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Introduction 

Pri as a general discipline has no limits, from the very huge Gqalaxy- 
wide) to the very small (atoms and smaller}. This book is about the very 

small side of things — that's the specialty of quantum physics, When vou gue 

fize something, you cant go any smaller; you're dealing with discrete units, 

Classical physics is terrific at explaining things like heating cups of coffee or 
accelerating down ramps or cars colliding, as well as a million other things, 
but ithas problems when things get very small. Quantum phvsics usually 
deals with the micro world, such as what happens when you look at individual 
electrons zipping around, For example, electrons can exhibit both particle and 
wavelike properties, much to the consternation of experimenters — and it 
took quantum physics to figure out the full picture, 

Quantum physics also introduced the uncertainty principle, which says you 

can't know a particle's exact position and momentum at the same time. And 
the field explains the way that the energy levels of the electrons bound in 
atoms work, Figuring out those ideas all took quantum physics, as physicists 
probed ever deeper fora way to model reality. Those bopics are all coming 
up in this bok. 

About This Book 
Because uncertainty and probability are 40 important in quantum physics, 
you can't fully appreciate the subject without getting into calculus. This book 
presents the need-to-know concepts, but you don't see much in the way of 
thought experiments that deal with cats or parallel universes. | focus on the 
math and how it describes the quantum world. 

"ve taught physics to many thousands of students at the university level, 
and from that experience, | know most of them share one common tralt: 
Confusion as ta what they did to deserve such torture. 

Swanton Physics For Oumimes largely maps toa a college course, but this book 

is ditterent from standard texts, Instead of writing it from the physicist’s or 

professor's point af view, I've tried to write it from the reader's point af view. 
In other words, I've designed this book to be crammed full af the goad stulfl — 
and only the ¢ood stull, Not only that, but you can discover ways of looking at 
things that professors and teachers use to make figuring out problems simple. 
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Although | encourage you to read this book from start to finish, you can also 
leaf through this book as vou like, reading the topics that you find interest 
ing. Like other for Oumoves books, this one lets you skip around as vou like 
as much as possible, You don't have to read the chapters in order if you 
don't want to. This is your book, and quantum physics is your oyster, 

Conventions Used in This Book 
Some books have a dozen dizzying conventions that you need to know before 
you can even start. Not this ane, Here's all you need to know: 

| put new terms in italics, like Mis, the first time they re discussed; 
follow them with a definition. 

Vectors — those items that have both a magnitude and a direction — 

are diver in bold, like this: B, 

@ Web addresses appear in monoftont. 

Foolish Assumptions 
I don't assume that you have any knowledwe of quantum physics when you 

start to read this book, However, | do make the following assumptions: 

You're taking a college course in quantum physics, or you're interested 
in how math describes motion and energy on the atomic and subatomic 
scale. 

You have some math prowess. In particular, you know same calculus. 
You don't need to be a math pra, but vou should know how to perform 
integration and deal with differential equations. Ideally, you also have 
some experience with Hilbert space. 

You have some physics backvround as well. You've had a year’s worth 

of college-level physics Cor understand all that's in Baysics For OQummies) 

before you tackle this one, 

How This Book Is Organized 
Quantum physics — the study of very small objects — ls actually a very big 
topic. To handle it, quantum physicists break the world down inte different 

parts. Here are the various parts that are coming wp in this book, 



Introduction 

Part I: Small World, Huh? Essential 
Quantum Physics 
Part lis where you start your quantum pliysics journey, and wou feta food 

overview of the topic here, | survey quantum physics ancl tell wou what it’s 

good tor and what kinds of problems it can solve. You also get a good foun- 
tation in the math that you need for the rest of the book, such as state vee- 
tors and quanturn matrix manipulations. Knowing this stulf prepares you to 
handle the other parts. 

Part Il: Bound and Undetermined: 
Handling Particles in Bound States 
Particles can be trapped inside potentials: for instance, electrons can be 
bound in an atom. Quantum physies excels at predicting the enercy levels of 
particles bound in various potentials. and that's what Part ll covers. You see 
how to handle particles bound in square wells and in harmonic oscillators. 

Part il: okay to Angular 
Momentum and Spin 
Quantum physics lets you work with the micro world in terms of the aniu- 
lar momentum of particles, as well as the spin of electrons, Many famous 

experiments — such as the Stern-Gerlach experiment, in which beams of par- 
ticles split in magnetic fields — are understandable only in terms of quantum 
physics, and you get all the details here. 

Part IV: Multiple Dimensions: Going 3D 
with Quantum Physics 
In the first three parts, all the quantum physics problems are one-limensional 

to make life a little easier while you're understanding how to solve those 

problems. ln Part /V, you branch out to working with three-limensional prob- 

lems in beth rectangular and spherical coordinate systems, Taking things 

from ID to 3D gives vou a better picture of what happens in the real world. 

3 
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Part UV: Group Dynamics: Introducing 
Multiple Particles 
In this part, you work with multiple-particle systems, such as atoms ane 

tases, You sec how to handle many clectrons in atoms, particles interacting 

with other particles, and particles that scatter off other particles. 

Dealing with multiple particles is all another step in modeling reality — after 
all, systems with only a single particle don’t take you very far in the real 
world, which is built of mega, mega systems of particles. In Part V, you see 
how quantum physics can handle the situation. 

Part VI: The Part of Tens 
You see the Part of the Tens in all For Dummies books, This part is made 
up of fast-paced lists of ten items each, You pet to see some of the ten best 
online tutorials on quantum physics and a discussion of quantum physics’ 
ten greatest triumplis. 

Icons Used in This Book 
«gt 

ic) 
ay 

You find a handful of icons in this book, and here's what they mean: 

This icon fags particularly good advice, especially when you're solving 

problems. 

This icon marks something ta remember, such as a law of physics or a particu 

larly juicy equation, 

This icon means that what follows is technical, insider stuff, You don't have to 

read it if you don't want to, but if you want to become a quantum physics pro 

(and who doesn't’), take a look. 

This icon helps you avoid mathematical or conceptual slip-ups, 
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Where to Go from Here 
All right, you're all set and ready to ¢o. You can jump in anywhere you 
like. For instance, if you're sure electron spin is going bo be a big topic of 
conversation ata party this weekend, check out Chapter 6. And if your 
upcoming vacation to Geneva, Switzerland, includes a side trip to your new 
favorite particle accelerator — the Large Hadron Collider — you can flip ta 
Chapter 12 and read up on scattering theory, But Wf you want to get the full 
story from the beginning, jump into Chapter 1 first — that’s where the action 
Starts, 
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Part | 
Small World, Huh? 
Essential Quantum 

Physics 

anne A 

“It’s just like the regular stew only it’s got 
some bits of matter tn it we can’t identify,” 



In this part... 
his part is designed to dive vou an introduction to the 

ways Of quantum physics. You see the issues that 

ave rise to quantum physics and the kinds of solutions it 
provides. | also introduce you to the kind of math that 
quantum physics requires, including the notion of state 
vectors, 



Chapter 1 

Discoveries and Essential 
Quantum Physics 

In This Chapter 
Putting forth theories of quantization and discrete units 

Experimenting with waves acting as particles 

Experimentina# with particles acting as waves 

Embracing uncertainty and probability 

A ccording to classical physics, particles are particles and waves are 
waves, and never the twain shall mix. That ts, particles have an energy 

Band a momentum vector py, and that’s the end of it. And waves, such as light 
waves, have an amplitude A and awave vector & (where the magnitude of & = 

2e where # is the wavelength) that points in the direction the wave is tray 

cling. And that's the end of that, too, according to classical pliysics. 

But the reality is different — particles burn out to exhibit wave-like proper- 
ties, and waves exhibit particle-like properties as well, The idea that waves 
(like light) can act as particles (like electrons) and vice versa was the major 
revelation that ushered in quantum physics as such an important part of the 
world of physics, This chapter takes a look at the challenges facing classical 
physics around the turn of the 20th century — and how quantum physics 
fradually came to the rescue. Up to that point, the classical way of looking 
at physics was thought bo explain just about everything. but as those pesky 

experimental physicists have a way of doing, they came up with a bunch of 

experiments that the theoretical physicists couldn't explain. 

That made the theoretical physicists mad, and they got on the job. The prob- 
lem here was the microscopic world — the world that’s too tiny lo see. On 
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the larger scale, classical physics could still explain most of what was going 
on — but when it came to effects that depended an the micra-world, class- 
cal physics began ta break down. Taklng a look at how classical physics col 
lapsed gives you an introduction to quantum physics that shows why people 
needed it, 

Geing Discrete: The Trouble 
with Glack-Body Radiation 

One of the major ideas of quantum physics is, well, gaaalization — measuring 
quantities in discrete, not continuous, units. The idea of quantized energies 
arose with one of the earliest challenges to classical physics: the problem of 
black-body radiation, 

When you heat an object, it begins to ¢low, Even before the glow is visible, 

it’s radiating in the infrared spectrum, The reason it ¢lows is that as you heat 

it, the electrons on the surlace of the material are agitated thermally, and 
electrons being accelerated and decelerated radiate light. 

Physics in the late 19th and early 20th centuries was concerned with the 
spectrum of light being emitted by black bodies. A black body is a piece of 
material that radiates corresponding to its temperature — but it also absorbs 
and reflects light from its surroundings. To make matters easler, physics pos- 
tulated a black body that reflected nothing and absorbed all the light falling 
on it (hence the term jfock body, because the object would appear perfectly 

black as it absorbed all light falling on it), When you heat a black body, it 

would radiate, emitting light. 

Well, it was hard to come up with a physical black body — after all, what 
material absorbs light LOO percent and doesn’t reflect anything? But the 
physicists were clever about this, and they came up with the hollow cavity 
vou see in Figure 1-1, with a bole in it. 

When you shine light on the hole, all that light would go inside, where It 
woe be reflected again and again — until it ¢ot absorbed (a nedligible 

amount of light would escape through the hole). And when you heated the 

hollow cavity, the hole would begin to glow. So there you have it — a pretty 

food approximation of a black barly. 
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You can see the spectrum of 4 black boty (and attempts to model that spec- 
trum) in Figure 1-2, for two different temperatures, T, and T,. The problem 

was that nobody was able to come up with a theoretical explanation for the 

spectrum of light @enerated by the black body. Everything classical physics 

could came up with weot wrong. 

Raleigh-Jaans Law 

Enangy 

Density 

Frequency 
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First attempt: Wien’s Formula 
The first one te try to explain the spectrum of a black body was Willhelm 
Wien, in 1589, Using classical thermodynamics, he came up with this formula: 

u(v,T]= Ave" 

where A and Bare constants you determine from your physical setup, vis the 
frequency of the light, and T is the température of the black body. (The spec- 
trum is given by aly, T), which is the energy density of the emitted light as a 
function of frequency and Lemperature.) 

This equation, Wien’s formula, worked fine for high frequencies, a5 you can 
see In Figure 1-2; however, it failed for low frequencies, 

Second attempt: Raleigh-Jeans Law 
Next up in the attempt to explain the black-body spectrum was the Raleigh- 
Jeans Law, introduced around 1900. This law predicted that the spectrum of 
a black boty was 

ul v,T |= Sey wr 

where & is Boltmann’s constant (approximately 1.3807 « 10" J R-. However, 
the Raleigh-Jeans Law had the apposite problem of Wien's law: Although it 
worked well at low frequencies (see Figure 1-2), it didn’t match the higher- 
frequency data at all — in fact, it diverged at higher frequencies. This was 
called the wihraeoler cotostraphe because the best predictions available 
diverged at high frequencies (corresponding to ultraviolet light). It was. time 
for quantum physics to take ower, 

An intuitive (quantum) leap: 
Max Planck’s spectrum 
The black-body problem was a bough one to solve, and with it came the first begin- 
nings of quantum physics. Max Planck came up with a radical suggestion — 
what if the amount of energy that a light wave can exchange with matter 
wasn't continuous, as postulated by classical physics, but discrete? In other 
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words, Planck postulated that the energy of the light emitted from the walls 
of the black-body cavity came only in integer multiples like this, where is a 
universal constant: 

ER =nttu, where r=, 1,2,,.. 

With this theory, crazy as il sounded in the early 1900s, Planck converted the 
continuous integrals used by Raleigh-Jeans to discrete sums over an infinite 
number of terns. Making that simple change gave Planck the following equa- 
ton for the spectrum of black-body radiation; 

u(v.1}= 2 

This equation pot tt right — it exactly describes the black-hody spectrum, 

both at low and high {and medium, for that matter) frequencies. 

This idea was quite new. What Planck was saying was that the energy of 

the radiating oscillators in the black body couldn't take on just any level of 
energy, as Classical physics allows: it could take on only specific, quantized 
energies. In fact, Planck hypothesized that that was true for any oscillator — 
that iis energy was an integral multiple of fro. 

And so Planck's equation came to be tnown as Planck's quanizetion sofe, and 
‘became Planck's constant f= 6,626 % 10e" Joule-seconds, Saying that the 
energy of all oscillators was quantized was the birth of quantum physics. 

One has to wonder how Planck came up with his theory, because it's not 

an obvious hypothesis. Oscillators can oscillate only at discrete energies? 

Where did that come from? [n any case, the revolution was on — and there 

was no stopping it. 

The First Pieces: Seeing Light 
as Particles 

Light as particles? Isn't light made up of waves? Light, it turns out, exhibits 

properties of both waves and particles. This section shows you some of the 

evidence, 
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Solving the photoelectric effect 
The photoelectric effect was one of many experimental results that made up 
a crisis for classical physics around the turn of the 20th century, It was also 
one of Einstein's first successes, and It provides proof of the quantization of 
light. Here's what happened. 

When you shine light onto metal, as Figure 1-3 shows, you get emitted 
electrons. The ¢lectrons absorb the light you shine, and if they get enough 
energy, they're able to break free of the metal’s surface. According to clas- 
sical physics, light is just a wave, and it can exchange any amount of energy 
with the metal. When vou beam light on a plece of metal, the electrons in the 
metal should absorb the light and slowly get up enough energy to be emit- 
ted from the metal. The idea was that if you were to shine more light onto 
the metal, the electrons should be emitted with a higher kinetle energy, And 
very weak light shouldn't be able to emit electrons at all, except in a matter 
of hours, 

But that's not what happened — electrons were emitted as soon a5 someone 
shone light on the metal. In fact, no matter how weak the intensity of the 
incident light {and researchers tried experiments with such weak light that it 
Should have taken hours to get any electrons emitted), electrons were emit- 
ted. Immediately. 

Light 
Elactrans 

Figure 1-3: 

The photo- 

Blactic 

affect. 

Experiments with the photoelectric effect showed that the kinetic energy, K, of 

the emitted electrons depended only on the frequency — not the intensity — 
of the incident licht, as you can see in Figure 1-4. 
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Frequency 

In Figure bly, is called the firestold frequency, and ifyvou shine light with a fre 
quency below this threshold on the metal, no electrons are emitted, The emitted 
electrons come from the pool of free electrons in the metal (all metals have a pool 
Of free electrons), and you need to supply these electrons with an energy equiva: 
lent te the metal’s work function, W, to emit the electron from the metal's surface, 

The results were hard to explain classically, s0 enter Einstein, This was the 

beginning of his heyday, around 1905. Encouraged by Planck's success (see 
the preceding section}, Einstein postulated that not onky were oscillators 
quantized but so was light — into discrete units called pfheatons. Light, he suc 
ested, acted like particles as well as waves. 

So in this scheme, when light hits a metal surface, photons hit the free elec- 
trons, and an electron completely absorbs each photon, When the energy, 
fru, of the photon is greater than the work function of the metal, the electron 
is emitted. That is, 

ho = We KR 

where Wis the metal's work function and Kis the kinetic energy of the emnit- 
ted electron. Solving for KR gives you the following: 

K = din = W 

You can also write this in terms of the threshold frequency this was: 

K = Ju — 1) 



] 6 Part |: Small World, Huh? Essential Quantum Physics 

Fiqure 1-5: 
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So apparently, light isnt just a wave; vou can also view it as a particle, the 
photon. In other words, light is quantized. 

That was also quite an unexpected plece of work by Einstein, although it was 
based on the earlier work of Planck, Light quaatzed? Light coming in discrete 
enercy packets? What next? 

Scattering light off electrons: 
The Compton effect 
Toa world that still had trouble comprehending light as particles (see 
the preceding section}, Arthur Compton supplied the final blow with the 
Compton effect, His experiment involved scattering photons off electrons, a5 
Figure 1-5 shows, 

ee fs 
“hee 

Photon Electron at rest 

A 

Incident light comes in with a wavelength of & and hits the electron at rest, 
Alter that happens, the light is scattered, as you see in Figure 1-6, 

Electron 
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Classically, here's what should've happened: The electron should've absorbed 
the incident light, oscillated, and emitted it — with the same wavelength but 
with an intensity depending on the intensity of the incident light. But that’s 
not what happened — in fact, the wavelength of the light is actually changed 
by AA, Called the anaweleneth silt, The scattered light has a wavelength of 4 
+ Ad — in other words, lts wavelength has increased, which means the light 

has lost energy. And Aa depends on the scattering angle, 6, mot on the inten- 
sity of the incident light. 

Arthur Compton could explain the results of his experiment only by making 
the assumption that he was actually dealing with two particles — a photon and 
an electron. That is, he treated light as a discrete particle, nota wave. And he 
made the assumption that the photon and the electron collided elastically — 
that is, that both total energy and momentum were conserved, 

Making the assumption that both the light and the electron were particles, 
Compton then derived this formula for the wavelength shift (it's an easy cal- 
culation if you assume that the livht is represented by a photon with enerdy 

E = fro andl that its momentum isp = "0: 

AA mu he (1 = cos B) 
mye 

where Ais Planck's constant, mm, is the mass of an electron, ¢ is the speed al 
light, and @ is the scattering angle of the light. 

You also see this equation in the equivalent form: 

1- og VA 
AA = 4d, sin (8 3 

where A, is the Compton wavelength of an electron, 4, = fijini.c. where 
he=A/20. And experiment confirms this relation — both equations. 

Note that to derive the wavelength shift, Compton had to make the assump- 

tion that here, litht was acting as a particle, not as a wave, That is, the par- 

ticle nature of light was the aspect of the light that was predominant, 

Proof positron? Dirac and pair production 
In 1928, the physicist Paul Dirac posited the existence of a pasitively charged 
ant-electron, the positron, He did this by taking the newly evolving field of 
quantum physics to new territory by combining relativity with quantum 
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mechanics to create relativistic quantum mechanics — and that was the 
theory that predicted, through a plus/minus-sign interchange — the exis- 
tence of the positron, 

It was a bold prediction — an antporticte of the electron? But just four years 
later, physicists actually saw the positron. Todays high-powered elementary 
particle physics has all kinds of synchrotrons and other particle accelerators 
to create all the elementary particles they need, but in the early 20th century, 
this wasn't always so. 

In thease days, physicists relied on cosmic rays — those particles and high- 
powered photons (called gamma mys} that strike the Earth fram outer space — 
as thelr source of particles. They used clowdcfombers, which were filled 
with vapor from dry ice, to see the trails such particles left, They put their 
chambers into magnetic flelds to be able to measure the momentum of the 
particles as they curved in those fields, 

In 1932, a physicist noticed a surprising event, A pair of particles, oppositely 

charged (which could be determined from the way they curved in the mag- 
netic field) appeared from apparently nowhere. No particle trail led te the 
origin of the two particles that appeared. That was porrorddiction — the con- 
version of a high-powered photon inte an electron and positron, which can 
happen when the photon passes near a heavy atomic nucleus. 

So experimentally, physicists had now seen a photon turning into a palr of 
particles, Wow. As if everyone needed more evicence of the particle nature 
of light. Later on, researchers also saw por anniiiiaton: the conversion of an 

electron and positran into pure light, 

Pair production and annihilation turned out to be governed by Einstein's 

newly introduced theory of relativity — in particular, his most famous for- 
mula, E = ne, which gives the pure energy equivalent of mass. At this point, 
there was an abundance of evidence of the particle-like aspects of light. 

A Dual Identity: Looking at 
Particles as Waves 

In 1923, the physicist Louis de Broglie suggested that not only did waves 
exhibit particle-like aspects but the reverse was also true — all material par- 

ticles should display wave-like properties. 
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How does this work? For a photon, momentum p =. = "., where v is the 

photen's frequency and his its wavelength. And the wave vector, k, is equal 
tok = p/h, where fi = h/2e. De Broglie said that the same relation should hold 
for all material particles. That is, 

a=t 

- 
: ii 

De Brovlle presented these apparently surprising suggestions in his Ph.D. 
thesis, Researchers pul these suggestions to the test by sending a beam 
through a dual-slit apparatus to see whether the electron beam would act like 
itwas made up of particles or waves. In Figure 1-7, you can see the setup and 
the results, 
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In Figure 1-7a, you can see a beam of electrons passing through a single slit 
and the resulting pattem on ascreen. In Figure l-7h, the electrons are pass- 
ing through a second slit. Classically, you'd expect the intensities of Figure 
l-fa and |-7b simply to add when both slits are open: 

Isle. 

But that's not what happened, What actually appeared was an interference 

pattem when both slits were open (Fiture l-fc), not justa sum of the twa 

slits’ electra intensities. 
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The result was a validation of de Broglie’s Invention of matter waves, 
Experiment bore out the relation that’ = 4), and de Broglie was a success, 

The idea of matter waves is a big part of what's coming up in the rest of the 
hook, In particular, the existence of matter waves savs that you ade the 
waves amplitude, yi; Q and y(n 2, mot their intensitles, to sum them: 

wOr, = 9G, + 9,0; 8 

You square the amplituche to get the intensity, and the phase difference 
between o(r fi and wi (rf is what actually creates the interference pattem 
that's observed. 

Vou Can’t Know Everything (But Vou 
Can Figure the Odds 

So particles apparently exhibit wave-like properties, and waves exhibit 
particle-like properties. But if you have an electron, which is it — a wave ora 
particle? The truth is that physically, an electron is just an electron, and you 
can't actually say whether it's a wave ora particle. The act of measurement is 
what brings out the wave or particle properties. You see more about this idea 
throughout the book. 

Quantum mechanics lives with an uncertain picture quite happily. That view 
Offended many eminent physicists of the time — notably Albert Einstein, who 

said, famously, “Gol does not play dice.” [n this section, | discuss the idea of 

uncertainty and how quantum physicists work in probabilities instead. 

The Heisenberg uncertainty principle 
The fact that matter exhibits wave-like properties gives rise to mare trouble — 
waves aren't localized in space. And knowing that inspired Wemer Heisenberg, 
in 1827, to come up with his celebrated uncertainty principle. 

You can completely describe objects in classical physies by their momentum 
and position, both of which you can measure exactly. In other words, classi- 

cal physics is completely detemminislic, 

On the atomic level, however, quantum physics paints a different picture. 

Here, the Heisenberg uncertainty principle savs that there's an interent uncer- 

tainty in the relation between position and momentum. In the x direction, for 
example, that looks like this: 
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AxAp, 2 

where 49 is the measurement uncertainty in the particle's x position, op, is 

its measurement uncertainty in its momentum in the x direction and A = A/S. 

That is to say, the more accurately you know the position of a particle, the 
less accurately you know the momentum, and vice versa. This relation holds 
for all three dimensions: 

fl Aydp, 22 

Asap, 25 

And the Helsenhberg uncertainty principle is a direct consequence of the 
wave-like nature of matter, because you can’t completely pin down a wave. 

Quantum physics, unlike classical physics, is completely undeterministic. 
You can never know the precise position and momentum of a particle at any 

one time. You can give onby probabilities for these linked 
INEASUEemets. 

Rolling the dice: Quantum physics 
and probability 
In quantum phrysics, the state of a particle is described by a wave function, 
Witt, ©. The wave function describes the de Brovlle wave of a particle, giving 
its amplitude as a function of position and time. (See the earlier section “A 
Dual identity: Looking at Particles as Waves" for more on de Broglie.) 

Note that the wave function gives a particle's amplitude, not intensity: if you 
want to find the intensity of the wave function, you have to square itt |wir, fl". 
The sitensity of a wave is what's equal to the probability that the particle will 
be at that position at that time. 

That's how quantum physics converts issues of momentum and position into 
probabilities; by using a wave function, whose square tells vou the profabvlity 
densify that a particle will occupy 4 particular position or have a particular 
momentum, In other words, | yin fl‘d'ris the probability that the particle 

will be found in the volume element o°r, located at position rat time f 
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Besides the position-space wave function wir, 9. there's also a momentum- 

space version of the wave function: ofp, 6), 

This book is larsely a study of the wave function — the wave functions of free 
particles, the wave functions of particles trapped inside potentials, of identi- 
cal particles hitting each other, of particles in harmonic oscillation, of light 
scattering from particles, and more. Using this kind of physics, you can pre- 
dict the behavior of all kinds of physical systems. 



Chapter 2 

Entering the Matrix: Welcome 
to State Vectors 

In This Chapter 
Creating stale vectors 

Using Dirac netation for state vectors 

Working with bras and kets 

Understanding matrix mechanics 

Getting lo wave mechanics 

Oa phivsics isn't just about playing around with your particle accel 
ee Cralor while trying not to destroy the universe. Sometimes, you get to 
do things that are a litth more mundane, like turn lights off and on, perform a 
bit of calculus, or play with dice, 

if you're actually doing physics with those dice (beyond hurling them across 
the room), the lab director won't even get mad at you. In quantum physics, 
absolute measurements are replaced by probabilities, so you may use dice ta 

calculate the probabilities that various numbers will come up, You can ther 

assemble those values into a vector (single-column matrix) in Hilbert space 

(a type of infinitely dimensional vector space with some properties that are 
especially valuable in quantum physics). 

This chapter introduces how you deal with probabilities in quantum phys- 
ics, starting by viewing the various possible states a particle can occupy as 
avector — a vector of probability states. From there, | help you familiarize 
voursell with some mathematical notations common in quantum physics, 
Inchiding bras, kets, matrices, and wave functions, Along the way, you also 
fet to work with some important operators, 
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Creating Vour Own Vectors 
in Hilbert Space 

In quantum physics, probabilities take the place of absolute measurements. 
Say you've been experimenting with rolling a pair of dice and are trying to 
ligure the relative probability that the dice will show various values. You 
come up with a list indicating the relative probability of rolling a2, 3, 4, and 
soon, all the way up te 12; 

Sum af the Dice Relative Probability (Number of Ways 
of Rolling a Particular Total) 

2 i 

3 2 

4 3 

o 4 

it o 

7 sf 

a 3 

9 4 

Lh 3 

11 zZ 

12 i 

In other words, you're twice as likely to roll a3 than a 2, your're four times as 
likely to rolla 3 than a 2, and so on, You can assemble these relative prob- 
abilities into a vector (if you're thinking of a “wecter" from physics, think in 

terms of a column of the vector's components, nota magnitude and direction) 

to keep track of them easily: 
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a a = 

Okay, now you're petting closer to the way quantum physics works, You 
have a vector of the probabilithes that the dice will occupy varlous states. 
However, quantum physics doesn't deal directly with probabilities but rather 
with profotiiity amplitudes, which are the square roots of the probabilities. 
To tind the actual probability that a particle will be in a certain state, you add 

wane functions — which are going to be represented by these vectors — andl 

then square them (see Chapter | for info on whey). So take the square root ol 
all these entries to get the probability amplitudes: 

a? 
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That's better, but adding the squares. of all these should add up to a total 
probability of 1; as it ls now, the sum of the squares of these numbers is 36, 
so divide each entry by 36%", or & 

So now you can get the probability of rolling any combination from 2 to 12 by 

reading down the vector — the probability of rolling a2 is ‘i, of rolling a 3 is 

2, and so on, 

Making Life Easier with Dirac Notation 
When you have a state vector that gives the probability amplitude that a pair 

Of dice will be in their various possible states, you basically have a vector in 
dice space — all the possible states that a pair of dice can take, which is an 
L1-dimensional space. (See the preceding section for more on state vectors.) 
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Burt in most quantum physics problems, the vectors can be infinitely large — for 
example, a moving particle can be in an infinite number of states, Handling 
Ante arrays of states ist easy using vector notation, so instead of explicitly 
writing aut the whole vector each time, quantum physics usually uses the 
notation developed by physicist Paul Dirac — the Oise or drehet notation. 

Abbreviating state vectors as kets 
Dirac notation abbreviates the state vector as a Aes, like this: |y >. So in the 
dice example, you can write the state vector as a ket this way: 

y>- 
LY 

aa 
K fg Z Ae 

ges 
ot 

af 
a: 
ral 
a 
6 
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Here, the companents of the state vector are represented by numbers in 
ll dimensional dice space. More commonly, however, each component rep- 
resents a functhon, something like this: 

y= 
1 Fa dhe 

eC £6 
i 

ra ee ae 
L 

pet 

6 
he , fa 

a4" 
ffl 
2 

‘6 

Bf wt 

I F 

fe 2 , _ ake 
fn € 
Yo 
I F 

5 tf gitin oF 

6° 
2," ptm oa 

#6 
git ; 
: Fakey—ue 

fa* 
I F 

a tf git a 

6" 
17 pio 
“6° 

You can use functions as components of a state vector as long as they're 
linearly independent functions (and so can be treated as independent axes 

in Hilbert space). In general, a set of vectors $,, in Hilbert space is linearly 

independent if the only solution to the lollawing equation is that all the coel- 

ficients a =O: 

¥ a8, =Q 

That is, a8 long as you can’t write any one vector as a linear combinathon of 
the others, the vectors are linearly independent and so form a valid basis in 

Hilbert space. 
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Writing the Hermitian conjugate as a bra 
For every ket, there’s a corresponding Sr. (The terms come from draéer, or 
bracket, which should be clearer in the upcoming section titled “Grooving 
with Operators,”) A bra is the Hermitian conjugate of the corresponding ket. 

Suppose you start with this ket: 

yo= 

L 

/6 
oh ya 

‘6 

F ra 4.2 a 

2 
6 

Bet 
it 
wo 
id 
fo 

Bf / 

ri ‘6 

af 
“Gi 

4% A 

6 

anf 
6 

Le 
Y 

The * symbol means the complex conjugate. (A compler conjugate flips the 
sien connecting the real and imaginary parts of a complex number.) So the 
corresponding bra, which you write as <wl, equals |we"’. The bra is this row 

veckor: 

¥ anf gf oe gh gy sh” 9 2/ a af 
<yl= fo “6 “6 “6 /6 ° “6 

Rote that any of the elements of the ket are complex numbers, you have ta 
take thelr complex conjugate when creating the associated bra. For instance, 
ii your complex number in the ket is @ + ty, its complex conjugate in the bra is 
a — Oy. 



30 Part |: Small World, Huh? Essential Quantum Physics 

Multiplying bras and kets: 
A probability of 1 
You can take the product of your ket ancl bra, denoted as «yl ys, like this: 

<Vios 

F fa I A _ | om i Le — kh ¢ 

Mg a WA Bf Gee a BO Bay 

This is just matrix multiplication, and the result is the same as taking the sum 
of the squares of the elements: 

Se ae, Se Te ee ee, ee Oe ae 
ewwee +, : —_ -t t+ + = +=] 

46065 36 36 36 36 46 ob fo 636 OBO 

And that's the way it should be, because the total probability should add up to 

1. Therefore, in General, the product of the bra and ket equals 1: 

<wws=1] 

If this relation trolls, the ket lye is said to be neanalized, 
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Covering all your bases: Bras and kets 
as basis-less state vectors 
The reason ket notation, we, is so popular in quantum physics is that it 
allows you to work with state vectors ina basis-free way, In ather words, 
your're not stuck in the position basis, the momentum hasis, or the energy 
basis. That's helpful, because most of the work in quantum physics takes 
place in abstract calculations, anc you clon't want ta have to drag all the com- 

ponents of state vectors through those calculations (often you can't — there 
nay be infinite possible states in the problem you're clealing with). 

For example. sav that you're representing your states using position vectors 
ina three-dimensional Hilbert space — that is, you have x v, and 2 axes, 
forming a position bosis for vour space, That's fine, but not all your calcula- 
tlons have to be done using that position basis, 

You may want to, for example, represent vour states in a three-dimensional 

momentum space, with three axes in Hilbert space, p.. p,, and p.. Now you'd 
have to change all your position vectors to momentum vectors, adjust- 
ing tach component, and keep track of what happens to every component 
through all your calculations. 

So Dirac’s bra-ket notation comes to the rescue here — you use It to perform 
all the math and then plug in the various components of vour state vectors as 
needed at the end, That is, vou can perform your calewations in purely sym- 
bolic terms, without being tied to a basis, 

And when you need to deal with the componenis ofa ket, such as when you want 
to cet physical answers, you can also convert kets to a different basis by taking the 
kel’s components along the axes of that basis. For example, il you want to convert 
the ket lw> to the position basis, as represented by « f and &, which are position- 
unit vectors along the x, ¥, and 2 anes, you can just find the three components of 
lye akong dy, and & lor the new version of the ket, Ido. Here's how that looks in 
Reneral, where}, are unit vectors in the basis youre switching te; 

Jo>-Ei<v}o,> 

Understanding some relationships 
using kets 
Ret notation makes the math easier than it is in matrix form because you can 
take advantage of afew mathematical relationships. Por example, here's the 
socalled Schwarz inequality for state vectors: 

31 
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|< ela >| cad wy |r eet ly ‘e 

This says that the square of the absolute value of the product of bwo state 

wectors, |<wlde I", is less than or equal to «yl we<d!o>. This turns out the be 
the analog of the vector inequality: 

|A-By = [al |Bl 

So why is the Schwarz inequality so useful? It turns out that you can derive 

the Heisenberg uncertainty principle from it (se¢ Chapter 1 for more on this 

perdrnctigs le}, 

Cther ket relationships can also simplify your calculations. For instance, two 
kets, ly and | p>, are said to be onioganal il 

<wd>=0 

Agi two kets are said toe be onfionomnal tf they meet the following conditions: 

I <wio>e 

i < wily = I 

al <dlp>=l 

With this information in mind, you're now ready to start working with operators. 

Grooving with Operators 
What about all the calculations that you're supposed to be able to perlorm 
with kets? Taking the product of a bra and a ket, <wlo-, is fine as far as it 
foes, but what about extracting some physical quantities you can measure? 
That's where operators come in, 

Hello, operator: How operators work 
Here's the general cefinition of an operator Ain quantum physics: An ooern- 

foris a mathematical rule that, when operating on a ket, | yo, transforms that 

ket into a new ket, |w'> in the same space (which could just be the old ket 
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multiplied by a scalar). So when you have an operator A, it transforms kets 
like this: 

Aly >a |y > 

For that matter, the same operator can alse transform bras: 

ewAs< y| 

Here are several examples of the kinds of operators you'll see: 

Hamiltonian (H): Applying the Hamiltonian operator (which looks dilfer- 
ent for every different plrvsical situation) gives you E, the energy of the 
particle represented by the ket lye: E is a scalar quantity: 

Hw >= Ely 

Unity or identity (1): The unity or identity operator leaves kets 

une hanged: 

lly >= |v > 
Gradient (¥)}: The gradient operator works like this: 

Viya= 2 vais |p> jt oy k 

Linear momentom (FP): The linear momentum operator looks like this in 
quantum mechanics: 

Ply >=—inV Tike 

Laplacian (4): You use the Laplacian operator, which is much like a ser- 

and-order fradient, to create the energy-tinding# Hamiltonian operator: 

A* 

wo=d|yo=2o|y> tpal¥e +S |p> 
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In general, multiplying operators together is not the same independent af 

order, 40 for the operators A and 8, AH = BA, 

Amd an operator Ais said to be fimear if 

Alc, wee +c,|w>)=c,Aly>+e,A|y> 

] expected that: Finding 
expectation Values 
Given that everything in quantum physics is done in terms of probabilities, 

inaking predictions becomes very important. And the biggest such prediction 
is the expectation value. The expectation voloe of an operator is the aver- 
age value that vou would measure if you performed the measurement many 
times. For example, the expectation value of the Hamiltonian operator (see 
the preceding section) is the average energy of the system you're studying. 

aa The expectation value is a weighted average of the probabilities of the sys- 
( tems being in its various possible states. Here's how you find the expectation 

value of an operator A; 

Expectation value =< wi Alyr> 

Note that because you can express <yl as a row operator and ly a5 a 
column vector, yOu can express the operator A as a square matrix, 

For example, suppose you re working with a pair of dice and the probabilities 
mf all the possible sums (see the earlier section “Creating Your Own Vectors 
in Hilbert Space"). In this dice example, the expectation value is a sum ot 
terms, and each term is a walue that can be displayed by the dice, multiplied 
by the probability that that value will appear. 

The bra and ket will handle the probabilities, so it's up to the operator that 
you create for this — call it the Roll opercior, R — to store the dice values 
(2 through 12) for each probability, Therefore, the operator R looks like this: 
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f= 

000 0 00 0 0 00 

OS00 00 000000 

O00 40 000 0 od oo 

Ho 0 M0 000000 

oo00 8000 0000 

o0000 70 0000 

o00000 800 000 

oo 000 00 Ooo 

ooo ooo oO oOM00 

ooo od O dO ho add 

900000000 012 

So to flod the expectation value of BR, you need to calculate <ywl Rl ye. Spelling 
that out in terms of components gives you the following: 

ca ges = 

womiy gh ge gh’ gi’ sh oe gh shy pP oo oboe 8 oo A 
ra. rai Pe | a] v6 aio ll fii Yi ee 3ao oo ood oo Oo f ef 

ond ooo oOo fd 0 OD] G6 

ooo boo eo ooo oieh 
oo0n6oo8 0 0 a},08 
ovddade?Tedet o Olle 

100 boo a oo 8 ee 
pooooe es oo of 78 

ion a ooo o alee 

1iotoee oo tt Oey 

nootcooaoo o 0 a) 6 

e 
ah? 
YG 

Be 

oti 
oe 
= 

Doing the math, vou pet 

<wKiys=7 
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So the expectation value of a roll of the dice is 7. how you can see where the terms 
brr and &et come from — they “bracket” an operator to give you expectation 
values. In fact, the expectation value is such a common thing to find that 
youll often find <¢ | RK lys abbreviated as <R, so 

<K> a7? 

Looking at linear operators 
An operator Ais said to be Maear if it meets the following condition: 

Ate, lye +c.) ye) = cl ge + cA) ye 

For instance, the expression |d-<w! is actually a linear operator. To see that, 
apply Ide<w! toa ket, lye: 

ls>< wlx> 

You ean also write this as 

os yg a|o> 

The expression <wly> is always a complex number (which could be purely 

real}, so this breaks down ta 

clp= 

where cis a complex number. Thus, |o-<w! is indeed a linear operator. 

Going Hermitian with Hermitian 
Operators and Adjoints 

The Hermitian adjoint — also called the adjonat or Hernition conjugate — of 
an operator Ais denoted Al. To find the hermetian adjoint, fallow these 
steps: 

l. Replace complex constants with their complex conjugates. 

The Hermitian adjoint of a complex number is the complex conjugate of 

that number; 

T aime 
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2. Replace kets with their corresponding bras, and replace bras with 
their corresponding kets. 

adjoint of an operator, 40 finding the Hermitlan adjoint of an operator bs 

6: ; 
2 ab, You have to exchange the bras and kets when finding the Hermitian 

) not just the sameas mathematically finding tts complex conjumate, 

3. Replace operators with their Hermitian operators. 

In quantum mechanics, operators that are equal ta their Hermitian 
adjoints are called Aennitiqn opendiors. In other words, an operator is 
Herntitian if 

A'=A 

Henmitian operators appear throughout the book, and they have spe 
cial properties. For instance, the matrix that represents them may be 
diagonalzed — thal is, writhen so that the only nonzero elements appear 
along the matrix’s diagonal. Also, the expectation value of a Hermitian 
operator is guaranteed to be a real number, not complex (see the earlier 
section “| expected that: Finding expectation values”). 

4. Write your final equation. 

<ylA'|o>s <olAly 
Fae 

\ uf Here are some relationships conceming Hermitian adjoints: 

~~ yw (aA)! =a'A! 

we (AT =A 

ye (A+B) = A+B! 

yw (AB) =BiA’ 

Fi [ AB|y>}'=< y/B A! 

Forward and Backward: 
Finding the Commutator 
a = The measure of how different it ls to apply operator A and then B, versus B 
( and then A, is called the operators’ commutator. Here's how you define the 

\ commutator of operators A and EB: 

[A,B] = AB-BA 
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Commuting 
Two operators commute with each other lf thelr commutator is equal to zero. 
That is, it doesn’t make anv difference in what order vou apply them: 

[A, B] = 0 

Note in particular that any operator commutes with itself: 

[A Aj =0 

And it's easy to show that the commutator of A, B is the negative of the com- 
mutator of By A: 

[A. B] = -[B, A] 

It's also true that commutators are linear — that is, Ade, lye «oc, lye) = Cc Aly 
+. A | ge 

[A,B+C+D-..]=[A,B)+[A,C)+[AD]+.. 

And the Hermitian adjoint of a commutator works this way: 

[ap] =[B.a'| 

You can also find the anticommutator, [A, B]: 

iA B) = AB+BA 

Finding anti-Hermitian operators 
Here's another one: What can you say about the Hermitian adjoint of the com- 
mutator of hwo Hermitian operators? Here's the answer. First, write the adjoint: 

[AB] 

The definition of commutators tells wou the following: 

[4B] =(AB-BA}’ 

You know (AB)! = BIA! (see the earller section “Going Hermitian with 
Hermitian Operators and Adjoints” for properties of adjoints). Therefore, 

[AB] =(AB- BA} =B'A'- A'B! 



, 
“s 

i 
i 
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But for Hermitlan operators, Ae Al, so remove the 'symobols: 

[4B] =(AB-BA}' =B'A'—A'B! =BA-AB 

But BA — AB is just -[A. B), s0 you have the following: 

[AB] ={aB] 
Aand B here are Hermitian operators. When you take the Hermitian adjoint of 
an expression and get the same thing back with a negative sign in front of it, 
the expression is called anft-feenivan, 50 the commutator of two Hermitian 
operators is anti-Hermitian. (And by the way, the expectation value of an anti- 
Hermitian operator is guaranteed to be completely imaginary.) 

Starting from Scratch and Ending Up 
with Heisenberg 

if you've read through the last few sections, you're now armed with all this 
new technology: Hermitian operators and commutators. How can your put it 
to work? You can come wp with the Heisenberg uncertainty relation starting 

virtually from scratch, 

Here's a calculation that takes you from afew basic definitions to the 
Heisenberg uncertainty relation. This kind of calculation shows how much 
easier iLis to use the basis-less bra and ket notation than the full matrix ver- 
sion of state vectors, This isn’t the kind of calculation that you'll need to da 
in class, but follow it through — knowing how to use kets, bras, commuta- 
tors, and Hermitian operators ts vital in the coming chapters. 

The uncertainty in a measurement of the Hermitian operator named A is for- 

malhy given bee 

AA=(<A'>-<A>']" 

That is, AA is equal to the square root of the expectation value of AF minus 
the squared expectation value of A, If you've taken any math classes that 
dealt with statistics, this formula may be famillar to you. Similarly, the uncer- 
tainty in a measurement using Hermitian operator B is 

AB=(<Bo>-<B>*}" 
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Now consider the operntors AA ancl AB (not the uncertainties AA and AB any- 

more), and assume that applying AA and AB as operators gives you measure- 

ment values like this: 

AA= Ao A 

ABeBR=-< Bo 

Like anv operator, using AA and AB can result in new kets: 

AA yt > =| 3 > 

AB|w>=|6> 

Here's the kev: The Schwarz inequaility (from the earlier section 
“Understanding some relationships using kets”) gives vou 

<¥ greg|o>2 < yl > ; 

So you can see that the inequality sign, =, which plays a big part in the 
Heisenberg uncertainty relation, tas already crept inte the calculation. 

Because AA and AB are Hermitian, <yly> is equal to <y| AAS) y> and <-lib> is 
equal to <yl) ABS) ys. Because AA! - AA (the definition of a Hermitian operator), 
you can see that 

< x|x>= < piAATAA| ye 

This means that 

os xz poe pIAAAAl yo =< ye*| yr 

That is, <7 lye is equal to <AA*> and <old > is equal to <AB >. So you can 
rewrite the Schwarz inequality like this: 

< AA?» AB! > >< AAABS 

Okay, where has this gotten vou? It's time to be clever, Note that you can 
write AAAH as 

SAAB = 3{ AA, AB|+S{ 4A, AB] 
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Here, (AA, AB) = AMAB + ABAA is the anticommutator of the operators AA and 

AB, Because (AA, AB] = LA, 8] (the constants <A> and <B> subtract out}, you 
tan rewrite this equatiog: 

AAAB = 3{ A.B]+J{AA. AB] 

Here's where the math gets intense, Take a look at what you know so far: 

The commutator of two Hermitian operators, [A, B], is anti-Hermitlan. 

The expectation value of an anti-Hermitian is imaginary. 

 1AA AB) is Hermitian. 

The expectation value of a Hermitian is real. 

All this means that you can view the expectation value of the equation as the 
sum of real (44, AB)) and imaginary ([A, B]) parts, so 

+ 

|e AAAB-|" = Lela, B]=| + Tita, AB} 

And because the second term on the right is positive or zero, you can say 
that the following is true: 

< AAAB=!" ele [A B|>) 

Whew! But now compare this equation to the relatlonship from the earlier 
use of the Schwarz inequality: 

< AA* oe AB? >2|< BAAA >| 

Combining the bwo equations gives vou this: 

< AA? >< AB! >2 Tle A.B] 

This has the look of the Heisenberg uncertainty relation, except for the pesky 
expectation value brackets, « >, and the fact that 4A and AB appear squared 
here, You want to reproduce the Heisenberg uncertainty relation here, which 

books like this: 

AxAp, 2 
Bo | 
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Ohay, so how do wou det the left sicke of the equation from <AA*><AB*> to 
AAAB? Because an earlier equation tells you that AA = A-<-A>, you know the 
follow ina: 

caA* soe AM <A >? —2AcAoe 

Taking the expectation value of the last term in this equation, you met this 
result: 

fAA* Soe A’ ee AS —2aeAss oe A sic AS 

Square the earlier equation AA = (eA*> - <A=*)!" to get the following: 

AAT Se At oe AS 

And comparing that equation to the before it, you conclude that 

AA" >= AAS 

(AAT >< ABt>2tle[a B]>| 
Cool. That result means that’ 4 : becomes 

AA*AB > H <[AB] >|" 

This inequality at last means that 

AAAB = Hel A >| 

Well, well, well. So the product of two uncertainties is greater than or equal 
to 4: the absolute value of the commutator of their respective operators? 
Wow. Is that the Heisenberg uncertainty relation? Well, take a look. [n quan- 
tum mechanics, the momentum operator looks like this: 

Pe —i¥ 

And the operator for the momentum in the x direction is 

d PL =i 
fi fle 

So what's the commutator of the X operator (which just returns the » posi- 

tion of a particle) and P ? [X, P|] = —#i, so from AAAB > ; <[A B >|, YOu get 
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this next equation (remember, Ay ant Ap, here are the uncertainties in x andl 

Ap. not the operators}: 

fe AKA, 25 

Hot dog! That is the Heisenberg uncertainty relation, (Notice that by deriving 
it from scratch, however, you haven't actually constrained the physical world 

through the use of abstract mathematics — you've merely proved, using a 

few basic assumptions, that you can't measore the physical world with per- 
feck accuracy.) 

Eigenvectors and Eigenvalues: 
They’re Naturally Eigentastie! 

As wou know if you've been following along in this chapter, applying an aper- 

ator toa ket can result in anew ket: 

A waa|y> 

To make things easier, you can work with eigenvectors and eigenvalues (eigen 
is German for “innate” or natural’). For example, |y> is an eigenpector of the 

operator A if 

The number @ is a complex constant 

al Alw> = al yr > 

Note what's happening here: Applying A to one of its eigenvectors, | ye, gives 
vou | ye back, multiplied by that eigenvector’s ewennalie, a. 

Although a can be a complex constant, the eigenvalues of Hermitian opera- 
tors are real numbers, and their eigenvectors are orthowonal (that is, <ylg- 
= (1). 

Casting a problem in terms of eigenvectors and eigenvalues can make life a 

lot easier because applying the operator to ibs eigenvectors merely gives you 
the same eigenvector back again, multiplied by its eigenvalue — there's no 
pesky change of state, so you don't have to deal with a different state vector. 



4 4h Part |: Small World, Huh? Essential Quantum Physics 

Take a look at this idea, using the KR operator from rolling the dice, which is 
expressed this wav in matrix form (see the earlier section “| expected that: 
Finding expectation values” for more on this matrix): 

Ks 

20000000000 

H3s00000 0000 

Hod ooond god 

o0O05000 0000 

ooo006000000 

Ho000TOOO000 

oo00008 0000 

Hoo 00009 000 

oo000000 01000 

oo 000 00 0 110 

o000000 00 012 

The K operator works in 1l-dimensional space and is Hermitian, so there'll be 
li orthogonal eigenvectors and LL corresponding eigenvalues. 

Because Ris a diagonal matrix, finding the eigenvectors is easy. You can take 
unit vectors in the eleven different directions as the eigenvectors. Here's 
what the first eigenvector, ¢,, would look like: 

So = 2 = oa =| an 

SS oe Se 
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And here's what the second eigenvector, a wolel look like: 

wt 

0 

1 

0 

( 

0 

oS 

And so on, up to §,,: 

oh = 

0 

Moke that all the eigenvectors are orthogonal. 

And the eigenvalues? They're the numbers you get when you apply the K 
operator Lo an eigenvector. Because the eigenvectors are just unit vectors in 
all 11 dimensions, the eigenvalues are the numbers on the diagonal of the RK 
matrix: 2, 3,4. and so on, up te 12, 
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Understanding how they work 
Pe The elpenvectors of a Hermitian operator define a complete set of orthonormal 
ae a vectors — that ls, a complete basis for the state space, When viewed in this 
wy “elpenhbasis,” which is built of the elgenvectors, the operator In matrix format bs 

tiavonal and the elements along the diagonal of the matrix are the eigenvalues, 

This arrangement is one of the main reasons working with cigenvectors is $0 
useful: your original operator may have looked something like this (Wote: Bear in 
mind that the elements in an operator can alee be functions, not just numbers): 

= 

Oo010600300 00 

O1ooovsa ooo oda 

4000 12002000 

o;Tooago 

0 

8 

So 000 

O0b060008 0 

1030500000 

o000008 0000 

oo000009 000 

oO 00 9 OO oO Oo FF 

OO00 1100001 0 

oo7ToOO0O 0 &o00 0 

By switching to the basis of eigenvectors for the operator, you dlagonalize 
the matrix into something more like what you've seen, which is much easier 

bo work with: 

= 

2000 00,0000 00-00 000000001 

FF O000T 0040 

HoO40000000 

HF 

0 

0 

oO 0 Foo oo oo 

o0O006000000 

ooo oF ooo oO oO 

FoO0000 80000 

oo000009000 

00000 00 100 0 

o00000000 110 

Ht Oo 0 oOo oo 1 
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You can see why the term een is applied to eigenvectors — they form a 
natural basis for the operator. 

two or more of the eigenvalues are the same, that eigenvalue is said to be 
degeneraie, 50 for example, Wf three eigenvalues are equal to 6, then the elgen- 
value 6 is threefold degenerate, 

Here's another cool thing: IE bwo Henmitian operators, A and B, commute, and 
fAdoesn't have any decenerate eigenvalues, then cach eigenvector of A is 
also an eigenvector of B. See the earlier section “Forward and Backward: 
Finding the Conmmutator” for more on commuting.) 

Finding eigenvectors and eigenvalues 
So given an operator in matrix form, how do vou find Its elgenvectors and 
eigenvalues? This is the equation you want to solve: 

Alyr> = alyr> 

And you can rewrite this equation as the following: 

[A —al) yw>=0 

frepresents the identity matrix, with 1s along its diagonal and (4 otherwise: 

f= 

iogoodgdogodo Oo O.. 

1a o 0 OO 0 0 O OO, 

00100000 0 0.. 

food’ dood oO 0 OO, 

ooo 01 0 0 0 0... 

ooo 0 00 0 0... 

The solution to (A= al) lye = 0D exists only if the determinant of the matrix A= 
al is th 

det(A—al)=0 
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Finding eigenvalues 
Any values ol o that satishy the equation det(A =al) = 0 are eigenvalues of the 
original equation. Try to find the eigenvalues and eigenvectors. of the follow- 
ing matrin: 

First, convert the matrix inte the form A= al: 

-l-a -1 

2 —-4d-a 
A-al= 

Next, find the determinant: 

det(A— al) ={-l-ay—t—a)}+ 2 

dettA — al} = a + da +6 

And this can be factored as follows: 

det(A=-ollsa°+50+fefo+ 2Wa+F) 

You know that detji— ol} +0, so the elgenvalues of A are the roots of this 
equation; namely, a, = —2 and a, =—3, 

Finding eigenvectors 

How about finding the eigenvectors? To find the eigenvector corresponding 
toa, (see the preceding section), substitute a, — the first eigenvalue, -2 — 
inte the matrix in the form A= al: 

-l-a -1 
Aqal 

‘s 2 -4d-a 

or ee 
Zz -2 

[A-al | ywo=0 

So you have 

1 —-iiw,| =|0 

Zz —li¥,| [0 
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Because every row of this matrix equation must be true, you know that yr, = 

W.. And that means that, up te an arbitrary constant, the eigenvector corre- 

sponding toa, is the following: 

1 

1 

c 

Drop the arbitrary constant, and just write this as a matrix: 

|! 

1 

How about the eigenvector corresponding to a,? Plugging a,, -, into the 
matrix in Asal form, vou get the following: 

A-al=/2 -l 

z —] 

Then you have 

2 -l 

Zz =i 
¥; 

w,| [0 

a 

So 2y,—-w, = 0, and y, =, + 2. And that means that, up to.an arbitrary con- 
stant, the eigenvector corresponding to a, is 

1 

Z 

c 

Drop the arbitrary constant: 

I 
ru 

So the eigenvalues af this next matrix operator 

As|-l -l 

2 —4 
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are a, @=2 and a, © <3. And the eigenvector corresponding to a, is 

1 

1 

The eigenvector corresponding bo a, is 

| 
2 

Preparing for the Inversion: Simplifying 
with Unitary Operators 

Applying the inverse of an operator undoes the work the operater did: 

ATA AA 2] 

Sometimes, finding the inverse of an operator is helpful, such as when vou 
want to solve equations like Aw = y. Solving for xis easy if vou can fined the 
inverse of Ac w= Ay. 

However, finding the inverse of a large matrix often isn't easy, 50 quantum 

physics calculations are sometimes limited te working with unitary opera- 

tors, U, where the operator's inverse is equal to its adjoint, L' = LU. (To fine 
the adjoint of an operator, A. you find the transpose by interchanging the 
rows and columns, A". Then take the complex conjugate, A™ = Al.) This gives 
you the following equation: 

UU = UU = 

The product of two unitary operators, U and V. is also unitary because 

(UV |(Muy' =(UV (vu) = Uf vvt yur =u! =I 

When you use unitary operators, kets ancl bras transtarm this way: 

7] |" >= U]y> 

U vw >oe<y 
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And you can transform other operators using unitary operators like this: 

A’=UAU' 

Note that the preceding equations also mean the following: 

y|y>=U'|w> 
p< | =< yu 

aw AHL ‘AL 

( Here are some propertles of unitary transfornmathons: 

lian operator is Hermitian, then its unitary transformed version, A’ = 
UAL, is also Hermitian, 

The eivenvalues of A.and its unitary transformed version, A’ = UAL, are 

the same, 

 Commutators that are equal bo complex numbers are unchanged by uni- 
lary transformations: [.4°, B'] = (A, B]. 

Comparing Matrix and Continuous 
Kepresentations 

Werner Heisenberg developed the matrix-oriented view of quantum physics 

that you've been using so far in this chapter. It's sometimes called matrix 

mechanics. The matrix representation is fine for many problems, but some- 

times Vou have to go past il, as you're about to see. 

One of the central problems of quantum mechanics is to calculate the energy 
levels of asystem. The energy operator is called the Hamsivtonian, H, and 
finding the energy levels of a system breaks down to finding the eigenvalues 
of the problem: 

Hires = E) yr 

Here, E is an eigenvalue of the H operater. 
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Here's the same equation in matrix terns: 

det |H,-E H, 4H, H, 20 
H, H,-E H, 4H, 
H, H, H,-E H,, 
H 4. Ay H,, H,,—-E 

The allowable energy levels of the physical system are the elgenvalues F, 

That's tine if you have a discrete basis of elgenvectors — If the number of 
enersy states is finite. But what if the number of energy states is infinite? In 
that case, you can no longer use a discrete basis for your aperators and bras 
and kets — you use a continuous basis. 

Going continuous with calculus 
Representing quantum mechanics ina continuaus basis is an invention of the 
physicist Erwin Schrodinger. In the continuous basis, summations become 
integrals. For example, take the following relation, where | is the identity 
matrix: 

6, ><¢,|=1 
oe] 

It becomes the following: 

Janlo os é, | = | 

And every ket lwo can be expanded in a basis of other kets, |o,>, like this: 

lwo= Jarlo, ><, |v 

Doing the wave 
Take a look at the position operator, R, in a continuocus basis. Applying this 
operator gives you r, the posithon vector: 

Rees ely > 
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In this equation, applying the position aperator to a state vector returns the 
Locations, « that a particle may be found at. You can expand any ket in the 
position basis like this: 

|w >=fa'rlr>cr|y> 

And this becomes 

[wr ja'ry(rjr><r|y> 

Here's a very Important thing to understand: yr} = <rlip> is the cogoe vector 
for the state vector | ye — it's the ket’s representation in the position basis. 
Or in common terms, it’s just a function where the quantity | w(r}l7d?rrepre- 
sents the probability that the particle will be found in the region o'r atin 

The wave function is the foundation of what's called weve mechanics, as 
opposed to matrix mechanics. What's important to realize is that when you 
talk about representing physical systems in wave mechanics, you don't use 
the basis-less bras and kets of matrix mechanics: rather, you usually use the 
wave function — that is. bras and kets in the position basis. 

Therefore, you to fram talking about | ye to <rlys, which equals wir), This 

wave function appears a lot in the coming chapters, and it's just a ket in the 
position basis. So in wave mechanics, Hl ye = Ely = becomes the following: 

<r|H i> = Br) p> 

You can write this as the following: 

<rlH ii 2 Ew(r| 

But what is <rl Hl y=? It's equal to Hyirs. The Hamiltonian operator, 1, is the 
total energy of the system, kinetic (e°/2m) plus potential (VOry) so you get the 
following equathon: 

p r 1 H=7_+¥{r] 
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But the momentum operator is 

Ply >= th lwo te ih lye p+ th lye ke yr te yr ay os P wr 

Therefore, substituting the momentum operator for p gives you this: 

=f? l* a a 2 

H=— ——- + a ee Vir 

| 3 aye | | ) 

Lising the Laplacian operator, you get this equation: 

et eee nee Aly 3 wot aly +e 

You can rewrite this equation as the following (called the Scimodinger equation): 

Hiyy/ | =F aw(r}+¥{(r}y(r) =Ey(r| 

So in the wave mechanics view of quantum physics, you're now working with 
a differential equation instead of multiple matrices of elements. This all came 
from working in the position basis, wr) = <rly= instead of just | yr. 

The quantum physics in the rest of the book is largely about solving this dif- 
ferential equation for a variety of potentials, Vie), That is, your focus is on 
finding the wave function that satisfies the Schrécdinger equation for various 
physical systems, When you solve the Schrédinger equation for wir}, you can 

find the allowed enerdy states fora physical system, as well as the probahbil- 

ity that the system will be in a certain position state, 

Moke that, besides wave functions in the position basis, vou can also give a 
wave function in the momentum basis, yf, or in any number of other bases. 

aa? The Heisenberg technique of matrix mechanics is one way of working with 
quantum physics, and it’s best used for physical systems with welllelined 
energy states, such as harmonic oscillators, The Schrécdinger way of looking at 
things, wave mechanics, wes wave functions, mostly in the position basis, to 

reduce questions in quantum physics toa differential equation, 



Part Il 

Bound and 
Undetermined: 

Handling Particles 
in Bound States 

The sth Wave By Rich Tennant 

Along sith “Antimatter, and “Dark Ma 
ae've recently discovered the existence of 
“Poesn't Matter’ which appears to have no 

effect on the universe whatsoever.” 



In this part... 
his part is where you get the lowdown on ane of quan- 
tum physics’ favorite topics: solving the energy levels 

and wave functions for particles trapped in various bound 
states. For example, you may have a particle trapped ina 

square well, which is much like having a pea in a box. Or 
you may have a particle in harmonic oscillation. Quantum 
physics is expert at handling those kinds of situations. 



Chapter 3 

Getting Stuck in Energy Wells 
In This Chapter 

Understanding potential wells 

Working with infinite square wells 

Determining enerey levels 

Trapping particles with potential barriers 

Handling free particles 

Uf that, Lassie? Stack in an energy well? Go get help! in this chap- 
ter, vou get to see quantum physics at work, solving problems in 

one dimension. You sée particles trapped in potential wells and solve for the 
allowable energy states using quantum physics. Thal goes against the grain 
in classical physics, which doesn't restrict trapped particles to any particular 
eherey spectrum. But as you know, when the world gets microscopic, quan- 
tum physics takes over, 

The equation of the moment is the Schradinger equation (derived in Chapter 2), 
which lets you solve for the wave function, wor}, and the energy levels, E: 

= ay(r}<v(r}o(r)=Ey(r) 

Looking into a Square Well 
Asquare wellis a potential (that is, a potential energy well} that forms a 

Stjuare shape, as you can sec in Figure 3-1. 
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¥ 

im 

ee Cj} 
Figure 3-1; 

A oquare 
x 

well, a 

es 

The potential, or Viiv), goes to infinity atx = 0 and» > o (where x is distance), 
like this: 

 Vivi= © wheres <0 

 Viej= 0, where lex 

i Via) =o, where x > @ 

Using square wells, you can trap particles. If you puta particle into a square 
well with a limited amount of energy, itll be trapped because it can’t over- 
come the infinite potential at either side of the square well, Therefore, the 

particle has to move inside the square well. 

So does the particle just sort of roll around on the bottom of the square well? 
Nok exactly. The particle is in a bound state, and its wave function depends 
on its energy. The wave function isn't complicated: 

v(x)=[2/ | in Ex  n=2,3... 
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So vou have the allowed wave functions for the states n= 1, 2.3, and so on. 
The energy of the allowable bound states are given by the following equation: 

_ At? a 5 Es 1 Aneel 23... 
2m 

The rest of this chapter shows you how to solve problems like this one, 

Trapping Particles in Potential Wells 
Take a look at the potential in Figure 32. Notice the dip, or well in the poten- 
tial, which means that particles can be trapped in it if they don't have too 
much enery, 

The particle's kinetic energy summed with its potential energy is a constant, 
equal te its total energy: 

rs 

PiWeE 
2m 

If its total energy is less than V), the particle will be trapped in the potential 

well, vou see in Figure 3-2; to get out of the well, the particle's kinetic energy 

would have to become negative Lo satishy the equation, which is impossible. 

a 

Figure 3-2: 

A patential 

well, 

_————aaaaaes 
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In this section, you take a look at the various possible states that a par- 
ticle with enerey E can take in the potential given by Figure 3-2. Quantum 
mechantcally speaking, those states are of two kinds — bound and unbound. 
This section looks af them In overview, 

Binding particles in potential wells 
Sound states happen when the particle isn’t free to travel to infinity — it's as 
simple as that. In other words, the particle is confined to the potential well. 

A particle traveling in the potential well you see in Figure 3-2 is bound if 
its energy, E, is less than both V, and ¥,. In that case, the particle moves 
between sc, anda, A particle trapped in such a wellis represented by a wave 
function, and you can solve the Schrédinger equation for the allowed wave 
functlons and the allowed energy states, You need to use two boundary con- 
ditions (the Schrédinger equation is a second-order differential equation) to 
solve the problem completely. 

Bound states are discrete — that is, they form an energy spectrum of discrete 

a enervy levels. The Schrédinger equation gives you those states. In addition, 

N in one-limensional problems, the energy levels of a bound state are not 
I degenerate — that is, oo bvo energy levels are the same in the entire energy 

, spectrum. 

Escaping from potential wells 
Ifa particle's energy, E, is greater than the potential V, in Figure 3-2, the par- 
ticle can escape from the potential well, There are two possible cases: 
Vo sE<WV, and = V,. This section looks at them separately. 

Case 1: Energy between the two potentials (UV, < E < VJ 
IV) <E< V,, the particle in the potential well has enough energy to over- 
come the barrier on the left but not on the right. The particle is thus free to 
move to negative infinity, so its allowed x region is between == and .,. 

Here, the allowed energy values are continuous, not discrete, because the par- 

ticle isn't completely bound, The enerty eigenvalves are not degenerate — 

that is, no hwo energy eigenvalues are the same (see Chapter 2 for more on 

Gi erVaLLes }, 

The Schrodinger equation is a second-order differential equation, so it has 
two linearly independent solutions; however, in this case, only one of those 
solutions is physical and doesn’t diverge, 
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The wave equation In this case turns cut to oscillate for xv < x, and bo decay 
rapiclly for ao o,, 

Case 2: Energy greater than the higher potential (E > V,) 
E> V.. the particle isn’t bound at all and is free to travel from negative infin- 
ity to positive infinity. 

The energy spectrum is continuous and the wave function turns out to be a 
sum Of a function moving to the right and one moving to the left, The energy 

levels of the allowed spectrum are therefore doubly degenerate, 

That's all the overview vou need — time to start solving the Schrodinger 
equation for various different potentials, starting with the easiest of all: infi- 
nite square wells. 

Trapping Particles in Infinite 
Square Potential Wells 

Infinite square wells, in which the walls do te Infinity, are a faworite in physics 

problems, You explore the quantum physics take on these problems in this 
section, 

Finding a wave-function equation 
Take a look at the infinite square well that appears back in Figure 3-1. Here's 
what that square well looks like: 

Vor) = 0, where x = 0 

M Vix) 0, where Osx <a 

a Vix)= ©, where x > @ 

The Schrédinger equation looks like this in three dimensions: 

SE nw (r}+¥(r}u(r)=Ey(r) 

Writing out the Schrédinger equation gives vou the following: 

BE B+ B+ Blo le bo vleryo(r) eee 
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You're interested tn only one dimension — + (distance) — in this chapter, sa 
the Schrodinger equation looks like 

she dy x)+v(x}y(x}=Ey(2) 
Because Vile) = 0 inside the well, the equation becomes 

a = am ac? VA*}~ E(x) 
And in problems of this sort, the equation is usually written as 

a 2 a y[a)+k pla }=0 

where & = ane (2 is the wave number). 

So now you have a second-order differential equation to solve for the wave 
function of a particle trapped in an infinite square well. 

You get two independent solutions because this equation is a second-order 
differential equation; 

wi) = A sin(ex) 

wot) = B costa) 

cM Aand E are constants that are yet to be determined. 

[ ul The general solution of a yl x +k yl x) =0 is the sum of  (} and w, (x): 

Woo) ASINGR + B costar 

Determining the energy levels 
The equation yi) = A sin(kx) + B cos(fx) tells you that you have to use the 
boundary conditions to find the constants A and B (the preceding section 
explains how to derive the equation). What are the boundary conditions? The 
wave function must disappear at the boundaries of an infinite square well, so 

wid) = 0 
wa) -0 
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The fact that wit =0 tells vou right away that B must be zero because 

cost = 1, Ancl the fact that wha) = 0 tells you that wa) = A sint ha) = 0, 
Because sine is zero when its argument is a multiple of x, this means that 

Aa = mt feo lagu. 

Note that although 9 = Obs technically a solution, it yields wf) = 0,0 it's not 
a physical solution — the physical solutions begin with # = 1, 

This equation can also be written as 

And because &* = 2mE/f*, you have the following equation, where nt = 1, 2, 
3, — those are the allowed energy states. These are quantized states, 
corresponding te the quantum numbers 1, 2,3, and so on: 

2mE _ o'r 
a ae 

pam hin 
2ma* 

Note that the first physical state corresponds ton = 1, which gives you this 
next equation: 

_ A*x 
Ima" 

This is the lowest physical state that the particles can occupy. Just for kicks, 

put some numbers into this, assuming that you have an electron, mass 9.11 * 
lie" kilograms, confined to an inkinite square well of width of the order of 
Solr redius (the average radius of an électron’s orbit in a hvdrogen atom), 
about lO-* meters. 

F= f'n” dives you this energy for the ground state: 
2imar* 

(1.05 x 10™)" (3.14) 
-=6.00~10°" Joules 

2(9,11 _ 10} (107 1 
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Fituire 3-3; 
Wave 

functions 

ina square 

well. 

eres 

That's a very small amount, about 4.0 electron volts (eV — the amount of 
enerey ane electron gains falling through 1 volt}. Even so, it’s already on the 
order af the energy of the ground state of an electron in the ground state of 
alvdrogen atom (13.6 eV), 30 you can say youre certalnhy in the right quan 
tum physics ballpark now, 

Normalizing the wave function 
Okay, you have this for the wave equation for a particle in an infinite square 
well: 

wla}=A sn( 

The wave function is a sine wave, going to zero at x - Oand x - @. You can see 
the first two wave functions plotted in Figure 2-3, 
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Normalizing the wave function lets you solve for the unknown constant A. In 
anamalzed function, the probability of finding the particle between x and 
dr, wi !-ds, adds up to J when you integrate over the whole square well, 
veQtox=ea@ 

1= fly (xf 
Substltuting for yvix} gives you the following: 

1=|A| [sin{ = Joe 

Here's what the integral in this equation equals: 

a 

[sin 8 }a=9% 

a iT ‘ 

So from the previous equation, l= lat'{24} Solve for A: 

Therefore, here's the normalized wave equation with the value of A plueeted in: 

v(x)=(2Z)" si 22 | n=1,7,3... 

And that's the normalized wave function for a particle in an infinite square well, 

Adding time dependence 
to Wave functions 
Now how about secing how the wave function fora particle in an infinite 

square well evolves with time? The Schrédinger equation looks like this: 

St awlrj+¥ (rude = Ewlr} 
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You can also write the Schrodinger equation this way, where His the 
Hermitian Hamiltonian operator: 

Hytr) = qe) 

That's actually the fimendependent Schrodinger equation, The fimnedependng 
Schrédinger equation looks like this: 

int wr, t}= Hiy|r, t) 

Combining the preceding three equations gives you the following, which is 
another form of the time-dependent Schrédinger equation: 

: il -h' i 5 4 
ith wlr =F, el rj+Vv(r, thw[r, t} 

And because you're dealing with only one dimension, x, this equation 
becomes 

a tf —h? d ‘ ewe dtl t= Se wl x, t+ Vix, rw x, a) 

This is simpler than it looks, however, because the potential doesn’t change 
with time. In fact, because E is constant, you can rewrite the equation as 

ih 2 w(x, ()=Ew( xt) 

That equation makes life a lot simpler — it's easy to solve the time-clependent 

Schrédinger equation if you're dealing with a constant potential, In this case, 

the solution is 

w(x th}=y(xje ‘ 

Neat. When the potential doesn't vary with time, the solution to the time- 
dependent Schrodinger equation simply becomes yr), the spatial part. multi 
plied bye") the time-dependent part. 
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So when you add in the timedependent part to the time-independent wave 
function, vou get the timedependent wave function, which looks like this: 

wel 2x, t)=(2)’sin( 22} n=1,2,3... 

The energy of the oth quantum state is 

p-oe n=l 23... 
f 

Therefore, the result is 

wel oe, ty (2] * sin empl =n r=], 2,3... 
2rne" 

where exp 2) =e". 

Shifting to symmetric square 
well potentials 
The standard infinite square well looks like this: 

 Viel= =, where x <0 

 Viei=- 0 wherelexa 

Vie) = 0, where x> @ 

But what you want to shift things so thal the square well is symmetric around 
the origin instead? That is, vou move the square well so that it extends from 
> boa" Here's what the new infinite square well looks like in this case; 

Vir) = =, where xo ss 

@ Viej=0, where fox 5%: 

i Viiob= «, where x oy: 

You can translate from this new square well to the old one by adding: tou, 
which means that you can write the wave function for the new square well in 
this equation like the following: 
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w(x)=[2 J sn{ 22x42] n=1,2,3.. 

Doing a litthe trig gives you the following equations: 

veny-[2)om| nels... 

2) on| =] n=2,4,6... 
ga a 

v(x)= 
So as You can see, the result is amix of sines and cosines. The bound states 
are these, in increasing quantum order: 

ve)e(2) (2) 

Aged sa or, 

Note that the cosines are svmmetric around the origin: word = yf). The 
Sines are antisymmetric: —y(oc} = wir. 

Limited Potential: Taking a Look at 
Particles and Potential Steps 

Truly infinite potentials (which | discuss in the previous sections} are hard 

to come by. In this section, you look at some real-world examples, where 
the potential is set to some finite V\. not infinity. For example, take a look at 
the situation in Figure 5-1. There, a particle is traveling toward a potential 
step. Currently, the particle is ina region where ¥V = 0, but itll soon be in the 
region V = V).. 



Chapter 3: Getting Stuck in Energy Wells 

——ESS== 

Figure 3-4: 

A, potential 

step, E> Vi. 

There are two cases to look at here in terms of E, the energy of the particle: 

mM E> V,: Classically, when E> V,. you expect the particle to be able to con- 
tinue on to the region x = 0, 

Mm Ee Vi When £ < V,, you'd expect the particle to bounce back and not be 

able to get to the region a > (at all. 

In this section, you start by taking a look at the case where the particle's 
energy, E, is greater than the potential V,, as shown in Figure 3-4; then you 
take a look at the case where B < ¥). 

Assuming the particle has 
plenty of energy 
Start with the case where the particle's energy, E, is greater than the poten- 
tial V.. From a quantum pliysics point of view, here's what the Schrodinger 
equation would look like: 

For the region x < 0: E(x) ky, [x] =) 

Here, &* = one, 

69 
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£ 

For the region x = 0: at [a }+8,"yr, [x )=0 

2m{E~V,)// 
In this equation, &," = Ao 

In other words, & is golng to vary by region, as you see in Figure 3-5. 

— VV 
Figure 3-5; 

The value of 
Aby regian, 

where 

E=V, 

Treating the first equation as a second-order differential equation, you can 
see that the most general solution is the followin: 

tx) = Ae + Be“, where x <0 

And for the region x > 0). solving the second equation fives you this: 

war) = Cet + Der, where x > 

Moke that e’ represents plane waves traveling in the +9 direction, and ee 
represents plane waves traveling in the =» direction. 
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What this solution means is that waves can hit the potential step from the 
left and be either transmitted or reflected. Given that way of looking at the 
problem, vou may note that the wave can be reflected only going to the right, 
not te the left, so 0 must equal zero. That makes the wave equation become 
the follow ing: 

Where x < 0: y (xr) = Aet + Bee 

Where x > 0: yo(x) = Ce" 

The term Ae’ represents the incident wave, Re“ is the reflected wave, and 
Ces is the transmitted wave. 

Calenlating the probability of reflection or transmission 
You can calculate the probability that the particle will be reflected or trans- 
mitted through the potential step by calculating the reflection and transmnis- 
sion coefficients. If J, is the reflected current density, J, is the incident current 
density, and J, is the transmitted current density, then R, the reflection coel- 
ficient is 

You now have to calculate J,, J, and J, Actually, that’s not so hard — start 
with J, Because the incident part of the wave is y.(r) = Ae“, the incident 
current density is 

dy, |x| 
Lae v(x) ED — ye (i = 

2m 

| 1 
Aun this just equals “lal _J,and J. work in the same way; 

1 fk, \By 

m 

J, = A ef 
m 
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So vou have this for the reflection coefficient: 

ead BL 
1 al 

T. the transmission coellicient, is 

= 

i,_ |e Tact. 

4 ap 

Finding A, 8, and C 

So how do you figure out the constants A, B, and C? You do that as you figure 
out the coefficients with the infinite square well potential — with boundary 
conditions (see the earlier section “Trapping Particles in Infinite Square Well 
Potentials”). However, here, vou can't necessarily say that wir) goes bo zero, 
because the potential is oo longer infinite. Instead, the boundary conditions 
are that wir) and dviayiay are continuous across the potential step's bound- 
ary, In other words, 

ew CO = wf) 

dW, fg) — eee po WHO) 

You know the following: 

Where x <0: y)tx) > Ae’ + Be 

im Where x > 0: y.(a) » Ces 

Therefore, plugging these two equations into yw (0) = w (0) gives you A+ B = Cc. 

And plugging them inte “ts [O)= es (0) gives you 

RA=8,.B = &C 

Solving for B in terms of A gives you this result: 
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Solving for C in terms of A gives you 

Cea A 

You can then calculate A from the normalization condition of the wave 
function: 

l= [lw(}f aly 

But you don't actually need A, because it drops out of the ratios for the 
reflection and transmission coelficients, Rand T. In particular, 

n=l 
Ay 

E ml 
lal 

Therefore, 

i 

pW RJ 

(te, +4, } 

_ ARR, 

(A, +k, } 

That's an interesting result, anc it disagrees with classical physics, which 

says that there should be no particle reflection at all. As you can see, if &, # 

&,, then there will indeed be particle reflection. 

Note that as &, goes to &., Raoes to 0 and T goes to 1, which is what you'd 
expect. 

So already you have a result that differs from the classical — the particle can 
be reflected at the potential step, That's the wave-like behavior of the par- 
tiche coming inte play again. 
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Assuming the particle doesn’t 
have enough energy 
Okay, now try the case where E < V, when there's a potential step, as shown 

in Figure 3-6. [In this case, the particle cloesn't have enough coergy to make it 
into the region + > 0, according to classical physics. See what quantum pliys- 
ics has to say about it. 

—— 

Figure 3-6; 
A patenitial A 

step, E<¥,. 

— u 

Tackle the region x <0) first. There, the Schrédinger equation would look 
like this: 

a 

a : ' 
rec bod ha ed bal 

where &,” = ame : 

You know the solution to this tram the previous discussion on potential steps 
(see “Limited Potential: Taking a Look at Particles and Potential Steps"): 

w,(x)=Ae** +Be mn at 
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Okay, but what about the region «+ 0? That's a different story. Here's the 
Schrodinger equation: 

FV (2c) ey, (x) =0 (where x >} 

_Y | 
where &" = ame Ye 

But hang on; E—-V, is less than zero, which would make & imaginary, which is 
impossible physically. 50 change the sign in the Schrodinger equation from 
plus to minus: 

ote (x }—hyy (a ]=0 x>ll 

And use the following for &, (nete that this is positive iE < Vi: 

,_ em[V,-E] 
A = % = Fj 

fee 

Qhay, 50 now you have to solve the differential 

oe Ea “he wr, (| 20) (where « >0) There are two linearly independent 

solutions: 

w(x) = Corte 
M wia) = Det 

And the general solution ta TM (x)- Re’ wr, (2 | 20 {wherex>Ojis 

w(x} =Ce™'+De™ xe 

However, wave functions must be finite everywhere, and the second term 
is clearly not finibe as 2 does to infinity, so. must equal zero (note that if» 

foes to negative infinity, the first term also diverges, but because the poten- 

tial step is limited tox > (), that isn'ta problem), Therefore, here's the solu- 

tion tora > Ue 

w(x} = Ce xo 
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So vour wave functions for the two regions are 

wt = Apts ‘ Ree ae a 

wolae) = Cee x= 

Putting this in terms of the incident, reflected, and transmitted wave func- 
tans, wot), yor), and woe), you have the following: 

wt wi) = Aeli 
yf) = Bete 

yor) = Ca 

Finding transmission and reflection coefficients 
Now you can figure out the reflection and transmission coefficients, R and 
T (as you do lor the case E> V, in the earlier section “Assuming the particle 
has plenty of energy”): 

J 
kK =— 

J, 

J Ts # 

J 

Actually, this is very easy in this case; take a look at J: 

But because wiv) = Ce*, yor) is completely real, which means that in this 
case, the following is true: 

2m : cbr br 
Oe ee 

And this equation, of course, is equal to zero. 

So J, = 0; therefore, T = 0,17 T = 0, then R must equal 1, That means that you 

have a complete reflection, just as in the classical solution, 

The nenzere solution: Finding a particle in x > 0 

Despite the complete reflection, there's a difference between the mathemati- 
cal and classical solution: There actually is a nonzero chance of finding the 



es 

Figure 3-7; 

The value of 
k by regian, 

E«¥, 
— 
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particle in the region x > 0, To see that, take a look at the probability density 
for x > 0, which is 

Pad = byl? 

Plucting in for the wae function wor} tives vou 

Pia = lyiayl® = (C0) Fe 

You ean use the continuity conditions ta solve lor C in berms of A: 

= (0) = 9, (0) 

1 Ge lO)= F210) 
Using the continuity conditions ives you the following: 

7 4k, |Ale EAS 

P()cfer=GE 
This does fall quickly to zero as x gets large, but near x = 0, it has a nonzero 
value. 

You can see what the probability density looks like for the E< V, case ofa 
potential step im Figure 4-7, 
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Okay, ¥ou've taken care of infinite square wells and potential steps. Wow 
what about the case where the potential step doesn’t extend out to infinity 
but is itself bounded? That brings you to potential barriers, which | discuss in 
the next section, 

Hitting the Wall: Particles 
and Potential Barriers 

What if the particle could work its way through a potential step — that is, the 
step was of limited extent? Then you'd have a potential barrier, which is set 
up something like this: 

a Vir) = 0, where x <f 

m Vixj)=V,,wherelloxvsa 

a Vie) = 0, where x >a 

You can see what this potential looks like in Figure 3-8. 

Figure 3-8; 
A potential 

barrier 

E>V. 

a o 
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In solving the Schrodinger equation for a potential barrier, you have to con- 
sider two cases, corresponding to whether the particle has more or less 
enerey than the potential barrler. In other words, if F is the energy of the 
incident particle, the two cases to consider are E> V, amd E < V,. This section 
starts with B= ¥_, 

Getting through potential 
barriers when E > VU, 
In the case where E> V., the particle has enough energy to pass through the 
potential barrier and end up in the x = @ region. This is what the Schridinger 
equation looks like: 

i For the region x < 0: Ye ( x) kw, (x] =) 
= 

where &,* = mae 

dy, 
For the region 0 = x = a: zx 

« 
[x j+é,'w.(x]=0 

Inf E=V,) / 
ze F where &,° = Phe 

aur, For th [> ai or the region x > @ a? [+] + hw, [of 0 

where k? =2mE/" 
on 

The solutions for y Gc), w,09, and yOr) are the following: 

Where x <0: y fx} = Ae“r + Bee 

Where 0 = x = a: w(x) = Ce + De® 

Where x > a: wir) = Eel + Feo 

In fact, because there's no leftward traveling wave in the x > @ region, 

F=0, soy. Gr) = Be 
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So how do you determine A, B,C, D, and ET You use the continuity condi. 
tions, which work out here ta be the following: 

YF (0) = (0) 

ay, _ th, 
ate (0)= aie (9) 

v.(0)=¥,(0) 
dy. .,,_ dw, 
eae 

Chay, from these equations, you get the following: 

aw Ae Batts 

ik {(A-B)=ik(C-D) 

a Cets + De the = Bete 

Mm ik,Ce*e — ik Dew = ik Bet 

So putting all of these equations together, you get this for the coefficient E in 
berms of A: 

En 4kkAe | 4k,k, cos (A,a)—2i(k, +e," }sin( ka} | 

Wow, So what's the transmission coefficient, T? Well, T is 

And this works out to be 

T Gera) 

Whew! Note that as #, goes to &,, T goes to 1, which is what youd expect. 
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So how about R, the reflection coefficient? Cl spare you the algebra: here's 
what R equals: 

E E (y he ; 
sin’? of 2m E ' 

-1 

You can see what the B= ¥, probability density, | w(c}!*, looks like for the 
potential barrier in Figure 3-, 

fwelad]’ 

(\ { \ ee * [\ { \ 

——| | j | 
Figure 3-9: \ f 1 aa 

mater SY U LU 
barrier 

E>V, 

That completes the potential barrier when E = ¥). 

Getting through potential barriers, 
even When E<V, 
What happens if the particle doesn't have as much energy as the potential 
of the barrier? In other words, you're now facing the situation you see in 
Figure 4-10, 
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Figure 3-10; 
A potential 

barrier 

E eV. 

az 0 

Now the Schrédinger equation looks like this: 

For the region x < 0: y (Gr) = Ae + Beve 

i 

For the region 0 < x= a: TEx) +e w,(x}=0 

fm) E-V, | 
eee Us 

But now EF -V, is bess than 0, which would make & imaginary. And that's 
impossible physically. $0 change the sign in the Schrédinger equation 
from plus to minus: 

a" yr, , f 

ae [x] RK, w.(x)=0 

— | f 

And use this for &,:#,° = ant a 

For the region x > a: aM (x) w, (x)= i) 
ry 

where &! = 2mE/ | 
: ‘ik 
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All this means that the solutions for w,(2r), yc), ane y.(7) are the following: 

Where x <0: y,(x) = Aer + Bel 

mM Where 0 © x <= a: yi(x) = Ce 4 De 

Mm Where x > a: v(x) = Eee + Fete 

In fact, there's mo leftward traveling wave in the region x » a; F =, so 
woe) is ye (ey = Ret, 

This situation is similar to the case where E> V), except for the region 

Qexsae. The wave function oscillates in the regions where it has positive 

energy, x < handa« >a, but is a decaying exponential in the region 05 x< a. 

You ean see what the probability density, | wird)", looks like im Figure 2-11. 

hp)? 

Figure 4-11: 

fyrtacl|* for 

a potential 

barrier 

Ec¥. 
as 

Finding the reflection and transmission coefficients 

How about the reflection and transmission coellicients, Rand T? Here's what 
they equal: 

lt 
|A 

7-4 
lA} 
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As VOU Tay expect, you use the continuity conditions to determine A, B, and E: 

my (0) = w,C0) 

wo Hs (0) = 2/0) 
my fa) = wife) 

io (a) = Ea) 

A fair bit of algebra and trig is involved in solving for R and T; here's what KR 
and T turn out to be: 

hieh? | ; +R cae a R-[A A] cnn soso) A an (a) 

T =4] 4eost’ (oa)o| Ao | sina(k) 

Despite the equation’s complexity, its amazing that the expression for T can 
be nonzero. Classically, particles can’t enter the forbidden zone 0s xs a 
because E< V., where V, is the potential in that region; they just don't have 

enough enerty to make it into that area. 

Tunnefing through 
Cuantum mechanically, the phenomenon where particles can pet through 
regions that theyre classically forbidden to enter is called Awnneiing. 

Tunneling is possible because in quantum mechanics, particles show wave 

properties. 

Tunneling is one of the most exciting results of quantum physics — it means 

that particles can actually get through classically forbidden regions because of 
the spread in their wave functions. This is, of course, a microscopic effect — 
don't try to walk through any closed doors — but it's a significant one. Among 
other effects, tunneling makes transistors and integrated circuits possible, 

You can calculate the transmission coefficient, which tells you the prob- 
ability that a particle gets through, ¢iven a certain incident intensity, when 

tunneling is involved. Doing so is relatively easy in the preceding section 
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because the barrier that the particle has ta get through is a square barrier. 
But in general, calculating the transmission coefficient ist so easy. Read on, 

Getting the transmission with the (UNE approximation 
The way vou generally calculate the transmission coetlicient is to break up 
the potential you're working with inte a succession of square barriers and to 
sum them. That's called the Wentrelhnonen-inilowin OVKB) approximation — 
treating a general potential, Vix), a5 4 sum of square potential barrlers. 

The result of the WKB approximation bs that the transmission coefficient for 
an arbitrary potential, Via), for a particle of mass m and energy E is given by 
this expression (that is, as long as Viiv) is a smooth, slowly varying function): 

r r h 

Tex] [24,|J{2m{ V(x) E|| as 

So now vou can amaze your friends by calculating the probability that a par- 
ticle will tunnel through an arbitrary potential. It's the stuff science fiction is 
made of — well, on the microscopic scale, anvwar. 

Particles Unbound: Solving the 
Schrodinger Equation for Free Particles 

What about particles outside any square well — that is, free particles? There 

are plenty of particles that act freely in the universe, and quantum physics 
has something to say about them. 

Here's the Schradinger equation: 

std o(x)+¥(x}y(x)=E¥(2) 
What if the particle were a free particle, with Vic} « OF In that case, you'd 
have the followlng equation: 

Sa ae ee 
arr ag (2) il 
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And you can rewrite this as 

aw [x] tay x)=0 

where the wave number, & is &* = rus 
a 

You ean write the general solution to this Schrédinger equation as 

wit) a Aeit* Z Bet 

you add timedependence to the equation, you get this time-dependent 
wave function: 

wx, t= Aexp| th ~ ins Jepevo{
 he in } 

That's a solution to the Schrédinger equation, but it turns out to be unphrysi- 
cal. To see this, note that for either term in the equation, you can't normalize 
the probabllity density, lyn l- (see the earller section titled “Normalizing 
the wave function” for more on normalizing): 

lyf l= = |AI* or IBI- 

What's going on here? The probability density for the position of the particle 
is uniform throughout all cio other words, you can’t pin down the particle 
at all. 

This is a result of the form of the time-dependent wave function, which uses 
an exact value for the wave number, &— and p + hk and Ee Ab’/2m. So what 
that equation says is that you know E and p exacth, And if you know p and E 
exactly, that causes « large uncertainty inv and #— in fact, v and fare com- 
pletely uncertain, That doesn't correspond to physical reality. 

For that matter, the wave function yi), a5 it stands, isn't something you 

can normalize. Trying te normalize the first term, for example, gives you this 

integral: 

J wf xjwe (jae 

And for the first teem of yt 2), this is 

J wfahurn( (x)ae-[af [ate 
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And the same is true of the second term in wiry, Ff. 

So what do you do here to eet a plovsical particle? The next section explains. 

Getting a physical particle 
with a wave packet 
you have a number of solutions to the Schrédinger equation, any linear 
combination of those solutions is also a solution. So that’s the key to getting 

a Plowsical particle: You add various wave functions together so that you cet a 

mace pocket which is a collection of wave functions of the form e°!") such 
that the wave functions interfere constructively at one Location and interfere 
destructively (20 to zerc) at all other locations: 

wl 2x, t| 2s. a 

This is usually written as a continuous integral: 

Jo{a. re elegy wa, t}= ae 

What is $(k, O? It's the amplitude of each component wave function, and you 
can find iO, 9) fram the Fourier transform of the equation: 

j wl, fle late 
bie, c\= 1 

eit (2x) 

Because & = o/h, you can also write the wave packet equations like this, in 
terms of a, mot ke: 

jm Le 

-J v(r. je ap w(x, t)= 

ae 
eyed" ix, tle 

1|= ay 

o(k, ¢}- 
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PC 

Figure 3-12: 

A Gaussian 

Weve 

pa chat. 

Well, you may be asking yourself just what's going on here. It looks like 
Wh, Gls defined in terms of dip, f), butetp, fis defined in terms of wh, f. 
That looks pretty circular. 

The answer is that the two previous equations aren't definitions of wlx, f 
or dtp, fy they're just equations relating the two, You're free to choose your 
own wave packet shape yourself — for example, you may specify the shape 

of t(, 0, and y(x, t}=—! — fo(&, eje"" dk would let you find w(x, 1). 
{2x|"? ~ 

Going through a Gaussian example 
Here's an éxample in which you get concrete, selecting an actual wave packet 
shape. Choose a so-called Gaussian wave packet, which you can sce in 
Figure 3-12 — localized in one place, zero in the others. 

4 byla, el? 

P| 

The amplitude pfk) you may choose for this wave packet ls 

rnjoree| 4) 
You start by normalizing 4.4) to determine what A is. Here's how that works: 

1= Jlo(a)) ae 

Substituting in @le) gives you this equation: 

I Al fexp | =2(e—&,)° Jat 
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Doing the integral (that means locking it up in math tables} gives vou the 
followin: 

7 Le 

lal [297] ett 

1 

Therefore, A =| 4/5 lr 
fon 

So here's your wave function: 

v( able I oof OA), Le 

This litthe gem of an integral can be evaluated to give you the following: 

vixp[2/ 2] ‘el, Jew 
So that's the wave function for this Gaussian wave packet (Wate: The 
exp[-at/a*] is the Gaussian part that gives the wave packet the distinctive 
shape that you see in Figure 3-12) — andl it’s already normalized. 

how you can use this wave packet function to determine the probability that 

the particle will be in, sav, the region Os x=2¢/. The probability is 

J |y(x}) ae 

In this case, the integral is 

a TST faye [2a ]* Jexo(-27/, Ja 
And this works out to be 

Lf , 
F J _ yet . 

E =] exn| tO ale 

So the probability that the particle will be in the region O= 22 9: is 5. Cool! 
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Chapter 4 

Back and Forth with 
Harmonic Oscillators 

In This Chapter 
Hamiltonians: Looking at total energy 

Solving for energy states with creation and annihilation operators 

Understanding the matrix version of harmonic oscillator operators 

Writing computer code to solve the Schrédinger equation 

HH 020 oscillators are physics setups with periodic motion, such as 
things bouncing on springs or tick-tocking on pendulums. You're proh- 

ably already familiar with harmonic oscillator problems in the macroscopic 
arena, but now you're going microscopic, There are many, many physical 
cases that can be approximated by harmonic oscillators, such as atome ina 

crystal structure. 

In this chapter, you see both exact solutions toe harmonic oscillator problems 
as wellas computational methods for solving them. Knowing how to solve 
the Schrédinger equation using computers is a useful skill for any quantum 
physics expert. 

Grappling with the Harmonic 
Oscillator Hamiltonians 

Okay, time to start talking Hamiltonians (and Fim not referring to fans of the 
U.S. Founding Father Alexander Hamilton). The Hamiltonian will let vou fine 
the energy levels of a system. 
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Going classical with harmonic oscillation 
In classical terms, the force on an object in harmonic oscillation is the follow- 

ing {this ls Hooke’s law): 

Fs -y 

In this equation, & is the spring constant, measured in Newtons/meter, aril x 
is displacement. The key point here is that the restoring foree on whatever is 
in harmonic motion is proportional to its displacement. In other words, the 
larther you stretch a spring, the harder it'll pull back. 

Because F = aig, where mis the mass of the particle in harmonic motion and 
ois its Instantaneous acceleration, you can substitute for F and write this 
equation as 

ma+ hor =O) 

Here's the equation for instantaneous acceleration, where x is displacement 
and ¢ is time: 

So substituting for a, you can rewrite the force equation as 

rt phe = MEE a ex = 0 

Dividing by the mass of the particle gives you the following: 

You can solve this equation for x, where A and B are constants: 

v= A sina! + B cogil 
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Therefore, the solution is an oscillating one because it invalves sines and 
cosines, which represent periodic waveforms, 

Understanding total energy 
in quantum oscillation 
Now logk at harmonic oscillators in quantum physies terms. The Marniltonian 
CH) is the sum of kinetic and potential energies — the total energy of the 
System: 

H = KE + PE 

For a harmonic oscillator, here’s what these energies are equal to: 

The kinetic enervy at any one moment is the following, where p is the 

particle's momentum and my is its mass: 

_ Pp 
ie Zin 

The particle's potential energy is equal to the following, where & is the 
spring constant and «© is displacement: 

PE = phe = pines" 

(Note: The & cancels out because aw” = '/..) 

Therefore, in quantum physics terms, you can write the Hamiltonian as H = 

KE + PE, or 

a Ha Ps line Im 2 

where P ad A are the momentum ane position operators. 

You can apply the Hamiltonian operator to various eigenstates (see Chapter 
2 for more on eigenstates}, bye, of the harmonic oscillator to get the total 
energy, E, of those eigenstates: 

FF 

Hiv >a |y > ep men"X|y men Ely > 
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The problem now becomes one of finding the eigenstates and eigenvalues. 
However, this doesn't tum out to be an easy task. Unlike the potentials 
Vix) covered in Chapter 4, Vior) fora harmonic oscillator is more complex, 

depending as it does om x, 

So you have to be clever. The way vou solve harmonic oscillator problems in 

(uatum physies is with operator algebra — that is, you introduce a new set 

of operators. And theyre coming up mow. 

Creation and Annihilation: Introducing 
the Harmonic Oscillator Operators 

‘oh 
Creation and annihilation may sound like big make-or-break the universe kines 

Of ideas, but they play a starring role in the quantum world when you're work- 

ing with harmonic oscillators. You use the creation and annihilation operators 

to solve harmanic oscillator problems because doing $0 is a clever way of 
handling the tougher Hamiltonian equation (see the preceding section). Here's 
what these bwo new operators do: 

Creation operator: The creation operator raises the enerey level of an 
elpenstate by one level, so if the harmonic oscillator is In the fourth 
energy level, the creation operator raises it to the fifth level, 

Annihilation operator: The annihilation operator does the reverse, bow- 

ering eigenstates one level. 

These operators make it easier to solve for the energy spectrum without 
4 lot of work solving for the actual eigenstates. In other words, you can 
understand the whole energy spectrum by looking at the energy difference 
between eigenstates. 

Mind your p’s and q's: Getting the 
energy state equations 
Here's how people usually solve for the energy spectrum. First, you intro- 
luce two new operators, p and g, which are dimensionless; they relate to the 
P imomentum) operator this way: 

mH n= BY 
Jf {mbeo 

 a=x(mey) 
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You use these two new operators, p and g, a8 the basis of the annihilation 
operator, a, and the creation operator, a!: 

i gs tig +ip} 
we . 

w g's Lig —ip} 
V2 

Now you tan write the hanmoanic oscillator Hamiltonian like this, in terms of a 

and a’: 

H= hol a'a+$ | 

Ag for creating new operators here, the quantum physicists went crazy, even 

Hiving aname to a'a: the Nor under operator So here's how you can write 

the Hamiltonian: 

= I H= hol N+5 | 

The § operator returns the aunder of the energy level of the harmonic oscil 

lator. [you denote the eigenstates of 6 as las, you fet this, where mis the 

number of the oth state: 

Nine = alae 

Because Hs tie + '/s), and because Hint» © E, las, then by comparing the 
previous two equations, you have 

E. = [a+ 4 Jie n=0,12... 

Amazingly, that gives vou the energy eigenvalues of the nth state of a quan 
tum mechanical harmonic oscillator. $0 here are the energy states: 

The ground state energy corresponds to = 0: 

a 

1 
E,=—+h ye 
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The first excited state is 

a 
Es oy et 

The second excited state has an energy of 

E,= 2 hes 

And so on, That is, the energy levels are discrete anc nondegenenie (not 
shared by any two states). Thus, the energy spectrum is made up of eqquidis- 
tart Ibaunals. 

Finding the Eigenstates 
When you have the elfenstates (see Chapter 2 to find out all about eigen- 

states), you can determine the allowable states of a svstem and the relative 

probability that the system will be in any of those states. 

The commutator of operators A, Bis [A,B] = AB-BA, so note that the com- 

mutator al and a! is the following: 

[a a’ ]=5 [a+ 9-0] 

This is equal to the following: 

[a a" ]= tfla+ip, q-ip |=-i[ a. p | 

This equation breaks dawn to a, a'| = 1. Ancl putting tovether this equation 

with Hete| N+4) you get [a, H}= fea and fa’, H]=—tea". 
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Finding the energy of aln> 
Okay, with the commutator relations, you're ready to go. The first question is 
if the energy of state |i is E,, what is the energy of the state al n=? You can 
write the energy of olin this way: 

Har | p>} 

= (aH — Jie} | = 

= (E,, — fis par | rt} 

So alas is also an eigenstate of the harmonic oscillator, with energy E, = fie, 
not E.. That's why a is called the annihilation or lawering operator: [t lowers 
the energy level of a harmonic oscillator eigenstate by one level. 

Finding the energy of a’|n> 
So what's the energy level of a! las? You can write that can like this: 

H[a'|a >| 

=(a"H+ Aaa’ |/a> 

=(E,+for}[a"|n >| 

All this means that @' |n- is an eigenstate of the harmonic oscillator, with 
energy E,, + fie, not just E.— that is, the a! operator raises the energy level of 
an elgenstate of the harmonic oscillator by one level. 

Using a and a’ directly 
you've been following along from the preceding section, you know that 
Hel a=) = (E, fetal as) and Hf" | a) = (EB, + feojte ln). You can derive the 

following from the these equations: 

i“ alas =Cin-Is> 

ef a'ins = Dias I> 
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Cand D are positive constants, but what do they equal? The states | rr = 1> 
and ls I> have to be normalized, which means that <= 1) m= 1> = 
cite line Is = 1.50 take a look at the quantity using the C operator: 

(<nla (al a=) = Can -Lla- Is 

And because lin- 1» is normalized, «2 —-—lima-1s = 1: 

(enlafalaej)=C 

enla'alns =C 

But you also know that.a'e = N, the energy level operator, so you get the fol- 
Lownie eq ueathon: 

en| Nin =" 

Nia> = alas, where ais the energy level, so 

neaias = 0" 

However, <li = 1, $0 

act 

noe 

This finally tells you, from alas = Cla- 1+, that 

ala>=n" In—-1s 

That's cool — now you know how to use the lowering operator, a, on eigen 

states of the harmonic oscillator. 

What about the raising operator, a'? Following the same course of reasoning 
you take with the @ operator, you can show the following: 

a'ines (ae Vy" tae Le 

So at this point, vou know what the energy eigenvalues are anc how the rais- 

ing and lowering operators affect the harmonic oscillator eigenstates, You've 

made quite alot of progress, using the a and a’ operators instead of trying ta 

solve the Schrodinger equation. 
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Finding the harmonic oscillator 
energy eigenstates 
The charm of using the operators a and a’ is that given the ground state, | (>, 

thase operators let wou find all successive energy states. Ui you want te find 

an excibed state of a harmonic oscillator, you cant start with the ground state, 
0+, and apply the raising operator, a’. For example, you can do this: 

a |i> =a"|O> =[1> 

_ | os __l ii + 2» =La'|l >= (a'} > 
‘ i a|e I i ito -—Se 25 = eee 0 

| = | me} | = 

wt |4> = za! [> = F(a") '|O> 

And $0 on. In general, you have this relation: 

|a> = —L{a'}"|a > 
Jn! 

Working in position space 

Okay, |v > = —L{a' I \O> is line as far as it goes — but just what is 10-7? Can't 
agit! 

you feta spatial eigenstate of this eigenvector? Something like yy(x), not 
just |0>? Yes, vou can, In other words, you want to find «vl 0> = yw,Or), So vou 

need the representations of a ane a’ in position space. 

The 9 operator is delined as 

a 

‘ { maha) 
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Because P= ae you can write 

ith od 
( mhaa)'? & 

Agi writing x) = [fyfrataoy |, this becomes 

__ -ih od ip it =e 
(mhev)? a 

Okay, what about the o operator? You know that 

om lg ip} 
we e 

Amel that 

You can also write this equation as 

1 . : @f 
a vig [xe Z| 

Okay, 30 that's a in the position representation, What's a"? That turns out to 
be this: 

a = ta (X-' f] 
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Now's the time to be clever, You want to solve for | 0 in the position space, 
or <vlQ>, Here's the clever part — when vou use the lowering operator, a, 
onlts, vou have ta get 0 because there's no lower state than the ground 
state, so al (l> = (0, And applying the <x! bra gives you <«xla!0Q=> = (h 

That's clever because it's going to give you a homoveneous differential aqua- 

tion (that is, one that equals zero). First, you substitute for a: 

< x|a|0 =f) 

1 

x2 
Then you use < x/0= yr, {a}: 

sgl wolx)( exh) <0 
; [sv(x)s ty 00 = 

xe 

a= th = x sxe 

Multiplying both sides by xvi gives vou the following 

dy, [2] 
= 

ay 
xy, (x}=x, 

dy, {x | = —xy, [x 

aby x, 
ti 

The solution ta this compact differential equathon is 

y,(x]= ren 4, 

That's a gaussian function, so the ground state of a quantum mechanical har- 
monic oscillator is a gaussian curve, as you see in Figure 4-1. 
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——= 

Figure 4-1; eo ae 
The ground = ., 

state ofa ie. 

quantum ean 
ae mechanital = 

: —_— a, harman = 

oscillator. 
x 

es 

| Va x} 

Finding the wave function of the ground state 
As a gaussian curve, the ground state of a quantum oscillator is yy() = A 
expfea 2a). How can you figure out A? Wave functions must be normalized, 
30 the following has to be true: 

l= Jv {] “ale 

Substituting for voi) gives you this next equation: 

z 

aly l= J Acxa| fay) 

‘i 5 P 
= At ae 1=A feo[ bo 

You can evaluate this integral to be 

x, 
[= A few| Ja =Atr ‘oe, 

Therefore, 

l= A*x hy 
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This means that the wave function for the ground state of a quantum 
mechanical harmonic oscillator is 

ee | —x* if wala i ex Aax.*| 

Cool, Now you've pot an exact wave function. 

A little excitement: Finding the first excited state 
Chay, the preceding secthon shows vou what wot) looks like, What about the 
first excited state, yw, (x)? Well, as you know, w)Cx) = <a! l> and | I> = a's, so 

wy ty = ala! | Os 

And you know that a’ is the Follow img: 

| [x xd } 
a xt Xy ie 

Therefore, yj Gc) = <xla!|0> becomes 

<x|a|0>=—, cxf x-x7L) o> 
Xywe cc 

al (x-x 2! )<x|o> 
x2 " dx | 

And because yy)Or) = <2! 0-, you get the following equation: 

wilx}=—pX-2,'S-w.(x) 

(snmp Hl 

a Bo x, 

lan =22 yy) 
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You alsa know the following: 

vsle)eaplpeanl 7) 
ety? 

2 
Therefore, y, [x] = “= xy) becomes 

w, [x)= ~XEXp 
x xix! Vax 3 

What's wri) look like? You ¢an see a graph of yi) in Figure 42, where it has 
one node Chransition through the + axis). 

i fl / 

Figure 4-2: 

Tha first 

excitad 

state ofa 

quantum 

mechanical 

hear rete 

oscillator, 
a 

Finding the second excited state 
All right, how about finding w44)} and so on? You can find wet) fram this 

equation: 

we (x)= <a’ \ 0> 

= Spr <xf{a'y [0 a 
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Substituting for a’, the equation becomes 

wile)= ras [x-x' ) wal) 

Using hermite polynomials to find any excited state 
You can generalize the differential equation for ya) like this: 

Ve 1 L 2 ) [% 
ye x , r-X, as exp 2 

| w''(2*nl}? x ay fa, 

To solve this general differential equation, you make use of the fact that 

(x= f) (4, J=00(-*7,,](%.] 
Hr) is the ath bernnite polvnomial, which is defined this way: 

H,(x]=(-1)" exp{x*)}-—exp{-x"} 

Holy mackerel! What do the hermite polynomials look like? Here's Hyfx), 

Hit), ancl so om: 

 Hyia) = 1 

Hit) = on 

Hi) = dy = 2 

wt Hix) = Bx = 1B 
m Hic) = lox" - 48 + 12 

i Hale) = F2x" — lily!’ + 1le 

What does this buy you? You can express the wave functions for quantuen 
mechanical harmonic oscillaters like this, using the hermite polynomials Hr): 

= I (= ine f = TL re a2 
vl) n'4{2atx, | : fx, JPL fbx, 

= 

NEES As -| Daas 
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And that’s what the wave function looks like fora quantum mechanical har- 
manic oscillator. Who knew it would've involved hermite polynomials? 

You can see what y.(c) looks like in Figure 4-2; note that there are two nodes 
here — in general, v.00) for the harmonic oscillator will have n nodes, 

(xl 
¥5 

Figure 4-3: 

The second 

excited 

state ola 

quant 

mechanical 
hearing ie 

ag¢illator, 

Ty 

Figure 4-4: 

4 proton 

undergaing 

heart: 

oscillatan, 

—— 

Putting in some numbers 
The preceding section gives you wie), and you've already solved for E,, so 
you're on top of harmonic oscillators, Take a look at an example. 

Say that you have a proton undergoing harmonic oscillathon with w = 4.58 * 

LO’ sec, as shown in Figure 44, 

i _3 
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What are the energies of the various energy levels of the proton? You know 
that in feneral, 

E,=(n+4 |e m=12... 

So here are the energies of the proton, in megaelectron volts (MeV): 

wee = AW) 50 Mev 
he 

ME, = Sho — 4,50 MeV 

2 

ME, = ines = 10,50 Mev 

Amd sa on, 

Now what about the wave functions? The general form of w(x) is 

1 f —x' v.le)=—— ehh, Jo (-*4,) w'(anix,ye MTN fx 

: Sox, =3.71* 10m,
 

(mo 
- 

where a= hy 

Convert all length measurements into femtometers (1 fm = 1x LO" m), giving 
you x, = 3.71 im, Here's yytr), where x ls measured in femtometers: 

__! -x'" 
abr: ex */o75] 

Here aré a couple more wave functions: 

l : f -x/ 
p wile) 2% 7 ler | * A975 

ye vi(x)= is, (4) -2bewo{ “47 5] 
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Looking at Harmonic Oscillator 
Operators as Matrices 

Because the harmonic oscillator has regularly spaced energy levels, people 
offen view it in terms of matrices, which can make things simpler. For exam- 
ple, the following may be the ground state eigenvector (note that it’s an infi- 
nike vector’): 

o>= 
l 

i) 

eo og & & 

And this may be the first excited state: 

lix= 
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And so on. The 6 operator, which just returns the energy level, would then 
look like this: 

So Nl2> gives you 

Nj 2 >= 

oo00 0 2.10 

oid 0 oa 

7020 .N1 

oo 0 3 J. 

ot O DM OO 

oo0 0 10 
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This is equal to 

N|2>= 

0 0 0 0 0 nO 

i) oi) ol oO OL 

7 i Oo 2 O ... 

oo ob oO 8 LO 

=|) CF O a LM 

0 Oo ob oO 0 OO 

i} 

i} 

i] 

In other words, Nl2> = 2/2». 

How about the ¢ (lowering) operator? That looks like this: 

= 4G 

Seesee fr aco, o o 
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In this representation, what is a! l>? In general, alr en!" la= >, 80 @! 1> 
should equal |G. Take a look: 

all>= 

af 0 @ _.llo 

oo v2 0 LI 

ag0 0 8 _./0 

aoo0.60lUlC,O 

ao0 0 oo .0 

og 0 oa .|0 

This matrix multiplication equals the following: 

a|l>= 

vil jo vi ao oo Lio 
o| oO o @ o Qi 

0) jo o o 48 ..,0 
0) do o o o LO 

0-0 oO GO oOo. 

Oo} oo oO oO Oo ND 
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In other words, a! l> «l0>, just as expected. 

50 how about the a (raising) operator? Here's how it works in general: a' in 
effi Ila I, In matrix terms, @ looks like this; 

r 

ge 

oo 0 90 
Jl 0 0 9 

ov o 0 

oo 8 oO 
oo oO 4 

of oO 0 

For example, you expect that a!| = = V2 | 1», Does it? The matrix multiplica- 
Liam bs 

all> 

0 0 O 0 Lully 

“ooo Oo 8 

o vz o oa .llo 

o 0 8 oOo .]o 

oo o va .J@ 
oo 0 oO 0 
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This equals the following: 

a'|l>= 

o/ [oO oOo © 0 0 
ao} it o 0 O 1 

f2| |O WZ 0 O 0 
oO} jo o & oO ( 

Ol=|o o Oo va qo 
0} jo o © O 0 

Sog'l1l» = V2 Ids, as it should, 

How about taking a look at the Hamiltonian, which returns the energy of an 
eipenstate, Hla>=E,! ae? In matrix form, the Hamiltonian looks like this: 

lood 
0300 
oo6 0 

00 07 
fee 70 9 0 0 

So if you prefer the matrix way of locking at things, that’s how it works for 

the harmonic oscillator, 
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A Jolt of Java: Using Code to Solve the 
Schrédinger Equation Numerically 

Here's the one-dimensional Schrédinger equation: 

_n' f(x) 
am ax” + V(x }yr(7) = Ey (2) 

And for harmonic oscillators, you can write the equation like this, where 

A nan VOY } 
fit 

dy |x} 
ab i Keyl x} {) 

In general, as the potential Vix) gets more and more complex, using a com- 
puber to solve the Schrodinger equation begins to look more and more 
altractive. In this section, | show vou how to de just that for the harmonic 
oscillator Schrédinger equation. 

Making your approximations 
In computer terms, VOU can approximate why) asa collection of points, yy), wo, 

Wy. Wy. We, antl soon, as you see in Figure 45, 

le} 

PC 

Figure 4-5: 

Dividing 

wis} along 
the was. 

as 



Chapter 4: Back and Forth with Harmonic Oscillators ] 15 

Lach point alone wi) — wry, We. Wy. Wy. We, ame so on — is separated fram its 

neighbor by a distance, fy. along the x axis. And because dye is the slope of 

yo, you tan make the approximation that 

ay WaT 
ay fh 

In other words, the slope. dw/oy, is approximately equal te AviAy, which is 
equal tow, ,,—w, (= 4¥) divided by 4, (= Av). 

You can rearrange the equation to this: 

vo he ow, 

That's a crude approximation for y,.;, given y.. Sa, for example, if vou know 

Wy. You can find the approximate value of we, if vou know «ayy in the region 

Of yy. 

You can, of course, find better approximations for y, ,). la particular, phoysi- 
cists alten use the Muvneroe afgonition when solving the Schrédinger equa- 
tion, and that algorithm gives you y, , in berms of y, and w,_ ). Here's what 
the Numeroy algorithm savs: 

; ee 2| vss 1+{A7R() ] Ls 12 yr. 1 

out F 
1+," (2) 

lz 

| 2m F — men? 4 ] Z 

In this equation, k*(x] = ix 

and the boundary conditions are yl—-) = woo) = 1. Wow, Imagine having to 
calculate this by hand. Why not leave it up to the computer? 

For a proton undergoing harmonic oscillation with o = 4.53 = WW sec", the 

exach ground state energy is 

B= Aga =1.50 MeV 
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You solve this problem computationally earlier in this chapter, The following 

sections have you try to et this same result using the Numerov algorithm 
and a computer, 

Building the actual code 
To calculate the ground state enerpy of the harmonic oscillator using the 

Numeroyv algorithm, this section uses the Java programming language, which 
wou can get for free from java. sun. com. 

Here's how vou use the program: You choose a trial value of the energy for 
the ground state, Ey, and then calculate wir} at, which should be zero — 
and if it’s not, you can adjust your guess for E, and try again, You keep going 
until whe) =O for i not actually 0, avery small number in computer terms }— 

and when it does, vou know wou've guessed the correct energy. 

Approximating wf) 
How de vou calculate wis? After all, infinity is a pretty big number, and the 
computer is going to have trouble with that, In practical terms, vou have to use 
anumber that approximates infinity. In this case, you can use the classical turn- 
ing’ points of the proton — the points where all the proton's energy is potential 

enercty and it has stopped moving in preparation for reversing its direction, 

. : - pat Saree ae PS At the turning points, +, E, = a (that is, all the energy is in potential 
chery), $0 

} z 

Xe 2B, /" : 
J [maa | 

And this is on the order of £5 femtometers (im), $0 you assume that wiv} 
should surely be zero at, say, £15 im. Here's the interval over which you cal- 
culate yf}: 

x, =—-lbim 

or, = lim 

Divide this $0 fm interval into 200 segments, making the width of each seg- 
MeL, fy, CQUAT TO (roe — Nip S00 = A, = 0.15 fm, 

Ohay, you're making progress. You'll start by assuming that yfy,,,,.) = 0. guess 
a value of E,, and then calculate wi...) = Yoo (because there are 2) seg. 
renks, abe = Xyoe We = Yoo which should equal zero when vou get E,. 
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Here's what the results tell you: 

Correct If abs.) 8 zero, oF In practical terms, less than, say, your 
maximum allawed value of yw, = 1s M0”, then you're done — the F, vou 
guessed was correct. 

Toc high: [f abs(iyooo) is larder than your maximum allowed w, wo. 

{= 1 10%), and y.,) is positive, the energy you chose tor E, was toa | 
high. ¥ou have to subtract a small amount of energy, AE — say 1 107 
MeV — trom vour éuess for the enerey; then calculate abstw.,.) again 
and see whether it’s still higher than your maximum allowed wy, y,,,.. Il 
so, you have to repeat the process again. 

Too low: If abs( yoo) is larger than your maximum allowed yw, we... C= 1x 
10), and yf is negative, the enerpy you chose for E, was too low, You 
have to add a small amount of energy, AE, to your guess for the energy; 
then calculate abs(yfs:) avain and see whether it’s still higher than your 
maximum allowed yw, yi... lfsa, you have to repeat the process. 

So how do you calculate w..,?7 Given two starting values, yw, and vw), use the 
humeroy algorithm: 

F [- oe) / } ne 1+{12e,.(x)'] Are 

1+Atk,(a) 
i 

by] 

Reep calculating successive points along yx: we, Ws, we, and so on. The last 
point is Wrong. 

Okay, VoUu're on our way, Tou're going to start the code with the assumption 
that y, > Oand yw, is avery small number (vou can choose any small number 
you like). Because you know that the exact ground level energy is actually 
1.50 MeV, start the cade with the guess that E, = 14900000 MeV and let the 

computer calculate the actual value using increments of AB = 1x 107 lev, 

hobe also this equation depencs on ke ixY, Ra xF, and &, , itxP. Here's how 

you can find these values, where B,.,.. is the current Guess for the ground 

state energy (substitute mn, — 1, and m+ 1 for yy: 

f ki [x,}= 2m Ea ~ aa 
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And you know that K = 4.58 = 10" see", so 
=e 

a Wey = 5.03% 10 ‘io 

Z z ru = 0.05 MeV tm 

Therefore, kG) =Q05E er — GS wx, where x; for a particular seg 
ment fis x; = fifty = Kinin 

Writing the code 
Chay, now [im ¢oing to put together all the info from the preceding sec- 

tion inte some Java code, You start with a Java class, se (for Schrodinger 

Equation}, in a file you namie sejoid: 

public clasa ae 

} 

Then you set up the variables ane constants you'll need, inclucling an array 

for the values you calculate for y (because to find yw, ), you'll have had to 
store the alreacdhy-calculated values of yw, and yw, k 

public class se 

{ 

double peilt]: 

double ECurrent; 

double Emin = 1.450; 

double xin = =-15.; 

double xMax = 15.; 

double Atera: 

double EDelta 0 0000001; 

deuble maxPad O.00000001; 

int numberDivisions = 200; 

} 

The se class's constructor gets run first, so you initialize values there, inelud- 
Ing wy f= whe =) and y, (any small number vou want) to get the calcula- 
tion going. In the main method, called offer fie constructor, you creale an 
object of the se class and call it celeofete method to get things started: 
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public class se 

i 

deuble pail]; 

double ECurrent; 

double Emin 1.490; 

double xMin = -15.; 

double Max = 15.: 

double HzZere: 

double EDelta = @. 0000001; 

double maxPsi = 0. 00000001; 

ink nmumberDivisions = 200; 

public sei} 

{ 
ECurrent = Emins 

Pei = new douwble[numberDivisions + ij]; 

pei[O)] = O; 
pei[l] = -0.000000001; 

pel [numberDivisions] = 1.0; 

hZerse = (8Max - xMin) | numberDivielone: 

Public static void main{String [] argv} 

f 
36 d&@® = few #@([} 5 

de .ealeulatel[): 

The real work takes place in the calculate medio, where you use the current 

guess for the energy and calculate yop: 

If abs(yrsco) is less than your maximum allawed value of y, y,,,. You've 
found the answer — your current guess for the energy is right on. 

 |f abs(yen) is greater than yw... AM Wey, is positive, you have to subtract 
AE from your current guess for the energy and try again. 

 [f abs( yon) is greater than yy, and Wey, 15 negative, you have to add AE 
to your current puess for the energy and then try again, 
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Here's what all this looks like in code: 

public void calculate() 
fi 
while (Math.abs (psilfnumberDivisions)}> maxPsi} { 

for fink i = 1; i <numberDivisions; i++) [{ 

psifi + 1] = caleculatenextPsi li}; 

) 
if (osi[numberDivisions)]> O.0) { 

ECurrent = E¢urrent fi EDelta; 

} 
else f[ 

ECurrent = ECurrent + Epelta: 

) 
System.out.println({iPsiz0d: 1 + psi[numberDivisions 

+ L B: 2 + reund{ECurrent)); 

} 
System. .cut.printin{i\nthe ground state energy is i + 

round (ECurrant) + i MeV.i); 

Note that the next value of ydthat is, wy.) is calculated with a method 
named coicuiateveaes!, Here's where you wie the Kumeroy algorithm — 

fiven Wh. Wt, |, YOu can calculate yr. |: 

publie deuble calculateNextPsifint n] 

{ 
aouble E&ghMinusOne = calculateKsSquared({n - i}; 

doable ESaqh = calculateRSquared([i] : 

aouble ESahPlusOne = calculateKSquared(n + 1}; 

double nestPai = 2.0 *{1.0 - [5.0 * htero * htero * 
RSqn / 12.0})}) * pad(ni; 

nextPsi = nextPsai = [1.0 + ({hfero * HZera * 

KSqiKimasOne § 12.0))} * peitm - 1]: 

HextPs1 = nextPsi /(1.0 + (héero * héiero * FSqhPlusone 

f 12.0))3 
return nextPal; 

Finally, note that to calculate y,, ), vou meed &, 4, _.. and &,.), which vou 
find with a method named eofwatekhouared. which uses the numeric values 
you've already figured out for this problem: 

public double calculsteRSquared {int nj 

f 
double «x = (here * nl + xin: 

return (({0.05)] © Bturremt} = [[x * mw) * 5.63e-3))7 
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Whew, Here's the whole program, s¢ jar: 

public class se 
{ 

double pail]; 

double ECurrent; 

double Emin = 1.490; 

double xMin = -15.: 

double Mas = 15.57 

double Bzere: 

double Etelta = 0.000001; 
double maxPsi = 0.00000001; 
ink mumberDivisions = 200; 

public get} 

f 
Ecurrent = Emin+ 

Pei = new double[numberDivisions + ij; 

psif[0] = 0; 
psi[l] = -0.,000000001: 

pad [numberDivisiens] = 1.0; 

hZere = (@Max - 2Min) | numberDiviesione: 

Public static void main{String [] argy} 

f 
ae d&@ = new se(}; 

de .ealeulatel[j; 

Public void calculate() 

{ 
while (Math abe (pei [numberDivieiens) |= maxPeal} { 

for fint 1 = 2; i <numberDiviesienmsa; i++) 

peifa + 1) = calculateNextPsi li); 

} 
Li (psalnumberDivisions)]> 0.9) |{ 

ECurrent = E@urrent - EDelta; 

] 
else [ 

ECurrent = Ecurrent + EDelta; 

} 
System. out. println({iPsi200: 1 + psi nimberDivisions] 

+ 1 E: © + round {ECurrent))+ 

] 
Syeaten .cut.printin{ inthe ground state energy ia i + 

round (ECurrent! + i Me¥.4); 
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Public double calculateKSquared({int 

f 
double 2 = [(hfere * ») + sein: 

return (({0.05) * ECurremnt} - {(e * mw) * 5.63e8-3))7 

Public double calculateNextFsilint m2) 

f 
double KSatiinusdne = calculateRSquared{n - 1}; 
double KSqW = calculateR Squared (nn); 
double KSquFlusone = calculateRSquared(n + 1}; 
gdouble nextPsi = 2.0 *({1.0 - {5.0 * hfera * hero * 

ESqW / 12.0)) * pein: 
NekEPSL = nextEPei - [1.90 + (hZere * here * 

KSqWMinusdne § 12.01) * paif{n - 1); 
nextPsi = nextPsi /{1.0 + (hSero * hitero * KSqhPlusone 

f 13.09); 
return nextPsi; 

Public double round/double val) 

f 

} 

double divider = 100000; 

wal = val * divider: 
double temp = Math.roundival|: 

return (deuble|jtemp / divider; 

Chay, now you can compile the code with javac, the Java compiler (if javac 
isn't in your computer's path, be sure to add the correct path to your com- 
mand-line command, such ag Css: \yavalbinijavac se.jave), 

Crsjavec ge. java 

This creates se.chass from se joog, and you can run se.class with Java itself 

{adding the correct path if neecled): 

Criejava se 
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Running the code 
When you run the java code for the harmonic oscillator Schrédinger equa- 
tion, It displays the successive values of oy, a3 It adjusts the current guess 
for the energy as it narrows in on the right answer — which it displays at the 

end of the run. Here's what you see: 

Crisjava Be 
PSl2Z00: =-1L. 0503644039739 377TSE=4 Ei 1.45 
Pel200: =-L.050354429295309n<-4 EB: 1.49 
PSIZ00: -L-Q503444368533108E-4 E: 1.458 
PSTA00: -1.05033544504260495R-4 BE: 1.49 

PST200; -6 128208728143 24R-68 Ei 1.50066 
PSTZO0: -6&.03 112732 1356655E-8 E: 1.30066 

BST200: -S 340063483 07554ER-8 E: 1.500966 

BSTZ00: -S.8S6965180600015E-8 E: 1.590066 

PSIZ00: =B.7S9se997S45177T8E=-8 BE: 1.50066 
PSIZ00: =5 .6428029151212004E-6 Fi 1.50066 
PST200; <5 5457215252899 224E-8 Ei 1.50066 
BPST200: -S.4406408066519986R-& E: 1.50066 

PSI200: -S.251559702201636E-E E: 1.59066 

PSTZU0: -5 2544 7R 7239 76358 E-E EB: 1.30066 

PSIZ00: =<B.L57397714326239T7E=-68 Bi 1.50066 
PST200; =-5 .060316301012202R-8 BE: 1.50066 
PSl200: -4. 96323584172 59T04E-8 FE: 1.50066 
PBPST200: -d. S66154915227413E-8 E: 1.50066 

PSTZ00: -d food feos oayl21l4de-8 E: 1.50066 

PSTZ00: -d PT 1Ses20RSb91SddE-B E: 1.50066 

PSIZ00: <4. 57491239689 74494dR=-6 BE: 1.50066 
PST200; -4.47783 15322 597503E-8 EF: 1.50066 
PSl200: -2. 20075S07S0476514E-8 FE: 1.50066 
PSI200: -4. 28356 /00578S992E-8 E: 1.50066 

PSTZU0: -d .LBbS89S9d52 775 7S8E-E BE: 1.30066 

PSrZ00: -d .DESS0e Se ya1AdObdE-B E: 1.50066 

PST200; <3 99242793 52262018-8 EB: 1.50066 
PSl200: -3 8953472673 0662 139E-8 EF: 1.50066 
PSI200: -2 7982666505773 18-8 E: 1,50066 
PSTZ00: -3.70L1LS6038502RB26E-EF E: 1.59066 

PSTZ00: -4 6001 05¢d53620266E-8 E: 1.50066 

PST200: -3.50702494950991dE-8 E: 1.50066 

PST200; <2 4099444391 7075174E-8 FE: 1.50066 
PSI200: -2 31296395113 69194E-8 FE: 1.50066 
PSIZO00: -2.2057834719961915E-8 EB: 1.50066 
PSTZU0: -3 LIB VOSO0BSON2ZES6E-E E: 1.50066 

PSTZ00: -3 .02164261959e550E-8 E: 1.50066 
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PST200; <2. 9245421985 136167E-8 Ei 1.50066 
PSl200: -2 B274618172375 2958-8 EF: 1.50066 
PSI200: -2.7S0S381534ddS69 704E-8 E: 1.50066 

PSIZU0: -2 6335011960695 7T7E-& EB: 1.390066 

PSTZ00: -2. 53642088 SRO1LUR66E-E E: 1.50066 

PSIZO0; =2 43914063 2085814R=-6 EB: 1.50066 
PST200; -2 . d42080424823075E-8 BE: 1.50066 
PSI200: -2 24499022 1960756E-8 BE: 1.50066 
BST2Z00: -2. 1490000 53d72a9E-8 E: 1.50067 

PST200: -a2  DSUR1SR2RSbS2592E-B E: 1.50067 

PST200: -1.9537397616023192E-8 E: 1.50067 

PST200; -1.8566596602866103E-8 EF: 1.50067 
PSI200: -L. 7595795286272 9928-8 EF: 1.50067 
PSI2ZO00: -L.G624994703779555E-8 EB: 1.50067 
PSTZU0: -L.S654d19461B92R62E-F EB: 1.30067 

PSTZ00: -1L.d6bs459e )S0bSbd2dE-8 E: 1.50067 

PST200% -1.371259459203d165E-8 E: 1.50067 

PSl200: -L.274175S5159639597E-8 EF: 1.50067 
PSI200: -L.IVTOS96225966949E-8 BE: 1.50067 
PST200: -L-Q800197142733983E-8 BE: 1.50067 
PST200: -S.B2ZOUS97SRSS9BS2E-9 E: 1.50087 

The ground atate energy is 1.50067 Mey. 

And there vou have it — the program approximates the ground state energy 
as LO0O67 Me¥, pretty darn close to the value you calculated theoretically 
before: 1.50 MeV, 

Very coal, 



Part Ill 

Turning to Angular 
Momentum 
and Spin 

The 5th Wave By Rich Tennant 

“Great —differential equations brought us 
Newton's Law of Universal Gravitation, 
Maxwell's field equations, and now Stuart's 

Rate of Hairy Loss.” 



In this part... 
hings that spin and rotate — that’s the topic of this 
part. Quantum physics has all kinds of things to say 

about how angular momentum and spin are quantized, 
and you see it all in this part, 



Chapter 5 

Working with Angular Momentum 
on the Quantum Level 

In This Chapter 
Angular momentum 

Andular momentum and the Hamiltonian 

Matrix representation of angular momentum 

Eigenfunctions of angular momentum 

n classical mechanics, you may measure angular momentum by attaching 
a golf ball to a string and whirling it over vour head. In quantum mechan 

ics, think in terms of a single molecule made up of two bound atoms rotating 
around each other, That's the level at which quantum mechanical effects 
become noticeable, And at that level, it turns out that angular momentum 

is quantized. And since that has tanvible results in many cases, such as the 

spectrum of exciterdl atoms, it's an important topic. 

Besides having kinetic and potential energy, particles can also have rotation! 
enemy. Here's what the Hamiltonian (total energy — see Chapter 4) looks 
like: 

Here, Lis the angular momentum operator and [is the rotation moment of 
inertia. What are the elgenstates of angular momentum? JEL is the angular 
momentin operator, and / is an eigenvalue of L, then you could write the 
following; 

Hf == a i> Incomplete! 

But that turns out to be incomplete because angular momentum is a vector 
in three-dimensional space — and it can be pointing any direction. Angular 
momentum is typically given by a magnitude anda companent in one 
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direction, which is usually the 4 direction. So in addition to the magnitude f, 
you also specify the component of Lin the 4 direction, L. (the choice of 2 is 
arbitrary — you can justas easily use the X or ¥ direction), 

Wthe quantum number of the # component of the angular momentum ts des- 
inated byw, then the complete eigenstate is given by Cf om, 30 the equation 
becomes the followin: 

L 4 Hl), m>= aT ‘n> 

That's the kind of discussion about eigenstates that | cower in this chapter, 
and | begin with a discussion of angular momentum. 

Ringing the Operators: Round and 
Round with Angular Momentum 

Take: a look at Figure 5-1, which depicts a disk rotating in 4D space, Because 
you re working in al, you have to ao with vectors to represent both magni 

tude and direction. 

——EEEaa 

Figure 5-1: 

A rotating 

disk with 

angular 

momentum 

weetor L. 

— 
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As you can see, the disk’s angular momentum vector, L, points perpendicular 
to the plane of rotation, Here, vou can apply the right-hand rule: Ii you wrap 
your right hand in the directhon something is rotating, your thumb points in 
the direction of the L. vector. 

Having the L vector point out of the plane of rotation has some aclvantages, 
For example, if something is rotating at a constant angular speed, the L 
vector will be constant in magnitude and direction — which makes more 
sense than having the L vector rotating in the plane of the disk's rotation and 
constanthy changing direction. 

Because Lis a dD vector, it can point in any direction, which means that it 
has a, ¥, and z components, LL. and L, (which aren't vectors, just magni- 
tides). You can see L. in Figure 5-0, 

Lis the vector product of KR (position) and P (L= RK x P), You can also write 
L., L,. and L. at any given moment in terms of operators like this, where P,, 

Po and Plare the momentum operon (which return the momentum in the vr, 

vy, and 2 directions) and X,Y, and 2 are the posiftian operators (which return 
the position in the «, v, and 2 directions): 

mL, = ¥P,-<2P, 

m Lo EP, = XP, 

mL. = XP. - YP, 

You can write the momentum operators P,, P,, and P, as 

-_ 40 
i arr 

7 a 
PL = ey 

__» 
i Se P 

Therefore, substituting these operators in the L,, L,, and L. equations, you 

can write the equations as. 

mM,  alywd ga 

L=-a[vE-25 ] 

mM) __aly@ oye L,= a(x v2} 

vi,=-a(z -* ia 
cs 
ax 



130 Part lil: Turning to Angular Momentum and Spin 

Finding Commutators of L, L,, and L, 
First examine LL. and L. by taking a look at how they commute; if they 
commute {for example, if [L,, L.] = 0), then you can measure any two of them 
(L, and L,, for example) exactly. If not, then they're subject to the uncertainty 
revatio, and you can't measure them simultaneously exactly. 

Okay, so what's the commutator of L, and L,7 Using L, = YP, =P, and L, = 
#P,-XP., you can write the following: 

[L. L,] = [¥P,-2P,, 2P,— AP] 

You can write this equation as 

[L,. L,] = [VP. ZP,]-[YP., XP,]—[ZP,. ZP,] + [ZP,. XP] 
= ¥[P,, ZP,JP, + X[Z, P,,]P, 
= (XP, “a YP 

But AP,=VP,« L,, so0[L, L,] = mL. 50 L, and L, don’t commute, which means 
that you cant measure them both simultaneously with complete precision, 
You can also show that [l, L.] = mL, and [L, L,] = ail... 

Because none of the components of anvular momentum commute with each 

other, you can't measure any two simultaneously with complete precision, 

Kats. 

That also means that the L, L,. and L, operators can’t share the same eigen- 
states, So what can you do? How can you find an operator that shares eigen- 
states with the various components of L so that you can write the eigenstates 
as |i i>? 

The usual trick here is that the square of the angular momentum, L’, is a 

4calar, not a vector, so it ll commute with the L,, L,. and L. operators, no 

problem: 

iL Lao 

w iL LJ-0 

MILL) +0 

Okay, cool, you're making progress, Because L, L,, and L. don't commute, 
you can't create an elgenstate that lists quantum numbers for any two of 
them, But because 1° commutes with them, you can construct eigenstates 
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that have eigenvalues for L’ and any one of L,, L,, and L.. By convention, the 
direction that's usually chosen is L.. 

Creating the Angular Momentum 
Eigenstates 

Now's the tine to create the actual eigenstates, |/ m=, of angular momentum 
states in quantum mechanics, When you have the eigenstates, you'll also 
have the eigenvalues, and when you have the eigenvalues, you can solve 
the Hamiltonian and get the allowed energy levels of an object with angular 
momen tum, 

aye Don't make the assumption that the cipenstates are lf me; rather, say they're 

lo, B>, where the eigenvalue of L” is L’la, B> = tala, B>, 50 the eigenvalue of 
L’ is ito, where you have yet to solve for co. Similarly, the eigenvalue of L. is 
Llc, i> = AB ln, Bs. 

Tao proceed further, you have to introduce rosieg and lowenng operators (as 
vou do with the harmonic oscillator in Chapter 4). That way, you can solve 
for the ground state by, for example, applying the lowering operator to the 
Bround state and setting the result equal to zero — and then solving for the 
Rround state itself, 

In this case, the raising operator is L. ane the lowering operator is L. These 

operators raise and lower the L. quantum number. In a way analogous to the 

raising and lowering operators in Chapter 4, you can deline the raising and 
lowering operators this way: 

i Raising: L, « L, + tL, 

Lowering: L_ = L,— iL, 

These two equations mean that 

l . 

L ==|(L,+L 
ee | } i | 

L.=AYL,-L_} 
e 2 + 

You ean also see that 

LL =L, +L," =aL,=L’ = =aL, 
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That means the following are all equal to L’: 

Poms Raed Oa Oe ee] 

web +L" +a, 

w= LOL + LL) + Le 

You can also see that these equations are true: 

M (L' LJ =o 
wm (L., LJ = 28L, 
IL. L.] = +h. 

Okay, now you can put all this to work. You're getting to the good stuf, 

Take a look at the operation of L, on Ia, fo: 

L ltt, B> = 7 

To see what L, lo, (> is, start by applying the L, operator on it like this: 

L,L. la, B> =? 

From [L.. L,) =48L,. you can see that L,L,-L,L,=8L,, $0 

LiL, la, f>=L, Lilo, B> + Ab, lo, B> 

And because Llc, p> = 6. you have the following: 

LL, |g, fis = Ait + VL, |e, (b> 

This equation means that the eigenstate 1. |r, fi> is also an eigenstate of the 
L, operator, with an elgenvalue of {[i4 1). Or ina more comprehensible way: 

L. li, Bs = clo, f+ I> 

where ¢is a constant wou find later in “Finding the Eigenvalues of the Raising 
and Lowering Operators.” 

So the L, operator has the effect of rasing the § quantum number by 1. 
Similarly, the lowering operator does this: 

L_lw, B= = cla, -1> 
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Now take a look at what LL, | re, i+ equals: 

t 
LL, Ia, B+ =7 

Because L? is a scalar, it commutes with everything, L?L, —L,L? = 0, so this is 

trie: 

LPL. lay, Bs = L, L? le, B> 

And because L*| ce, i> = of let, Bs, you have the following equation: 

LL, by, fix 3 cet" L, |e, B> 

Similarly, the lowering operator, L_, fives you this: 

LL im, A> = af? Li, Be 

So the results of these equations mean that the L, operators don't change the 
nm eigenvalue of lo, B> at all 

Okay, $0 just what are o and ff? Read on. 

Finding the Angular Momentum 
Eigenvalues 

The eigenvalues of the angular momentum are the possible values the angu- 
lar momentum can take, 60 they're worth finding. Let's take a look at how bo 
tle just that. 

Deriving eigenstate equations 
with Binar and Brain 

Note that a L. = + L. which is a posithve number, so Lo i =O. That 

means that 

<n, BIL? -— Lo la, Bs 20 
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And substituting in L’), B> = ct" and Lo |e, f> © ffi gives you this: 

=ct, BIL? —L2la, Be = Aa —-B 20 

Therefore, a = fr. So there's a maximum possible value of 6, which you can 

tall i 

You can be clever now, because there has to be a state Im, B,...> such that 
vou can't raise any more. Thus, if you apply the raising operator, you get 
Zero: 

Ltt, Brae = 0 

Applying the lowering operator to this also ives you zero: 

LL | ct, Bras? = 0 

And because LL, = L°-L* - aL, that means the following is true: 

(L'=-L7{=AL2l a, Boo = 0 

Putting in Llc, B.* = af and L |e, fiv= = §,,,.fi dives vou this: 

(ae — prs Ps Birth =O 

Lt 7 Phone! Firear + 1} = th 

Cool, now vou know what m is. At this point, it's usual to rename fi... as f arid 
fias int, so lo, fe becomes I m= and 

om Lh oe = As Dae ote 

LE ee = atl, i> 

You can sav even more, In addition to af... there must also be afi, such 
that when you apply the lowering operator, L_, you get zero, because you 
can't TO an lower than Bin: 

Ll i Binsin = i 

And you can apply L, on this as well: 

LL! i Brain = 0 
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From LL. « Lb’ =L. =AlL,, vou know that 

(L?- Ly +L Ho, Bigg = 0 

which gives you the followine: 

{a = Bus ‘i " Pes alt =) 

a= Brain: * inl ™ 0 

= Phaain’ = Biric 

© Punt Pain = 1) 

And comparing this equation to c= f.48,,,+ 1) = gives you 

— = fan 

Note that because you reach |, f...> by no successive applications of L_on 
let, Boa FOU get the following: 

Brae * Doan + 8 

Coupling these two equations gives you 

Bi peur ™ “hy 

Therefore, 6,,.., tam be either an integer or half an integer (depending on 

whether mis ewen or odd). 

Because / =... = 6, and ais a positive number, vou can find that if nes i 
So now you have it: 

The eigenstates are |, mt. 

The quantum number of the total angular momentum ts J 

The quantum number of the angular momentum along the 2 axis ism. 

mM LiL am = A+ V0, m=, where f=, "2, 1,4, .. 

i LAC ee = tl ote, where oe = - -(P- 13, f- 1b 

a ome. 

For each £ there are 2/+ 1 values of m. For example, if / = 2. then m can equal 
=2,-1,0, 1. or 2. 1P f= */:, then mt can equal"), ="/, <4, Yo, Yi, and "Ys. 
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You can s¢e a representative Land L. in Figure 5-2. Lis the total angular 
momentum and Lis the propection of that total angular momentum on the 
2 axis. 

Figure 5-2: 

Land Ll, 

Getting rotational energy 
of a diatomic molecule 
Here's an example that involves finding the rotational energy spectrum ol a 
diatomic molecule. Figure 5-3 shows the setup: A rotating diatomic molecule 
is composed of two atoms with masses a, and at. The first atom rotates at 
rer, and the second atom rotates atre r,. What's the molecule’s rotational 
emery? 
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fF Ciés 

Figure 5-3: 

A rotating 

diatomic 

molecule. 

—S 

lis the rotational moment of inertia, which is 

' ' a 

}=myFy + mr = wr 

fe ere 
where r= lr, —m! and fy =———, a it, +A, 

Because l= Im, L = Lr a, Therefore, the Hamiltonian becomes 

(olsce 
20” ur? 

137 
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So applying the Hamilltonian to the eigenstates, | fmt, gives you the following: 

I 

HI et >= ar" ian 

Andas you know, L'l, m= <4f« [i'l mr, so this equation becomes 

fid+1)h* 
|! m>= Ly mae ere 

2 hr 
it |e > 

And because HI ft a> = Elf ts, you can see that 

_ fhe 
E 7 

2 or 

And that’s the energy as afunetion off the angular momentum quantum 
nur ber. 

Finding the Eigenvalues of the Raising 
and Lowering Operators 

This section looks at finding the eigenvalues of the raising and lowering angu- 

lar momentum operators, which raise and lower a state's = component of 

anlar momentum, 

Start by taking a look at L., and plan to solve for ¢: 

Ll han soll a+ Ls 

So L.)f m> gives you a new state, and multiplying that new state by its trans- 
pose should give you c: 

(Lt me)'L, ome =e 

To see this equation, note that (L,)£ nts}, [Lets =cPel, m+ Liine le ec. 

On the other hand, also note that(L,|  mej'L, lt m> =< fom LL ats, so 
you have 

<f mIL LU mt 
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What do you do about LL? Well, you see earlier in the chapter, in “Creating 
the Angular Momentum Bigenstates,” that this is true: LL = Lo —-L +8... So 

your equation becomes the following: 

eh mlb? +ALL m= 

Great! That means that ¢ is ecqual to 

ea(eh miLe=L" AL tt my! 

So what is (<, m/L>=L2 +AL,/4 m9’? Apphying the L’ and L, operators 
pives you this value for c: 

c= AA + 1)—mim+ 1)]'" 

Aud that’s the eigenvalue of L,, which means you have this relation: 

LUD arr> = [Mt + 0) — sree + 19)F 1 as Ds 

Similarly, you can show that L. gives you the following: 

Lil, m6 ALA + 1) = mm = 2y]!F 16 m= 

Interpreting Angular Momentum 
with Matrices 

Chapter 4 covers a matrix interpretation of harmonic oscillator states and 
operabors, and you can handle angular momentum the same way (which 
often makes understanding what's going on with angular momentum easier). 
You get to take a look at the matrix representation of angular momentum on 
a quantum level mow, 

Consider a system with angular momentum, with the total angular momen- 
tum quantum number f= 1, That means that a can take the values —1, 0, and 
1. So you can represent the three possible angular momentum states like this: 

1,-Ia= 

0 

(h 

l 
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{1 0 == 

LH] 

Chay, so what are the operators you ‘we seen in this chapter in matrix repre- 

sentation? For example, what is L°? You can write L? this way in matrix form: 

L 

<M |R1> <LI ]L0> <1i)L"|1-1> 

<Lo|V|ii> <10|L'L0> <1,0/E|L-1> 

<1-L I> <L-IL 10> <1-lL|1-1> 

Okay, <1, DIL) 1, l= = i+ DY = Bas <1, LIL? 1, O= = 0: <1, OUL' IL, O> = 2A" 
and soon; Therefore, the preceding matrix becomes the follawing: 

l 

a" DO 

’ 2 0 

oo OO 2 

And you can also write this as 

= 

1 0 
ah’ 0 1 

o 0 = oo 

So in matrix form, the equation L*1 l, ls= on | 1, lsbecomes 

1 0 1 

an |0 1 OO 

( CF jt 
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This equals the following: 

| 1 0 ON 

Ze |0)= 28") 1 Oo 

i) 0 0 1)0 

How about the L. operator? As you probably know (from the preceding sec- 
thom}, Lt m= = Ais 1y— ators 1) lm ls. In this example, = 1 and 
= 1,0, and -1, 50 you have the following: 

Lil is=0 
pw L,|L0 == V2hl1,1> 

yo L, [1-1 = J2al1,0> 

So the L, operator looks like this in matrix form: 

L.= 

Wh 

ao & 

1 oO 

0 1 

Oo 6 

Therefore, L,| 1, (le would be 

L.|l.O>= 

0 1 OO 

Jeo 0 1/1 

oo OO 

And this equals 

L jl,o>= 

1 o 1 ollo 
JRO =JZh0 O° Tf 

0 a 0 olo 

In other wards, ¥2h(1.15=L,|LO> 

141 
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Okay, what about L.? You know that L.| ham = als D=mim=1]'" lh m= 
I>. In this example, /= land ate 1,0, and 1. 50 that means the following: 

po L_ [11 >= J2A]1,0 > 

pw L_|10 >= V2A|1-1 > 

m L_|i,-l-=0 

So the L. operator looks like this in matrix form: 

L_« 

oo 0 

JEhl oO ob 

Oo 1 oO 

That means that L_!1, l= would be 

L_ |Lils= 

oo 1 

J2h\1 0 0 0 

o 1 0 0 

This equals 

L_ |[Llz= 

th a) ch 
JEh |= J2A1 0 oo 

th 01 allo 

Which tells vou that 

V2h|1,0>=L_|1L1> 

Just as you'd expect. 
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Okay, you've found L*, L.. and L.. Finding the matrix representation of L. is 
simple because 

ll, Ix =Li1, I> 

i) = L110 

wt hell, 1s =L11,-1 

So you have that 

L.= 
Lo 0 

A oo oO 

0 o -l 

Thus L, !1,=1l> equals 

L.|L-1>= 

1 Oo Oy 

Ao 6O 6ON0 

a oo 1-1 

And this equals 

L ,|l,-Is= 

th 1g 0 0 

—hO)=h0 0 OF O 

1 o 0 —ij-i 

So L,!1,<1> = =f! 1, <1. 

Now what about finding the L, and L, operators? That's not as hard as vou 
may think, because 

1; 7 

L, =qiL.+L_) 

and 

L, =4(L -L.} 
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Take a look at L, first. L. equals 

L, = 

0 1 @ 

2h 0 
oo 0 

a 

And L_ equals 

L = 

ooo 
Vall 0 

o10 
=] 

So this equals: 

L = 

0 1 

hi 
wto ot SS _ & 

-i({L-L,} 
Okay, now what about L,?2b,=—y—~ , sa 

Cool. This is going pretty well — how about calculating [L,, L,)? To do that, 
you need to calculate [L,, L,) = LL, -L,L,. First find LL, 

LoL. 
Oo 1 Ov -? OO 

hoo ale o = 
z 

O 1 Ut # (h 
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This equals 

LL «= 

a 1 ot -F Oo ji oO -i 

Ai oo iti a a at o 0 
1 1 OO Ff i th -# 

And similarly, LL, equals 

LL 

 -) OFO 1 
i 

3 |t ) jl O 1 

(ho of © 6URUO O1 oth 

And this equals 

0 -— Ov 1  jJ-t @ -3 
| 

fi o -il1 o tl=|o o oO 
i 

So 

[L,.L, ]=L,L,-L,L, 

| | | 

o Oo 
0 3 ra |= 

0 

0 

And this equals 

[L,.L, J=L,L,-L,L, 
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But because 

L. = 

lo @ 

a Oo D 

0 @ -l 

you can rewrite [LL, J=EL, -L.L,= 

10 0 

Ao Oo oo 

0 0 -l 

like this: [LL ]=L,L,—-L,L, =A, 

Cool, so [L, L,] = sb,. 

Rounding It Out: Switching to the 
Spherical Coordinate System 

So far, this chapter has been dealing with angular momentum bras and kets: 

2n|102>L_|LI> 

The charm of bras and kets is that they don’t limit you to any specific system 
of representation (see Chapter 2). $0 you have the general eigenstates, but 
what are the actual ergenfunctions of L, and L°? That is, you're going to try to 
find the actual functions that vou can use with the angular momentum opera- 
tors like 1” and L.. 

Tao find the actual eigenfunctions (nat just the eigenstates}, you turn from 
rectangular coordinates, x, ¥, and 2, to spherical coordinates because it'll 
make the math much simpler (after all, angular momentum is about things 

foing around in circles). Figure 5-4 shows the spherical coordinate system. 
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es 

Figure 5-4: 

Tha 

spherical 

coordinate 

svaiom, 

<<< 

In the rectangular (Cartesian) coordinate system, you use x, v, and = to orient 

yoursell, In the spherical coordinate system, vou also use three quarvtities: r, 

A, aril b, as Figure 5-4 shows. You can translate between the spherical coor- 
dinate system and the rectangular one this wav: The rvector is the vectar to 
the particle that has angular momentum, 4 is the angle of rfrom the z axis, 
and ¢ is the angle of rfirom the x axis. 

More rsind cosh 

MH ve rsini sing 

if z=reoosh 

Consider the equations for angular momentum: 

YZ L, =, -#£F, = -i( 4 ay 

L, =2P, XP, = ~in( 22 _ Ro 

L, = XP, - YP, = in( 2 2 
dy ax 

When you take the angular momentum equations with the spherical-coordi- 
nate-system conversion equations, you can derive the following: 

:_ —iha 
al clei 

a fn ae pre ee 
ao (tad {sned) aye 
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-) -@. =—he-*) 2. cose a 
rl. =I, -fl., = he (3: sing 2) 

Okay, these equations look pretty involved, But there's one thing to notice: 
They depend only on @ and, which means thelr eigenstates depend only on 
Aand}, noton So the eigenfunctions of the operators in the preceding list 
can be denoted like this: 

28, & 1d rn 

Traditionally, you give the name ¥,.08. 0) bo the eigentunctions of angular 
momentum in spherical coordinates, so you have the following: 

Vil, G) = <8, ll ate 

All right, time to work on finding the actual form of Y,,,(4, @). You know that 

when you use the L° and L, operators on angular momentum efenstates, You 
wet this: 

Ll home = its Dae me 

Lee fe = ae a> 

So the following oust be tinue: 

LY (8. 9 AE 1H Yi, 

YO, bh) = eV, 

In fact, you can #o further, Note that L. depends onky on 6, which sutvests 

that you can split ¥. (8,0) up into a part that depends on § and a part that 

tlepencs ono. Splitting ¥,.{A0)} up inta parts looks like this: 

Yin ( 8h) = Bi CDC) 

That's what makes working with spherical coordinates so helpful — vou can 
split the eigenfunctions up into teo parts, one that depends only on @ and 
one part that depends only on qr. 
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The eigenfunctions of L, in 
spherical coordinates 
Start bey finding the cigentunctions of L, in spherical coordinates. In splrerical 
coordinates, the L, operator looks like this: 

L, ==th 

50 LY yf @) = LA fh eb, C) ks 

L.©,,(0}@.(6} = -ih-£0,,(0)®, (0) 

which is the following: 

L.@,. (a), (¢}= -i6.,(6)"=(9) 

And because LY ,.f 0.0) = Tey, Cb), this equation can be written in this version; 

8, (0) =/@)= mine, (a}b, [0] 

Cancelling out terms from the two sides of this equation gives vou this differ- 
ential equation: 

_ a, 
de (g)=mm, (6) 

This looks easy ta solve, and the solution is just 

eb, .f@) = Ce 

where C is a constant of integration. 

You can determine C by insisting that (0) be normalized — that is, that the 
lollowing hold true: 

[o (6}@.(6)a0=1 
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which @ives you 

(2x) 

So ob (0) is equal to this: 

|¢)|= fig 

(an) 

You're making progress — vou've been able to determine the form of &,(g5, 
so ¥.f8b) = 6,06) Dt), which equals 

¥,(8e)= 6,4 )@, {| “See a 

That's great — your're halfway there, but you still have to determine the form 

of @ \(8), the eigenfunction of L, That's coming up next. 

The eigenfunctions of Lin 
spherical coordinates 
Now you're going to lackle the eigenfunction of L’| @,.(0). You already know 
that in spherical coordinates, the L* operator looks like this: 

a ce ee eer ee 
(panes) eS] 

That's quite an operator. And you know that 

Y, (a@)=0, (aj 
( rey 

So applying the L operator to ¥,,(A0) dives you the following: 

= I ral sind + 
5 —i* ] 

LY. (86) sind a0) M956 an ae | ; @.{@le™ 
(2x : 
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And because L°Y,,(8.¢) = i+ DY, 8, @) = + Dy eee, (6), this equa- 
Hon becomes 

he eb (ee: 7 
(2m y" lated sind 5 | sinthagt |~(@e 

=N(14+1)¥@, (¢}——_— 
‘ea 

Wow, what have you gotten In to? Cancelling terms and subtracting the right- 
hand side from the left finally gives you this differentlal equation: 

lL a a 1 @ att nj lta B (sme d + shg ds @,(Aje"+i+e (ale =0 

mS 

Combining terms and dividing by e 

ty # sina, @.(3)| + te 1)- fA Je.to) =0 

gives vou the following: 

Holy cow! [sn't there someone who's trhed to solve this kind of differential 
equation before? Yes, there is. This equation is a Legendre difercmtiat equa- 
fron, and the solutions are well-known, (Whew!) [n general, the solutions take 
this Form: 

@,,.(8) = Cy P)feos) 

where F,.fco0s8) is the Legendre fanctiore. 

So what are the Legendre functions? Tou can start by separating out the m 
dependence, which works this way with the Legendre functions: 

P.(x}=(1-a7} oP) 

where Pais called a Legendre polynomial and is given by the Rodrigues 
formuba: 
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You can use this equation to derive the first few Legendre polynomials like this: 

ma Pie} = 1 

MH Pixs 

Mm Poory = 2 (Ax - 1) 

i Pc) = (Sx = 3x) 

em Pute) e /s (5a = 30 + 3) 

Pet) = fe (G3x" — The + 15x) 

and soon, That's what the first few Piov) pobynomials look like. So what do the 

associated Legendre functions, Py 00 look like? You can also calculate them, You 

can start off with Pytak, where mm = 0). Those are easy because Pyla) = Pile), so 

mM Pifx) =x 

Pela) = 2 Cx = 1) 

Pox) 3 2 (5x = 3x) 

Also, you can find that 

Puta) = (l-ay" 
m P(x) = Sed 2" 

m Pox) = a1 —x°y'" 
yr Py (x)= 3 (5x? -1)(1-37) 
Po) = liatl-2x) 

m P(x) = lix(l-ay 

These equations give you an overview of what the P,, functions look like, 
which means you're almost done. As you may recall, (6), the @ part of 
Vial. 2). is related to the P,, functions like this: 

6,8) = Cy Py eltose) 

And now vou know what the P,,, funetions look like, but what do C,,,, the con- 

stants, look like? As soon as you have those, you'll have the complete angular 

momentum eigentunctions, Y,,,(4, 0), because ¥,,(6, 0) = ©, eh, (ip). 
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You can go about calculating the constants C,, the way you always calculate 
such constants. of integration in quantum physics — you normalize the elgen- 
functions to 1. For ¥,.{0.0) = G,, (hh dp), that looks like this: 

[dof [O.o)¥, (0.¢)sing de=1 

Substltute the following three quantities in this equatlon: 

i Fie(®. ih) = ©,,.(8) bh) 

yo b,(¢] == 
(20) 

 @ (0) = C,,P,.fcost) 

You det the Following: 

KGol apie ‘{cos#)| sind dg =1 Oy ! 1 we 1 

The integral over $ gives 2m, so this becomes 

Ic..!" flP., (cose) sino do=1 

You can evaluate the integral to this: 

og (Eten 
IC. 2f+1(t—melt 

So in other words: 

«| (2f+1][f-m iif? c,=(-1] EE Snaeniet 
2[f+m}! 

Which means that 

G,, (0) =(-1y | eh mies where m 20) 
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So V8, 6) = 6) (8 eb 0b), which is the angular momentum eigenfunction in 

spherical coordinates, is 

ent “p,(cas@)e" where m2 0 
4x(1+m|! 

vel@e)=(-1/| 

The fhinctions diven by this equation are called the normalized sofenical fea 

moarics. Here are what the first few normalized spherical harmonics look like: 

Y,.{6,¢)=—_ ww Yool Tay 

mY ft, = Céory'” cose 

w ¥ [ee )= x ae 3 a sind 

mY (6, $= Gay” (Seo 8-1) 

 Y..,(8¢}= (8x) ‘e™ sind 

mM Yo o(8, $) = (ony ee" sinh 

In fact, you can use these relations to convert the spherical harmonics to 

rectangular coordinates: 

 sindcosd =e 

i singsina == 

a come = z ; 

Substituting these equations into 

_¢ aye] (21+ Ulm)! Y..(G¢}=(-1] Sor P,,[cosd je" where m2 0 gives vou the 

spherical harmonics in rectangular coordinates: 

1 

(4)? 
mw ¥, (x92) = 

 Yals.z)= (You) "¥% 
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~ ¥, (x2 ]= (3%) ty
/ 
r 

gf yaaa") / 
ve Yo( 49.2) =(54 6) 

aa 

l - 
- Yau(eyZ)=F Bel mElxeD yy 

| (ac? = py? + Die | Yates) aq| 789), 



156 Part Ill: Turning to Angular Momentum and Spin 



Chapter 6 

Getting Dizzy with Spin 
In This Chapter 

Discavering spin with the Stern-Gerlach experiment 

Looking at eigenstates and spin notation 

Understanding fermions and bosons 

Comparing the spin operators with angular momentum operators 

Working with spin 4: and Pauli matrices 

Pvc have suggested that orbital angular momentum is mot thre 
only kind of angular momentum present in an atom — electrons could 

also hawe infansic built-in angular momentum. This kind of built-in angular 
momentum ts called som. Whether or not electrons actually spin will never 
be known — thev' re as close to potntlike particles as you can come, without 
any apparent internal structure. Yet the fact remains that they have intrinsic 
angular momentum. And that’s what this chapter is about — the intrinsic, 
built-in quantum mechanical spin of subatomic particles, 

The Stern-Gerlach Experiment and 
the Case of the Missing Spot 

The Stern-Gerlach experiment unexpectedly revealed the existence of spin 
back in 1922, Physicists Otte Stern and Walther Gerlach sent.a beam of silver 
atoms through the poles of a magnet — whose magnetic fleld was in the z 
direction — as you can see in Figure 6-1. 
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ds 

Figure 6-1; 
The Stern: 

Gerlach 

Bx PenMent 

aa 

_"] Spin up 
—— 

Sikver atoms rr 

oT suin down 

Magnet bereen 

Because 46 of silver’s 47 electrons are arranged in a symmetrical cloud, they 
contribute nothing to the orbital angular momentum of the atom. The 47th 
electron can be in 

The 5s state, in which case its angular momentum is {= and the 2 com- 
ponent of that angular momentum is 0 

The 3p state, in which case its angular momentum is / = 1, which means 

that the 2 component of its angular momentum can be -1, 0, or 1 

That means that Stern and Gerlach expected to see one or three spots on the 
screen you see at right in Figure 61, corresponding to the different states of 
the 2 component of angular momentum. 

But famously, they saw only two spots. This puzzled the physics community 
for about three years. Then, in 1925, physicists Samuel A. Goudsmit and 
George E, Ublenbeck suggested that electrons contained intrinsic angular 
momentum — and that intrinsic anivular momentum is what gave them a mag 

netic moment that interacted with the magnetic field. After all, it was appar- 
ent that some angular momentum other than orbital angular momentum was 
at work here, And that built-in angular momentum came to be called spin, 

The beam of silver atoms divides in two, depending on the spin of the 47th 
electron in the atom, $0 there are two possible states of spin, which came to 
be known as op and doen. 
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Spin is a purely quantum mechanical effect, and there’s no real classical 
analog, The closest you can come is to liken spin to the spin of the Earth as 
it foes around the sun — that is, the Earth has both spin (because it’s rotat- 
ing on its axis) and orbital angular momentum (because it's revolving around 
the sun}, But even this picture doesn’t wholly explain spin in classical terms, 
because it's conceivable that you could stop the Earth from spinning, But you 
can't stop clectrons from possessing spin, and that also goes for other sub- 
atomic particles that possess spin, such as protons. 

Spin doesn't depend on spatial degrees of freedom: even if you were to have 
an electron at rest (which violates the uncertainty principle), it would still pos- 
SOSS Spill. 

Getting Down and Dirty with 
Spin and Eigenstates 

Spin throws a bit of a curve at you. When dealing with orbital angular 
momentum (see Chapter $), you can build angular momentum operators 
because Orbital angular momentum is the product of momentum and radius. 
But spin is built in; there's no momentum operator involved. So here's the 
crux: You cannot describe spin with a differential operator, as you can far 
orbital angular momentum. 

In Chapter 5, show how orhital angular momentum can be reduced to these 
differential operators: 

= YP. -ZzP =-ih| yt - za  L, = YP, - 2, wfv2 za) 

ML, =2P,- XP. --n(z2-x2] 
elo az 

él a wl, = XP -¥P =—-ib| XK——_-¥— 
= F 7 w( chy 2 | 

And you can find eienfunctions for anivtular momentum, such as V5.7 

¥n(2.¥.2}=( 2] = 
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But because vou can't express spin using differential operators, you can't 
find eltenfunctions for spin as you do for angular momentum. So that means 
that you're left with the bra and ket way of looking at things (bras and kets 
aren't Hed to any specific representation in spatial terms), 

In Chapter 5, you also take a look at things in angular momentum terms, 
introstucing the eigenstates of orbital angular momentum like this: |f, cre 
(where {is the angular momentum quantum number anc on is the quarcrtum 
number of the 2 component of angular moment). 

You can use the same notation for spin eigenstates. As with orbital angu- 
lar momentum, you Can use a total spin quantum number and a quantum 
number that indicates the spin along the z axis (Mote: There's no trive z axis 
built in when it comes to spin — vou introduce az axis when you apply a 
mapnetic field; by convention, the z axts is taken to be in the direction of the 
applied magnetic fheld). 

The letters civen to the total spin quantum number and the z-axis component 

if the spin are s and om Cou sometimes see ther written as s and). In other 
words, the eigenstates of spin are written a6 |s ar. 

So what possible values can sand mm take? That's coming up next. 

Halves and Integers: Saying Hello 
to Fermions and Bosons 

In analovy with orbital angular momentum, you can assume that mm (the 2-awis 

component of the spin) can take the values -_ -s+ 1, ....8-1, ands, wheres 

is the total spin quantum number. For electrons, Stern and Gerlach observed 
hwo spots, so you have 25+ 1-2, which means thats - |). And therefore, m 
can be 44/2 or =. So here are the possible eigenstates for electrons in berms 
of spin: 

Ja, Aft 

| Mts, afl Et 

So clo all subatomic particles have s = |/:? Nope. Here are their options: 

 Fermions: ln plivsics, particles with hall-integer spin are called fermions. 
They include electrons, protons, neutrons, and so on, even quarks. For 
example, electrons, protons, and neutrons have spins = '/:, and delta 
particles have g = "2. 
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And the eigenvalues of the 3. operator are 

5. |470 > = mes > = £5 [5m > 

You can represent these two equations graphically as shown in Figure 6-2, 
where the two spin states have different projections along the 2 axis. 

Figure 6-2: 

Spin magmi- 

jude and z 

projection, 
[es 

rT } rT 

Spin '/; matrices 
Time to take a book at the spin cigenstates anc operators for particles of spin 
Vin berms of matrices. There are only two possible states, spin up and spin 
town, so this is easy. First, you can represent the eigenstabe |"), \fs> like this: 

' 1 ly le 
MM > i 

And the eigenstate | 55, —o> books like this: 

lf _is_l? 
2, a) >-fi 

Now what about spin operators like 5°? The $ operator looks like this in 
matrix bern: 
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5° 

Vy f is|% ‘9 > cw v-¥ > 

eae cl -Ws|n.-> 

And this works out te be the following: 

2_3,:|! 0 | 
4 |o | 

Similarly, you can represent the 5, operator this way: 

= 

lf Ls l yi lf _-i4 < lls V.y> cl Vs|\y > 

lL? Le LY 1 | 
coe ‘A |e <) An Vik “> 

This works cut to 

_all o 

2 io 

Using the matrix version of S., lor example, you can find the 2 component 
of the spin of, say, the eigenstate |), i>. Finding the 2 component books 
like this: 

Bs 1a, Yas 

Putting this in matrix terms gives you this matrix product: 

hil Oo 

210 =1)1 

Here's what you get by performing the matrix multiplication: 

' bs 

Z 

1 oO 

 -l 

t 

1 

_-k 
lj} 2 
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And putting this back into ket notation, vou wet the following: 

Lf _1* -fjie if 5M > Fle? 

How about the raising and lowering operators 5, and 8? The 5, operatar 
Looks like this: 

5 = 

ho I 
lio 0 

And the lowering operator looks like this: 

5 = 

ho oO 

Hil a 

So, for example, vou can figure out what $,1'/:, > is. Here it is in matrix terms: 

fj 2 ob 

Lj O)1 

Performing the multiplication gives you this: 

Ay UO) al 

1)0 1) ol 

Or in ket form, it's $,G, ="h> = ALY, See, Bool, 

Pauli matrices 
Sometimes, you see the operators &,, 5,. and 3, written in terms of Paull 
matrices, go, a, and a.. Here's what the Pauli matrices book like: 
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Chapter 7 

Rectangular Coordinates: Solving 
Problems in Three Dimensions 

In This Chapter 
Exploring the Schrédinger equation in the x, + and 2 dimensions 

Working with free particles in 3D 

Getting into rectangular potentials 

Seeing harmonic oscillators in 3D space 

Qe simeosion problems are all very well and good, but the real world 
has three dimensions, This chapter is all about leaving ane-<limensional 

potentials behind and starting to take a look at spinless quantum mechanical 
particles in three dimensions. 

Here, you work with three dimensions in rectangular coordinates, starting 

with a look at the Schrixlinger equation in Glorious, real-life 3D. You then 

tlelve into free particles, box potentials, ancl harmonic oscillators. Note: By 
the way, the next chapter uses spherical coordinates because some problems 
are better in one system than the other. Problems with spherical symmetry 
are best handled in spherical coordinates, for example. 

The Schrodinger Equation: Now in 3D! 
In ane dimension, the time-dependent Schrodinger equation (ol the type in 
Chapters 3 and 4 that let you find the wave function) logks like this: 

ft Rt : : 

Sar wet Oa) V [at hy(at}s hw xt) 
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And you can generalize that into three dimensions like this: 

His 7 +i +2 XJ (x. y zt) + Vir Je (=y2}= in y(x,y,z,t) 

Using the Laplacian operator, you can recast this into amore compact form. 
Here's what the Laplacian looks like: 

Ca ar i nD 
(z+ cy? 2 )-v 

And here's the 3D Schrédinger equation using the Laplacian: 

fe 
2m 

ile 3 yl x, ¥, Zt ) it }+¥(x, y,z.f lolx, ¥Z f}= 

To solve this equation, break out the time-dependent part of the wave 

funeticn: 

wl rat be oly fe 

Here, wi, ¥, 2) is the solution of the time-independent Schradinger equation, 

and E is the energy: 

vy x.y2}+V(x¥.2 }W%¥.2) Eyl xy,3) 

So far, 50 tom, But now you've run into a wall — the expression Vy (xyz | 

is in general very hard to deal with, so the current equation is in general very 
hard to solve, 

So what should you do? Well, you can focus on the case in which the equa- 

ion is seenrble — that is, where you can separate out the x, v and 2 depen- 

tlence and fined the solution in each dimension separately, In other words, in 

separable cases, the potential, Vix, v, 2), is actually the sum of the x, v, and = 

potentials: 

Vil 2) = Vue + Ve + Vole) 

Now you can break the Hamiltenian in S-Viw(x,y,2] + Wi x.y.z jul xyz} 

= Ey( x,y,z) inte three Hamilitonians, H, H, and H.: 
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(H, + H, + Hywtx, 9, 2} = Eyrla, y, 2) 

where 

4? ot 

ie ann az! tV, (2 

When vou divide up the Hamiltonian as in (H, « H, + Hojyrta. ¥, 2) = Fei, ¥, 2), 

you can also divide up the wave function that solves that eqquation, [In par- 

ticular, you can break the wave function into three parts, one for x, ¥, and 2: 

wi vy 2) = NOVO A(z) 

That's going to make lile considerably easier, because now you can break the 
Hamiltonian up into three separate operators added together: 

aff 4+¥ ai 

The total energy, E, is now the sum of the x component's energy plus the ¥ 
component's energy plus the z component's energy: 

E=E, +6, +E, 

So you now have three independent Schrodinger equations for the three 

dimensions: 

ena ox (x) +V(2)X (27) = EX) 

)+¥(y)¥(y)=E,¥(¥} 

sh a 7(2)+v(y}elz)=E.2(2) 



Hidden page 



___ Chapter 7: Rectangular Coordinates: Solving Problems in Three Dimensions ] 13 

ot # y()oR x{x) a Fm ae? EM x | 

=f? OP : 
oe Eee (vd E, Vy) 

—h? Si - Pe Srt(2)=e.2(2) 
Ifyou rewrite theae equatians in terms of the wave number, &, where 

:_ 2meE : : 
k= a then these equations became the following: 

yo Br X(x)=-#, R(x) 

a viylo—k fy [¥! ye yp YL) =-& YY) 

ye erk(z)=-2,'Z(z) 

In this section, you take a look at the solutions to these equations, find the 
total energy, and acd time dependence. 

The x, y, and z equations 
Take a look at the a equation for the free particle, 25 x(x)= =i, x(x}. Wieou 
can wrike its general solution as 

Kix) - Aa? 

This is a plane wave, and normalizing it (as | discuss In Chapter 3) gives you 
this: 

x(x }=- l me 

{2n}* 

The # and 2 components follow the same farinn: 
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z Note that #,” +4," + & is the square of the magnitude of & — that is, &°. 
Therefore, you can write the equation for the total energy as 

_ AP 3 i 1) A F] 

ars pea] am 

Note that because FE is a constant, no matter where the particle ls pointer, 

all the eigenfunctions of 2 x(x)= -k *X(x}, 2 ¥{y) =—-k "¥[¥] anal 
chy" , Pek? . 

272) i "F(z ) are infinitely devenerate as you vary &,, &, amd Re. 

Adding time dependence and 
getting a physical solution 
You can add time dependence to the solution for wos. v, 2). giving you why, ¥, 

z, f, if you remember that wlx,¥.2,¢)=0[a,¥,2 le “+ That equation dives 

vou this form for wi, v2. fp 

w(x,y,2,t)=
 ] : ita 

. (2a) 5 

Because a= z the equation turns inta 

dri 
yl x, 2,0 )= = 

: (2m) 

In fact, now that the right side of the equation is in terms of the radius vector 
r, You can make the left side mateh: 

1 ere] 

(22) 
wirt|= 

That's the solution to the Schrédinger equation, but it's unphysical {as | 

discuss for the one-limensional Schrédinger equation for a free particle in 

Chapter 3). Why? Trying to normalize this equation in three dimensions, for 
example, gives you the following, where C is a constant: 
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P| 

Figure 7-2: 

A box 

potential 

in aD. 

a 

Inside the box, say that Vix, y, 2) = 0, and outside the box, say that Viv, ¥, 2) = 
oo, So you have the following: 

Vix yz h= Owhere dex ol, O<veLl, O<2<L, 

so otherwise 

Dividing Vix. 2) into Vi0c), Vi0ig, and Vaz) gives vou 

ma Viixl= |0, where d<x<L, 

eo Otherwise 

MY iyl= |, where O< y<L, 

« otherwise 

mV (z|= |0,whereQ<z<L, 

wo otherwise 
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Okay, because the potential goes to infinity at the walls of the box, the wave 
function, whe, i. 2), must go to zero at the walls, 50 that’s your constraint. In 
3D, the Schrécdinger equation looks like this in three dimensions: 

Sm F(x Hz} (xyz) oly.) = Ey (xyz) 

Writing this out gives you the following: 

fe? 2 z z . 

a [2+Es i Julsxe}4 V(x.y.2)o(x.7,2)= 
Ew| x,y,z] 

Take this dimension by dimension. Because the potential is separable, you 
can write yin, vt) as uta. 2)> AOC O02). Inside the box, the potential 
equals zero, $0 the Schrédlinger equation looks like this lor», ¥, and z 

a =~ = 2 x(x )=E,X{x] 

The next step is to rewrite these equations in terms of the wave number, & 

2mE 
i? 

the following equations: 

Because &° = ,you can write the Schrixlinger equations for x, y, and 2 as 

ye SX x)=-# x(x) 

¥(y}=-&Y¥[¥] Ea 
ye 

a £ lz z)=—k,2(2] 
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Start by taking a look at the equation for x, Now vou have something to work 

with — a second order differential equation, £5x(x) =—k, x(x} . Here are 

the twa independent solutions to this equation, where A and Bare yet to be 
determined: 

mM Xt) = A sintkx) 

i Xt) = B caste) 

a kb i 
So the general solution of ay" X{ x) wt, X(x) is the sum of the last two 

equations: 

Xtv)} = Asin(ier) + B eosfhy) 

Great. Now take a look at determining the energy levels. 

Determining the energy levels 
To be able to determine the energy levels of a particle ina box potential, you 
need an exact value for XO — not just one of the terms of the constants A 
and B. You have to use the boundary conditions to find A and B. What are the 
boundary conditions? The wave function must disappear at the boundaries 
of the box, so 

wt NCO) = 0 

m XfL.)=0 

So the fact that yi} = 0 tells you right away that B must be 0, because casi) 
= 1. And the fact that X(L.) = 0 tells vou that X¢L) = A sin(#,L,) = 0. Because 
the sine is when its argument is a multiple of x, this means that 

AL =a a, = 12,3... 

it 
bos 

' LE. 

And because &* = ae it means. that 
I 

zulg oa, 21,23... 

_ rt "hear? 

eee) Aa 
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That's the energy in the « component of the wave function, corresponding ta 
the quantum numbers 1, 2,3, and so on. The total enercy of a particle of mass 

OF ua 

m inside the box potential is E = E, + 6, + E,. Following E, = 1 WOU 

have this for E, and E.: 

nh 

2m’ nm, = 12,4... 

. fhe i,m 12,5... 

a 2m.’ 

So the total energy of the particle is R= R« Fy « E., which equals this; 

E= 

Aches 
I m=12?.3... 

QmL * : 

nh 
o_o =12,3... “Gel: 
no hex 

+ omL? nt, = 12,3... 

And there vou have the total energy of a particle in the box potential. 

Normalizing the wave function 
Now how about normalizing the wave function wx, v, 2)? In the x dimension, 
vou have this for the wave equation: 

X(x]= Asin{ 4 | 
4 

So the wave function is a sine wave, going to zero al x - 0 and x - L. You can 
also insist that the wave function be normalized, like this: 

1= {Ix (xp ae 
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By normalizing the wave function, you can solve for the unknown constant A 
Substituting for Sta in the equation gives you the following: 

ne ("2 
jee i 

iy 

t x 
Therefore, 1 Al fsin'{ 22 Ja becomes |= Jal™s Jwhich means you 

can sobre for A: 

Creat, now you have the constant A, so you can get Xi}: 

K(x) (2 a ] ‘an{ 5 nm, = 12,3... 

Now get wha, 2). You can divide the wave function into three parts: 

wor, ¥ 2) = MOYO A(z) 

By analogy with Silo, you can find ¥¢v) and “23: 

Y[y}= (4 aA J sa( 2 n.=LZi... 

2{z)=( 24, ) sol — ai, 01,23... 

So why, ¥. 2) equals the following: 

visa) 8] ‘sin[ 5" i, * Jan ae }sn( 22 

a, 212,35... 

A, = 12): 
a_=12.3.. 
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The restoring force has the form F, = 4, in one dimension, where &, is 

the constant of proportionality bebyeen the force on the particle and the 
location of the particle. The potential energy of the particle as a function 

of location xis V(a)= he . This is also sometimes written as 

V(x)= pine, x" 

i Y 
where G7 ee 

: oon 

In this section, you take a look at the harmonic oscillator in three dimen- 
sions. In three dimensions, the potential looks like this: 

Vix yz = 4 mon,'x* + Ley? 4+ dime fs" 
2 2 

hoof a” 
r fm 

f a 
' vom 

‘ ra 
@ia"s/ 

: im 

Now that you have a form for the potential, you can start talking in terms of 

Schrédinger’s eqpuation: 

_ fe z = z 
; 

ee a +2 wlxy.e j+¥ix.¥,2)y (09,2) = Ew x.y.z) 
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Chapter 8 

Solving Problems in Three 
Dimensions: Spherical 

Coordinates 
In This Chapter 

Problems in spherical coordinates 

Free particles in spherical coordinates 

Square well potentials 

Isotropic harmonic oscillators 

n your other life as a sea captain-slash-pilot, you're probably pretty 
familiar with latitude and longitude — coordinates that basically name a 

couple of angles as measured from the center of the Earth, Put together the 
angle east or west, the angle north or south, and the all-important distance 
fram the center of the Earth, and wou have a vector that gives a good descrip 

tion of location in three dimensions, That vector is part of a spherical! coonds- 

nate SVSIeRT 

Navigators talk more about the pair of angles than the distance (“Earth's sur- 
lace” is generally specific enough for them), but quantum physicists find bath 
angles and radius length important. Some 3D quantum physics problems even 
allow you to break down a wave function into two parts: an angular part and a 
radial part. 

In this chapter, | discuss three-dimensional problems that are best handled 
using spherical coordinates, (For 3D problems that work better in rectangu- 
lar coordinate systems, see Chapter 7.) 
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A New Angle: Choosing Spherical 
Coordinates Instead of Rectangular 

Say you have a 3D box potential, and suppose that the potential well that the 
particle is trapped in looks like this, which is suited to working with rectangu- 
lar eoordinabes: 

; 0, where Q<x<ch,, Qe veh, Q<ez<L, 
V(x.¥.2)= | 

& otherwise 

Because you can easily break this potential down in the x, ¥, and 2 directions, 
vou can break the wave function down that way, too, a5 you see here: 

wOr ¥, 2) = XOQV(Z(Z) 
Solving for the wave function gives you the following normalized result in 

rectangular coordinates: 

I 

visvz)=| CLE sn) win) Wud 

m,=1,2,4.., 

at, 012,95... 

A_=12.4,., 

The energy levels also break down inte separate contributions from all three 

rectantiular axes: 

E=E,+E,+E, 

And solving for E gives vou this equation (from Chapter 7): 

E = 
| 

seal n, = 12,3... 
Eh 5 

a he 
-——— Al=Lé i... 

2mL .* e 

nates 
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But what if the potential well a particle is trapped in has spherical symmetry, 
not rectangular? For example, what if the potential well were to look like this, 
where rls the radius of the particle's location with respect to the origin and 
where @ ls a constant? 

Vir} 
= ()h where Ver<ca 

ef otherwise 

Clearly, trying to stull this kind of problem inte a rectangular-coordinates 
kind of solution is onky asking for trouble, because although you can do it, it 
Involves lots of sines and cosines and results ina pretty complex solution, A 
much better tactic is to solve this kind of a problem in the natural coordinate 
system in which the potential ls expressed: spherical coordinates, 

Fiture &1 shows the spherical coordinate system along with the correspond- 

ing rectangular coordinates, x,y, ands. In the spherical coordinate system, 
you locabe points with a radius vector named», which has three components: 

An rcompanent (the length of the radius vector} 

(the angle from z axis to the the r vector) 

> (the angle from the x axis te the the r vector) 

Pe 
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Taking a Good Look at Central 
Potentials in 3D 

This chapter focuses on problems that involve cenfnal potentials — that is, 
spherically symmetrical potentials, of the kind where VG) = Vir). ln other 
words, the potential is independent of the vecbor nature of the radius vector; 
the potential depends on only the magnitude of vector r (which is 7), oot on 
the angle of wr. 

When you work on problems that have a central potential, you're able to 
separate the wawe function info a radial part (which depends on the form af 
the potential) and an angular part, which is aspherical harmonic. Read on. 

Breaking down the Schrédinger equation 
The Schrodinger equation looks like this in three dimensions, where A is the 
Laplacian operator (see Chapter 2 lor more on operators): 

SE aw(r)ev(rjy lr) = Bye] 

And the Laplacian operator looks like this in rectangular coordinates: 

fa 3 ow 
dx" oy dz! 

In spherical coordinates, it’s a little messy. but you can simplify later. Check 

out the spherical Laplacian operator: 

1a ] r Ault, 
ror? ‘ fer? 

Here, L” is the square of the orbital angular momentum: 

i x] 1 oa a 1 
seid: [stad { sno) sin’ d z,| 

So in spherical coordinates, the Schrodinger equation for a central potentkal 
Looks like this when you substitute in the terms: 

Bt Slr} se atl e)+V ely (e)= Ev (e) 
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Take 3 look at the preceding equation. The first term actually corresponds to 
the redial! kinetic energy — that is, the kinetic energy of the particle moving 

in the radial direction, The second term corresponds to the rmfational kinetic 

energy. And the third tenn corresponds to the pewveniial enery. 

So what can you say about the solutions to this version of the Schrodinger 
equation? You can note that the first term depends only on. as does the 
third, and that the second term depends only on angles, So you can break 
the wave function, yi) > wor 6, ib), inko two parts: 

4, radial part 

A part that depends on the angles 

This is a special property of problems with central potentials. 

The angular part of w (r, 9, 2 
When you have a central potential, what can you say about the angular part 
of wir, 6, ¢)? The angular part must be an eigenfunction of L’.and as | show it 
Chapter 5, the eigenfunctions of L* are the spherical harmonies, ¥,,,(0, 0) (where 
fis the total angular momentum quantum number and om is the z component of 
the angular momentum’s quantum number), The spherical harmonics equal 

(2t+1)(t—<m) F ¥.(0a}=(-1)| SER (oosd}em* wherem=0 

Here are the first several normalized spherical harmonics; 

1 
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That's what the angular part of the wave function is going to be: a spherical 
harmonic, 

The radial part of w(t, 9, 0) 
You can give the radial part of the wave function the name Rr), where ni 
ig. a quantum number corresponding ta the quantum state of the radial part 
of the wave function and /is the total angular momentum quantum number, 

The radial part is symmetric with respect to angles, so it can't depend on mm, 
the quantum number of the z component of the angular momentum. In other 
words, the wave function for particles in central potentials Looks like the fol- 
lowing equation in spherical coordinates: 

yr, 8) = RaleyYaellB, &) 

The next step is to solve for B,.(f) in general, Substitutiog wir, 4, 4} 
from the prec eae equation inte the Schridinger equation, 

oie le r)+——— Vy (r+ V(r je) = Eye (r}. gives you 
fin rode? Sar 

LY, (6,9) -n* + — [rR (r)]+2mr‘[ v(r)-E]+ ¥,(8,6) R,{r] ar 
=(} 

Okay, what can you make of this? First, note (rom Chapter 5) that the spheri- 
cal harmonics are eigenfunctions of L’ (that's the whale reason for using 
them), with eigenvalue (f+ Dn’: 

Ly, (ao}=t(l+ ry, (ae) 

So the last term in this equation is simply i+ yi. That means that 

’ : 4 Tus 7 LY Lael 
A yard” Bele) +2 [Mir)-2]+ ! _) takes the form 

Y.( 80) 

a try Bel Rr) e2me [vr] E] sir sa)e 0, which equal 

s# # Lr mlee| ve) female erate 

= 

ha 45 

The preceding equation is the one you use to determine the radial part of the 
wave function, Rr) it's called the nodal equation for a central potential, 
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The way vou usually handte this equation is to substitute p for &r where & = 
(2m, "6, so that RF) becomes Bifkr) = Rap). This substitution means that 

= Solr, \r r) |+ ehh ae Ru(r} |=e[r Rw(r)| becomes the following: 

PRA) “ei - 
=e 

ae ap 

In this section, you see how the spherical Bessel and Neumann functions 
come to the rescue when you're dealing with free particles. 

The spherical Bessel and 
Neumann functions 

FRA) gaRle) | e+) : -R,(p)=0., ap" p dp P 
looks tough, but the solutions turn out to be well-known — this equation is 
called the sofencal Bessel eqaation, and the solution 1s a combination of the 
spherical Bessel functions [fo] and the spherical Neumann functions. [rp]: 

The radial part of the equation, 

Rite) = Ay fe) + Bnd) 

So what are the spherical Bessel functions and the spherical Neumann func- 

tions? The spherical Bessel functions are given by 

ilp)=(-P} (i¢ 

Here's what the tirst few iterations of fo} look like: 

 flel= os 

wl el= - ar 

y- fe) 282 Some _ sng 
How about the spherical Neumann functions? The spherical Neumann fune- 

tidns are given by 

nor=-t-o 5 5 
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Here are the first few iterations of mfy 

ado) SP 
C085 Sirk 

a cr 

a 

The limits for small and large p 
According to the spherical Bessel equation, the radial part of the wave fune- 
tian for airee particle lagks like this: 

Rito) = Aydp) + Byrd) 

Take. a look at the spherical Bessel functions and Neq~mann funetions for 
smiall and large p: 

i(p}- 2' Tp" 
Small p: The Bessel functions reduce ta i\P} (2! nt i}! 

-(2f-1)}!e"" 
The Neumann functions reduce to n,/p |= ae 

if ls i 
Large p: The Bessel functions reduce to ile) 7 inf oe iz) 

The Neumann finctions reduce to ", [7] ™ ~ eos a a : 

ote that the heumann functions diverve for small p, Therefore, any wave fune- 

tion that includes the Neumann functions also diverges, which is unphysical, 

So the Neumann functions aren't acceptable functions in the wave function. 

That means the wave function yr, 6, ¢5, which equals K,rh ¥).[8. ¢3, equals 

the follow ing: 

wr 0) = JR YG, @) 

where & « (2mE,) "/h. Note that because & can take any value, the energy 
levels are COMTIMLGLUS, 
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Handling the Spherical 
Square Well Potential 

Take a look at a spherical square well potential of the kind you can see in 
Figure 62 (] introduce square wells in Chapter 3). This potential traps particles 
inside it. Mathematically, you can express the square well potential like this: 

=V.. where Der ca 
Virj= 

0), where r >a 

ee 

Figure B-2: 

The 

sphencal 

square well 

potential, 
——— ' 

Note that this potential is spherically symmetric anc varies only in F not in @ 

ord. You're dealing with a central potential so you can break the wave furie- 
tion inte an angular part and a radial part (see the earlier section “Taking a 
Good Look at Central Potentials in 3D"). 

This section has you take a look at the radial equation, handling the twa 
cases of )<r<d and r> aseparately. 
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Inside the square well: O<r<a 
For a spherical square well potential, here's what the radial equation looks 
like for the reghon O <r < a: 

: [r R Ar} |+ ve) SE | Ro (rj|= E[r Ror} | ah" 
2m Amr 

In this region, Vir)=—-¥;, $0 you have 

ht 3 f i+ cn a CC 
Taking the V, term over to the right gives you the following: 

<h a fl +] un ‘ _ ; oe [rR {r)]+ mr +r Rr} J=(E+¥ Rafe] 

And here's what dividing by rgives you: 

hla s[rR, [1 ‘}]+ pt 2 (roles vin fr] 
2m rar 2reir” 

Then, multiplying by -2rn/n", you get 

1# Tyr (r)]- Ne (r= — 2M v,)R (1) 
rdr 

Now make the change of variable p = kr, where k = (2m{E +V,9)'" A, s0 
that R.Ar) becomes Rykr) = Kip), Using this substitution means that 

Fis where J<r <a 
Vir} = 

0, where r >a 

dR) gdRf(p) |. tts) : 
4 +). 7 fa(o)=0 

dp’ ps dp 

takes the following form: 

This is the spherical Pessel equation (just as you see for the free particle in 

“Hanilling Free Particles in 30 with Spherical Coordinates”), This time, & = 
[2re(E +¥ 4)", not (2mE} "1. That makes sense, because now the particle 
is trapped in the square well, so its total energy is E + ¥V,, not just E. 
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fRip) aaR,{pl te) 
dp" no dp +f: Pe fe(o)=0 

The solution is a combination of spherical bessel functions and spherical 

Neuman funetions, where Bis a constant 

Rilp) = ByLitp) + ndp)) 

56 the radial solution outside the square well looks like this, where Bayete > 
nme) sh: 

Fe ( rae | = B, [ }, [ Praneei + A, [ Psnute hy. (6, @| 

From the preceding section, you know that the wave function inside the 
square well is 

Wow (hOo)= A (pro Yl) 

So how do you find the constants A, and B,? You tind those constants through 
continuity constraints: At the insidefoutside boundary, where r= a, the wave 
function and its first derivative must be continuaus. So te determine A, and 
B, you have to solve these two equations: 

pW ae OO T= Wee () 

al ‘e WH nice [r.2,0) 
mais a ate Mme (A) 

Getting the Goods on Isotropic 
Harmonic Oscillators 

This section takes a look at spherically symmetric harmonic oscillators In 
three dimensions. In one dimension, you write the harmonic oscillator poten- 
tial like this: 

Vix)= ding? x? 
zZ 

where a = & (here, & is the spring constant; that is, the restoring force of the 

harmonic oscillator is F = <A). You can turn these two equations into three- 
dimenslonal versions of the harmonic potential by replacing » with «: 
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Virb : mar’ 

where a” = # . Because this potential is spherically symmetric, the wave 

function is going to be of the following form: 

y{ rAd] = Rofr}¥,(ea] 

where you have yet to solve for the radial function K,,(r and where ¥,,.(0, hb) 

describes the spherical harmonics, 

The Schrétlinger ecqquation looks like this in three climensions: 

—ht g* eal a a ae atl Rr} |+ [ve }+ [+ Rufr}]=E[r Rufr)] 

Substituting for ¥ir} from v(r] = peer’ tives you the following: 

rete} fnre MGM Fm eet Re I = 
a 

be 3 

Well. the solution to this equation is pretty difficult to obtain, and you're mot 
foing to gain anything by eoing through the math (pages and pages of ith, so 
here's the solution: 

R(r)=Crexp( —ma Fs Jb I" (mot ; -] 

where expt) =e and 
I 

gate | mine |= 
i ed ewe 1 == |! 

ni 2 2 

5 L 

[{m+esipl |? 

And the L,°(r) functions are the generalized Laguerre polynomials: 

La(rjeee ot a a "| 
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Wow, Aren't vou glad you didn't slog through the math? Here are the first few 
feneralized Laguerre polynomials: 

w (rT )=1 

i L*(rj= =r+6#1 

ye be(r)==2(or2pr
 ete Nor) 

6 2 2 i 

All right, you have the form for K,0r. To find the complete wave function, 
Womte @, @) vou multiply by the spherical harmonics, ¥){8, a) 

wool Oo)= Ra (r}¥. (40) 

Now take a look at the first few wave functions tor the isotropic harmonic 
oscillator in spherical coordinates: 

~ WF os FEL | a 2/ mmo \" exp —rmia S| (2.8) 
x 

a Wil rel= 3) -{ me Ls exp(-ma io }v..{60) 

As you can see, when you have a potential that depends on Fr, as with har- 
monic oscillators, the wave function gets pretty complex pretty fast. 

The energy of an isotropic 3D harmonic oscillator ls quantized, and you can 
derive the following relation for the enerity levels: 

E, = (n+ 3 lho r= 12,3... 

So the energy levels start at Sfieo/? and then go to Sfim/2, Tho? and so on. 
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Chapter 9 

Understanding Hydrogen Atoms 
In This Chapter 

The Schrédinger equation bor hydragen 

The radial wave functions 

Eneriy degeneracy 

Location of the electron 

N: only is hydrogen the most common element in the universe, bul it’s 
also the simplest. And one thing quantum physics is good alt is predict 

ing everything about simple atoms. This chapter is all about the hydrogen 
atom and solving the Schrédinger equation to find the energy levels of the 
hvdrogen atom. For such a small litthe guy, the hydrogen atom can whip up a 

Lot of math — and) solve that math in this chapter. 

Using the Schractinger ecpuation tells you just about all you need to know 

about the hydrogen atom, and it's all based on a single assumption: that the 
wave function must £0 to zero as rooes to infinity, which is what makes solv- 

ing the Schrédinger equation possible. | start by introducing the Schrodinger 
equation for the hydrogen atom and take you through calculating energy 
degeneracy and figuring out how far the electron is from the proton. 

Coming to Terms: The Schrédinger 
Equation for the Hydrogen Atom 

MER 
s 

Hadrogen atoms are composed of a single proton, around which rotates a 
single electron. You can see how that looks in Figure 9-1. 

Note that the proton isn’t at the exact center of the atom — the center of mass 
is at the exact center, In fact, the proton is at a radius of r, from the exact 
center, and the electron is ata radius of r. 
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cate §-1: 

The hydro- 

Jee atom. 

, Electron 

So what does the Schrédinger equation, which will give you the wave equations 
vou need, look like? Well, itimchides terms for the kinetic and potential energy of 
the proton and the electron, Here's the term for the proton’s kinetic enerzy: 

=h" 
2m, * 

a a 
ax ody,’ dz,” 

proton’s y position, and 2, is its 2 position, 

where ¥,?= . Here, x, is the proton's x position, y, is the 

The Schrodinger equation also includes a term for the electron’s kinetic energy: 

ah" 
am, * 

where W eee ch +2" Here x, 1s the electron’s x position, y. is the 
"ode oop” dz,” a ne 

electron’s ¥ position, and 2. is its 2 position, 
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Simplifying and Splitting the 
Schrédinger Equation for Hydrogen 

Here's the usual quantum mechanical Schrodinger equation for the hydrogen 
‘horn: 

_ht 

2mm, 
¥, cal r.F, ) + Vo y(n} Eo Ew| rr, | 

eg 

FoF, 

The problem is that you're taking inte account the distance the proton is 
from the center of mass of the atom, so the math is messy. Il vou were ta 
assume that the proton is stationary and that r, = 0, this equation would 
break down to the following, which is much easier to solve: 

sh" ier 2m, Voiw(r,|- is base j= Ewtr, | 

Unfortunately, that equation isn't exact because it ignores the movement of 
the proton, so you see the more-complete version of the equation in quantum 
mechanics lexts. 

To simplify the usual Schrodinger equation, you switch to center-of-mass coor- 
dinates. The center of mass of the proton/electron system is at this location: 

ee 
R= 

im, +4, 

And the vector between the electron and proton is 

r=n,-F, 

Using vectors Rand r instead of r, and r, makes the Schrodinger equation 

easter to solve, The Laplacian for Ris V,° = a + an + nae And the Laplacian 

ete af. Bt. 7 ee ee fori is ¥, ae a ae 

How can you relate Vo and V_" tothe usual equation’s V° and V_°? After 
the algebra settles, you get 

1 z 1 :_ | z, | z —¥ —+Vr=-7f —¥F 
m* "in, eM" ti 
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Well, well, well, This equation has terms that depend on either wi RK) or wir) 

but not both, That means you can separate this equation inte faa equations, 

like this (where the total energy, E, equals E, + Ey: 

—h" 2 = 
a 2My (R}* w{R|=E, 

copy jv(r}-£ sia E 

MOpng 5 Vy ‘w(R}= E Gy wiK) fives you 
hiv)" 

A Ve w(R)= Ew (R) 

And multiplying “yl r| Pipe =E, by wir) gives you 
rates id | 

5-V,v(r)-f alr r}=E,y(r} 

Now you have two Schrodinger equations. The wext two sectlons show you 
how to solve them independently. 

Solving for w(R) 
In hy yl R}=£,¥(R), how do you solve for w(K), which is the wave 

function of the center of mass of the electron/proton system? This is a 

straightlonvard differential equation, and the solution is 

w(R)=Ce™ 

Here, C is. a constant and & is the wave vector, where |A| EME 
i’ 

2 eu Can 

find C by insisting that wiR) be normalized, which means that 

1=|y(Rjy(Rja’'R 
I 

! —~,. Therefore, 

(2x}* 
This equation tells you that C= 

¥[R}=< 
(2x)? 
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In practice, Ey is so. small that people almost always just ignore w(K) — that is, 
they assume it to be 1, In other words, the real action is in yr), not in wh}; wR) 

is the wave function for the center of mass of the hydrogen atom, and y{r) is the 

wave function for a (hictitious) particle of mass i. 

Solving for wr) 
The Schrédinger equation for yor) is the wave function for a made-up particle of 
mass 7 (in practice, m= om, and yor) is pretty close to wir.) so the enerey, E,, is 

prethy close to the electron’s energy). Here's the Schradinger equation for wri: 

_@ Vir }=E etn) =h'p: 
3m = VI") 

You can break the solution, wir), into a radial part and an angular part (see 

Chapter 8}: 

wir) = Raley t al, 2) 

The angular part of yf) is made up of spherical harmonics, ¥,,.f4, 4), 30 that 
part's okay, Now vou have to solve for the racial part, Rr}. Here's what the 
Schrédinger equation becomes for the radial part: 

lr R. (rp )eetr oa ae rR, (r}-£r Ror l= Er R lr} 

where r= lel, To solve this equation, you take a look at hwo cases — where 
ris very small and where ris very large. Putting them together gives vou the 
rough form of the solution. 

Solving the radial Schrédinger equation 
for small r 
For small r, the radial wave function must vanish, and you have 

sh dty Ra(r)]+i(t+ 158 oe Ri {rj=0 

And multiplying by 2m/ii’, you get 

_qi i{t+1) 
r Ra(r) +r Ru (rj=o 
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The salution ta this equation is propoartloanal te 

RAP) ~ Ars Beto! 

Note, however, that Rif) must vanish as ratoes to zero — but the r?-! term 

foes to Infinity, And that means that B must be zero, so you have this solution 
feve Samal r- 

Rar 1 ~ Fy 

That takes care of small r The next section takes a look at very large r. 

Solving the radial Schrédinger equation 
for large r 

_ a ‘ 1 . 
For very large 9, Sn VIF) ee E.wlr| becomes 

fife Ry (ry PME R,(r)=0 
. d 

Because the electron is in a bound state in the hydrogen atom, E < Uh; this, 

the solution to the preceding equation is proportional to 

RLF) Ae 4 Be" 

(-2mE.)? 
sg tt 

Note that R,4fr)- Ae + He” diverges as rgoes to infinity because of the Be" 
term, $0 B must be equal to zero. That means that R,Ary) ~ ee". In the next sec- 
lion, You pul the solutions for small rand large r together. 

where A= 

Vou got the power: Putting together 
the solution for the radial equation 
Putting topether the solutions for small rand larde r (see the preceding sec- 

tions}, the Schrédinger equation gives you a solution to the racial Schrécdlinger 

equation of Kr) = ritrie™, where for) is some as-yet-undetermined function 
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This equation gives the recurrence relation of the infinite series, 

| k( k+ 20+] pay +2 ae alk +141) Jar '|-0. That is, if you have 
del ! 

one coehicient, you can get the next one using this equation. What does that 
buy vou? Well, take a look at the ratio of at): 

a, i 
z Mh+1}-22 | 

a, a{R=2t+1) 

Here's what this ratio approaches as & goes to =: 

a 
limnm— 
[re 

+] 

This resembles the expansion fore", which is 

As fore’, the ratio of suceessive terms is 

(2x) (e-1}! 
RY (ax)"" 

: : : 2 
And in the limit & + ==, the expansion fore’ approaches E: 

(2x)' (1)! 
RE (ax) hes 

ap irs 

That's the case for e*. For ff), you have 

lim—“* 5 24 
t— sT 

heal 

Comparing these two equations, it's apparent that 

i(r)= Zar’ =e 
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For this series to terminate, ay... ty... dy.., and so on must all be zero. The 
recurrence relation for the coefficients a, is 

k(k+2f+1)a, =2f a(t +1}- me la, 
ig 

For ay, to be zero, the factor multiplying a,., must be zerafork&=N 1, 
which means that 

2f alse t) | =p 

Substituting in & = N+ 1 gives you a al Nai+ti- mae =, And dividing by 

2 gives you ALN ++ 1) me =). Making the substitution N +/+ 145, where 

fis called the principal qeaqaatim momber, gives vou 

na ME =0 n=1.23.., 

This is the quantization condition that must be met if the series for fir) is to 
be finite, which it must be, physically: 

i\r}= Say 

] 

_ | -amE ae ; 
Because A= ae the equation m4 — “hE =0 puts constraints 

on the allowable values of the energy. 

Finding the allowed energies 
of the hydrogen atom 
The quantization condition for ptr) to remain finite as reoes to infinity is 

52 

ni-T=0 n=12,3... 
c 

(-2me.)' 

i 

gives you the following: 

where A= . Substituting A inte the quantization-condition equation 
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Getting the form of the radial solution 
of the Schrodinger equation 
In this section, you complete the calculation of the wave functions, Go to the 

calculation of Rr) (see the earlier section titled “You got the power: Putting 
tagether the solution for the racial equation’). So far, you know that 

R., [r} = rfl je . , where flr | = Sar" . Therefore, 

ra) 
: 

Ryirjer'e *} a, 

In fact, this isn’t quite enough; the preceding equation comes from solving 
the radial Schrodinger equation: 

—hF Pi ‘ 7 fe 2, of 2 

Son ett Re(e)}+e(t+ peer B[7)- Sr Rulr)=Er R,[r) 

The solution is only good te a multiplicative constant, so you add such a con- 
stant, A, (which turns out to depend on the principal quantum number nv and 
the angular momentum quantum numbers), bike this: 

Rite l= Are’ Sar 

You find A,, by normalizing Rar). 

Now try to solve for Reb by just flat-out doing the math, For example, try to 
find Ry Or). in this case, 9 = land? =). Then, because N+ f+ 1] =, vou have 

W=n-/-1, SoM = 0 here, That makes Br} look like this: 

R,{rj=A,re “Say 

a 

And the summation in this equation is equal to Yar’ =i,, 50 
ho 

KR, (rl=A,re“a, 

(-2mE}? 
And because /= 0, = 1,50 Ry (Ff) = Aye" a, where a= ; 
vou can also write Rigifh = Aye” Gp as 

. Therefore, 

Rr i= A exp| 3 Jo. 
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where 7, is the Bohr radius. To find Aj, ane ty. YOU normalize wif 4, a) to 

l, which means integrating’ |yyopfr, 8, yl" ‘dr over all space and setting the 

result ta 1. 

Now d'r= F sing dr dé ap, and integrating the spherical harmonics, such as 

Yio. Over a complete sphere, flv..[ sinddéde, gives you 1. Therefore, you're 

Left with the racial part to normalize: 

L= fr lR,,(r || a 

Phugerinngt K,,(r] = A enn = Ja inte 1= Jj Fe: IR (r}] ar gives you 

=A, a” *[rexp| a lar 

You can solve this kind of integral with the following relation: 

J x*exp{ce)ae = 

With this relation, the equation l= A,,"a, ‘Jrtexa| =a Jo becomes 

uF! 
L=A,.7a, fr'esp| =r ir = ee) 0. 

Therefore, 

aK! 
Ayo, = =1 

Fi a i 

Ad, = A 
ii a rr 

Aytt, é 

F," 

This is a fairly simple result. because A), is just there to normalize the result, 

you can setA,, to 1 (this wouldn't be the case if A,,*a, a oe =1 involved 

multiple terms), Therefore, a, = = . That's fine, and it makes Ky, fr), which is 
rn? 

Ry(r}=Ayexp{ = Ja, 

R,(r}=—ye* , 
ri 
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You know that w.,.{n 6,0) = Rory ¥\ 8, a), 

And so yogi, 8, 6) becomes 

Ww lt.8.e) ~ fret LY, (49) 

Whew, In general, here's what the wave function y,,,.(r 8, 0) looks like for 

fiver coer: 

WF ont Ba) (5 Jet “( zr Ls o[ 2" y.(e9) 
[ an{n + 1] i a! 

where Loa fran) is a generalized Laguerre polynomial, Here are the first 

few generalized Lasuerre polynomials: 

m Ly trh= 1 

po Li Grb=—r+ b+ | 

rol Lai(r)
= = (b+ 2)re

 OMe
) 

Lire =u ens Plead
 AL) 

Some hydrogen wave functions 
So what do the hydrogen wave functions look like? In the preceding section, 
vou find that yyoofh 8. o) looks like this: 

Wialtae) =e ¥ (ae) 
¥F Bt 

Here are same other hydrogen wave functions: 

vm w.{réo)=—~e*,¥,,(6.6} 
274? 

F 
al Waal Te) = 1 p27, (Ba) 

6-pr | L 
aq 
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ws (78.0) {ay “t[1-(£}}yn(ee) 

4 ri ok 
Wan ht.8,6) =—— se a. (88 

) afaayene 2% 

Note that wooin 8, 0 behaves like r for small rand therefore toes to zero, 

And for large x w,.fn 8. 0) decays exponentially to zero. So you've solved the 

problem you hac earlier of the wave function diverting as r becomes large — 

and all because of the quaritization condition, which cut the expression for 

ir from an exponent toa polynomial af limited order. Net bad. 

You can see the radial wave function Fy fF) in Fieure 9-2, Roi) appears in 
Figure 9-3. And you can see R..0r) in Figure 9-4, 

Ayteh 

es 

Figure 9-2: =. 
The racial 

wave 
function 

Real. 
F CC:Cté« 
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Ral} 

Ral. a 

ALA 

a ig 

SS 
——— | a een 

Figure 3-4; 
Rf, 

Calculating the Energy Degeneracy 
of the Hydrogen Atom 

Each quantum state of the hydrogen atom is specified with three quantum 
numbers: 9 (the principal quantum number), / (the angular momentum 

quantum number of the electran), and m (the z component of the electron'’s 
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Quantum states: Adding a little spin 
You may be asking yourself — what about the spin of the electron? Right you 
are! The spin of the electron does provide additional quantum states. Up to 
now in this section, you've been treating the wave function of the hydrogen 
atom as a preduct of racial and andular parts: 

Wath 8, tH) =. Rly ial 8, th} 

Now you can add a spin part, corresponding to the spin of the electron, 
where ¢ is the spin of the electron and m, is the 2 component of the spin: 

|r, } 

The spin part of the equation can take the following values: 

bet | tia, Ufa 

ee ees 

Hence, Yuoth 8h) NOW DECOMES Yin jue Ch HOY: 

Woe, (FOO }= Ror) ¥,, (@0)]s.,) 

And this wave function can take two different forms, depending on m,, 
like this: 

¥ aa (78:648)=Ry(r)¥,(8,0)] 2,2) 

# v....s780.0)=Rulr)¥u(8.9)]9.-3} I 
¥ 

In fact, you can use the spin notation (which you use in Chapter 6), where 
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For example, for | "ys, o>, vou can write the wave function as 

1 

0 Wl [r.@e)=Riir}¥ (8a) 

_|Maan | 780] 
0 

And for |, ss, you can write the wave function as 

0 

1 
WO reg) =R([r}¥,,(6.9} 

u 

yo (rAd } 

What does this do to the energy degeneracy? If you include the spin of the 
electron, there are two spin states for every state lq, | m>, 90 the degeneracy 
becomes 

Degeneracy = ¥a(2e1j= 2n° 

So if you inchide the electron’s spin, the energy degeneracy of the hydrogen 
atom is 2. 

In fact, you can even acd the spin of the proton to the wave function 

{although people don't usually cio that, because the protan’s spin interacts 

only weakly with magnetic fields applied to the hydrogen atom). In that case, 
you have a wave function that looks like the following: 

Sift, Vee (AGI = Rr f¥, (Gels er, } 

where s, 16 the spin of the electron, m,, is the 2 component of the electron’s spin, 

s,, is the spin of the proton, ancl m,, is the z component of the protan's spin. 



? ? 6 Part IV: Multiple Dimensions: Going 3D with Quantum Physics 

lf you include the proton’s spin, the wave function can now take four different 
forms, depending on m.,, like this: 

= 1 aya a} ye 1 (r.0.6) Ri (re y¥( 6.0] 2 3/l-3/ 

The degeneracy must now include the proton's spin, 40 that's a factor of four 
for each |e i rts: 

Degeneracy = alae 1| 

=4n' 

On the lines: Getting the orbitals 
When you study heated hydrogen in spectroscopy, you get a spectrum con- 
sisting of various lines, named the s (lor shane), e Gor principal), d (lor dif 
fee), and J {for fundamental) lines. And other, unnamed lines are present as 
well — the g, 4, and so on, 

The s, po) & and the rest of the lines tum out to correspond to different 
angular momentum states of the electron, called orfitals. The s state corre- 

sponds to /= (0) the p state, to/ = 1; the d state, to / = 2; the fstate, to /= 3; and 
soon. Each of these angular momentum states has a clitfterenthy shaped elec- 

tron cloud around the proton — that is, a different orbital. 

Three quantum numbers =n, 4 and im — determine orbitals. For example, 
the electron cloud for the 11,0, 0> state (1s, with wr =) appears in Figure 9-5. 
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Pee 

Figure 9-5: 

The |1, 0, te 

state, 

Pe 

The 14.3, 2+ state (46 with wt = 2) appears in Figure 9-65. 

a 

Figure 9-6: 

The |4, 3, 2= 
state. 

: 
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Agi because wot 8, 0 = Rory, (8, a), this equation becomes the 

follow ina: 

jlR.t r}¥{aei] sing 
aa | as ride 

The preceding equation is equal to 

IR (r}f rae] ¥,.(8,@)) sine aa | ap 

orlRulr Wf etde [Y." (ao)¥,, (0.6 )sin aaf de 

Spherical harmonics are normalized, so this just becomes 

[RGF edie 

Okay, that’s the probability that the electron is inside the spherical shell 
from tors dr So the expectation value of which is <r, is 

(r= jriRe(ryf adr 

which is 

(ris Jr Ref re 

This is where things get more complex, because RAF} involves the Laguerre 

polynomials. But after a lot of math, here's what you get: 

i=Jrleleier olan 0 
f 

where vr is the Bohr radius: r, = ae . The Bohr radius is about 5.29 ~ 10°" 

meters, $0 the expectation valwe of the electran’s distance from the proton 1s 

cr> = An" — A+ 19)¢2.65 x 10°") meters 
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Chapter 10 

Handling Many Identical Particles 
In This Chapter 

Looking at wave functions and Hamiltonians in many-particle systems 

Working with itentical and distin#uishable particles 

Identifying and creating symmetric and antisymmetric wave functions 

Explaining electron shells and the periodic table 

YH. atoms (see Chapter 9) involve only a proton and an electron, 
but all other atoms involve more electrons than that. So how do you 

deal with multiple-electron atoms? For that matter, how do you deal with 
multi-particle systems, such as even a simple gas? 

In general, you cad?! deal with problems like this — exactly, anyway, [madine 

the complexity of just two electrons movine in a helium atom — you'd have 

to take inte account the interaction of the electrons not only with the nucleus 

of the atom but also with each other — and that depends on their relative 
positions. So not onky does the Hamiltonian have a term in |, for the poten- 
tial energy of the first electron and |. for the second electron, but it also has 

1 
aterm in [r : | for the potential energy that comes from the interaction of 

the two electrons, And that makes an exact wave function just about impos- 
sibbe to find, 

However, even without finding exact wave functions, you can still do a sur- 

prising amount with multi-particle systems, such as deriving the Pauli exci 
sion principle — which says, amon other things, that no two electrons can 
be in the @xact same quantum state. In fact, you'll probably be surprised at 
how much you can actually say about multi-particle systems using quantum 
mechanics. This chapter starts with an introduction to many-particle systems 
and goes on to discuss identical particles, symmetry (and anti-symmetry), 
and electron shells, 
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Many-Particle Systems, 
Generally Speaking 

You can see a multi-particle system in Figure 1+1, where a number of par- 
ticles are identified by their position (ignore spin lor the moment). This sec- 
tion explains how to describe that system in quantum physies terms. 

Parncie f 

Partgla 3 

Figure 10-1; 
Ay enuulti- 

peeurtic bes 

system, 

Considering wave functions 
and Hamiltonians 
Begin by working with the wave function. The state of a system with many par- 
ticles, a5 shown in Figure 1-1, is piven by wer, r, #4, J. And here's the prob 

bility that particle | is in dry, particle 2 is in d'r., particle 3 is in a'r, and so om: 

luo tt} ard rar, 

The normalization of wir, rs, im...) demands that 

Jlvlrnr.. | rd rar, =] 
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Electron IT 

—— 

Figure 10-2: 

A multi- a 
1 -) 

elietobek Elsetran 3 
atom, é 

mus oer of Mass Electron 2 

you have 4 electrons, the wave function looks like wir;, ry, .... fs Ri. And the 

kinetic energy of the electrons and the nucleus looks like this: 

RESP V9 tty R)-B EY Wort lt 

And the potential energy of the system looks like this: 

=e Fe" e& 1 
PE = xy = RP tote Fe) = ec 

So adding the two preceding equations, here's what you pet for the total 
energy (E = RE + PE} of a multi-particle atom: 

= 

Ew(r.7,,---F,] = aa Ute a, R)-2_¥ ole, RY 

rl 
hl 

= . fe ' : ee ; 

b? ah a A WLR Pyke AR 

a 

Okay, now that looks like a proper mess. Want to win the Nobel prize in phys- 
ics? Just come up with the general solution to the preceding equation. As is 
always the case when vou have a multl-particle system in which the particles 
interact with each other, vou can't split this equation into a system of N inde 
pendent equations. 



() 
cm, a Si 
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In cases where the N particles of a multi-particle system don? interact with 

each other, where you can disconnect the Schrédinger equation into a set of 

hy independent equations, solutions may be possible, But when the particles 

interact ancl the Schrodinger equation depends on those interactions, you 

cant solve that equation for any significant number ot particles. 

However, that doesn't mean all is lost by any means. You can still say plenty 
about equations like this one if you're clever — and it all starts with an exam- 
ination of the symmetry of the situation, which | discuss mext. 

A Super-Powerful Tool: 
Interchange Symmetry 

Even though finding general solutions for equations like the ane for the total 
energy of a multi-particle atom (in the preceding section) is impossible, you 
can still see what happens when vou exchange particles with each other — 
and the results are very revealing. This section covers the idea of interchange 
symmetry. 

Order matters: Swapping particles 
with the exchange operator 
You can determine what happens to the wave function when you swap two 
particles. Whether the wave function is symmetric under such operations 
Hives you insight into whether hwo particles can occupy the same quantum 
state. This section discusses swapping particles and looking at symmetric 
and antisymmetric functions. 

Take a look at the general wave function for N particles: 

WA, Fas sen Fis aon Fis ae Ful 

Note: In this chapter, | talk about synumetry in terms of the location coor- 
dinate, r, toa keep things simple, but you can also consider other quantities, 
such as spin, velocity, and so on. That wouldo't make this discussion any 
different, because you can wrap all of a particle's quantum measurements — 
location, velocity. speed, and so on — into a single quantum state, which you 
can call &. Doing so would make the general wave function for N particles into 
THIS: WES). Sa. eer Ge eer Sp en Su But as [ said, this section just considers the 
Wate TUInctlon Wr), tay wee Fi oe tp oon rf.) to keep things simple. 
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Now imagine that you have an exchange operator, P,. that exchanges par- 
ticles f and f In other words, 

Pail, gy sony Fis any Ws ante Fal = WO, Pas ven Fy ae Fe nen Fil 

And Py ES Py, 50 

Poyntry, Wa, Fy a Py Fd = WOR), a, Ba Ba Pa) 

= Poa, Fay ig Ba oy Be ony PD 

Also, note that applying the exchange operator twice just puts the twa 
exchanged particles back where they were originally, $0 Py = 1. Here's what 
that looks like; 

Py Py (ri Poa sory Fp oi Fu orp Fy) = Pylry, Posy ray Fh sets Fy rant rah 

= WOR), Pap ees Bp ee Py on Pa) 

However, in general, P,, and Py, (where 2 fn) do not commute. That is, 
Py Pay # Pie Py Cy # do). Therefore, (P;, P,,,) #0 Gy # leo. For example, say vou 
have tour particles whose wave fumetion is 

WF FFF, |= as et 
i 

Apply the exchange operators P,, and F,, to see whether P|. P,, equals 
Pia Py Here's Pig wor,, Fs, Fy re 

FY. 

Py WF Pythie, |= 
- e" 

And here's what P,P ,. wr, re. re. mo looks like: 

1 hy y 
ad Gn lee e 

I 

Chay. Now take a look at Py. Pye w0ry, rs. ry. . Here's Py yet. reo rs. eek 

Piotr aritt) Joe 
L 

And here's what Py, Py wr), rs. ry. ra) looks like: 

PP Lenn }= we’ 
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; P ing FWP. (rrr, |= be" j 1 As you can see by comparing Poh yi FoF, and this last equation, 

Pie Prout), ret, hy) Ply Pregl, eye). in other words, the order in 

whith wou apply exchange operators vaters. 

Classifying symmetric and antisymmetric 
wave functions 
P= | (gee the preceding section), $0 note that ifa wave function is an 
elgentinction of Py, then the possible eigenvectors are | and —1. That is, 
FOr Wi. Pay eg Pp eee PS, oo Py an Bitentumction of P; looks like 

PoC Was ee Py ey Fe ee PR) = WPL, Fes Be eee Fe 
Or -yilr), Fa, Fy Fe - Pad 

That means there are two kinds of eigenfunctions of the exchange operator: 

Symmetric cigenfanctionsa: Py Cry, Pe co Fy co Ky on Mel ® 

Wary Fi omy Fa ony Fp ay Ft 

i Antsymimetric eigentinctlons Pywolr. Fijp sory Fp any Pp coe Fg = 

-y Ori Fx, cop Fi reny Fp tory Tal 

Now take a look at some symmetric and some antisymmetric cigentunctions. 

How about this one — is it symmetric or antisymmetric? 

wir. re) = tn ny 

You can apply the exchange operator P).: 

Pir Wilh, Fe) = CA ny 

Note that because (r, -—m) =(r- 9). wiCr), ty) is a symmetric wave function; 

that’s because Pia wot, rel = wiley, wad 

How about this wave function? 

v, (rn, j=t 

(" =r) 

Again, apply the exchange operator, P,.; 
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roth 
Puro |= ; 
| (ir) 

i ao 

(n-n) (yn) 
$0 Welly). ra) is S¥MUMELriC. 

Ohay, but because .¥ou know that Py wer. rel = yolry, rsh 

Here's another one: 

vile )= on) 
— 

Now apply Pys: 

S(r, —r,) 

(rn-ny 
Powe (Rhy |= 

How does that equation compare to the original one? Well, 

5f r, r, | 7 Slr. r, | 
(y,—ny = (r = rh » 50 F ig wor), ry} = —yal ry, Fy). Therefore, Wale, r)} is 

antisymmetric. 

What about this ome? 

w, (rn = fe anton, 

© (A) 

To find out, apply Py: 

Pie (rt |= i ; +r) +r? 

All right — how's this compare with the original equation? 

Fr eo 
= afl a el 

(n-7) 

ny 
Pl 

(7, 7] 

rot 

Qhay — wife). te) is symmetric, 

You may think have this process down pretty well, but what about this next 
wave function? 
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Unt |= nts +h -F 
(", —F; ir 

Start by applying P ys: 

A ee 

(n-n) | 

So how do these two equations compare? 

FY, i FY : 
F +ritapn! e#—eh eer 

Pr [r,- " (r,-v,} : 

That is, Wet), mis neither symmetric nor antisymmetric. In other words, 
WaGr), ry) is notan elgenfunction of the P|, exchange operator, 

Floating Cars: Tackling Systems of 
Many Distinguishable Particles 

All right, ii you've been reading this chapter from the start, vou pretty much have 
the idea of swapping particles down, Now vou look at systems of particles that vou 
can distinguish — that ls, systems of identifiably different particles, As you see in 
this section, you can decouple such systems into linearly independent equations, 

Suppose you have a system of many different types of cars floating! arcund in 
space. You can distinguish all those cars because they're all different — they 
have cditterent masses, for one thing. 

Now say that each car inkeracts with its own potential — that is, the potential 
that any one car sé¢es doesn’t depend oan any other car. That means that the 
potential for all cars is just the sum of the individual potentials each car sees, 
which looks like this, assuming you have NW cars: 

PREV (Fhe lh }=E V(r) 

Being able to cut the potential energy up into a sum of independent terms 
like this makes life a lot easier, Here's what the Hamiltonian looks like: 
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Figure 10-3: 

An electron 

colleding 

wilh another 

electran, 

<<a 

Figure 10-4: 

An electron 

calling 

wilh another 

electron, 
—s 
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But now look at the scenario in Figure 14 — the electrons could've bounced 

like that, not like the hownce shown in Figure 10-3, And you'd never know it. 

So which electron is which? From the experimenter’s point of view, you can't 
tell. You can place detectors to catch the electrons, but you can’t determine 
which of the inéorming electrons ended up in which detector, because af the 
two possible scenarios in Figures 10-3 and 1-4 

Quantum mechanically, identical particles don't retain their individuality in 
terms of any measurable, observable quantity. You lose the individuality of 
klentical particles as soon as You mix them with similar particles, This idea 

holkls true for any N-particle system, As soon as you let N identical particles 
interact, you can't say which exact one is at ry) or ry or ry or r, and so on, 
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Symmetry and antisymmetry 
In practical terms, the loss of individuality among identical particles means 
that the probability density remains unchanged when you exchange particles. 
For example, you were to exchange electron 10,281 with electron $9,330, 
you'd still have the same probability that an electron would occupy Finca 

arid Fes man: 

Here's what this idea looks like mathematically (rand s are the location and 
sping of the particles}: 

Yr Sy Fiye cane FS es Py cone PN) Fs WC By, FsB ye coer Mp co Sy oo PySr | 

The preceding equation means that 

CF Ss PB ve Bh seen Be con PN) = EMA Bh Bae ee FS oe Be oes PND 

So the wave function of a system of N identical particles must be either sym- 
metric or antisymmetric when you exchange bro particles. Spin turns out to 

be the deciding factor: 

 Antisymimetric wave function: If the particles have hall-odd-integral 
spin (ys "5, and soon), then this is how the wave function looks under 
exchange of particles: 

WCF Se Sy coun By coer PR sen PS) ESL Sp oun Bp coe FS eee Sy) 
Symmetric wave function: If the particles have integral spin ((), 1, and 

soon), this is how the wave function looks under exchange of particles: 

WO |S). Fei, ny Sp on BS, on Pi) = WLS), Pele, -) BS) 5 PS on Bain) 

Having symmetric or antisymmetric wave functions leads to some different 
physical behavior, depending on whether the wave function is symmetric or 
antisymmetric. 

In particular, particles with integral spin, such as photons or pi mesons, are 
called bosons. And particles with half-odd-intepral spin, such as electrons, pro- 
tons, and newtrons, are Called fermions, The behavior of systems of fermions is 
very different from the behavior of systems of bosoms. 

Exchange degeneracy: The steady 
Hamiltonian 
The Hamiltonian, which vou can represent like this 

Hersh Fads, sump Fay 11 rai, ney Profs} 
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ant 

Hut what if the particle you're stuching is a composite particle? What if, for 

example, you hawe an aloha particle, which is made up of two protons and 

two neutrons? Is that a fermion or a boson? 

In fact, protons and neutrons themeehes are made up of three quarks, and pi 

Incsors are made up of hwo — and quarks hawe spin 'y:. 

Composites can be either fermions or bosons — it all depends on whether 
the spin of the composite particle ends up being half-odd-integral or integral. 
lf the composite particle's spin is ‘fs, °5, 4b, and 50 on, then the composite 
particle is a fermion. If the composite particle's spin is 0, 1,2, and so on, then 
the composite particle is a boson, 

In teneral, ii the composite particle is made up ofan odd number of fermions, 

then it's a fermion, Otherwise, it's a boson. So for example, because quarks 

are fermions and because nucleons such as protons ancl neutrons are made 

up of three quarks, those nucleons end up being fermions. But because pi 
mesons are made up of two quarks, they end up being bosons. The alpha 
particle, which consists of two protons and two neutrons, is a boson. You can 
even consider whole atoms to be composite particles. For example, consider 
the hydrogen atom: That atom is made up af a proton (a fermion) and an elec- 
tron Canother fermion), so that’s two fermions, And that makes the hydrogen 
atom a boson, 

Building Symmetric and Antisymmetric 
Wave Functions 

air 

Many of the wave functions that are solutions to phvsical setups like the 
square well aren't inherently symmetric or antisymmetric: theyre simply 
asvimmetric. In other words, they have no definite symmetry, So how do you 

end up with symmetric or antisymmetric wave functions? 

The answer is that you have to create them yourself, and vou co that by 
adding together asymmetric wave functions. For example, sav that you have 
an asyrmeétric wave function of bwo particles, wlrysy, rose). 

To create a symmetric wave function, add together wir,s,, ms.) and the version 
where the two particles are swapped, elras., ri3)). Assuming thal wr,3), rs) 
and wir, eS are normalized, you can create asymmetric wave function 
using these two wave functions this way — just by adding the wave hunethons: 

WO LS, | a +l Le Sy }* virs.rs,)| 
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And the total enerey is just the sum of the energies of the individual particles: 

E=SE 
=I 

But now look at the wave function for the system. Earlier in the chapter (see 
“Floating Cars: Tackling Systems of Many Distinguishable Particles”), vou 
consider the wave function of a system af N distinguishable particles and 
come up with the product of all the individual wave functions; 

ee (ht. vel, \=T1 ur (nr) 

However, that equation doesn't work with identical particles because you can't 
say that particle 1 is in state yf), particle 2 is in state w.fr.), and so on — 
they're identical particles here, not distinguishable particles as before. 

The other reason this equation doesn't work here is that it has no inherent 
symmetry — and systems of N identical particles must have a definite sym- 
metry. So instead of simply multiplWing the wave functions, you have to be a 
little more careful. 

Wave functions of two-particle systems 
How clo you create symmetric and antisymmetric wave functions for a twor 

particle system? Start with the single-particle wave functions (see the earlier 

section “Building Symmetric and Antisymmetric Wave Functions”): 

ef (PS, 05, | = sl yrs AS, + wiles, )| 

a (rsrs.)= El w[rsurs.)-(rsns:)| 

Hy analogy, here's the symmetric wave function, this time made up of two 

single-particle wave functions: 

wrists, |= gL vn (FS), (48) + Ws (FS yw,, (rss) | 
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And here's the antisymmetric wave function, made up of the two single-parti- 
cle wave functhons: 

w. (srs, SL w. (78i) (FS) w., (rs, }ur, (7,5, }| 

where 9, stands for all the quantum numbers of the ith particle, 

Note in particular that ywooris), ma) = 0 when may = ay: in other words, the antl 
symmetric wave function vanishes when the two particles have the same set 
of quantum numbers — that is, when they're in the same quantum state. That 
ilea has important physical ramifications. 

You can also write w(rys,, feis) like this, where P is the permutation operator, 
which takes the permutation of its argument: 

¥ (1.5, 05, } = sePe. [n5, | V.. [r5, | 

And also note that you can wrile yw, (r)3), rt} like this: 

was, FS, ) = ey Pir ins, hr, (r,s, ) 

where the term (-1)" is | for even permutations (where you exchange both 9,5, 
and rs, and also im, anda.) and -1 for odd permutations (where you exchange 
ra, and ms but nota, and me: or you exchange 9, and me but not Fs, and es.) 

In fact, people sometimes write w les), r5:) in determinant form like this: 

ag Mel) (ns) 
Pal Fisuhss; }=—prdet flee ee tee) 

Note that this determinant is zero if tt) = rt. 

Wave functions of three-or-more-particle 
systems 
Now you Get to put together the wave function of a system of three particles 

from single-particle wave furmetionns. 
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The Poul exciton principle states. that no two electrans can occupy the 

Same quantum state inside a single atom, And that result is important for the 

structure of atoms, Instead of just piling on willy-nilly, electrons have to fill 

quantum states that aren't already taken, The same isn't true for bosons — for 

example, you have a heap of alpha particles (bosons), they can all be in the 

sae quantum state. Not so for fermions. 

There are various quantum numbers that electrons can take in an atom — #7 
(the energy), Ptthe angular momentum), mi tthe z component of the angular 
momentum), and im, (the z component of sping. And using that information, 
You can construct the electron stricture of atoms. 

Figuring out the Periodic Table 

cy 

Cine of the biggest successes of the Schrodinger equation, together with the 
Pauli exclusion principle (see the preceding section), ls explaining the elec- 
tron structure of atoms. 

The electrons in an atom have a shell structure, amd they fill that structure 
based on the Pauli exclusion principle, which maintains that no two electrons 
can have the same sthabe: 

The major shells are specified by the principal quantum number, , cor- 
responding to the distance of the electron from the nucleus. 

Shells, in turn, have subshells based on the orbital angular momentum 
quantum number, & 

In turn, each subshell has subshells — called orbitals — which are based 
on the z component of the angular momentum, #7, 

So each shell a has oa - 1 subshells, corresponding to] =, 1,2, .....a@- 1, Amd in 

turn, each subshell has 2/+ 1 orbitals, corresponding toe m=—-1,-f+ 1,...¢- 1.6 

Much as with the toydrogen atom, the various subshells (/ =, 1, 2, 3, 4, and 
so on}are called the sp, df 2 4, and so on states. So, for example, for a 
#iven a, ans state has one orbital (m= 0), ap state has three orbitals (m = —-1, 
0, and 1), ad state has five orbitals (im =-2,=1, 0, 1, and 2), and so on. 

Tn addition, due to the z component of the spin, im, each orbital can contain 
hwo electrons — one with spin up, and one with spin down, 
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Perturbation theory lets you handle situations like this — as long a6 the pertur- 
bation isint too strong. In other words, ifvou apply a weak maenetic Tele to your 
known svstem, the energy levels will be mosthy unchanged but with a carrec- 
tion, (Neder Thats why its called perterbotion teary and not dnaticiniererence 
fheory) The change vou make to the setup is slight enough so that you can cal- 
culate the resulting energy levels and wave functions as comections to the funda- 
tnenital enercty lewels and wave functions of the unperturbed system. 

So what doves it mean bo talk of perturbations in plrysics tens? Say that you 
have this Hamiltonian: 

H=H,+aWw [A<<l] 

Here, H, ig a known Hamiltonian, with known eigentunetions and cigenvalues, 
and &W is the so-called perturbation Hamiltonian, where 4<<1 indicates that 
the perturbation Hamiltonian is small. 

Finding the eigenstates of the Hamiltonian in this equation is what solving 
problems like this is all about — in other words, here's the problem you want 
bo scone: 

H]w,}=(H,+AW||pe i=, |y) (As=1] 

The way vou solve this equation depends on whether the exact, known solu- 
thons of 1, are degenennvfe (that is, several states have the same energy) or 
nendestenerate, The next section solves the nondegenerate case, 

Working with Perturbations to 
Nondegenerate Hamiltonians 

Start with the case in which the unperturbed Hamiltonian, H,. has sovdeger- 
erde solutions. That is, for every state |p», there's exactly one energy, E, 

that isn’t the same as the energy for any other state: H,|¢,)<E,|6,) Qustas a 
one-to-one function has only one x value for any y. You refer to these nonde- 
generate energy levels of the unperturbed Hamiltonian as Eto distinguish 
them from the corrections that the perturbation introduces, so the equation 
becomes 

H, |¢,}=E'",|,} 

From here on, | refer to the energy levels of the perturbed system as E_. 

The idea behind perturbation theory is that you can perform expansions 
based on the parameter A twhich is much, much less than 1) to find the wave 
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So your task is to calculate EO and Eas wellas ye" and gw So how do 
you do that in general? Time to start slinging some math, You start with three 

perturbed equations: 

Hamiltonian: Hiy,)=(H,+aW lw j=E,\y,) (ase1) 

Energy levels: E,=E'! +dE" 44°E +... [(acel) 

l Wave funetions: |y,}=|9,)+a)w" j4 aly j4.. (acel] 

Combine these three equations to get this jumbo equation: 

(H, +AW)}[|o,)+ aly + aeph) +.) 

=(B", +E", +48") +...}{ bn) + aly" d+ a'y™}+...] (a<<1] 

Matching the coefficients 
of \ and simplifying 
You can handle the jumbo equation in the preceding section by setting the 
coefficients of 2 on elther side of the equal sign equal to each other. 

Equating the zeroth order terms in 4 on either side of this equation, here's 
what you fet: 

H,|6,.}=E" | 6.) 

Now for the first-order terms in 4; equating them on either side of the jumbo 
equation gives you 

H, {ur} We, } _ Ely "A bE yo o,) 

Now equate the coefficients of 2° in the jumbo equation, giving you 

yy ee pit 
a7 L; 

H,|y"".) + wl") SEU yell Vy ch @, 

Okay, that’s the equation vou derive from the second order in’. Now you 
have to solve for EE?! and so on using the zeroth-order, first-order, and 
second-order equations. 
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Start by noting that the unperturbed wave function, |b .> isn't going to be 

very different from the perturbed wave function, | y,>. because the perturba- 

tion is small. That means that (4, ly, | \o1. In fact, you can normalize lyr se 
that <p,|g@,> is exactly equal te 1: 

(@,|y, }=I 

Given that |w,}=|@,)+4 wea? wp », the equation becomes 

ald, lw) \+atle, lwp Vee 2p 

And because the coetlicients of A must both vanish, you get the following: 

(plu j= (fw =o 

This equation ls useful for simplifying the math. 

Finding the first-order corrections 
After matching the coefficients of & and simplifying (see the preceding sec- 
tion), you want te find the first-order corrections ta the energy levels and 
the wave functions. Find the first-order correction to the energy, E'!, by 

multiplying H, |w'" }+ W/o, y= BM pel +E", |.) by =, I: 

(al Hel.) +( 0,1 W]0,}=(#.] E,W )+ (4B. J) 

You can use Hly,}e(H,+ AW ute Ely.) (A-<1) to simplify this to 

yet 

EM =(¢,| We, } 

Swell, that’s the expression you use for the first-order correction, E'" . 

Now look inte finding the first-order correction to the wave function, | y=. 
You can multiply the wave-function equation by this next expression, which 
is equal ta 1: 

LI.) 
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Finding the second-order corrections 
Now find the second-order corrections to the energy levels and the wave 
functions (the preceding section covers first-order corrections) To fined Z + 

multiply both sides of H, je" .} \+w|y j= Ee ye }+E™ «ye att BY 
by <p, 1: 

bt (s,| E™, le.) 
| 

(o,| tty" Sao, [ Why”, = (o,[E, [yl eC, [E [a”,| 

This looks like a tough equation until you realize that <q, |g!" > is equal bo 
Zero, $0 you £et 

(o,[ Hw +(e, | Why, =o, JE" |e }+Co,[E [e, ) 

And because <p (y's! > is also equal to zero, vou get 

(o,|wlw'". }=(¢,JE", [o.) 

Ee? is just a number, so you have 

id, bw] yr a = EM (0, 

And of course, because <p,1¢,> = 1, you have 

= (9. Wor.) 

Note that if | yy" > is an eigenstate of W, the second-order correction equals 
zera. 

Okay, $0 BS! cp [Weyl =. How \ you make that simpler? Well, 

yep eel lw a ; 
from using |. 7 Substituting that equation Into 

B= (9,| why 1} gives you 
Fi WAI \ 

E*=(awlv".)=(6,|wz te ell, 
l(e-119.) 

‘aij wa BE fs 
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, ; si om|W|on)| 
Now you have EB’ = a.) W le) and E°, = c oT . Here's 

a —E' 

the total energy with the first: and second: neder corrections: 

E, = EI e. ag rs Et Fie. | Al eet 1) 

So from this equation, you can say 

=| W vs wjea eye Mel tu. (Asel} 
a 

E,=E,+4(9, 

That gives you the flrst- and second-order corrections to the energy, accord: 
Ing ta perturbation theory, 

Note that for this equation to converge, the term in the summation must 
be simall, And note in particular what happens to the expansion term if the 

energy lewels are clegernerate: 

It@.wlo,)f 
itu EM =E' 

In that case, you're going to end up with an E™ that equals an E!. which 
means that the enenty-corrections equation blows up, and this approach 
to perturbation theory is oo good — which is to say that you need a dil- 
ferent approach to perturbation theory (coming up later in “Working with 
Pertubations to Degenerate Hamiltonians”) to handle systems with degener- 
ate energy states. 

In the next section, ] show vou an example to make the idea of perturbing 
nondegenerate Hamiltonians more real. 

Perturbation Theory to the Test: 
Harmonie Oscillators in Electric Fields 

Consider the case in which you have a small particle oscillating in a harmonic 
potential, back and forth, as Figure 11-1 shows, 
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a 

Figure 11-1: 

Aharmanic —wilf- _ 
oscillator. 

Dee 

Here's the Hamiltonian for that particle, where the particle's mass is m, its 
location is 4, and the angular frequency of the motion is a: 

=z a 

Now assume that the partiche is charged, with charge g, and that you apply a 
weak é@lectric field, ¢, as Figure 11-2 shows. 

t 
ie 

oo 

Figure 11-2: > 

Applying 

an electric 

field to a i 
heer tienen ht: e 

ascillator, 

la el a 

The force due to the electric field in this case is the perturbation, and the 

Hamilionian becomes 

fo ; 
He 4d nx! + 90x 

2m de’ 2 

In this section, you find the energy and wave functions of the perturbed 
system and compare them to the exact solutions, 
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That makes figuring out the second-order enengy a litte easter, 

Also, the following expressians turn out to hold for a harmonic oscillator: 

(netlxlebedaady he : 
cal 4 | i } ( 2mea} z 

a EME" = hoe 

a EME = ta 
(in| ae n}| 

With these four equations, you're ready to tackle eT b..., the 
aE —EM 

second-order correction to the energy, Omitting higher-power terms, the 
summation in this equation becomes 

If Ix lait 
q’e* fu < 

BE! =~ B! 

aa 
eet 

nel 

And substituting in the for E" | -E™ and EM -E' | gives you 

= 

(m+) x n} sia al . 

; |{n=a]xe|n}] 

i fgg 

Now, substituting in for «a+ lixia> and <9 —- 1lavla> tives you 

ERE 
(a+) 

1° (aa)(2me) 

oe: (aw\(zmen} - 

OF 
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1 (a 

pe tire | xr} (ni) 
‘ ‘ : ( 2mai} 

3 Abel 

pr el) xl} = at —_—_—_ _. 
( | } (2mm) a 

Note also that E™,-E"., "fa ang EB". -E™,,, = he 

These four equations mean that 

lw.) blah + -(r ‘lt I} Cr+ 19°" [eee 1} 
ho (a oF 

Note what this equation means: Adding an electric fleld ta a quantum har- 
monic oscillator spreads the wave function of the harmonic oscillator, 

Originally, the harmonic oscillators wave function is just the standard har- 
monic oscillator wave funetion, |yo> = ine. Applying an electric field spreacts 

the wave function, adding a component of la—-—1l>, which is proportional ta 

the electric field, ec, and the charge of the oscillator, ¢, like this: 

—l ay FE _ y,)=|n) i na)” 7[P"|a-1) -) 

And the wave function also spreads to the other adjacent state, | + I>, 
like this; 

ae i a rt |e l} n+l) on 
\v.)= ho (2m) fs | el | 

You end up mixing states, That blending between states means that the per- 
turbation vou apply must be small with respect to the separation hetween 
Lnperturbed enerpy states, or vou risk blurring the whole system to the point 
that you can't make any predictions about what's poing to happen, 

In any case, that’s a nice result — blending the states in proportion to the 

strength of the electric field you apply — andl it's typical of the result you get 
with perturbation theory. 

Okay, that’s how nondegenerate perturbation theary works. As you can see, 
it’s strongly dependent on having the energy slates separate so that your 
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Now multiplying that equation by <p | gives vou 
ii] 

Ef (o..[e". Jo. +(e, 16.) Je, 2, Ba. (0,,|0, } 

Using the fact that = lb.» = land op, |6,> = Oifm is not equal to 9 gives you 

rT] L f a,E, =a,E" + Lan\9,, H, é) 

Physicists offen write that equation as 

Sah, —{a,E,-a,E j=0 (B=1,2,4,...,F) 
z=] 

where H_ an =f, IAI, =. And people also write that equation as 
E fl F a 

Yak, -a,B", =a (=12,3,....7) 
ws 

where EB = E.=E*. That's a system of linear equations. and the solution 
exists only when the determinant to this array is nonvanishing: 

H,,, -E'", Has Bay. ate Fe 

H Hie, Hy -- Ay 

H.. H,,, H,, -» Hy-E", 

The determinant of this array is an #th degree equation in E™!, and it has f 
tlifferent roots, E"! . Those fditferent roots are the first-order corrections 

to the Hamiltonian, Usually, those roots are different because of the applied 

perturbation, In other words, the perturbation typically gets ricl of the 

egeneracy. 

So here's the way you find the eigenvalues to the first order — you set up an 
Fby-fmatrix of the perturbation Hamiltonian, H,, where H, = op, IAI}, =: 

Ls : B 
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Then diagonalize this matrix and determine the feigenvalues E’ in and the 
matching eigenvectors: 

wl 

=a, fel 2 wf 

Then you get the enerey eigenvalues to first order this wary: 

E =e, +E, (00 1,2,3,...F) 

And the eigenvectors are 

lv. }= Las, 

In the next section, you look at an example to clarify this idea, 

Testing Degenerate Perturbation Theory: 
Hydrogen in Electric Fields 

In this sectlon, you see whether degenerate perturbation theory can handle 
the hydrogen atom, which has energy states degenerate in different angular 
momentum quantum numbers, when you remove that deveneracy by apply- 
ing an electric field. This setup is called the Shant effecs 
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all pe 

Hin Hye Hy Ayu 

Hi Hy» Hy» Hyy 
H 

a 

Doing the math dives vou this remarkably simple result: 

Fy H icy Fai Hou 0 0 I 0 

Hie Hye Hy Hy pee 0 0 0 

How Hy. Hy, Ayy 1ob Oo Q 

H. Hy Hoy How 0 0 0 0 

Diatonalizing this matrix gives you these cigenvalues — the first-order cor- 

rections to the unperturbed energies: 

EM! = deed, 

i Fi! Me =f) 

Ell = deeg, 

i EA =f) 

where E"! is the first-order correction to the energy of the | 1> eigenfunction, 

EO. és the first-order correction to the energy of the | 2> eigenfunction, and 
soon. Adding these corrections to the unperturbed energy for the a = 2 state 
fives you the tinal enerty levels: 

yr E,= R — deed, 

jw E,= 

pr E,= 

* 

=k 
Al 

yr E,= =8 +3080, 

=R 
4 

where Bis the Rydberg constant Note this result: The Stark effect removes 
the energy degeneracy in | 200> and (210+ (the |1> and |3> eigenfunctions), 
but the degeneracy in | 211+ and !21—-1> (the |2+ and |4> eigenfunctions) 
remains. 
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Chapter 12 

Wham-Blam! Scattering Theory 
In This Chapter 

Switching between lab and center-of-mass frames 

Solving the Schradinger equation 

Finding the wave function 

Putting the Born approximation to work 

our National Science Foundation grant finally came through, and you 
built vour new synchrotron — a particle accelerator. Electrons and 

antl-electrons accelerate at near the speed of light along a glant circular track 
enclosed ina vacuum chamber and collide, letting you probe the structure of 
the high-energy particles you create, You're sitting at the console of your giant 

new experiment, watching the lights Hashing and the signals on the screens 

approvingly, Millions of watts of power course through the thick cables, arid 

the ratliation monitors are beeping, indicating that things are working. Coal. 

You're accelerating particles and smashing them against each other to observe 
how they scatter. But this is slightly more complex than observing how pool 
balls collide, Classically, you can predict the exact angle at which colliding 
objects will bounce off each other if the collision is efestic (that is, momentum 
and kinetic energy are both conserved). Quantum mechanically, however, you 
can only assign probabilithes to the angles at which things scatter, 

Pharsitists use large particle ancelerators ta discover more about the striuc- 

ture of matter, and that study is central to modern plosics, This chapter 

serves as an introduction to that field of stuck. You get to take a look at par- 
ticle scattering on the subatomic lewel. 

Introducing Particle Scattering 
and Cross Sections 

Think of a scattering experiment in terms of penticies in and particies out, 
Look at Figure 12-1, for example. In the figure, particles are being sent ina 
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stream fram the left and interacting with a target: most of them continue on 
unscattered, but some particles interact with the target and scatter. 

~ Particles scattered at 

la.a] 

EE 

Figure 12-1: 

Scathenny 

froma —_______—_» 

bangee, [nenter particles 
FP CCis 

Unscattered particles 

Those particles that do scatter do so at a particular angle in three dimensions — 
that is, you give the scattering angle as a solid angle, 2, which equals sing a} de. 
where o and 0 are the spherical angles | introduce in Chapter 4, 

The number of particles scattered into a specific af) per unit time is propar- 
tional te a very important quantity in scattering theory: the differential cross 
section, 

’ ee do(o@) Paes The dtferenie! cross section is given by —a and it's a measure of the 

‘o number of particles per second scattered into a! per incoming flux. The ine 

| dent fx, J (also called the current density), is the number of incident particles 

| oe (62) al 
per unit area per unit time. So - a 

dala) 1 aN (ae) 

ma J 

where Nth, 6) is the number of particles at angles and 6 

da| 9.0} re has the dimensions of area, so calling The differential cross section 
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ita cross section is appropriate. The cross section is sort of like the size of 
the bull's eve when youre aiming to scatter Incident particles through a 
specific solid angle, 

aie The differential cross section is the cross section for scattering to a specific 
solid angle, The total crass section, a, is the cross section for scattering of any 
kind, through any angle, So Uf the differential cross section for scattering to a 
particular solid angle is like the bull's eve, the total cross section corresponds 
to the whole target. 

You can relate the total cross section to the differential cross section by inte- 
grating the following: 

jee is is eco] “7166 )ee 

Translating between the Center-of-Mass 
and Lab Frames 

Now you Can start getting inte the details of scattering. beginning with a dis- 
cussion of the center-of-mass frame versus the lab frame, Experiments take 
place in the inf frame, but you do scattering calculations in the centesotrnrss 
frame, so vou have to know how to translate between the two frames. This 

section explains how the frames diifer and shows you how to relate the scat- 

tering angles and cross sections when you chani@e frames, 

Framing the scattering discussion 
Look at Figure 12-2 — that’s scattering in the lab frame. One particle, travel- 
If al eye 18 incident on another particle that’s at rest (25,.. ° 0) and hits it. 
After the collision, the first particle is scattered at angle 4), traveling al v,fab, 
and the other particle is scattered at angle & and velocity t's... 
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Figure 12-2: 

Scattarnng 

in the lab 

frame. 

ee 

I lab 

¥ v 

1 lal ? lab th 

i fy 
i 2 thy 

f 
v 

2 lab 

A B 

Now in the center-of-mass frame, the center of mass is stationary and the par- 
ticles head toward each other. After they collide, they head away from each 

other at angles @ and m-@, 

You have to move back and lorth between these two frames — the lab frame 
and the center-of-mass frame — so you need to relate the velocities and 
angles (in a nonrelativistic way). 

Relating the scattering angles 
between frames 
To relate the angles @, and @, you start by noting that you can connect py, 

and e). wind the velocity of the center of mass, v.., this wav: 

Pyos F Bye + Fon 

In addition, here's what can say about the velocity of particle | after it col 
lides with particle 2: 

P high = Be + Bn 

Now you can find the components of these velocities: 

Mop COS8, =e) CORE = e, 

i py, Sim, = 2), sind 

Dividing the equation in the second bullet by the one in the first gives you 
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Note also that tam(6.) = cotlys), or tan{@,) = tant: — "55. 

You know that 4, =), ane tan(@.) = tan(t/:-"/:) tells you that the following is 
true: 

hy ry 

So substituting @, = %5 into the preceding equation gives you 

i = aly = Uy 

a, + a, = a 

Therefore, 6 and 6, the angles of the particles in the lab frame after the colli- 
sion, add up to: — which means & and 6, aré at right angles with respect to 
each other. Cool. 

In this case, you can use the relatlons you've already derived to get these 
relations in the special case where m, = m.: 

do| 9,0 char ( 9,0?) 
ae (oT eee 

hh “a 

dol o.0| 
we da 

= 4oos( 2) S109) 

do] 0] 
mf, 

ka 

= dcos| 
kab 

= 4ooe( 2) 21021 
hob 

ivi | 

der | @,0) js “=] 

I 

da( 6.0] 

dt, 
7 

Tracking the Scattering Amplitude 
Of Spinless Particles 

In the earlier section “Translating between the Center-of-Mass and Lab 
Frames,” you see how to translate from the lab frame to the center-ol-mass 
frame and back again, and those translations work classically as well as in 
quantum physics (as long as the speeds involved are nonrelativistic). Now 
you look at the elastic scattering of two spinless nonrelativistic particles 
fram the time-independent quantum physics point of view, 

Agsume that the interaction between the particles depends only on their 

relative distance, |yy—-—iml. You can reduce problems of this kind to two 
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decoupled problems (see Chapter 9 for details). The first decoupled equation 
treats the center of mass of the two particles a8 a free particle, and the 

ee, 

Pt, ~ 
second equation is for a lictitious particles of mass 

The first decoupled equation, the free-particle equation of the center of mass, 
is ol no interest to you in scattering discussions. The second equation is the 

Wim 

oe bo concentrate on, where p= m, +m, : 

ar Flr) + Vir }wlr)= Eyl) 

You can use the preceding equation to solve for the probability that a par- 
ticle is scattered into a chee angle af — and you tive this prohability by the 

eT 
differential crass section, ' 

In quantum physics, wave packets represent particles, In terms of scattering, 
these wave packets must be wide enough so that the spreading that occurs 
during the scattering process is nevlivible (however, the wave packet can't be 

60 spread that it encompasses the whole lab, including the particle detectors). 
Here's the crux: Alter the scattering, the wave function breaks up into two 
parts — an unscattered part and a scattered part. That's how scattering works 
in the quantum physics world. 

The incident wave function 
Assume that the scattering potential ¥iri has a very finite range, oa. Outside 
that range, the wave functions involved act like free particles. So the incident 
particle's wave function, quisice the limit of Vir) — that is, outsicle the range 

a Erom the other particle — is given by this equation, because Vir) is zero: 

Vid(rj+ka.(rj=0 

where A, = ai . 
he 

The form ¥'?.. (r}+ko(r)=0 is the equation fora plane wave, so ¢,,.(7) is 
UF) = Ae" where Ais a normalization factor and A, fis the dat product 

between the incident wave's wave vector and r. In other words, vou're treat- 

ing the inciclent particle as a particle of momentum Po © hk, 
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The scattered wave function 
After the scattering of the spinless particles, the nonscattered wave function 
ian't of much interest to you, but the scattered wave function bs, Although the 
incident wave function has the form #,,-(F) = Ae“, the scattered wave func- 
tion has a slightly different form: 

6, (}= Al{9.6)2— 

The f(, @) part is called the scoffering amplitude, and your job is bo fined it. 
Here, Ais a normalization factor and 

2uE 

i? \Al= 

where E is the energy of the scattered particle. 

and differential cross section 
The scatbering amplitude of spinless particles turns owt to be crucial to 

understanding scattering from the quantum physics point of view. To see 
that, take a look at the flux densities, J,,.. (the Dux density of the incident par- 
ticle} and J, (the flux density for the scattered particle): 

geile =F lb.VO', -#".¥¢,.} 

sada the scattering amplitude 

al i, =5,(6.¥0".- go ¥e,, | 

Inserting your expressions for}, and o,, into these equations gives you the 
following, where Ab, 8) is the scattering amplitude: 

2 fhe, wd, =(Al 7 

wa, =|4/ 25 |s(0.0)) 

Now in terms of the flux, the number of particles dip, 0) scattered into dd 
and passing through an area dA = rate ls 

dMif¢, 8) = J Pd 
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And the homogeneous solution is a plane wave — that is, it corresponds to 
the incident plane wave: 

Ae*' 

To take a look at the scattering that happens, you have to find the particular 
solution. You can do that in terms of Green's fictors, oo the solution to 

(Vek y(r)=Bavirjwlr) ig 

w(r)= det +28 fa(r—r'\V(r pura 

Gtr a = 4 where (r r'|= aayleae ae 

This integral breaks down to 

S(r-+') Tape Pe 
You can solve the preceding equation in terms of incoming and/or outgoing 
waves. Because the scattered particle is an oulgoing wave, the Green's fune- 
tion takes this form: 

G ous _ ear 

Mer) alee 

You already know that 

y(r}= dew +24 [Glee \¥(r (rar 

aclp 

So substituting Glr—r'}= Goel inta the preceding equation gives you 

Wir )}= Ae" ee ae ee 
Doh eo |wlr \@ r 

Wow, that’s an integral equation tor wir), the wave equation — how do vou 

fo about solving this whopper? Why, you use the Born approximation, of 
COUTSE, 
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The Gorn Approximation: Rescuing 
the Wave Equation 

Okay, your dilemma is to solve the following equation for vir), where 4,,, = 
Ae’: 

w(rj=a_- aah = avr Jae de” 
2h’ 

You can co that with a series of successive approximations, called the orn 

dooroximation (this is a famous result}. To start. the zeroth order Born 
approximation is just yofri = 6,,0r). And substituting this zéroth-order term, 
Whiiri. into the first equation in this section gives you the first-order term: 

wirl=d Vir leer, bo Fr 
=e (— 

os Ink. = "| 

which, using ywoOr = 4,09) gives you 

vi(r}=0. - 5h i. PA et 

You cet the secondo oe term by substituting this equation inte 

wir}=9.. Tan’ ale iver jw (re |e'r’ - 

v.(r)= 0, — pit fav anh’ + \r—y,| Few Un eer, 

And substituting wjir)=e, - oo vir, jw, (r, ja"r, into the preceding 
equation gives you ee = Fr, 

w, (1) 

9 5see hE M reader 
nie =p ny vile jan fe (x, bei, jet, 
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The pattern continues for the higher terms, which you can find by plugging 
lower-order terms into higher ones, 

Exploring the far limits 
of the wave function 
Now that you've used the Born approximation (see the preceding section), 
take a look at the case where ris large — in seattering experiments, r= Fr, 
where ris the distance from the target to the detector and Fr is the size of 

oper lie Aegis 
the detectar, What happens to ¥(r| =4,. ss ir r’| Vir'}w(r a'r’ the 

exact integral equation for the wave function, when r >> 7°? Here's the answer: 

wir) er ee 

Because fFe> ir, you can say that #lre-l = kr-&- rr, where & -r' is the dot 

product of & and e (kis the wave vector of the scattered particle}, And 

Lising the last two equations in yr} =@.. +5 nu iz = V(r jw s" ee! 
HIVES YOU 

wir)=A]% "4 Me™ (4,0) r3o 

Aud here 

#(8.9)= 2s fee’v[r yr’ Jar’ = 2. 6lv|y) 

da| 0 
The differential cross section is given by i 
case becomes 

der| #4 a'r’ = 42 |lolvly if ee a irlle “V(r u(r a's] = Feel |p| 

- \F(e.8)] which in this 
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Using the first Born approximation 
If the potential is weak, the incident plane wave is only a little distorted and 
the scattered wave is also a plane wave, That’s the assumption behind the 
first Born approximation, which you take a look at here, So lf you make the 
assumption that the potential is weak, you can determine from the equation 

wir isa. - oe ia ac that 

vir) $.-50 53 se ler = Ad jo [hate 

Okay, 0 what is a py? Well 

Hep) =F fee V(r yw (r a'r 

And this equals the followlng, where @ = A, — a: 

Nga}s Vr ler jee = fev (eae 
2a’ 

da| ,8 | 
aif 

And because = |F( 4,8) rs you have 

dcr| 6,2) 
cht gbaalfe err ‘a'r | 

When the scattering is elastic, the magnitude of & is equal to the magnitude 

of &,, and you have 

g = ly -k| = ak sint'/s) 

where 6 is the angle between &, and &, 

In addition, Wf you sav that Vor) is spherically symmetric, and you can choose 
the axis along a, then gy =r = 9F cost, 50 

- £ in 

F(6,d)= male wl’ dir’ = an [rv (yr Jar'[e “a sin o'd6" | do’ 

That equals 

‘lod}= iat | ry’) cr’| ee" sin eae | dig” = a Jr Vir" )sin ( qr” jar" 
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lor) gh al a0] # 

ieee roe) you know that vis |F(s,0)| 80 

do(¢.8) 4yu*|e, ee ee ihe i a Jr Vir" bsin[ qe” jar" 

You've come far in this chapter — from the Schrédinger equation all the 
way through the Born approximation, and now to the preceding equation for 
weak, spherically symmetric potentials, How about you put this to work with 
some concrete numbers? 

Putting the Born approximation to work 
In this section, you find the differential cross section for two electrically 

charted particles of charge 4)¢ and “.e. Here, the potential looks like this: 

V(r) 
Lise 

So here's whiat the differential crass section looks like in the first Horn 

appProcimatiog: 

da| GeO) Aziz teu 
ab qh’ 

[sin( gr’ jet’ 

or oe ae | 
And because Jsin( ar Jer’ = q - You know that 

do|@@) 4% 27 eu! 
ap ah" 

And because g = 2ksin{'’:), the following is true: 

do|g8) 4% /Z,'e'y" _ ZeZ,le! (2) 
a = git" — 16E* 2 

ae 5 is aed tgs Be te 
where E is the kinetic enerey of the incoming particle: = Ty 

Now fet more specific; say that you're smashing an alpha particle, 2, = 4, 
against a gold nucleus, 2 = 79. [If the scattering angle in the lab frame is 60", 
what is it in the center-of-mass frame? 
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Chapter 13 

Ten Quantum Physics Tutorials 
In This Chapter 

Understanding basic concepts and equations 

Viewing illustrations and animations 

U)«: scientists start mixing talk of dice, billiard balls, and a possibly 

undead cat-in-a-box, you know you're dealing with a challenging sub- 

ject. Luckily, you tan tind plenty of online tutorials, sane of them featuring 

animation, to help you wrap your brain around quantum physics. This chap- 
ber presents a food starter list. 

An Introduction to Quantum Mechanics 
www. chemiatry.chio-state.edu/betha om 

Mant fs a actoce fanetion? What ison onbite!?: An introduction to Quenturnt 
Mechanics comes from Neal McDonald, Midori KitagawaDeLeon, Anna 
Timasheva, Heath Hanlin, 2il Lilas, and Sherwin J, Singer at The Ohio State 
University, This site includes tutorials on probability, particles versus waves, 
wave functions, and more, including Shockwave-based sound (though if you 
don't have Shockwave Installed, that’s not a problem), 

Ouantum Mechanics Tutorial 
www. glilesty.com/tuterials/quantum. html 

This cool tutorial js one of the Flash-animated Modem Plivsics Tutorials by 
Giles Hoghen. Extensively illustrated, this tutorial probes questions such 
as wWave-particle duality and offers a food general introduction to quantum 
physics, 
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Grains of Mystique: Quantum 
Physics for the Layman 

www, faqa. org/doca/qp 

This site provides good historical and experimental backround info — and 
they've documented their sources and made some altempts at peer review. 

Quantum Physics Online Version 2.0 
www. quantum-physics.polyrechnique. fr/index.html 

This is a cool set of programs that run in your browser, giving simulations 
of various quantum physics experiments. It's by Manuel Joffre, Jean-Louis 
Basdevant, and Jean Dalibard of the Ecole Polytechnique in France. Look lor 
information on wave mechanics, quantization, quantum superposition, and 
spin 'f>, 

Todd K. Timberlake’s Tutorial 
facultyweb .perry.adu/ttimnberlake/qchace/qm.html 

This tutorial is by Todd K. Timberlake, assistant professor of the Department 
of Physics, Astronomy, & Geolovy of Berry College in Georgia. It’s a fairly 
brief hut wellwritten introduction to the ideas of quantum mechanics. 

Physics 24/7’s Tutorial 
we, physicsas4?,com/physicsa=tuterial /quantum-physics 

billiards.,shtml 

This is. a text-based tutorial from Physics 24/7. 1t includes material on quanta, 
the uncertainty principle, and quantum tunneling (as well as some ads). 
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Stan Zochowski’s PDF Tutorials 
www, cmap. ucl.ac.wuks/~ewa, courses /5N355/5N355. html 

Stan Zochowski, from the department of Physics & Astronomy at University 
College London, put together these PDF-based tutorials on quantum phivs- 
ics. These are tutorial handouts for a Quantum Mechanics course at the 

University College, and they serve as an excellent Introductlon to quantum 
physics, 

Quantum Atom Tutorial 
we, colorado.edu/physics/ 2000 /quantumzone/ index .atml 

This is a fun, cartoon-centric tutorial on the quantum ature of the atom from 
the University of Colorade Physics 2000 project, 

College of St. Genedict’s Tutorial 
we physics. cabeju.edu/OH/Index., html 

This is a comprehensive quantum physics tutorial from the College of St. 
Benedict. It's a good, more serious, text and equations-based tutorial with 
plenty of Wustrations. 

A Web-Based Quantum 
Mechanics Course 

electron6, phys.utk.edu/qml/Modules.htm 

This one’s from the University of Tennessee, and it’s an extensive online 
course in quantum physics. Itincludes modules on square potentials, har- 
monic oscillators, angular momentum, spin, and so on, 



Hidden page 



Chapter 14 

Ten Quantum Physics Triumphs 
In This Chapter 

Explaining unexpected results 

identifying characteristics of the quantum world 

Developing new models 

Devs physics has been very successful in explaining many physical 
phenomena, such as wave-particle duality, In fact, quantum physics 

was created to explain physical measurements that classical physics couldn't 

explain, This chapter is about ten triumphs of quantum physics, and it points 

you to resources on the Web that examine those triumphs for hurther 

mnforiiation, 

Wave-Particle Duality 
Is that particle a wave? Or is that wave a particle? That's one of the questions 

that quantum physics was created to solve, because particles exhibited wave- 

like properties in the lab, whereas waves exhibited particle-like properties. 

These Web sites offer more insight: 

iM wew,gllesty.com/tutorials /quantum.html 

Moo poysics247,com/physics-tuterial/qantum-physics- 

billiards.shtml 

The Photoelectric Effect 
Another founding pillar of quantum physics was explaining the photoelectric 
effect in which experimenters shone light on a metal. No matter how strong 
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the light, the energy of ejected electrons from the metal didn’t rise, [t turns 
out that the energy of electrons goes up with the frequency of the light, mot 
its intensity — which gives support to the light a5 a stream of discrete pho- 
tons theory, 

For more info on the photoelectric effect, check out wwe. gi lestv. coms 

tuteriala quantum. html. 

Postulating Spin 
The Stern-Gerlach experiment results couldn't be explained without pas- 
tlating spin, another triumph of quantum physics, This experiment sent 

electrons through a magnetic field, and the classical prediction |s that the 
electron stream would create one spot of electrons on a screen — but there 
were two (corresponding to the bao spins, up and down}, 

This Web site has more info: electroné. phys.utk. edu/qml /modulaes 

ma spin, htm 

Differences between Newton's 
Laws and Quantum Physics 

In classical physics, bound particles can have any energy or speed, hit that’s 

not true in quantum physics. And in classical physics, you can determine 

both the position and momentum of particles exactly, which isn't true in 
Quantum physics (thanks to the Heisenberg uncertainty principle). And in 
quantum physics, you can superimpose states on each other, and have par- 
ticles tunnel into areas that would be classically impossible. 

You can find a mice discussion of the differences between classical and 
quantum physics at faculeyweb. berry. edu/Ecimberlake/qchaoss 

am. hem, 

Heisenberg Uncertainty Principle 
One of the triumphs of quantum physics is the Heisenberg uncertainty princk 
ple: Heisenberg theorized that you can’t simultaneously measure a particle's 
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Square Wells 
Like harmonic oscillators, quantizing particles bound in square wells at the 
micre level was another triumph for quantum physics. Classically, particles 
in square wells can have any energy, but quantum physics says you can only 
have certain allowed energies. 

There's plenty on the Web about lt, Including these two good treatments: 

A way. physio: .osbsju.edu/O4/ Index. html 

MH electrons. phys.utk.edu,/qnlsmodules /medulez.htm 

Schrédinger’s Cat 
Schrédinger’s Cat is a thought experiment that details some problems that 
arise in the macro world from thinking of the spin of electrons as completely 

non-determined until you measure them. Por example, if you know the spin af 

one of a pair of newly-created electrons, you know the other has to have the 
opposite spin, Soa if you separate two electrons by light years and then mea- 

sure the spin oof one electron, does the other electron’s spin suddenly snap 

to the opposite valwe — even ata distance that would take a signal from the 

lirst electron vears to cover? Tricky stulfl 

For more, take a look at ww. gilesty. com/tutorials ‘quantum. htmL. 



Glossary 

He: a glossary of common quantum physics terms: 

amplitude: The maximum amount of displacement of an oscillating particle. 

angular momecotum: The product of the distance a particle is from a certain 
point and its momentum measured with respect to the point. 

annihilation operator: An operator that lowers the energy level of an elgen- 
state by one level, 

anti-Hermitian: The value you get when you take the Hermitian adjoint of an 

expression and pet the same thing back with a negative sign in front of it. 

black body: A body that absorbs all raciation and radiates it all away. 

Bobr radius: The average radius of an electron’s orbit in a hydrogen atom, 
about li meters. 

bound state: A state in which a particle isn't free to travel to infinity, 

bosons Particles with integer spins, Including photons, pi mesons, and so on, 

bra-ket notatlon: Abbreviating the matrix form of a state vector as a eer 

or lwo, and abbreviating the ket’s complex conjugate, or Gra, as «yr. 

center-of-mass frame: In scattering theory, the frame in which the center of 
mass is stationary and the particles head toward each other and collide. See 
also lab frame. 

central potential: A spherically symmetrical potential. 

commute: Two operators commute with each other if their commutator is 
equal ta zero, The commefator of operators A and Bis [A,B] = AB- BA, 

complex conjugate: The number you get by negating the imaginary part of a 

complex number, The “ symbol indicates a complex conjugate, 
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Compton effect: An increase of wavelength, depending on the scattering 
angle, that occurs after incident light hits an electron at rest. 

conservation of energy: The law of phvsics that says the energy of a closed 

system doesn't change unless external influences act on the system. 

creation operator An operator that raises the energy level of an eigenstate 
bar ore level. 

current density: See incident flux. 

electron volts (eV): The amount of energy one electron gains falling through 
I volt. 

diagonalize: Writing a matrix so that the only nonzero elements appear along 
the matrixes diagonal. 

differential croas section: In scattering theory, the cross section for scatter- 

ing a particle to a specific solid ancle; it's like a bull's-eye. 

Dirac's constant: Planck's constant Cf = 6.626 = 10 Joule-seconds) divided 
by ar. It's represented by an A with a bar going through it. 

Dirac notation: See bra-ket notation. 

eigenvalue: A complex constant that represents the change in magnitude of 

a Vector, 

eigenvector: A vector that changes in magnitude but not direction alter you 

apply an operator, 

elastic collision: A collision in which kinetic energy is conserved. 

electric field: The force on a positive test charge per Coulomb due to other 
electrical charges. 

electron: A nedatively charged particle with hall-inteder spin. 

emissivity: A property of a substance showing how well it racliates, 

energy: The ability of a system to clo work, 

energy degeneracy: The number of states that have the same energy. 

energy well: See potential well. 

expectation value: The mast probable valite an operator will return. 
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fermions: Particles with halt-integer spin, including electrons, protons, ne- 
trons, quarks, and so on. 

frequency: The number of cycles of a periodic occurrence per second, 

Hamiltonian: An operator for the total energy of a particle, both kinethe and 
prevtacertiaal. 

Heisenberg uncertainty principle: See uncertainty principle. 

Hermitian adjoink A value, represented as Al, that replaces complex num- 
bers with their complex conjugates, swaps bras and kets, and replaces opera- 
tors with their Hermitian operators. 

Hermetian operator: Operators that are equal to their Hermitian adjoints: in 
other words, an operator is Hermitian ff Al = A. 

incident flux: The number of incident particles per unit area per unit time, 

inelastic collision: A collision in which kinetic energy isn't conserved. 

intensity (waves: The time-averaged rate of energy transmitted by a wave per 
unit of area. 

Joule: The MES unit of enerty — one Newton-meter, 

ket: See bra-ket notation, 

kinetic energy: The energy of an object due to its motion. 

lab frame: In seattering theory, the frame in which ome particle is incident on 
a particle at rest and hits it. See aise center-ol-mass frame. 

Laplacian: An operator, represented by A, that you use to find the Hamiltonian. 

magnetic field: The force on a moving positive test charge, per Coulamb, 
from magnets or moving charges. 

magnitude: The size or length associated with a vector (vectors are made up 

of a direction and a magnituce}, 

mass: The property that makes matter resist being accelerated. 

momentum: The product of mass times velocity, a vector. 

MES system: The measurement system that uses meters, kilograms, and 
SeComds. 
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Newton: The MES unit of force — one kilogram-meter per second, 

normalized function: A function in which the probability adds up te 1, 

orbitals: Different angular momentum states of an electron, represented as 
subshells in atomic structure, 

orthogonal: Two kets, |y> and los, for which <yl d= = 0. 

orthonormal: Two kets, | ye and | >, that meet the following conditions: 
emlib= = O05 < yl = 1: aid <pldo = 1. 

oscillate: To move or swing side to side regularly. 

palr annihilation: The conversion of an electron and positron into pure light, 

palr production: The conversion of a high-powered photon into an electron 

and positron, 

particle: A discrete piece of matter. 

Pauli exclusion principle: The idea that no two electrons can occupy the 
Same state ina single atom. 

period: The time it takes for one complete cycle of a repeating event, 

Perturbation: A stimulus mild enough that you can calculate the resulting 

enerey levels and wave functions as corrections to the fundamental enerey 

levels and wave functions of the unperturbed system, 

photoelectric effect: A result in which the kinetic energy of electrons emitted 
from a piece of metal depends only on the frequency — not the intensity — 
of the incident light. 

photon: A quantum of electromagnetic radiation, An elementary particle that 
is its own antiparticle, 

fi meson: A subatomic particle that helps hold the nucleus of an atom together, 

Planck's constant: A universal constant, #, that describes the relationship 

between the energy and frequency of a photon. It equals 6.626 * ltr Joule- 
seconds. 

positron: A positively charged anti-electron. 

potential barrier A potential step of limited extent; an electron may be able 
to tunnel through the barrier and come out the other side, 
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potential energy: An object’s energy because af its position when a force is 
acting on it or its internal configuration. 

potential stem: A region in which the energy potential forms a stalr shape; 
a particle striking the step may be reflected or transmitted. 

potential well: A region in which there's a dip in the energy potential thresh- 
old: particles without enough energy ta overcome the barrier can become 
trapped in the well, unable to convert the potential ener@y bo kinetic. 

power: The rate of change in a system's energy. 

probability amplitude: The square root of the probability that a particle will 
occupy a certain state, 

probability density: The likelihood that a particle will occupy a particular 

position or have a particular momentum, 

quantized: Coming in discrete values. 

quark: Particles that combine with antiquarks to form protens, neutrons, and 
$0 Cm. 

radian: The MES unit of angle — 25 radians are in a circle, 

radiathon: A physical mechanism that transports heat and energy as electro- 

magnetic waves. 

acalar: A simple number (without a direction, which a vector has}, 

Schrodinger equation: A wave function that describes how energies and 
probable locations of electrons change over time. 

simple harmonic motion: Repetitive motion where the restoring lorce is pro- 
portional ta the displacement. 

apherical coordinates: Coordinates that indicate location using two angles 

and the length of a radius vector, 

api: The intrinsic angular momentum of an electron, classified as up or down, 

synchrotrom A type of circular particle accelerator. 

state vector A vector that gives the probability amplitude that particles will 
be in their various possible states. 
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threshold frequency: If you shine light below this frequency on metal, no 
electrons are emitted. 

total cross secthon: In scattering theary, the crass section for any kind of par- 

ticle scathering, through any angle, 

tunneling: The phenomenon where particles can get through regions that 
they're classically forbidden to go. 

dliraviclet catastrophe: The failure of the Raleith-Jeans Law to explain black- 
body radiation at high frequencies. 

uncertainty principle: 4 principle that says it's impossible to know an 
object's exact momentum and position. 

vector: A mathematical construct that has both a magnitude and a direction. 

velocity: The rate of change of an object's position, expressed as a vector 

whose magnitude is speed. 

volt: The MES unit of electrastatic potential — one Joule per Coulomb. 

wave: A traveling energy disturbance. 

wavelength: The distance between crests or troughs of a wave, 

wave-particle duality: The observation that light has properties of both 

waves and particles, depending on the experiment, 

wave packet A collection af wave functions such that the wave functions 

interfere constructively at one location and interfere destructively (go to 
zero) at all other locations. 

work: Force multiplied by the distance over which that force acts. 
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cloud chambers, L& 
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Stark effect, 273 
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diatomic molecule, rotational energy of, 

137-139 
dice, 24-26 

differential cross section 
Born approximation, 281 
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spinless particles, 285-2586 

differential operators, 158-159 
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overview, 26-27 
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Dirac’s constant, 30M 
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eigenfunctions 
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energy of a’ | n=, 97-98 
first excited state, 103-14 
hermite polynomials, 105-106 
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wave function of ground state, 12-108 

eigenvalues 
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eigenvectors and, 43-45 
exact energy, 264 
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Einstein, Albert, 15 
elastic collision, 204 
electric field 
defined, 304 
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anti-particle, 18 
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collisions, 242-243 
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defined, 304 
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kinetic energy, 206 
location in hydrogen, 228-250) 

orbitals, 22-228, 251-252 

periodic table, 251 
phatoelectric effect, 14-16 

shell structure, 251-252 
subshells, 251-252 
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emitted electrons, 14-15 
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energy degeneracy 
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Stark effect, 273 

energy levels. See also Hamiltonian operator 
degeneracy of, 225 
determining, 62-64 
floating cars analogy, 241 
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particle in box potential, 180-181 
perturbations, 228. 
spherical coordinates, 10 

energy state equations, 4h 
enemy wells 

binding particles in potential wells, 60 

box potentials, 180-181 
energy levels, 62-64 
escaping from potential wells, 604651 
free particles, 85-87 
Gaussian wave packet, SB-85 
infinite square potential wells, 61-68 
nonzero solution, 7-78 
normalizing wave function, 64-5 
particle without enough energy, 74-75 

particle with plenty of energy, 69-81 
physical particle with wave packet, 7-8 
potential barriers, 7A-85 
reflection coelficient, 71-72, 7h 
Schrédinger equation, 57 
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of Hermitian operator, 37 
of operaters, 34-36 
of radius 7, 228-230 

efe 

Fstate, 226, 251 
fermions, 160, 162-165, 245-246, 305 
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first-order corrections, 257, 759-200), 265 
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incident flux, 276, 305 
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photons, 15, 19. 306 
scattering, 16-18 
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matrix representations, 41-44 
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overview, 232 
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Pauli matrices. 165-166 
period, 206 
periodic table, 251-252 
permutation operator, 25) 
perturbation theory, 254-256, 264-269 
perturbations 

coelcients of 4, 28-259 
definerl, 306 
degenerate Hamiltonians, 269-27 1 
energy levels, 258 
energy Of unperturbed system, 256-257 
equations, 297=258 
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| nee 
The Hamiltonian 
One of the central prablens af quantum mechanics is te calculate the energy lewels of a system, The 

anergy aperator, called the Hamiitavad, 1, gives you the total emargy, Finding the energy levels of a 

system breaks dave to finding the eigenvalues af the problem 

H] yr} = Ely) 

Here's the same equation in matrix terms: 

H.. H cee 

H., H.-E H, H., 

H.,, H.,. H,,-E H,, a 

H H, H, H,,-E 

det |H,, -E 

Hyplrj=s Fe Aylr)+ Vir}eirj= Eye( ¥ | 

The Heisenberg Uncertainty Principle 
The Heisenberg uncertainty principle says that the better you know the pasition ofa particle, the lass you 

know the momentum, and vice yarsa, Inthe x direction, for example, that looks like this: 

AYAD, 25 

where Axis the measurement uncertainty in the particle's x position, Ap is its measurement uncertainty in its 

mamentum in the x diraction, and f= Avz. 

This relation balds for all three dimensians: 

-, ft AWA 
Prey 

Azap. 25 

on —— ——s ——_ ——._.. oe SS ee a 

The Schrdinger Equation 
The Schrodinger aquation dascribes the enargies and probable locations of electrons. The quantum phys- 

ics in this book ts largely about solving this diffarantial equation fora variety of potentials, Wirt: 

Hy(r)= 3 a — Aw P| i 
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