its own,
Ruby calls a method in the superclass. (Ruby calls a superclass method
with the same name as the method containing the super keyword.)
So in Listing 6-4, the call super(n, h, s) triggers execution of the
Employee class’s initialize method. In turn, the Employee
class’s initialize method assigns values to the variables @name,
@hiredate, and @salary.

� The FacultyMember class’s own initialize method assigns values
to @rank and to @research_specialty.

A plain old Employee instance doesn’t have a @rank or a @research_
specialty. So the FacultyMember class itself assigns values to these
variables.

What is true of initialize methods is also true of the StaffMember class.
The only difference is that the StaffMember class has @name, @hiredate,
@salary, and @sick_days variables.

Using a subclass’s method
Each class in Listing 6-4 has its own display method. The faculty variable
refers to a FacultyMember instance. So when you call faculty.display,
Ruby executes the FacultyMember class’s display method.

When you call staff.display, Ruby executes the StaffMember class’s
display method. And the plain old Employee class doesn’t go away.
When you call employee.display, Ruby executes the original Employee
class’s display method. As proof, see Figure 6-4.

Figure 6-4:
Running the

code in
Listing 6-4.

126 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 126

Creating a Module
Each programming language provides ways of grouping code. Grouping is
important because, without grouping, a large programming project is a large
mess. In Ruby, you group code into modules. Listing 6-5 has an example.

Listing 6-5: Creating a Module

This is human_resources.rb
require ‘date’

module HumanResources
Today = Date.today;

class Employee
def initialize(n, h, s)
@name = n
@hiredate = h
@salary = s

end

def display
printf(“%s\t%s\t$%5.2f”, @name, @hiredate, @salary)

end
end

end

The so-called “group of code” in Listing 6-5 consists of only two things — a
Today constant and an Employee class. After defining this module, you can
use the module’s definitions in code outside of the module. Listing 6-6 shows
you how. (A run of the code in Listing 6-6 is shown in Figure 6-5.)

Listing 6-6: Using the Things Defined in a Module

require ‘human_resources’

class FacultyMember < HumanResources::Employee
def initialize(n, h, s, ra, rs)
super(n, h, s)
@rank = ra
@research_specialty = rs

end

def display

(continued)

127Chapter 6: Ruby Two’s Day

11_081204 ch06.qxp 11/30/06 11:11 PM Page 127

Listing 6-6 (continued)

puts “Faculty member:”
super
printf(“\t%s\t%s”, @rank, @research_specialty)

end
end

faculty =
FacultyMember.new(“Bumper Burd”,

HumanResources::Today,
4125.01, “Assistant Professor”,
“Computer Science”)

faculty.display

You can download Listings 6-5 and 6-6 from this book’s Web site. But if you
retype this code from scratch, put the code from Listing 6-5 in a file named
human_resources.rb. Also, put the code from both listings in the same
RadRails project.

Listing 6-6 begins with a require call. The call grabs the human_resources.
rb file’s code (the code in Listing 6-5). You can consider all the code in the
human_resources.rb file to be resting soundly at the top of Listing 6-6.

With the HumanResources module’s code at the top of Listing 6-6, the rest of
Listing 6-6 may use anything defined inside the HumanResources module.
The only caveat is that the code in Listing 6-6 must contain fully qualified
names. Instead of Employee and Today, you must write
HumanResources::Employee and HumanResources::Today.

If your fingers tire easily, you can avoid having to retype fully qualified names.
Type the line include HumanResources immediately below the require
call in Listing 6-6. If you do, Ruby assumes that HumanResources:: belongs
before any applicable names in the code.

Figure 6-5:
Bumper

rides again.

128 Part II: Creating Code

11_081204 ch06.qxp 11/30/06 11:11 PM Page 128

Chapter 7

Weaving the Web
In This Chapter
� Understanding the Hypertext Transfer Protocol

� Coding basic Web pages

� Coding Web forms

W hat do the initials WWW mean to you? Wee Willie Winkie? Which way,
Wanda? Where’s Walter’s wife? World Wide Web? If your answer is

“World Wide Web,” you’ve opened to the right chapter. This chapter describes
the secrets behind Web pages. The chapter emphasizes secrets that pertain
to Ruby on Rails developers.

The Working of the Web
What happens when you browse the Web? You sit in front of a computer, which
is called the client computer. The client computer runs a piece of software
(a Web browser). Because your browser runs on the client computer, your
browser is called the client program (or simply, the client).

With your keyboard and mouse, you issue commands to the browser. You’re
called the visitor because you visit a Web site. Another name for you is the
user, because you use the Web’s services.

Whatever you call yourself, the Web browser turns each of your commands
into a request and sends this request over the Internet to another computer
somewhere else in the world. The computer that receives the request is
called the server computer. The server computer runs a program called a Web
server. The server program analyzes the request and sends back a response.
(See Figure 7-1.) This response is typically a document known as a Web page.

12_081204 ch07.qxp 11/30/06 11:12 PM Page 129

Some Web pages are real documents. They sit on the server’s hard drive, wait-
ing to be sent along the Internet. They have filenames, such as index.html.
A page of this kind (a page that’s fully composed before a visitor makes a
request) is called a static Web page.

In contrast, many Web pages aren’t real documents. These pages don’t exist
until the server receives a visitor’s request. When the server receives a
request, the server composes one of these documents on-the-fly. A page of
this kind is called a dynamic Web page.

The Web developer’s point of view
The previous section describes the process from the visitor’s point of view.
Now look at it from the developer’s point of view.

The developer works on the local computer — the computer on his or her
desk. The developer creates and tests a Web page on the local computer.
During this testing phase, the local computer runs both the client software
and the server software. The flow of data is shown in Figure 7-2.

After testing a Web page, the developer deploys the page. The developer
copies (that is, uploads) the page from his or her local computer to a host
computer. The host computer’s server accepts requests from clients all over
the world. The page is finally “on the Internet.” This scenario applies to both
static and dynamic Web pages.

request

response

Client
computer

Server
computer

Client
program

Server
program

Figure 7-1:
Communi-

cation
between a

client and a
server.

130 Part II: Creating Code

12_081204 ch07.qxp 12/7/06 1:45 PM Page 130

The Hypertext Transfer Protocol
When you click a link, your computer’s Web browser sends a request out
over the Internet. The server interprets your request and prepares a
response. The server tosses the response back over the Internet. After a brief
delay, the response ends up at your computer (the client), where your Web
browser displays a page. The entire exchange — one request followed by a
response — is called a transaction.

The whole process depends on one important thing: The client and server
computers must share some common languages. The client needs to com-
pose a request that can be interpreted by the server, and the server must
compose a response that can be interpreted by the client. The Internet uses
dozens of shared languages, but the two most important ones are HTTP and
HTML. If you compare these languages with paper mail, HTTP is a language
for addressing envelopes, and HTML is a language for writing letters (the let-
ters inside the envelopes).

The acronym HTTP stands for Hypertext Transfer Protocol. Imagine a room with
no computers in it. The room has two whiteboards and a person standing at
each board. The person on the left side of the room writes the following text
on her board:

GET /pages/hello.htm

Client
computer

= Server
computer

Client
program

request

response

Server
program

Figure 7-2:
Client

software
and server

software
are both on

one local
computer.

131Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 131

The person on the other side of the room reads this text, thinks for a minute,
and then writes the following text on her whiteboard:

HTTP/1.0 200 OK
Last-Modified: Mon, 18 Dec 2006 14:35:52 GMT
Content-Type: text/html
Content-Length: 14

<h1>Hello</h1>

Words such as GET, OK, and Content-Type are words in the HTTP language.
So these two people are communicating using the Hypertext Transfer
Protocol.

The point of the story is that HTTP is a language. Like many other languages,
the medium used for communication is not cast in stone. It’s hard to imagine
using HTTP for anything but communication between computers over a net-
work, but other scenarios (using whiteboards, carrier pigeons, or whatever)
are certainly possible.

Web pages
The previous section refers to two languages — HTTP and HTML. A small
HTML document is shown in Listing 7-1.

Listing 7-1: The HTML Code in a Simple Web Page

<center>
<h1>Welcome to Burd Brain Consulting</h1>
<img src=”family2.jpg”

<i>”A Proud Family Tradition Since 2006”</i>

</center>

Your browser receives this text, interprets the text, and displays a nicely
arranged layout of words and images on your screen. The resulting display,
as it’s interpreted and rendered by your browser, is shown in Figure 7-3.

The document in Listing 7-1 describes the look and content of a page. The
user’s Web browser interprets the document, formulates a layout for the
page, and displays the formatted content on a user’s screen. The part of a
browser that does all this is called a layout engine. Each browser’s layout
engine works a bit differently, and the variations in displays from one
browser to another can plague a Web designer.

132 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 132

Figure 7-4 illustrates the role of a layout engine in the processing of a
response document. To emphasize the difference between the response doc-
ument and the layout engine’s display, we say that the browser creates its
own display on the user’s screen.

Layout
engine

<center><H1>Welcome to ...

From
the

server

Figure 7-4:
The role of
the layout
engine in

processing
a response
document.

Figure 7-3:
How your

browser
displays the

code from
Listing 7-1.

133Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 133

Your HTML Starter Kit
Listing 7-2 contains a basic Web page. The page’s code uses 10 or 20 of my
favorite HTML features.

Listing 7-2: A Page Filled with Tags

<html>

<head>
<title>This text appears in the
browser’s title bar</title>

</head>

<body>
<!-- This is a comment. A comment does
not appear in the browser window. -->

<h1>This is a level 1 heading.</h1>

<h2>This is a level 2 heading.</h2>

<h3>This is a level 3 heading.</h3>

This is bold <i>and this is both
bold and italic</i>.

<p>This is a paragraph of normal text.</p><p>Most
browsers separate paragraphs from one another by
putting a blank line between them.</p>

<p>Link to Barry
Burd’s Web site.</p>

This paragraph ends with a paragraph tag.
(In many cases, Web browsers don’t care if your
start tags and end tags don’t come in pairs.)<p>

Here’s a sentence.
This sentence appears on the same line as the
previous sentence!<p>

Here’s a sentence.
This sentence appears
on the line beneath the previous sentence.<p>

42 < 55 and 59 > 41<p>

© 2006 Wiley Publishing, Inc.

134 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 134

</body>

</html>

You can find out how your Web browser displays the text in Listing 7-2.
Here’s how:

1. Save the code in Listing 7-2 in a file on your computer’s hard drive.

Call the file whatever-you-want.html.

2. Find the file in your system’s file explorer.

In Windows, use My Computer or Windows Explorer.

3. Double-click the file’s icon.

Presto! Your Web browser opens, and you see the page in Figure 7-5.

Figure 7-5:
Testing the

code in
Listing 7-2.

135Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 135

You can also work in the other direction. That is, you can view the code that
your browser receives when the browser displays any Web page. To do so,
follow these steps:

1. Open your browser to almost any Web page.

2. Right-click a neutral place on the page (a place without an image or a
hyperlink).

If you’re a Macintosh user and, therefore, have no right mouse button,
click the View menu at the top of the screen.

3. In the resulting contextual menu, select View Source (or View Page
Source, or something like that).

Whichever Web browser you use, conjuring up a page’s source shows
you something like the text in Listing 7-2.

When your Web browser receives a page, the browser receives a bunch of
text. Much of this text is ordinary words (the text in a paragraph, for exam-
ple), but some of the text consists of elements — instructions telling the
browser how to display the ordinary words. These elements belong to the
HyperText Markup Language (HTML).

An HTML element consists of one or two tags. Each tag consists of some text
enclosed in angle-brackets (< >). An HTML document may have four kinds of
tags — start tags, end tags, comments, and declarations. The next few sec-
tions contain the details on these tags.

Start tags
A start tag has the form <tagname attribute attribute . . . >.

Listing 7-2 has several start tags, such as <html>, <p>, and <a href=
”http://www.burdbrain.com”>. Each start tag consists of a tagname
(such as html, p, or a) followed optionally by attributes.

An attribute gives specifics about the nature of the tag. For example, the tag
 is called an anchor start tag
(because the tagname, a, stands for the word “anchor”). Taken together,
the anchor start tag and its anchor end tag () form an anchor element.
An anchor element designates a link on a Web page, and the attribute
href=”http://www.burdbrain.com” specifies the URL of the link’s
target. (If you click the link, your Web browser visits the target page.)

The anchor tag’s href attribute follows a familiar pattern. This attribute has
the form key=”value” (where the key is href, and the value is http://
www.burdbrain.com). But other tags’ attributes may have different forms.
For examples, see the section “Using an option selector” in this chapter.

136 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 136

End tags, empty tags, and paired tags
An end tag has the form </tagname>.

Listing 7-2 has several end tags, such as </title>, </h1>, </p>, and so on.
As you might expect, an end tag denotes the end of something (the end of the
title, the end of a level 1 heading, the end of a paragraph, or the end of some-
thing else). An end tag has no attributes.

An end tags ends whatever a start tag starts. For example, in Listing 7-2, the
big level 1 heading starts with the <h1> start tag and ends with the </h1>
end tag. So start tags and end tags frequently come in pairs.

But a start tag without an end tag is like a man without a tuxedo. Some have
them, and some don’t. In the lower half of Listing 7-2, you find some start tags
(<p> and
) without corresponding end tags. A start tag without a corre-
sponding end tag is sometimes called an empty tag.

You rarely see an end tag without a corresponding start tag. But if you make
the mistake of putting a lonely, orphan end tag in your document, chances
are good that the Web browser will display something sensible. That’s how
HTML is supposed to work. If you make a mistake, the Web browser recovers
gracefully.

Taken together, a start tag, its end tag, and all the stuff in between are called
an element. For example, in Listing 7-2, the text starting with and ending
with is an element.

This is bold <i>and this is both
bold and italic</i>.

In addition, the portion of this text from the start tag <i> to the end tag </i>
is an element. An element within another element is called a nested element.
In Listing 7-2, the <i>. . .</i> element is nested inside the . . .
 element.

You can overlap elements without nesting them, as in the following code:

This is bold <i>and this is both
bold and italic, but this is
only italic.</i>

But this non-nested overlapping isn’t good form. To achieve a scattered mix
of bold and italic, use nested tags as follows:

This is bold <i>and this is both
bold and italic</i>, <i>but this is
only italic.</i>

137Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 137

The stuff between a start tag and its end tag, not including the tags them-
selves, is called content. In Listing 7-2, the <i> element’s content consists of
the words and this is both bold and italic.

If it feels good, do it
The HTML philosophy is loose as a goose. If your code contains errors, the Web
browser tries to live peacefully with them. Tagnames aren’t case-sensitive,
and the quotation marks surrounding attribute values are optional. (That is,
the quotation marks are optional unless the attribute value contains blank
spaces or other weird characters. The safest course is always to use quota-
tion marks.)

If you misspell a tagname or you mismatch angle brackets, the Web browser
doesn’t display any error messages. Instead, the browser may ignore the
improper tag and treat any mismatched brackets as normal text. For exam-
ple, have a look at the following bad HTML code:

<italick>This is text.</italic>> This is more text.

When a browser receives this code, the browser displays the following line:

This is text.> This is more text.

The browser ignores the misspelled <italick> start tag and displays the
extra greater-than sign (>) in the browser window.

The permissiveness of HTML is intentional. After all, a Web pages travels
from continent to continent. I might know 1 percent of the people whose Web
sites I visit (or maybe fewer). If someone in Australia makes a mistake on his
or her Web page, I shouldn’t get an error message on my screen in New Jersey,
USA. Let my Web browser deal with it. If I can read the text in spite of the
HTML errors, I might get whatever I need from the Web page.

Entities
Listing 7-2 contains three HTML entities. The entities are the codes <,
>, and ©. Each entity stands for something whose display on a Web
page is problematic. For example, the © entity stands for a copyright

138 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 138

symbol ©. (Refer to Figure 7-5.) The < and > entities stand for the
less-than and greater-than characters (< and >). Imagine not using the <
and > entities and putting the following bad code in your document:

b=12 and 2<b and b>10

The Web browser displays the following unwanted line of text.

b=12 and 210

The browser interprets <b and b> to be an HTML bold tag. (It’s a bold tag
with an and attribute and a b attribute. The browser ignores the two mean-
ingless attributes.) The browser doesn’t display any text inside the tag.
Instead, the browser displays the number 10 in bold.

The HTML standard defines plenty of useful entities. For more information,
visit www.w3.org/MarkUp.

Comments and declarations
An HTML comment begins with the characters <!-- and ends with the
characters -->. A Web browser ignores any text within the comment.
Comments are useful to people who read HTML code (because a comment
tells the reader what the author of the page intends the code to do).

Another tag that you might see in an HTML document is a declaration. For
example, at the top of an HTML document, you might see the following lines:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

These two lines form a DOCTYPE declaration. This declaration tells a Web
browser that the document conforms to strict HTML version 4.01 standards.
To this I sarcastically say, “Big deal!” Many HTML documents (including some
Ruby on Rails documents) don’t begin with a DOCTYPE declaration, and Web
browsers display these documents with no difficulties.

The DOCTYPE declaration represents an effort to enforce standards for HTML
documents. The effort is worthwhile, but many Web developers don’t follow
them. For now, the world and its Wide Web seem to be surviving with or with-
out the use of these standards.

139Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 139

140 Part II: Creating Code

HTML Elements
The hypertext markup language has approximately 100 different kinds of ele-
ments, and a typical element has many variations. If you read about all these
elements and variations, you’ll be bored to tears. So this section covers the
highlights — the 25 elements that are most useful to you as a novice Ruby on
Rails developer.

Many of these useful elements appear frequently in the Web pages that Rails
generates. Some of the elements don’t appear in generated pages, but you
probably want to use these elements to customize and enhance the gener-
ated pages.

Displaying images
An HTML image element is an empty tag. Listing 7-3 contains a one-line example:

Listing 7-3: An Image Tag

Listing 7-3 tells the Web browser to find a file named mypic.jpg which sup-
posedly contains image information. This image information is in the jpg
format — one of many different formats for storing images. (Other commonly
used Web image formats include gif and png.) If the file mypic.jpg isn’t
available, or if the file’s content doesn’t describe a displayable image, the
browser displays a rectangle containing the words Picture of me (the
alternate text).

Like other filenames, the names of image files are either relative or absolute.
A relative name describes a file’s location in terms of some other known loca-
tion. It’s like saying “Start where we’re standing, then go 2 miles north, and
then go 1 mile west. That’s where you’ll find the file.” Of course, in an HTML
document you don’t go 2 miles north. Instead, you may go down one level
from a known starting directory to a subdirectory named images. That’s
what the image tag in Listing 7-3 tells the browser to do.

The known starting directory may vary from one server to another. Normally,
this starting directory is a directory on the Web server’s hard drive. But your
mileage may vary. If you view a Web page as I suggest in the section “Your
HTML Starter Kit” (in this chapter), the starting directory is the directory
containing your .html document.

12_081204 ch07.qxp 11/30/06 11:12 PM Page 140

Instead of specifying a relative name, you can specify a file’s absolute name.
A tourist asks, “How do you get to Carnegie Hall?” And the old codger replies
“No matter where on earth you start, go to latitude 40.76477°N and longitude
73.97988°W.”

If you view a page as I suggest in this chapter’s “Your HTML Starter Kit” sec-
tion, an absolute name may be c:\Pictures\family_smiling_and_
waving.jpg. For an image on a Web server, the absolute name may be
http://www.burdbrain.com/book_cover.gif. One way or another, an
absolute name points to a file’s location without reference to any particular
starting point.

In many cases, relative names are better than absolute names. Imagine you
need more space on your c: drive. To free up some space, you move all your
Web pages and image files from the c: drive to the d: drive. (See Figure 7-6.)
Now, an absolute name, such as c:\myproject\public\images\mypic.
jpg, is no longer correct. (The absolute name points to the old c: drive.)

But a relative name, such as /images/mypic.jpg points from the Web site’s
new location (the new starting point in Figure 7-6) to the location of the
mypic.jpg file. That’s good!

c: drive

Old
starting

point

app

c:\myproject\public\images\mypic.jpg d:\myproject\public\images\mypic.jpg

config public

myproject

images

mypic.jpg

d: drive

New
starting

point

app config public

myproject

images

mypic.jpgFigure 7-6:
Moving

Web pages
from one

disk drive to
another.

141Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 141

Using tables to align things
If you’re a statistician or some other strange person, you think of a table as a
grid containing numbers. The grid’s visible border separates one cell from
another.

To a Web designer, however, a table is a place to align visual elements —
any elements at all. And nine times out of ten, a visible border adds an
unwanted, techie look. So Web designers often make their table borders
invisible. Listing 7-4 has an example.

Listing 7-4: An HTML Table

<table>

<tr>
<th>Item</th>
<th>Cost</th>
<th>Feeling</th>

</tr>

<tr>
<td>Tuition</td>
<td>$20,000</td>
<td></td>

</tr>

<tr>
<td>Books</td>
<td>$500</td>
<td></td>

</tr>

<tr>
<td>Room and board</td>
<td>$6,000</td>
<td></td>

</tr>

<tr>
<td>Peace and quiet</td>
<td>Priceless</td>
<td></td>

</tr>

</table>

142 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 142

The page resulting from the code in Listing 7-4 is shown in Figure 7-7. The
page contains a table with five rows and three columns. Accordingly, the
code in Listing 7-4 has five table row elements (<tr>. . .</tr>). Each
table row element (except the first) contains three table data elements
(<td>. . .</td>).

The first row of the table contains three table header elements (<th>. . .
</th>). A table header is like a piece of table data, but a header’s format is a
bit different. Most Web browsers display headers in bold and centered text.

If you want, you can restore visible borders to a table on a Web page. To make
a table’s border visible, add a border attribute to the table’s start tag.

<table border=”2”>

The larger you make the attribute’s number, the thicker the border.

Figure 7-7:
The table

defined by
the code in
Listing 7-4.

143Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 143

Creating an HTML form
Many Web pages contain forms. A form consists of some input fields and a
button. When you click the button, your browser sends the input fields’ data
to a Web server. Listing 7-5 contains the code for a simple form. Figures 7-8,
7-9, and 7-10 show you what happens when a user fills in the text field and
clicks the Search button on this form.

Listing 7-5: A Form with a Text Field

<form action=”http://www.google.com/codesearch”>
<label for=”terms_field”>Google Code Search</label>

<input type=”text” id=”terms_field” name=”q”
size=”55” maxlength=”2048”
value=”Type your search terms here.”>

<input type=”submit” value=”Search”>
</form>

Listing 7-5 consists of a single HTML form element. The start form tag contains
an action attribute — a URL pointing to the place on the Web that receives
all the form’s data. When you click the button on the form, your browser
sends the form’s data to the place designated by the URL of its action attribute.
In return, a Web server sends a new HTML document to your browser.

Figure 7-9:
The visitor
fills in the

form’s text
field.

Figure 7-8:
The form as

it initially
appears.

144 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 144

What I describe as the “place on the Web” that receives a form’s data is
actually a piece of code on a Web server. In Listing 7-5, the server belongs
to Google (Thanks, Google!) and the piece of code is a specialized search
engine. (The specialized search engine is Google’s Code Search engine.
The engine finds computer programs that match your search terms.
Nice, huh?)

If you work from the bottom of Listing 7-5 upward, you see an input tag with
attribute type=”submit” that represents a button. (Refer to Figure 7-8.) The
tag’s value attribute contains whatever text the browser displays on the face
of the button.

An input tag with attribute type=”text” represents a text field. (Again, refer
to Figure 7-8.) The tag’s size attribute contains a number. The browser displays
a text field whose width is large enough to display that number of characters
all at once.

The text field tag’s maxlength attribute also contains a number. The browser
allows a user to type up to that number of characters in the text field.

Figure 7-10:
Google’s

Web server
responds.

145Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 145

The text field tag in Listing 7-5 has id and name attributes.

� The id attribute allows other HTML code to refer to the text field.

For example, Listing 7-5 contains an HTML label element. This label
element’s for attribute has value terms_field. And whadaya’ know?
The <input type=”text” . . . tag has attribute id with value
terms_field. Is that a coincidence, or what?

Of course, it’s no coincidence. The matching of terms_field values
tells a Web browser that a particular label is for a particular field. In
other words, “Browser, this label is supposed to be a label for that text
field. So do me a favor, and display the label near the text field. Thank
you, browser.”

� The name attribute allows a Web server to identify the text field’s data.

When you click the button shown in Figure 7-9, your browser sends a
request to Google’s Web server. The request looks something like this:

http://www.google.com/codesearch?q=Ruby+Rails

You can see this request in the address field near the top of Figure 7-10.
The first part of the request (up to but not including the question mark)
comes from the action attribute in the form’s start tag. (Refer to
Listing 7-5.) The second part of the request (starting with the question
mark) comes from the stuff you type in the form’s text field. In Figure 7-9,
a user types Ruby Rails, so the Web browser appends ?q=Ruby+Rails
to the end of the request.

The name q comes from the name attribute in the text field’s input tag.
(Refer to Listing 7-5.) But in a sense, the name q originates in some cubi-
cle in an office building at Google. The people who developed Google’s
Code Search page decreed that they’d search for anything in a request
that comes after this name q. So when I created Listing 7-5, I named my
text field q.

The q=Ruby+Rails part of the request is called a parameter. Like many
other things in this book, a parameter consists of a name and a value.
In the parameter q=Ruby+Rails, the name is q, and the value is
Ruby+Rails.

The more fields a form has, the more parameters you find in the form’s
request. A question mark (?) signals the start of the parameter list. In a
request containing several parameters, the parameters are separated by
ampersands (&). For example, a request containing two parameters may
look like this:

http://www.google.com/search?hl=en&lr=&q=Rails

146 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 146

Using form elements
Listing 7-5 contains a form with a text field. That fine, but there’s more to life
than text fields. Forms may also include text areas, check boxes, and other
goodies.

Creating a text area
Nothing on a Web page can ever be quite as welcoming as a big, fat text area.
If the area could talk, it would say “Type your thoughts here. I’m a tabula
rasa. Fill me with whatever happens to be on your mind.”

Maybe you don’t romanticize text areas the way I do. One way or another,
you can examine the code that creates a text area. The code is in Listing 7-6,
and the display resulting from the code is shown in Figure 7-11.

Listing 7-6: Creating a Text Area

<form action=”http://chapter9photos.com” method=”post”>
<label for=”my_area”>Chapter 9 Photos</label>

<textarea id=”my_area” name=”description”
rows=”5” cols=”40”>Describe your photo here.

</textarea>

<input type=”submit”>
</form>

Figure 7-11:
A browser

renders the
text area of
Listing 7-6.

147Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 147

On a Web page, text areas and text fields look almost the same. But in an
HTML document, textarea elements and text field input elements are very
different. A textarea element has both start and end tags. In contrast, a text
field’s input element has no end tag. (See Listing 7-5.) The content of a
textarea element (the stuff between the start and end tags) is whatever
text is to be displayed initially in the text area.

148 Part II: Creating Code

Getting and posting
In your Web travels, you may notice a form tag
with a method=”post” attribute. The HTTP
protocol has several methods — methods
named get, post, delete, checkout, and
so on. In practice, most Web developers use
only the get and postmethods. And because
the default for an HTML form is the get
method, you seldom see the method=”get”
attribute in an HTML form tag.

Each method represents a slight variation on
the response expected of a Web server. In gen-
eral, you use the getmethod to retrieve a page
or other resource from a Web site, and you use
the post method to send data to a Web site.
For example, the form in Listing 7-5 uses the
get method. The user retrieves a page of
search hits from Google’s server. In the process,
no information is added to Google’s server.

Now imagine entering comments in a text area
labeled “Tell us in 25 words or fewer. . . .” Your
little essay becomes part of the server’s data-
base. In this case, the form containing the text
area probably uses the post method.

The get and post methods differ in several
other ways. A get form’s parameters appear as
part of a URL. (See the address field near the top
of Figure 7-10. The address field contains the
parameter ?q=Ruby+Rails.) In contrast, a
form using method=”post” sends its para-
meter information separately from the URL
(actually, in a big glob of text following the URL).
So with a get request, a form’s parameters are
more visible. A casual passer-by can see how

you filled out a form by examining the text in the
browser’s address field.

As a corollary from the previous paragraph,
forms with long-winded parameters tend to use
post rather than get. Imagine creating a get
form as part of an essay contest. With an essay
in a URL, the URL may look something like this:

http://www.chapter9photos.com
/?essay=It%27s+three+in+th
e+morning.+I%

27m+dreaming+about+the+histor
y+course+that+I+failed+in+
high+school.+

The+teacher+is+yelling+at+me%
2C+%22You+have+two+days+to
+study+for+th

e+final+exam%2C+but+you+won%2
7t+remember+to+study.+You%
27ll+forget+a

nd+feel+guilty%2C+guilty%2C+g
uilty.%22%0D%0ASuddenly%2C
+the+phone+ri

ngs . . .

That’s a cumbersome URL, so Web developers
tend to avoid such things.

Another difference between get and post is
idempotence. My aunt has a habit of saying
things several times. She doesn’t think you hear
her, so she repeats the same sentence over and
over again. “Become a bookkeeper. Do you
hear me? Bookkeepers make money. Become a
bookkeeper.” And a few minutes later, “Become
a bookkeeper.” What my aunt doesn’t realize is
that her career advice is idempotent.

12_081204 ch07.qxp 11/30/06 11:12 PM Page 148

Using an option selector
Every HTML element has a personality. If text areas are welcoming, option
selectors are demanding. An option selector says “Hey, stop stalling and
make a decision!” Listing 7-7 illustrates the use of an option selector.

Listing 7-7: Defining an Option Selector

<form action=”http://chapter9photos.com/”>
<label for=”choices”><h2>Your answer:</h2></label>

<select id=”choices” name=”answer”>
<option value=”1”>Purple</option>
<option value=”2”>Dogs and cats</option>
<option value=”3”>Bowling at midnight</option>
<option value=”4”>America in the 1950s</option>

</select>

<input type=”submit” value=”Submit”>
</form>

An HTML select element creates an option selector on a Web page. (See
Figure 7-12.) The select element contains one or more option elements.
Each option element describes an item that the user may choose.

149Chapter 7: Weaving the Web

The word idempotent applies to any operation
for which repeated applications have the same
effect as one application. The first time my aunt
says “Become a bookkeeper,” everyone gets the
message. But the second time she says it, no one
gets any new information. The same holds true
of the third time, the fourth, the fifth, and so on.

The getmethod is meant to be idempotent, and
the postmethod is not. If I ask the Google Code
Search engine once, twice, or ten times to search
for Ruby Rails, the Google server doesn’t
care. As far as the Google server is concerned,
one request to search Ruby Rails is the
same as ten requests. The server composes a
page of hits and then sends the page to the user.

But successive post requests tend to accumu-
late. Think about an online credit card transaction.
You click the Submit button once to purchase a
product. The page warns you not to click twice,
but you become impatient and you ignore this
advice. You click a second time, and then a third
time. Lo and behold! Your credit card statement
shows three separate purchases, and you
receive three specially bred hypoallergenic
cats in the mail! The online form sent post
requests to the e-commerce server, and the
post operation isn’t idempotent. Unlike my
aunt’s commands, the second and third button
clicks have measurable effects.

12_081204 ch07.qxp 11/30/06 11:12 PM Page 149

In Listing 7-7, each option element has a value attribute. When you click
the form’s Submit button, the Web browser sends the value of one of the
options to the server. For example, if you select Purple in Figure 7-12, the
browser sends the following request to the Chapter9Photos server:

http://chapter9photos.com/?answer=1

With the selector in Listing 7-7, a user can select only one item at a time.
If you want users to be able to select several items at once, add the word
multiple to the form’s start tag.

<select id=”choices” name=”answer” multiple>

This added word multiple creates a selector like the one in Figure 7-13.
When you click the Submit button on the form, the Web browser sends the
value(s) of one or more options to the server. For example, if you select the
two options highlighted in Figure 7-13, the browser sends the following
request to the Chapter9Photos server:

http://chapter9photos.com/?answer=1&answer=3

Figure 7-13:
Take your

picks
(as many as

you want).

Figure 7-12:
Take your

pick.

150 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 150

Creating check boxes
A check box is a handy form element. Check the box when you want to say
“yes”; uncheck the box when you want to say “no.” How convenient! This sec-
tion is about check boxes. Listing 7-8 has an example.

Listing 7-8: Can You Repeat the Question, Please?

<form action=”http://chapter9photos.com/”>
<h2>Your answers:</h2>

<input type=”checkbox” name=”A” value=”1”>
Purple

<input type=”checkbox” name=”B” value=”1”>
Dogs and cats

<input type=”checkbox” name=”C” value=”1”>
Bowling at midnight

<input type=”checkbox” name=”D” value=”1”>
America in the 1950s<p>

<input type=”submit” value=”Submit”>
</form>

Figure 7-14 shows you the check boxes you see when you visit the page in
Listing 7-8.

In Listing 7-8, each <input type=”checkbox” element has a start tag with
no end tag. Each start tag has a name and a value. If the user checks the
boxes with names A and C (as in Figure 7-14), the server receives a request
in the following form:

http://chapter9photos.com/?A=1&C=1

Figure 7-14:
Check a box,

or two, or
three, or four

(or none).

151Chapter 7: Weaving the Web

12_081204 ch07.qxp 11/30/06 11:12 PM Page 151

Mining for hidden fields
A Web page may have invisible elements — secret gremlins that lurk beyond
your view. Listing 7-9 unveils one of these hidden fields.

Listing 7-9: What You Don’t See . . .

<form action=”http://chapter9photos.com/”>
<h2>Your answers:</h2>

<input type=”checkbox” name=”A” value=”1”>
Purple

<input type=”checkbox” name=”B” value=”1”>
Dogs and cats

<input type=”checkbox” name=”C” value=”1”>
Bowling at midnight

<input type=”checkbox” name=”D” value=”1”>
America in the 1950s<p>

<input type=”hidden” name=”user’s blood type”
value=”Bpos”>

<input type=”submit” value=”Submit”>
</form>

When a Web browser receives the form in Listing 7-9, the browser displays
the form as you see it in Figure 7-14. In other words, the displays of Listings
7-8 and 7-9 are identical. But behind the scenes, the form in Listing 7-9 sends
an additional parameter to the Web server. If the user checks the first of the
four boxes, the request sent to the Web server looks like this:

http://chapter9photos.com/?A=1&user%27s+blood+type=Bpos

The request contains two parameters — one for the checked box, and
another for the hidden field.

In the URL with the hidden field’s parameter, the field’s name uses URL
encoding. In a URL, a real apostrophe character (‘) may be mistaken for the
start of a quoted string. But in Listing 7-9, the apostrophe is just an apostro-
phe. (The name of the field contains the word user’s — a possessive noun.)
To avoid confusion, the Web browser encodes the apostrophe as %27. The
number 27 is the hexadecimal value of the ASCII code for an apostrophe
character.

On most reputable Web sites, the use of hidden fields is a legitimate practice.
A hidden field stores useful information that’s of no interest to the user. Of
course, the same is not true of disreputable Web sites. On a malicious Web
page, a tag such as <input type=”hidden” name=”sucker number”
value=”18272938”> stores nothing but bad news.

152 Part II: Creating Code

12_081204 ch07.qxp 11/30/06 11:12 PM Page 152

Part III
Real Rails

13_081204 pt03.qxp 11/30/06 11:12 PM Page 153

In this part . . .

In Parts I and II, you might have become tired of all the
preliminaries. You want to dig in, get your hands dirty,

and put all those preliminaries to good use.

If that’s how you feel, you’ve opened to the right page!
Part III presents several working Web applications using
Ruby on Rails. You can download the code and run them
on your computer. You can tweak them, customize them,
or rewrite them completely to build an application that
suits your needs.

Hey, you bought the book, so let your imagination soar. Go
crazy with this stuff!

(If you borrowed the book or bought it at a heavily
discounted price, don’t go too crazy. Try to be a bit
restrained. Thanks.)

13_081204 pt03.qxp 11/30/06 11:12 PM Page 154

Chapter 8

Action-Packed Adventures
In This Chapter
� Watching the controller interact with the view

� Passing information between the controller and the view

� Dividing a task into several different files

The material back in Chapter 3 involves a lot of magic. When you click a
Finish button, Rails creates 35 folders and 45 files. Later in the process,

Rails creates Web forms and updates databases. And to get all this functional-
ity, you write only five lines of code.

So what’s the trick? What does Rails do behind your back to make all this wiz-
ardry happen?

This chapter reveals one part of the magic; namely, the interaction between a
controller and its view.

Model/View/Controller
Imagine that you chair a committee whose members are writing a big report.
How do you divide the work? There are good ways and bad ways to assign
tasks.

As committee chair, you can decide to do all the work yourself. This saves you
the headache of having to delegate tasks. Committee members don’t have to
contact one another to coordinate their work and check the consistency of
their contributions. In the end, no one has to paste parts of the report
together. But writing the entire report might overwhelm you. You might have
trouble keeping all the facts in your head while you juggle sections 6, 7, 10,
and 20 in the huge volume of material.

14_081204 ch08.qxp 11/30/06 11:12 PM Page 155

Another approach is to divide the report into words. The committee has three
members, so have each member write every third word. This is definitely a
bad idea. If the Gettysburg address had been written this way, Lincoln would
have written “Four,” “seven,” and “our” himself. His speechwriter would have
written “score,” “years,” and “fathers,” and his wife, Mary Todd, would come
up with the words “and,” “ago,” and “brought.” Not a good situation.

In matters related to computing, the situation is even more complicated. The
old days when a program was one monolithic chunk of code are gone forever.
These days, you have a database in California, an accounting department in
New York, and users all over the world. What’s the best way to partition the
system?

In the late 1970s, the Smalltalk team at Xerox PARC developed the Model/
View/Controller (MVC) concept. The idea is to separate an application’s data
from the presentation of the data. The code to display the data doesn’t mix
with the code to compute the data.

I’ve seen this principle in action in my very own home. When my son was in
fifth grade, he started writing school reports by using Microsoft Word. I’d
watch him type a sentence and then adjust the margins. Then he’d prepare to
center the next sentence and fish around for a fancier font. By the time he
found the right formatting menus, he’d forgotten what he wanted to say.
With this mixing of formatting and content, he couldn’t devote full attention
to the ideas he was trying to express. I advised him to separate the content
and presentation tasks — that is, to write the words first and then go back to
format the paragraphs in the report.

In MVC terms, an application’s data is called the model, and the presentation
of the data is called the view. The model belongs in one part of the code, and
the view belongs in another. For a very large project, one team of program-
mers writes code to develop the model, and another team writes code to
develop the view. Each team applies its expertise to the task. More importantly,
each team worries about its specific problems. The team that computes the
millionth digit of pi doesn’t worry about the font used to display that digit.
And the team that shapes a neon tube into the digit 1 doesn’t worry about
the formula used to calculate that millionth digit of pi. When a company mod-
ernizes its equipment (going from an old neon sign to a modern LED display),
the calculation team doesn’t want to compute the digits of pi all over again.
The millionth digit doesn’t change, no matter how the company chooses to
display that digit. So questions about the calculation of the data and the dis-
play of the data should be separate from one another.

Models and views are passive things. Each of these things sits around waiting
for someone to request its services. So to do anything useful, you need more
than a model and a view. You need something that says, “I just got a request
to display today’s weather forecast. I’ll get the forecast from the model and
tell the view to display the forecast.” The thing that says all this is called a
controller. A controller is the mover and shaker in the MVC architecture.

156 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 156

The controller waits for a user request (a button click, or something like
that). When a request arrives, the controller gets some required data from
the model or tells the model to modify some data. Then the controller fires
up the view. The view displays the data in a way that keeps the user happy.

This chapter sets the model aside and focuses heavily on the controller and
the view. The controller and view go hand in hand, like Gilbert and Sullivan,
or Rimsky and Korsakov. So intimate is the controller-view relationship that
Rails combines the two into one component: the Action Pack.

Creating a controller and a view
I searched far and wide for the simplest example to illustrate the relationship
between a controller and a view. After decades of research, traveling on foot
across several continents, I found a nice, little, Ruby on Rails example.
The example doesn’t do anything astounding. (It displays the words Your
Shopping Cart in a Web browser. Wow!) But the example illustrates how
controllers and views cooperate to form an application.

To see the example, follow these steps:

1. Create a Rails project named myproject.

For details on creating a Rails project, see Chapter 3.

2. In the Generators view of RadRails, generate a controller named
ShoppingCart with an action named show. (See Figure 8-1.)

As in Figure 8-1, make the following choices:

• In the Generators view’s drop-down list, select Controller.

• Among the radio buttons, select Create.

• In the text field, type ShoppingCart show.

The controller’s name is ShoppingCart, and the controller defines
an action named show. An action is something that a controller can
do. For example, the controller in Chapter 3 (the scaffold) has
many actions — actions named new, list, show, destroy, and
some others.

• Leave the check boxes deselected.

Figure 8-1:
Generating

a controller.

157Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 157

When you click Go, RadRails creates a new file named shopping_cart_
controller.rb. For more details on generating a controller, see
Chapter 4.

3. Open the myproject\app\controllers\shopping_cart_
controller.rb file in a RadRails editor.

For details about opening a file for editing, see Chapter 4.

RadRails displays the code inside the new controller. (See Figure 8-2.)
Notice the words def show in the controller code. These words
(along with some other stuff) make it possible for a user to visit
http://localhost:300x/shopping_cart/show.

When I write localhost:300x, the x stands for a digit. For the Web
server in your first Rails project, the URL contains localhost:3000.
For the Web server in your second Rails project, the URL contains
localhost:3001. RadRails adds 1 to the port number for every newly
created Web server.

4. Open the myproject\app\views\shopping_cart\show.rhtml file
in a RadRails editor.

Again, for details about opening a file for editing, see Chapter 4.

You might be accustomed to seeing html files but not rhtml files.
The r in rhtml isn’t a typo. After all, this is a Ruby book. You can
expect a few extra Rs here and there.

5. In the show.rhtml file, type <h1>Your Shopping Cart</h1>, as shown
in Figure 8-3.

If you’re familiar with HTML (HyperText Markup Language), you recog-
nize the <h1> </h1> tags as a pair of “heading level 1” tags. This is one
of the basic building blocks for all Web pages.

6. Save your changes in the show.rhtml file.

For details on saving an edited file, see Chapter 4.

Figure 8-3:
A very

simple view.

Figure 8-2:
A new

controller.

158 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 158

7. Visit http://localhost:300x/shopping_cart/show.

For details on visiting a URL in RadRails, see Chapter 4.

In the browser window, you see the display shown in Figure 8-4.

I admit — you’ve done a lot of work just to display Your Shopping Cart in
a browser window. Without Rails and with a modest Web development tool,
you can generate the same display in just a few steps. In fact, if you’re not
fussy about the display medium, you can write “Your Shopping Cart” on
paper in two seconds!

Good technology can turn an easy task into a difficult task. Imagine living in
the suburbs and trying to visit your neighbor’s house. You can walk there in
less than a minute. Or you can look for your car keys, start up the car, back
out of your driveway, pull into your neighbor’s driveway, and remember to
lock the car door as you head for your neighbor’s front door. What a hassle!
A car represents good technology, but a car is overkill if you’re performing a
very small transportation task. In the same way, Rails is great technology.
But Rails is overkill for developing a simple, unchanging Web page.

Wait! I shouldn’t be complaining about how useless this example is! This first
example offers a first insight into the relationship between a controller and a
view. The second insight (and the third, the fourth, and so on) comes in the
remainder of this chapter.

Why you shouldn’t rename files
In this section’s example, you find out more about the view/controller part-
nership. In particular, you discover how the names of the files affect that
partnership.

You don’t create a cool Web application by following the section’s steps. On
the contrary, you intentionally change something and watch your application
stop working. All Rails developers make mistakes and do things that break
their applications. I figure you should break at least one application while
you read this book.

Figure 8-4:
The page

presented by
a controller
and a view.

159Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 159

Try the following experiment:

1. If you haven’t already done so, create the ShoppingCart controller
by following the steps in the preceding section.

2. In the Rails Navigator view, right-click the myproject\app\
controllers\shopping_cart_controller.rb branch.

3. In the resulting contextual menu, choose Rename.

4. Make a minor change in the name of the shopping_cart_
controller.rb file.

For example, add a letter x so that the name becomes
xshopping_cart_controller.rb.

5. Press the Refresh button in the RadRails Web browser.

The Refresh button is on the browser’s toolbar, which is shown in
Figure 8-5.

After pressing the refresh button, you no longer see the friendly
“Your Shopping Cart” page. Instead, you see an error message like
the one shown in Figure 8-6. Without a file named shopping_cart_
controller.rb, Rails can’t find the controller. And without the controller,
you can’t visit http://localhost:300x/shopping_cart/show.

6. Repeat Steps 2–4, changing the file back to its original
shopping_cart_controller.rb name.

7. Press the Refresh button in the RadRails Web browser.

After you restore the file’s original name, the browser displays the nice
Web page in Figure 8-4.

Figure 8-6:
Up a creek

without a
controller.

Refresh button

Figure 8-5:
The RadRails

browser’s
toolbar.

160 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 160

You can redo the entire experiment and rename the myproject\app\
views\shopping_cart\show.rhtml file. The results aren’t as drastic,
but you still don’t get the nice page of Figure 8-4. (Try it!)

The Rails Way of Life
The earlier “Creating a controller and a view” section’s experiment illustrates
two key features of Ruby on Rails.

Convention over configuration
In the experiment, several similar-but-not-exactly-identical names are related
to one another. Something named ShoppingCart is defined inside a file named
shopping_cart_controller.rb. You use the ShoppingCart code when
you visit a URL containing the name shopping_cart (the URL http://
localhost:300x/shopping_cart/).

In addition, the controller contains def show (which defines an action named
show). The action’s view is in a file named show.rhtml, and you use the show
action when you visit http://localhost:300x/shopping_cart/show.

In many non-Rails frameworks, the names you choose for these things are
meaningless. The non-Rails system doesn’t assume that something named
ShoppingCart has anything to do with a URL containing the characters
/shopping_cart/. To tell a non-Rails system how all these names are
related, you have to create a configuration file. The file might look something
like Listing 8-1.

Listing 8-1: A Non-Rails Configuration File

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- You don’t do this in Rails -->
<controller name=”ShoppingCart”

file_name=”shopping_cart_controller.rb”
url_mapping=”/shopping_cart/”>

<action name=”show” url_mapping=”/show”>
<view file_name=”show.rhtml”/>

</action>
</controller>

The file in Listing 8-1 looks very official, but it’s really a big bag of wind.
Forcing the developer to write this configuration file is a bad idea. For one
thing, configuration files can become very complicated. A typical Web appli-
cation can involve dozens of configurable items, and if all the items aren’t
specified correctly, the application doesn’t work at all.

161Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 161

Besides that, having a big, hairy configuration file isn’t usually necessary. If
Rails can figure out on its own that ShoppingCart handles a visit to any
/shopping_cart/ Web page, there’s no reason for having a configuration
file to help connect the dots.

Rails shuns configuration files in favor of naming conventions. If you name
a controller ShoppingCart and put the controller’s code in a file named
shopping_cart_controller.rb, Rails connects the controller with Web
pages whose names include /shopping_cart/. Similarly, if you name a
controller TheBoss (in a file named the_boss_controller.rb), Rails con-
nects the controller with Web pages whose names include /the_boss/.
If you define an action named show (by writing def show inside a con-
troller’s code), Rails connects the action with Web pages whose names
include /show. Then Rails looks for a file named show.rhtml. With Rails,
you don’t have to configure these relationships. They’re all created automati-
cally with the Rails naming conventions.

In certain situations, you might not have the luxury of using all the Rails
naming conventions. You might be working with someone else’s rotten old
code (also called legacy code), and in that old code, names like George for the
controller and Gracie for the Web page are cast in stone. In that case, Rails
gives you the option of overriding its naming conventions, and manually
configuring the way things like controllers connect to things like Web pages.
For details, see this book’s Web site.

Don’t Repeat Yourself (DRY)
Look again at the non-Rails configuration file in Listing 8-1 of the preceding
section. Assume that you’ve written ShoppingCart controller code and that
you put this code inside a shopping_cart_controller.rb file. A line in
the configuration file

file_name=”shopping_cart_controller.rb”

connects the ShoppingCart controller with the shopping_cart_con-
troller.rb filename.

Then, if you want to change the filename, you have to do two things:

� Perform renaming steps, such as Steps 2–4 in the “Why you shouldn’t
rename files” section.

� Edit the configuration file to reflect the filename’s change.

There’s plenty of room for error, because one piece of information is stored in
two different places. The controller file’s name is stored in your computer’s
file system, and the name is duplicated inside a configuration file. If you change

162 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 162

a name in one place, you have to remember all the other places where the name
is stored, and you must change all those other places without introducing
new errors. It’s like changing your phone number and having to call everyone
who has your old number. No matter how careful you are, someone’s going to
lose track of you (and, of course, it won’t be a telemarketer).

The trouble starts when one piece of information is repeated in two or more
places. With the name shopping_cart_controller.rb in your computer’s
file system and with the same shopping_cart_controller.rb name in a
configuration file, you’re repeating yourself unnecessarily. This repetition leads
to errors. So the Rails philosophy is Don’t Repeat Yourself (abbreviated DRY).
Any information that the system can deduce from naming conventions
should be settled once and for all by using naming conventions. The devel-
oper shouldn’t have to make up new names for all the related Ruby code,
files, and URLs.

Writing What You Want
Where You Want It

In the next several sections, you play tricks with a Rails application’s output.
These tricks turn out to be useful for designing Web sites.

Sending text to the console
The controller and the view can display messages. Often, these messages
help you understand how these two components work. Here’s how you get
the controller and view to display information:

1. If you haven’t already done so, create the ShoppingCart controller
by following the steps in this chapter’s “Creating a controller and a
view” section.

2. Add puts ‘I am the controller.’ to the show action in
shopping_cart_controller.rb.

Repeat Steps 4–6 in the “Creating a controller and a view” section. But
this time, open the myproject\app\controllers\shopping_
cart_controller.rb file in a RadRails editor and add the new line
of code immediately after the def show line, as follows:

def show
puts ‘I am the controller.’

end

163Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 163

164 Part III: Real Rails

3. Add <% puts ‘I am the view.’ %> to the myproject\app\views\
shopping_cart\show.rhtml file.

If you add this line to the <h1>Your Shopping Cart</h1> line from
the “Creating a controller and a view” section, the show.rhtml file now
contains the following text:

<h1>Your Shopping Cart</h1>
<% puts ‘I am the view.’ %>

4. Press the Refresh button in the RadRails Web browser.

At this point, pressing the refresh button is uneventful. The browser
repaints itself, showing the same Your Shopping Cart message.
Where did all that puts ‘I am’ text go?

5. Look at the Console view (see Figure 8-7).

The Console view logs the Web server’s activity. In addition, the Console
view displays the result of the controller’s and view’s puts commands.
The puts commands supply information to whoever administers the
server — not to the person who visits the Web site.

This step deals with two (unrelated) things named “views.” The Console
view is part of the RadRails IDE. But the view in Step 3 (the view contain-
ing a puts command) is a Ruby on Rails component.

Ruby’s puts command sends a line of output to a console of some sort. In
this case, the lowercase word console stands for a place that displays plain
text, often a place that displays log messages and error messages. Depending
on what you’re doing, the RadRails Console view or your systems command
window qualify as consoles of one sort or another.

In its essence, the shopping_cart_controller.rb file contains an ordinary
Ruby program. So in shopping_cart_controller.rb, the puts command
is happy to send text to the RadRails Console view.

But, in the case of the show.rhtml file, the situation is a bit different. Like
any other Web document, the show.rhtml file normally sends stuff to a Web
browser’s screen. However in this example, you want I am the view to go
to the RadRails Console.

Figure 8-7:
The Console

view
responds to

Ruby puts
commands.

14_081204 ch08.qxp 11/30/06 11:12 PM Page 164

So you need a way of saying “Execute this puts command as an ordinary
Ruby command. Do whatever puts ‘I am the view.’ would do in an
ordinary Ruby program.” That’s what the <% %> characters say in the
show.rhtml file. (See Step 3.) Putting <% %> around puts ‘I am the
view.’ says “Don’t display the words puts ‘I am the view.’ in the Web
page. Instead, interpret puts ‘I am the view.’ as a Ruby command.
Do whatever you’d do if you encountered this puts command inside a Ruby
program.” And indeed, in Step 5, you see that the words I am the view
appear inside the RadRails Console view.

These <% %> characters are part of ERb, which is a kind of Embedded Ruby.
Using ERb (or other kinds of Embedded Ruby), you can mix Ruby commands
with assorted HTML tags. For more about ERb, see the section entitled “The
Controller Shakes Hands with the View” in this chapter.

The art of Web server redirection
You can make a Web server jump from one action to another action.
Here’s how:

1. If you haven’t already done so, create the ShoppingCart controller
by following the steps in this chapter’s “Creating a controller and a
view” section.

2. Using a RadRails editor, add a new action named display_cart to
the controller’s code.

Add the display_cart action as follows:

class ShoppingCartController < ApplicationController
def show
end

def display_cart
puts ‘I am the display_cart action’
redirect_to :action => “show”

end
end

3. Visit http://localhost:300x/shopping_cart/display_cart.

The server plops the words I am the display_cart action into
the RadRails Console view. After that, the server calls the show action.
In the Web browser window, you see the show page (as shown earlier in
Figure 8-4). And in the Web browser’s address field, you see /shopping_
cart/show. The server has shifted, thoroughly and completely, to the
controller’s show action.

165Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 165

Making the controller do the work
Rails supports two kinds of rendering:

� Automatic rendering: When the view renders something (as in the
“Creating a controller and a view” section)

� Manual rendering: When the controller renders something

Without doing some extra work, you can’t have both automatic and manual
rendering. Whenever the controller renders something, the view remains
completely dormant. This section’s experiment brings the idea home.

1. If you haven’t already done so, create the ShoppingCart controller
by following the steps in this chapter’s “Creating a controller and a
view” section.

2. Using a RadRails editor, add a line of code to the show action in
shopping_cart_controller.rb.

Add the new line of code immediately after the def show line, as
follows:

def show
render :text => ‘<h1>The controller rules!</h1>’

end

Again, for details about opening a file for editing, see Chapter 4.

3. Press the Refresh button in the RadRails Web browser.

The browser repaints itself, showing The controller rules! as a big
level 1 heading. But you no longer see the view’s Your Shopping Cart
heading. (See Figure 8-8.)

If you followed the steps in the “Sending text to the console” section, you
can check the Console view. After this section’s experiment, the console
still displays I am the controller, but the console no longer displays
I am the view.

Figure 8-8:
The

controller
does all the

rendering.

166 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 166

The Controller Shakes
Hands with the View

This section shows you how to pass values from a controller to a view and
from a view to a controller.

1. If you haven’t already done so, create the ShoppingCart controller
by following the steps in this chapter’s “Creating a controller and a
view” section.

2. Using a RadRails editor, add two lines of code to the show action in
shopping_cart_controller.rb, placing them between def show
and end, like so:

def show
@item = “Book: Ruby on Rails For Dummies”
@price = 20.00

end

3. Add one line of code to the
myproject\app\views\shopping_cart\show.rhtml file.

It doesn’t matter where you put the new line, but the most cosmetically
pleasing place to put the line is after the level 1 heading.

<h1>Your Shopping Cart</h1>
<%= @item %>
<%= number_to_currency(@price) %>

4. Press the Refresh button in the RadRails Web browser.

The browser repaints itself, showing an item’s name and price. (See
Figure 8-9.)

This section’s example involves some cryptic-looking symbols. But the basic
idea isn’t mysterious. The controller defines two variables named @item and
@price. The controller also assigns values to these variables. Then the view
uses these values inside <%= %> symbols.

Figure 8-9:
It would be

cheap at
twice the

price.

167Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 167

The <%= %> symbols are a variation on the <% %> symbols from this chap-
ter’s “Sending text to the console” section. (Like the <% %> symbols in the
“Sending text to the console” section, these new <%= %> symbols are part of
ERb.) The added equal sign in <%= %> says “Evaluate the stuff between <%=
and %> as if all that stuff is part of a Ruby program. Then replace this entire
<%= %> business with that stuff’s value.”

So, in the code of Step 3, the server does the following:

� Substitutes @item with its value, and substitutes @price with its
value: So effectively, the second line in Step 3 becomes

<%= “Book: Ruby on Rails For Dummies” %>

<%= number_to_currency(20.00) %>

� Interprets number_to_currency(20.00) as meaning “20.00”
instead of “20”, “20.0”, or “20.00000”: After all, US currency has two
digits to the right of the decimal point. Effectively, the second line in
Step 3 becomes

<%= “Book: Ruby on Rails For Dummies” %>

<%= “20.00” %>

� Replaces each <%= %> tag with the value between the <%= %> sym-
bols: So effectively, the second line in Step 3 becomes

Book: Ruby on Rails For Dummies
20.00

The line Book: Ruby on Rails For Dummies
20.00 can be part of any ordi-
nary Web page — Rails or no Rails. Any Web browser interprets this as an
instruction to display Book: Ruby on Rails For Dummies, then break to the
next line (with the
 tag), and then display 20.00. (For more information,
see Chapter 7.)

After all the substitutions, the <%= %> tag fizzles into nothing but plain old
HTML code. That’s good because the server sends this code to people’s Web
browsers, and Web browsers deal with plain old HTML code.

Here’s an FAQ with only one question in it: Why do you need the <%= %>
symbols at all? Why can’t you write

@item
number_to_currency(@price)

in the show.rhtml file? (Okay, that’s two questions. But the second question
clarifies the first question.)

Here’s the answer: If you omit the <%= %> symbols, then, when you visit the
Web page, you see the stuff in Figure 8-10. The Web server doesn’t treat
@item and number_to_currency(@price) as Ruby program expressions.
Instead, the server takes each of these things at its face value, displaying the

168 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 168

text @item and number_to_currency(@price) on the Web page. The only
time any evaluating happens is when your Web browser interprets
. All
Web browsers interpret
 tags as forced line breaks.

Using parameters
In this section, you make the shopping cart example a bit more like a real
Web page. The section’s code uses a Ruby hash — a structure created with
curly braces and funny-looking arrows (=>).

If you feel queasy about Ruby hashes, be sure to read the section on hashes
in Chapter 5. (I’d explain that stuff here, but I don’t want to “rehash” all the
material from Chapter 5!)

1. If you haven’t already done so, follow the steps in this chapter’s
“The Controller Shakes Hands with the View” section.

2. Using a RadRails editor, modify the show action in the
shopping_cart_controller.rb file as follows:

def show
@item = params[:item]

price_of =
{‘Book’ => 20.00, ‘Shirt’ => 15.00, ‘Cup’ => 10.00}
@price = price_of[@item] || 0.00

end

3. Visit http://localhost:300x/shopping_cart/show?item=Book.

The Web browser displays a page like the one shown in Figure 8-9.

4. Visit http://localhost:300x/shopping_cart/show?item=Shirt.

The Web browser displays a page like the one shown in Figure 8-9. But this
time, the text on the page is Shirt $15.00 instead of Book $20.00.

5. Visit http://localhost:300x/shopping_cart/show?item=Cat.

The Web browser displays a page like the one shown in Figure 8-9. But
this time, the text on the page is Cat $0.00 instead of Book $20.00.
(Cats are free.)

Figure 8-10:
Oops! That’s

not what
you want.

169Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 169

This section’s example relies on two kinds of tricks — the covert (behind-the-
scenes) kind of trick and the overt (you-see-all-the-code) kind of trick.

� The covert trick involves parameters. A parameter is an old-fashioned
Web page trick — a way of sending information on the fly as part of a
request for a Web page. If you look at your browser’s address field after
searching for Rails, you might see

http://www.google.com/search?hl=en&q=Rails

The URL has two parameters — one for the language (hl=en) and another
for the query (q=Rails). For more about parameters, refer to Chapter 7.

In the URL of Step 3 of the “Using parameters” example, the text
?item=Book creates one parameter. Rails takes this single parameter
and uses it to create a Ruby hash. Rails sends the new hash to the con-
troller’s show action. It’s as if someone types

params = {:item => ‘Book’}

except that the server builds the params hash behind the scenes.
(See Figure 8-11.) So the expression params[:item] stands for the
value ‘Book’.

When the server builds the params hash, the server executes code
that’s a bit more complicated than params = {:item => ‘Book’}.
But that’s not worth worrying about here.

� The overt trick in this section’s example is the substitution of values
in the code of Step 2 of the “Using parameters” example. The substitu-
tion story is illustrated in Figure 8-12. The expression params[:item]
has the value ‘Book’, so @item has the value ‘Book’, and
price_of[@item] has the value 20.00.

When all is said and done, @item has the value ‘Book’ and @price has
the value 20.00. This brings you back to where you were in Step 2 of this
chapter’s “The Controller Shakes Hands with the View” section. From that
point on, the view displays Book and 20.00, as it does in Figure 8-9.

The only loose end in this example is the || 0.00 stuff of the code in Step 2
of the “Using parameters” example. This is the way a Ruby programmer
makes 0.00 be a default value. The two bars (||) stand for the “or” operation.
So the statement

@price = price_of[@item] || 0.00

says the following: “Make @price be price_of[@item] or, if the @item is a
Cat and there’s no price_of[‘Cat’], make @price be 0.00.” For more
details, see Chapter 5.

170 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 170

Rails says that the value of
params [:item] is 'Book'

params = {:item => 'Book'}

'Book'

'Book'

'Book'
20.00

The controller assigns the
value 'Book' to the variable
@item

@item = params[:item]

20.00

The controller assigns the
price_of a 'Book' to the
variable @price

@price = price_of[@item]Figure 8-12:
How @item

gets to be
‘Book’ and

@price gets
to be 20.00.

http://localhost:3002/shopping_cart/show?item=Book

class ShoppingCart

def show
params = {:item => 'Book'}

Figure 8-11:
The server
builds the
params

hash.

171Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 171

Getting parameters from a form
I really like the preceding section. But in all honesty, I have to admit some-
thing. No one in his or her right mind wants to type ?item=Book in a Web
browser’s address field. Typing ?item=Book defeats the whole purpose of
having Web pages. Besides, the less a user knows about a page’s parameters,
the less chance you have of someone’s making malicious use of those para-
meters. So what do you do to avoid having the user type ?item=Book?
Here’s what you do:

1. If you haven’t already done so, follow the steps in this chapter’s
“Using parameters” section.

2. With the myproject\app\controllers\shopping_cart_
controller.rb file open in a RadRails editor, add the following
two lines of code:

def ask_to_show
end

These lines create a brand-new action named ask_to_show. In the next
step, you create a corresponding view.

3. In the myproject\app\views\shopping_cart directory, create a
file named ask_to_show.rhtml.

To create this file, follow the steps in Chapter 4 to create a new Ruby
Class. But this time, change a few parts of the procedure:

a. Start by selecting the myproject\app\views\shopping_cart
directory in the Rails Navigator view.

b. When the old Select a Wizard dialog box appears, expand the
General branch of the tree and select File within that branch.

c. When you’re prompted for a filename, type ask_to_show.rhtml.

4. Edit the new ask_to_show.rhtml file by typing the following code in
the file:

<form action=”/shopping_cart/show”>
Item <input type=”text” name=”item” size=”30”><p>
<input type=”submit”>

</form>

The stuff that you type is old-fashioned HTML code. You can find code
like this in an ordinary Web page — a page whose author never heard of
Ruby on Rails. The code creates the form shown in Figure 8-13.

For more information about this step’s HTML code, see Chapter 7.

5. Visit http://localhost:300x/shopping_cart/ask_to_show.

The cool thing about the form in Figure 8-13 is that when the user types
a word like Book and presses the form’s Submit Query button, the form

172 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 172

generates a particular URL. It’s the URL in Step 3 of the “Using parame-
ters” section.

http://localhost:300x/shopping_cart/show?item=Book

The URL includes the extra ?item=Book parameter. So give it a try. . . .

6. Type Book in the Item field and then press the Submit Query button.

In the “Using parameters” section, the user types a clumsy-looking URL.
But in this section, just typing the word Book and clicking the form’s
Submit Query button does the trick. The browser displays a book’s price
as in Figure 8-9.

And if you like hideous URLs, you can still see one. After pressing the
Submit Query button, you see the big, nasty ?item=Book URL in the
browser’s Address field. How comforting! Clicking Submit Query creates
the same URL that you create in the “Using parameters” section.

That settles it. You must be doing something right.

Dividing the Work of the View
Pity the poor view! It works all day with little help from its friends. Occasionally,
you find the view doing some calculations. But the view is supposed to con-
centrate only on the data’s presentation. A view shouldn’t dirty its hands
with ugly calculations.

Well, in this section, you put some of the view’s friends to work. The first
friend is called a layout. It gives you a good way to put one piece of content
on each of your Web site’s pages.

1. If you haven’t already done so, follow the steps in this chapter’s
“Creating a controller and a view” section.

If you’ve already marched on and followed the steps in any of the subse-
quent sections, that’s fine too.

2. In the myproject\app\views\layouts directory, create a file
named shopping_cart.rhtml.

To create this file, use a wizard as you do in Chapter 4.

Figure 8-13:
Typing the

word Book
in a text field.

173Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 173

3. Using a RadRails editor, add two lines of code to the
shopping_cart.rhtml file.

The lines of code are

<%= @content_for_layout %><p>
© 2006 Burd Brain Consulting

These are the only lines in the shopping_cart.rhtml file.

4. Visit a shopping_cart page.

Depending on which section’s steps you’ve already followed, you might
visit http://localhost:300x/shopping_cart/show, http://
localhost:300x/shopping_cart/show?item=Book, or even
http://localhost:300x/shopping_cart/ask_to_show. One way
or another, you see a page like the one in Figure 8-14. The page begins
with some familiar content and ends with a handy copyright message.

When you visit any of our example’s shopping_cart controller’s pages,
Rails looks in the layout directory for a file named shopping_cart.rhtml.
If Rails finds such a file, the browser window shows you the result of follow-
ing the instructions in that file.

In this example, the <%= @content_for_layout %> tag tells Rails to dis-
play whatever it would normally display. For instance, in the “Creating a con-
troller and a view” section, Rails normally displays only a Your Shopping Cart
heading. In the “Using parameters” section, Rails normally displays an item
and a price below the Your Shopping Cart heading.

After the <%= @content_for_layout %> tag comes the <p> tag. The <p>
tag is called paragraph tag. The tag tells your Web browser to go to a new
paragraph. For most Web browsers, “going to a new paragraph” means skip-
ping a line before moving to the next line.

Finally, the additional © 2006 Burd Brain Consulting line tells
Rails to display a copyright message. The © thing is part of standard
HTML. It’s called an HTML entity. When the © entity appears in an
HTML file, your Web browser displays a copyright symbol.

Figure 8-14:
A copyright
message at
the bottom

of every
page.

174 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 174

Creating and using a partial
(a partial what?)
Among people in the Ruby on Rails community, the word partial is a noun. A
partial is a part of a Web page. It’s not an entire Web page — just a piece to be
inserted into a larger page. Here’s how it works:

1. If you haven’t already done so, follow the steps in this chapter’s
“Using parameters” section.

If you’ve already marched on and followed the steps in any of the subse-
quent sections, that’s fine too.

2. In the myproject\app\views\shopping_cart directory, create a
file named _item_and_price.rhtml.

To create this file, use a wizard as you do in Chapter 4.

The filename contains three underscore (_) characters. The initial
underscore is part of the Rails naming conventions. (See the
“Convention over configuration” section in this chapter.)

3. Using a RadRails editor, cut the <%= @item %>
<%= number_
to_currency(@price) %> line of code from the app\views\
shopping_cart\show.rhtml file and then paste the line into the
new app\views\shopping_cart_item_and_price.rhtml file.

4. Using a RadRails editor, add <%= render :partial => ‘item_
and_price’ %> as one line of code to the app\views\shopping_
cart\show.rhtml file.

After adding the line, the show.rhtml file contains the following two
lines of code:

<h1>Your Shopping Cart</h1>
<%= render :partial => ‘item_and_price’ %>

The new render command tells the view to look for a partial and to
insert that partial’s code into the view’s own code. In the meantime, the
string ‘item_and_price’ tells Rails to look for the partial in a file
named _item_and_price.rhtml.

5. Visit http://localhost:300x/shopping_cart/ask_to_show or
http://localhost:300x/shopping_cart/show?item=Book.

Either way, you see the page displayed in Figure 8-9. When the view gets
a line from the partial, the view becomes just like the code in Step 3 of
the “Controller Shakes Hands with the View” section.

Partials are nice because they share the responsibility. They help you keep
clear in your mind what duties belong inside the view and what other duties
belong outside the view. The only thing wrong with a partial is the name. Hey
folks, how about calling it a “partial page” or a “partial document”?

175Chapter 8: Action-Packed Adventures

14_081204 ch08.qxp 11/30/06 11:12 PM Page 175

A view’s little helper
In the preceding section, you create a Web page (okay, a partial Web page) to
take some of the computing burden off of the view. In this section, you do
almost the same thing. But instead of creating part of a Web page, you create
part of a Ruby program. One way or another, it’s all about putting each piece
of code in the most appropriate place.

1. If you haven’t already done so, follow the steps in the preceding section.

2. In the Rails Navigator view, find the myproject\app\helpers\
shopping_cart_helper.rb file.

This file is created automatically when you generate the ShoppingCart
controller.

3. Using a RadRails editor, type the following code (the three bold lines)
in the shopping_cart_helper.rb file:

module ShoppingCartHelper
def price_with_tax(percent)
@price * (1.0 + percent * 0.01)

end
end

The code defines a price_with_tax method. The method takes a per-
centage (such as 7.0) and returns the @price with the percentage
increase. The method is inside a Ruby module. (For more information
on Ruby modules, see Chapter 6.)

4. Using a RadRails editor, modify the _item_and_price.rhtml file so
that it contains the following code:

<%= @item %>

<%= number_to_currency(price_with_tax(7.0)) %>

The call to price_with_tax is the only change from the previous
section’s _item_and_price.rhtml file. Any methods defined in the
helper module are available for use by a shopping_cart view. So this
step’s call to price_with_tax is permissible.

5. Revisit http://localhost:300x/shopping_cart/ask_to_show or
http://localhost:300x/shopping_cart/show?item=Book.

You see the page shown in Figure 8-9 with the price increased by 7 per-
cent. Once again, you’ve partitioned the work between the view, the
layout, and the helper. You’ve separated the tasks so that each part of
the code performs a specific, targeted task.

176 Part III: Real Rails

14_081204 ch08.qxp 11/30/06 11:12 PM Page 176

Chapter 9

Some Things You Can Do
with Models

In This Chapter
� Creating a Web site to store personal data

� Viewing and modifying a Rails model

� Programming for a model with Ruby

Here’s a list of things that come in sets of three:

� Stooges: Curly, Larry, Moe

� The number of strikes until you’re out: Strike one, Strike two, Strike three

� Things that influence the price of a house: Location, Location, Location

� Monkeys: See no evil, Hear no evil, Speak no evil

� People involved in a love triangle: Person 1, Person 2, Person 1’s best
friend

� Books in the Hitchhiker’s Guide “trilogy”: Guide, Restaurant, Universe,
Fish, Harmless

� Items that would be in this list, if the list were more concise: Stooges,
Strikes, Houses

� Parts of the Rails framework: Model, View, Controller

In case you missed it, the last item in the list is the most relevant. Chapter 5
deals with the view and the controller. This chapter covers the model — the
supreme item in the Rails triumvirate.

To make the discussion concrete, this chapter uses one big example — a Web
site that stores photographs.

15_081204 ch09.qxp 11/30/06 11:12 PM Page 177

A Web Site for Photos
Here’s my completely unoriginal idea: Create a Web site that displays photos.
Initially, each photo entry has its own filename and its own description.
The filename refers to an image file on a hard drive. (For example, niagara_
falls.jpg may be a filename.) The description tells you something
about the photo. (“Alan beats me up on our trip to Niagara Falls with Mom
and Dad watching in the background.”)

Niagara Falls?

This chapter shows you how to start building the Photo Web site. The next
two chapters add some important details (such as displaying photos, associ-
ating peoples’ comments with photos, and so on).

To start building this Web site, follow the steps in Chapter 3. Just change a
few names to protect the innocent.

1. Create a new Rails project.

In this example, I name the project album.

2. Create a new database.

Use MySQL Administrator as you do in Chapter 3. If you name your pro-
ject album, the name of the database is album_development.

3. Generate a model.

In this example, I name the model Photo. (See Figure 9-1.)

Rails generates a photo.rb file in the project’s app\models directory.
The file contains only two lines of code:

class Photo < ActiveRecord::Base
end

This terse piece of code defines an entire Photo model. How? The newly
defined Photo class is a subclass of the Rails ActiveRecord::Base

Figure 9-1:
Generating

the Photo
model.

178 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 178

class. (For some good reading about subclasses, see Chapter 6.) As a
subclass of ActiveRecord::Base, the Photo class inherits approxi-
mately 80 methods — methods such as find, establish_connection,
create, destroy, and so on. You don’t write code to define these meth-
ods yourself. You just use these with your newly created Photo class.
That’s the magic of subclasses and inheritance.

The Photo class’s inherited methods are capable of performing CRUD
operations on the photos database table. That’s good because, accord-
ing to Chapter 3, a model is some Ruby code that mirrors the data in a
database table.

The acronym CRUD stands for the four fundamental database
operations — Create, Read, Update, and Destroy. For details, see
Chapter 3.

When you ask RadRails to generate a model, the system also generates a
migration file — a file named 001_create_photos.rb. In this example,
the name of the model is Photo, so Rails automatically names the new
table photos. (One of the lines in the 001_create_photos.rb file is
create_table :photos do |t|.)

A migration is a Ruby program that creates tables, adds columns to
tables, and does other nice things to databases. For an introduction
to migration files, see Chapter 3.

4. Create a database table.

To create the database table, add two lines to the 001_create_photos.
rb migration code, as shown in Figure 9-2. (Listing 9-1 tells you which
two lines are crucial here.)

Figure 9-2:
Setting up

columns in a
database.

179Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 179

Listing 9-1: Creating the Database Table

class CreatePhotos < ActiveRecord::Migration
def self.up
create_table :photos do |t|
t.column :filename, :string #add this line
t.column :description, :text #add this line

end
end

def self.down
drop_table :photos

end
end

The first t.column line creates a column to store the names of image
files (names such as myfirstphoto.jpg). The second t.column line
creates a column to store descriptions of the photos.

After adding these two lines to the 001_create_photos.rb file, run
the db:migrate task using the Rake Tasks view. (See Figure 9-3.)

In Figure 9-3, the thing on the left (containing the text db:migrate) is a
drop-down list. Sometimes RadRails takes its good old time populating
this drop-down list. When I click the list’s downward-pointing triangle,
I see an empty list. If this happens to you, wait a few seconds and then
click the little triangle again. If a minute passes and you still don’t see
any list options, try leaving the triangle alone. Type db:migrate into the
list and then click the Go button.

5. Create a scaffold.

To create the scaffold, use the Generators view in RadRails. Select
Scaffold from the drop-down list on the left and type the name Photo
in the text field on the right. (See Figure 9-4.)

Figure 9-3:
Running a
migration.

180 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 180

Always look at the left side of the Generators view to make sure that the
Create radio button is selected (unless, of course, you want to delete
something that you created previously).

6. Use the new Web interface.

When you visit http://localhost:300x/photos/new, you see the
page shown in Figure 9-5.

7. Type some text into the fields on the New Photo page and then click
the Create button. (See Figure 9-5.)

At this point, the stuff you type in the Filename field doesn’t have to
refer to any image file that’s actually on your hard drive. Referring to
real image files is discussed in Chapter 10.

Figure 9-5:
Adding a

new photo.

Figure 9-4:
Generating

the Photo
scaffold.

181Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 181

8. Repeat Step 7 a few times.

Each time you do, Rails sends your Web browser to a Listing Photos page.
After adding a few photos, you can see a page like the one in Figure 9-6.

Programming with a Rails Model
The rest of this chapter is a brief detour (a fork in the Rails road). If I were a
typical Ruby-on-Rails author, the rest of this chapter would embellish the pre-
vious section’s Web pages. But instead, the chapter covers some pure Ruby
code — code that’s independent of any Web page.

This section’s code connects to a database and retrieves the data from a
database table. The code works with the preceding section’s Photo model.

1. Right-click the album project branch in the Rails Navigator view.

2. In the resulting contextual menu, choose New➪File.

The New File dialog box appears.

3. In the dialog box’s File Name field, type a name that ends in .rb.

How about my_ruby_code.rb? That’s a good name.

4. Click Finish.

The empty my_ruby_code.rb file appears in the RadRails editor pane.
In addition, the name my_ruby_code.rb shows up in the Rails
Navigator view (near the bottom of the album project’s tree).

Figure 9-6:
The Rails

application
lists some

photos.

182 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 182

5. In the RadRails editor pane, type the code shown in Listing 9-2.

Listing 9-2: Displaying the Rows in a Database

require_gem “activerecord”

class Photo < ActiveRecord::Base
end

Photo.establish_connection(
:adapter => “mysql”, :database => “album_development”)

for column in Photo.columns
print column.name, “\t”

end

puts
puts

for photo in Photo.find(:all)
for column in Photo.columns
print photo.send(column.name), “\t”

end
puts

end

Listing 9-2 contains two indispensable lines of code:

class Photo < ActiveRecord::Base
end

You might recognize these lines from Step 3 of this chapter’s “A Web Site
for Photos” section. As in Step 3, these two lines define a Photo model.
With these lines and the call to establish_connection in Listing 9-2,
the rest of the listing’s code has access to the photos database table’s
values.

6. Right-click the editor pane. Then, in the resulting contextual menu,
choose Run As➪Ruby Application.

In response, the RadRails Console view displays a list of photos (the
photos stored in the photos database table). See Figure 9-7.

Figure 9-7:
A Ruby

program lists
the rows in

a database.

183Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 183

The migration file in Listing 9-1 describes only two columns — filename
and description. But according to Figure 9-7, the photos table in the
album_development database has three columns — id, filename, and
description. Why does the table have this extra id column? For an answer,
see the section entitled “Using id numbers,” later in this chapter.

The code in Listing 9-2 illustrates several important ideas. So the next few
sections dissect the code in Listing 9-2.

Using Active Record
In Listing 9-2, two brief lines of code tell Ruby about the photos database
table.

class Photo < ActiveRecord::Base
end

These lines say a lot. They say “Make the Photo class a subclass of the previ-
ously defined ActiveRecord::Base class.” That’s a real mouthful. The
ActiveRecord::Base class comes standard with Rails. Any subclass of
ActiveRecord::Base (the Photo class, for example) inherits dozens of
methods from the ActiveRecord::Base class — methods named find,
create, establish_connection, delete, and so on.

But wait! There’s more. Active Record is a strange and wonderful thing! If it
weren’t for Active Record, you’d have to add more code to Listing 9-2.

� You’d have to add the name photos somewhere in Listing 9-2.

This name would tell the code to look for a table named photos in the
album_development database. Notice that, although the words Photo
and photo (uppercase and lowercase) appear in Listing 9-2, the name
photos appears nowhere in the listing.

� You’d have to define photos table’s contents.

You’d need a definition like the following: “Each row has a filename and
a description. The filename is of type string, and the description has
type text. Take it or leave it!”

And what would be so bad about adding that code to Listing 9-2? Some pro-
grammers love to write code. What’s the big deal?

Well, remember the DRY (Don’t Repeat Yourself) principle from Chapter 8?
A characteristic of the database or its Web site should be declared in only
one place. You should have no redundant declarations. Nothing that’s defined
in one place should have its definition repeated in any other place. If you

184 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 184

follow the DRY principle, you won’t risk introducing inconsistencies when
you change a particular characteristic. (You can’t make the mistake of chang-
ing the declaration in some, but not all, of the relevant places.)

So here’s an indisputable fact:

The database itself (in this example, the album_development database
on your computer’s hard drive) is the ultimate authority on the nature of the
columns in the photos table.

Sure, you might have created the filename and description columns yes-
terday by running the migration code in Listing 9-1. But today that migration
code might be obsolete. (Overnight, the boss might have told someone to use
MySQL Administrator to add a date_created column to the table.) Your
code must be able to deal with any change that comes about in the actual
database table.

So Active Record does something very nice. When you run the code in
Listing 9-2, Active Record deduces the table name (photos) and looks at the
actual photos table in the database. From the table, Active Record deduces
the number of columns, the names of the columns, and the types of the
columns. You don’t have to define the columns in Listing 9-2.

Requiring a gem
In Listing 9-2, the name ActiveRecord refers to a Ruby module that’s
defined inside another file. This ActiveRecord module belongs to a Ruby
add-on (a Ruby gem) named activerecord. So before you can write
ActiveRecord::Base anywhere in Listing 9-2, you have to write
require_gem “activerecord”. That’s why Listing 9-2 starts with
require_gem “activerecord”.

To be brutally precise, calling require_gem “activerecord” adds the
activerecord gem’s directory to the Ruby load path and loads the gem into
the current runtime. For a few words about the Ruby load path, see Chapter 6.

Connecting to the database
In Listing 9-2, the call to the establish_connection method does exactly
what its name indicates. The call connects the Photo class to the album_
development database (the database that you create in the first section of
this chapter). Without this call, the code wouldn’t be able to get rows from
the album_development database.

185Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 185

In Listing 9-2, the establish_connection call specifies :adapter and
:database values. In addition, the call can specify things such as :host,
:username, and :password.

186 Part III: Real Rails

Heavily ORMed
If you’ve done some database programming, you might be familiar with two programming styles:

� Inserting procedural statements into the code

� Using object-relational mapping

The first style (the older of the two) involves direct instructions to the database. Get a row, change
a value, add a row, and so on. The instructions may be SQL statements (SELECT * FROM
photos) or they may be statements in some general-purpose programming
language (resultSet.updateString(“filename”, “myphoto.jpg”)). This manual
handling of the database can be cumbersome, especially if you spread the database code across
many parts of an application.

The newer object-relational mapping (ORM) style avoids having direct instructions in the code.
Instead, the programmer declares the correspondence between a class and a database table. The
declaration might look something like this:

<mapping>
<table class=”Photo” name=”photos” database=”album_
development”>

<row field=”filename” type=”string” column=”filename”/>
<row field=”description” type=”text” column=

”description”/>
</table>

</mapping>

With this declaration, the system ties a class named Photo (a class in the programming
language code) to a database table named photos. In a program, an instruction may assign a
value to a variable

Photo.getInstance().filename = “disneyworld.jpg”;

With this assignment, the system automatically modifies a row in the photos database table. The
programmer doesn’t have to dirty his or her hands with explicit database instructions. Instead, the
programmer writes ordinary object-oriented code; and in response, the system automatically keeps
the photos database table in sync with the Photo class’s code.

Active Record is the heart and soul of Ruby on Rails. Active Record is an ORM framework, but
Active Record takes ORM where no ORM has gone before. Active Record avoids the big <map-
ping>. . .</mapping> definition that you see earlier in this sidebar. Using Active Record,
Rails creates a <mapping>. . .</mapping> definition automatically. Rails seeks out the
most current version of the database in use, and then formulates a definition based on the shape
of the database table. Using this formulated definition, Rails guides the flow of the model’s data.

15_081204 ch09.qxp 11/30/06 11:12 PM Page 186

The value :host => “localhost” should work nicely to specify a host (if
the Ruby code lives on the same computer as the database).

The establish_connection method is a class method of the
ActiveRecord::Base class. And, because of inheritance, establish_
connection is a class method of the Photo class. Being a class method
means that only one copy of the establish_connection method exists for
the entire Photo class. If you create several instances of the Photo class or
no instances of the Photo class, the Photo class still has one and only one
establish_connection method. That’s why, when you call the establish_
connection method, you preface the call with the name of the class. You write
Photo.establish_connection.

Displaying data
The part of Listing 9-2, from the first for column line downward, is the
do-something-conspicuous part of the listing. This part displays column
headings and the values in the photos table. The code contains some
for loops (which isn’t startling if you’re used to computer programming).
But the code also contains some useful Rails-isms.

� The Photo class has a columns method (inherited from
ActiveRecord::Base).

The columns method returns an array consisting of the columns in the
photos database table. In this chapter’s example, the photos table has
three columns — id, filename, and description. (Refer to Figure 9-7.)
So the line for column in Photo.columns iterates over these three
columns.

Each column is a Ruby object, and each of these objects has a name.
So to be painfully precise, the first time through this loop, column.name
has the value ‘id’. The second time through, column.name has the
value ‘filename’. The third time, column.name has the value
‘description’. Each time through, the variable column contains a
string of characters.

187Chapter 9: Some Things You Can Do with Models

Using Active Record with Rails, the programmer doesn’t write explicit database instruc-
tions. Heck! The programmer doesn’t even define the mapping between the class and
the database. Does this mean that the programmer is a lazy bum? No. With all the data-
base-mapping grunt work being done automatically by Rails, the programmer is free to
concentrate on the important stuff — the database business logic. That’s a very good
thing.

15_081204 ch09.qxp 11/30/06 11:12 PM Page 187

In Listing 9-2, you can replace column.name with column.human_name.
A human_name looks friendlier than a plain old name. If column.name is
description, then column.human_name is Description. If column.
name is MAX_VALUE, then column.human_name is Max value.

� The Photo class has a find method (also inherited from the
ActiveRecord::Base class).

When you supply the :all argument to the find method, the method
returns an array containing the data from all rows in the photos data-
base table. In Listing 9-2, each time through the for photo in
Photo.find(:all) loop, the variable photo refers to a row of the
photos database table.

� The send method is Ruby’s way of turning a method’s name into a
method call.

This is a very subtle concept, and (for better or worse) Ruby on Rails
uses the concept everywhere in its code.

With seemingly infinite versatility, Active Record looks inside the
photos table and creates three brand-new methods — methods named
id, filename, and description. (For details, see the section entitled
“Using Active Record,” earlier in this chapter.) Each of these methods
belongs to Photo instances. (That is, each object created from the
Photo class has its own id, filename, and description methods.)

So now you have a hurdle to overcome. Inside the loops of Listing 9-2,
you have a photo — an instance of the Photo class. This photo has a
method called filename. So you’re free to write photo.filename and
have Ruby display c:\myfolder\myphoto.jpg (or something like that).

But the variable column stores the string ‘filename’, so you can’t
put photo.column in your code. That would be like putting photo.
’filename’ in your code. But then you’d be applying the ‘filename’
string of characters (not the filename method) to the photo object.
Applying a string of characters is a no-no.

Ruby solves this problem with the send method. The send method turns
a string into a method call. When you write photo.send(‘filename’),
Ruby calls photo.filename on your behalf. If you write photo.send
(column.name), as done in Listing 9-2, and column.name happens to
contain the string ‘description’, Ruby calls photo.description
on your behalf. If the comic Yakov Smirnoff knew Ruby, he’d exclaim
“What a language!”

Oh, well! When all is said and done, the loops in Listing 9-2 display the
values in all the columns of all the rows of the photos database table.
(Again, refer to Figure 9-7.)

188 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 188

Modifying a Database
In this chapter’s “Using Active Record” section, someone sneaks into your
office overnight and adds a date_created column to your photos database
table. How dare he (or she or it)! How did this nefarious person add a column?

The scoundrel might have used MySQL Administrator, but you can do the
same thing with a Rails migration. Here’s how:

1. Follow the steps in the section entitled “A Web Site for Photos” (at the
start of this chapter).

2. In the Rails Navigator view, select the album project (the project that
you create at the beginning of this chapter).

3. In the Generators view, create a migration.

See Figure 9-8. In that figure, the rightmost text field contains the name
add_date_created. This name reminds you that the purpose of your
new migration is to add a date_created column. You can type any
name in the rightmost text field, but a more informative name is better
than a random, hastily-generated name.

When you press Go, Rails creates a file named 002_add_date_
created.rb.

At this point, the album project has two migration files — 001_
create_photos.rb and 002_add_date_created.rb. The
numbers 001 and 002 are version numbers. For details, see the end of
this section.

4. Using a RadRails editor, add two lines of code to the 002_add_date_
created.rb file — a line in the self.up method, and another in the
self.down method. (See Listing 9-3.)

Figure 9-8:
Generating

a migration.

189Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 189

Listing 9-3: Your Hand-Made Migration

class AddDateCreated < ActiveRecord::Migration
def self.up
add_column :photos, :date_created, :date #added

end

def self.down
remove_column :photos, :date_created #added

end
end

The new code in the self.up method tells Rails to add a column to the
photos database table. The column’s name is date_created, and the
values stored in the column are of type date.

The new code in the self.down method tells Rails to dispose of the
date_created column. (To find out how and when you call the
self.down method, see the end of this section.)

5. Run the db:migrate task using the Rake Tasks view.

Refer to Figure 9-3.

6. Rerun the code in Listing 9-3. (Repeat Step 6 of this chapter’s
“Programming with a Rails Model” section.)

You see the revised output shown in Figure 9-9. As promised, Active
Record deduces the names of the columns in the database. Without
changing a word of Listing 9-2, the new output contains a date_
created column.

You haven’t inserted values into the table since you added the
date_created column, so the values in the new date_created
column are all nil. You can remedy this situation by updating each
row’s values. Tips on updating values appear later in this chapter.

In the filename 002_add_date_created.rb, the 002 is a migration version
number. Rails keeps track of the order in which you apply migrations.

1. You start with an empty database. The empty database is version 0 (also
known as version 000).

Figure 9-9:
Listing the

rows in the
modified

database.

190 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 190

2. You generate and run 001_create_photos.rb. The run adds a
photos table to the database. The database with this new photos table
is version 1 (version 001).

3. You generate and run 002_add_date_created.rb. The run adds a
date_created column to the photos table. The modified database,
with the date_created column, is version 2 (version 002). And so on.

Rails stores each database’s current version number in a table named
schema_info. The schema_info table has only one row and one column.
The column’s name is version. You can see the schema_info table using
MySQL Administrator.

Why keep track of all these version numbers? Well, if you ever change your
mind and decide to return to an earlier version, you can use migration to go
backwards.

Assume, for example, that this new date_created column makes you ner-
vous. You decide to march back to version 1 of the database — a version
without the date_created column. To revert, you run db:migrate with
VERSION=1, as shown in Figure 9-10.

You can even trash the photos table and start all over again. To do this, run
db:migrate with VERSION=0.

When you migrate from one version to another, Rails executes the appropri-
ate sequence of self.up or self.down methods. For example, when you
migrate from version 2 down to version 0, Rails calls the self.down method
in the 002_blah_blah.rb file, and then calls the self.down method in the
001_blabity_blah.rb file. Later, if you decide to return from version 0 to
version 2, Rails calls the self.up method in 001_blabity_blah.rb, and
then calls the self.up method in 002_blah_blah.rb.

When you write your own migration file, the code inside the self.down
method should undo whatever the code inside the self.up method does.

Figure 9-10:
Migrating to
a particular

version
of the

database.

191Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 191

More Rails Programming Tricks
To put it bluntly, Listing 9-2 is a wimp. Listing 9-2 mollycoddles the album_
development database. If you want to get tough with the database, you have
to do more CRUD operations (more Creating, more Reading, more Updating,
and more Deleting). This section shows you how.

But first, look at Listing 9-4. This listing continues to pamper the album_
development database. (The listing defines some goodies that help with
subsequent code in this chapter.)

Listing 9-4: Getting Ready

ready_photos.rb

require_gem “activerecord”

class Photo < ActiveRecord::Base
def show
Photo.columns.each {|col| print send(col.name), “\t”}

end

def Photo.show_all
find(:all).each { |photo| photo.show; puts }

end
end

Photo.establish_connection(
:adapter=> “mysql”, :database => “album_development”)

Listing 9-4 defines two handy methods. The show method displays the con-
tents of a single photo, and the show_all method displays the contents of
all photos. Both the show and show_all methods use Ruby’s each iterator
instead of for loops. For example, inside the show_all method, the code
finds all instances of the Photo class (all rows in the photos table). To each
of these instances (each instance temporarily named photo), the code
applies the statements photo.show; puts.

In turn, the call to photo.show displays the instance’s id, filename, and
description. Then the call to puts forces the RadRails output console onto
a brand-new line.

The choice between an iterator and a loop is purely cosmetic. (In Listing 9-4, I
use iterators just to show off.)

In addition to defining show and show_all, Listing 9-4 forges a connection to
the album_development database. That way, you don’t have to connect in
subsequent listings.

192 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 192

The comment at the top of Listing 9-4 reminds you that the listing’s code
belongs in a file named ready_photos.rb. This is important because, in
subsequent listings, you refer to the file named ready_photos.rb. (Each
listing begins with the line require “ready_photos.rb”.) You can change
the file’s name if you want, but when you change the file’s name, you have to
change the require references in the other listings. And remember, chang-
ing the comment at the top of Listing 9-4 does nothing. To change a file’s
name, you have to change the name as it appears in the Rails Navigator view.

Deleting rows
In Listing 9-5, you clear the deck. You remove any photos that might already
be in the database.

Listing 9-5: Goodbye to All My Photos

require “ready_photos.rb”

Photo.destroy_all

puts “List of photos:”
Photo.show_all
puts “End of the list”

Listing 9-5 gives you a fresh start for the examples in the remainder of this
chapter. So notice a few things about Listing 9-5:

� The require call at the top of Listing 9-5 drags in all the code from
Listing 9-4.

In particular, the require call makes the show and show_all methods
available. The call also invokes the establish_connection method, so
that a run of Listing 9-5 can communicate with the album_development
database.

� You don’t have to define your own destroy_all method.

Rails defines the destroy_all method as part of the ActiveRecord::
Base class. A call to destroy_all uses Active Record to remove all
rows from the database table.

Rails has a similar method named delete_all. A call to delete_all
digs right into the database and removes all records from the database
table. In doing so, delete_all bypasses some nice Active Record fea-
tures. All in all, if you’re not desperate to obliterate every trace of the
database table, destroy_all is safer to use.

� At the end of Listing 9-5, a call to show_all proves that the photos
table contains no rows. (See Figure 9-11.)

193Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 193

Adding rows
This section’s code (see Listing 9-6) adds two rows to the photos database.

Listing 9-6: Nice Kitty

require “ready_photos.rb”

photo = Photo.new
photo.filename = ‘willie.jpg’
photo.description = ‘Our old cat Willie’
photo.save

Photo.create(:filename => ‘kitten.jpg’,
:description => ‘Our cat Boop’)

Photo.show_all
puts ‘------------’

photo = Photo.find(:first,
:conditions => “filename = ‘kitten.jpg’”)

photo.filename = ‘boop.jpg’
photo.save

Photo.show_all

Listing 9-6 demonstrates a few things that Active Record can do with a
database.

� The new method makes a brand-new object.

In Listing 9-6, the statement

photo = Photo.new

makes an object whose filename and description have meaningless
default values. It’s up to the next two statements

photo.filename = ‘willie.jpg’
photo.description = ‘Our old cat Willie’

to supply meaningful filename and description values.

Figure 9-11:
A run of the

code in
Listing 9-5.

194 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 194

If you want, you can combine the three statements into one big statement:

photo = Photo.new(:filename => ‘willie.jpg’,
:description => ‘Our old cat Willie’)

How you choose to make an object is ultimately a matter of taste.

� The save method takes an object (a mere Ruby program construct)
and shoves that object’s data into the database.

In Listing 9-6, the call to save adds a willie.jpg row to the photos
table.

A call to new (without a follow-up call to save) has no effect on the data-
base table.

� The create method does the work of both new and save.

Listing 9-6 makes a new object with meaningful values and stores those
values in the database, all with one call to create.

� The find method locates a row (or several rows) in the database.

In Listing 9-6, the code

Photo.find(:first,
:conditions => “filename = ‘kitten.jpg’”)

returns the earliest row in the database table whose filename column
contains kitten.jpg.

Active Record’s find methods come in several delicious flavors. The
find(:all) flavor appears in Listing 9-2, and the find(:first) flavor
appears in Listing 9-6. Some other flavors appear later in this chapter.

� Near the end of Listing 9-6, you change a value in one of the database
table rows. (You change ‘kitten.jpg’ to ‘boop.jpg’.)

The save method suffers from a split personality disorder. Near the
start of Listing 9-6, you create a new instance of the Photo class. So, in
that part of the code, save adds a brand-new row to the photos data-
base table.

But near the end of the listing, you find an existing row in the database
table. So at that point, instead of adding a new row, save modifies the
existing row.

� A final call to show_all displays all rows of the database table.

The output of the code in Listing 9-6 appears in Figure 9-12.

Figure 9-12:
A run of the

code in
Listing 9-6.

195Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 195

Finding rows
This section’s example performs some acrobatics with the find method.
An example is shown in Listing 9-7, and the output of a run appears in
Figure 9-13.

Listing 9-7: Letting the Cat out of the Bag

require “ready_photos.rb”

Photo.create(:filename => ‘kitty.jpg’,
:description => ‘A big cat’)

Photo.create(:filename => ‘kitty.jpg’,
:description => ‘A little cat’)

Photo.create(:filename => ‘calico.jpg’,
:description => ‘Another little cat’)

print “Enter a filename (without the .jpg extension): “
STDOUT.flush
f_name = gets.chomp + ‘.jpg’

print “Enter part of a description: “
STDOUT.flush
cat = ‘%’ + gets.chomp + ‘%’

photo = Photo.find(:first, :conditions =>
“filename = ‘#{f_name}’ AND description LIKE ‘#{cat}’”)

photo.filename = ‘other_cat.jpg’
photo.save

Photo.show_all

Most of the tricks in Listing 9-7 are Ruby-ish or SQL-ish rather than Rails-ish.

� With a STDOUT.flush call, the system displays a prompt before the
user types a response.

Without STDOUT.flush, you might see the ugly run shown in Figure 9-14.

� The gets method reads a line of input from the keyboard.

Figure 9-13:
A run of the

code in
Listing 9-7.

196 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 196

For example, the first gets call in Figure 9-13 reads kitty<Enter> (the
word kitty followed by an Enter key).

� The chomp method removes the Enter key character.

The value of f_name becomes kitty.jpg, not kitty<Enter>.jpg.

� The percent sign (%), an SQL wildcard, stands for any sequence of
characters.

When the user types the word little in Figure 9-13, the value of cat
becomes %little%. This %little% string is a pattern. In an SQL state-
ment, the pattern %little% stands for any string or characters contain-
ing little anywhere inside it.

� The pound sign (#) inside a double-quoted string represents Ruby
interpolation.

At runtime, Ruby evaluates the expression after the pound sign. Ruby
substitutes that value into the double-quoted string.

For example, if the value of f_name is kitty.jpg and the value of cat
is %little%, then the code

“filename =
‘#{f_name}’ AND description LIKE ‘#{cat}’”

stands for the following SQL condition string:

“filename =
‘kitty.jpg’ AND description LIKE ‘%little%’”

Figure 9-14:
What can

happen
when you
don’t call
STDOUT.

flush.

197Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 197

Using SQL
Do me a favor. Run the code in Listing 9-6 a few times. When you do, you see
output of the kind shown in Figure 9-15.

After three runs of the code in Listing 9-6, the photos table contains six
rows — three Willie rows and three Boop rows.

Now what if you want to pick out all the Willie rows using a good, old-
fashioned SQL statement? No sweat! You can use find_by_sql as in
Listing 9-8.

Listing 9-8: Where’s Willie?

require “ready_photos.rb”

Photo.find_by_sql(“SELECT * FROM photos
WHERE filename = ‘willie.jpg’”).each {|p| p.show; puts}

Active Record’s find_by_sql method brings all the functionality of SQL to
your Ruby programs. Just write your SQL command and plop it into the
find_by_sql method.

Listing 9-8 takes each object that find_by_sql returns and displays that
object’s data on the RadRails Console.

SQL accepts single- or double-quoted strings, and so does Ruby. In fact, Ruby
accepts all kinds of strange string literals. In Ruby, you can write find_by_
sql(%q/SELECT * FROM photos WHERE filename = “willie.jpg”/).
You should, however, avoid using the same character in one call for both the
Ruby string and the SQL string. For example, the Ruby interpreter flags the

Figure 9-15:
The third

run of the
code in

Listing 9-6.

198 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 198

following code (with too many double-quote marks) as a syntax error: find_
by_sql(“SELECT * FROM photos WHERE filename = “willie.jpg””).

Using id numbers
When you use db:migrate to create a database table, Rails creates what-
ever table columns you specify. In addition, Rails creates an additional
column — a column named id. This id column stores an auto-incremented
integer value. When you create the first row, the row’s id value automatically
becomes 1. When you create a second row, the row’s id value automatically
becomes 2. And so on. Even if you get rid of the first row, when you create a
third row, the third row’s id value automatically becomes 3.

Rails provides a convenient way for you to avoid dealing with the id column.
In Listing 9-2, change both occurrences of Photo.columns to Photo.
content_columns. This causes Rails to skip the id column and to display
only the filename and description columns.

As a Ruby-on-Rails programmer, you seldom have to deal with explicit id
values. When you modify a particular row, you don’t care whether that row’s
id value is 2 or 2240948. You can write the code shown in Listing 9-9, but
chances are, you never will.

Listing 9-9: Dealing Explicitly with id Numbers

require “ready_photos.rb”

Photo.delete(170)
Photo.find(172).show

An id number’s actual value doesn’t matter. In the United States, we have things
called debit cards. I use my debit card to pay for groceries. After tallying all
my purchases, the store employee runs my debit card through an electronic
sensor. Then the employee asks me to type my PIN (my personal id number).

A computer (located thousands of miles from the grocery store) checks the
number I type against the number associated with the debit card. Like the id
number in a database table row, my actual id number is of no concern to the
store employee. The employee just wants to be sure that whatever number I
type matches the number associated with my debit card.

Listing 9-10 (an admittedly lame example) illustrates this concept using a
database table’s id numbers.

199Chapter 9: Some Things You Can Do with Models

15_081204 ch09.qxp 11/30/06 11:12 PM Page 199

Listing 9-10: Dealing Implicitly with an id Number

require “ready_photos.rb”

target = Photo.find(:first,
:conditions => “filename = ‘calico.jpg’”)

Photo.find(target.id).show unless not target

Listing 9-10 is indeed lame. Why write Photo.find(target.id).show,
when a simple target.show does the job? Listing 9-10 doesn’t solve the
problem efficiently. But the listing illustrates the way a row’s id number can
be passed from place to place without ever being seen by the programmer or
the user.

In Rails, id numbers are passed all the time. A controller’s action passes an id
to a view. In turn, the view passes the id to another of the controller’s actions.
That’s how Rails remembers that it’s updating a particular row. For a more
concrete view of the process in Rails, see Chapter 10.

If you’re not a seasoned Ruby programmer, you might be confused by the word
unless in Listing 9-10. The find method looks for a row whose filename is
calico.jpg. If such a row doesn’t exist, the find call returns nil, and vari-
able target gets this nil value. But in a Ruby condition, nil is the same as
false. So in that case, unless not target is true.

In a Ruby condition, everything that’s not nil or false is true. Among other
things, this means that both 0 and 1 are true. If you’re a C++ programmer,
having 0 represent true might be upsetting. On behalf of the Ruby commu-
nity, I apologize for any loss of sleep this might cause.

200 Part III: Real Rails

15_081204 ch09.qxp 11/30/06 11:12 PM Page 200

Chapter 10

I’ve Been Working
on the Rails Code

In This Chapter
� Displaying images

� Adding new images to your Rails project

� Using the RadRails Import Wizard

Chapter 9 demonstrates the creation of a photo album Web site. The site’s
managers (the folks at Chapter9Photos.com, Inc.) have hired a market-

ing team to promote the Web site. Here’s an excerpt from the team’s pro-
posed marketing blurb:

Visit Chapter 9 Photos online! See the filename and description of your
favorite photo! Enter any filename you want — correct or incorrect. It
doesn’t matter, because the Web site doesn’t even display your photo!

How appealing! I can’t wait to visit the site!

Displaying an Image
When I was a child, my family was so poor that we couldn’t afford photos.
All we could afford were the filenames of photos. That’s why we created
Chapter9Photos.com.

But these days, kids are spoiled. When they visit a photo album Web site,
they expect to see photos, not just filenames! So this chapter adds visible
photos to the site in Chapter 9.

16_081204 ch10.qxp 11/30/06 11:13 PM Page 201

Creating code
You can add images to a Web site with only a few lines of code. Here’s how:

1. If you haven’t already done so, create a simple photo album Web site.

Follow Steps 1 through 5 in the first section of Chapter 9.

2. In the Rails Navigator view, find the project’s public\images branch.

The public\images directory contains a file named rails.png. See
Figure 10-1.

Between the time I write this book and the time you read this book, the
name of the file inside the public\images directory may change. If the
file’s name isn’t rails.png, jot down the name of whatever file you find
in the public\images directory. If you find more than one file, choose
one of the names arbitrarily. If you don’t find any files in the public\
images directory, then panic! (No, don’t panic. Check this book’s Web
site for updates.)

3. In your Rails project, open the app\views\photos\show.rhtml file.

For details on opening files, see Chapter 4.

4. Using a RadRails editor, add the code in Listing 10-1 to the
show.rhtml file.

Listing 10-1: Adding Code to show.rhtml

<% fname = @photo.filename %>
<%= image_tag(fname,
{ :size => “100”, :border => “1” }) %><p/>

Figure 10-1:
A Rails

project’s
public\
images

directory.

202 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 202

5. Visit http://localhost:300x/photos/new.

The New Photo page appears. (See Figure 10-2.)

In localhost:300x, the letter x doesn’t stand for the letter x! Instead,
the letter x stands for a digit. In fact, 0x may stand for 23! For details,
see Chapter 8.

6. Fill in the fields in the New Photo page.

In Figure 10-2, you type rails.png in the Filename field and The Rails
logo in the Description field.

The name you type in the Filename field must be the same as the name
of a file in your project’s public\images directory.

7. Click Create at the bottom of the New Photo page.

After clicking Create, your browser lands on the Listing Photos page.
The list on the page includes your newly added photo. (See Figure 10-3.)

Figure 10-3:
The Listing

Photos
page.

Figure 10-2:
The New

Photo page.

203Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 203

8. On the Listing Photos page, click the Show link.

The resulting page displays your photo. (See Figure 10-4.)

This paragraph is more a confession than a tip. I doctored the page shown ear-
lier in Figure 10-2. When I first took the screenshot, the Description text area
was too big. So later, to bring the Description text area down to a reasonable
number of rows, I edited my project’s app\views\photos_form.rhtml
file. I changed <%= text_area ‘photo’, ‘description’ %> to <%=
text_area ‘photo’, ‘description’, ‘rows’ => 10 %>.

Understanding the code
Listing 10-1 offers a lot more than meets the eye. But you can comprehend
Listing 10-1 on any level, ranging from the very shallow to the very deep.

The shallow version
Listing 10-1 makes Rails compose an HTML element known as an image tag —
a portion of a Web page — an instruction that looks something like this:

<img alt=”Rails” border=”1”
src=”/images/rails.png?1157938513” width=”100” />

Web browsers recognize this image tag as an instruction to display a picture —
a picture named rails.png stored in a directory named images. (Rails takes
the directory named public for granted.) The border around the display is
1 pixel wide. Any browser that can’t display the image shows a less satisfying
alternative — the word Rails inside a little box.

Figure 10-4:
The Show

page.

204 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 204

No matter the size of the original image, the display created by this image tag
is 100 pixels wide. For a sufficiently large image, this crude hack turns the
image into a kind of “thumbnail.” To display a full-size image, remove :size
=> “100” from Listing 10-1.

Rails composes a Web page containing the image tag and sends the page to
the Web browser. (Refer to Figure 10-4.)

Diving into the depths
The next several paragraphs contain more detail about the code in Listing 10-1.

� Listing 10-1 uses ERb tags. (See Chapter 8.) The first ERb tag executes
a Ruby assignment statement:

fname = @photo.filename

See Figure 10-5.

� The expression @photo.filename stands for rails.png.

Again, see Figure 10-5. The variable @photo refers to a photo in the
project’s database. Each photo has a filename and a description.
(See Listing 9-1.) So in Listing 10-1, the expression @photo.filename
stands for a photo’s filename (in this example, the name rails.png).

If you’re curious about the value of an expression in an rhtml file, you
can display the value in the Web browser’s window. For example, to see
the value of @photo.filename, add <%= @photo.filename %> to
the code inside the rhtml file. (Don’t forget to remove this extra code
before making your Web site available to the public! And please don’t
tell any professional Rails programmers about this tip. If you do, they’ll
criticize me for including the tip in my book. They’ll also tell you to
ignore my tip and use a fancy automated debugger instead.)

rails.png

rails.png

<% fname = @photo.filename %>

<%= image_tag (fname,
 { :size => "100", :border => "1" }) %><p/>

Figure 10-5:
A filename

becomes
part of an

image_tag
method call.

205Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 205

� Ultimately, the first line in Listing 10-1 makes fname stand for
rails.png.

� The second and third lines in Listing 10-1 contain another kind of
ERb tag.

Rails executes the Ruby code inside the <%= %> tag. This Ruby code is
an expression whose value is a string of characters. Rails substitutes
this string of characters in place of the entire <%= %> tag. (For details
about the <%= %> tag, see Chapter 8.)

� The value of the code inside the <%= %> is an HTML image tag.

As in the previous section (the “shallow” explanation), the image tag
looks something like this:

<img alt=”Rails” border=”1”
src=”/images/rails.png?1157938513” width=”100” />

Rails manufactures this image tag by executing some Ruby code in
Listing 10-1.

image_tag(fname, { :size => “100”, :border => “1” })

This Ruby code is actually a method call. It’s a call to the Rails
image_tag method.

The image_tag method bites off a name (such as rails.png) and
some options (such as { :size => “100”, :border => “1” }).
When it finishes chewing, the image_tag method spits out the <img
alt=”Rails” . . . stuff. (See Figure 10-6.)

The image_tag method doesn’t perform any magic. The method simply
takes some values (rails.png, :size => “100”, and so on) and uses
those values to compose a piece of text (the <img alt=”Rails” ...
stuff).

Rails manufactures an HTML image tag by executing the code in
Listing 10-1. You can see this tag (and other tags that Rails creates)
by right-clicking anywhere inside the Rails browser. In the resulting
contextual menu, select View Source. (And don’t worry. You can tell
professional Rails programmers that this tip is in my book.)

The image_tag method is one of approximately 50 Rails methods that
help you create HTML tags. Other such methods include text_field_
tag, start_form_tag, submit_tag, password_field_tag, and
link_to. Each of these HTML methods lives in one of the Rails
ActionView::Helpers modules. For example, the image_tag
method lives in the ActionView::Helpers::AssetTagHelper
module. For details, visit http://api.rubyonrails.org.

206 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 206

� The HTML image tag becomes part of a Web page — the page sent to
your Web browser.

When rendered by your browser, this page displays the Rails logo image.
(Refer to Figure 10-4.)

Passing photos from place to place
I quote from the previous section:

[In Listing 10-1] the variable @photo refers to a photo in the project’s
database.

Of all the concepts that authors tend to gloss over, the concept in this quota-
tion is the murkiest. How does @photo get its value? How does Rails remem-
ber which photo you want to show? Rails cycles among the Web site’s pages
(Listing Photos, New Photo, Show, and so on) without forgetting which photo
is the one of interest. At any given moment, how does Rails keep track of a
particular photo?

To understand what’s going on, start by examining the code that links to
Listing 10-1. The code is a snippet from app\views\photos\list.rhtml, the
code Ruby created when you generated a Photo scaffold. This section intro-
duces that snippet, and the next few sections describe how the snippet helps
Rails keep track of a particular photo. The snippet is shown in Listing 10-2.

<% image tag (fname, { :size => "100", :border => "1" }) %>

<img alt="Rails" border="1"
 src="/images/rails.png?1157938513" width="100" />

ra
ils

.p
ng

rails.png

Figure 10-6:
A Rails

image_tag
method call

composes
an HTML

image tag.

207Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 207

Listing 10-2: Some Code from the list.rhtml File

<% for photo in @photos %>
<tr>
<% for column in Photo.content_columns %>
<td><%=h photo.send(column.name) %></td>

<% end %>
<td><%= link_to ‘Show’,

:action => ‘show’, :id => photo %></td>
<td><%= link_to ‘Edit’,

:action => ‘edit’, :id => photo %></td>
<td><%= link_to ‘Destroy’,

{ :action => ‘destroy’, :id => photo },
:confirm => ‘Are you sure?’, :post => true %>

</td>
</tr>

<% end %>

Like most ERb code, the code in Listing 10-2 generates part of a Web page.
For your reading enjoyment, I put an excerpt from the generated Web page
in Listing 10-3.

Listing 10-3: Rails Converts the Listing 10-2 Code into HTML Tags

<tr>

<td>rails.png</td>

<td>rails</td>

<td>Show</td>
<td>Edit</td>
<td><a href=”/photos/destroy/9”

onclick=”if (confirm(‘Are you sure?’))
{ var f = document.createElement(‘form’);
this.parentNode.appendChild(f);
f.method = ‘POST’; f.action = this.href;
f.submit(); };return false;”>Destroy

</td>
</tr>

You can see the code in Listing 10-3 by right-clicking anywhere inside the
Rails browser on the project’s Listing Photos page. In the resulting contextual
menu, select View Source.

The next three sections describe the code from Listings 10-2 and 10-3 in
detail.

208 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 208

A link_to method creates an anchor element
Listing 10-2 contains three calls to the link_to method. Like the image_tag
method in Listing 10-1, the link_to method creates an HTML element. In the
link_to case, the resulting HTML element is an anchor element, which cre-
ates a link on a Web page.

Show

209Chapter 10: I’ve Been Working on the Rails Code

Practice safe HTML
In Listing 10-2, the extra letter h in <%=h photo.send(column.name) %> is a call to a
Ruby method. (This method belongs to Ruby’s ERb library.) Some people refer to this method as the
HTML-safe method because it makes text safe for insertion into an HTML document.

Imagine a goofy situation in which someone selects the name hue-<h1> for a database table’s
column. (Sure, it’s unlikely. But in real-world applications, unlikely things happen.) Your code
includes the following lines:

<% column_name = ‘hue-<h1>’ %>
<%= column_name %>

...the fine print

Then the Web browser receives the following HTML code:

hue-<h1>

...the fine print

As a result, the browser interprets <h1> as an HTML tag, and displays the phrase the fine
print as a big, bold, level-1 heading. That’s not what you want. But add a call to the HTML-safe
(h) method:

<% column_name = ‘hue-<h1>’ %>
<%=h column_name %>

...the fine print

The HTML-safe method changes the less-than sign (<) in ‘hue-<h1>’ to the < entity and
changes the greater than sign (>) in ‘hue-<h1>’ to the > entity. (For a look at HTML enti-
ties, see Chapter 7.) So after adding the h method call, the Web browser receives the following
HTML code:

hue-<h1>

...the fine print

As a result, the browser displays hue-<h1> (the correct column name) and doesn’t display the
phrase the fine print as a level-1 heading.

16_081204 ch10.qxp 11/30/06 11:13 PM Page 209

The anchor element consists of two tags, a start tag and an end tag. In this
example, the start tag is and the end tag is
. Most people abuse the terminology, using the phrase anchor tag either
for the start tag or for both the start and end tags. When I talk to people
about such things, I abuse the terminology too. But when I write, I have to
use the correct terminology. After all, I’m writing a book — a printed docu-
ment whose pages will last until the end of time (or until the book goes out of
print, whichever happens first).

The link_to method can take several parameters. In fact, the first link_to
call in Listing 10-2 takes two parameters:

� The first parameter (the string ‘Show’) becomes the link’s text.

I copied lines from Listings 10-2 and 10-3 to create Figure 10-7. At the
bottom of Figure 10-7, notice how the word Show becomes sandwiched
between a start tag and its end tag.

To find out how Show appears in the Web browser window, look at
Figure 10-3.

� The second parameter (the hash :action => ‘show’, :id =>
photo) determines the link’s URL. (Again, see Figure 10-7.)

In Listing 10-3, the first link’s URL is /photos/show/9. Each part of this
URL comes directly or indirectly from the hash parameter.

• The /show part comes from the hash’s :action entry.

• The number 9 comes (somewhat indirectly) from the hash’s :id
entry.

The for loop at the top of Listing 10-2 makes the variable photo
refer to a row in the database table. Each row has its own id value.
(See Chapter 9.) In Listing 10-2, the entry :id => photo tells the
link_to method to add the current row’s id number to the newly
formed link’s URL.

If the current row’s id number happens to be 9, the link’s URL ends
with the number 9. (See the bottom of Figure 10-7.)

The next section has more details about the use of a row’s id
number.

• The /photos part of the link’s URL is a default. This particular
default value stems from the fact that Listing 10-2 is on the
app\views\photos\list.rhtml page.

When you call the link_to method, you type :id => photo, and not :id =>
photo.id. The link_to method knows that :id => photo involves a
row’s id number.

210 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 210

In addition to the :action and :id entries, a link_to call can contain a
:controller entry. Using the :controller entry, you can jump from a
page generated by photos_controller.rb to a page generated by a differ-
ent controller. For example, when you add :controller => ‘videos’ to
the link_to call, Rails links to a method in your videos_controller.rb
file. You can bend a URL even further by tinkering with your project’s
config\routes.rb file. But I try to avoid messing with routes.rb. If you
can’t resist experimenting with the routes.rb file, look for my next book —
Ruby on Rails For Fanatics and Risk Takers.

Rails finds a particular photo
Look at the Show link in Figure 10-3. Behind that link stands the /photos/
show/9 URL. When you click the Show link, the Rails Web server receives
this /photos/show/9 URL. Then, as if by magic, the Rails Web server
processes the URL. The processing is shown in Figure 10-8.

... in Listing 10-3

... in Listing 10-1
show.rhtml

the 9th photo

the 9th photo

... in photos_controller.rb

Figure 10-8:
Rails passes
a particular

photo’s id
number

from place
to place.

<%= link_to 'Show', :action => 'show', :id => photo %>

Show

Figure 10-7:
A Rails
link_to

method call
composes

an HTML
anchor

element.

211Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 211

When Lucy brings home Figure 10-8, Ricky says “Lucy, you’ve got some
’splainin’ to do!” So here’s an explanation of some of the stuff in Figure 10-8.

� Responding to the /photos part of the URL, the server looks inside
the photos_controller.rb file.

� Responding to the /show part of the URL, the server looks inside the
controller’s show method.

The show method’s code is as follows:

def show
@photo = Photo.find(params[:id])

end

There’s that darn :id again! But by the time you reach the show
method’s code, params[:id] refers to a photo’s number. (That is, the
code refers to a single id value in a row of the database table, not an
entire row of the database table.)

You can display the value of the show method’s variables. (For that
matter, you can display the values of any controller method’s variables.)
Add statements such as puts params[:id] to the controller method’s
code. When Rails calls the method, the value of params[:id] appears
in the Rails Console. (To see the value, you may have to find the Display
Selected Console button. In the button’s drop-down list, choose the
Server option.)

� The server executes the code inside the show method.

The code tells the server to find a row inside the database table — a row
with a particular id number. After finding the row, Rails makes the
@photo variable refer to this row.

� Next, the server does what it always does after executing one of the
controller methods. The server passes the baton to a view of the same
name — in this example, the view named show.rhtml.

At last! The server reaches the code in Listing 10-1. This code uses the
controller method’s variables. More specifically, the code in Listing 10-1
is part of the show.rhtml file, so this code uses the show method’s
variables.

The code in Listing 10-1 uses the show method’s @photo variable. So in
Listing 10-1, the name @photo refers to a row in the database table (one
of possibly many photos).

That’s how, in Listing 10-1, the variable @photo is able to refer to a photo in
the project’s database. I summarize the process in Figure 10-9.

The passing of an id number (from the database to a link’s URL) takes place
behind the scenes. As a programmer, you don’t care whether the id number
is 9, 19, or 9000000. All you care about is that link_to retrieves the
number and then uses that number to form a link’s URL. As long as that hap-
pens, the link contains a reference to the correct photo in the database table.

212 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 212

Using JavaScript
Near the end of Listing 10-2, you see an innocent-looking pair of hash entries:

:confirm => ‘Are you sure?’, :post => true

These hash entries tell Rails to create a chunk of JavaScript code. (See
Listing 10-3.)

onclick=”if (confirm(‘Are you sure?’))
{ var f = document.createElement(‘form’);
this.parentNode.appendChild(f);
f.method = ‘POST’; f.action = this.href;
f.submit(); };return false;”>

The JavaScript code makes the server display a confirmation dialog box —
the dialog box in Figure 10-10. In Listings 10-2 and 10-3, this confirmation is
associated with the Destroy link. So if you try to Destroy a photo, the server
asks you to think twice about it.

In list.rhtml (Listing 10-2)

In the Web page generated from list.rhtml (Listing 10-3)

The link_to method generates an HTML anchor element:

The server calls the show method. The :id parameter has value 9.

In show.rhtml (Listing 10-1)

The server activates show.rhtml. The @photo variable refers to
the photo with id number 9.

The controller’s show method

Figure 10-9:
How Rails

creates part
of the Show

page.

213Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 213

This JavaScript in Listing 10-3 is an example of the cooperation between Rails
and other Web technologies. I’ve met Web designers who have never heard of
Ruby on Rails. (They think Ruby on Rails is an Agatha Christie murder mys-
tery.) But these Web designers use JavaScript all the time.

In Listing 10-3, Rails uses JavaScript because it is the most efficient way to
create a confirmation dialog box. In a similar way, Rails uses databases,
HTML, and other tools to help you make the most of the World Wide Web.

To learn more about JavaScript, buy JavaScript For Dummies, 4th Edition, by
Emily A. Vander Veer.

Importing Files
In the first section of this chapter, you add the Rails logo to the list of photos
on your Web site. Of course, you may want to add something other than the
Rails logo to your site. This section tells you how to do it.

Importing files the easy way
RadRails provides two ways to import photos and other files. One way is easy,
but limited. The other way can be tricky, but it’s more versatile. This section
describes the easy way.

The instructions in this section apply only to Microsoft Windows users. If
Windows isn’t your thing, this section’s drag-and-drop steps probably don’t
work for you. Skip directly to the next section.

1. If you haven’t already done so, create a simple photo album Web site.

Follow Steps 1 through 5 in the first section of Chapter 9.

Figure 10-10:
Do you

really, really,
really want

to delete
that photo?

214 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 214

2. In the Rails Navigator view, find the project’s public\images branch.

Refer to Figure 10-1.

3. In Windows XP, choose Start➪My Computer. (In Windows Vista,
choose the Start button and then select Computer.)

The My Computer (or Computer) window opens.

4. In My Computer (or Computer), navigate to the directory containing
the file you want to add to your Web site.

5. Select the file to add to your site.

I like photos of myself, so I select a file with my picture in it. The file’s
name is mypic.jpg. Of course, you may want to select a file with your
picture or a picture of someone you love.

6. Use your mouse to drag the file from the My Computer window to the
public\images branch in the Rails Navigator view.

After dragging the file, you see the file’s name in the Rails Navigator
view. (See Figure 10-11.)

After finishing this section’s steps, you can check to make sure that you suc-
cessfully added an image file to your Rails project. To do so, double-click the
file’s branch in the Rails Navigator view. If all goes well, Windows displays the
file with an image-viewing program (such as Windows Picture and Fax Viewer
or Windows Photo Gallery).

When you follow this section’s steps, RadRails makes a copy of the image file
and places that copy in your Rails project directory. If you change your mind
(and you no longer want the image to be part of your Rails project), you can
delete the copy. To do so, select the file’s branch in the Rails Navigator view
and then press Delete. This action removes the copy from the Rails project.
But the action doesn’t delete the original file (the file that you find in Steps 3,
4, and 5).

Figure 10-11:
The public\

images
folder

contains
more than

one image.

215Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 215

Importing files the geeky way
With the RadRails Import Wizard, Windows, Linux, and Mac OS X users can
add images to their projects. The Import Wizard is more difficult to use than
the previous section’s drag-and-drop technique. But the Import Wizard gives
you more options than you have with dragging and dropping.

1. If you haven’t already done so, create a simple photo album Web site.

Follow Steps 1 through 5 in the first section of Chapter 9.

2. In the Rails Navigator view, find the project’s public\images branch.

Refer to Figure 10-1.

3. Right-click the public\images branch. Then, in the resulting contex-
tual menu, select Import.

The Import Wizard appears.

4. In the Import Wizard’s tree, choose General➪File System, as shown in
Figure 10-12, then click Next.

Another Import Wizard page appears. Among other things, the page dis-
plays a From Directory field and two big panes. These panes are initially
empty. (See Figure 10-13.)

Figure 10-12:
The Import

Wizard.

216 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 216

5. In the From Directory field, type the name of a directory that contains
an image file. (Optionally, you can click the Browse button and then
navigate to the directory you need.)

In response, RadRails displays a folder tree in the pane on the left. Each
branch of the tree has its own check box. (See Figure 10-14.)

Sometimes, nothing happens when you put a name in the From
Directory field. In particular, the two panes below the From Directory
field remain empty until you click somewhere inside one of these panes.

6. In the pane on the left, select the directory containing the image file.

Again, see Figure 10-14.

In the pane on the left, leave all the check boxes unchecked. If you don’t
heed this advice, you end up with some unwanted folders in your Rails
project tree.

7. In the pane on the right, find the image file that you want to add to
the Web site. Put a check mark in the box next to this image file.

Hey! Look at Figure 10-14!

Figure 10-13:
The File
System
Import

Wizard.

217Chapter 10: I’ve Been Working on the Rails Code

16_081204 ch10.qxp 11/30/06 11:13 PM Page 217

When you check a branch in the right pane, RadRails automatically puts
marks in some of the check boxes in the left pane’s tree. You can safely
ignore these marks. Because you don’t add these marks yourself, these
marks can’t hurt you.

8. In the Options group near the bottom of the Import Wizard, put a
mark in the Create Selected Folders Only box.

RadRails gives you two ways to accidentally clutter up your project tree
with unnecessary folders. One way is to ignore my advice in Step 6
about leaving boxes deselected. Another is to check Create Complete
Folder Structure instead of Create Selected Folders Only.

9. Click Finish.

After clicking Finish, you see the file’s name in the Rails Navigator view.

To import images into your project, you can use the Import Wizard or you
can drag and drop files. After importing the images, you can type the file-
names in your application’s New Photo page. (Refer to Figure 10-2.) If you
repeat the process for several photos, you get a Web site full of photos.

But wait! In this chapter’s examples, you can’t import photos without sitting
at your own computer. Your friends and relatives can’t visit your Web site
and upload photos to the site. Your friends aren’t upset, but your relatives
feel slighted. So to keep Uncle Joe happy, read Chapter 11.

Figure 10-14:
Selecting

one or more
image files.

218 Part III: Real Rails

16_081204 ch10.qxp 11/30/06 11:13 PM Page 218

Chapter 11

Image Is Everything
In This Chapter
� Storing photos (and other binary data) in a database

� Uploading images (and other data) to a Web site

� Working with a request and its response

Everyone has phobias. My uncle is afraid of heights. My best friend from
high school is afraid of aging. (Too bad! Heights are easier to avoid than

aging.) A student of mine is afraid of fish. A colleague in my department is
afraid of mirrors (as well he should be). My cat is afraid of wolves. And me?
I’m afraid of things that loosely dangle, such as hanging threads, orphan sen-
tences, and other such things.

There must be a name for this kind of phobia. Maybe it’s loosia-danglo-phobia.
(Don’t confuse this ailment with Lucy-phobia, which pertains only to old tele-
vision sitcoms.) I don’t know what bothers me about loosely dangling things.
You can’t account for taste or for phobias. Maybe I was frightened by a
loosely dangling thing when I was a young child. (Or maybe I’m just crazy!)

Anyway, this book has a stunning example of a loosely dangling thing. It’s a
file stored in a Rails project’s public\images directory.

The skeptics among you might ask “What’s dangling about the public\
images directory?” The answer is in Chapter 10. In that chapter, you create a
database that supposedly stores all information about photos. But this big,
hulking database doesn’t store images. Instead, the database stores filenames.
These filenames are frail tentacles that extend outside the database and into
the rest of the file system. Each photo file dangles from the database, as if the
database doesn’t really own the file. Files can easily be misplaced. You can
move or delete a file without even logging onto the database. That’s danger-
ous. (And, yes, I also have losing-things-aphobia.)

So this chapter shows you how to store your photos in a database.

17_081204 ch11.qxp 11/30/06 11:13 PM Page 219

Enhancing Your Project’s Code
This section wins a prize. It’s a prize for the longest sequence of steps that
I’ve ever written in a For Dummies book. If Paul weren’t such a great project
editor, he’d probably try to bully me into shortening the section.

Anyway, most of this section’s steps involve plain, old typing. The only diffi-
cult part is typing exactly what’s in the listings with all the commas, all the
braces, all the bells, and all the whistles. Sometimes, you can mess things up
by breaking a line where the line’s not supposed to be broken. In other cases,
line breaking doesn’t matter. (The Ruby language is strange that way.)

Follow the book’s longest step list
As you follow this section’s instructions, remember to type carefully and to
check everything that you type. If you do, your code will run correctly. And
remember, if your fingers get tired or if you can’t locate a typing error, you
can download a customized version of RadRails from this book’s Web site.
The customized version contains a project that incorporates this section’s
code modifications.

1. Create a new Rails project.

In this example, I name the project album2.

2. Create a new database.

Use MySQL Administrator as you do in Chapter 3. If you name your pro-
ject album2, the name of the database is album2_development.

3. Using the RadRails Generators view, generate a model.

See Chapter 3 for advice on generating a model. In this example, I name
the model Photo. Rails generates a photo.rb file in the project’s app\
models directory. Rails also generates a migration file (a file named
001_create_photos.rb) in the project’s db\migrate directory.

4. Double-click the db\migrate\001_create_photos.rb file’s branch
in the Rails Navigator view.

As a result of your double-click, the 001_create_photos.rb file opens
in a RadRails editor.

5. Using the editor, modify the db\migrate\001_create_photos.rb file.

The code that you type appears in bold in Listing 11-1. (The code that
Rails creates for you doesn’t appear in bold.)

220 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 220

Listing 11-1: Creating a Table Containing Binary Data

class CreatePhotos < ActiveRecord::Migration
def self.up
create_table :photos do |t|
t.column :picture, :blob
t.column :description, :text

end
end

def self.down
drop_table :photos

end
end

6. In the Rake Tasks view, run db:migrate.

For the basics of running db:migrate, see Chapter 3. And for more
than you ever wanted to know about running db:migrate, see
Chapter 9.

After you run db:migrate, the photos table has three columns —
picture, description, and id. The picture happens to be of type
blob, which I describe in this chapter’s “Creating a database table”
section.

What comes next in these steps is a bunch of typing. This might look
like a lot of work, but it’s really not. Just type each change in the appro-
priate file.

To find each file, look for the file’s branch in the Rails Navigator tree. For
example, to modify the app\controllers\photos_controller.rb
file, expand the tree’s app branch and then expand the controllers
branch within the app branch. Finally, double-click the photos_
controller.rb branch inside the controllers branch. When you
double-click the photos_controller.rb branch, the photos_
controller.rb file opens in a RadRails editor.

7. Modify the controller. Add a get_picture method inside the
app\controllers\photos_controller.rb file.

Add the method in Listing 11-2.

Listing 11-2: A Method in the Controller

def get_picture
@photo=Photo.find(params[:id])
send_data(@photo.picture, :type=> ‘image/jpeg’)

end

221Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 221

Almost everything in this chapter applies to all kinds of image files
(.jpg, .gif, .png, and others). But the code in Listing 11-2 works only
with .jpg files. If you don’t find any .jpg files on your hard drive, don’t
worry. Just choose whatever image files you have. When you choose a
particular image file type (.gif, for example), stick with that type
throughout the chapter. For .gif files, change image/jpeg to
image/gif at the end of Listing 11-2. (Replacing jpeg with the file’s
three-letter extension works in many cases. For .png files, use
image/png; for .bmp files, use image/bmp; and so on.)

8. Modify the model — app\models\photo.rb.

The code that you type appears in bold in Listing 11-3.

Listing 11-3: A Method in the Model

class Photo < ActiveRecord::Base

def photo=(photo_in)
self.picture = photo_in.read

end

end

In the previous two steps, you modify the controller and the model. In
Steps 9 through 13, you modify the view.

9. Modify app\views\photos_form.rhtml.

The code that you type appears in bold in Listing 11-4.

Listing 11-4: Modifying the _form.rhtml File

<%= error_messages_for ‘photo’ %>

<!--[form:photo]-->
<p><label for=”photo_picture”>Picture</label>

<%= file_field ‘photo’, ‘photo’ %></p>

<p><label for=”photo_description”>Description</label>

<%= text_area ‘photo’, ‘description’ %></p>
<!--[eoform:photo]-->

10. Modify app\views\photos\edit.rhtml.

The code that you type appears in bold in Listing 11-5.

Listing 11-5: Modifying the edit.rhtml File

<h1>Editing photo</h1>

<%= start_form_tag({ :action => ‘update’,
:id => @photo },

222 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 222

:multipart => true) %>
<%= render :partial => ‘form’ %>
<%= submit_tag ‘Edit’ %>

<%= end_form_tag %>

<%= link_to ‘Show’, :action => ‘show’, :id => @photo %> |
<%= link_to ‘Back’, :action => ‘list’ %>

In this example, someone uses a form to send an image (a bunch of bits)
from his or her computer to your Web server. You must not forget to add
:multipart => true to the start_form tag. In addition, you must
add parentheses and curly braces for grouping the arguments in the
start_form_tag call. If you forget any of this, the Web form fails to
send the image to your server!

11. Modify app\views\photos\list.rhtml.

The code that you type appears in bold in Listing 11-6.

Listing 11-6: Tweaking the Listing Photos Page (list.rhtml)

<h1>Listing photos</h1>

<table>
<tr>
<% for column in Photo.content_columns %>
<th><%= column.human_name %></th>

<% end %>
</tr>

<% for photo in @photos %>
<tr>

<td>
<img src=”<%=url_for(:action => “get_picture”,

:id => photo.id) %>”
height=”100” />

</td>
<td>
<%= photo.send(“description”) %>

</td>

<td><%= link_to ‘Show’, :action => ‘show’,
:id => photo %></td>

<td><%= link_to ‘Edit’, :action => ‘edit’,
:id => photo %></td>

<td><%= link_to ‘Destroy’,
{ :action => ‘destroy’, :id => photo },
:confirm => ‘Are you sure?’,
:post => true %></td>

</tr>
<% end %>

(continued)

223Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 223

Listing 11-6 (continued)

</table>

<%= link_to ‘Previous page’,
{ :page => @photo_pages.current.previous } if
@photo_pages.current.previous %>

<%= link_to ‘Next page’,
{ :page => @photo_pages.current.next } if
@photo_pages.current.next %>

<%= link_to ‘New photo’, :action => ‘new’ %>

12. Modify app\views\photos\new.rhtml.

The code that you type appears in bold in Listing 11-7.

Listing 11-7: Adding Code to the New Photo Page (new.rhtml)

<h1>New photo</h1>

<%= start_form_tag({ :action => ‘create’ },
:multipart => true) %>

<%= render :partial => ‘form’ %>
<%= submit_tag “Create” %>

<%= end_form_tag %>

<%= link_to ‘Back’, :action => ‘list’ %>

This is a reprise of an earlier warning. The more often you read this
warning, the better. In a form in which you upload an image, a video, or
some other binary data, you must not forget to include :multipart =>
true in the start_form_tag argument list. In addition, you must
add parentheses and curly braces for grouping the arguments in the
start_form_tag call.

13. Modify app\views\photos\show.rhtml.

The code that you type appears in bold in Listing 11-8.

Listing 11-8: Modifying the Show Page (show.rhtml)

<img src=”<%=url_for(:action => “get_picture”,
:id => @photo.id) %>” /><p>

<%=@photo.description %><p>

<%= link_to ‘Edit’, :action => ‘edit’, :id => @photo %> |
<%= link_to ‘Back’, :action => ‘list’ %>

224 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 224

14. Run the application!

For instructions on running an application of this kind, see the last sec-
tion of Chapter 3.

Figures 11-1 through 11-3 show what happens when you run the new
Rails application.

Figure 11-2:
The Listing

Photos
page.

Figure 11-1:
The New

Photo page.

225Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 225

Know the flow
Figure 11-4 illustrates the flow in the photo album application.

In Figure 11-4, the circled numbers represent parts of the photo album appli-
cation cycle. The following paragraphs describe the cycle.

1. A visitor (Uncle Joe, or someone else who visits your photo album Web
site) fills in the fields on the New Photo page. The visitor clicks the
page’s Create button. (See Figure 11-1 and, of course, Figure 11-4.)

2. The button click creates an HTTP request. (For more info about HTTP
requests and responses, see Chapter 7.) The visitor’s Web browser
sends the request along the Internet to your server. The request con-
tains the bits from an image file on the visitor’s hard drive.

3. Your server (running a Rails application) reads the image into a variable
named @photo.picture.

4. Rails automatically stores the image in the picture column of the
photos database table.

Figure 11-3:
The Show

page.

226 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 226

After accepting the visitor’s request, your server responds to this request.
As part of the HTTP response, Rails composes a Listing Photos page.

5. Rails retrieves the image from the database, and stores the image in an
@photo.picture variable.

Rails adds the bits in the @photo.picture variable to the Listing
Photos page. (Actually, the code in Listing 11-6 that creates an HTML
image tag is inside a loop. So Rails adds the bits from several photos to
the Listing Photos page.)

6. Rails sends the response (the Listing Photos page in Figure 11-2) back to
the visitor.

The server sends a similar response (the Show page in Figure 11-3) whenever
the visitor clicks a Show link.

The next section walks you through the relevant Rails code.

Visitor’s
hard drive

The
Listing Photos

page

Database

photos/picture

The
New Photo

page

The
Internet

mypic.jpg Rails application

@photo.picture

1

2 3

5

46

User’s request
Server’s response

Legend:
Figure 11-4:

A visitor’s
request and

your
server’s

response.

227Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 227

Understanding the Enhanced Code
In the previous section, you perform 14 steps. You probably want to know
why you perform all these steps. To explain why, this section describes the
new photo album application and the reasons why all the code works.

Creating a database table
Listing 11-1 defines a database table. In the table, the description column
has type text. The type text is old news.

In the same table, the picture column has type blob (binary large object).
Most databases (MySQL included) can store data of type blob. A blob is a
bunch of bits, containing no particular letters, numeric values, or any other
human readable data. The blob data type is good for storing images (.png
images, .jpg images, .gif images, and others).

Moving on to more code . . .
The next several sections jump from one piece of code to another, like the
shiny, silvery orb in a pinball machine. To keep you from becoming dizzy, I
offer Figure 11-5. The figure shows you which Rails file participates in each
step of the application’s cycle.

As you read the next several sections, remember that the sections describe
everything from the server’s point of view. (After all, the server runs all
your Rails code.) Imagine yourself sitting on top of the circled number 3 in
Figure 11-4. Before the visitor can fill in the New Photo page’s fields, you must
write the Rails code to create the New Photo page (the code in Listings 11-4
and 11-7).

Creating a file input field
Working together, Listings 11-4 and 11-7 present the New Photo page to the
visitor. Listing 11-4 contains a partial — a partial Web page, that is. Listing 11-7
incorporates the partial by calling render :partial => ‘form’.

For Rails enthusiasts, the word partial is a noun. For information on partials,
see Chapter 8.

228 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 228

In Listing 11-4, a call to the Rails file_field method tells the server to gen-
erate the following HTML tag:

<input id=”photo_photo” name=”photo[photo]”
size=”30” type=”file” />

See Figure 11-6. This HTML tag becomes part of the New Photo Web page.
Because of the words type=”file” in the tag, the visitor’s browser displays
a text box with a Browse button. (Refer to Figure 11-1.) Clicking this Browse
button opens a standard Choose File dialog box.

<% file_field 'photo', 'photo' %>

<input id="photo_photo" name="photo[photo]" size="30" type="file" />

Figure 11-6:
The Rails
file_field
method
creates

an HTML
input tag.

Visitor’s
hard drive

The
Listing Photos

page

Database

photos/picture

The
New Photo

page

The
Internet

mypic.jpg Rails application

@photo.picture

1

2 3

5

46

The model
(Listing 11-3)

Reads the visitor’s image bits

The controller
(Listing 11-2)

Sends image bits back to the visitor
(and does other useful things)

Figure 11-5:
How code

cooperates
to create
the photo

album
application.

229Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 229

In Listing 11-7, the words :multipart => true help to generate another
HTML tag:

<form action=”/photos/create”
enctype=”multipart/form-data” method=”post”>

In this tag, the words enctype=”multipart/form-data” cause the visi-
tor’s browser to send an image file’s bits (instead of the image file’s name) to
your Web server.

Creating a Photo instance
The controller has a create method containing the following line:

@photo = Photo.new(params[:photo])

The line creates a new Photo instance and makes @photo refer to that
instance.

(In case you’re wondering, the create method doesn’t appear in any of this
chapter’s code listings, and this part of the controller’s contribution doesn’t
appear in Figure 11-5.)

Reading the image bits
Quoting quickly from the previous section, a line of code “creates a new
Photo instance and makes @photo refer to that instance.” What do I mean
when I write that the code “makes @photo refer to that instance”?

Listing 11-3 defines what “making something refer to a Photo instance” means.
Listing 11-3 is the Photo model. The model describes the characteristics of
each Photo instance.

For starters, a Photo instance has all the characteristics of an ActiveRecord::
Base instance. (See the discussion of subclasses in Chapter 6.) A Photo
instance has methods named find, create, establish_connection,
delete, and so on.

Listing 11-3 adds an additional method. A Photo instance has an assignment
method (a method denoted as photo= in Listing 11-3). The assignment method
tells Rails to call read when making something refer to a Photo instance.
That’s good because the read method gets the image bits from the visitor’s
request.

230 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 230

Listing 11-3 reads image bits and assigns these bits to the picture variable
in a Photo instance. Then, using object-relational mapping, Rails stores the
image’s bits in the picture column of the database table. (For a discussion
of object-relational mapping, see Chapter 9.)

Composing an image tag
Listings 11-6 and 11-8 have a lot in common. Both contain code to construct
an HTML image tag.

<img src=”<%=url_for(:action => “get_picture”,
:id => @photo.id) %>” />

The code in Listing 11-6 has an additional height=”100” part because the
tag in Listing 11-6 is on the Listing Photos page. On that page, you don’t want
to display very large versions of the images. (See Chapter 10.)

In Chapter 10, I create an HTML image tag using the Rails image_tag
method. But in Listings 11-6 and 11-8, I forgo the image_tag method.
Instead, I plop some HTML code () right into my Rails
rhtml file. Why do I do it differently in Listings 11-6 and 11-8? I do it because,
by the time I get around to writing Listings 11-6 and 11-8, my mood changes.
That’s the only difference.

In Listings 11-6 and 11-8, the call to the Rails url_for method creates a URL.
This URL is something like /photos/get_picture/3 or /photos/get_
picture/2158.

So, after Rails calls the url_for method, the HTML image tag looks some-
thing like this:

See Figure 11-7.

<img src="<%=url_for(:action=>"get_picture", :id=>@photo.id)%>" />

Figure 11-7:
The Rails

url_for
method

creates a
URL.

231Chapter 11: Image is Everything

17_081204 ch11.qxp 11/30/06 11:13 PM Page 231

At this point in the process, things bounce back and forth between the visi-
tor’s browser and your Web server. Your server sends the image tag to the
visitor’s Web browser as part of a Listing Photos or Show Photo page. When
the browser encounters the image tag, the browser sends a follow-up request
to your server. “Please send me /photos/get_picture/3 so I can display
it in my window,” says the visitor’s browser.

When your server receives the “Please send me . . . get_picture” message,
your server calls the get_picture method in Listing 11-2. Fortunately, the
get_picture method is ready to send an image’s bits to the visitor’s
browser.

Sending image bits to the visitor’s browser
Listing 11-2 is part of the controller. In Listing 11-2, the get_picture
method calls the Rails send_data method. The Rails send_data method
fulfills its cosmic purpose by sending an image’s bits to the visitor’s Web
browser.

Whew!
The whole cycle (the visitor’s request followed by your server’s response)
takes place in a few seconds. On a good day it can take less than a second.
That’s amazing when you think about the amount of work that Rails does.

Every Intel processor contains a time-of-day clock. One hundred times each
second, the time-of-day clock sends out a signal. This signal tells the proces-
sor to stop whatever it’s doing, and perform some housekeeping tasks. In
other words, 100 times per second, the computer dawdles for a while and
ignores the user’s immediate needs. In spite of this, the computer gets more
work done in a second than a thousand monkeys can do between now and
eternity. What a marvelous beast the computer is!

232 Part III: Real Rails

17_081204 ch11.qxp 11/30/06 11:13 PM Page 232

Chapter 12

More Model Magic
In This Chapter
� Validating input

� Creating relationships between database tables

� Creating forms with check boxes, drop-down lists, and more

My next book is entitled Lucid Dreaming For Dummies. The book is about
dreams in which I know that I’m dreaming.

In one chapter, I can’t pay the check at a fancy restaurant. Instead of becom-
ing upset, I remind myself that the restaurant isn’t real, and that if I wake up,
I’ll avoid any possible embarrassment.

In another chapter, I walk into a crowded room. I tell everyone to leave imme-
diately because they’re in my dream and they don’t belong there.

In yet another, I ask someone what it’s like to be a character in my dream.
He replies that he doesn’t know because he’s not a real person. I remind him
that he’s part of my mind, so I can answer the question on his behalf. He chal-
lenges me to do so. I become angry. I decide that in future dreams, I’ll be
giving my characters much less independence.

The list of good chapters goes on and on. Strangely enough, Wiley Publishing
hasn’t yet approved the project.

Blogging Your Dreams
Every good book comes with a good Web site. So to accompany my Lucid
Dreaming For Dummies book, I have a site on which people can post descrip-
tions of their dreams. In an unusual moment of cleverness, I named the site
TextfieldOfDreams.com.

18_081204 ch12.qxp 11/30/06 11:13 PM Page 233

Using Ruby on Rails, you can re-create the TextfieldOfDreams site. Follow
the usual steps in creating a Rails application. (For details, see Chapter 3.)
In this chapter’s application, do the following:

� Name your new project dreaming.

The corresponding database name is dreaming_development.

� Name your new model Dream.

When you generate a Dream model, you get files named dream.rb and
001_create_dreams.rb.

� Add columns named title and description to the database. (See
Listing 12-1.)

For detailed instructions on creating a project, a model, or the columns
in a database, see Chapter 3.

Listing 12-1: Defining a Database Table

class CreateDreams < ActiveRecord::Migration
def self.up
create_table :dreams do |t|
t.column :title, :string
t.column :description, :text

end
end

def self.down
drop_table :dreams

end
end

� Perform the usual steps in building a Rails application.

Run the migration, create a Dream scaffold, and so on.

The finished product’s Show page looks like the page in Figure 12-1.

Figure 12-1:
A dreamy

Web page.

234 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 234

Validating the Visitor’s Input
One day, I visited my dreams Web site and saw the stuff in Figure 12-2. I
admired the cool logo that I’d added to the Listing Photos page. But I also
noticed that someone had added three blank entries — three dreams with
neither titles nor descriptions.

To keep people from adding unwanted entries, I used the RadRails editor
to modify the Dream model (the dream.rb file). I added the bold lines in
Listing 12-2.

Listing 12-2: Validating Input

class Dream < ActiveRecord::Base
validates_presence_of :title, :description
validates_length_of :description, :minimum => 10
validates_length_of :description, :maximum => 500
validates_uniqueness_of :title

end

Listing 12-2 makes four calls to Rails validation methods. Of all the Rails
features, validation methods may give you the most bang for your buck.
With the addition of one validates_something call, Rails checks the
correctness of the incoming data. After you add the code in Listing 12-2,
people can’t create blank entries. If they try, they see a page like the one in
Figure 12-3.

Figure 12-2:
The

database
has three

blank
entries.

235Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 235

In Listing 12-2, the validates_presence_of call insures that the visitor
types both a title and a description. Actually, the requirement that a descrip-
tion be present is redundant. Later in Listing 12-2, a validates_length_of
call insists that the description have at least 10 characters. So a blank
description or a very brief description (My dream) doesn’t pass muster.

The validates_uniqueness_of call is very handy. With this call, Rails pre-
vents the dreams database table from containing duplicate title entries. For
example, if you start with the page in Figure 12-2 and try to add another
dream with the title Java Intro, Rails barks at you with the message in
Figure 12-4.

Figure 12-4:
Too many

people are
posting

“Java Intro”
dreams.

Figure 12-3:
Sorry, pal.
Your entry
isn’t good

enough.

236 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 236

By default, Rails checks a value when your code saves the value to a database.
Using arguments to the validates methods, you can fine-tune this behavior.
But you can’t force Rails to check a value whenever you show that value.
(You can write detailed code to check values whenever you want. But writing
detailed code is more difficult than using the Rails validates methods.)

This section covers three validation methods — validates_presence_of,
validates_length_of, and validates_uniqueness_of. In addition,
Rails has methods for validating the format of a visitor’s input, the numerical-
ity of input, acceptance of an agreement, and lots of other stuff. For an example
of format checking, see this chapter’s “Connecting dreams with keywords” sec-
tion. For information about the other Rails validation methods, visit http://
api.rubyonrails.org/classes/ActiveRecord/Validations/
ClassMethods.html.

Adding Comments
Usually, when people tell me about their dreams, I respond with a polite
comment. “That’s interesting,” I say, and then I quickly change the subject.
In most cases, a dream is interesting only to the person who has the dream.
But at TextfieldOfDreams.com, everyone takes an interest in everyone
else’s dreams. After someone posts a dream, others read the dream’s descrip-
tion and add comments of their own.

237Chapter 12: More Model Magic

The Joy of Ruby
Listing 12-4 dynamically adds methods to
instances of the Comment class. In other words,
calling one method (the belongs_tomethod)
effortlessly changes the number of methods
associated with certain objects. This sponta-
neous creation of methods doesn’t take place
during some sluggish code compilation stage or
class loading stage. Instead, this sleight-of-
hand takes place while Listing 12-4 runs.

In most other languages, you’d have to jump
through hoops to add methods while a program
runs. But in Ruby, you can create methods by

typing one line of code. The Ruby language
makes a system more pliable, more flexible, more
responsive to change than systems written in
other languages. And Rails takes full advantage
of Ruby’s dynamic qualities.

It was either Charles Nutter or Thomas Enebo
who told me that Rails stretches Ruby to its limits.
Rails uses more of Ruby’s features than other
Ruby-based frameworks tend to use. Listing 12-4
is only one, tiny example of the Ruby language’s
power. But Listing 12-4, with its astounding sim-
plicity, provides a hint of Ruby’s richness.

18_081204 ch12.qxp 11/30/06 11:13 PM Page 237

Where do I store these comments? The previous section’s dreams table has
only three columns — title, description, and id. I could add an additional
column to store one comment, but that strategy wears thin when a dream
acquires its second, third, and fourth comments.

The best way to deal with comments is to store them in a separate database
table. So I create a second table (named comments). Then I do something
“Railsian” to connect the old dreams table with the new comments table.
You can do it too. Here’s how:

1. Create the dreaming project described in the first section of this
chapter.

2. Make sure that your dreaming project has a Dream model, Dream
scaffolding, and the works.

Chapter 3 has all you’d ever need to know about such matters.

3. Add a second model to your project. Give this second model the name
Comment.

In other words, use the Rails Generators view to create an
app\models\comment.rb file.

4. Perform the migration shown in Listing 12-3.

Again, a migration is a Ruby program that adds tables and columns to a
database. For nuts and bolts details, see Chapter 3.

Listing 12-3: The File 002_create_comments.rb

class CreateComments < ActiveRecord::Migration
def self.up
create_table :comments do |t|
t.column :body, :text
t.column :dream_id, :int

end
end

def self.down
drop_table :comments

end
end

With Listing 12-3, you depart from the previous chapters’ hum-drum
migrations. Sure, each comment has a body — a bunch of text that
someone writes about someone else’s dream. But Listing 12-3 says more.
Listing 12-3 says that each comment has a dream_id. That is, each com-
ment is associated with a particular dream.

Remember the Rails mantra, “Convention over configuration.” (If you
don’t remember the mantra, see Chapter 8.) In Listing 12-3, you create a
column named dream_id. The Rails convention dictates that a column
named othertable_id is a reference to the other table’s rows.

238 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 238

So, imagine that you create a comment. The comment’s body is “I
agree” and the comment’s dream_id is 7. Then your dreams table
must have a row with id 7. Rails associates the “I agree” comment
with the dream that has id 7. (For details about a table’s id numbers,
see Chapter 10.)

In your Rails code, a row’s id number is almost always a variable. You
never assume that a particular table row has a particular id number.

5. Tell Rails that each comment belongs to a particular dream.

That means you add code to the Comment model (the comment.rb file)
as shown in Listing 12-4.

Listing 12-4: The Comment Model

class Comment < ActiveRecord::Base
belongs_to :dream

end

In Listing 12-4, the belongs_to method says “A comment without a
dream is like a day without sunshine.” Of course, I can make the same
point without all the silliness. Listing 12-4 adds additional methods to
each Comment instance. In particular, each Comment instance has its
own dream method. In your code, you can type

@comment = Comment.new
puts @comment.dream

Because of the belongs_to call in Listing 12-4, Ruby doesn’t complain
when you run these two lines of code. (You don’t put these particular
lines of code in any of your dreaming project’s files, but it’s nice to know
that you could add them if you wanted to do so.)

6. Tell Rails that each dream has many comments.

That is, add code to the Dream model (the dream.rb file) as shown in
Listing 12-5.

Listing 12-5: The Enhanced Dream Model

class Dream < ActiveRecord::Base
has_many :comments

end

Listing 12-5 does for dreams what Listing 12-4 does for comments. The
big difference is that Listing 12-5 tells Rails that a dream can have not
just one, but several comments. In particular, the call to has_many in
Listing 12-5 adds a comments method to each Dream instance. A listing
later in this chapter contains the code for comment in @dream.
comments. That code, with its reference to @dream.comments, would
crash the program if the Dream model didn’t contain a has_many
:comments call.

239Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 239

A comment belongs to a dream. (See Listing 12-4.) Because of this, the
comments database table has a dream_id column. (See Listing 12-3.)
But a dream has many comments and, as a result, the dreams database
table doesn’t have a comment_id column. (See Listing 12-1.)

The method call in Listing 12-4 is belongs_to :dream. The argument
in a belongs_to call is singular. But the method call in Listing 12-5 is
has_many :comments. The argument in a has_many call is plural.

7. Add code to the app\views\dreams\show.rhtml file.

The code that you type appears in bold in Listing 12-6. (The code that
Rails creates for you doesn’t appear in bold.)

Listing 12-6: Adding Code to the show.rhtml File

<% for column in Dream.content_columns %>
<p>
<%= column.human_name %>:
<%=h @dream.send(column.name) %>

</p>
<% end %>

Comments:

<% if @dream.comments.empty? %>
(None)<p>

<% else %>
<% for comment in @dream.comments %>
<%= comment.body %>

<% end %>
<% end %><p>

<%= start_form_tag :action => “add_comment”,
:id => @dream %>

Add a comment:

<%= text_area “comment”, “body”, “rows” => 5 %>

<%= submit_tag %>

<%= end_form_tag %><p>

<%= link_to ‘Edit’, :action => ‘edit’, :id => @dream %> |
<%= link_to ‘Back’, :action => ‘list’ %>

The new code adds two sections to each dream’s Show page. The first sec-
tion lists all the comments belonging to a particular dream. The second
section contains a form for adding new comments.

Notice the use of the expression @dream.comments in Listing 12-6.
This expression is illegal if you don’t add has_many :comments to the
model in Listing 12-5.

240 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 240

Notice also the use of Ruby’s empty? method in Listing 12-6. In Ruby,
the name of a method may end with a question mark. A method of this
kind returns true or false in response to a question. (“Is the
@dream.comments array devoid of any comments?”)

Listing 12-6 contains several <%= %> tags. Forgetting the equal sign
in one these tags is a bad mistake. Errors involving these equal signs
can be difficult to debug. Always double-check your work to make sure
that you haven’t used <% %> when you should be using <%= %>.
When you’re not sure whether you should be adding the equal sign, take
a few minutes to do some research. Check the Rails documentation, or
compare your code with some code that’s known to be correct.

8. Add a method to the app\controllers\dreams_controller.rb file.

To do this, double-click the dreams_controller.rb file’s branch in
the app\controllers branch of the Rails Navigator’s tree. When you
do, the dreams_controller.rb file opens in a RadRails editor.

Add the method in Listing 12-7.

Listing 12-7: How to Add a Comment

def add_comment
Dream.find(params[:id]).
comments.create(params[:comment])

flash[:notice] = ‘Comment was successfully added’
redirect_to :action => ‘show’, :id => params[:id]

end

The form in Listing 12-6 calls the add_comment method in Listing 12-7.
The add_comment method does what its name suggests; namely, the
method adds a new comment to an existing dream. Most of the work
takes place in the method’s first statement.

Dream.find(params[:id]).
comments.create(params[:comment])

This statement finds a dream whose id matches that of the dream in the
Show page. The statement calls that dream’s comments method, which
returns an array containing all comments associated with that particular
dream. (Once again, this call to a comments method owes its existence
to the has_many :comments line in Listing 12-5.)

After fetching an array of comments, the first statement in Listing 12-7
calls the create method. In one fell swoop, this create call adds a
comment to the existing array and deposits the updated array informa-
tion into the comments database table. (For an introduction to the
create method, see Chapter 9.)

241Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 241

9. Go!

Put your Web site through the paces. Add comments. See the results.
(Better yet, see Figures 12-5 and 12-6.)

Figure 12-6:
A dream

with several
comments.

Figure 12-5:
Adding a

comment.

242 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 242

Adding Keywords
Often, when I dream, I’m aware that I’m dreaming. I dream about dreaming,
and occasionally, I dream about dreaming about dreaming. This kind of
dreaming is called “lucid dreaming.” And, as I indicate at the start of this
chapter, I’m a frequent lucid dreamer.

To my TextFieldOfDreams.com Web site, I want to add keywords. Each
dream has keywords. For example, I dream that I’m flying. While I’m flying
I say “Dreams are wonderful! I wouldn’t be able to fly if I weren’t dreaming.”
When I post this dream, I give the dream at least two keywords — Lucid and
Flying. A visitor to the Web site can scan keywords and quickly discover
which dreams match his or her interests.

Some Web sites have thingies that they call tags. Their tags are the same as
my keywords. But in this book, I use the word tag to mean HTML tag and ERb
tag. So to avoid confusion, I call my things keywords.

243Chapter 12: More Model Magic

Regular expressions
In Ruby, anything enclosed inside %r{ } is a
regular expression. A regular expression sepa-
rates strings of characters into two groups —
strings that match the expression and strings
that don’t match. For example, in a regular
expression, [A-F] stands for a letter in the
range A to F. If you change the :with entry in
Listing 12-10 to :with => %r{^[A-F]+$},
the application doesn’t accept BARRY as a new
keyword. (The word BARRY contains Rs and a
Y, which aren’t in the range A to F.)

In Listing 12-10, [A-Za-z] stands for any
letter of the Roman alphabet, from uppercase
A to uppercase Z, and from lowercase a to
lowercase z. Hey! It’s beginning to look as if
blank spaces, digits, and punctuation charac-
ters aren’t permitted in a keyword’s name (at

least not as far as the code in Listing 12-10 is
concerned).

In a regular expression, a plus sign (+) stands
for “one or more occurrences of. . . .” So in
Listing 12-10, [A-Za-z]+means “one or more
letters of the Roman alphabet.”

Finally in Listing 12-10, the hook (^) stands for
the start of a string, and the dollar sign ($)
stands for the end of a string. So the entire
expression %r{^[A-Za-z]+$}matches any
string that contains nothing but letters of the
Roman alphabet from beginning to end.

Regular expressions are very powerful (and they
can also be very complicated). For more infor-
mation on regular expressions, visit http://
www.regular-expressions.info.

18_081204 ch12.qxp 11/30/06 11:13 PM Page 243

Connecting dreams with keywords
I don’t want to let people make up their own keywords. If I do, then I’ll quickly
see posts with keywords like Viagra, Confidential, and Refinance. Instead, I
create a database table containing keywords. I let visitors attach words from
the table to each dream.

My database contains many dreams and many keywords, and the relation-
ship between dreams and keywords is many-to-many. That is, each dream
can have many keywords, and each keyword can be associated with many
different dreams.

I need a quick Rails-ish way to define this many-to-many relationship. And
indeed I have a way: has_and_belongs_to_many (abbreviated habtm by
most authors). Putting a habtm relationship in your code is quick and easy.
But tailoring your controller and views to accommodate the new habtm rela-
tionship can be tricky. This section shows you what to do.

1. If you haven’t already done so, create the dreaming project (complete
with Dream model and scaffolding) described in the first section of
this chapter.

Optionally, you can follow all the steps in this chapter’s “Adding
Comments” section.

2. Add an additional model to your project. Give this new model the
name Keyword.

In other words, use the Rails Generators view to create an
app\models\keyword.rb file.

3. Perform the migration shown in Listing 12-8.

Listing 12-8: Defining the keywords Table

class CreateKeywords < ActiveRecord::Migration
def self.up
create_table :keywords do |t|
t.column :name, :string

end
end

def self.down
drop_table :keywords

end
end

Big deal! With the default migration written by RadRails, you can create
Listing 12-8 by deleting one pound sign!

Anyway, when you perform this migration, you create a new keywords
database table. Unlike the comments table in this chapter’s “Adding

244 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 244

Comments” section, the new keywords table has no dream_id column.
That’s the way the habtm relationship works.

Like so many other Rails tables, the new keywords table has an id
column. But the keywords table has no dream_id column.

4. Tell Rails that dreams and keywords participate in a habtm relationship.

More specifically, add has_and_belongs_to_many method calls in
both the dream and keyword models. (See Listings 12-9 and 12-10.)

Listing 12-9: The Dream Model

class Dream < ActiveRecord::Base
has_many :comments
has_and_belongs_to_many :keywords

end

Listing 12-10: The Keyword Model

class Keyword < ActiveRecord::Base
validates_format_of :name, :with => %r{^[A-Za-z]+$}
has_and_belongs_to_many :dreams

end

The habtm relationship is symmetrical. Both Listings 12-9 and 12-10
contain has_and_belongs_to_many calls. This differs from the situa-
tion in the “Adding Comments” section. In that section, one model calls
has_many, and the other model calls belongs_to. The has_many/
belongs_to relationship is not symmetrical.

In Listing 12-9, the line has_many :comments is optional. If you fol-
lowed the steps in this chapter’s “Adding Comments” section, then keep
the has_many call in Listing 12-9. But if you haven’t already added com-
ments to your Web site, then don’t bother. This section’s keywords don’t
depend on the previous section’s comments.

Listing 12-10 also contains an optional statement — a statement that
has nothing to do with the habtm relationship. Listing 12-10 calls the
validates_format_of method. This method tells the model to check
a keyword’s name against a regular expression. If I try to create a key-
word that doesn’t match the regular expression, Rails displays an error
message. In Listing 12-10, the regular expression %r{^[A-Za-z]+$}
stands for any sequence of characters containing only letters. No blank
spaces, digits, or punctuation characters are allowed in a new keyword’s
name. (See the sidebar “Regular expressions.”)

At this point in the process, you have two related tables — a dreams
table and a keywords table. Neither of these tables has an _id column
pointing to the other table. So how does Rails keep track of the keywords
associated with each dream? The answer is in Step 5.

5. Create an additional database table named dreams_keywords.

245Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 245

The name of this table is not negotiable. Rails keeps track of a habtm
relationship by depositing values into an additional database table. By
default, the additional table’s name comes from the names of the two
original tables. (The additional table’s name is alphabeticallyFirst_
alphabeticallySecond.) In this example, Rails wants the additional
database table to be named dreams_keywords.

Listing 12-11 contains the 004_create_dreams_keywords.rb file.
The code that you type appears in bold in Listing 12-11.

Listing 12-11: A Table Describes the Relationship
between Two Other Tables

class CreateDreamsKeywords < ActiveRecord::Migration
def self.up
create_table :dreams_keywords, :id => false do |t|
t.column :dream_id, :int
t.column :keyword_id, :int

end
end

def self.down
drop_table :dreams_keywords

end
end

In performing this step, you generate a new migration. But you don’t
generate a new model. To learn how to generate a migration out of the
blue, see Chapter 9.

Each row of the new dreams_keywords table contains two values —
the id number of a dream, and the id number of a keyword. If keyword 42
is associated with dream 9, Rails puts 9 42 into one of the rows in the
dreams_keywords table.

In the previous paragraph, two values means two values. It doesn’t mean
three values (two ordinary content values plus an additional id value). A
table that stores habtm information must not contain its own id column.
That’s why Listing 12-11 contains the code :id => false.

A table that stores habtm information must not contain its own id column.
If you omit the :id => false code in Listing 12-11, Rails may complain
when you try to add entries. (Rails complains that the table contains
duplicate entries, even though the table doesn’t contain duplicate entries.)

6. Create a Keyword scaffold.

Use the Rails Generators view to create files named app\controllers\
keywords_controller.rb, app\views\keywords\list.rhtml,
and so on.

Some of your applications’ models don’t need their own scaffolds. (For
example, in the previous section, the Comment model has no scaffold.)
But using the Keyword model’s scaffold, you can create new keywords

246 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 246

as needed. When you create a new keyword, you don’t have to associate
that keyword with a particular dream. In the habtm relationship, both
dreams and keywords have lives of their own.

7. Add methods to the app\controllers\dreams_controller.rb file.

To do this, double-click the dreams_controller.rb file’s branch in
the app\controllers branch of the Rails Navigator’s tree. When you
do, the dreams_controller.rb file opens in a RadRails editor.

Add the methods in Listing 12-12.

Listing 12-12: Methods in the Dream Controller

def remove_keyword
@dream = Dream.find(params[:id])
@dream.keywords.delete(
Keyword.find(params[:which_keyword]))

if @dream.save
flash[:notice] = ‘Keyword has been removed.’

end
redirect_to :action => ‘show’, :id => @dream

end

def add_keyword
@dream = Dream.find(params[:id])
@dream.keywords.push_with_attributes(
Keyword.find(params[:keyword][:id]))

if @dream.save
flash[:notice] = ‘Keyword has been added!’

end
redirect_to :action => ‘show’, :id => params[:id]

end

def add_some_keywords
@dream = Dream.find(params[:id])
@unused_keywords =
Keyword.find(:all) - @dream.keywords

if @unused_keywords.any?
@keywords_to_add = @unused_keywords.select { |key|
(@params[‘key’+key.id.to_s][‘checked’] == ‘1’)}

@keywords_to_add.each { |key|
@dream.keywords.push_with_attributes(key)}

end

if @keywords_to_add.any? and @dream.save
flash[:notice] = ‘Keywords have been added!’

end
redirect_to :action => ‘show’, :id => @dream

end

247Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 247

I admit it. If you don’t download the code from this book’s Web site,
Listing 12-12 involves lots and lots of typing. But typing and understand-
ing are two completely different things. Typing or no typing, you can
understand the code in Listing 12-12. To so do, read the next section.

8. Optionally, modify the app\views\dreams\list.rhtml file.

Listing 12-13 shows the top half of the modified list.rhtml file. In this
listing, the code that you type appears in bold. (The code that Rails cre-
ates for you doesn’t appear in bold.) You make no changes in the bottom
half of the list.rhtml file (the half that doesn’t appear in Listing 12-13).

Listing 12-13: Changing a Few Lines in the dreams\list.rhtml File

<h1>Listing dreams</h1>

<table>
<tr>
<th>Title</th>

</tr>

<% for dream in @dreams %>
<tr>
<td><%= dream.title %></td>

<td><%= link_to ‘Show’, :action => ‘show’, :id =>
dream %></td>

<td><%= link_to ‘Edit’, :action => ‘edit’, :id =>
dream %></td>

<td><%= link_to ‘Destroy’,
{ :action => ‘destroy’, :id => dream },
:confirm => ‘Are you sure?’,
:post => true %></td>

</tr>
<% end %>
</table>

... And so on.

If you don’t make the changes in Listing 12-13, nothing terrible happens.
Your site’s Listing Dreams page displays the description of each dream
(like the page in Figure 12-2). Displaying a description isn’t awful, but
having descriptions on the Listing Dreams page defeats the purpose
of having titles and Show pages. So at this point in the process, I make
an executive decision to modify the list.rhtml file. The revised
list.rhtml file displays titles, but no keywords and no descriptions.

9. Modify the app\views\dreams\show.rhtml file.

The code that you type appears in bold in Listing 12-14. The code that
Rails creates for you (and the code that may be left over in your show.
rhtml file from Listing 12-6) doesn’t appear in bold.

248 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 248

Listing 12-14: The Show Page for a Dream

<% for column in Dream.content_columns %>
<p>
<%= column.human_name %>:
<%=h @dream.send(column.name) %>

</p>
<% end %>

Keywords:

<% if @dream.keywords.empty? %>
(None)<p>

<% else %>
<% for keyword in @dream.keywords %>
<%= keyword.name %>
<%= link_to ‘Remove’, { :action => ‘remove_keyword’,
:id => @dream, :which_keyword => keyword.id },
:confirm => ‘Are you sure?’, :post => true %>

<% end %>
<% end %>

<% @unused_keywords =
Keyword.find(:all) - @dream.keywords %>

<% if @unused_keywords.any? %>
<%= start_form_tag :action => “add_keyword”,

:id => @dream %>
Add a keyword:

<%= collection_select(:keyword, :id,

@unused_keywords, :id, :name) %>

<%= submit_tag %>

<%= end_form_tag %><p>

<%= form_tag :action => “add_some_keywords”,
:id => @dream %>

<% @unused_keywords.each {|key| %>
<%= check_box(‘key’+key.id.to_s, ‘checked’) +

key.name %>

<% } %>
<%= submit_tag %>

<%= end_form_tag %>
<% end %><p>

Comments:

<% if @dream.comments.empty? %>
(None)<p>

<% else %>

(continued)

249Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 249

Listing 12-14 (continued)

<% for comment in @dream.comments %>
<%= comment.body %>

<% end %>
<% end %><p>

<%= start_form_tag :action => “add_comment”,
:id => @dream %>

Add a comment:

<%= text_area “comment”, “body”, “rows” => 5 %>

<%= submit_tag %>

<%= end_form_tag %><p>

<%= link_to ‘Edit’, :action => ‘edit’, :id => @dream %> |
<%= link_to ‘Back’, :action => ‘list’ %>

Listing 12-14 contains a heck of a lot of code. Typing this code is even
more challenging than typing the code in Listing 12-12, because the
code in this listing contains more punctuation (more things that are
easy to type incorrectly). Anyway, whether you type this code or you
download it from the Web, your best bet is to understand how the code
works. For a look inside the workings of the code in Listing 12-12, see the
next section.

Hey! Don’t you think it’s time you tested your new Web application?

10. Visit http://localhost:300x/keywords/new.

Create a few keywords. (See Figure 12-7.)

11. Visit http://localhost:300x/dreams.

As usual, I encourage you to goof around with the application’s pages.
Add dreams, add keywords to dreams, remove keywords from dreams,
and so on. Figures 12-8 and 12-9 are screenshots.

Figure 12-7:
Adding a
keyword.

250 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 250

How the Rails code does what it does
By far, the most challenging part of adding keywords to the dreams Web site
is digesting the code in Listings 12-12 and 12-14. This section covers the high-
lights in those listings.

Figure 12-9:
Using a

drop-down
list.

Figure 12-8:
Using check

boxes.

251Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 251

Removing a keyword
In Listing 12-14, the first bold chunk of code lists the keywords associated
with a particular dream. A link appears beside each keyword’s name. The link
(labeled Remove) points to a controller action named remove_keyword.

Rails doesn’t insist that the controller’s action be named remove_keyword.
The only requirement is consistency. If you replace :action => ‘remove_
keyword’ with :action => ‘razzle-dazzle’ in Listing 12-14, you must
add a method named razzle-dazzle in the controller. Of course, the name
razzle-dazzle would make your program difficult to read and understand.
The name remove_keyword is much better.

When a visitor clicks the Remove link, the link sends two values to the
controller. One value (the :id value) is a dream’s id. The other value
(the :keyword value) is a keyword’s id.

In the controller (Listing 12-12), the remove_keyword method isn’t very
exciting. The method finds a dream with a particular id, finds a keyword with
another id, and deletes the keyword from the dream. The call to delete
(inside the remove_keyword method) behaves nicely. Behind the scenes,
Rails responds to the delete call by eventually removing a row from the
dreams_keywords table.

Using a drop-down list to add a keyword
In Listing 12-14, the Ruby statement

@unused_keywords =
Keyword.find(:all) - @dream.keywords

finds the difference between two arrays. In this case, the difference is an array
consisting of all keywords minus any keywords belonging to a particular
dream. (So, the variable @unused_keywords contains all keywords that
aren’t associated with this Show page’s dream. Pretty slick, heh?)

Listing 12-14 also contains an add_keyword form, and the form contains a
collection_select call. The Rails collection_select method adds a
drop-down list to a Web page. (Refer to Figures 12-8 and 12-9.) To be painfully
precise, the collection_select method adds an HTML select element to
a Web page. When a Web browser receives a select element, the browser
displays a drop-down list.

A select element consists of two tags, a select start tag and a select end
tag. But many people use the phrase select tag to refer to the whole kit and
caboodle — the start tag, the end tag, and all the text between the start and
end tags.

252 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 252

The collection_select call and the select element that the call creates
are shown in Figure 12-10.

In Listing 12-14, a call to the Rails submit_tag method accompanies the
collection_select call. The submit_tag call puts a button on the Web
page. (By default, the label on the button is Save Changes. See Figures 12-8
and 12-9.) A visitor selects an entry in the drop-down box and then clicks the
button that’s immediately below the box. As a result, Rails calls the Dream
controller’s add_keyword method.

In Listing 12-12, the add_keyword method contains the following Ruby
statement:

@dream.keywords.push_with_attributes(
Keyword.find(params[:keyword][:id]))

In this statement, the value of params[:keyword][:id] is the id number of
the keyword that the visitor selected. In order for this to work correctly, some
words in the Ruby statement must be identical to words in the HTML select
element. In particular, the words [:keyword][:id] in the Ruby statement
match up with keyword[id] in the select element. (See Figure 12-11.)

The add_keyword method in Listing 12-12 contains a push_with_
attributes method call. This call does the real grunt work — adding a
keyword to a dream. In the end, Rails adds a new row to the dreams_
keywords table.

<%= collection_select (:keyword, :id, @unused_keywords, :id, :name) %>

<select id="keyword_id" name="keyword[id]">
 <option value="2">Flying</option>
 <option value="3">Childhood</option>
</select>

Only the
unused

keywords
appear in

the
drop-down

list.

The keywords’ names are
the drop-down list’s labels.

The keywords’ id numbers
identify the list’s items.

Figure 12-10:
A Rails

collection_
select call
generates
an HTML

select
element.

253Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 253

Using check boxes to add keywords
The page in Figure 12-8 has a strange feature. The page offers two ways to
add keywords. The first way involves a drop-down box, and the second way
involves check boxes. Normally, you wouldn’t offer both ways on the same
page. (Well, maybe you would. But you probably wouldn’t offer both ways
so close to one another on the page.) In any case, the code in this chapter
shows you both features of Rails — drop-down boxes and check boxes.

Listing 12-14 contains an add_some_keywords form. The form calls the
Rails check_box method once for each unused keyword. (See Figures 12-8
and 12-9.) In particular, the call

check_box(‘key’+key.id.to_s, ‘checked’)

creates a check box whose name is something like key2[checked] or
key3[checked]. The expression ‘key’+key.id.to_s performs several
steps:

� Finds key.id — a certain keyword’s id number.

In this example, the id number may be 2.

� Turns the numeric value 2 into a string of digits.

The Ruby method to_s turns any number into a string of digits. In this
example, the string contains only one digit. The string is “2”.

� Adds key to the beginning of the string.

A name that starts with a digit (a name such as 2[checked]) is consid-
ered bad form. So I slap the word key in front of the check box’s name.
The end result is a name such as key2[checked].

<select id="keyword_id" name="keyword[id]">
 <option value="2">Flying</option>
 <option value="3">Childhood</option>
</select>

@dream.keywords.push_with_attributes (Keyword.find(params[:keyword][:id]))

If the visitor selects
Childhood...Figure 12-11:

The select
element
matches

with code
in the

controller.

254 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 254

A visitor checks some of the check boxes and then presses the correspond-
ing Save Changes button. As a result, the browser calls the controller’s
add_some_keywords method. For each check box, the add_some_
keywords method does the following:

� Reconstructs the check box’s name using the expression
‘key’+key.id.to_s.

� Retrieves the check box’s value using the expression
@params[‘key’+key.id.to_s][‘checked’].

For a box that’s checked, the value of @params[‘key’+key.id.to_s]
[‘checked’] is ‘1’. For a box that’s not checked, the value of
@params[‘key’+key.id.to_s][‘checked’] is ‘0’.

� Compares the check box’s value with ‘1’.

If the value is ‘1’, then the add_some_keywords method calls the push_
with_attributes method. The parameter in the call to push_with_
attributes is the keyword associated with the particular check box.
The push_with_attributes call adds that keyword to a dream.

Using the Rails check_box method is like walking through a virtual mine
field. The most dangerous part is distinguishing between integers and strings.
By default, a box that’s checked has value ‘1’. And in Ruby, the string ‘1’ isn’t
equal to the integer 1. So if, in Listing 12-12, you write == 1 instead of == ‘1’,
the example doesn’t work. Sorry about that!

This chapter describes the Rails has_many and has_and_belongs_to_many
methods. Are you hungry for more? If so, visit http://api.rubyonrails.
org/classes/ActiveRecord/Associations/ClassMethods.html#M0
00531 to learn about the Rails has_one method. The fun never ends!

255Chapter 12: More Model Magic

18_081204 ch12.qxp 11/30/06 11:13 PM Page 255

256 Part III: Real Rails

18_081204 ch12.qxp 11/30/06 11:13 PM Page 256

Chapter 13

Cool Things on Rails
In This Chapter
� Making Web pages more user-friendly

� Sending e-mail from a Web page

� Entering the world of Web services

Rails eases the pain of constructing a Web-based database application.
And how does Rails ease the pain? Rails makes liberal use of generators,

convention over configuration, and other tricks. You open the RadRails
Generators view, fill in a field or two, click a button, and then . . . Voila!
You have a scaffold.

This generator stuff helps with other kinds of problems, too — problems that
don’t center around databases. After all, so many problems involve boilerplate
code. These problems have related names that apply to several different
things — a MyMailer class inside a my_mailer.rb file or an e-mail setup
controller method with a setup.rhtml view.

Rails has components to help you solve these problems. And the best part is
that you can have fun doing it.

Using Ajax
Several years ago, someone posed an interesting question. If Web pages are
good for displaying information, are Web pages also good for editing informa-
tion? Can you create a useful word processing program that runs in a Web
browser? Can you comfortably read and compose e-mail through a Web-based
interface? Can you collaborate with a coworker using an online spreadsheet?

The idea sounds promising. But despite the promise, Web-based applications
haven’t become very popular. When I want to read e-mail, I open Microsoft
Outlook, Mozilla Thunderbird, or some other desktop application. I use a
Web interface only when I’m traveling or when desktop applications are other-
wise unavailable.

19_081204 ch13.qxp 11/30/06 11:13 PM Page 257

Why do I avoid Web-based e-mail? I avoid it because Web-based applications
are clunky. Every action requires a page refresh. For example, I delete 1 mes-
sage in a list of 20. With a slow Internet connection, I wait patiently for my
Web browser to fetch a whole new page. But what’s on that new page? The
new page contains 19 of the original message subjects with an additional
(less recent) message’s subject added at the end. What a waste! The entire
page reloads (images, and all) in order to change only 1 of 20 message subjects.

Another part of the same Web-based e-mail interface displays a tree of mail
folders. I can click a plus sign to expand one of the tree’s branches. But once
again, I see more than one expanding branch. I watch as the entire Web page
repaints itself.

Sure, I’m spoiled by desktop applications. But if browser-based applications
can be just as slick, why aren’t they?

Refresh part of a page, not the entire page
One alternative to the ugliness of a full-page refresh is to use Ajax. The term
Ajax stands for Asynchronous JavaScript and XML. The term was coined
in 2005 by Jesse James Garrett. As Ajax fans are quick to point out, Ajax
isn’t a new technology. Ajax is a new name for a combination of existing
technologies — technologies which enable you to update only part of a Web
page. These technologies include HTML, JavaScript, DOM (the Dynamic
Object Model), XML (the eXtensible Markup Language), XSLT (eXtensible
Stylesheet Transformations), and others.

At the heart of Ajax is something called the XMLHttpRequest object. When
embedded in a Web page, this XMLHttpRequest thingie sends a request
to a Web server. And the good news is that the request is asynchronous.
Your browser doesn’t stop what it’s doing to wait for a response. Instead,
the browser keeps doing whatever it was doing before issuing the request.
At some future moment, when a response arrives back from the server,
your browser processes the response and updates only a portion of the
current page.

Incorporating Ajax into a Rails page
You can easily incorporate Ajax into your Rails applications. (Big surprise,
heh? Imagine reading “Despite Ajax’s enormous benefits, you can’t use Ajax
in your Rails applications.” What a letdown that would be!) This section pre-
sents a basic Ajax example.

258 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 258

1. Create a Rails project named discussion.

For details, see Chapter 3.

2. Create a database named discussion_development.

For details, see Chapter 3 again. In fact, bookmark Chapter 3. You need
sections in Chapter 3 for many of the steps that follow.

3. Within the discussion project, generate a model named Comment.

4. Create a database table named comments using the migration file in
Listing 13-1.

Listing 13-1: Migrate that Database

class CreateComments < ActiveRecord::Migration
def self.up
create_table :comments do |t|
t.column :title, :string
t.column :body, :text

end
end

def self.down
drop_table :comments

end
end

Don’t make the mistake that I often make. Don’t become so excited
about the migration file that you forget to perform the db:migrate
Rake task.

5. Generate a Comment scaffold.

6. Add a method to the project’s app\controllers\comments_
controller.rb file.

To do this, double-click the comments_controller.rb file’s branch in
the app\controllers branch of the Rails Navigator’s tree. When you
do, the comments_controller.rb file opens in a RadRails editor.

Add the method in Listing 13-2.

Listing 13-2: A Method for Your Controller

def show_body
@comment = Comment.find(params[:id])
render :text => @comment.body

end

259Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 259

The code fetches a particular comment from the database. Then the
code displays the comment’s body. But where does the comment’s body
appear? (Remember, this is Ajax!)

7. Modify app\views\comments\list.rhtml.

The code that you type is bold in Listing 13-3.

Listing 13-3: Modifying the Listing Comments Page

<head>
<%= javascript_include_tag “prototype” %>

</head>

<h1>Listing comments</h1>

<table>
<tr>
<% for column in Comment.content_columns %>
<th><%= column.human_name %></th>

<% end %>
</tr>

<% for comment in @comments %>
<tr>

<td><%= comment.title %></td>
<td>
<div id=”comment_<%= comment.id.to_s %>”>
<%= link_to_remote(“Show Body”,

:update => “comment_#{comment.id.to_s}”,
:url => { :action => :show_body,

:id => comment }) %>
</div>

</td>

<td><%= link_to ‘Show’,
:action => ‘show’, :id => comment %></td>

<td><%= link_to ‘Edit’,
:action => ‘edit’, :id => comment %></td>

<td><%= link_to ‘Destroy’,
{ :action => ‘destroy’, :id => comment },
:confirm => ‘Are you sure?’, :post => true %>

</td>
</tr>

<% end %>
</table>

<%= link_to ‘Previous page’,
{ :page => @comment_pages.current.previous } if
@comment_pages.current.previous %>

<%= link_to ‘Next page’,

260 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 260

{ :page => @comment_pages.current.next } if
@comment_pages.current.next %>

<%= link_to ‘New comment’, :action => ‘new’ %>

Listing 13-3 contains two new pieces of code. The first piece imports some
JavaScript code into the Listing Comments Web page. This JavaScript
code comes from the project’s public\javascripts\prototype.js
file. Among other things, the code creates an XMLHttpRequest:

var Ajax = {
getTransport: function() {
return Try.these(
function() {return new XMLHttpRequest()},

If you’re a fan of JavaScript, you can examine the prototype.js code.
To do so, double-click the public\javascripts\prototype.js
branch in the Rails Navigator view.

In Listing 13-3, the other new piece of code contains a link_to_remote
call. The Rails link_to_remote method adds an HTML anchor element
to the Listing Comments Web page. The anchor element and its enclos-
ing div element look something like this:

<div id=”comment_4”>
<a href=”#” onclick=”new Ajax.Updater(‘comment_4’,
‘/comments/show_body/4’, {asynchronous:true,
evalScripts:true}); return false;”>Show Body

</div>

You can see the HTML anchor element that Rails generates. To do so,
visit the Listing Comments page in the Rails browser. Then right-click in
any neutral space on the Listing Comments page. In the resulting contex-
tual menu, select View Source.

The HTML anchor element creates a link with the text Show Body. (See
Figure 13-1.)

Figure 13-1:
You see a

link instead
of the body

of the
comment.

261Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 261

When you click the link, the Web browser calls some JavaScript code,
which creates an XMLHttpRequest and calls the show_body method in
Listing 13-2.

Notice the <div>...</div> element in Listing 13-3. The tagname div
stands for the word division — a section or portion of an HTML document.
The id attribute of this div element has a value such as comment_1 or
comment_2. (The Listing Comments page contains several comments.
The exact value of the div element’s id attribute varies from one com-
ment to another.)

The call to link_to_remote in Listing 13-3 also refers to comment_
someIdNumber. So, when a visitor clicks one of the Show Body links, the
stuff rendered by the show_body method replaces the text inside the
appropriate div element. (See Listing 13-2.)

8. Try it!

Fire up the discussion project’s server. Add a few comments and then look
at the Listing Comments page. At first, the page displays only titles and
Show Body links. (Refer to Figure 13-1.) But when you click a Show Body
link, the browser displays the body of the comment. (See Figure 13-2.)

Alas! The coolest part of this example isn’t visible in Figures 13-1 or 13-2.
When you click a Show Body link, the Web browser doesn’t refresh the
whole page. Instead, the browser replaces the Show Body link with the
appropriate comment’s body. The rest of the page remains the same.
(The other items on the page move over a bit to accommodate the
body’s size, but that’s not nearly as jolting as seeing a refresh of the
entire page.)

Figure 13-2:
Comment
bodies in
place of

some links.

262 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 262

Sending E-Mail
“Why would anyone want to do that?” I asked. It was 1979. My question was a
response to an engineer’s remarks. He told me about his system at work for
typing text instead of making a phone call. “Isn’t typing more difficult than
talking?” I said.

Since then, I’ve been tempted to open an anti-consulting business. Pay me to
predict what the future holds for your company, but first sign an agreement
to do the opposite of whatever I advise. I can make some good money doing
anti-consulting.

These days, I send e-mail to my wife. I work in the living room and she works
upstairs in the den. I know I won’t remember to tell her that Mary called, so
I send her a quick e-mail message. That way, the burden of remembering
Mary’s call is out of my hands.

Of course, some things in a marital relationship aren’t suited to e-mail.
For example, if I have an urgent need for my wife’s attention, I use instant
messaging.

Don’t blame me if it doesn’t work
This brief section contains some discouraging news. Sending e-mail can be a
dicey business. You need access to a mail server, and the server’s configura-
tion must allow you to send mail through the server. In the past few years,
mail servers have become more restrictive. (Any unrestrictive server becomes
a launching pad for spam.) So many SMTP servers (outgoing e-mail servers)
require authentication of one kind or another.

My family’s Internet provider doesn’t require authentication for outgoing
e-mail, so the code in this section works on my home computer. But your
provider may be different, and (unfortunately) I can’t predict what special
incantations you may need in order to make this section’s example work with
your provider.

My advice is this: If this section’s example doesn’t work for you, try tinkering
a bit, but don’t get hung up on the task. If you know an e-mail guru who’s
familiar with your provider’s configuration, ask that person. But if at first you
don’t succeed, don’t try, try again and again.

263Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 263

Rails mail
To create an e-mail-enabled Web site, follow these steps.

1. Create a Rails project named email.

For details on creating a Rails project, see Chapter 3. In fact, for
details on each of this section’s steps (up to and including Step 5),
see Chapter 3.

2. Create a database named email_development.

3. Within the email project, generate a model named Message.

4. Create a database table named messages using the migration file in
Listing 13-4.

Listing 13-4: The Elements of an E-Mail Message

class CreateMessages < ActiveRecord::Migration
def self.up
create_table :messages do |t|
t.column :subject, :string
t.column :custname, :string
t.column :amount, :float
t.column :recipients, :string
t.column :sender, :string

end
end

def self.down
drop_table :messages

end
end

5. Generate a Message scaffold.

6. Add the code in Listing 13-5 to the end of your project’s
config\environment.rb file.

Listing 13-5: Configuring the Mailer
ActionMailer::Base.server_settings = {
:address => “mail.cheapprovider.net”,
:domain => “burdbrain.com”,

}

In Listing 13-5, the address is the name of your Internet service provider’s
e-mail server. I found the server’s name by opening my Outlook configu-
ration page and copying the text in the SMTP (outgoing) server name
field. If you get this address wrong, you can’t send any e-mails.

264 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 264

The domain in Listing 13-5 is the Rails Web site that originates the
e-mail. The domain value helps assure your Internet provider that you’re
not sending malicious e-mail. Many outgoing e-mail servers don’t check
this field because it’s easy to fake. So if you get this domain value wrong,
you can probably send e-mail anyway.

If your outgoing server requires authentication, try adding :user_
name and :password values to the ActionMailer::Base.server_
settings. This helps with the kind of authentication that some outgoing
servers use.

Ruby reads the environment.rb file only when your Rails project’s
server starts. So if you edit the environment.rb file while the project’s
server is running, save the environment.rb file changes and then
restart the server.

7. Generate a MyMailer mailer with a method named setup.

Use the RadRails Generators view (as shown in Figure 13-3).

Rails creates an app\models\my_mailer.rb file and an
app\views\my_mailer\setup.rhtml file.

8. Add a few lines of code to the create method in the project’s
app\controllers\messages_controller.rb file.

Add the bold lines shown in Listing 13-6.

Listing 13-6: How to Mail a Message

def create
@message = Message.new(params[:message])

my_message = MyMailer::create_setup(@message)
my_message.set_content_type ‘text/html’
MyMailer::deliver my_message

if @message.save
flash[:notice] = ‘Message was successfully created.’
redirect_to :action => ‘list’

else
render :action => ‘new’

end
end

Figure 13-3:
Generating

a mailer.

265Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 265

When you create a new message, the server does its usual Rails stuff
(creates the @message object, saves the object in a database, and so on).
But the server also calls create_setup. (See Listing 13-6.) This create_
setup call builds a “mailable” object from the stuff in the @message
variable. Then the code in Listing 13-6 sets the mailable object’s content
type (so that programs such as Outlook recognize any HTML tags in the
message’s body).

Finally in Listing 13-6, the server executes the deliver method to send
an e-mail message.

The trickiest thing in Listing 13-6 is the method name create_setup.
This name is a combination of create_, which is hard-wired into the
Rails e-mail code, and the name setup, which a programmer invents on
his or her own. In the next step, you see the definition of a method
named setup. But remember, some other name (such as johnsmith or
malarkeyonfire) would work just as well. Whatever you name the
next step’s method, you append the prefix create_ to that name in
Listing 13-6. You do this even if the call to create_whatever isn’t
inside a controller’s create method. (The similarity between def
create and create_setup in Listing 13-6 is purely coincidental.)

9. Edit the app\models\my_mailer.rb file. When you’re done, it
should look like what you see in Listing 13-7.

Listing 13-7: The My Mailer Class

class MyMailer < ActionMailer::Base

def setup(message, sent_at = Time.now)
@subject = message.subject
@body[‘custname’] = message.custname
@body[‘amount’] = message.amount
@recipients = message.recipients
@from = message.sender
@sent_on = sent_at
@headers = {}

end
end

The method in Listing 13-7 sets some important values. The method gets
most of these values from the message parameter. Rails surreptitiously
turns the create_setup call in Listing 13-6 into a call to the setup
method in Listing 13-7. In the process, Rails hands this message param-
eter to the setup method.

266 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 266

The most interesting lines in Listing 13-7 are the @body assignments.
The @body variable refers to a hash, and the setup method creates
two hash entries. How do these hash entries affect the content of the
outgoing e-mail message? For an answer, proceed to the next step.

Your code doesn’t explicitly call the setup method in Listing 13-7.
Instead, your code calls the create_setup method. (See Listing 13-6.)

In Listing 13-7, names such as setup and message aren’t cast in stone.
You can use other names as long as you name things consistently
throughout this example’s email project. But avoid the temptation to
change the word sender to the word from in Listing 13-7. The word
from is an SQL keyword. If you use the word from, you may confuse the
database software.

10. Edit app\views\my_mailer\setup.rhtml so that the file contains
the code in Listing 13-8.

Listing 13-8: The Outline of a Cordial but Forceful Message

<head>
<style type=”text/css”>
p.indent { margin-left: 60px }

</style>
</head>

<h1>Third Notice!</h1>

Dear <%= @custname %>,<p>

Your bill is overdue. Please pay
<%= number_to_currency(@amount) %> immediately.<p>

<p class=”indent”>Signed,
Your <i>friends</i>
at Burd Brain Consulting</p>

When you create a mailer in Step 7, you add a method named setup.
Rails automatically adds a view named setup.rhtml. When you send a
message, Rails consults this setup.rhtml file to form the content of
the e-mail message.

In Listing 13-8, the setup.rhtml file contains two ERb tags. Each tag
displays the value of a variable — a variable whose name is a hash key
in Listing 13-7. Ruby does some juggling to feed the correct values to the
@custname and @amount variables in Listing 13-8, and the message
goes to the recipient with the desired wording.

11. Visit http://localhost:300x/messages/new.

267Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 267

12. Create a new message as shown in Figure 13-4. (But please don’t use my
e-mail addresses. Put your own e-mail address in both the Recipients
and Sender fields!)

After creating a new message, you see the usual Listing Messages page
(Figure 13-5). And your recipient gets an e-mail message like the one
shown in Figure 13-6.

Be patient. Your Internet provider may not send the message immediately. If
you don’t receive the message, wait at least ten minutes before concluding
that something’s amiss.

Figure 13-5:
The Listing
Messages

page.

Figure 13-4:
Filling in the

fields.

268 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 268

With all the ranting and raving I do about e-mail clients in the section on Ajax
in this chapter, you’d think I’d devote some space to the creation of an Ajax-
based e-mail client. But mixing Ajax and e-mail in one introductory example
would be burdensome. Besides, this section isn’t about reading e-mail. It’s
about sending e-mail.

Anyway, you can mix and match Rails technologies. Using this section’s tools
combined with Ajax, you can create a Web page that sends e-mail and avoids
refreshing entire pages. The possibilities are endless.

Creating and Consuming Web Services
Web services have been hot stuff in the computing industry for several years.
A Web service is a program that produces a special kind of Web page. This
special Web page contains only data, with no attention to the data’s layout or
visual formatting.

For example, an ordinary Web page with weather information may contain
the following HTML code:

<h1>Welcome to Burd Brain Consulting</h1>
Today’s temperature is a pleasant 71° F.<p>
Expect light showers in the afternoon, with a chance of
snow later this evening.<p>
© 2007, Burd Brain Consulting

Figure 13-6:
Wow!

I actually
sent myself

an e-mail
message!

269Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 269

The HTML code tells a Web browser to display a Welcome heading with big
bold characters, to display the copyright line with small letters, and so on.

This HTML code is fine for a person browsing the Web. You can’t easily write
a computer program to fetch weather information from this HTML code, how-
ever. A program would have to remove the extraneous display information.
After all, the program doesn’t feel warmed by being welcomed to the Burd
Brain Web site. The program probably doesn’t know what the word pleasant
means, and the program doesn’t care about the font size in a copyright line.
All the computer program wants is the current temperature along with the
time and status of each weather prediction.

A program that reads the HTML code, with all the code’s extraneous informa-
tion, does something called screen scraping. The program scrapes the relevant
information from a page full of relevant and irrelevant information. This screen
scraping process is both inefficient and error-prone. If the Webmaster at Burd
Brain consulting changes anything about the HTML page’s layout, then the
screen scraper is likely to filter out the wrong information.

How to avoid screen scraping
With the Web services approach, a page contains only the information that a
computer program actually requires. No formatting and no layout. Just the
facts.

The page’s coding is XML rather than HTML, so the page’s tags obey very
rigid rules. A bunch of weather information coded in XML may look some-
thing like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<weather>
<current>
<what><temp number=”71” scale=”F” /></what>

</current>
<prediction>
<what>light showers</what>
<when>1500h</when>

</prediction>
<prediction>
<what>snow</what>
<when>2100h</when>

</prediction>
</weather>

270 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 270

When called into action, the Web service returns an XML document contain-
ing concise, self-describing information. A program uses this information effi-
ciently and reliably.

Building a Web service
using Ruby on Rails
With Ruby on Rails, you can quickly generate code to create and consume a
Web service. This section presents an example.

Unfortunately, the output of this section’s example isn’t startling. In fact,
when you run the code, you may wonder what all the fuss over Web services
is about. All the Web services business (the protocol for invoking the service,
the XML-coded result, and so on) lurks quietly underneath the mechanics of
this example. Rails hides most Web service complexities from your view.

The main thing to take away from this example is not what the example does.
(The example tells you the time. Big deal!). Rather, the thing to take away is
how easily this example does what it does. With only a few steps, this exam-
ple creates a portable, network-ready Web service. Any enterprise using the
Web services standards can provide and retrieve information using this
example’s techniques.

1. Create a Rails project named timeProject.

2. Generate a Web service named TimeService with a method named
get_time. (See Figure 13-7.)

To reward you for your efforts, Rails creates files named app\apis\
time_service_api.rb and app\controllers\time_service_
controller.rb.

3. Add code to the app\apis\time_service_api.rb file, as shown in
Listing 13-9.

Figure 13-7:
Generating

a Web
service.

271Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 271

Listing 13-9: Describing the Web Service Interface

class TimeServiceApi < ActionWebService::API::Base
api_method :get_time, :expects => [:bool],

:returns => [:time]
end

Listing 13-9 tells Rails that the Web service’s get_time method takes a
parameter of type bool and returns a value of type time. A bool (short
for boolean) value is either true or false. (For more information on
Ruby’s true and false values, see Chapter 3.) A time value is a point
in time, which includes year, month, and day values as well as hours,
minutes, seconds, and even microseconds values.

Rails doesn’t know it yet, but the get_time method’s boolean parame-
ter stands for “true, I want Greenwich Mean Time,” or “false, I don’t want
Greenwich Mean Time. I want a computer’s local time instead.” (Rails
learns all this in the next step.)

4. Add code to the app\controllers\time_service_controller.rb
file as shown in Listing 13-10.

Listing 13-10: The Service Gets the Time of Day

require ‘time’

class TimeServiceController < ApplicationController
wsdl_service_name ‘TimeService’
web_service_scaffold :use_service

def get_time(gmt)
(gmt)?(Time.now.getgm):(Time.now)

end
end

Listing 13-10 has lots to say:

• The TimeServiceController class uses definitions from
Ruby’s built-in time.rb file.

You require ‘time’ at the top of Listing 13-10.

• The TimeServiceController class grants a WSDL name to
your Web service.

The acronym WSDL stands for Web Service Description Language. A
WSDL document is an XML document describing your Web service
for the benefit of potential clients. (After all, someone who gets the
time from your Web service may not be running Ruby and may not
be able to look inside the code in Listing 13-9.)

272 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 272

• The TimeServiceController class creates a scaffold.

This scaffold is similar to a scaffold that you generate for an ordi-
nary Rails model. But the special web_service_scaffold is a bit
simpler than a model’s scaffold.

For one thing, Rails doesn’t have a handy generator script for cre-
ating a web_service_scaffold. You can’t use the RadRails
Generators view to create the web_service_scaffold. Instead,
you add a line to the TimeServiceController class’s code.
(See Listing 13-10.)

In the web_service_scaffold method call, the parameter name
:use_service becomes part of the URL that you use to visit the
scaffold’s Web pages. (If you can’t wait to find out about this, see
Step 5.)

You can create an old-fashioned model scaffold the way you create
a web_service_scaffold in Listing 13-10. For example, if your
model is named Photo, add the line scaffold :photo inside the
code of the PhotoController class. But remember, to use this
application’s Web interface, visit http://localhost:300x/
photo, where the word photo is singular, not plural.

• The get_time method takes a parameter.

In Listing 13-10, I give this parameter the name gmt.

• The get_time method returns either the Greenwich Mean Time
or the local time, depending on the value (true or false) of the
gmt parameter.

Ruby’s built-in getgm method turns a local time into a Greenwich
Mean Time.

5. Visit http://localhost:300x/time_service/use_service.

You see a Web page like the one shown in Figure 13-8.

On this Web page, a link points to your GetTime method (also known as
your get_time method).

Figure 13-8:
An interface
to a service.

273Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 273

6. Click the Web page’s GetTime link.

The link takes you to another Web page. (See Figure 13-9.) This page con-
tains a form that’s specific to the GetTime method. In particular, the
form has radio buttons for specifying the value (true or false) of the
method’s gmt parameter.

7. Select one of the two radio buttons (True or False).

8. Click the Invoke button.

As a result of this click, Ruby sends a message to your Web service. The
Web service answers back, and your browser receives a page displaying
the current time. After a brief pause, you see a page like the one shown
in Figure 13-10.

This section’s example is a Web service that tells you the current time. I
admit, instead of creating a Rails Web service, you can glance at your watch.
And if you don’t have a watch, you can write a one-line Ruby program to
achieve the same result. (The entire Ruby program is puts Time.now.)

But what if you want the world to retrieve the time from your Web server?
What if you want programs running half-way around the world to retrieve
stock quotes, weather reports, news analysis, product lists, or other valuable
pieces of information from your Web server? Then the standard way to make
this happen is to create a Web service. And using Rails, you can create a Web
service without muss or fuss.

Figure 13-9:
An interface

to a
service’s
method.

274 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 274

Figure 13-10:
Now you

know what
time it is.

275Chapter 13: Cool Things on Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 275

276 Part III: Real Rails

19_081204 ch13.qxp 11/30/06 11:13 PM Page 276

Part IV
The Part of Tens

20_081204 pt04.qxp 11/30/06 11:14 PM Page 277

In this part . . .

Roughly 5,000 years ago, the people known as the
Sumerians used a sexagesimal numbering system.

Instead of using our familiar base 10 system, the Sumerian
notation had 60 as its base.

It was a hard life. The Sumerian equivalents of David
Letterman’s writers wrote dozens of jokes for each night’s
Top 60 List. And imagine watching Charlton Heston play
the hero Gilgamesh in a 20-hour movie entitled The Sixty
Commandments!

Keep all this in mind as you read the next few chapters,
and be glad the Sumerians aren’t still around.

20_081204 pt04.qxp 11/30/06 11:14 PM Page 278

Chapter 14

Ten (Times Two) Great Web Sites
In This Chapter
� Finding documentation and other resources

� Getting sample code

� Reading the latest Ruby on Rails news

� Taking part in the ongoing discussion

Ten Web sites? Twenty Web sites? What’s the difference?

This chapter lists a bunch of useful Web sites. Each Web site has resources to
help you use Ruby on Rails more effectively. And as far as I know, none of these
sites use adware, pop-ups, or other grotesque things.

Ten Ruby Sites
I divide this chapter into two sections — a Ruby section and a Rails section. I
put the Ruby section first because “Ruby” comes first alphabetically. (. . . Or
maybe “Ruby” doesn’t come first. Whatever!)

Documentation
www.ruby-doc.org

When I describe the Ruby language, the phrase “plentiful documentation”
doesn’t come rushing out of my mouth. But this Web site does a good job
documenting Ruby’s standard libraries. In addition, the site’s frame-based
Web interface is easy to use.

21_081204 ch14.qxp 11/30/06 11:14 PM Page 279

Open source Ruby projects
http://rubyforge.org

Developers add their open source projects to this vast repository. If you want
some Ruby code and you don’t feel like reinventing the wheel, check this Web
site first.

Starting points for Ruby resources
www.rubycentral.com

www.ruby-lang.org

www.rubygarden.org

These sites have links to all things Ruby. Visit these sites for FAQs, wikis,
downloads, articles, and more. (Sure, this paragraph describes three Web
sites. Not one. But who’s counting?)

Discussing Ruby
www.ruby-forum.com

If you have an opinion, need an opinion, want help, have an announcement,
or just want to read what other people write about Ruby, visit this site.

A weekly challenge
www.rubyquiz.com

Enthusiasts from around the world visit this site for a weekly infusion of
Ruby code. Each week’s problem uses Ruby’s features to the max. If you’re
a Ruby newbie, you don’t have to submit solutions. You learn a lot just by
watching.

280 Part IV: The Part of Tens

21_081204 ch14.qxp 11/30/06 11:14 PM Page 280

Add-ons for Ruby
www.rubygems.org

A gem is a Ruby add-on, and RubyGems is the packaging system for gem add-
ons. This Web site describes the RubyGems packaging system — what the
system does and how to use it effectively.

Meet people
www.rubyholic.com

I love to attend user group meetings. I go to two or three of them each month.
They’re lively and informative. To find a user group in your area, visit this
Web site.

Write Ruby code on a desert island
http://tryruby.hobix.com

Your airplane crashed on a remote desert island. You’re Lost. You’re stuck in
an underground hatch with an old computer running an obsolete operating
system. You can’t install Ruby but you manage to install a Web browser.
While visiting the Try Ruby! Web site, you realize that you don’t need to
install Ruby after all! By typing code in this Web site’s work area, you create a
Ruby program that solves all of the island’s mysteries. Nice going! But can
you wrestle a polar bear?

How to be multilingual
www.jruby.org

JRuby is an implementation of Ruby written completely in Java. Using JRuby,
you have Java’s mammoth power and stability along with Ruby’s incredible
flexibility.

281Chapter 14: Ten (Times Two) Great Web Sites

21_081204 ch14.qxp 11/30/06 11:14 PM Page 281

Agile development
www.agilealliance.com

www.agilemanifesto.org

Learn more about agile development. Browse the Agile Alliance Web site.
Then visit the home of the original Agile Manifesto signatories. Yes, you can
even sign the Agile Manifesto (online, of course).

Ten Rails Sites
Some Ruby sites contain lots of Ruby on Rails information. But if you want a
site that focuses primarily on Rails, visit any of the sites in this section.

Straight from the source’s mouth
www.rubyonrails.org

This is the official Ruby on Rails Web site. Start here for the most authoritative
Rails information. And while you visit, don’t miss this site’s http://api.
rubyonrails.org pages. These pages document each of the classes and
methods in Ruby on Rails.

Find a Web host
www.hostingrails.com

www.railshosting.org

www.rubyonrailswebhost.com

As Web technologies go, Rails is very new. Many Web hosting companies don’t
yet support Rails. But to make your pages public, you need a compatible host.
To start shopping for a host, visit these three sites. (But please think of the
three sites as one big site. I’m trying to keep my promise about listing exactly
ten items in this section.)

282 Part IV: The Part of Tens

21_081204 ch14.qxp 11/30/06 11:14 PM Page 282

Get hooked on RadRails
www.radrails.org

Ruby on Rails has several integrated development environments. But in my
opinion, RadRails is the best. This Web site is the official home for RadRails.
Pay this site a visit to read more about RadRails and to download the latest
and greatest RadRails updates.

Documentation
http://railsmanual.com

This site documents many versions of Rails, starting with version 1.0.0 and
ending with the most up-to-date Rails release.

Discuss Ruby on Rails
http://rails.techno-weenie.net

Ask questions; answer questions. That’s what this Web site is all about. If
you’re stuck on a point, this site’s participants can probably help you past
the hurdle.

A Rails-friendly operating system
http://railslivecd.org

A previous reference in this chapter explains how you can run Ruby on a
computer while you’re trapped on a desert island. If the computer on the
island has a CD-ROM reader, you can also run Rails. The Rails Live CD is a
self-contained operating system — a system that you don’t bother installing
on your hard drive. How cool is that?

283Chapter 14: Ten (Times Two) Great Web Sites

21_081204 ch14.qxp 11/30/06 11:14 PM Page 283

Read the latest news
www.feeddigest.com/digests/ruby-on-rails.html

In the world of Rails, things change constantly. New developments occur
daily. You work hard to keep up with all the gossip. Visiting this Web site can
help you stay current. Better yet, subscribe to this site’s RSS feed. Have the
headlines delivered directly to your desktop.

Steal some code
www.hotscripts.com/Ruby_on_Rails/Scripts_and_Programs

Hotscripts features useful pieces of code for many languages and frame-
works. The Ruby on Rails page contains some particularly nice goodies —
scripts that you might want to incorporate into your own applications.

Brush up on SQL
http://dev.mysql.com/doc

Rails is all about databases, and the universal language of databases is SQL.
You can issue SQL commands in MySQL Administrator or from the command
line by typing mysql. So check out the official documentation and give SQL a
whirl.

The seminal Ajax document
www.adaptivepath.com/publications/essays/archives/000385.php

Jesse James Garrett didn’t rob banks or marry Sandra Bullock. But he coined
the term Ajax — a name for one of the hottest technologies on the Web today.
Chapter 13 of this book touches on Ajax, but you might want to read more.
For a look at the way Ajax started, visit this Adaptive Path Web site.

284 Part IV: The Part of Tens

21_081204 ch14.qxp 11/30/06 11:14 PM Page 284

Chapter 15

Ten Features That Set Ruby Apart
In This Chapter
� Exploring Ruby’s oddities

� Using mixins, unit testing, and other stuff

� Quacking like a duck

This chapter highlights some of Ruby’s unique features. I list the features
in no particular order. I cover many of these features in Chapters 5 and 6,

but a few of this chapter’s features blaze new Ruby territory.

Hashes
A hash is a collection of key/value pairs. Use curly braces {} to define a hash;
use brackets [] to refer to a particular hash value.

price_of =
{‘Book’ => 20.00, ‘Shirt’ => 15.05, ‘Cup’ => 10.20}

price_of[‘Car’] = 23999.99

puts price_of[‘Car’]

The output of this brief program is 23999.99.

For more info, see Chapter 5.

Open Classes
You can add definitions to a class at any point in the code. For example, in
the following program, the definition of MyClass ends before the creation
of my_object. Then the MyClass definition resumes after the creation of
my_object.

22_081204 ch15.qxp 11/30/06 11:14 PM Page 285

class MyClass
def my_method
10

end
end

my_object = MyClass.new
print my_object.my_method, “ “

class MyClass
def another_method
22

end
end

print my_object.another_method

The output of this program is 10 22.

For more on open classes, see Chapter 6.

Duck Typing
If it walks like a duck and it quacks like a duck, then it’s a duck. Consider the
following program. At first, the value variable walks and quacks like an inte-
ger. At that point in the code, value is an integer. So value.times is legal
but value.each is illegal. (If you uncomment the first value.each line and
try to run the program, Ruby displays an error message.)

value = 3
value.times do
print “Hello”, “ “

end
value.each { |x| print x }

value = “Goodbye”
value.times do
print “Hello”, “ “
end
value.each { |x| print x }

Later in the same program, value walks and quacks like a string. So in the
second half of the program, value.times is illegal and value.each is legal.

The program’s output is Hello Hello Hello Goodbye.

286 Part IV: The Part of Tens

22_081204 ch15.qxp 11/30/06 11:14 PM Page 286

Modifiers
A modifier is a quick and easy control flow construct.

print “one equals zero; “ if 1 == 0
print “one equals zero; “ unless 1 != 0
print “zero equals zero; “ if 0 == 0
i = 0
print i += 1 while i < 5

This program’s output is zero equals zero; 12345.

To read more about modifiers, see Chapter 5.

Blocks
A block is a collection of statements accompanying a method call. When the
method’s body executes a yield, Ruby executes the statement (or statements)
inside the block.

The following code illustrates Ruby’s each method. When applied to an
array, the each method executes yield once for every array element.

puts __FILE__

class Stooge
@@note = ‘A’

def sing_hello
@@note.succ!.succ!
print “Hello... “, @@note, “ “

end

end

stooges = [Stooge.new, Stooge.new, Stooge.new]

stooges.each { |stooge| stooge.sing_hello }

This program’s output is

C:/Users/bburd/user/PartOfTensExamples/blockheads.rb
Hello... C Hello... E Hello... G

287Chapter 15: Ten Features That Set Ruby Apart

22_081204 ch15.qxp 11/30/06 11:14 PM Page 287

This program illustrates a few additional Ruby tricks:

� The keyword __FILE__ stands for the name of the file containing the
code.

� A variable that begins with @@ is a class variable. No matter how many
(or how few) instances you create, a class has only one copy of a partic-
ular class variable.

� The successor (succ!) method adds 1 to a string. The strange thing
about succ! is that the method does circular addition with carrying,
working from right to left. So ‘ACE’.succ! is ‘ACF’, and
‘ACZ’.succ! is ‘ADA’.

For more about blocks, see Chapter 5.

Everything Is an Object
Well, almost everything is an object. At least, things that aren’t objects in
many other languages are objects in Ruby. A number (such as 42) is an
object, and a class is an object. (In fact, the new method belongs to each
class.) Methods, and even arrays of methods, are objects.

To make things even more bizarre, every object has a class method. Calling
the class method gives you the class of which that object is an instance. For
example, the output of the following program is Fixnum Class MyClass
NilClass Array.

class MyClass
def my_method
end

end

a_class = MyClass
an_object = MyClass.new
a_method = an_object.my_method

print 42.class, “ “
print a_class.class, “ “
print an_object.class, “ “
print a_method.class, “ “
print a_method.methods.class

For more about numbers’ being objects, see Chapter 6.

288 Part IV: The Part of Tens

22_081204 ch15.qxp 11/30/06 11:14 PM Page 288

Objects Might Have Their Own Methods
In the following program, both first_object and second_object have
speak methods (because both are instances of MyClass), but only first_
object has a sing method.

class MyClass
def speak
puts “Ruff, ruff!”

end
end

first_object = MyClass.new
second_object = MyClass.new

def first_object.sing
puts “Give My Regards to Broadway”

end

first_object.speak
second_object.speak
first_object.sing
second_object.sing

The output of this program is

Ruff, ruff!
Ruff, ruff!
Give My Regards to Broadway
C:/Users/bburd/user/PartOfTensExamples/more.rb:17:
undefined method ‘sing’ for #<MyClass:0x3932748>
(NoMethodError)

Mixins
A mixin is a module whose code you include inside another module or a
class. The output of the following program is May cause sneezing,
Meat, Meow.

module Allergen
def show
“May cause sneezing”

end

289Chapter 15: Ten Features That Set Ruby Apart

22_081204 ch15.qxp 11/30/06 11:14 PM Page 289

end

class Pet
def food
“Meat”

end
end

class Cat < Pet
include Allergen
def sound
“Meow”

end
end

cat = Cat.new
print cat.show, ‘, ‘, cat.food, ‘, ‘, cat.sound

Built-In Unit Testing
A unit test is code that tests a single class. The experts recommend that you
write unit tests before you write the classes themselves. That way, you don’t
fudge the tests so that your classes pass each of the tests.

Ruby includes a unit-testing framework that’s similar to other languages’
frameworks. For example, the following program tests two hypotheses about
Ruby’s reverse method. If you reverse the array [1, [2, 3], 4], do you
get [4, [2, 3], 1] or [4, [3, 2], 1]?

require ‘test/unit’

class TestReverse < Test::Unit::TestCase
def setup
@a = [1, [2, 3], 4]
@b = @a.reverse

end

def test_reverse
assert_equal([4, [2, 3], 1], @b)
assert_equal([4, [3, 2], 1], @b)

end

def teardown
puts “Done!”

end
end

290 Part IV: The Part of Tens

22_081204 ch15.qxp 11/30/06 11:14 PM Page 290

When you run this code, Ruby’s unit-testing framework starts by calling the
setup method. Then the framework calls any test methods (such as test_
reverse). Finally, the framework calls teardown (to clean up after itself).
The resulting output is

Started
FDone!

Finished in 0.02 seconds.

1) Failure:
test_reverse(TestReverse)
[C:/Users/bburd/user/PartOfTensExamples/
test_reverse.rb:11]:
<[4, [3, 2], 1]> expected but was
<[4, [2, 3], 1]>.

1 tests, 2 assertions, 1 failures, 0 errors

The failure indicates that the second assert_equal call expected the value
[4, [3, 2], 1]. But instead, the value of @b was [4, [2, 3], 1].

Built-In Reflection
You can easily turn a string of characters into a Ruby name or turn a Ruby
name into a string of characters. One way to turn a string of characters into
a method name is to use Ruby’s send method.

my_string = “times”

3.send(my_string) { print “Hello “ }

The output of this program is Hello Hello Hello.

For more info about reflection (and the send method in particular), see
Chapters 1 and 9.

291Chapter 15: Ten Features That Set Ruby Apart

22_081204 ch15.qxp 11/30/06 11:14 PM Page 291

292 Part IV: The Part of Tens

22_081204 ch15.qxp 11/30/06 11:14 PM Page 292

Chapter 16

Ten Pivotal Ruby on
Rails Concepts

In This Chapter
� What’s so good about Ruby on Rails

� What Ruby on Rails contributes to database applications

� What makes Ruby on Rails an effective tool

If you wake me up at three in the morning and ask me for the ten most
important Ruby on Rails concepts, I’ll probably start with Don’t Repeat

Yourself and Convention over Configuration. Then I’ll have to think a bit.
After a few minutes, I’ll remember four more concepts, recite them to you,
and look around to make sure the cat hasn’t gotten out, the basement isn’t
flooded, and that no one left the freezer door open overnight.

With those concerns out of the way, I’ll think of two more concepts. And even-
tually (after reviewing tomorrow’s tasks in my mind) I’ll recite two more, for a
total of ten.

I’ll go back to sleep mumbling one question to myself. “Why don’t I write all
ten of those concepts in one place? If I do, the reader doesn’t have to wake
me at three in the morning.”

So I’ll add one item to the list of things I plan to do tomorrow.

Don’t Repeat Yourself (DRY)
Any particular piece of information about an application should be housed in
only one place. The information should not be replicated throughout the
application. Duplication of information is inefficient and error-prone. With a
piece of information in one part of an application, all other parts of the appli-
cation should consult that one, authoritative part of the code.

For more of my DRY humor, see Chapters 1, 8, and 9.

23_081204 ch16.qxp 11/30/06 11:14 PM Page 293

Convention over Configuration
A developer doesn’t need total flexibility in naming all parts of an application.
Sure, it’s fun to name a controller DonaldTrump and name the model
CindyCrawford. But if you stick with some simple naming conventions,
everyone’s life is easy. Name the controller ThingsController, and name
the model Thing. Then you don’t need a configuration file — a file in which
you associate the controller name DonaldTrump with the model name
CindyCrawford.

For more of my nagging about convention over configuration, see Chapters 1
and 8.

Model/View/Controller (MVC)
Separate the code that processes data from the code that displays the data.
Why should you separate these two parts of the code? You separate them
because the processing of data and the display of data are completely differ-
ent kinds of problems. One problem has little to do with the other. Thinking
about both problems at once gets you tangled in unnecessary complexities.

Also, if you separate the two problems, you can easily change the solution to
one problem without upsetting the solution to the other problem. Do you
want to switch from a desktop browser to a mobile phone’s browser? If so,
you can do it. You can modify the view without changing the model’s code.

For an intimate look at the Model/View/Controller structure, see Chapter 8.

Agile Development
The worth of a software project isn’t measured by the thickness of the pro-
ject’s planning documents. Emphasize results, not formalities. Plan frequent
milestones in the development lifecycle. Build prototypes and test them
often. Consult users regularly during the development process. Embrace
change.

To read other inspiring sentences about agile development, see Chapter 1.

294 Part IV: The Part of Tens

23_081204 ch16.qxp 11/30/06 11:14 PM Page 294

Dynamic Discovery of a Database’s
Characteristics

A database speaks for itself. You don’t need a separate piece of code
describing the database. Let an application dig into the database and
automatically discover the names and types of the database table’s
columns. Have the application determine the database’s characteristics
at runtime. If you do, you can modify the database between runs of the
application.

In Ruby on Rails, the name for this dynamic discovery trick is Active Record.
You can read more about Active Record in Chapter 9.

Object-Relational Mapping (ORM)
The ORM concept isn’t unique to Ruby on Rails. Many software frameworks
use object-relational mapping in one form or another.

Here’s how ORM works: On one side, you have a database table’s row.
On the other side, you have a piece of code (Ruby code, Java code, or
whatever). The code instantiates an object — an object with variables
that have values. The essence of object-relational mapping is to have the
object’s values correspond to the values in the database table’s row. If a row
has columns name, address, and phone, the code has variables @name,
@address, and @phone. To top it all off, some standard, one-size-fits-all
piece of code keeps the database columns and the object’s values syn-
chronized. The programmer doesn’t worry about the boring, repetitive
synchronization task.

A database row’s values are an application’s reason for being. And an
object within the computer program can perform business logic (can do
what needs to be done with the row’s values). Using ORM, the programmer
thinks only about the business logic. The ORM strategy effectively separates
business logic from the mechanics of synchronizing the object and the
database.

For more about object-relational mapping, see Chapter 9.

295Chapter 16: Ten Pivotal Ruby on Rails Concepts

23_081204 ch16.qxp 11/30/06 11:14 PM Page 295

Using Generators
Do you need a controller? If so, don’t write the controller code from scratch.
Instead, run a generator that creates the code automatically.

What about a database table? Do you want a new table? Then generate some
migration code. And while you generate things, create a scaffold.

A generated model and a scaffold form a simple but complete application.
Naturally, you want to customize the application. But the generated code
makes a great prototype.

For the first word on generators, see Chapters 3 and 4.

Create, Read, Update,
and Delete (CRUD)

Someone who was in a very bad mood decided on the name CRUD for the
four fundamental database operations. Every database application imple-
ments these four operations. Other operations (searching, for example) are
combinations of the CRUD operations. Still other operations (such as credit
card processing) are exotic combinations of combinations of combinations of
CRUD operations.

With its cool scaffolding, Rails elevates CRUD to new heights. For more CRUD,
see Chapters 3 and 9.

Using Migrations
Migrations have advantages and disadvantages. On the good side, you can
use the same migration code with different kinds of databases. If you change
from a MySQL database to a Postgres database, you can reuse the migration
code. Migrations also provide a decent versioning system.

296 Part IV: The Part of Tens

23_081204 ch16.qxp 11/30/06 11:14 PM Page 296

But versioning can be tricky, and migrations don’t do enough to enforce good
versioning practices. You can easily clash with another person doing a migra-
tion. (Nothing prevents you from giving your migration the same version
number as another person’s migration.) And rolling back a migration can
make trouble for your Rails code.

Of course, you can ignore the pros and cons and focus on the mechanics of
migrations in Chapters 9 and 11.

Using Partials
A Web page for editing an item looks very much like a page for creating a new
item. Both pages have fields for supplying the item’s values. The Edit page
shows you the existing values, and the New page doesn’t. But that’s the only
difference. In other ways, the Edit and New pages are alike.

So why bother to reinvent the wheel by coding two different Web pages?
Instead, create a reusable piece of rhtml code (a partial page). Then render
this partial on both the Edit page and the New page.

Rails provides nice support for partials. The story is in Chapter 8.

297Chapter 16: Ten Pivotal Ruby on Rails Concepts

23_081204 ch16.qxp 11/30/06 11:14 PM Page 297

298 Part IV: The Part of Tens

23_081204 ch16.qxp 11/30/06 11:14 PM Page 298

Chapter 17

Ten Ways to Override
Rails Defaults

In This Chapter
� Circumventing the Rails naming conventions

� Using alternative page layouts

� Moving away from the development environment

The phrase “legacy database” is a euphemism for “an old database that’s
difficult to connect to modern software,” and for “a database that some-

one forces you to use.”

Consider the following scenario. You have a database that someone created
several years ago, before Rails was invented. Table names, primary keys,
and many other aspects of the old database don’t follow the Rails standard
naming conventions. What can you do about it? Here are some alternatives:

� Modify the old database so that the database uses Rails conventions.

This alternative involves another euphemism. The phrase “modifying an
old database” actually means “asking for trouble.”

� Forget about Rails. Instead, use legacy software to access the legacy
database.

Sure. And ten years from now, you think about replacing the Commodore
64 that you bought in 1982. No! Wait! Maybe someone still writes soft-
ware updates for the Commodore 64.

� Use Rails and override some Rails conventions so that Rails accesses
the legacy database.

That’s a good choice.

24_081204 ch17.qxp 11/30/06 11:15 PM Page 299

Strangely enough, I need to establish some of my own conventions for this
chapter’s examples.

� In each example, I assume that you start with a new Rails project.

You can combine two or more of this chapter’s tricks into one project.
But if you’re not careful about combining tricks, you can easily become
confused. So start with a fresh project for each of this chapter’s examples.

For details on creating a Rails project, see Chapter 3.

� If you have a model, I assume that the model’s name is Thing.

See Chapter 3 for specifics on creating models.

� If an example requires you to create a database table, you can create
a one-column database table.

Just delete the pound sign in the Rails-generated migration file. You get a
column whose name is name and whose type is string. (Actually, you
get two columns — an id column and a name column. But the name
column is the only content column. See Chapter 9.)

For info about migrations and creating database tables, see Chapter 3.

Overriding the Database Name
To use an alternative database name, change the development: . . .
database: name in the project’s config\database.yml file. More specifi-
cally, do the following:

1. Create a new Rails project as in Chapter 3.

2. Double-click the database.yml file on your project’s config branch
in the Rails Navigator view.

The database.yml file opens in a RadRails editor. The file’s content is
divided into three sections. The sections’ names are development,
test, and production. Each section has lines labeled adapter,
database, username, password, and host. (See Figure 17-1.)

3. In the database.yml file’s development section, replace the name in
the database entry (blah_blah_development, or whatever) with
your database’s actual name.

Again, see Figure 17-1.

300 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 300

The steps in this section change what Rails expects to find on your system.
But the steps don’t change an existing database’s name. You must have a
database with the alternative name on your system (on a hard drive, a net-
work drive, or somewhere else that’s accessible by Rails). When you experi-
ment with this section’s steps, you can use MySQL Administrator to create a
database with a particular name. But to use a legacy database, you must
copy the database to a place where Rails can access it.

In the filename database.yml, the letters yml stand for YAML, which in turn
stands for either “Yet Another Markup Language” or “YAML Ain’t Markup
Language” (depending on whom you ask). One way or another, YAML is a lan-
guage for storing small amounts of data. In this example, the database.yml
file stores some configuration information. For more information on YAML,
visit www.yaml.org.

Overriding a Database Table Name
To override a table name, add a call to method set_table_name in the
model. The details follow:

1. Double-click the thing.rb file on your project’s app\models branch
in the Rails Navigator view.

Remember, in many of this chapter’s examples, I assume that your
project has a model named Thing.

The thing.rb file opens in a RadRails editor.

Figure 17-1:
Overriding

the Rails
database

naming
convention.

301Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 301

2. In the RadRails editor, add one line to the Thing class (the bold line
in Listing 17-1).

Listing 17-1: Setting a Table Name

class Thing < ActiveRecord::Base
set_table_name ‘your_different_name’

end

3. Double-click the 001_create_things.rb migration file on your
project’s db\migrate branch in the Rails Navigator view.

The 001_create_things.rb file opens in a RadRails editor.

4. In the RadRails editor, change the table names. (See Listing 17-2.)

Listing 17-2: Changing the Table Name in the Migration File

class CreateThings < ActiveRecord::Migration
def self.up
create_table :your_different_name do |t|
t.column :name, :string

end
end

def self.down
drop_table :your_different_name

end
end

5. In the Rake Tasks view, run db:migrate.

For details, see Chapter 3.

6. In the Generators view, generate a Thing controller.

For details on generating a controller, jump to Chapter 4. Do not
pass Go. Do not collect $200.

7. Double-click the thing_controller.rb file on your project’s
app\controllers branch in the Rails Navigator view.

The thing_controller.rb file opens in a RadRails editor.

8. In the RadRails editor, add a line of code to the controller. (Add the
bold line in Listing 17-3.)

Listing 17-3: Using a Method Call to Create a Scaffold

class ThingController < ApplicationController
scaffold :thing

end

302 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 302

In this example, you don’t use the Rails Generators view to create a
scaffold. Instead, you add a call to the Rails scaffold method inside
the controller’s code.

9. Visit http://localhost:300x/thing.

For details, see Chapters 4 and 8.

When you create a scaffold by using the technique in Step 8, the word
that you add to the localhost:300x URL is singular. In Step 9, you visit
http://localhost:300x/thing, and not http://localhost:300x/
things.

The Rails migration library has a rename_table method. Check it out!

Overriding a Controller Name
Overriding a controller name isn’t complicated. Do all the stuff you normally
do to create a full-blown Rails project. (See Chapter 3.) However, make two
small changes:

1. When you create a scaffold by using the Generators view, type two
words in the text field on the right. Type the name of the model
followed by the name of the controller. (See Figure 17-2.)

When you click the Generator view’s Go button, RadRails creates
the usual scaffold code. RadRails also creates a controller file named
some_other_name_controller.rb. This new controller file defines
the SomeOtherNameController class.

2. When you open your Web browser, visit
http://localhost:300x/some_other_name.

Figure 17-2:
Creating a

scaffold
with an

unconven-
tional

controller
name.

303Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 303

Overriding the Name of
a Table’s Primary Key

You want a database table with a primary key whose name isn’t id (the Rails
default). To make this happen, do what you normally do to create a Rails project
(as in Chapter 3), but modify the migration file. Also, tell your Rails model
about the primary key’s name. Here’s how:

1. In a RadRails editor, add a primary_key option to the project’s
migration file. (See Listing 17-4.)

Listing 17-4: Explicitly Naming the Primary Key

class CreateThings < ActiveRecord::Migration
def self.up
create_table :things,

:primary_key => ‘legacy_key_name’ do |t|
t.column :name, :string

end
end

def self.down
drop_table :things

end
end

For details on migration files, see Chapter 3.

2. Open the model file (app\models\thing.rb, for example) in a
RadRails editor. In the editor, add a set_primary_key call to the
model. (See Listing 17-5.)

Listing 17-5: Informing the Model about the Primary Key’s Name

class Thing < ActiveRecord::Base
set_primary_key ‘legacy_key_name’

def legacy_key_name_before_type_cast
end

end

Listing 17-5 sets the primary key’s name and defines a method named
legacy_key_name_before_type_cast. The method’s body contains
no statements. But if you don’t define the method, you get a big, fat
error message when you try to visit the application’s New Thing page.

304 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 304

When you visit this application’s New Thing page, you see a text field that
you don’t normally see. In particular, Figure 17-3 has a text field for the
Legacy Key Name (the database table’s primary key).

By default, the database auto-increments the primary key’s value. So, the first
time you visit the New Thing page and click the Create button, the database
puts 1 in the new row’s legacy_key_name column. The second time around,
the database puts 2 in the new row’s legacy_key_name column. And so on.
This auto-increment operation overrides any value that you type in the
Legacy Key Name field in Figure 17-3.

You can rid yourself of the useless Legacy Key Name field in Figure 17-3. To do
so, open the project’s app\views\things_form.rhtml file in a RadRails
editor. Then delete two lines in this file — the line that creates a legacy_
key_name label, and the line that creates a legacy_key_name text field.

Using Singular Nouns
If you’ve worked through some of this book’s examples, you might have
noticed a Disable Table Pluralization option in the New Rails Project wizard.
(On the other hand, if you’re as oblivious to infrequently used features as I
am, you haven’t noticed this option.) One way or another, look at Figure 17-4.

When you select the Disable Table Pluralization option, RadRails adds a line
of code to your project’s config\environment.rb file.

ActiveRecord::Base.pluralize_table_names = false

Figure 17-3:
Adding a
new row

to the
database

table.

305Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 305

This line forces table names to be the same as model names (with the usual
differences in capitalization). Later, when you create a migration within this
project, the generated file contains a singular table name. (See Listing 17-6.)

Listing 17-6: Changing the Table Name in the Migration File

class CreateThings < ActiveRecord::Migration
def self.up
create_table :thing do |t|
t.column :name, :string

end
end

def self.down
drop_table :thing

end
end

From that point on, your work on the project looks exactly like the work
in Chapter 3. (. . . Well, your work looks almost exactly like the work in
Chapter 3. Because the database table’s name is thing [singular], you
must visit http://localhost:300x/thing [singular] to use this
project’s Web pages.)

Figure 17-4:
The New

Rails Project
wizard.

306 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 306

Creating Irregular Plurals
When it comes to creating plural nouns, Rails is pretty smart. If you create a
model named Person, Rails creates a table named people. If you create a
model named Sheep, Rails creates a table named sheep. (I guess the plural
of sheep comes up often in database programming. Maybe a large number of
Rails developers are sheep farmers!)

Alas, if you create a model named Foot, Rails gets the plural wrong with a
table named foots. (So few Rails developers are podiatrists.) To prevent this
foots problem, do the following:

1. Start creating a new Rails project (as in Chapter 3). Stop before you
create a model.

2. Use MySQL to create a database for your project.

Again, see Chapter 3.

3. Double-click the environment.rb file on your project’s config
branch in the Rails Navigator view.

The environment.rb file opens in a RadRails editor. The file contains
many commented lines (lines starting with pound signs).

4. In the RadRails editor, uncomment the line Inflector.inflections
do |inflect| and the corresponding end line. Then type an
inflect.irregular line, as shown in Listing 17-7.

Listing 17-7: Educating Rails about Plural Nouns

Inflector.inflections do |inflect|
inflect.plural /^(ox)$/i, ‘\1en’
inflect.singular /^(ox)en/i, ‘\1’
inflect.irregular ‘person’, ‘people’

inflect.irregular ‘foot’, ‘feet’
inflect.uncountable %w(fish sheep)
end

5. Using the RadRails Generators view, create a model named Foot.
(For details, see Chapter 3.)

Rails generates a migration file named 001_create_feet.rb to create
a table named feet.

6. Proceed as in Chapter 3 to migrate the feet table, generate a Foot
scaffold, and do all that other good stuff.

To visit this project’s Web site, type http://localhost:300x/feet in the
Web browser’s Address field.

307Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 307

This section’s trick doesn’t always get you off the hook. For example, I added
the following line to a project’s config\environment.rb file:

inflect.irregular ‘mother_in_law’, ‘mothers_in_law’

When I generated a Mother_in_law model, Rails created a file named
001_create_mothers_in_law.rb (good). The file’s self.up method
used the correct pluralization create_table :mothers_in_law
(also good). But the migration file started with the words class
CreateMotherInLaws (bad). When I tried to run the migration, Rails
gave me an error message. “Uninitialized constant CreateMothersInLaw,”
said old Mr. Rake. So I manually edited the first line of the 001_create_
mothers_in_law.rb file. I changed the start of the line to class
CreateMothersInLaw. Thereafter, everything went smoothly. (P.S. To
visit the project’s Web site, I typed http://localhost:300x/mothers_in_law
in the Web browser’s Address field.)

Overriding a Default Layout
Chapter 8 describes the use of layouts in Ruby on Rails. By default, a layout’s
name is the same as the model’s pluralized name. For example, a layout for
the Thing scaffold is named things.rhtml.

But you can use a different layout, and you don’t have to rename things.
rhtml. (You can use the things.rhtml layout for testing with Internet
Explorer, and use another layout, alternative.rhtml, for testing with
Mozilla Firefox. Or use one layout for desktop browsers and another for
mobile phone browsers.)

Here’s how you tell Rails to use a layout with a nonstandard name:

1. Create a Rails project, as in Chapter 3.

2. Right-click your project’s app\views\layouts branch in the Rails
Navigator view. In the resulting contextual menu, choose New➪File.

A New File dialog box appears.

3. In the File Name field of the New File dialog box, type alternative.rhtml
(or some_other_name.rhtml). Then press Enter.

A blank editor opens in the center of the RadRails workbench.

4. In the RadRails editor, type the code for your alternative layout.

If you want to try this section’s steps, but you don’t know what to type,
try typing the code in Listing 17-8.

308 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 308

Listing 17-8: A Simple Layout

<h3>Look! I created an alternative layout!</h3>

<%= yield %>

<p>© 2006 My Company

In Listing 17-8, the yield statement does what it does in any Ruby
program — it executes a block associated with the sending code. (If
you don’t understand this gobbledygook about sending code, have a
look at Chapter 5.)

5. Double-click the things_controller.rb file on your project’s
app\controllers branch.

The things_controller.rb file opens in a RadRails editor.

6. Near the top of the things_controller.rb file, add a call to the
Rails layout method. (See Listing 17-9.)

Listing 17-9: Telling Rails to Use an Alternative Layout

class ThingsController < ApplicationController
layout “alternative”

Etc. ...

7. Run the application the way you run other Rails applications.

Each page of the application uses your alternative layout. (Figure 17-5
shows the application’s New Thing page.)

You can create as many different layout files as you need. To switch from one
layout to another, change the second line in Listing 17-9.

Figure 17-5:
The New

Thing page
uses your

alternative
layout.

309Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 309

Creating Additional Web Pages
The familiar Rails Welcome page is stored in the index.html file in your
application’s public directory. You can modify this file, but you can also
create a different Welcome page for each model in your project. Here’s how
you create a Welcome page for a model named Thing:

1. Right-click your project’s app\views\things branch in the Rails
Navigator view. In the resulting contextual menu, choose New➪File.

A New File dialog box appears.

2. In the File Name field of the New File dialog box, type index.rhtml.
Then press Enter.

A blank editor opens in the center of the RadRails workbench.

3. In the RadRails editor, type the code for your new Welcome page.

Your Web browser can display just about anything you type in the
new Welcome page. But if you’re a compulsive person and you want
the browser to display something reasonable, try typing the code in
Listing 17-10.

Listing 17-10: A Simple Welcome Page

<h1>Main Menu</h1>

<%= link_to ‘List’, :action => ‘list’ %> |
<%= link_to ‘New’, :action => ‘new’ %>

4. Visit http://localhost:300x/things.

When you do, your Web browser displays a page like the one in Figure 17-6.

Life doesn’t have to stop after you create an index page. You can add
several pages for a particular model. For example, to create a Help page,
add a help.rhtml file to your project’s app\views\things directory.
Then, to see the Help page in your browser, visit http://localhost:
300x/things/help.

Figure 17-6:
Visiting your

alternative
Welcome

page.

310 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 310

Modifying the Meanings of URLs
Normally, you type http://localhost:300x/things to visit an application’s
Listing Things page. But in some cases, you might want to change the
Listing Things page’s URL (or the URL for some other page). Here’s how
you can do it:

1. Double-click the routes.rb file on the project’s config branch in the
Rails Navigator view.

The routes.rb file opens in a RadRails editor.

2. In the RadRails editor, add a call to the Rails connect method (the
bold code in Listing 17-11).

Listing 17-11: Specifying a Default Page

ActionController::Routing::Routes.draw do |map|
map.connect ‘things’, :controller => ‘things’,

:action => ‘new’

Etc. ...

This call to connect tells the server to respond with the things
controller’s new page when a visitor types http://localhost:
300x/things in the browser’s Address field.

You can do all kinds of neat tricks with the Rails connect method. For
example, you might be tired of typing the word things in http://
localhost:300x/things. (Life’s tough, isn’t it?) To avoid typing the
extra word things, add another call to the Rails connect method (the
bold code in Listing 17-12).

Listing 17-12: Specifying a Default Controller

ActionController::Routing::Routes.draw do |map|
map.connect ‘’, :controller => ‘things’

Etc. ...

Then, when you visit http://localhost:300x (without the extra word
things), the server responds with the Listing Things page.

311Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 311

Changing the Server Environment
The typical software lifecycle has three phases — development, testing,
and production.

� In the development phase, you create code.

� In the testing phase, you test the code. (Then you return to the develop-
ment phase because testing highlights the code’s deficiencies.)

� In the production phase, you run the code. People visit your Web site,
buy things, add comments, share photos, or whatever.

You perform different tasks during each phase of the lifecycle. For example,
in the testing phase, you might run special programs called unit tests. (For a
word or two about unit tests, see Chapter 15.) One way or another, you use
different databases during each phase.

� In development, you use a small “toy” database.

� In testing, you try to challenge your software’s correctness using a
larger database. But you don’t use live data. (You don’t want to change
a real customer’s account balance while you check your application’s
correctness.)

� In production, you use a real database containing live data.

By default, a new Rails project runs in development mode. The application
server does the kinds of things a server does in development mode, and Rails
uses a database named whatever_development. You can change to a differ-
ent mode with the following steps:

1. Start creating a new Rails project and a model (as in Chapter 3). Stop
before you create a database.

2. Using MySQL Administrator, create a database named
something_production.

For example, if your project is named album, the database name is
album_production. For details on creating a database with MySQL
Administrator, see Chapter 3.

3. In the RadRails Servers view, select the server belonging to the pro-
ject you created in Step 1. Then click the Servers view’s Edit button,
as shown in Figure 17-7.

312 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 312

When you click the Edit button, RadRails displays a small Server
Properties dialog box.

4. In the dialog box’s Environment drop-down list, select Production.
Then click OK.

See Figure 17-8.

5. Perform a database migration, as in Chapter 3. But in this example,
type RAILS_ENV=production in the text field on the right side of the
Rake Tasks view. (See Figure 17-9.)

6. In the RadRails Generators view, generate a Thing controller.

For details, see Chapter 4.

From this point onward, you break from standard practice. Rails aficiona-
dos discourage the use of scaffolds in the production environment. But to
move this example forward, you can create a scaffold (just this once).

Figure 17-9:
Migrating

the
production
database.

Figure 17-8:
Selecting

the server’s
production

mode.

Figure 17-7:
Finding the

Servers
view’s Edit

button.

313Chapter 17: Ten Ways to Override Rails Defaults

24_081204 ch17.qxp 11/30/06 11:15 PM Page 313

7. Double-click the thing_controller.rb file on your project’s
app\controllers branch in the Rails Navigator view.

The thing_controller.rb file opens in a RadRails editor.

8. In the RadRails editor, add a line of code to the controller. (Add the
bold line you can see back in Listing 17-3.)

9. Visit http://localhost:300x/thing. (That’s thing, singular; not
things, plural.)

Once again, your application runs like a charm.

314 Part IV: The Part of Tens

24_081204 ch17.qxp 11/30/06 11:15 PM Page 314

• Symbols •
&& (and) operator, 96
= (assignment) operator, 96
@ (at sign), instance variables, 114
backslash (\), referring to branches, 80
~ (bit inversion) operator, 91
[] (brackets), 102, 285
== (comparison) operator, 96
{ } (curly braces), 122, 285
<div>. . .</div> element, 262
** (exponentiation) operator, 91
% (modulo) operator, 91
! (not) operator, 96
|| (or) operator, 96
+ (overloaded) operator, 92
(pound sign), 90, 197
? (question mark), 146
“ “ (quotation marks), 94
<< (shifting) operator, 91
>> (shifting) operator, 91
<%= %> tag, ERb, 168
<=> (three-way comparison) operator, 91

• A •
\a escape sequence, 94
absolute names, files, 141
Access databases, 36
ActionMailer:

:Base.server_settings, 265
ActionView: :Helpers module, 201
Active Record, 184–185, 295
ActiveRecord: :Base class, 184
activerecord gem, 185
ActiveRecord module, 184–185

:adapter value, 186
Add Interpreter dialog box, 34
add_comment method, 241
add_keyword method, 253
add_some_keywords form, 254–255
agile activity, 13
agile development, 12, 294
Agile Manifesto, 12
agilealliance.com Web site, 282
agilemanifesto.org Web site, 282
Ajax (Asynchronous JavaScript and XML)

introduction, 258
Rails pages, 258–262
XMLHttpRequest object, 258

album2_development, 220
alignment, using tables for, 142–143
anchor element, start and end tags

(HTML), 136, 209, 210
and (&&) operator, 96
applications, 50
area, workbench, 67
Array class, 123
arrays

hotel guest tracking code, 100
indices, 101
introduction, 100
loops, 101
size, 101
values, 101

assigning values, 94–95
assignment (=) operator, 96
Asynchronous JavaScript and XML

(Ajax)
introduction, 258
Rails pages, 258–262
XMLHttpRequest object, 258

Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 315

at sign (@), instance variables, 114
automatic rendering, 166

• B •
backslash (\), referring to branches, 80
Beginning Programming with Java For

Dummies (Burd), 4
belongs_to method, 237
bit inversion (~) operator, 91
blocks

curly braces ({}), 122
overview, 287–288

blog
comments, 237–242
introduction, 233
keywords, 243–255
visitor input validation, 235–237

@body assignments, e-mail, 267
borders, invisible, 142
brackets ([]), 102, 285
built-in unit testing, 290–291
Burd, Barry (Beginning Programming with

Java For Dummies), 4

• C •
calling, methods, 118
case-sensitivity, 93, 138
catalogs

introduction, 48
mysql, 47
test, 47

check boxes
code example, 151
HTML forms, 151
keywords, 254–255

check_box method, 254
checkout method, 148
chevron, 70
chomp method, 196
class keyword, 97

class methods, 187
classes
ActiveRecord: :Base, 184
Array, 123
databases, 116
defining, 114
defining, code, 113
instances, 114
Integer, 121
introduction, 113
mailer, 266
open, 123, 285–286
Photo, 179
subclasses, 124–126
TimeServiceController, 272

client computer, 129
close button, 69
collections, iterators, 118
collection_select method, 252, 253
columns

creating, 60
databases, creating, 180
date_created, 188
headings, displaying, 187–188
id columns, 198–200
names, 60
types, 60

columns method, 187
commands, puts, 164
Comment model, dreaming project, 239
comments
add_comment method, 241
dream blog, 237–242
HTML, 139
introduction, 90

comparison (==) operator, 96
compiled languages, 15–16
concatenation, 92
configuration

convention over, 18, 161–162, 294
RadRails, 33–36

316 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 316

configuration files, 17
configure-service mode, 43
connect method, 311
connections, databases

connecting to, 185–187
troubleshooting, 41–45

console, sending text to, 163–165
Console view

introduction, 57
puts command, 164
running application, 81

Container field, 77
containers, 77
controllers

creating, 157–159
names, overriding legacy, 303
overview, 156–157
values, passing to views, 167–173
views, 167–173

convention over configuration, 18,
161–162, 294

counting coins program, 93
covert tricks, 170
create method, 195, 230
Create New Schema dialog box, 49
Create Shortcut wizard, 30
create_setup method, 266
CRUD (Create, Read, Update, Destroy)

operations
databases, 66
inherited methods, 179
overview, 296

.csv files, 36
curly braces ({}), 122, 285

• D •
data, displaying, 187–188
Data perspective, 72
:database value, 186

databases. See also legacy databases
Access, 36
columns, creating, 180
connecting to, 185–187
connection, troubleshooting, 41–45
creating, 47–50
fields, 38
introduction, 12
modifying, 188–191
rows, adding, 194–195
rows, deleting, 193
rows, displaying, 183
rows, finding, 195–197
servers, 38
servers, troubleshooting, 42–43
tables, classes, 116
tables, creating, 58–61, 179
tables, creating (code example), 180
tables defined, 38
tables, enhancing code, 228
tables, names, overriding legacy,

301–303
tables, objects and, 116
traveling, 42
version numbers, 190–191

date_created column, 188
DB2, 36
db:migrate task, 180
decide_about method, 111
declarations, HTML, 139
def_show, 161
delete method, 123, 148
delete_all method, 193
deployment, 130
desktop, shortcuts, RadRails, 30
destroy_all method, 193
dialog boxes

Add Interpreter, 34
Create New Schema, 49
New File, 182
New Project, 51

317Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 317

dialog boxes (continued)

New Rails Project, 52
Preferences, 83–84
Select a Wizard, 76
Select Perspective, 72
Show View, 74
Windows Security Alert, 54
Workspace Launcher, 32

DIRT operations, 66
Disable Table Pluralization option,

305–306
display_cart, 165
displaying

data, 187–188
images, 140–141
values, 94

<div>. . .</div> element, 262
do keyword, 97
DOCTYPE declaration (HTML), 139
Don’t Repeat Yourself (DRY), 18, 19,

162–163, 293
Download link, interpreter, 22
downloads, MySQL Administrator, 40
Dream model, 234, 247
dreaming_development database, 234
dreams_keywords table, 246
drop-down lists

keywords, 252
populating, 180

DRY (Don’t Repeat Yourself), 18, 19,
162–163, 293

duck typing, 286
dynamic typing, 14–15

• E •
each iterator, 192
each method, 118–120
each_plus_interest method, 123
editing, files, 80–81
editor, workbench, 68
elements (HTML), 137

else keyword, 97
elseif keyword, 97
e-mail
@body assignments, 267
cordial but forceful message, 267
enabled Web site, 264
mail servers, 263
mailer class, code, 266
mailer configuration, 264–265
Mailer configuration code, 264
mailing messages, 265–269
mailing messages, code example, 265
messages, 264
messages, code example, 264

empty tags (HTML), 137–138
end keyword, 97
end tags (HTML), 136–137
enhancing code

database table, 228
file input field, 228–230
images, 230

entities (HTML), 138–139
environment, server, 312–314
environment.rb file, 265
ERb tags, 205–206
escape sequence, 94
establish_connection method, 185
exponentiation (**) operator, 91
expressions

interpolated, 92
introduction, 91
regular expressions, 243
ternary, 99

extensions, filenames, 29

• F •
false keyword, 97
fields

databases, 38
hidden (HTML), 152

filenames, extensions, 29

318 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 318

files
absolute names, 141
class files, 81
configuration files, 17
editing, 80–81
importing easy way, 214–215
importing geeky way, 216–218
importing, Import Wizard, 216–218
relative names, 140
renaming, 159–161

fill method, 123
find method, 187, 195
find_by_sql method, 198
Firebird, 36
flow of photo album application, 226–227
folders, workspace, 32
for loop, 99
form elements (HTML)

check boxes, 151
fields, hidden, 152
text areas, 147–149

forms
add_some_keywords, 254–255
HTML, 144–146
parameters, 172–173

frameworks, 13

• G •
gem

installer, 27
session, 27

gems, activerecord, 185
Generators view

creating projects, 78–79
model creation, 57
options, 56
scaffolds, 61

get method, 148
get_picture method, 221, 232
gets method, 96–97, 196
get_time method, 271, 273

gif files, 140
Google search engine, 145

• H •
habtm (has_and_belongs_to_many)

relationship, 244
hashes
[] (brackets), 102, 285
{} (curly braces), 285
code example, 102
entries, 102
format string, 103
loops, 103
passing to methods, 108–109

has_many :comments, 241
hidden fields (HTML), 152
host computer, 130
:host value, 186
hostingrails.com Web site, 282
href attribute, start tags (HTML), 136
HTML (hypertext markup language)

anchor elements, 209
check boxes, 151
comments, 139
declarations, 139
DOCTYPE declaration, 139
elements, 137
empty tags, 136–137
end tags, 136–137
entities, 138–139
fields, hidden, 152
form elements, 147–152
forms, 144–146
forms, text field code example, 144
image elements, 140–141, 231–232
introduction, 134–136
link_to method, 209
option selectors, 149–150
paired tags, 137–138
permissiveness, 138

319Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 319

HTML (hypertext markup language)
(continued)

simple code example, 132
start tags, 136
table, code example, 142
table header elements, 143
tables, 142–143
tag example code, 134–135
text area creation code example, 147
text field, 146
Web pages, 132–133

HTML-safe method, 209
HTTP (hypertext transfer protocol)

description, 131
methods, 148–149
transactions, 131

hypertext markup language. See HTML

• I •
id numbers, 198–200
IDE (integrated development

environment), 27
idempotence, 148–149
if keyword, 97
if statements, program flow, 96
image tags (HTML)

code example, 140
composing, 231–232
overview, 204

images
displaying, 140–141
enhanced code, 230
jpg format, 140
link_to method, 209
passing photos, 207–214
public\images branch, 202
Show link, 211

image_tag method, 201
Import Wizard, 216–218

importing files
easy way, 214–215
Import wizard, 216–218

inheritance
CRUD operations, 179
Photo class, 179
subclasses, 124

initialize method, 115
input

keyboard, 96–97
validating, 235–237
validating, code example, 235

insert method, 123
installation

components, 23
gem, 27
interpreter, 22–26
irb, 25
Java, 27–28
MySQL, 36–39
MySQL Administrator, 40–45
RadRails, 28–36
RadRails, troubleshooting, 33
Rails, 26–27
set path, 26
testing, 24–25
troubleshooting, 25–26

Installed Interpreters panel, 34
instances

classes, 114
methods, calling, 118
Photo, 230
subclasses, 126
variables, 114
variables, @ sign, 114

Integer class, 121
integrated development environment

(IDE), 27
interpolated expressions, 92
interpolation, 197
interpreted languages, 15–16

320 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 320

interpreter
Download link, 22
installation, 22–26

invisible borders, 142
irregular plurals, 307–308
iterators

code, 119–120
collections, 118
each, 192
each method, 118–120

• J •
Java, installation, 27–28
JavaScript, 213–214
JavaScript For Dummies, 4th Edition

(Vander Veer), 214
jpg files, 140
JRuby, 281
jruby.org Web site, 281

• K •
keyboard, input, 96–97
keywords

check boxes, 254–255
class, 97
do, 97
dreaming project, connecting dreams

to, 244–251
drop-down lists, 252
else, 97
elseif, 97
end, 97
false, 97
if, 97
introduction, 97
module, 97
nil, 97
removing, 252
self, 97, 123

super, 97
true, 97
unless, 97
until, 97
while, 97
yield, 97

• L •
layout

default, overriding, 308–309
description, 71
layout engine, 132
views, 173–174

legacy databases
controllers, overriding name, 303
introduction, 299–300
name, overriding, 300–301
primary key name override, 304–305
tables, overriding name, 301–303

length method, 123
line breaks, 94
link_to method, 209
link_to_remote method, 261
Listing Photos page, 203
localhost, server host, 47
loops

hashes, 103
times, 121
until, 98
while, 98

• M •
mail servers, 263–264
mailer class, 266
Manifesto for Agile Software

Development, 9
manual rendering, 166
markers, 70
menu buttons, 69

321Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 321

messages, sending, 118
methods
add_comment, 241
add_keyword, 253
arguments, 91
belongs_to, 237
blocks, 106–107
calling, 104, 118
check_box, 254
checkout, 148
chomp, 196
class methods, 187
collection_select, 252, 253
columns, 187
connect, 311
create, 195, 230
create_setup, 266
decide_about, 111
defining, 104, 117
delete, 123, 148
delete_all, 193
destroy_all, 193
Dream Controller, 247
each, 118–120
each_plus_interest, 123
establish_connection, 185
fill, 123
find, 187, 195
find_by_sql, 198
get, 148
get_picture, 221, 232
gets, 96–97, 196
get_time, 271, 273
HTML-safe method, 209
HTTP, 148–149
image_tag, 201
initialize, 115
insert, 123
introduction, 90–91
length, 123
link_to, 209
link_to_remote, 261

new, 115, 194
objects, 117–122
overview, 117–118
parameters, 91, 106
passing hashes to, 108–109
password_field_tag, 201
post, 148
print, 94
printf, 103–104
puts, 91, 94
remove_keyword, 252
save, 195
self.down, 189
self.up, 189
send, 188, 291
send_data, 232
show, 192, 212
show_all, 192
show_body, 262
show_surrounded_alan, 106
sing, 289
speak, 289
start_form_tag, 201
statements, 89
subclasses, 126
submit_tag, 201, 253
surrounding, 107
text_field_tag, 201
to_s, 92
url_for, 231
validates_length_of, 236
validates_presence_of, 236
validates_uniqueness_of, 236
validation methods, 235
values, 106

migration
advantages, 296
code example, 259
description, 58, 179
disadvantages, 297
order applied, 190

322 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 322

mixins, 289–290
models

creating, 55–58
defining, 178–179, 183
programming with, 182–188

modifiers
introduction, 98
overview, 287
until, 99

Modify Security Settings, MySQL, 38
modifying databases, adding columns,

188–189
module keyword, 97
modules, creating, 127–128
modulo (%) operator, 91
MVC (model/view/controller)

framework, 156, 294
MySQL

Administrator
database creation, 47–50
download, 40
installation, 40–45

connection, troubleshooting, 41–45
installation, 36–39
Modify Security Settings, 38
Windows Essentials version, 37

mysql catalog, 47
MySQL Server Instance Configuration

wizard, 37
MySQL Service is running message, 43

• N •
\n escape sequence, 94
names

controllers, overriding legacy, 303
database, overriding legacy, 300–301
database tables, overriding legacy,

301–303
schema, 49
underscore, 50

Navigator tree
branches, 57
migrate branch, 58

Navigator view
project branch, 79
selections, 56

New File dialog box, 182
new method, 115, 194
New Photo page, 203
New Project dialog box, 51
New Rails Project dialog box, 52
nil keyword, 97
not (!) operator, 96
nouns, singular, 305–306
numbers, to_s method, 92

• O •
object-relational mapping (ORM),

116, 186, 295
objects

creating, 115
databases, 116
introduction, 113
methods, 117–122
overview, 288

One-Click Installer, 22
OOP (object-oriented programming)

databases, 116
introduction, 17

open classes, 123, 285–286
operators
&& (and), 96
= (assignment), 96
~ (bit inversion), 91
== (comparison), 96
** (exponentiation), 91
% (modulo), 91
! (not), 96
|| (or), 96
+ (overloaded), 92
<< (shifting), 91

323Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 323

operators (continued)

>> (shifting), 91
<=> (three-way comparison), 91

option selectors (HTML)
code example, 149
option element, 149
select element, 149

or (||) operator, 96
Oracle, 36
ORM (object-relational mapping),

116, 186, 295
overloaded (+) operator, 92
overriding default layout, 308–309
overriding legacy database name,

300–301
overriding legacy database table name,

301–303
overt tricks, 170

• P •
paired tags (HTML), 137–138
parameters

blocks, 108
methods

forms and, 172–173
hashes, 169
introduction, 91
puts, 91
URLs, 170

partials
overview, 175
rhtml, 297

passing
hashes to methods, 108–109
photos, 207–214
symbols, 110

:password value, 186
password_field_tag method, 201
perspective

changing, 72–73
description, 71
Ruby, 72

running programs, 81
Select Perspective dialog box, 72
URLs, visiting, 82–83

photo album application flow, 226–227
Photo class, inheritance, 179
Photo instance, 230
Photo Web site, building, 178
photos, passing, 207–214
pipe character (||), 96
plurals, irregular, 307–308
png files, 140
post method, 148
Postgres, 36
pound sign (#), 90, 197
Preferences dialog box, 83–84
preferences, RadRails, 34
print method, 94
printf method, 103–104
program flow

decision making code, 99
for loop, 99
if statements, 95, 96
keyboard input, 96–97
keywords, 97
loops, 95
overview, 95–96
photo album application, 226–227
repeating and making choices code, 95
until loop, 98
while loop, 98

programming, models and, 182–188
programs

running, 81–82
troubleshooting, 84–86

projects
description, 71
new, 50–53
running, 53–55

puts command, Console view, 164
puts method

calling, 91
parameters, 91

324 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 324

• Q •
question mark (?), 146
queues, 93
quotation marks (“ “), 94

• R •
RadRails

area, 67
chevron, 70
close button, 69
configuration, 33–36
Console view, 179
customizing, 83–84
desktop shortcuts, 30
editor, 67
installation, 28–36
layout, 71
marker, 70
menu button, 69
perspective, 71
perspective, changing, 72–73
preferences, 34
projects, 71
projects, new, 50–53
Servers view, 54
testing, 31–32
toolbar, 69
troubleshooting installation, 33
views, 67
views, showing, 74–75
workbench, 67
workspace, 71

RadRails workbench
Generators tab, 56
introduction, 50–51
parts, 51

radrails.org Web site, 283
Rails

installation, 26–27
introduction, 17–19

Navigator tree, 57
Navigator view, 56
perspective, 72

Rails Navigator view
database table creation, 58–59
introduction, 51
model creation, 55–56

railshosting.org Web site, 282
railslivecd.org Web site, 283
railsmanual.com Web site, 283
rails.techno-weenie.net Web site, 283
Rake Tasks view, 59
redirection, Web servers, 165
reflection, 16–17, 291
Refresh button, 160
regular expressions, 243
relationships

code example, 246
habtm, 244

relative names, files, 140
remove_keyword method, 252
renaming files, reasons not to, 159–161
rendering

automatic, 166
manual, 166

requests, 129
require call, 128, 193
response, 129
root, username, 47
rows

adding, 194–195
deleting, 193
displaying, 183
finding, 195–197

Ruby
installation, interpreter, 22–26
interpreters, troubleshooting, 86
reasons to use, 14–17

rubycentral.com Web site, 280
ruby-doc.org Web site, 279
rubyforge.org Web site, 280
ruby-forum.com Web site, 280
rubygarden.org Web site, 280

325Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 325

RubyGems check box, 23
rubygems.org Web site, 281
rubyholic.com Web site, 281
ruby-lang.org Web site, 280
rubyonrails.org Web site, 282
rubyonrailswebhost.com Web site, 282
rubyquiz.com Web site, 280
running programs

overview, 81–82
troubleshooting, 84–86

• S •
save method, 195
scaffolds

creating, 61–63, 180–181
description, 61

schema
introduction, 47
naming, 49

Schema Name field, 49
schemata, 48
screen scraping, avoiding, 270–271
SCUM operations, 66
Select a Wizard dialog box, 76
select element, 252
Select Perspective dialog box, 72
self keyword, 97, 123
self.down method, 189
self.up method, 189
semantic errors, troubleshooting, 85–86
send method, 188, 291
send_data method, 232
sending messages, 118
server computer, 129
servers

databases, 38
environment, changing, 312–314
Web servers, redirection, 165

Servers view
introduction, 54
URLs, going to, 82–83

Shell view, 78
shifting (<<) operator, 91
shifting (>>) operator, 91
shortcuts, RadRails, 30
Show link, 211
show method, 192, 212
Show View dialog box, 74
show_all method, 192
show_body method, 262
show_surrounded_alan method, 106
sing method, 289
singular nouns, 305–306
software

agility, 12
development process, 11–13
engineering, 11

speak method, 289
SQL, 197–198
SQLite, 36
SQLServer, 36
start_form_tag method, 201
statements
if, 96
methods, 89

STDOUT.flush call, 196
strings, 92
subclasses

code, 124–125
defining, 124–126
instances, 126
methods, 126

submit_tag method, 201, 253
super keyword, 97
surrounding method, 107
symbols

as hash keys, 111
introduction, 110

syntax errors, troubleshooting, 85

326 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 326

• T •
\t escape sequence, 94
tables, databases

binary data, 219
classes, 116
creating, 58–61, 179
data elements, 143
description, 38
enhancing code, 228
names, overriding legacy, 301–303
objects, 116
primary key, overriding legacy,

304–305
row elements, 143

tables, HTML
alignment, 142–143
borders, 142
header elements, 143

tag <%= %>, ERb, 168
ternary expression, 99
test catalog, 47
testing, RadRails, 31–32
text areas, HTML forms, 147–149
text field tag (HTML)
id attribute, 146
name attribute, 146

text, sending to console, 163–165
TextfieldOfDreams site

comments, 237–242
database table definition, 234
introduction, 233
keywords, 243–255
visitor input, validating, 235–237

text_field_tag method, 201
three-way comparison (<=>) operator, 91
time-of-day clock, 232
times loop, 121
TimeServiceController class, 272
toolbar, 69
to_s method, 92

traveling, databases, 42
troubleshooting

installation, 25–26
Java installation, 33
program run, 84–86
RadRails installation, 33
RadRails version, 33
Ruby interpreters, 86
semantic errors, 85–86
syntax errors, 85

true keyword, 97
tryruby.hobix.com Web site, 281
typing

duck typing, 286
dynamic, 14–15
static, 14

• U •
underscore, naming, 50
unit testing, built-in, 290–291
unless keyword, 97
until keyword, 97
until loop, 98
until modifiers, 99
url_for method, 231
URLs (Uniform Resource Locators)

going to, 82–83
meaning, modifying, 311
parameters, 170

:username value, 186

• V •
validates_length_of call, 236
validates_presence_of call, 236
validates_uniqueness_of call, 236
validation methods, 235
values

assigning, 94–95
counting coins program, 93

327Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 327

values (continued)

displaying, 94
introduction, 93
overview, 91
passing from controller to view,

167–173
variables, 91

Vander Veer, Emily (JavaScript For
Dummies, 4th Edition), 214

variables
instances, 114
overview, 91
type declaration, 14
values, 91

views
Close button, 74
Console, 57
controllers, 167–173
creating, 157–159
layouts, 173–174
opening, 74
RadRails, 74–75
Rake Tasks, 59
Servers, 54
Shell, 78
Show View dialog box, 74
submenu, 74
values, passing from controller, 167–173
workbench

definition, 67–68
Shell view, 78
showing, 74–75

• W •
Web, 12
Web developers, local computer, 130
Web interface, using, 63–66
Web pages

additional, creating, 310
HTML, 132–133

partials, 175
scaffolds, 61
static, 130
temporary, 61
visitors, 129

Web servers, redirection, 165
Web Service Description Language

(WSDL), 272
Web services

building, 271–275
description, 269
interface, 272

Web sites
agile development, 282
agilealliance.com, 282
agilemanifesto.org, 282
Ajax, 284
hostingrails.com, 282
Hotscripts, 284
jruby.org, 281
operating systems, 283
photo, building, 178
RadRails, 283
RadRails documentation, 283
radrails.org, 283
Rails news, 284
railshosting.org, 282
railslivecd.org, 283
railsmanual.com, 283
rails.techno-weenie.net, 283
Ruby add-ons, 281
Ruby discussion, 280
Ruby documentation, 279
Ruby on Rails discussion, 283
Ruby open source, 280
Ruby quizzes, 280
Ruby resources, 280
Ruby user groups, 281
rubycentral.com, 280
ruby-doc.org, 279
rubyforge.org, 280

328 Ruby on Rails For Dummies

25_081204 bindex.qxp 11/30/06 11:15 PM Page 328

ruby-forum.com, 280
rubygarden.org, 280
rubygems.org, 281
rubyholic.com, 281
ruby-lang.org, 280
rubyonrails.org, 282
rubyonrailswebhost.com, 282
rubyquiz.com, 280
SQL, 284
tryruby.hobix.com, 281
Web hosting, 282

while keyword, 97
while loop, 98
Wicked Shell, 74–75
Windows Essentials, MySQL, 37
Windows Security Alert dialog box, 54
wizards

Create Shortcuts, 30
Import Wizard, 216–218
MySQL Server Instance

Configuration, 37
Select a Wizard dialog box, 76
using, 76–78

workbench
area, 67
definition, 67
editing files, 80–81
editor, 68
Rails Navigator view, 51
views, 67–68

workspace
description, 71
folder, default, 32

Workspace Launcher dialog box, 32
WSDL (Web Service Description

Language), 272

• X •
XMLHttpRequest object, Ajax, 258

• Y •
yield calls, 120
yield keyword, 97

329Index

25_081204 bindex.qxp 11/30/06 11:15 PM Page 329

	Ruby on Rails For Dummies
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Part I: Nuts and Bolts
	Part II: Creating Code
	Part III: Real Rails
	Part IV: The Part of Tens

	Icons Used in This Book
	Where to Go from Here

	Part I: Nuts and Bolts
	Welcome to the World of Ruby on Rails
	The Software Development Process
	Along Comes Ruby on Rails
	Let’s Get Going

	Installing the Software
	Six Pieces of Software
	Installing the Ruby Interpreter
	Installing Rails
	Installing Java
	Installing RadRails
	Installing MySQL
	Installing MySQL Administrator

	Details on Rails
	Creating a Database
	Creating a New Ruby on Rails Project
	Running Your New Rails Project (Already!)
	Creating a Model
	Creating a Database Table
	Creating a Scaffold
	Using the New Web Interface

	Using RadRails
	Words, Words, Words
	Some Common RadRails Tasks
	Troubleshooting the Run of a Ruby Program

	Part II: Creating Code
	Ruby One’s Day
	Hello, Again
	Working with Values
	Going with the Flow
	Bunches of Things
	Using Methods

	Ruby Two’s Day
	Objects and Classes
	Objects Have Methods
	Enhancing Classes
	Creating a Module

	Weaving the Web
	The Working of the Web
	Your HTML Starter Kit
	HTML Elements

	Part III: Real Rails
	Action-Packed Adventures
	Model/View/Controller
	The Rails Way of Life
	Writing What You Want Where You Want It
	The Controller Shakes Hands with the View
	Dividing the Work of the View

	Some Things You Can Do with Models
	A Web Site for Photos
	Programming with a Rails Model
	Modifying a Database
	More Rails Programming Tricks

	I’ve Been Working on the Rails Code
	Displaying an Image
	Importing Files

	Image Is Everything
	Enhancing Your Project’s Code
	Understanding the Enhanced Code

	More Model Magic
	Blogging Your Dreams
	Validating the Visitor’s Input
	Adding Comments
	Adding Keywords

	Cool Things on Rails
	Using Ajax
	Sending E-Mail
	Creating and Consuming Web Services

	Part IV: The Part of Tens
	Ten (Times Two) Great Web Sites
	Ten Ruby Sites
	Ten Rails Sites

	Ten Features That Set Ruby Apart
	Hashes
	Open Classes
	Duck Typing
	Modifiers
	Blocks
	Everything Is an Object
	Objects Might Have Their Own Methods
	Mixins
	Built-In Unit Testing
	Built-In Reflection

	Ten Pivotal Ruby on Rails Concepts
	Don’t Repeat Yourself (DRY)
	Convention over Configuration
	Model/View/Controller (MVC)
	Agile Development
	Dynamic Discovery of a Database’s Characteristics
	Object-Relational Mapping (ORM)
	Using Generators
	Create, Read, Update, and Delete (CRUD)
	Using Migrations
	Using Partials

	Ten Ways to Override Rails Defaults
	Overriding the Database Name
	Overriding a Database Table Name
	Overriding a Controller Name
	Overriding the Name of a Table’s Primary Key
	Using Singular Nouns
	Creating Irregular Plurals
	Overriding a Default Layout
	Creating Additional Web Pages
	Modifying the Meanings of URLs
	Changing the Server Environment

	Index

