

TensorFlow®

by Matthew Scarpino

TensorFlow® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. TensorFlow is a registered trademark of Google, LLC. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018933981

ISBN 978-1-119-46621-5 (pbk); ISBN 978-1-119-46619-2 (ePub); 978-1-119-46620-8 (ePDF)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Getting to Know TensorFlow . 5
CHAPTER 1: Introducing Machine Learning with TensorFlow . 7
CHAPTER 2: Getting Your Feet Wet . 17
CHAPTER 3:	 Creating	Tensors	and Operations . 27
CHAPTER 4:	 Executing	Graphs	in Sessions . 45
CHAPTER 5: Training . 65

Part 2: Implementing Machine Learning . 97
CHAPTER 6:	 Analyzing	Data	with	Statistical	Regression . 99
CHAPTER 7:	 Introducing	Neural	Networks	and	Deep	Learning 117
CHAPTER 8: Classifying Images with Convolutional

Neural Networks (CNNs) . 149
CHAPTER 9:	 Analyzing	Sequential	Data	with	Recurrent	

Neural	Networks	(RNNs) . 179

Part 3: Simplifying and Accelerating TensorFlow 199
CHAPTER 10: Accessing Data with Datasets and Iterators . 201
CHAPTER 11: Using Threads, Devices, and Clusters . 225
CHAPTER 12:	Developing	Applications	with	Estimators . 247
CHAPTER 13:	Running	Applications	on the	Google	Cloud	Platform	(GCP) 277

Part 4: The Part of Tens . 307
CHAPTER 14:	The	Ten	Most	Important	Classes . 309
CHAPTER 15:	Ten	Recommendations	for	Training	Neural	Networks 315

Index . 319

Table of Contents v

Table of Contents
INTRODUCTION . 1

About This Book .1
Foolish	Assumptions .2
Icons Used in This Book .2
Beyond the Book .3
Where to Go from Here .4

PART 1: GETTING TO KNOW TENSORFLOW 5

CHAPTER 1: Introducing Machine Learning with
TensorFlow . 7
Understanding Machine Learning .7
The	Development	of	Machine	Learning . 8

Statistical	regression .9
Reverse	engineering	the	brain .10
Steady	progress .11
The	computing	revolution .12
The	rise	of	big	data	and	deep	learning .12

Machine Learning Frameworks .13
Torch .14
Theano .14
Caffe .14
Keras .15
TensorFlow .15

CHAPTER 2: Getting Your Feet Wet . 17
Installing TensorFlow .17

Python	and	pip/pip3 .18
Installing	on	Mac	OS .19
Installing on Linux .20
Installing on Windows .20

Exploring	the	TensorFlow	Installation .21
Running	Your	First	Application .22

Exploring	the	example	code .23
Launching Hello TensorFlow! .23

Setting	the	Style .24

vi TensorFlow For Dummies

CHAPTER 3:	 Creating	Tensors	and Operations . 27
Creating Tensors .27
Creating Tensors with Known Values .28

The constant function .30
zeros,	ones,	and	fill .30
Creating	sequences .31

Creating	Tensors	with	Random	Values .31
Transforming Tensors . .33
Creating	Operations .35

Basic	math	operations .35
Rounding	and	comparison .37
Exponents	and	logarithms .38
Vector	and	matrix	operations .39

Putting	Theory	into	Practice .42

CHAPTER 4:	 Executing	Graphs	in Sessions . 45
Forming	Graphs .46

Accessing	graph	data .47
Creating	GraphDefs .49

Creating	and	Running	Sessions .51
Creating sessions .51
Executing a session .52
Interactive sessions .53

Writing Messages to the Log .54
Visualizing Data with TensorBoard .56

Running	TensorBoard .57
Generating summary data .57
Creating custom summaries .59
Writing summary data .59

Putting	Theory	into	Practice .62

CHAPTER 5: Training . 65
Training in TensorFlow .66
Formulating the Model .66
Looking at Variables .67

Creating variables .68
Initializing variables .68

Determining Loss .69
Minimizing	Loss	with	Optimization .70

The	Optimizer	class .70
The	GradientDescentOptimizer .71
The	MomentumOptimizer .75
The	AdagradOptimizer .76
The	AdamOptimizer .77

Table of Contents vii

Feeding	Data	into	a	Session .78
Creating	placeholders .79
Defining	the	feed	dictionary .79
Stochasticity .80

Monitoring	Steps,	Global	Steps,	and	Epochs .80
Saving	and	Restoring	Variables .82

Saving	variables .82
Restoring	variables .83

Working	with	SavedModels .84
Saving	a	SavedModel .85
Loading	a	SavedModel .86

Putting	Theory	into	Practice .86
Visualizing	the	Training	Process .89
Session	Hooks .90

Creating a session hook .91
Creating	a	MonitoredSession .93
Putting	theory	into	practice .94

PART 2: IMPLEMENTING MACHINE LEARNING 97

CHAPTER 6: Analyzing Data with Statistical Regression 99
Analyzing	Systems	Using	Regression .100
Linear	Regression:	Fitting	Lines	to	Data .100
Polynomial	Regression:	Fitting	Polynomials	to	Data 103
Binary	Logistic	Regression:	Classifying	Data	into	
Two Categories .105

Setting	up	the	problem .105
Defining	models	with	the	logistic	function 106
Computing	loss	with	maximum	likelihood	estimation 107
Putting	theory	into	practice .108

Multinomial	Logistic	Regression:	Classifying	Data	into	
Multiple	Categories .110

The	Modified	National	Institute	of	Science	and	
Technology	(MNIST)	Dataset .110
Defining	the	model	with	the	softmax	function 113
Computing	loss	with	cross	entropy .114
Putting	theory	into	practice .115

CHAPTER 7: Introducing Neural Networks and
Deep Learning . 117
From	Neurons	to	Perceptrons .117

Neurons .118
Perceptrons .119

viii TensorFlow For Dummies

Improving	the	Model . .121
Weights .121
Bias .122
Activation functions .123

Layers	and	Deep	Learning .127
Layers .128
Deep	learning .129

Training	with	Backpropagation .129
Implementing	Deep	Learning .131
Tuning the Neural Network .133

Input	standardization .134
Weight initialization .135
Batch normalization .136
Regularization .139

Managing	Variables	with	Scope .141
Variable	scope .141
Retrieving	variables	from	collections .142
Scopes	for	names	and	arguments .143

Improving	the	Deep	Learning	Process .143
Creating tuned layers .144
Putting	theory	into	practice .145

CHAPTER 8: Classifying Images with Convolutional
Neural Networks (CNNs) . 149
Filtering Images .149

Convolution .150
Averaging Filter .151
Filters and features .152
Feature detection analogy .153
Setting	convolution	parameters .153

Convolutional Neural Networks (CNNs) .155
Creating convolution layers .156
Creating	pooling	layers .158

Putting	Theory	into	Practice .160
Processing	CIFAR	images .160
Classifying	CIFAR	images	in	code .162

Performing	Image	Operations .166
Converting images .166
Color	processing .169
Rotating	and	mirroring .170
Resizing	and	cropping .172
Convolution .174

Putting	Theory	into	Practice .175

Table of Contents ix

CHAPTER 9: Analyzing Sequential Data with Recurrent
Neural Networks (RNNs) . 179
Recurrent	Neural	Networks	(RNNs) .180

RNNs	and	recursive	functions .181
Training	RNNs .182

Creating	RNN	Cells .183
Creating	a	basic	RNN .185
Predicting	text	with	RNNs . .188
Creating multilayered cells .190
Creating	dynamic	RNNs .191

Long	Short-Term	Memory	(LSTM)	Cells .192
Creating	LSTMs	in	code .194
Predicting	text	with	LSTMs .196

Gated	Recurrent	Units	(GRUs) .196
Creating	GRUs	in	code .197
Predicting	text	with	GRUs .198

PART 3: SIMPLIFYING AND ACCELERATING
TENSORFLOW . 199

CHAPTER 10: Accessing Data with Datasets and Iterators 201
Datasets .201

Creating datasets .202
Processing	datasets . .208

Iterators .213
One-shot	iterators .213
Initializable iterators .215
Reinitializable	iterators .216
Feedable iterators .217

Putting	Theory	into	Practice .218
Bizarro Datasets .221

Loading	data	from	CSV	files .222
Loading the Iris and Boston datasets .223

CHAPTER 11: Using Threads, Devices, and Clusters 225
Executing	with	Multiple	Threads .226

Configuring	a	new	session .226
Configuring	a	running	session .228

Configuring	Devices .229
Building TensorFlow from source .229
Assigning	operations	to	devices .235
Configuring	GPU	usage .237

x TensorFlow For Dummies

Executing TensorFlow in a Cluster .238
Creating	a	ClusterSpec .239
Creating a server .240
Specifying	jobs	and	tasks .241
Running	a	simple	cluster .244

CHAPTER 12: Developing Applications with Estimators 247
Introducing Estimators .248
Training an Estimator .248
Testing an Estimator .250
Running	an	Estimator .250
Creating	Input	Functions .251

Configuring	an	Estimator .252
Using Feature Columns .253
Creating and Using Estimators .256

Linear regressors .257
DNN	classifiers .260
Combined	linear-DNN	classifiers .262
Wide	and	deep	learning .263
Analyzing census data .264

Running	Estimators	in	a	Cluster .269
Accessing	Experiments .270

Creating	an	experiment .271
Methods	of	the	experiment	class .272
Running	an	experiment .273
Putting	theory	into	practice .274

CHAPTER 13:	Running	Applications	on the	Google	
Cloud Platform (GCP) . 277
Overview .278
Working	with	GCP	projects . .278

Creating	a	new	project .279
Billing .279
Accessing the machine learning engine .280

The	Cloud	Software	Development	Kit	(SDK) .280
The gcloud Utility .281
Google	Cloud	Storage .283

Buckets .283
Objects	and	virtual	hierarchy .285
The gsutil utility .286

Preparing	for	Deployment .290
Receiving	arguments .290
Packaging	TensorFlow	code .291

Table of Contents xi

Executing	Applications	with	the	Cloud	SDK .293
Local execution .294
Deploying	to	the	cloud .295

Configuring	a	Cluster	in	the	Cloud .299
Setting	the	training	input .300
Obtaining	the	training	output .303
Setting	the	prediction	input .304
Obtaining	the	prediction	output .305

PART 4: THE PART OF TENS . 307

CHAPTER 14: The Ten Most Important Classes . 309
Tensor .309
Operation .310
Graph .310
Session .311
Variable .311
Optimizer .312
Estimator .312
Dataset .312
Iterator .313
Saver .313

CHAPTER 15: Ten Recommendations for Training
Neural Networks . 315
Select	a	Representative	Dataset .315
Standardize	Your	Data .316
Use	Proper	Weight	Initialization .316
Start	with	a	Small	Number	of	Layers .316
Add	Dropout	Layers .317
Train	with	Small,	Random	Batches .317
Normalize Batch Data .317
Try	Different	Optimization	Algorithms .318
Set	the	Right	Learning	Rate .318
Check Weights and Gradients .318

INDEX . 319

Introduction 1

Introduction

Machine learning is one of the most fascinating and most important fields
in modern technology. As I write this book, NASA has discovered faraway
planets by using machine learning to analyze telescope images. After

only three days of training, Google’s AlphaGo program learned the complex game
of Go and defeated the world’s foremost master.

Despite the power of machine learning, few programmers know how to take
advantage of it. Part of the problem is that writing machine learning applications
requires a different mindset than regular programming. The goal isn’t to solve a
specific problem, but to write a general application capable of solving many
unknown problems.

Machine learning draws from many different branches of mathematics, including
statistics, calculus, linear algebra, and optimization theory. Unfortunately, the
real world doesn’t feel any obligation to behave mathematically. Even if you use
the best mathematical models, you can still end up with lousy results. I’ve encoun-
tered this frustration on many occasions, and I’ve referred to neural networks
more than once as “high-tech snake oil.”

TensorFlow won’t give you the ideal model for analyzing a system, but it will
reduce the time and frustration involved in machine learning development.
Instead of coding activation functions and normalization routines from scratch,
you can access the many built-in features of the framework. TensorFlow For
Dummies explains how to access these features and put them to use.

About This Book
TensorFlow is a difficult subject to write about. Not only does the toolset contain
thousands of classes, but many of them perform similar roles. Furthermore, some
classes are deprecated, while others are simply “not recommended for use.”

Despite the vast number of classes, there are three classes that every TensorFlow
developer should be familiar with: Tensor, Graph, and Session. The chapters in
the first part of this book discuss these classes in detail and present many
examples of their usage.

2 TensorFlow For Dummies

The chapters in Part 2 explain how you can use TensorFlow in practical machine
learning tasks. I start with statistical methods, including linear regression, polyno-
mial regression, and logistic regression. Then I delve into the fascinating topic of
neural networks. I explore the operation of basic neural networks, and then I pres-
ent convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

The chapters in Part 3 present high-level TensorFlow classes that you can use to
simplify and accelerate your applications. Of the many topics discussed, the most
important is the Estimator API, which allows you to implement powerful machine
learning algorithms with minimal code. I explain how to code estimators and exe-
cute them at high speed using the Google Cloud Platform (GCP).

Foolish Assumptions
In essence, this book covers two topics: the theory of machine learning and the
implementation of the theory using TensorFlow. With regard to theory, I make
few assumptions. I expect you to know the basics of linear algebra, but I don’t
expect you to know anything about machine learning. I also don’t expect you to
know about statistical regression or neural networks, so I provide a thorough
introduction to these and other concepts.

With regard to TensorFlow development, I made assumptions related to your pro-
gramming background. TensorFlow supports a handful of programming lan-
guages, but the central language is Python. For this reason, this book is
Python-centric, and I provide all of the example code in Python modules. I explain
how to install TensorFlow and access its modules and classes, but I don’t explain
what modules and classes are.

Icons Used in this Book
To help you navigate through the text, I inserted icons in the book’s margin.
Here’s what they mean:

This icon indicates that the text contains suggestions for developing machine
learning applications.

Introduction 3

This icon precedes content that delves into the technical theory of machine learn-
ing. Many readers may find this theory helpful, but you don’t need to know all the
gritty details.

As much as I love TensorFlow, I admit that it isn’t simple to use or understand.
There are many critical points to be familiar with, and in many cases, I use this
icon to emphasize concepts that are particularly important.

Beyond the Book
This book covers a great deal of the TensorFlow API, but there’s still a lot more to
learn. The first place to look is the official documentation, which you can find at
www.tensorflow.org. If you’re interested in TensorFlow’s functions and data
structures, the best place to look is www.tensorflow.org/api_docs.

If you have a problem that you can’t solve using this book or the official documen-
tation, a great resource is StackOverflow. This site enables programmers to pres-
ent questions and receive answers, and in my career, I’ve provided plenty of both.
For TensorFlow-specific questions, I recommend visiting www.stackoverflow.
com/questions/tagged/tensorflow.

In addition to what you’re reading right now, this product also comes with
a free access-anywhere Cheat Sheet that gives you some pointers on using
 TensorFlow. To get this Cheat Sheet, simply go to www.dummies.com and search
for “TensorFlow For Dummies Cheat Sheet” in the Search box.

I also provide a great deal of example code that demonstrates how to put the
theory into practice. Here’s how to download the tfbook.zip file for this book.

1. On www.dummies.com, search for TensorFlow For Dummies or the book’s ISBN.

2. When the book comes up, click on the More about this book link.

You are taken to the book’s product page, and the code should be on the
Downloads tab.

After decompressing the archive, you’ll find a series of folders named after
 chapters of this book. The example code for Chapter 3 is in the ch3 folder, the code
for Chapter 6 is in ch6, and so on.

http://www.tensorflow.org
http://www.tensorflow.org/api_docs
http://www.stackoverflow.com/questions/tagged/tensorflow
http://www.stackoverflow.com/questions/tagged/tensorflow
http://www.dummies.com/#_blank
http://www.dummies.com

4 TensorFlow For Dummies

Where to Go from Here
The material in this book proceeds from the simple to the complex and from the
general to the recondite. If you’re already a TensorFlow expert, feel free to skip
any chapters you’re already familiar with. But if you’re new to the toolset,
I strongly recommend starting with Chapter 1 and proceeding linearly through
Chapters 2, 3, 4, and so on.

I’ve certainly enjoyed writing this book, and I hope you enjoy the journey of dis-
covery. Bon voyage!

1Getting to Know
TensorFlow

IN THIS PART . . .

Explore the fascinating field of machine learning and
discover why TensorFlow is so vital to machine learning
development.

Download the TensorFlow package to your computer
and install the complete toolkit.

Discover the fundamental data types of TensorFlow and
the many operations that you can perform on tensors.

Understand how tensors and operations are stored in
graphs and how graphs can be executed in sessions.

Investigate the process of TensorFlow training, which
minimizes the disparity between a mathematical model
and a real-world system.

CHAPTER 1 Introducing Machine Learning with TensorFlow 7

Chapter 1
Introducing Machine
Learning with
TensorFlow

TensorFlow is Google’s powerful framework for developing applications that
perform machine learning. Much of this book delves into the gritty details
of coding TensorFlow modules, but this chapter provides a gentle introduc-

tion. I provide an overview of the subject and then discuss the developments that
led to the creation of TensorFlow and similar machine learning frameworks.

Understanding Machine Learning
Like most normal, well-adjusted people, I consider The Terminator to be one of the
finest films ever made. I first saw it at a birthday party when I was 13, and though
most of the story went over my head, one scene affected me deeply: The heroine
calls her mother and thinks she’s having a warm conversation, but she’s really
talking to an evil robot from the future!

IN THIS CHAPTER

 » Looking at machine learning
over time

 » Exploring machine learning
frameworks

8 PART 1 Getting to Know TensorFlow

The robot wasn’t programmed in advance with the mother’s voice or the right
sequence of phrases. It had to figure these things out on its own. That is, it had to
analyze the voice of the real mother, examine the rules of English grammar, and
generate acceptable sentences for the conversation. When a computer obtains
information from data without receiving precise instructions, it’s performing
machine learning.

The Terminator served as my first exposure to machine learning, but it wouldn’t be
my last. As I write this book, machine learning is everywhere. My email provider
knows that messages involving an “online pharmacy” are spam, but messages
about “cheap mescaline” are important. Google Maps always provides the best
route to my local Elvis cult, and Amazon.com always knows when I need a new
horse head mask. Is it magic? No, it’s machine learning!

Machine learning applications achieve this power by discovering patterns in vast
amounts of data. Unlike regular programs, machine learning applications deal
with uncertainties and probabilities. It should come as no surprise that the pro-
cess of coding a machine learning application is completely different than that of
coding a regular application. Developers need to be familiar with an entirely new
set of concepts and data structures.

Thankfully, many frameworks have been developed to simplify development. At
the time of this writing, the most popular is TensorFlow, an open-source toolset
released by Google. In writing this book, my goal is to show you how to harness
TensorFlow to develop your own machine learning applications.

Although this book doesn’t cover the topic of ethics, I feel compelled to remind
readers that programming evil robots is wrong. Yes, you’ll impress your profes-
sor, and it will look great on a resume. But society frowns on such behavior, and
your friends will shun you. Still, if you absolutely have to program an evil robot,
TensorFlow is the framework to use.

The Development of Machine Learning
In my opinion, machine learning is the most exciting topic in modern software
development, and TensorFlow is the best framework to use. To convince you of
TensorFlow’s greatness, I’d like to present some of the developments that led to
its creation. Figure 1-1 presents an abbreviated timeline of machine learning and
related software development.

CHAPTER 1 Introducing Machine Learning with TensorFlow 9

Once you understand why researchers and corporations have spent so much time
developing the technology, you’ll better appreciate why studying TensorFlow is
worth your own time.

Statistical regression
Just as petroleum companies drill into the ground to obtain oil, machine learning
applications analyze data to obtain information and insight. The formal term for
this process is statistical inference, and its first historical record comes from ancient
Greece. But for this purpose, the story begins with a nineteenth-century scientist
named Francis Galton. Though his primary interest was anthropology, he devised
many of the concepts and tools used by modern statisticians and machine learn-
ing applications.

Galton was obsessed with inherited traits, and while studying dogs, he noticed
that the offspring of exceptional dogs tend to acquire average characteristics over
time. He referred to this as the regression to mediocrity. Galton observed this phe-
nomenon in humans and sweet peas, and while analyzing his data, he employed
modern statistical concepts like the normal curve, correlation, variance, and stan-
dard deviation.

To illustrate the relationship between a child’s height and the average height of
the parents, Galton developed a method for determining which line best fits a
series of data points. Figure 1-2 shows what this looks like. (Galton’s data is pro-
vided by the University of Alabama.)

FIGURE 1-1:
Developments in
machine learning

extend from
academia to

corporations.

10 PART 1 Getting to Know TensorFlow

Galton’s technique for fitting lines to data became known as linear regression, and
the term regression has come to be used for a variety of statistical methods. Regres-
sion plays a critical role in machine learning, and Chapter 6 discusses the topic in
detail.

Reverse engineering the brain
In 1905, Ramón y Cajal examined tissue from a chicken’s brain and studied the
interconnections between the cells, later called neurons. Cajal’s findings fasci-
nated scientists throughout the world, and in 1943, Warren McCulloch and Walter
Pitts devised a mathematical model for the neuron. They demonstrated that their
artificial neurons could implement the common Boolean AND and OR operations.

While researching statistics, a psychologist named Frank Rosenblatt developed
another model for a neuron that expanded on the work of McCulloch and Pitts. He
called his model the perceptron, and by connecting perceptrons into layers, he cre-
ated a circuit capable of recognizing images. These interconnections of percep-
trons became known as neural networks.

Rosenblatt followed his demonstrations with grand predictions about the future
of perceptron computing. His predictions deeply influenced the Office of Naval
Research, which funded the development of a custom computer based on percep-
trons. This computer was called the Mark 1 Perceptron, and Figure 1-3 shows what
it looks like.

The future of perceptron-based computing seemed bright, but in 1969, calamity
struck. Marvin Minsky and Seymour Papert presented a deeply critical view of
Rosenblatt’s technology in their book, Perceptrons (MIT Press). They mathemati-
cally proved many limitations of two-layer feed-forward neural networks, such as
the inability to learn nonlinear functions or implement the Boolean Exclusive OR
(XOR) operation.

FIGURE 1-2:
Linear regression
identifies a clear

trend amidst
unclear data

points.

CHAPTER 1 Introducing Machine Learning with TensorFlow 11

Neural networks have progressed dramatically since the 1960s, and in hindsight,
modern readers can see how narrow-minded Minsky and Papert were in their
research. But at the time, their findings caused many, including the Navy and
other large organizations, to lose interest in neural networks.

Steady progress
Despite the loss of popular acclaim, researchers and academics continued to
investigate machine learning. Their work led to many crucial developments,
including the following:

 » In 1965, Ivakhnenko and Lapa demonstrated multilayer perceptrons with
nonlinear activation functions.

 » In 1974, Paul Werbos used backpropagation to train a neural network.

 » In 1980, Kunihiko Fukushima proposed the neocognitron, a multilayer neural
network for image recognition.

 » In 1982, John Hopfield developed a type of recurrent neural network known
as the Hopfield network.

 » In 1986, Sejnowski and Rosenberg developed NETtalk, a neural network that
learned how to pronounce words.

FIGURE 1-3:
The Mark 1

Perceptron was
the first

computer created
for machine

learning.
Credit: Cornell Aeronautical Laboratory.

12 PART 1 Getting to Know TensorFlow

These developments expanded the breadth and capabilities of machine learning,
but none of them excited the world’s imagination. The problem was that comput-
ers lacked the speed and memory needed to perform real-world machine learning
in a reasonable amount of time. That was about to change.

The computing revolution
As the 1980s progressed into the 1990s, improved semiconductor designs led to
dramatic leaps in computing power. Researchers harnessed this new power to
execute machine learning routines. Finally, machine learning could tackle real-
world problems instead of simple proofs of concept.

As the Cold War intensified, military experts grew interested in recognizing tar-
gets automatically. Inspired by Fukushima’s neocognitron, researchers focused
on neural networks specially designed for image recognition, called convolutional
neural networks (CNNs). One major step forward took place in 1994, when Yann
LeCunn successfully demonstrated handwriting recognition with his CNN-based
LeNet5 architecture.

But there was a problem. Researchers used similar theories in their applications,
but they wrote all their code from scratch. This meant researchers couldn’t repro-
duce the results of their peers, and they couldn’t re-use one another’s code. If a
researcher’s funding ran out, it was likely that the entire codebase would vanish.

In the late 1990s, my job involved programming convolutional neural networks to
recognize faces. I loved the theory behind neural networks, but I found them
deeply frustrating in practice. Machine learning applications require careful tun-
ing and tweaking to get acceptable results. But each change to the code required a
new training run, and training a CNN could take days. Even then, I still didn’t have
enough training data to ensure accurate recognition.

One problem facing me and other researchers was that, while machine learning
theory was mature, the process of software development was still in its infancy.
Programmers needed frameworks and standard libraries so that they weren’t
coding everything by themselves. Also, despite Intel’s best efforts, practical
machine learning still required faster processors that could access larger amounts
of data.

The rise of big data and deep learning
As the 21st century dawned, the Internet’s popularity skyrocketed, and the price
of data storage plummeted. Large corporations could now access terabytes of data

CHAPTER 1 Introducing Machine Learning with TensorFlow 13

about potential consumers. These corporations developed improved tools for ana-
lyzing their data, and this revolution in data storage and analysis has become
known as the big data revolution.

Now CEOs were faced with a difficult question: How could they use their wealth of
data to create wealth for their corporations? One major priority was advertising —
companies make more money if they know which advertisements to show to their
customers. But there were no clear rules for associating customers with products.

Many corporations launched in-house research initiatives to determine how best
to analyze their data. But in 2006, Netflix tried something different. They released
a large part of their database online and offered one million dollars to whoever
developed the best recommendation engine. The winner, BellKor’s Pragmatic
Chaos, combined a number of machine learning algorithms to improve Netflix’s
algorithm by 10 percent.

Netflix wasn’t the only high-profile corporation using machine learning. Google’s
AdSense used machine learning to determine which advertisements to display on
its search engine. Google and Tesla demonstrated self-driving cars that used
machine learning to follow roads and join traffic.

Across the world, large organizations sat up and paid notice. Machine learning
had left the realm of wooly-headed science fiction and had become a practical
business tool. Entrepreneurs continue to wonder what other benefits can be
gained by applying machine learning to big data.

Researchers paid notice as well. A major priority involved distinguishing modern
machine learning, with its high complexity and vast data processing, from earlier
machine learning, which was simple and rarely effective. They agreed on the term
deep learning for this new machine learning paradigm. Chapter 7 goes into greater
detail regarding the technical meaning of deep learning.

Machine Learning Frameworks
One of the most important advances in practical machine learning involved the
creation of frameworks. Frameworks automate many aspects of developing
machine learning applications, and they allow developers to re-use code and take
advantage of best practices. This discussion introduces five of the most popular
frameworks: Torch, Theano, Caffe, Keras, and TensorFlow.

14 PART 1 Getting to Know TensorFlow

Torch
Torch is the first machine learning framework to attract a significant following.
Originally released in 2002 by Ronan Collobert, it began as a toolset for numeric
computing. Torch’s computations involve multidimensional arrays called tensors,
which can be processed with regular vector/matrix operations. Over time, Torch
acquired routines for building, training, and evaluating neural networks.

Torch garnered a great deal of interest from academics and corporations like IBM
and Facebook. But its adoption has been limited by its reliance on Lua as its inter-
face language. The other frameworks in this discussion —Theano, Caffe, Keras,
and TensorFlow — can be interfaced through Python, which has emerged as the
language of choice in the machine learning domain.

Theano
In 2010, a machine learning group at the University of Montreal released Theano,
a library for numeric computation. Like NumPy, Theano provides a wide range of
Python routines for operating on multidimensional arrays. Unlike NumPy, Theano
stores operations in a data structure called a graph, which it compiles into high-
performance code. Theano also supports symbolic differentiation, which makes it
possible to find derivatives of functions automatically.

Because of its high performance and symbolic differentiation, many machine
learning developers have adopted Theano as their numeric computation toolset of
choice. Developers particularly appreciate Theano’s ability to execute graphs on
graphics processing units (GPUs) as well as central processing units (CPUs).

Caffe
As part of his PhD dissertation at UC Berkeley, Yangqing Jia created Caffe, a frame-
work for developing image recognition applications. As others joined in the devel-
opment, Caffe expanded to support other machine learning algorithms and many
different types of neural networks.

Caffe is written in C++, and like Theano, it supports GPU acceleration. This empha-
sis on performance has endeared Caffe to many academic and corporate develop-
ers. Facebook has become particularly interested in Caffe, and in 2007 it released
a reworked version called Caffe2. This version improves Caffe’s performance and
makes executing applications on smartphones possible.

CHAPTER 1 Introducing Machine Learning with TensorFlow 15

Keras
While other offerings focus on performance and breadth of capabilities, Keras is
concerned with modularity and simplicity of development. François Chollet cre-
ated Keras as an interface to other machine learning frameworks, and many
developers access Theano through Keras to combine Keras’s simplicity with
 Theano’s performance.

Keras’s simplicity stems from its small API and intuitive set of functions. These
functions focus on accomplishing standard tasks in machine learning, which
makes Keras ideal for newcomers to the field but of limited value for those who
want to customize their operations.

François Chollet released Keras under the MIT License, and Google has incorpo-
rated his interface into TensorFlow. For this reason, many TensorFlow developers
prefer to code their neural networks using Keras.

TensorFlow
As the title implies, this book centers on TensorFlow, Google’s gift to the world of
machine learning. The Google Brain team released TensorFlow 1.0 in 2015, and as
of the time of this writing, the current version is 1.4. It’s provided under the
Apache 2.0 open source license, which means you’re free to use it, modify it, and
distribute your modifications.

TensorFlow’s primary interface is Python, but like Caffe, its core functionality is
written in C++ for improved performance. Like Theano, TensorFlow stores opera-
tions in a graph that can be deployed to a GPU, a remote system, or a network of
remote systems. In addition, TensorFlow provides a utility called TensorBoard,
which makes visualizing graphs and their operations possible.

Like other frameworks, TensorFlow supports execution on CPUs and GPUs. In
addition, TensorFlow applications can be executed on the Google Cloud Platform
(GCP). The GCP provides world-class processing power at relatively low cost, and
in my opinion, GCP processing is TensorFlow’s most important advantage.
 Chapter 13 discusses this important topic in detail.

CHAPTER 2 Getting Your Feet Wet 17

Chapter 2
Getting Your Feet Wet

Many chapters of this book present complex technical subjects and lengthy
mathematical formulas. But not this one. This chapter is dead simple,
and its goal is to walk you through the process of installing TensorFlow

and running your first TensorFlow application.

A complete TensorFlow installation contains a vast number of files and directo-
ries. This chapter explores the installation and explains what the many files and
folders are intended to accomplish. The discussion touches on many of Tensor-
Flow’s packages and the modules they contribute.

Once you’ve installed the TensorFlow toolset, it’s easy to start coding and running
applications. The end of the chapter presents a basic application that provides a
cheery welcome to TensorFlow development.

Installing TensorFlow
Google provides two methods for installing TensorFlow, and the simpler option
involves installing precompiled packages. This discussion presents a three-step
process for installing these packages:

1. Install Python on your development system.

2. Install the pip package manager.

3. Use pip to install TensorFlow.

IN THIS CHAPTER

 » Obtaining and installing TensorFlow

 » Exploring the TensorFlow package

 » Running a simple application

 » Understanding style conventions

18 PART 1 Getting to Know TensorFlow

The second installation method involves compiling TensorFlow from its source
code. This option takes time and effort, but you can obtain better performance
because your TensorFlow package will take the fullest advantage of your proces-
sor’s capabilities. Chapter 12 explains how to obtain and compile TensorFlow’s
source code.

Python and pip/pip3
TensorFlow supports development with Java and C++, but this book focuses on
Python. I use Python 3 in the example code, but you’re welcome to use Python 2.
As I explain in the upcoming section “Setting the Style,” TensorFlow applications
should be accessible to both versions.

Python’s official package manager is pip, which is a recursive acronym that stands
for “pip installs Python.” To install packages like TensorFlow, you can use pip on
Python 2 systems or pip3 on Python 3 systems. Package management commands
have the following format:

pip <command-name> <command-options>

pip and pip3 accept similar commands and perform similar operations. For exam-
ple, executing pip list or pip3 list prints all the Python packages installed on
your system. Table 2-1 lists this and five other commands.

For this discussion, the most important command to know is pip install and
pip3 install. But keep in mind that pip/pip3 can perform many other
operations.

TABLE 2-1	 Package Management Commands
Command Name Description

install Installs a specified package

uninstall Uninstalls a specified package

download Downloads a package, but doesn’t install it

list Lists installed packages

show Prints information about a specified package

search Searches for a package whose name or summary contains the
given text

CHAPTER 2 Getting Your Feet Wet 19

If you execute a TensorFlow application using a precompiled package, you may
receive messages like “The TensorFlow library wasn’t compiled to use XYZ
instructions, but these are available on your machine and could speed up CPU
computations.” To turn off these messages, create an environment variable
named TF_CPP_MIN_LOG_LEVEL and set its value to 3.

Installing on Mac OS
Many versions of Mac OS have Python already installed, but I recommend obtain-
ing and installing a new Python package. If you visit www.python.org/downloads,
you see one button for Python 2 and another for Python 3. If you click one of these
buttons, your browser downloads a PKG file that serves as the Python installer.

When you launch the installer, the Python installation dialog box appears. To install
the package, follow these five steps:

1. In the Introduction page, click the button labeled Continue.

2. In the Read Me page, click the button labeled Continue.

3. In the License page, click the button labeled Continue and then click
Agree to accept the software license agreement.

4. In the Installation Type page, click Install to begin the installation
process, entering your password, if necessary.

5. When the installation is complete, click Close to close the dialog box.

If the installation completes successfully, you can run pip or pip3 on a command
line. You can install TensorFlow with the following command:

pip install tensorflow

This command tells the package manager to download TensorFlow, TensorBoard,
and a series of dependencies. One dependency is six, which supports compatibil-
ity between Python 2 and 3. If the installation fails due to a preinstalled six pack-
age, you can fix the issue by executing the following command:

pip install --ignore-installed six

This command tells pip to install six on top of the existing installation. After this
installation completes, you should be able to run pip install tensorflow with-
out error. On my system, the installer stores the TensorFlow files in the /Library/
Frameworks/Python.framework/Versions/<ver>/lib/python<ver>/site-
packages/tensorflow directory.

http://www.python.org/downloads

20 PART 1 Getting to Know TensorFlow

Installing on Linux
Many popular distributions of Linux are based on Debian, including Ubuntu and
Linux Mint. These distributions rely on the Advanced Package Tool (APT) to man-
age packages, which you can access on the command line by entering apt-get.
This discussion explains how to install TensorFlow on these and similar operating
systems.

Most Linux distributions already have Python installed, but it’s a good idea to
install the full development version and pip/pip3. The following command installs
both for Python 2:

sudo apt-get install python-pip python-dev

Alternatively, the following command performs the installation for Python 3:

sudo apt-get install python3-pip python3-dev

After installation completes, you should be able to execute pip or pip3 on the
command line. The following command installs the TensorFlow package and its
dependencies (use pip3 for Python 3):

sudo pip install tensorflow

This command installs TensorFlow, TensorBoard, and their dependencies. On my
Ubuntu system, the installer stores the files in the /usr/local/lib/python<ver>/
dist-packages/tensorflow directory.

Installing on Windows
For Windows users, TensorFlow’s documentation specifically recommends
installing a 64-bit version of Python 3.5. To download the installer, visit www.
python.org/downloads/windows, find a version of Python 3, and click the link
entitled Windows x86-64 executable installer. This downloads an *.exe file that
serves as the installer.

When you launch the installer, the Python setup dialog box appears. The following
steps install Python on your system:

1. Check the checkbox for adding the Python installation directory to the
PATH variable.

2. Click the link labeled Install Now.

3. When installation finishes, click the Close button to close the installer.

http://www.python.org/downloads/windows
http://www.python.org/downloads/windows

CHAPTER 2 Getting Your Feet Wet 21

After you install Python, you should be able to run pip3 on a command line. You
can install TensorFlow with the following command:

pip3 install tensorflow

The package manager downloads TensorFlow, TensorBoard, and the packages’
dependencies. On my Windows system, the installer stores the files to the
C:\Users\<name>\AppData\Local\Programs\Python\Python<ver>\Lib\site-
packages\tensorflow directory.

Exploring the TensorFlow Installation
Once you install TensorFlow, you have a directory named tensorflow that con-
tains a wide variety of files and folders. Two top-level folders are particularly
important. The core directory contains the TensorFlow’s primary packages and
modules. The contrib directory contains secondary packages that may later be
merged into core TensorFlow.

When you write a TensorFlow application, it’s important to be familiar with the
different packages and the modules they provide. Table 2-2 lists the all-important
tensorflow package and nine other packages.

TABLE 2-2	 Important TensorFlow Packages
Package Content

tensorflow Central package of the TensorFlow framework, commonly accessed as tf

tf.train Optimizers and other classes related to training

tf.nn Neural network classes and related math operations

tf.layers Functions related to multilayer neural networks

tf.contrib Volatile or experimental code

tf.image Image-processing functions

tf.estimator High-level tools for training and evaluation

tf.logging Functions that write data to a log

tf.summary Classes needed to generate summary data

tf.metrics Functions for measuring the outcome of machine learning

22 PART 1 Getting to Know TensorFlow

The first package, tensorflow, is TensorFlow’s central package. Most applica-
tions import this package as tf, so when you see tf in code or an example,
remember that it refers to the tensorflow package.

As I explain in Chapter 5, training is a crucial operation in machine learning appli-
cations. The tf.train package provides many of the modules and classes needed
for TensorFlow training. In particular, it provides the optimizer classes that
determine which algorithm should be used for training.

The tf.nn and tf.layers packages provide functions that create and configure
neural networks. The two packages overlap in many respects, but the functions in
tf.layers focus on multilayer networks, while the functions in tf.nn are suited
toward general purpose machine learning.

Many of the packages in tf.contrib contain variants of core capabilities. For
example, tf.contrib.nn contains variants of the features in tf.nn and tf.
contrib.layers contains variants of the features in tf.layers. tf.contrib also
provides a wealth of interesting and experimental packages, including the
following:

 » tf.contrib.keras: Makes it possible to interface TensorFlow using the
Keras interface

 » tf.contrib.ffmpeg: Enables audio processing through the open-source
FFMPEG toolset

 » tf.contrib.bayesflow: Contains modules related to Bayesian learning

 » tf.contrib.integrate: Provides the odeint function, which integrates
ordinary differential equations

The last three packages in Table 2-2 enable developers to analyze their applica-
tions and produce output. The functions in tf.logging enable logging and can be
used to write messages to the log. The classes and functions in tf.summary gen-
erate data that can be read by TensorBoard, a utility for visualizing machine
learning applications. The functions in tf.metrics analyze the accuracy of
machine learning operations.

Running Your First Application
After you install TensorFlow, you’re ready to start creating and executing applica-
tions. This section walks through the process of running an application that prints
a simple message.

CHAPTER 2 Getting Your Feet Wet 23

Exploring the example code
You can download this book’s example code from www.dummies.com by searching
for TensorFlow For Dummies and going to the Downloads tab. The archive’s name is
tf_dummies.zip, and if you decompress it, you see that it contains folders named
after chapters (ch2, ch3, and so on).

Each chapter folder contains one or more Python files (*.py). In each case, you
can execute the module by changing to the directory and running python or
python3 followed by the filename.

For example, if you have Python 2 installed, you can execute the code in simple_
math.py by changing to the ch3 directory and entering the following command:

python simple_math.py

The code for Chapter 13 is special because it’s intended to be executed on the
Google Cloud Platform, but that topic is far too exciting to be discussed here.

I haven’t provided any official license for this book’s example code, so you’re free
to use it in professional products, academic work, and morally questionable
experiments. But if you use any of this code to program evil robots, I will know,
and I’ll be disappointed.

Launching Hello TensorFlow!
Programming books have a long tradition of introducing their topic with a simple
example that prints a welcoming message. This book is no exception. If you open
the ch2 directory in this book’s example code, you find a module named hello_
tensorflow.py. Listing 2-1 presents the code.

LISTING	2-1:	 Hello TensorFlow!

"""A simple TensorFlow application"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import tensorflow as tf

Create tensor

msg = tf.string_join(["Hello ", "TensorFlow!"])

Launch session

with tf.Session() as sess:

 print(sess.run(msg))

http://www.dummies.com

24 PART 1 Getting to Know TensorFlow

This code performs three important tasks:

1. Creates a Tensor named msg that contains two string elements.

2. Creates a Session named sess and makes it the default session.

3. Launches the new Session and prints its result.

Running the code is simple. Open a command line and change to the ch2 directory
in this book’s example code. Then, if you’re using Python 2, you can execute the
following command:

python hello_tensorflow.py

If you’re using Python 3, you can run the module with the following command:

python3 hello_tensorflow.py

As the Python interpreter does its magic, you should see the following message:

b'Hello TensorFlow!'

The welcome message is straightforward, but the application’s code probably
isn’t as clear. A Tensor instance is an n-dimensional array that contains numeric
or string data. Tensors play a central role in TensorFlow development, and
 Chapter 3 discusses them in detail.

A Session serves as the environment in which TensorFlow operations can be exe-
cuted. All TensorFlow operations, from addition to optimization, must be exe-
cuted through a session. Chapter 4 explains how you can create, configure, and
execute sessions.

Setting the Style
Google provides the TensorFlow Style Guide at www.tensorflow.org/community/
style_guide. Four of its guidelines are as follows:

 » Code in TensorFlow applications should be compatible with both Python 2
and Python 3.

 » In keeping with the first guideline, every module should have import statements
for absolute_import, division, and print_function.

http://www.tensorflow.org/community/style_guide
http://www.tensorflow.org/%20community/style_guide

CHAPTER 2 Getting Your Feet Wet 25

 » Indenting should use two spaces instead of four.

 » TensorFlow modules should rely on the guidelines in the PEP (Python
Enhancement Proposal) 8 Style Guide except where they conflict with the
TensorFlow Style Guide.

You can find the PEP8 guide at www.python.org/dev/peps/pep-0008. Its many
recommendations include the use of docstrings, uppercase for class names, and
lowercase for functions and modules. You can check Python code against the PEP8
by installing the pylint package and running pylint filename.py.

The example code in this book follows all of Google’s recommendations except
two. First, I use four spaces because that’s the Python way. Second, I prefer to
name constants with simple lowercase names, such as the msg constant in
 Listing 2-1, earlier in this chapter.

I don’t blame you if you find my rebellion inexcusable. But if you send the Python
police after me, they’ll never take me alive.

http://www.python.org/dev/peps/pep-0008

CHAPTER 3 Creating Tensors and Operations 27

Chapter 3
Creating Tensors
and Operations

In grad school, I took a course on tensor mathematics that covered the usage of
tensors in electromagnetism. The professor assured us that the theory was
“beautiful” and “elegant,” but we beleaguered students described the relativ-

istic mathematics as “indecipherable” and “terrifying.”

TensorFlow’s central data type is the tensor, and happily, it has nothing to do
with electromagnetism or relativity. In this book, a tensor is just a regular array.
If you’re familiar with Torch’s Tensors or NumPy’s ndarrays, you’ll be glad to
know that TensorFlow’s tensors are similar in many respects.

Unfortunately, you can’t access these tensors with regular Python routines. For
this reason, the TensorFlow API provides a vast assortment of functions for creat-
ing, transforming, and operating on tensors. This chapter presents many of these
functions and demonstrates how you can use them.

Creating Tensors
Just as most programs start by declaring variables, most TensorFlow applications
start by creating tensors. A tensor is an array with zero or more dimensions.
A zero-dimensional tensor is called a scalar, a one-dimensional tensor is called a

IN THIS CHAPTER

 » Creating tensors with known and
random values

 » Calling functions that transform
tensors

 » Processing tensors with operations

28 PART 1 Getting to Know TensorFlow

vector, and a two-dimensional tensor is called a matrix. Keep in mind these three
points about tensors:

 » Every tensor is an instance of the Tensor class.

 » A tensor may contain numbers, strings, or Boolean values. Every element of a
tensor must have the same type.

 » Tensors can be created, transformed, and operated upon using functions of
the tf package.

This discussion explains how to create tensors with known values and random
values. Then I also present functions that transform a tensor’s content. Once you
understand these topics, you’ll have no trouble coding simple routines for tensor
processing.

Creating Tensors with Known Values
The tf package provides seven functions that form tensors with known values.
Table 3-1 lists them and provides a description of each.

TABLE 3-1	 Creating Tensors with Known Values
Function Description

constant(value, dtype=None,
 shape = None, name = 'Const',
 verify_shape=False)

Returns a tensor containing the given value

zeros(shape, dtype=tf.float32,
 name = None)

Returns a tensor filled with zeros

ones(shape, dtype=tf.float32,
 name=None)

Returns a tensor filled with ones

fill(dims, value, name=None) Returns a tensor filled with the given value

linspace(start, stop, num,
 name=None)

Returns a tensor containing a linear range
of values

range(start, limit, delta=1,
 dtype=None, name='range')

Returns a tensor containing a range of values

range(limit, delta=1,
 dtype=None, name='range')

Returns a tensor containing a range of values

CHAPTER 3 Creating Tensors and Operations 29

A tensor may have multiple dimensions, and the number of dimensions in a tensor
is its rank. The lengths of a tensor’s dimensions form an array called the tensor’s
shape. Many of the functions in Table 3-1 accept a shape parameter that identifies
the desired shape of the new tensor. The following examples demonstrate how
you can set this parameter:

 » [] — The tensor contains a single value.

 » [3] — The tensor is a one-dimensional array containing three values.

 » [3, 4] — The tensor is a 3-x-4 matrix.

 » [3, 4, 5] — The tensor is a multidimensional array whose dimensions
equal 3, 4, and 5.

Most of the functions in Table 3-1 have a dtype argument that identifies the data
type of the tensor’s elements. The default value of dtype is float32, which indi-
cates that, by default, tensors contain single-precision floating-point values.
Table 3-2 lists float32 and other possible data types.

Each function in Table 3-1 accepts an optional name argument that serves as an
identifier for the tensor. Applications can access a tensor by name through the
tensor’s graph. Chapter 4 discusses the topic of graphs in detail.

TABLE 3-2	 Tensor Data Types
Data Type Description

bool Boolean values

uint8/uint16 Unsigned integers

quint8/quint16 Quantized unsigned integers

int8/int16/int32/int64 Signed integers

qint8/qint32 Quantized signed integers

float16/float32/float64 Floating-point values

complex64/complex128 Complex floating-point values

string Strings

30 PART 1 Getting to Know TensorFlow

The constant function
The most popular function in Table 3-1 is constant. Its only required argument is
the first, which defines the value or values to be stored in the tensor. You can
 provide these values in a list, and the following code creates a one-dimensional
tensor containing three floating-point values:

t1 = tf.constant([1.5, 2.5, 3.5])

Multidimensional arrays use similar notation. The following code creates a 2-x-2
matrix and sets each of its elements to the letter b:

t2 = tf.constant([['b', 'b'], ['b', 'b']])

By default, TensorFlow won’t raise an error if the function’s first argument does-
n’t have the shape given by the shape argument. But if you set the last argument,
verify_shape, to True, TensorFlow will verify that the two shapes are equal. The
following code provides an example of mismatched shapes:

t3 = tf.constant([4, 2], tf.int16, [3], 'Const', True)

In this case, the given shape, [3], doesn’t match the shape of the first argument,
which is [2]. As a result, TensorFlow displays the following error:

TypeError: Expected Tensor's shape: (3,), got (2,).

zeros, ones, and fill
The functions zeros, ones, and fill create tensors whose elements all have the
same value. For zeros and ones, the only required argument is shape, which
identifies the shape of the desired tensor. As an example, the following code
 creates a simple 1-x-3 vector whose elements equal 0.0:

zero_tensor = tf.zeros([3])

Similarly, the following function call creates a 4-x-4 matrix whose elements
equal 1.0:

one_tensor = tf.ones([4, 4])

The fill function requires a value parameter, which sets the value of the tensor’s
elements. The following code creates a three-dimensional tensor whose values
are set to 81.0:

fill_tensor = tf.fill([1, 2, 3], 81.0)

CHAPTER 3 Creating Tensors and Operations 31

Unlike zeros and ones, fill doesn’t have a dtype argument. It can only create
tensors containing 32-bit floating point values.

Creating sequences
The linspace and range functions create tensors whose elements change regu-
larly between a start and end value. The difference between them is that linspace
creates a tensor with a specific number of values. For example, the following code
creates a 1-x-5 tensor whose elements range from 5.0 to 9.0:

lin_tensor = tf.linspace(5., 9., 5)
Result: [5. 6. 7. 8. 9.]

Unlike linspace, range doesn’t accept the number of elements in the tensor.
Instead, it computes successive elements by adding a value called a delta. In the
following code, delta is set to 0.5:

range_tensor = tf.range(3., 7., delta=0.5)
Result: [3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5]

Like Python’s range function, TensorFlow’s range function can be called without
the start parameter. In this case, the starting value is assumed to be 0.0. The fol-
lowing code demonstrates this:

range_tensor = tf.range(1.5, delta=0.3)
Result: [0.0 0.3 0.6 0.9 1.2]

If the delta parameter is positive, the starting value must be less than the ending
value. If delta is negative, the starting value must be greater than the ending
value.

Creating Tensors with Random Values
Many TensorFlow applications require tensors that contain random values instead
of predetermined values. The tf package provides many functions for creating
random-valued tensors and Table 3-3 lists five of them.

The random_normal and truncated_normal functions create tensors containing
normally distributed values. Their arguments determine the characterristics of
the distribution. Figure 3-1 shows what a normal distribution looks like with a
mean of 0.0 and a standard deviation (σ) of 1.0.

32 PART 1 Getting to Know TensorFlow

Standard deviation tells you how much a normally distributed variable is expected
to vary from the mean. Approximately 68.2 percent of the time, a variable lies
within one standard deviation from the mean, while 95.4 percent of the time, the
variable lies within two standard deviations.

In the random_normal and truncated_normal functions, the default mean is 0.0,
and the default standard deviation is 1.0. random_normal generates random values
throughout the distribution, so very large and very small values are unlikely but
possible. The following code calls random_normal to generate 20 random values:

rnd_ints = tf.random_normal([10], dtype=tf.float64)

TABLE 3-3	 Creating Tensors with Random Values
Function Description

random_normal(shape, mean=0.0, stddev=1.0,
dtype=tf.float32, seed=None, name=None)

Creates a tensor with normally distributed
values

truncated_normal(shape, mean=0.0, stddev=1.0,
dtype=tf.float32, seed=None, name=None)

Creates a tensor with normally distributed
values excluding those lying outside two
standard deviations

random_uniform(shape, minval=0, maxval=None,
dtype=tf.float32, seed=None, name=None)

Creates a tensor with uniformly distributed
values between the minimum and maximum
values

random_shuffle(tensor, seed=None, name=None) Shuffles a tensor along its first dimension

set_random_seed(seed) Set the seed value for all random number
generation in the graph

FIGURE 3-1:
Values beyond
three standard

deviations from
the mean are

highly unlikely.

CHAPTER 3 Creating Tensors and Operations 33

In contrast, truncated_normal guarantees that the generated values lie within
two standard deviations from the mean. Any value outside this range will be dis-
carded and reselected. In this manner, truncated_normal ensures that the tensor
won’t contain any improbably large or small values.

random_uniform creates a tensor containing uniformly distributed values that lie
between a minimum and maximum. Because the distribution is uniform, every
value is equally likely.

random_shuffle doesn’t create a new tensor, but randomly shuffles the values in
an existing tensor. This shuffling is limited to the tensor’s first dimension.

Each function in Table 3-3 accepts a seed parameter that initializes the random
number generator. Setting a random seed is important to ensure that sequences
aren’t repeated.

You can obtain and set a seed value by calling set_random_seed, which accepts a
floating-point value and makes the argument the seed for every operation in the
current graph. Chapter 4 discusses the topic of graphs in detail.

Transforming Tensors
An application must specify the shape of each tensor to be created. The tf package
provides functions that update tensors and their shapes after creation. Table 3-4
lists these transformation functions and provides a description of each.

TABLE 3-4	 Functions for Transforming Tensors
Function Description

cast(tensor, dtype, name=None) Changes the tensor’s data type to the given type

reshape(tensor, shape, name=None) Returns a tensor with the same elements as the given
tensor with the given shape

squeeze(tensor, axis=None, name=None,
squeeze_dims=None)

Removes dimensions of size 1

reverse(tensor, axis, name=None) Reverses given dimensions of the tensor

slice(tensor, begin, size, name=None) Extracts a portion of a tensor

stack(tensors, axis=0, name='stack') Combines a list of tensors into a tensor of greater rank

unstack(tensor, num=None, axis=0,
name='unstack')

Splits a tensor into a list of tensors of lesser rank

34 PART 1 Getting to Know TensorFlow

Despite its name, reshape doesn’t modify an existing tensor. Instead, the func-
tion returns a tensor with the same elements as the given tensor and the specified
shape. For example, the following code uses reshape to convert a four-element
vector into a 2-x-2 matrix:

vec = tf.constant([1., 2., 3., 4.])
mat = tf.reshape(vec, [2, 2])
Result: [[1. 2.], [3. 4.]]

If any dimension of a tensor has a size of 1, calling squeeze will remove it from
the tensor, thereby reducing the tensor’s rank. If the function’s axis parameter
identifies one or more dimensions, only those dimensions will be affected by
squeeze.

In the reverse function, the axis parameter identifies one or more dimensions to
be reversed. The following code demonstrates how reverse works:

mat = tf.constant([[1., 2., 3.], [4., 5., 6.]])
rev_mat = tf.reverse(end, [0])
Result: [[4. 5. 6.], [1. 2. 3.]]

rev_mat = tf.reverse(end, [1])
Result: [[3. 2. 1.], [6. 5. 4.]]

rev_mat = tf.reverse(end, [0, 1])
Result: [[6. 5. 4.], [3. 2. 1.]]

The slice function extracts subtensors from a tensor. The begin parameter iden-
tifies the index of the first element to be extracted, and size identifies the shape
of the tensor to be extracted, starting from the begin location.

For example, suppose that you want to extract the lower-right 2-x-2 matrix from
a 3-x-3 matrix. The index of the first extracted element is [1, 1] and the size of the
desired tensor is [2, 2]. The following code uses slice to perform this extraction:

mat =
 tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
slice_mat = tf.slice(mat, [1, 1], [2, 2])
Result: [[5. 6.] [7. 8.]]

stack accepts a list of tensors of rank N and returns a single tensor of rank N+1.
In addition to having the same rank, the input tensors must have the same shape.

CHAPTER 3 Creating Tensors and Operations 35

The following code demonstrates how stack can be used. The function combines
three one-dimensional tensors into a two-dimensional tensor:

t1 = tf.constant([1., 2.])
t2 = tf.constant([3., 4.])
t3 = tf.constant([5., 6.])
t4 = tf.stack([t1, t2, t3])

When these operations execute, t4 will equal [[1. 2.] [3. 4.] [5. 6.]]. If the axis
parameter is set to 1, stacking will be performed along the second dimension, so
t4 will set to [[1. 3. 5.] [2. 4. 6.]].

unstack performs the inverse operation of stack. That is, unstack accepts a ten-
sor of rank N and returns a list of tensors of rank N-1. The num parameter deter-
mines how many tensors should be unpacked, and if this isn’t set, unstack infers
the number from the tensor’s shape.

Creating Operations
Machine learning applications are fundamentally mathematical, and TensorFlow
provides a wealth of routines for performing mathematical operations on tensors.
Each routine is represented by a function of the tf package, and each function
returns a tensor. This section presents a large portion of the operations available,
but the tensorflow package provides many more functions than those discussed
here.

To describe these functions, I use statements like “function X performs operation
Y.” But these statements aren’t completely accurate. These functions, like the
transformation functions discussed in the preceding section, don’t actually per-
form their corresponding operations — at least, not directly.

For example, tf.multiply doesn’t immediately multiply its arguments and return
a product. Instead, it adds a multiplication operation to the current graph, and
when a session executes the graph, the multiplication will be performed along
with the rest of the graph’s operations. This process may seem confusing, but
don’t be concerned. Chapter 4 looks at graphs and sessions in detail.

Basic math operations
When it comes to TensorFlow operations, its best to start simple. Table 3-5 lists
12 functions that perform basic math operations.

36 PART 1 Getting to Know TensorFlow

The first four functions perform element-wise arithmetic. The following code
demonstrates how they work:

a = tf.constant([3., 3., 3.])
b = tf.constant([2., 2., 2.])
sum = tf.add(a, b) # [5. 5. 5.]
diff = tf.subtract(a, b) # [1. 1. 1.]
prod = tf.multiply(a, b) # [6. 6. 6.]
quot = tf.divide(a, b) # [1.5 1.5 1.5]

Applications can perform identical operations by using regular Python operators,
such as +, -, *, /, and //. For example, the following two lines of code create the
same tensor:

total = tf.add(a, b) # [5. 5. 5.]
total2 = a + b # [5. 5. 5.]

When operating on floating-point values, div and divide produce the same
result. But for integer division, divide returns a floating-point result, and div
returns an integer result. The following code demonstrates the difference between
them:

TABLE 3-5	 Basic Math Operations
Function Description

add(x, y, name=None) Adds two tensors

subtract(x, y, name=None) Subtracts two tensors

multiply(x, y, name=None) Multiplies two tensors

divide(x, y, name=None) Divides the elements of two tensors

div(x, y, name=None) Divides the elements of two tensors

add_n(inputs, name=None) Adds multiple tensors

scalar_mul(scalar, x) Scales a tensor by a scalar value

mod(x, y, name=None) Performs the modulo operation

abs(x, name=None) Computes the absolute value

negative(x, name=None) Negates the tensor’s elements

sign(x, name=None) Extracts the signs of the tensor’s element

reciprocal(x, name=None) Computes the reciprocals

CHAPTER 3 Creating Tensors and Operations 37

a = tf.constant([3, 3, 3])
b = tf.constant([2, 2, 2])
div1 = tf.divide(a, b) # [1.5 1.5 1.5]
div2 = a / b # [1.5 1.5 1.5]
div3 = tf.div(a, b) # [1 1 1]
div4 = a // b # [1 1 1]

The div function and the / operator both perform element-wise division. In con-
trast, the divide function performs Python-style division.

Rounding and comparison
Most of the mathematical routines in this book accept floating-point values as
input and return floating-point values as output. But many applications need to
convert floating-point values into integer values. For this reason, TensorFlow
provides the rounding operations listed in Table 3-6.

Table 3-6 also lists functions that perform comparisons. These functions return
maximum and minimum values, both within a tensor and across two tensors.

TABLE 3-6	 Rounding and Comparison Operations
Function Description

round(x, name=None) Rounds to the nearest integer, rounding up if there are two
nearest integers

rint(x, name=None) Rounds to the nearest integer, rounding to the nearest
even integer if there are two nearest integers

ceil(x, name=None) Returns the smallest integer greater than the value

floor(x, name=None) Returns the greatest integer less than the value

maximum(x, y, name=None) Returns a tensor containing the larger element of each
input tensor

minimum(x, y, name=None) Returns a tensor containing the smaller element of each
input tensor

argmax(x, axis=None, name=None,
dimension=None)

Returns the index of the greatest element in the tensor

argmin(x, axis=None, name=None,
dimension=None)

Returns the index of the smallest element in the tensor

38 PART 1 Getting to Know TensorFlow

The round function examines each element of a tensor and returns the closest
integer. If two closest integers are equally close, it returns the one further from
zero. rint is similar, but rounds to the nearest even value. The following code
demonstrates how you can use round, rint, ceil, and floor:

t = tf.constant([-6.5, -3.5, 3.5, 6.5])
r1 = tf.round(t) # [-6. -4. 4. 6.]
r2 = tf.rint(t) # [-6. -4. 4. 6.]
r3 = tf.ceil(t) # [-6. -3. 4. 7.]
r4 = tf.floor(t) # [-7. -4. 3. 6.]

The next two functions in the table, maximum and minimum, are easy to understand.
maximum returns a tensor containing the larger element of each input tensor, and
minimum returns a tensor containing the smaller element of each input tensor.

argmax and argmin return the index values of the largest and smallest elements of
a tensor. The following code shows how you can use these functions:

t1 = tf.constant([0, -2, 4, 6])
t2 = tf.constant([[1, 3], [7, 2]])
r1 = tf.argmin(t1) # 1
r2 = tf.argmax(t2) # [1 0]

If a tensor has multiple maximum/minimum values, argmax and argmin will
return the index values of the first occurring element.

Exponents and logarithms
Machine learning applications frequently need exponents and logarithms to com-
pute errors and probability. To meet this need, TensorFlow provides many of the
same functions available in NumPy. Table 3-7 lists 11 of them and provides a
description of each.

TABLE 3-7	 Exponential and Logarithmic Operations
Function Description

square(x, name=None) Returns the square of the argument

squared_difference(x, y,
name=None)

Subtracts the first argument from the second and returns the square

sqrt(x, name=None) Returns the square root of the argument

rsqrt(x, name=None) Returns the reciprocal of the square root

CHAPTER 3 Creating Tensors and Operations 39

These functions are straightforward to use and understand. Each executes in an
element-wise manner, and the following code demonstrates how you can call
square, sqrt, and rsqrt:

t = tf.constant([4.])
t1 = tf.square(t) # 16
t2 = tf.sqrt(t) # 2
t3 = tf.rsqrt(t) # 0.5

The exp function computes the exponential functions of a tensor’s elements, and
expm1 subtracts 1 from each exponential. If x is a value in the input tensor, the
result of expm1 equals exp(x) – 1.

Similarly, the log function computes the natural logarithm of a tensor’s elements.
logp1 adds 1 to the value before the logarithm is computed, so if x is a value in the
input tensor, the result of logp1 equals log(x + 1).

Vector and matrix operations
Machine learning applications store a great deal of data in vectors (one-
dimensional tensors) and matrices (two-dimensional tensors). To process this
data, TensorFlow provides many functions that operate on vectors and matrices.
Table 3-8 lists these functions and provides a description of each.

Function Description

pow(x, y, name=None) Returns elements of the first tensor raised to the power of the elements
of the second vector

exp(x, name=None) Returns the exponential function of the argument

expm1(x, name=None) Returns the exponential function of the argument minus one,
exp(x) - 1

log(x, name=None) Returns the natural logarithm of the argument

log1p(x, name=None) Returns the natural logarithm of the argument plus 1, log(x + 1)

erf(x, name=None) Returns the error function of the argument

erfc(x, name=None) Returns the complementary error function of the argument

40 PART 1 Getting to Know TensorFlow

TABLE 3-8	 Vector and Matrix Operations
Function Description

tensordot(a, b, axes,
name=None)

Returns the sum of products for the elements
in the given axes

cross(a, b, name=None) Returns the element-wise cross product

diag(diagonal, name=None) Returns a matrix with the given diagonal
values, other values set to zero

trace(x, name=None) Returns the sum of the diagonal elements

transpose(x, perm=None,

 name='transpose')

Switches rows and columns

eye(num_rows,
 num_columns=None,

 batch_shape=None,

 dtype=tf.float32,

 name=None)

Creates an identity matrix with the given
shape and data type

matmul(a, b,

 transpose_a=False,

 transpose_b=False,

 adjoint_a=False,

 adjoint_b=False,

 a_is_sparse=False,

 b_is_sparse=False,

 name=None)

Returns the product of the two input matrices

norm(tensor,

 ord='euclidean',

 axis=None,

 keep_dims=False,

 name=None)

Returns the norm of the given axis of the
input tensor with the specified order

matrix_solve(A, b,

 adjoint=None,

 name=None)

Returns the tensor x, such that Ax = b, where
A is a matrix, and b is a vector

CHAPTER 3 Creating Tensors and Operations 41

Of these functions, the two most common are tensordot and matmul. tensordot
returns the dot product of one or more axes of two input tensors. That is,
tensordot multiplies the corresponding elements of both tensors’ dimensions
and returns the sum of the products.

The axes parameter tells tensordot which dimensions to process. If you set this
parameter to a scalar, N, the function will access the last N axes of the first tensor
and the first N axes of the second tensor. If you set axes equal to a list or tensor,
the first row identifies axes of the first tensor, and the second row identifies axes
of the second tensor.

I frequently call tensordot to compute the dot product of two one-dimensional
tensors. The following code shows what this looks like:

t1 = tf.constant([4., 3., 2.])
t2 = tf.constant([3., 2., 1.])
dot = tf.tensordot(t1, t2, 1)
4*3 + 3*2 + 2*1 = 20

matmul performs traditional matrix multiplication. That is, it multiplies rows of
the first tensor by columns of the second tensor and returns a matrix containing
the sums. The following code shows how this can be used:

t1 = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
t2 = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
dot = tf.matmul(t1, t2)
[[22. 28.], [49. 64.]]

Function Description

qr(input, full_matrices=None,

 name=None)

Returns the eigenvectors and eigenvalues of
the given matrix or matrices

svd(tensor,

 full_matrices=False,

 compute_uv=True,

 name=None)

Factors the matrix into a unitary matrix, a
diagonal matrix, and the conjugate transpose
of the unitary matrix

einsum(equation, *inputs) Executes a custom mathematical operation

42 PART 1 Getting to Know TensorFlow

My favorite function in Table 3-8 is einsum, which makes it possible to create and
execute custom mathematical operations. The first parameter is a string that iden-
tifies the operation using a special format called the Einstein summation convention.
This convention has a number of characteristics, including the following:

 » The operation is assumed to have one or two inputs. If you provide two inputs,
you must separate them with a comma.

 » Dimensions of input and output matrices are represented by subscripts
(usually i, j, and k). Input subscripts must be separated from output sub-
scripts with the -> symbol.

 » If an input’s subscript is repeated and no output subscripts are given, the
operation performs addition. Therefore, einsum('i,i', t1, t2) computes
the dot product of tensors t1 and t2.

 » If an input’s subscript is repeated and output subscripts are given, the
operation performs multiplication. Therefore, einsum('i,i->i', t1, t2)
computes the element-wise product of tensors t1 and t2.

The following code calls einsum to transpose a matrix and multiply two matrices
together:

m1 = tf.constant([[1, 2], [3, 4]])
m2 = tf.constant([[5, 6], [7, 8]])
e1 = tf.einsum('ij->ji', m1) # [[1, 3], [2, 4]]
e2 = tf.einsum('ij,jk->ik', m1, m2) # [[19, 22], [43, 50]]

For a more complete discussion of the Einstein summation convention, I recom-
mend Samuel Prime’s presentation at https://samuelprime.wordpress.
com/2015/03/25/einstein-summation-convention.

Putting Theory into Practice
The code in ch3/simple_math.py demonstrates many of the functions presented
in this chapter. Listing 3-1 presents the full application.

https://samuelprime.wordpress.com/2015/03/25/einstein-summation-convention
https://samuelprime.wordpress.com/2015/03/25/einstein-summation-convention

CHAPTER 3 Creating Tensors and Operations 43

LISTING	3-1:	 Simple Mathematics Operations

Math with constant tensors

const_a = tf.constant(3.6)

const_b = tf.constant(1.2)

total = const_a + const_b
quot = tf.div(const_a, const_b)

Math with random tensors

rand_a = tf.random_normal([3], 2.0)

rand_b = tf.random_uniform([3], 1.0, 4.0)

diff = tf.subtract(rand_a, rand_b)

Vector multiplication

vec_a = tf.linspace(0.0, 3.0, 4)

vec_b = tf.fill([4, 1], 2.0)

prod = tf.multiply(vec_a, vec_b)

dot = tf.tensordot(vec_a, vec_b, 1)

Matrix multiplication

mat_a = tf.constant([[2, 3], [1, 2], [4, 5]])

mat_b = tf.constant([[6, 4, 1], [3, 7, 2]])

mat_prod = tf.matmul(mat_a, mat_b)

Execute the operations

with tf.Session() as sess:

 print("Sum: %f" % sess.run(total))

 print("Quotient: %f" % sess.run(quot))

 print("Difference: ", sess.run(diff))

 print("Element-wise product: ", sess.run(prod))

 print("Dot product: ", sess.run(dot))

 print("Matrix product: ", sess.run(mat_prod))

Most of this code should look familiar. The application creates and operates on
constant tensors, random tensors, vectors, and matrices. To process vectors, the
application performs element-wise multiplication with tf.multiply and then
computes the dot product of the two vectors with tf.tensordot.

The last portion of code deserves explanation. The application creates a Session
named sess and calls its run method once for each operation to be performed. To
understand what sessions are and how they work, you need to be familiar with
graphs. The next chapter explores the topics of sessions and graphs.

CHAPTER 4 Executing Graphs in Sessions 45

Chapter 4
Executing Graphs
in Sessions

The preceding chapter introduced a plethora of functions that create,
 transform, and process tensors. Most of these functions return a tensor,
and this may lead you to believe that the function performs its operation as

soon as it’s called. This is how Python functions usually work, but this is not how
TensorFlow functions work.

When an application executes a TensorFlow function that creates, transforms, or
processes a tensor, the function doesn’t execute its operation. Instead, it stores its
operation in a data structure called a graph. A graph can hold many operations,
and they’re not executed until the application executes the graph in a session.
When a session executes a graph, it performs the graph’s operations in order.

The benefit of storing operations in a graph is that the graph can be exported to a
file or launched on a remote system. The drawback is that graphs tend to confuse
newcomers to TensorFlow. In writing this chapter, my goal is to reduce this
 confusion by providing a full explanation of graphs and sessions.

IN THIS CHAPTER

 » Creating graphs and accessing
their data

 » Serializing data from a graph into a
GraphDef

 » Creating and launching sessions

 » Printing messages to the log

 » Visualizing summary data with
TensorBoard

46 PART 1 Getting to Know TensorFlow

Forming Graphs
If an operation returns a tensor, an operation can feed its output into another
operation. To demonstrate this process, the following code feeds the result of an
addition operation into a multiplication operation.

c = tf.add(a, b)
e = tf.multiply(c, d)

Figure 4-1 illustrates the relationships between these nested operations and their
tensors.

In Figure 4-1, each circle identifies a tensor or operation, and each line transfers
tensor data. Mathematicians and computer scientists refer to this structure of
nodes and edges as a graph. The graph’s circles are called nodes, and the straight
lines are called edges.

When an application executes a function that creates a tensor or an operation,
TensorFlow adds the data structures to a container structure called a Graph.
Graphs can’t be nested, and only one Graph can be active at a time. An application
can access its default Graph by calling get_default_graph. The following code
shows how this can be used:

graph = tf.get_default_graph()

An application can create a new Graph by calling the constructor without argu-
ments. Then the application can set the Graph as the default Graph by calling the
Graph’s as_default method. The following code demonstrates how this works:

newgraph = tf.Graph()
with newgraph.as_default():
 ...

FIGURE 4-1:
The addition

operation
receives the

result of
multiplication.

CHAPTER 4 Executing Graphs in Sessions 47

After as_default is called, TensorFlow will add new tensors and operations to
newgraph instead of the original Graph.

The Graph class provides many methods that access and modify the graph’s con-
tents. This discussion divides these methods into two categories:

 » Accessing graph data: Reading a graph’s containers and elements

 » Creating GraphDefs: Serializing a graph into a protocol buffer

Accessing graph data
A graph stores its elements in a set of named collections. Table 4-1 presents the
methods of the Graph class that access and update these collections.

The first three methods make it easy to access tensors and operations in the cur-
rent graph. Each method returns a list containing the desired elements, and the
following code demonstrates how they can be used:

a = tf.constant(2.5, name='first_val')
b = tf.constant(4.5, name='second_val')
sum = a + b;
print(tf.get_default_graph().get_operations())
print(tf.get_default_graph().

get_tensor_by_name('first_val:0'))

TABLE 4-1	 Accessing Graph Data
Method Description

get_tensor_by_name(name) Returns the tensor with the given name

get_operation_by_name(name) Returns the operation with the given name

get_operations() Returns a list containing the graph’s operations

get_all_collection_keys() Returns a list of the graph’s collections

get_collection(name, scope=None) Returns a list of values in the given collection

add_to_collection(name, value) Adds the value to the container, can be accessed with name

add_to_collections(name, value) Adds the value to the containers, can be accessed with name

48 PART 1 Getting to Know TensorFlow

The first print statement calls get_operations to obtain a list of the graph’s
operations. The printed result is given as follows:

[<tf.Operation 'first_val' type=Const>,
 <tf.Operation 'second_val' type=Const>,
 <tf.Operation 'add' type=Add>]

The second print statement accesses the first tensor using the name:index for-
mat. In this case, the tensor’s name is first_val, and the index is 0. TensorFlow
prints the following result:

("first_val:0", shape=(), dtype=float32)

A graph can hold more than just tensors and operations. This additional informa-
tion is stored in a set of lists called the graph’s collections. As with dictionaries, you
can access the elements of a collection using identifiers called keys. Table 4-2
presents the different keys for graph collections.

Most of these collections store data related to variables, which I cover in
Chapter 5. For now, it’s simply important to know that graphs provide access to
tensors, operators, and other types of data.

TABLE 4-2	 Graph Collection Keys
Collection Key Description

GLOBAL_VARIABLES All variables used in the application

LOCAL_VARIABLES Variables local to this machine

MODEL_VARIABLES Variables used in the model

TRAINABLE_VARIABLES Variables capable of being trained by an optimizer

MOVING_AVERAGE_VARIABLES Variables that maintain moving averages

SUMMARIES Tensor summaries

QUEUE_RUNNERS QueueRunners that provide input data

REGULARIZATION_LOSSES Losses produced by regularization

CHAPTER 4 Executing Graphs in Sessions 49

Creating GraphDefs
Many applications need to access graphs from other TensorFlow applications. The
as_graph_def method makes this possible. This method returns a serialized form
of a Graph called a GraphDef.

A GraphDef stores a graph’s data in a special format called a protocol buffer, also
known as a protobuf. This may be generated in text or binary form, and in text
form, it looks like the JavaScript Object Notation (JSON).

In a GraphDef, every tensor and operation is represented by a node element. Each
node has a name field, an op field, and one or more attr fields. The following text
presents the general structure of a node element:

node {
 name: "..."
 op: "..."
 attr { ... }
 attr { ... }
 ...
}

The last element in a GraphDef is a versions element. This element identifies the
version of the GraphDef structure.

The best way to understand GraphDefs is to look at an example. Suppose that an
application contains the following code:

a = tf.constant(2.5)
b = tf.constant(4.2)
sum = a + b;

In text form, the content of the GraphDef is given as follows:

node {
 name: "Const"
 op: "Const"
 attr {
 key: "dtype"
 value { type: DT_FLOAT }
 }
 attr {
 key: "value"
 value {

50 PART 1 Getting to Know TensorFlow

 tensor {
 dtype: DT_FLOAT
 tensor_shape {}
 float_val: 2.5
 }
 }
 }
}
node {
 name: "Const_1"
 op: "Const"
 attr {
 key: "dtype"
 value { type: DT_FLOAT }
 }
 attr {
 key: "value"
 value {
 tensor {
 dtype: DT_FLOAT
 tensor_shape {}
 float_val: 4.2
 }
 }
 }
}
node {
 name: "add"
 op: "Add"
 input: "Const"
 input: "Const_1"
 attr {
 key: "T"
 value { type: DT_FLOAT }
 }
}
versions {
 producer: 22
}

This GraphDef has three nodes: two that represent tensors and one that repre-
sents the operation that adds the tensors. Real-world applications may have
thousands of nodes. At the end of the list of nodes, the versions object identifies
the version as 22.

CHAPTER 4 Executing Graphs in Sessions 51

The write_graph function in tf.train makes it possible to store a GraphDef’s
data to a file. Its signature is given as follows:

write_graph(graph/graph_def, logdir, name, as_text=True)

The first argument can be set to a Graph or GraphDef. The last argument identifies
if the content should be written in text or binary form. For example, the following
code stores the current graph to a text file named graph.dat:

tf.train.write_graph(tf.get_default_graph(), os.getcwd(), 'graph.dat')

Similarly, an application can load a GraphDef from a file containing graph data by
calling one of two routines:

 » TextFormat.Merge(data, graphdef): Initializes a GraphDef from
text elements

 » Creating GraphDefs: Converting a graph into a protocol buffer

The TextFormat class is provided in google.protobuf. For a complete discussion
of accessing protocol buffers in Python, visit https://developers.google.com/
protocol-buffers/docs/pythontutorial.

Creating and Running Sessions
As a Python developer, you’re probably accustomed to having your programs pro-
cessed line by line. But in a TensorFlow application, operations involving tensors
aren’t executed until they’re stored in a graph and executed in a session. This
section explains how you can code applications that create and execute sessions.

Creating sessions
As with graphs, only one session can be active at a time. But there’s an important
difference between sessions and graphs — every session must be explicitly cre-
ated. You can create a Session by calling tf.Session, which accepts three optional
arguments:

 » target: Name of the execution engine

 » graph: The Graph instance to be launched

 » config: A ConfigProto that configures the session’s execution

https://developers.google.com/protocol-buffers/docs/pythontutorial
https://developers.google.com/protocol-buffers/docs/pythontutorial

52 PART 1 Getting to Know TensorFlow

A discussion of execution engines is in Chapter 11, which introduces the target
parameter. Similarly, most of the settings in a ConfigProto relate to threads and
devices, so Chapter 10 discusses the config parameter.

By default, a session accesses tensors and operations in the default graph. But if
you set the graph parameter in tf.Session, the session will execute that graph
instead.

Applications frequently call tf.Session inside a with statement. This statement
ensures that code in the with block can access the new Session. The following
code shows how this works:

with tf.Session() as sess:
 ...

Most of the example applications presented in this book create sessions with sim-
ilar code.

Executing a session
The most important method of the Session class is run. This method accepts four
arguments, and only the first is required:

 » fetches: Identifies one or more operations or tensors to be executed

 » feed_dict: Data to be fed into a tensor

 » options: Configuration options for the session’s execution

 » run_metadata: Output data from the session

The fetches parameter accepts a wide range of data types. Most applications set
this parameter equal to an operation, a tensor, or the name of an operation or ten-
sor. You can also assign fetches to a list of tensors, operations, or names.

If you assign fetches to a tensor, run will return an ndarray with the same values
and shape. The following code calls run with a two-element tensor:

tensr = tf.constant([2, 3])
with tf.Session() as sess:
 res = sess.run(tensr)
 print(res) # Prints [2, 3]

CHAPTER 4 Executing Graphs in Sessions 53

If you assign fetches to an Operation, run will return an ndarray containing the
values of the tensor produced by the operation. The following code calls run with
an operation that performs addition:

t1 = tf.constant(7)
t2 = tf.constant(2)
with tf.Session() as sess:
 res = sess.run(t1 + t2)
 print(res) # Prints 9

If you assign fetches to a collection of elements, run will return a similar collec-
tion containing the processed results. The following code calls run with a list
containing two tensors:

t1 = tf.constant(9)
t2 = tf.constant(5)
with tf.Session() as sess:
 res1, res2 = sess.run([t1, t2])
 print(res1) # Prints 9
 print(res2) # Prints 5

The feed_dict parameter of run plays an important role in applications that pro-
cess training data with batches. Chapter 5 discusses this parameter in detail.

Interactive sessions
Rather than send an entire script to an interpreter, many Python developers prefer
to write code interactively. In this mode, the interpreter displays feedback as each
line is processed.

To support interactive development, TensorFlow provides the Interactive
Session class. An InteractiveSession serves the same role as a Session, but it
makes itself the default session when it’s constructed.

Instead of calling sess.run, you can evaluate tensors by calling their eval
method. Similarly, you can execute operations by calling the run method of the
Operation class.

54 PART 1 Getting to Know TensorFlow

An example clarifies how InteractiveSessions work. The following code is
intended to be run in normal mode:

t1 = tf.constant(1.2)
t2 = tf.constant(3.5)
prod = tf.multiply(t1, t2)
with tf.Session() as sess:
 print("Product: ", sess.run(prod))

This code accomplishes the same result with an InteractiveSession:

t1 = tf.constant(1.2)
t2 = tf.constant(3.5)
prod = tf.multiply(t1, t2)
sess = tf.InteractiveSession()
print("Product: ", prod.eval())

The InteractiveSession class constructor accepts the same arguments as that of
the Session class. Similarly, its run method accepts the same arguments as the
run method of the Session class.

Writing Messages to the Log
All of the example code in Chapters 1 through 4 has relied on print to write data
to standard output. But TensorFlow provides a logging mechanism with many
more messaging capabilities than regular print. There are five points to know
about TensorFlow logging:

 » TensorFlow enables logging through the tf.logging package.

 » TensorFlow logging is based on regular Python logging, and many tf.
logging functions are identical to the methods of Python’s Logger class.

 » TensorFlow supports five logging levels. In order of severity, these are DEBUG,
INFO, WARN, ERROR, and FATAL.

 » To enable logging, an application needs to call tf.logging set_verbosity
with the lowest level of severity that should be logged.

 » By default, TensorFlow writes log messages to standard output. At the time of
this writing, TensorFlow logging doesn’t support writing messages to a log file.

CHAPTER 4 Executing Graphs in Sessions 55

For each logging level, tf.logging provides a similarly named function that
writes a logging message at that level. As an example, the following code enables
INFO messages (and messages of greater severity) and then writes an INFO mes-
sage that displays the value of output:

tf.logging.set_verbosity(tf.logging.INFO)

with tf.Session() as sess:
 output = sess.run(...)
 tf.logging.info('Output: %f', output)

If output’s value is 5.5, tf.logging.info will print the following message to
standard output:

INFO:tensorflow:Output: 5.5

Table 4-3 lists set_verbosity, info, and other functions provided by tf.logging.

TABLE 4-3	 Summary Data Functions
Function Description

set_verbosity(level) Enables logging for messages of the given severity level and
greater severity

debug(msg, *args, **kwargs) Logs a message at DEBUG severity

info(msg, *args, **kwargs) Logs a message at INFO severity

warn(msg, *args, **kwargs) Logs a message at WARN severity

error(msg, *args, **kwargs) Logs a message at ERROR severity

fatal(msg, *args, **kwargs) Logs a message at FATAL severity

flush() Forces logging operations to complete

log(level, msg, *args, **kwargs) Logs a message at the given severity level

log_if(level, msg, condition,
*args)

Logs a message at the given severity level if the condition
is true

log_first_n(level, msg, n,
*args)

Logs a message at the given severity level at most n times

log_every_n(level, msg, n,
*args)

Logs a message at the given severity level once every n times

56 PART 1 Getting to Know TensorFlow

The last three functions make it possible to control when messages are written to
the log. The third parameter of log_if defines a condition that determines when
the message should be logged. The following code logs the value of output if it’s
greater than 0:

tf.logging.log_if(tf.logging.INFO, 'Output: %f', (output > 0),
output)

The third argument of log_first_n and log_every_n is an integer that deter-
mines how often should be performed. In log_first_n, the value sets the maxi-
mum number of times the function should write its message to the log. In
log_every_n, the value tells the function to log its message once every N times
it’s called.

Visualizing Data with TensorBoard
Logging is fine for monitoring simple data, but in many cases, developers need to
keep track of large, complex data sets. Practical applications may launch a session
hundreds or thousands of times, and logging isn’t sufficient to monitor how data
changes with each execution.

The good news is that your TensorFlow installation contains TensorBoard. This
powerful utility reads an application’s data and displays it in a web page.
Figure 4-2 gives an idea of what the TensorBoard page looks like in the Chrome
browser.

The bad news is that TensorBoard requires specially formatted data called
summary data, and generating this data isn’t easy.

FIGURE 4-2:
TensorFlow can

display many
aspects of an

application,
including the

structure of
its graph.

CHAPTER 4 Executing Graphs in Sessions 57

Running TensorBoard
When you install TensorFlow, the installer places the TensorBoard utility in the
top-level scripts directory. If you can’t execute the tensorboard command from a
command line, add this directory to your system’s PATH variable.

The tensorboard command accepts a handful of flags, including the following:

 » --logdir DIR: The directory containing the summary data

 » --host HOST: Identifies the host portion of the web page’s URL

 » --port PORT: Identifies the port of the web page’s URL

By default, TensorBoard’s IP address is 127.0.0.1, which can be accessed as
localhost. TensorBoard’s default port is 6006. Therefore, TensorBoard’s default
URL is http://localhost:6006.

The --logdir flag is required, so you can’t launch TensorBoard without data. You
must set this flag to a directory that contains a special file called an event file. This
file contains the summary data that TensorBoard needs to perform visualization.
If the file is located in a directory named output, the following command tells
TensorBoard to read the event file:

tensorboard --logdir=output

Generating summary data
At this point, you should understand how to create math operations and execute
them in a session. This discussion introduces a new type of operation called a
summary operation. This resembles other TensorFlow operations, but when a
 session executes a summary operation, the result is a protocol buffer that contains
summary data. An application can write this buffer to a file whose content can be
displayed with TensorBoard.

TensorBoard can illustrate many different types of data, and each type corre-
sponds to a function of tf.summary. Table 4-4 lists six of the available functions.

Of these functions, the two most popular are scalar and histogram. scalar
 generates summary data for a single value that changes over multiple session
executions. histogram generates data for a set of values that change over session
executions. The image function generates data related to images and image
 analysis. Chapter 8 discusses images in detail.

58 PART 1 Getting to Know TensorFlow

In my opinion, the best way to understand summary data is to look at example
code. The following code performs three tasks:

 » tf.summary.scalar generates operations that provide scalar data.

 » tf.summary.merge_all combines them into one operation.

 » sess.run executes the merged summary operation.

Add two scalars
a = tf.constant(2.5)
b = tf.constant(4.5)
total = a + b;

Create operations that generate summary data
tf.summary.scalar("a", a)
tf.summary.scalar("b", b)
tf.summary.scalar("total", total)

Merge the operations into a single operation
merged_op = tf.summary.merge_all()

with tf.Session() as sess:
 _, summary = sess.run([sum, merged_op])

TABLE 4-4	 Summary Data Functions
Function Description

scalar(name, tensor,
 collections=None)

Creates a summary operation that provides
data about a scalar

histogram(name, values,
 collections=None)

Creates a summary operation that provides
histogram data

audio(name, tensor,
 sample_rate, max_outputs=3,
 collections=None)

Creates a summary operation that provides
data from an audio source

image(name, tensor,
 max_outputs=3,
 collections=None)

Creates a summary operation that provides
data from an image

merge(inputs,
 collections=None,
 name=None)

Merges the specified summary operations
into one summary operation

merge_all(key=
 tf.GraphKeys.SUMMARIES)

Merges summary operations into one
summary operation

CHAPTER 4 Executing Graphs in Sessions 59

As shown, each entity of interest requires a separate operation to generate sum-
mary data. That is, the application needs to call tf.summary.scalar three times:
once for each tensor to be analyzed. But you don’t need to access the return values
of each call to tf.summary.scalar because tf.summary.merge_all combines the
data generation operations into one operation.

Creating custom summaries
Instead of calling the functions in Table 4-4, you can generate custom summary
data by creating Summary objects. The Summary class is a Python wrapper for a
 protocol buffer containing summary data.

You can create a Summary instance by calling tf.Summary and setting its value
parameter to a list of Summary.Value buffers. Each Summary.Value can have a
node_name, a tag, and one of five data fields:

 » simple_value — a 32-bit floating-point value

 » image — an Image instance containing pixel data

 » histo — a HistogramProto containing data to be displayed in a histogram

 » audio — an Audio instance containing audio data

 » tensor — a TensorProto containing data related to tensors

The following code creates a custom summary and sets its simple_value field:

custom_summary = tf.Summary(value=[
 tf.Summary.Value(tag="num_tag", simple_value=5.0),
])

This code doesn’t create an operation that generates summary data — it directly
generates the summary data. In the preceding code, TensorBoard will display the
content of custom_summary as though it had been generated with tf.summary.
scalar.

Writing summary data
After you’ve generated summary data, the next step is to create a directory and
write the summary data to the directory’s event file. This process requires creat-
ing a FileWriter and calling its methods.

60 PART 1 Getting to Know TensorFlow

Creating a FileWriter
An application can create a FileWriter by calling its constructor:

tf.summary.FileWriter(logdir, graph=None, max_queue=10,
 flush_secs=120, filename_suffix=None)

The logdir parameter sets the name of the directory that should be created to
contain the summary data. If you set the graph parameter, the graph’s data will
be added to the event file in the given directory. If you set filename_suffix, the
suffix will be appended to the name of the generated event file.

A FileWriter updates the event file asynchronously, which means multiple write
operations may be pending at once. The max_queue parameter identifies the max-
imum number of write operations that can be pending at a given time. The
flush_secs parameter identifies how often the FileWriter should execute pend-
ing operations.

As an example, the following code creates a FileWriter and configures it to create
a directory named log. The event file in this directory should contain summary
data for the default graph.

fw = tf.summary.FileWriter("log", graph=tf.get_default_graph())

If this directory already exists, the constructor may create multiple event files. In
many cases, it’s a good idea to check if the directory exists and delete it, if
necessary.

Printing data to the event file
The FileWriter constructor creates a directory with an event file. The File
Writer’s methods make it possible to write data to the event file. Table 4-5 lists
these methods and provides a description of each.

TABLE 4-5	 Methods of the FileWriter Class
Method Description

add_summary(summary,
 global_step=None)

Adds summary data to the event file

add_event(event) Adds event data to the event file

add_graph(graph,
 global_step=None,
 graph_def=None)

Adds summary data for the graph to the event file

CHAPTER 4 Executing Graphs in Sessions 61

add_summary prints summary data. That is, it writes summary data produced by a
data generation operation to the event file. The following code demonstrates how
this can be called:

Merge operations into a single operation
merged_op = tf.summary.merge_all()

Create the FileWriter
writer = tf.summary.FileWriter("summary")

with tf.Session() as sess:
 _, summary = sess.run([sum, merged_op])
 writer.add_summary(summary)
 writer.close()

add_event writes an Event to the event file. Like a Summaryan Event is a Python
wrapper for a protocol buffer. Each Event has a wall_time field that identifies the
time and a step that identifies the global step. An Event’s data is specified by the
what field, which can be set to one of the following values:

 » file_version —the version of the event file

 » graph_def — content of a GraphDef buffer

 » summary — an Summary containing summary data

 » log_message — LogMessage containing logged messages

 » session_log — SessionLog containing the session’s state

Method Description

add_meta_graph(
 meta_graph_def,
 global_step=None)

Adds data from a MetaGraphDef to the event file

add_run_metadata(
 run_metadata, tag,
 global_step=None)

Adds run metadata from a session to the event file

add_session_log(
 session_log,
 global_step=None)

Adds data from a SessionLog to the event file

flush() Executes pending write operations

close() Flushes write operations and closes the event file

reopen() Reopens the event file for writing summary data

62 PART 1 Getting to Know TensorFlow

 » tagged_run_metadata — TaggedRunMetadata containing metadata from
the session

 » meta_graph_def — content of a MetaGraphDef buffer

As an example, the following code creates an Event whose wall_time is set to the
current time and whose what field is associated with a Summary:

new_summary = tf.Summary(value=[
 tf.Summary.Value(tag="val", simple_value=9.0),
])
event = tf.Event(wall_time=time.time(), summary=new_summary)
file_writer.add_event(event)

Calling add_graph accomplishes the same result as setting the graph parameter
in the FileWriter’s constructor. add_meta_graph prints the content of a
MetaGraphDef, which I’ll discuss in Chapter 5.

The flush method forces the FileWriter to execute any pending write operations
to the event file. The close method also forces the FileWriter to execute pending
write operations. After the operations have completed, the method closes the
event file.

Putting Theory into Practice
The code in ch4/two_graphs.py demonstrates how an application can create
multiple graphs and execute them in separate sessions. After executing each
graph, the application calls tf.train.write_graph to write the graph’s structure
to a file. The application also creates a FileWriter and generates summary data
that can be viewed with TensorBoard. Listing 4-1 presents the code:

LISTING	4-1:	 Launching Multiple Graphs in Multiple Sessions

Enable logging

tf.logging.set_verbosity(tf.logging.INFO)

Create tensors

t1 = tf.constant([1.2, 2.3, 3.4, 4.5])

t2 = tf.constant([5.6, 6.7, 7.8, 8.9])

t3 = tf.concat([t1, t2], 0)

t4 = tf.random_normal([8])

t5 = tf.tensordot(t3, t4, 1)

CHAPTER 4 Executing Graphs in Sessions 63

Create operations to generate summary data

tf.summary.scalar("t1", t1[0])

tf.summary.scalar("t2", t2[0])

tf.summary.scalar("t3", t3[0])

tf.summary.scalar("t4", t4[0])

tf.summary.scalar("t5", t5)

merged_op = tf.summary.merge_all()

Create FileWriter

file_writer = tf.summary.FileWriter("log", graph=tf.get_default_graph())

Execute first graph

with tf.Session() as sess:

 # Execute the session

 dot_result, summary = sess.run([t5, merged_op])

 # Write the result to the log

 tf.logging.info('Result of dot product: %f', dot_result)

 # Print the summary data

 file_writer.add_summary(summary)

 file_writer.flush()

 # Obtain the GraphDef and write it to a file

 tf.train.write_graph(sess.graph, os.getcwd(), 'graph1.dat')

Create second graph and make it default

graph = tf.Graph()

with graph.as_default():

 # Compute the average

 t6 = tf.random_uniform([8], 4.0, 8.0)

 t7 = tf.fill([8], 6.0)

 t8 = tf.reduce_mean(t6 + t7)

 # Execute first graph

 with tf.Session() as sess:

 # Execute the session

 sess.run(t8)

 # Obtain the GraphDef and write it to a file

 tf.train.write_graph(sess.graph, os.getcwd(), 'graph2.dat'

64 PART 1 Getting to Know TensorFlow

The first call to sess.run is particularly interesting. Its first argument is a list
containing two elements. The first element, t5, is the result of an operation that
combines t1, t2, t3, and t4. The second element, merged_op, combines five oper-
ations that generate summary data.

sess.run returns the value of t5 and the generated summary data. When these
results are available, the application logs the value of t5 and prints the summary
data to a file by calling the add_summary method of a FileWriter.

The first parameter in the FileWriter’s constructor is log, so the FileWriter
prints its data to an event file in the log directory. You can launch TensorBoard to
visualize this data with the following command:

tensorboard --logdir=log

To view the generated data in TensorBoard, open a browser to http://local
host:6006. If you click the HISTOGRAMS link at the top of the page, you can view
tensors t1 through t4. Figure 4-3 shows what the histogram of t1 looks like.

Unlike t1 through t4, t5 only has one element. The application generates data for
t5 by calling tf.summary.scalar, and you can view this data in TensorBoard by
clicking the SCALARS link at the top of the page. The result isn’t particularly
interesting because the application only executed the session once. Chapter 5
explains how to execute sessions with multiple steps and view the resulting data
in TensorBoard.

FIGURE 4-3:
A TensorBoard

histogram plots
the elements

of a tensor.

http://localhost:6006
http://localhost:6006

CHAPTER 5 Training 65

Chapter 5
Training

Before the Internet, old-timers like me entertained ourselves by actually
speaking to one another. One rip-roaring game was 20 Questions, in which
one player thinks of an object and the other player asks questions to deter-

mine what the object is. The questioner is allowed to ask at most 20 yes/no ques-
tions, and a typical game goes something like this:

Q: Is it larger than a breadbox?

A: Yes.

Q: Can it move?

A: Yes.

Q: Is it an animal?

A: No.

Q: Does it move on wheels?

A: No.

Q: (Sigh) Is it an evil robot, Matt? Again?

A: THAT’S IT! You win!

In this chapter, I explain how the game 20 Questions is similar to the training
methodology used in supervised machine learning.

IN THIS CHAPTER

 » Training applications in TensorFlow

 » Creating variables and placeholders

 » Minimizing loss with optimizers

 » Splitting datasets into batches

66 PART 1 Getting to Know TensorFlow

Training in TensorFlow
In the game 20 Questions, the questioner starts with a guess and refines his
understanding with each answer. This game resembles the training methodology
used in supervised machine learning. An application starts with a general idea, or
model, of the desired system. The application compares its model to experimental
data, determines the difference between them, and repeatedly refines the model
to reduce the difference.

The general training process is simple to understand, but implementing training
with TensorFlow isn’t easy. The process involves six steps:

1. Construct a mathematical expression for the general model.

2. Declare variables to be updated as training is performed.

3. Obtain an expression for the loss, which is the difference between the
model and observation.

4. Create an Optimizer with the loss from Step 3 and call its minimize
method.

5. (Optional) Configure the second argument of the session’s run method to
feed batches of data to the session.

6. Execute the session by calling the session’s run method.

Judging from the questions on StackOverflow.com, many developers have diffi-
culty grasping how these steps are performed. This chapter explains this training
process and then presents example code that demonstrates how these steps can be
implemented in a TensorFlow application.

Formulating the Model
Just as a game of 20 Questions starts with making a guess, machine learning
starts with forming an initial mathematical model of the system. A number of fac-
tors determine the nature of this model, including the system’s complexity, the
structure of the input data, and the nature of the problem. Image data requires a
different model than voice data. Classification problems require a different type of
model than prediction problems.

This book focuses on two methods of mathematical modeling. The first involves
approximating a set of data points with a shape. For example, if a system consists of
two-dimensional points, you can predict future points by approximating the system

http://StackOverflow.com

CHAPTER 5 Training 67

with a two-dimensional line. Lines are determined by the equation y = mx + b, so
this equation serves as the general model.

The second method involves creating artificial neural networks, or ANNs. Though
inspired by biological phenomena, every ANN represents a mathematical rela-
tionship. Chapter 7 introduces this exciting topic and explains how you can con-
struct ANNs in code.

Whether you model your system with a shape or a neural network, you need to
refine the model until it resembles the observed data as closely as possible. This
refinement entails updating the model’s parameters, such as the m and b in
y mx b. In a TensorFlow application, these trainable parameters are all
instances of the Variable class.

When you’re talking to customers, try not to use the term guess, as in “Golly, all
of our guesses were way off base!” The preferred term is initial estimate, as in
“Initial estimates proved inaccurate, but subsequent training runs will lead to
better results.”

Looking at Variables
At first glance, variables have a lot in common with tensors. Both store data in
multidimensional arrays and both can be processed with TensorFlow operations.

But while a tensor can serve many purposes, most variables have only one pur-
pose: to store data to be updated during training. A variable’s value will change as
training proceeds, and hopefully, each change will bring the model closer to the
desired system.

Variables have three other important characteristics:

 » A variable maintains its value between successive executions of a session.

 » A variable must be specially initialized by an executing session.

 » A variable is an instance of the Variable class, not the Tensor class.

The last point is important. When working with variables, you need to call a new
set of methods and functions. The following sections explain how to create and
initialize variables.

68 PART 1 Getting to Know TensorFlow

Creating variables
An application can create variables by calling tf.Variable, whose first parameter
sets the variable’s initial value. For example, the following code creates a variable
named variableA and sets its initial value equal to a tensor named tensorA:

tensorA = tf.constant([1.5, 2.5, 3.5])
variableA = tf.Variable(tensorA)

A variable’s job is to hold data to be updated during training. Instead of initializing
variables with constant values, many applications use random values. The follow-
ing code creates a variable named variableB and sets its initial value to a tensor
of normally distributed values:

variableB = tf.Variable(tf.random_normal([3]))

tf.Variable accepts a Boolean parameter called trainable. If you set this param-
eter to True, the variable can be updated by training. If you set it to False, the
variable can’t be updated by training.

Initializing variables
One important difference between variables and tensors is that you need to exe-
cute special operations to initialize variables. That is, before you can train a vari-
able, you need to create an initialization operation and execute it in a session. If
an application attempts to use an uninitialized variable, TensorFlow raises an
error: Attempting to use uninitialized value. . ..

TensorFlow provides three functions that create operations that initialize
 variables. Table 5-1 lists them and provides a description of each.

Applications commonly call global_variables_initializer because it creates
an operation that initializes every global variable in the session. The following
code shows how you can call this function:

TABLE 5-1	 Variable Initialization Functions
Function Description

variable_initializer(var_list,
name=‘init’)

Returns an operation that initializes the variables in the given list

local_variables_initializer() Returns an operation that initializes all local variables

global_variables_initializer() Returns an operation that initializes all global variables

CHAPTER 5 Training 69

init = tf.global_variables_initializer()
...
with tf.Session() as sess:
 sess.run(init)

An application can check whether a variable has been initialized by calling
is_variable_initialized with the variable’s name.

Determining Loss
Training refines a model’s variables to minimize the difference between your
model and the observed data. Machine learning literature commonly refers to this
difference as the cost function. TensorFlow’s documentation refers to it as loss.

For example, if you model a set of points with a straight line, the expression for
the model is y = mx + b. Of course, the points on the line won’t exactly match the
observed data, yobs. If there are N points, you can represent the loss with the
following expression:

loss
N

y mx bobs
i

N1 2

0

1

In a TensorFlow application, you can express the model and loss with the follow-
ing code:

m = tf.Variable(tf.random_normal([]))
b = tf.Variable(tf.random_normal([]))
model = tf.add(tf.multiply(x, m), b)
loss = tf.reduce_mean(tf.pow(model - y, 2))

This method of computing loss is called mean squared error, and it’s one of many
methods available — maximum likelihood estimation and log likelihood estima-
tion are also popular. Chapter 6 discusses statistical regression and the different
ways you can compute loss.

If your model contains neural networks, you can’t compute loss with a simple
equation. Feed-forward networks require a special algorithm like backpropagation,
and recurrent networks rely on backpropagation through time (BPTT). I discuss
neural networks and backpropagation in Chapter 7. I introduce BPTT in Chapter 9.

There’s no right way to compute loss. The only requirement is that every decrease
in loss must imply that the model is closer to the observed data. The process of
improving the model by reducing loss is called optimization.

70 PART 1 Getting to Know TensorFlow

Minimizing Loss with Optimization
After you’ve formed an expression for the loss, the next step is to minimize the
loss by updating the model’s variables. This process is called optimization, and
TensorFlow supports a variety of algorithms for this purpose. Choosing the right
algorithm is critically important when coding machine learning applications.

Each optimization method is represented by a class in the tf.train package. Four
popular optimization classes are the GradientDescentOptimizer, Momentum
Optimizer, AdagradOptimizer, and AdamOptimizer classes. The following
 sections look at each of these classes, starting with the Optimizer class, which is
the base class of TensorFlow’s optimization classes.

The Optimizer class
You can’t directly access the Optimizer class in code; applications need to instan-
tiate one of its subclasses instead. But the Optimizer class is crucial because it
defines the all-important minimize method:

minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_

method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None)

The only required argument is the first, which identifies the loss. By default,
minimize can access every trainable variable in the graph. An application can
select specific variables for optimization by setting the var_list argument.

minimize returns an operation that can be executed by a session’s run method.
Each execution performs two steps:

1. Compute values that update the variables of interest.

2. Update the variables of interest with the values computed in Step 1.

Just as you probably won’t win 20 Questions with your first question, you proba-
bly won’t optimize your model with a single call to minimize. Most applications
perform optimization in a loop, and the following code gives an idea what an
optimization loop looks like:

Create the optimizer and obtain the operation
optimizer = tf.train.GradientDescentOptimizer(learn_rate)
optimizer_op = minimize(loss)

Execute the minimization operation in a session

CHAPTER 5 Training 71

with tf.Session() as sess:
 for step in range(num_steps):
 sess.run(optimizer_op)

If the optimizer reaches a suitable minimum, it has converged to the minimum. If
it fails to reach a minimum, the optimizer has diverged.

Each call to the session’s run method minimizes the loss by updating variables.
An application controls how updates are performed by creating a subclass of
Optimizer. This discussion explores four popular Optimizer subclasses: Gradient
DescentOptimizer, MomentumOptimizer, AdagradOptimizer, and AdamOptimizer.

The following discussion gets awfully nerdy, and if you’re just getting started in
machine learning, you don’t really need to know the math. However, selecting the
right optimizer can make a significant impact on the application’s performance.
Also, if you’re interviewing for a lucrative TensorFlow job, you should be able to
justify why you prefer the AdamOptimizer to the GradientDescentOptimizer.

The GradientDescentOptimizer
The GradientDescentOptimizer is the simplest and most common of the
 optimizers used in machine learning. If you look through online example code or
textbooks on machine learning, you’re likely to encounter this optimizer
frequently.

Despite its popularity, few experts recommend the GradientDescentOptimizer
over the alternatives. To see why, you need to understand the algorithm it uses to
perform optimization. In this discussion, I present the theory of gradient descent
and then explain how you can create and use GradientDescentOptimizers in
code.

The Gradient Descent algorithm
The GradientDescentOptimizer minimizes loss using the gradient descent algo-
rithm, which relies on a crucial mathematical fact: A function decreases fastest at
a point in the direction determined by its negative gradient at that point.

If you’ve taken calculus, you know that the derivative of a function at a point
equals the function’s slope at that point. That is, if f(x) is differentiable, its deriv-
ative with respect to x is denoted f’(x), and the slope at point a is denoted f’(a).
Figure 5-1 shows what a function’s derivative looks like.

72 PART 1 Getting to Know TensorFlow

A function with multiple variables has multiple derivatives. As an example, f(x, y)
has a derivative with respect to x and a derivative with respect to y. These are
partial derivatives, and they’re denoted with the following notation:

Partial derivative of f(x, y) with respect to x:

Parti

f
x

aal derivative of f(x, y) with respect to y: f
y

Figure 5-2 depicts the relationship f x y x y, 16 4 22 2. At point (1, 2), the
 partial derivative with respect to x is –8, and the partial derivative with respect to
y is –8.

Geometrically speaking, a vector is a quantity with a magnitude and a direction.
A vector can be defined with components that identify its magnitudes in orthog-
onal directions. You can think of a vector as an arrow in space. If a vector points
two units in the positive x-direction and three units in the negative y-direction, it
can be represented as <2, -3>.

FIGURE 5-1:
The derivative at

a point equals the
slope of the curve

at that point.

FIGURE 5-2:
The gradient
points in the
direction of

steepest ascent.

CHAPTER 5 Training 73

The gradient descent algorithm is concerned with a special type of vector called a
gradient. A function’s gradient is a vector whose components equal the function’s
partial derivatives. The gradient of f is denoted ∇f, and if the function has three
variables, you can express its gradient as follows:

f x y z f
x

f
y

f
z

(, ,) , ,

If the function has two variables, its gradient vector will have two components. In
Figure 5-2, the gradient at (1, 2) is the vector <-8, -8>. This vector is represented
by the black arrow extending from the point (1, 2).

Suppose that the function in the figure represents a mountain in the Swiss Alps. If
you’re an Alpine climber, the gradient identifies the steepest direction of climb-
ing. This designation isn’t a coincidence. A function’s gradient always points in
the direction of steepest ascent. Similarly, the opposite vector identifies the steep-
est direction for descent.

After you understand the significance of the gradient, you’re ready to tackle the
gradient descent algorithm. This algorithm computes the gradient of the loss and
updates the model’s variables until the gradient of the loss falls to zero. To express
this operation mathematically, I need to introduce some notation:

 » The set of trainable variables is denoted θ. The values of the variables at Step t
is denoted θt.

 » The loss, which is a mathematical relationship containing the model’s
variables, is denoted J(θ). The gradient of the loss is ∇J(θ).

 » The learning rate, denoted η, is a value that affects how much θj changes from
step to step.

With this notation, you can express each optimization step of the Gradient
DescentOptimizer with the following equation:

t t J1

This shows how the model’s variables change with each training operation. As
training continues, ∇J(θ) should approach zero, which means that each new set of
variables should be approximately equal to the previous set. At this point, optimi-
zation has completed because the optimizer has converged to a minimum.

The value of η is determined by the developer, and selecting this value is a crucial
decision. If η is too large, the algorithm will progress quickly, but it may step
around the minimum and never reach a final value.

74 PART 1 Getting to Know TensorFlow

If η is too small, the algorithm will move more precisely, but it will take a great
deal of time. In addition, the optimizer may stop at a local minimum instead of a
global minimum.

Creating a GradientDescentOptimizer
An application can perform optimization with the gradient descent algorithm by
creating a GradientDescentOptimizer. The constructor is given as follows:

tf.train.GradientDescentOptimizer(learning_rate, use_
locking=False, name='GradientDescent')

The learning_rate parameter sets η, the learning rate. The following code cre-
ates an optimizer and sets its learning rate to 0.1:

learn_rate = 0.1
optimizer = tf.train.GradientDescentOptimizer(learn_rate)
optimizer_op = optimizer.minimize(loss)

Many developers set η using trial and error, and initial estimates frequently range
between 0.1 and 0.0001. A common method is to start with a large value of η and
reduce the value until the optimizer converges successfully. Computer scientists
have devised automatic methods for selecting η, but to the best of my knowledge,
no method has gained widespread acceptance.

If you set the use_locking parameter to True, the GradientDescentOptimizer
will acquire a lock that prevents other operations from modifying its variables.
The variables can still be read normally.

Shortcomings
The gradient descent algorithm is the oldest and simplest algorithm for minimiz-
ing loss, but it has important disadvantages that every developer should be
aware of.

The first disadvantage involves the difference between a local minimum and a
global minimum. Optimization seeks the point of minimum loss across the entire
range of the function. This value is the global minimum of the loss.

But a GradientDescentOptimizer may converge to a minimum that isn’t global.
This value is a local minimum, and Figure 5-3 illustrates the difference. In this
figure, the function has two local minima surrounding the global minimum. If the
optimizer reaches either of the local minima, it will halt optimization because the
gradient of the loss, ∇J(θ), equals 0.

CHAPTER 5 Training 75

You need to be aware of three other issues when using the gradient descent
algorithm:

 » It’s generally slow to converge to a minimum value.

 » It can only optimize differentiable functions.

 » It may oscillate between values and never reach a minimum.

This last issue deserves explanation. If the learning rate is large, the algorithm
may jump back and forth between a pair of points and never reach a minimum.
This jumping is called oscillation, and it’s a source of frequent frustration.

You can reduce the likelihood of oscillation by reducing the learning rate. Alterna-
tively, you can create an optimizer whose learning rate changes from step to step.
The following sections present three such optimizers: the MomentumOptimizer,
the AdagradOptimizer, and the AdamOptimizer.

The MomentumOptimizer
The MomentumOptimizer has a lot in common with the GradientDescent
Optimizer, but it usually converges faster with a reduced likelihood of oscillation.
The MomentumOptimizer minimizes loss through the momentum algorithm, which
uses preceding values of the loss gradient to update the current set of variables.

The momentum algorithm introduces a new quantity that TensorFlow calls the
accumulation. This quantity, denoted vt , is determined by the gradient of the cur-
rent loss, the learning rate, and the preceding value of the accumulation:

v v Jt t 1

FIGURE 5-3:
A function may

have many local
minima, but only

one global
minimum.

76 PART 1 Getting to Know TensorFlow

The preceding value of the accumulation, vt 1, is scaled by α, called the momentum.
α is set to a constant value between 0 and 1, and its value indicates how much the
preceding step should influence the current step. Applications commonly set α
equal to 0.9.

After the accumulation is computed, you can update the set of variables with the
following equation:

t t tv1

It’s important to understand how accumulation affects the rate of convergence. If
the optimizer moves quickly toward a minimum, vt 1 will be significant, and the
optimizer will approach the minimum even faster. If the optimizer is stuck
between two values, vt 1 will reduce the amount by which the variables are
updated.

An application can create a MomentumOptimizer by calling its constructor:

MomentumOptimizer(learning_rate, momentum, use_locking=False, name='Momentum',

use_nesterov=False)

The use_locking parameter has the same purpose as the use_locking parameter
in the GradientDescentOptimizer constructor. That is, the optimizer will lock its
variables’ values if use_locking is set to True.

If use_nesterov is set to True, the optimizer adopts the Nesterov Accelerated
Gradient descent algorithm, which is commonly shortened to NAG. The NAG algo-
rithm modifies the momentum algorithm by updating variables before computing
the loss. The following equations show how this algorithm works:

v v J vt t t1 1

t t jv1

The NAG algorithm generally converges faster than the gradient descent algo-
rithm. The paper On the Importance of Initialization and Momentum in Deep Learning
by Ilya Sutskever et al discusses the algorithm’s performance in detail.

The AdagradOptimizer
The gradient descent algorithm and the momentum algorithm apply the same
learning rate to each variable being trained. But different variables may converge
to their minima at different rates. The adaptive gradient (Adagrad) algorithm
takes this into account.

CHAPTER 5 Training 77

The Adagrad algorithm has two characteristics that have made it popular among
academics and experts:

 » The learning rate changes from variable to variable and from step to step. The
learning rate at the tth step for the ith variable is denoted t i, .

 » Adagrad methods compute subgradients instead of gradients. A subgradient is
a generalization of a gradient that applies to nondifferentiable functions. This
means AdaGrad methods can optimize both differentiable and nondifferen-
tiable functions.

In 2011, John Duchi, Elad Hazan, and Yoram Singer described the first Adagrad
algorithm in their paper Adaptive Subgradient Methods for Online Learning and
 Stochastic Optimization. The math is so ugly that I won’t attempt to explain it. In
case you’re curious, here’s the equation for the per-variable learning rate:

t i
t iiG,
,

In this equation, Gt, ii is the ith element of the diagonal of the matrix formed by
taking the outer product of the subgradient of the loss with itself. After computing
the learning rates, the optimizer updates the variables:

t i t i t i tg, , ,1

Thankfully, TensorFlow developers don’t have to worry about subgradients or
outer products. This is because the TensorFlow API provides the Adagrad
Optimizer class, whose constructor is given as follows.

AdagradOptimizer(learning_rate, initial_accumulator_value=0.1, use_locking=False,

name='Adagrad')

One shortcoming of the Adagrad algorithm is that the learning rates always
decrease in magnitude. As training continues, their values will eventually reach
zero, bringing training to a halt.

The AdamOptimizer
The Adam (Adaptive Moment Estimation) algorithm closely resembles the Adag-
rad algorithm in many respects. It also resembles the Momentum algorithm
because it takes two factors into account:

 » The first moment vector: Scales the gradient by 1 1

 » The second moment vector: Scales the square of the gradient by 1 2

78 PART 1 Getting to Know TensorFlow

These moment vectors are denoted mt and vt, respectively. The following equa-
tions show how their values change from step to step:

m m Jt t1 1 11

v v Jt t2 1 2

2
1

After computing these vectors, the optimizer updates the model’s variables with
the following equations:

t

t

t

1
1

2

1

t t
t t

t

m
v1

In the second equation, the purpose of ε is to prevent the denominator from reach-
ing zero. For this reason, ε is usually set to a small value.

To employ the Adam algorithm, you need to create an instance of AdamOptimizer.
The constructor is given as follows:

AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08,

use_locking=False, name='Adam')

When deciding on an optimizer, I always start with the AdamOptimizer, especially
when working with images. The only exception is when I’m providing code to
newcomers. In this case, I create a GradientDescentOptimizer, which doesn’t
scare anyone.

Feeding Data into a Session
Instead of processing all the test data with one call to a session’s run method,
applications frequently split the data into portions and call run once for each por-
tion. There are at least three reasons to do so:

 » If the data is stored in a file or on a remote server, it may be more efficient to
process one portion of data while another is loaded from the source.

 » Shuffling the portions of data increases the data’s stochasticity. This process
can improve convergence to a global minimum instead of a local minimum.
I explain the rationale for data shuffling in the upcoming “Stochasticity” section.

 » Time constraints make it impractical to process all the data at once.

CHAPTER 5 Training 79

A portion of data processed in one session execution is called a batch. The process
of transferring batches to a session is called feeding data to the session. To configure
this in code, an application needs to perform three steps:

1. Define placeholders to contain the data to be fed into the session.

2. Use the placeholders in the expressions for model and loss.

3. Set the second parameter of the session’s run method to a dictionary
that associates each placeholder with a source of data.

Step 2 is trivial because you can process placeholders in the same way that you can
process tensors. This discussion focuses on Steps 1 and 3. Later chapters present
code that demonstrates how data can be fed into a session.

Creating placeholders
A placeholder is a constant Tensor that holds a batch of data to be fed into a
session. You can create placeholders by calling the tf.placeholder function:

tf.placeholder(dtype, shape=None, name=None)

The first two arguments specify the type of the placeholder’s elements and its
size. The actual content of a placeholder is set by the running session, so there’s
no way to initialize a placeholder.

For example, the following code creates a placeholder that contains 32-bit
 floating-point values:

ph = tf.placeholder(tf.float32)

If a placeholder’s shape isn’t given, it can be set to a tensor of any shape. If the
shape is given, assigning a tensor of a different shape will cause an error.

Defining the feed dictionary
Chapter 3 introduces the Session class and explains how you can execute a ses-
sion by calling its run method. But the discussion doesn’t mention run’s second
argument, feed_dict, which makes it possible to feed data into the session. To
feed data to a session, you need to assign feed_dict to a dictionary whose keys
identify tensors in the session. Most applications set these keys to placeholders.
Each value in feed_dict identifies a source of data to be passed to the tensor
(usually a placeholder) identified by the key.

80 PART 1 Getting to Know TensorFlow

To demonstrate data feeding, the following code creates a placeholder, uses it in a
model operation, and then feeds it into the session through the feed_dict param-
eter of the run method.

ph = tf.placeholder(tf.float32)
...
with tf.Session() as sess:
 sess.run(optimizer, feed_dict={ph: data_src})

When associating data with a placeholder, there’s a catch: The data source can be
a list of constants or a NumPy ndarray, but it can’t be a tensor. The following code
associates a placeholder with an ndarray:

ph = tf.placeholder(tf.float32)
vals = np.array([9., 8., 7.])
incr = tf.add(ph, 1.)
with tf.Session() as sess:
 res = sess.run(incr, feed_dict={ph: vals})
 print(res)

In this case, the printed result is [10. 9. 8.] because feed_dict passes the vals
array to the session through the ph placeholder. If an application assigns vals to
a tensor, TensorFlow will raise the following error: The value of a feed cannot be a
tf.Tensor object.

Stochasticity
To keep optimizers from converging to a local minimum instead of a global mini-
mum, many applications split their training data into small batches and feed them
randomly to the session. This randomness, also called stochasticity, forces the opti-
mizer to take larger jumps at first and smaller jumps as training progresses. This
jumping increases the likelihood that the optimizer will find a global minimum.

If the gradient descent algorithm is employed to process stochastic data, it’s
referred to as the stochastic gradient descent algorithm. If you encounter the term
SGD in machine learning literature, this algorithm is what it’s referring to.

Monitoring Steps, Global Steps,
and Epochs

In TensorFlow, each session execution that processes a single batch of data is
called a step. Many TensorFlow functions and methods accept a parameter called

CHAPTER 5 Training 81

global_step, which can be used to monitor the total number of steps executed by
a session. In practice, global_step serves as the index of the batch being pro-
cessed. You can access this index in code by calling tf.train.global_step.

You can also store the global step in a regular variable. This storage requires two
operations:

1. Define a variable with an initial value of 0 and its trainable argument
set to False.

2. Set the variable equal to the global_step parameter of the optimizer’s
minimize method.

If its global_step parameter is set to a variable, minimize will increment the
variable each time a session processes a batch of data. The following code creates
a variable named gstep and configures it to store the application’s global step:

Define the variable to hold the global step
gstep = tf.Variable(0, trainable=False)

Configure the optimizer
learn_rate = 0.1
batch_size = 40
optimizer = tf.train.GradientDescentOptimizer(learn_rate).
 minimize(loss, global_step=gstep)

Initialize variables
init = tf.global_variables_initializer()

Launch session
with tf.Session() as sess:
 sess.run(init)

 for batch in range(batch_size):
 _, step, result = sess.run([optimizer, gstep, x_min])
 print("Step %d: Computed result = %f" % (step, result))

As you look at this code, a question may occur to you: Why keep track of the global
step when you can access the loop index? To answer this question, suppose that
you execute ten training batches and then restart your application. The loop vari-
able will revert back to 0, but if you’d saved the global step to a file, you can
restore it and use it as the current global step. I explain how to save variables to a
file in the section “Saving variables,” later in this chapter.

82 PART 1 Getting to Know TensorFlow

In the preceding example, the test executes each batch only once. In a real-world
application, all the batches will be processed multiple times. A pass through every
batch of a dataset is referred to as an epoch. For example, if a dataset is split into
50 batches, an epoch consists of 50 steps.

Many applications execute sessions in two loops: The outer loop iterates once for
each epoch, and the inner loop executes once for each batch. The following code
creates the two loops and calls sess.run with each iteration:

for epoch in range(num_epochs):
 for batch in range(num_batches):
 sess.run(...)

It’s important to understand the difference between epochs and batches. Similar
training loops are performed throughout this book’s example code and examples
on the Internet.

Saving and Restoring Variables
The Saver class makes it straightforward to load and store variables. By default, a
Saver can access every variable in the session. But the first argument of the con-
structor can identify specific variables to be accessed. For example, the following
code creates a Saver that can save/restore only two variables: firstVar and
secondVar:

saver = tf.train.Saver([firstVar, secondVar])

After you create a Saver, you can store variables to a file by calling its save method.
Then you can restore variables from a file by calling restore.

Saving variables
The save method stores variables and data related to the variables. By default, the
method creates at least three binary files, each with the same name but a different
suffix:

 » filename.data-X-of-Y: Stores variable values

 » filename.index: Holds the offset of each variable in the data file(s)

 » filename.meta: MetaGraphDef containing the structure of the graph that
contains the variables

CHAPTER 5 Training 83

The data files contain variable values, and if the application has many variables,
save will create multiple data files. If there’s only one file, its name will be
filename.data-00000-of-00001.

The index file contains a table that matches variable names to offsets in the index
file. You can retrieve variables using the restore method, which I explain in the
next section.

You can create these files by creating a Saver and calling its save method:

save(sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix='meta', write_meta_graph=True, write_
state=True)

These parameters are straightforward to understand. sess is the session contain-
ing the variables of interest and save_path identifies the path of the file to contain
the saved data. The last element of save_path specifies the name of the files to be
generated.

If latest_filename is set, save will create a text file that lists the paths of files
involved in the save operation. If global_step is set, the value will be appended
to each of the generated files.

For example, the following code creates a Saver and calls save to create the
 generated files (output.*) in the current directory:

saver = tf.train.Saver()
saver.save(sess, os.getcwd() + "/output")

If there aren’t many variables to store, save will generate only three files:
output.data-00000-of-00001, output.index, and output.meta.

Restoring variables
The restore method loads variables that have been stored previously. The process
of restoring variables consists of two steps:

1. Call import_meta_graph to add the variables’ nodes to the current graph.

2. Call restore to access the variable data.

84 PART 1 Getting to Know TensorFlow

The first step is simple. tf.train.import_meta_graph accepts the path of a
*.meta file, reads graph data from the file, and adds the graph’s nodes to the cur-
rent graph. The function returns a Saver that lets you restore variables from the
loaded graph.

For example, the following code imports graph data from output.meta and
obtains a Saver that can be used to load variables:

saver = tf.train.import_meta_graph("output.meta")

After obtaining the Saver, an application can load variables by calling its restore
method, whose signature is given as follows:

restore(sess, save_path)

As in the save method, sess identifies the session containing the variables, and
save_path is the path to the file containing the variable data. This path must
include the name of the three files without the suffix. As an example, the follow-
ing code uses saver to load variables from output into the current graph:

saver.restore(sess, os.getcwd() + "/output")

Working with SavedModels
In addition to storing variables with a Saver, you can store your application’s entire
model by creating a SavedModel. As stated in the documentation, SavedModels are
“the universal serialization format for TensorFlow models” and serve as “the
canonical way to export TensorFlow graphs.”

To be precise, a SavedModel is a directory that contains a *.pb or *.pbtxt file. This
file contains the application’s model and stores graph definitions in MetaGraphDef
protocol buffers. In addition to this file, a SavedModel may contain one or more of
the following subdirectories:

 » variables: A directory containing the application’s variables (files are similar to
those produced by the Saver’s save method, excluding the *.meta file)

 » assets: Auxiliary files that need to be loaded into the graph

 » assets.extra: User-provided files that don’t need to be loaded into the graph

Saving and restoring a SavedModel isn’t conceptually difficult, but the code gets a
little complicated.

CHAPTER 5 Training 85

Saving a SavedModel
The process of saving an application’s model to a SavedModel is similar to the
process of storing variables. But instead of creating a Saver, you need to create a
tf.saved_model.builder.SavedModelBuilder. The constructor accepts a single
argument that identifies the top-level directory:

builder = tf.saved_model.builder.SavedModelBuilder("out")

After creating a SavedModelBuilder, you can add data to the model and save the
model to the given directory. To add data to the model, you need to call one of two
functions: add_meta_graph or add_meta_graph_and_variables. The signature of
add_meta_graph is given as

add_meta_graph(tags, signature_def_map=None, assets_
collection=None, legacy_init_op=None, clear_devices=False,
main_op=None)

Metagraphs identify their capabilities and purposes with strings called tags. You
can assign a metagraph’s tags by setting the tags parameter. The tf.saved_
model.tag_constants provides three common tags: GPU, SERVING, and TRAINING.

A graph’s inputs and outputs form its signature. In code, a graph’s signature is
represented by a SignatureDef, and you can create this by calling the build_
signature_def function of the tf.saved_model.signature_def_utils package:

build_signature_def(inputs=None, outputs=None, method_name=None)

To create the signature, you need to set inputs and outputs to dictionaries that
associates names with TensorInfo protocol buffers. For the names, many appli-
cations use constants from tf.saved_model.signature_constants, which
include CLASSIFY_INPUTS, CLASSIFY_OUTPUT_CLASSES, PREDICT_INPUTS, and
PREDICT_OUTPUTS.

You can obtain a TensorInfo for a tensor by calling tf.saved_model.utils.
build_tensor_info with the tensor. The following code returns a TensorInfo for
a tensor named input_vec:

info = tf.saved_model.utils.build_tensor_info(input_vec)

The method_name parameter of build_signature_def is a string that serves as
the signature’s method name. You can set this to one of the strings in the
tf.saved_model.signature_constants module, such as CLASSIFY_METHOD_
NAME, PREDICT_METHOD_NAME, or REGRESS_METHOD_NAME.

86 PART 1 Getting to Know TensorFlow

The add_meta_graph_and_variables method is similar to add_meta_graph, but it
has an extra parameter. The first parameter of add_meta_graph_and_variables is
sess, which identifies the session that should provide the metagraph’s variables.

After you’ve added metagraphs to a SavedModel, you can store the SavedModel by
calling the save method. This accepts an as_text parameter that identifies
whether the protocol buffer should be saved as a text file (*.pbtxt) or a binary file
(*.pb). By default, save stores metagraph data in a binary file.

Loading a SavedModel
While it’s complex to save metagraphs to a SavedModel, it’s easy to load them.
You need to know only one function:

tf.saved_model.loader.load(sess, tags, export_dir, **saver_kwargs)

This loads the MetaGraphDef protocol buffer from the directory given by export_
dir with the tags given by tags. The sess parameter identifies the session that
should contain the metagraph’s variables, assets, and signatures.

Putting Theory into Practice
When I started learning TensorFlow, I found training difficult to understand. In
addition to the theory, there are many new concepts to deal with, such as vari-
ables, optimizers, and placeholders.

To clarify how training works, I provide ch5/simple_train.py in the example
code. The application is so simple that it doesn’t even bother to formulate a model.
Instead, it computes the loss with a simple quadratic equation: x x2 4 5.
Figure 5-4 shows what this looks like.

As shown in Figure 5-4, the loss reaches a global minimum when x_var equals 2.
Therefore, the optimizer’s goal is to update x_var until it equals 2. The code in
Listing 5-1 shows how you can accomplish this goal in TensorFlow.

CHAPTER 5 Training 87

FIGURE 5-4:
The loss reaches

a minimum when
x equals 2.

LISTING	5-1:	 Training in TensorFlow

Define a trainable variable

x_var = tf.Variable(0., name='x_result')

Define an untrainable variable to hold the global step

step_var = tf.Variable(0, trainable=False)

Express loss in terms of the variable

loss = x_var * x_var - 4.0 * x_var + 5.0

Find variable value that minimizes loss

learn_rate = 0.1

num_epochs = 40

optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss, global_

step=step_var)

Initialize variables

init = tf.global_variables_initializer()

Create the saver

saver = tf.train.Saver()

Create summary data and FileWriter

summary_op = tf.summary.scalar('x', x_var)

file_writer = tf.summary.FileWriter('log', graph=tf.get_default_graph())

 (continued)

88 PART 1 Getting to Know TensorFlow

Launch session

with tf.Session() as sess:

 sess.run(init)

 for epoch in range(num_epochs):

 _, step, result, summary = sess.run([optimizer, step_var, x_var,

summary_op])

 print('Step %d: Computed result = %f' % (step, result))

 # Print summary data

 file_writer.add_summary(summary, global_step=step)

 file_writer.flush()

 # Store variable data

 saver.save(sess, os.getcwd() + '/output')
 print('Final x_var: %f' % sess.run(x_var))

This code creates two variables: a trainable variable named x_var and an untrain-
able variable named step_var. loss is set to a quadratic equation whose indepen-
dent variable is x_var.

The application calls tf.global_variables_initializer to obtain an operation
for initializing its variables. The session must execute this operation before it can
train the variables in the optimization process.

After creating the variables, the application creates a GradientDescentOptimizer
and calls its minimize method to reduce the loss to a minimum. Then it assigns
the global_step parameter of minimize to step_var. This assignment tells the
session to increment step_var each time it performs a training operation.

After each training operation, print displays the global step and the current value
of x_var. As training continues, x_var approaches 2, the point of minimum
loss. Similarly, step_var approaches 40 because the training loop performs
40 iterations.

When optimization is complete, the application stores its variables to a file. The
save method of the Saver instance stores variable data to three files in the current
directory: output.data-00000-of-00001, output.index, and output.meta.

The code in ch5/restore_vars.py loads the value of x_var from the new data
files. Listing 5-2 presents the code.

LISTING	5-1:	 (continued)

CHAPTER 5 Training 89

LISTING	5-2:	 Loading Variables from a File

Create session

with tf.Session() as sess:

 # Load stored graph into current graph

 saver = tf.train.import_meta_graph('output.meta')

 # Restore variables into graph

 saver.restore(sess, os.getcwd() + '/output')

 # Display value of variable

 print('Variable value: ', sess.run('x_result:0'))

It’s important to see that this code doesn’t create a Saver by calling the class’s
constructor. Instead, it obtains a Saver by calling import_meta_graph with the
name of the file containing graph data.

After obtaining the Saver, the application obtains the variable’s value by calling
the Saver’s restore method and the session’s run method. Even though the vari-
able’s name was x_var, the application calls run with x_output:0 because the
variable’s name parameter was set to x_output.

Visualizing the Training Process
The ch5/simple_train.py application prints the loss at each step using the fol-
lowing code:

print("Step %d: Computed result = %f" % (step, result))

TensorFlow provides a better way to monitor training. Chapter 4 covers the
 TensorBoard utility, which reads summary data generated by an application. The
code in ch5/simple_train.py generates summary data for training by perform-
ing four steps:

1. Call tf.summary.scalar to create an operation that writes x_var to
summary data.

2. Call tf.summary.FileWriter to create a FileWriter.

3. Execute the session with the operation from Step 1.

4. With each session execution, print the summary data by calling the
FileWriter’s add_summary method.

90 PART 1 Getting to Know TensorFlow

For the last step, the following code prints the summary data:

file_writer.add_summary(summary, global_step=step)

The global_step parameter is important to understand. This parameter changes
from step to step, and it tells TensorBoard to display a different value at each step.
Figure 5-5 presents TensorBoard’s output for the variable as training proceeds.

In this example, the loss is so simple that the optimizer converges gently to the
minimum when x equals 2. In real-world applications, the optimization process is
never as smooth. Thankfully, TensorBoard can illustrate what’s happening in the
training process.

Session Hooks
After you understand how to save variables and generate summary data, you’re
ready to learn how to automate these operations with session hooks. Session
hooks make it possible to monitor a session’s state, access a session’s data, and
execute code at different points in the session’s execution. To use session hooks,
you need to perform two steps:

1. Create one or more SessionRunHook instances.

2. Create a MonitoredSession and configure it with the session hooks.

FIGURE 5-5:
TensorBoard

illustrates training
by displaying

variable values at
each step.

CHAPTER 5 Training 91

This discussion presents both steps. I also present code that demonstrates how
these steps can be performed in practice.

Creating a session hook
To monitor a session’s operation, you need to create a custom subclass of
SessionRunHook or instantiate an existing subclass provided in the tf.train
package. I refer to an instance of SessionRunHook or one of its subclasses as a
session hook. To explain this topic, I present the methods of the SessionRunHook
class and then introduce the subclasses provided by TensorFlow.

Life-cycle methods of SessionRunHook
When you associate a session hook with a session, the application calls the hook’s
methods at different stages in the session’s life-cycle. To be specific, the applica-
tion calls five methods of the SessionRunHook class:

 » begin(): Called when the session is created

 » after_create_session(session, coord): Called when the session’s graph
is finalized

 » before_run(run_context): Called before the associated session starts
executing

 » after_run(run_context, run_values): Called after the associated session
starts executing

 » end(session): Called at the end of the session

It’s important to see the difference between begin and after_create_session.
An application calls begin immediately after the session has been created. At this
point, you can access and modify the session’s graph. But when the application
calls after_create_session, the graph’s structure is finalized and can’t be
changed.

The before_run and after_run methods both provide a run_context parameter.
This is an instance of SessionRunContext, and it provides four members:

 » session: The associated session

 » original_args: A SessionRunArgs that contains the arguments of the
session’s run method

 » stop_requested: A bool that identifies whether a stop is requested

 » request_stop(): Tells the session to stop

92 PART 1 Getting to Know TensorFlow

If you want a session hook to read a value from the session’s graph, you can code
before_run to return a SessionRunArgs instance. You need to set the first argu-
ment of the SessionRunArgs constructor to the name of the variable or tensor to
access.

If you added a return value to before_run, you can obtain the desired variable(s)
or tensor(s) through the run_values argument of the after_run method. This
SessionRunValues object has three fields:

 » results: The value(s) accessed by the return value of before_run

 » options: The RunOptions object used to configure the session’s execution

 » run_metadata: The RunMetadata object containing information about the
session’s execution

This relationship between before_run and after_run can be confusing. To clarify
how the two methods work together, the following code creates a subclass of
SessionRunHook that prints information before and after the session runs.

class CustomHook(tf.train.SessionRunHook):

 def before_run(self, run_context):

 print("First argument: ", run_context.original_args.fetches);

 return tf.train.SessionRunArgs(loss)

 def after_run(self, run_context, run_values):

 print("Loss: ", run_values.results);

In this code, before_run returns a SessionRunArgs that identifies the name of
the loss variable. When after_run is called, the results field of the run_values
argument contains the current value of loss.

Subclasses of SessionRunHook
You can create your own subclasses of SessionRunHook and add code for different
life-cycle methods. But in most cases, it’s easier to instantiate an existing
subclass. Table 5-2 presents the constructors of each session hook class in the tf.
train package.

The first three session hook classes automate the processes of logging messages,
saving variables, and generating summary data. You can specify how often the
operation should be performed by setting a training step interval (every_n_iter
or n_steps) or the time interval (every_n_secs or n_secs). Naturally, you can’t
set both types of intervals in the same method.

CHAPTER 5 Training 93

A StepCounterHook tells you about the session’s performance by showing how
many training steps are performed in the given time interval. To provide output,
it generates summary data using a summary writer. In contrast, a StopAt
StepHook tells the session to stop at a given global step value or after a specified
number of training steps.

Creating a MonitoredSession
A MonitoredSession isn’t a Session, but it contains a Session instance and pro-
vides methods for interacting with the session. For example, you can launch a
MonitoredSession’s session by calling run and close the session by calling close.

To create a MonitoredSession, you need to call its constructor:

MonitoredSession(session_creator=None, hooks=None, stop_grace_period_secs=120)

TABLE 5-2	 Session Hook Classes
Class Description

LoggingTensorHook(tensors, every_n_iter=None, every_n_
secs=None, at_end=False, formatter=False)

Logs values of a tensor after a
given number of steps or after a
given time

CheckpointSaverHook(checkpoint_dir, save_secs=None,
save_steps=None, saver=None, checkpoint_
baseline='model.ckpt’, scaffold=None, listeners=None)

Saves data to a checkpoint after a
given number of steps or after a
given time

SummarySaverHook(save_steps=None, save_secs=None,
output_dir=None, summary_writer=None, scaffold=None,
summary_op=None)

Generates summary data after a
given number of steps or after a
given time

StepCounterHook(every_n_steps=100, every_n_secs=None,
output_dir=None, summary_writer=None)

Counts the number of steps
per second

StopAtStepHook(num_steps=None, last_step=None) Tells the session to stop after a
number of steps have executed or
a specific step has been reached

NanTensorHook(loss_tensor, fail_on_nan_loss) Stops training if loss equals NaN

GlobalStepWaiterHook(wait_until_step) Delays execution until the global
step reaches a given value

FinalOpsHook(final_ops, final_ops_feed_dict=None) Evaluates tensors at the end
of a session

FeedFnHook(feed_fn) Runs the given function and sets
the session’s feed dict

94 PART 1 Getting to Know TensorFlow

The first parameter is a SessionCreator instance, which configures the underly-
ing session. TensorFlow provides two subclasses of SessionCreator: ChiefSes-
sionCreator and WorkerSessionCreator. The terms chief and worker refer to
different types of processes in distributed applications.

You can associate session hooks with a MonitoredSession by setting the hooks
parameter to a list of session hooks. The last parameter, stop_grace_period_
secs, sets the number of seconds that a session thread can continue executing
after an application calls close.

The MonitoredSession class also provides a method called should_stop. Appli-
cations frequently employ this method to determine whether the session should
continue running. A session hook can stop a session through its request_stop
method, which calls the monitored session’s should_stop method. The following
code demonstrates how should_stop can be used:

with tf.train.MonitoredSession(hooks=[custom_hook]) as sess:

 while not sess.should_stop():

 sess.run(...)

This should_stop method becomes particularly important for distributed
 TensorFlow applications. I discuss distributed applications and their sessions in
Chapter 13.

Putting theory into practice
The code in the ch5/monitor_train.py module performs the same training oper-
ation as in the ch5/simple_train.py module. The difference is that monitor_
train.py uses session hooks to save variables and generate summary data.
Listing 5-3 presents the code.

LISTING	5-3:	 Monitoring a Session with Session Hooks

Custom session hook

class CustomHook(tf.train.SessionRunHook):

 def begin(self):

 print('Beginning the session!')

 def before_run(self, run_context):

 return tf.train.SessionRunArgs(loss)

CHAPTER 5 Training 95

 def after_run(self, run_context, run_values):

 if run_context.original_args != 'init':

 print('Loss: ', run_values.results)

 def end(self, session):

 print('The session is about to end!')

Define a trainable variable

x_var = tf.Variable(0., name='x_result')

Define an untrainable variable to hold the global step

step_var = tf.train.create_global_step()

Express loss in terms of the variable

loss = x_var * x_var - 4.0 * x_var + 5.0

Find variable value that minimizes loss

learn_rate = 0.1

num_epochs = 40

optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss,

global_step=step_var)

Initialize variables

init = tf.global_variables_initializer()

Create summary operation

summary_op = tf.summary.scalar('x', x_var)

Create hooks

custom_hook = CustomHook()

checkpoint_hook = tf.train.CheckpointSaverHook(checkpoint_dir='ckpt_dir',

 checkpoint_basename='output', save_steps=10)

summary_hook = tf.train.SummarySaverHook(save_steps=10, output_dir='log',

summary_op=summary_op)

hooks = [custom_hook, checkpoint_hook, summary_hook]

Launch session

with tf.train.MonitoredSession(hooks=hooks) as sess:

 sess.run(init)

 for epoch in range(num_epochs):

 sess.run(optimizer)

96 PART 1 Getting to Know TensorFlow

This module creates three session hook instances:

 » CustomHook: Prints messages at different points in the session’s execution

 » CheckpointSaverHook: Saves checkpoint data to a directory named
ckpt_dir

 » SummarySaverHook: Saves summary data to a directory named log

After creating the session hooks, the module creates a MonitoredSession and
configures it with the three hook instances. Then it initializes the session’s vari-
ables and optimizes the model.

2Implementing
Machine
Learning

IN THIS PART . . .

Explore different types of statistical regression, including
linear regression, polynomial regression, and logistic
regression.

Learn about perceptrons and neural networks, which
consist of interconnected nodes.

Understand the theory of image processing and
convolutional neural networks (CNNs), which make it
possible to recognize images.

Explore the theory of recurrent neural networks (RNNs)
and use them to analyze sequential data.

CHAPTER 6 Analyzing Data with Statistical Regression 99

Chapter 6
Analyzing Data with
Statistical Regression

Everybody knows that machine learning is a fast-paced, exciting field for
clever, future-minded people, and everybody knows that statistics is a
 boring, stodgy field for people who enjoy Muzak. So newcomers may find it

odd to see a chapter on statistical analysis in a book on machine learning.

But machine learning and statistics have a lot in common. In fact, they have the
same ultimate goal: to model real-world systems with mathematical relation-
ships. Machine learning relies extensively on statistical methods, and this chapter
presents three methods that play critical roles in TensorFlow development: linear
regression, polynomial regression, and logistic regression. In addition, the exam-
ple code in this chapter solidifies the manner in which TensorFlow applications
perform training.

IN THIS CHAPTER

 » Identifying trends with linear and
polynomial regression analysis

 » Classifying points with logistic
regression analysis

 » Modeling systems with the logistic
and softmax functions

 » Computing loss with log likelihood
and cross entropy

100 PART 2 Implementing Machine Learning

Analyzing Systems Using Regression
One of the most effective tools used by statisticians is regression. Regression ana-
lyzes a system by measuring the relationships between its variables. TensorFlow
provides many capabilities for this analysis, and this chapter focuses on four types
of regression:

 » Linear regression: Fitting a straight line to points in a dataset

 » Polynomial regression: Fitting a polynomial to points in a dataset

 » Binary logistic regression: Classifying points into one of two categories

 » Multinomial logistic regression: Classifying points into one of multiple
categories

The following sections explore these simple operations.

Linear Regression: Fitting Lines to Data
Searching through your grandfather’s attic, you find a mint condition first issue
of Commander Warpspeed’s Journey into Space! This rare comic book may be worth
many thousands of dollars, so you decide to sell it. But how much should you ask
for it?

An online search provides 40 selling prices that range from less than $5,000 to
more than $10,000. Figure 6-1 illustrates these prices on a chart.

Computing the average selling price would be easy, but you want to know whether
the price is rising or falling and by how much the price is rising or falling. To find
a good selling price, you decide to approximate your data with a line that indicates
the change in the book’s price over time. This process is called linear regression,
and the dashed gray line in Figure 6-1 identifies the general trend of the comic
book’s price.

The first step in TensorFlow training involves choosing an initial expression for
the model (see Chapter 5). For linear regression, this decision is easy. The model
is a line whose equation is y mx b, where m is the line’s slope, and b is the
y-intercept (the y-value when x equals 0). The goal of linear regression is to deter-
mine m and b so that the resulting line best approximates (or fits) the set of points.

The loss is also simple to compute. If the graph contains the point (x, y), the
 difference between the system and the model is y mx b .

CHAPTER 6 Analyzing Data with Statistical Regression 101

In machine learning applications, values of the loss should always have the same
sign. You can make sure all the loss values are positive by computing the square of
the error at each point and take the average of the error values. If there are N
points, you can compute the loss with the following equation:

loss
N

y mx b
i

N1 2

0

1

This method of computing loss is called the mean-squared error, or MSE. In Ten-
sorFlow, you can compute it by calling the reduce_mean function. The following
code shows how this function is used:

model = tf.add(tf.multiply(m, x), b)
loss = tf.reduce_mean(tf.pow(model - y, 2))

Having obtained an expression for the loss, the next step is to create an optimizer
to minimize the loss. As the optimizer does its work, it will update the variables m
and b, thereby obtaining a line that best approximates the change in the comic
book’s price over time.

To demonstrate this, the following code creates an optimizer, sets its learning rate
to 0.1, and calls its minimize method:

optimizer = tf.train.GradientDescentOptimizer(0.1)
opt_op = optimizer.minimize(loss)

minimize returns an operation that you can use as the first argument of the ses-
sion’s run method (see Chapter 5). Note that you must call run repeatedly to
ensure that the training converges to suitable values for m and b.

FIGURE 6-1:
The comic book’s

value increases
over time.

102 PART 2 Implementing Machine Learning

In the ch6 folder, lin_regression.py contains code that demonstrates how you
can perform linear regression in TensorFlow. Listing 6-1 presents the code.

LISTING 6-1: Linear Regression

Random input values

N = 40

x = tf.random_normal([N])

m_real = tf.truncated_normal([N], mean=2.0)

b_real = tf.truncated_normal([N], mean=3.0)

y = m_real * x + b_real

Variables

m = tf.Variable(tf.random_normal([]))

b = tf.Variable(tf.random_normal([]))

Compute model and loss

model = tf.add(tf.multiply(x, m), b)

loss = tf.reduce_mean(tf.pow(model - y, 2))

Create optimizer

learn_rate = 0.1

num_epochs = 200

num_batches = N

optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Perform training

 for epoch in range(num_epochs):

 for batch in range(num_batches):

 sess.run(optimizer)

 # Display results

 print('m = ', sess.run(m))

 print('b = ', sess.run(b))

This module sets the number of batches equal to the number of input points. The
training process executes 200 epochs, and each epoch performs 40 training steps.

CHAPTER 6 Analyzing Data with Statistical Regression 103

Polynomial Regression: Fitting
Polynomials to Data

You can easily extend the method of linear regression to polynomials. That is, the
process of fitting a polynomial to a set of points uses essentially the same process
as that used to fit a line.

To demonstrate, I explain how you can approximate data with a cubic polynomial.
You can express every cubic polynomial with the following equation:

y ax bx cx d3 2

Figure 6-2 illustrates how you can fit a cubic polynomial to a set of random points.

The code in ch6/poly_regression.py uses TensorFlow to fit a cubic polynomial
to a set of random points. If you compare this code to the code in ch6/lin_
regression.py, you’ll see that the two modules closely resemble one another.
The most important difference involves the expression for the model, which is
computed as follows:

model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d

To obtain an expression for the loss, the module uses the same mean-squared
error process that was used for linear regression. (See the section “Linear
 Regression: Fitting Lines to Data.”) To minimize the loss, the module creates the
same type of optimizer (GradientDescentOptimizer) used for linear regression.
The code in Listing 6-2 shows how to do so.

FIGURE 6-2:
Statistical

regression makes
it possible

to approximate
data with a

polynomial.

104 PART 2 Implementing Machine Learning

LISTING 6-2: Polynomial Regression

Random input values

N = 40

x = tf.random_normal([N])

a_real = tf.truncated_normal([N], mean=3.)

b_real = tf.truncated_normal([N], mean=-2.)

c_real = tf.truncated_normal([N], mean=-1.)

d_real = tf.truncated_normal([N], mean=1.)

y = a_real * tf.pow(x, 3) + b_real * tf.pow(x, 2) + c_real * x + d_real

Variables

a = tf.Variable(tf.random_normal([]))

b = tf.Variable(tf.random_normal([]))

c = tf.Variable(tf.random_normal([]))

d = tf.Variable(tf.random_normal([]))

Compute model and loss

model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d
loss = tf.reduce_mean(tf.pow(model - y, 2))

Create optimizer

learn_rate = 0.01

num_epochs = 400

num_batches = N

optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Perform training

 for epoch in range(num_epochs):

 for batch in range(num_batches):

 sess.run(optimizer)

 # Display results

 print('a = ', sess.run(a))

 print('b = ', sess.run(b))

 print('c = ', sess.run(c))

 print('d = ', sess.run(d))

You can apply the methodology used in poly_regression.py to polynomials of
any degree. All you need to do is set the model to the general polynomial and cre-
ate a variable for each of the polynomial’s coefficients.

CHAPTER 6 Analyzing Data with Statistical Regression 105

Binary Logistic Regression: Classifying
Data into Two Categories

While linear and polynomial regression are concerned with identifying trends,
logistic regression is concerned with placing data points into categories. If Points
A and B belong to Category X and Points P and Q belong to Category Y, what cate-
gory will Point J belong to?

The following sections look at systems with only two categories. Is the patient
healthy or sick? Will the operation succeed or fail? This process of modeling sys-
tems with two categories is called binary logistic regression.

Setting up the problem
Binary logistic regression is concerned with testing the effect of one or more vari-
ables on a binary outcome. If patients take a new medication, will their symptoms
disappear? If a candidate wears a red tie and blue pants on election day, will the
public vote for that person?

To demonstrate the process of binary logistic regression, this discussion focuses
on a question of obvious importance: How does the volume of my alarm clock
affect my getting out of bed in the morning? I’m such a heavy sleeper that if the
alarm doesn’t sound, I’ll lie in bed forever. But as the volume increases, the prob-
ability of me getting out of bed increases.

To examine the relationship between the alarm volume and my getting out of bed,
I set my alarm to ring a different volume every morning for 40 days. Figure 6-3
illustrates the relationship between the alarm volume and my getting out of bed.

To model this mathematically, statisticians represent each category with a num-
ber. In this example, I associate Category 1 (Get Out of Bed) with 1 and Category 0
(Stay Asleep) with 0.

But I don’t want the output to be limited to 0 and 1. I want a value between 0 and
1 that identifies the probability of me getting out of bed. This concept is important
to understand: When you code applications that perform classification, the theory
of probability takes center stage. This discussion doesn’t provide a complete dis-
cussion of the subject, but I’ll explain the math as it becomes necessary.

It should be clear that linear and polynomial regression won’t help with this prob-
lem because their models produce values beyond 0 and 1. Also, straight lines and
polynomials are too simplistic for practical classification.

106 PART 2 Implementing Machine Learning

To classify data points, statisticians employ a different type of regression called
logistic regression. Just as linear regression models systems with a line and polyno-
mial regression uses a polynomial, logistic regression employs a type of curve
called the logistic function.

Defining models with the logistic function
The logistic function plays a central role in applications that classify data points.
Mathematicians express the logistic function with the following equation:

x
e x
1

1

Figure 6-4 shows what the logistic function looks like for values of x between 8
and -8:

This function is shaped like an S, and because sigma () is the Greek letter for S,
this function is commonly referred to as the sigmoid function, or (x). This func-
tion has three properties that make it suitable for classifying points into one of
two categories:

 » Its maximum value is 1, and the minimum value is 0.

 » 0 = 0.5, which implies that a data point in the center is equally likely to
belong to both categories.

 » The function is symmetric around the y-axis — that is, (-x) = 1 - (x).

FIGURE 6-3:
As the volume
increases, the
chances of my

waking up
increase.

CHAPTER 6 Analyzing Data with Statistical Regression 107

Having selected the logistic function, you can approximate the system with the
model function mx b . As with linear regression, the goal is to find values for
m and b that bring the model as closely in line with real-world observation as
possible.

The next step is to find an expression for the loss. One possible method is to use
the mean-squared error (see the earlier sections on linear and polynomial regres-
sion). But there’s a problem. The slope of the sigmoid function is nearly 0 at its
extremes, which means gradient descent method will take a great deal of time to
minimize the loss.

For this reason, applications that classify data points put aside mean-squared
error and compute loss using a different method called maximum likelihood
estimation.

Computing loss with maximum
likelihood estimation
The goal of binary logistic regression is to obtain the sigmoid function that best
approximates the available data. This function identifies the approximate proba-
bility of a point being classified in Category 1.

But what about the probability of a point being classified in Category 0? There are
only two categories, so if we denote the probability of Category 1 as mx b , the
probability of Category 0 is 1 - mx b . For the sake of simplicity, I’ll refer to
the model function, mx b , as h(x).

FIGURE 6-4:
The result of the
logistic function

always lies
between 0 and 1.

108 PART 2 Implementing Machine Learning

Here’s a strange but important question: If I know in advance whether I’m going
to wake up or not, what is the probability that my alarm has rung at a specific
volume? Denoting my sleeping/waking state as yi (y0 = 0, y1 = 1) and the alarm
volume as x, you can express the relationship as follows:

L y h x h xi
y yi i

1
1

This equation expresses the likelihood of yi, and given its significance in classifica-
tion, you’ll want to be comfortable with it. Consider these two extreme cases:

 » If h(x) represents the system perfectly, h(x) will equal 1 when yi equals 1 and
h(x) will equal 0 when yi equals 0. This means L(yi) will always equal 1.

 » If h(x) is always wrong, h(x) will always equal 0 when yi equals 1 and h(x) will
always equal 1 when yi equals 0. This means L(yi) will always equal 0.

In general, a likelihood function will produce a value somewhere between 0 and 1.
The greater the likelihood, the more closely the model, h(x), resembles the
system. The process of maximizing the likelihood is called maximum likelihood
estimation. It should be clear that maximizing the likelihood minimizes the loss.

To simplify computation, statisticians take the logarithm of the likelihood. After
this step, the maximum likelihood estimation method is referred to as the log like-
lihood method.

TensorFlow’s optimizers work by minimizing loss. But when dealing with likeli-
hood, the goal is to obtain greater values, not smaller values. To fix this issue,
statisticians negate the expression for log likelihood. The resulting expression for
the loss is given as follows:

loss y h x y h xi ilog log1 1

This and similar expressions are commonly used in binary logistic regression. The
following section demonstrates how the logistic function and log likelihood can be
used in practical code.

Putting theory into practice
The code in ch6/binary_logistic.py uses TensorFlow to perform binary logistic
regression. Listing 6-3 presents the code.

CHAPTER 6 Analyzing Data with Statistical Regression 109

LISTING 6-3: Binary Logistic Regression

Input values

N = 40

x = tf.lin_space(0., 5., N)

y = tf.constant([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

 1., 0., 0., 1., 0., 0., 0., 1., 0., 0.,

 1., 0., 1., 1., 1., 1., 1., 1., 1., 1.,

 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

Variables

m = tf.Variable(0.)

b = tf.Variable(0.)

Compute model and loss

model = tf.nn.sigmoid(tf.add(tf.multiply(x, m), b))

loss = -1. * tf.reduce_sum(y * tf.log(model) + (1. - y) * (1. - tf.log(model)))

Create optimizer

learn_rate = 0.005

num_epochs = 350

optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Run optimizer

 for epoch in range(num_epochs):

 sess.run(optimizer)

 # Display results

 print('m =', sess.run(m))

 print('b =', sess.run(b))

This module accepts the data points in Figure 6-3 as input and computes values
of m and b that best fit the data to the model function mx b . Figure 6-5
depicts the computed model function superimposed over the training data.

On my system, the computed values are m = 4 and b = -13.5. mx + b equals 0 when
x = 3.375, so the center of the sigmoid function is reached when the volume is set
to 3.375.

110 PART 2 Implementing Machine Learning

Multinomial Logistic Regression:
Classifying Data into Multiple Categories

Many machine learning applications need to classify points into more than two
categories. This process is called multinomial logistic regression, and it resembles
binary logistic regression in many respects. The primary difference is that it uses
different functions to represent the model and loss.

To present this topic, I explain how you can use TensorFlow to recognize hand-
writing samples from the Modified National Institute of Science and Technology
(MNIST) dataset. Each image contains a handwritten digit that belongs to one of
ten categories.

The Modified National Institute of Science
and Technology (MNIST) Dataset
To test machine learning applications, the National Institute of Standards and
Technology (NIST) compiled a set of handwriting samples of numbers between 0
and 9. Yann LeCun created a subset of NIST’s images called the Modified NIST
(MNIST) database.

Unlike NIST’s samples, MNIST’s samples all have the same size and are all cen-
tered into 28-x-28 images. Each pixel is given as an unsigned byte between 0
(white) and 255 (black). Each image has a corresponding label that identifies the
handwritten digit (0 through 9).

FIGURE 6-5:
After training, the
sigmoid function

approximates the
experimental

data.

CHAPTER 6 Analyzing Data with Statistical Regression 111

To run the multinomial logistic regression example, you need to download the
MNIST dataset from http://yann.lecun.com/exdb/mnist. Four files are
available:

 » train-images-idx1-ubyte.gz — Training images

 » train-images-idx3-ubyte.gz — Training labels

 » t10k-labels-idx1-ubyte.gz — Test images

 » t10k-images-idx3-ubyte.gz — Test labels

The training labels and test labels identify the digits written in the corresponding
images. For example, the sixth label in the training dataset is 8. Figure 6-6 shows
what the sixth image in the training dataset looks like.

If you decompress an MNIST file, you’ll see that each file stores its data in a single
data structure. Thankfully, you don’t need to know anything about these struc-
tures because TensorFlow makes accessing MNIST data easy. The function to
know is read_data_sets, which is provided by the tensorflow.contrib.learn.
datasets.mnist package:

read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32,

reshape=True, validation_size=5000, seed=None)

When this function executes, it searches for the four MNIST archives in the direc-
tory identified by the train_dir parameter. If any of the files can’t be found,
read_data_sets will download them, decompress them, and store them in the
specified folder.

FIGURE 6-6:
Each MNIST

image contains a
handwritten digit
in a 28-x-28 pixel

array.

http://yann.lecun.com/exdb/mnist

112 PART 2 Implementing Machine Learning

To understand the other arguments of read_data_sets, it’s important to be
familiar with the function’s return value, which is an instance of the Datasets
class. Each Datasets instance has three fields:

 » train — a Dataset containing the MNIST training data

 » validation — a Dataset containing validation data

 » test — a Dataset containing data to be used for testing

Appropriately enough, each field of a Datasets instance is an instance of the
Dataset class. Table 6-1 lists four members of this class and provides a descrip-
tion of each.

The first three fields are straightforward. The following code calls read_data_
sets, and for each field, it prints the shape of the corresponding image array:

import tensorflow.contrib.learn as learn

dset = learn.datasets.mnist.read_data_sets('MNIST-data')
print("Training images: ", dset.train.images.shape)
print("Validation images: ", dset.validation.images.shape)
print("Test images: ", dset.test.images.shape)

On my system, the printed results are given as follows:

Training images: (55000, 784)
Validation images: (5000, 784)
Test images: (10000, 784)

TABLE 6-1 Members of the Dataset Class
Function Description

images ndarray of images given as numpy arrays

labels ndarray of category names for the images

num_examples The number of examples in the dataset

next_batch(batch_size, fake_
data=False, shuffle=True)

Returns the next batch of images

CHAPTER 6 Analyzing Data with Statistical Regression 113

If you set one_hot to True in read_data_sets, the labels field of the resulting
Dataset will contain one-hot vectors. A one-hot vector is a one-dimensional array
in which one element’s value is high, and the rest are low. By default, the high
value is 1, and the low value is 0. If the one_hot parameter is set to True, each label
will be provided as a one-hot vector with ten elements: a 1 in the position that
identifies the digit and a 0 in every other position.

The next_batch method of the Dataset class provides MNIST data in batches. The
first argument sets the size of each batch, the second argument identifies whether
fake data should be generated, and the last argument indicates whether the MNIST
data should be shuffled.

Defining the model with the
softmax function
You can use the sigmoid function to classify points into two categories. (See the
section “Defining models with the logistic function” for more information.) If a
system (such as MNIST classification) has more than two categories, the sigmoid
function won’t be sufficient.

Instead, statisticians use an operation that can accept an array of values and
return an array of values. This is the softmax function, which extends the sigmoid
function to multiple variables. The jth term of the softmax function is denoted by

x
j
, and if the input array contains N terms, you can compute the softmax

function of xj with the following equation:

x e

e
j

x

x

i

N

j

i

0

1

When using this function, you need to be aware of two points:

 » Each value in the output array lies between 0 and 1.

 » The sum of the values in the output array will always equal 1.

In TensorFlow, you can perform the softmax operation by calling the softmax
function in the tf.nn package:

softmax(input, dim=-1, name=None)

By default, every element of the input tensor is added together in the denominator
of the softmax function. But if you set the dim parameter, only the values in the
specified dimension will be included in the sum.

114 PART 2 Implementing Machine Learning

An example will clarify how this function works. If the input tensor is [3.2, -2.6,
1.7, 0.0, 4.9], calling softmax will return a 5-element tensor equal to [0.14835,
0.00045, 0.03310, 0.00605, 0.81205]. You can compute the first softmax value in
the following way:

x e

e

e
e e e e e

x

x

i

i
0

0

4

3 2

3 2 2 6 1 7 0 4 9

0

0 14835
.

. . . .
.

Each of the N values identifies the probability of the data point belonging to the
corresponding category. The probability of the point belonging to Category 0 is
0.14835.

Computing loss with cross entropy
If h(x) is a model and yi identifies a category, you can compute the likelihood of yi
for a given value of x in the following way:

L y h x h xi
y yi i

1
1

The concept of likelihood can be extended to systems with more than two out-
comes. If a classifier has to choose between N categories, yi can take any value
between 0 and N-1. If the model is given as h(x), you can express the likelihood
with the following equation:

L y y y h x h x h x h xN
y y y y

i

N
N i

0 1 1
0

1
0 1 1, ,K L

Again, the likelihood will equal 1 if h(x) is always right, and it will equal 0 if h(x)
is always wrong. To convert the likelihood into a suitable loss function, statisti-
cians take the negative logarithm and arrive at the following expression:

loss y h xi
i

N

log
0

1

In machine learning literature, this result is referred to as cross entropy. This term
comes from information theory, and it refers to the usage of logarithms to deter-
mine how many bits should be used to represent messages. The following code
defines a model by calling tf.nn.softmax and then computes the loss using cross
entropy.

model = tf.nn.softmax(tf.matmul(x, m) + b)
loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(model))

CHAPTER 6 Analyzing Data with Statistical Regression 115

For improved performance, TensorFlow provides a function that combines the
softmax function and cross entropy. This function is tf.nn.softmax_cross_
entropy_with_logits and its signature is given as follows:

softmax_cross_entropy_with_logits(labels=None, logits=None, dim=-1, name=None)

You must identify each argument passed to this function by name. logits is set to
the tensor that would be passed to softmax, and labels is set to a tensor contain-
ing the associated labels. logits and labels must have the same size.

TensorFlow also provides a function that combines the sigmoid function and cross
entropy: sigmoid_cross_entropy_with_logits. Its signature is given as follows:

sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None,
logits=None, name=None)

labels and logits accept the same values as the corresponding arguments of
softmax_cross_entropy_with_logits.

Putting theory into practice
The code in ch6/multi_regression.py demonstrates how you can use multino-
mial regression to load and classify images from the MNIST dataset. Listing 6-4
presents the code.

LISTING 6-4: Multinomial Logistic Regression

Read MNIST data

dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

Placeholders for MNIST images

image_holder = tf.placeholder(tf.float32, [None, 784])

label_holder = tf.placeholder(tf.float32, [None, 10])

Variables

m = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

Compute loss

loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=tf.matmul(image_holder, m) + b, labels=label_holder))
 (continued)

116 PART 2 Implementing Machine Learning

Create optimizer

learning_rate = 0.01

num_epochs = 25

batch_size = 100

num_batches = int(dataset.train.num_examples/batch_size)

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 image_batch, label_batch = dataset.train.next_batch(batch_size)

 _, lossVal = sess.run([optimizer, loss],

 feed_dict={image_holder: image_batch, label_holder: label_

batch})

 # Display the final loss

 print('Final loss: ', lossVal)

Instead of computing the model, this code computes the loss directly by calling
softmax_cross_entropy_with_logits. The last line of the code prints the final
value for the loss.

LISTING 6-4: (continued)

CHAPTER 7 Introducing Neural Networks and Deep Learning 117

Chapter 7
Introducing Neural
Networks and Deep
Learning

T
his chapter explains how neural networks operate and how to use them to
analyze data in TensorFlow applications.

From Neurons to Perceptrons
For many, the topic of neural networks conjures visions of artificial brains, omnis-
cient computers that predict the future, and other fixtures of science fiction. But
practitioners of machine learning take a more down-to-earth view: Neural net-
works are useful computational tools, but they’re not ideal for every application,
and they’re never completely reliable.

IN THIS CHAPTER

 » Exploring the development of neural
networks

 » Looking at perceptrons, multilayer
perceptrons (MLPs), and deep
learning

 » Managing variables with scope

 » Demonstrating deep learning in a
TensorFlow application

118 PART 2 Implementing Machine Learning

Biology inspired the development of neural networks, but their essential opera-
tion is statistical in nature. Neural networks analyze data to discover mathematical
relationships between inputs and outputs. They should only be used as a last
resort — if you already have clear rules that relate outputs to input data, you
should use your rules instead.

It’s important to see the difference between the operation of a neural network and
statistical regression. When you use regression, you choose the precise shape of
the model. But when you analyze data with a neural network, you choose a general
shape for the model, and the network determines the details.

In my opinion, the best way to approach the topic of artificial neural networks is
to see how they relate to biological neurons. This section explores the basic struc-
ture of neurons and then proceeds to perceptrons, which serve as mathematical
abstractions of neurons.

Neurons
In the early 19th century, Santiago Ramón y Cajal took a close look at the cells that
make up nerve tissue. Scientists refer to these nerve cells as neurons, and Figure 7-1
illustrates their basic structure.

A neuron receives electrical stimulation through its dendrites and their branches.
The chemicals in the cell body store electricity, and as incoming signals grow in
strength, the neuron’s voltage increases.

FIGURE 7-1:
A nerve cell

receives incoming
signals through

its dendrites and
generates an

outgoing signal
that travels

through the axon.

CHAPTER 7 Introducing Neural Networks and Deep Learning 119

When the voltage in a neuron exceeds a certain value, called the threshold, the
neuron transmits (or fires) an electrical signal. This signal travels through the
axon and stimulates further neurons, as shown in Figure 7-1. In this manner, one
neuron’s firing may cause a series of other neurons to fire.

The study of neurons has progressed dramatically since the 19th century, and neu-
rologists know that neurons do far more than just pass electricity from one cell to
another. But for this chapter, you need to be familiar with only three points:

 » A neuron receives one or more incoming signals and produces one outgo-
ing signal.

 » A neuron’s output can serve as the input of another neuron.

 » Every neuron has a threshold, and the neuron won’t produce output until its
electricity exceeds the threshold.

If you understand these three points, you’ll have no trouble grasping the abstract
models of neurons.

Perceptrons
In 1962, Frank Rosenblatt devised a model for the neuron called the perceptron.
Figure 7-2 shows how a perceptron can be represented graphically.

Like a neuron, a perceptron receives multiple inputs and produces one output. But
a perceptron’s inputs are provided as numeric values instead of electrical pulses.
In Figure 7-2, these values are denoted x0 through x3.

FIGURE 7-2:
Perceptrons

resemble
neurons in many

respects.

120 PART 2 Implementing Machine Learning

Similarly, the perceptron’s threshold value is represented by a number. If the sum
of the inputs exceeds the threshold, the perceptron’s output will be 1. If the sum
of the signals falls below the threshold, the output will be 0.

For example, suppose that x0 is set to 0.5, x1 is set to 1.5, x2 is set to 2.5, and x3 is
set to -1.0. The sum of the signals is 3.5. If the perceptron’s threshold value is 3.0,
the perceptron will produce an output of 1. If the threshold value is 4.0, the per-
ceptron will produce an output of 0.

Denoting the inputs as xi and the output as y, a perceptron’s output can be deter-
mined by the following relationship:

y
xi

i

1

0

 if threshold

 otherwise

Like biological neurons, perceptrons can be connected together so that the output
of one perceptron serves as the input of another. Figure 7-3 shows what this looks
like. As shown, different perceptrons can have different numbers of inputs, but
each always produces one output.

Historians and academics may find these simple perceptrons interesting, but in
this primitive form, they can’t be used for practical machine learning. This is
because the perceptron’s operation is static — its behavior can’t be improved
through training.

FIGURE 7-3:
Perceptrons can

be combined
together in a tree-

like structure.

CHAPTER 7 Introducing Neural Networks and Deep Learning 121

Improving the Model
After Rosenblatt published his initial vision of the perceptron, computer scientists
updated his model in many ways. Three important changes are as follows:

 » Each incoming signal is assigned a weight that indicates its influence.

 » Instead of a threshold value, a constant called a bias is added to the incoming
signals.

 » The sum of weighted inputs is passed to an activation function that determines
the output.

These changes make neural networks suitable for machine learning. Modern
developers refer to the elements of these networks as nodes instead of perceptrons.

Weights
In Figures 7-2 and 7-3, every input has equal influence in determining the output.
But in a practical system, some inputs will have more influence than others on the
decision-making process. In addition, some signals may have a negative influence
on the outcome.

To reflect this unequal influence, computer scientists multiply each input by a
value called a weight. Graphically, weights are represented by numbers associated
with incoming connections. Figure 7-4 shows what a node looks like with weighted
inputs.

FIGURE 7-4:
Each input

entering a node
has an associated

weight.

122 PART 2 Implementing Machine Learning

To determine the total effect of the inputs, a node multiplies each input by its
weight and adds the products together. Then it compares the sum to its threshold.
If the sum is greater than the threshold, the node produces an output value equal
to 1. If not, the output value is 0.

Mathematically, weights are denoted as wi, where i represents the weight of the
ith input. Therefore, a node’s operation can be expressed in the following
relationship:

y
w xi i

i

1

0

 if threshold

 otherwise

For example, suppose that xi = {3.5, -1.0, 2.5, -0.5} and wi = {0.6, 1.2, 0.9, -0.2}.
The sum of the weighted inputs can be computed as follows:

w xi i
i

3 5 0 6 1 0 1 2 2 5 0 9 0 5 0 2 3 25.

If the perceptron’s threshold value is 4.0, the node will produce an output of 0
instead of 1.

Weights play a vital role in machine learning because they enable an application
to update the neural network’s behavior. As an application performs training, it
updates the weights to improve the model.

Bias
A node fires when the weighted sum of its inputs exceeds a given threshold. Put
another way, it produces positive output when the difference of the weighted sum
and the threshold is greater than zero.

Rather than deal with the threshold, developers frequently replace it with a con-
stant input called a bias. Figure 7-5 shows what a simple neural network looks like
with an added bias.

The bias receives a weight just like every other input. For this reason, it makes sense
to set the bias’s value to 1, which is why the lowest node on the left is given as +1.

This book assumes that every perceptron has a bias, which is the same as saying
that the threshold value equals zero. When I use terms like inputs or input data, you
should assume that a bias value is included. Therefore, a perceptron produces a
positive output when the weighted sum of its inputs is greater than zero.

CHAPTER 7 Introducing Neural Networks and Deep Learning 123

Activation functions
You can compute a node’s output with the following relationship:

y
w xi i

i

1

0

 if threshold

 otherwise

The following equation expresses the same relationship using a more compact
notation:

y u w xi i
i

Here, u(x) is called the unit step function. It returns 1 if its input is greater than 0
and returns 0 otherwise.

The unit step function is simple to understand, but it’s not practical for machine
learning. Computer scientists have devised many more suitable functions for pro-
ducing a perceptron’s output, and they’re called activation functions.

A node’s activation function accepts the weighted sum of the node’s inputs and
produces a single output value. In TensorFlow, an activation function accepts a
tensor of values and returns a tensor containing output values. Table 7-1 lists
seven of the activation functions supported by TensorFlow.

I like to divide these functions into two categories: rectifiers and classifiers. The
distinction is simple: If a node’s output identifies a category, set its activation
function to a classifier. Otherwise, set the node’s activation function to a rectifier.

FIGURE 7-5:
This node has a
constant input
called the bias.

124 PART 2 Implementing Machine Learning

Rectifier functions
In an electrical circuit, a rectifier accepts an input signal and transmits an equal
output signal if the input is positive. If the input signal is negative, the rectifier
transmits an output of zero.

The rectified linear unit function, or ReLU, performs a similar operation. It returns
the input if it’s positive and returns 0 otherwise. Put another way, the ReLU
 function returns the maximum of the input and 0.

In TensorFlow, applications can perform ReLU operations by calling tf.nn.relu.
Figure 7-6 illustrates the function’s output over a range of input values.

TABLE 7-1	 Activation Functions
Activation Function Description

tf.nn.relu(input, name=None) Returns the input value if positive, returns 0 otherwise

tf.nn.relu6(input, name=None) Returns the input value if positive, up to a maximum of 6. Returns
0 otherwise

tf.nn.crelu(input, name=None) Returns a concatenated tensor that separates the positive and
negative portions of the input

tf.nn.elu(input, name=None) Returns the input value if positive, returns the exponential of the
input otherwise

tf.nn.sigmoid(input, name=None) Returns 1/(1 + exp(-x))

tf.nn.tanh(input, name=None) Returns tanh(x)

tf.nn.softsign(input, name=None) Returns x/(abs(x) + 1)

FIGURE 7-6:
The rectified

linear unit
function (ReLU)

only passes
positive values.

CHAPTER 7 Introducing Neural Networks and Deep Learning 125

tf.nn.relu6 is similar to tf.nn.relu, but limits the maximum output to 6. This
limitation reduces the likelihood of a node overreacting to large inputs. Figure 7-7
illustrates the behavior of tf.nn.relu6.

tf.nn.crelu (Concatenated ReLU) produces an output tensor that is twice the
size of the input tensor. The first half of the output contains a regular ReLU result
(zero or positive input). The second half focuses on the negative part of the input
(negative input or zero).

The ELU in tf.nn.elu stands for Exponential Linear Unit. This activation function
returns the input value if it’s greater than zero. If the input is zero or less,
tf.nn.elu returns the exponential of the input minus one. Figure 7-8 shows what
this looks like:

FIGURE 7-7:
The tf.nn.relu6

function clamps
the node’s
maximum

output to 6.

FIGURE 7-8:
The Exponential

Linear Unit (ELU)
function

proceeds
 continuously

from positive to
negative values.

126 PART 2 Implementing Machine Learning

Unlike other rectifier functions, ELU is continuous at x = 0. According to Djork-
Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter at Johannes Kepler Uni-
versity, ELU provides faster learning than the regular ReLU function and better
generalization.

Classifier functions
Chapter 6 discusses the topic of logistic regression and introduces the logistic
function, better known as the sigmoid function. This function, which computes
1/(1 + exp(-x)), has a number of helpful properties that make it suitable for clas-
sifying points into categories. Figure 7-9 shows what tf.nn.sigmoid looks like.

Though popular, the sigmoid function has one significant shortcoming: Its output
ranges from 0 to 1. Because of this limited range, small changes in the input pro-
duce small changes in the output. In many cases, the differences in output may be
too small for digital computers to recognize.

To make up for this shortcoming, many developers prefer the tf.nn.tanh
 activation function, which computes the hyperbolic tangent (tanh). This function
has a similar shape to the sigmoid function, but ranges from -1 to 1. This means
that computers will be better able to recognize differences in output. Figure 7-10
shows what the tf.nn.tanh activation function looks like.

In 2009, James Bergstra, Guillaume Desjardins, Pascal Lamblin, and Yoshua Ben-
gio introduced the softsign function, which outperformed tanh in most of their
tests. They defined the softsign function in the following way:

softsign x x
x1

FIGURE 7-9:
The sigmoid

function is
frequently

employed to
represent

classification
probability.

CHAPTER 7 Introducing Neural Networks and Deep Learning 127

Figure 7-11 shows the softsign function for values of x between -8 and 8.

The gradient of the softsign function exceeds that of tanh throughout most of
its domain. The larger gradient makes minor changes to the input easier to
recognize.

Layers and Deep Learning
Individual nodes are too primitive to serve a useful purpose, but when you com-
bine them into networks, you can create sophisticated tools for machine learning.
This section explains how you can connect these nodes and explores the proper-
ties of the resulting neural networks.

FIGURE 7-10:
The tanh function

resembles the
sigmoid function,

but produces
output between

-1 and 1.

FIGURE 7-11:
The softsign

function
resembles

tanh, but has a
larger gradient

throughout most
of its domain.

128 PART 2 Implementing Machine Learning

Layers
The columns of a neural network are referred to as layers, and for this reason,
neural networks are frequently called multilayer perceptrons (MLPs). Every
neural net has at least two layers, and Figure 7-12 depicts an MLP with four.

The layers of a neural network have specific names. The first layer, which pro-
vides input values, is called the input layer. The last layer, which provides output
values, is called the output layer. The layers between the input layer and output
layer are called hidden layers. Layers are numbered from left to right, starting
with 0.

A layer is considered dense or fully connected if each of its nodes is connected to
each node in the next layer. Every layer in Figure 7-12 is dense.

Each node in a hidden layer is denoted hy
x, where x identifies the number of the

layer and y identifies the index of the node in the layer. For example, h1
2
 identifies

the second node in the third layer.

You can determine the output of each hidden node using the same methods dis-
cussed in the “Improving the Model” section. For example, if func is the activation
function, the following equations compute the output of node h0

1
 and h2

1:

h func w x w x w x

h func w h w h w

0
1

00
0

0 10
0

1 20
0

2

0
2

00
1

0
1

10
1

1
1

20
1 hh2

1

Each weight in the network requires three values to uniquely identify it. Denoting
a weight as wyz

x , you can determine its position in the network as follows:

FIGURE 7-12:
The neural

network has four
layers, and each

layer has
three nodes.

CHAPTER 7 Introducing Neural Networks and Deep Learning 129

 » x identifies the layer containing the node producing the weighted signal.

 » y identifies the index of the node producing the signal to be weighted.

 » z identifies the index of the node receiving the signal.

For example, w01
2
 identifies a weight in the third layer (2). The weight applies to

the signal leaving the first node (0) and entering the second node (1).

Deep learning
As you add more hidden layers to a network, it becomes capable of more sophis-
ticated detection and classification. When an application uses a network with
multiple hidden layers, it’s making use of deep learning.

Deep learning has proven effective in many applications. Two famous examples
include Google’s AlphaGo program, which uses deep learning to beat professional
Go players, and Google’s 2012 demonstration of an application that recognized cat
videos on YouTube.

Adding hidden layers to a network has two drawbacks. First, each hidden layer
increases the amount of time needed to train the network. Second, each new hid-
den layer increases the chances of overfitting, which I discuss in the “Tuning the
Neural Network” section.

Training with Backpropagation
As I discuss in Chapter 5, training updates your model so that it resembles the
experimental data. The mathematical model represented by a neural network
depends on the arrangement of the networks’ nodes and their activation func-
tions. To better understand this concept, consider the network in Figure 7-13.

Denoting the activation functions as f0, f1, and f2, the neural network in Figure 7-13
represents the following mathematical relationship:

y x f w f w x w x w x w x w f w x wi 2 00
1

0 00
0

0 10
0

1 20
0

2 30
0

3 10
1

1 41
0

4 551
0

5 61
0

6x w x

The goal of training is to find the weights that bring y(xi) as close as possible to
the observed data. Put another way, the goal is to minimize the difference between
y(xi) and the observed data. As discussed in Chapters 5 and 6, this difference is
called the loss, and one popular method of computing the loss is called the mean
squared error (MSE).

130 PART 2 Implementing Machine Learning

If you set y(xi) equal to a simple line or polynomial, you can easily compute the loss
and pass its operation to an optimizer, such as the GradientDescentOptimizer.
Chapter 5 covers the different optimization algorithms and their corresponding
TensorFlow classes.

A neural network’s model is more complicated, so the loss isn’t as easy to com-
pute. But in 1974, Paul Werbos was the first person to optimize the weights of a
neural network using a method called backpropagation. Researchers have devised
other algorithms for training neural networks since then, but because of its sim-
plicity and speed, backpropagation remains the most popular method.

In essence, backpropagation extends the optimization algorithms from Chapter 5
to apply to neural networks. The general process involves six steps:

1. Initialize the network’s weights.

2. For the set of inputs xi, compute y(xi).

This computation is called forward propagation.

FIGURE 7-13:
Every neural

network
represents a

mathematical
relationship.

CHAPTER 7 Introducing Neural Networks and Deep Learning 131

3. For the set of inputs xi, determine the loss.

4. For each weight, compute the partial derivative of the loss with respect
to the weight.

5. Using the partial derivatives computed in Step 4, update each weight in
the network.

6. Return to Step 2 and continue until the partial derivatives of the loss
approach zero.

To see how backpropagation computes partial derivatives, it helps to understand
the chain rule of calculus. If p(x) = f(g(x)), you can express the derivative of p(x)
in the following way:

p x f g x g x’ ’ ’

Backpropagation extends the chain rule to partial derivatives and derivatives
involving sums of functions. In this manner, the algorithm determines the partial
derivative of the loss with respect to each weight in the network.

Thankfully, you don’t need to worry about partial derivatives or the chain rule
because TensorFlow performs backpropagation automatically. But you do need to
create the optimizer that backpropagation will employ to update the network’s
weights.

Implementing Deep Learning
After you have a solid grasp of nodes, weights, and the general structure of neural
networks, you’re ready to see how a practical application combines these ele-
ments in code. The ch7/deep_learning.py module demonstrates how you can
use TensorFlow to implement deep learning.

Like the ch6/multi_regression.py module, ch7/deep_learning.py loads and
classifies images from the MNIST dataset. But instead of using logistic regression,
the module creates a neural network made up of fully connected layers. Listing 7-1
presents the code.

132 PART 2 Implementing Machine Learning

LISTING	7-1:	 Classifying Images with Deep Learning

Read MNIST data

dataset = learn.datasets.mnist.read_data_sets('MNIST-data',

one_hot=True)

Placeholders for MNIST images

img_holder = tf.placeholder(tf.float32, [None, 784])

lbl_holder = tf.placeholder(tf.float32, [None, 10])

Layer settings

hid_nodes = 200

out_nodes = 10

Define weights

w0 = tf.Variable(tf.random_normal([784, hid_nodes]))

w1 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

w2 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

w3 = tf.Variable(tf.random_normal([hid_nodes, out_nodes]))

Define biases

b0 = tf.Variable(tf.random_normal([hid_nodes]))

b1 = tf.Variable(tf.random_normal([hid_nodes]))

b2 = tf.Variable(tf.random_normal([hid_nodes]))

b3 = tf.Variable(tf.random_normal([out_nodes]))

Create layers

layer_1 = tf.add(tf.matmul(img_holder, w0), b0)

layer_1 = tf.nn.relu(layer_1)

layer_2 = tf.add(tf.matmul(layer_1, w1), b1)

layer_2 = tf.nn.relu(layer_2)

layer_3 = tf.add(tf.matmul(layer_2, w2), b2)

layer_3 = tf.nn.relu(layer_3)

out_layer = tf.matmul(layer_3, w3) + b3

Compute loss

loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=out_layer, labels=lbl_holder))

Create optimizer

learning_rate = 0.01

num_epochs = 15

batch_size = 100

num_batches = int(dataset.train.num_examples/batch_size)

CHAPTER 7 Introducing Neural Networks and Deep Learning 133

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 img_batch, lbl_batch = dataset.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch})

 # Determine success rate

 prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

 success = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Success rate: ', sess.run(success,

 feed_dict={img_holder: dataset.test.images,

 lbl_holder: dataset.test.labels}))

This application creates weights (wi) and biases (bi) by calling tf.Variable. Then
it multiplies the input values by the weights and adds the biases. Each of the three
hidden layers rectifies its output by calling tf.nn.relu.

The final layer (out_layer) performs similar multiplication and addition, but
instead of calling tf.nn.relu, it passes its output to tf.nn.softmax_cross_
entropy_with_logits. The module uses this output to select one of the ten out-
put categories for MNIST images.

Tuning the Neural Network
The neural network in the preceding section is fine for demonstration, but it’s not
suitable for professional applications. To improve the accuracy and processing

134 PART 2 Implementing Machine Learning

speed of their applications, professional developers use special routines that are
collectively referred to as tuning. I like to call them the four “zations”:

 » Input standardization: Preprocesses input data to statistically resemble
training data

 » Weight initialization: Obtains suitable values for initial weights

 » Batch normalization: Processes data before the activation function to reduce
the likelihood of saturation

 » Regularization: Reduces the likelihood of overfitting

Most developers agree that neural networks require some measure of tuning, but
few agree on the best procedure. Rather than take sides, I focus on explaining how
you can perform operations in TensorFlow applications.

Input standardization
A machine learning application should be able to analyze data it has never seen.
But even if incoming data is completely new, it should have the same mean and
standard deviation as the application’s training data. This consistency ensures
that the application won’t be confused from one data set to the next.

For this reason, developers frequently transform input data to set the mean equal
to 0 and the standard deviation equal to 1. This operation is called standardization,
and TensorFlow’s tf.nn package provides two functions that assist with stan-
dardization: moments and batch_normalization.

moments returns a tuple containing the mean and variance of the elements in a
tensor’s axis. Its signature is given as follows:

moments(x, axes, shift=None, name=None, keep_dims=False)

To set the mean and variance, assign x to the tensor to be analyzed and axes to an
array of integers that identify the tensor’s axes. If you set keep_dims to True, the
returned mean and variance will have the same dimensionality as the input tensor.

batch_normalization accepts a tensor’s mean and variance and standardizes the
tensor’s elements. Its signature is given as follows:

batch_normalization(x, mean, variance, offset, scale, variance_
epsilon, name=None)

CHAPTER 7 Introducing Neural Networks and Deep Learning 135

The offset parameter adds a constant to each value in the tensor, and scale
multiplies each value by a constant. variance_epsilon identifies a value to be
added to the denominator to ensure that TensorFlow doesn’t divide by zero.
Applications frequently set offset to 0.0, scale to 1.0, and variance_epsilon to
0.0001.

For example, the following code calls moments to obtain the mean and variance of
a tensor. Then it calls batch_normalization to obtain a new tensor with stan-
dardized data:

input_data = tf.constant([1., 3., 5., 7., 9.])
stat_mean, stat_var = tf.nn.moments(input_data, 0)
standard_data = tf.nn.batch_normalization(input_data, stat_mean,

stat_var, 0., 1., 0.0001, name=None)

This sets standard_data to [-1.4142, -0.7071, 0.0, 0.7071, 1.4142]. This tensor has
a mean of 0 and a standard deviation of 1.

Weight initialization
When I started coding neural networks, I didn’t give any thought to initializing
weights — I just set them equal to small, random values. Researchers have ana-
lyzed this topic in detail and the following research papers present their results:

 » 1998: “Efficient BackProp” by Yann Lecunn, Leon Bottou, Genevieve Orr, and
Klaus-Robert Muller

 » 2010: “Understanding the Difficulty of Training Deep Feedforward Neural
Networks” by Xavier Glorot and Yoshua Bengio

 » 2015: “Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification” by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun

Each of these papers presents a different methodology for initializing the weights
of a neural network. TensorFlow supports these methodologies by providing func-
tions of the tf.contrib.keras.initializers package. Each function is named
after the chief researcher of the corresponding method, and Table 7-2 lists five of
the available functions.

In Table 7-2’s descriptions, insize and outsize refer to the sizes of the neural
network’s layers. That is, insize is the number of nodes in the layer providing the
weights, and outsize is the number of nodes in the layer receiving the weights.

136 PART 2 Implementing Machine Learning

Each of these functions accepts a seed that initializes the random number gen-
erator. Each function returns an Initializer whose __call__ method accepts
the shape of the random weights and returns the weights in an ndarray.

For example, the following code initializes an array of four normally distributed
weights using lecun_uniform:

import time

init = tf.contrib.keras.initializers.lecun_uniform(time.time())

weights = init([4])

with tf.Session() as sess:

 result = sess.run(weights)

 print(result) # Prints the ndarray containing weight values

In addition to the functions listed in Table 7-2, TensorFlow provides the xavier_
initializer function in the tf.contrib.layers package:

xavier_initializer(uniform=True, seed=None, dtype=tf.float32)

When uniform is set to True, this function generates weights using the same
method as the glorot_uniform function. When uniform is set to False, it gener-
ates weights using the same method as glorot_normal.

Batch normalization
In 2015, Sergey Ioffe and Christian Szegedy wrote an influential research paper
that addresses the problem of saturation, which occurs when a node’s activation

TABLE 7-2	 Weight Initialization Functions
Function Description

lecun_uniform(seed=None) Returns uniformly distributed values between -sqrt(3/insize) and
sqrt(3/insize)

glorot_uniform(seed=None) Returns uniformly distributed values between -sqrt(6/(insize+outsize))
and sqrt(6/(insize+outsize))

glorot_normal(seed=None) Returns normally distributed values with a standard deviation of
sqrt(2/(insize+outsize))

he_uniform(seed=None) Returns uniformly distributed values between -sqrt(6/insize) and
sqrt(6/insize)

he_normal(seed=None) Returns normally distributed values with a standard deviation of
sqrt(2/insize)

CHAPTER 7 Introducing Neural Networks and Deep Learning 137

function reaches an extreme value. Saturation is a major issue for functions like
the sigmoid and tanh, whose slopes approach zero at their extremes. If the node’s
optimizer uses some form of gradient descent, the small slope will lead to slow
training.

Another problem is that a small change to a saturated node’s input will produce a
small change to the output. The output change may be so small that the applica-
tion can’t perceive it.

To reduce the likelihood of saturation, Ioffe and Szegedy recommend fixing the
mean and variance of each layer’s input. This process is similar to the input stan-
dardization process, but it affects every layer of the network, not just the first.

Unfortunately, normalizing a layer’s input limits the layer’s flexibility. To remedy
this issue, Ioffe and Szegedy recommend computing the mean and variance of
each batch and normalizing the values of each batch independently. This process
is called batch normalization (BN).

Batch normalization behaves differently depending on whether it’s used during
training or testing. During training, BN computes the mean and variance for each
batch and uses the results to compute a scaling factor (gamma) and a shifting fac-
tor (beta). The following equations illustrate how BN computes and uses these
values:

Batch mean:

Batch variance:

B i

N

B i B

N

N
x

N
x

1

1

0

1

2 2

0

1

Normalization:

Scaling and shifting:

x x

y x

i
i B

B

i

�
2

ii
�

BN uses the mean and variance of individual batches to estimate the mean and
variance of the entire population. TensorFlow computes the population’s mean
using a moving average and computes the population’s variance using a moving
variance. During testing, BN scales and shifts input values using the population
mean and variance instead of the batch mean and variance.

To implement batch normalization in code, TensorFlow provides tf.contrib.
layers.batch_norm. Table 7-3 lists its parameters and presents a description of
each.

138 PART 2 Implementing Machine Learning

TABLE 7-3	 Parameters of tf.contrib.layers.batch_norm
Parameter Default Description

inputs -- Tensor of input values to be normalized

decay 0.999 Multiplication constant used to compute the moving
mean and variance

center True Whether beta should be added to the
normalized tensor

scale False Whether the normalized tensor should be
scaled by gamma

epsilon 0.001 Factor to prevent division by zero

activation_fn None Activation function

param_initializers None Initializers for beta, gamma, the moving mean, and
the moving variance

param_regularizers None Regularizers for beta and gamma

updates_collections tf.GraphKeys.
UPDATE_OPS

One or more collections to hold the normalization
operations

is_training True Whether the normalization should update the moving
mean and moving variance

reuse None Whether variables can be reused

variables_collections None Collections to store the normalization variables

outputs_collections None Collections to store the normalization outputs

trainable True Whether to add normalization variables to the graph’s
trainable collection

batch_weights None Weights to scale the batch mean and variance

fused False Whether to use fused normalization (faster)

data_format DATA_FORMAT_NHWC Format of the input data

zero_debias_
moving_mean

False Factor for updating the moving mean

scope None Scope to contain normalized variables

renorm False Whether to use extra variables during normalization

renorm_clipping None Dictionary that provides values for renormalization

renorm_decay 0.99 Factor to update moving mean/variance during
renormalization

CHAPTER 7 Introducing Neural Networks and Deep Learning 139

TensorFlow uses the decay parameter to compute the population’s mean and
 variance. The following equations show how the computation is performed:

P P B

P P B

decay decay

decay decay

1

12 2 2

The center and scale parameters determine whether the values of the inputs
parameter should be shifted and scaled. The function will shift the input values if
center is True and will scale the input values if scale is True.

It’s important to see the difference between is_training and trainable. Setting
is_training to True tells the function that the normalization is being performed
during a training run, which means it should update the population’s mean and
variance. Setting trainable to True tells the function to store its normalization
variables in the graph collection represented by the TRAINABLE_VARIABLES key.

The last three parameters of batch_norm relate to renormalization. This process
improves normalization when an application’s batches are small or dependent on
one another.

Regularization
One of the most difficult tasks in machine learning involves finding the right
structure for a neural network. If you add too few nodes, your network will be too
simple to classify data accurately. This is called underfitting.

If you add too many nodes, your network will tailor itself specifically for your
training set and will be unsuitable for analyzing general data. This problem is
called overfitting, and it’s a serious issue in machine learning.

The process of updating a neural network (or other machine learning algorithm)
to analyze general data is called regularization. Researchers have devised many
methods for regularizing networks, and this section focuses on two:

 » Dropout: Randomly removes nodes from the network

 » L1/L2 regularization: Reduces weights by increasing the loss

For both methods, I explain how the regularization works and how you can per-
form it using TensorFlow.

140 PART 2 Implementing Machine Learning

Dropout
The dropout process randomly removes one or more nodes from a network. For
each node removed, dropout removes the node’s incoming and outgoing connec-
tions and their weights.

In TensorFlow, you can configure dropout for a neural network by adding a drop-
out layer. Adding this layer involves calling the tf.nn.dropout function:

dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

In this function, x is the tensor containing values from the preceding layer, and
keep_prob is a scalar with the same type as x. The function returns a tensor with
the same size as x.

dropout sets each of its output values to 0 or 1/keep_prob times the correspond-
ing input value. More precisely, dropout sets an output value to 0 with a proba-
bility of 1-keep_prob and sets the output value to 1/keep_prob times the input
value with a probability of keep_prob.

L1/L2 regularization
L1 and L2 regularization prevent overfitting by reducing the network’s weights.
Both methods increase the loss by a value that depends on two factors: the net-
work’s weights and a constant denoted λ.

L1 regularization increases the loss by λ multiplied by the absolute value of the
weight to be updated. Therefore, when the algorithm updates the weight w0
through backpropagation, it adds a value to the loss equal to λ|w0|.

L2 regularization increases the loss by λ/2 multiplied by the square of the weight to
be updated. Therefore, when the algorithm updates w0, it adds λ|w0|

2/2 to the loss.

In both cases, the loss increases when the weights increase and decreases when
the weights decrease. Therefore, the regularization process tends to reduce non-
essential weights to zero, thereby simplifying the model and (hopefully) avoiding
overfitting.

To perform L1/L2 regularization in TensorFlow, you can call tf.contrib.layers.
l1_regularizer or tf.contrib.layers.l2_regularizer:

 » l1_regularizer(lambda, scope=None): Returns a function that performs
L1 regularization

 » l2_regularizer(lambda, scope=None): Returns a function that performs
L2 regularization

CHAPTER 7 Introducing Neural Networks and Deep Learning 141

These functions return special functions called regularizers. After you’ve obtained
a regularizer, you can regularize a set of weights by calling tf.contrib.layers.
apply_regularization:

apply_regularization(regularizer, weights_list=None)

Many TensorFlow functions accept regularizers as arguments. One important
function is tf.contrib.layers.fully_connected, which I discuss in the
“Improving the Deep Learning Process” section.

Managing Variables with Scope
When building applications with neural networks, keeping track of weights is a
major priority. Hidden layers accept weighted inputs and produce weighted out-
puts. Without proper management, it’s easy for the names of one layer’s weights
to clash with the names of another layer’s weights.

Variable scope
In deep learning applications, layers frequently assign the same names to their
weights. To keep the variables separate, TensorFlow makes it possible to define a
variable’s scope. An application can define a scope by calling tf.
variable_scope:

tf.variable_scope(name_or_scope, default_name=None, values=None,

initializer=None, regularizer=None, caching_device=None, partitioner=None,

custom_getter=None, reuse=None, dtype=None, use_resource=None)

Applications commonly call this function as part of a with statement, as in the
following code:

with tf.variable_scope("MyScope")
 ...

If an application creates variables using tf.get_variable inside a with block,
TensorFlow will prepend the scope’s name to the variable’s name. That is, if the
application creates a new variable named MyVar, the variable’s full name will be
MyScope/MyVar.

142 PART 2 Implementing Machine Learning

Chapter 5 explains how to create variables with tf.Variable, but if an application
wants to create a variable inside a scope, the function to call is tf.
get_variable:

get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None,

trainable=True, collections=None, caching_device=None, partitioner=None,

validate_shape=True, use_resource=None, custom_getter=None)

If the name parameter identifies a variable in the current scope and the scope’s
reuse parameter is set to True, get_variable will return the existing variable.
The following code shows how tf.get_variable can be used:

with tf.variable_scope("MyScope"):
 var = tf.get_variable("var", [1])

with tf.variable_scope("MyScope", reuse=True):
 same = tf.get_variable("var") # Same as var

If the name parameter of variable_scope doesn’t correspond to an existing vari-
able in the scope, the function will create a new variable. The initializer param-
eter determines the variable’s initial value. If this parameter isn’t set, the initial
value is determined by the initializer parameter of the surrounding scope. If
the initializer parameter of the surrounding scope isn’t set, TensorFlow will
initialize the variable using Glorot initialization.

Retrieving variables from collections
As discussed in Chapter 4, a graph stores operations and tensors in a set of collec-
tions. An application can retrieve variables from a collection by calling
tf.get_collection:

tf.get_collection(key, scope=None)

The key parameter identifies one of the graph’s collections. One important key is
tf.GraphKeys.TRAINABLE_VARIABLES, which identifies the collection containing
the graph’s trainable variables.

The scope parameter identifies the scope from which the variables should be
retrieved. For example, the following code accesses a list containing all the train-
able variables in the hidden_layer_1 scope:

tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'hidden_layer_1')

CHAPTER 7 Introducing Neural Networks and Deep Learning 143

Scopes for names and arguments
Just as tf.variable_scope creates a scope for variables, tf.name_scope creates a
scope for tensors and operations. This function is simple to use, and the following
code shows how it works:

with tf.name_scope('block1'):
 t = tf.constant([1., 2.], name='tens')

This example creates the tensor t inside a name scope whose identifier is block1.
As a result, TensorFlow sets t’s full identifier to block1/tens.

The tf.contrib.framework package provides a useful function called
arg_scope:

arg_scope(list_ops_or_scope, **kwargs)

This function creates a scope that inserts arguments into the scope’s listed opera-
tions. That is, for each operation identified in the first argument, arg_scope
inserts the arguments provided in the second argument.

An example clarifies how argument scoping works. As a result of the following
code, every call to foo inside the scope will have var set to 39:

from tensorflow.contrib.framework import arg_scope
with arg_scope([foo], var=39):
 ...

To make an operation accessible in an argument scope, you must decorate the
operation’s definition with @add_arg_scope. If a function requires many param-
eters and must be called multiple times, you can significantly reduce the amount
of required code by setting arguments in an argument scope.

Improving the Deep Learning Process
In the “Implementing Deep Learning” section, I present an application that
 classifies MNIST images using an untuned neural network. This section presents
an application that performs the same operation, but uses tuning mechanisms
(normalization and regularization) to improve the network’s accuracy and
 performance. But before I discuss the code, I’d like to introduce an improved
method of creating fully connected layers.

144 PART 2 Implementing Machine Learning

Creating tuned layers
In Listing 7-1, earlier in this chapter, the application creates fully connected
layers with low-level arithmetic operations, such as tf.add and tf.matmul. But
TensorFlow provides a more sophisticated way to create fully connected layers
through the tf.contrib.layers.fully_connected function.

This function accepts many parameters that tune the layer’s behavior, such as
weight initialization, normalization, and regularization. Table 7-4 lists the func-
tion’s parameters and provides a description of each.

TABLE 7-4	 Parameters of tf.contrib.layers.fully_connected
Parameter Default Description

inputs -- Tensor of input values

num_outputs -- Number of output values produced by the layer

activation_fn tf.nn.relu Function that produces the layer’s output values

normalizer_fn None Function to process output values

normalizer_params None Parameters to be passed to the
normalization function

weights_
initializer

initializers.
xavier_initializer()

Function that initializes the layer’s weights

weights_
regularizer

None Function that regularizes the weights

biases_initializer tf.zeros_initializer Function that initializes the layer’s biases

biases_regularizer None Function that regularizes the biases

reuse None Bool that specifies whether the layer and its weights
should be reused

variables_
collections

None List of variable collections or dictionary containing a
list of collections for each variable

outputs_
collections

None Collection to contain the outputs

trainable True Bool that specifies whether the layer’s variables
should be added to the graph’s trainable variables

scope None Scope of the layer’s variables

CHAPTER 7 Introducing Neural Networks and Deep Learning 145

Applications need to set inputs to a tensor with at least two dimensions. If fully_
connected is adding an input layer, applications should set inputs to a place-
holder that provides the session with data. For successive layers, applications
should set inputs to the return value of the function that created the preceding
layer.

fully_connected returns a tensor containing the layer’s output values. num_
outputs parameter determines the size of this output tensor. It’s important to see
that num_outputs controls the number of nodes in the fully connected layer.

The activation_fn parameter specifies the activation function that will compute
the outputs of the layer’s nodes. By default, fully_connected sets this parameter
to the tf.nn.relu rectification function, which is suitable for hidden layers. If a
layer is intended to provide output, you’ll probably need to associate a different
function with activation_fn.

The normalizer_fn, normalizer_params, biases_initializer, and biases_
regularizer parameters determine the tuning process used for the layer.
normalizer_fn specifies a function to normalize the layer’s values. This function
will receive any arguments provided in the normalizer_params parameter.

If normalizer_fn is set, fully_connected ignores biases_initializer and
biases_regularizer. Otherwise, the function calls biases_initializer to set
the layer’s bias values and regularizes the biases with the biases_regularizer
function.

By default, the fully connected layer initializes its weights using the Glorot
method. You can customize how weights are initialized by assigning weights_
initializer to a function that returns an Initializer, such as lecun_uniform.
You can also specify a function to regularize the layer’s weights by setting
weights_regularizer.

The scope parameter defines a variable scope for the fully connected layer.
Weights and biases created by the layer will be stored within this scope. The reuse
parameter identifies whether the layer and its variables can be reused.

Putting theory into practice
The code in the ch7/tuned_learning.py module performs the same MNIST clas-
sification as the ch7/deep_learning.py module presented earlier in this chapter.
The difference is that it tunes the neural network to improve accuracy and perfor-
mance. It also creates fully connected layers by calling tf.contrib.layers.
fully_connected instead of tf.add and tf.matmul. Listing 7-2 presents the
code.

146 PART 2 Implementing Machine Learning

LISTING	7-2:	 Deep Learning with Tuning

Read MNIST data

dataset = learn.datasets.mnist.read_data_sets('MNIST-data',

one_hot=True)

Placeholders for MNIST images

img_holder = tf.placeholder(tf.float32, [None, 784])

lbl_holder = tf.placeholder(tf.float32, [None, 10])

train = tf.placeholder(tf.bool)

Layer settings

hid_nodes = 200

out_nodes = 10

keep_prob = 0.5

Create layers

with tf.contrib.framework.arg_scope(

 [fully_connected],

 normalizer_fn=tf.contrib.layers.batch_norm,

 normalizer_params={'is_training': train}):

 layer1 = fully_connected(img_holder, hid_nodes, scope='layer1')

 layer1_drop = tf.layers.dropout(layer1, keep_prob, training=train)

 layer2 = fully_connected(layer1_drop, hid_nodes, scope='layer2')

 layer2_drop = tf.layers.dropout(layer2, keep_prob, training=train)

 layer3 = fully_connected(layer2_drop, hid_nodes, scope='layer3')

 layer3_drop = tf.layers.dropout(layer3, keep_prob, training=train)

 out_layer = fully_connected(layer3_drop, out_nodes,

 activation_fn=None, scope='layer4')

Compute loss

loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=out_layer, labels=lbl_holder))

Create optimizer

learning_rate = 0.01

num_epochs = 15

batch_size = 100

num_batches = int(dataset.train.num_examples/batch_size)

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

CHAPTER 7 Introducing Neural Networks and Deep Learning 147

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 img_batch, lbl_batch = dataset.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch, train: True})

 # Determine success rate

 prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

 success = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Success rate: ', sess.run(success,

 feed_dict={img_holder: dataset.test.images,

 lbl_holder: dataset.test.labels, train: False}))

This module employs three methods to tune its multi-layer neural network:

 » It sends the output of each fully-connected layer to a dropout layer. The
module sets keep_prob to 0.5, so the dropout layer sets half of its inputs to 0.

 » The module calls tf.contrib.layers.batch_norm to perform batch
normalization on the hidden layers.

 » By default, tf.contrib.layers.fully_connected initializes the network’s
weights using the Glorot method.

Each hidden layer has 200 nodes, and the output layer has 10 nodes. Before creat-
ing the layers, the module defines an argument scope by calling tf.contrib.
framework.arg_scope. arg_scope accepts a list containing a function (fully_
connected) and the arguments to insert inside the function.

Each call to fully_connected sets the scope argument to a different value. Creat-
ing this scope changes the names of the layer’s variables. An application can
retrieve these variables by calling tf.get_collection.

The first three fully_connected calls don’t set activation_fn, so the layers’
nodes compute their output using the default ReLU activation function. The last
fully_connected call sets activation_fn to None, so each node of the output
layer returns the weighted sum of its inputs. The tf.nn.softmax_cross_entropy_
with_logits function accepts these weighted sums and selects one of the ten
categories.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 149

Chapter 8
Classifying Images with
Convolutional Neural
Networks (CNNs)

This chapter explains how you can code image recognition applications using
TensorFlow and convolutional neural networks (CNNs). These applications
are similar to the vanilla neural networks from Chapter 7, but they include

layers specifically intended for image classification.

Filtering Images
If you’ve used image editing applications like Adobe Photoshop, you’re probably
familiar with filtering tools, which add effects, such as blurring, sharpening, or
embossing, to images. Mathematically, these tools perform their operations using
a process called convolution. This process plays a critical role in image recognition,
and while it’s not important to grasp all the gory details, it’s good to understand
the general process.

IN THIS CHAPTER

 » Exploring image filtering and
convolution

 » Looking at convolutional neural
networks (CNNs)

 » Introducing the CIFAR-10 dataset

 » Presenting TensorFlow’s image
operations

150 PART 2 Implementing Machine Learning

Convolution
Image convolution replaces each pixel of an image with the result of a two-
dimensional dot product. This dot product accepts two matrices and returns the
sum of the products of their corresponding elements.

For example, suppose that A and B are two 3-x-3 matrices whose elements are
given as follows:

A B

1 2 3

4 5 6

7 8 9

10 9 8

7 6 5

4 3 2

You can compute the two-dimensional dot product of A and B by multiplying
 corresponding pairs of values and adding the results together:

1 10 2 9 3 8 4 7 5 6

6 5 7 4 8 3 9 2 2100

The first matrix involved in image convolution is the MxN rectangle surrounding
one of the image’s pixels. The second MxN matrix involved in the dot product is
commonly called a kernel, but TensorFlow refers to it as a filter. The filter’s
 elements determine what effect the filter will have on the image.

For example, if you denote an image as a matrix M, the pixel in the ith row and jth
column is mi,j. If you denote the filter as a matrix K, the element in the ith row and
jth column is ki,j. With this notation, the convolution process obtains the new
value of mi,j with the following dot product:

m filtered

m m m

m m m

m
i j

i j i j i j

i j i j i j

i

,

, , ,

, , ,

,

1 1 1 1 1

1 1

1 jj i j i jm m

k k k

k k k

k k k1 1 1 1

0 0 0 1 0 2

1 0 1 1 1 2

2 0 2 1 2 2, ,

, , ,

, , ,

, , ,

 m k m k m k mi j i j i j1 1 0 0 1 0 1 1 1 0 2, , , , , , ii j i j

i j i

k m k

m k m
, , , ,

, ,

1 1 0 1 1

1 1 2 1 ,, , , , , ,j i j i jk m k m k1 2 0 1 2 1 1 1 2 2

When filtering an image, this dot product must be computed for each pixel in the
original image. This operation presents an important concern: How do you find
the pixels surrounding mi,j if the pixel lies on the image’s border?

Instead of computing a dot product for each pixel, many engineers perform con-
volution by converting the image and filter to the frequency domain. This process,
called fast convolution, involves computing the Fast Fourier Transform (FFT) for
each row and column of the image and filter.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 151

This book, like other fine works of machine learning literature, employs the term
convolution to refer to the process of computing a matrix of 2-D dot products. But
the technical term for this is cross-correlation. Convolution reverses one of the
operands before computing the dot products and the algorithm presented here
doesn’t reverse either operand.

Averaging Filter
A good way to understand image filtering is to walk through an example. This
 section focuses on the grainy image depicted in Figure 8-1.

Mathematically, an image’s noise can be thought of as unwanted variation
between adjacent pixels. You can reduce this variation by replacing each pixel with
the average of itself and the pixels immediately surrounding it. You can accom-
plish this by convolving the image with a filter like the following:

kernel

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Denoting the pixel in the ith row and jth column as mij, you can compute the
 filtered value of mij in the following way:

m filtered m m m m mi j i j i j i j i j, , , , ,
1
9

1
9

1
9

1
9

1
91 1 1 1 1 1 ii j

i j i j i j i jm m m m

,

, , , , 1
9

1
9

1
9

1
91 1 1 1 1 1

FIGURE 8-1:
The image’s

mottled
appearance is the

result of noise.

152 PART 2 Implementing Machine Learning

This type of filter is called a box filter or an averaging filter. After convolution, the
filtered pixels form the image illustrated in Figure 8-2:

The box filter removed a lot of the image’s noise, but it also removed detail that
isn’t noise. To improve on the box filter, engineers have devised a more effective
noise-reduction filter called the Gaussian filter. The filter’s elements are deter-
mined by values of the Gaussian curve.

Filters and features
Image filtering can do more than just add effects. One critical application involves
finding an image inside a larger image. Consider the 7-x-7 filter presented in
Figure 8-3.

If you look closely at the filter matrix, you’ll see that its elements identify the
pixel values of the grayscale image on the right. In other words, the filter defines
its own small image — a smiley face. The dot product of an image with itself
 produces a large value, so if an image contains a 7-x-7 smiley face, the

FIGURE 8-2:
Convolution with

the box filter
reduces the

amount of noise
in the image.

FIGURE 8-3:
The filter’s
elements

correspond to the
pixels of the
smiley face.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 153

convolution of the image with this filter will produce a large value at the point
where the smiley face is located.

This property of convolution makes it possible to locate images inside a larger
image. For example, an image of an airplane should have a cockpit, two wings,
and a fuselage. If you use one filter for the cockpit, one for the wings, and one for
the fuselage, a high convolution value for each filter indicates the presence of an
aircraft.

These subimages of interest are called features, and an application can check
whether a feature is present in an image by convolving the image with an appro-
priate filter. A high convolution result indicates that the feature is present in the
image.

Feature detection analogy
When it comes to image filtering, you can easily get wrapped up in the math and
forget what’s going on. So here’s a strange analogy: Imagine that you have a mag-
nifying glass and a high resolution image of a large crowd of people. As you move
the glass over the image, you get a better look at each person in the crowd.

Suppose that you engrave your face on the glass. Afterward, you magically enchant
the glass to display a number that identifies how closely the engraving matches
the image underneath the glass. The largest number will appear when the glass is
directly over your face.

Now suppose that you have other magnifying glasses, each with an engraved
image of a member of your family. If you examine the numbers displayed by the
different magnifying glasses, you’ll be able to locate each of your family members
and thereby locate your family in the crowd.

In this analogy, each magnifying glass is a filter, and each engraved image is a
feature. The process of moving the glass over the image and reading the number
corresponds to convolution.

Setting convolution parameters
When you categorize images using convolution, you don’t set the filters’ elements
directly. Instead, you provide input images and their corresponding categories.
The application’s job is to determine which filters best support correct categori-
zation. In this manner, filters resemble the weights of the neural networks dis-
cussed in Chapter 7.

154 PART 2 Implementing Machine Learning

Even though you can’t set the filters’ elements, you can set many of the filters’
properties, such as their number and size. You can also configure three other
aspects of convolution:

 » stride: Shifting the filter from one 2-D dot product to the next

 » dilation: Expanding the filter’s size by inserting zero-valued elements

 » padding: Accounting for pixels near the edge of the image

These parameters play an important role in determining how an application per-
forms convolution. The following sections explore each of them in detail.

Stride
After each two-dimensional dot product, the convolution process moves the filter
one pixel to the right. When all the dot products have been computed for a row of
pixels, convolution moves the filter one pixel down and continues computing
two-dimensional dot products.

This behavior is the default, but developers can customize how the convolution is
performed by setting the stride. Stride determines how much the filter shifts after
each dot product. To set the stride, you need to provide two values: the horizontal
pixel shift and the vertical pixel shift. The default stride is always (1, 1).

For example, if you set the stride to (2, 3), the filter will shift two pixels to the right
after each dot product. After completing all the dot products for one row, the filter
will shift three pixels down and start computing further dot products. This
increased stride reduces the amount of computation needed for the convolution,
but also reduces the amount of detail. In this book, stride will always be set to (1, 1).

Dilation
The term dilation usually refers to stretching or expanding part of the body, such
as the pupil of the eye. In image processing, dilation refers to stretching the ele-
ments of a filter. As with stride, you can specify dilation by providing two values:
one that sets horizontal stretching and one that sets vertical stretching. The
default value is (1, 1), which indicates that no stretching should be performed.

As dilation increases, the effective size of the filter increases but the number of
nonzero elements doesn’t change. Instead, dilation inserts zeros between the fil-
ter’s elements.

For example, if you set the dilation to (2, 1), the convolution will insert a zero
between each horizontal pair of elements in the filter. These zero elements won’t
contribute any values to the two-dimensional dot products.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 155

By changing the dilation, applications can efficiently detect features of varying
sizes. For a thorough discussion of the topic, I recommend the 2015 paper Multi-
Scale Context Aggregation by Dilated Convolutions by Fisher Yu and Vladlen Koltun
(ICLR 2016).

Padding
If a filter’s size is NxN, convolution computes an NxN two-dimensional dot prod-
uct for each pixel in the input image. If a pixel lies on the edge of the image or near
the edge, it isn’t clear how the NxN dot product should be computed.

In TensorFlow, developers can configure the processing of border pixels in one of
two ways. The first method involves ignoring pixels that lie on or near the image’s
edge. The advantage of ignoring these pixels is that every pixel in the resulting
image will be accurate. The disadvantage is that the output image will be smaller
than the input image.

The second method involves expanding the image and inserting zeros beyond its
original borders. If a pixel lies on the edge of the image, the dot product will take
these zeros into account. As a result, the output image will be the same size as the
input image, but the output pixels on/near the edges won’t be completely accurate
because they were computed with zeros.

Convolutional Neural Networks (CNNs)
A traditional neural network receives a series of input values, multiplies each
input value by a weight, and passes the processed data through a series of layers.
This approach is fine for general-purpose data analysis, but it’s not sufficient for
processing images and similar 2-D/3-D data. Image classification requires convo-
lution, and for this reason, neural networks intended for image classification are
called convolutional neural networks, or CNNs.

CNNs resemble regular neural networks in a number of ways, but they have two
distinguishing characteristics:

 » A CNN contains convolution layers that use rectangular filters to perform
convolution.

 » A CNN uses pooling layers to reduce the dimensionality of output images.

156 PART 2 Implementing Machine Learning

After the convolution layers and pooling layers have done their jobs, CNNs use
fully connected layers to provide output. Figure 8-4 illustrates the structure of a
minimal CNN:

This network has two convolution layers that produce one output image for each
filter. The pooling layers reduce the size of the images produced by convolution.
This section explains what these layers accomplish and how they work together.

Creating convolution layers
In a TensorFlow application, an image is a tensor that contains a matrix for each of
an image’s channels. By channels, I mean the components that make up the image’s
pixels. For example, a grayscale image has one channel, so its tensor consists of one
matrix. An RGB image has three channels, so its tensor will have three channels.

A convolution layer accepts a batch of images, performs convolution with a set of
filters, and returns an output tensor containing the convolution results. The size
of each output image depends on the size of the input images and the use of pad-
ding in the convolution.

You can create a convolution layer by calling tf.layers.conv2d. Table 8-1 lists
the parameters of this function and presents the default value of each.

FIGURE 8-4:
Convolutional

neural networks
contain

 convolution
layers, pooling

layers, and at
least one fully

connected layer.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 157

An application must set inputs to a tensor whose shape depends on the data_
format parameter. If you set data_format to channels_last (the default value),
the inputs tensor should have a shape equal to [batch_size, height, width, chan-
nels]. If you set data_format to channels_first, the inputs tensor should have
a shape equal to [batch_size, channels, height, width].

TABLE 8-1	 Arguments of tf.layers.conv2d
Argument Default Description

inputs -- Tensor containing input image

filters -- Number of filters to be used

kernel_size -- Size of the kernel (one value for an NxN square, two
values for an MxN rectangle)

strides (1, 1) Amount the filter should shift between 2-D dot products

padding 'valid' Method of processing pixels near the image’s edge

data_format 'channels_last' Order of the elements in the input tensor

dilation_rate (1, 1) Extent by which the filter should be horizontally/
vertically stretched

activation None Activation function

use_bias True Bool that identifies whether the layer uses a bias

kernel_ initializer None Initializer for the filter’s values (weights)

bias_ initializer tf.zeros.
initializer()

Initializer for the layer’s biases

kernel_ regularizer None Regularizer for the filter’s values (weights)

bias_ regularizer None Regularizer for the layer’s biases

activity_
regularizer

None Regularizer for the layer’s output

trainable True Bool that identifies whether to add the filter’s elements to
the graph’s trainable variables

name None Name of the layer

reuse False Bool that identifies whether to reuse the weights of a
similarly-named scope

158 PART 2 Implementing Machine Learning

The filters parameter identifies the number of filters used by the convolution
layer. The kernel_size parameter identifies the size of each filter. If you set this
parameter to a single value, N, the size of each filter will be NxN. If you set it to
two values, such as [M, N], the size of each filter will be MxN.

The earlier “Setting convolution parameters” section talks about the stride and
dilation characteristics of image filters. In tf.layers.conv2d, you can set these
properties with the strides and dilation_rate parameters.

The padding parameter tells the layer how to process the image’s boundary pix-
els. If you set padding to valid, the layer will ignore boundary pixels and return
an output image smaller than the input image. If you set padding to same, the
layer will pad the input image with zeros and produce an output image with the
same size as the input image.

tf.layers.conv2d returns a tensor whose shape depends on the shape of the
input image, the number of filters, and the padding parameter. For example, if
the input’s shape is [N, height, width, num_channels] and the padding is set to
same, the output’s shape will be [N, height, width, num_filters].

The number of channels does not affect the shape of the output. While performing
convolution, tf.layers.conv2d combines the channels together, so a grayscale
input image and an RGB input image will produce output images of the same size.
If you’d like to perform channel-specific filtering, the function to use is tf.
nn.depthwise_conv2d.

If an application sets padding to valid, each output image will be smaller than
the input image. The reduction in size depends on the dimensions of the convolu-
tion filters. For example, if padding is valid, the filter size equals [X, Y], and the
input’s shape is [N, height, width, num_channels], the shape of each output
image will be [N, height – (Y – 1), width – (X – 1), num_filters].

Creating pooling layers
A convolution layer produces an output image for each filter, so a CNN with many
filters will produce many images. These images require a great deal of memory, so
developers reduce the size of the images by following convolution layers with
pooling layers.

A pooling layer subdivides an image’s pixels into rectangular blocks and replaces
each block with a single pixel. Figure 8-5 shows how this process works. The
pooling operation divides a 9-x-8 matrix into 3-x-2 blocks and replaces each
block with a single value.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 159

Figure 8-5 depicts two methods of pooling. The first finds the largest value in the
input block and stores that value in the output image. You can create a pooling
layer that performs this operation by calling tf.layers.max_pooling2d.

The second pooling method computes the average value of the pixels in the input
block and stores that value in the output image. You can create a pooling layer that
uses this method by calling tf.layers.avg_pooling2d.

Of the pooling functions provided by the tf.layers package, max_pooling2d is
the most popular. This popularity makes sense because a high maximum value
clearly indicates the presence of a filter’s feature in the image. Table 8-2 lists the
parameters of tf.layers.max_pooling2d and provides a description of each.

FIGURE 8-5:
A pooling layer

accepts an input
image, splits it

into blocks,
operates on each

block, and
returns a

condensed
image.

TABLE 8-2	 Parameters of tf.layers.max_pooling2d
Parameter Default Description

inputs -- Input 4-D tensor

pool_size -- The size of the block used for pooling

strides -- The shift from one pooling operation to the next

padding 'valid' The padding algorithm: valid or same

data_format 'channels_last' Specifies the shape of the input image

name None Provides a name for the layer

160 PART 2 Implementing Machine Learning

As with tf.layers.conv2d, the shape of the input tensor depends on data_for-
mat. If data_format is channels_last, the input tensor’s shape should be [batch_
size, height, width, channels]. If data_format is channels_first, the input
tensor’s shape should be [batch_size, channels, height, width]. Regardless of
data_format, each element in the input tensor must be a tf.float32.

To set the height and width of the block used for pooling, you need to assign
pool_size to a list or tuple of two integers. For the pooling illustrated in Figure 8-5,
the application set pool_size to [2, 2].

strides identifies how much the block shifts (in pixels) from one pooling opera-
tion to the next. If the horizontal shift equals the vertical shift, you can set strides
to one integer. If not, you can set strides to a tuple or list of two integers, where
the first sets the vertical shift and the second sets the horizontal shift. For the
pooling illustrated in Figure 8-5, the application set strides to 2.

If a pooling operation involves a point near the image’s border, the computation
will depend on the padding parameter. If you set padding to valid, the pooling
won’t take border pixels into account. If you set padding to same, the function will
pad the image with zeros before pooling its values.

Putting Theory into Practice
Once you understand convolution, convolution layers, and pooling layers, you’re
ready to examine some code. This section presents an application that classifies
images. But instead of classifying images of the MNIST dataset, this application
classifies images from a dataset called CIFAR-10.

Processing CIFAR images
To test practical image recognition applications, the Canadian Institute for
Advanced Research (CIFAR) provides the CIFAR-10 and CIFAR-100 datasets. Like
the MNIST dataset, these datasets contain images and their classification labels.
Unlike the MNIST images, the CIFAR images are in color and have a size equal to
32-x-32 pixels. This discussion explains how to obtain the CIFAR-10 dataset and
access its content in a TensorFlow application.

The CIFAR-10 dataset
The main site for the CIFAR-10 and CIFAR-100 datasets is www.cs.toronto.
edu/~kriz/cifar.html. The site provides three links for downloading the

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 161

CIFAR-10 dataset: one for the Python version, one for the Matlab version, and a
binary version. This section focuses on the Python version, and I recommend that
you download it to your development system.

Before proceeding, I recommend that you download and decompress the archive
to the ch8 directory. Inside the decompressed directory, you’ll find a folder named
cifar-10-batches-py. This folder contains five files containing training images
(data_batch_1 through data_batch_5) and a file containing test images
(test_batch).

Accessing CIFAR-10 images and labels
CIFAR serializes the data in the CIFAR-10 files using a process called pickling. To
read the data in Python, an application needs to import pickle and invoke its load
method with the CIFAR file. As an example, the following code accesses the data
in data_batch_2:

import pickle
with open('cifar-10-batches-py/data_batch_2', 'rb') as imgfile:
 dict = pickle.load(imgfile)
 imgfile.close()

The result is a dictionary with four keys:

 » b'batch_label': Description of the batch (b' training batch 2 of 5')

 » b'labels': A list of the 10,000 labels of the batch’s images

 » b'data': An ndarray containing the batch’s image data

 » b'filenames': A list of the 10,000 PNGs that contain image data
(b'stealth_fighter_s_001650.png')

Each image label is provided as an integer between 0 and 9. These values corre-
spond to the ten categories that identify the content of the corresponding image.
These categories are airplane (0), automobile (1), bird (2), cat (3), deer (4), dog
(5), frog (6), horse (7), ship (8), and truck (9). As an example, Figure 8-6 shows
what a Category 7 image looks like.

The ndarray provided by the data key contains 8-bit unsigned integers in a
10,000-x-3,072 element matrix. This matrix contains 10,000 rows, and each row
contains a 32-by-32 image with red, green, and blue components (32 x 32 x 3 =
3,072).

162 PART 2 Implementing Machine Learning

Classifying CIFAR images in code
The code in ch8/cifar_cnn.py demonstrates how you can use TensorFlow to load
CIFAR-10 images and classify them with a convolutional neural network.
Listing 8-1 presents the module’s code.

LISTING	8-1:	 Classifying CIFAR-10 Images

Set parameters

image_size = 32

num_channels = 3

num_categories = 10

num_filters = 32

filter_size = 5

num_epochs = 200

batch_size = 10

num_batches = int(50000/batch_size)

keep_prob = 0.6

Read CIFAR training data

train_data = None

train_labels = None

for file_index in range(5):

 train_file = open('cifar-10-batches-py/data_batch_' + str(file_index+1),
'rb')

 train_dict = pickle.load(train_file, encoding='latin1')

 train_file.close()

 if train_data is None:

 train_data = np.array(train_dict['data'], float)/255.0

 train_labels = train_dict['labels']

FIGURE 8-6:
Each CIFAR-10

image contains
1,024 pixels

(32 x 32). Each
pixel stores red,
green, and blue
components as
8-bit unsigned

integers.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 163

 else:

 train_data = np.concatenate((train_data, train_dict['data']), 0)

 train_labels = np.concatenate((train_labels, train_dict['labels']), 0)

Preprocess training data and labels

train_data = train_data.reshape([-1, num_channels, image_size, image_size])

train_data = train_data.transpose([0, 2, 3, 1])

train_labels = np.eye(num_categories)[train_labels]

Read CIFAR test data

test_file = open('cifar-10-batches-py/test_batch', 'rb')

test_dict = pickle.load(test_file, encoding='latin1')

test_file.close()

test_data = test_dict['data']

test_labels = test_dict['labels']

Preprocess test data and labels

test_data = test_data.reshape([-1, num_channels, image_size, image_size])

test_data = test_data.transpose([0, 2, 3, 1])

test_labels = np.eye(num_categories)[test_labels]

Placeholders for CIFAR images

img_holder = tf.placeholder(tf.float32, [None, image_size, image_size, num_

channels])

lbl_holder = tf.placeholder(tf.float32, [None, num_categories])

train = tf.placeholder(tf.bool)

Create convolution/pooling layers

conv1 = tf.layers.conv2d(img_holder, num_filters, filter_size, padding='same',

activation=tf.nn.relu)

drop1 = tf.layers.dropout(conv1, keep_prob, training=train)

pool1 = tf.layers.max_pooling2d(drop1, 2, 2)

conv2 = tf.layers.conv2d(pool1, num_filters, filter_size, padding='same',

activation=tf.nn.relu)

drop2 = tf.layers.dropout(conv2, keep_prob, training=train)

pool2 = tf.layers.max_pooling2d(drop2, 2, 2)

conv3 = tf.layers.conv2d(pool2, num_filters, filter_size, padding='same',

activation=tf.nn.relu)

pool3 = tf.layers.max_pooling2d(conv3, 2, 2)

conv4 = tf.layers.conv2d(pool3, num_filters, filter_size, padding='same',

activation=tf.nn.relu)

drop3 = tf.layers.dropout(conv4, keep_prob, training=train)

(continued)

164 PART 2 Implementing Machine Learning

Flatten input data

flatten = tf.reshape(drop3, [-1, 512])

Create connected layers

with tf.contrib.framework.arg_scope(

 [tf.contrib.layers.fully_connected],

 normalizer_fn=tf.contrib.layers.batch_norm,

 normalizer_params={'is_training': train}):

 fc1 = tf.contrib.layers.fully_connected(flatten, 512)

 fc2 = tf.contrib.layers.fully_connected(fc1, num_categories,

activation_fn=None)

Compute loss

loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=fc2, labels=lbl_holder))

Create optimizer

learning_rate = 0.0005

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

Initialize variables

init = tf.global_variables_initializer()

Launch session

with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 batch_start = random.randint(0, batch_size*

(num_batches-1)-1)

 batch_end = batch_start + batch_size
 img_batch = train_data[batch_start:batch_end, :]

 lbl_batch = train_labels[batch_start:batch_end, :]

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch, train: True})

 # Determine success rate

 prediction = tf.equal(tf.argmax(fc2, 1), tf.argmax(lbl_holder, 1))

 accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Accuracy: ', sess.run(accuracy, feed_dict={img_holder: test_data,

 lbl_holder: test_labels, train: False}))

LISTING	8-1:	 (continued)

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 165

The application assumes that the user has downloaded the CIFAR-10 dataset for
Python. It also assumes that the user has decompressed the archive into a direc-
tory named cifar-10-batches-py in the ch8 folder.

The module starts by loading the CIFAR-10 training images and labels. Then it
performs four operations:

 » Concatenates the training images into one (50,000 x 3,072) ndarray.
Concatenates the training labels into one (50,000 x 1) ndarray.

 » Converts the elements of the image ndarray to floating-point values.

 » Reshapes the image ndarray to [50,000, 32, 32, 3]. The last element identifies
the number of channels per pixel (R, G, and B).

 » Converts the label ndarray to a one-shot ndarray (50,000 x 10).

This is a book on TensorFlow, so it may seem odd that the application prepro-
cesses data using NumPy instead of TensorFlow. But there’s an important reason:
Sessions can’t feed tensors into placeholders during training. Another reason is
that TensorFlow stores tensor operations in the graph but does not store NumPy
operations.

To process the image data, the application creates four convolution layers and
three pooling layers. Each convolution layer uses 32 filters of size 5 x 5, and each
uses a ReLU to serve as its activation function. The pooling layers set their block
sizes to 2 x 2 and their strides to 2.

To understand the code, it’s crucial to understand how the input tensor’s size
changes from layer to layer. Each batch contains ten images, so the initial size of
each input tensor is [10, 32, 32, 3].

 » The first convolution layer has 32 filters, so the shape of the output tensor is
[10, 32, 32, 32].

 » The first pooling layer shrinks each image dimension by one-half, so the
output tensor’s shape is [10, 16, 16, 32].

 » The second convolution layer has 32 filters, so the shape of the output tensor
is [10, 16, 16, 32].

 » The second pooling layer shrinks each image dimension by one-half, so the
output tensor’s shape is [10, 8, 8, 32].

166 PART 2 Implementing Machine Learning

 » The third convolution layer has 32 filters, so the shape of the output tensor is
[10, 8, 8, 32].

 » The third pooling layer shrinks each image dimension by one-half, so the
output tensor’s shape is [10, 4, 4, 32].

 » The fourth convolution layer has 32 filters, so the shape of the output tensor
is [10, 4, 4, 32].

When the convolution is finished, the module flattens the image data and passes
it to two fully connected layers. The first fully connected layer has 512 nodes and
uses a ReLU to serve as its activation function. The second fully connected layer
has ten nodes.

Performing Image Operations
TensorFlow provides many functions that perform general-purpose image pro-
cessing. To present these functions, I divide them into five categories:

 » Image conversion

 » Color processing

 » Rotating and mirroring

 » Resizing and cropping

 » Convolution

The following sections introduce these functions and demonstrate their usage.
The example application shows how to generate summary data for an image and
visualize it with TensorBoard.

Converting images
The tf.image package provides functions that convert images between different
file formats, color profiles, and data types. Table 8-3 lists these functions and
provides a description of each.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 167

TABLE 8-3	 Image Conversion Functions
Function Description

decode_bmp(contents,
. channels=None, name=None)

Convert BMP-formatted image data into a tensor

decode_gif(contents,
. name=None)

Convert GIF-formatted image data into a tensor

decode_png(contents,
. channels=None, dtype=None,
. name=None)

Convert PNG-formatted image data into a tensor

decode_jpeg(contents,
. channels=None, ratio=None,
. fancy_upscaling=None,
. try_recover_truncated=None,
. acceptable_fraction=None,
. dct_method=None,
. name=None)

Convert JPEG-formatted image data to a tensor

decode_image(contents,
. channels=None, name=None)

Detects format of image data and converts data to a tensor

encode_png(image,
. compression=None,
. name=None)

Converts a tensor containing image data to PNG encoding

encode_jpeg(image,
. format=None,
. quality=None,
. progressive=None,
. optimize_size=None,
. chroma_downsampling=None,
 density_unit=None,
. x_density=None,
. y_density=None,
. xmp_metadata=None,
. name=None)

Converts a tensor containing image data to PNG encoding

rgb_to_grayscale(images,
 name=None)

Convert one or more images from RGB to grayscale

rgb_to_hsv(images,
 name=None)

Convert one or more images from RGB to HSV

grayscale_to_rgb(images,
 name=None)

Convert one or more images from grayscale to RGB

hsv_to_rgb(images,
 name=None)

Convert one or more images from HSV to RGB

convert_image_dtype(image,
 dtype, saturate=False,
 name=None)

Change the data type of the image tensor’s elements

168 PART 2 Implementing Machine Learning

The shape of an image’s tensor depends on the nature of the image. For simple
2-D images, such as in a JPEG, the tensor’s shape is [height, width, num_chan-
nels]. For a sequence of frames, such as the images in a GIF animation, the shape
is [num_frames, height, width, num_channels].

In Table 8-3, the decode_* functions convert a zero-dimensional string tensor
into a suitable image tensor. For example, if an application loads data from smi-
ley.jpg into a tensor named smiley_tensor, decode_jpeg will return a decom-
pressed tensor whose shape is [height, width, num_channels].

A TensorFlow application can read BMP, GIF, PNG, and JPEG images, but it can
only write data to PNGs and JPEGs. These write operations are made possible by
encode_png and encode_jpeg.

Keep in mind that TensorFlow’s decode/encode functions don’t accept files, but
instead read and write zero-dimensional string tensors. TensorFlow provides a
number of method to create string tensors from files, and one method involves
three steps:

1. Call tf.string_input_producer with an array of file names.

2. Create a WholeFileReader by calling tf.WholeFileReader.

3. Call the reader’s read method with the queue from Step 1.

To demonstrate how this process works, the following code reads data from smi-
ley.png and writes it to smiley.jpg:

queue = tf.train.string_input_producer(['smiley.png'])
reader = tf.WholeFileReader()
_, png_data = reader.read(queue)
img_tensor = tf.image.decode_png(png_data)
jpeg_data = tf.image.encode_jpeg(img_tensor)
with tf.Session() as sess:
 tf.train.start_queue_runners()
 jpeg_file = open('smiley.jpeg', 'wb+')
 jpeg_file.write(jpeg_data.eval())
 jpeg_file.close()

The last function in Table 8-3, convert_image_dtype, converts the pixels of an
image from one data type to another. This is particularly important because dif-
ferent image-processing operations require different data types. For example,
convolution requires tensors containing floating-point elements while PNG

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 169

encoding requires unsigned integers. The following code converts the elements of
img to single-precision floating-point values:

img = tf.image.convert_image_dtype(img, tf.float32)

convert_image_dtype assumes that all integer values are non-negative and that
all floating-point values lie between 0.0 and 1.0. The function performs scaling in
addition to conversion, so it multiplies tf.float32 values by 256 when converting
to tf.uint8 and it divides tf.uint8 values by 256 when converting to tf.float32.

Color processing
The second category of functions in tf.image change the color content of an
image. Table 8-4 lists nine of these functions.

TABLE 8-4	 Color-Processing Functions
Function Description

adjust_brightness(image, delta) Adds the given delta to the image’s pixel values

adjust_contrast(images,
 contrast_factor)

Adjust contrast by the given factor

adjust_gamma(image,
 gamma=1, gain=1)

Perform gamma correction

adjust_hue(image, delta,
 name=None)

Change the image’s hue content by the given delta

adjust_saturation(image,
 saturation_factor, name=None)

Update the image’s saturation by a given value

random_brightness(image,
 max_delta, seed=None)

Adds a random value to the image’s pixel values

random_contrast(image,
 lower, upper, seed=None)

Adjust contrast by a random value

random_hue(image, max_delta,
 seed=None)

Change the image’s hue content by a random amount

random_saturation(image,
 lower, upper, seed=None)

Update the image’s saturation by a random value

170 PART 2 Implementing Machine Learning

These functions are easy to understand. The adjust_xyz functions update an
image’s property by a specific amount. The random_xyz functions update an
image’s property by a random amount.

adjust_contrast and random_contrast change the deviation of the image’s pix-
els from the mean. To be specific, if a pixel’s component equals x and the average
value is xavg, calling adjust_contrast with a factor of k updates x in the follow-
ing way:

x k x x xavg avg

The random_xyz functions accept one or two bounds for the random value. For
example, the following code changes the contrast of img by a random factor that
lies between 0.1 and 0.2:

tf.image.random_contrast(img, 0.1, 0.2)

adjust_hue and random_hue operate on RGB images. Both functions convert the
image’s pixels to floating-point values and then convert the image to HSV. Then
they add an offset to the hue channel and convert the image back to RGB and the
pixels’ original data type.

Rotating and mirroring
The tf.image package also provides functions that rotate and mirror (flip) the
pixels of an image. Table 8-5 lists six of these functions and provides a descrip-
tion of each.

TABLE 8-5	 Rotation and Mirroring Functions
Function Description

rot90(image, k=1, name=None) Rotates an image counterclockwise by a multiple of 90 degrees

flip_left_right(image) Mirrors an image horizontally

random_flip_left_right(image,
 seed=None)

Mirrors an image horizontally half the time

flip_up_down(image) Mirrors an image vertically

random_flip_up_down(image,
 seed=None)

Mirrors an image vertically half the time

transpose_image(image) Mirrors an image along its main diagonal

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 171

rot90 rotates an image in a counterclockwise orientation by a multiple of
90 degrees. The precise angle of rotation equals 90(k mod 4), where k is the
second argument of rot90.

It’s important to see the difference between transpose_image and the functions
that flip the image vertically and horizontally. transpose_image flips an image
along the diagonal running from the upper-left to the lower-right.

The following code shows how an application can decode PNG data and then
rotate, flip, and transpose the image.

img_tensor = tf.image.decode_png(smiley)

Rotate CCW by 270 degrees
rot_tensor = tf.image.rot90(img_tensor, 3)
rot_png = tf.image.encode_png(rot_tensor)

Flip horizontal
flip_tensor = tf.image.flip_left_right(img_tensor)
flip_png = tf.image.encode_png(flip_tensor)

Transpose
transpose_tensor = tf.image.transpose_image(img_tensor)
transpose_png = tf.image.encode_png(transpose_tensor)

Figure 8-7 illustrates the results of the operations performed in the example code.

The random_flip_left_right and random_flip_up_down functions are helpful
when you want to train an application to recognize images that may have been
flipped. These functions flip their images half the time and leave their images
unchanged half the time.

FIGURE 8-7:
TensorFlow’s

functions make it
possible to rotate,

flip, and
transpose

images.

172 PART 2 Implementing Machine Learning

Resizing and cropping
Applications frequently need to enlarge, shrink, or crop the content of an image.
Table 8-6 lists the functions of tf.image that perform these operations.

The term interpolation refers to the process of inserting new data points within a
range of known data points. The first four functions in Table 8-6 use interpola-
tion to resize their input image or images. Each of them resizes its image(s) using
a different interpolation method.

The resize_nearest_neighbor function resizes its images using nearest-neighbor
interpolation. This function computes the color of an internal point by determining
which pixel is closest to it and assigning the pixel’s color. If you call this function
to enlarge an image, the result will contain only the colors in the original. If you
enlarge an image n-fold, its colors will be repeated n times.

TABLE 8-6	 Resizing and Cropping Functions
Function Description

resize_nearest_neighbor(images,
 size, align_corners=False,
 name=None)

Resize using nearest-neighbor interpolation

resize_bilinear(images, size
 align_corners=False, name=None)

Resize using bilinear interpolation

resize_bicubic(images, size
 align_corners=None, name=None)

Resize using bicubic interpolation

resize_area(images, size,
 align_corners=False, name=None)

Resize using area interpolation

resize_images(images, size,
 method=ResizeMethod.BILINEAR,
 align_corners=False)

Resize using the specified interpolation method

central_crop(image, fraction) Crop a central portion of the input image

resize_image_with_crop_or_pad(
 image, target_height, target_width)

Crop or pad the image until its size equals the given width
and height

crop_and_resize(image, boxes,
 box_ind, crop_size,
 method=None,
 extrapolation_value=None,
 name=None)

Crop a portion of the image and resize the image to the
given dimensions

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 173

The resize_bilinear function resizes images using bilinear interpolation. This
determines the color of an internal point by finding the linear combination of the
pixels surrounding it. This provides excellent results without significant process-
ing, and for this reason, it’s the default interpolation method employed by Ten-
sorFlow and many graphics cards.

To understand bilinear interpolation, it helps to look at one-dimensional interpo-
lation, or linear interpolation. Suppose that P is a point on a line between Pixels A
and B. The distance from P to the center of A is denoted t, and the distance from P
to the center of B is given by 1 - t. Linear interpolation sets the color of P with the
following equation:

P tA t Bcolor color color1

When t equals 1, the color at P equals the color at A. When t equals 0, the color at
P equals the color at B. If t = 0.5, the resulting color will equal the average of the
colors of A and B. Interpolated values form straight lines, and Figure 8-8 depicts
the lines used to interpolate between four points.

Bilinear interpolation is similar to linear interpolation, but computes the value of
two-dimensional points located between four pixels. For example, suppose that P
is surrounded by four pixels: A, B, C, and D. Locating P requires two interpolation
parameters, t1 and t2. Figure 8-9 depicts a point P, its four surrounding pixels, and
the two interpolation parameters.

Bilinear interpolation determines the color of an internal point by scaling the
 colors of surrounding pixels by the interpolation parameters. The following equa-
tion shows how bilinear interpolation computes the color at point P, which is
 surrounded by A, B, C, and D:

P t t A t t B t t C t tcolor color color color1 2 1 2 1 2 1 21 1 1 1 Dcolor

FIGURE 8-8:
Linear

 interpolation
finds internal

points by
computing

the linear
combination of
existing points.

174 PART 2 Implementing Machine Learning

resize_bicubic resizes images using bicubic interpolation. Bicubic interpolation
is similar to bilinear interpolation, but instead of finding the linear combination
of four surrounding pixels, it determines the color of an internal point by evaluat-
ing a cubic polynomial involving 16 surrounding points. Bicubic interpolation
produces smoother images than bilinear interpolation, but requires significantly
more processing.

central_crop determines the dimensions of the cropped image by scaling the
dimensions of the original image. For example, if you set the fraction parameter
to 0.25, the cropped width will equal one-quarter of the original width, and the
cropped height will equal one-quarter of the original height.

resize_image_with_crop_or_pad resizes its image without using interpolation.
If the specified dimensions are smaller than the image, the function will crop the
image from its center so that the final image has the specified dimensions. If the
specified dimensions are larger than the image, the function will pad the image
with zeros.

crop_and_resize can perform multiple crop operations. Each row of boxes iden-
tifies a portion of the image to be cropped, and each element of box_ind sets the
index of the cropped image in the output. The function uses bilinear interpolation
to resize each cropped image to crop_size.

Convolution
In addition to creating convolution layers, TensorFlow applications can perform
simple convolution by calling tf.nn.conv2d:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_
gpu=None, data_format='NHWC', name=None)

FIGURE 8-9:
Bilinear

 interpolation
uses two

interpolation
parameters to
locate a point

relative to its four
surrounding

points.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 175

The format of input depends on the data_format parameter. That is, if an appli-
cation sets data_format to NHWC, the shape of the input tensor should be [batch,
height, width, channels]. If data_format is set to NCHW, the tensor’s shape should
be [batch, channels, height, width].

To perform convolution, you should assign filter to a tensor with the same shape
as input. As it performs 2-D dot products, the function shifts the filter by intervals
given in the strides tensor. You must set strides equal to a 1-D tensor with four
elements. To shift the dot products by 1 in each direction, set strides to [1, 1, 1, 1].

If a 2-D dot product involves a pixel on or near the image’s border, the computa-
tion will depend on the padding parameter. If you set padding to VALID, the con-
volution won’t compute dot products involving border pixels. If you set padding to
SAME, the function will pad the image with zeros before performing convolution.

The functions tf.layers.conv2d and tf.nn.conv2d have similar names but serve
markedly different purposes. tf.layers.conv2d creates a convolution layer in a
CNN, while tf.nn.conv2d performs a single convolution operation. Be sure not to
confuse the two.

In addition to conv2d, the tf.nn package provides a function called conv2d_
transpose. This function performs regular convolution, but returns the transpose
of the resulting image.

Putting Theory into Practice
The code in the ch8/img_proc.py module demonstrates how an application can
remove noise from an image by performing convolution with a 3-x-3 filter whose
elements equal 1/9. In addition to convolution, this module performs four
operations:

 » Changes the image’s contrast by calling tf.image.adjust_contrast

 » Mirrors the image horizontally by calling tf.image.flip_left_right

 » Converts the data to PNG format and writes the data to a PNG file

 » Generates summary data for viewing the image in TensorBoard

The ch8/img_proc.py module reads data from input_aircraft.png and writes
its result to output_aircraft.png. Figure 8-10 depicts the input image and the
output image.

176 PART 2 Implementing Machine Learning

Listing 8-2 presents the code that implements the module’s operations using
TensorFlow.

LISTING	8-2:	 General-Purpose Image Processing

Load and pre-process PNG data

queue = tf.train.string_input_producer(['input_aircraft.png'])

reader = tf.WholeFileReader()

_, png_data = reader.read(queue)

orig_tensor = tf.image.decode_png(png_data)

img_tensor = tf.reshape(orig_tensor, [-1, 1, 232, 706])

img_tensor = tf.transpose(img_tensor, [0, 2, 3, 1])

img_tensor = tf.image.convert_image_dtype(img_tensor, tf.float32)

Remove noise using a box filter

conv_filter = np.zeros([3, 3, 1, 1])

conv_filter[0, 0, :, :] = 0.1111

conv_filter[0, 1, :, :] = 0.1111

conv_filter[0, 2, :, :] = 0.1111

conv_filter[1, 0, :, :] = 0.1111

conv_filter[1, 1, :, :] = 0.1111

conv_filter[1, 2, :, :] = 0.1111

conv_filter[2, 0, :, :] = 0.1111

conv_filter[2, 1, :, :] = 0.1111

conv_filter[2, 2, :, :] = 0.1111

FIGURE 8-10:
TensorFlow’s

image processing
routines make it
straightforward

to modify an
image’s format,

orientation, and
color content.

CHAPTER 8 Classifying Images with Convolutional Neural Networks (CNNs) 177

img_tensor = tf.nn.conv2d(img_tensor, conv_filter, [1, 1, 1, 1], 'SAME')

Increase contrast

img_tensor = tf.reshape(img_tensor, [232, 706, 1])

img_tensor = tf.image.adjust_contrast(img_tensor, 0.8)

Flip horizontal

img_tensor = tf.image.flip_left_right(img_tensor)

Create summary data and FileWriter

img_tensor = tf.reshape(img_tensor, [1, 232, 706, 1])

img_tensor = tf.image.convert_image_dtype(img_tensor, tf.uint8)

summary_op = tf.summary.image('Output', img_tensor)

file_writer = tf.summary.FileWriter('log')

Store result to PNG

img_tensor = tf.reshape(img_tensor, [232, 706, 1])

img_tensor = tf.image.encode_png(img_tensor)

with tf.Session() as sess:

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(coord=coord)

 # Execute session

 output_data, summary = sess.run([img_tensor, summary_op])

 # Write output PNG data to file

 output_file = open('output_aircraft.png', 'wb+')
 output_file.write(output_data)

 output_file.close()

 # Print summary data

 file_writer.add_summary(summary)

 file_writer.flush()

 # Wait for threads to terminate

 coord.request_stop()

 coord.join(threads)

As you look at this code, it’s important to keep track of the image’s shape and data
type. After the application decodes the input image, the tensor’s shape is [232,
706, 1], and its elements are 8-bit unsigned integers. But before the convolution
can be performed, the application converts the tensor’s shape to [1, 232, 706, 1]
and its elements to 32-bit floating-point values.

178 PART 2 Implementing Machine Learning

Before it can update the image’s contrast, the application converts the image ten-
sor’s shape back to [232, 706, 1]. Later on, the module converts the image’s shape
to [1, 232, 706, 1] and its type to tf.uint8 so that the module can generate sum-
mary data. Lastly, the application converts the tensor’s shape to [232, 706, 1] so
that it can encode the data to PNG format.

The process of generating summary data for an image is similar to that of gener-
ating data for a tensor. The only difference is that the application needs to call
tf.summary.image instead of tf.summary.scalar or tf.summary.histogram.
The function’s signature is given as follows:

tf.summary.image(name, tensor, max_outputs=3, collections=None,
family=None)

The name parameter provides the label that TensorFlow will associate with the
image. The function accepts the image data through the tensor parameter, and
the tensor’s shape must be [batch_size, height, width, num_channels].

As an example, the ch8/img_proc.py module creates an operation that generates
summary data for img_tensor with the following code:

summary_op = tf.summary.image('Output', img_tensor)

After creating this operation, the application executes it in a session and uses a
FileWriter to print the protocol buffer to an event file. When launched, Tensor-
Board will read this event file and display the graphical content of img_tensor.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 179

Chapter 9
Analyzing Sequential
Data with Recurrent
Neural Networks (RNNs)

Suppose that you want a neural network to predict the next word in the phrase
“My hovercraft is full of. . ..” As any Monty Python fan (or a casual web
search) will tell you, the obvious answer is “eels.” But how can you train a

neural network to arrive at the answer?

You can feed the network every sentence ever written on the Internet, but there’s
still a problem. To make the prediction, the neural network needs to recognize
that the words form an ordered sequence. That is, the network needs to understand
that the phrase “My hovercraft is full of” is a different phrase than “full is My of
hovercraft.”

None of the neural networks discussed in Chapters 1 through 8 of this book are
capable of recognizing sequences. As a consequence, they can’t use past analysis
to solve future problems. For example, a CNN can classify an image, but it can’t
classify later images based on previous classifications. To make up for these
shortcomings, machine learning researchers invented recurrent neural networks,
or RNNs.

IN THIS CHAPTER

 » Analyzing sequential data with
Recurrent Neural Networks (RNNs)

 » Improving performance with Long
Short-Term Memory (LSTM)

 » Improving performance further with
Gated Recurrent Units (GRUs)

180 PART 2 Implementing Machine Learning

Recurrent Neural Networks (RNNs)
Most neural networks, such as convolutional neural networks, transfer data in
one direction: from the input layer to the output layer. For this reason, they’re
called feed-forward networks. In contrast with feed-forward networks, recurrent
neutral networks, or RNNs, make use of feedback. That is, they send data from a
later node to an earlier node in the network.

Figure 9-1 depicts a simple RNN. The overall structure resembles that of a regular
network, but the result of the output node is delayed and fed back into the output
node. This feedback is the primary characteristic that distinguishes RNNs from
other neural networks.

Another important characteristic of RNNs is that they execute in stages. For exam-
ple, if an RNN needs to parse words in audio or text, it will execute one stage for
each word. With each stage, the RNN receives new data to process. It’s important
to see the difference between training steps and stages: One training step may
require multiple processing stages.

In Figure 9-1, the network’s stage is identified by t. This doesn’t measure clock
time, as in 1.37 seconds, but measures discrete time, which starts at 0 and incre-
ments by 1 with each new stage. Therefore, the initial input values are denoted
xi(0), the next set of inputs are denoted xi(1), and so on.

FIGURE 9-1:
A recursive neural

network feeds
past data back

into one or
more nodes.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 181

An RNN makes use of previous processing stages by accessing delayed values. In
Figure 9-1, delayed values are provided by the Delay element. If the current stage
is 4, the value leaving the Delay element will be y(3). If the current stage is 5, the
value leaving the element will be y(4).

Just as the network’s values change from stage to stage, their associated weights
also change. For example, if the RNN in Figure 9-1 has N stages, the application
needs to compute a different set of weights for y(0) through y(N-1). If an RNN has
many delayed values, computing the weight of each value can dramatically
increase the time needed for training.

RNNs and recursive functions
To better understand how RNNs work, it helps to see how they relate to recursive
functions. For example, the following function computes the factorial of N using
recursion:

def factorial(N):
 if n == 1:
 return 1
 else:
 return N * factorial(N-1)

This function calls itself repeatedly and provides a new input value with each call.
Recursive functions can be rewritten using loops, as demonstrated in the follow-
ing function:

def factorial(N):
 x = 1
 for i in range(2, N+1):
 x *= i
 return x

A lengthy recursive function requires a significant amount of memory because of
all the data that needs to be pushed onto the stack. To prevent overflow, Python
sets the default maximum recursion limit to 1000.

Similarly, the processing requirements for an RNN increase with each new stage.
Just as Python sets a maximum recursion limit, every RNN has a fixed number of
stages it can process.

The process of converting a recursive function to a loop-based function is called
unrolling. To better visualize an RNN, you can unroll it by inserting nodes for each
stage to be processed. For example, suppose that the RNN in Figure 9-1 has three

182 PART 2 Implementing Machine Learning

stages. Figure 9-2 shows what the RNN looks like after unrolling (weights removed
for clarity).

As shown in Figure 9-2, y(2) depends on current inputs (the weighted sums of
xi(2)) and the outputs of preceding stages. Developers refer to the combined
results of past stages as the node’s state.

Put simply, the difference between an RNN and a regular neural network is that
one or more nodes of an RNN have state. If a node has state, it can apply the
results of preceding stages to the current stage. This ability to use past results
explains why RNNs are so popular when it comes to processing language and
other sequential data.

Training RNNs
As illustrated in Figure 9-2, earlier in this chapter, unrolling an RNN results in a
feed-forward network that receives its inputs at different stages (xi(0), xi(1), and
so on). This behavior implies that RNNs can be trained like regular feed-forward
networks. A popular training method is called backpropagation through time
(BPTT), which applies the method of backpropagation to RNNs. Chapter 7 dis-
cusses the basic theory of backpropagation.

As you design RNNs with more processing stages, the number of nodes grows
dramatically. As a result, RNNs suffer from two issues that plague all complex

FIGURE 9-2:
Unrolling an RNN

makes it easy to
visualize its
operation.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 183

neural networks: vanishing gradients and exploding gradients. Chapter 7 explains
these issues and the way they degrade the performance of neural networks.

To make up for the shortcomings of BPTT, researchers have devised alternative
training methods. Truncated backpropagation through time (TBPTT) uses a lim-
ited number of stages for training. Real-time recurrent learning (RTRL) doesn’t
unroll RNNs, but trains with the partial derivatives of the network’s outputs and
states with respect to its weights.

Instead of focusing on new training methods, some researchers have invented
entirely new variants of RNNs. These variants provide all the benefits of RNNs, but
aren’t as susceptible to vanishing gradients and exploding gradients. The most
popular variants are long short-term memory (LSTM) cells and gated recurrent
units (GRUs). This chapter discusses both of these variants and demonstrates how
they can be used.

Creating RNN Cells
Just as vanilla neural networks are made up of nodes, RNNs are made up of cells.
In most RNN literature, a cell is a part of an RNN that receives input and produces
a single output value.

The cells of a TensorFlow RNN aren’t quite as straightforward. According to the
documentation, the cell of a TensorFlow RNN “is anything that has a state and
performs some operation that takes a matrix of inputs. This operation results in
an output matrix. . ..” In other words, an RNN cell has a state, operates on an input
matrix, and produces an output matrix.

In a TensorFlow application, the process of building an RNN starts with creating
a cell. To be specific, the process consists of three steps:

1. Create an instance of an RNN cell class with the number of units per cell.

Each cell class is a subclass of tf.nn.rnn_cell.RNNCell.

2. Call a function, such as tf.nn.static_rnn, that creates an RNN based on
the cell.

This function accepts a list of input tensors and returns the RNN’s output and
state.

3. Use the output from Step 2 to compute the loss.

Minimize the loss by launching an optimizer in a session.

184 PART 2 Implementing Machine Learning

The RNNCell class plays a central role in this discussion. It can’t be instantiated in
code, but it’s important because it serves as the base class of TensorFlow’s RNN
cell classes, which include BasicRNNCell, BasicLSTMCell, LSTMCell, and GRUCell.
Figure 9-3 presents seven TensorFlow classes that inherit from RNNCell.

The RNNCell class defines properties and methods that can be accessed through
its instances. Table 9-1 lists seven properties of an RNNCell.

The state of an RNNCell can be represented by one or more tensors. Therefore, an
application can assign state_size to an integer, a TensorShape, a tuple of inte-
gers, or a tuple of TensorShapes. Applications must assign output_size to an
integer or a TensorShape.

The rest of the properties in Table 9-1 are straightforward. The losses property
identifies a tensor or list/tuple of tensors that identify losses that the cell should
apply during its processing. The last three properties in the table provide access to
the cell’s variables and variable scope.

FIGURE 9-3:
Each subclass of

RNNCell
represents a

different kind of
RNN cell.

TABLE 9-1	 Properties of the RNNCell Class
Property Description

state_size The shape(s) of the cell’s state(s)

output_size The shape of the cell’s output

graph Graph of operations contained in the cell

losses Losses to be applied to the cell’s processing

update Tensors used to update the cell’s weights

variables List of the cell’s variables

weights List of the cell’s weights

scope_name Name of the scope containing the variables

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 185

In addition to properties, the RNNCell class defines a set of methods, and most of
them customize the cell’s behavior. Table 9-2 lists four particularly helpful meth-
ods and provides a description of each.

Of the listed methods, zero_state is particularly popular. It creates a zero-filled
tensor or list of zero-filled tensors suitable for initializing an RNN’s state. The
shape of the return value depends on the method’s batch_size parameter and the
cell’s state_size property.

Creating a basic RNN
The simplest subclass of RNNCell is BasicRNNCell. Its constructor is given as
follows:

BasicRNNCell(num_units, activation=tf.nn.tanh, reuse=None)

The num_units parameter sets the number of hidden units in the cell. This param-
eter determines the RNN’s learning capacity. That is, as the number of units
increases, the size of the cell’s state memory increases. Unfortunately, so does the
training time. Also, if you set num_units too high, you run the risk of overfitting.

The second parameter of the constructor sets the cell’s activation function. By
default, RNN cells rely on the inverse tangent (tanh) to produce their output.

The last parameter, reuse, specifies whether applications can access identically
named variables created by the cell.

TABLE 9-2	 Methods of the RNNCell Class
Method Description

add_loss(losses, inputs=None) Add loss tensors

add_update(updates, inputs=None) Add updates to the cell’s weights

add_variable(name, shape, dtype=None,
 initializer=None, regularizer=None,
 trainable=true)

Adds a new variable to the layer

zero_state(batch_size, dtype) Returns a zero-filled tensor for initializing the cell’s state

186 PART 2 Implementing Machine Learning

After creating an instance of the cell, an application can construct an RNN by call-
ing one of a handful of functions in the tf.nn package. The simplest of these
functions is static_rnn:

static_rnn(cell, inputs, initial_state=None, dtype=None,
sequence_length=None, scope=None)

Applications must assign inputs to a list of input matrices. For each input matrix
in the list, the function creates a cell to receive and process the matrix. The num-
ber of rows in the input matrix equals the application’s batch size. In this discus-
sion, I refer to this number as batch_size.

By default, static_rnn assumes that the RNN’s sequence length equals the num-
ber of columns in the input matrix. An application can customize this length by
setting sequence_length to a one-dimensional tensor of batch_size values.
Each value of sequence_length sets the length of the sequence for the corre-
sponding row of the input matrix.

As its name implies, the initial_state parameter initializes the RNN’s state.
Applications must provide a state value for each row of the input matrix, so if the
cell’s state_size is an integer, an application must set initial_state to a
matrix of shape [batch_size, state_size]. If state_size is a tuple, an application
must set initial_state to a tuple of tensors of shapes [batch_size, element_
size], where element_size is size of the corresponding element in state_size.

If an application sets the initial_state parameter, static_rnn will use the
state’s elements to determine the data type of the RNN’s elements. If an applica-
tion doesn’t set initial_state, it must specify the data type with the dtype
parameter. TensorFlow doesn’t set a default data type for an RNN’s content.

static_rnn returns a tuple containing two elements: the RNN’s output and final
state. The output contains batch_size elements, and the shape of the final state
is determined by the cell’s state_size.

The relationship between the number of units, state, inputs, and outputs can be
confusing, so it helps to look at a basic example. The following code creates a
BasicRNNCell with five units:

new_cell = tf.nn.rnn_cell.BasicRNNCell(5)

Because the RNN cell has five units, each row in the cell’s output matrix will have
a length of five.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 187

For this example, each input matrix has two rows, and each row has four ele-
ments. If the application needs to provide three input matrices, it can set the
RNN’s input with this code:

 inputs = [tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]]),
tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]]),
tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]])]

After creating new_cell, an application can create a new RNN and pass it the list
of input matrices with the following code. The dtype parameter specifies that the
RNN’s state and output should be composed of floating-point values:

output, state = tf.nn.static_rnn(new_cell, inputs, dtype=tf.float32)

Because inputs contains three input matrices, the structure of the new RNN con-
tains three cells. Each cell produces an output matrix with the same number of
rows as the input matrix. Figure 9-4 gives an idea of what a simple RNN looks like.

In Figure 9-4, xi(t) identifies the input matrices provided in the inputs parame-
ter, and yi(t) identifies the output matrices returned by static_rnn. The initial
state enters the first cell, which passes its state to the second cell, which passes its
state to the third cell, which returns its state in static_rnn.

The precise values of output and state aren’t important, but it’s helpful to look
at their shapes. Every RNN produces a list of output matrices, and the size of the
list is determined by the size of the list of input matrices. Therefore, output is a
list of three matrices. Because each input batch contained two rows, each output
matrix has two rows. Each row has five values because the cell has five units.

The shape of the cell’s state is determined by the batch size and the number of
units in the cell. In this example cell, the state’s shape is [2, 5] because the batch
size is two and the cell contains five units.

FIGURE 9-4:
TensorFlow

creates one RNN
cell for each input

matrix. Each cell
produces one

output matrix.

188 PART 2 Implementing Machine Learning

Predicting text with RNNs
Because I’m a living national treasure, I extracted a portion of H.P. Lovecraft’s
short story Herbert West–Reanimator into the ch9/lovecraft.txt file. The
ch9/rnn_lovecraft.py module reads this text and uses an RNN to predict
how H.P. Lovecraft would add words to phrases. I’m sure we can all agree that
this application is vitally important to humanity’s cultural development, and
Listing 9-1 presents the code.

LISTING	9-1:	 Predicting Text with an RNN

Split text into words

python3 = sys.version_info[0] == 3

with open('lovecraft.txt', 'r') as f:

 input_str = f.read().lower()

 if python3:

 trans = input_str.maketrans('', '', string.punctuation)

 input_str = input_str.translate(trans)

 else:

 input_str = input_str.decode('utf-8').translate(None, string.

punctuation)

 words = input_str.split()

 num_words = len(words)

Convert words to values

word_freq = collections.Counter(words).most_common()

vocab_size = len(word_freq)

lookup = dict()

for word, _ in word_freq:

 lookup[word] = len(lookup)

input_vals = np.asarray([[lookup[str(word)]] for word in words])

input_vals = input_vals.reshape(-1,)

Set values

input_size = 6

batch_size = 10

num_hidden = 600

Placeholders

input_holder = tf.placeholder(tf.float32, [batch_size, input_size])

label_holder = tf.placeholder(tf.float32, [batch_size, vocab_size])

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 189

Reshape input and feed to RNN

cell = tf.nn.rnn_cell.BasicRNNCell(num_hidden)

outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

Compute loss

weights = tf.Variable(tf.random_normal([num_hidden, vocab_size]))

biases = tf.Variable(tf.random_normal([vocab_size]))

model = tf.matmul(outputs[-1], weights) + biases
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model,

labels=label_holder))

Create optimizer and check result

optimizer = tf.train.AdagradOptimizer(0.1).minimize(loss)

check = tf.equal(tf.argmax(model, 1), tf.argmax(label_holder, 1))

correct = tf.reduce_sum(tf.cast(check, tf.float32))

Execute the graph

start_time = time.time()

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 input_block = np.empty([batch_size, input_size])

 label_block = np.empty([batch_size, vocab_size])

 step = 0

 num_correct = 0.

 accuracy = 0.

 while accuracy < 95.:

 for i in range(batch_size):

 offset = np.random.randint(num_words-(input_size+1))
 input_block[i, :] = input_vals[offset:offset+input_size]
 label_block[i, :] = np.eye(vocab_size)[input_vals[offset+input_

size]]

 _, corr = sess.run([optimizer, correct],

 feed_dict={input_holder: input_block, label_holder: label_block})

 num_correct += corr
 accuracy = 100*num_correct/(1000*batch_size)

 if step % 1000 == 0:

 print('Step', step, '- Accuracy =', accuracy)

 num_correct = 0

 step += 1

Display timing result

duration = time.time() - start_time

print('Time to reach 95% accuracy: {:.2f} seconds'.format(duration))

190 PART 2 Implementing Machine Learning

To start, the module reads the content of lovecraft.txt into a string, splits the
string into words, and associates each word with a number. A word’s number is
determined by its frequency. That is, the module associates the most common
word with 0, the second most common word with 1, and so on.

After obtaining the array of numbers corresponding to the words, the module cre-
ates an RNN cell with 600 hidden layers. It uses the RNN cell to call tf.nn.static_
rnn, which provides the RNN’s output values. To determine loss, the module
multiplies the RNN’s outputs by a matrix of weights and adds biases to the prod-
ucts. Then it creates an AdagradOptimizer to minimize the loss.

For each training run, the application constructs a batch containing ten (batch_
size) sequences of six (input_size) values each. As a result, the RNN can only
recognize dependencies between at most six consecutive words. For each six-
value sequence, the desired label is the seventh value, which represents the desired
word to be predicted.

The application doesn’t perform a fixed number of training runs. Instead, it con-
tinues training until the prediction accuracy exceeds 95 percent. For every thou-
sand training runs, the application prints the prediction accuracy.

Creating multilayered cells
An application can improve an RNN’s analyzing power by stacking cells together
in sequence. This stacking process connects the output of one cell to the input of
another. A TensorFlow application can stack RNN cells by creating an instance of
the tf.contrib.rnn.MultiRNNCell class, whose constructor is given as follows:

MultiRNNCell(cells, state_is_tuple=True)

To create an MultiRNNCell, an application needs to set the first parameter to a list
of RNNCell instances. The returned cell will contain the listed instances in sequence.

The second parameter sets the form of the cell’s state. If you set state_is_tuple
to True, the cell will provide its state as a tuple that contains an element for each
of the combined cells. If you set this parameter to False, the cell concatenates the
states of the individual cells.

As an example, the following code creates two BasicRNNCells and then creates a
MultiRNNCell that stacks the cells together:

brc1 = tf.nn.rnn_cell.BasicRNNCell(3)
brc2 = tf.nn.rnn_cell.BasicRNNCell(3)
multi_cell = tf.nn.rnn_cell.MultiRNNCell([brc1, brc2])

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 191

As a result of this code, multi_cell stacks brc1 and brc2 together, connecting the
output of brc1 to the input of brc2.

Creating dynamic RNNs
The static_rnn function assumes that you know the length of your input data in
advance. It requires that the input data be provided in a list of matrices, where
each matrix has size [batch_size, input_size]. When an application calls
static_rnn, TensorFlow creates the entire RNN structure in the current graph.

The dynamic_rnn function gives you more flexibility when providing input data. It
tells TensorFlow to form the graph structure dynamically instead of building it in
advance. The signature of dynamic_rnn is given as follows:

dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None,

parallel_iterations=None, swap_memory=False, time_major=False, scope=None)

Most of these parameters are identical to those of static_rnn. The primary dif-
ference is that applications can set inputs to a different shape. This shape depends
on batch size, the maximum sequence length, and the function’s time_major
parameter. The default value of time_major is False, which means applications
must assign inputs to a tensor of size [batch_size, max_sequence, . . .] or a nested
tuple. If an application sets time_major to True, it must assign inputs to a tensor
of size [max_sequence, batch_size, . . .] or a nested tuple.

TensorFlow can execute operations without temporal dependency in parallel. The
parallel_iterations parameter controls how many such operations should be
executed at once, and the default value is 32.

If an application sets swap_memory to True, TensorFlow will swap tensors between
the GPU and CPU during the training process, incurring a small performance pen-
alty. Chapter 11 explains how to execute TensorFlow operations on a GPU.

Like static_rnn, dynamic_rnn returns the output and state of the constructed
RNN. The following code demonstrates how dynamic_rnn can be used:

example_cell = tf.nn.rnn_cell.BasicRNNCell(4)
output, st ate = tf.nn.dynamic_rnn(example_cell,

example_input, dtype=tf.float32)

In my experiments, dynamic_rnn provides slightly better performance than
static_rnn.

192 PART 2 Implementing Machine Learning

Long Short-Term Memory (LSTM) Cells
As RNNs process more stages, their unrolled networks get larger, and they become
more susceptible to vanishing gradients. Because RNNs have a fixed number of
stages, they can’t analyze sequences with long-term dependencies. That is, if an
RNN can process a maximum of N stages, it won’t recognize any dependency
between Element 0 and Element N+1.

To make up for these shortcomings, Sepp Hochreiter and Jürgen Schmidhuber
proposed a modification to the RNN’s structure in their 1997 paper Long Short-
Term Memory. In essence, they proposed to reduce the size of an RNN’s state by
restricting when the RNN accepts data. To be specific, an LSTM uses three types
of restrictions:

 » Restrict when the RNN accepts input data

 » Restrict the elements stored in the RNN’s state

 » Restrict when the RNN produces output data

Hochreiter and Schmidhuber called their new type of cell a long short-term memory
(LSTM) cell, often shortened to LSTM. Because of its restrictions, an LSTM pro-
cesses and stores only the data it needs to make predictions.

One major advantage of LSTMs is size. To process a sequence of data, an LSTM
requires fewer nodes than a comparable RNN. Also, because an LSTM can block
the storage of irrelevant data, its state can examine sequences with long-term
dependencies.

To implement these restrictions, Hochreiter and Schmidhuber added three gates to
the RNN cell structure: the input gate, forget gate, and the output gate. Figure 9-5
gives an idea of how these gates control the connectivity of an LSTM cell.

FIGURE 9-5:
An LSTM reduces

the size of an
RNN by prevent-
ing unnecessary

data from
cluttering the

RNN’s state.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 193

Each gate maintains its own weights and biases to determine when it should open
and close. To be precise, the three gates operate by multiplying signals by the
result of a sigmoid function (). For the input and output gates, the function
determines how much of the signal should be allowed to pass. For the forget gate,
the function determines whether the data should be stored in the cell’s state (1) or
discarded (0).

Denoting the state of the input gate as it, the state of the forget gate as ft, and the
state of the output gate as ot, the following equations show how these gates work:

i w x h b

w x h b

o w x h

f

t i i i i

t i i

t i i

f f

o

,

,

,

1

1

1 bo

Keep in mind that, inside of the gates, the underlying cell behaves like an RNN
cell. That is, it relies on the tanh function (by default) to serve as its activation
function.

Holmes’ viewpoint closely resembles that of the inventors of the LSTM. While a
regular RNN stores all the data it receives, an LSTM stores only the data it needs
and discards everything else. This improved efficiency explains why applications
based on LSTMs have better performance and flexibility than applications based
on RNNs.

A BRIEF LITERARY DIGRESSION
In the 1887 novel, A Study in Scarlet, Dr. John Watson meets Sherlock Holmes for the first
time. Despite Holmes’s deductive capabilities, Watson is stunned to learn that the detec-
tive knows nothing about philosophy, literature, or astronomy. Holmes responds in the
following way:

“I consider that a man’s brain originally is like a little empty attic, and you have to
stock it with such furniture as you choose. A fool takes in all the lumber of every
sort that he comes across, so that the knowledge which might be useful to him gets
crowded out, or at best is jumbled up with a lot of other things so that he has a diffi-
culty in laying his hands upon it. Now the skillful workman is very careful indeed as
to what he takes into his brain-attic. He will have nothing but the tools which may
help him in doing his work. . ..

194 PART 2 Implementing Machine Learning

Creating LSTMs in code
In TensorFlow, the process of creating an LSTM is similar to that of creating a
regular RNN: Create an instance of a cell class and form an RNN based on the cell.
The second step requires the same static_rnn and dynamic_rnn functions dis-
cussed in the earlier section “Creating RNN cells.”

The tf.nn.rnn_cell package provides a handful of classes that represent LSTM
cells, and the fundamental classes are BasicLSTMCell, and LSTMCell. The first is
simpler to use, but the second provides more customization options.

Setting the State
In a regular RNN, you can set the initial state with a matrix of size [batch_size,
state_size]. But to initialize the state of an LSTM network, you need to provide
a tuple containing two state matrices: one that identifies the cell state and one
that identifies the hidden state.

To simplify initialization, the tf.nn.rnn_cell module provides a class named
LSTMStateTuple, and its constructor accepts the two state matrices. Denoting the
batch size as batch_sz and the state size as state_sz, the following code creates
an LSTMStateTuple suitable for initializing the state of an LSTM network:

cstate = tf.placeholder(tf.float32, [batch_sz, state_sz])
hstate = tf.placeholder(tf.float32, [batch_sz, state_sz])
init = tf.nn.rnn_cell.LSTMStateTuple(cstate, hstate)

After creating the LSTMStateTuple, the application can assign it to the initial_
state parameter in functions like static_rnn and dynamic_rnn.

The BasicLSTMCell class
From a developer’s perspective, the BasicLSTMCell class is nearly identical to
BasicRNNCell. Like the BasicRNNCell constructor, the BasicLSTMCell construc-
tor accepts the number of units that should be generated per cell. The full
 constructor is given as follows:

BasicLSTMCell(num_units, forget_bias=1.0, state_is_tuple=True,
activation=tf.nn.tanh, reuse=None)

The forget_bias parameter adds an initial bias to the input of the forget gate.
This added bias prevents the cell from forgetting information at the start of
training.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 195

After you create a BasicLSTMCell, you can create an RNN based on LSTM cells by
calling static_rnn or dynamic_rnn. As an example, the following code creates an
LSTM network from a cell with seven units:

lstm_cell = BasicLSTMCell(7)
output, st ate = tf.nn.dynamic_rnn(lstm_cell,

lstm_input, dtype=tf.float32)

By default, the LSTM’s state contains two matrices in a tuple. Therefore, the state
returned by static_rnn and dynamic_rnn is a tuple containing two matrices.

The LSTMCell class
LSTMs discard irrelevant data, so they have no way of measuring the time interval
between input events. To add this capability, Felix Gers and Jürgen Schmidhuber
proposed an improvement to the LSTM’s structure in their 2000 paper, Recurrent
Nets that Time and Count.

This modification involves adding special peephole connections between the cell’s
state and its gates. These connections enable the gates to take state data into
account when controlling the flow of information.

You can enable peephole connections by creating LSTMCells instead of Basic
LSTMCells. The LSTMCell constructor is given as

LSTMCell(num_units, use_peepholes=False, cell_clip=None, initializer=None,

num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None,

forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None)

The cell_clip parameter makes it possible to prevent exploding gradients from
occurring. If you assign this parameter to a floating-point value, the function will
limit the output of the cell’s activation function to that value.

To reduce the dimensionality of input data, you can multiply input tensors by a
matrix called the projection matrix. The num_proj parameter identifies the desired
dimensionality of the projection’s output. If you set num_proj to a value greater
than 0, you can set proj_clip to a floating-point value that limits the projection’s
result to the range [–proj_clip, proj_clip].

196 PART 2 Implementing Machine Learning

Predicting text with LSTMs
The code in the ch9/lstm_lovecraft.py module performs the same text predic-
tion as the code in the ch9/rnn_lovecraft.py module. The only difference is that
it creates an RNN based on a BasicLSTMCell instead of a BasicRNNCell. It creates
the RNN with the following code:

cell = tf.nn.rnn_cell.BasicLSTMCell(num_hidden)
outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.

float32)

The rest of the code in ch9/lstm_lovecraft.py is identical to that in ch9/rnn_
lovecraft.py. The application reads text from lovecraft.txt and feeds batches
of six-element sequences into the RNN. It multiplies the RNN’s outputs by a
matrix of weights, adds biases to the products, and minimizes the loss with an
AdagradOptimizer.

As expected, my experiments support the conclusion that LSTMs process
sequences more efficiently than vanilla RNNs. On my system, RNNs require an
average of 35.54 seconds to reach 95 percent accuracy and LSTMs require an
average of 33.48 seconds.

Gated Recurrent Units (GRUs)
In 2014, Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio wrote a paper entitled On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. In this paper, they proposed a new variant of RNN for
examining variable-length sequences called a Gated Recursive Convolutional Net-
work. Today, developers refer to their network structure as a Gated Recurrent
Unit, or GRU.

Like LSTMs, GRUs use gates to control the flow of data to and from a cell. But the
two cells have three important differences:

 » GRU cells have hidden state (ht), but no cell state (Ct).

 » GRU cells have a reset gate instead of the input gate and an update gate
instead of the forget gate.

 » GRU cells don’t have any output gate mechanism.

CHAPTER 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs) 197

The primary difference is that GRUs have two gates, called the reset gate and
update gate, while LSTMs have three gates. The GRU’s reset gate corresponds to
the LSTM’s input gate, and the GRU’s update gate corresponds to the LSTM’s for-
get gate. GRUs don’t use a gate to restrict the cell’s output. Figure 9-6 depicts a
GRU cell and its gates.

The GRU’s lack of an output gate may seem like a superficial difference, but the
simpler structure means that applications can train GRUs significantly faster than
LSTMs.

Creating GRUs in code
The process of creating RNNs based on GRU cells is very similar to that of creating
regular RNNs. The difference is that applications need to set the RNN’s cell to an
instance of the tf.nn.rnn_cell.GRUCell class. The class’s constructor is given as
follows:

GRUCell(num_units, activation=None, reuse=None,
kernel_initializer=None, bias_initializer=None)

The third parameter is named kernel_initializer; it has no relationship with the
image-filtering kernels discussed in Chapter 8. The kernel_initializer sets the
cell’s initial weights and bias_initializer sets its biases.

FIGURE 9-6:
GRUs are similar

to LSTMs, but
they have two
gates instead

of three.

198 PART 2 Implementing Machine Learning

Predicting text with GRUs
The code in ch9/gru_lovecraft.py performs the same text prediction as the code
in ch9/rnn_lovecraft.py and ch9/lstm_lovecraft.py. The only difference is
that it creates an RNN using a GRUCell, as shown in the following code:

cell = tf.nn.rnn_cell.GRUCell(num_hidden)
outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.

float32)

My experiments indicate that GRUs are significantly more efficient for training
than LSTMs and vanilla RNNs. On my system, GRUs require an average of 29.17
seconds to reach 95 percent accuracy, while LSTMs require an average of 33.48
seconds and RNNs require an average of 35.54 seconds to reach 95 percent
accuracy.

3Simplifying and
Accelerating
TensorFlow

IN THIS PART . . .

Simplify your applications by loading data into datasets
and extracting data with iterators.

Explore TensorFlow’s high-level Estimator API and the
prebuilt estimators available for machine learning.

Accelerate your machine learning by deploying
execution across multiple threads and devices.

Take advantage of the extraordinary power of Google’s
Machine Learning Engine for high-performance
TensorFlow execution.

CHAPTER 10 Accessing Data with Datasets and Iterators 201

Chapter 10
Accessing Data with
Datasets and Iterators

When you start out in machine learning, your fondest wish is to have your
application converge to a solution. But as you progress in the field, you
become more and more concerned with performance. Performance is

especially important when your training data occupies gigabytes or terabytes of
memory.

This chapter and the following two chapters focus on ways to improve Tensor-
Flow’s performance — no more lengthy equations or geometric diagrams. Instead,
I focus on capabilities that you can use to accelerate your applications. Two impor-
tant capabilities are datasets and iterators, which make it easier to load and pro-
cess input data.

Datasets
One effective method of improving an application’s performance involves creating
threads. Modern processors have multiple cores, and developers can take advan-
tage of them by splitting an application’s workload into threads. This multi-
threading becomes particularly helpful when an application needs to load a great
deal of data.

IN THIS CHAPTER

 » Creating and manipulating datasets

 » Loading and storing TFRecord data

 » Exploring four types of iterators

202 PART 3 Simplifying and Accelerating TensorFlow

In the past, TensorFlow developers created threads by constructing instances of
the QueueRunner class. But as of version 1.4, TensorFlow recommends using
Datasets instead of QueueRunners. A Dataset is more than just a large chunk of
data — it provides a high-performance pipeline for loading and processing data.

In general TensorFlow applications, the process of working with datasets consists
of three steps:

1. Create the dataset from data or a file.

2. Split the dataset into batches and preprocess the batches as needed.

3. Process the dataset’s batches in a session.

You can perform the first two steps by calling methods of the Dataset class. The
following discussion explores these methods and shows how they can be used.

Creating datasets
In practice, a dataset is a container of training/testing data and its elements are
the batches that an application uses to feed data to a session. Chapter 5 explains
the topic of batching in detail.

You can create datasets from data, text files, or binary files. The following sections
present these methods and explain how they can be performed in code.

Creating a dataset from data
You can create a dataset from data by calling one of the five Dataset methods
listed in Table 10-1. All of these methods are static, so you’ll need to call them
through the tf.data.Dataset class.

The simplest of these methods is range, which returns a dataset containing values
that make up a step-separated range of values. You can call this method with one,
two, or three arguments:

 » range(a): Produces a range from 0 to a, not including a

 » range(a, b): Produces a range from a to b, not including b

 » range(a, b, c): Produces a range from a to b, not including b, in steps of c

CHAPTER 10 Accessing Data with Datasets and Iterators 203

The following code demonstrates how you can use range in code:

ds1 = tf.data.Dataset.range(5) # [1, 2, 3, 4]
ds2 = tf.data.Dataset.range(10, 13) # [10, 11, 12]
ds3 = tf.data.Dataset.range(2, 8, 2) # [2, 4, 6]

The from_tensors and from_tensor_slices are particularly useful, so it’s
important not to get them confused. from_tensors combines input tensors
together and returns a dataset with one element. The following code demonstrates
how from_tensors can be used:

t = tf.constant([[1, 2], [3, 4]])
ds = tf.data.Dataset.from_tensors(t) # [[1, 2], [3, 4]]

In constrast, from_tensor_slices creates a separate element for each row of the
argument. The following code demonstrates how from_tensor_slices can be
used:

t = tf.constant([[1, 2], [3, 4]])
ds = tf.data.Dataset.from_tensor_slices(t)
[1, 2], [3, 4]

This code creates an element from each row of the input tensor. Therefore, ds
contains two elements that each contain two values. from_sparse_tensor_slices
is similar to from_tensor_slices, but it returns a dataset containing one element
for each row of a sparse tensor.

TABLE 10-1	 Functions That Create Datasets
Member Description

range(*args) Creates a dataset containing a range of values

from_tensors(tensors) Creates a dataset that combines the input tensors into one element

from_tensor_slices(tensors) Creates a dataset containing one element for each row of the
input tensors

from_sparse_tensor_slices(
 sparse_tensor)

Creates a dataset containing one element for each row of the
sparse tensor

from_generator(generator,
 output_types,
 output_shapes=None)

Creates a dataset from the given generator

204 PART 3 Simplifying and Accelerating TensorFlow

The from_generator method lets you create a dataset from values produced by a
generator function. In Python, a generator function is a function that produces (or
yields) a series of values. The process of using a generator consists of the following
steps:

1. In the generator function, use a yield statement to provide a value.

2. Obtain a generator object by invoking the function.

Proceed to either Step 3 or Step 4 depending on your version of Python.

3. In Python 2.x, call the object’s next method to invoke the generator
function.

4. In Python 3.x, call the built-in next function with the generator object.

For example, the following generator returns provides up to four integers:

def simple_gen():
 i = 0
 while i < 4:
 yield(i)
 i += 1

The following code obtains a generator object and calls next to access the genera-
tor’s first three values:

simple_iter = simple_gen()
next(simple_iter)
next(simple_iter)
next(simple_iter)

The from_generator method creates a dataset containing an element for each
value produced by a generator. An application must set the method’s generator
parameter to a generator function and the output_types parameter to a structure
that identifies the type(s) of the generator’s values.

For example, the following code creates a dataset from the simple_gen
generator:

dset = tf.data.Dataset.from_generator(simple_gen, output_types=tf.int32)

The generator object returned by simple_gen produces four values. Therefore,
from_generator returns a dataset containing four elements: one for each gener-
ated integer.

CHAPTER 10 Accessing Data with Datasets and Iterators 205

Creating a dataset from text
You can create a dataset containing the lines of text files by creating an instance
of TextLineDataset, which is a subclass of Dataset. The class constructor is
given as

TextLineDataset(filenames, compression_type=None, buffer_size=None)

To call this constructor, you need to assign filenames to a tensor containing one
or more filenames. By default, the constructor assumes that the files contain
uncompressed text. But if you set compression_type to ZLIB or GZIP, the con-
structor will decompress the archive before accessing its data.

The TextLineDataset will contain one string element for each line of the input
files. For example, if test1.txt has three lines and test2.txt has four lines, the
following code creates a dataset that contains seven strings:

ds = TextLineDataset(['test1.txt', 'test2.txt'])

After you read the strings into the dataset, you can loop through them using an
Iterator. I explain what Iterators are in the section “Iterators,” later in the
chapter.

Creating a dataset from binary files
In addition to text files, TensorFlow supports creating datasets from binary files
if the files contain TFRecords. TFRecords are very useful when you need to access
large amounts of data, but they’re confusing and poorly documented. The overall
process of storing TFRecord data to a file consists of three steps:

1. Create a tf.train.Example that holds the data you want to store.

2. Store the tf.train.Example as a protocol buffer by calling its
SerializeToString method.

3. Create a tf.python_io.TFRecordWriter and use it to write the protocol
buffer to a TFRecord file.

Like datasets, Examples store training and test data. Unlike datasets, they store
their data in key-value pairs called features. Each feature is represented by a
tf.train.Feature, and you can create an Example by calling its constructor with
a tf.train.Features object that contains one or more Features. Working with
these classes can be confusing, so I do my best to clarify:

 » In the tf.train.Example constructor, the features argument accepts a
tf.train.Features instance.

206 PART 3 Simplifying and Accelerating TensorFlow

 » In the tf.train.Features constructor, the feature argument accepts a dict
that associates names with tf.train.Feature instances.

 » In the tf.train.Feature constructor, the bytes_list argument accepts a
tf.train.BytesList, the float_list argument accepts a tf.train.
FloatList, and the int64_list argument accepts a tf.train.Int64List.

The following code creates an Example made up of three features:

feat_a = tf.train.Feature(bytes_list = tf.train.BytesList(value=[b'123']));

feat_b = tf.train.Feature(float_list = tf.train.FloatList(value=[1.0, 2.0,

3.0]));

feat_c = tf.train.Feature(int64_list = tf.train.Int64List(value=[2, 3, 4]));

container = tf.train.Features(feature={'a' : feat_a, 'b' : feat_b, 'c' :

feat_c})

example = tf.train.Example(features=container)

The constructors of the BytesList, FloatList, and Int64List classes all have a
parameter named value. You can set a feature’s data by assigning value to an
array of the appropriate data type.

After you created an Example, you can call its SerializeToString method to store
its data to a protocol buffer. Then you can write the buffer to a TFRecord file by
accessing a TFRecordWriter. There are three points to know about this class:

 » Its constructor accepts the name of the file to hold the TFRecord-formatted
data and an optional compression method.

 » Its write method accepts a protocol buffer and writes its data to the file given
in the constructor.

 » When you no longer need the writer, you can call its close method to close
the file.

For example, if the name of your Example is example, the following code writes its
data to the example.tfrecord file:

writer = tf.python_io.TFRecordWriter('example.tfrecord')
writer.write(example.SerializeToString())
writer.close()

CHAPTER 10 Accessing Data with Datasets and Iterators 207

After you’ve written one or more TFRecord files, you can load their data into a
dataset by performing three operations:

1. Create a TFRecordDataset containing the protocol buffers in the
TFRecord files.

2. For each record, parse its features into a dict that associates feature
names to tensors.

3. Assemble the tensors into a dataset.

The TFRecordDataset constructor creates a dataset from one or more TFRecord
files. The arguments for this constructor are the same as those for the
TextLineDataset:

TFRecordDataset(filenames, compression_type=None, buffer_size=None)

After you call the constructor, the dataset will hold each protocol buffer as an ele-
ment. Before you can access this data, you need to convert each of these elements
into tensors. TensorFlow makes this possible by providing two functions:

 » parseSingleExample(serialized, features, name=None, example_
names=None): Converts an Example to a dict that matches feature keys
to tensors

 » parseExample(serialized, features, name=None, example_
names=None): Converts one or more Examples to a dict that matches feature
keys to tensors

For both functions, the serialized parameter accepts the protocol buffer or buf-
fers containing Example data. The features parameter accepts a dict that matches
a feature name to an instance of FixedLenFeature or VarLenFeature. The class to
instantiate depends on the desired output tensor.

If you want to load a feature’s data into a dense tensor, you should associate the
feature’s name with a FixedLenFeature. You can create a new FixedLenFeature
by calling tf.FixedLenFeature:

tf.FixedLenFeature(shape, dtype, default_value=None)

The shape parameter sets the shape of the output tensor, and dtype sets the ten-
sor’s data type. To demonstrate how these parameters are used, the following
code creates a TFRecordDataset from example.tfrecord. Then the dataset’s map
method calls a function that receives each element of the dataset. This function

208 PART 3 Simplifying and Accelerating TensorFlow

calls parseSingleExample to create a tensor with five elements from the feature
named feat:

def parse_func(buff):

 features = {'feat': tf.FixedLenFeature(shape=[5], dtype=tf.float32)}

 tensor_dict = tf.parse_single_example(buff, features)

 return tensor_dict['feat']

dataset = tf.data.TFRecordDataset('example.tfrecord')

dataset = dataset.map(parse_func)

I discuss the map method later in the “Transforming Datasets” section. For now,
it’s important to know that map replaces dataset with a new Dataset that con-
tains the return value of parse_func. In this code, parse_func returns a tensor
containing the values of the feature named feat.

If a feature contains a significant number of zeros, you can load it into a sparse
vector by associating the feature’s name with a VarLenFeature. You can create a
new VarLenFeature by calling tf.VarLenFeature:

 tf.VarLenFeature(dtype)

I hope it’s clear that the TFRecords API is unnecessarily complicated. I sincerely
hope that a future version of TensorFlow will address this issue and simplify the
usage of TFRecords.

Processing datasets
After you create a dataset, you can manipulate its elements by calling one of the
many methods of the Dataset class. To present these methods, I split them into
four categories:

 » Working with batches

 » Simple operations

 » Transformations

 » Creating Iterators

The following sections present the methods in the first three categories. I explore
the topic of Iterators in the “Iterators” section, later in the chapter.

CHAPTER 10 Accessing Data with Datasets and Iterators 209

Working with batches
As discussed in Chapter 5, applications frequently divide datasets into batches.
The Dataset class makes it easy to work with batches, and Table 10-2 lists two
methods that perform batch-related operations.

batch divides a dataset’s values into batches of size batch_size. The following
code divides the dataset into two batches of three elements each.

vals = tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.int64)
ds1 = tf.data.Dataset.from_tensor_slices(vals)
ds2 = ds1.batch(3) # contains [1, 2, 3], [4, 5, 6]

The padded_batch method pads each element (batch) of the dataset to the shape
given by the padded_shapes parameter. Then the method combines the elements
into one large element.

vals = tf.constant([[1., 2.], [3., 4.]])
ds1 = tf.data.Dataset.from_tensor_slices(vals)
ds2 = ds1.padded_batch(2, padded_shapes=[3]

padding_values=1.)
ds2 contains [[1., 2., 1.], [3., 4., 1.]]

This code creates batches of two elements each and pads each batch to a size of
three. padded_batch sets the inserted values to 1.0 because of the method’s
padding_values parameter.

Simple operations
After dividing a dataset into batches, you can manipulate the batches by calling
methods of the Dataset class. Table 10-3 lists nine methods that perform simple
operations.

TABLE 10-2	 Batch Operations
Member Description

batch(batch_size) Split the dataset’s content into batches

padded_batch(batch_size, padded_
shapes, padding_values=None)

Split the dataset’s content into batches and use padding
to ensure that each batch has the desired shape

210 PART 3 Simplifying and Accelerating TensorFlow

The first two methods, take and skip, are the simplest. They return datasets
 containing portions of other datasets.

ds1 = tf.data.Dataset.range(1, 8) # [1 2 3 4 5 6 7]
ds2 = ds1.take(3) # [1 2 3]
ds3 = ds1.skip(3) # [4 5 6 7]

The concatenate method appends one dataset to another. repeat appends a
dataset to itself.

ds1 = tf.data.Dataset.range(1, 3) # [1 2]
ds2 = tf.data.Dataset.range(7, 10) # [7 8 9]
ds3 = ds1.concatenate(ds2) # [1 2 7 8 9]
ds4 = ds1.repeat(2) # [1 2 1 2]

shuffle creates a dataset by extracting and reordering elements of an existing
dataset. The batch_size parameter identifies how many elements should be
extracted.

ds1 = tf.data.Dataset.range(1, 8) # [1 2 3 4 5 6 7]
ds2 = ds1.shuffle(4) # [2 3 6 4]

shard returns a dataset containing 1/num_shards of the elements in the original
dataset. The index argument specifies the index of the subdataset to return.

TABLE 10-3	 Simple Dataset Operations
Member Description

take(count) Returns a dataset containing the first count elements

skip(count) Returns a dataset that skips the first count elements

concatenate(dataset) Appends the given dataset to the dataset

repeat(count=None) Repeats the dataset count times

shuffle(buffer_size,
seed=None)

Randomizes the order of a subset of the dataset’s elements

shard(num_shards, index) Returns a dataset with a subset of the dataset’s elements

list_files(file_pattern) Returns a dataset containing the names of the files that match the
specified pattern

cache(filename='') Caches elements of the dataset

prefetch(buffer_size) Prefetches the given number of elements from the dataset

CHAPTER 10 Accessing Data with Datasets and Iterators 211

To demonstrate this, the following code creates a dataset with eight elements
(0. . .7) and calls shard to return a dataset that’s one-fourth of the size.

dset = tf.data.Dataset.range(8)
dset_shard = dset.shard(4, 2)

As a result of this code, dset_shard will contain two elements instead of eight. The
elements are [2, 6] because the subdataset contains the third value (index = 2) of
every four values in the original.The list_files method creates a dataset from the
names of the files on the developer’s system. For example, if the working directory
contains a.png and b.png, the following code creates a dataset containing only
their names:

ds1 = tf.data.Dataset.list_files('./*.png')

['a.png', 'b.png']

The cache method caches the dataset’s elements so that you can retrieve them
quickly. After you cache a dataset, you can launch an operation to retrieve its ele-
ments by calling prefetch. This method accepts a parameter that identifies the
maximum number of elements to recover.

Transforming datasets
Table 10-4 lists four advanced routines for operating on datasets. These methods
make it possible to perform sophisticated transformations of a dataset’s elements.

The first argument of filter, flat_map, and map is a function that receives each
element of the dataset. If you can define your function in one line of code, you can
set this argument to a lambda. A lambda definition consists of the lambda

TABLE 10-4	 Dataset Transformations
Member Description

filter(predicate) Filters the dataset based on the predicate

map(map_func, num_threads=None,
output_buffer_size=None)

Applies the function to the dataset’s elements and provides a new
element for each

flat_map(map_func) Applies the function to the dataset’s elements, produces a dataset
for each, and concatenates the results

interleave(map_func,
cycle_length, lock_length=1)

Applies the function to the dataset’s elements, produces a
dataset for each, and interleaves the results

zip(datasets) Interleaves the datasets element-by-element

212 PART 3 Simplifying and Accelerating TensorFlow

keyword, one or more arguments, a colon, and the return value. For example, the
following lambda accepts two values and returns their sum:

lambda x, y: x + y

In the filter method, the function returns a Boolean that determines which ele-
ments should be kept in the dataset. In the following code, the dataset keeps only
the elements whose sum exceeds 10.0:

vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])
ds1 = tf.data.Dataset.from_tensor_slices(vals)
ds1 = ds1.filter(lambda x: tf.reduce_sum(x) > 10.0)
ds1 contains [6.0, 7.0]

In the map method, the function receives each element of the input dataset and
produces an element to be inserted in the output dataset. In the following code,
the lambda multiplies each element of the input dataset by 2 and inserts the
resulting element into the output dataset.

vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])
ds1 = tf.data.Dataset.from_tensor_slices(vals)
ds2 = ds1.map(lambda x: x*2)
ds2 contains [[4., 6.], [8., 10.], [12., 14.]]

flat_map is like map, but instead of returning an element of the output dataset,
the function returns an entire dataset. flat_map concatenates the output datasets
together and returns the flattened result.

vals = tf.constant([2, 3], dtype=tf.int64)
ds1 = tf.data.Dataset.from_tensor_slices(vals)
ds2 = ds1.flat_map(lambda x: tf.data.Dataset.range(x))
ds2 contains [0, 1, 0, 1, 2]

As with flat_map, the function in interleave returns a dataset for each element
of the input dataset. Unlike flat_map, it doesn’t necessarily concatenate the
resulting datasets. The cycle_length parameter identifies how many elements
should be interleaved.

For example, if you set cycle_length to 2, the output dataset will contain the first
elements of the first two datasets, then the next two elements of the first two
datasets, and so on. The following code shows how interleave works.

vals = tf.constant([2, 3, 4], dtype=tf.int64)

ds1 = tf.data.Dataset.from_tensor_slices(vals)

CHAPTER 10 Accessing Data with Datasets and Iterators 213

ds2 = ds1.interleave(lambda x: tf.data.Dataset.range(x), cycle_length=3)

ds2 contains [0, 0, 0, 1, 1, 1, 2, 2, 3]

This code provides three elements to the lambda and sets the cycle_length to 3.
As a result, the output dataset contains the first three elements of the three data-
sets, then the next three elements of the three datasets, and so on.

The zip method also interleaves multiple datasets, but it doesn’t accept a function
or cycle_length parameter. This method always takes the first value from the
first element, then the first value from the second element, and proceeds onward.
The following code demonstrates how zip can be used.

ds1 = tf.data.Dataset.range(0, 3)
ds2 = tf.data.Dataset.range(10, 13)
ds3 = tf.data.Dataset.range(20, 23)
ds4 = tf.data.Dataset.zip((ds1, ds2, ds3))
ds4 contains (0, 10, 20), (1, 11, 21), (2, 12, 22)

The datasets parameter of zip accepts the input datasets in a nested structure.
An application can set this equal to a tuple, but not a list.

Iterators
An Iterator lets you iterate through the elements of one or more Datasets.
 TensorFlow provides four types of iterators:

 » One-shot: Iterates once through the dataset, can’t be parameterized

 » Initializable: Requires special initialization, can be parameterized

 » Reinitializable: Can be associated with multiple datasets, must be initialized
before each iteration

 » Feedable: Can be associated with multiple datasets, doesn’t need to be
initialized before each iteration

One-shot iterators
One-shot iterators are the simplest of the four, but they can iterate only once
through a dataset’s elements. An application can create a one-shot iterator for a
dataset by calling a dataset’s make_one_shot_iterator method.

214 PART 3 Simplifying and Accelerating TensorFlow

After you create an iterator, you can access the next available element by calling
get_next. This method resembles the next method of a regular Python iterator.
To demonstrate how get_next is used, the following code creates a dataset with
one element and calls get_next to print the element’s value:

Create the dataset and iterator
tensor = tf.constant([1, 2, 3])
dset = tf.data.Dataset.from_tensors(tensor)
iterator = dset.make_one_shot_iterator()

Access the next element
next_elem = iterator.get_next()

Print the element's value
with tf.Session() as sess:
 print('Element: ', sess.run(next_elem))

Output: 'Element: [1 2 3]'

When a session evaluates a tensor returned by get_next, the tensor takes the
value of the dataset’s next element. To demonstrate, the following code creates a
dataset with five elements and repeatedly evaluates the tensor returned by
get_next:

Create the dataset and iterator
dset = tf.data.Dataset.range(5)
iterator = dset.make_one_shot_iterator()

Access the next element
next_elem = iterator.get_next()

Print the values of the elements
with tf.Session() as sess:
 for i in range(5):
 print('Element: ', sess.run(next_elem))

In this code, Dataset.range creates a dataset with five elements. The iterator
loops through the dataset, and the session prints the value of each. The resulting
output is as follows:

Element: 0
Element: 1
Element: 2
Element: 3
Element: 4

CHAPTER 10 Accessing Data with Datasets and Iterators 215

A one-shot iterator can iterate through a dataset only once. If an application
attempts to execute a second loop through the dataset, TensorFlow will raise an
OutOfRangeError: End of sequence.

Initializable iterators
In addition to creating datasets from constant tensors, you can create datasets
from placeholders. These kind of datasets are called parameterized datasets, and
they receive their content when the application executes a session that feeds data
to the placeholder.

One-shot iterators can’t iterate through parameterized datasets, but initializable
iterators can. To create an initializable iterator and iterate through a parameter-
ized dataset, you need to perform six steps:

1. Create a dataset from a placeholder by calling from_tensors or
from_tensor_slices.

2. Create an iterator for the dataset by calling the dataset’s make_
initializable_iterator method.

3. Obtain the next element by calling the iterator’s get_next method.

4. Initialize the iterator by running its initializer property in a session.

5. Associate the iterator’s placeholder with data by setting the feed_dict
parameter in the session’s run method.

6. Access the iterators elements in a session by evaluating the result of the
get_next method.

This process may seem complicated, but parameterized datasets can be very
 helpful. To demonstrate how these datasets can be used, the following code cre-
ates a dataset from a placeholder that holds four floating-point values. Then it
accesses the dataset using an initializable iterator:

Create a placeholder and parameterized dataset
holder = tf.placeholder(tf.float32, shape=[4])
dset = tf.data.Dataset.from_tensor_slices(holder)

Create the iterator and access its first element
iter = dset.make_initializable_iterator()
next_elem = iter.get_next()

with tf.Session() as sess:

216 PART 3 Simplifying and Accelerating TensorFlow

 # Initialize the iterator
 sess.run(iter.initializer,
 feed_dict={holder: [0., 1., 2., 3.]})
 for _ in range(4):
 print('Element: ', sess.run(next_elem))

Looking at this code, it’s important to see that the first call to sess.run initializes
the iterator and feeds values to the parameterized dataset through the place-
holder. After this initialization, the application can access the iterator’s values
through the value returned by get_next.

Reinitializable iterators
If you need to associate an iterator with multiple datasets, one-shot iterators and
initializable iterators won’t be sufficient. Instead, the application can create a
reinitializable iterator by calling Iterator.from_structure:

Iterator.from_structure(output_types, output_shapes=None, shared_name=None)

A reinitializable iterator doesn’t need to know about specific datasets in advance,
but it needs to know about the types and shapes of their elements. An application
can set output_types and output_shapes by accessing the identically named
properties of a Dataset instance.

After creating the reinitializable iterator, you can associate it with multiple differ-
ent datasets by creating a separate initializer for each dataset. The following code
creates one iterator with two initializers. Then it uses the iterator to loop through
two datasets:

Create datasets with similar shapes
ds1 = tf.data.Dataset.range(8)
ds2 = tf.data.Dataset.range(3)

Create iterator and get first element
iterator = tf.data.Iterator.from_structure(
 ds1.output_types, ds1.output_shapes)
next_elem = iterator.get_next()

Create an initializer for each dataset
ds1_init = iterator.make_initializer(ds1)
ds2_init = iterator.make_initializer(ds2)

Run both initializers in a session
with tf.Session() as sess:

CHAPTER 10 Accessing Data with Datasets and Iterators 217

 # Associate the iterator with the first dataset
 sess.run(ds1_init)
 for _ in range(8):
 print('Element from ds1: ', sess.run(next_elem))

 # Associate the iterator with the second dataset
 sess.run(ds2_init)
 for _ in range(3):
 print('Element from ds2: ', sess.run(next_elem))

This code calls from_structure with ds1’s shape and type. Then it associates the
iterator with ds1 and ds2. ds1 and ds2 don’t have the same shape, but they’re
compatible because their shapes are similar.

Feedable iterators
If you’d like to switch between iterators without initializing from the start of the
dataset, you can create a feedable iterator. The process of using a feedable iterator
consists of six steps:

1. Create a placeholder to contain a string.

2. Call Iterator.from_string_handle with the placeholder.

3. Create multiple iterators to iterate through datasets.

4. For each iterator, obtain a unique string tensor by calling string_handle.

5. Evaluate each unique string tensor in a session to obtain unique strings
for the iterators.

6. To switch to a specific iterator, evaluate the result of get_next in a
session and provide the iterator’s string using the feed_dict parameter
of sess.run.

The following code demonstrates this process. It creates two datasets, a one-shot
iterator for each dataset, and a feedable iterator that makes it possible to switch
between the iterators.

Create datasets
ds1 = tf.data.Dataset.range(8)
ds2 = tf.data.Dataset.range(10, 13)

Create an iterator for each dataset
ds1_iterator = ds1.make_one_shot_iterator()
ds2_iterator = ds2.make_one_shot_iterator()

218 PART 3 Simplifying and Accelerating TensorFlow

Create a string placeholder and a feedable iterator
holder = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
 holder, ds1.output_types, ds1.output_shapes)
next_element = iterator.get_next()

Obtain a string tensor for each iterator
ds1_handle = ds1_iterator.string_handle()
ds2_handle = ds2_iterator.string_handle()

Create the session
with tf.Session() as sess:

 # Obtain a string from each iterator
 ds1_string = sess.run(ds1_handle)
 ds2_string = sess.run(ds2_handle)

 # Iterate through the first four elements of ds1
 for _ in range(4):
 print('Element from ds1: ', sess.run(next_element,

feed_dict={holder: ds1_string}))

 # Iterate through ds2
 for _ in range(3):
 print('Element from ds2: ', sess.run(next_element,

feed_dict={holder: ds2_string}))

 # Iterate through the last four elements of ds1
 for _ in range(4):
 print('Element from ds1: ', sess.run(next_element,

feed_dict={holder: ds1_string}))

This code prints the first four elements of ds1, the elements of ds2, and the last
four elements of ds1. Because the iterator is feedable, the application doesn’t need
to reinitialize the ds1 iterator before the second iteration.

Putting Theory into Practice
The code in ch10/dataset.py demonstrates how you can create and process data-
sets. The module starts by creating an Example, writing the Example’s data to a
TFRecord file, and loading the file’s data into a TFRecordDataset. Then it creates
two more datasets, processes them using Dataset methods, and iterates through
their elements. Listing 10-1 presents the code.

CHAPTER 10 Accessing Data with Datasets and Iterators 219

LISTING	10-1:	 Creating and Processing Datasets

Generator function

def generator():

 x = 20

 while x < 28:

 yield x

 x += 1

Create an example containing floats

int_list = tf.train.Int64List(value=[0, 1, 2, 3])

feat = tf.train.Feature(int64_list=int_list)

container = tf.train.Features(feature={'feat' : feat})

example = tf.train.Example(features=container)

Write the example to a GZIP file

opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

writer.write(example.SerializeToString())

writer.close()

Function to parse TFRecords

def parse_func(buff):

 features = {'feat': tf.FixedLenFeature(shape=[4], dtype=tf.int64)}

 tensor_dict = tf.parse_single_example(buff, features)

 return tensor_dict['feat']

Create a dataset from TFRecords

dset1 = tf.data.TFRecordDataset('ex.tfrecord', 'GZIP')

dset1 = dset1.map(parse_func)

iter1 = dset1.make_one_shot_iterator()

next1 = iter1.get_next()

Create a parameterized dataset and reinitializable iterator

holder = tf.placeholder(tf.int64, shape=[2])

dset2 = tf.data.Dataset.from_tensor_slices(holder)

dset2 = dset2.concatenate(tf.data.Dataset.range(12, 14))

Create the third dataset

dset3 = tf.data.Dataset.from_generator(generator, output_types=tf.int64)

dset3 = dset3.filter(lambda x: x < 24)

Create a reinitializable iterator for the 2nd, 3rd datasets

iter2 = tf.data.Iterator.from_structure(

 dset2.output_types, dset2.output_shapes)

next2 = iter2.get_next()

 (continued)

220 PART 3 Simplifying and Accelerating TensorFlow

Create initializers for the 2nd, 3rd datasets

dset2_init = iter2.make_initializer(dset2)

dset3_init = iter2.make_initializer(dset3)

Print the content of each dataset

with tf.Session() as sess:

 # Print the content of the first dataset

 print('Element from dset1: ', sess.run(next1))

 # Print the content of the second dataset

 sess.run(dset2_init, feed_dict={holder: [10, 11]})

 for _ in range(4):

 print('Element from dset2: ', sess.run(next2))

 # Print the content of the third dataset

 sess.run(dset3_init)

 for _ in range(4):

 print('Element from dset3: ', sess.run(next2))

This module creates, manipulates, and iterates through three datasets:

 » The first dataset, dset1, receives values stored in a TFRecord file. It has a
single element with four values: 0, 1, 2, 3.

 » The second dataset, dset2, is parametric and receives values through a
placeholder when the session executes. It has four elements with one value
each: 10, 11, 12, 13.

 » The third dataset, dset3, receives eight values (20 through 27) from a
generator function. The filter method removes every element with a value
greater than 24, leaving it with four single-valued elements: 20, 21, 22, 23.

For the first dataset, the module writes a serialized Example to a file named
ex.tfrecord. The module compresses the file’s content using the gzip algorithm,
and the following code shows how to configure the use of GZIP compression:

opts = tf.python_io.TFRecordOptions (tf.python_io.
TFRecordCompressionType.GZIP)

writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

LISTING	10-1:	 (continued)

CHAPTER 10 Accessing Data with Datasets and Iterators 221

After assembling the three datasets, the module creates two iterators. The first
iterator is a one-shot iterator that displays the values of dset1 as the session runs.

The second iterator is a reinitializable iterator that displays the values in dset2
and dset3. The module creates two initializers for the reinitializable iterator.
Within the session, the module runs both initializers and uses them to iterate
through the values in dset2 and dset3.

Bizarro Datasets
In Chapter 6, I explain how to create a Dataset containing MNIST’s handwriting
samples by calling the read_data_sets method of the tf.contrib.learn.
python.learn.datasets.mnist package. As strange as it may seem, that Dataset
has nothing to do with the Dataset class discussed in this chapter. The
tf.contrib.learn.python.learn.datasets package defines its own Dataset
structure with the following code:

Dataset = collections.namedtuple('Dataset', ['data', 'target'])

I call this Dataset the bizarro dataset because it reminds me of Bizarro, Super-
man’s ugly, less intelligent mirror-image. This Dataset doesn’t have subclasses
or interesting processing methods. It’s just a named tuple with two elements:
data contains data points, and target contains labels for the data points. For
example, if an estimator’s job is to classify points in space into categories, the
Dataset will store the points’ coordinates in its data element and the category IDs
in its target element.

It irks me that TensorFlow provides two Dataset structures, but I have to admit
that the functions of the tf.contrib.learn.python.learn.datasets package
make it easy to load and access data. This simplicity explains why so many of
TensorFlow’s example applications rely on these functions. Table 10-5 lists five
functions that create bizarro datasets and provides a description of each.

To explain these methods, I split them into two categories. Functions in the first
category load data from comma-separated value (CSV) files. Functions in the sec-
ond category load data from pre-existing machine learning datasets: the Iris
dataset and the Boston dataset.

222 PART 3 Simplifying and Accelerating TensorFlow

Loading data from CSV files
Many applications import and export data using comma-separated value (CSV)
files. In a CSV file, each line provides a single record composed of values separated
by commas. This format isn’t particularly efficient, but humans and computers
can read CSV files without difficulty.

The first three functions in the table load datasets from CSV files. load_csv_
with_header loads a dataset from a CSV file containing a header, and load_csv_
without_header loads a dataset from a CSV file without a header.

The ratio parameter of shrink_csv determines which lines of the CSV file should
be stored in the dataset. If an application sets ratio to N, shrink_csv will store
every Nth line to the dataset. By changing ratio, an application can select differ-
ent assortments of CSV records for the dataset.

These functions will not create datasets from general CSV files. They expect CSV
files to be formatted in a specific way:

 » If present, the file’s header should start with the number of samples (the
number of lines containing records) and the number of features (the number
of fields per line).

 » Each data line should end with the desired category of the corresponding data
point.

TABLE 10-5	 Creating Bizarro Datasets
Member Description

load_csv_with_header(filename, target_dtype,
features_dtype, target_column=-1)

Loads a dataset from a CSV file with a
header row

load_csv_without_header(filename, target_dtype,
features_dtype, target_column=-1)

Loads a dataset from a CSV file without a
header row

shrink_csv(filename, ratio) Loads a minified dataset from
the CSV file

load_iris(data_path=None) Loads the Iris flower dataset from the
training/test CSV files

load_boston(data_path=None) Loads a dataset of Boston housing prices
from the training/test CSV files

CHAPTER 10 Accessing Data with Datasets and Iterators 223

For example, the following text presents the first five lines of the CSV file contain-
ing training data for the Iris dataset:

30,4,setosa,versicolor,virginica
5.9,3.0,4.2,1.5,1
6.9,3.1,5.4,2.1,2
5.1,3.3,1.7,0.5,0
6.0,3.4,4.5,1.6,1

According to the header, this file provides 30 records, and each record has four
fields. The last value in each line identifies the category, so the first data point
belongs to Category 1.

In a regular CSV file, the header provides a name for each field in a record. But in
this example, the header has three names, and each record has four fields preced-
ing the category. As it turns out, the header names identify category names:
setosa identifies Category 0, versicolor identifies Category 1, and virginica
identifies Category 2.

Loading the Iris and Boston datasets
The TensorFlow website provides two popular datasets that make it easy to train
and test machine learning applications. The first dataset, called the Iris dataset,
associates physical traits of a flower with one of three types of irises. The second
dataset, called the Boston dataset, associates characteristics of Boston properties
with house prices.

For each dataset, TensorFlow provides two CSV files: one containing training data
and one containing test data. For the Iris dataset, you can download the file
 containing training data from http://download.tensorflow.org/data/iris_
training.csv and the test data from http://download.tensorflow.org/data/
iris_test.csv.

After you download the files to your system, you can create a dataset by calling
load_iris with the path of one of the Iris files. This function returns a Dataset
whose data collection contains floating-point values (flower traits) and whose
target collection contains integers (iris categories).

http://download.tensorflow.org/data/iris_training.csv
http://download.tensorflow.org/data/iris_training.csv
http://download.tensorflow.org/data/iris_test.csv
http://download.tensorflow.org/data/iris_test.csv

224 PART 3 Simplifying and Accelerating TensorFlow

The Boston dataset identifies a number of statistics (from 1978) related to houses
in the Boston area, including the per capita crime rate, the pupil-teacher ratio, and
the average number of rooms in each house. You can download the Boston training
data from https://github.com/tensorflow/tensorflow/blob/master/tensor
flow/examples/tutorials/input_fn/boston_train.csv and the test data from
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
examples/tutorials/input_fn/boston_test.csv.

Like the MNIST dataset, the Iris and Boston datasets make it straightforward to
test new machine learning algorithms. The next chapter explains how to test esti-
mators using the Iris and Boston datasets.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_train.csv
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_train.csv
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_test.csv
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_test.csv

CHAPTER 11 Using Threads, Devices, and Clusters 225

Chapter 11
Using Threads, Devices,
and Clusters

I feel the need . . . the need for speed! If you’ve ever said this about machine learning,
then this chapter is for you. In my experience, you can accelerate a TensorFlow
application using four methods:

 » Generate multiple threads of execution

 » Access high-performance devices like graphics processor units (GPUs)

 » Execute an application on a cluster of networked devices

 » Deploy an application to the cloud

This chapter discusses the first three options and then demonstrates how to
 execute a TensorFlow application in a cluster. Chapter 13 explains how to run
 TensorFlow in the cloud.

IN THIS CHAPTER

 » Configuring threads in applications

 » Assigning operations to devices

 » Creating distributed applications
with clusters

226 PART 3 Simplifying and Accelerating TensorFlow

Executing with Multiple Threads
A thread is a sequence of operations capable of executing independently from
other threads. In a TensorFlow application, you can take advantage of threads in
two main ways:

 » Perform time-consuming operations, such as the loading and storing of
data, in separate threads. This approach lets your processing thread
continue its work without interruption.

 » Run a session with multiple threads. In theory, this method will reduce the
amount of time needed to process the session’s operations.

For the first point, developers used to create QueueRunners, which store opera-
tions to be executed in separate threads. But as of version 1.4, TensorFlow’s doc-
umentation recommends using datasets instead, which is why Chapter 10 discusses
datasets and iterators instead of threads, queue runners, and coordinators.

To process a dataset in a multithreaded manner, you can set the num_parallel_
calls argument of the Dataset’s map method. For example, if you set this
argument to 4, TensorFlow will perform the map operation with four threads.
Chapter 10 discusses the Dataset class and its map method in glorious detail.

For the second point, you can execute a session with multiple threads by setting
the right configuration parameters. You can set these parameters when you create
a session or when you run the session.

Configuring a new session
All of the example code in Chapters 1 through 10 has called tf.Session without
any arguments. But you can configure a session by setting the config parameter
of tf.Session to a ConfigProto protocol buffer. The fields of this buffer deter-
mine the session’s behavior, and Table 11-1 lists each of them.

This section focuses on the options that configure a session’s threads. By default,
a session executes one thread for each core on the target processor. If you run
TensorFlow on an Intel Core i5 CPU, your session will execute with a maximum of
four threads because the CPU has four cores.

It’s important to see the difference between the intra_op_parallelism_threads
and inter_op_parallelism_threads options. Many TensorFlow operations, such
as matrix multiplication, can be accelerated using multiple threads. The intra_
op_parallelism_threads option determines how many threads should be gener-
ated to execute a single operation. In contrast, if a graph has operations that can

CHAPTER 11 Using Threads, Devices, and Clusters 227

run in parallel, the inter_op_parallelism_threads option determines how
many threads can be generated to execute them.

To demonstrate how threads can be configured, the following code creates a
ConfigProto that uses a maximum of six threads for single operations and a
maximum of eight threads for parallel operations. Then it uses the ConfigProto
to create a session:

conf = tf.C onfigProto(intra_op_parallelism_threads=6, inter_op_
parallelism_threads=8)

with tf.Session(config=conf) as sess:
 ...

TABLE 11-1	 ConfigProto Fields
Field Type Description

device_count map<string, int32> Identifies the number of devices of
each type that can be accessed by
the session

intra_op_parallelism_threads int32 Uses multiple threads to perform a
single operation

inter_op_parallelism_threads int32 Uses multiple threads to perform
separate operations

session_inter_op_thread_pool ThreadPoolOptionProto Configures session thread pools

placement_period int32 Determines how often to assign
nodes to devices

device_filters string Prevents named devices from
being accessed by a session

gpu_options GPUOptions Configures any GPUs accessed by
the session

allow_soft_placement bool Determines how operations are
assigned to CPUs and GPUs

graph_options GraphOptions Configures options for the
session’s graph(s)

operation_timeout_in_ms int64 Configures global timeout for the
session’s blocking operations

rpc_options RPCOptions Configures for the session’s
distributed runtime

cluster_def ClusterDef Lists workers to use in this session

228 PART 3 Simplifying and Accelerating TensorFlow

By default, a session will access threads from a global thread pool instead of creat-
ing threads of its own. You can change this behavior with the use_per_session_
threads option. If you set this option to True, the session will create its own
threads.

If you’d like a session to execute background tasks in addition to the main com-
putation, you can configure it by setting session_inter_op_thread_pool to one
or more ThreadPoolOptionProto buffers. Each ThreadPoolOptionProto identi-
fies a separate pool of threads. This protocol buffer has two fields:

 » num_threads: The number of threads in the thread pool

 » global_name: A string identifier for the thread pool

When you want a session to execute with threads from a specific pool, you can
identify the thread pool in the RunOptions accepted by the run method. The next
section discusses the RunOptions buffer in full.

Configuring a running session
Just as you can set the config parameter of tf.Session to a ConfigProto, you can
set the options parameter of a session’s run method to a RunOptions. The fields
of a RunOptions determine how the session will execute, and Table 11-2 lists these
fields.

If you configure a Session to use multiple thread pools, you can tell the session to
execute threads from a particular pool by setting the inter_op_thread_pool
option in RunOptions. For example, if you set this option to 1, the session will exe-
cute threads in the second thread pool.

TABLE 11-2	 RunOptions Fields
Field Type Description

trace_level TraceLevel Determines the type of tracing to be performed

timeout_in_ms int64 Time to wait for the session operation to complete

inter_op_thread_pool int32 Identifies the pool of threads to use for the operation

output_partition_graphs bool Identifies whether the session’s partition graph(s)
should be provided in the metadata

debug_options DebugOptions Sets configuration options for debugging the
session operation

CHAPTER 11 Using Threads, Devices, and Clusters 229

Configuring Devices
Modern processors can execute special instructions that perform math operations
at high speed. For example, a special multiply instruction can multiply four pairs
of values in the same time that a regular instruction can multiply a single pair of
values. These special instructions operate on multiple values at once, and for this
reason, they’re called SIMD (single-instruction, multiple-data) instructions.

Unfortunately, when you install TensorFlow with a utility like pip, you get the
basic, boring installation. This installation runs on new and old computers, but it
won’t take advantage of SIMD instructions, and it won’t execute operations on a
graphics processor unit (GPU), even if you’ve installed a compliant graphics card.

If you want TensorFlow to make the best use of your system’s capabilities, you
need to build TensorFlow specifically for your system.

Building TensorFlow from source
It takes time and effort to build TensorFlow from its source code, but if you exe-
cute a lot of machine learning applications, you’ll save time in the long run. This
section explains how to build TensorFlow for Windows, macOS, and Linux sys-
tems. But it’s important to understand three topics: obtaining the TensorFlow
source code, the Bazel build system, and GPU acceleration.

Downloading the TensorFlow source code
TensorFlow is an open-source project, and you can access the source code at
https://github.com/tensorflow/tensorflow. If you know how to use git, you
can clone the repository with the following command:

git clone https://github.com/tensorflow/tensorflow.git

If you don’t know how to use git, click the green button entitled Clone or down-
load. Then select the Download ZIP option to download a zip file containing the
TensorFlow source code. Decompress the zip file when the download is
complete.

Bazel and Java
Bazel is a Google tool that automates the process of building software. It operates
by executing operations defined in a file named BUILD. The instructions in this
file, called rules, are written in Skylark, a subset of Python.

https://github.com/tensorflow/tensorflow

230 PART 3 Simplifying and Accelerating TensorFlow

If you look through the TensorFlow file hierarchy, you’ll see a number of BUILD
files and *.BUILD files. If you open the BUILD file in the tensorflow directory,
you’ll find a number of configuration settings, such as the following:

config_setting(
 name = "linux_x86_64",
 values = {"cpu": "k8"},
 visibility = ["//visibility:public"],
)

Each config_setting block identifies a supported platform for building
TensorFlow.

Before you can install Bazel, you need to install Java on your system. Specifically,
you need to install version 8.x of the Java Development Kit (JDK). If you don’t have
this version, you can download the installer for Windows and macOS at www.
oracle.com/technetwork/java/javase/downloads/index.html.

If you’re running a Debian-based system like Ubuntu, you can install the OpenJDK
8.x with the following command:

sudo apt-get install openjdk-8-jdk

After you install JDK 8.x, you’re ready to install Bazel. The instructions for install-
ing Bazel depend on your operating system.

Graphics Processor Unit (GPU) acceleration
While CPUs are designed for secure, general-purpose computing, GPUs are
designed for high-speed graphical rendering, which involves a lot of math. For
many machine learning applications, you can dramatically improve performance
by running operations on a GPU instead of a CPU.

The two main languages for general-purpose GPU (GPGPU) development are
OpenCL and CUDA. OpenCL is supported by multiple vendors and can run on many
different types of devices, including CPUs, GPUs, and FPGAs. But TensorFlow sup-
ports OpenCL only on systems that have ComputeCpp installed. You can download
ComputeCpp from www.codeplay.com/products/computesuite/computecpp.

The second GPGPU language, CUDA, runs only on Nvidia’s GPUs. To install CUDA,
visit https://developer.nvidia.com/cuda-downloads and click the buttons
that identify your operating system, architecture, and OS version. Then download
and launch the installer, which will walk you through the installation process.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.codeplay.com/products/computesuite/computecpp
https://developer.nvidia.com/cuda-downloads

CHAPTER 11 Using Threads, Devices, and Clusters 231

Preparing the TensorFlow build on Windows
Building TensorFlow on Windows is hard because you need to set up a UNIX-like
environment that supports Bash scripting, Python, and the GNU build tools, such
as gcc and g++. To create this environment, most developers use Cygwin or MSYS2
(Minimal System 2). In this section, I explain how to build TensorFlow on Windows
using MSYS2.

To install MSYS2, visit www.msys2.org and select the 32-bit (i686) or 64-bit
(x86_64) executable. When the download is complete, launch the executable and
proceed through the installation instructions.

Assuming that you chose the default options for 64-bit Windows, MSYS2 will
place all of its files in a new directory named C:\msys64. Two folders are particu-
larly important:

 » C:\msys64\mingw64\bin contains the utilities provided by MinGW
(Minimalist GNU for Windows). When you install MSYS2, this folder
will be empty.

 » C:\msys64\home\<name> is your home directory. When you launch MSYS2, it
will be your initial directory.

To install TensorFlow, you need to be able to access build tools, such as gcc, g++,
and ld, in the GNU toolchain. You can obtain these tools by downloading MinGW
packages into the MSYS2 environment. The MSYS2 installer is called pacman, and
you can install the necessary MinGW packages by launching MSYS2 and entering
the following command:

pacman -S --needed mingw-w64-x86_64-python3-pip base-devel
mingw-w64-x86_64-toolchain

This command adds a number of files and executables to the C:\msys64\mingw64\
bin directory. To tell MSYS2 how to find these executables, you need to add this
directory to your system’s PATH variable.

If you run python --version on the MSYS2 command line, it may tell you that
you’re using Python 2.x. This version is a problem because TensorFlow on Windows
requires Python 3.5. To fix this issue, I recommend four steps:

1. Open the C:\msys64\mingw64\bin directory and rename python.exe to
old_python.exe.

2. In the same directory, copy python3.5.exe and rename the copy
python.exe.

http://www.msys2.org

232 PART 3 Simplifying and Accelerating TensorFlow

3. In the same directory, copy pip3.exe and rename the copy pip.exe.

4. In the same directory, copy pip3-script.py and rename the copy
pip-script.py.

To verify that everything’s working, run python --version in MSYS2 and make
sure that the default Python version is 3.x. Then install TensorFlow’s Python
dependencies with the following command:

pip install six numpy wheel

Next, you need to install the Bazel tool. This process also requires four steps:

1. If you’ve haven’t done so already, install Java Development Kit (JDK) 8 for
your system.

You can download the installer from www.oracle.com/technetwork/java/
javase/downloads/index.html.

2. Visit http://github.com/bazelbuild/bazel/releases and click the
number of the latest release.

3. Scroll to the bottom of the page and find the Windows executable
suitable for your system.

4. Download the executable, rename it to bazel.exe, and place it in the
C:\msys64\mingw64\bin directory.

After you install Bazel, copy the TensorFlow source code directory to the MSYS2
home directory (C:\msys64\home\Part). Then, inside the MSYS2 environment,
change to the tensorflow directory. Now you’re ready to build!

Preparing the TensorFlow build on macOS
Before you can build TensorFlow on a macOS system, you need to install Bazel and
TensorFlow’s dependencies. If you’ve already installed the Java JDK 8.x, then you
can install Bazel using Homebrew.

You probably already have Homebrew installed on your system, but if you don’t,
you can install it with the following command:

/usr/bin/r uby -e "$(curl -fsSL https://raw.githubusercontent.
com/Homebrew/install/master/install)"

With Homebrew installed, you can install Bazel with the following command:

brew install bazel

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://github.com/bazelbuild/bazel/releases

CHAPTER 11 Using Threads, Devices, and Clusters 233

Before you can install TensorFlow, you need to install three of its dependencies:
NumPy, six, and wheel. The following command installs all three:

sudo pip install six numpy wheel

If you’d like TensorFlow to access your system’s GPU, you’ll need to install GNU’s
core utilities. You can install them using Homebrew:

brew install coreutils

When you’re done, you’ll be all set to start configuring and building TensorFlow.

Preparing the TensorFlow build on Linux (Ubuntu)
Of the many Linux distributions available, TensorFlow supports only Ubuntu,
specifically versions 14.04 and higher. If you’ve installed Python and Java JDK 8.x,
installing TensorFlow on Ubuntu is easy.

The first step is to install the Bazel build tool, and you can add Bazel’s distribution
URI as a package source with the following commands:

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt
stable jdk1.8" | sudo tee /etc/apt/sources.list.d/
bazel.list

curl https: //bazel.build/bazel-release.pub.gpg | sudo apt-

key add -

Afterward, you can install Bazel with the following command:

sudo apt-get update && sudo apt-get install bazel

Before you build TensorFlow, you need to install four dependency packages:
NumPy, Python-Dev, pip, and wheel. If you’re using Python 2.x, you can install
these dependencies with the following command:

sudo apt-get install python-numpy python-dev python-pip python-wheel

If you’re using Python 3.x, you can install TensorFlow’s dependencies with the
following command:

sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel

If this installation completes successfully, you’re ready to start building
TensorFlow.

234 PART 3 Simplifying and Accelerating TensorFlow

Building TensorFlow
After you have the TensorFlow source code downloaded to your system and have
installed Bazel and TensorFlow’s dependencies, you’re ready to start building
TensorFlow. To get started, change to the directory containing the source code
and enter the following command:

./configure

This command executes the configure script, which asks a series of questions
that configure the features of the TensorFlow package. In the following list, I
cover the questions that I’ve encountered when installing on Linux. Each question
ends with a default response in square brackets. You can select the default response
by pressing Enter.

 » Python location: The directory containing the Python interpreter

 » Python library path: The directory containing Python libraries

 » jemalloc support: Whether TensorFlow should allocate memory with the
improved jemalloc function instead of malloc. I recommend choosing Yes (Y).

 » Google Cloud Platform support: Whether TensorFlow should provide
support for Google’s cloud computingoffering, the Google Cloud Platform
(GCP). Chapter 14 explains how to run TensorFlow on the GCP.

 » Hadoop File System support: Whether TensorFlow should support the
Hadoop File System

 » Amazon S3 File System support: Whether TensorFlow should provide
support for Amazon’s distributed S3 file system

 » XLA JIT support: Whether TensorFlow should use the experimental XLA
(Accelerated Linear Algebra) compiler to accelerate math operations

 » GDR support: Whether TensorFlow should enable CUDA’s high-speed
memory access, GPUDirect RDMA

 » VERBS support: Whether TensorFlow should enable remote direct memory
access (RDMA) through the VERBS package

 » OpenCL support: Whether TensorFlow should enable GPU computing with
OpenCL

 » CUDA support: Whether TensorFlow should enable GPU computing
with CUDA

 » MPI support: Whether TensorFlow should enable cluster computing with the
Message Passing Interface (MPI)

 » Optimization flags: The optimization flags to use when building TensorFlow

CHAPTER 11 Using Threads, Devices, and Clusters 235

The last option is particularly important. By default, the build process will include
the flag –march=native. This flag tells the compiler to examine the target CPU and
make sure that TensorFlow will use the most advanced capabilities supported by
the processor. In general, I recommend staying with the default optimization
option.

After you complete the questionnaire, the script stores your configuration choices
in a file named .tf_configure.bazelrc. To continue the build, enter the follow-
ing command:

bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

This command creates a script called build_pip_package in the bazel-bin/
tensorflow/tools/pip_package directory. To build an installation package for
TensorFlow, enter the following command:

bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

This command creates a wheel file (*.whl) in your /tmp/tensorflow_pkg direc-
tory. You can install the new TensorFlow package by calling pip install with
this wheel file. On my system, the wheel file is tensorflow-1.4.0rc1-cp27mu-
linux_x86_64.whl. Therefore, I can install TensorFlow with the following
command:

sudo pip install /tmp/tensorflow_pkg/tensorflow-1.4.0rc1-cp27mu-linux_x86_64.whl

When pip install finishes, the TensorFlow installation is complete. You can
access the tensorflow package and its modules as if you’d installed the default
TensorFlow installation.

Assigning operations to devices
If you’ve configured TensorFlow to execute on GPUs and you’ve installed the
appropriate SDK, TensorFlow automatically assigns processing operations to
the GPU.

For example, TensorFlow contains two versions of matmul: one that executes on
CPUs and one that executes on GPUs. When an application executes matmul,
 TensorFlow executes the matrix multiplication on the GPU if it’s available.

TensorFlow lets you assigns operations to devices manually, but first, it helps to
know which devices are present.TensorFlow provides this information through an
undocumented function named list_local_devices in the tensorflow.python.
client package. This function returns a list of DeviceAttribute protocol buffers,

236 PART 3 Simplifying and Accelerating TensorFlow

and the following code calls list_local_devices to print a list of available
devices:

from tensorflow.python.client import device_lib
devices = device_lib.list_local_devices()
for device in devices:
 print(device)

On my bargain-basement laptop, this code prints the following result:

name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {}
incarnation: 2086003163627480003

TensorFlow recognizes two types of devices: CPUs and GPUs. TensorFlow assigns
a name to each device, and this name always has the same format:

/job:Part/replica:<replica>/task:<task>/device:<type>:<device_num>

Unless you’re developing distributed applications, you can leave off the job,
replica, and task fields and simply use /device:<type>:<device_num>. Here,
<type> can be CPU or GPU, and <device_num> identifies the index of the device
among the recognized devices of the given type. Therefore, the first CPU is
/device:CPU:0 and the second GPU is /device:GPU:1.

If you have multiple devices of a given type, you can configure a session to limit the
number of devices it can access. The device_count parameter in the ConfigProto
buffer makes it possible. As an example, the following code configures the session
to use a maximum of two GPUs:

conf = tf.ConfigProto(device_count={'GPU': 2})
with tf.Session(config=conf) as sess:
 ...

If you’d like to execute operations on a specific device, you can call tf.device
with the device’s name. This function returns a context manager that assigns all
operations in the context to the given device. For example, the following code
specifies that subsequent operations should be assigned to the second GPU:

with tf.device('/device:GPU:1'):
 ...

CHAPTER 11 Using Threads, Devices, and Clusters 237

Suppose that your application is executing a session and you’d like to know which
device(s) the session is using. In this case, you can set the log_device_placement
option to True in the session’s constructor.

a = tf.constant(1.2, name='a_var')
b = tf.constant(3.4, name='b_var')
sum = a + b;
conf = tf.ConfigProto(log_device_placement=True)
with tf.Session(config=conf) as sess:
 print(sess.run(sum))

If a system has a single CPU, the printed output will look like the following:

4.6
Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/device:CPU:0
b_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0
a_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0

Configuring GPU usage
If your TensorFlow installation can access GPUs and TensorFlow recognizes a
compliant GPU, your sessions will assign math operations to the GPU by default.
You can configure how the CPU interacts with the GPU by setting the gpu_options
field in a session’s ConfigProto. You must assign gpu_options to a GPUOptions
buffer, and Table 11-3 lists its fields.

By default, TensorFlow pre-allocates all of a GPU’s memory for its operations. But
if you set allow_growth to True, TensorFlow won’t allocate any memory in
advance. Instead, it will allocate memory only as it becomes necessary.

If you set per_process_gpu_memory_fraction to a value less than 1, TensorFlow
will pre-allocate that fraction of the GPU’s visible memory. For example, the fol-
lowing code configures a session to pre-allocate 80 percent of the GPU’s memory
for its operations:

gpu_opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)

conf = tf.ConfigProto(gpu_options=gpu_opts)

with tf.Session(config=conf) as sess:

 ...

238 PART 3 Simplifying and Accelerating TensorFlow

You can improve performance by reducing the number of commands that the CPU
sends to the GPU. One frequent command involves deleting objects in GPU mem-
ory. By default, the CPU will tell the GPU to delete objects when they occupy more
than several megabytes of storage. You can customize this behavior by setting the
deferred_deletion_bytes field of a GPUOptions to a desired memory size.

Executing TensorFlow in a Cluster
In addition to running operations on GPUs, you can code distributed applications
that execute on multiple computers. I found this topic very difficult to understand
when I first encountered it, so I start by comparing it to a more familiar subject:
web browsing.

When you browse the web, your browser (the client) sends a request to a remote
machine called the server. To be precise, the server is a process on the remote
machine (the server’s host) that listens for requests on a specific port. When you
send your request to a web server’s host and port, the server sends a response
containing a web page. A host can execute multiple servers, but each server always
listens for messages from a specific port.

In a distributed TensorFlow application, a client accesses multiple servers, which
may run on separate systems or the same system. Like a web server, each Tensor-
Flow server listens for messages directed to a specific host and port.

TABLE 11-3	 GPUOptions Fields
Field Type Description

per_process_gpu_memory_fraction double Configures the fraction of the GPU memory to allocate

allocator_type string Sets the GPU allocation strategy

deferred_deletion_bytes int64 Delays deletion to reduce driver processing

allow_growth bool Enables/disables pre-allocation of GPU memory

visible_device_list string Determines how GPU devices are mapped

polling_active_delay_usecs int32 Configures the number of milliseconds that should
elapse between polling when active

polling_inactive_delay_msecs int32 Sets the number of milliseconds between polling
when inactive

force_gpu_compatible bool Forces tensors to be allocated in GPU’s
pinned memory

CHAPTER 11 Using Threads, Devices, and Clusters 239

Each server executes a single unit of work called a task. A group of related tasks
form a job. The collection of servers associated with an application is called a
cluster.

If you’re comfortable with these terms (server, task, job, cluster), you’ll have no
trouble coding distributed TensorFlow applications. In general, the development
process requires three steps:

1. Define the application’s jobs, tasks, and server hosts/ports in a
ClusterSpec.

2. Create a tf.train.Server for each server in the cluster.

3. Define operations for each task.

If your cluster executes on multiple computers, you don’t have to rewrite the
application for each computer. Just code the application once and pass different
command-line arguments to each system. Alternatively, you can use a cluster
manager like Kubernetes to manage the cluster and automatically define servers
and tasks.

Creating a ClusterSpec
A cluster specification defines the application’s jobs and tasks and associates each
task with the network address of a server. Cluster specifications are represented
by instances of tf.train.ClusterSpec. The class constructor accepts one argu-
ment that can take one of three forms:

 » A dict that associates job names with a list of network addresses

 » A dict that associates job names with dicts that associate task numbers with
network addresses

 » An existing ClusterDef protocol buffer

This discussion focuses on the first two forms. For example, suppose that you
want your cluster to execute tasks in two jobs. The first job, j1, has one task, and
the second job, j2, has two tasks. You could define your cluster with the following
ClusterSpec:

spec = tf.train.ClusterSpec({
 'j1': ['sys1.ex.com:121'],
 'j2': [' sys2.ex.com:122', 'sys3.ex.com:123']})

240 PART 3 Simplifying and Accelerating TensorFlow

For each network address, you need to provide a host name, such as sys1.ex.com,
and a port, such as 123. TensorFlow creates one task for each network address in
the ClusterSpec and assigns each task a number corresponding to its order in the
job’s list. In the preceding example, TensorFlow assigns Task 0 to sys1.ex.com,
Task 0 to sys2.ex.com, and Task 1 to sys3.ex.com.

You can assign your own task numbers by associating each job name with a dict
that associates integers with addresses:

spec = tf.train.ClusterSpec({
 'j1': {3: 'sys1.ex.com:121'},
 'j2': {2: 'sys2.ex.com:122',
 1: 'sys3.ex.com:123'}})

For the sake of simplicity, the ClusterSpecs in this book allow TensorFlow to set
task indices automatically.

Creating a server
After you split your application’s computation into tasks, you need to create serv-
ers to perform the tasks. You can create a server by calling the tf.train.Server
constructor:

tf.train.Server(server_or_cluster_def, job_name=None, task_index=None,

protocol=None, config=None, start=True)

You can set the first parameter to a ServerDef, which is a protocol buffer that
defines a server’s operating environment. But most applications assign the first
parameter to a ClusterSpec. To tell the server which task it’s intended to per-
form, you need to set the job_name and task_index parameters. As an example,
the following code creates a server to perform Task 1 of the job named j2:

server = tf.train.Server(spec, job_name='j2', task_index=1)

The constructor’s protocol parameter identifies the communication mechanism
that the Server will use to receive tasks. At the time of this writing, the only
accepted protocol is grpc, which identifies the gRPC protocol. This is Google’s free
implementation of remote procedure calls (RPC), and you can find out more about
gRPC by visiting http://grpc.io.

The config parameter accepts a ConfigProto that configures all the sessions that
run on the server. I present the ConfigProto and its many fields at the start of the
chapter in the “Configuring a new session” section.

http://grpc.io

CHAPTER 11 Using Threads, Devices, and Clusters 241

The start parameter identifies whether the server should start immediately after
it’s created. If you set this parameter to True, the server will start processing tasks
after it’s created. If you set it to False, you can start the server later by calling its
start method.

Specifying jobs and tasks
After you define your cluster and create your servers, you need to provide code for
the cluster’s tasks. You don’t need to write a separate program for each task.
Instead, most developers write one program and partition its code so that differ-
ent portions are executed by different tasks.

You can associate code with a specific task by calling the tf.device function dis-
cussed earlier in the “Assigning operations to devices” section. For example, the
following code executes only on Task 0 of Job j1:

with tf.device('/job:j1/task:0'):
 const_a = tf.constant(3.6)
 const_b = tf.constant(1.2)
 total = const_a + const_b

You can also partition your code using if statements:

if job_name == 'j1' and task_num == 0:
 ...
elif job_name == 'j1' and task_num == 1:
 ...

When you define a cluster, you can create as many jobs and tasks as you like. But
many distributed TensorFlow applications have only two jobs:

 » Parameter server (ps): Stores the application’s variables

 » Worker replica (worker): Performs the application’s computation, including
the processing that updates the variables

You can define these jobs in a cluster specification with code like the following:

spec = tf.train.ClusterSpec({'ps': [..], 'worker': [..]})

This section introduces parameter servers and workers and shows you how to cre-
ate them in code.

242 PART 3 Simplifying and Accelerating TensorFlow

Parameter servers
In a distributed application, TensorFlow recognizes that variables with the same
name on the same device represent the same data. That is, if Tasks X and Y both
operate on a variable named weight_var, TensorFlow understands that they
should access the same weight_var variable. These tasks run in different pro-
cesses, so TensorFlow replicates the variables between the processes.

A parameter server (PS) serves as a central location for storing, saving, and retriev-
ing variables. In many applications, a PS task will simply declare variables and
then block until the application is complete. To demonstrate this, the following
code defines a parameter server that declares two variables, weights and biases,
and then blocks until the application is complete.

server = tf.train.Server(cluster, job_name='ps', task_index=0)

if job_name == 'ps':
 weights = tf.Variable(...)
 biases = tf.Variable(...)
 server.join()

After the parameter server declares the weights and biases, other tasks can
access these variables and update them as needed. The join method tells the
server to block indefinitely.

Workers
Generally speaking, any job that performs computation is considered a worker job.
Each task in a worker job is called a worker replica or just a worker. To perform its
computation, each worker needs to create and launch a session.

This requirement presents a problem: You can’t create regular sessions in a dis-
tributed application. You need to run each session in the appropriate server pro-
cess. To understand how to run a session in a server, you need to be familiar with
server targets.

Just as web servers communicate using HTTP, TensorFlow servers communicate
using gRPC. Each server has a gRPC address determined by its host and port. For
example, if you configure a server to execute a task whose address is localhost:123,
the server’s gRPC address will be given as follows:

grpc://localhost:123

This gRPC address is called the server’s target. You can access this target through
the target property of the Server instance.

CHAPTER 11 Using Threads, Devices, and Clusters 243

To create a session to run inside a server, you need to set the first parameter of
tf.Session to the server’s target. The following code creates a Server and then
creates a session that connects to it:

server = tf.train.Server(spec, job_name='worker', task_index=1)
with tf.Session(server.target) as sess:
 ...

Here’s a question: If workers in a distributed application need to access the same
variable data, how can the variables be initialized? The parameter server can’t ini-
tialize its variables because it doesn’t run a session. But if every worker initializes
the variables separately, TensorFlow won’t be able to replicate the data between
processes.

The answer is that one of the workers needs to handle initialization, and the other
workers need to wait until the initialization is complete. The worker that handles
initialization is called the chief. You can assign the chief’s operations in a session
by calling tf.train.MonitoredTrainingSession.

Workers and monitored sessions
Chapter 5 presents the fascinating topic of session hooks and explains how to
associate hooks with a MonitoredSession. You can configure MonitoredSessions
for distributed applications by calling a function called tf.train.Monitored
TrainingSession:

MonitoredTrainingSession(master='', is_chief=True, checkpoint_dir=None,

scaffold=None, hooks=None, chief_only_hooks=None, save_checkpoint_secs=600,

save_summaries_steps=USE_DEFAULT, save_summaries_secs=USE_DEFAULT,

config=None, stop_grace_period_secs=120, log_step_count_steps=100)

This function looks like a class constructor, but it returns a MonitoredSession, not
a MonitoredTrainingSession. If a worker invokes this function with is_chief set
to True, the MonitoredSession will perform the session’s initialization when it’s
launched. Therefore, only one worker (the chief) should call this function with
is_chief set to True. When other workers call this function, the returned
MonitoredSession will wait until the chief’s session has performed initialization.

The first argument, master, serves the same purpose as the target argument in
the Session constructor. That is, it identifies the gRPC location of the worker
intended to run the session, such as grpc://localhost:123.

244 PART 3 Simplifying and Accelerating TensorFlow

The MonitoredTrainingSession function accepts general session hooks (hooks)
and session hooks intended for the chief’s session (chief_only_hooks). In addi-
tion, the function accepts parameters for setting checkpoints and generating
summary data. By setting these parameters, you don’t need to create Checkpoint
SaverHooks or SummarySaverHooks.

Running a simple cluster
The code in the ch11/cluster.py module provides a simple example of a distrib-
uted TensorFlow application. The module doesn’t perform any machine learning,
but demonstrates how a set of worker tasks can combine their efforts to update a
variable.

To be specific, the application creates four workers and uses them to approximate π.
This approximation involves summing together the areas of the rectangles under
the function y = (1 + x2)-1 as x runs from 0 to 1 and multiplying the sum by 4. In
Figure 11-1, the graph divides the area under the function into 30 regions.

The ch11/cluster.py module generates four workers to perform the approxima-
tion. Listing 11-1 presents the code.

FIGURE 11-1:
An application

can approximate
π by splitting the

area under the
function into

rectangles and
adding the areas

together.

CHAPTER 11 Using Threads, Devices, and Clusters 245

LISTING	11-1:	 Approximating Pi in a Distributed Application

Session hook to print output

class OutputHook(tf.train.SessionRunHook):

 def before_run(self, run_context):

 return tf.train.SessionRunArgs(pi_var)

 def after_run(self, run_context, run_values):

 print('Pi approximation:', run_values.results)

Define a cluster with two jobs and five tasks

spec = tf.train.ClusterSpec({'worker':

 ['localhost:31415', 'localhost:31416', 'localhost:31417', 'localhost:31418']})

Perform task-dependent operations

flags = tf.flags

flags.DEFINE_string('task', '', '')

if not flags.FLAGS.task:

 # Launch the worker processes

 subprocess.Popen('python cluster.py --task=0', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=1', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=2', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=3', stderr=subprocess.STDOUT)

else:

 N = 10

 num_workers = float(spec.num_tasks('worker') - 1)

 delta_x = float(1)/float(N * num_workers)

 task_index = int(flags.FLAGS.task)

 # Create server

 server = tf.train.Server(spec, job_name='worker', task_index=task_index)

 with tf.device('/job:worker/task:0'):

 pi_var = tf.Variable(0., dtype=tf.float32)

 with tf.device('/job:worker/task:1'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 0.5)
 pi_var += 4 * delta_x/(1 + x_i * x_i)

 with tf.device('/job:worker/task:2'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 1.5)
 pi_var += 4 * delta_x/(1 + x_i * x_i)
 (continued)

246 PART 3 Simplifying and Accelerating TensorFlow

 with tf.device('/job:worker/task:3'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 2.5)
 pi_var += 4 * delta_x/(1 + x_i * x_i)

 # Launch session

 output_hook = OutputHook()

 with tf.train.MonitoredTrainingSession(master='grpc://localhost:31415',

 is_chief=(task_index == 0), chief_only_hooks=[output_hook]) as sess:

 sess.run(pi_var)

The module defines a ClusterSpec and launches four processes — one for each
worker. Each worker process receives a different argument that identifies its task
number. The workers use this task number to create and launch a server whose
network address is determined by the ClusterSpec.

The module calls tf.device to assign code to the four workers. The first worker
declares and initializes the pi_var variable. The rest of the workers update the
value of pi_var by adding together the areas of ten of the rectangular regions
underneath the function y = (1 + x2)-1.

Each worker calls tf.train.MonitoredTrainingSession and sets its target to the
address of the first worker. The chief worker is the worker whose task index is 0,
and this worker’s session executes first and initializes the application’s variables.
After the initialization is complete, the other workers execute the session and
update pi_var.

To display the output, the module associates the session with an OutputHook. This
session hook prints the value of pi_var after the session completes its execution.
The module associates the session hook with the function’s chief_only_hooks
parameter, so the hook applies only to the chief worker’s session.

LISTING	11-1:	 (continued)

CHAPTER 12 Developing Applications with Estimators 247

Chapter 12
Developing Applications
with Estimators

At a fundamental level, the process of using statistical regression for
machine learning is a lot like the process of using neural networks (see
Chapter 7): Load your data, train your model, and test the result.

Unfortunately, the code needed to perform statistical regression in TensorFlow is
quite different than the code needed to create neural networks.

To simplify development and testing, TensorFlow provides the Estimator frame-
work. The tf.estimator package contains modules that analyze data through a
common set of methods. For example, the estimator class that performs linear
regression (LinearRegressor) has the same methods as the class that performs
regression with deep neural networks (DNNRegressor).

You can take advantage of this commonality by coding your own estimators. That
is, if you package your custom machine learning algorithm as an estimator, other
developers will have no trouble training and testing your application.

IN THIS CHAPTER

 » Executing machine learning
algorithms with estimators

 » Defining features and feature
columns

 » Using pre-built estimators in practice

 » Analyzing complex datasets with
wide and deep learning

248 PART 3 Simplifying and Accelerating TensorFlow

Introducing Estimators
The tf.estimator package provides an assortment of classes that analyze data,
including LinearClassifier and DNNClassifier. These classes all extend the
Estimator class, whose methods make it possible to perform machine learning in
an algorithm-agnostic manner.

Throughout this book, I use the term estimator to refer to instances of the
Estimator class and its subclasses. In general, the process of working with esti-
mators consists of six steps:

1. Load data into a dataset.

2. Create feature columns that associate the dataset’s fields with names
and data types.

3. Create an instance of the estimator’s class with the feature columns.

4. Train the estimator with training data.

5. Evaluate the estimator’s performance with test data and examine the
results.

6. Use the estimator for real-world prediction or classification.

Step 3 depends on the type of estimator you’re interested in. You can perform
Steps 4, 5, and 6 by calling the three fundamental methods of the Estimator
class: train, evaluate, and predict. Once you understand these methods, you’ll
have a solid grasp of what estimators are all about.

Training an Estimator
After you load data into a dataset and create an estimator, the next step is to start
training. Every estimator supports the train method:

train(input_fn, hooks=None, steps=None, max_steps=None)

The input_fn parameter identifies a function that provides training data as a
tuple. This tuple contains two data elements: features and labels. A feature identi-
fies a single, complete observation, such as the N coordinates of a point in
N-dimensional space. A label identifies the category of the corresponding feature,
such as a 1 if the point represents success or a 0 if the point represents failure.

CHAPTER 12 Developing Applications with Estimators 249

To identify features, input_fn provides a dictionary that associates strings with
tensors. Each string identifies the data in the tensor. To demonstrate how you can
set input_fn, the following function provides three features — one for each point
dimension.

def train_func():
 features = {
 'x-coords': tf.constant([[0.1], [0.2]]),
 'y-coords': tf.constant([[0.5], [0.6]]),
 'z-coords': tf.constant([[1.0], [1.1]])
 }
 labels = tf.constant([[0], [1]])
 return features, labels

This set of features consists of two points: (0.1, 0.5, 1.0) and (0.2, 0.6, 1.1). But the
code may seem confusing because of how the data is structured. Instead of return-
ing one point at a time, the function provides all the x-coordinates in the first
feature, all the y-coordinates in the second feature, and all the z-coordinates in
the third feature.

The second part of the tuple returned by input_fn is a tensor containing labels. If
the estimator’s purpose is to classify, the labels represent categories. In the pre-
ceding example code, the first point has a label of 0, and the second point has a
label of 1.

Looking at this code, you may wonder where the names x-coords, y-coords, and
z-coords came from. When you call an estimator’s constructor, you need to pro-
vide a feature column for each feature. A feature column associates a name, such as
x-coords, with the type of data provided in the feature. I discuss the fascinating
topic of feature columns in the upcoming section “Using Feature Columns.”

By default, estimators continue training until the loss approaches zero. But you
can control the number of training steps by setting the steps parameter or the
max_steps parameter. The difference is that the steps parameter is incremental,
so if you want to perform 30 training steps now and 20 training steps later, you
can start by calling train with steps equal to 30. Later on, you can call train with
steps equal to 20.

You can monitor the training process by setting the hooks parameter to a list of
session hooks. Chapter 5 explains how session hooks make it possible to monitor
a session’s execution.

250 PART 3 Simplifying and Accelerating TensorFlow

Testing an Estimator
After you create and train your estimator, you should make sure that it works
properly. Testing your estimator is the purpose of the evaluate method:

evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

The parameters of evaluate are similar to those of train. As with train,
the input_fn function provides a tuple containing features and labels. The
only difference is that these features and labels represent test data instead of
training data.

The checkpoint_path parameter identifies the directory where the method should
store its outputs. If you set this parameter to None, the method will use the model_dir
parameter of the estimator’s constructor. If you don’t set this parameter, the method
will store its outputs in a temporary directory.

evaluate returns the test results in a dict whose content depends on the
 estimator’s model. TensorFlow’s documentation doesn’t list any required keys for
this dict, but every estimator I’ve used has provided the following:

 » accuracy: The percentage of correct predictions

 » loss: Difference between the model’s prediction and actual result

 » average_loss: Average of the loss

In addition to these metrics, the dict returned by evaluate also contains the value
of the global step. An application can access this value through the global_
step key.

Running an Estimator
After you train and test your estimator and you’re happy with the test results, it’s
showtime! You can execute your estimator with real-world data points by calling
predict:

predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None)

CHAPTER 12 Developing Applications with Estimators 251

Like train and evaluate, predict accepts a function as its first parameter. But
instead of providing a tuple containing features and labels, this function only
returns features. That is, input_fn returns a dictionary that matches strings
(names of feature columns) to tensors. These tensors contain the data points for
your real-world application.

predict returns the estimator’s prediction in a dict that matches names to values.
If checkpoint_path is set, the method will store its output files in the given
directory.

Creating Input Functions
The train, evaluate, and predict methods require an input function as their
first parameter. Two functions in tf.estimator.inputs simplify the process of
coding this input function:

 » numpy_input_fn: Accepts NumPy arrays and returns a function that provides
a features/target tuple

 » pandas_input_fn: Accepts a pandas DataFrame and returns a function that
provides a features/target tuple

The signature of numpy_input_fn is given as follows:

numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None,

queue_capacity=1000, num_threads=1)

The x parameter identifies features and the y parameter provides a label for each
feature. The shuffle parameter identifies whether the features and labels should
be shuffled. When calling this function, you must set shuffle to True or False.

You must set the x and y parameters to NumPy arrays, and you can load these arrays
from a CSV file by calling the load_csv_with_header or load_csv_without_header
functions discussed in Chapter 10. The following code passes feature data from
load_csv_with_header to numpy_input_fn:

dataset = tf.contrib.learn.datasets.base.

load_csv_with_header(filename='example.csv', target_dtype=np.int32,

features_dtype=np.float32)

...

input_fn = tf.estimator.inputs.numpy_input_fn(x={'column': np.array(dataset.

data)}, y=np.array(dataset.target), shuffle=True, num_epochs=1000)

252 PART 3 Simplifying and Accelerating TensorFlow

The num_epochs parameter is particularly important for training because it defines
how many epochs the session will execute. For evaluation and prediction, you
should set num_epochs to 1.

The pandas toolset stores data in DataFrames. You can create an input function
from a DataFrame by calling pandas_input_fn:

pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_

capacity=1000, num_threads=1, target_column='target')

The arguments of this function are nearly identical to those of numpy_input_fn.
The only difference is the target_column argument, which identifies the column
containing target (label) data.

Configuring an Estimator
The constructor of every estimator class accepts an argument named config. By
setting this to a tf.contrib.learn.RunConfig, you can configure many aspects
of the estimator’s operation, such as when it saves variables and generates
 summary data.

You can create a RunConfig by calling its constructor. Table 12-1 lists the con-
structor’s parameters.

As discussed in Chapter 11, distributed applications rely on gRPC to execute ses-
sions on remote servers. The master parameter identifies the estimator’s gRPC
target and the evaluation_master parameter identifies the evaluation target.
If you don’t set these parameters, the estimator will run locally. If you leave
num_cores at 0, the system will use every core on the target processor.

model_dir identifies the location where the estimator should save its data. Most
of the other fields specify how often the data should be saved. To specify
when checkpoint data should be saved, you can set save_checkpoint_steps or
save_checkpoint_secs, but not both.

The session_config parameter defines properties of the estimator’s underlying
session. To configure the session, you need to assign this parameter to a
ConfigProto buffer, and Chapter 11 presents its fields.

CHAPTER 12 Developing Applications with Estimators 253

Using Feature Columns
Applications provide features to estimators using structures that resemble data-
base tables. In a database table, each column identifies a specific field (First
name, Age, and so on) and each value in a column has the same data type. Each row
contains all the information for a single record.

In a TensorFlow application, a feature column serves the same role as a column
header in a database table. That is, it provides a name for the column’s data and
indicates the data type of the column’s values. Feature columns play an important
role in this discussion because the constructor of every estimator class requires
one or more feature columns.

The tf.feature_column package provides an assortment of classes that represent
feature columns. Each of them extends the _FeatureColumn class, and Figure 12-1
illustrates the class hierarchy.

TABLE 12-1	 Parameters of the RunConfig Constructor
Parameter Default Description

master None Target for running the estimator

num_cores 0 Number of cores to use

log_device_placement False Bool that identifiers whether the estimator should print which
device(s) it runs on

gpu_memory_fraction 1 Fraction of GPU memory to be used by the estimator

tf_random_seed None Random seed for initializers

save_summary_steps 100 Number of steps to wait before saving summaries

save_checkpoints_secs 600 Number of seconds to wait before saving checkpoints

save_checkpoints_steps -- Number of steps to wait before saving checkpoints

keep_checkpoint_max 5 Maximum number of checkpoint files to store

keep_checkpoint_
every_n_hours

10000 Number of hours between each checkpoint to be saved

log_step_count_steps 100 Number of steps between logging of the global step per second

evaluation_master '' The gRPC target for evaluating the estimator

model_dir None Directory to save graph and model parameters

session_config None The ConfigProto used to configure the estimator’s session

254 PART 3 Simplifying and Accelerating TensorFlow

A _DenseColumn identifies data from a dense tensor, and a _CategoricalColumn
identifies data that can be expressed categorically. That is, if a column needs to
store values that can be expressed as an enumerated type, such as a direction
(NORTH, SOUTH, EAST, WEST), you should create a subclass of _CategoricalColumn.
For all other types of data, you should create a subclass of _DenseColumn.

The tf.estimator package contains the classes in Figure 12-1, but the functions
needed to create instances are in the tf.feature_column package. Table 12-2 lists
eight of these functions and describes the content of the feature column created
by the function.

Each of these functions accepts a key that identifies the column’s data. You can
think of this key as the name of the column in a database table. An estimator
receives the column’s data through the input function of train, evaluate, and
predict. As discussed in the “Introducing Estimators” section, the first part of
the function’s tensor is a dict that associates the names of feature columns with
tensors.

Numeric columns are almost trivially easy to work with. The default data type is
tf.float32, and the default shape is (1). Therefore, the following code returns a
_NumericColumn that contains single floating-point values:

temp = numeric_column('temp')

Of the categorical columns, the simplest is the _IdentityCategoricalColumn,
which can be created by calling categorical_column_with_identity. This col-
umn contains integers that represent categories. The num_buckets parameter
determines the number of categories, so the following code creates an _Identity
CategoricalColumn whose elements can take any value between 0 and 11:

month = categorical_column_with_identity('month', num_buckets=12)

FIGURE 12-1:
TensorFlow’s

feature column
classes determine

the data type of
the values in the

column.

CHAPTER 12 Developing Applications with Estimators 255

If your application identifies categories with strings, you may find it inconvenient to
provide a unique integer for every category. In this case, you can call categorical_
column_with_hash_bucket, which uses a hash function to generate ID values for
string or integer data. The following code creates a _HashedCategoricalColumn
with 195 categories:

nation = categorical_column_with_hash_bucket('nation', num_buckets=195)

Rather than use a hash function, you may find it simpler to list the different values
of the categories. Then the feature column will determine its own IDs for the
 categories. You can do this by calling categorical_column_with_vocabulary_
list. For example, the following code creates a _VocabularyListCategorical
Column that creates a category for each of the seven strings in the vocabulary_
list parameter:

day_of_the_week = categorical_column_with_vocabulary_list (key='day',

vocabulary_list=('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',

'Saturday', 'Sunday'))

TABLE 12-2	 Functions that Create Feature Columns
Function Column Content

numeric_column(key, shape=(1,), default_
value=None, dtype=tf.float32, normalizer_fn=None)

Real values and other numbers

categorical_column_with_identity(key,
num_buckets, default_value=None)

Categories represented by
unique integers

categorical_column_with_hash_bucket(key,
hash_bucket_size, dtype=tf.string)

Categories represented by hashed
integers or strings

categorical_column_with_vocabulary_list(key,
vocabulary_list, dtype=None, default_value=-1,
num_oov_buckets=0)

Categories accessed through a list of
integer IDs associated with strings
or integers

categorical_column_with_vocabulary_file(key,
vocabulary_file, vocabulary_size, num_oov_
buckets=0, default_value=None, dtype=tf.string)

Categories accessed through a file that
associates integer IDs with strings
or integers

bucketized_column(source_column, boundaries) Values from a numeric column
discretized according to different ranges

indicator_column(categorical_column) Convert a categorical column to a
dense column

embedding_column(categorical_column, dimension,
combiner='mean', initializer=None, ckpt_to_load_
from=None, tensor_name_in_ckpt=None, max_
norm=None, trainable=True)

Convert a sparse categorical column to a
dense column

256 PART 3 Simplifying and Accelerating TensorFlow

The categorical_column_with_vocabulary_file function is like categorical_
column_with_vocabulary_list, but you provide the elements of the vocabulary
in a file. If you assign a field to an undefined value, the function will assign the
field to the default_value if the parameter is defined. If default_value isn’t
defined and the application assigns a value to num_oov_buckets, the function will
create additional categories as needed.

If you need to place numbers into categories according to their range, you can call
bucketized_column. This function accepts a _NumericColumn and a list/tuple of
ranges. As an example, the following code categorizes values of temp_column
according to a list of temperature ranges:

boundaries = [-273.15, 0., 100.]
temp_state = bucketized_column(temp_column, boundaries)

If the boundaries parameter contains N values, bucketized_column will create
N+1 value ranges. In the example, the first range runs from negative infinity to
-273.15, the second range runs from -273.15 to 0.0, the third range runs from 0.0
to 100.0, and the fourth range runs from 100.0 to infinity.

Many operations, like DNN analysis, can be performed only on data in dense col-
umns. For this reason, TensorFlow provides indicator_column and embedding_
column, which convert categorical columns to dense columns. indicator_column
is simpler and converts category values to multihot values. For example, if a col-
umn’s category values run from 0 to 3 and a feature has a value of 2, indicator_
column will convert this value to [0, 0, 1, 0].

embedding_column gives you more flexibility in creating dense columns. If your
category IDs contain multiple values, the combiner parameter of embedding_
column determines how the values should be combined. Currently, you can set this
to mean, sqrtn, and sum. The default combiner is mean, which indicates that the
function computes dense values by finding the average of the categorical values.

Creating and Using Estimators
The tf.estimator package provides six concrete estimator classes that you can
instantiate in your applications:

 » LinearClassifier: Classifies data points using a linear model

 » LinearRegressor: Makes predictions using a linear model

 » DNNClassifier: Classifies data points using a deep neural network

CHAPTER 12 Developing Applications with Estimators 257

 » DNNRegressor: Makes predictions using a deep neural network

 » DNNLinearCombinedClassifier: Classifies data points using a linear model
and a deep neural network

 » DNNLinearCombinedRegressor: Makes predictions using a linear model and
a deep neural network

Each estimator performs a specific type of task using a specific methodology.
Regressors make predictions, and classifiers place data points into categories.
Some estimators use linear modeling, some use deep neural networks, and the
last two estimators use both.

If you’re unclear about the difference between regressors and classifiers, remem-
ber the Iris and Boston datasets from Chapter 10. The Iris dataset associates phys-
ical traits with a type of iris, so a problem involving this dataset requires a
classifier. The Boston dataset associates location characteristics with housing
prices, so a problem involving this dataset requires a regressor.

I don’t explore all six of these classes in detail. Instead, I focus on three: the
LinearRegressor, DNNClassifier, and DNNLinearCombinedClassifier. In each
case, I explain how to create and train the estimator and then use it to make a
prediction.

TensorFlow provides more estimator classes than just the six I list. The tf.contrib.
learn package provides a handful of estimator classes, including DynamicRnn
Estimator, LogisticRegressor, and SVM.

The Estimator API makes it straightforward to code your own estimators. In addi-
tion to implementing the train, evaluate, and predict methods, you’ll need to
set the estimator’s model and the method it uses to compute loss.

Linear regressors
Chapter 6 explains how statisticians use linear regression to analyze data trends
by fitting a line to a group of data points. Mathematically, linear regression sets
mx + b as its model and computes loss using mean-squared error. The goal of
training is to determine which values of m and b minimize the distance between
the line and the observed data.

258 PART 3 Simplifying and Accelerating TensorFlow

The simplest of TensorFlow’s estimator classes, LinearRegressor, performs the
same operation. Its constructor is given as follows:

LinearRegressor(feature_columns, model_dir=None, label_dimension=1, weight_

column=None, optimizer='Ftrl', config=None, partitioner=None)

The only required parameter is feature_columns, which accepts a list of _Feature
Columns that identify the estimator’s data. The model_dir parameter tells the
estimator where it should store its outputs, such as event files and checkpoints. If
you don’t set model_dir, the estimator will use a temporary directory instead.

An estimator’s train function expects a function that returns a tuple of features
and labels. In most applications, a label consists of a single value, such as a cate-
gory number. But if your estimator needs multivalued targets, you can configure
this by setting the label_dimension parameter.

If you set the weight_column parameter, the estimator creates an additional
 column that assigns a weight to each feature. The input functions of train and
evaluate must provide values for this column. The estimator multiplies the fea-
ture’s loss by this weight, so a high weight means a high loss, which means the
estimator will take larger steps during the optimization process.

If you look in the ch12 folder in this book’s example code, you’ll see that it con-
tains two files named lin_reg.csv and lin_reg.py. The first file defines a series
of two-dimensional points. Its first five lines are given as follows:

20,1
0.5,0.25
1.0,0.2
1.4,0.25
0.75,0.5

This header states that the file contains 20 features and that each feature consists
of a single value. Each feature value identifies a point’s x-coordinate, and the
target identifies the point’s y-coordinate. Figure 12-2 illustrates these points
graphically. The dashed line is the line that best fits the data, and its equation is
y = 0.76x – 0.22.

To analyze the points in ch12/lin_reg.csv, the ch12/lin_reg.py code creates a
dataset and a feeds its data to a LinearRegressor. Listing 12-1 presents the code.

CHAPTER 12 Developing Applications with Estimators 259

LISTING	12-1:	 Using an Estimator for Linear Regression

Read dataset from CSV file

dataset = tf.contrib.learn.datasets.base.load_csv_with_header(

 filename='lin_reg.csv', target_dtype=np.float32,

 features_dtype=np.float32, target_column=1)

Create feature column containing x-coordinates

column = tf.feature_column.numeric_column('x', shape=[1])

Create the LinearRegressor

lin_reg = tf.estimator.LinearRegressor([column])

Train the estimator

train_input = tf.estimator.inputs.numpy_input_fn(

 x={'x': np.array(dataset.data)},

 y=np.array(dataset.target), shuffle=True, num_epochs=50000)

lin_reg.train(train_input)

Make two predictions

predict_input = tf.estimator.inputs.numpy_input_fn(

 x={'x': np.array([1.9, 1.4], dtype=np.float32)},

 num_epochs=1, shuffle=False)

results = lin_reg.predict(predict_input)

Display the results

for value in results:

 print(value['predictions'])

FIGURE 12-2:
A Linear

Regressor finds
the slope and

y-intercept of the
line that best fits

a set of points.

260 PART 3 Simplifying and Accelerating TensorFlow

Given how simple the problem is, I decided not to evaluate the estimator. Instead,
the module proceeds directly from train to predict. The predict method pro-
vides its results in a generator that produces dicts. This code iterates through the
dicts and prints the value associated with the predictions key.

The results of the LinearRegressor come close to the expected results.
At x = 1.9, the correct value of y is 1.22, and the estimator produced a result of 1.20.
At x = 1.4, the correct value of y is 0.84, and the estimator produced a result of 0.86.

DNN classifiers
A DNNClassifier uses a deep neural network to assign data points to categories.
Its constructor is a lot like that of the LinearRegressor, but includes parameters
that define the neural network’s structure:

DNNClassifier(hidden_units, feature_columns, model_dir=None, n_classes=2,

weight_column=None, label_vocabulary=None, optimizer='Adagrad', activation_

fn=tf.nn.relu, dropout=None, input_layer_partitioner=None, config=None)

The hidden_units parameter sets the size and shape of the neural network. For
each element of the tensor, the constructor creates a hidden layer for the network.
The value of each element in the tensor sets the number of nodes in the corre-
sponding hidden layer.

For example, if you set hidden_units to [16, 32], the network will contain two
hidden layers. The first layer will contain 16 nodes, and the second layer will
 contain 32 nodes. These nodes are fully connected, so the network connects the
output of each node to each node of the next layer.

The n_classes and label_vocabulary parameters tell the classifier about the
application’s categories, and you’ll find these parameters in all classifiers.
n_classes sets the number of categories, and label_vocabulary provides a set of
names for the categories. If you set label_vocabulary, be sure to use the category
names in the input functions of train and evaluate.

The ch12/dnn_class.py module demonstrates how to create a DNNClassifier
and use it to classify data points. It loads MNIST training data from mnist_train.
tfrecords and loads test data from mnist_test.tfrecords. Listing 12-2 presents
the code.

CHAPTER 12 Developing Applications with Estimators 261

LISTING	12-2:	 Classifying MNIST Images with a DNN Classifier

Constants

image_dim = 28

num_labels = 10

batch_size = 80

num_steps = 8000

hidden_layers = [128, 32]

Function to parse MNIST TFRecords

def parser(record):

 features = tf.parse_single_example(record,

 features={

 'images': tf.FixedLenFeature([], tf.string),

 'labels': tf.FixedLenFeature([], tf.int64),

 })

 image = tf.decode_raw(features['images'], tf.uint8)

 image.set_shape([image_dim * image_dim])

 image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

 label = features['labels']

 return image, label

Create the DNNClassifier

column = tf.feature_column.numeric_column('pixels',

 shape=[image_dim * image_dim])

dnn_class = tf.estimator.DNNClassifier(hidden_layers, [column],

 model_dir='dnn_output', n_classes=num_labels)

Train the estimator

def train_func():

 dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

 dataset = dataset.map(parser).repeat().batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

dnn_class.train(train_func, steps=num_steps)

Test the estimator

def test_func():

 dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

 dataset = dataset.map(parser).batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

metrics = dnn_class.evaluate(test_func)

Display metrics

print('\nEvaluation metrics:')

for key, value in metrics.items():

 print(key, ': ', value)

262 PART 3 Simplifying and Accelerating TensorFlow

This module creates a feature column and uses it to construct a DNNClassifier. It
sets the estimator’s hidden_units parameter to [128, 32], which means the clas-
sifier has two hidden layers with 128, and 32 hidden units, respectively. It sets the
n_classes parameter to 10 because each MNIST image can fall into one of ten
categories. The label_vocabulary parameter isn’t set, so the classifier assumes
that the labels will be provided as integers from 0 to 9.

After training and evaluation, the module prints the keys and values of dict
returned by evaluate. On my system, these results are given as follows:

Evaluation metrics:
accuracy : 0.9595
average_loss : 0.129958
loss : 10.3966
global_step : 8000

Combined linear-DNN classifiers
If the linear estimators and DNN estimators don’t meet your requirements, you
can create an estimator that uses both learning methods. TensorFlow provides two
such estimators: the DNNLinearCombinedRegressor and the DNNLinearCombined
Classifier. This discussion focuses on the DNNLinearCombinedClassifier.

Before proceeding, I’d like to clarify some terminology. This estimator’s name
includes “Linear,” but it doesn’t perform line fitting. Despite its name, a linear
classifier relies on logistic regression, not linear regression, to do its job. Chapter 6
fearlessly explores the topics of linear and logistic regression.

To determine which category a point belongs to, a TensorFlow linear classifier
relies on the softmax function. If j is one of N categories, this function is given as
follows:

f x e

e
j

f x

f x

i

N

j

i

0

1

A classifier is linear if f(x) is a linear combination of x, as in mx + b. To determine
loss, a linear classifier computes cross entropy.

A DNNLinearCombinedClassifier combines a linear classifier and a DNN classi-
fier. You can create an instance of this classifier by calling its constructor:

CHAPTER 12 Developing Applications with Estimators 263

DNNLinearCombinedClassifier(model_dir=None, linear_feature_columns=None,

linear_optimizer='Ftrl', dnn_feature_columns=None, dnn_optimizer='Adagrad',

dnn_hidden_units=None, dnn_activation_fn=tf.nn.relu, dnn_dropout=None,

n_classes=2, weight_column=None, label_vocabulary=None, input_layer_

partitioner=None, config=None)

It’s important to see that the constructor accepts separate feature columns for
linear classification (linear_feature_columns) and DNN classification (dnn_
feature_columns). This separation indicates that the linear classifier and DNN
classifier process different features.

Google Research has given a special name to the process of combining linear clas-
sification and DNN classification: wide and deep learning.

Wide and deep learning
The ultimate goal of deep learning is to derive general principles from a body of
data. I want my stock-picking application to derive general principles that will
pick tomorrow’s stocks based on yesterday’s results. I want my medical applica-
tion to derive general principles that will accurately classify health conditions in
new patients based on records of existing patients.

But there’s a problem. In many cases, the desire for generality and accuracy
 conflict. Consider the following generalization:

Statement 1: Vampires have sharp teeth and usually hunt in the evening.

Statement 2: Werewolves have sharp teeth and usually hunt in the evening.

Generalization: All vampires are werewolves.

Humans can look at these statements and immediately spot the problem with this
reasoning. But deep neural networks can’t. A DNN may base its generalizations on
trivial features (sharp teeth) instead of important features (lycanthropy, aversion
to sunlight, and thirst for blood).

To improve on deep learning, Google updated their Google Play recommendation
system to augment DNN classification with linear classification. To train the linear
classifier, Google provides input features and cross products of input features.
A cross product determines how features interact by multiplying the features
together:

k i
c

i

d

kix x cki

1

0 1 ,

264 PART 3 Simplifying and Accelerating TensorFlow

In a TensorFlow application, you can combine features into a cross product by call-
ing tf.feature.crossed_column. In essence, this combines multiple categorical
columns into a single hashed categorical column. Its signature is given as follows:

crossed_column(keys, hash_bucket_size, hash_key=None)

The first parameter, keys, accepts one or more categorical columns to be exam-
ined together. hash_bucket_size sets the maximum number of unique values in
the new categorical column.

Cross products may not seem exciting, but linear classifiers can use them to arrive
at conclusions that DNN classifiers would find difficult to obtain. Linear classifiers
are particularly effective when problems have many categorical features that may
or may not interact on one another. For this reason, Google Research refers to the
use of linear classifiers as wide learning. According to Heng-Tze Cheng and other
Google researchers, “Online experiment results show that Wide & Deep signifi-
cantly increased app acquisitions compared with wide-only and deep-only models.”

Analyzing census data
Wide learning is helpful for problems with many categorical features. This
requirement makes the usual datasets — MNIST, CIFAR, Iris, and Boston —
unsuitable for demonstration. For this reason, the ch12/combined.py module
analyzes census data. To be precise, the module creates a DNNLinearCombined
Classifier that examines data from the 1994 Census to determine whether a
person will make more or less than $50,000 per year.

I provide the census data in two CSV files: ch12/adult.data contains training
data and ch12/adult.test contains test data. The University of California, Irvine
(UCI) provides these files for free at their site https://archive.ics.uci.edu/
ml/machine-learning-databases/adult.

Each record of census data provides 14 statistics about a person:

 » age: The person’s age in years

 » workclass: Work status (Private, Self-emp-not-inc, self-emp-inc, Federal-gov,
Local-gov, State-gov, Without-pay, Never-worked)

 » fnlwgt: A weighting value (final weight) computed by the Census Bureau

 » education: Highest level of education (Preschool, 1st-4th, 5th-6th, 7th-8th, 9th,
10th, 11th, 12th, HS-grad, Some-college, Prof-school, Assoc-acdm, Assoc-voc,
Bachelors, Masters, Doctorate)

https://archive.ics.uci.edu/ml/machine-learning-databases/adult
https://archive.ics.uci.edu/ml/machine-learning-databases/adult

CHAPTER 12 Developing Applications with Estimators 265

 » education-num: Number of years in education

 » marital-status: Marital status (Never-married, Divorced, Separated,
Widowed, Married-civ-spouse, Married-AF-spouse, Married-spouse-absent)

 » occupation: Place of work (Tech-support, Craft-repair, Other-service, Sales,
Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct,
Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-
serv, Armed-Forces)

 » relationship: Marital status (Wife, Own-child, Husband, Not-in-family,
Other-relative, Unmarried)

 » race: Self-identified race (White, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other, Black)

 » sex: Gender (Female, Male)

 » capital-gain: Profit from buying/selling capital assets

 » capital-loss: Loss from buying/selling capital assets

 » hours-per-week: Number of hours worked per week

 » native-country: Country of origin (United-States, Cambodia, England,
Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan,
Greece, South Korea, China, Cuba, Iran, Honduras, Philippines, Italy, Poland,
Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland,
Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong Kong,
Holand-Netherlands)

As an example, the adult.test file contains the following record:

36, Local-gov, 403681, Bachelors, 13, Married-civ-spouse, Prof-specialty,

Husband, White, Male, 0, 0, 40, United-States, >50K

The last column provides the classification label as a string. The label >50K indi-
cates that the person makes more than $50,000 per year, and <=50K indicates that
the person makes less than or equal to $50,000 per year.

Unfortunately, you can’t load this census data with load_csv_with_header or
load_csv_without_header. Instead, I recommend using the pandas data analysis
library. If you have pip available, you can install pandas with the following command:

pip install pandas

266 PART 3 Simplifying and Accelerating TensorFlow

After you install the toolset, you can read CSV data by calling read_csv. This func-
tion accepts quite a few parameters, and seven of them are particularly important:

 » filepath_or_buffer: Handle of the file containing CSV data

 » header: Row number(s) containing column names

 » names: Names of the CSV fields

 » dtype: Data type or list of data types for columns

 » engine: Parser engine

 » skipinitialspace: Boolean that specifies whether to ignore spaces after the
delimiter (default: False)

 » skiprows: Number of rows to skip after the start of the file

read_csv returns a DataFrame that holds data from the CSV file. For example, the
following code obtains a handle to adult.data and calls read_csv to read its data
into a DataFrame:

columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',

'marital_status', 'occupation', 'relationship', 'race', 'gender',

'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',

'income_bracket']

train_file = open('adult.data', 'r')

train_frame = pd.read_csv(train_file, names=columns, engine='python',

skipinitialspace=True, skiprows=1)

After you create a DataFrame, you can call pandas_input_fn to convert the
DataFrame into a function that can be passed to an estimator’s train or evaluate
method. The ch12/combined.py module demonstrates how an application can
read data from a CSV file with pandas, and Listing 12-3 presents the code.

LISTING	12-3:	 Analyzing Census Data with Wide and Deep Learning

Define column headings

columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',

 'marital_status', 'occupation', 'relationship', 'race', 'gender',

 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',

 'income_bracket']

Create feature columns

age = tf.feature_column.numeric_column('age')

workclass = tf.feature_column.categorical_column_with_vocabulary_list(

 'workclass', ['Private', 'Self-emp-not-inc', 'self-emp-inc', 'Federal-gov',

 'Local-gov', 'State-gov', 'Without-pay', 'Never-worked'])

CHAPTER 12 Developing Applications with Estimators 267

fnlwgt = tf.feature_column.numeric_column('fnlwgt')

education = tf.feature_column.categorical_column_with_vocabulary_list(

 'education', [...])

education_num = tf.feature_column.numeric_column('education_num')

marital_status = tf.feature_column.categorical_column_with_vocabulary_list(

 'marital_status', ['Never-married', 'Divorced', 'Separated', 'Widowed',

 'Married-civ-spouse', 'Married-AF-spouse', 'Married-spouse-absent'])

occupation = tf.feature_column.categorical_column_with_vocabulary_list(

 'occupation', [...])

relationship = tf.feature_column.categorical_column_with_vocabulary_list(

 'relationship', ['Wife', 'Own-child', 'Husband', 'Not-in-family',

 'Other-relative', 'Unmarried'])

race = tf.feature_column.categorical_column_with_vocabulary_list(

 'race', ['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo',

'Other', 'Black'])

gender = tf.feature_column.categorical_column_with_vocabulary_list(

 'gender', ['Female', 'Male'])

capital_gain = tf.feature_column.numeric_column('capital_gain')

capital_loss = tf.feature_column.numeric_column('capital_loss')

hours_per_week = tf.feature_column.numeric_column('hours_per_week')

native_country = tf.feature_column.categorical_column_with_vocabulary_list(

 'native_country', [...])

Create groups of columns

linear_columns = [

 tf.feature_column.crossed_column(

 ['education', 'occupation'], hash_bucket_size=1000),

 tf.feature_column.crossed_column(

 ['native_country', 'occupation'], hash_bucket_size=1000),

 tf.feature_column.crossed_column(

 ['workclass', 'occupation'], hash_bucket_size=1000)]

dnn_columns = [

 tf.feature_column.indicator_column(workclass),

 tf.feature_column.indicator_column(education),

 tf.feature_column.indicator_column(gender),

 tf.feature_column.indicator_column(relationship),

 tf.feature_column.indicator_column(native_country),

 tf.feature_column.indicator_column(occupation),

 age, education_num, capital_gain, capital_loss,

 hours_per_week, fnlwgt]

Create classifier

classifier =

tf.estimator.DNNLinearCombinedClassifier(linear_feature_columns=linear_columns,

 dnn_feature_columns=dnn_columns, dnn_hidden_units=[120, 60])

 (continued)

268 PART 3 Simplifying and Accelerating TensorFlow

Train the classifier

train_file = open('adult.data', 'r')

train_frame = pd.read_csv(train_file,

 names=columns, engine='python',

 skipinitialspace=True, skiprows=1)

train_labels = train_frame['income_bracket'].apply(lambda x: '>50K' in x)

train_fn = tf.estimator.inputs.pandas_input_fn(

 x=train_frame, y=train_labels,

 batch_size=100, num_epochs=600,

 shuffle=True)

classifier.train(train_fn)

Test the estimator

test_file = open('adult.test', 'r')

test_frame = pd.read_csv(test_file,

 names=columns, engine='python',

 skipinitialspace=True, skiprows=1)

test_labels = test_frame['income_bracket'].apply(lambda x: '>50K' in x)

test_fn = tf.estimator.inputs.pandas_input_fn(

 x=test_frame, y=test_labels,

 num_epochs=1, shuffle=False)

metrics = classifier.evaluate(test_fn)

Display metrics

print('\nEvaluation metrics:')

for key, value in metrics.items():

 print(key, ': ', value)

Before you can execute this module, you need to place the adult.data and adult.
test files in the current directory. You also need to install the pandas data analy-
sis package.

The module starts by creating a feature column for each field in the census data.
Then it creates three crossed columns: one that combines the education and
occupation columns, one that combines the native_country and occupation
columns, and one that combines the workclass and occupation columns.

After creating the crossed columns, the module creates a set of feature columns
intended for the DNN classifier. You can’t feed categorical columns to a neural
network, so the module converts categorical columns into dense columns by call-
ing tf.feature_column.indicator_column.

Next, the module creates a DNNCombinedLinearClassifier and provides it with
the two sets of feature columns. That is, it directs the crossed columns to the lin-
ear classifier and the dense columns to the DNN. The dnn_hidden_units

LISTING	12-3:	 (continued)

CHAPTER 12 Developing Applications with Estimators 269

parameter configures the neural network to have two hidden layers: one with 120
nodes and one with 60 nodes.

After creating the classifier, the module calls its train and evaluate methods. To
train the classifier, the module reads the fields from adult.data and converts the
DataFrame to a dataset. The training process consists of 500 epochs, with each
training step operating on shuffled batches containing 100 data points each.

To test the classifier, the module reads the fields from adult.test into a
DataFrame and converts the DataFrame to a dataset. Then it prints each metric
contained in the dict returned by evaluate. On my system, the module displays
the following results:

accuracy : 0.802285
accuracy_baseline : 0.763774
auc : 0.87448
auc_precision_recall : 0.710498
average_loss : 0.511923
label/mean : 0.236226
loss : 65.1142
prediction/mean : 0.336511
global_step : 195360

In this list, auc stands for “area under the curve.” This metric is common for clas-
sifiers, as it measures the likelihood of a classifier making successful predictions
compared to unsuccessful predictions.

Running Estimators in a Cluster
Chapter 11 introduces distributed TensorFlow applications, which involve jobs,
tasks, and servers. You can run estimators in distributed applications, but you
need to tell TensorFlow about the cluster and the task assigned to the server run-
ning the estimator.

You can provide this information by setting a TF_CONFIG variable that describes
the cluster and the server’s task. To be specific, you need to set TF_CONFIG to a
JSON (JavaScript Object Notation) object that contains three fields:

 » cluster: A description of the cluster

 » task: The node’s task

 » job: Parameters of the job

270 PART 3 Simplifying and Accelerating TensorFlow

You can set the first field by providing the argument of the ClusterSpec instance.
If you have an existing ClusterSpec, you can obtain a suitable description by call-
ing its as_cluster_def method.

The task field identifies the task assigned to the node on which TF_CONFIG is set.
This field has three fields of its own:

 » type: the type of task (worker, master, or ps)

 » index: the index of the task within the job

 » trial: string identifier of the trial to be run, starts with '1'

The job field of TF_CONFIG describes the node’s job. A distributed application usu-
ally receives this information through command-line arguments, so you can
ignore this field. The following code gives you an idea how you can set this variable:

TF_CONFIG = {
 'cluster': {'ps': ['host1:123'],
 'worker': ['host2:456']},
 'task': {
 'type': 'worker',
 'index': 0,
 'trial': '1'
 }
}

In this case, the cluster has two jobs and two tasks. The task assigned to the node
with this TF_CONFIG variable has an index of 0 and a type of worker. In this case,
the cluster has a job with the task’s type, but this isn’t always the case. You can
assign any name to a job, but a task’s type must be worker, master, or ps.

Accessing Experiments
To simplify the process of executing estimators in a distributed environment,
TensorFlow provides the Experiment class. To use an Experiment in code, you
need to perform three steps:

1. Create an estimator.

2. Construct an instance of tf.contrib.learn.Experiment with the
estimator created in Step 1.

3. Launch the experiment by calling tf.contrib.learn.learn_runner.run.

CHAPTER 12 Developing Applications with Estimators 271

This discussion presents these steps and demonstrates how an experiment can be
used to classify MNIST images. Chapter 13 presents an application that launches
an experiment in the cloud.

Creating an experiment
Every experiment requires an estimator and functions for training and evaluation.
You can create a tf.contrib.learn.Experiment by calling its constructor, whose
arguments are listed in Table 12-3.

The most important parameter of the constructor is the first, which identifies the
estimator to be executed by the experiment. The second and third parameters
identify the functions that the experiment should use to train and evaluate the
estimator.

TABLE 12-3	 Parameters of the Experiment Constructor
Parameter Default Description

estimator -- Estimator to be launched by the experiment

train_input_fn -- Function that returns training features and labels

eval_input_fn -- Function that returns evaluation features and labels

eval_metrics None Evaluation metrics to monitor

train_steps None Number of training steps

eval_steps None Number of evaluation steps

eval_hooks None Session hooks to pass to the estimator

eval_delay_secs 120 Number of seconds to wait before evaluating

continuous_eval_throttle_secs 60 Number of seconds to wait after the start of evaluation
before re-evaluating

min_eval_frequency None Minimum number of steps between evaluations

delay_workers_by_global_step False Bool that specifies whether to delay training workers by
global step instead of time

export_strategies None Export strategies

train_steps_per_iteration None Number of training steps in each training-
evaluation iteration

checkpoint_and_export False Bool that specifies whether to save checkpoints and
exports during training

272 PART 3 Simplifying and Accelerating TensorFlow

The train_steps parameter identifies the number of steps to be performed dur-
ing the training process. If you don’t set this parameter, the estimator’s training
will continue indefinitely. The eval_steps parameter specifies how many steps
should be performed during testing. If you don’t set this parameter, the test will
continue as long as input data is available.

Methods of the experiment class
After you create an Experiment, you can access its methods. Table 12-4 lists these
methods and provides a description of each.

The first four methods are straightforward to use and understand. The train
method will continue forever unless you’ve set the train_steps parameter in the
constructor. evaluate will continue testing until its input is exhausted or until it
reaches the eval_steps parameter. In both methods, you can specify how long
the experiment should wait by setting the delay_secs parameter.

TABLE 12-4	 Methods of the Experiment Class
Method Description

train(delay_secs=None) Train the estimator with
training data

evaluate(delay_secs=None, name=None) Evaluate the estimator
with test data

train_and_evaluate() Train and evaluate the estimator

test() Train, evaluate, and export
for one step

continuous_eval(delay_secs=None, throttle_delay_
secs=None, evaluate_checkpoint_only_once=True,
continuous_eval_predicate_fn=None, name='continuous')

Evaluate estimator continuously

continuous_eval_on_train_data(delay_secs=None,
throttle_delay_secs=None, continuous_eval_predicate_
fn=None, name='continuous_on_train_data')

Evaluate estimator continuously
with training data

continuous_train_and_eval(*args, **kwargs) Interleave training and evaluation

extend_train_hooks(additional_hooks) Associate additional session
hooks for training

reset_export_strategies(new_export_strategies=None) Associate new export strategies

run_std_server() Start a TensorFlow server and
joins the serving thread

CHAPTER 12 Developing Applications with Estimators 273

The continuous_eval and continuous_eval_on_train_data methods both per-
form repeated evaluation. You can control whether the evaluation continues by
assigning the continuous_eval_predicate_fn to a suitable function. This func-
tion receives the results of the preceding evaluation and determines whether eval-
uation should continue.

The continuous_train_and_eval method is experimental and may change at any
time. This iterates through training and evaluation, and you can set the number of
training steps with the constructor’s train_steps_per_iteration parameter.

Running an experiment
You can train and/or evaluate experiments by calling tf.contrib.learn.learn_
runner.run. This function accepts four arguments:

 » experiment_fn: Function that returns an experiment

 » schedule: The method of the experiment to invoke

 » run_config: A RunConfig that provides configuration settings

 » hparams: An HParams that provides additional data for the experiment

To call this function, you need to assign the first parameter to a function that
receives two arguments: a RunConfig and an HParams. The function must return
an Experiment.

Every estimator constructor has a config parameter that accepts a tf.contrib.
learn.RunConfig instance. The run_config parameter of the run method accepts
the same type of RunConfig. Remember that the model_dir field tells the experi-
ment where to store its outputs.

You can pass data to the experiment_fn function using an instance of tf.contrib.
training.HParams. The constructor accepts one or more key-value pairs separated
by commas. The following code shows how you can create an HParams instance:

hparams = tf.contrib.training.HParams(learning_rate=0.01, hidden_units=[10, 20])

The schedule parameter identifies which experiment method should be invoked.
You can control where the method’s return value should be stored by setting the
model_dir field of the RunConfig.

274 PART 3 Simplifying and Accelerating TensorFlow

Putting theory into practice
The code in the ch12/experiment.py module demonstrates how experiments
can be created and launched. The experiment analyzes MNIST data using a
DNNClassifier similar to the estimator from ch12/dnn_class.py. Listing 12-4
presents the code.

LISTING	12-4:	 Classifying MNIST Images with an Experiment

Set parameters

batch_size = 80

image_dim = 28

hparams = tf.contrib.training.HParams(

 num_labels=10,

 batch_size=80,

 num_steps=8000,

 hidden_layers=[128, 32])

Function to parse MNIST TFRecords

def parser(record):

 features = tf.parse_single_example(record,

 features={

 'images': tf.FixedLenFeature([], tf.string),

 'labels': tf.FixedLenFeature([], tf.int64),

 })

 image = tf.decode_raw(features['images'], tf.uint8)

 image.set_shape([image_dim * image_dim])

 image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

 label = features['labels']

 return image, label

Create the DNNClassifier

def create_estimator(hidden_layers, num_labels, conf):

 column = tf.feature_column.numeric_column('pixels',

 shape=[image_dim * image_dim])

 return tf.estimator.DNNClassifier(hidden_layers, [column],

 n_classes=num_labels, config=conf)

Train the estimator

def train_func():

 dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

 dataset = dataset.map(parser).repeat().batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

CHAPTER 12 Developing Applications with Estimators 275

Test the estimator

def test_func():

 dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

 dataset = dataset.map(parser).batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

Create experiment

def create_experiment(conf, params):

 return tf.contrib.learn.Experiment(

 estimator=create_estimator(params.hidden_layers,

 params.num_labels, conf),

 train_input_fn=train_func,

 eval_input_fn=test_func,

 train_steps=params.num_steps)

Run experiment

run_config = tf.contrib.learn.RunConfig(model_dir='experiment_output')

tf.contrib.learn.learn_runner.run(

 experiment_fn=create_experiment,

 run_config=run_config,

 schedule='train_and_evaluate',

 hparams=hparams

)

This module starts by creating an HParams that contains the batch size, number of
labels, number of training steps, and the number of hidden layers. The module
also creates a RunConfig that identfies the directory where the experiment’s out-
put should be stored.

When the module calls tf.contrib.learn.learn_runner.run, it provides the
HParams instance, the RunConfig instance, and a function that returns an
Experiment. This function calls the Experiment constructor with three functions:

 » create_estimator: Creates a DNNClassifier with the experiment’s
configuration settings

 » train_func: Provides training data and labels for the DNNClassifier

 » test_func: Provides test data and labels for the DNNClassifier

The module sets the schedule parameter of tf.contrib.learn.learn_runner.
run to train_and_evaluate. This calls the experiment’s train_and_evaluate
function, which trains and tests the experiment’s estimator.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 277

Chapter 13
Running Applications
on the Google Cloud
Platform (GCP)

Of all the success stories in the world of technology, none are more
spectacular than the rise of Google. Since its initial public offering in
2004, Google has constructed a vast computational architecture that

spans the globe. Everyone with an Internet connection knows how to search for
information on google.com and view media on youtube.com. Google’s technology
has become so popular that the verb google has entered the Merrian-Webster
Dictionary.

While Google’s technology is famous across the world, the Google Compute
 Platform (GCP) isn’t as well-known. This is a shame, because the GCP lets devel-
opers like you and me take advantage of Google’s vast resources, which include
terabytes of distributed storage and clusters of high-speed processors.

I love using the GCP because my applications can access Google’s technologies,
which include Google Maps, Gmail, YouTube, and AdSense. This chapter focuses
on Google’s Machine Learning (ML) Engine, which lets you execute TensorFlow
applications in the Google Cloud Platform.

IN THIS CHAPTER

 » Developing projects for the Google
Cloud Platform (GCP)

 » Using the GCP utilities

 » Accessing Google Cloud Storage (GCS)

 » Packaging and running TensorFlow
applications in the GCP

http://www.google.com
http://youtube.com

278 PART 3 Simplifying and Accelerating TensorFlow

Overview
The good news is that you can dramatically reduce the time required for machine
learning by deploying applications to Google’s Machine Learning (ML) Engine.
Thebadnewsisthattheprocessofconfiguringanddeployingapplicationsisn’t
easy. Five steps are involved:

1. Create a project for the Google Cloud Platform (GCP) and configure it to
use the Cloud Machine Learning API.

2. Install the Cloud Software Development Kit (SDK).

3. Structure your TensorFlow application as a package.

4. Upload your package and processing data to Google Cloud Storage.

5. Use the Cloud SDK to execute a training or prediction job.

Inwritingthischapter,Iassumethatyou’veneverheardoftheGCP. Therefore,
before I explain how to deploy applications, I introduce the Cloud Software Devel-
opment Kit (SDK) and Cloud Storage and explain how to create a GCP project.

Working with GCP Projects
IfyouwanttotakeadvantageoftheGCP’sfeatures,thefirststepistocreatea
project.Thisprojectservesas thecentralcontainerofyourdevelopmenteffort
and includesall yourmetadataand configurationfiles.Beforeyou canexecute
codeor launchawebapplication,youneed toupload thefiles toyourproject.
Similarly, if you’d like access to special features, you need to make requests
through the project.

To build a GCP project that can access the ML Engine, you need to perform three
steps:

1. Create a project in the Google Developer Console.

2. Enable billing for the project.

3. Enable the project to access the Machine Learning Engine.

The ch13 directory in this book’s example code contains two folders: cloud_mnist
and cluster_mnist. These folders contain packages that can be deployed to the
ML Engine, but they are not GCP projects. A GCP project resides in the cloud, so if
you want to follow the development in this chapter, you need to create and con-
figureaGCPprojectonyourown.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 279

Creating a new project
Anyone with a valid email address can create a GCP project without any fees or
obligations.Theprocessinvolvesfivesteps:

1. Visit the Cloud Console at https://console.cloud.google.com.

2. If this is your first time visiting the console, provide a contact email
address and a password.

3. In the upper horizontal bar, click Select a Project.

4. In the Select dialog box, click the plus button on the right.

5. In the New Project page, enter a project name and click the Create button.

Whenworkingwith theGCP,youneed tounderstand thedifferencebetweena
project’snameandID. Aproject’snameischosenbythedeveloper,andthecon-
sole uses it to display the current project.

In contrast, a project’s ID is chosen by the GCP based on the project’s name, and
it uniquely identifies the project across all projects in theGCP. If youwant to
uploadcodeorchangeaproject’sconfiguration,you’llneedtoaccessyourproject
byitsID. Therefore,it’sagoodideatoknowtheIDsofyourprojects.

Billing
Machine learning is a powerful capability, but unlike TensorFlow, it’s not free.
Google’s fees for machine learning depend on three factors: the type of operation
(training or prediction), the length of time, and your location:

 » Training: $0.49 per hour per training unit in the U.S., $0.54 in Europe and Asia

 » Prediction: $0.10 per thousand predictions plus $0.40 per hour in the U.S.,
$0.11 per thousand predictions plus $0.44 per hour in Europe and Asia

GooglechargesmoneyafteryouusetheMLEngine,notinadvance.Butyouneed
toidentifyameansofpaymentbeforeyouusetheengine,andyoucanconfigure
this by associating your project with a billing account:

1. Visit your project page in the Cloud Console.

2. Open the menu (three horizontal bars) in the upper-left and select the
Billing option.

3. Click the button entitled Add billing account.

4. Enter your contact information and billing information.

https://console.cloud.google.com

280 PART 3 Simplifying and Accelerating TensorFlow

At the bottom of the page, a button lets you set up automatic payment, which
authorizes Google to withdraw funds from the account as resources are used.

Accessing the machine learning engine
After you set up a billing account for your project, you can access paid features like
the ML Engine. To enable this feature, open the menu in the upper-left of the
project page and select APIs & Services. This opens the APIs & Services page, which
identifiesthefeaturesthattheprojectcanaccess.

The left side of the page displays three links: Dashboard, Library, and Credentials.
The Library link opens a page that lists the APIs available for your project. To ena-
bleaccesstotheMLEngine,youneedtoperformfivesteps:

1. From the APIs & Services page, click the Library link to the left.

2. Find the Machine Learning group and click the View All link to the right.

3. Click the link entitled Google Cloud Machine Learning Engine.

4. Click the Enable link at the top of the page.

5. Wait until the GCP grants access to the new capability.

After performing these steps, you can verify that your project can access the ML
Engine by visiting the APIs & Services dashboard. The lower part of the page lists
thedifferentAPIsyourprojectcanaccess,andthisshouldincludeGoogleCloud
Storage and the Google Cloud Machine Learning Engine.

The Cloud Software Development Kit (SDK)
AfteryouunderstandhowtocreateaGCPprojectandconfigureittoaccesstheML
Engine, you’re ready to interact with your project. Google makes this possible
through the Google SDK.

You can download the SDK from http://cloud.google.com/sdk. Clicking the
Install button opens a page that provides instructions for downloading the SDK
installer on your development system. I recommend installing all of the available
components.

When you launch the installer, it asks you to log in to your account and grant
privileges so that the SDK can access your GCP account. It also asks you to choose
a cloud project to serve as the SDK’s default project. After you select this, all fur-
therSDKcommandsaffectthedefaultproject.

http://cloud.google.com/sdk

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 281

After you install the SDK, you’re able to access two command-line utilities:

 » gcloud: Provides general project interaction and accesses Google’s App
Engine, Datastore, DNS, and ML Engine

 » gsutil: Accesses Google Cloud Storage

If you’re running Windows, you can access these utilities through gcloud.cmd and
gsutil.cmd. If you’re running Linux or Mac OS, you can access them through the
gcloud and gsutil executables.

BeforeyoustartusingtheSDK,youshouldmakesurethatyoucanaccessgcloud
and gsutil from a command prompt. If you enter gcloud version and you don’t
see any version information, add the google-cloud-sdk/bin folder to your PATH
environment variable.

The gcloud Utility
After you install the SDK, you can execute gcloud commands on a command line.
All gcloud commands have the same format:

gcloud [optional flags] <group | command>

For example, you can check the version of gcloud by entering the following:

gcloud version

ThiscommandidentifiestheSDK’sversionandtheversionsofitscomponents.
You can install the latest components by entering the following command:

gcloud components update

In this example, components is a group name because it requires additional com-
mands, such as update. You can think of a group like a submenu in a graphical
user interface. In contrast, version is a command name because it doesn’t accept
further commands.

If you enter gcloud help, you see a long list of gcloud’s groups and commands.
gcloud’s groups make it possible to manage web applications, access databases,
andconfigureDNSsettings.Table 13-1liststenofthesegroups.

282 PART 3 Simplifying and Accelerating TensorFlow

The ml-engine group plays a central role in this chapter because it lets you upload
andexecuteTensorFlowapplicationsinthecloud.Figure 13-1displaysmany,but
not all, of the groups and commands associated with ml-engine.

TABLE 13-1	 gcloud Groups
Group Operation

app Manage App Engine deployments

auth Manage oauth2 credentials

components Install, update, and remove SDK components

compute Access resources related to the Compute Engine

config View and edit SDK configuration

domains Manage domains associated with the project

ml Access machine learning capabilities

ml-engine Manage machine learning jobs and models

projects Create and manage project access

services List, enable, and disable APIs and services

FIGURE 13-1:
Commands in the

Cloud SDK have
many levels and

options.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 283

To deploy and run an application in the cloud, you need to be familiar with the
commands in the jobs subgroup of gcloud ml-engine. To the ML Engine, a job
refers to a processing task, which could be training or prediction. For example, the
following command tells the engine that you want it to launch a training job:

gcloud ml-engine jobs submit training

TotelltheGCPwheretofindyourcode,youneedtofollowthecommandwith
configurationflags.Threeflagsareparticularlyimportant:

 » --package-path: The local directory containing the training source code

 » --module-name: The name of the package’s main module

 » --staging-bucket: The Cloud Storage bucket where the package and its
dependencies should be stored

BeforeIexplainhowtosubmitjobstothecloud,Iexplaininthenextsectionhow
Cloud Storage works so that you can set the --staging-bucketflag.ThenIexplain
how to prepare an application so that you can set the --package-pathflag.

Google Cloud Storage
The GCP provides many options for storing data in the cloud, including the Datas-
tore,BigTable,andSpanner.Butifyouwanttostoreandaccessdataformachine
learning, you have to use Google Cloud Storage. That is, the ML Engine requires
thatyouuploadallyoursourcefiles,dependencies,anddatatoCloudStorage.

Thankfully, Cloud Storage is easy to work with. It stores data in containers called
buckets, and you can think of a bucket as a directory in the cloud. Each data item
in a bucket is called an object.

Buckets
Thefilesystemonyour computer storesdata infiles andorganizesfilesusing
directories. Cloud Storage stores data in objects and collects objects inside buck-
ets.Bucketshavealotincommonwithdirectories,butthere’sonemajordiffer-
ence:Bucketscan’tbenested.Thatis,youcan’torganizebucketsintoahierarchy
in the way that you can organize directories.

284 PART 3 Simplifying and Accelerating TensorFlow

When working with buckets, you should be familiar with three points:

 » All load/store/delete operations involving Cloud Storage must identify at least
one target bucket.

 » Every bucket has a globally unique name, a storage class, and a geographic
location.

 » A project can create/delete buckets at most once every two seconds.

This last point is important. Creating and deleting buckets takes a significant
amount of time, so Google recommends creating a small number of persistent
buckets and reusing them as needed.

Bucket names
When you access a bucket, you need to identify it through its Uniform Resource
Identifier(URI),whichstartswithgs://. A bucket’s name must be unique across
all GCP projects, not just your own projects. Therefore, it’s a good idea to prepend
your project ID to your bucket name, as in gs://myproject3712_tfbook.

The GCP sets the following criteria for bucket names:

 » A bucket’s name must have more than two characters and fewer than 64.

 » The characters in a bucket’s name are limited to letters, numbers, dashes,
underscores, and dots.

 » A bucket’s name can’t start with “goog”, and it can’t contain “google” or
misspellings of “google.”

If you create a bucket whose name contains dots, Cloud Storage assumes that
you’ve named your bucket after a domain, as in www.evilrobot.com. The good
news is that Cloud Storage extends the maximum name length of domain-named
buckets to 222 characters. The bad news is that you need to convince Google that
you own the domain.

Storage classes and locations
Every bucket has a storage class that determines its availability, pricing, and stor-
agecharacteristics.Table 13-2 lists the fourdifferent storageclassesand their
characteristics.

For example, suppose that you want a bucket to contain video that will be dis-
played across the world. In this case, you’d create a bucket and set its storage class
to multi_regional. You can set a multi-regional bucket’s location to one of three
values: eu, us, and asia.

http://www.evilrobot.com

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 285

If your dataneeds to be accessed only in a specific region, you should set the
bucket’s storage class to Regional. You can associate a Regional bucket with one of
13differentlocations,andTable 13-3liststhemall.

Google’s list of supported regions increases regularly. For up-to-date information
on storage classes, visit the GCP documentation at http://cloud.google.com/
storage/docs/storage-classes. For up-to-date information on bucket loca-
tions, visit http://cloud.google.com/storage/docs/bucket-locations.

Objects and virtual hierarchy
Each piece of data in a Cloud Storage bucket is an object. A bucket may contain an
unlimitednumberofobjects,buteachobjectmustbe5TBinsizeorless.

Everyobjecthasdataandmetadata.Whenyouuploadafiletoabucket,thefile’s
content becomes the object’s data. An object’s metadata holds name-value pairs
that describe the object.

TABLE 13-2	 Storage Classes of Cloud Storage Buckets
Storage Class ID Description

Multi-Regional multi_regional Data frequently accessed across a wide area (Price: $0.026 per GB
per month)

Regional regional Data frequently accessed in a limited region (Price: $0.02 per GB
per month)

Nearline nearline Data accessed no more than once per month (Price: $0.01 per GB
per month)

Coldline coldline Data accessed no more than once per year (Price: $0.007 per GB
per month)

TABLE 13-3	 Location Codes of Regional Buckets
us-east1 us-east4 us-central1 us-west1

asia-east1 asia-northeast1 asia-southeast1 asia-south

australia-southeast1 europe-west1 europe-west2 europe-west3

southamerica-east1

http://cloud.google.com/storage/docs/storage-classes
http://cloud.google.com/storage/docs/storage-classes
http://cloud.google.com/storage/docs/bucket-locations

286 PART 3 Simplifying and Accelerating TensorFlow

The criteria for object names is much less restrictive than the criteria for bucket
names:

 » An object’s name can contain any sequence of valid Unicode characters.

 » An object’s name can’t contain any Carriage Return or Line Feed characters.

 » Google recommends against using #, [,], *, or ? in object names, as gsutil
interprets these characters as wildcards.

A bucket’s name must start and end with a letter, but an object’s name can start
and end with a slash (/). Therefore, you can construct a virtual hierarchy of objects
by starting an object’s name with a slash.

For example, suppose that you create a bucket named gs://dummies-tfbook. You
can create an object in the bucket named gs://dummies-tfbook/data and another
object named gs://dummies-tfbook/data/images. Cloud Storage won’t recog-
nize any relationship between these objects, but humans will understand that the
objects form a virtual hierarchy.

The gsutil utility
The gsutil utility lets you create, access, and modify buckets and objects. For the
most part, gsutil commands have the same names and purposes as common *nix
commands.

Table 13-4lists13ofgsutil’s commands. For a more thorough discussion, visit
Google’s documentation at https://cloud.google.com/storage/docs/gsutil.

Many of these commands are straightforward, but a few of them deserve
 explanation. This discussion explores the mb, cp/mv, ls/stat, and cat/compose
commands.

Creating buckets (mb)
BeforeyouuploaddatatoCloudStorage,youneedtocreateoneormorebuckets.
The command to know is mb:

gsutil mb [-c class] [-l location] [-p project_id] url...

https://cloud.google.com/storage/docs/gsutil

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 287

The –c, –l, and –pflagsareparticularlyimportant:

 » -c: The bucket’s storage class: multi_regional, regional, nearline, and
coldline. (Default: multi_regional or regional).

 » -l: The bucket’s multi-regional location or regional location. (Default: us).

 » -p: The project’s ID. (Default: the ID in the gsutil configuration file).

TABLE 13-4	 gsutil Commands
Command Description

mb [-c class] [-l location]
. [-p proj_id] url...

Make a new bucket

rb [-f] url... Remove buckets

cp [OPTION]... src_url dst_url
cp [OPTION]... src_url... dst_url
cp [OPTION]... -I dst_url

Copy files and objects

mv [-p] src_url dst_url
mv [-p] src_url... dst_url
mv [-p] -I dst_url

Move objects and/or subdirectories

rm [-f] [-r] url...
rm [-f] [-r] –I

Remove objects

ls [-a] [-b] [-d] [-l] [-L] [-r]
[-p proj_id] url...

List buckets and objects

stat url... Display object status

rewrite -k [-f] [-r] url...
rewrite -k [-f] [-r] –I

Rewrite objects

du url... Display object size usage

cat [-h] url... Concatenate object to standard output

compose gs://bucket/obj1
[gs://bucket/obj2 ...]
. gs://bucket/composite

Concatenate multiple objects into one

[-D] config [-a] [-b] [-e] [-f] [-n]
. [-o <file>] [-r] [-s <scope] [-w]

Obtain credentials and create a
configuration file

web set [-m main_page_suffix]
. [-e error_page] bucket_url...
. web get bucket_url

Associate one or more buckets with
a web page

288 PART 3 Simplifying and Accelerating TensorFlow

For example, the following command creates a regional bucket named gs://
dummies123-tfbook/example and associates it with the us-central1 region.

gsutil mb -c regional -l us-central1 gs://dummies123-tfbook/example

Copying (cp) and moving (mv)
Afteryoucreateabucket,youcanuploadfilestoit,therebyaddingobjectstothe
bucket. Similarly, you candownloadanobject to your systemas afile.Google
makes these operations possible through the cp (copy) and mv (move) commands.
Bothcommandstransferasourceentitytoadestination,butcp leaves the source
entity in place while mv removes the source entity.

The best way to understand these commands is to look at some examples. The
followingcommanduploadsalocalfile,hello.txt, to a bucket in Cloud Storage
named gs://newbucket:

gsutil cp hello.txt gs://newbucket

Similarly, the following command moves hello.txt from gs://newbucket to the
currentdirectoryonyourdevelopmentsystem.Notethatmv removes hello.txt
from the bucket:

gs mv gs://newbucket/hello.txt .

cp and mvacceptmanyofthesameflagsastheircounterpartsinLinuxandUnix.
Theseflagsincludethefollowing:

 » -r: Copy/move a directory and its contents

 » -L: Outputs a log file for each source entity of the copy/move

 » -e: Excludes symbolic links from the copy/move

For example, the following command moves the local mydir directory and its con-
tents to firstbucket.

gsutil mv -r mydir gs://firstbucket

This command copies mydir and its contents from firstbucket to
secondbucket:

gsutil cp -re gs://firstbucket/mydir gs://secondbucket

Because of the –e flag, gsutil won’t copy any symbolic links from mydir to
secondbucket.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 289

Reading information (ls and stat)
The ls and stat commands provide information about buckets and objects in
Cloud Storage. The simplest usage of ls is gsutil ls, which lists all of the buckets
associated with the current GCP project.

One interesting feature of ls is that it recognizes the virtual hierarchy of objects.
For example, suppose that gs://mybucket contains /mydir/a.txt, /mydir/b.
txt, and /newdir/c.txt. The command gsutil ls gs://mybucket prints /mydir
and /newdir,butnoneoftheunderlyingobjects.Butifyousetthe-rflag,the
entire contents of a bucket will be displayed. The following command demon-
strates this:

gsutil ls -r gs://mybucket

Anotherusefulflagis-l, which tells ls to print detailed output for each object of
interest. These details include object sizes, creation sizes, and ownership. The -L
flagprintsevenmoreinformation,includingthecontenttype,storageclass,and
update time of each object of interest.

If you want detailed information about one object, stat ismore efficient than
ls -L. As an example, the following command prints detailed information about
the training.dat object in mybucket/mydir:

gsutil stat gs://mybucket/mydir/training.dat

The exit code of this command will equal 1 if the object exists and 0 if it doesn’t.
Oneimportantdifferencebetweenstat and ls is that stat only provides infor-
mation about objects.

Concatenation (cat and compose)

cat directs an object’s text to standard output. For example, the following com-
mand prints the text contained in gs://mybucket/a.txt:

gsutil cat gs://mybucket/a.txt

Despite its name, you can’t concatenate objects with cat, but you can concatenate
objects with compose. That is, the following command concatenates the content of
a.txt and b.txt in gs://mybucket and stores the combined result to c.txt:

gsutil compose gs://mybucket/a.txt gs://mybucket/b.txt gs://mybucket/c.txt

290 PART 3 Simplifying and Accelerating TensorFlow

When you use compose, keep three points in mind:

 » A project can perform at most 200 compose operations per second.

 » A compose operation can combine a maximum of 32 entities.

 » A given object can be appended to at most 1,023 times.

composeisparticularlyhelpfulifyouhavetouploadverylargefilestoCloudStor-
age.Ratherthanuploadanentirefilefromonecomputer,youcanuploadportions
ofthefilefromseparatecomputersandusecompose to combine the portions.

Preparing for Deployment
Beforeyousubmitanapplicationfortrainingorprediction,youshouldprepareit
in two ways:

 » Configure the application to receive command-line arguments from
the ML Engine

 » Structure the application’s files in a package

Receiving arguments
When the ML Engine executes your application, it passes arguments that provide
information about the operating environment. Table 13-5 lists the possible
arguments.

TABLE 13-5	 Machine Learning Arguments
Argument Operation

--job-dir Location of the application’s data

--train_batch_size Batch size for training

--train_steps Number of steps for each training epoch

--eval_batch_size Batch size for evaluation

--eval_steps Number of steps to run evaluation at each checkpoint

--eval_delay_secs Time to wait before first evaluation

--min_eval_frequency Minimum number of training steps between evaluations

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 291

--job-dir is particularly important because it tells the application where it should
storeitsoutputfiles.Thefollowingcodedemonstrateshowyoucanaccessthis
using an ArgumentParser:

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument(
 '--job-dir',
 help='Checkpoint/output location',
 required=True
)
 args = parser.parse_args()

In addition to the built-in arguments, you can provide arguments of your own.
When you submit a job, the ML Engine will pass your arguments to the applica-
tion.Butkeeptwopointsinmind:

 » User-defined flags must follow all of the built-in flags.

 » Two dashes (--) must separate the built-in flags from the user-defined flags.

For example, suppose that you want to pass two arguments to your application
named data_dir and num_epochs. When you execute a command, you need to set
the --data_dir and --num_epochsflagsattheendofthecommandandseparate
themfromthecommand’snormalflagswith--.

Packaging TensorFlow code
You can launch a training operation with the command gcloud ml-engine jobs
submit training. When you execute this, you can identify your source code with
the --package-path and --module-nameflags.The--package-pathflagidenti-
fiesthedirectorythatcontainsyourcode,andthisdirectorymustmeetthefol-
lowing requirements:

 » The directory must contain the module identified by --module-name.

 » The parent directory must have a file named setup.py.

 » Every directory under the parent directory must have a file named __init__.
py. This file is usually empty.

 » The development system must have setuptools installed.

292 PART 3 Simplifying and Accelerating TensorFlow

This last point is important. Before uploading a package, theML Engine uses
setuptools to zip the parent directory into a *.tar.gz file. If you’ve installed
pip, you can install setuptools with pip install setuptools.

setup.py
In a Python package, setup.py contains instructions for building and installing
the package. If you want the ML Engine to install your package, setup.py must
perform two operations:

 » Import setuptools.setup.

 » Call the setup function of the setuptools module.

The setup function accepts a great deal of information about the package, includ-
ingitsname,version,anddependencies.Table 13-6listsnineoftheparameters
that you can set.

Rather than list your package’s dependencies, you can call the find_packages
provided by setuptools.Listing 13-1presentsthecontentofthesetup.pyfilein
the ch13/cloud_mnist folder:

TABLE 13-6	 Parameters of the setup Function
Parameter Description

name Package name

version Release version

packages Dependency packages

install_requires Packages that need to be installed when the package
is installed

author Name of the package’s author

author_email Author’s email address

url Package’s home page

description Short description of the package

license The package’s license

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 293

LISTING	13-1:	 Setup Script for a Machine Learning Package

from setuptools import find_packages

from setuptools import setup

REQUIRED_PACKAGES = ['tensorflow>=1.3']

setup(

 name='trainer',

 version='0.1',

 install_requires=REQUIRED_PACKAGES,

 packages=find_packages(),

 include_package_data=True,

 author='Matthew Scarpino'

 description='Running MNIST classification in the cloud'

)

Sadly, the ML Engine doesn’t always have the latest versions of the packages
installed. At the time of this writing, the current TensorFlow version is 1.4, but the
default version supported by the ML Engine is 1.2.

Youcanrequestaspecificversionofapackagebysettingtheinstall_requires
field.InListing 13-1,thisfieldrequestsaversionofTensorFlowgreaterthanor
equalto1.3.Formoreinformationonsupportedversions,visitthesitehttp://
cloud.google.com/ml-engine/docs/runtime-version-list.

Executing Applications with the Cloud SDK
If you understand how to use the Cloud SDK, transfer data to Cloud Storage, and
structure your application in a package, you’re ready to start launching jobs with
the Cloud SDK.

The ML Engine supports two types of jobs: training and prediction. Despite the
names, training jobs don’t necessarily train and prediction jobs don’t necessarily
predict.Thedifferencebetweentheminvolvesthenatureoftheinput.Atraining
job expects a Python package as input and a prediction job expects a machine
learning model stored as a SavedModel.Chapter 5introducesSavedModels and the
methods available for accessing them.

http://cloud.google.com/ml-engine/docs/runtime-version-list
http://cloud.google.com/ml-engine/docs/runtime-version-list

294 PART 3 Simplifying and Accelerating TensorFlow

Local execution
This chapter focuses on cloud computing, so it may seem strange to use the Cloud
SDKtolaunchjobslocally.ButtheMLEngineisneithersimplenorfree,soIrec-
ommend that you test your applications locally before deploying them to the
cloud. Another reason to execute your code locally is that you can view printed text
on the command line instead of having to download and read logs.

You can launch a job on your development system by entering one of the following
commands:

 » gcloud ml-engine local train: run a training job locally

 » gcloud ml-engine local predict: run a prediction job locally

Thesecommandsaccomplishdifferentresultsandacceptdifferentconfiguration
flags.

Running a local training job
A GCP training job executes a Python package and produces output in the directory
specifiedbythe--job-dirflag.Table 13-7lists--job-dirandotherflagsyou
can set for local training jobs.

The --package-pathflagidentifiesthetop-leveldirectoryofyourpackage.This
is the directory that contains your package’s setup.pyfile.The--module-name
flagidentifiesthemoduletoexecuteinsidethepackage.

TABLE 13-7	 Flags for Local Training
Flag Description

--module-name=MODULE_NAME Identifies the module to execute

--package-path=PACKAGE_PATH Path to the Python package containing the module to execute

--job-dir=JOB_DIR Path to store training outputs

--distributed Runs code in distributed mode

--parameter-server-count=
PARAMETER_SERVER_COUNT

Number of parameter servers to run

--start-port=START_PORT Start of the range of ports reserved by the local cluster

--worker-count=WORKER_COUNT Number of workers to run

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 295

If you’d like to try this for yourself, copy the mnist_train.tfrecords and mnist_
test.tfrecordsfilesfromthech12 directory to the ch13 directory. Then go to
the ch13/cloud_mnist directory and enter the following command:

gcloud ml-engine local train --module-name trainer.task--
package-path trainer --job-dir output ----data_dir ../images

In this command, --package-path indicates that the trainer directory repre-
sents a package, and --module-name indicates that the name of the package’s
module is trainer.task. The --job-dir flag tells the application to store its
results in a directory named output.

Two dashes (--) separate --job-dir from --data_dir. This indicates that
--data_dirandanyfollowingflagsaredefinedbytheuser.

Running a local prediction job
After training is complete, you can launch a local prediction job by executing
gcloud ml-engine local predict.Table 13-8liststhedifferentflagsyoucanset.

You should assign the --model-dirflagtothedirectorythatcontainstheoutput
of the training operation. Also, you need to identify prediction parameters using
the --json-instances or --text-instancesflags.

Deploying to the cloud
If you succeeded in launching jobs locally, deploying your applications to the
cloudshouldn’tpresentanydifficulty.Butbemindfuloftwoissues:

 » You need to upload training/evaluation data to Cloud Storage.

 » The ML Engine may not support the versions of the packages you need.

TABLE 13-8	 Flags for Local Prediction
Flag Description

--model-dir=MODEL_DIR Path of the model

--json-instances=JSON_INSTANCES Path to a local file containing prediction data
in JSON format

--text-instances=TEXT_INSTANCES Path to a local file containing prediction data
in plain text

296 PART 3 Simplifying and Accelerating TensorFlow

Beforeyouexecuteeitheroftheapplicationsinthech13 directory, you’ll need to
upload the mnist_test.tfrecords and mnist_train.tfrecordsfilestoaCloud
Storage bucket. For example, if your project’s ID is $(PROJECT_ID), you can create
a bucket named $(PROJECT_ID)_mnist in the central United States with the fol-
lowing command:

gsutil mb -c regional -l us-central1 gs://$(PROJECT_ID)_mnist

After you create the bucket, you can upload the two MNISTfilestothebucketwith
the following command:

gsutil cp mnist_test.tfrecords mnist_train.tfrecords gs://$(PROJECT_ID)_mnist

After the command executes, it’s a good idea to check that Cloud Storage created
objectsforthetwofiles.Youcanverifythisbyrunningthecommandgsutil ls
gs://$(PROJECT_ID)_mnist.

Running a remote training job
After you upload your test/evaluation data, you can launch a training job with the
following command:

gcloud ml-engine jobs submit training $(JOB_ID)

$(JOB_ID)providesauniqueidentifierforthetrainingjob.Afteryoulaunchthe
job, you can use this ID to check on the job’s status.

Inadditiontoidentifyingthejob,youneedtotelltheMLEnginewheretofind
your package and your input data. You also need to tell the engine where it should
storeoutputfiles.Youcanprovidethis informationbyfollowingthecommand
withflags,andTable 13-9listseachofthem.

The --module-name, --package-path, and --job-dirflagsservethesamepur-
posesasthesimilarlynamedflagsforlocaltrainingjobs.The--staging-bucket
flagidentifiesthebuckettoholdthedeployedpackage.The--regionflagaccepts
oneoftheregionslistedinTable 13-3.

Bydefault,deployedapplicationsrunonthelateststableversionoftheMLEngine.
Youcanconfigurethisbysettingthe--runtime-versionflag.Youcangetthelist
of versions at cloud.google.com/ml-engine/docs/runtime-version-list.

I prefer to set the --stream-logsflagbecause it forces thecommandtoblock
until the job completes. As the job runs, the console prints messages from the
remotelog.Abortingthecommand(Ctrl-C)doesn’taffecttheremotejob.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 297

By default, applications uploaded to the ML Engine can run only on a single
CPU. Youcanconfiguretheexecutionenvironmentbysettingthe--scale-tier
flagtooneofthevalueslistedinTable 13-10.

If you set --scale-tier to basic-gpu,youcanexecuteyourcodeonanNvidia
TeslaK80GPU. Thishas4,992CUDAcoresand24 GBofGDDR5memory.Ifyou
set --scale-tier to basic-tpu, you can execute your code on one or more of
Google’s Tensor Processing Units (TPUs). At the time of this writing, Google
restricts TPU access to developers in its Cloud TPU program, and you can learn
more about this program at http://cloud.google.com/tpu.

TABLE 13-9	 Flags for Cloud Training Jobs
Flag Description

--module-name=MODULE_NAME Identifies the module to execute

--package-path=PACKAGE_PATH Path to the Python package containing the module to execute

--job-dir=JOB_DIR Path to store output files

--staging-bucket=STAGING_BUCKET Bucket to hold package during operation

--region=REGION The region of the machine learning job

--runtime-version=RUNTIME_VERSION The version of the ML Engine for the job

--stream-logs Block until the job completes and stream the logs

--scale-tier=SCALE_TIER The job’s operating environment

--config=CONFIG Path to a job configuration file

TABLE 13-10	 Scale Tier Values
Value Description

basic A single worker on a CPU

basic-gpu A single worker with a GPU

basic-tpu A single worker instance with a Cloud TPU

standard-1 Many workers and a few parameter servers

premium-1 A large number of workers and many parameter servers

custom Define a cluster

http://cloud.google.com/tpu

298 PART 3 Simplifying and Accelerating TensorFlow

If you set --scale-tier to standard-1 or premium-1, you can run your job on a
cluster of processors. If you set --scale-tier to custom,youcanconfigurethe
cluster by assigning the --configflagtothenameofaconfigurationfile.

Running a remote prediction job
Chapter 5 introducesSavedModels, and if you upload a SavedModel to a Cloud
Storage bucket, you can launch a prediction job with the following command:

gcloud ml-engine jobs submit prediction $(JOB_ID)

Thiscommandacceptsflagsthatspecifywherethepredictionjobshouldreadits
inputandwriteitsoutput.Table 13-11listseachoftheseflags.

When you launch a remote prediction job, you must identify the model’s name
with --modelorthebucketcontainingthemodelfileswith--model-dir. You also
needtoidentifythelocationoftheinputfileswith--input-paths.

The ML Engine accepts prediction input data in one of three formats. You can
identify the format of your data by setting --data-format to one of the following
values:

TABLE 13-11	 Flags for Cloud Prediction Jobs
Flag Description

--model-dir=MODEL_DIR Path of the bucket containing the saved model

--model=MODEL Name of the model to use for prediction

--input-paths=INPUT_PATH, [INPUT_PATH,...] Path to the input data to use for prediction

--data-format=DATA_FORMAT Format of the input data

--output-path=OUTPUT_PATH Path to store the prediction results

--region=REGION The region of the machine learning job

--batch-size=BATCH_SIZE Number of records per batch

--max-worker-count=MAX_WORKER_COUNT The maximum number of workers to employ
for parallel processing

--runtime-version=RUNTIME_VERSION The version of the ML Engine for the job

--version=VERSION Version of the model to be used

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 299

 » text: Text files with one line per instance

 » tf-record: TFRecord files

 » tf-record-gzip: GZIP-compressed TFRecord files

The lastrequiredflag is--output-path. This tells the ML Engine which Cloud
Storage bucket should contain the prediction results.

Viewing a job’s status
After you launch a job, you can view the job’s status in two ways. First, you can use
gcloud commands, such as the following:

 » gcloud ml-engine jobs list: List the jobs associated with the default
project along with their statuses and creation times

 » gcloud ml-engine jobs describe $(JOB_ID) --summarize: Provide
detailed information about a specific job in human-readable format

When I want to check on a job, I prefer to visit the Google Cloud Console. If you
click the menu bars in the upper left and scroll down, you see an entry entitled ML
Engine. This entry leads to two options: Jobs and Models.

If you click the ML Engine ➪ Jobs option, the page lists all the jobs associated with
the project. If you click on a job name, a new page provides detailed information
about the job’s execution, including its status and any log messages.

Configuring a Cluster in the Cloud
By default, GCP jobs execute on a single CPU. But if you set --scale-tier to
 custom, you can launch a job to execute on a cluster of processors. You can con-
figuretheclusterandthenatureofitsprocessingbyfollowingthe--configflag
withthenameofaconfigurationfile.

YoucanformattheconfigurationfileusingYAML(YAMLAin’tMarkupLanguage)
orJSON(JavaScriptObjectNotation).Ifasettinginyourconfigurationfilecon-
flictswithacommandflag,thejobusesthefile’ssetting.Table 13-12liststhefour
fieldsthatconfiguretrainingandprediction.

300 PART 3 Simplifying and Accelerating TensorFlow

Aconfigurationfilecanprovideatmostoneinputobjectandatmostoneoutput
object. If you’re launching a training job, you may want to set the trainingInput
fieldtoaTrainingInput and/or the trainingOutputfieldtoaTrainingOutput.
If you’re launching a prediction job, you may want to set the predictionInput
fieldtoaPredictionInput and/or the predictionOutputfieldtoaPrediction
Output.

Setting the training input
A TrainingInput provides information about the training you want to perform
andconfigurestheclustertoexecutethetrainingjob.Table 13-13liststhefields
that you can set.

The scaleTierfieldspecifiesthedesiredexecutionenvironmentforthecluster,
and it accepts the same values as the --scale-tier flag. The masterType,
serverType, and parameterServerTypefieldsgetmorespecific,andidentifythe
type of virtual machine that should be used to serve the given role. You can set
eachofthesefieldstooneoftenstrings:

 » standard: Basic configuration for small to moderate datasets

 » large_model: High-memory configuration for models with large datasets and
many hidden layers

 » complex_model_s: Provides greater computation than standard
configuration

 » complex_model_m: Twice as many cores and twice as much memory as the
complex_model_s configuration

 » complex_model_l: Twice as many cores and twice as much memory as the
complex_model_m configuration

 » standard_gpu: Similar to the standard configuration, but provides access to
an Nvidia Tesla K80 GPU

TABLE 13-12	 Training/Prediction Configuration Fields
Field Type Description

trainingInput TrainingInput Input parameters to create a training job

trainingOutput TrainingOutput Result of the current training job

predictionInput PredictionInput Input parameters to create a prediction job

predictionOutput PredictionOutput Result of the current prediction job

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 301

 » complex_model_m_gpu: Similar to the standard configuration, but provides
access to four Nvidia Tesla K80 GPUs

 » complex_model_l_gpu: Similar to the standard configuration, but provides
access to four Nvidia Tesla K80 GPUs

 » standard_p100: Similar to the standard configuration, but provides access
to an Nvidia Tesla P100 GPU

 » complex_model_m_p100: Similar to the standard configuration, but provides
access to four Nvidia Tesla P100 GPUs

TABLE 13-13	 TrainingInput Fields
Field Type Description

scaleTier ScaleTier The job’s execution platform

masterType string Machine type for the master

workerType string Machine type for workers

parameterServerType string Machine type for parameter servers

workerCount string Number of workers in the cluster

parameterServerCount string Number of parameter servers in the cluster

packageUris string The locations of the application’s packages and
dependencies

pythonModule string The module ro run after installing the package

args [string] Command-line arguments to pass to the module

hyperpameters HyperparameterSpec Specifies which parameters to optimize
during training

region string The target region for running the job

jobDir string Cloud storage path to contain training outputs

runtimeVersion string The version of the Cloud ML Engine to use
for training

302 PART 3 Simplifying and Accelerating TensorFlow

Youcanidentifyspecificparametersfortrainingbysettingthehyperparameters
field to an array ofHyperparameterSpecs. Each HyperparameterSpec has four
fields:

 » goal: Nature of the optimization (MAXIMIZE or MINIMIZE)

 » params: Array of ParameterSpecs that identify the parameters to optimize
during training

 » maxParallelTrials: Maximum number of training runs to execute in
parallel

 » hyperparameterMetricTag: Identifier for the optimization. TensorBoard
uses this tag to label the optimization process

A HyperparameterSpecidentifiesoneormoreparametersforthetrainingjobto
optimize. You can identify the parameters of interest by setting the paramsfieldto
a list of ParameterSpecs. Each ParameterSpechassevenfields:

 » parameterName: The parameter’s name, which must be unique among all
parameters in the HyperparameterSpec

 » type: The parameter’s data type, which can be INTEGER, DOUBLE, DISCRETE,
CATEGORICAL, or PARAMETER_TYPE_UNSPECIFIED

 » minValue: Minimum value of the parameter (required for INTEGER or DOUBLE
parameters)

 » maxValue: Maximum value of the parameter (required for INTEGER or DOUBLE
parameters)

 » categoricalValues: A list of strings that identify the different categories
(required for CATEGORICAL parameters)

 » discreteValues: A list of numbers that identify the different discrete values
of the parameter (required for DISCRETE parameters)

 » scaleType: Nature of the scaling that should be applied (can be NONE,
UNIT_LINEAR_SCALE, UNIT_LOG_SCALE, or UNIT_REVERSE_LOG_SCALE)

The ch13/cluster_mnist package is similar to the ch13/cloud_mnist package.
Theonlydifferenceisthatitusesaconfigurationfiletodefineacustomcluster.
Listing 13-2presentsthecontentofch13/cluster_mnist/config.yaml.

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 303

LISTING	13-2:	 Configuration File for Custom Cluster Execution

trainingInput:

 scaleTier: CUSTOM

 masterType: standard

 workerType: standard

 parameterServerType: standard

 workerCount: 4

 parameterServerCount: 2

ThisconfigurationfiletellstheMLEnginetoexecutethejobwithfourworkers
and two parameter servers. It also states that the workers and parameter servers
should be executed on standard systems.

Obtaining the training output
Youcanconfigurehowa training jobproducesoutputbysetting thetraining
OutputfieldofyourconfigurationfiletoaTrainingOutput.Table 13-14liststhe
possiblefields.

If you set the hyperparametersfieldof theTrainingInput, you can access the
results in the trialsfieldoftheTrainingOutput. This is a list of Hyperparameter
Outputs, and each HyperparameterOutputhasfourfields:

 » trialId: A string that identifies the trial

 » hyperparameters: A dictionary that associates parameter names with the
trained values

TABLE 13-14	 TrainingOutput Fields
Field Type Description

completedTrialCount string The number of hyperparameter
trials that completed
successfully

trials [{ HyperParameterOutput }] Results of hyperparameter
trials

consumedMlUnits number The number of units of the
Machine Learning Engine
consumed during the
job’s execution

isHyperparameterTuningJob boolean Whether the job tuned
hyperparameters

304 PART 3 Simplifying and Accelerating TensorFlow

 » finalMetric: A HyperparameterMetric that identifies the trial’s final
objective metric

 » allMetrics: A list of HyperparameterMetrics that contain all recorded
object metrics for the trial

The ML engine provides training metrics as HyperparameterMetrics, and each
HyperparmeterMetric has twofields:trainingStep and objectiveValue. The
trainingStep field identifies the global training step, and objectiveValue
identifiestheobjectivevalueatthegivenstep.

Setting the prediction input
Youcanconfiguretheinputtoapredictionjobbysettingthefile’sprediction
InputfieldtoaPredictionInput.Table 13-15liststhefieldsthatyoucansetina
PredictionInput.

To perform a prediction job, you need to provide a SavedModelandfilescontain-
ing input data. You can identify the format and location of your input data by set-
ting thefirst twofields,dataFormat and inputPaths. To specify the format of
your data, you need to set dataFormat to TEXT, JSON, TF_RECORD, TF_RECORD_GZIP,
or DATA_FORMAT_UNSPECIFIED.

TABLE 13-15	 PredictionInput Fields
Field Type Description

dataFormat DataFormat Format of the data files

inputPaths [string] Cloud storage buckets containing the data files

outputPath string Cloud Storage location for storing output files

maxWorkerCount string Maximum number of workers to be used for parallel processing

region string Region in which to launch the prediction job

runtimeVersion string The version of the Cloud ML Engine to use for training

batchSize string Number of records to process per batch

modelName string Complete name of the model

versionName string Version of the model to use for prediction

uri string Cloud storage location for the mdoel

CHAPTER 13 Running Applications on the Google Cloud Platform (GCP) 305

The last three entries form a union called model_version, so you can set only one
of the three in a PredictionInput. You can identify your model by setting
 modelName to a string with the following format:

projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>

If you identify your model with versionName, you need to provide a slightly-
differentstring:

projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/
versions/<var>[YOUR_VERSION]</var>

If the Cloud Storage bucket only contains one model, you can simply set the uri
fieldtothebucket’slocation.

Obtaining the prediction output
Youcanconfiguretheoutputofapredictionjobbysettingthefile’sprediction
OutputfieldtoaPredictionOutput.Table 13-16liststhefieldsyoucanset.

These fields are straightforward to understand and use. The nodeHours field
 provides the product of the number of nodes used by the job and the number of
hours required to complete the job.

TABLE 13-16	 PredictionOutput Fields
Field Type Description

outputPath string The Cloud Storage location for storing the prediction output

predictionCount string The number of generated predictions

errorCount string The number of data instances that produced errors

nodeHours number The number of node hours consumed by the prediction job

4The Part of Tens

IN THIS PART . . .

Explore ten of the most important Python classes
provided by the TensorFlow framework.

Uncover helpful guidelines to follow when training
neural networks in machine learning applications.

CHAPTER 14 The Ten Most Important Classes 309

Chapter 14
The Ten Most Important
Classes

The TensorFlow API is immense, comprising hundreds of packages and
thousands of modules. Given its size, newcomers may find it hard to know
which classes to study closely. To remedy this confusion, I selected

TensorFlow’s ten most important classes and explain what the class accomplishes
and why it’s so important.

Tensor
Tensors play a central role in TensorFlow development and serve as the primary
objects for storing and manipulating data. Optimizers only accept data contained
in tensors, and image-processing functions require images to be provided as
tensors. All neural network layers, from dense layers to dropout layers, accept
tensors as input and return tensors as output.

A tensor serves as an N-dimensional array, where N can be zero or more. A tensor’s
number of dimensions is called the tensor’s rank, and the size of each dimension is
called the tensor’s shape. For example, a 3-x-5 matrix has shape [3, 5], and an RGB
image whose size is 200 x 200 would be represented by a tensor with size [200,
200, 3].

IN THIS CHAPTER

 » Exploring fundamental classes of the
TensorFlow API

 » Storing tensors and operations in
graphs

 » Using estimators and iterators

310 PART 4 The Part of Tens

TensorFlow provides hundreds of functions for creating, transforming, and pro-
cessing tensors (see Chapter 3). You can create a tensor with constant values by
calling tf.constant or create a tensor with random values by calling tf.random_
normal or tf.random_uniform. You can reshape a tensor with tf.reshape and
extract part of a tensor with tf.slice.

Operation
When the Python interpreter reaches a function that operates on tensors, it
doesn’t execute the operation immediately. Instead, it creates an instance of the
Operation class that represents the operation. Every Operation has a property
called inputs that contains its input tensors and a property called outputs that
contains its output tensors.

Every Operation has a property called type that is usually set to the function that
created it. For example, if you call tf.add, the corresponding operation will have
its type set to add.

Other math operations include tf.divide, tf.round, and tf.sqrt. TensorFlow
also supports traditional matrix operations, including tf.matmul, tf.diag, and
tf.matrix_solve.

Graph
TensorFlow creates a Tensor instance for each tensor in your application and an
Operation for each operation involving tensors. It stores these Tensors and
Operations in a data structure called a Graph. Only one Graph can be active at a
time, and you can make a new Graph active by calling as_default.

The Graph class provides a number of methods for accessing the data contained in
the graph. You can access a particular tensor with get_tensor_by_name or access
all of the graph’s operations by calling get_operations.

Each Graph stores data in a series of containers called collections. Every collection
can be accessed through a particular key, and get_all_collection_keys pro-
vides the full list of keys. For example, a graph stores its global variables in the
collection whose key is tf.GraphKeys.GLOBAL_VARIABLES.

CHAPTER 14 The Ten Most Important Classes 311

Session
After you add tensors and operations to a graph, you can execute the graph’s
operations by creating and running a session. You can create a session by calling
tf.Session and then launch the session by calling its run method.

The first argument of the run method tells the session what processing to perform.
If this argument contains tensors, the session will compute the elements of each
tensor and return the elements in a NumPy array. If this argument contains
Operations, the session will perform each operation and return the appropriate
result.

If the questions on StackOverflow are any indication, run’s feed_dict confuses
many developers. This parameter accepts a dictionary that associates values with
tensors (usually placeholders) in the graph. But the dictionary’s values can’t be
tensors. For this reason, it’s generally a good idea to store and process input data
using NumPy arrays before executing a session.

Variable
Variables resemble tensors in many respects. They store values in N-dimensional
arrays and can be operated upon using regular TensorFlow operations. But during
training operations, applications rely on variables to store the state of the model.
For example, if an application consists of a neural network, the network’s weights
and biases will be stored as variables.

Another difference is that variables require a different set of methods than ten-
sors. For example, after you create a Variable, you need to initialize its value by
running a special operation in the session. If your application has many variables,
you can obtain a combined initialization operation by calling tf.global_
variables_initializer.

At a low level, the goal of training is to set the application’s variables to values
that will bring the model in line with observed data. These variables are critically
important, so it’s a good idea to store them to checkpoint files with Savers.
Chapter 5 explains how to create, initialize, and save variables in a TensorFlow
application.

312 PART 4 The Part of Tens

Optimizer
The disparity between an application’s model and the observed data is called loss.
A TensorFlow application reduces loss using an optimizer. In code, you can create
an optimizer by instantiating a subclass of the Optimizer class. Every optimizer
has a minimize method that returns an operation that can be executed in a session.

TensorFlow supports a number of different optimization algorithms, and each is
represented by a different subclass of Optimizer. As an example, the simplest
optimization algorithm, the gradient descent method, is represented by the
GradientDescentOptimizer. But the simplest algorithm is rarely the most
effective, and I recommend optimizing your applications with the AdamOptimizer
or AdagradOptimizer instead.

Estimator
As discussed in Chapter 12, estimators dramatically simplify the process of devel-
oping and deploying machine learning algorithms. When you use an estimator,
you don’t have to worry about sessions and graphs. You simply need to know three
methods of the Estimator class: train, evaluate, and predict.

Another advantage of using estimators is that TensorFlow provides many
subclasses of Estimator. These canned estimators, such as LinearRegressor and
DNNClassifier, make it easy to train and test machine learning. The DNN
LinearCombinedClassifier is particularly helpful because it lets you take
advantage of wide and deep learning.

Dataset
One of the most recent changes to the TensorFlow API is the promotion of the tf.
contrib.data package to tf.data. This package provides the all-important
Dataset class, which TensorFlow recommends for loading and processing data.
This class provides many powerful methods for batching and transforming data,
and in many cases, you can perform these operations in a multithreaded manner.

The Dataset class is also important because it’s the superclass of TextLineDataset
and TFRecordDataset. These two classes make it straightforward to read data from
text files and TFRecord files. Chapter 10 provides a lengthy discussion of these
classes and their usage.

CHAPTER 14 The Ten Most Important Classes 313

Iterator
The Dataset class provides many powerful capabilities, but it doesn’t let you
access its data directly. To extract tensors from a dataset, you need to create an
instance of the Iterator class.

TensorFlow provides four different ways to iterate through a dataset’s content.
The simplest is the one-shot iterator, which can iterate through a dataset only
once. You can reuse initializable and reinitializable iterators, but you’ll need to
run special initialization operations first. Feedable iterators are the most compli-
cated, but you can associate them with multiple datasets and you don’t need to
initialize them before each iteration.

Saver
The goal of training is to determine which variables produce the least possible
loss. Training can take hours or days, so it’s crucial to store the variable’s values
during and after training. TensorFlow makes this possible by providing the Saver
class.

Using this class is easy. After you create a Saver instance, you can call save to
store the model’s state in numbered checkpoint files. You can load the model’s
variables from the checkpoint files by calling the restore method.

CHAPTER 15 Ten Recommendations for Training Neural Networks 315

Chapter 15
Ten Recommendations
for Training Neural
Networks

In most software development efforts, an application will always do its job if you
code it correctly. But when you work with neural networks, this isn’t the case.
You can write flawless code and still end up with lousy results. No matter what

the academics say, neural network development is not an exact science — there’s
still a lot of art involved.

In this chapter, I present ten recommendations that can help you improve the
accuracy and performance of your neural networks. These general rules are based
on my experience and what I’ve learned from other developers and researchers.
But keep in mind that neural networks are never completely reliable: Even a per-
fectly coded neural network can fail from time to time.

Select a Representative Dataset
This recommendation is the simplest because it doesn’t involve any math or soft-
ware development. When it comes to training samples, more is better, but size

IN THIS CHAPTER

 » Preprocessing data to ensure suitable
analysis

 » Selecting the weights and layers of a
neural network

 » Choosing an activation function to
produce acceptable output

316 PART 4 The Part of Tens

isn’t the only priority. You need to make sure that your training dataset resembles
the real world. Also, if your application classifies samples into categories, you
need to make sure that you have a large number of samples for each category.

When it comes to image classification, you never know what bizarre features the
neural network will focus on. For this reason, many developers add low levels of
random noise to their input samples. This noise shouldn’t obfuscate the image,
but should force the neural network to pay attention to relevant characteristics.

Standardize Your Data
When you test a machine learning application or use it for practical prediction,
you should make sure that the test data statistically resembles the training data.
That is, the test/prediction data should have the same mean and standard devia-
tion as the training data.

As discussed in Chapter 7, the process of setting the mean and standard deviation
of a dataset is called standardization. Many applications standardize their data by
setting the mean to 0 and setting the standard deviation to 1. In a TensorFlow
application, you can accomplish this by calling tf.nn.moments and tf.nn.batch_
normalization.

Use Proper Weight Initialization
Researchers have devised a number of mathematical procedures for initializing
the weights of a neural network. One of the most popular methods is called the
Glorot method or Xavier method. You can use this method in your applications by
calling tf.contrib.layers.xavier_initializer.

Start with a Small Number of Layers
For complex problems, you probably won’t know how many hidden layers to cre-
ate. Some developers assume that larger is better, and construct neural networks
with many (more than 10) hidden layers. But this increases the likelihood of over-
fitting, in which the neural network becomes focused on your specific training
data and fails to analyze general data.

CHAPTER 15 Ten Recommendations for Training Neural Networks 317

To avoid overfitting, it’s a good idea to start small. If the accuracy is unacceptable,
increase the network’s depth until the accuracy reaches a suitable value. In addi-
tion to reducing the likelihood of overfitting, the start-small method guarantees
faster execution than the start-large method.

Add Dropout Layers
In addition to dense layers, I recommend that you add dropout layers to your neu-
ral networks. A dropout layer sets a percentage of its inputs to 0 before passing the
signals as output. This reduces the likelihood of overfitting by reducing the code-
pendency of the inputs entering the dropout layer.

In TensorFlow, you can create a dropout layer by calling tf.nn.dropout. This
layer accepts a tensor whose values identify the probability that the corresponding
input should be discarded.

Train with Small, Random Batches
After you preprocess your data, initialize your weights, and determine the initial
structure of your neural network, you’re ready to start training. Rather than train
with the entire dataset at once, you should split your data into batches. The neural
network will update its gradients and weights with each batch processed.

Reducing the batch size increases the training time, but it also decreases the likeli-
hood that the optimizer will settle into a local minimum instead of finding the global
minimum. It also reduces the dependence of the analysis on the order of the samples.
You can reduce this dependence further by shuffling batches as training proceeds.

Normalize Batch Data
Even if you standardize the samples entering your neural network, the mean and
variance of your data will change as it moves from one hidden layer to the next.
For this reason, developers normalize the data as it leaves each layer.

This normalization involves setting the mean to zero and the standard deviation
to one. But the process is slightly more complicated because you need to approx-
imate the mean and variance of the entire batch. Rather than do the math your-
self, I recommend calling tf.contrib.layers.batch_norm.

318 PART 4 The Part of Tens

Try Different Optimization Algorithms
Your choice of optimizer will play a critical role in determining the accuracy and
performance of your application. While writing this book, I searched many online
forums for the answer to the question “Which optimization method is best?” But
despite decades of analysis, researchers haven’t reached a consensus.

Personally, I like to start with the Adam and Adagrad optimizers, but if you’re not
getting the performance and accuracy you want, it’s a good idea to try other
methods. In a TensorFlow application, you set the optimization method by creat-
ing an instance of an optimizer class, such as tf.train.AdamOptimizer, calling
its minimize method, and running the returned operation in a session.

Set the Right Learning Rate
An optimizer’s learning rate determines how an optimizer updates its weights
with each training step. If you set the learning rate too high, the optimizer will
make dramatic changes to the weights, and it may never converge to a solution. If
you set the learning rate too low, the optimizer will proceed slowly, and it may
converge to a local minimum instead of a global minimum.

Typical learning rates vary from 0.0001 to 0.5, but the best learning rate varies
from application to application. I recommend starting with a high value and
repeatedly reducing the learning rate until you’re satisfied with the application’s
accuracy and performance.

Check Weights and Gradients
Machine learning applications frequently fail because the weights drop to zero
(the vanishing gradient problem) or grow very large (the exploding gradient
problem). In both cases, you may need to adjust the number of layers in your net-
work and/or the activation function of each layer.

Thankfully, TensorFlow lets you save a layer’s weights and visualize the weights
with TensorBoard. Chapter 4 introduces TensorBoard and explains how to generate
and print summary data for visualization. Chapter 5 explains how to visualize
training results with TensorBoard.

Index 319

Index
A
abs function, 36
accumulation, momentum algorithm, 75–76
activation functions

classifier functions, 126–127
overview, 121, 123–124
rectifier functions, 124–126
saturation, 136–137
training with backpropagation, 129

activation parameter, 157, 185
activation_fn parameter, 138, 144, 145, 147
activity_regularizer parameter, 157
AdagradOptimizer class, 76–77
AdamOptimizer class, 77–78
adaptive gradient algorithm, 76–77
add function, 36
add_event method, 60, 61–62
add_graph method, 60, 62
add_loss method, 185
add_meta_graph method, 61, 62, 85
add_meta_graph_and_variables function, 85, 86
add_n function, 36
add_run_metadata method, 61
add_session_log method, 61
add_summary method, 60, 61, 64, 89–90
add_to_collection method, 47
add_to_collections method, 47
add_update method, 185
add_variable method, 185
adjust_brightness function, 169, 170
adjust_contrast function, 169, 170, 175
adjust_gamma function, 169, 170
adjust_hue function, 169, 170
adjust_saturation function, 169, 170
Advanced Package Tool (APT), 20
after_create_session method, 91
after_run method, 91, 92
allocator_type field, 238
allow_growth field, 237, 238
allow_soft_placement option, 227

AlphaGo program, Google, 1, 129
app group, gcloud, 282
apply_regularization function, 141
arg_scope function, 143, 147
argmax function, 37, 38
argmin function, 37, 38
args field, 301
argument scope, 143
arrays. See tensors
artificial neural networks (ANNs). See neural networks
as_cluster_def method, 270
as_default method, 46–47
as_graph_def method, 49
as_text parameter, 86
assets subdirectory, 84
assets.extra subdirectory, 84
audio data field, 59
audio function, 58
auth group, gcloud, 282
author parameter, 292
author_email parameter, 292
averaging filter, 151–152
avg_pooling2d function, 159
axes parameter, 41, 134
axis parameter, 34, 35
axons, 119

B
backpropagation, 129–131
backpropagation through time (BPTT), 182–183
Bahdanau, Dzmitry, 196
basic math operations, 35–37
BasicLSTMCell class, 194–195, 196
BasicRNNCell class, 185–187
batch method, 209
batch normalization (BN), 134, 136–139, 147, 317
batch_norm function, 137–139, 147
batch_normalization function, 134–135
batch_weights parameter, 138
batches, 79–82, 209, 317

320 TensorFlow For Dummies

batchSize field, 304
--batch-size flag, 298
Bazel tool, Google, 229–230, 232, 233, 234–235
before_run method, 91–92
begin method, 91
begin parameter, 34
BellKor Pragmatic Chaos, 13
Bengio, Yoshua, 126, 196
Bergstra, James, 126
bias, 121, 122–123, 133, 194
bias_initializer parameter, 157, 197
bias_regularizer parameter, 157
biases_initializer parameter, 144, 145
biases_regularizer parameter, 144, 145
bicubic interpolation, 174
big data revolution, 12–13
bilinear interpolation, 173–174
billing, for GCP projects, 279
binary files, 205–208
binary logistic regression

defined, 100
example code, 108–110
logistic function, 106–107
maximum likelihood estimation, 107–108
overview, 105
setting up problem, 105–106

bizarro datasets, 221–224
BN (batch normalization), 134, 136–139, 147, 317
Boston dataset, 223–224, 257
box filter, 151–152
BPTT (backpropagation through time), 182–183
bucketized_column function, 255, 256
buckets, Google Cloud Storage, 283–285, 286–289
BUILD file, 229–230
build_signature_def function, 85
building TensorFlow. See source code, building

TensorFlow from

C
–c flag, 287
cache method, 210, 211
Caffe framework, 14
cast function, 33
cat command, 287, 289
categorical columns, 254–256, 268
_CategoricalColumn class, 254

ceil function, 37, 38
cell_clip parameter, 195
cells, RNN

basic RNNs, 185–187
creating, 183–185
GRU, 196–197
LSTM, 183, 192–196
multilayered, 190–191

cells parameter, 190
census data, analyzing, 264–269
center parameter, 138, 139
central_crop function, 172, 174
chain rule of calculus, 131
Cheat Sheet, explained, 3
checkpoint_and_export parameter, 271
checkpoint_path parameter, 250, 251
CheckpointSaverHook class, 93, 96
chief, in clusters, 243, 246
ChiefSessionCreator subclass, 94
Cho, Kyunghyun, 196
Chollet, François, 15
CIFAR-10 dataset, 160–166
classes, 1, 2, 309–313. See also specific classes
classifier functions, 126–127
classifiers (estimator classes)

combined linear-DNN, 262–263
DNNClassifier class, 260–262
overview, 256–257

classifying images. See convolutional neural networks;
image classification; image filtering

clients, in clusters, 238
close method, 61, 62, 206
Cloud Console, Google, 279, 299
Cloud Storage, Google. See also Google Cloud

Platform
buckets, 283–285
deploying applications to cloud, 295–299
gsutil utility, 286–290
objects and virtual hierarchy, 285–286
overview, 283

cluster field, 269, 270
cluster_def option, 227
clusters
ClusterSpec, creating, 239–240
estimators, running in, 269–270
example code, 244–246
in Google Cloud Platform, 299–305

Index 321

jobs and tasks, specifying, 241–244
MonitoredSessions, 243–244
overview, 238–239
parameter servers, 241, 242
server, creating, 240–241
workers, 241, 242–244, 246

ClusterSpec, 239–240, 270
CNNs. See convolutional neural networks
collections, 47–48, 142, 310
color processing functions, 169–170
combiner parameter, 256
comma-separated value (CSV) files, 222–223, 264–269
comparison operations, 37–38
completedTrialCount field, 303
components group, gcloud, 282
compose command, 287, 289–290
compression_type parameter, 205
compute group, gcloud, 282
computing revolution, 12
concatenate method, 210
Concatenated ReLU (crelu) function, 124, 125
concatenation, with gsutil, 289–290
config argument, 51, 52
--config flag, 297, 298, 299
config group, gcloud, 282
config parameter, 226–228, 240
ConfigProto protocol buffer, 226–228, 236–237, 240
configuration flags, gcloud, 283
configure script, 234–235
constant function, 28, 30
consumedMlUnits field, 303
continuous_eval method, 272, 273
continuous_eval_on_train_data method, 272, 273
continuous_eval_throttle_secs parameter, 271
continuous_train_and_eval method, 272
contrib directory, 21
conv2d function, 156–158, 174–175
conv2d_transpose function, 175
convergence, optimizer, 71, 74, 76
convert_image_dtype function, 167, 168–169
converting images, 166–169
convolution

averaging filter, 151–152
features, 152–153
overview, 149–151
setting parameters, 153–155
with tf.nn.conv2d, 174–175

convolution layers, CNNs, 155, 156–158, 165–166
convolutional neural networks (CNNs)

classifying images, 160–166
convolution layers, 156–158
image filtering, 149–155
overview, 12, 149, 155–156
pooling layers, 158–160

core directory, 21
cost function, 69
cp (copy) command, 287, 288
create_estimator function, 275
crelu (Concatenated ReLU) function, 124, 125
crop_and_resize function, 172, 174
cropping functions, 172–174
cross entropy, 114–115
cross function, 40
cross products, 263–264
cross-correlation. See convolution
crossed_column function, 264
CSV (comma-separated value) files, 222–223,

264–269
CUDA language, 230
custom summaries, 59
CustomHook, 96
cycle_length parameter, 212–213

D
[-D] config command, 287
data types, 29, 168–169, 177–178
data_format parameter, 138, 157, 159, 160, 175
dataFormat field, 304
--data-format flag, 298–299
Dataset class, 112, 221–224. See also tf.data.

Dataset class
datasets. See also iterators

batches, working with, 209
bizarro, 221–224
creating, 202–208
example code, 218–221
multithreading, 201–202, 226
overview, 201–202
parameterized, 215–216
processing, 208–213
representative, selecting, 315–316
simple operations, 209–211
transforming, 211–213

322 TensorFlow For Dummies

datasets parameter, 213
debug function, 55
debug_options field, 228
decay parameter, 138, 139
decode_bmp function, 167
decode_gif function, 167, 168
decode_image function, 167, 168
decode_jpeg function, 167, 168
decode_png function, 167, 168
deep learning

example code, 145–147
implementing, 131–133
improving, 143–147
overview, 12–13, 129
tuned layers, creating, 144–147
wide and deep learning, 263–269

deferred_deletion_bytes field, 238
delay_workers_by_global_step parameter, 271
delayed values, in RNNs, 181
delta value, range, 31
dendrites, 118
dense columns, 268
dense layers. See fully connected layers
_DenseColumn class, 254
dependency packages, installing, 233
derivative, of function, 71–74
description parameter, 292
Desjardins, Guillaume, 126
device function, 236, 241
device_count parameter, 227, 236
device_filters parameter, 227
devices, configuring

assigning operations, 235–237
building TensorFlow from source, 229–235
GPU acceleration, 230
GPU usage, 237–238
overview, 229

diag function, 40
dictionary, feed, 79–80
dilation, in image processing, 154–155
dilation_rate parameter, 157, 158
dim parameter, 113
--distributed flag, 294
distributed TensorFlow applications. See clusters
div function, 36–37
divergence, optimizer, 71

divide function, 36–37
DNNClassifier class, 256, 260–262, 274–275
DNNLinearCombinedClassifier class, 257,

262–263, 264–269
DNNLinearCombinedRegressor class, 257, 262
DNNRegressor class, 257
domains group, gcloud, 282
dot products, convolution, 150–151
download command, 18
dropout, neural networks, 140, 147, 317
dtype parameter, 29, 186, 187, 207, 266
du command, 287
dynamic recurrent neural networks, 191
dynamic_rnn function, 191, 195

E
–e flag, 288
edges, in graphs, 46
Einstein summation convention, 42
einsum function, 41, 42
ELU (Exponential Linear Unit) function, 124, 125–126
embedding_column function, 255, 256
encode_jpeg function, 167, 168
encode_png function, 167, 168
end method, 91
engine parameter, 266
epochs, monitoring, 82
epsilon parameter, 138
erf function, 39
erfc function, 39
error function, 55
errorCount field, 305
estimator parameter, 271
estimators (Estimator class)

census data, analyzing, 264–269
in clusters, running, 269–270
combined linear-DNN classifiers, 262–263
configuring, 252–253
DNNClassifier, 260–262
experiments, 270–275
feature columns, 253–256
input functions, creating, 251–253
linear regression, 257–260
overview, 2, 247–248, 312
regressors and classifiers, 256–257

Index 323

running, 250–251
testing, 250
training, 248–249
wide and deep learning, 263–269

--eval_batch_size argument, 290
eval_delay_secs parameter, 271
eval_hooks parameter, 271
eval_input_fn parameter, 271
eval_metrics parameter, 271
--eval_steps argument, 290
eval_steps parameter, 271, 272
evaluate method, 250, 269, 272
evaluation_master parameter, 252, 253
event file, 57, 60–62
Examples, 205–206, 207, 218
exp function, 39
experiment_fn parameter, 273
experiments

class methods, 272–273
creating, 271–272
example code, 274–275
overview, 270–271
running, 273

expm1 function, 39
Exponential Linear Unit function (ELU or tf.nn.elu),

124, 125–126
exponential operations, 38–39
export_strategies parameter, 271
extend_train_hooks method, 272
eye function, 40

F
Facebook, 14
fast convolution, 150
fatal function, 55
feature columns, 249, 253–256, 268
_FeatureColumn class, 253–254
features, 152–153, 205–206, 207
Features object, 205–206
feed_dict argument, 52, 53, 79–80, 311
feedable iterators, 213, 217–218
feedback, RNN use of, 180
FeedFnHook class, 93
feed-forward networks, 180
feeding data to session, 78–80

fetches argument, 52–53
filename_suffix parameter, 60
filenames parameter, 205
filepath_or_buffer parameter, 266
FileWriter class, 60–62, 64, 89–90
fill function, 28, 30–31
filter method, 211–212, 220
filter parameter, 175
filtering images. See image filtering
filters parameter, 157, 158
FinalOpsHook class, 93
firing, neuron, 119
FixedLenFeature, 207–208
flat_map method, 211–212
flip_left_right function, 170, 171, 175
flip_up_down function, 170, 171
floating-point values, 37
floor function, 37, 38
flush function, 55
flush method, 61, 62
flush_secs parameter, 60
force_gpu_compatible field, 238
forget gate, LSTM cell, 192–193
forget_bias parameter, 194
forward propagation, 130
fraction parameter, 174
frameworks, machine learning, 13–15
from_generator method, 203, 204
from_sparse_tensor_slices method, 203
from_tensor_slices method, 203
from_tensors method, 203
fully connected layers, 128, 144–145, 156
fully_connected function, 144–145, 147
functions, 45. See also graphs; methods;

specific functions
fused parameter, 138

G
Galton, Francis, 9–10
gated recurrent units (GRUs), 183, 196–198
Gaussian filter, 152
gcloud utility

deploying applications to cloud, 296–299
local execution, 294–295
overview, 281–283

324 TensorFlow For Dummies

generator functions, 204
Gers, Felix, 195
get_all_collection_keys method, 47
get_collection function, 47, 142, 147
get_default_graph method, 46
get_next method, 214
get_operation_by_name method, 47–48
get_operations method, 47–48
get_tensor_by_name method, 47–48
get_variable function, 141–142
global minimum of loss, 74–75, 80
global steps, monitoring, 80–82
global_name field, 228
global_step parameter, 80–81, 83, 88, 90
global_variables_initializer function, 68–69, 88
GlobalStepWaiterHook class, 93
glorot_normal function, 136
glorot_uniform function, 136
Google. See also Cloud Storage, Google; TensorFlow

framework
AlphaGo program, 1, 129
Bazel tool, 229–230, 232, 233, 234–235
Cloud Console, 279, 299
deep learning applications, 129
machine learning, 13
ML Engine, 277–278, 280, 290–293
TPUs, 297
wide and deep learning, 263–264

Google Cloud Platform (GCP)
Cloud Storage, 283–290
clusters, configuring, 299–305
executing applications with SDK, 293–299
fees for, 279–280
gcloud utility, 281–283
ML Engine, accessing, 280
overview, 2, 15, 277–278
preparing for deployment, 290–293
projects, working with, 278–280
SDK overview, 280–281
support for, configuring, 234

gpu_memory_fraction parameter, 253
gpu_options field, 227, 237
GPUOptions buffer, 237
gradient, 73, 318
gradient descent algorithm, 71–75
GradientDescentOptimizer class, 71–75, 88
graph parameter, 51, 52, 184

graph_options option, 227
GraphDef, 47, 49–51
graphics processor unit (GPU), 230, 235–238
graphs (Graph class)

accessing data, 47–48
example code, 62–64
GraphDef creation, 49–51
overview, 1, 45–47, 310
signatures, 85
in Theano, 14

grayscale_to_rgb function, 167
groups, gcloud, 281–282
gRPC protocol, 240, 242
GRUCell class, 197–198
GRUs (gated recurrent units), 183, 196–198
gsutil utility, 281, 286–290
GZIP compression, 220

H
_HashedCategoricalColumn class, 255
he_normal function, 136
he_uniform function, 136
header parameter, 266
hello_tensorflow.py module, 23–24
hidden layers, neural networks, 128, 129
hidden_units parameter, 260, 262
histo data field, 59
histogram function, 57, 58
histograms, viewing data in, 64
Hochreiter, Sepp, 192
Homebrew, 232, 233
hooks parameter, 94, 249
--host HOST flag, 57
hparams parameter, 273
hsv_to_rgb function, 167
hyperbolic tangent (tanh), 126, 127
HyperparameterMetrics, 304
HyperparameterOutputs, 303–304
hyperparameters field, 301, 302
HyperparameterSpecs, 302

I
icons, explained, 2–3
_IdentityCategoricalColumn class, 254
if statements, 241

Index 325

image classification. See also convolutional neural
networks; image filtering

CIFAR-10 dataset, 160–166
with deep learning, 131–133
with DNN classifier, 260–262
with experiments, 274–275

image conversion functions, 166–169
image convolution. See convolution
image field, Summary.Value, 59
image filtering

averaging filter, 151–152
convolution overview, 150–151
convolution parameters, 153–155
features, 152–153
overview, 149

image function, 57, 58, 178
image noise, 151–152
image processing

color processing, 169–170
converting images, 166–169
convolution, 175–176
example code, 175–178
overview, 166
resizing and cropping, 172–174
rotating and mirroring, 170–171

image recognition. See convolutional neural networks;
image filtering

images function, 112
import_meta_graph function, 83–84, 89
index argument, 210–211
indicator_column function, 255, 256, 268
info function, 55
initial estimate, 67
initial_state parameter, 186
initializable iterators, 213, 215–216
initialization

variable, 68–69
weight, 134, 135–136

initializer parameter, 142
input functions, for estimators, 251–253
input gate, LSTM cell, 192–193
input layer, neural networks, 128
input parameter, 175
input standardization, neural networks, 134–135
input_fn parameter, 248–249, 250, 251
inputPaths field, 304
--input-paths flag, 298

inputs parameter
batch_norm, 138
dynamic_rnn, 191
fully_connected, 144, 145
max_pooling2d, 159
static_rnn function, 186, 187
tf.layers.conv2d, 157

install command, 18, 19
install_requires parameter, 292, 293
installing TensorFlow, 17–21. See also source code,

building TensorFlow from
integer values, 36–37
inter_op_parallelism_threads option,

226–227, 227
inter_op_thread_pool field, 228
interactive sessions, 53–54
InteractiveSession class, 53
interleave method, 211, 212–213
interpolation, 172–174
Ioffe, Sergey, 136–137
Iris dataset, 223–224, 257
is_training parameter, 138, 139
isHyperparameterTuningJob field, 303
Iterator.from_structure, 216
iterators (Iterator class)

example code, 218–221
feedable, 213, 217–218
initializable, 213, 215–216
one-shot, 213–215, 221
overview, 213, 313
reinitializable, 213, 216–217, 221

J
Java Development Kit (JDK) 8.x, 229–230, 232
job_name parameter, 240
--job-dir argument, 290, 291, 294, 295,

296, 297
jobDir field, 301
jobs, in clusters, 239, 241–244, 269, 270
jobs, ML Engine/GCS

executing on cluster, 299–305
executing with Cloud SDK,

293–299
overview, 283

jobs subgroup, ml-engine, 283
--json-instances flag, 295

326 TensorFlow For Dummies

K
keep_checkpoint_every_n_hours parameter, 253
keep_checkpoint_max parameter, 253
keep_dims parameter, 134
keep_prob parameter, 140
Keras framework, 15
kernel_initializer parameter, 157, 197
kernel_regularizer parameter, 157
kernel_size parameter, 157, 158
kernels. See filtering images
key parameter, 142
keys, 48, 254, 310

L
–l flag, 287, 289
–L flag, 288, 289
l1_regularizer function, 140–141
l2_regularizer function, 140–141
label_dimension parameter, 258
label_vocabulary parameter, 260, 262
labels, CIFAR-10 images, 161
labels argument, 115
labels function, 112
lambda definition, 211–212
Lamblin, Pascal, 126
latest_filename parameter, 83
layers, neural network

batch normalization, 137
number of, 316–317
overview, 127–129
tuned, creating, 144–147

learn_runner.run function, 273, 275
learning rate, 73, 74, 75, 77, 318
lecun_uniform function, 136
LeCunn, Yann, 12
license parameter, 292
life-cycle methods, 91–92
likelihood, 107–108, 114
linear classifiers, 262–263, 264
linear interpolation, 173
linear regression, 10, 100–102, 257–260
LinearClassifier class, 256
LinearRegressor class, 256, 258–260
linspace function, 28, 31

Linux, TensorFlow on, 20, 233
list command, 18
list_files method, 210, 211
list_local_devices function, 235–236
load function, 86
load_boston function, 222
load_csv_with_header function, 222–223, 251
load_csv_without_header function, 222–223
load_iris function, 222, 223
local execution, with Cloud SDK, 294–295
local minimum of loss, 74–75, 80
local_variables_initializer function, 68
location codes, Cloud Storage, 284–285
log function, 39, 55
log likelihood method, 108
log_device_placement parameter, 237, 253
log_every_n function, 55, 56
log_first_n function, 55, 56
log_if function, 55, 56
log_step_count_steps parameter, 253
logarithmic operations, 38–39
--logdir DIR flag, 57
logdir parameter, 60
logging, 54–56
LoggingTensorHook class, 93
logistic (sigmoid) function, 106–107, 124, 126
logistic regression

binary, 100, 105–110
multinomial, 100, 110–116
overview, 106

logits argument, 115
logp1 function, 39
long short-term memory (LSTM) cells, 183,

192–196
loss

cross entropy, 114–115
defined, 312
determining, 69
example code, 86–88
in gradient descent algorithm, 73
L1/L2 regularization, 140–141
maximum likelihood estimation, 107–108
mean-squared error, 100–101, 103
neural networks, 129–130
optimization, 70–78

Index 327

losses property, 184
ls command, 287, 289
LSTMCell class, 195
LSTMStateTuple class, 194

M
Mac OS, TensorFlow on, 19, 232–233
machine learning. See also specific aspects of machine

learning; training
big data and deep learning, 12–13
computing revolution, 12
development of, 8–13
frameworks, 13–15
neural networks, 10–11
overview, 1, 7–8
statistical regression, 9–10
theory of, 2

Machine Learning (ML) Engine, Google, 277–278, 280,
290–293. See also Google Cloud Platform

map method, 207–208, 211–212, 226
Mark 1 Perceptron computer, 10, 11
master parameter, 243, 252, 253
masterType field, 300–301
mathematical modeling, 66–67. See also neural networks
mathematical operations. See operations
matmul function, 40, 41, 235
matrices, 27–28, 39–42, 150–151
matrix_solve function, 40
max_pooling2d function, 159–160
max_queue parameter, 60
max_steps parameter, 249
maximum function, 37, 38
maximum likelihood estimation, 107–108
maxWorkerCount field, 304
--max-worker-count flag, 298
mb command, 286–288
McCulloch, Warren, 10
mean, 134, 137
mean-squared error (MSE), 69, 100–101, 103
merge function, 58
merge_all function, 58, 59
MetaGraphDef protocol buffer, 84, 86
metagraphs, 85–86
method_name parameter, 85
methods. See functions; specific methods

--min_eval_frequency argument, 290
min_eval_frequency parameter, 271
MinGW packages, 231
Minimal System 2 (MSYS2), 231–232
minimize method, 70, 81, 88, 101
minimum function, 37, 38
Minsky, Marvin, 10–11
mirroring functions, 170–171
ML (Machine Learning) Engine, Google, 277–278, 280,

290–293. See also Google Cloud Platform
ml group, gcloud, 282
ml-engine group, gcloud, 282, 283, 294–296, 298, 299
ml-engine jobs submit training command, 291
MLPs (multilayer perceptrons), 128. See also neural

networks
MNIST database

deep learning, 131–133
deep learning with tuning, 145–147
DNN classifier, 260–262
experiments, 274–275
multinomial logistic regression, 110–113, 115–116

mod function, 36
--model flag, 298
model_dir parameter, 252, 253, 258
--model-dir flag, 295, 298
modelName field, 304, 305
Modified National Institute of Science and Technology.

See MNIST database
--module-name flag, 283, 291, 294–295, 296, 297
moment vectors, Adam algorithm, 77–78
moments function, 134, 135
momentum algorithm, 75–76
MomentumOptimizer class, 75–76
MonitoredSessions, 93–94, 96, 243–244
MonitoredTrainingSession function, 243–244, 246
MSE (mean-squared error), 69, 100–101, 103
MSYS2 (Minimal System 2), 231–232
multilayer perceptrons (MLPs), 128. See also neural

networks
multilayered cells, RNN, 190–191
multinomial logistic regression

cross entropy, 114–115
example code, 115–116
MNIST database, 110–113
overview, 100, 110
softmax function, 113–114

328 TensorFlow For Dummies

multiple graphs in multiple sessions, 62–64
multiply function, 35, 36
MultiRNNCell class, 190–191
multithreading, 201–202, 226–228. See also datasets
mv (move) command, 287, 288

N
n_classes parameter, 260, 262
name parameter

for functions creating tensors, 29
get_variable, 142
image, 178
max_pooling2d, 159
setup, 292
tf.layers.conv2d, 157
variable_scope, 142

name_scope function, 143
names parameter, 266
NanTensorHook class, 93
nearest-neighbor interpolation, 172
negative function, 36
Nesterov Accelerated Gradient (NAG) descent

algorithm, 76
Netflix, 13
neural networks. See also convolutional

neural networks; recurrent neural networks
activation functions, 123–127
batch normalization, 136–139, 317
bias, 122–123
deep learning, implementing, 131–133
deep learning, improving, 143–147
deep learning, overview, 129
dropout layers, 317
input standardization, 134–135
layers, 127–129, 316–317
loss, determining, 69
mathematical modeling, 67
neurons, 118–119
optimization, 318
overview, 2, 10–11, 117–118
perceptrons, 119–120
regularization, 139–141
representative dataset for, 315–316
standardization, 134–135, 316
versus statistical regression, 118
training, tips for, 315–318

training with backpropagation, 129–131
tuning, 133–141
variable scope, 141–143
weight initialization, 135–136, 316
weights, overview of, 121–122

neurons, 118–119
next method, 204
next_batch method, 112, 113
node element, GraphDef, 49, 50
nodeHours field, 305
nodes. See also activation functions

graphs, 46
neural networks, 121–122, 123, 139–141
recurrent neural networks, 181–182

noise, image, 151–152
norm function, 40
normalization, batch, 134, 136–139, 317
normalizer_fn parameter, 144, 145
normalizer_params parameter, 144, 145
num parameter, 35
num_cores parameter, 252, 253
num_epochs parameter, 252
num_examples function, 112
num_outputs parameter, 144, 145
num_parallel_calls argument, 226
num_proj parameter, 195
num_threads field, 228
num_units parameter, 185
numeric columns, 254
NumPy, 165
numpy_input_fn function, 251–252

O
objects, Google Cloud Storage, 283, 285–286
Office of Naval Research, 10
offset parameter, 135
one-hot vectors, 113
ones function, 28, 30
one-shot iterators, 213–215, 221
OpenCL, 230
operation_timeout_in_ms option, 227
operations (Operation class)

assigning to devices, 235–237
basic math, 35–37
exponents and logarithms, 38–39

Index 329

fetches parameter, assigning, 53
graphs, 46
overview, 35, 310
putting into practice, 42–43
rounding and comparison, 37–38
scope for, 143
summary, 57–59
vector and matrix operations, 39–42

optimization
AdagradOptimizer, 76–77
AdamOptimizer, 77–78
backpropagation, 130–131
defined, 69
example code, 86–88
GradientDescentOptimizer, 71–75
learning rate, 318
linear regression, 101
MomentumOptimizer, 75–76
Optimizer, 70–71
overview, 70, 312
polynomial regression, 103
tips for, 318

optimization flags, 234–235
Optimizer class, 70–71, 312. See also optimization;

specific subclasses
options parameter, 52, 92, 228
oscillation, gradient descent algorithm, 75
output gate, LSTM cell, 192–193
output layer, neural networks, 128
output matrices, RNNs, 187
output_partition_graphs field, 228
output_size property, 184
output_types parameter, 204
OutputHook, 246
outputPath field, 304, 305
--output-path flag, 298, 299
outputs_collections parameter, 138, 144
overfitting, neural networks, 129, 139, 140

P
–p flag, 287
--package-path flag, 283, 291, 294–295,

296, 297
packages, TensorFlow, 17, 18–19, 21–22.

See also specific packages
packages parameter, 292

packageUris field, 301
packaging TensorFlow code, 291–293
padded_batch method, 209
padding, convolution, 155
padding parameter, 157, 158, 159, 160, 175
pandas data analysis library, 265–266
pandas_input_fn function, 252, 266
Papert, Seymour, 10–11
parallel_iterations parameter, 191
param_initializers parameter, 138
param_regularizers parameter, 138
parameter servers (PSs), 241, 242
parameterized datasets, 215–216
parameterServerCount field, 301
--parameter-server-count flag, 294
parameterServerType field, 300–301
ParameterSpecs, 302
parseExample function, 207
parseSingleExample function, 207, 208
partial derivatives, 72, 131
peephole connections, LSTMs, 195
PEP (Python Enhancement Proposal) 8 Style Guide, 25
per_process_gpu_memory_fraction field, 237, 238
perceptrons, 10–11, 119–120. See also neural networks
pi, approximating in cluster, 244–246
pickling, CIFAR-10 files, 161
pip/pip3 package manager, 18, 19, 20, 21
Pitts, Walter, 10
placeholders, creating, 79
placement_period option, 227
polling_active_delay_usecs field, 238
polling_inactive_delay_msecs field, 238
polynomial regression, 100, 103–104
pool_size parameter, 159, 160
pooling layers, CNNs, 155, 158–160, 165–166
--port PORT flag, 57
pow function, 39
Pragmatic Chaos, BellKor, 13
predict method, 250–251, 260
predicting text, 188–190, 196, 198
prediction jobs, GCP

executing on cluster, 304–305
fees for, 279
local, 295
overview, 293
remote, 298–299

330 TensorFlow For Dummies

PredictionInput, GCP jobs, 300, 304–305
PredictionOutput, GCP jobs, 300, 305
prefetch method, 210, 211
probability, binary logistic regression, 105
processing images. See image processing
proj_clip parameter, 195
projection matrix, 195
projects, GCP, 278–280
projects group, gcloud, 282
protocol buffer (protobuf), 49, 51, 57, 59
protocol parameter, 240
PSs (parameter servers), 241, 242
Python

installing, 19–21
machine learning frameworks, 14
overview, 2
package manager, 18–19
running first application, 23–24
TensorFlow Style Guide, 24–25
version needed for Windows, 231–232

Python Enhancement Proposal (PEP) 8 Style Guide, 25
python --version, MSYS2, 231–232
pythonModule field, 301

Q
qr function, 41
QueueRunner class, 202, 226

R
–r flag, 288, 289
Ramón y Cajal, Santiago, 10
random seed, 33
random_contrast function, 169, 170
random_flip_left_right function, 170, 171
random_flip_up_down function, 170, 171
random_hue function, 169, 170
random_normal function, 31, 32
random_saturation function, 169, 170
random_shuffle function, 32, 33
random_uniform function, 32, 33
range function, tf, 28, 31
range method, Dataset, 202–203
rank, tensor, 29, 309
ratio parameter, 222
rb command, 287

read_csv function, 266
read_data_sets function, 111–113
real-time recurrent learning (RTRL), 183
reciprocal function, 36
rectified linear unit function (ReLU or tf.nn.relu),

124, 133
rectifier functions, 124–126
recurrent neural networks (RNNs)

basic, creating, 185–187
cells, creating, 183–185
dynamic, 191
GRUs, 196–198
LSTM cells, 192–196
multilayered cells, 190–191
overview, 179–181
predicting text with, 188–190
recursive functions, 181–182
training, 182–183
unrolling, 181–182

recursive functions, 181–182
reduce_mean function, 101
region field, 301, 304
--region flag, 296, 297, 298
regression. See statistical regression
regressors, 256–260
regularization, neural network, 134, 139–141
regularizers, 141
reinitializable iterators, 213, 216–217, 221
relu function, 124, 133
relu6 function, 124, 125
Remember icon, explained, 3
remote execution, with Cloud SDK, 296–299
renorm parameter, 138
renorm_clipping parameter, 138
renorm_decay parameter, 138
renormalization, 139
reopen method, 61
repeat method, 210
request_stop method, 94
reset gate, GRU cells, 196, 197
reset_export_strategies method, 272
reshape function, 33, 34
resize_area function, 172
resize_bicubic function, 172, 174
resize_bilinear function, 172, 173
resize_image_with_crop_or_pad function, 172, 174
resize_images function, 172

Index 331

resize_nearest_neighbor function, 172
resizing functions, 172–174
restore method, 83–84, 89
restoring variables, 82, 83–84
results field, 92
reuse parameter
BasicRNNCell, 185
batch_norm, 138
fully_connected, 144, 145
get_variable, 142
tf.layers.conv2d, 157

reverse function, 33, 34
rewrite command, 287
rgb_to_grayscale function, 167
rgb_to_hsv function, 167
rint function, 37, 38
rm command, 287
RNNCell class, 183, 184–187
RNNs. See recurrent neural networks
Rosenblatt, Frank, 10
rot90 function, 170, 171
rotating functions, 170–171
round function, 37, 38
rounding operations, 37–38
rpc_options option, 227
rsqrt function, 38, 39
RTRL (real-time recurrent learning), 183
run method

configuring running session, 228
feeding data to session, 78, 79–80
InteractiveSession class, 54
linear regression, 101
loading variables from file, 89
optimization, 70–71
overview, 311
Session class, 52–53, 64

run_config parameter, 273
run_context parameter, 91
run_metadata parameter, 52, 92
run_std_server method, 272
run_values argument, 92
RunConfig constructor, 252–253
RunOptions buffer, 228
runtimeVersion field, 301, 304
--runtime-version flag, 296, 297, 298

S
saturation, neural networks, 136–137
save method, 82–83, 86, 88
save_checkpoint_secs parameter, 252, 253
save_checkpoint_steps parameter, 252, 253
save_path parameter, 83, 84
save_summary_steps parameter, 253
SavedModelBuilder, 85
SavedModels, 84, 85–86, 298–299
Saver class, 82–84, 88, 89, 313
scalar function, 57, 58, 59, 89
scalar_mul function, 36
scalars, 27. See also tensors
SCALARS link, TensorBoard utility, 64
scale parameter, 135, 138, 139
scaleTier field, 300, 301
--scale-tier flag, 297–298, 299
schedule parameter, 273, 275
Schmidhuber, Jürgen, 192, 195
scope, variable, 141–143
scope parameter, 138, 142, 144, 145, 147
scope_name property, 184
SDK, Google. See Software Development Kit, Google
search command, 18
seed, random, 33
seed parameter, 136
sequence_length parameter, 186
sequences, neural networks recognizing. See recurrent

neural networks
sequences, tensors with, 31
serialized graphs. See GraphDef
serialized parameter, 207
Server constructor, 240–241
ServerDef buffer, 240
servers, in clusters, 238–239, 240–241, 242–243
serverType field, 300–301
services group, gcloud, 282
sess parameter, 83, 84, 86
Session function, 51–52, 226–228, 243
session hooks

creating, 91–93
for distributed applications, 243–244, 246
example code, 94–96
MonitoredSession, creating, 93–94
overview, 90–91

332 TensorFlow For Dummies

session_config parameter, 252, 253
session_inter_op_thread_pool option, 227, 228
SessionCreator class, 94
SessionRunArgs class, 92
SessionRunContext class, 91
SessionRunHook class, 91–93
SessionRunValues object, 92
sessions (Session class)

creating, 51–52
in distributed applications, 242–243
example code, 62–64
executing, 52–53
feeding data to, 78–80
interactive, 53–54
MonitoredSession, 93–94
new, configuring, 226–228
overview, 1, 45, 51, 311
running, configuring, 228
running first application, 24
steps, global steps, and epochs, 80–82

sess.run function, 58
set_random_seed function, 32, 33
set_verbosity function, 55
setup function, 292
setup.py file, 291, 292–293
setuptools module, 291–292
SGD (stochastic gradient descent) algorithm, 80
shape parameter, 29, 30, 207
shard method, 210–211
should_stop method, 94
show command, 18
shrink_csv function, 222–223
shuffle method, 210
shuffle parameter, 251
sigmoid (logistic) function, 106–107, 124, 126
sigmoid_cross_entropy_with_logits function, 115
sign function, 36
signature, graph, 85
SIMD (single-instruction, multiple-data) instructions, 229
simple_value data field, 59
six package, 19
size parameter, 34
skip method, 210
skipinitialspace parameter, 266
skiprows parameter, 266

slice function, 33, 34
slope, linear regression, 100
softmax function (softmax), 113–115, 262
softmax_cross_entropy_with_logits function, 115,

116, 133, 147
softsign function, 124, 126–127
Software Development Kit (SDK), Google

executing applications with, 293–299
overview, 280–281

source code, building TensorFlow from
Bazel and Java, 229–230
build process, 234–235
downloading source code, 229
GPU acceleration, 230
on Linux, 233
on Mac OS, 232–233
overview, 18, 229
on Windows, 231–232

sqrt function, 38, 39
square function, 38, 39
squared_difference function, 38
squeeze function, 33, 34
stack function, 33, 34–35
StackOverflow site, 3
stages, in RNNs, 180–181
--staging-bucket flag, 283, 296, 297
standard deviation, 31–33
standardization, neural networks, 134–135, 316
start parameter, 241
--start-port flag, 294
stat command, 287, 289
state, 182, 187, 194
state_is_tuple parameter, 190
state_size property, 184
static_rnn function, 183, 186–187, 190, 191, 195
statistical regression. See also estimators

binary logistic regression, 105–110
linear regression, 100–102
multinomial logistic regression, 110–116
versus neural networks, 118
overview, 2, 9–10, 99–100
polynomial regression, 103–104

StepCounterHook class, 93
steps, monitoring, 80–82
steps parameter, 249

Index 333

stochastic gradient descent (SGD) algorithm, 80
stochasticity, 78, 80
stop_grace_period_secs parameter, 94
StopAtStepHook class, 93
storage. See Cloud Storage, Google
--stream-logs flag, 296, 297
stride, convolution, 154
strides parameter, 157, 158, 159, 160, 175
string_input_producer function, 168
Style Guide, TensorFlow, 24–25
subgradients, 77
subtract function, 36
Summary class, 59
summary data

custom, 59
generating, 57–59
for images, 178
overview, 56
tf.logging functions, 55
for training, 89–90
writing, 59–62

summary operation, 57–59
SummarySaverHook class, 93, 96
svd function, 41
swap_memory parameter, 191
Szegedy, Christian, 136–137

T
tags, metagraph, 85
take method, 210
tanh function, 124, 126, 127
target argument, 51, 52
target_column argument, 252
targets, cluster server, 242–243
task_index parameter, 240
tasks, in clusters, 239–244, 246, 269, 270
TBPTT (truncated backpropagation through time), 183
Technical Stuff icon, explained, 3
tensor data field, 59
tensor parameter, 178
Tensor Processing Units (TPUs), 297
tensorboard command, 57
TensorBoard utility

custom summaries, 59
example code, 64

overview, 56
running, 57
summary data, generating, 57–59
summary data, writing, 59–62
visualizing training process, 89–90

tensordot function, 40, 41
TensorFlow. See also specific elements of framework

building from source, 229–235
installing, 17–21
overview, 1–4, 7, 8, 15
resources related to, 3
running first application, 22–24

tensorflow (tf) package. See also specific functions
basic math operations, 35–37
content of, 21
example application, 42–43
exponents and logarithms, 38–39
operations, overview, 35
overview, 22
rounding and comparison, 37–38
tensors with known values, 28–31
tensors with random values, 31–33
transforming tensors, 33–35
vector and matrix operations, 39–42

tensorflow directory, 21
TensorInfo, 85
tensors (Tensor class). See also convolution;

convolutional neural networks; operations
data types, 29
fetches parameter, assigning, 52
graphs, 46
images as, 156
with known values, 28–31
overview, 1, 27–28, 309–310
placeholders, 79, 80
with random values, 31–33
running first application, 24
scope for, 143
shape, 29, 33–35, 168, 177–178, 309
Torch, 14
transforming, 33–35

test field, 112
test method, 272
test_func function, 275
testing estimators, 250
text, creating datasets from, 205

334 TensorFlow For Dummies

text prediction, 188–190, 196, 198
TextFormat.Merge routine, 51
--text-instances flag, 295
TextLineDataset class, 205
tf package. See specific functions; tensorflow package
TF_CONFIG variable, 269–270
tf_random_seed parameter, 253
tf.contrib package, 21, 22. See also specific functions
tf.contrib.keras.initializers package, 135–136
tf.contrib.learn package, 257. See also experiments
tf.contrib.learn.python.learn.datasets package,

221–224
tf.data.Dataset class. See also iterators; specific

methods
creating datasets, 202–205
multithreading, 226
overview, 312
processing datasets, 208–213

tf.estimator package, 21. See also estimators; specific
methods and classes

tf.feature_column package, 253–256
tf.image package, 21. See also image processing;

specific functions
tf.layers package, 21, 22. See also specific functions
tf.logging package, 21, 22, 54–55. See also specific

functions
tf.metrics package, 21, 22
tf.nn package. See also specific functions

convolution functions, 174–175
cross entropy, 115
dropout, 140
input standardization, 134–135
overview, 21, 22
RNN cell classes, 183, 184–187

tf.nn.rnn_cell package, 194–198
TFRecordDataset constructor, 207
TFRecords, 205–208, 218–220
TFRecordWriter class, 205, 206
tf.saved_model.signature_constants module, 85
tf.saved_model.signature_def_utils package, 85
tf.summary package, 21, 22, 57–59, 89–90. See also

specific functions
tf.train package, 21, 22. See also specific classes;

specific functions; training
Theano framework, 14
ThreadPoolOptionProto buffers, 228
threads, 201–202, 226. See also datasets; multithreading

threshold, 119, 120, 122
time_major parameter, 191
timeout_in_ms field, 228
Tip icon, explained, 2
Torch framework, 14
TPUs (Tensor Processing Units), 297
trace function, 40
trace_level field, 228
train field, Datasets instances, 112
train method, 248–249, 269, 272
train_and_evaluate method, 272, 275
--train_batch_size argument, 290
train_dir parameter, 111
train_func function, 275
train_input_fn parameter, 271
--train_steps argument, 290
train_steps parameter, 271
train_steps_per_iteration parameter, 271, 272
trainable parameter, 68, 138, 139, 144, 157
training

with backpropagation, 129–131
batch normalization during, 137
estimators, 248–249
example code, 86–89
feeding data to session, 78–80
formulating model, 66–67
loss, determining, 69
neural networks, tips for, 315–318
optimization, 70–78
overview, 65–66
recurrent neural networks, 182–183
SavedModel, working with, 84–86
session hooks, 90–96
steps, global steps, and epochs, 80–82
TensorFlow, 22
variables, overview, 67–69
variables, restoring, 82, 83–84
variables, saving, 82–83
visualizing process, 89–90

training jobs, GCP
executing on cluster, 300–304
fees for, 279
local, 294–295
overview, 293
remote, 296–298

Index 335

TrainingInput, GCP jobs, 300–303
TrainingOutput, GCP jobs, 300, 303–304
transpose function, 40
transpose_image function, 170, 171
trials field, 303–304
truncated backpropagation through time (TBPTT), 183
truncated_normal function, 31, 32–33
tuning neural networks

batch normalization, 136–139
deep learning, improving, 143–147
input standardization, 134–135
overview, 133–134
regularization, 139–141
weight initialization, 135–136

U
Ubuntu Linux, TensorFlow build on, 233
underfitting, neural networks, 139
uniform parameter, 136
uninstall command, 18
unit step function, 123
unrolling RNNs, 181–182
unstack function, 33, 35
update gate, GRU cells, 196, 197
update property, 184
updates_collections parameter, 138
uri field, 304, 305
url parameter, 292
use_bias parameter, 157
use_locking parameter, 74, 76
use_nesterov parameter, 76
use_per_session_threads option, 228

V
validation field, 112
value parameter, 30, 59
van Merrienboer, Bart, 196
var_list argument, 70
Variable function, 68, 133, 142
variable_initializer function, 68
variable_scope function, 141, 142
variables (Variable class)

characteristics of, 67
creating, 68

example code, 88–89
initializing, 68–69
loading from file, 89
optimization, 70–78
overview, 67, 311
parameter servers, 242
restoring, 82, 83–84
retrieving from collections, 142
saving, 82–83
scope, managing with, 141–143
storing global step in, 81

variables property, 184
variables subdirectory, 84
variables_collections parameter, 138, 144
variance, 134, 137
variance_epsilon parameter, 135
VarLenFeature function, 208
vectors, 27–28, 39–42, 72–73
verify_shape argument, 30
--version flag, 298
version parameter, 292
versionName field, 304, 305
versions element, GraphDef, 49, 50
visible_device_list field, 238
visualizing data. See TensorBoard utility
_VocabularyListCategoricalColumn class, 255

W
warn function, 55
web set command, 287
weight, in neural networks

checking, 318
determining position in network, 128–129
example code, 133
initializing, 134, 135–136, 316
L1/L2 regularization, 140–141
overview, 121–122
recurrent neural networks, 181
training with backpropagation, 129–131
variable scope, 141–142

weight_column parameter, 258
weights property, 184
weights_initializer parameter, 144, 145
weights_regularizer parameter, 144, 145
what field, Event, 61–62

336 TensorFlow For Dummies

WholeFileReader function, 168
wide and deep learning, 263–269
Windows, TensorFlow on, 20–21, 231–232
workerCount field, 301
--worker-count flag, 294
workers, in clusters, 241, 242–244, 246
WorkerSessionCreator subclass, 94
write method, 206
write_graph function, 51

X
x parameter, 134, 140, 251
xavier_initializer function, 136

Y
y parameter, 251

Z
zero_debias_moving_mean parameter, 138
zero_state method, 185
zeros function, 28, 30
zip method, 211, 213

Notes

Notes

Notes

Notes

About the Author
Matthew Scarpino has been a programmer and engineer for nearly 20 years. In
addition to developing neural networks for image recognition, he’s designed cir-
cuitry to model human cognition for the Defense Advanced Research Projects
Agency (DARPA). He’s currently the lead developer at plutocracy.com, which uses
machine learning to analyze financial trends.

Matthew became a Google Certified Data Engineer in 2018. In his spare time, he
programs robots and writes a blog on TensorFlow, tfblog.com.

Dedication
This book is dedicated to the AI pioneer, Frank Rosenblatt. Though his contempo-
raries dismissed him as a starry-eyed academic, modern accomplishments have
not only vindicated his wildest predictions but surpassed them.

http://tfblog.com

Author’s Acknowledgments
In the late 1990s, I came across C For Dummies in a college bookstore and fell
madly in love. Dan Gookin didn’t just make C programming approachable — he
made it funny. I spent many happy hours reading his silly explanations and work-
ing through his whimsical programming examples.

I’m not half the author Dan Gookin is, but I’d like to thank Executive Editor Katie
Mohr for giving me the chance to write a For Dummies book. As a newcomer, I had
millions of asinine questions, ranging from chapter structure to table fonts to
equation formatting. Katie replied to every question, and her pleasant disposition
never flagged for a moment.

The book’s Project Editor, Kelly Ewing, did an excellent job. She worked tirelessly
to improve the clarity and quality of the text, and the book benefitted greatly from
her careful attention. Also, it took me some time to acclimate myself to the For
Dummies editing criteria, and I’m deeply grateful for Kelly’s patience and
assistance.

The prolific author Guy Hart-Davis reviewed the book from a technical perspec-
tive and provided comments and support. Thanks to his feedback, I reworded
many passages to better explain TensorFlow’s approach to machine learning.
Also, Guy caught many more technical errors than I’d care to admit. Thanks, Guy!

I’d like to extend my deep gratitude to the entire Wiley production team. In par-
ticular, I’d like to thank Lisa Stiers for her work in proofreading the text and
Tamilmani Varadharaj for his work as the production editor.

Last but not least, I’d like to thank Matt Wagner, literary agent extraordinaire.
From my initial proposal to the published book, he has served as agent, editor,
coach, and diplomat. Despite working on many projects at once, he always made
the time to address my questions and concerns.

Publisher’s Acknowledgments

Senior Acquisitions Editor: Amy Fandrei

Project Editor: Kelly Ewing

Copy Editor: Kelly Ewing

Editorial Assistant: Serena Novosel

Sr. Editorial Assistant: Cherie Case

Reviewer: Guy Hart-Davis

Production Editor: Tamilmani Varadharaj

Cover Image: © Funny Drew/Shutterstock

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in this Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting to Know TensorFlow
	Chapter 1 Introducing Machine Learning with TensorFlow
	Understanding Machine Learning
	The Development of Machine Learning
	Statistical regression
	Reverse engineering the brain
	Steady progress
	The computing revolution
	The rise of big data and deep learning

	Machine Learning Frameworks
	Torch
	Theano
	Caffe
	Keras
	TensorFlow

	Chapter 2 Getting Your Feet Wet
	Installing TensorFlow
	Python and pip/pip3
	Installing on Mac OS
	Installing on Linux
	Installing on Windows

	Exploring the TensorFlow Installation
	Running Your First Application
	Exploring the example code
	Launching Hello TensorFlow!

	Setting the Style

	Chapter 3 Creating Tensors and Operations
	Creating Tensors
	Creating Tensors with Known Values
	The constant function
	zeros, ones, and fill
	Creating sequences

	Creating Tensors with Random Values
	Transforming Tensors
	Creating Operations
	Basic math operations
	Rounding and comparison
	Exponents and logarithms
	Vector and matrix operations

	Putting Theory into Practice

	Chapter 4 Executing Graphs in Sessions
	Forming Graphs
	Accessing graph data
	Creating GraphDefs

	Creating and Running Sessions
	Creating sessions
	Executing a session
	Interactive sessions

	Writing Messages to the Log
	Visualizing Data with TensorBoard
	Running TensorBoard
	Generating summary data
	Creating custom summaries
	Writing summary data

	Putting Theory into Practice

	Chapter 5 Training
	Training in TensorFlow
	Formulating the Model
	Looking at Variables
	Creating variables
	Initializing variables

	Determining Loss
	Minimizing Loss with Optimization
	The Optimizer class
	The GradientDescentOptimizer
	The MomentumOptimizer
	The AdagradOptimizer
	The AdamOptimizer

	Feeding Data into a Session
	Creating placeholders
	Defining the feed dictionary
	Stochasticity

	Monitoring Steps, Global Steps, and Epochs
	Saving and Restoring Variables
	Saving variables
	Restoring variables

	Working with SavedModels
	Saving a SavedModel
	Loading a SavedModel

	Putting Theory into Practice
	Visualizing the Training Process
	Session Hooks
	Creating a session hook
	Creating a MonitoredSession
	Putting theory into practice

	Part 2 Implementing Machine Learning
	Chapter 6 Analyzing Data with Statistical Regression
	Analyzing Systems Using Regression
	Linear Regression: Fitting Lines to Data
	Polynomial Regression: Fitting Polynomials to Data
	Binary Logistic Regression: Classifying Data into Two Categories
	Setting up the problem
	Defining models with the logistic function
	Computing loss with maximum likelihood estimation
	Putting theory into practice

	Multinomial Logistic Regression: Classifying Data into Multiple Categories
	The Modified National Institute of Science and Technology (MNIST) Dataset
	Defining the model with the softmax function
	Computing loss with cross entropy
	Putting theory into practice

	Chapter 7 Introducing Neural Networks and Deep Learning
	From Neurons to Perceptrons
	Neurons
	Perceptrons

	Improving the Model
	Weights
	Bias
	Activation functions

	Layers and Deep Learning
	Layers
	Deep learning

	Training with Backpropagation
	Implementing Deep Learning
	Tuning the Neural Network
	Input standardization
	Weight initialization
	Batch normalization
	Regularization

	Managing Variables with Scope
	Variable scope
	Retrieving variables from collections
	Scopes for names and arguments

	Improving the Deep Learning Process
	Creating tuned layers
	Putting theory into practice

	Chapter 8 Classifying Images with Convolutional Neural Networks (CNNs)
	Filtering Images
	Convolution
	Averaging Filter
	Filters and features
	Feature detection analogy
	Setting convolution parameters

	Convolutional Neural Networks (CNNs)
	Creating convolution layers
	Creating pooling layers

	Putting Theory into Practice
	Processing CIFAR images
	Classifying CIFAR images in code

	Performing Image Operations
	Converting images
	Color processing
	Rotating and mirroring
	Resizing and cropping
	Convolution

	Putting Theory into Practice

	Chapter 9 Analyzing Sequential Data with Recurrent Neural Networks (RNNs)
	Recurrent Neural Networks (RNNs)
	RNNs and recursive functions
	Training RNNs

	Creating RNN Cells
	Creating a basic RNN
	Predicting text with RNNs
	Creating multilayered cells
	Creating dynamic RNNs

	Long Short-Term Memory (LSTM) Cells
	Creating LSTMs in code
	Predicting text with LSTMs

	Gated Recurrent Units (GRUs)
	Creating GRUs in code
	Predicting text with GRUs

	Part 3 Simplifying and Accelerating TensorFlow
	Chapter 10 Accessing Data with Datasets and Iterators
	Datasets
	Creating datasets
	Processing datasets

	Iterators
	One-shot iterators
	Initializable iterators
	Reinitializable iterators
	Feedable iterators

	Putting Theory into Practice
	Bizarro Datasets
	Loading data from CSV files
	Loading the Iris and Boston datasets

	Chapter 11 Using Threads, Devices, and Clusters
	Executing with Multiple Threads
	Configuring a new session
	Configuring a running session

	Configuring Devices
	Building TensorFlow from source
	Assigning operations to devices
	Configuring GPU usage

	Executing TensorFlow in a Cluster
	Creating a ClusterSpec
	Creating a server
	Specifying jobs and tasks
	Running a simple cluster

	Chapter 12 Developing Applications with Estimators
	Introducing Estimators
	Training an Estimator
	Testing an Estimator
	Running an Estimator
	Creating Input Functions
	Configuring an Estimator

	Using Feature Columns
	Creating and Using Estimators
	Linear regressors
	DNN classifiers
	Combined linear-DNN classifiers
	Wide and deep learning
	Analyzing census data

	Running Estimators in a Cluster
	Accessing Experiments
	Creating an experiment
	Methods of the experiment class
	Running an experiment
	Putting theory into practice

	Chapter 13 Running Applications on the Google Cloud Platform (GCP)
	Overview
	Working with GCP projects
	Creating a new project
	Billing
	Accessing the machine learning engine

	The Cloud Software Development Kit (SDK)
	The gcloud Utility
	Google Cloud Storage
	Buckets
	Objects and virtual hierarchy
	The gsutil utility

	Preparing for Deployment
	Receiving arguments
	Packaging TensorFlow code

	Executing Applications with the Cloud SDK
	Local execution
	Deploying to the cloud

	Configuring a Cluster in the Cloud
	Setting the training input
	Obtaining the training output
	Setting the prediction input
	Obtaining the prediction output

	Part 4 The Part of Tens
	Chapter 14 The Ten Most Important Classes
	Tensor
	Operation
	Graph
	Session
	Variable
	Optimizer
	Estimator
	Dataset
	Iterator
	Saver

	Chapter 15 Ten Recommendations for Training Neural Networks
	Select a Representative Dataset
	Standardize Your Data
	Use Proper Weight Initialization
	Start with a Small Number of Layers
	Add Dropout Layers
	Train with Small, Random Batches
	Normalize Batch Data
	Try Different Optimization Algorithms
	Set the Right Learning Rate
	Check Weights and Gradients

	Index
	EULA

